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PREFACE TO THE FOURTH EDITION 

The first, single-volume edition of this Work was published in 1955 and the second in 1970; 
continued demand prompted a third edition in two volumes which appeared in 1983. The 
first two editions were edited by myself alone, but in preparing the third, which was much 
longer and more complex, I had the crucial help of Peter Haasen as coeditor. The third 
edition came out in 1983, and sold steadily, so that the publishers were motivated to propose 
the preparation of yet another version of the Work; we began the joint planning for this in 
early 1992. We agreed on the changes and additions we wished to make: the responsibility 
for commissioning chapters was divided equally between us, but the many policy decisions, 
made during a series of facs-to-face discussions, were very much a joint enterprise. Peter 
Haasen was able to commission all the chapters which he had agreed to handle, and this task 
(which involved detailed discussions with a number of authors) was completed in early 1993. 
Thereupon, in May 1993, my friend of many years was suddenly taken ill; the illness 
worsened rapidly, and in October of the same year he died, at the early age of 66. When he 
was already suffering the ravages of his fatal illness, he yet found the resolve and energy to 
revise his own chapter and to send it to me for comments, and to modify it further in the 
light of those comments. He was also able to examine, edit and approve the revised chapter 
on dislocations, which came in early. These were the very last professional tasks he 
performed. Peter Haasen was in every sense coeditor of this new edition, even though fate 
decreed that I had to complete the editing and approval of most of the chapters. I am proud 
to share the title-page with such an eminent physicist. 

The first edition had 22 chapters and the second, 23. There were 31 chapters in the third 
edition and the present edition has 32. The first two editions were single volumes, the third 
had to be divided into two volumes, and now the further expansion of the text has made it 
necessary to go to three volumes. This fourth edition is nearly three times the size of the first 
edition thirty years ago; this is due not only to the addition of new topics, but also to the fact 
that the treatment of existing topics has become much more substantial than it was in 1965. 
There are those who express the conviction that physical metallurgy has passed its apogee 
and is in steady decline; the experience of editing this edition, and the problems I have 
encountered in holding enthusiastic authors back from even more lengthy treatments (to 
avoid exceeding the agreed page limits by a wholly unacceptable margin), have shown me 
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viii Pmfme to the fourth edition 

how mistaken this pessimistic assessment is! Physical metallurgy, the parent discipline of 
materials science, has maintained its central status undiminished. 

The first three editions each opened with a historical overview. We decided to omit this 
in the fourth edition, for two main reasons: the original author had died and it would have 
fallen to others to revise his work, never an entirely satisfactory proceeding; it had also 
become plain (especially from the reaction of the translators of the earlier editions into 
Russian) that the overview was not well balanced between different parts of the world. I am 
engaged in writing a history of materials science, as a separate venture, and this will 
incorporate proper attention to the history of physical metallurgy as a principal constituent. 
- It also proved necessary to leave out the chapter on superconducting alloys: the ceramic 
superconductor revolution has virtually removed this whole field from the purview of 
physical metallurgy. - Three entirely new topics are treated in this edition: one is oxidation, 
hot (dry) corrosion and protection of metallic materials, another is the dislocation theory of 
the mechanical behavior of intermetallic compounds. The third new topic is a leap into very 
unfamiliar territory: it is entitled “A Metallurgist’s Guide to Polymers”. Many metallurgists 
- including Alan Wmdle, the author of this chapter - have converted in the course of their 
careers to the study of the more physical aspects of polymers (regarded by many materials 
scientists as the “materials of the future”), and have had to come to terms with novel 
concepts (such as “semicrystallinity”) which they had not encountered in metals: Windle’s 
chapter is devoted to analysing in some depth the conceptual differences between metallurgy 
and polymer science, for instance, the quite different principles which govern alloy formation 
in the two classes of materials. I believe that this is the first treatment of this kind. 

Six of the existing chapters (now numbered 1,4,21,22,27,30) have been entrusted to 
new authors, while another five chapters have been revised by the previous authors with the 
collaboration of additional authors (8,13,16,17,19). Chapter 19, originally entitled “Alloys 
rapidly quenched from the melt” has been broadened and retitled “Metastable states of 
alloys”. A treatment of quasicrystals has been introduced in the form of an appendix to 
chapter 4, which is devoted to the solid-state chemistry of intermetallic compounds; t h i s  
seemed appropriate since quasicrystallinity is generally found in such compounds. - Only 
three chapters still have the same authors they had in the first edition, written some 32 years 
ago. 

27 of the 29 new versions of existing chapters have been substantially revised, and many 
have been entirely recast. Two chapters (1 1 and 25) have been reprinted as they were in the 
third edition, except for corrected cross-references to other chapters, but revision has been 
incorporated in the form of an Addendum to each of these chapters; this procedure was 
necessary on grounds of timing. 

This edition has been written by a total of 44 authors, working in nine countries. It is a 
truly international effort. 

I have prepared the subject index and am thus responsible for any inadequacies that may 
be found in it. I have also inserted some cross-references between chapters (internal cross- 
references within chapters are the responsibility of the various authors), but the function of 
such cross-references is better achieved by liberal use of the subject index. 

As always, the editors have been well served by the exceedingly competent staff of 
North-Holland Physics Publishing (which is now an imprint of Elsevier Science B.V. in 
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Amsterdam, at the time of the first two editions, North-Holland was still an independent 
company). My particular thanks go to Nanning van der Hoop and Michiel Bom on the 
administrative side, to Ruud de Boer who is responsible for production and to Chris Ryan 
and Maurine Alma who are charged with marketing. Mr. de Boer’s care and devotion in 
getting the proofs just right have been exmmely impressive. My special thanks also go to 
Professor Colin Humphreys, head of the department of materials science and metallurgy in 
Cambridge University, whose warm welcome and support for me in my retirement made the 
creation of this edition feasible. Finally, my thanks go to all the authors, who put up with 
good grace with the numerous forceful, sometimes impatient, messages which I was obliged 
to send in order to “get the show on the road”, and produced such outstanding chapters under 
pressure of time. 

I am grateful to Dr. W. J. Bcettinger, one of the authors, and his colleague Dr. James A. 
Warren, for kindly providing the computer-generated dendrite microstructure that features on 
the dustcover. 

The third edition was dedicated to the memory of Robert Franklin Mehl, the author of the 
historical chapter and a famed innovator in the early days of physical metallurgy in America. 
I would like to dedicate this fourth edition to the memory of two people: my late father-in- 
law, Daniel Hamon (1892-1953), professor of metallurgy at Birmingham University for 
many years, who did more than any other academic in Britain to foster the development and 
teaching of modem physical metallurgy; and the physical metallurgist and scientific publisher 
- and effective founder of Pergamon Press - Paul Rosbaud (1896-1963), who was 
retained by the then proprietor of the North-Holland Publishing Company as an adviser and 
in 1960, in the presence of the proprietor, eloquently urged upon me the need for a new, 
advanced, multiauthor text on physical metallurgy. 

November 1995 
Cambridge 

Robert W. C m  





PREFACE TO THE THIRD EDITION 

The first edition of this book was published in 1965 and the second in 1970. The book 
continued to sell well during the 1970s and, once it was out of print, pressure developed for 
a new edition to be prepared. The subject had grown greatly during the 1970s and R. W. C. 
hesitated to undertake the task alone. He is immensely grateful to P. H. for converting into 
a pleasure what would otherwise have been an intolerable burden! 

The second edition contained twenty-two chapters. In the present edition, eight of these 
twenty-two have been thoroughly revised by the same authors as before, while the others 
have been entrusted to new contributors, some being divided into pairs of chapters. In 
addition, seven chapters have been commissioned on new themes. The difficult decision was 
taken to leave out the chapter on superpure metals and to replace it by one focused on solute 
segregation to interfaces and surfaces - a topic which has made major strides during the 
past decade and which is of great practical significance. A name index has also been added. 

Research in physical metallurgy has become worldwide and this is reflected in the fact 
that the contributors to this edition live in no fewer than seven countries. We are proud to 
have been able to edit a truly international text, both of us having worked in several countries 
ourselves. We would like here to express our thanks to all our contributors for their hard and 
effective work, their promptness and their angelic patience with editorial pressures! 

The length of the book has inevitably increased, by 50% over the second edition, which 
was itself 20% longer than the first edition. Even to contain the increase within these 
numbers has entailed draconian limitations and difficult choices; these were unavoidable if 
the book was not to be priced out of its market. Everythmg possible has been done by the 
editors and the publisher to keep the price to a minimum (to enable readers to take the advice 
of G. CHR. LI-G [ 17751: “He who has two pairs of trousers should pawn one and 
buy this book”.). 

Two kinds of chapters have been allowed priority in allocating space: those covering very 
active fields and those concerned with the most basic topics such as phase transformations, 
including solidification (a central theme of physical metallurgy), defects and diffusion. Also, 
this time we have devoted more space to experimental methods and their underlying 
principles, microscopy in particular. Since there is a plethora of texts available on the 
s t anhd  aspects of X-ray diffraction, the chapter on X-ray and neutron scattering has been 
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designed to emphasize less familiar aspects. Because of space limitations, we regretfully 
decided that we could not include a chapter on corrosion. 

This revised and enlarged edition can properly be regarded as to all intents and purposes 
a new book. 

Sometimes it was difficult to draw a sharp dividing line between physical metallurgy and 
process metallurgy, but we have done our best to observe the distinction and to restrict the 
book to its intended theme. Again, reference is inevitably made occasionally to nonmetallics, 
especially when they serve as model materials for metallic systems. 

As before, the book is designed primarily for graduate students beginning research or 
undertaking advanced courses, and as a basis for more experienced research workers who 
require an overview of fields comparatively new to them, or with which they wish to renew 
contact after a gap of some years. 

We should like to thank Ir. J. Soutberg and Drs. A.P. de Ruiter of the North-Holland 
Publishing Company for their major editorial and administrative contributions to the 
production of this edition, and in particular we acknowledge the good-humoured resolve of 
Drs. W. €3. Wimmers, former managing director of the Company, to bring this third edition 
to fruition. We are grateful to Dr. Bormann for preparing the subject index. We thank the 
hundreds of research workers who kindly gave permission for reproduction of their published 
illustrations: all are acknowledged in the figure captions. 

Of the authors who contributed to the first edition, one is no longer alive: Robert Franklin 
Mehl, who wrote the introductory historical chapter. What he wrote has been left untouched 
in the present edition, but one of us has written a short supplement to bring the treatment up 
to date, and has updated the bibliography. Robert Mehl was one of the founders of the 
modem science of physical metallurgy, both through his direct scientific contributions and 
through his leadership and encouragement of many eminent metallurgists who at one time 
worked with him. We dedicate this third edition to his memory. 

April 1983 Robert W. C m ,  Paris 
Peter HAASEN, Gtittingen 



PREFACE TO THE mRST AND SECOND EDITIONS 

This book sets forth in detail the present state of physical metallurgy, which is the root 
from which the modern saience of materials has principally sprung. That science has 
burgeoned to such a degree that no one author can do justice to it at an advanced level; 
accordingly, a number of well-known specialists have consented to write on the various 
principal branches, and the editor has been responsible for preserving a basic unity among 
the expert contributions. This book is the first general text, as distinct from research 
symposium, which has been conceived in this manner. While principally directed at senior 
undergraduates at universities and colleges of technology, the book is therefore also 
appropriate for postgraduates and particularly as a base for experienced research workers 
entering fields of physical metallurgy new to them. 

Certain topics have been left to one side or treated at modest length, so as to limit the 
size of the book, but special stress has been placed on others which have rarely been 
accorded much space. For instance, a good deal of space is devoted to the history of physical 
metallurgy, and to point defects, structure and mechanical properties of solid solutions, 
theory of phase transformations, recrystallization, superpure metals, ferromagnetic properties, 
and mechanical pmperties of two-phase alloys. These are all active fields of research. 
Experimental techniques, in particular diffraction methods, have been omitted for lack of 
space; these have been ably surveyed in a number of recent texts. An exception has however 
been made in favour of metallographic techniques since, electron microscopy apart, recent 
innovations have not been sufficiently treated in texts. 

Each chapter is provided with a select list of books and reviews which will enable readers 
to delve further into a particular subject. Internal cross-references and the general index will 
help to tie the various contributions together. 

I should like here to acknowledge the sustained helpfulness and courtesy of the 
publisher’s staff, and in particular of Mr. A. T. G. van der Leij, and also the help provided by 
Professor P. Haasen and Dr. T. B. Massalski in harmonising several contributions. 

Brighton, June 1965 (and again 1970) R. W. CAI-IN 
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1. Introduction 

In the very beginning of materials “science”, when men began to produce artificial 
materials, it was the time of trial and error, of pure empiricism. Today, we are a little 
closer to the realization of the old dream of designing any material with given properties 
owing to our improved understanding of the relationships between chemical composition, 
crystal structure and material properties. Though only a very few commercially and 
technologically important materials consist of metallic elements in their pure form (Si, 
Ge, Cu, Au, Ag, Pd, etc.), their crystal structures are of more than academic interest. 
Thus, to give an example, the crystal structure of a pure metal remains unchanged in the 
case of a solid solution, when one or several other components are added to tune the 
properties of a material. This technique has been used since time immemorial by alloying 
gold with copper or silver, for instance, to make jewelry or coins more resistant to wear. 
Especially the close packed structures and their derivatives, which are typical for pure 
metals, are also characteristic for numerous materials consisting of multi-component solid 
solutions or intermetallic alloys. Another reason for the study of “simple” element 
structures is that they are extremely helpful for the development and improvement of 
methods to understand why a given phase is adopting a particular crystal structure under 
certain conditions (temperature, pressure, etc.). The aim is, of course, to learn to predict 
the crystal structure of any given chemical compound under any ambient conditions and 
to model its possible phase transformations. 

It is remarkable that even pure elements can have rather complicated crystal structures 
resulting from complex electronic interactions. Most elements are polymorphous, i.e., 
they occur in up to ten different crystal structures as a function of ambient conditions 
(temperature, pressure). The understanding of the phase transformations in these homo- 
atomic cases is also very helpful for understanding the more complicated phase trans- 
formations of complex intermetallic phases. Indeed, it is possible today to predict 
correctly most of the element structures and phase transformations by one-electron theory 
(SKRIVER [1985]). 

2. Factors governing a crystal structure 

Crystalline order, i.e., the three-dimensional (or in the case of quasicrystals or 
incommensurate phases, higher-dimensional) translationally periodic repetition of a 
particular atomic configuration, is the outstanding characteristic of condensed matter in 
thermodynamic equilibrium. Which crystal structure for a given chemical composition 
corresponds to the lowest Gibbs free energy, G=H-TS, depends on chemical bonding, 
electronic band structure and geometrical factors. Since it is not possible to solve the 
Schrodinger equation for a crystal and thus deduce the correct crystal structure, many 
approximations have been developed. Indeed, today there exist quite successful attempts 
to predict simpler crystal structures using one-electmn approximations: the many-electron 
problem is reduced to a one-electron problem by the assumption that the electrons, 
surrounded by a mutual exclusion zone, are moving independently of each other in the 
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average field of all the others (local density functional theory). 
Beside this rather complicated and lengthy approach to understand and predict crystal 

structures, there exist a number of rules based on two factors: the chemical bond factor, 
which also takes into account the directionality of chemical bonds, and the geometrical 
factor, which considers optimum space filling, symmetry and connectivity. Especially in 
the case of the typical metallic elements, these structural principles work very well for 
predicting structures. (For electron theory of structural stability, see ch. 2, 8 6.1). 

2.1. Chemical bond factor 

The concept of chemical bonding was originally developed to understand the 
formation of molecules. In a crystal, a collective interaction of all atoms always exists 
which may approximately be considered as the sum of nearest-neighbor interactions. A 
further simplification comes in by the fact that only the electrons of the outer shells 
contribute to the chemical bonding. Traditionally, several limiting types of the chemical 
bond are defined: strong ionic (heteropolar), covalent (homopolar), metallic bonds, and 
weak van der Waals and hydrogen bonds. The strong bonds have in common that the 
outer atomic orbitals contribute to new collective electron states in the crystal, the 
electron bands. They differ mainly in the degree of localization of the valence electrons: 
when these are transferred from one atom to another atom, Coulomb attraction between 
the cation and the anion results and the bond is called ionic; when they remain localized 
between two atoms the so-called exchange interaction results from overlapping orbitals 
and covalent bonds are formed, when the valence electrons are delocalized over the 
whole crystal metallic bonding is obtained. Thus, contrary to the other bond types which 
also occur w i t h  molecules, the metallic bond can only exist in large arrays of atoms. 
Since the interaction of electron orbitals depends on their separation and mutual 
orientation, the bond type may change during phase transformations. Sometimes, a slight 
change in temperature can be sufficient, as in the transition from metallic white tin to 
non-metallic grey tin below 291K (“tin pest”); sometimes very high pressures are necessary, 
as for the transformation from molecular hydrogen to metallic hydrogen, for instance. 

The type of bonding occurring in crystals of the metallic elements ranges from pure 
metallic in the alkali metals to increasingly covalent for zinc or cadmium, for instance. 
The structural implications of these two bond types, which are just two contrary limiting 
manifestations of electronic interactions with a continuously changing degree of electron 
localization, will be characterized in the following in greater detail. 

2.1.1. The covalent bond 
The covalent bond may be described in terms of the more qualitative VB (valence 

bond) theory by overlapping atomic orbitals occupied by unpaired valence electrons 
(fig. 1). Its strength depends on the degree of overlapping and is given by the exchange 
integral. In terms of the more quantitative LCAO-MO (linear combination of atomic 
orbitals - molecular orbitals) theory, molecular orbitals are constructed by linear 
combination of atomic orbitals (fig. 2). The resulting bonding, non-bonding and anti- 

References: p.  45. 
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Fig. 1. Schematic structure of the atomic s-, p- and d-orbitals (from VAINSIETEIN etal. [1982]). 

bonding molecular orbitals, filled up with valence electrons according to the Pauli 
exclusion principle, are localized between the bonding atoms with well defined geometry. 
Generally, covalent bonds can be characterized as strong, directional bonds. Increasing 
the number of atoms contributing to the bonds increases the number of molecular orbitals 
and their energy differences become smaller and smaller. Finally, the discrete energy 
levels of the molecular orbitals condense to quasicontinuous bands separated by energy 
gaps. Since in a covalent bond each atom reaches its particular stable noble gas con- 
figuration (filled shell) the energy bands are either completely filled or empty. Owing to 
the localization of the electrons, it needs much energy to lift them from the last filled 
valence band into the empty conduction band. The classic example of a crystal built from 
only covalently bonded atoms is diamond all carbon atoms are bonded via tetrahedrally 
directed sp3 hybrid orbitals (fig. 3). Thus the crystal structure of diamond results as a 
framework of tetrahedrally coordinated carbon atoms (fig. 4). 

2.1.2. The metallic bond 
The metallic bond can be described in a similar way as the covalent bond. The main 

difference between these two bond types is that the ionization energy for electrons 
occupying the outer orbitals of the metallic elements is much smaller. In typical metals, 
like the alkali metals, these outer orbitals are spherical s-orbitals allowing overlapping 
with up to 12 further s-orbitals of the surrounding atoms. Thus, the well-defined electron 
localization in bonds connecting pairs of atoms with each other loses its meaning. 
Quantum-mechanical calculations show that in large agglomerations of metal atoms the 
delocalized bonding electrons occupy lower energy levels than in the free atoms; this 
would not be true for isolated “metal molecules”. The metallic bond in typical metals is 
non-directional, favoring structures corresponding to closest packings of spheres. With 
increasing localization of valence electrons, covalent interactions cause deviations from 
spherically symmetric bonding, leading to more complicated structures. 
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Fig. 2. (a) Bonding and @) anti-bonding molecular orbitals of the IE, molecule. (c) Schematic drawing of the 
building of the most important molecular orbitals from atomic orbitals and (d), (e) examples of molecular 
orbitals (bonding: (T, T and anti-bonding u*, T*) (from VAINSIFTEIN et al. [1982]). 

2.2. Geometrical factors 

A crystal structure type is fully defined by its general chemical composition, its space 
group symmetry, the equipoint (Wyckoff) positions occupied by the atoms and the 
coordinates of the atoms in the unit cell (fig. 5). The metrics, Le., the dimension of the 
unit cell (lattice parameters), in general differ for all chemical compounds or phases 
occurring in one particular crystal structure type. Also, for general Wyckoff positions, the 
numerical values of the coordinates may vary in a range not destroying the characteris- 

References: p .  45. 
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Fig. 3. Hybridization of (a) one s- and three p-orbitals to (b) sp3-hybrid orbitals (c) which are directed along 
tetrahedron axes (from VAINSHTEIN et al. [1982]). 

tics, Le., coordination polyhedra and their linkings, of this crystal structure. With these 
data given it is easy to derive both the information about the global arrangement of 
structural units as well as the local environment of each atom (fig, 6). Besides this purely 
geometrical description of a structure, it is necessary to understand the characteristics of 
a crystal structure by identifying crystal-chemically meaningful structural units 
(coordination polyhedra) and their connecting principles (bonding). 

For band-structure calculations, for instance, knowledge of the full crystal structure 

Fig. 4. The structure of diamond cFS-C, space group F d h ,  No. 227, Sa: 0 0 0, 34 54 %. A11 carbon atoms are 
tetrahedrally coordinated, they occupy the positions of a face-centered cubic lattice and one half of the centers 
of the eighth cubes. 
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is essential; for tensorial physical properties, however, the point symmetry group to 
which the space group belongs is the determining factor. Crystal-chemical properties are 
less sensitive to slight atomic shifts which may break the symmetry but do not change 
local environments of atoms. Thus the study of atomic coordinations may yield valuable 
tools in the analysis, description and comparison of crystal structures. 

2.2.1. Coordination 
A general technique to derive useful coordination polyhedra was suggested by 

BRUNNER and SCWARZENBACH [1971]: all interatomic distances around a particular 
atom are calculated up to a certain limit, and all atoms within a distance defined by the 
first maximum gap in a histogram of distances belong to the coordination polyhedron 
(fig. 6). If there is no clear maximum gap observable, a second criterion may be the 
maximum-convex-volume rule: all coordinating atoms lying at the intersections of at 
least three faces should form a convex polyhedron (DAAMS et al. [1992]). 

2.22. Space filling 
Qwing to the isotropic properties of the metallic bond the structure of typical metallic 

elements can often be described in terms of dense sphere packings. A sphere packing is 
an infinite set of non-interpenetrating spheres with the property that any pair of spheres 
is connected by a chain of spheres with mutual contact. A sphere packing is called 
homogenous if all spheres are symmetrically equivalent, otherwise it is called 
heterogenous (KOCH and R s C m  [1992]). In the last named case, the spheres of the 
different non-symmetrically equivalent subsets may have different radii and occupy the 
positions of different crystallographic orbits. The number of types of heterogenous sphere 
packings is infinite whereas it is finite for homogenous sphere packing types. There are, 
for instance, 199 different cubic and 394 different possible tetragonal homogenous sphere 
packings. The densities, Le., the fractions of volumes occupied by the spheres, are with 
4=0.7405 highest for the well-known hexagonal closest packing (hcp) and cubic closest 
packing (ccp) (figs. 7 and 8, respectively). In both cases the coordination numbers (CN) 
are twelve and the distances to the nearest neighbors the same. The number k of contacts 
per sphere amoiints to 3 I k l l 2 .  Table 1 gives some examples for sphere packings with 
the highest and lowest densities and contact numbers, and table 2 space filling values for 
a number of structure types. Very low packing densities, such as that for the cF8-C type, 
for instance, indicate that a hard sphere packing is no longer an adequate description of 
such a structure. 

The crystal structures of the metallic elements adopt dense sphere packings as long 
as purely geometrical packing principles are dominant. Covalent bonding contributions 
and electronic effects give rise to more complicated structures. 

2.2.3. Layer stackings, polytypism 
Many crystal structures can be considered to consist of successive stackings of atomic 

layers. The above mentioned hexagonal closest packing (hcp) refers to a stacking of 
dense packed laiyers with periodic sequence ..AB.., the cubic closest packing (ccp) to a 
sequence ..ABC.. (figs. 7 and 8). The atomic layers are denoted by A, B or C depending 

References: p .  45. 



8 U! Steurer Ch. 1, $ 2  

F d 3 m  0; m 3 m  Cubic 

No. 227 
ORIGIN CHOICE 1 

F 4,/d 3 2lm Patterson symmetry F m  3 m 

' Uppcr left quadrant only 
I 

t 

Origin at 4 3 m ,  at - t .- t ,- t from centre (3m) 

Asymmetric unit Oirii; O i y < l :  - t<z<t;  ylmin(t-r.r); -y<z<y 
Vertices 0.0,O i.O.0 i . l .1  1.t.t i ,l .-t t,t.-t 

Symmetry operations 

Fig. 5.  Information given in the International Tables for  Crystallography (HAHN [1992]) on the example of the 
space group Fd3m of the diamond structure. Left side, top line: space group symbol in short Hermann- 
Mauguin and Schoenflies notation, point group (crystal class), crystal system. Second line: consecutive space 
group number, full space group symbol, Patterson symmetry, short space group symbol. Upper drawing: frame- 
work of symmetry elements in a unique part of one unit cell. Lower drawings: point complexes generated by 
the action of symmetry operations. Below: choice of origin, definition of the asymmetric unit. Right side: the 
Wyckoff letters a, b, c ... i denote the equipoint positions with multiplicities 8, 8, 16 ... 192. The positions of 
the carbon atoms in the diamond structure are given in Wyckoff position 8a. 
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No. 227 

9 
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cO.errtors k t e d  (1); r(1,O.O); r(O,l,O); r(O,O,l); r(0,f.f); r(f,O,f); (2); (3); (5); (13); (25) 

Reflection conditions 

h,k,f permutable 
General: 

(2) f ,J+f ,z+t  (3) f + t , y + f , t  (4) x+f,J, l+f  hkl: h+k=2n and 
(6) z+t,f,p++ (7) €,f+f,y+f (8) f+f ,x+f ,Y h+l,k+l=2n 

(10) f+f,z+j,f (11) y+f,Z,f+f (12) p,z+t,x++ Okl: k+l=4n and 
(14) g+t,f+t,r+f (15) y+f,f+f,z+f (16) p+f,x+f,z+f k,l=2n 
(18) f+ f ,z+ f ,y+ t  (19) f+ t ,Z+ f ,y+ t  (20) x+t,Z+f,y+f hhl: h+l=2n 
(22) z+f,p+f,x+f (23) l+ f ,y+ f ,x+ t  (24) € + f , g + f , x + t  hM): h=4n 
(26) x+f ,y+ i , l+ f  (27) x+f ,y+ f , z+ f  (28) X+f,y+f,z+f 
(30) f+ f ,x+ t ,y+ f  (31) z+f ,x+ f ,9+3  (32) z+f,X+f,y+t 
(34) y+f,Z+f,x+t (35) p+f,z+!,x+f (36) y+f,z+t,Z+f 
(38) y,x,z (39) p,x+t,Z+f (40) y+f, f+f ,Z 
(42) x+f,Z+t,J (43) X,ZJ (44) f , Z + f , Y + f  
(46) Z,y+f , f+ t  (47) z+fJ+f ,X (48) z,y,x 

96 h ..2 

% g ..m 

48 f 2.mm 

32 e .3m 

16 d .3m 

16 c .Sm 

8 b a3m 

8 a 83m 

t,y,p++ $ J + f , l + f  t.Y+t,Y+i t J . Y + f  
p+t,t,y I+t,fJ+t Y+f,t,Y+f y + t m  
v.v+t . t  B+f.J+f . t  v+t ,v+? . f  v . v + f * t  

Special: as above, plus 

no extra conditions 

S.j+t,y i , y+ j ,y+ t  Lp+i,g+i i , j .+ f ,y  
Y , t , l + f  y+f , t ,y+f  J+f,t ,B+f Y.9,Y+t 
p+t,y,t y+3;y+t,t P+f ,F+f , t  y+t,p,i 
X J , Z  X, f+t ,z+t  f + f , x + f , l  x + f , f , i + f  no extra 
L,X,X z+f , f , f+f  Z,f+f,x+f e+t,x+t,K 
X , Z J  i + f , z + f , f  X+f,€, f+t  X,Z+f,x+f 
x+ f ,x+ t , t+ f  f+t,X+t,Z+t X+f,f+f,Z+f f+ f ,X+f ,Z+t  
x+f,z+f, f+f  f+f ,Z+f,X+t f + f , Z + f , i + t  X+f,Z+f,X+f 
z+  f ,x+ f ,f+ f z + f , f + f , x + i  l+$ ,x+ f ,x+ t  €+*,a+ f J + f  

conditions 

x,O,O a,+,+ O,x,O +,a,+ 0.0,~ t , f ,n hkl:  h=2n+l 
f ,x+t , f  f,f+f,f x+ i , t , f  f+i,f,t  #,#,a++ t , f , x+ f  or h+k+l=4n 

Symmetry of special projoicftioos 
Alnng[O011 p 4 m m  Along [ I l l ]  p6mm 
a'= +(a-b) b'= f (a+b)  a'= t(2a-b-c) b'= t(-a+2b-c) 
origin at o,o,z Origin at x,x,x 

no extra conditions 

hkl : h=2n+l 
or h,k,l=4n+2 
or h,k,l =4n 

hkl:  h=2n+l 
or h+k+l=4n 

Along [I101 c2mm 
a'=+(-a+b) b'=c 
Origin at x,x,t 

References: p. 45. 
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Table 1 
Examples of homogeneous sphere packings with distance d between neighboring spheres, highest and lowest 

contact numbers, k, and fractional packing densities, q. 

k space Group Parameters Distance d Density q 
Wyckoff position 

~~ 

12 W , h C  cfa = $6= 1.633 a 

1 2 1  3 3 4  

12 F d m  
4a 0 0 0  

+ J z a  

11 C2/m x = +(JZ-l) b 

4i x O z  z = 3f i -4bfa  =$6 
cfa = $&+ :fi= 0.986 
cosp =afi-sfi 

10 INmmm c/a = J =  6 0.8165 c 

2a 0 0 0  

0.7405 

0.7405 

0.7187 

0.6981 

3 I4,32 

on their relative position against each other. The packing fractions as well as the 
coordination numbers (CN= 12) are equal in both cases. The first shell atomic environ- 
ment corresponds to a cuboctahedron for ccp and to a disheptahedron for hcp. The 
distribution of atomic distances becomes different not until the third and higher 
coordination shells (fig. 9). 

These two types of layer stackings are not the only possible ones, there exist 
infinitely many with exactly the same coordination numbers and packing fractions. They 
are called polytypes. Examples for such layer structures occurring for metallic elements 
are cobalt (..ABABABABCBCBCBC..), with one ccp sequence ABC statistically 
occurring among about ten hcp sequences, ordered hP4-La (..ACAB..) or hR3-Sm 
(..ABABCBCAC..) (fig. 10). 

2.2.4. Polymorphism 
Most of the elements adopt several different (allotropic) crystal structures at different 

pressures, temperatures or external fields. The transitions from one modification to the 
other are called polymorphous transformations or phase transitions. 

A phase transition is connected with a change in structural parameters andor in the 
ordering of electron spins. There are two basically different types of phase transitions: 
first-order transitions which are correlated with a jumpwise change in the first-order 
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m n o n  symbol Slluchlre t y p  Space gmup Space gmup number 

cR1 C F53rn 227 

a = ,3587 nm 

origin choice 1 

Number Atom MullipTxit* X 9 Z OCCupmcy 
Wyckoff teller 

1 c e a  0 0 0 1  

Reference 
T. Horn et al. JOURNAL OF APPLIED CRYSTALLOGRAPHY 1975 
8 p457 

Fig. 6. Information given in the Atlas of Crystal Structure Types for Intermetallic Phases (DAAMS et al. [1991]) on 
the example of the diamond structure type. Beside numerical information and an atomic distances histogram, drawings 
of the crystal structure and characteristic Coordination polyhedra in different projections are also shown. 

derivatives of the Gibbs free energy G = H - TS (Le., volume, entropy, ...), and second- 
order transitions which show a jump in the second derivatives of the Gibbs free energy 
(with respect to heat capacity, compressibility, etc.). In both types of phase transitions the 
crystal structure changes discontinuously at the transition point: in a first-order transition, 
in general no symmetry relationship exists between the two modifications; in a second- 
order transition, a group/subgroup relationship can always be found for the symmetry 
groups of the two polymorphous crystals structures. 

With regard to structural changes resulting from a phase transformation of any order 
it is useful to distinguish between several different types: reconstructive phase transitions with 
essential changes in coordination numbers, atomic positions (tu-Fe and y-Fe, for instance, 
with coordination numbers CN=8 and CN= 12, respectively, fig. 11) and sometimes also 
in chemical bonding (grey tu-Sn and white P-Sn, for instance, with minimum distances 
changing from at:;: = 1.54 A to d i p  =3.02 A). These transformations are always of first 
orda. Displacive phase transitions with small atomic shifts not changing the first coordination 
shells may change the lattice by small atomic displacements (martensitic diffusionless 
lattice rearrangement). Ordeddisorder transitions are related to the long-range ordered or 
disordered arrangement of structure elements (copper-gold system, for instance). 

References: p. 45. 
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Fig. 7. Characteristics of the hexagonal closest-sphere packing. (a) The coordination polyhedron (disheptahedron) in 
perspective view and projected to show the packing principle, (b) the crystal structure and (c) one unit cell with atoms 
marked according to their belonging to layer A or B, are depicted (from BORCHARDT-~IT [1993]). 

Type, cla value q 

Po 
Bi 
Sb 
As 
Ga 
Te 
C (diamond) 
P (black) 

cP1 0.523 
hR2,2.60 0.446 
hR2, 2.62 0.410 
hR2, 2.80 0.385 
oC8 0.391 
hP3 0.364 
cF8 0.340 
oC8 0.285 

3. Crystal structure of metallic elements 

In the following, the crystal structures of all metallic and semi-metallic elements 
(table 3) will be discussed. If it is not indicated specifically, the crystal structure data 
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a) 

Fig. 8. Characteristics of the cubic closest-sphere packing. (a) The coordination polyhedron (cuboctahedron) in 
perspective view and projected to show the packing principle, (b) the crystal structure and (c) one unit cell with 
atoms marked according to their belonging to layer A, B or C, are depicted (from B O R C H A R D T ~  [19!33]). 

have been taken from VILLARS and CALVERT [1991], YOUNG [1991] or MASSALSKI 
[1990]. In the (not so rare) cases of contradictory data, the most recent and reliable (?) 
ones have been used or the Pearson symbol has been replaced by a question mark. 
Particularly the structural information given for the high-pressure phases, which in most 
cases are derived from very small data sets, may be revised in future once better 
diffraction data become available. 

3.1. Nomenclature 

For the shot-hand characterization of crystal structures, the Pearson notation in 
combination wirh the prototype formula defining the structure type is used throughout the 
paper. In accordance with the IUPAC recommendations (LEIGH [1990]) the old Struktur- 
bericht designation (A3 for hPI;Z-Mg, for instance) should not be used any longer. A 
comparison of the Pearson notation, prototype formula, space group and Strukturbericht 
designation for a large numbek of crystal structure types is given in MASSALSKI [1990]. 

The Pearson symbol consists of two letters and a number. The first (lower case letter) 
denotes the crystal family, the second (upper case) letter the Bravais lattice type (table 4). The 
symbol is completed by the number of atoms in the unit cell. The symbol cF4, for instance, 
classifies a structure type to be cubic (c), all-face centered (I?), with 4 atoms per unit cell. In 

References: p .  45. 
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Table 3 
Periodic table of the elements. In accordance with the recommendations of the IUPAC 1988, the columns are 

numbered consecutively from 1 to 18. The elements whose structures are discussed in this chapter are shadowed. 

the case of rhombohedral structures, like the hR3Sm type, the number of atoms in the unit cell 
in the rhombohedral setting (a=b=c, a =p=y#90°) is given. The number of atoms in the corre- 
sponding hexagonal setting (a = b # c, a = p  = 90°, y = 120') would be three times as much. 

Table 4 
Meaning of the letters included in the Pearson Symbol. 

Crystal family Bravais lattice type 

a triclinic (anorthic) P primitive 
m monoclinic I body centered 
o orthorhombic F all-face centered 
t tetragonal C side- or base-face centered 
h hexagonal, trigonal (rhombohedral) R rhombohedral 
c cubic 
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"'1 20 
dmin= .319 nm 

1.0 1.5 2.0 2.5 
dldmin 

1.0 1.5 2.0 2.5 
d/dmin 

Fig. 9. Histograms of distances and coordination polyhedra of (a) hexagonal and (b) cubic closest packing 
(from DAAMS et aL [1991]). 

33. Group 1 and 2, alkali and alkaline earth metals 

The alkali and alkaline earth metals (table 5)  belong to the typical metals. The outer 
electrons occupy the ns-orbitals, ionization removes the electrons of a whole shell, thus 
drastically reducing the atomic radius (Li: atomic radius 1.56 A, ionic radius 0.60 A, for 
instance). The absence of directional bonds forces close atomic (sphere) packings; the 
alkali metals conform most closely to the free electron gas model of metals. Under 
ambient conditions the alkali metals all crystallize in the simple body-centered cubic 
(bcc) structure cI2-W (fig. 12). The bcc structure is assumed to be more stable at higher 
temperature than the ccp or hcp one owing to its higher vibrational entropy. At lower 
temperature or higher pressure, the bcc structure is transformed martensitically to the 
closest-packed lattice types, hR3Sm or cFMu, respectively. Contrary to earlier studies, 
the hexagonal closest-packed phases are not of the hP2-Mg but of the hR3Sm type (fig. 
10) with stacking sequence ... ABABCBCAC.. (YOUNG [ 19911). 

The extremely strong dependence of the atomic volume on pressure, which increases 
with increasing atomic number due to the shielding of the outer electrons by the 

References: p .  45. 
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Fig. 10. Schematical representation of the stacking sequences of the closest-packed structures (a) hP2-Mg, (b) 
C F M U ,  (c) hP4-La and (d) hR3Sm. 
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Table 5 
Structure information for the elements of group 1, alkali metals, and of group 2, alkaline earth metals. In the 
first line of each box the chemical symbol, atomic number Z, and the atomic volume Val under ambient 
conditions is listed. In the second line the electronic ground state configuration is given. For each phase there 
is tabulated: limiting temperature T[K] and pressure P[GPa], Pearson symbol PS, prototype structure FT, and, 

if applicable, the lattice parameter ratio cia. 

T[K] P[GPa] PS PT cia 

Li 3 va=21.mA3 
ls22s' 

B 
Y > 6.9 

Na 11 Vat=39.50A3 
ls?2s2p63s' 
a <40 
P 

<70 

K 19 Vat=75.33A3 
ls22s2p63s2p64s' 

P > 12 
ff 

Rb 37 Va,=92.59A3 
1 s22s$63s2p6d'04s?p65s' 
ff 

B >7.0 
Y > 14. 
6 > 17 
E > 20 

hR3 Sm 
cI2 w 
cF4 Cu 

bR3 Sm 
cI2 w 

cI2 w 
cF4 Cu 

cI2 w 
cF4 Cu 

t14 

Cs 55 V,=117.79A3 
1 s22s2p63s2p6d104s2p6d'05s2p66~1 
ff cI2 w 
B > 2.37 cF4 Cu 
8' > 4.22 cF4 Cu 
Y >4.27 t14 
6 >IO 
E > 72 cF4? 

Fr 87 
ls~s~63s~6d'04s2p6d10f145~2p6d106s$~s' 

T[K] P[GPa] PS PT cia 

Be 4 Va=8.11A3 
ls22s22 
ff 

p >1543 
Y > 28.3 

M g  12 Vat=23.24A3 
ls22s$63s2 

P > 50 

Ca 20 Va,=43.62A3 

a 

ls22s2p63s2p64s2 
ff 

p >728 or > 19.5 
Y > 32 

Sr 38 V =56.35A3 
1 s22s2p63s2p6~'o4s2p65s2 
ff 

p >504 
y >896 or >3.5 
6 > 26 
E > 35 

hP2 Mg 1.568 
cI2 w 
hP8? 0.789 

hP2 Mg 1.624 
cI2 w 

cF4 Cu 
cI2 w 
cP1 a-Po 

cF4 Cu 
hP2 Mg 1.636 
cI2 w 

Ba 56 V =63.36A3 
ls~s2p63s2p6~'04s2p6d105s2p66s2 
ff cI2 w 
P >5.33 hP2 Mg 1.581 

6 > 12.6 
Y > 7.5 

Ra 88 Va=68.22A3 
1 s22s2p63s2p6d'04s2p6d10f'45s2p6d106s2p67~2 
ff cI2 w 

increasing number of inner electron shells, is shown by the example of Cs (fig. 13). With 
increasing pressure, the valence electrons change from s to d character, giving rise to a 
large number of pressure-induced phase transitions at ambient temperature (YOUNG [ 199 I]): 

2.37 GPa 4.22 GPa 4.27 GPa 10 GPa 72 GPa 
a-Cs c3 p-cs e P'-CS e y-cs e 8-cs c3 E-CS 

References: p .  45. 
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Fig. 11. Relationship between body-centered cubic (bcc) a-Fe, cI2-W type, space group I m h ,  No. 229, la: 
0 0 0, and face-centered cubic (fcc) y-Fe, cF4-Cu type, space group F m h ,  No. 225, 4a: 0 0 0. The face- 
centered tetragonal unit cell drawn into an array of four bcc unit cells transforms by shrinking its faces to fcc. 

The alkaline earth metals behave quite similarly to the alkali metals. They crystallize 
under ambient conditions in one of the two closest-packed structures (ccp or hcp) or in 
the body-centered cubic (bcc) structure type and also show several allotropic forms (fig. 
14). The large deviation c/u = 1.56 from the ideal value of 1.633 for beryllium indicates 
covalent bonding contributions. 

For alkali and alkaline earth metals, the pressure-induced phase transitions from 
cI2-W to cF4-Cu occur with increasing atomic number at decreasing pressures. 

3.3. Groups 3 to 10, transition metals 

The elements of groups 3 to 10 are typical metals which have in common that their 
d-orbitals are partially occupied. These orbitals are only slightly screened by the outer 
s-electrons, leading to significantly different chemical properties of the transition 
elements going from left to right in the periodic system. The atomic volumes decrease 
rapidly with increasing number of electrons in bonding d-orbitals, because of cohesion, 
and increase as the anti-bonding d-orbitals become filled (fig. 15). The anomalous 
behavior of the 3d-transition metals, Mn, Fe and Co, may be explained by the existence 
of non-bonding d-electrons (PEARSON [ 19721). 

Scandium, yttrium, lanthanum and actinium (table 6) are expected to behave quite 

Fig. 12. Unit cell of the body-centered cubic structure type cI2-W, space group I m h ,  No. 229, la: 0 0 0. 
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PRESSURE, GPa 
Fig. 13. The variation of the atomic volume of cesium with pressure (after DONOHUE [1974]). 

similarly. Indeed they show similar phase sequences: the high-pressure phases of light 
elements occur as the ambient-pressure phases of the heavy homologues. The hP4 phase 
of lanthanum, with the sequence ..ACAB.., is one of the simpler closest-packed polytypic 
structures common for the lanthanides (fig. 16 and fig. 10). Another typical polytype for 
lanthanides is the hR3 phase of yttrium with stacking sequence ..ABABCBCAC.. (fig. 17 
and fig. 10). 

Titanium, zirconium and hafnium (table 6) crystallize in a slightly compressed hcp 
structure type and transform to bcc at higher temperatures. At higher pressures the w-Ti 
phase is obtained (fig. 18). The packing density of the hP3-Ti structure with -0.57 is 
slightly larger than that of the simple cubic a-Po structure (-0.52) but substantially lower 
than for bcc (-0.68) or ccp and hcp (-0.74) type structures. Calculations have shown that 
the w-Ti phase: is stable owing to covalent bonding contributions from s-d electron 
transfer. At even higher pressures, zirconium and hafnium transform to the cI2-W type, 
while titanium remains in the hp3-Ti phase up to at least 87 GPa. By theoretical 
considerations it is also expected that titanium performs this transformation at sufficiently 
high pressures (AHUJA et al. [ 19931). A general theoretical phase diagram for Ti, Zr and 
Hf is shown in fig. 19. 

Vanadium, niobium, tantalum, molybdenum and tungsten have only simple bcc 

References: p.  45. 
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Fig. 14. Illustration of the bcc-to-hcp phase transition of Ba. (a) bcc unit cell with (110) plane marked. (b) 
Projection of the bcc structure upon the (110) plane. Atomic displacements necessary for the transformation are 
indicated by arrows. 

structures (table 7). Up to pressures of 170 to 364 GPa no further allotropes could be 
found, in agreement with theoretical calculations. Chromium shows two antiferro- 
magnetic phase transitions, which modify the structure only very slightly (YOUNG 
[ 199 11). 

The high-temperature phases of manganese (table 8), y-Mn, cF4-Cu type, and 8-Mn, 
cI2-W type, are typical metal structures, whereas a-Mn and p-Mn form very compli- 
cated structures, possibly caused by their antiferromagnetism. Thus, the a-Mn structure 
can be described as a 3 x 3 x 3 superstructure of bcc unit cells, with 20 atoms slightly 
shifted and 4 atoms added resulting in 58 atoms over all (fig. 20). The structure of p-Mn 
(fig. 21) is also governed by the valence electron concentration (“electron compound” or 
Hume-Rothery-type phase). The variation of the atomic volume of manganese with 
temperature is illustrated in fig. 22. For technetium, rhenium, ruthenium and osmium, 
only simple hcp structures are known. 

The technically most important element and the main constituent of the Earth’s core, 
iron (table 8) shows five allotropic forms (fig. 23): ferromagnetic bcc a-Fe transforms to 
paramagnetic isostructural p-Fe with a Curie temperature of 1043 K; at 1185 K fcc y-Fe 
forms while at 1667 K a bcc phase, now called &Fe, appears again. For the variation of 
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Fig. 15. Atomic volumes of the transition metals. A means cF4-Cu type, v hm-Mg, 0 cI2-W, other types 
(after PEARSON [1972]). 

the atomic volume with temperature see fig. 24. High-pressure nonmagnetic E-Fe, 
existing above 13 GPa, bas a slightly compressed hcp structure. 

Cobalt (table 9) is dimorphous, hcp at ambient conditions and ccp at higher tempera- 
tures. By annealing it in a special way, stacking disorder can be generated: the hcp 
sequence ..ABAB.. is statistically disturbed by a ccp sequence ..ABCABC.. like 
..ABABABABCBCBCBC.. with a frequency of about one ..ABC.. among ten .. AB ... 
Rhodium, iridium, nickel, palladium and platinum all crystallize in simple cubic closest- 
packed structures. 

3.4. Groups 11 and 12, copper and zinc group metals 

The "mint metals", copper, silver and gold (table 10) are typical metals with ccp 
structure type (fig. 25). Their single ns electron is less shielded by the filled d-orbitals 
than the ns electron of the alkali metals by the filled noble gas shell. The d-electrons also 
contribute to the metallic bond. These factors are responsible for the more noble 

References: p .  45. 
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Fig. 16. One unit cell of the hP4-La structure type, space group P6,/mmc, No. 194, 2a: 0 0 0, 2c: % Y3 %. 

character of these metals than of the alkali metals and that these elements sometimes are 
grouped to the transition elements. 

For zinc, cadmium and mercury (table 10) covalent bonding contributions (filled d- 
band) lead to deviations from hexagonal closest packing (hcp), with its ideal axial ratio 
c/u= 1.633, to values of 1.856 (Zn) and 1.886 (Cd), respectively. The bonds in the hcp 
layers are shorter and stronger, consequently, than between the layers. With increasing 
pressure, clu approximates the ideal value 1.633: for Cd clu = 1.68 was observed at 30 
GPa (DONOHUE [ 1974]), and for Hg, c/u = 1.76 at 46.8 GPa (SCHULTE and HOLZAPFEL 
[ 19931). 

The rhombohedral structure of a-Hg may be derived from a ccp structure by 
compression along the threefold axis (fig. 26). In contrast to zinc and cadmium, the ratio 
c/u= 1.457 for a hypothetical distorted hcp structure is smaller than the ideal value. There 
also exist several high-pressure allotropes (fig. 27). 

3.5. Groups 13 to 16, metallic and semi-metallic elements 

Only aluminum, thallium and lead crystallize in the closest-packed structures 
characteristic for typical metals (table 11). The s-d transfer effects, important for alkali- 
and alkaline-earth metals, do not appear for the heavier group 13 elements owing to their 
filled d-bands. Orthorhombic gallium forms a 63 network of distorted hexagons parallel 
to (100) at heights x=O and 1/2 (fig. 28). The bonds between the layers are considerably 



Ch. 1 ,  8 3  Crystal structure of ihe meiallic elements 23 

JA 

C 

> A  

C 

B 

C 

B 

) A  

B 

> A  

Fig. 17. One unit cell of the hR3-Sm Structure type, space group R h ,  No. 166, 3a: 0 0 0, 6c: 0 0 0.22. 
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Fig. 18. The hP3-Ti structure type, space group P6/mmm, No. 191, la: 0 0 0, 2d: % % %. 

weaker than within. At higher pressure gallium transforms to a bcc phase, cI12-Ga, and 
additionally increasing the temperature leads to the tetragonal indium structure type t12-In (fig. 
29). In an alternative description based on a face-centered tetragonal unit cell with a’ = fia, the 
resemblance to a slightly distorted cubic close-packed structure with c/a = 1.08 becomes clear. 
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Fig. 19. Schematic calculated phase diagram for Ti, Zr and Hf (from AHUJA et al. [1993]). 
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Table 6 
Structure information for the elements of groups 3 and 4. In the first line of each box the chemical symbol, 
atomic number Z, and the atomic volume V, under ambient conditions is listed. In the second line the 
electronic ground state configuration is given. For each phase there is tabulated limiting temperature T[K] and 
pressure P[GPa], Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio clu. 

T[K] P[GPa] PS PT cla 

Se 21 V,=24.97A3 
ls22s2p63s2p6d'4s2 
a hP2 Mg 1.592 
p >1610 cI2 w 
Y > 19 tP4? 

Y 39 Vat=33.01 A3 
1 s22s~63sZp6d'04s~6d'5s2 
a hP2 Mg 1.571 

> 10 hR3 Sm Y 
6 > 26 hP4? 
E > 39 cF4 Cu 

La 57 V,=37.17A3 
1 s22s2p63s~6d'04s~6d'05s2p6d16s2 

~3 >583or>2.3 cF4 Cu 

6 > 7.0 hP6 

Ac 89 V,=37.45 A3 at 293 K 
. . . 3s~6d'04s2p6d'Of145s2p6d106s2p6d17s2 
ff cF4 Cu 

p >1751 cI2 w 

a hP4 a - h  2~1.61 

y >1138 cI2 w 

T[K] P[GPa] PS PT cla 

Ti 22 Vat=17.65A3 
ls22s2p63s2p6d24s2 
a hP2 Mg 1.587 

w >2 hP3 w-Ti 

Zr 40 V,=23.28A3 
1 s22s~63s2p6d104s2p6d25s2 
a hP2 Mg 1.593 
p >1136 cI2 w 
6J >2 hP3 w-Ti 
w ' > 30 cI2 w 

p >1155 cI2 w 

Hf 72 V,=22.31 A3 
1 s22sZp63s~6d'04s2p6d'of145s~6d26~2 
a hP2 Mg 1.581 
p >2016 cI2 w 
w > 38 hP3 w-Ti 
w' >71 cI2 w 
Ku 104 
. ..3szp6d'04s2p6d'of145s2p6d10f146s2p6d27s2 

Silicon and germanium (table 11) under ambient conditions crystallize in the diamond 
structure, owing to strong covalent bonding. At higher pressures they transform to the 
metallic white-tin (tI4-Sn) structure. This structure type consists of a body-centered 
tetragonal lattice which can be regarded as being intermediate between the diamond 
structure of semiconducting a-Sn and ccp lead (fig. 30). For an ideal ratio of c/u = 0.528 
one atom is sixfold coordinated. The high-pressure phase hP1-BiIn has a quasi-eightfold 
coordination, the ideal ratio for CN = 8 would be clu = 1. At higher pressures, closest- 
packed structures with twelvefold coordinations are obtained. Thus with increasing 
pressure silicon runs through phases with coordination numbers 4, 6, 8 and 12. 

The effective radius of tin in p-Sn and of lead in a-Pb is large compared with that 
of other typical metals with large atomic number due to uncomplete ionization of the 
single ns electron. This means that in a-Sn, for instance, the electron configuration is 
.. .5s'5p3, allowing sp3-hybridization and covalent tetrahedrally coordinated bonding, 
whereas in p-Sn with ... 5s25p2 only two p-orbitals are available for covalent and one 
further p-orbital for metallic bonding. 

The structure of arsenic, antimony and bismuth (isotypic under ambient conditions) 

References: p.  45. 
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T[K] P[GPal PS FT c/a 

V 23 V,=13.82A3 
ls?2s%63szpdd34s2 

cI2 w 

T[KI P[GW PS FT c/o 

Cr 24 v,=12.00A3 
ls22s%63s%6d54d 

cI2 w 
Nb 41 Vas=17.98A3 
1 s22s~63s~6d'04s~6d45s'  

cI2 w 
Ta 73 Vat=18.02A3 
1 s~s~63s~6d'04s~6d10f145s2p6d36s2 

cI2 w 

MO 42 V,=15.58A3 
1 s~s~63s2p6d'04s2p6d55s1 

c n  w 
W 74 Vat= 15.85 A3 
1 s~s~63s~6d'04s~6d10f~45s2p6d46sz 

cI2 w 

(table 12) consists of puckered layers of covalently bonded atoms stacked along the 
hexagonal axis (fig. 31). The structure can be regarded as a distorted primitive cubic 
structure (a-Po) in which the atomic distance d, in the layer equals that between the 
layers 4. The metallic character of these elements increases for d,/d, approximating to 
1 (table 13). 

The helical structures of isotypic a-Se and a-Te may also be derived from the 

Table 8 
Structure information for the elements of groups 7 and 8. In the first line of each box the chemical symbol, 
atomic number Z, and the atomic volume V, under ambient conditions is listed. In the second line the 
electronic ground state configuration is given. For each phase there is tabulated: l i i t ing temperature T[K] and 
pressure P[GPa], Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio c/o. 

T[K] P[GPal PS PT c/a 

~n 25 va,=12.21A3 
i S 2 2 s % ~ p ~ ~ 2  
a cI58 a-Mn 
p >loo0 cP20 p-Mn 
y >1373 cF4 Cu 
S >1411 cI2 w 
TC 43 Vat=14.26A3 
l s ~ ~ 6 3 s ~ 6 d ' 0 4 s ~ 6 d 6 5 s '  

hP2 Mg 1.604 

Re 75 V =14.71A3 
1 s~s~63s~~'04s~6dp6d10f145SZp6dS6SZ 

hP2 Mg 1.615 

T[K] P[GPa] PS FT c/a 

Fe 26 Va,=11.78A3 
ls%%63s~6d64s2 
a cr2 w 
y 21185 cF4 Cu 
6 >1667 cI2 w 
E > 13 hP2 Mg 1.603 

Ru 44 Vat=13.57A3 
1 s ~ s ~ 6 3 s ~ 6 d 1 0 4 s ~ 6 d 7 5 s 1  

hP2 Mg 1.582 

OS 76 V,=13.99A3 
1 s"2s~~s~6d'o~~6d4s"Of'45s2p6d66sZ 

hP2 Mg 1.580 
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Fig. 20. One unit cell of cI58-Mn, space group Id3m, No. 217, with four different types of Mn atoms in 2a: 
0 0 0, 8c: 0.316 0.316 0.316, 24g: 0.356 0.356 0.034, 24g: 0.089 0.089 0.282, shown (a) in perspective view 
and (b) in projection. 'Avo types of Mn atoms are coordinated by CN 16 Friauf polyhedra, one by a CN 14 
Frank-Kasper polyhedron and one by an icosahedron. 

primitive cubic a-Po structure (fig. 32). The infinite helices run along the trigonal axes, 
and have three atoms per turn. The interhelix bonding distance d, plays a comparable 

References: p .  15. 
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Fig. 21. One unit cell of cPZCkMn, space group P4,32, No 213, with two types of Mn atoms: 8c: 0.063 0.063 
0.063, 12d: 0.125 0.202 0.452, shown (a) in perspective view and (b) in projection. The atoms in 8c are 
coordinated by 12 atoms in a distorted icosahedron, the Mn atoms in 12d by 14 atoms in a distorted Frank- 
Kasper CN 14 type polyhedron. 

role for the metallic character of these elements as does the interlayer distance in the 
case of the group 15 elements. Wih increasing pressure, the transition to the metallic 
p-Te phase takes place. 

3.6. Lanthanides and actinides 

Lanthanides and actinides (table 14) are characterized by the fact that their valence 
electrons occupying the f-orbitals are shielded by filled outer s- and p-orbitals. The 
chemical properties of the lanthanides are rather uniform since the 4f-orbitals are largely 
screened by the 5s- and 5p-electrons. The chemical behavior of the actinides, however, 
is somelike in between that of the 3d transition metals and the lanthanides since the 5f- 
orbitals are screened to a much smaller amount by the 6s- and 6p-electrons. With the 
exception of Sm and Eu, all lanthanides under ambient conditions show either a simple 
hcp structure with the standard stacking sequence ..AB.. or a twofold superstructure with 
a stacking sequence .. ACAB ... Samarium has, with ..ABABCBCAC.., an even more 
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T[K] P[GPal PS PT cla 

Co 27 V,=11.08A3 

e hP2 Mg 1.623 
LY >695 cF4 Cu 

ls~s2p63s2p6d74s2 

Rh 45 V,=1?.75A3 
1 

cF4 Cu 

Ir 77 V =14..15%r3 
1 s~s~63s2p6~'04s2p6d10f14Ss2p6d76~2 

cF4 Cu 

29 

T[K] P[GPa] PS PT cla 

Ni 28 V =10.94A3 
ls22s2p63s2pG84s2 

cF4 Cu 

pa 46 v =i4.72A3 
1 s%$63s2p6~'04s2p6d10 

cF4 Cu 

Pt 78 V =15.10A3 
1 s~s~63s2p6~'04sZp6dlaf14SS2p6d96S1 

cF4 Cu 
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Fig. 23. Phase diagram of iron (from VAINSHTEIN e? aZ. [1982]). 

Table 10 
Structure information for the elements of groups 11 and 12. In the first line of each box the chemical symbol, 
atomic number Z and the atomic volume V,, under ambient conditions is listed. In the second line the 
electronic ground state configuration is given. For each phase there is tabulated: limiting temperature T[K] and 
pressure P[GPa], Pearson symbol PS, prototype structure F'T, and, if applicable, the lattice parameter ratio c/u. 

T[K] P[GPa] PS PT c/a I T[K] P[GPa] PS PT c/u 

CU 29 Va,=11.81A3 

cF4 Cu 

Ag 47 Va,=17.05A3 
ls22s~63s~6d'04s~6dp6dlD5S1 

cF4 Cu 

AU 79 V,=16.96A3 
1 s22s~63s~6d'04s2p6d'of14S~2~6d106s1 

cF4 Cu 

Zn 30 Va=15.20A3 
ls22s2p63sZp6d'04s2 

hF2 Mg 1.856 

Cd 48 V =21.60A3 
1 s22s~63s2p6~'04s~6d10Ss2 

Hg 80 V =23.13A3 at 80K 
1 s~s2p63szp6"do4s2p6d'of14Ss2p6d'06s2 
a ~234 .3  hR1 a-Hg 
P >3.7 t12 a-Pa 

8 > 37 hP2 Mg 1.76 

hF2 Mg 1.886 

Y > 12 0p4 
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TEMPERATURE ,OC 

Fig. 24. The variation of atomic volume of iron with temperature (from DONOHUE [1974]). 

complicated stacking order with 4.5-fold superperiod. For all lanthanides the ratio clu is 
near the ideal value of n x 1.633. It is interesting that with increasing pressure and 
decreasing atomic number the sequence of closest-packed phases hP2-Mg (..AB..) 3 

hR3-Sm (..ABABCBCAC..) hP4-La (..ACAB..) j cF4-Cu (..ABC..) 3 hP6-Pr 
appears (cf. figs. 10, 17 and 33). 

Cerium undergoes a transformation from the y to the a-phase at pressures >0.7 GPa: 

Fig. 25. The structure of c F 4 - c ~ .  space group Fmgm, No. 225, 4a 0 0 0. 

References: p .  45. 
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Fig. 26. The structure of hR1-Hg, space group R3m, No. 166, 3a 0 0 0. 

the ccp structure is preserved but the lattice constant decreases drastically from 5.14 to 
4.84 A owing to a transition of one 4f-electron to the 5d-level (fig. 34). This isostructural 
transition is terminated in a critical point near 550K and 1.75 GPa (YOUNG [1991]). 
Further compression gives the transformation at 5.1 GPa to the a’-phase, and finally at 
12.2 GPa to the &-phase. Europium shows a completely different behavior, as do the 
other lanthanides, owing to the stability of its half filled 4f-orbitals. Thus, it has more 
similarities to the alkaline earth metals; its phase diagram is comparable to that of barium 

0 10 20 30 10 50 
pressure ( Gila ) 

Fig. 27. Schematical phase diagram of mercury (from SCHULTE and HOLZAPFEL [1993]). 
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Table 11 
Structure information for the elements of groups 13 and 14. In the first line of each box the chemical symbol, 
atomic number Z, and the atomic volume Vat under ambient conditions is listed. In the second line the 
electronic ground state configuration is given. For each phase there is tabulated: limiting temperature T[K] and 
pressure P[GPa], Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio cla. 

T[K] P[GPa] PS PT cla 

Ga 31 Va,=19.58A3 
ls22s2p63sZp6d'04s~' 
LY oC8 a-Ga 

y >330 >3.0 t12 In 1.588 
p e330 >1.2 c112 

In 49 Vat=2Cj.16A3 
ls'2s'p63s2p6d'04s~6d'05s2p1 

tI2 In 1.521 

TI 81 Vat=28.59A3 
1 s'2szp63s2p6d104~z~6d'of'45~2p6d'06szp' 
LY hP2 Mg 1.598 

Y >3.7 cF4 Cu 
p >503 cI2 w 

T[K] P[GPa] PS PT cia 

Si 14 Va=Z0.02A3 

LY cF8 Cd 
B > 12 t14 p-Sn 
Y > 13.2 hP1 BiIn 
S > 36 O? 

E > 43 hP2 Mg r > 78 cF4 Cu 

Ge 32 V,,=22.63A3 
1 s?2s~63s2p6d104s2p2 
a cF8 C 
P > 11 t14 p-Sn 
Y > 75 hP1 BiIn 
S > 106 hP4 

Sn 50 Vat=34.16A3 at 285K 
1 s~s~63s2p6d~04~zp6d105s~2  
LY <291 cF8 c 
p ~ 2 9 1  t14 p-Sn 
Y > 9.2 t12 Pa 
S > 40 cI2 w 
Pb 82 Va1=30.32A3 
1 s22s~~s2p6d'04s2p6d10f145s2p6d106s~2 
LY cF4 Cu 
B > 13.7 hP2 Mg 
Y > 109 cI2 w 

1 s22s2p63s2p2 

0.552 
0.92 

1.699 

0.55 1 
0.92 

0.546 
0.91 

1.650 

rather than to the other lanthanides. A similar behavior is observed for ytterbium which 
is divalent owing to the stability of the completely filled 4f-orbitals; its phase diagram 
resembles that of strontium. 

The c-lattice parameter of gadolinium exhibits an anomalous expansion when cooled 
below 298 K (fig. 35) due to a change in the magnetic properties of the metal. Several 
other lanthanides show a similar behavior. 

According to their electronic properties, the actinides (table 14) can be divided into 
two subgroups: the elements from thorium to plutonium have itinerant 5f-electrons 
contributing to the metallic bond, whereas the elements from americium onwards have 
more localized Sf-electrons. This situation leads to superconductivity for thorium, 
protactinium and uranium, for instance, and to magnetic ordering for curium, berkelium 
and californium (DABOS-SEIGNON et al. [1993]). The contribution of 5f-electrons to 

References: p .  45. 
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C 
The structure of oCbGa, Crnca, No. 64, 8f 0 0.155 0.081, (a) in a perspective view and 
(010) and (c) (100). showing the distorted hexagonal layers. 

projected 

bonding leads to low symmetry, small atomic volumes and high density in the case of 
the light actinides while the heavier actinides crystallize at ambient conditions in the hcp 
structure type. The position of plutonium at the border of itinerant and localized Sf-states 
causes its unusually complex phase diagram, with structures typical for both cases. Thus, 
monoclinic a-Pu can be considered as a distorted hcp-structure with about 20% higher 
packing density than cF4-Pu owing to covalent bonding contributions from Sf-electrons 
(fig. 36) (EK et al. [1993]). This ratio is quite similar to the above-mentioned one of 
a-Ce and y-Ce, which are both ccp. The phase diagram of americium is very similar to 



Ch. 1, $ 3  Crystal structure of the metallic elements 35 

Fig. 29. The structure of tI2-In, space group Wmmm, No. 139, 2a 0 0 0. 

Fig. 30. Relationships between the structures of the two tin allotropes: (a) grey a-Sn, c F 8 4  type, space group 
Fd3m, No. 227, 8a: 0 0 0, % % %, and (b) white p-Sn, t I w - S n  type, space group I4,/amd, No. 141, 4a: 
0 0 0. Note the large difference in the minimum distances: d z z  = 1.54 A and d z ?  =3.02 A. 

those of lanthanum, proseodymium and neodymium. Owing to the localization of 5f- 
electrons it is the first lanthanide-like actinide element. 

Both lanthanides and actinides crystallize in a great variety of polymorphic modifica- 
tions (fig. 37). 

References: p .  45. 
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T[K] P[GPa] PS PT cla T[K] P[GPa] PS PT cla 

AS 33 Vat=21.52A3 
1 
ff hR2 (Y-As 2.805 
P >25.0 cP1 ff-Po 

Sb 51 Vat=30.21A3 
1 s'2s$63s2p6d104s$6d'05s2p3 
ff hR2  AS 2.617 
P > 8  mP4 p-Sb 
Y > 28 cI2 w 

Bi 83 V,,=35.39A3 
1 s22s2p&js2p6d'04s2p6d'af145s2p6d106s~3 - -  
ff -hR2 ~ - A S  2.609 
P > 2.6 mC4 &Si 
Y > 3.0 mP4 P-Sb 
s > 4.3 
E > 9.0 cI2 w 

Se 34 v =27.27A3 

a hP3 a-Se 1.135 
P > 14 mP3 
Y > 28 tP4 
8 > 41 hR2 

Te 52 Va,=33.98A3 
1 s~s'p63szpdd104szp6d105s2p4 
a hP3 a-Se 1.330 
P > 4.0 mP4 P-Te 

l s ~ s ~ 6 3 s 2 p ~ ~ 1 0 4 s ~ 4  

Y > 6.6 OP4 
s > 10.6 hR1 &PO 
E > 27 cI2 w 
Po 84 V,=38.14A3 at 311 K 
1 s22s2p63s$6d104s2p6d10f'45s$6d'06s~4 
CY cP1 a-Po 
P >327 hR1 p-Po 
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Fig. 31. The structure of bR2-As, space group Rjm, No. 166, 6c 0 0 0.277. 

Table 13 
Intralayer (d,) and interlayer (4) distances in a-As-type layer structures, y-de-type helix structures and 

primitive cubic a-Po (PF.~RsoN[1972]). 

Distance d, Distance d, Wdl Element 

a-As 2.51 A 3.15A 1.25 
a-Sb 2.87 A 3.37 A 1.17 

y-Se 2.32 8, 3.46A 1.49 
y-Te 2.86A 3.46 A 1.31 

a-Bi 3.10 8, 3.47 A 1.12 

a -PO 3.37 A 3.37 A 1 .oo 

References: p .  45. 
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Fig. 32. (a) The structure of hP3-k space group P3,21, No. 152, 3a 0.237 0 %, and (b) its projection upon 
(001) compared with (c) one unit cell of cP1-Po, space group Pmjm, No. 221, la  0 0 0, and (d) its projection 
along [ 1 1  11.  The hexagonal outline of the projected cubic unit cell is drawn in. 
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Table 14 
Smcture information for the lanthanides and actinides. In the first line of each box the chemical symbol, 
atomic number Z, and the atomic volume Vat under ambient conditions is listed. In the second line the 
electronic ground state configuration is given. For each phase there is tabulated: limiting temperature T[K] and 
pressure P[GPa], Pearson symbol PS, prototype structure PT, and, if applicable, the lattice parameter ratio cla. 

T[Kl P[Gl?al PS PT eta 

Ce 58 Vat=34.72A3 
1 s22s$63s2p6d'04s2p6d'ofzSs*p66s2 
a e96 cF4 Cu 
B hP4 a-La 2X1.611 
y >326 cF4 Cu 
s >999 cI2 w 
a' >5.1 oC4 a-u? 
E > 12.2 t12 In 

Pr 59 V =35.08A3 
1 s22sZp63s~~~104sZp6d10f35~~66s2 
a hP4 a-La 2x1611 
p 21068 cI2 w 
Y > 3.8 cF4 Cu 
S > 6.2 hp6 Pr 3x1622 
E > 20 oc4 a-U 

Nd 60 Ve=34.17A3 
ls22szp63s~6d104s2p6d10~5s2p66s2 
a hP4 a-La 2~1.612 
p >1136 cI2 w 

6 > 18 hp6 pr 
Y >5.8 cF4 Cu 

E > 38 mC4 ? 

Pm 61 Vat=33.60A3 
1 s22s~63s2p6d104s2p6d'ofs5s2p66sz 
a hP4 CY-L 
p ~ 1 1 6 3  cI2 w 
Y > 10 cF4 Cu 
s > 18 hp6 Pr 
E > 40 ? 

3~1.611 

2x1.60 

T[K] P[GPa] PS PT cla 

Th 90 Vat=32.87A3 
... 3s2p6d104s~6d10f145s$6d106s2p6d~s2 
Ly cF4 Cu 
p >1633 cI2 w 

Pa 91 V =25.21A3 
... 3s2p6d104sZ~d10f145s2p6d10f26szp6d17s2 
LY t12 @-Pa 0.825 
B >1443 cI2 w 

U 92 Vat=20.75A3 
. . .3s~6d'04s2p6d10f145s~6d10f36s2p6d17~2 
Ly oc4 a-u 
p >941 tP30 p-u 
y >lo49 cI2 w 

Np 93 Ve=19.21A3 
... 3s~6d104s2p6d10f145s2p6d10f56s~67~2 
LY oP8 a-Np 
B >553 tP4 p-Np 0.694 
y >849 cI2 w 

Continued on next page 

References: p .  45. 
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Table 14-Continued 

Ch. 1, 0 3  

T[K] P[GPa] PS FT c/a 

Sm 62 V =33.17A3 
ls~s2p63s2p6~'04s~6d'of65s2p66s2 
a hR3 a-Sm 4.5x1.60f 
p >loo7 hP2 Mg 1.596 

6 > 4.5 hP4 a-La 2~1.611 
e > 14 cF4 Cu 
t > 19 hp6 Pr 3X1.611 
e > 33 mC4 ? 

y >1195 cI2 w 

Eu 63 V =48.10A3 
ls22s~63s$'~'04s$6d4s2p6d10f75SZp66SZ 
a cI2 w 
B > 12.5 hP2 Mg 1.553 
Y > 18 ? 

Gd 64 v =33.04A3 
ls22s2p63s2p'~'04s2p6d10f75s~65d16~2 
a hP2 Mg 1.591 

Y >2.0 hR3 a-Sm 4.5~1.61 
6 >5 hP4 a-La 2X1.624 
E > 25 cF4 Cu 
t > 36 hp6 Pr 

p >I508 cI2 w 

Tb 65 V =32.04A3 
1 s22s2p63s~'~'04s2p6d10~5s~66s2 

a' hP2 Mg 1.580 
p >I562 cI2 w 
Y > 3.0 hR3 a-Sm 4.5x1.6C 
6 > 6.0 hP4 a-La 
E > 29 cF4 Cu 
b > 32 hp6 Pc 3~1.616 

a e220 0c4 ~ - D Y  

T[K] P[GPa] PS PT cia 

Pu 94 Va,=19.88A3 
. . . 3s2p6d'04s%6d'of ''5s2p6d10f66s$%'s2 

p >388 mC34 p-Pu 
y >488 oF8 y-Pu 
6 >583 cF4 Cu 
6' >I25 tI2 In 1.342 
E >I56 cI2 w 
t > 40.0 hP8 1.65712 

a mP16 a-Pu 

Am 95 Va=29.21A3 
... 3s2p6d'04s~6d'Df'45~2p6d10f76s~61 s2 
a hP4 a-La 2~1.621 
p >1042or>5 cF4 Cu 
y >1350 cI2 w 
6 > 12.5 mP4 6-Am 
E > 15 oC4 a-u 

Cm 96 V,=29.98A3 
... 3s2p6d'04s2p6d'of145~2p6d10f76s2p6d11s2 

p >155001>23 cF4 Cu 
a hP4 a-La 2X1.621 

Y > 43 OC4 a-U 

Bk 91 Va=21.96A3 
...3s2p6d'04s2p6d10f ''5s~6d'of86s2p6d'7s2 
a hP4 a-La 2~1.620 
p >125001 >8 cF4 Cu 
Y > 25 OC4 a-U 

Continued on nextpage 
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Table 14-Continued 

41 

T[K] P[GPal PS FT cla 

Dy 66 V -31.57A3 
1 s~s2p63sZp6ad~4s2p6d10f105s2p66sz 

a hP2 Mg 1.573 

Y > 5.0 hR3 a-Sm 4.5x1.6C 
s > 9.0 hP4 a-La 
E > 38 cF4 Cu 

a' e86 d34 ~ - D Y  

p >1654 cI2 w 

Ho 67 V -31.12A3 
1 s~s~63s$~1~4s~6d'Of"5s2p66s2 
a hP2 Mg 1.570 
p >1660 cI2 w 
Y >7.Q hR3 a-Sm 4.5x1.6 
s > 13 hP4 a-La 

Er 68 V -30.65A3 
1 s~szp63s~6~'04s2~6d6d10f125SZp66SZ - -  
# hp2 Mg 1.569 
P > 7.0 hR3 a-Sm 
Y > 13 hP4 a-La 

Tm 69 Va=30.10A3 
1 s22sZp63s$6d104s2p6d10f135szp66~2 
a hP2 Mg 1.570 

Y >9 hR3 a-Sm 
fl >1800 cI2 w 

s > 13 hP4 r~-b 4.5X1.5 

Yb 70 Vat=41.24A3 
ls~szp63s$6d'04s~6dp6d"45s2p66s2 
a <270or >34 hP2 Mg 1.646 
B cF4 Cu 
y >lo47 or >3.5 cI2 w 

LU 71 Vat=29.52A3 
ls~s$63s$6d'04szp6d10f145szp6d16s2 

P > 18 hR3 a-Sm 4.5x1.5: 
hP2 Mg 1.583 

Y > 35 hP4 &-La 

T[K] P[GPal PS PT C h  

Cf 98 Vat=27.41A3 
... 3s$6d'04s2p6d10f145s$6d10f106s2p'%'s2 

P >863or >17 cF4 Cu 
a hP4 a-La 2X1.625 

Y > 30 aP4 y-Cf 
s >41 OC4 a-U 

Es 99 
... 3sZp6d104s~6d10f'45s~6d10f1'6~Zp~~Z 
a hP4 a-La 
P ?  cF4 Cu 

Fm 100 
... 3s~6d'04sZp6d10f145~2p6d10f126s~'%'s2 

Md 101 
... 3szp6d'04s$6d'of145s~6d10f136szp%'sz 

No 102 
. . .3~$~d'~4s~p~d'~f ''5s2p6d10f'46s~67s2 

Lr 103 
. . . 3 ~ ~ p ~ d ' ~ 4 s ~ ~ d ' ~ f  ''5s$6d'of'46s~6d'7s2 

Rflerences: p.  45. 
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Fig. 33. The structure of hP&Pr, space group P3,21, No. 152, 6c 0.28 0.28 0.772. 
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Fig. 34. Pressure dependence of the atomic volume of cerium (from DONOHUE [1974]). 
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Fig. 35. Variation of the lattice parameters of gadolinium with temperature. There are no structural changes in 
this temperature range (from DONOHUE [1974]). 
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Fig. 36. The variation of the atomic volume of the various allotropes of plutonium with temperature (from 
DONOHUE [ 19741). 
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P = 0.1 MPa 

Ac Th Pa U NP PU Am Cm 

Fig. 37. Combined binary alloy phase diagrams for the light actinides (from YOUNG [1991]). 
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I .  Introduction 

The bulk properties of a metal depend directly on the bonding between the constituent 
atoms at the microscopic level. Thus, in order to provide a fundamental description of 
metals and alloys, it is necessary to understand the behaviour of the valence electrons 
which bind the atoms together. The theory which describes the electrons in metals is 
couched, however, in a conceptual framework that is very different from our everyday 
experience, since the microscopic world of electrons is governed by quantum mechanics 
rather than the more familiar cZussical mechanics of Newton. Rather than solving 
Newton’s laws of motion the solid state theorist solves the Schrodinger equation, 

AZ v2 -I- v(r) +(r) = E#(r), 
(-G 1 

where V2 = + a2/ay2 + a2/aZ, m is the electronic mass and A is the ubiquitous 
Planck constant (divided by 277). -(A2/2m) V2 represents the kinetic energy and v(r) the 
potential felt by the electron which has total energy E. +(r) is the wave function of the 
electron where [+(r) l2 is the probability density of finding the electron at some point r 
= (x, y, z). The power of the Schrodinger equation is illustrated by solving eq. (1) for the 
case of a single hydrogenic atom. It is found that solutions exist only if the wave 
function + is characterized by three distinct quantum numbers n, E and m whose signifi- 
cance has been discussed at the beginning of the preceding chapter. A fourth quantum 
number, ms, representing the spin of the electron results from a relativistic extension of 
the Schrodinger equation. Thus, the existence of different orbital shells and hence the 
chemistry of the Periodic Table follows naturally from quantum mechanics through the 
Schrodinger equation. 

WIG= and SEITZ [1933] were the first to apply the Schrodinger equation to the 
problem of bonding in metals. In their classic paper they studied the formation of the 
bond in monovalent sodium and obtained the cohesive energy, equilibrium lattice 
constant, and bulk modulus to within 10% of the experimental values. However, it took 
nearly another fifty years before the same accuracy was achieved for the polyvalent 
metals. Whereas WIGNER and SEITZ [1933] could assume that the single valence electron 
on a sodium atom feels only the potential due to the ion core, in a polyvalent metal a 
given electron will also feel the strong coulomb repulsion from other valence electrons 
in its vicinity. Thus the problem becomes much more complex. Firstly, the potential v(r) 
must be computed self-consistently in that v(r) now depends on the coulomb field of 
valence electrons whose wave functions and hence average charge distributions them- 
selves depend on v(r) through eq. (1). Secondly, it is necessary in order to obtain 
bonding to go beyond the average self-consistent field of the Hartree approximation and 
to include the correlations between the electrons. Pauli’s exclusion principle keeps 
parallel spin electrons apart, thereby lessening their mutual coulomb repulsion and 
lowering the energy by an amount called the exchange energy. These statistical correla- 
tions are described by the Hartree-Fock approximation. In addition, dynamical correla- 
tions also exist between the anti-parallel spin electrons, which lower the energy of the 
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system by an amount called the correhtion energy. 
A major breakthrough in solid-state physics occurred with the realization that these 

very complicated exchange and correlation effects could be accurately modeled by adding 
a simple local exchange correlation potential uxc(r) to the usual Hartree coulomb potential 

I I I 

I 1 I I 

0 U S c  I V , M n l  C o ,  Cu Ga I J / b ,  Tc , Rh' 

Ca Ti Cr Fe Ni Zn Sr Zr M o  Ru Pd Cd 

Fig. 1. The equilibrium Wiper-Seitz radii, cohesive energies, and bulk moduli of the 3d and 4d transition 
series. Experimental values are indicated by crosses and the computed LDF values by the connected points. 
(From MORUZZI et QI. [1978].) 

References: p .  129. 
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in eq. (1). The resulting so-called local densityfunctional (LDF) equations (HOHENBERG 
and KOHN [1964] and KOHN and S w  [1965]) have been shown to yield a surprisingly 
good description of the energetics of atoms, molecules, and solids (GUNNARSSON and 
LVM>QUIST [1976], HARRIS and JONES [1978], MORUZZI et aZ. [1978], JONES and 
GUEMARSSON [1989] and Frms [1992]). The success of the LDF scheme is illustrated 
in fig. 1 by the results of MORUZZI et al. [1978] for the cohesive properties of the 
elemental metals across the 3d and 4d transition series. We see that for the nonmagnetic 
4d series the equilibrium Wigner-Seitz radius (or lattice constant), cohesive energy and 
bulk modulus are given to better than 10%. The large deviations in lattice constant and 
bulk modulus observed amongst the 3d series is due to the presence of magnetism and 
is removed by generalizing the LDF theory to include spin polarization (JANAK and 
W n ~ u m  [1976]). It must be stressed that there are no arbitrary parameters in the 
theory, the only input being the nuclear charge and crystal structure. 

This success of the LDF theory in describing the bonding between atoms allows the 
interpretation of the results within a band framework, since the motion of a given 
electron is governed by the one-electron Schrodinger equation (1). As is well-known, the 
energy levels, E, of the free atom broaden out into bands of states as the atoms are 
brought together to form the solid. In this chapter the nature of these energy bands in 
simple metals, transition metals and binary alloys is discussed, thereby unraveling the 
microscopic origin of the attractive and repulsive forces in the metallic bond. In $ 2.1 we 
begin with a detailed description of the constituent atoms, since we will see that many 
bulk properties are related to the relative position of the atomic energy levels and to the 
size of the ionic cores. In 0 2.2 the diatomic molecule is used to illustrate bond formation 
and in $2.3 the general principle of band formation in solids is outlined. The nature of 
simple- and transition-metal bands is then discussed in Q Q  3 and 4 respectively, the 
former being treated within the nearly-free-electron approximation, the latter within the 
tight-binding approximation. In $ 5 the knowledge of the energy band behaviour is used 
to provide a microscopic picture of metallic bonding which is responsible for the 
cohesive properties of the elemental metals displayed in fig. 1. In $ 6 structural stability 
is discussed both in the elemental metals and in binary intermetallic phases. In $7 the 
ideas on metallic bonding are extended to a discussion of the hats  of fornation, AH, of 
binary alloys. Finally in $ 8 the band theory of mugnetism is presented which accounts 
for the antiferromagnetism of Cr and Mn and the ferromagnetism of Fe, Co, and Ni 
amongst the 3d transition metals. 

2. Band formation 

2.1. The constituent atoms 

The hundred basic building blocks of nature, which are enshrined in the Periodic 
Table, lead to matter having a wide range and variety of physical properties. This 
diversity reflects the essential uniqueness of each element in the Periodic Table. For 
example, even though copper, silver and gold lie in the same noble-metal group, nobody 
except possibly a theoretician would be prepared to regard them as identical. In this 
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subsection the differences between the elements are quantiJied by discussing the 
behaviour of the atomic energy levels and the radii throughout the Periodic Table. 

The structure of the Periodic Table results from the filling-up of different orbital 
shells with electrons, as outlined in the previous chapter. The chemical behaviour of a 
given atom is governed by both the number and the angular-momentum character of the 
electrons in the outer partially filled shells. (We shall refer to these electrons as valence 
in contrast to the filled shells of core electrons.) The angular-momentum character is 
determined by the orbital quantum number 1, since the magnitude of the total orbital 
angular momentum L is given by quantum theory as: 

where 1 = 0, 1, 2, ... A free-atom electron can, therefore, take only discrete values of 
angular momentum (i.e. 0, A@,  A 6  ,...) unlike a classical particle which would have 
a continuous spectrum. However, as in the classical case, the angular momentum is 
conserved because the electron is moving in the central spherically symmetric potential 
of the free atom. Electrons with I = 0, 1,2 and 3 orbital quantum numbers are referred 
to as s, p, d and f electrons, respectively (after the old terminology of sharp, principal, 
diffuse and fine spectroscopic lines). 

Angular momentum is a vector. Therefore, in addition to the magnitude L of the 
orbital angular momentum L, the electronic state is also characterized by the components 
of the angular momentum. Within quantum theory the component in a given direction 
(say along the z-axis, specified experimentally by the direction of a very weak applied 
magnetic field) is quantized and given by 

L, = mi?, (3) 

where the magnetic quantum number, m, takes the (21+ 1) values 0, f 1, ..., f ( I -  l), f 1. 
Because the energy of the electron can not depend on the direction of the angular 
momentum in a spherically symmetric potential, these (21+ 1) states have the same 
energy and are said to be degenerate. Allowing for the additional spin quantum number, 
ms, which can take two values (corresponding to an up, t, or down, &, spin electron), 
each I-state will be 2(2E+ 1)-fold degenerate. Thus an s-shell can hold 2 electrons, a 
p-shell 6 electrons, a d-shell 10 electrons and an f-shell 14 electrons as discussed in ch. 
2, 0 1. 

The state of angular momentum of the electron determines the angular dependence of 
the wave function II/ and hence the angular dependence of the probability-density [+I2. 
The s-state has zero orbital angular momentum corresponding to a spherically symmetric 
probability density which is illustrated schematically in fig. 2a. The p-state, correspon- 
ding to 1 = 1, m = 0, has an angular variation given by cos 8, where is the polar angle. 
Because the Cartesian coordinates (4 y, z) can be related to the spherical polar 
coordinates (r, 0, +), and in particular z =  r cos 8 ,  it is customary to refer to the E =  1, 
m = 0 state as the p,: orbital. Its probability-cloud is illustrated by the left-hand diagram 
in fig. 2b. We see that it has lobes pointing out along the z-axis, in which direction there 
is a maximum probability of finding the electron (cos 28 = 1 for 8 = 0, T). On the other 
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hand, there is zero probability of finding the electron in the x-y plane (cos *8 = 0 for 
8 =.rr/2). Since we often deal with atoms in a cubic environment in which all three 
Cartesian axes are equivalent (e.g., fcc or bcc crystals), we form the p, and p,, orbitals by 
taking linear combinations of the two remaining states corresponding to in = + 1. They are 
illustrated in fig. 2b. The probability clouds of the five d orbitals corresponding to Z=2 
are shown in fig. 2c. We might expect from fig. 2 that the nature of the bonding between 
atoms will be very dependent on the angular momentum character of the atomic valence 
electrons. This will be discussed in 5 2.2. 

Historically it was the discrete lines of the atomic spectra and their ordering 
according to Balmer’s formula that led Bohr to postulate his famous model of the 
hydrogen atom from which he deduced that the energy levels were given by 

E, = -(me4/ 32.rr2t$d2) / n2, (4) 

S 

1.0 
m = O  

P Z Z b 

X 

d C 

dsz*-rZ dxz  ZY 
m =  0 m =?l 

Z 

Fig. 2. The probability clouds corresponding to s, p and d orbitals are shown in (a), (b) and (c), respectively. 
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where e is the magnitude of the electronic charge, E,, is the permittivity of free space, and 
n is a positive integer. The corresponding radii of the so-called stationary orbits were 
given by 

a,, = (4m,-,~~/ m2)n2 .  (5) 

E,, = 2.1799 x 10-"/n2 J 

Substituting into eqs. (4) and (5) the SI values m=9.1096 x lod3' kg, e=  1.6022 x 
C, 4m0c2= lo7, c=2.9979 x 10' m / s  and R = 1.0546 x lo-% Js, we have: 

(6) 

and 

(7) 

The ground stute of the hydrogen atom, which corresponds to n= 1, has an energy, 
therefore, of 2.18 x lo-" J and an orbital Bohr radius of 0.529 x lo-'' m or 0.529 A. 
Because of the small magnitude of the energy in SI units, it is customary for solid-state 
physicists to work in atomic units, where the unit of energy is the Rydberg (Ry) and the 
unit of length is the atomic unit (au). The former is the ground-state energy of the 
hydrogen atom, the latter is the first Bohr radius. Thus, in atomic units we have 

2 a,, =n ail. 

E,, = -n-2 Ry (8) 

and 

(9) 

It follows from eqs. (4), (5), (8) and (9) that A2/2m = 1 in atomic units. Another frequent- 
ly used unit is the electron-Volt, where 1 Ry = 13.6 eV. In this chapter electronic energy 
levels, E, will be given in either eV or Ry, whereas total energies will be given in either 
eV/atom or Ry/aQm. Conversion to other units may be achieved by using 1 
mR~/atom=0.314 kcallmole= 1.32 kJ/mole. Length scales will be given either in au or 
in A, where 1 au=0.529 A. 

Solution of the Schrodinger equation (1) for the hydrogen atom leads directly to 
Bohr's expression (4) for the energy levels, E, where n is identified as the principal 
quantum number. For the particular case of the hydrogen atom where the potential v(r) 
varies inversely with distance r from the nucleus, the energy levels do not depend on the 
angular-momentum quantum numbers I and m. Figure 3 shows the energy levels of 
atomic hydrogen given by eq. (S), where use has been made of the quantum-theory result 
that for a given n the orbital quantum number I must be such that 0 I I I (n - 1). The 
total degeneracy of each orbital including spin, namely 2(2l+ l), is given at the bottom 
of the figure and accounts for the structure of the Periodic Table, discussed in the 
previous chapter. In practice, the energy-level diagram of elements other than hydrogen 
is different from fig. 3, because the presence of more than one electron outside the 
nucleus leads to the potential v(r) no longer showing a simple inverse distance behaviour, 
so that states with the same principal quantum number n but different orbital quantum 

2 a,, = n au. 
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Fig. 3. The energy levels of atomic hydrogen. 

numbers I have their degeneracy lifted. This is illustrated in fig. 4, where it is clear, for 
example, that the 2s level of the second-row elements B to Ne lies well below that of the 
corresponding 2p level. These atomic energy levels were taken from the tables compiled 
by HERMAN and SKILLMAN [1963] who solved the Schriidinger equation (1) self- 
consistently for all the elements in the Periodic Table. 

Figure 4 illustrates several important features to which we will be returning through- 
out this chapter. Firstly, the valence energy levels vary linearly across a given period. As 

0 . .  -I 

Li Be- B C N 0 F Ne 

\''..4s Rb Sr--'-Cd in  Sn Sb Te I Xe 

ES 

__ I 

Fig. 4. The valence s and p energy levels (after HERMAN ANDSKILLMAN [1963]). 



Ch. 2, 52 Electron theory of metals 55 

the nuclear charge Ze increases, the electrons are bound more tightly to the nucleus. 
However, rather than varying as Z2, which would be the result for the energy levels of 
a hydrogenic ion of charge Ze, the presence of the other valence electrons induces the 
linear behaviour observed. Secondly, the valence s and p energy levels become less 
strongly bound as one moves down a given group, which is to be expected from the 
hydrogenic energy levels displayed in fig. 3. But there is an exception to this rule: the 4s 
level has come down and crosses below the 3s level to the left of group VB. This is a 
direct consequence of the presence of the occupied 3d shell (cf. table 2, ch. 2) whose 
electrons do not completely screen the core from the valence 4s electrons, which 
therefore feel a more attractive potential than their 3s counterparts in the preceding row. 
We will see in $6.2 that this reversal in the expected ordering of the valence s energy 
levels is reflected in the structural properties of binary AB compounds containing group 
IIIB elements. Thirdly, it is clear from fig. 4 that the energy diflerence Ep - E, decreases 
as one goes from the rare gases to the alkali metals, from right to left across a given 
period. This will strongly influence the nature of the energy bands and the bonding in the 
bulk, since if Ihe energy difference is small, s and p electrons will hybridize to form 
common sp bands. 

Figure 5 shows the valence s and d energy levels across the 3d and 4d transition 
metal series, after HERMAN and SKILLMAN [1963]. The energy levels correspond to the 
atomic configuration e%, where N is the total number of valence electrons, because this 
is the configuration closest to that of the bulk metal. Again there are several important 
features. Firstly, we see that the energy variation is linear across the transition metal 
series as the d shell is progressively filled with electrons. However, once the noble metal 
group IB is reached the d shell contains its full complement of ten electrons, so that any 
further increase in atomic number Z adds the additional valence electrons to the 

‘4 d 

I I IAE7AYAEIAZIA I6 IIB 

Sc Ti V Cr Mn Fe Co Ni Cu Zn 

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 

Fig. 5. The valence s and d energy levels across the 3d and 4d transition series (after HERMAN AND SKILLMAN 
[ 19631). 
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sp outer shell and pulls the d energy rapidly down as is evidenced by the change of slope 
in fig. 5. Secondly, whereas the valence s energy level becomes slightly less strongly 
bound as one moves down a given group, the valence 4d energy level becomes more 
strongly bound than the valence 3d away from the beginning of the transition-metal 
series. This behaviour appears to be related to the mutual coulomb repulsion between the 
negatively charged valence electrons. The 3d orbitals are much more compact than the 
4d orbitals, so that the putting of electrons into the 3d shell leads to a more rapid 
increase in repulsive energy than in the 4d shell. The Sd and 6s energy levels have not 
been plotted in fig. 5 because relativistic effects, which are not included in the 
Schrodinger equation (I), become important for heavy atoms in the Periodic Table. 
Relativistic corrections are discussed in ch. 2 of HERMAN and SKILLMAN [1963]. Thirdly, 
since E, - Ed is about 3 eV in copper but 6 eV in silver, it is not surprising that the 
noble metals display different physical characteristics. 

A concept that is often used in physical metallurgy to discuss and order properties is 
that of atomic size. The microscopic description of the atom, which is provided by 
quantum mechanics, should be able to give some measure of this quantity. We have seen 
that quantum mechanics replaces the stationary Bohr orbits of radius a, by orbitals which 
are not located with a fixed radius but are smeared out in probability-clouds described by 
]+I2. The angular dependence of these probability-clouds has been displayed in fig. 2. 
We now discuss their radial dependence. 

The solution of the Schrodinger equation for a central spherically symmetric potential 
can be written in separable form, namely: 

where r, 8 and 4 are spherical polar coordinates. As expected, the anguEar distribution 
depends only on the angular-momentum quantum numbers E and m, the functions 
Y,"(6 4 ) being the so-called spherical harmonics (see, e.g., SCHIFF [1968]). Y," is a 
constant and Yp is proportional to cos6 as we have already mentioned. The radiaE 
function &(r) depends on the principal and orbital quantum numbers, n and 1 respective- 
ly, and therefore changes with energy level E& For the hydrogen atom the first few 
radial functions are (in atomic units) 

R,, ( r )  = 2e-', (11) 

1 
&(r) = -(I - 3 r)e-'", 11z 

A conceptually useful quantity is the probability of finding the electron at some distance 
r from the nucleus (in any direction), which is determined by the radialprobability 
density, Pn, (r)  = r2Rzl (r). 

Figure 6 shows the radial function R,,, and the probability density, P,,, as a function 
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of r for the Is, 2s and 2p states of hydrogen. We see that there is maximum probability 
of locating the electron at the first Bohr radius a, for the Is state and at the second Bohr 
radius a2 for the 2p state. The average or expectation value of the radial distance r is 
given by: 

r;, = n Z [ l + f ( l - l ( ~ + l ) / n 2 ) ] ,  (14) 

so that fls= 1.5a,, FZs= 1.5% and F2p= 1 . 2 5 ~ ~  Therefore, the 2s orbital is more extended 
than the corresponding 2p orbital, as is evident from fig. 6. This is due to the fact that 
all solutions of the Schrodinger equation must be orthogonal to one another, Le., if &,,, 
and $,,,,m. are any two solutions and $* is the complex conjugate of @, then 

j $L+nlr’m* dr = 0. (15) 

If the states have dzperent angular-momentum character then the angular integration over 
the spherical harmonics [cf. (eq. lo)] guarantees orthogonality. But if the states have the 
same angular-momentum character then the orthogonality constraint implies that: 

Bohr radius a, 

Fig. 6. The radial function R,,, (dashed lines) and the probability density, P,,, (solid lines) as a function of r for 
the Is, 2s and 2p states of hydrogen. 
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j: Z& (I-) Rn,, ( I-),' dr = 0. 

j: R,, ( r )  R,, (r)r' dr = 0, 

(16) 

For the orbitals drawn in fig. 6, therefore, we must have 

(17) 

which can be verified by substituting eqs. (11) and (12) into this equation. This is the 
origin of the node at r = 2  au in R&), where the radial function changes sign. The 3s 
radial function must be orthogonal to the 2s and, therefore, has two nodes, the 4s has 
three nodes, etc. Just as the energetically lowest I s state has no nodes, so the 2p, 3d and 
4f states are nodeless since they correspond to the states of lowest energy for a given l 
(see fig. 3). 

The position of the outer node of the valence electron's radial function may be used 
as a measure of an I-dependent core size, since we have seen that the node arises from 
the constraint that the valence state be orthogonal to the more tightly bound core states. 
This relationship between node and core size has been demonstrated quantitatively for the 
case of the sp core of the 4d transition metals (PETTIFOR [ 19771 and 4 4.3) and has been 
discussed for other elements by BL~CH and SCHATTEMAN [1981]. A not unrelated 
measure of size has been adopted by ZUNGER [1980] who defined I-dependent radii R, 
by the condition (cf. ST. JOHN and BLOCH [1974]) that 

v;"(R,) = 0, (18) 

where v:"(r) is some effective angular-momentum dependent atomic potential (which is 
given by a first-principles screened pseudopotential, cf. 53.3). Figure 7 shows the 
resultant values of - RS-' and - R i l  for the sp bonded elements. We see a linear variation 
across a given period and a close similarity with the valence energy level behaviour 

Fig. 7. The negative of the inverse s and p pseudopotential radii (after ZUNGER [1980]). 
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illustrated in fig. 4. As expected, the s and p radii contract across a period as the nuclear 
charge Ze increases, and they expand down a column as additional full orbital shells are 
pulled into the core region. Figure 7 clearly demonstrates that the sizes of the second-row 
elements B, C, N and 0 are a lot smaller than those of the other elements in their 
respective groups, a fact which manifests itself in their different alloying behaviour (cf. 
fig. 38, below). 

2.2. Bond formation 

In this subsection we consider what happens to the atomic energy levels and wave 
functions as two atoms A and B are brought together from infinity to form the AB 
diatomic molecule. 

Suppose the A and B valence electrons are characterized by the free atomic energy 
levels EA and E, and wave functions @, and @,, respectively. Let us assume, following 
the experience of theoretical quantum chemists, that the rnoZecuZur wave function $M can 
be written as a linear combination of the atomic orbitals, 

(19) +AB = cA+. + cBk9 

where c, and c, are constant coefficients. Then it follows from the Schrodinger eq. (1) 
that 

( A  - EXCAICA + c,+B> = 0 (20) 

where fi is the Hamiltonian operator for the AB dimer, namely fi= - V2 + V,, where we 
have used the fact that A2/2m= 1 in atomic units. Multiplying by $, (or +,) and inte- 
grating over all space we find the well-known secular equation (taking +* = q!J as q!J is 
real) 

HAA - E  HAB - ESAB 

HBA - ES,, HBB - E 

where the Hamiltonian and overlap matrix elements are given by 

and 

~4 = j +a IC~  dr. (23) 

The Hamiltonian matrix elements can be simplified by assuming that the molecular 
potential VAB is given by the sum of the free atom potentials V, and V,. The diagonal 
elements HAA and HBB then take the free atom values EA and EB respectively, provided 
the energy shift due to the neighbouring potential fields can be neglected. The 
off-diagonal element Hm can be written 

HAB = J.t,9,vt,bB dr + ES (24) 
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where E =&(EA+EB) ,  V = * ( V A + V B ) ,  and S=S,. Substituting in equation (21) we obtain 
the secular equation 

= O  (25) 
- AE - (E - E )  

h - (E - E)s +AE - (E - E )  

where AE=(E, - EA) is the atomic energy level mismatch and h=h,hAV$Bdr is the 
hopping or bond integral between atoms A and B. For s orbitals h is negative since the 
average potential V is attractive. 

Equation (25) may be solved for the eigenvalues and eigenvectors. To first order in 
the overlap integral S 

E:, = E - h S f ( 1 + S 2 ) ' h  (26) 

c, i = k ' [1 T (6 + S)/(l+ 6 2 x x  ) ] 
7T 

with 8 =AE/2JhJ.  Therefore, as shown in Fig. 8 s valent diatomic molecules are 
characterized by bonding and anti-bonding states which are separated in energy by the 
amount w, such that 

(30) 

The formation of the bond is accompanied by a redistribution of the electronic 
charge. It follows from equation (27) that the electronic density which corresponds to 
occupying the bonding state with two valence electrons of opposite spin, namely 
PAB= 2 ( $ i B ) 2  may be written in the form 

wiB = 4hZ + (AE)*. 

PA, ('1 = (1 + ai)P, ('1 + (1 - ai)PB(r) + a c ~ b n d  (') 

PA(B)(') = [@A(B) ('11 

Pbond(') = 2$A(rl$B(') - S[PA(') + PB(')]' 

(31) 

where 
2 

(3 la) 

and 

(32) 

ai and a, are determined by the normalised energy level mismatch 6 through 
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cyi = S/(1+ S 2 ) K  

and 

g = 1/(1+ q. 
(33) 

(34) 

For the case of homonuclear diatomic molecules S =0, so that the change in the 
electronic charge distribution on forming the molecule is given solely by the bond charge 
contribution pbond in equation (31). This is illustrated in fig. 9 for the case of the 
hydrogen molecule where we see that, as expected, the electronic charge has moved from 
the outer regions of the molecule into the bond region between the atoms. We should 
note from equations (32) and (23) that the total charge associated with phnd over all 
space is identically zero. Equation (32) shows explicitly that the formation of the bond 
is a quantum interference effect, the charge piling up in the bond region because of the 
interference contribution +A +B. In practice, in order to satisfy the virial theorem, the 
formation of the bond is accompanied by some modification of the free-atom orbitals 
$A,B. which has been discussed by RUEDENBERG [1962] and SLATER [1963]. This leads 
to the energy levels EAB not being directly identifiable as thefree-atom energy levels, a 
point which will be discussed further in Q 5.2 on transition-metal bonding. 

For the case of a heteronuclear diatomic molecule 6 # 0, so that the electronic charge 
distribution in equation (31) contains the ionic contributions aipA and -qpB in addition to 

(a)  

Fig. 8. The bonding (lower lines) and antibonding (upper lines) states for (a) the homonuclear and (b) the 
heternnuclear diatomic molecule. 
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the covalent bond charge contribution aCpbond. cyi and a, are said to measure the degree 
of ionicity and covalency of the bond (see, for example, COULSON etal. [1962], PHILIPS 
[1970] and HARRISON [1980]). Note that a~+cy~=l .  

The term covalency will be used in this chapter to describe the bonding which arises 
from the quantum mixing of valence states on neighbouring sites into the final state wave 
function. It is not necessarily associated with pairs of electrons of opposite spin, as the 
lone electron in the hydrogen molecular ion Hi, for example, shows all the character- 
istics of the covalent homonuclear bond discussed above. 

A diatomic molecule has cylindrical symmetry about the internuclear axis, so that 
angular momentum is conserved in this direction. Quantum-mechanically this implies that 
the state of the molecule is characterized by the quantum number m, where mi? gives the 
component of the angular momentum along the molecular axis. However, unlike the free 
atom where the (21+ 1) different m values are degenerate, the degeneracy is lifted in the 
molecule. By analogy with the s, p, d, ... states of a free atom representing the orbital 
quantum numbers 1=0, 1, 2, ..., it is customary to refer to v, T,  6, ... states of a 
molecule as those corresponding to m=O, f l ,  32 ,  ... respectively. 

Figure 10 illustrates the different characteristics of the v, T and 6 bonds. We have 
seen from our previous discussion on the homonuclear molecule that a given atomic 
energy level will split into bonding and antibonding states separated by 2 Ih I ,  where h 
is the matrix element that couples states +A and t,hB together through the atomic potential 

INTERNUCLEAR AXIS 

Fig. 9. The electron density of the homonuclear molecule (upper panel) can be regarded as the sum of the non- 
interacting freeatom electron densities (lower panel) and the quantum-mchunicully induced bond density 
(middle panel). The dashed curve represents the first-order result, eq. (32), for the bond density. 
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n n  
- PP b 

Fig. 10. The formation of u, ?r and S bonds from s, p and d orbitals, see text. 

v. If are spherically symmetric s orbitals, then a sw bond is formed as shown 
schematically in fig. loa. If (cIkB are p orbitals whose probability clouds are drawn in fig. 
2, then the threefold degenerate free atom level (excluding spin degeneracy) splits into 
the singly degenerate ppa molecular state (m=O) and the doubly degenerate p p r  
molecular state (m=+l) shown in fig. lob. If +A,B are d orbitals, whose probability 
clouds are sketched in fig. 2, then the fivefold degenerate free atom level splits into the 
singly degenerate dda molecular state (m = 0) and the two doubly degenerate molecular 
states ddw (m=kl)  and dd8 (m=k2) as shown in fig. 1Oc. For the case of a hetero- 
nuclear molecule such as NbC where the carbon p orbitals overlap the niobium d orbitals, a 
pd bond will be formed from the pdu and pdm- states illustrated in fig. 1Od. It is clear from 
fig. 10 that the u bond is relatively strong since the angular lobes point along the molecular 
axis and can give rise fo a large overlap in the bonding region. On the other hand, the 
ppw and dds bonds will be relatively much weaker since their angular lobes extend in 
the plane perpendicular to the molecular axis. The importance of u, T and 6 bonding in 
determining the behaviour of the bulk band structure will be demonstrated in 0 4.1. 

The term covalency will be used in this chapter to describe the bonding which arises 
from the quantum mixing of valence states on neighbouring sites into the final-state wave 
function. It is not necessarily associated with pairs of electrons of opposite spin, as the 
lone electron in the hydrogen molecular ion H i ,  for example, shows all the character- 
istics of the covalent homonuclear bond discussed above. 

2.3. Band formation 

Figure 11 illustrates how the &-atom energy levels E, and Ep broaden into bands as the 
atoms are brought together from infinity to form the bulk. Just as the single atomic 
energy level splits into two energy levels on bringing two atoms together (cf. fig. Sa), so 
the single level on a free atom splits into N levels on bringing N atoms together, thereby 
conserving the total number of electronic states. These levels lie between the bottom of 
the band, which: represents the most bonding state, and the top of the band, which 
represents the most antibonding state. Since N = 10’’ for 1 cm3 of bulk material, these N 
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I 

VOLUME 

Fig. 11. Energy band formation. 

levels form a quasi-continuous band of states and it is customary to work with the 
density of states, n(E). where m= n(E) dE gives the number of states in the energy range 
from E to E + dE. The conservation of states requires that: 

n , ( E ) d E =  6 for a =  p, (35) I: {: ca J- 
where n,(E) is the density of states per atom associated with a given atomic s, p or d 
level. 

In metals at their equilibrium volume, the bands corresponding to different valence 
energy levels overlap and mix as shown on the left-hand side of fig. 11. The mixing or 
hybridization in simple metals is such as to produce nearly-free-electron-like behaviour 
of the energy bands and density of states, which is discussed in the following section. On 
the other hand, the density of states in transition metals is dominated by a well defined 
d band, which is accurately described within the tight-binding approximation by a linear 
combination of atomic d orbitals and is discussed in 5 4. 

3. Simple-metal bands 

3.1. The free-electron approximation 

It had been realized before the advent of quantum mechanics that some metallic 
properties such as electrical or thermal conductivity could be well understood by 
regarding the valence electrons as a non-interacting gas of particles which were free to 
travel throughout the metal without being affected by the parent ions. However, it 
remained for quantum mechanics to remove a striking failure of the classical model, 
namely its inability to explain the linear temperature dependence of the electronic heat 
capacity, since according to classical statistical mechanics a free particle has a constant 
heat capacity of 5, where kB is the Boltzmann constant. 

The SchriSdinger equation for a free-electron gas may be written in atomic units as 
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-(-$ + -$ + $) $(r) = E$(r) 

If the electrons are contained within a box of side L then a normalized solution of eq. 
(36) is the pZane wave: 

which can be seen by writing k w  as k s  + k,y + k j  and substituting eq. (37) into eq. (36). 

(38) 

Since the kinetic energy equals p2/2m where p is the electronic momentum, it follows 
from eq. (38) that 

This solution corresponds to an electron with kinetic energy E given by: 

E = k,’ + ky” + k,‘ = k Z .  

p z  = 2mE = 2mk2 = A2k2, 

p = Ak = h/A, 

(39) 

using h2/2m = 1.  Thus, we have recovered the de Broglie relation 

(40) 

because k=2rr/A where A is the wavelength of the plane wave. 
The wavelength, A, of the plane wave is constrained by boundary conditions at the 

surface of the box. For the case of the Bohr orbits in the hydrogen atom, de Broglie had 
argued that A must be such that integer multiples of the wavelength fit around the 
circumference of the orbit. Similarly, imposing periodic boundary conditions on the box, 
which in one dimension corresponds to joining both ends in a closed ring, we have that 

(41) n,A, = nyAy = n,A, = L, 

where nx, ny, n, are integers. Therefore, 

so that the allowed values of the wave vector k are discrete and fall on a fine mesh as 
illustrated in fig. 12. 

By Pauli’s exclusion principle each state corresponding to a given k can contain IWO electrons 
of opposite spin. Therefore, at absolute zero all the states k will be occupied within a sphere of 
radius kF, the so-called Fermi sphere, because these correspond to the states of lowest energy (cf. 
fig. 13a). The Fermi wave vector kF may be related to the total number of valence electrons, N, by 

4 & 2 ~ / ( 2 ~ ) ~  = N ,  (43) 

where V =  L3, since it follows from eq. (42) that unit volume of k-space contains V / ( ~ T ) ~  
states capable of holding two electrons each. Thus, 

k, = (37~’N/V)1‘~ (44) 
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Fig. 12. The fine mesh of allowed k values. At absolute zero only the states k within the Fermi sphere are occupied. 

and the corresponding Fermi energy, EF is given by 

EF = (37r*N/v)2/3. (45) 

The electron concentration, N N ,  for sodium, magnesium and aluminium at their equilibrium 
atomic volumes is such that the Fermi energy EF equals 3.2, 7.1 and 11.6 eV respectively. 

The free-electron densify ofstares n(E) may be obtained from eq. (43) by writing it 
in the form 

N ( E )  = (V/k2)E”2, (46) 

n(E) = ( V/2v2) E’’2, 

where N(E) is the total number of states of both spins available with energies less than 
E. Differentiating eq. (46) with respect to the energy gives the density of states: 

(47) 

which is illustrated in fig. 13b. We can now see why the experimental electronic heat 
capacity did not obey the classical result of #kB. By Pauli’s exclusion principle the 
electrons can be excited only into the unoccupied states above the Fermi energy EF. 

E, E 

Fig. 13. The free-electron energy dispersion E(k) (a) and density of states n(E) (b). 
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Therefore, only those electrons within about kBT of EF will have enough thermal energy 
to be excited acmss EF. Since kBT = 0.03 eV at room temperature, these electrons will 
comprise a very small fraction, f = kBT/EF, of the total number of electrons N. The 
classical heat capacity is accordingly reduced by this factorJ as is observed experimen- 
tally. Using the correct Fermi-Dirac statistics to describe the occupation of the electron 
states, we find (see, e.g., KITTEL [1971]): 

v' 
2 

C, = -k,(k,T/E,) (48) 

in agreement with the previous qualitative argument. 

3.2. Nearly-free-electron approximation 

The electrons in a real metal are affected by the crystalline lattice, since the potential 
which they feel is not uniform but varies periodically as 

v(r + R) = u(r) (49) 

where R is any lattice vector. (For simplicity we will be considering only those crystaI 
structures, such as fcc or bcc, in which there is only one atom per primitive lattice site, 
in contrast to hcp or the diamond structure, for example, which have a basis of two 
atoms, cf. KITTEL [1971].) Consider first an infinite one-dimensional periodic lattice of 
atoms with repeat distance a such that 

(50) v(x + nu) = 4.). 
Because all the atoms are equivalent, the probability of locating the electron about a site 
must be the same for all sites, so that: 

For n= 1 this implies that 

* (x  + a) = eik.+(x), 

where k is a number (in units of V u )  which specifies the phasefactor eika linking the 
wave functions on neighbouring sites. Repeating eq. (52) n times gives: 

+k(x +.a) = eih"+k(x), (53) 

which is the usual statement of Bloch 's theorem in one dimension. Thus the translational 
symmetry of the lattice leads to the eigenfunctions being characterized by the Bloch 
vector, k. However, k is only defined modulo ( 2 ~ / a ) ,  since k+m(2?r/a) results in the 
same phase factor in eq. (53) as k alone. It is, therefore, customary to label the wave 
function a,bk by restricting k to lie within the first Brillouin zone, defined by 

(54) - r / a  5 k I +r ia .  

References: p .  129. 
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We note that in one dimension IM is a direct lattice vector, whereas m(21r/a) is a 
reciprocaE lattice vector. Their product is an integer multiple of 21r. 

Extending these ideas to three dimensions, Bloch’s theorem, eq. (53) may be written 
as: 

qk(r + R) = eikaRqk(r), (55) 

where R is any direct lattice vector which may be expressed in terms of the fundamental 
translation vectors a,, a,, a3 as: 

R = ?a2 + n2a, + $a3, 

G = m,b, + m2b2 + %b3, 

b, = (27i-/T)U, X U ,  

(56) 

where n,, n,, nj are integers. The corresponding reciprocaE lattice vectors are defined by: 

(57) 

where m,, in2, m3 are integers and the fundamental basis vectors are:* 

(58) b2 = (21r/T)U3 X U I  , 

b3 = (27i-/T)U, X U ,  

(59) 

1 
with T = lalo(a, x a,) 1 being the volume of the primitive unit cell defined by a,, a, and 
u3. It is apparent from their definition (58) that 

ai e bj = 2d,, 

where 6, = 1 for i = j but zero otherwise. 
The phase factor in eq. (55) only defines the Bloch vector within a reciprocal lattice 

vector G since it follows from eqs. (56)-(59) that G.R is an integer multiple of 21r. Just 
as in the one-dimensional case, it is customary to label the wave function by restrict- 
ing k to lie within the Jirst Brillouin zone which is the closed volume about the origin in 
reciprocal space formed by bisecting near-neighbour reciprocal lattice vectors. For 
example, consider the simple cubic lattice with basis vectors a,, a,, a3 along the Cartesian 
axes x, y, z respectively. Because a,=a,=a,=a it follows from eq. (58) that the 
reciprocal space basis vectors b,, b,, b, also lie along x, y and z respectively, but with 
magnitude (2m/a). Thus, the reciprocal lattice is also simple cubic and it is shown in fig. 
14 in the x-y plane. It is clear that the bisectors of the first nearest-neighbour (100) 
reciprocal lattice vectors form a closed volume about the origin which is not cut by the 
second or any further nearest-neighbour bisectors. Hence, the Brillouin zone is a cube of 
volume ( 2 ~ / a ) ~ .  From eq. (42) it contains as many allowed k points as there are 
primitive unit cells in the crystal. Figure 15 illustrates the corresponding Brillouin zones 
for the body-centred cubic and face-centred cubic lattices (see, e.g., Krrm. [1971]). 

The solutions Ek of the Schrodinger equation for k lying within the Brillouin zone 

* Note the additional factor of 29r compared to the definition of reciprocal lattice vectors in the appendix of ch. 11. 



Ch. 2, $ 3  Electron theory of metals 69 

Zndzone 3rd zone 4th zone 

Fig. 14. The first four zones of the simple cubic lattice corresponding to k, = 0. The dotted circle represents the 
cross-section of a spherical Fermi surface. 

determine the band sfrucfure. Figure 16 shows the band structure of aluminium in the 
IlOO) and 1111) directions, after MORUZZI et al. [1978]. It is very similar to the free- 
electron band structure 

Ek =@+Cy (60) 

which results from folding the free-electron eigenvalues shown in fig. 13a into the first 
Brillouin zone. This “folding-in” is illustrated in fig. 14 for the case of the simple cubic 
lattice. For this two-dimensional cross-section we see that the four contributions to the 
second zone 2 may be translated through (100) reciprocal lattice vectors into the four 

fcc bcc 

Fig. 15. The fcc and bcc Brillouin zones. r labels the centre of the zone. The intersections of the 1100) and 
11 11) directions with the Brillouin-zone boundary are labelled X and L in the fcc case and H and P in the bcc 
case. 
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zones 2: which together completely fill the reduced Brillouin zone in the x-y plane. 
Similarly, the third and fourth zones shown in fig. 14 may each be translated through 
reciprocal lattice vectors to fill the first Brillouin zone. For the fcc lattice the two lowest 
eigenvalues given by eq. (60) in the I l00} direction are: 

E!) = k 2 ,  E?) = (k +g)2, (61) 

where k =  (k, 0,O) and g= (2?r/a)(Z, 0,O). These two eigenvalues are degenerate at the 
zone boundary X, where k=(2?r/a)( l ,  0, 0) because from eq. (61) they both take the 
value 4$/a2. For aluminium a=7.60 au and 4 d / a 2 = 9 . 3  eV, so that the two free- 
electron eigenvalues given by eq. (61) reflect the broad behaviour of the band structure 
shown along rX in fig. 16. 

However, in order to recover the energy gap at the zone boundary X, it is necessary to 
lift the free-electron degeneracy by perturbing the free-electron gas with the periodic potential 
of the crystalline lattice. Within the nearly-free-electron (NE) approximation this is 
achieved by writing the wave function Jlk as a linear combination of the plane-wave 
eigenfunctions corresponding to the two free-electron eigenvalues given by eq. (61); that is: 

(62) & = C , g p  + e’@, 

+f’ = v-“~ exp(ik r),  

where from eq. (37): 

(63) 

+f’ = v-”~ exp[i(k + g )  r].  

Substituting eq. (62) into the Schrtidinger equation (l), pre-multiplying by +:)* or$:)* 
and integrating over the volume of the crystal, V, yields the NFE secular equation: 

)[ ::) = 

k’ - E 4200) 

u(200) (k + g)’ - E 

4200) is the ( 2 ~ / a ) ( 2 ,  0, 0) Fourier component of the crystalline potential, where 

1 
V 

v(g) = -I v(r) eig”dr. (66) 

The energy, E in eq. (65) is measured with respect to the average potential ~(000). 
Non-trivial solutions exist if the secular determinant vanishes, i.e. if 

k’ - E ~(200) 
j = O .  

~(200) (k + g)2 - E 

This quadratic equation has solutions 

Ek = + [ k 2  + (k + g)2]  f +{[(k + 9)’ - k2]2 + [ 2 v ( 2 0 0 ) ~ ~ .  
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L r X 

Fig. 16. The band strufture of fcc aluminium (after MORUZZI etal. [1978]). 

Therefore, at the zone boundary X where k2 = (k +g)', the eigenvalues are given by 

(69) E, = 47.r2/u2 4 ~(200) 

and the eigenfunctions are given from eqs. (62) and (65) by: 

cos ( 2 4 4  
h = ( 2 W  { sin(2m/u) * 

Thus the presence of the periodic potential has opened up a gap in the free electron band 
structure with energy separation 

Because the energy gap at X in aluminium is about 1 eV (cf. fig. 16), the magnitude of 
the Fourier component of the potential within this simple IWE treatment is only 0.5 eV. 
This is small compared to the free-electron Fermi energy of more than 10 eV in 
aluminium and, therefore, the band structure Ek and the density of states n(E) are nearly- 
free-electron-like to a very good approximation. 

The NFE behaviour has been observed experimentally in studies of the Fermi surface, 
the surface of constant energy Ep in k-space, which separates filled states from empty 
states at T=O. For a free-electron gas the Fermi surface is spherical as illustrated in fig. 
12. However, in simple metals we have seen that the he-electron band structure is 
perturbed by the periodic lattice potential, and energy gaps open up across zone bound- 
aries. As illustrated in fig. 14 for the simple cubic lattice, a spherical free-electron Fermi 
surface (whose cross-section is represented by the circle of solid dots) will be folded into 
the first Brillouin zone by the relevant reciprocal lattice vectors. The states in the second 
zone 2, for example, are folded back into 2' in the reduced zone, thereby giving rise to 
the shaded occupied regions of k-space and the corresponding Fermi surface indicated in 
the lower panel of fig. 14. Similarly, the occupied states in the third and fourth zones are 
folded back into the reduced Brillouin zone as shown. Therefore, even though the 
crystalline potential may be very weak, it is sufficient to destroy the spherical free- 
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151 ZONE-FULL 2nd ZONE-POCKET OF HOLES 

3rd ZWIE-REGIONS OF EL'NS 4f i  ZWsE-POCKETS OF EL'NS 

Fig. 17. The free-electron Fermi surface of aluminium (after HARRISON [19591). 

electron Fermi surface and to create a new Fermi surface topology, as is illustrated in fig. 
14 by the appearance of the electron pockets in the third and fourth zones. A very simple 
procedure for constructing the Fermi surfaces of free-electron-like materials has been 
suggested by HARRISON [1959, 19601 and fig. 17 shows the resulting Fermi surface of 
fcc aluminium. A much more detailed treatment of Fermi surfaces may be found in 
HARRISON [1966], HEINE and WFAIRE E19701 and K I ~ L  [1971], where the interested 
reader is also referred for a discussion of transport properties and concepts such as holes 
and effective mass. 

3.3. Volume dependence 

Although the energy bands of simple metals appear to be describable by the NFE 
approximation as discussed in the previous subsection, there is a major difficulty. If the 
(200) Fourier component of the aluminium lattice potential is estimated from Jirst 
principles using eq. (66), then 

But the magnitude of this is ten times larger than the value we obtained byjtting to the 
first-principles band structure of MORUZZI et al. [1978], namely lv(200)I =0.5 eV. 
Moreover, by looking at the symmetry of the eigenfunctions at X, we see from fig. 16 
that the bottom of the band gap corresponds to X4, or p-like symmetry whereas the top 
of the band gap corresponds to X, or s-like symmetry (see, e.g., TINKHAM [1964]). It 
follows from fig. 2 and eq. (70) that the NFE states at the bottom and top of the band 
gap correspond to sin ( 2 7 4 ~ )  and cos (2TX/a), respectively. Therefore, in the state with 
lower energy the electron is never located in the planes containing the ion cores, which 
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correspond to x =: na/2 for the fcc lattice, since sin ( 2 w d a )  vanishes. Instead, the electron 
has maximum probability of being located midway between these atomic planes. This 
implies that the relevant Fourier component of the atomic potential is repulsive, thereby 
driving the electrons away from the ion cores, i.e. 

~“(200) = + O S  eV. (73) 

The origin of the discrepancy between eqs. (72) and (73) is easily found once it is 
remembered that the NFE bands in aluminium are formed from the valence 3s and 3p 
electrons. These states must be orthogonal to the s and p core functions as outlined in 
0 2.1 and they, therefore, contain nodes in the core region as illustrated for the case of 
the 2s wavefunction in fig. 6. In order to reproduce these very-short-wavelength 
oscillations, plane waves of very high momentum must be included in the plane-wave 
expansion of I)k, so that a linear combination of only the two lowest energy plane waves 
in eq. (62) is an extremely bad approximation. In 1940, HERRING circumvented this 
problem by starting at the outset with a basis of plane waves that had already been 
orthogonalized to the core states, the so-called orthogonalized plane-wave (OPW) basis. 
The OPW method led to a secular determinant for the eigenvalues that was identical to 
the hiFE determinant, except that in addition to the Fourier component of the crystal 
potential v(G) there is also a repulsive contribution coming from the core-orthogonality 
constraint. This tended to cancel the attractive coulomb potential term in the core region, 
thereby resulting in much weaker net Fourier components and hence nearly-free-electron- 
like behaviour of the band structure Ek for the simple metals. 

This led to the concept of the pseudopotential in which the true potential u(r) in the 
Schrodinger equation (1) is replaced by a much weaker potential ups@) which is chosen 
to preserve the original eigenvalues Ek so that 

(see, e.g., HARRISON [1966] and HEINE and WEAIRE [1970]). The pseudo-eigenfunctions, 
&, however, differ from the true eigenfunctions I)k because in general they do not contain 
the nodes in the core region as these have been pseudized-away by the inclusion of the 
repulsive core component in up. A plane-wave expansion of 4k therefore, leads to rapidly 
convergent eigenvalues .& in eq. (74). Thus, the NFE approximation will provide a good 
description of the band structure of simple metals provided the Fourier components of the 
pseudopotential rather than the true potential are taken in the NFE secular equation (67). 

Pseudopotentials are not unique, and certain criteria have been given for their choice 
(see, e.g., BACH~LET et al. [ 19821 and VANDERFIILT [ 19901). However, in this chapter we 
shall describe only the Ashcroft empty-core pseudopotential because of its simplicity. In 
1966, ASHCROFT assumed that the cancellation between the repulsive core-orthogonality 
contribution and the attractive coulomb contribution is exact within some ion core radius 
R,, so that: 

r c R, 
-2Z/r r > R, 

v?(r) = { O for (75) 
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Fig. 18. The Ashcroft emptycore pseudopotential. 

where the ionic potential falls off coulombically outside the core (cf. eZ=2 in atomic 
units). The Ashcroft empty-core pseudopotential is shown in fig. 18. The resulting ionic 
lattice has Fourier components given by eq. (66), namely: 

v: (4) = - (87rZ/fkq2) COS qR,, 

where SZ is the volume per atom. In the absence of the core R,=O and the Fourier 
components are negative as expected. However, in the presence of the core the Fourier 
components oscillate in sign and may, therefore, take positive values. For the case of 
aluminium the Ashcroft empty-core radius is about 1.2 au (cf. table 16-1 of HARRISON 
[ 19801) and uE(200) will, therefore, be positive. The corresponding Fourier components 
u&) are obtained from eq. (76) by allowing the free-electron gas to screen the bare 
ionic lattice. The resulting Fourier components of the aluminium potential are illustrated 
in fig. 19 for the more sophisticated HEINE and ABARENKOV [1964] pseudopotential. We 
see that the values of ups( 111) and ~ ~ ( 2 0 0 )  are in good agreement with the values, 0.17 
and 0.53 eV respectively, which are obtained from fitting the first-principles band structure 
within the NFE approximation (cf. fig. 16, eq. (71) and p. 52 of MORUZZI etal. [1978]). 

Figure 20 shows the densities of states, n(E> of the sp-bonded simple metals, which 
have been computed from first principles by MORUZZI et al. [1978]. We see that Na, Mg 

Fig. 19. The HEINEAND ABARENKOV [I9641 aluminium pseudopotential u,,(q). The two points give the values 
of u,(lll) and u,(200) deduced from fig. 16 using eq. (71). 
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Fig. 20. The density of states, nQ. of sp-bonded metals (after MORUZZI et al. [1978]). 

and A1 across a period and Al, Ga and In down a group are good NJ3 metals, because 
their densities of states are only very small perturbations of the free-electron density of 
states shown in fig. 13b. However, we see that Li and Be display very strong deviations 
from free electron behaviour. This is a direct consequence of these elements having no 
p core electrons, so that there is no repulsive core-orthogonality component to cancel the 
attractive coulomb potential which the valence 2p electrons feel. This leads to sizeable 
Fourier components of the potential and hence very large band gaps. For example, in fcc 
Be, Eg!p =5.6 e V  compared to the gap of only 0.34 eV in Al, where L is the point 
( 2 ~ / a ) ( i , i , i )  in fig. 15. In fact, the band gaps in different directions at the Brillouin zone 
boundary (cf. fig. 16) are nearly large enough for a gap to open up in the Be density of 
states, thereby leading to semiconducting behaviour. We note that the effective potential 
which the valence electrons feel in Li or Be depends on whether they have s- or p-type 
character, because there are 1s core states but no p core states. Such an 1-dependent 
potential is said to be non-local (cf. HARRISON [1966] and HEINE and WEAIRE [1970]), 
whereas the Ashcroft empty-core pseudopotential of fig. IS is local. 

The heavier alkalis K and Rb and alkaline earths Ca and Sr have their occupied 
energy levels affected by the presence of the respective 3d or 46 band which lies just 
above the Fermi energy (cf. the relative positions of the s and d free-atom energy levels 
in fig. 5). This leads to a more than free-electron admixture of 1 = 2 component into the 
occupied energy states, which requires the use of non-local pseudopotential theory for 
accurate agreement with experimental properties (see e.g., TAYLOR and MACDONALD 
[1980] and MOR.IARTY [1982]). It is clear from fig. 20 that Sr is not a simple NFE metal 
since the perturbation is very strong and the hybridized bottom of the d band has moved 
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below the Fermi energy. Just as in Be, a gap has nearly opened up at EF, and theoretical- 
ly it requires only 0.3 Gpa of pressure to turn Sr into a semiconductor, which is in 
reasonable agreement with high-pressure resistivity data (JAN and SKRIVER [1981]). The 
group-IIB elements Zn and Cd, on the other hand, have their valence states strongly 
distorted by the presence of the$lled d band. In fig. 5 we see that the 5s-4d energy 
separation in Cd is larger than the 4s 3d separation in Zn, which results in the Cd 4d 
band lying about 1 eV below the bottom of the valence 5sp band (p. 152 of MORUZZI 
et al. [1978]). Figure 20, therefore, demonstrates that not all simple metals display good 
NFE behaviour and particular care needs to be taken with Li, Be and the group-II 
elements on either side of the transition metal series. 

The presence of the ion core in simple metals determines the volume dependence of 
the energy bands. Wigner and Seitz had calculated the behaviour of the bottom of the 
NFE band in sodium in their classic paper of 1933. They argued that since the bottom of 
the band corresponded to the most bonding state, it satisfied the bonding boundary 
condition implicit in eq. (27), namely that the gradient of the wave function vanishes 
across the boundary of the Wgner-Seitz cell. This cell is formed in real space about a 
given atom by bisecting the near-neighbour position vectors in the same way that the 
Brillouin zone is formed in reciprocal space. The Wigner-Seitz cell of the bcc lattice is 
the fcc Brillouin zone and vice versa (cf. KI~TEL [1971]). Since there are 12 nearest 
neighbours in the fcc lattice and 14 first and second nearest neighbours in the bcc lattice, 
it is a very good approximation to replace the Wigner-Seitz cell by a Wigner-Seitz 
sphere of the same volume (cf. fig. 15). Imposing the bonding boundary condition across 
the Wigner Seitz sphere of radius S, where 

n = 471s3, (77) 
the energy of the bottom of the band rl is fixed by 

[dR,(r9 E)/drlr=s,E=r, = 0, 

where Rs(c E) is the 1 = 0 solution of the radial Schrodinger equation within the Wigner- 
Seitz sphere. The bonding boundary condition is determined by the 1=0 radial function 
because the bottom of the NF% band at rl is a pure s state (cf. fig. 16). 

Figure 21 shows the resulting behaviour of the bottom of the band rl, in sodium as 
a function of S after WIGNER and SEITZ [1933]. We see that as the free atoms are 
brought together from infinity, the bonding state becomes more and more bonding until 
about 3 au when r,. turns upwards and rapidly loses its binding energy. This behaviour 
is well described ut metallic densities by the Frohlich-Bardeen expression, 

ry = -(3z/s)[1- (RJS,’] (79) 

since the single valence electron of sodium is assumed to feel only the potential of the 
ion at the Wigner-Seitz sphere centre so that over the boundary 

v(s) = -2z/s, (80) 
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Fig. 21. The total energy, V, as a function of Wigner-Sei@ radius, S, for sodium (after WIG= and SEITZ 
[1933]). The bottom of the conduction band, I?,, is given by the lower curve, to which is added the average 
kinetic energy per electron (the shaded region). 

where Z =  1 for the monovalent alkali metals (see, e.g., 9 3.2 of CALLAWAY [1964]). R, 
may be identified as the radius of an Ashcroft empty-core pseudopotential, because the 
potential energy of one electron distributed uniformly throughout the WignerSeitz 
sphere with an Ashcroft ionic potential at its centre is given by eq. (79). It follows from 
eq. (79) that the maximum binding energy of this state rl, occurs for 

S, = *RC. (81) 

Since for sodium R, = 1.7 au (ASHCROFT and LANGRETH [1967] and HARRISON [1980]), 
eq. (81) predicts that rl, has a minimum at about 2.9 au. This is in good agreement with 
the curve in fig. 21, which was obtained by solving the radial Schrijdinger equation 
subject to the boundary condition eq. (78). 

WIGNER ancl Smz [1933] assumed that the valence electrons of sodium have free- 
electron-like kinetic energy and density of states, which from fig. 20 is clearly a good 
approximation. It follows from eqs. (45) and (77) that the Fermi energy EF may be 
written as: 

4 = rF + (9.rr/4)"/s2. (82) 

In 9 5 we follow up our understanding of the behaviour of the energy bands by discuss- 
ing the total energy of simple metals and the different factors influencing bulk properties 
such as equilibrium atomic volume and bulk modulus. 

4. Transition-metal bands 

4.1. Tight-binding approximation 

Transition metals are characterized by a partially filled d band, which is well 
described within the tight-binding (TB) approximation by a linear combination of atomic 
d orbitals, We shall illustrate the TB method (see, e.g., CALLAWAY [1964], PETTIFOR 
E19921 and SUTTON [1993]) by considering first the simpler case of a lattice of atoms 
with overlapping s-state atomic wave functions #, and corresponding free atomic energy 
levels E,. Generalizing eq. (19) for the diatomic molecule to a periodic lattice of N 
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atoms, we can write the crystal wave function t,bk as a linear combination of the atomic 
orbitals: 

where the phase factor automatically guarantees that satisfies Bloch's theorem, eq. 
(55). Assuming that the crystal potential is the sum of the atomic potentials v(r - R) and 
following the method and approximations outlined through eqs. (19)-(30), the eigenvalue 
Ek may be written as: 

Ek = E, + Ce"" [#:(r)~(r)#~(r - R) dr, 
R#O 

where the non-orthogonality and three-centre contributions have been neglected because 
they do not contribute to first order. Since the atomic s orbitals are spherically symme- 
tric, the SM hopping matrix elements in eq. (84) do not depend on the direction of R but 
only on the magnitude R (see fig. lo), so that 

Ek = E, + xeik'RssuR. 
R#O 

The TB band structure Ek for a simple cubic lattice with s orbitals may now be 
quickly found. Assuming that the hopping matrix elements couple only to the sixJirst 
nearest-neighbour atoms with position vectors R equal to (h, 0, 0) (0, & a, 0)  and (0, 0, 
+a) eq. (85) gives 

Ek = E, + ~ S S ~ , ( C O S  k.p + COS kyu + COS kp), (86) 

where k = (k, ,$, k,) Thus the eigenvalues vary sinusoidally across the Brillouin zone. The 
bottom, E and top, E+ of the s band correspond to the Bloch states at the centre of the 
Brillouin zone (0, 0, 0) and at the zone boundary ( v / u ) ( l ,  1, 1) respectively. It follows 
from eq. (86) that 

(87) 

because SM, is negative as can be deduced from fig. 10 and eq. (84). Comparing F with 
eq. (26) and fig. 8a for the diatomic molecule, we see that the most bonding state in the 
simple cubic lattice corresponds to maximum bonding with all six nearest neighbours 
simultaneously, which from fig. 10 is only possible for the spherically symmetric s 
orbital case. 

The structure of the TB p band may be obtained by writing I,%k as a linear combination 
of the three p Bloch sums corresponding to the atomic p,, py, and p, orbitals, where x, y 
and z may be chosen along the crystal axes for a cubic lattice. That is, 

E* = E, 1 G/ssu,~ 

#k(r) = N - ~  C caxeik*R+a(r - R), 
a=x,y.z R 

which leads to the 3 x 3 TB secular determinant for the p band, namely 
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where 

It is clear from fig. 10 that the hopping matrix elements in eq. (90) do depend on the 
direction of R btecause the px. p,., and p, orbitals are angular dependent. SLATER and 
KOSTER [1954] showed that they can be written directly in terms of the two fundamental 
hopping integrals ppo, and p p R  and the direction cosines (1, m, n) of R. 

For a simple cubic lattice with only first-nearest-neighbour hopping the matrix 
elements Taa. may be evaluated to give 

T, = 2ppv, cos k,a + 2pp~, (cos  k p  + cos k p ) ,  

with T, and T, obtained from T, by cyclic permutation. The off-diagonal matrix 
elements vanish for the simple cubic lattice. Therefore, at the centre of the Brillouin 
zone, r, the eigenvalues are triply degenerate (if spin is neglected) and given from eqs. 
(89) and (91) by 

This degeneracy is partially lifted along the 1100) symmetry direction, because from eq. 
(91) the band structure consists of the singly degenerate level 

E:) = E, + 4pp.rr, + 2ppv, cos k,a (93) 

and the doubly degenerate level 

E:) = E, + 2(ppv, + ppr,)  + 2ppn, cos kxa, (94) 

where the former results from the p, orbitals and the latter from the p,. and p, orbitals. 
The degeneracy is totally lifted along a general k direction as from eqs. (89) and (91) 
there will be three distinct non-degenerate energy levels. 

Finally, the structure of the TB d band may be obtained by writing +kk as a linear 
combination of thejve d Bloch sums corresponding to the five atomic orbitals illustrated 
in fig. 2. This results in a 5 x 5 TB secular determinant from which the d band structure 
may be computed (SLATER and KOSTER [1954]). Starting from first-principles band 
theory, ANDERSEN [ 19731 has shown that within the atomic sphere approximation (ASA) 
canonical d bands may be derived which depend neither on the lattice constant nor on 
the particular transition metal, but only on the crystal structure. This approximation leads 
to hopping integrals of the form 

ddu, =-6 

dd8, =-1 
(95) 

References: p .  129. 
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where W is the width of the d band, which is obtained by imposing the bonding and 
antibonding boundary conditions over the Wigner-Seitz sphere of radius S .  It follows 
from eq. (95) that the hopping integrals scale uniformly with the band width W and do 
not depend on the lattice constant as it is the ratio S/R that enters. They fall off quickly 
with distance as the inverse fifth power. 

Figure 22 shows the resulting d band structure for the fcc and bcc lattices along the 
1111) and 1100) directions in the Brillouin zone (ANDERSEN E19731). We see that at the 
centre of the Brillouin zone, r, there are two energy levels, one of which is triply 
degenerate, the other doubly degenerate. The former comprises the xy, yz and xz, Tzg 
orbitals which from fig. 2 are equivalent to one another in a cubic environment. The 
latter comprises the 2 - y', 3 2  - ?Eg orbitals which by pointing along the cubic axes 
are not equivalent to the TQ, orbitals. The degeneracy is partially lifted along the 1111) 
and /loo) symmetry directions as indicated in fig. 22, because eigenfunctions which are 
equivalent at k = 0 may become non-equivalent for k # 0 due to the translational phase 
factor exp (ik0R) (see fig. 8.8 of TMKHAM [1964]). 

The band structure of NiO (MATTHEIS [1972]) is shown in fig. 23 because it illustrates 
s, p and d band behaviour. The three bands arise from the oxygen 2s, 2p and the nickel 3d 
valence levels, respectively, the ordering being determined by the relative positions of their 
atomic energy levels in figs. 4 and 5. The Brillouin zone is face-centred cubic since the NaCl 
crystal structure of NiO consists of two interpenetrating fcc lattices, one containing the 
sodium atoms, the other the chlorine atoms. In the 1100) direction along rX the s and p band 
structure is not too dissimilar from that given for the simpZe cubic lattice by eqs. (sa), (93) 
and (94). The d band structure along r X  in NiO is also similar to that of the fcc canonical d 
band in fig. 22, except that one level, which joins the upper state at I' to the bottom of the 
canonical d band at X, has been pushed up and runs across the top of the d band in NiO. This 
is the result of mixing or hybridization between the s, p and d blocks in the TB secular 
determinant (SLATER and K o m  [1954]), whose strength is determined for example by the 
non-vanishing pda and pdm hopping matrix elements shown in fig. 10. This mixing can 
only occur between Bloch states with the same symmetry (TINKHAM [1964]). At the zone 
boundary X there is only one d band state which has the same symmetry XI as the s 
band state. (There are no d band states with the same symmetry as the p band states at 
X.) The influence of the hybridization on the band structure is enhanced by orthogonality 
constraints which can add a further repulsive contribution to the d states because they 
must be orthogonal ta the valence s and p levels lying beneath them in energy. 

f c c  bcc 

Fig. 22. The fcc and bcc d band structure (after ANDERSEN [1973]). 
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d band 

p band 

s band 

Fig. 23. The band structure of NiO (after MAT~~IEISS [1972]). 

The bands in fig. 23 illustrate an apparent failure of one-electron theory. NiO is an 
insulator. However, adding the ten nickel and six oxygen valence electrons to the bands 
shown results in the d band containing only eight of its possible ten electrons [cf. eq. 
(35)]. Thus, the band structure presented in fig. 23 predicts that NiO is a metal. The 
origin of this dramatic failure of band theory was investigated by MOTT [1949], who 
considered what happens to a lattice of hydrogen atoms as the lattice constant is 
decreased from some very large value. Initially each atom has a single Is valence 
electron associated with it as in the free atom state. The system will, therefore, be 
insulating, because in order for an electron to hop through the lattice it requires an 
energy given by the difference between the ionization potential of 13.6 eV (correspon- 
ding to the atomic 1s level) and the electron affinity of 0.75 eV. This energy difference 
of about 13 eV is a measure of the coulomb repulsion U between two 1s antiparallel spin 
electrons sitting on the same atomic site. However, as the lattice constant decreases the 
atomic 1s level broadens into a band of states of width W so that the insulating gap will 
decrease like U - W. Therefore, for some sufficiently small lattice spacing W will be 
large enough for the system to become metallic and the hydrogen lattice undergoes a 
Mott metal-insulator transition. 

The very different conducting behaviour of the 3d valence electrons in metallic nickel 
and insulating nickel oxide can now be qualitatively understood. The width of the d band 
in NiO is about 2 eV (MATTHEISS [1972]), whereas in pure Ni it is about 5 eV 
(MORUZZI et al. [1978]) since the Ni-Ni internuclear separation is smaller than in the 
oxide. Because the value of the screened intra-atomic coulomb integral U in 3d transition 
metals is about 4 eV, U/ W is greater than unity for NiO but less than unity for Ni. Thus, 
we expect the former to be insulating and the latter metallic as observed experimentally. 

The breakdown of conventional band theory at large lattice spacings can best be 
illustrated by considering the hydrogen molecule (cf. fig. 8a). In the ground state the two 
valence electrons 1 and 2 occupy the same bonding molecular orbital +iB with opposite 
spin, so that the total molecular wave function may be written within the one electron 
approximation as 

References: p .  129. 
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+(VI = + i B  (1) +A (2)- (96) 

Substituting from eq. (27), multiplying through and neglecting the normalization factor 
[2(1 + a]-' we have 

+(u) = (+A (1) +B (2) + #B (I)+* (2) + +A U)+A (2) + +B (I)+, (2)). (97) 

The first two contributions correspond to the two possible neutral atom states with a 
single electron associated with each atom, whereas the latter correspond to the two ionic 
states A-B' and A'B- respectively. Since the hydrogen molecule dissociates into two 
neutral atoms, we see that $( 1, 2) gives the wrong behaviour at large separations (see, 
e.g., SLATER [1963]). 

In practice, the Mott transition to the insulating phase is accompanied by the 
appearance of local magnetic moments (BRANDOW [ 19771) so that the band model must 
be generalized to allow for antiferromagnetic solutions of the Schrodinger equation 
( S u m  [1951a]; cf. 0 8). Within local spin density functional (LSDF) theory (cf. Q 1) 
this leads to a good curve of total energy versus internuclear separation for the hydrogen 
molecule because the theory now goes over to the neutral free-atom limit (GUNNARSSON 
and LUNDQUIST [ 19761). However, although the antiferromagnetic state leads to a band 
gap opening up at the Fermi level in NiO (SLATER [1951a]), a proper understanding of 
COO and the temperature-dependent properties of these insulators can only be obtained 
by using a more sophisticated non-local treatment of exchange and correlation 
(BRANDOW [1977], JONES and GUNNARSSON [1989]). Fortunately, the bulk properties of 
simple and transition metals considered in this chapter can be well understood within the 
local approximation, even though non-locality can play a role in the finer details of the 
band structure (see, e.g., Ni; COOKE et al. [1980]). 

4.2. Hybrid NFETB bands 

Transition metals are characterized by a fairly tightly-bound d band that overlaps and 
hybridizes with a broader nearly-free-electron sp band as illustrated in fig. 24. This 
difference in behaviour between the valence sp and d electrons arises from the d shell 
lying inside the outer valence s shell, thereby leading to small overlap between the d 
orbitals in the bulk. For example, from eq. (14) the average radial distance of the 
hydrogenic 3d and 4s wave functions are in the ratio 0.44 :l. Thus, we expect the band 
structure of transition metals to be represented accurately by a hybrid NFE-TB secular 
equation of the form (HODGES et al. [1966] and MUELLER [1967}): 

C-EI  H 

/H' D - E j - 0  

where C and D are sp-NFE and d-TB matrices respectively [cf. eqs. (67) and (89)l. H is 
the hybridization matrix which couples and mixes together the sp and d Bloch states with 
the same symmetry, and I is the unit matrix. 

A secular equation of this H-NFE-TB form may be derived (HEINE [1967], HUBBARD 
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Fig. 24. A schematic representation of transition metal sp (dashed curve) and d (solid curve) densities of states 
when sp-d hybridization is neglected. 

[1967] and JACOBS [1968]) by an exact transformation (PETTIPOR [1972a]) of the first- 
principle band structure equations of KORRINGA [1946], KOHN and ROSTOKER [1954] 
(KKR). They have solved the Schrtjdinger equation (1) by regarding the lattice as a 
periodic array of scattering sites which individually scatter the electrons with a change 
in phase qr. Transition-metal sp valence electrons are found to be scattered very little by 
the lattice so that they exhibit NFE behaviour with qo and q, close to zero. Transition- 
metal d electrons, on the other hand, are strongly scattered, the 1 = 2 phase shift showing 
resonant behaviour given by 

(99) 

where Ed and r determine the position and width of the resonance. This allows the KKR 
equations to be transformed directly into the H-NFE-TB form, in which the two centre 
TB hopping integrals and hybridization matrix elements are determined explicitly by the 
two resonant parameters Ed and r. The non-orthogonality contributions to the secular 
equation (MUELLER [ 19671) are obtained by linearizing the implicit energy-dependent 
matrices C, D and H in a Taylor expansion about E,. 

The nonmagnetic band structure of fcc and bcc iron is shown in fig. 25, being 
computed from the H-NFE-TB secular equation with resonant parameters Ed = 0.540 Ry 
and r =0.088 Ry (PETTIFOR [197Oa]). The NFE pseudopotential matrix elements were 
chosen by fitting the first-principle values of WOOD [1962] at the pure p states N,. 
~ ( ~ ~ ~ = 0 . 0 4 0  Ry), L,’ (unI=0.039 Ry) and X,. (u2,=0.034 Ry). Comparing the band 
structure of iron in the 1100) and Ill 1) directions with the canonical d bands in fig. 22, 
we see there is only the am d level with symmetry A, and A, respectively which 
hybridizes with the lowest NFE band, the remaining four d levels being unperturbed. 
Because of the canonical nature of the pure TB d bands (ANDERSEN [1973]), the band 
structm~ of all fcc and bcc transition metals will be very similar to that shown in fig. 25 
for iron. 

The transition-metal density of states, n Q ,  is not uniform throughout the band as 
shown schematically in fig. 24 but displays considerable struchlre that is characteristic of 
the given crystal lattice. This is seen in fig. 26 for the bcc, fcc and hcp densities of 
states, which were calculated by the H-NFE-TB secular equation neglecting non- 
orthogonality contributions with Ed = 0.5 Ry and r = 0.06 Ry (PETTIFOR [1970b]). These 
early histogram densities of states are displayed rather than more accurate recent 

tan 7)2 ( E )  = 4 r/( Ed - E), 
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Wg. 25. The H-NFE-TB band structure of fcc and bcc iron in the nonmagnetic state. The solid circles represent 
the first-principle energy levels of WmD [1962]. (From PETTIFOR [1970a].) 

calculations (see, e.g., RAm and CALLAWAY [1973], JEPSEN et al. [1975], MORUZZI et 
al. [1978], PAXTON et ul. [1990]) because they allow a direct comparison between the 
bcc, fcc and hcp densities of states for the sume model element. This will be important 
when discussing the relative stability of the three different crystal structures in 5 6.1 and 
the stability of the ferromagnetic state in the a, y and 8 phases of iron in 5 8. 

The structure in the calculated densities of states in fig. 26 is reflected in the 
behaviour of the experimental electronic heat constant, y, across the nonmagnetic 4d and 
5d transition metal series. It follows from eqs. (43, (47) and (48) that the electronic heat 
capacity may be written as 

C = yT,  (100) 

where 
y = 5 T?k&(E,). 

Therefore, ignoring any renormalization effects such as electron-phonon mass enhance- 
ment, the linear dependence of the heat capacity gives a direct experimental measure of 
the density of states at the Fermi level. Figure 27 shows that the H-NFETB densities 
of states in fig. 26 reflect the experimental variation in y across the series. 

4.3. Volume dependence 

Figure 28 illustrates the volume dependence of the energy bands of the 4d transition 
metals Y, Tc and Ag, which were calculated by PETTIFOR [1977] within the atomic- 
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Fig. 26. The density of states for the three structures (a) bcc, (b) fcc, and (c) hcp for a model transition metal. 
The dotted curves represent the integrated density of states. (From PETT~FOR [197Ob].) 

sphere approxinnation of ANDERSEN [1973, 19751. Similar bands have been obtained by 
GELATT et al. [ 19771 for the 3d metals Ti and Cu with the renormalized-atom approxima- 
tion of WATSON et aZ. [1970]. We see from fig. 28 that the bottom of the NFE sp band 
rl, which was evaluated within LDF theory, is well fitted by the Frohlich-Bardeen 
expression (79). The values of R, obtained are found to scale within 1% with the position 
of the outer node of the 5 s  free-atom radial wave function. This demonstrates quantitat- 
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Fig. 27. A comparison of the theoretical and experimental 4d and 5d heat capacities. The theoretical values 
were obtained directly from eq. (101) and fig. 26, neglecting any changes in the density of states due to band 
width changes or mass renonnalization. 

ively that it is the core-orthogonality constraint which is responsible for the rapid turn up 
in the energy of rl and that the outer node of the valence s electron is a good measure 
of the s core size. The free-atom d level broadens into a band of states of width W as the 
atoms come together from infinity to form the bulk (see figs. 24 and 28). BINE [1967] 
has shown that the Wigner-Seitz boundary conditions imply that W should vary approxi- 
mately as S-*, where S is the Wigner-Seitz radius. Assuming a power-law dependence 
of W on S, we can write 

w = K(So/S)”, (102) 

where Wo and So are the values of the d-band width and Wigner-Seitz radius respectively 
at the equilibrium lattice spacing of the transition metal. Table 1 gives the values of So, 
Wo and n for the 4d transition metals (PETTIFOR [1977]). Because of the more extended 
nature of the d wave functions at the beginning of the transition metal series, n takes a 
value closer to four than to five which we will see in 9 5.2 is reflected in their bulk 
properties. Values of the band width W for the 3d, 4d and 5d series may be obtained 
from the table in ANDERSEN and JEPSEN [1977] and are given explicitly in table 20-4 of 
HARRISON [1980]. The 3d and 5d band widths are approximately 30% smaller and 20% 
larger respectively than the corresponding 4d widths. 

The centre of gravity of the TBd band, Ed, in fig. 28 rises exponentially (PETTIFOR 
[ 19771) as the volume decreases because the potential within the Wigner-Seitz sphere 
renormalizes due to the increase in the electronic charge density (GELATT et al. [1977]). 
This renormalization in position of the free atomic d level plays an important role in 
transition-metal energetics and will be discussed further in 5 5.2. 

The different volume dependences of the NFE-sp and TB-d bands displayed in fig. 
28 will lead to changes in the relative occupancy of the two bands with volume. This is 
illustrated in fig. 4 of PETTIFOR [1977] where Y and Zr show a rapid increase in d-band 
occupancy under compression as the d band widens and the bottom of the sp band moves 
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Table 1 
Equilibrium values of Wiper-Seitz radius So and d band parameters W, n and IUS, for 4d series (from 

PETTIFOR [1977]). 

Quantity Element 

Y zr Nb Mo Tc Ru Rh Pd Ag 

So (au) 3.76 3.35 3.07 2.93 2.84 2.79 2.81 2.87 3.02 
W, (eV) 6.3 7.8 9.3 9.5 9.1 8.5 7.6 6.0 3.9 
n 3.9 4.0 4.1 4.3 4.5 4.6 4.8 5.1 5.6 
d S 0  1.03 1.19 1.33 1.47 1.58 1.65 1.71 1.77 1.84 

up (cf. fig. 28a). Eventually r, moves up through the Fermi level EF at which point all 
the NFE-sp states have been emptied into the TB-d states and Nd = N. On the other hand, 
the transition metals with more-than-half-filled d bands display a marked degree of 
constancy in N, for volumes about their equilibrium values, because the sp core effects 
are largely cormter-balanced by the rapid rise in Ed due to the increasing coulomb 
repulsion between the d electrons (cf. fig. 28c). However, under very high pressures the 
bottom of the sp band does eventually move up through the Fermi level, and transition 
metals with ten valence electrons (Ni, Pd and Pt) may become semiconducting 
(MCMAHAN and ALBERS [1982]). We will return to this dependency of the d-band 
occupancy on volume and core size when discussing crystal structure stability in 5 6. 

5. Bulk properties 

5.1. Simple metals 
Within the free-electron approximation the total energy per electron may be written 

(103) 

(see, e.g., HEINE and WEAIRE [1970]) as: 

Ueg = 2.21/$ - 0.916/~ - (0.115 - 0.0313 In q), 

-05:  I 

Fig. 28. The energy bands as a function of WignerSeitz radius S for (a) Y, @) Tc, and (c) Ag. The observed 
equilibrium Wigner-Seitz radii are marked eq. The dotted curve gives the Frohlich-Bardeen fit (eq. 79) to the 
bottom of the conduction band r,. Ed, E, and &, mark the centre of gravity, and top and bottom of the d band, 
respectively. (After PEITlFOR [1977].) 
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where r, is the radius of the sphere which contains one electron so that 

(104) 

for a metal with valence Z and Wigner-Seitz radius S. The first term in eq. (103) is the 
average kinetic energy of a free electron gas, namely ;EF, where EF is given by eq. (45). 
The second term is the exchange energy which is attractive, because parallel-spin 
electrons are kept apart by Pauli’s exclusion principle, thereby leading to weaker mutual 
coulomb repulsion. The third term is the correZation energy which gives the additional 
lowering in energy due to the dynamical correlations between the electrons. It follows 
from eq. (103) that the free electron gas is in equilibrium for r,=4.2 au with a binding 
energy per electron of 0.16 Ry or 2.2 eV. 

If the electron gas is perturbed to first order by the presence of the ionic lattice 
(HEN! and WEAIRE [1970], CIRIFALCO [1976] and HARRISON [1980]), then the total 
binding energy per atom may be written as: 

~ - 1 t 3 s  q =  

where 

The first and second terms in eq. (106) give the electron-ion [cf. eq. (79)] and the 
electron-electron potential energies, respectively. The potential energy has been evaluated 
within the WIGNER-SEITZ [ 19331 approximation of neglecting the coulomb interaction 
between different Wigner-Seitz cells as they are electrically neutral. Within the free- 
electron approximation the ion cores had been smeared out into a uniform positive 
background so that there was zero net potential energy and Vi, vanished. 

The equilibrium Wigner-Seitz radius, So, which is found from eq. (105) by requiring 
that U is stationary, depends explicitly on the core radius R, through the equation 

0.102 + 0.0035S0 0.491 -~ z PS,, ’ 

where the first four terms are coulomb, exchange, correlation and kinetic contributions 
respectively. GWFALCO [1976] has taken the experimental values of the Wigner-Seitz 
radius So to determine an effective Ashcroft empty-core radius R, from eq. (107). The 
resultant values are given in table 2 where, as expected, the core size increases as one 
goes down a given group in the Periodic Table. It is clear from table 2 that only sodium 
has an equilibrium value of r, that is close to the free-electron-gas value of 4.2 au. 

The bulk modulus (or inverse compressibility), which is defined by 

B = V(d2U/dV2), ( 108) 
may be written from eqs. (105) and (107) in the form 

B/B,, = 0.200 + 0.815Rz/rs 
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Table 2 
Equilibrium bulk properties of the simple and noble metals. 

Metal Quantity 

Li 
Na 
K 
Rb 
c s  
Be 
Mg 
Ca 
Sr 
Ba 
Zn 
Cd 
Hg 
AI 
Ga 
In 
T1 
c u  

Au 
Ag 

1 1.7 
I 1.1 
1 0.9 
1 0.9 
1 0.8 
2 1.7 
2 0.8 
2 0.9 
2 0.9 
2 0.9 
2 0.7 
2 0.6 
2 0.3 
3 1.1 
3 0.9 
3 0.9 
3 0.6 
1 3.5 
1 3.0 
1 3.8 

3.27 3.27 1.32 0.63 
3.99 3.99 1.75 0.83 
4.86 4.86 2.22 1.03 
5.31 5.31 2.47 1.14 
5.70 5.70 2.76 1.29 
2.36 1.87 0.76 0.45 
3.35 2.66 1.31 0.73 
4.12 3.27 1.73 0.95 
4.49 3.57 1.93 1.05 
4.67 3.71 2.03 1.11 
2.91 2.31 1.07 0.60 
3.26 2.59 1.27 0.71 
3.35 2.66 1.31 0.73 
2.99 2.07 1.11 0.69 
3.16 2.19 1.20 0.74 
3.48 2.41 1.37 0.83 
3.58 2.49 1.43 0.87 
2.67 2.67 0.91 0.45 
3.02 3.02 1.37 0.71 
3.01 3.01 1.35 0.69 

0.50 
0.80 
1.10 
1.55 
1.43 
0.27 
0.54 
0.66 
0.78 
0.84 
0.45 
0.63 
0.59 
0.32 
0.33 
0.39 
0.39 
2.16 
2.94 
4.96 

a From GIRIFALCO [1976]. 

at equilibrium, where the correlation contribution has been neglected since it contributes less 
than a few percent. Bke is the bulk modulus of the non-interacting free electron gas, namely 

It follows from eq. (109) and table 2 that the presence of the ion core is crucial for 
obtaining realistic values of the bulk modulus of simple metals, as was first demonstrated 
by ASHCROFT and LANGRETH [1967]. However, the simple Jirst-order expression eq. 
(109) is leading to large errors for the polyvalent metals with valence greater than two 
because the second-order contribution is not negligible and must be included (ASHCROFT 
and LANGRETH [1967]). Table 2 also demonstrates that the noble metals are not 
describable by the NFE approximation, the theoretical bulk moduli being a factor of five 
too small. We will return to this point in 55.2. 

The cohesive energy of the simple metals is observed in table 2 to be about 1 eV per 
valence electron. For example, Na, Mg and A1 have cohesive energies of 1.1,O.S and 1.1 
eV per electron respectively. These are an order of magnitude smaller than the corre- 
sponding binding energies given by eq. (105), the experimental values being 6.3, 12.1, 
and 18.8 eV per electron respectively. Although NFE perturbation theory can yield good 
estimates of bulk properties such as the equilibrium atomic volume, structural stability 
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and heat of formation, it can not provide reliable cohesive energies which require an 
accurate comparison with the free atom whose wave functions are not describable by 
weakly perturbed plane waves. It is necessary, therefore, to perform similar calculations 
in both the free atom and the bulk as, for example, WIGNER and SEITZ [1933] and 
MORUZZI et al. E19781 have done in their evaluation of the cohesive energies in figs. 21 
and 1 respectively. We should point out, however, that eqs. (103)-(106) do yield a bulk 
binding energy for sodium that is very similar to Wigner and Seitz’s [cf. eq. (82)], 
because the additional exchange, correlation and self-energy terms in eqs. (105) and 
(106) give a net contribution of less than 0.01 eV per sodium atom. CHELIKOWSKY 
[1981] has linked the cohesive energy of simple metals to a kinetic-energy change which 
accompanies the transformation of the exponentially damped free-atom wave function to 
plane-wave bulk states. As expected from table 2 and fig. 20, it is necessary to include 
an additional non-local bulk bonding contribution in order to obtain the stronger cohesion 
of Li and Be and the weaker cohesion of Zn, Cd and Hg. The anomalously large 
cohesion of the noble metals Cu, Ag and Au will be discussed in the next subsection. 

5.2. k s i t i o n  metals 

The theoretical points in fig. 1 were computed (~TORUZZI et al. [1978]) by solving 
the Schrodinger equation (1) with the potential u(r) given by 

where u, is the usual Hartree potential and u,, is the exchange-correlation potential 
evaluated within the local density functional (LDF) approximation of HOHENBERG and 
KOHN [1964] and KOHN and SHAM [1965], namely 

is the exchange and correlation energy per electron of a homogeneous electron gas 
of density p. It follows from eqs. (103) and (112) that the exchange contribution to the 
potential may be written as: 

eX(r)  = -1.477[~(r)]1’~. 

Thus the exchange potential varies as the third power of the local density, due to the 
exclusion of parallel spin electrons from the immediate neighbourhood (SLATER [ 1951bl). 

The total energy can not be written simply as the sum over the occupied one-electron 
energies Ei of the Schrunger equation, because the eigenvalue Ei of the ith electron 
contains the potential energy of interaction with the jth electron and vice versa. Thus, Ei 
+ Ej double-counts the coulomb interaction energy between electrons i and j .  The total 
LDF energy is, therefore, given by 
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U = Ei - 3 JJ 2p(r)p(‘ r’) drdr’ - p(r)[vxc - ~ ~ ~ ] d r ,  
i It - r’l 

where the second and third contributions correct for the “double-counting” of the 
coulomb and exchange-correlation energies respectively. The potential energy has been 
written down in eq. (1 15) within the Wigner-Seitz sphere approximation, the coulomb 
interaction between neighbouring Wigner-Seitz cells, or Madelung contribution, being 
neglected. (Note that e* = 2 in atomic units, which accounts for the factor of two in the 
integrand of the coulomb integral.) 

The presence of the double-counting contribution in eq. (115) does not allow for a 
direct interpretation of the total energy in terms of the one-electron eigenvalues Ei whose 
behaviour we have studied in the previous sections. For example, as can be seen from 
fig. 28b the oneelectron sum alone would lead to no binding in Tc because the d- 
electron eigenvalues at the equilibrium atomic volume are everywhere higher than the 
free-atom d level. The inclusion of the double-counting term is crucial for bonding since 
it counters to a large extent the shift in the centre of gravity of the d bands E,, due to the 
renonnalizution of the potential under volume change. In copper, for example, GELATT 
et al. [1977] found that the band-shift energy of 78.6 eV/atom, which accompanies the 
formation of the bulk metal, is almost totally cancelled by a change in the double- 
counting term of 77.7 eV/atom. The remaining net repulsive contribution of about 1 eV/atom 
is typical for the 3d and 4d transition metal series (see fig. 4 of GELATT et al. [1977]). 

The problems associated with double-counting can be avoided, however, by working 
not with the total energy, U, but with thefirst-order change in energy, SU, on change in 
the Wigner-Seitz sphere volume, Sa, for the bulk metal (PETTIFOR [1976]) or change in 
the internuclear separation, SR, for the diatomic molecule (PETTIFOR 11978al). By starting 
either from the virial theorem in the form derived by LIBERMAN [ 197 1 ] or from the total- 
energy expression (115) following NIEMINEN and HODGES [1976], PETTIFOR [1976, 
1978aI showed that the first-order change in total energy, SU, may be written, neglecting 
the Madelung contribution, as: 

SU = CSE,, 
i 

where SEi is the first-order change in the eigenvalue which accompanies the first-order 
volume or distance change while the potential is kept unrenormalized. The general 
applicability of this first-order result has been proved by ANDERSEN [1980] for force 
problems involving arbitrary atomic displacements and by NORSKOV [ 19821 for embedding 
problems involving a change in the local atomic environment (cf. 07). SKRIVER [1982], 
MCMAHAN and MORIARTY [ 19831 and PAXTON and PETTIFOR [ 19921 have demonstrated the 
applicability of eq. (1 16) to the evaluation of structural energy differences (cf. 5 6). 

The first-order expression (116) is important because it allows a direct identification 
of the different roles played by the valence sp and d electrons in bulk transition metal 
energetics. The eigenstates can be decomposed within the Wigner-Seitz sphere into their 
different angular momentum components, 1, so that eq. (116) may be written as: 

References: p .  129. 
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su = -Pa2 = -x lp2, (117) 

where P is the pressure, given by P = - dU/dQ. By working within the atomic-sphere 
approximation of ANDERSEN [ 19731 the partial pressures Pl may be expressed (PETTIFOR 
[1976]) directly in terms of parameters describing the energy bands, namely: 

(118) 

(119) 

1 

3p,a = ~ N , ( T ,  - cxc) + 2u;, 

3 4 i - l ~  2Nd(Ed - &,)/md + 5Udbond, 

where 

Usp" = 1" ( E  - r,)nsp (E)dE, 

with E ~ ~ = E ~ ~ ( S ) .  md is the d-band effective mass which is related to the width W 
through W=25/(mdSz). Additional small contributions to eqs. (118) and (119) have been 
neglected for simplicity in the present discussion (cf. eqs. (13) and (14) of PETTIPOR 
[ 1978bl). 

The sp partial pressure consists of two terms which give the first-order changes in the 
bottom of the sp band, r,, and in the kinetic energy, respectively. In the absence of 
hybridization with the d band, nsp(E) is free-electron-like and eq. (118) is consistent with 
the pressure which would be obtained from the simple-metal expression (105) if 
correlation is neglected. This follows from eqs. (ill), (113) and (79) because within 
LDF theory the bottom of the band is given by 

r, =rY+2 .4z / s++ ,  (122) 

since the electron sees the average Hartree field of the valence electrons and the 
exchange potential v, in addition to the ion core pseudopotential. 

The d partial pressure also consists of two terms which give the first-order changes 
in the centre of gravity of the d band, Ed, and the d bond energy, respectively. In the 
absence of hybridization we may assume that nd(E) is rectangular as illustrated in fig. 24, 
so that from eq. (121) the d bond energy may be written 

upd = -6 WNd(l0 - Nd). (123) 

Assuming that $-Eltom and W vary inversely as the fifth power of S, Pd may be 
integrated with respect to volume to give the d contribution to the cohesive energy, 
namely: 

( 124) 

It follows from fig. 28a that for Tc at its equilibrium volume Ed-Eitom = 6  eV, $Ed"" 

- eXC = 1 eV and md = 5. Therefore, taking, from table 2, W= 10 eV and Nd = 6, we have 

u d  = N,j(Ed - Edm)/4md + Nd($ E,""" - EX,)/2fnd + upd. 
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U, = 1.8 .t 0.6 - 12 = -1OeV/atom, (125) 

which is in reasonable agreement with the LDF value of -8 eV/atom for the Tc 
cohesive energy in fig. 1. 

The dominant contribution to the cohesive energy of transition metals is, therefore, the 
d bond term in eq. (125) as emphasized by FRIEDEL [1964, 19691 and illustrated by 
GELATT et al. [I9771 in their fig. 4. From eq. (123) it varies parabolically with band 
filling and accounts for the observed variation of the cohesive energy across the 
nonmagnetic 4d and Sd series shown in fig. 1. It attains a maximum value of - 5 W/4 
for Nd = 5 when all the bonding and none of the antibonding states are occupied. Equation 
(124) shows that the shift in centre of gravity of the d band contributionN, (Ed-E,"t"") 
is reduced by at least an order of magnitude through the factor (4md)-', thereby account- 
ing andytically for the cancellation arising from the double-counting term in eq. (115). 

Figure 29 shows the sp and d partial pressures for Tc. As expected from eq. (123) 
there is a large attractive d bond contribution which is pulling the atoms together in 
order to maximize the strength of the bond. This is opposed for S < 4.0 au by a rapidly 
increasing repulsive d centre-of-gravity contribution which reflects the renormalization 
in Ed. The resulting total d partial pressure is attractive at the observed equilibrium 
volume of Tc (see fig. 29b). As expected from the behaviour of rl in fig. 28b the bottom 
of the sp band contribution is attractive for large values of S but becomes repulsive in 
the vicinity of the equilibrium volume as I', moves up in energy. Thus, whereas in 
simple metals this contribution is attractive because the ion cores occupy only about 10% 
of the atomic volume (see fig. 21 and table 3), in transition metals it is repulsive because 

5-0 .t.. 

Sloul 

Fig. 29. (a) The individual and (b) the total sp and d partial pressures as a function of the Wiper-Seitz radius 
S for T,. ''eq" marks the observed equilibrium Wigner-Seitz radius. (From PETTIFOR [1978b]). 
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Table 3 
The values of A for the 3d, 4d, and 5d transition metal series. 

sc a V cr Mn Fe co Ni 
1.08 1.23 1.37 1.49 1.61 1.74 1.88 2.07 

Y zr Nb Mo Tc Ru Rh Pd 
1 .OS I .23 1.37 1.49 1.60 1.72 1.85 2.02 

Lu Hf Ta w Re os Ir Pt 
1.11 1.25 1.38 1.49 1 .a 1.72 1.84 2.01 

Period I Element and value of A (in a d )  

the ion cores occupy a much larger percentage due to their smaller equilibrium atomic 
volumes (cf. fig. 1). Together with the sp kinetic energy contribution, the bottom of the 
sp band contribution provides the necessary repulsion to counter the attractive d partial 
pressure at equilibrium. 

The size of a transition-metal atom, which is defined by the equilibrium atomic 
volume of the pure metal, is not necessarily a helpful quantity for discussing alloy 
energetics. We have seen that it will be very sensitive to the nature of the local atomic 
environment, since it is the d bond contribution which is responsible in fig. 1 for the 
skewed parabolic behaviour of the equilibrium Wigner-Seitz radius across the nonmag- 
netic 4d series. This may be demonstrated by modifying the simple model of 
DUCASTELLE [1970] and approximating the total energy of a transition metal by 

where the Born-Mayer contribution, VP, is: 

with a being constant across a given series. This form is suggested by the nature of the 
repulsive d centre-of-gravity contribution in eq. (124) and fig. 29, although we have 
assumed that II"p is proportional to N2 rather than N,' as a reminder that the sp electrons 
also contribute to the repulsion. The d bond contribution, eq. (123), is proportional to the 
band width W which is assumed to vary exponentially as 

W = bA2e-* 

with b being constant across a given series. 

from eqs. (126)-(128) by: 
The cohesive energy, equilibrium Wigner-Seitz radius and bulk modulus are given 

u,, = 3 u y  , 

so[ '"(-2aNZ/u:d)] /2A, 

B = -(A2/ 12~s,)U,""~. 
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a and b for a given period are obtained from the known bulk modulus and band width 
of 3d Cr, 4d Mo and 5d W, the values of (a, b) being given in atomic units by (24.3, 
11.6), (77.2,25.0) and (98.9,31.9) respectively. A is found by fitting to the nonmagnetic 
Wigner-Seitz radius, assuming that the transition metals have only one sp valence 
electron. We see from fig. 30 and table 3 that although the equilibrium atomic volume 
has a minimum in the vicinity of N=8, A varies nearly Linearly across the series as 
expected for a parameter characterizing the free atom (cf. figs. 4, 5 and 7). Thus, 
although Mo and Ag have almost the same size factors with their equilibrium Wigner- 
Seitz radii of 2.93 and 3.02 au, respectively, they are immiscible because Mo will lose 
a large part of its attractive d bond contribution in a Ag environment. The logarithmic 
derivative of the band width, -A, predicted by this model is in good agreement at the 
equilibrium atomic volume with the first-principles value, -n/S,, as can be seen by 
comparing tables 1 and 3 for the 4d series. 

The simple model breaks down at the noble-metal end of the series because the 
Born-Mayer repulsive term in eq. (126) does not describe correctly the d electron 
behaviour. This can be seen in fig. 31 where the d partial pressure in Cu is attractive at 
the equilibrium atomic volume, the d electrons contributing about 25% to the cohesive 
energy (WILLIAMS et al. [l9SOa]). Thus, as first pointed out by KOLLAR and SOLT 
[1974], the filled d shells in copper interact attractively rather than repulsively as 
assumed by the Born-Mayer contribution (127). This is due to the second term in eq. 
(124) which dominates at larger atomic volumes. The sp partial pressure of Cu at its 
minimum is also more attractive than that of K due to the incomplete screening of the 
Cu ion core by the 3d valence electrons. The net result is that whereas the simple metal 
M has a cohesive energy of 0.9 eV/atom and a bulk modulus of 0.3 x 10" N/m2, the 
noble metal Cu has a cohesive energy of 3.5 eV/atom and a bulk modulus of 13.7 x 10" 
N/m2, which is reflected by the behaviour of the curves in fig. 31. 

6. Structural stability 

6.1. Elemental metals 

The crystal structure of the simple metals can be studied (see, e.g., HARRISON [1966], 
HEINE and WEAIRE [1970], HAFNER [1974,1989] and MORIARTY [1982,1983 and 19881) 
by perturbing the free electron gas to second order in the pseudopotential, thereby 
extending the first-order expression (105) considered in 5 5.1. The resulting binding 
energy per atom is given in the real-space representation (FINNIS [1974]) by 

where K% is the compressibility of the free electron gas. +(R=O; r,) represents the 
electrostatic interaction between an ion and its own screening cloud of electrons, whereas 
4(R # 0; rs) is a. central interatomic pair potential which for a local pseudopotential may 
be written as: 
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Fig. 30. The theoretical (open circles) and experimental (crosses) values of the equilibrium Wigner-Seitz radius, 
cohesive energy, and bulk modulus of the 3 4  4d, and 5d transition metals. 

x 

x = In (o/oo) 
oo = EQUILIBRIUM LATTICE CONSTANT 

+ 5  

COPPER 

X 
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I I I 

x = In (a/o,) 
oo = EQUILIBRIUM LATTICE CONSTANT 

I 

\ POTASSIUM 

Fig. 31. (a) The sp and d partial pressures for Cu and (b) the sp pressure for K as a function of the Wigner- 
Seitz radius. The independent variable x is the logarithm of the ratio of the lattice constant a (or Wigner-Seitz 
radius S) to its equilibrium value a, (or S&, so that equilibrium corresponds to the zero value of x on the upper 
horizontal axis. The cohesive energy associated with a given pressure curve is the area between the curve and 
the axis, as illustrated in (b). From WILLIAMS et al. [198Oa].) 
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f$(q) is proportional to the Fourier component of the ionic pseudopotential, taking the 
value cosqR, for the Ashcroft potential [cf. eq. (76)l. x(q, rs) is the free-electron-gas 
response function which screens the ion cores (see, e.g., JACUCCI and TAYLOR [1981]). 
The first term in eq. (133) gives the direct ion-ion coulomb repulsion, the second the 
attractive ion-electron contribution. 

The interatomic potential (133) may be expressed analytically (PETTIFOR [1982]) at 
metallic densities as the sum of damped oscillatory terms, namely 

cb(R f 0; <) = (2Z2/R)c A, cos(2knR + an)eo"nR7 
n 

(134) 

Fig. 32. The analytic pair potential (solid curve) for Na, Mg, and AI, the three individual contributions being 
given by the dotted-dashed, dashed, and dotted curves respectively. The arrows mark the position of the twelve 
nearest neighbows in the close-packed fcc and hcp lattices. The values of R, and r, are Written (Rc, rs) for each 
element. (After F E r m R  and WARD [1984].) 
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where k, and K, depend only on the density of the free electron gas through r,, whereas 
the amplitude A,, and the phase CY, depend also on the ionic pseudopotential (through RJ.  
The interatomic potentials for Na, Mg and Al are illustrated in fig. 32, where the first 
three terms in eq. (134) have been retained and an Ashcroft empty-core pseudopotential 
used (PETTIFOR and WARD [1984]). We see that all three metals are characterized by a 
repulsive hard-core contribution (dotteddashed curve), an attractive nearest-neighbour 
contribution (dashed curve), and an oscillatory long-range contribution (dotted curve). 
For very Zapge interatomic separations the pair potential behaves asymptotically (FRIEDEL 
[1952]) as 

where from eqs. (44) and (104) I ~ ~ = ( 9 ~ / 4 ) ~ ’ ~ / r ~ .  
A cautionary note must be sounded concerning the use of interatomic pair potentials 

for describing the energetics of simple metals. It is clear from fig. 32 that the pair- 
potential contribution to the binding energy of sodium and magnesium is only about 0.25 
eV/atom, which is small compared to their cohesive energies of 1.1 and 1.6 eV/atom, 
respectively. Moreover, in aluminium the pair contribution acts against cohesion. Thus, 
there is no microscopic justification for describing the bonding in simple metals by pair 
potentials alone. Their cohesion is determined primarily by the volume-dependent terms 
in eq. (132). However, the pair potential description is valid for tackling problems 
concerned with structural rearrangement in which the volume remains fixed, for example 
in lattice dynamics or in determining the relative stability of the close- or nearly close- 
packed fcc, hcp and bcc lattices. 

Figure 33 compares the stability of the fcc, hcp and bcc lattices of Na, Mg and A1 as 
their volume is reduced from the equilibrium value by nearly an order of magnitude, 
which was computed by MORIARTY and MCMAHAN [ 19821 using a generalized non-local 
pseudopotential to second order. We see that under pressure Na, Mg and A1 are predicted 
to transform from hcp + bcc + hcp, hcp + bcc + fcc and fcc + hcp + bcc, respec- 
tively. The first of these structural transitions occurs at about 1,57 and 130 GPA for Na, 
Mg and Al respectively and should, therefore, be verifiable by modern high-pressure 
technology. The trends displayed in fig. 33 may be understood from the behaviour of the 
first three contributions to the pair potential in fig. 32 (Pcmpo~ and WARD [1984]; see 

LL 
E 

RELATIVE ATOMIC VOLUME 

Rg 33. The energy of the bcc and hcp lattices with respect to the fcc lattice for Na, Mg, and Al as a function 
of their atomic volume relative to the observed equilibrium volumes (after MORIARTY and MCMAHAN [1982]). 
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also MCMAHAN and MORIARTY [ 19831). Because the close-packed structures fcc and hcp 
have identical first and second nearest-neighbour distances their relative stability is 
determined by the position of their next few neighbours with respect to the long-range 
oscillatory tail which is drawn dotted in fig. 32. Since the phase a3 of this contribution 
depends on r,, under pressure the minima shift with respect to the neighbour positions 
and the close-packed phases can reverse their relative stability. On the other hand, the 
competition between the close-packed phases and bcc is determined primarily by the 
contribution from the twelve first nearest neighbours and fourteen first and second 
nearest neighbours respectively. Although at their equilibrium volume the first twelve 
close-packed neighbours fall at the minimum of the pair potential, thereby favouring the 
close-packed stnctures (cf. fig. 32), under pressure this minimum moves and the bcc 
phase may be sta.bilized (cf. fig. 33). 

The close-packed metallic behaviour of Na, Mg and A1 gives way to the open 
diamond structure of the semiconductor Si as one proceeds across the third row of the 
Periodic Table. This transition from close-packed to open structure is accompanied by a 
30% volume expansion so that the volume-dependent term in the binding energy cannot 
be neglected when determining structural stability. YIN and COHEN [1980] have solved 
the Schrodinger equation self-consistently for Si using an ionic pseudopotential, and have 
evaluated the LDF binding energy [cf. eq. (115)] as a function of volume for seven 
different crystal structures as illustrated in fig. 34a. They find that the diamond structure 
has the lowest energy with a predicted equilibrium atomic volume, cohesive energy and 
bulk modulus within 5% of the experimental values. Moreover, the relative ordering of 
the metallic bcc and hcp phases and their equilibrium energy of about 0.5 eV/atom with 
respect to the diamond structure is in good agreement with that deduced from experiment 
(KAUPMAN and NESOR [1973]). The transition to the open semiconducting phase, 
therefore, contributes about 10% to the total cohesive energy of 4.6 eV/atom. 

In moving down group IV we see from figs. 4 and 7 that Ge is very similar to Si 
with about a 10% larger core, whereas Sn and Pb have approximately 30% and 45% 
larger cores respectively. Thus the binding-energy-volume curves of Ge are found to be 
almost identical to those of Si except that the close-packed structures move down relative 
to the diamond structure by about 20% (compare figs. 34a and b; YIN and COHEN [1980, 
19811). The further increase in core size in going from Ge to Sn is probably responsible 
for the p-Sn structure being stabilized under only 2 GPA of pressure and the still much 
larger core of Bb at the bottom of group IV leads to the close-packed fcc structure being 
most stable. The structural trends across the sp-valent elements within the periodic table 
has recently been discussed by CRESSONI and PETTIFOR [1991] using the Tight Binding 
approximation. 

The crystal structure of the transirion metals can be understood by comparing the d 
bond contribution eq. (I  21) to the total energy, because we saw in 5 5.2 that it dominates 
the cohesive energy. Figure 35 shows that as the unhybridized tight-binding d band is 
filled with electrons the structure-trend predicted is hcp -+ bcc + hcp -+ fcc + bcc 
(PETTIFOR [ 1972b1). Apart from the incorrect stability of the bcc phase at the noble-metal 
end of the series., this trend agrees with experiment for the nonmagnetic 4d and 5d series. 
The stability of the bcc phase in V and Cr, Nb and Mo, Ta and W, when the d band is 
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Fig. 34. The binding energy as a function of volume of (a) Si and @) Ge for seven different crystal structures. 
The dashed line is the common tangent of the energy curves for the semiconducting diamond phase and the 
metallic /3-tin phase, the system moving from 1 + 2 + 3 + 4 under pressure. (from YIN and COHEN [1980, 
19811 and YIN {1982]). 

nearly half-full, is due to the strong bonding-antibonding separation which is manifest in 
the bcc density of states compared to the close-packed (cf. fig. 26). The appearance of 
the bcc phase in iron is due to the presence of ferromagnetism (see $ 8). The stability of 
different stacking-fault structures shows the same oscillatory behaviour as displayed by 
the fcc hcp curve in fig. 35 (PAPON er al. [1979]). 

The number of d electrons, Nd, also influences the structure of the heavier alkalis and 
alkaline earths (TAKEMURA et al. [1982] and SKRIVER [1982]) and the rare earths 
(DUTHIE and PETTIFOR [1977]). Nd increases on moving down the alkaZine eaplh group 
as the d band starts to fill (cf. fig. 20) so that Ca, Sr and Ba have 0.51, 0.59 and 0.87 
1 = 2 electrons within the Wigner-Seitz sphere, respectively (SKRIVER [ 19821). Similarly, 
under pressure N, increases as the NFE-sp band moves up with respect to the TB-d band 
(cf. $4.3). SKRIVER [1982] has computed the structural energy differences, using eq. 
(116), and has found that the trend hcp + fcc + bcc + hcp correlates with increasing 
Nd in agreement with the observed behaviour down group IIA (Be,Mg: hcp; Ca,Sr: fcc; 
Ba,Ra: bcc) and under pressure. The trivalent rare-eavth crystal structure sequence hcp 
+ Sm-type + double hcp + fcc, which is observed for decreasing atomic number and 
increasing pressure, can similarly be explained in terms of the change in number of d 
electrons accompanying valence s to d transfer (DUTHIE and PWOR [1977]). Due to 
the lanthanide contraction of the ion core La has a 20% larger core radius than Lu, which 
results in La having 0.6 d electrons more than Lu and taking the double-hcp rather than 
the hcp crystal structure even though they are both trivalent. 
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Fig. 35. The d bond energy of the bcc (solid line) and the hcp (dotted line) lattices with respect to the fcc 
lattice as a function of band filling Nd (from PETTIFOR [1972b]). 

Recently ab initio Local Density Functional (LDF) calculations have been used to study 
the transformation path from bcc to hcp in barium under pressure at the absolute zero of 
temperature (CHEN ef al. [1988]; Ho and HARMAN [1990]). As illustrated in fig. 36, the bcc 
to hcp transformation involves atomic displacements corresponding to the zone boundary 
[110] T, phonon mode and an additional lattice shear (BURGERS [1934]). The dashed lines in 
fig. 36b show that a displacement S = @a/12 in this bcc phonon mode creates a nearly 
hexagonal geometry, the perfect geometry being achieved in fig. 36c through a subsequent 
shear which changes the angle 8 from 109.47" to 120". Figure 37 displays the calculated total 
energy contours as a function of both co-ordinates 6 and 6 for barium at its equilibrium 
atomic volume flo, 0.793C10 and 0.705C12,, respectively. The latter volume corresponds to a 
pressure of 38.4 kbar. We see that at fl = flo the upper contour plot shows that bcc barium is 
more stable than hcp, in agreement with experiment. However, as pressure is applied, the hcp 
phase has its energy lowered with respect to bcc. The middle contour plot shows that at 
SZ = 0.79300 their energies are approximately equal, with an energy barrier between them of 
about 4meV/atom. The lower contour plot shows that at fl = 0.705f10 the energy barrier has 
gone and the bcc phase is no longer metastable. The predicted T = 0 transformation pressure 
is 11 kbar, corresponding to the bcc and hcp lattices having equal enthalpies. However, at low 
temperatures the system would not be able to overcome the energy barrier so that the bcc 
phase would probably remain metastable until the T, N-point phonon mode became soft at 3 1 
kbar. Experimentally the phase transformation occurs at a pressure of 55 kbar at room 
temperature so that the LDF predicted pressure appears too low, reflecting the intrinsic errors 
in the local approximation to density functional theory (see, for example, fig. 1). 
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Fig. 36. Illustration of the bcc to hcp phase transformation. The arrows in (a) and (b) indicate the atomic 
displacements in the bcc lattice corresponding to the polarisation vector of the T, N-point phonon mode. A final 
long-wavelength shear changes the angle from 109.47O to 120' to obtain the hcp lattice in (c) (from Ho and 
HARMON [1990]; reproduced with permission). 

6.2. Binary intermetallic phases 

The structural trends within binary intermetallic phases A,-xB, may be displayed by 
ordering the structural data base within a single three-dimensional structure map (AIA, 
flB, x) where &fl is a phemmemlogical co-ordinate which characterises each element in 
the periodic table (PETTIFOR [1988a]). The relative ordering number fl is obtained by 
running a one-dimensional string through the two-dimensional periodic table as shown in 
fig. 38; pulling the ends of the string apart places all the elements in sequential order, 
labelled by &I. 

The resultant two-dimensional isostoichiometric ground-state structure map (AIA, ,&) 
for the 5050 AB binary compounds is shown in fig. 39 using the experimental database 
of VILLARS and CALVERT [1985]. Similar maps for other stoichiometries may be found 
elsewhere (PEITIPOR [1988a], [1988b] and [1992])). The bare patches correspond to 
regions where compounds do not form due to either positive heats of formation or the 
competing stability of neighbouring phases with different stoichiometry. The boundaries 
do not have any significance other than they were drawn to separate compounds of 
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Fig. 37. Contour plots of the LDF energy for barium as a function of the atomic displacement 6 corresponding 
to the T, N-point phonon mode and the angle 0 of the shear motion. The upper, middle and lower panels 
correspond to the volumes 4, 0.793 O,, and 0.705C10, where & is the observed equilibrium volume at ambient 
pressure. The energy contours are in steps of 0.5 mRy/cell (from Ho and HARMON [1990]; reproduced with 
permission). 

References: p .  129. 



104 

40 17 46 45 1I 4 3  L 2  fa1 40 39 3 8  37 36 35 34 

A c - T h  -Po - U - l ip-  Pu - A m -  Cm-Dk - Cf -E$ - Fin-Md - N o  - Lr -= 

D. G. Pettifor Ch. 2, 96 

: 
He 

2 
I 

Ne 

3 
I 

Ar 

I 

I 

I 

I 
7 
I 

4 
I 

Kr 

Xe 

6 

i 2  I 
Li 

l l E  IIIB IVB V B  VIB VIIS 
1 c -  

I 1  I I  

I 717 Be 

n n  n n n 

I 
11 
I l l A  I I I A  I V A  VA V I A  V l l A  V l l lo  Vl l lb V l l l c  I B  
Ha 

57 60 61 61 67 7,2 7; 10 16 13 5 1  5 L  

K Ca Sc T i  V Cr Mn Fe Co Hi Cu Zn 

I 
I I I I I  n i  

-b-b--- 
I 

Rn- Fr R p  

g? 
6 8  

I 

"r" 87 i 91 9: i 
I 

E i  P o  A t  

U U 

33 32 31 30 29 28 21 26 1 L  23 22  2 1  10 

Pr- Hd- Pm-  S r n w  Gd - T b - - - B y  - Ho - Er -1m- L u - 2  

Fig. 38. The string running through this modified periodic table puts all the elements in sequential order according 
to the relative ordering number. (PsmFo~ [1988a]). Note that group II A elements Be and Mg have been grouped 
with II B, divalent rare earths have been separated from trivalent, and Y has been slotted between Tb and Dy. 

different structure type. In regions where there is a paucity of data the boundary is 
usually chosen as the line separating adjoining groups in the periodic table. We see that 
excellent structural separation has been achieved between the 52 different AB structure 
types that have more than one representative compound each. The two most common 
structure types, namely B1 (NaC1) and B2 (CsCl), are well separated, the NaCl lattice 
being found only outside the region defined by &IA, &IB I 81, which encloses the main 
CsCl domain. There is only one exception, namely the very small region of Cs-contain- 
ing salts. The AB structure map successfully demarcates even closely related structure 
types such as B27 (FeB) and B33 (CrB); B8, (NiAs) and B31 (MnP); or B3 (cubic ZnS, 
zincblende) and B4 (hexagonal ZnS, wurtzite). Moreover, coherent phases with respect 
to the bcc lattice, namely B2 (CsCI), B11 (CuTi), and B32 (Nan) are also well separated, as 
too are the close-packed polytypes cubic L1, (CuAu) and hexagonal B19 (AuCd). 

The structural trends within the pd-bonded AB compounds in fig. 39 have been 
successfully explained by PETTIFOR and PODLOUCKY [1984, 19861 within a simple two- 
centre, orthogonal Tight Binding (TB) model. The upper panel of fig. 40 shows the 
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experimental structural domains for the seven most frequently occurring structure types, 
namely NaCI, CsC1, NiAs, MnP, FeB, CrB and FeSi respectively (using the socalled 
chemical scale ,y which orders the elements in a similar way to the relative ordering 
number fl in fig. 38, PETTIFOR [1984]). The lower panel shows the predicted AB 
structure map (N,, NJ where N, and N, are the number of p and d valence electrons 
associated with atoms A and B respectively. We see that the TB model predicts the 
broad topological features of the experimental map. In particular, NaCl in the top left-hand 
comer adjoins NiAs running across to the right and boride stability running down to the 
bottom. MnP stability is found in the middle of the NiAs domain and towards the bottom 
right-hand corner, where it adjoins CsCl towards the bottom. The main failure of this 
simple pd TB model is its inability to predict the narrow-tongue of FeSi stability of the 
transition metal silicides, which is probably due to the total neglect of the valence s 
electrons within the model. 

The theoretical TB calculations allowed the different roles played by relative atomic 
size, electronegativity difference, and electron per atom ratio in stabilizing a given 
structure type to be investigated directly (PETTIFOR and PODLOUCKY [ 1984, 19861). Fig. 
41 shows the fractional change in volume (AV)/V between a given structure type and 

0.7 0.9 1:1 
lmrB ' 0 

25 ImB: ! ; v v  ; v B v v v v  B v v  v v v  J \I 

1.5 PB f-7 
1 JIIA IYA PA g A  I ? I A  YUIaYIUbQiUc I B  

Fig. 40. The upper panel shows the structure map k,, x,) for 169 pd bonded AB compounds, where x, and xd 
are values for the A and B constituents of a certain chemical scale, x. which orders the elements in a similar 
way to the relative ordering number 41. The lower panel shows the theoretical structure map (Np. Nd) where 
N, and N, are the number of p and d valence electrons respectively on the CsCl lattice. (From PETTIFOR and 
PODLOUCKY [ 19841.) 
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Fig. 41. The fractional change in volume (AV)/V with respect to the CsCl lattice versus the relative size factor 
?3 (see text). The upper and lower NiAs curves correspond to c/a = 1.39 and (8/3)" respectively (PEITIPOR 
and PODLOUCKY [19841). 

the CsCl lattice as a function of the reZutive sizefactor X of the constituent atoms. 
Within the TB model, X had been defined through the relative strength of the pp 
repulsive pair potential compared to the dd repulsive pair potential. As expected, the 
NaCl lattice has the smallest volume at either end of the X scale, because as the size of 
either the p-valent atom or the d-valent atom shrinks to zero the repulsion will be 
dominated by one or other of the close-packed fcc sublattices. On the other hand, in the 
middle of the scale, where the nearest-neighbour pd repulsion dominates, the volume of 
the NaCl lattice with six nearest neighbours is about 13% larger than the CsCl with eight 
nearest neighbours. The packing of hard spheres rather than the softer atoms would have 
led to the much larger volume difference of 30%. 

The structural stability of the pd-bonded AB compounds may then be predicted by 
comparing the TIB band energy of the different structure types at the volumes determined 
by the relative size factor X .  Fig. 42 shows the resultant structural energies as a function 
of the electron per atom ratio or band filling N for the case where the atomic p level on 
the A site and the atomic d level on the B site are equal i.e. Epd = E, - E, = 0. As the 
electron per atom ratio increases we find the structural sequence CsCl + FeSi CrB 

Rr$erences: p.  129. 
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Fig. 42. The structural energy as a function of band filling N for the seven different crystal lattices with .Epd = 
0 (PETTIFOR and PODLOUCKY [ 19841). 

+= NaCl + NiAs + (MnP) -+ NiAs -+ NaC1, where MnP, a distorted NiAs structure, has 
been put in parentheses because it does not quite have the lowest energy for N = 9. The 
structural energy depends not only on the electron per atom ratio but also on Epd=Ep-Ed 
which is a measure of a Mulliken-type electronegativity diflerence. Curves similar to fig. 
42 have, therefore, been calculated for values of the atomic energy level difference in the 
range from -10 to 4-5 eV (in steps of 2.5 eV). Rather than plotting the most stable 
predicted structure on a structure map of E,, versus N, the lower panel in fig. 40 uses the 
rotated frame of Np versus N, in order to make direct comparison with the experimental 
results in the upper panel. 

The TB model has successfully accounted for the structural trends not only within the 
pd bonded AB compounds above but also within other families of AB, and AB, 
intermetallic phases (see, for example, JOHANNES et al. [1976], DUCASTELLE [1991], 
BIEBER and GAUTIER [1981], LEE [1991a and b], and OHTA and PETTIFOR [1989]). As 
expected, the structural stability of the binary phases is found to be controlled by four 
factors, namely the average number of valence electrons per atom (or band filling), a 
Mulliken-type electronegativity difference (or atomic energy level mismatch), the atomic 
size mismatch, and the angular character of the valence orbitals (or whether the bonding 
is pd, dd etc.). Classic ionic Madelung terms appear to play little role in determining the 
structures of intermetallic phases since the screening in a metal is perfect. 

The most famous example of the crystal structure correlating with the average 
number of valence electrons per atom or band filling N is the Hume-Rothery alloy 
system of noble metals with the sp bonded elements such as Zn, Al, Si, Ge and Sn (see 
ch. 4). Assuming that Cu and Ag have a valency of 1, then the fcc a-phase is found to 
extend to a N of about 1.38, the bcc P-phase to be stabilized around 1.48, the y-phase 
around 1.62 and the hcp &-phase around 1.75. MOTT and JONES 119361 pointed out that 
the fcc and bcc electron-per-atom ratios correlate with the number of electrons required 
for a free-electron Fermi sphere to first make contact with the fcc and bcc Brillouin-zone 
faces, N =  1.36 and 1.48, respectively. This condition corresponds to 2kF= /GI and 
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implies that the long-range Friedel oscillations (135) are in phase with the lattice, thereby 
giving an additional stabilizing energy. However, as found by STROUD and ASHCROFT 
[1971] this only leads to the fcc lattice being stabilized in the immediate vicinity of 
N =  1.36, the hcp lattice being the most stable for N e 1.3. The fcc noble metals with 
Z= 1 can, therefore, not be described by the NFE approximation. 

JONES [1937], on the other hand, started with a realisitic value for the Cu energy gap 
at L, namely 4 eV, which is an order of magnitude larger than that expected for simple 
NFE metals (cf. fig. 16). This large gap, which arises from hybridization and ortho- 
gonality constraints with the underlying d band (MUELLER [1967]), leads to a very non- 
spherical Fermi surface which already for Cu with N= 1 just makes contact with the fcc 
Brillouin-zone face in the <111> direction. Contact is made with the bcc zone for 
N = 1.23. The resulting fcc and bcc densities of states look very similar to those for Be 
(fcc) and Li (bcc) in fig. 20, because JONES [1937] neglected the presence of the copper 
d band (cf. fig. 26). Comparing the fcc and bcc band energies JONES [1937] found that 
the fcc lattice was indeed the more stable for 1 I N < 1.43. However, no comparison 
with the hcp lattice was made. 

Recently, PAKTON et al. [1992] extended Jones' calculations to include not only the 
hcp lattice but also a proper treatment of the valence d electrons within the Rigid Band 
Approximation (RBA). Fig. 43 shows the structural predictions where the expected trend 
from fcc (a phase) to bcc ( p  phase) to hcp (E phase) is found as a function of the 
electron per atom ratio or band filling N. This trend is a direct consequence of rigidly 
occupying the copper densities of states n(E) in the middle panel and comparing the 
resultant band energies, Le., 

AU = A[ :/En(E)dE] 

where 

EF 
N = n(E)dE. 

It follows from equation (136) that 

- d (AU) = A[% E,n 
dN dN 

since on differentiating equation (137) with respect to N we have immediately 

%"(E,) = 1. 
dN 

Further, it follows from equations (138) and (139) that 

(137) 

(139) 

( 140) 

References: p .  129. 
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Fig. 43. Analysis of fcc, bcc and hcp relative structural stability within the rigid band approximation for Cu-Zn 
alloys. (a) The difference in band energy as a function of band filling N with respect to elemental rigid copper 
bands. (b) The density of states at the Fermi levcl EF for fcc, bcc and hcp Iattices as a function of band filling 
N. (c) The difference in the Fermi energies AEF as a function of band filling N (from PAXTON, A.T., M. 
MhTHFEsSEL and D. G. PIT~IFOR [1992] unpublished). 

Thus, as first pointed out by JONES [1962], the shape of the band energy difference 
curves in fig. 43a can be understood in terms of the relative behaviour of the densities 
of states in the middle panel. In particular, from equation (138) the stationary points in 
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the upper curve correspond to band occupancies for which A& vanishes in panel (c). 
Moreover, whether the stationary point is a maximum or a minimum depends on the 
relative values of the density of states at the Fermi level through equation (140). In 
particular, the bcc-fcc energy difference curve has a minimum around N = 1.6, where the 
bcc density of states is lowest, whereas the hcpfcc curve has a minimum around 
N = 1.9, where the hcp density of states is lowest. The fcc structure is most stable around 
N= 1, where AEF 

The structural trends in these Hume-Rothery electron phases are thus driven by the 
van Hove singuladies in the densities of states which arise from band gaps at specific 
Brillouin or Jones zone boundaries as surmised earlier by MOTT and JONES [1936] and 
JONES [1937]. It is therefore not totally surprising that the NFE second-order perturbation 
theory results of STROUD and ASHCROFT [1971] and EVANS et al. [1979] found energy 
difference curves that are very similar to those in the top panel of fig. 43 away from the 
copper-rich end. The strong curvature of the bcc-fcc and hcpfcc curves as a function of 
band filling can be reproduced only by including explicitly the weak logarithmic 
singularity in the slope of the Lindhard response function at q = 2kP It is for this reason 
that these Hume-Rothery alloys are correctly termed electron phases since this singular- 
ity is driven solely by the electron-per-atom ratio (through 2kJ and does not depend on 
the particular chemical constituents (through the pseudopotential). The nesting of the 
Fermi surfaces of noble metal alloys and the implication for long-period superlattices 
(SATO and TOTH [1961]) have been examined quantitatively by first-principles KRR band 
calculations (GYORFFY and STOCKS [ 19831) assuming total disorder within the coherent- 
potential approximation (CPA, see, e.g., FAULKNER [ 19821). 

0 and the fcc density of states is lowest. 

7. Heat offormation 

A simple and successful semi-empirical scheme for calculating the heats of formation 
of binary alloys has been developed by MIEDEMA et al. [1980], who characterized each 
element in the Periodic Table by two co-ordinates 4* and p’”. The heat of formation of 
a binary AB alloy is then written (in the simplest case) as: 

AH = -P(A4 *)z + Q ( A P ” ~ ) ~ ,  (141) 

where P and Q are positive constants. The attractive term depends on the difference in 
the elemental work functions, A+, (later modified to A+*) and is similar in spirit to 
PAULING’S [ 19601 electronegativity contribution. The repulsive term depends on the 
difference in the cube root of the electron densities at the elemental Wigner-Seitz sphere 
boundaries, Ap‘”, and was argued to arise from the distortion of the charge density 
across the AB interface. Equation (141) has been useful in providing quantitative values 
for the heats of formation. In this section the microscopic origin of the attractive and 
repulsive contributions to AH will be examined in the light of our understanding of the 
cohesion of the elemental metals (cf. $8 5 and 6). 

Miedema’s expression (141) has been most successful in the treatment of binary 

References: p. 129. 
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transition-metal alloys, which are welldescribed by the tight-binding approximation. By 
analogy with FRIEDEL’S [ 19641 treatment of pure transition metal cohesion, the AB alloy 
band may be approximated (PETTIPOR [1979,1987]) by a rectangular density of states of 
width W, as shown in fig. 44. It follows from tight-binding theory (CYROT and CYROT- 
LACKMAN [ 19761) that: 

w: = w2 +3(AEd)*, (142) 

which generalizes the dimer result, eq. (30), to the bulk metal. The first term is the 
contribution to the square of the alloy band width that arises from nearest-neighbour 
bonding, whereas the second term reflects the increase in alloy bonding due to the 
ionicity which is measured by A Ed = Ef - E t .  Thus, the alloy bandwith is given by 

112 

w, = [1+ 3(AEd/W)’] w. (143) 

The heat of formation may now be evaluated explicitly. Filling up the alloy band with 
the average number of d electrons per atom, Ed, and comparing the resulting band 
energy with that obtained from pure metal bands of width W (as illustrated in fig. 44), 
one finds the contribution to the heat of formation AHo, given by: 

mO/w = -&(md)p - ~ ~ d ( ~ d / w ) - ~ ~ d ( l o - ~ d ) ( A E d / w ~ ,  (144) 

where eq. (143) has been expanded to second order, and A Nd = N f - N t .  In addition, 
there is a further contribution AH,, due to the fact that the elemental equilibrium atomic 
volumes V, and V, are in general different, so that the d bond energy of pure A and B 
is determined by W, and W,, respectively, and not by W as drawn in fig. 44. Assuming 
that the band width varies inverseiy with the volume to the five-thirds power (c.f. eq. 
(102); HEM [1967]) and that the alloy volume is V,= V =  1/2(VA + V,) by Vegard‘s 
law, then 

- 

AW = W, - W, = -3  W(AV/V). (145) 

+ EBP EA 

I 
WAB 

Fig. 44. The rectangular d band model representing AB alloy formation. The dashed line separates the partial 
density of states associated with atom A from that associated with atom B. 
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The resulting change in the bond energy due to the change in the band widths of the 
elemental metals from W to W,, W,, respectively is given by 

(146) 

Expressions (1.44) and (146) may be simplified still further for binary alloys from the 
same transition-metal series. Choosing the 4d series because the 3d row is complicated 
by the presence of magnetism (cf. 8 S), we can write AEd=-ANd eV from fig. 5 and 
V= V(Nb from fig. 30. Substituting into eqs. (144) and (146) and taking W = 10 eV from 
table 1, the heat of formation (in eV/atom) is given to second order by 

M , / W  = -- & (5 - Nd)ANd(AV/V). 

where 

and 

fi(Rd) = -&(5 - Nd (149) 

Equation (147) represents the second-order term in a Taylor expansion of A H(Nt, N f )  
in powers of hlvd as WILLIAMS et al. [198Ob] have emphasized. 

Figure 45 compares the results of the tight-binding theory with the MIEDEMA et aZ. 
[1980] semi-empirical values for k v d  I 4, where we see that reasonable agreement is 
obtained. The more attractive values of AH found by MIEDEMA et aZ. [ 19801 near Nd = 5 
reflect structural bonding effects which are not included in the present model with its 
uniform alloy density of states (cf. fig. 44). The dependence of the heat of formation on 
crystal structure has been demonstrated by the first-principles LDF calculations of 
WILLXAMS et aZ. [198Ob] who compared AH for the CuAu (fcc) and CsCl (bcc) lattices. 
It is clear from fig. 45 that the most stable AB alloys will be those for which the average 
d-band filling is close to 5.5 and k v d  is large, for example YPd. On the other hand, for 
average d-band fillings less than about 4 or greater than 7 the heat of formation will be 
positive. 

The attractive contribution in Miedema's expression (141) may be identified with AH, 
provided that 4* is interpreted as the eZectronegutivityX rather than the work function 4. 
Within the TB model the charge transfer Q is obtained by assuming partial densities of 
states n,(E) and itB(@ on the A and B sites in the alloy as illustrated in fig. 44. nA and 
nB have been skewed so that their centres of gravity correspond to E," and E t ,  respec- 
tively (PETTIFOR [1980]). The resulting d charge transfer is given by 

@ = 3 &: + gd(10 - Nd)(md/wm)' (150) 

The first term reflects the flow of electrons from right to left across the series due to 
increasing electron density and the second term reflects the flow from left to right due 

References: p .  129. 
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Fig. 45. AH/(mJ2 as a function of the average band filling fid for the 4d series. The dashed curve is the AH, 
contribution, eq. (148). The squares represent the Miedema values for the 4d alloys with AN, 5 4 ,  the points 
with common N,, being connected by straight lines. (From PETTIFOR [1979].) 

to the increasingly attractive d level as one proceeds across the series (cf. fig. 5).  The 
flow of electrons is, therefore, not driven by the difference in the workfunctions A 4  
alone, because all the electrons throughout the band respond on alloying and not just 
those in the vicinity of the Fermi level. This can be seen by comparing, in fig. 44, the 
skewed partial density of states n,(E) in the AB alloy with the rectangular density of 
states in the pure metal A. 

By implication, the charge transfer is proportional to the difference in the electro- 
negativities, so that we may define a d-electronegativity X, by 
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Axd = Qd,, (151) 

Substituting into eq. (150) and integrating for the 4d series with AEd/w= AlV,/lO, the 
electronegativity is found to be 

xd = N ,  [ 1 - & Nd (15 - Nd )] + 1.8, (152) 

where the constant of integration has been chosen so that Mo with Nd=5 takes the 
PAULING [1960] value of 1.8. Equation (152) is plotted in fig. 46 and compares surpris- 
ingly well with the Pauling electronegativities across the 4d series. It follows from eq. 
(144) and eqs. (150)-(152) that AH,, can be expressed approximately as: 

AHo = -& W(AXd)’ (153) 

for I @, - 5 I I 5 / 6 .  Equation (153) gives the correct value of the dashed curve in fig. 
45 at the centre of the band and it vanishes at the correct cross-over points zd=5 & 
5 / 6 .  Since Miedema’s final choice of ordinate r$* is very similar to Pauling’s 
electronegativity X (MIEDEMA et QZ. [1980]), the attractive contribution in eq. (141) may 
be associated with AHo through eq. (153). The repulsive contribution in the semi- 
empirical scheme follows AH,, very closely numerically, but conceptually the latter 
reflects a mismatch in the d band width rather than the electron density (see also 
WILLIAMS et aZ. [1982]). The heats of formation of 3d, 4d and 5d transition metal AI3 
alloys have been tabulated by WATSON and BENNETT [1981] who used an optimized 
version of the d band model. 

The heats of formation of simplemetal binary alloys may be calculated within 
second-order perturbation theory provided the valence difference AZ=Z, - 2, is not too 
large (HAPNER [1976] and LEUNG et aZ. [1976]). Neglecting the structurally dependent 
pair-potential contribution and ignoring the density dependence of r$(R = 0; r,) in eq. 
(132), the heat of formation AH will be determined by the - volume-dependent free 
electron gas ternis alone. Assuming Vegard’s Law with V,= V=) (V, i VB), these give 
(PETTIFOR and CiELATT [ 19831) the contribution (in eV/atom): 

Fig. 46. The d-band electronegativity. X,, compared to PAIJLING’S [1960] values (squares) for the 4d series. 
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AHeg = Z&(;Trs)(Ap1/3)2, 

where 

&(pl") = -43.39 + 7.81/~"~ + 0.17/(~"~)2. 

(154) 

The three terms in eq. (155) are the kinetic, exchange and correlation contributions 
respectively, the flow of charge from the more dense to the less dense atom lowering the 
kinetic energy but raising the exchange and correlation energies. Equation (154) is 
reminiscent of the MIEDEMA etal. [1980] repulsive contribution in eq. (141). However, 
as is clear from fig. 47 the prefactorf, is not a positive constant Q but is dependent on 
the average cube root of the density p'". It changes sign from positive at low densities 
(where the exchange and correlation dominate) to negative at high densities (where the 
kinetic energy dominates). The first-principle LDF calculations of AH for the Na, Mg, 
AI, Si, P series with respect to the CsCl (bcc) lattice show the same trend in fig. 47 as 
eq. (155) although displaced somewhat from the free-electron-gas result because the 
explicit influence of the core through the last two terms in eq. (132) has been neglected. 
Figure 6.10 b of HAPNER [1987] shows that equation (154) represents the experimental 
heat of formation of liquid simple metal alloys extremely well. 

Fig. 47. AiY/[z(Ap'")]* as a function of the average cube root of the electron density p'" for the 3s and 3p 
series. The solid curve is the electron-gas Contribution, eq. (155). The open circles are the LDF results for the 
CsCl lattice. (From PFITIFoR and GELATT [1983]). 
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Fig. 48. The calculared heats of formation ( H m  [1977]) of A,B alkali-metal alloys for (a) the disordered 
bcc phase and (b) the ordered MgZn, Laves phase as a function of Rg/Ri  from table 2. The crosses give the 
electron gas contribution eq. (154) using the experimnral densities of the elemental metals. 

Structural effects can be important in determining the sign of AH of simple-metal 
alloys (cf. $2.3.2 of MIEDEMA et al. [1980]). This has been demonstrated by the second- 
order pseudopotential calculations of HAFNER [ 19771 on binary alkali metal alloys, which 
are illustrated in fig. 48 for the A,B stoichiometry. (His values of AH for the bcc alloys 
are approximately four times larger than the experimental, LDF or free-electron gas 
values, because his calculated density differences are larger than experiment.) Whereas 
the disordered bcc alloys have positive heats of formation, the ordered Laves phases 
Rb,Cs, KzCs and NqK have negative heats of formation due to the arrangement of the 
nearest-neighbour atoms with respect to the minimum in the pair potential. Therefore, 
provided the volume-dependent contribution to AH is not too large and positive, the 
structural contribution due to the pair potential can stabilize the phase. If a semi- 
conducting gap opens up in the alloy density of states, then this will provide additional 
stability (MIEDEIm et al. [1980]), which requires the theory to be extended beyond 
second order. 

The heats of formation of sp elements with transition metals is illustrated by fig. 49 
for the Li-row elements with the 4d transition metals. They were calculated by GELATT 
et al. [ 19831 using LDF theory for the AB stoichiometry with respect to the NaCl lattice. 
Their theoretical values agree broadly with the semi-empirical values of MIEDEMA et al. 
[ 19801 who found it necessary to include for sp-d alloys an additional attractive contribu- 
tion, -R, in their expression (141). R is written as the product of two numbers which are 
determined by the groups in the Periodic Table from which the sp and d constituents are 
drawn. GELATT et al. [1983] have interpreted their results in terms of an attractive sp-d 
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bonding contribution, which becomes increasingly ionic on proceeding across the sp 
series from Li to F, and a repulsive d-bond contribution. The latter reflects the loss of d- 
bond energy due to the narrower alloy d band width, which arises from the larger 
transition-metal-transition-metal nearest neighbour distance in the alloy as compared to 
the elemental metal. Curves similar to fig. 49 have been obtained by GELATT et al. 
[1978] for the 3d and 4d transition-metal hydrides. 

Figure 50 illustrates the reliability of LDF theory for predicting the heats of formation 
and structural stability of intermetallic phases. Figure 50a gives the LDF heats of 
formation of different ordered structures with respect to either the fcc or bcc lattices for 
the aluminium-lithium system (SLUITER et al. [1990]). We see that the B32 LiAl 
structure type is predicted to be much more stable than either the B2 or L1, equiatomic 
phases. Moreover, it is this strong stability of the B32 phase that is responsible for the 
known metastability of the neighbouring L1, W, and DO, Li,Al phases. Figure 50b 
gives the LDF heats of formation of different ordered structures with respect to either the 
fcc or hcp lattices for the aluminium-titanium system (VAN~CHILFGAARDE et al. [1990]). 
We see that the theory predicts the correct most stable ground state structure for Ti,Al 
and TiAl,, namely hexagonal DOl9 and tetragonal DO, respectively. Furthermore, 
whereas the metastable cubic L1, phase is very close to the ground state energy for 
TiAl,, it is much further removed for Ti,Al. This accounts for the fact that whereas Ti,Al 
has been stabilized as a cubic pseudobinary by suitable alloying additions, it has not been 
possible to stabilize the cubic phase of Ti,Al (Lm et al. [1989]). This demonstrates the 
importance of the first principles LDF calculations; they provide information not only 
about the ground state (which is usually already known experimentally) but also about 
the metastable phases (which have often not been directly accessed by experiment). 

The heat of solution of hydrogen and helium in metals may be calculated within the 
effective-medium approximation of STOTT and ZAREMBA [1980], N~RSKOV and LANG 
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Fig. 49. The heats of formation of 4d transition metals with Li row elements in the NaCl structure (GELATT et 
al. [1983]). 
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[1980j, and JACOIBSEN etal. [1987]. They assumed that the energy required to embed an 
atom at some given position R in a host metal which is characterized by an 
inhomogeneous density p(r), is the same as that required to embed the atom in a 
homogeneous electron gas of density p =fs(R), where p(R) is the average host electron 
density seen by the impurity atom at R. Then the energy of the impurity atom at position 
R in the host lattice is given to lowest order by 

The homogeneous embedding energy A U,,,,@) can be evaluated within LDF theory and 
the results for H and the rare-gas atoms He and Ne are shown in fig. 51a (PUSKA et al. 
[1981]). We see that the rare-gas atoms display a positive embedding energy at all 
densities because their full electronic shells repel the free electron gas through ortho- 
gonality constraints. On the other hand, the open-shell hydrogen atom shows a minimum 
at p = 0.0026 au-’ (i.e., p’” = 0.138 au-’) corresponding to an arrracrive embedding energy 
of -1.8 eV, although it is repulsive for typical transition-metal densities of 0.02-0.03 ar3 .  

The heats of solution of H and He across the 3d series are shown in fig. 51b after 
N@RSKOV [1982] and MANNINEN et al. [1982], respectively. The results include an 
important first-order electrostatic correction term to eq. (156), which reduces the slope 
of the He curve in fig. 51a by half and lowers the H curve by -120p eV au’ so that the 
H embedding energy is attractive throughout the entire range of metallic densities (cf. the 
solid circles in fig. 51b). The behaviour of the helium heat of solution across the 3d 
series mirrors that of the host metallic density which varies like the bulk modulus shown 
in fig. 1. The hydrogen heat of solution is measured with respect to the binding energy 
of the H2 molecule, namely -2.4 eV/atom. We see in fig. 51b that agreement with 
experiments is obtained only if a first-order hybridization correction is included from eq. 
(1 16) which reflects the bonding between the hydrogen impurity and the host nearest 
neighbour atoms (N@RSKOV [ 19821). The effective-medium approximation with first-order 
electrostatic and hybridization corrections included has been applied successfully to 
defect problems such as the trapping energies of H and He by interstitials, vacancies and 
voids (N@RSKQV et al. [1982] and MANNINEN etal. [1982]). The electron theory of point 
defects has been reviewed by JENA [1981]. 

The ordering energy of a binary A, B,, alloy is defined by 

Auod = uod-udis, ( 157) 

where U,, and U,,, are the energies in the completely ordered and disordered states 
respectively. By using second-order perturbation theory for the NFE simple metals 
(HAYES et al. [ 19681 and INGLES~LD [ 1 9691) or a generalized perturbation theory for the 
TB rransizion metals (DUCASTELLE and GAUTIER [1976]) the ordering energy eq. (157) 
can be expressed directly in terms of effective pair interactions $,, &, &,... between the 
first, second, third, ... nearest neighbour atoms. ($n depends explicitly on IAv,(q) 1’ for 
the simple metals and on lAEdI2 for the transition metals). The ordering energy for c I 
0.5 may be written (see, e.g., DE FONTAINE [I9791 and DUCASTELLE [1991]) as: 

References: p.  129. 



120 D. G. Penifor Ch. 2, $7  

10 

c. 

fcc 

P P DO, 
0 
5 -15- 
a, 
I 

-20 - 

-250 
B 32 

0.2 0.4 0.6 0.8 1 
AI concentration of lithium Li 

I I I I 

Fig. 50 (a). The predicted heat of formation of fcc- and bcc-based lithium-aluminium ordered compounds ( a e r  
SLUITER et a!. [ 19901). 
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Fig. 50 (b). The predicted heat of formation of fcc- and hcpbased titanium-aluminium ordered compounds 
(after VAN SCHILFGAARDE et al. [1990]). 

where z, and p,, are the number of nth nearest neighbour atoms and B-B atom pairs 
respectively. 
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Fig. 51 (a) The homogeneous embedding energy for H and the rare gas atoms He and Ne in a free electron gas 
of density p (after PL'sKA et al. [ 19811). (b) The H and He heats of solution across the 3d series (after N@RSKOV 
[1982] and MANNINEN ef al. [1982] respectively). The solid circles include a first-order electrostatic con- 
tribution. The open circles include, in addition, a first-order hybridization correction. 

The effective pair interaction in transition metals with respect to an fcc lattice is 
illustrated by fig. 52a where 41 and q52 are plotted as a function of average band filling 
E d  for the TB d band alloy with c=O.25 and AEd/W = 0.45 (BIEBER etal. [1983]). As 
expected from the behaviour of the simple-metal pair potentials in Q 6.1, the transition- 
metal pair interactions display oscillations as a function of band filling, Ed, and nearest 
neighbour position, n. Figure 52b compares the ordering energy evaluated by the pair 
interaction of DUCASTELLE and GAUTIER [1976] with the exact TB energy difference 
from eq. (157). We see that for this particular alloy it is a good approximation in the 
band-filling region where ordering occurs. Moreover, because the second and further 
nearest neighbour interactions are at least an order of magnitude smaller than the first nearest 
neighbour interactions, the ordering energy is dominated by +1 through eq. (158). 

The pair interactions also determine the most stable ordered structure with respect to 
a given lattice (BIEBER and GAUTIER [1981]). For example, in fig. 53 the Cu,Au and 
A1,Ti structures are shown, which are built on the fcc lattice. They have the same type 
of first nearest neighbour atoms, so that their relative stability is determined by & and 
further nearest neighbour interactions. Since in fig. 52a is negative for 4.4 < Ed < 7.3 
when AJZd/ W =  0.45, the ordered structure with like second nearest neighbours will be the 
more stable, Le., Cu,Au. The stability reverses outside this band-filling region, thereby 
accounting for the nature of the structure map in fig. 53. This displays only a narrow 
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AEd/W 0.45 

Fig. 52. (a) The first and second nearest neighbour effective pair interactions, 4, and 42, as a function of the 
average band filling, N,, for an AB, transition-metal alloy with a AEJW = 0.45 on an fcc lattice. (b) A 
comparison with the exact result of the ordering energy evaluated using the effective pair interactions. (After 
BIEBER etal. [1983].) 

stability range for the A1,Ti phase, which is in agreement with empirical structure maps 
(BIEBER and GAUTIER [ 198 11). 

This chapter on Electron Theory has been concerned primarily with the cohesive and 
structural properties of metals and alloys at the absolute zero of temperature. However, 
the derivation of effective pair interactions +n within electron theory allows the first- 
principles prediction of phase diagram behaviour by using these in an Ising Hamiltonian 
and performing Monte Carlo or Cluster Variation Method simulations (see, for example, 
DUCASTELLE [1991] and references therein, and ZUNGER [1994]). Chapter 6 deals 
explicitly with Phase Diagrams. 

8. Band theory of magnetism 

The magnetic 3d elements have anomalously large equilibrium atomic volumes and 
small bulk moduli as evidenced by the deviations in fig. 1 between experiment and the 
non-magnetic LDF theory. In this section we will see that the STONER [1939] theory of 
band magnetism can explain this anomalous behaviour. 

A nonmagnetic system will become magnetic if the lowering in exchange energy due 
to the alignment of the electron spins more than compensates the corresponding increase 
in kinetic energy. This may be demonstrated by the rectangular d-band model of fig. 54. 
In the nonmagnetic state, the up and down spin electrons are equivalent and, therefore, 
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Fig. 53. The relative stability of the C u a u  and M3Ti structures as a function of the average band filling fid, 
and the renormalized difference in the atomic d levels, AEJW (after B m  and GAUTIER [19811). 

they have identical density of states nt and nJ as shown in fig. 54a. In the magnetic state, 
the presence of a local magnetic moment, m, produces an exchange field A on the atom, 
of strength 

d = im, ( 159) 

where I is the Stoner exchange parameter and m =N$-iVi in Bohr magnetons &J. In the 
ferromagnetic state, all the atomic moments are aligned in the same direction, so that an 
up-spin electron sees the atomic level Ed shifted by -$A a on every site, the down-spin 
electron by GA. Therefore, the densities of states nt and nJ are shifted rigidly apart by 
A as shown in fig. 54b. On the other hand, in the antiferromagnetic state, half the atoms 
have their moments aligned up, the other half have their moment aligned down, so that 
an electron sees two types of sites, with energies Ed *A. The problem is, therefore, 
analogous to that of the AB alloy discussed in the previous section (cf. fig. 44) and the 
densities of states nT and nJ (corresponding to an atom with net moment up) are obtained 
by skewing the rectangular nonmagnetic densities of states as shown in fig. 54c. 

The magnetic energy which accompanies the formation of a local moment m at each 
site, may be written as: 

u,, = s T - + i m 2 ,  

where the first term is the change in the kinetic energy and the second is the lowering in 
energy due to exchange. The ferromagnetic (fm) state is created by flipping i m  down- 
spin electrons from just below the nonmagnetic Fermi level into the unoccupied up-spin 
states just above the nonmagnetic Fermi level. This is accompanied by an increase in 
kinetic energy of (im)/n(EF) per electron, so that, to second order, 

U, = 4 m2/n(E,) - Im2 

where in this section n(E,) refers to the nonmagnetic density of states per spin. There- 
fore, the nonmagnetic state will be unstable to ferromagnetism if V, < 0, i.e. if: 
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Fig. 54. The rectangular d band model of the (a) nonmagnetic, (b) ferromagnetic, and (c) antifemmagnetic 
states (3fter -IFOR [1980]). 

In( EF) > 1 ( 162) 

which is the famous Stoner criterion. The equilibrium value of m in the ferromagnetic 
state is determined by the condition 

In( Nd , m) = 1, (163) 

where n (Nd, m) is the average of the nonmagnetic density of states per spin between the 
two energies corresponding to a band-filling of Nd and Nd respectively (see, e.g., 
GUNNARSSON [19761). 

The magnetic energy of the antiferromagnetic (afm) state can be obtained (PETTIFOR 
[1980]) by adding up the band energies in fig. 54c and subtracting off the exchange 
energy which has been double-counted, i.e.: 

.1 T 

v,, =-$(~ , -W)Nd(10-Nd)++1m2,  (164) 

where from eq. (142) 

W,, = (1 + 3(A/W)')112 W. 

Expanding eq. (1 65) to second order and using eq. (159), the nonmagnetic state is found 
to be unstable to antiferromagnetism if 

( 166) 

This is the rectangular d-band model criterion equivalent to the exact second-order result, 
namely 

I/W > [A Nd(10 - Nd)]'. 

' x q ( E F )  > (167) 

where x,(EF) is the response function corresponding to the afm ordering wave vector 4 
(see, e.g., BDDERS and MARTIN [ 19661). The usefulness of the present model is that eqs. 
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0 - 1  

(164) and (165) include terms beyond second order so that the equilibrium value of the 
magnetic moment and energy may be obtained explicitly. Equation (164) is stationary for 

Cr Mn Fe Co Ni 
I I I 

when 

u,, = [h ~nr,(10 - N ~ )  - + w'/z] - t zm2 

The first term in eq. (169) represents the change in kinetic energy, ST. The value of the 
moment given by eq. (168) is identical to that obtained by filling the up and down spin 
bands in fig. 54c and solving eq. (159) self-consistently. 

Figure 55 shows the regions of stability of the ferromagnetic and antiferromagnetic 
phases as a function of the renormalized exchange integral, I/ W, and band filling, Nd, for 
the rectangular d-band model (see also PENN [1966]). The fm and afm phases are stable 
for values of I/ W above the critical curves ABC (fm) and DBE (afm), which are defined 
by eq. (162) with n(E,)= 5/W and eq. (166), respectively. In the region where both 
phases are stable, the fm and afm state have the lower energy in region FBE and ABF 
respectively. 

The magnetic behaviour across the 3d series can be accounted for qualitatively (see 
also MORIYA [ 19651) by assigning the 3d transition-metals values of Nd in fig. 55 which 
fix Ni with 0.6 holes. Values of Z/W are chosen as marked by the crosses in fig. 55, the 
numbers lying in the range expected from first-principles LSDF calculations where Z = 
1 eV and W = 5 eV for the 3d series (see, e.g., KUBLER [1981]). Z is approximately 

constant across the series but W increases from Ni to Cr just as observed in table 1 for 
the corresponding 4d series from Pd to Mo. Therefore, we expect Z/W to decrease in 
moving from Ni to Cr, as shown in fig. 55. The positions of the crosses in fig. 55 imply 
that Ni and Co are strong ferromagnets with moments of 0.6 and 1.6 pB respectively, 

0-3  

I 
W 
- 

0 -2 
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whereas Fe (Z/W=0.180), Mn(Z/W=0.158), and Cr (Z/W= 0.136) are anti-ferromagnets 
with local moments from eq. (168) of 0.9, 1.6 and 0.7 p,, respectively. 

In practice, the rectangular d band model is not too bad a description of the close- 
packed fcc and hcp metals whose densities of states are fairly constant away from the top 
of the d band (c.f. fig. 26). This is demonstrated in fig. 56 by the band structure calcula- 
tions of ASANO and YAMASHITA [1973] who evaluated the fm and afm local moments 
across the 3d series. Their fcc results are similar to those obtained from fig. 55. In 
particular> fcc iron is unable to maintain a fm moment, being instead a weak antiferro- 
magnet. However, if I/ W were to increase (by volume expansion), then fig. 55 implies 
that fcc iron eventually stabilizes in the fm state as has been observed experimentally by 
GRADMANN and ISBERT [1980] and theoretically by the LSDF calculations of KOBLER 
[1981]. 

On the other hand, bcc transition metals have a very non-uniform density of states 
and are characterized by a very marked antibonding peak for N = 8 electrons (cf. fig. 
26a). n(&) is sufficient for the 3d transition metal iron to satisfy the Stoner criterion 
(162) and the resulting magnetic energy of - 0.3 eV/atom (JANAK and WILLIAMS [ 19761) 
stabilizes the bcc lattice with respect to the nonmagnetic or weakly afm close-packed 
lattices. Under pressure, however, the d band broadens and the density of states 
decreases, thereby leading to an increased kinetic-energy contribution in eq. (161). At 
just over 10 GPA the nonmagnetic structural energy contribution in fig. 35 wins out and 
ferromagnetic bcc a-iron transforms to the nonmagnetic hcp s-phase (MADSEN et al. 
[1976]). This is the most stable structure of the isovalent 4d and 5d elements Ru and Os 
at their equilibrium volume because their wider d bands prevent them from satisfying the 
Stoner criterion. At atmospheric pressure bcc a-iron transforms to the fcc ?-phase at 
1184 K and changes back to the bcc 8-phase at 1665 K just before melting at 1809 K. 
The occurrence of the a, y, 8 and s-phases in the temperaturepressure phase diagram 
of iron can be understood qualitatively (HASEGAWA and PETTIFOR [1983]) within a band 
theory of magnetism which extends Stoner theory to finite temperatures (CYROT [1970], 
HASEGAWA [ 19801 and HUBBARD [ 19811). 

The simple rectangular d band model of antiferromagnetism presented in fig. 54c 
does not include any Fermi-surface nesting effects which Lo- [1962] argued were 

Cr Mn Fe Co 
f cc bcc 

Fig. 56. The magnetic moments of the 3d metals in the ferromagnetic and antiferromagnetic states calculated 
as a function of band filling by &NO and YAMASHITA [1973] for the fcc and bcc lattices. The crosses mark 
the experimental values. 
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responsible for the observed periodicity of the bcc Cr spin deqsity wave. In practice, 
even though nesting provides only a small contribution to x,(,?&) in eq. (167), it is 
sufficient to take bcc Cr across the afm stability curve DBE in fig. 55 (WINDSOR [ 19721 
and SKRIVER C1981al). 

The anomalous behaviour of the equilibrium atomic volumes and bulk moduli of the 
3d series observed in fig. 1 is due to the magneticpressure, Pmg=- dU,,$dV, which 
accompanies moment formation (SHIGA and NAKAMURA [1969] and JANAK and 
WILLIAMS [ 19761). Assuming that I is volume-independent (MADSEN et al. [ 19761) and 
W varies inversely with volume to the five-thirds power (HEINE [1967]), it follows from 
eqs. (161), (164) and (169) that 

3P,,V = 56T, (170) 

because 6 Umd6m = 0 at equilibrium. 

approximated by the first term in eq. (161), so that 
In particular, for the ferromagneric state the kinetic-energy change, ST, may be 

34,V = % rn2/n(EF). (171) 

JANAK and WILLIAMS [1976] have shown that this simple expression accounts for the 
increase in equilibrium volume on going to the ferromagnetic state which the LSDF 
results display in fig. 57. For example, iron and nickel have moments of 2.2 and 0.6 pB, 
respectively, and LDF nonmagnetic density of states per spin of 1.5 and 2.2 states per eV 
atom respectively. Substituting into eq. (171) gives a magnetic pressure for iron and 
nickel of 21.2 and I GPA, respectively, which leads to an increase in the equilibrium 
volume of 7% and ;%, respectively. The increase in atomic volume reduces the bulk 
modulus because the valence s electrons are now no longer compressed to the same 
extent into the core region where they are repelled by orthogonality effects (cf. 5 5.2). 

Figure 57 shows that the experimental trend in the equilibrium atomic volume and 
bulk modulus across the ferromagnetic metals Fe, Co and Ni is well accounted for by the 
LSDF results (JANAK and WILLIAMS [1976]). Similarly, SKRIVER et al. [1978] have 
obtained good agreement with experiment across the 5f actinide series, where the LSDF 
calculations reproduce the sudden 30% volume expansion that is observed in going from 
Pu to Am, due to the formation of a 5f moment. The 4f rare earths Ce and Pr have also 
been studied within LSDF theory, by GLOTZEL [1978] and SKRIVER [1981b] respectively, 
as too has the permanent magnet Nd,Fe,,B (COEHOORN [1992]) and various magnetic 
mutilayers (EDWARDS [1992]). However, errors remain in figs. 1 and 50 (for the 3d 
metals in particular) which must be attributed to the Zocal approximation to the exchange 
and correlation energy functional. For example, LDF theory does not position the valence 
s and d bands in exactly the correct relative position (HARRIS and JONES [1978]) or 
provide the correct exchange splitting in nickel (WOHLFARTH [1980] and COOKE et al. 
[ 198 I}). Although the correlations can be treated perturbatively within a TB framework 
(FRIEDEL and SAYERS [1977]), a simple non-local extension of the LDF approximation 
will be required for the next generation of higher-accuracy first-principles calculations 
(see, e.g., JONES and GUNNARSSON [1989]). 
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Cr Mn Fe co Ni 

Fig. 57. The equilibrium Wigner-Seitz radius, S, and bulk modulus, B,  across the magnetic 3d transition metals. 
The crosses, circles. and squares are the experimental, spin-polarized LSDF and nonmagnetic LDF results, 
respectively. (After JANAK and WILLIAMS [1976].) 
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1. SoLid solubility 

A solid solution is obtained when atoms of different elements are able to share 
together, and with changing proportions, various sites of a common crystalline lattice. It 
is now generally recognized that all metals and compounds show some solubility in the 
solid state; a question of great interest is, however, the extent of solid solubility in a 
given case. For example, only 0.2 wt% of phosphorus can be dissolved in y-iron, but 
nearly 39 wt% of zinc can be dissolved in copper without changing its structure. On 
alloying copper with nickel, on the other hand, the same fcc structure is maintained 
throughout the entire alloy system (fig. la), providing an example of complete soZid 
solubility. The Au-Cu alloys have complete solid solubility at high temperatures, but 
show different behavior at low temperatures (see fig. l b  and 0 11). In the great multitude 
of phase diagrams now known, the above cases, and even the case of only a partial but 
extensive solid solubility (of several atomic percent), are relatively rare. Complete solid 
solubility can occur only if the structures of the elements involved are basically the same, 
but it need not always occur when this condition is fulfilled (Le., the system Cu-Ag 
which is a simple eutectic). In the case of close-packed hexagonal solid solutions 

Cu-Ni Phase Diagram 

Weight Percent Nickel 
0 IO rn 30 QJ 50 60 m 80 90 100 

CU Atomic Percent Nickel Ni 

Fig. la. Complete solid solubility in the system Cu-Ni which maintains fcc structure throughout the whole 
composition range (from MASSACXI [19!30].) 
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~~ ~~ 9 Au-CuPhaseDiagram 

Weight Percent Copper 
0 IO 20 30 40 50 80 70 80 WIM) 

B7.c 

0 10 20 90 40 50 Bo 70 80 80 LOO 

Au Atomic Percent Copper cu 

Fig. Ib. The Au-Cu system has complete solid solubility and fcc structure at high temperatures. At low 
temperatures superlattices form (see 8 11). (From MASSALSKI [1990].) 

considerable difference between the values of the axial ratio can usually be accommo- 
dated on changing from one element to another; for example, the axial ratio, C/Q, 

changes from 1.5873 for Ti to 1.5931 for Zr in the Ti-Zr system, and from 1.6235 for 
Mg to 1.8856 for Cd in the LZlg-Cd system. The phase diagrams of these systems are 
shown in figs. I C  and Id. In the case of Ti-Zr the pure elements exist in two allotropic 
forms (cubic at high temperatures and hexagonal at low temperatures), and complete 
solid solubility occurs between both modifications on alloying. In the Mg-Cd system, on 
the other hand, complete solubility occurs only at high temperatures and is interrupted at 
lower temperatures by the formation of superlattices (see 0 11). 

From the point of view of solid solubility, chemical compounds can be compared 
with pure metals and may be said to show alloying behavior if they exhibit wide solid 
solubility in a phase diagram. Since compounds are usually formed at fixed ratios of the 
numbers of atoms, the occurrence of solid solubility represents a departure from 
stoichiometry. If a compound is truly ionic in nature, the extent of such departure may 
be extremely small, amounting perhaps to a fraction of an at%; and for all practical 
purposes this is usually ignored and the compound is then drawn as a vertical line in the 
phase diagram. However, in typical metallic systems a large number of phases have been 

References: p .  199. 



138 I: B. Massalski Ch. 3, $2 

Weight Percent Zirconium 
0 10 20 30 4Q 50 60 70 80 

2ow 

Ti Atomic Percent Zirconium Zr 

Fig. IC. The Ti-Zr system has complete solid solubility, with cubic structure at high temperatures and 
hexagonal structure at low temperatures (from MASSAL~KI [1990].) 

observed at atomic compositions which bear no apparent relation to the rules of 
stoichiometry. Such phases frequently possess wide ranges of solid solubility and 
resemble the solid solutions obtained on initial alloying of pure metals. To an engineer 
concerned with materials the occurrence of wide solid solubility, both between pure 
metals and in compounds, is of great practical interest because it is often associated with 
relatively simple metallic structures which possess desirable mechanical and physical 
properties. 

In this chapter we shall examine some of the factors which determine the limits of 
solid solubility in metallic systems and then consider some properties of the structure of 
extended solid solutions, such as lattice spacings, defects, departure from randomness, 
size effects, etc. 

2. Terminology (types of solid solutions) 

Solid solutions are phases of variable composition, and in principle any number of 
components can be alloyed together to form a series of solid solutions. However, for 
simplicity we shall consider mainly the binary alloys. The replacement of copper atoms 
by nickel on the lattice of pure copper is an example of a substitutional solid solution. 
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~ ~~~ ~ 

Weight Percent Magnesium 
$9 

Me 
o IO 20 ~1 UI sn m 'IO 80 sa IW 
cd Atomic Percent Magnesium 

Fig. Id. In the Mg-Cd system complete solid solubility occurs at high temperatures. Superlattices form at low 
temperatures (see 5 11). (From MAWKI [1990].) 

Since the two elements can be substituted at all proportions throughout the whole system, 
they form a contipluous series of solid solutions. If the solid solubility is limited to only 
those portions of the phase diagram which are linked to pure elements, the resulting 
phases are known as primary (or terminal) solid solutions. Such solutions have, of course, 
the same structure as the elements on which they are based. All other phases are usually 
known as intermediate phases; they may be called intermetallic compounds or valence 
compounds if their solid solubility is unusually restricted around a stoichiometric 
composition. Intermediate phases typically possess structures which are different from the 
structure of either of the component elements. 

If the size-difference between the component atoms which participate in forming a 
solid solution is sufficiently large, it may become possible on alloying for the one kind 
of atoms to be merely deposited in the holes (or interstices) between the other atoms on 
their space lattice. An interstitial solid solution is then formed. Such solutions can occur 
for example when nonmetallic elements such as boron, oxygen, nitrogen or carbon are 
dissolved in a metal lattice. 

Both interstitial and substitutional solid solutions can be random, with statistical 
distribution of atoms, or they may be partially or completely ordered, in which case the 
unlike atoms show preference for one another. A fully ordered solid solution is some- 

References: p .  199. 
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a b C d 
Fig. 2. Schematic models of solid solutions: (a) substitutional random; (b) substitutional ordered; (c) interstitial 
random; (d) solute clusters in solid solution. 

times known as a superlattice. Alternatively, the like-atoms may tend to associate 
together to form clusters within the solid solution. Again, the clusters may be dispersed 
randomly or they may be ordered or oriented in various ways, producing a variety of 
complex substructures within the solid solution. A diagrammatical illustration of the 
various types of solid solution is given in fig. 2. 

While it is possible to consider the case of a random solid solution as an idealized 
example, the mounting experimental evidence, based mainly on diffuse X-ray scattering, 
suggests that complete randomness (like perfect crystallinity) is probably never found in 
nature. Hence, solid solutions which are in a thermodynamical equilibrium (ch. 5 )  may 
be considered to be truly homogeneous on a macroscopic scale, but they need not be 
homogeneous down to the scale where atoms are considered individually. 

3. Energy of solid solutions and phase stability considerations 

The extent of solid solubility of phases, the stability of phases, the temperature 
dependence of stability, and the choice of structures that are actually observed in phase 
diagrams are the result of competition among numerous possible structures that could be 
stable in a given system. This competition is based on the respective values of the Gibbs 
Free Energy of each competing phase and the variation of this energy with temperature, 
pressure, composition and possibly other extensive parameters. The details are presented 
in chapter 5.  Here, we shall merely state that the most general form of the Gibbs energy 
(G) can be expressed as a function of the intensive parameters, enthalpy (H) and entropy 
(S), and the absolute temperature Q: 

G = H - TS. (1) 
As is well known, numerous factors contribute to the H and S parameters. The major 
contribution to the entropy is from statistical mixing of atoms (AS-), but there can be 
additional contributions from vibrational effects (ASvib), distribution of magnetic 
moments, clustering of atoms and various long range configurational effects. The main 
interest in this chapter is in the contributions to the enthalpy resulting from atomic 
mixing (AH-), which are in turn related to the interaction energies between neighbour- 
ing and further distant atoms in a given structure based upon electronic, elastic, magnetic 
and vibrational effects. Much progress has been made in measuring, calculating and 



a. 3 , 4 3  Structure of solid solutions 141 

predicting many such effects, and hence progress continues to be made in the evaluation 
of the related thermodynamic quantities and ultimately the phase diagrams. 
Some recent reviews of these topics are listed in the bibliography for further reading (and 
in chapter 6). 

Typical values of the enthalpy of formation (AH) and its relation to the type of 
bonding are given as an illustration in table 1. As discussed in chapter 6, a change by 
10-2Q kJ/mole in the interaction parameter that determines the enthalpy of formation can 
profoundly affect the form of the resulting phase diagram. The estimation of the AH 
values, particularly for systems where the experimental data are meager or lacking, has 
been therefore of great practical interest to the workers in the area of phase stability. 
Semi-empirical values of the heats of formation have been predicted for many systems 
by Miedema and co-workers (MIEDEMA and NIESSEN [ 19881) and have found many uses. 

Along with the progress achieved in the measurements that established the details of 
phase diagrams and the associated phases, it is natural that the observed phase stabilities 
should be tested against basic theory. In this connection, two aspects stand out sharply 
([NLPhssk~sm 19891): 
(1) The need to calculate phase stability from “first principles” in order to understand 

the basic parameters that control the energy of a phase. 

Table 1 
Heats of formation at 2983 of some typical intermediate phases and compounds.* 

Compound or phase Structure** Predominant bonding Heat of formation 
-AH &T/g atom) 

MgSe NaCl (B2) Ionic 135.9 f 8.3 
MgTe ZnS (B4) Ionic 104.3 C 10.4 
ZnTe zms (B3) Ionic 60.0 C 2.1 

CaF, 0) Partially ionic 38.4 f 0.08 
c?$3 @5C) Partially ionic 30.9 f 0.8 

Mg2Si Cap, (Cl) Partially ionic 26.3 f 1.3 
InAs zns 033) Covalent 30.9 f 2.5 
GaSb ZnS (B3) Covalent 20.9 C 0.8 
InSb as 033) Covalent 14.6 C 0.4 
NiTe NiAs (B8) Partially metallic 18.8 f 6.3 
CoSn NiAs (B8) Partially metallic 15.0 f 1.3 
Co,Sn2 NiAs (B8) Partially metallic 11.3 f 0.8 
CaMg, MgZn, (CW Metallic 13.3 +- 0.4 
Ag& (0.61 a) Y-braSS (D&) Metallic 4.6 f 0.21 
A@ (0.50 Zll) &brass (B2) Metallic 3.1 f 0.21 

*Data taken from ROBINSON and BE- [1967]. 
**For meaning of the symbols, see ch. 4. 

References: p .  199. 
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(2) The need to utilize the successful theories of phase stability for predicting phase 
diagrams in systems where measurements have not yet been done, or are particu- 
larly difficult. Here, progress will ultimately permit technologically relevant 
complex or multicomponent phase diagrams to be predicted. 

It was Hume-Rothery and his associates who more than a half century ago laid the 
foundations for a systematic study of phase diagrams and their interpretation. A suitable 
testing ground at that time was the stability of alloy phases based on the so-called noble 
metals, Cu, Ag, and Au (HUME-ROTHERY [1955]; HUME-ROTHERY et al. [1969]). From 
this work has emerged the emphasis on three general metallurgical parameters. Stated 
very broadly they are: 

(1) 
(2) 
(3) 
Their importance is often expressed in terms of the so called “Hume-Rothery Rules” (see 
section 4). 

Regarding the basic theory, the understanding and prediction of phase stability of 
alloys and compounds in terms of the electronic structure calculations is a subject of 
paramount importance in materials science. There has been much progress in the ‘‘first 
principles” (or the so called “ab initio” approach to the band theory of both ordered 
compounds and, more recently, also of random metallic alloys (STOCKS and WINTER 
[1984]). At the same time, because of the pressing need of technology, many semi- 
empirical or partially qualitative schemes of phase stability have been pursued, often very 
successfully. The results of such attempts are usually the estimated heats of formation 
(AH) (see also ch. 2, 06.2.). 

Basic theoretical guidelines are needed to classify phase diagrams, in order to be able 
to extrapolate from known binaries to higher order systems. A theoretical derivation of 
energies of specific structures and phase equilibria between them, eventually will yield 
reasonably accurate free energy and entropy changes, and a description of states of 
partial order, relative stability of metastable phases, etc. Clearly, the first step towards 
true theoretical determination of phase diagrams is to calculate the energies of phases 
involved in simple binaries and compare them with experimentally determined values, 
where possible. A number of theoreticians in excellent reviews (LOMER [1967], 
FAULKNER [1982]; HAWR [1983]) have outlined the different operations that must be 
performed to calculate a composition-temperature phase diagram of a binary alloy, 
starting first with the stability of individual phases. Essentially, these steps are as those 
enumerated in table 2. 

From the point of view of phase stability, the result of such a detailed calculation 
would be a sufficiently precise set of values of the enthalpies of the various competing 
alloy phases and their variations with composition. The calculation of the phase 
diagrams, including temperature and entropy, would be the next step. Clearly, from the 
point of view of phase stability, even these initial calculations represent a monumental 
task. Yet, a glance at table 3 quickly shows that theoretical assessments are our only 
reasonable hope of dealing with higher-order systems in the near future. In table 4, a brief 

the difference in atomic sizes of the components, 
the electrochemical differences among the components, and 
the “electron concentration” change on alloying. 
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Table 2 
Phase stability calculations.* 

(First principles) 
General procedure 

(1) 
(2) Fix alloy composition. 
(3) 
(4) Choose lattice parameters. 
(5) 

Result: total energy 

(6) 
(7) 
(8) 

Calculate self-consistent atomic potentials of components. 

Assume a possible crystal structure. 

Introduce the atomic potentials on the lattice, calculate selfconsistent band structure and ground 
state energy, and add interionic energy. 

Repeat (4) and (5 )  for different values of lattice constants. 
Repeat (3) through (6) for other possible crystal structures. 
Repeat (2) tlmugh (7) for other compositions. 

Result: enthalpy of the possible alloy phases as a function of composition. 

*Lorn [1967], FAIJLKNER [1982], HAFNnz [1983] 

summary is given of some of the more recent theoretical calculations that have been 
developed. This summary is not intended to be comprehensive or complete. (See also ch. 
5, Q 6.). 

Table 3 
Possible number of systems. 

binary 

ternary 

quaternary 

n! 
(rn! (n  - rn)! 

-- - 4,005 90! 
2!88! 

go! - I 17,480 
3!87! 

4!86! 

-- 

-- go! - 2,555,190 

n = number of elements (say 90) 
m = number of elements in a system 

As emphasized by many authors (MASSALSKI [1989]), the majority of existing models, 
from the semi-empirical to those providing detailed density maps and electronic 
parameters of alloys, have the same major drawback as far as phase diagrams are 
concerned: it is difficult to treat theoretically the temperature dependence of the energy. 
For example, the calculations that predict enthalpies at 0 K (for first principles calcula- 
tions), or at some undefined temperature (for the semiempirical models), rarely provide 
sufficient information about the thermal behavior of such enthalpies or the thermal 
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entropy contributions. Yet, for the purpose of phase diagrams determination the Gibbs 
free energies must be calculated by adding to each enthalpy derived from the static 
models the vibrational energy and the thermal entropy contributions. The latter in turn consist 
of vibrational and configurational parts. It is clear that the prediction of entropies, particularly 
for possible metastable phases in phase diagrams, will become the necessary step before the 
full potential of the theoretically calculated stabilities can be utilized. Only a few interesting 
examples of phase stability, compound stability and alloying effects are reviewed below. 

4. Factors governing solid solubility (Hume-Rothery rules for primary 
solid solutions) 

Since all interactions between atoms are a function of electronic forces, they should 
ultimately be subject to the laws of quantum mechanics. At the present time, however, 
the available theories of the solid state of the type summarized in table 4 are unable to 
incorporate or to account for the many factors which have been known to materials 
scientists as important in determining the structure and various properties of solid 
solutions. Such factors, for example, as chemical affinity or the size-difference between 
atoms can be considered only semi-empirically, and even the electronic structure, for 
which more elaborate theories exist., has been discussed satisfactorily only in a few rather 
simple cases. Nevertheless, mainly as a result of studies by Hume-Rothery and his 
associates (HUME-ROTHERY [ 1961al and HUME-ROTHERY et ul. [ 1969]), extending over 
more than thirty years, certain general rules have been formulated concerning the limits 
of primary solid solubility and, to some measure, also the width and stability of certain 
intermediate phases. As already mentioned above, these rules refer to the difference 
between the relative atomic radii of the participating elements, their electrochemical 
differences and their relative valencies. Hume-Rotheiy rules may be summarized as follows: 

(i) If the difference between the atomic sizes of the component elements forming an 
alloy exceeds about 14-15%, solid solubility should become restricted. This is known as 
the 15% rule. The general concept may be illustrated by reference to fig. 3 (HUME- 
ROTHERY [1961a]) in which the ranges of favorable atomic sizes with respect to copper, 
silver and y-iron are shown diagrammatically. If the atomic diameter of a particular 
solute element lies outside the favorable size zone for the solvent, the sizefactor is said 
to be unfavourable and the primary solid solubility will be restricted usually in some 
proportion to the increasing difference between the two atomic diameters. Within the 
favorable zone the size factor is only of secondary importance and other factors will 
determine the total extent of solid solubility. In a sense, therefore, the 15% rule is a 
negative rule stressing the role of size differences only when they restrict alloy forma- 
tion. In this connection, WABER et al. [1963] have shown that when the size rule alone 
was applied to 1423 terminal solid solutions, in 90.3% of the systems where little solid 
solubility was predicted, little solid solubility was in fact observed, but the prediction of 
extensive solid solubility on the basis of small size difference was only 50% successful. 
Theoretical justification for the 15% rule has been obtained from considerations of elastic 
strain energy in a solid solution (see below). 
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Table 4 

Recent thwretical calculations of phase stability or phase diagrams. 

'Qpe of calculation Quantities calculated ?Lpicd references 

semi-empirical (charge density, 
size and electronegativity 
effects) 

enthalpy of mixing, AHf MIEDEMA et al. [1980] 
MIEDEMA and NIESSEN [1988] 

Pair potentials 

Mainly d-band effects 

Mainly valence band effects 

Cluster variation models 

First principles calculation 
using various atomic po- 
tentials: DFT, LSDA, 
KKR-CPA, LMTO 

alloy stabilities 
A L f  (at 0 K) 

maps of related structures 
and their stabdity, A& 

relative alloy stabilities 
density of states 

ordering energies, order-disorder 

AH, (at 0 K) of simple 
systems 

AHmr (at 0 K) lattice 
dynamics, ordered com- 
pound stabilities 

simple phase diagrams 

MACHLW [1981] 

PETTIFOR [1986, 19791 
WATSON and BENNETT [1979, 19831 
YUKAWA et al. [1985] 

Mom and JONES [1936] 
BREWER [1968] 
MASSALYKI and MIZUTANI [1978] 

DEFONTAINE [1983] 
R. KIKUCHl[1981] 

WILLIAMS et al. [1982] 

Ym and C o r n  [1982] 

Xu et al. [1987] 
&I et al. [ 19891 
Smms and WINTER [1984] 
HAFFNER [1983] 
TERAKURA et al. [1987, 19881 

(ii) Formation of stable intermediate compounds will restrict primary solid solubility. 
The likelihood of the formation of such compounds in an alloy system is related to the 
chemical affinity of the participating elements and will be increased the more 
electronegative one of the elements and the more electropositive the other. The general 
principle leading to the restriction of solid solubility is illustrated in fig. 4 using 
hypothetical free-energy curves for a primary solid solution and for an intermediate 
phase. The width of the shaded area represents the extent of primary solid solubility; it 
becomes more restricted the greater the stability of the intermediate phase. The above 
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Fig. 4. Restriction of primary solid solubility due to stability of an intermediate phase. 

principle has become known as the electmchemical effect, which is related to the 
difference in the electronegativities of the two components. 

(iii) Empirical studies have shown that in many alloy systems one of the most 
important factors determining the extent of solid solubility and the stability of certain 
intermediate phiases is the electron concentration. This parameter is usually taken to 
denote the number of all valence electrons per unit cell provided that all atomic sites 
within the structure are occupied. Alternatively, electron concentration may be taken as 
the ratio of all valence electrons to the number of atoms. It is then denoted as e /a .  

Following the early investigations by Hume-Rothery and his associates it was also 
suggested that the mutual solid solubility of two given elements was related to their 
respective valencies, namely, that the amount of the solid solution in the element of 
lower valency was always greater than vice versa. This general principle is sometimes 
known as the relative valency effect. It appears to be valid when copper, silver or gold, 
which are monovalent, are alloyed with the B-subgroup elements of the Periodic Table 
which possess valencies greater than one. It may be associated in part with the fact that 
the Brillouin zones of the noble metals are only partially filled with electrons; and, 
although they nre touched by the Fermi surface, they are not overlapped as are the 
Brillouin zones of the B-subgroup elements. A more likely cause, however, has its origin 
in the long-range charge oscillations around the impurity atoms as discussed by FRIEDEL 
[I9641 and BLANDIN [1965]. 

Subsequent appraisals by HUME-ROTHERY [1961a] and GSCHNEIDNER [1980] suggest 
that the relative valency effect is not really a general principle, and that when two 
elements which are both of high valency are alloyed together it is often not possible to 
predict which of the two will form the more extensive solid solution with respect to the other. 

5. The meaning of “electron concentration” 

In the study of alloys it is often convenient to use the electron concentration, rather 
than atomic or weight composition, as a parameter against which various properties can 
be plotted. In the case of the alloys of the noble metals, the use of electron concentration 
has been particularly successful since it almost never fails to bring about interesting 
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correlations when applied to experimental data. Nevertheless, the physical meaning of 
electron concentration is by no means as simple as that of chemical composition, and as 
time progresses it has become increasingly more difficult to “visualize” the process by 
means of which valence electrons which belong to the solvent and the solute atoms 
become a common property of the conduction band of an alloy. Usually only the s and 
p electrons are considered as taking part in such a process, but occasionally the total 
number of electrons outside the inert-gas core (Le., s+p+d  electrons) has been used to 
denote the electron concentration (see below). In the B-subgroup elements which follow 
the noble metals in the respective horizontal rows of the Periodic Table the d bands in 
the free atoms are fully occupied by electrons. It has been considered for a long time, 
therefore, that on alloying only the s and p electrons are involved, but the possibility of 
transfer of electrons from the d band to the conduction band, and the s-d hybridization, 
makes the situation more complex. There is no doubt that the presence of d-band 
electrons sufficiently near the Fermi level in alloys of the noble metals and the changes 
in the energy of the d-band electrons on alloying constitute an important contribution to 
the electronic structure. This contribution is at present not fully understood but progress 
continues to clarifj the picture. Calculations of the cohesive energy of the noble metals, 
using the assumption that only the s electrons are important, yield values which are far 
too low when compared with experimental data. In fact, as pointed recently by COTTRELL 
[1988], the cohesion of a metal like copper is mainly the result of attraction brought 
about by the sd hybridized electrons and the positive ions, while that part of the 
electronic system which corresponds to the classical free-electron gas is actually pushing 
the atoms apart (see below). 

On the other hand, on alloying, even if it is assumed that the d band may be ignored 
and that certain elements possess a well-defined valence (for example, copper = 1, zinc = 
2,  gallium = 3, etc.), it is not certain whether all of the (s + p) electrons of a solute 
element go into the conduction band of the alloy. FRIEDEL [ 1954al has suggested that in 
an alloy some of the s + p electrons may lie in bound stares near the solute nuclei. 
According to M m  [1952] such elements as zinc, gallium, germanium, etc., when 
dissolved in copper certainly contribute at least one electron to the conduction band. The 
next electron may or may not be in a bound state, while the additional electrons in 
gallium and germanium almost certainly are in bound states. Nevertheless, it has been 
suggested by FRIEDEL [1954a] and others that the valence-electron concentration rules 
may remain valid if one assumes that the potential acting on conduction electrons in an 
alloy “subtracts” from the bottom of the conduction band as many bound states as there 
are electrons in the bound atomic orbitals. Hence, the Elationship between the effective 
conduction electrons and the band structure may be such that the Brillouin-zone effects, 
associated with the stability of phases and certain other alloy properties, may remain 
relatively unaltered. For further discussion of this and related subjects see FRIEDEL 
[1954a], HUME-ROTHERY and COLES [1954], COTTRELL [1988], and the proceedings of 
recent symposia (RUDMAN etal. [1967], BENNETT [1980], G o ~ s  and STOCKS [1989]). 

In alloy systems which involve transition elements, rare earths, actinides, lanthanides 
and transuranic elements, the assessment of valence and the corresponding changes in 
electron concentration are open to quite wide speculation. Often they depend on the 
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nature of the particular problem to be considered. Thus, many striking regularities are 
frequently revealed in a group of related elements, or alloy systems, provided that some 
valence scheme is adopted against which various properties within the group can be 
compared. For example, a rather abrupt change occurs in the electronic specific heat, 
magnetic susceptibility, Hall coefficient, hydrogen absorption, etc., in the transition 
metals and alloys of the first long period at an electron concentration of about 5.7 @€on 
[1962]) provided that the numbers of electrons outside the inert-gas core are considered 
to represent their valence, Le., 4, 5, 6, 7, 8 and 9 for Ti, V, Cr, Mn, Fe and Co respec- 
tively. At the same time the valencies of these same elements when in dilute solution in 
the noble metals or aluminium are usually assessed according to a dimerent scheme in 
which only the predominantly s electrons are included. Considerations of phase stability 
(Hw-ROTHERY [1966] and RAYNOR [1956]) and changes of axial ratio (MASSALSKI 
[1958], MASSALSKI and KING [1960], COCKAYNE and RAYNOR [1961] and HENDERSON 
and RAYNOR [ 19621) suggest that the above transition elements possess much lower, and 
possibly variable, valencies in the range between 0 and 2. 

In a similar way, valence schemes have been suggested for other alloy groups, but 
will not be discussed here. 

5.1. Progress in the electronic theories of metals and alloys 

The distinction between metals, semi-metals and insulators, in terms of Brillouin 
zones, energy bands and the related overlapping or separation of bands, which has been 
for many years the basis in physics for defining what is a metal, has become somewhat 
blurred in recent years. COTTRELL [1988] points out that there are many substances that 
show metallic conductivity (or even superconductivity) even though clearly they are not 
metals in other aspects. (For example TCNQ, or certain ceramic oxides). When sufficient 
pressure is applied, electronic clouds of individual atoms are forced to overlap more and 
more, with the result that additional outer electrons in atoms will cease to belong to any 
particular atomic orbital and will behave as nearly free, contributing to metallic conduc- 
tivity and bonding. Thus, the traditional view that the outer electrons (Le., the valence 
electrons) become the “bonding glue” when atoms are assembled into crystals has 
become quite blurred. 

In the earlier theories of Brillouin zones and Fermi surfaces the Bloch wavefunctions 
were used as a basis for calculation. Metals and solid solutions were considered as 
regular arrays of ions immersed in a “sea” of conduction electrons. The potential in a 
crystal was considered to be a periodically varying quantity corresponding to the 
periodicity of the ionic lattice and being more or less atomic (i.e. rapidly falling) in 
character near each ion. Bloch was able to show that wave functions of the conduction 
electrons for which the potential energy was modulated by the periodicity of the lattice 
were valid soluiions of the Schr6dinger equation. The resulting Bloch model has served 
as a very successful basis for discussion of the motion of electrons in metals and alloys. 
Only the conduction electrons, moving without electrostatic interactions with one another, 
were considered, and their motion was described by one-particle functions. Hence only 
the kinetic energy of the electrons was involved. 
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Subsequent developments in the electron theory have introduced a number of 
important modifications to the above model. It was found that the description of 
electronic properties was more consistent with experimental data if only weak elecrron- 
ion interactions were assumed, i.e., if the periodical potential was not considered to be 
atomic in character near each ion but only weakly changing from ion to ion. At the same 
time the additional problem of having to allow for possible strong electron-electron 
interactions was removed by considering that the Bloch model describes the motion, not 
of one-electron particles but of more complex entities, called quasi particles, introduced 
by Landau. Quasi particles have an electron at the center, surrounded by a region of 
electron deficiency (correlation hole) and a further region containing electrons that have 
been pushed out by the Coulombic repulsion away from the central electron and “flow 
around it much as water flows around a moving particle” (COHEN [1965]). 

The problem of looking realistically at electron-atom interactions in order to reconcile 
the difference between the atomic and the effective potential in a metallic lattice has 
been tackled by introducing the notion of a pseudopotential. In this treatment the electron 
wave functions near the ions are ignored to some extent and substituted by pseudo wave 
functions which have the effect of statistically excluding the valence electrons from 
regions of space occupied by core electrons. (See ch. 2, 0 3.3.) The application of the 
theory of pseudo-potentials has been very useful to the understanding of some problems 
in the theory of alloys (HEN [1967] and STROUD [1980]). Other developments, as 
already mentioned in section 3, involve calculations of electronic energies “ab initio”, 
and various elaborate treatments of the atomic potentials in solid solutions (see for 
example, FAULKNER [1982] and COTTRELL [1988]). 

6. Termination of primary solid solubility 

6.1. Electronic theories of primary solid solutions based on noble metals 

A survey of binary systems of copper, silver and gold with a large number of 
elements, and in particular with the B-subgroup elements, has shown that the observed 
ranges of primary solid solubility may be correlated with electron concentration 
(HW-ROTHERY and RAYNOR [ 19401). In fig. 5 the maximum ranges” of primary solid 
solutions based on the three noble metals are indicated as linear plots in terms of e / a  for 
the cases where these solutions are followed by an intermediate phase with a close- 
packed hexagonal structure (fig. Sa) and, separately, when they are followed by an 
intermediate phase with the bodycentred cubic structure (fig. 5b). Apart from the 
systems Cu-In and Cu-Sn, the primary solutions followed by the cubic phase reach 
somewhat higher values of e / a  than when followed by the close-packed hexagonal phase. 

* It must be remembered that these maximum ranges occur at different temperatures in each system. Strictly 
speaking the melation with ela should apply only at the absolute zero of temperature. The fact that a significant 
correlation is observed at relatively high temperatures suggests that the electronic factors play a predominant role even 
at those high temperatures, although entropy considerations undoubtedly also play a role. 
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Fig. 5. Extent of the maximum primary solid solubility and of the following intermediate phase in alloys based 
on the noble metals (see text). 

Examination[ of fig. 5 reveals that in silver-based alloys the primary solid solutions 
terminate within a fairly close range of values near e / a  = 1.4, whereas in copper-based 
alloys the e /a  values show a wider scatter, but the range of maximum values is again 
only a little less than 1.4. In the case of gold-based alloys the primary solid solubility is 
further restricted ranging between 1.2 and 1.3. 

The above comlation between the primary solubility and e / a  does not lead to any 
unique value, but it is quite striking when compared with similar plots drawn as a 
function of composition. Hence, it has been suspected for a long time that there must be 
an important link between the primary solid solubility and the electronic structure. 
During the 1930s an attempt was made by JONES [1937] to calculate the primary solid 
solubility of alloys based on copper using the theory of Brillouin zones and Bloch 
functions. This approach, and subsequent developments, are extensively quoted in 
metallurgical literature and will be discussed briefly below. 

The main assumptions of the Jones model were: (i) that the nearly-pee-electron 
approximation could be extended from pure metals to random solid solutions, and (ii) 
that the rigid-bandcondition was applicable on alloying (i.e., that the shape of the density 
of states curve N(E) for a pure solvent remains unchanged on alloying and that the band 
gaps in the Brillouin zone do not change in magnitude, the only change being in the 
number of loosaly-bound electrons). The general idea regarding stability of alloy phases 
was that at certain values of the electron concentration the Brillouin zone of one structure 
may be associated with a high density of quantum states, N(E), at relatively low values 
of energy and thus “accommodate” the available electrons within lower total energy than 
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would be possible in the zone of some other structure. This condition is particularly 
likely to occur in the range of energies associated with contact between the Fermi surface 
and Brillouin-zone faces since it results in a peak in the density of states. The connection 
between phase stability and a peak in the density-of-states curve had been established 
earlier (JONES [1934a]) for the case of the y-brass structure. 

In 1937 JONES considered in detail the theory of the a+ phase boundary in the Cu-Zn 
system where the face-centred cubic primary solid solution (a) is succeeded by the body- 
centred cubic intermediate phase @). Using the same values of the atomic volume for both 
a and p phases and making them equal to that of copper, and using the same values of 
energy gaps as those obtained for copper from optical properties (AE=4.1 ev), Jones 
calculated the density-of-states curves for both phases in terms of energy expressed in 
electron volts. The result of the calculation is shown schematically* in fig. 6a. The first peak 
in the density-of-states curve for the a-phase occurs at about 6.6 eV. When compared 
with the free electron energy at the center of the { 111) faces in the Brillouin zone, 6.5 
eV, this suggested that the contact between the Fermi surface and these faces should 
occur in the a-phase already at an early stage of alloying. Many years later PIPPARD 
[ 19581 showed that this contact in fact already exists in pure copper. Interpreted in terms 
of e /a ,  the two peaks shown in fig. 6a correspond to e / a  = 1.0 for the CY phase and e /a  
= 1.23 for the p phase, respectively, and are therefore unlikely to be associated in a 
simple way with the termination of the primary solid solubility @/a = 1.4), or the 
optimum range of stability for the p phase (e /a  = 1.5). The diagram in fig. 6a is, 
nevertheless, of interest because of its general emphasis on the relationship between 
phase stability and the density of states. Actual electronic energy relationships are more 
likely to be like those shown in fig. 6b, according to which the largest differences 
between the Fermi energy of free-electron gas and the Fermi energies of electrons in the 
Brillouin zone of the a and /3 phases occur at some points to the right of the peaks 
{ 1ll)cw and { 1lO)p in the density of states (JONES [1962]). The actual a-p phase 
boundary will then be determined by the common tangent principle (BLANDIN [ 19651). 
Thus, it appears that while the e /a  parameter is indeed important in the a phases, as was 
thought by Hume-Rothery, their stability ranges also are very strongly influenced by 
additional factors. For example, each particular range strongly depends on the type of 
crystal structure that follows a given a phase in a given phase diagram (this is illustrated 
in fig. 5), as would be expected from phase competition. In addition, it has also been 
shown by AHLERS [1981] that the part of the configurational cohesive energy in the a 
phases, which is related to the third nearest neighbor interactions constitutes a large 
additional part of their total energy. Configurational energy is the difference between the 
ground state energy (at 0 K) and the heat of formation. While this complicates the simple 
original picture of a-phase stability in terms of e /a  (and the related notions connected 
with the density of states [N(E)] and Fermi surfaces), there is outstanding agreement 
between the experimentally determined behavior of the electronic specific heats (from 

* For actual curves, reference should be made to the original paper (JONES [19371]). Additional discussion may 
be found in a later review article (~~ASSALSKI and M~ZUTANI [1978]). 
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Fig. 6. Schematic models proposed to account for the primary solid solubility of alloys based on copper: (a) 
Jones model: band gap across the { 111)  faces of the zone for the fcc structure = gap across the [ 110) faces 
of the zone for the bcc structure = 4.1 eV; (b) total electronic energy E = e  N(E)dE, corresponding to the 
density of states as modified by the interactions with the respective Brillouin zones; (c) density of states for 
free electrons. 

which the density of states at the Fermi level can be derived) and the predicted density 
of states obtained f'rom a parameter-free calculation based on the KKR-CPA approxima- 
tion (FAIZKNER and STOCKS [1981]). This means that the electronic structure of the a 
phases is now well understood and the path is clear for a detailed stability calculation of 
these phases in the near future. 

Incorporation of the original Jones model into metallurgical literature has led to a 
good deal of confusion about the relationship between phase stability and the contact 
between the Fermi surface and the Brillouin-zone faces. One must appreciate the 
difference between the attempt by Jones to calculate the relative stability of two 
adjoining phases in terms of the contact between Fermi surfaces and certain Brillouin- 
zone faces with assumed large energy gaps and in terms of additional thermodynamic 
quantities, and similar attempts in terms of spherical Fermi surfaces. The use of spherical 
surfaces amounts to merely calculating the electron concentration at which an inscribed 
Fermi sphere would contact the zone faces. In the latter case, the zone faces by implica- 
tion should possess zero energy gaps. As pointed out by HUME--ROTHERY [1964], this 
important conclusion has been often overlooked in metallurgical literature. Free-electron 
calculation shows that contact of a Fermi sphere with the Brillouin zone would be 
obtained in the (Y phase at 1.36 electrons per atom and in the p phase at 1.48 electrons 
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per atom (see fig. 6c), and these values are strikingly close to the experimental observa- 
tion. This, however, must now be regarded as rather fortuitous, at least for the CY phases, 
because it has been proved beyond dispute that the Fermi surface is considerably 
distorted from a sphere in the [ 11 11 direction and touches the set of { 11 1 } Brillouin-zone 
faces in all three noble metals, Cu, Ag and Au (HARRISON and WEBB [1960]). Further 
comments of developments in this field may be found in a review article by MASSALSKI 
and MIZUTANI [1978]. 

6.2. Primary solid solubility in transition metal alloys 

Hume-Rotheq’s further work has shown that electron-concentration principles similar 
to those established for the noble metals and their alloys apply also to the solid solutions 
of a number of transition metals, particularly those with the fcc structure (HUME- 
ROTHERY [1966]). Figure 7 shows the limits of solid solutions in Rh, Pd, Ir and Pt in 
terms of the average group number (AGN) which denotes all electrons outside the rare 
gas shell. The general tendency appears to be for the fcc solid solutions to extend back 
to an AGN value of about 8.4. A similar effect is found for solid solutions of V and Cr 
in fcc y-Fe, and in Ni. The behavior in bcc metals has not been generally examined. 
However, similar correlations may exist. For example, the solid solubilities of Rh and Ru 
in bcc Mo terminate at a similar value of AGN of about 6.6 (HUME-ROTHERY [1967]). 

7. The atomic size in solid solutions 

On forming a solid solution of element A with element B, two different kinds of 
atoms come in contact on a common lattice. This inclusion of new centers of disturbance 
will affect the existing electronic force fields between atoms, both short range and long 
range; the resulting effects will be of several kinds. On the atomic scale some atoms of 
the solvent and the solute will be shifted from the mean atomic positions on the lattice 
and thns suffer a permanent static displacement. The resulting average distance between 
any two neighboring atoms in a solid solution will depend on whether they are of the 
like kind, either both solvent or both solute, or of the opposite kind. We may thus talk 
of the average AA, BB or AB bond distances which may, even for an identical pair of 
atoms, depend also on the direction in the lattice. 

In addition to local displacements, the average distances between lattice planes may 
also change and we may talk of the change in the lattice spacings and, related to them, 
the volume of the unit cell. Both the lattice spacings and the volume of the unit cell are 
not related to the actual size of any particular atom. 

The relationship between lattice spacings, space lattice and the individual position of 
atoms may be summarized as follows: the space lattice represents a repetition in space 
of an elementary unit known as the unit cell (fig. 8). The lattice spacings describe the 
linear dimensions of the unit cell. To a certain extent a unit cell may be chosen quite 
arbitrarily so that, for example, in the face-centred cubic structure shown in fig. 8b three 
different unit cells are possible - rhombohedral, face-centred cubic and body-centred 
tetragonal. The cell which reveals the essential symmetry is cubic; if the X-ray reflections 



Ch. 3, $7 Structure of solid solutions 155 

3000. 

Average group number 

Fig. 7. The composition limits, in terms of AGN, of terminal solid solutions of Nb, Ta, Mo and W in Re, of 
Mo and W in Os, of Ta, Mo and W in Ru, and of the intermediate &-phases in the systems Mo-Rh, Mo-Ir, 
Mo-Pd, Mo-Pt, W-Rh and W-Ir (from HUME-ROTHERY [1966].) 

are indexed according to this cell, then the lattice spacing a is associated with the 
average spacing of atoms located at the comers of the cube and is larger than the 
spacings between the neighboring atoms within the cube or in other possible unit cells. 
The a spacing therefore exceeds the closest distance of approach of atoms. For example, 
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-a- 

(b) 

Fig. 8. (a) The close-packed hexagonal structure, showing the tetragonal and orthorhombic unit cells, and (b) the face 
centred cubic structure, showing the rhombohedral, the face-centred cubic and the body-centred cubic unit cells. 

the closest distance of approach of atoms in fig. 8b is a/ 6. In a simple structure, one can 
easily calculate this distance from the known dimensions of the unit cell; but this may be 
very difficult if the structure is complex as, for example, that of y brass (fig. 16, below). 

In some structures there are considerable variations in the distance between pairs of 
atoms at their closest distance of approach, according to position and direction in the 
lattice; and in order to study these a more complex analysis, involving all average 
interatomic spacings, may become necessary. The cementite structure (fig. 9) provides a 
good example. In this structure the iron-carbon distances vary in the unit cell and the 
determination of spacings between specified pairs of atoms of iron and carbon requires 
the knowledge of X-ray line intensities in addition to the Debye-Scherrer analysis. (The 
nature of the bonding in cementile has recently been reexamined by COTTRELL [1993]). 

Throughout a range of solid solutions the average “sizes” of individual atoms may be 
expected to change depending on the degree and nature of local displacements. A change 
in the average lattice spacings may mean a contraction of solute atoms and expansion of 
solvent atoms or vice versa, and such local changes may bear little relation to the total 
macroscopic distortion of the unit cell. Therefore it is very desirable to be able to assess 
the changes in individual atomic sizes in a solid solution, whenever possible. For this 
purpose methods involving measurement of diffuse X-ray scattering or changes in the 
intensity of principal (Bragg) reflections have been developed. 

From a materials science point of view, the important questions regarding the atomic 
size are as follows: 



Ch. 3, 07 Structure of solid solutions 157 

Fe 

Fig. 9. The variable iron-carbon distances in the structure of cementite, Fe,C (from GOLDSCHMIDT [1948].) 

1) What is h e  actual size of an atom in a pure element and what are the best ways 
of estimating and defining that size? 

2) Having decided upon atomic sizes of pure elements, which is the best method of 
estimating the influence of atomic sizes in a solid solution? 

3) Can one assess this influence of the disparity between initial atomic sizes without 
additional measurements in a solid solution? 

One would like to know, for example, how successful can be the prediction of the 
influence of the size difference merely from the knowledge of the atomic sizes of the 
pure elements and perhaps one other physical properly, or whether it is always necessary 
to perform some kind of a measurement in a solid solution before the importance of the 
atomic size can be assessed more accurately. Yet another question concerns the relation- 
ship between the strain in the crystal lattice and the atomic size. The contribution of the 
strain energy to the total free energy affects the thermodynamical properties, and recently 
several attempts have been made to estimate the strain energy using methods of 
continuum elasticity. 

The empirical success of the 15% rule (84) already suggests that initial sizes of 
atoms can, in some cases, give a guide to the extent of solid solubility on alloying. 
However, when formulated in this way the atomic-size difference merely provides a 
guide to the hindrance which it may cause to the formation of extensive primary solid 
solubility. In some systems, for example in systems Ag-Sn or Ag-Sb, the limits of 
primary solid solubility are less than average (for silver-based alloys), yet the widths of 
the close-packed hexagonal intermediate phases are surprisingly large. In both systems 
the disparity beween atom radii is within the &15% range (i.e., the 15% rule is satisfied), 
and is appears that the actual value of the size difference may be of importance. 

7.1. The size factor 

The original formulation of the sizefactor concept for binary alloy systems involved 
the assumption that the atomic diameter of an element may be given by the closest 
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distance of approach of atoms in its structure * (see ch. 1). This approach to estimating 
atomic size often meets with difficulties when the structures are anisotropic, or complex, 
or when the coordination numbers are low. For example, when there are several close 
distances of approach in the structure (as in gallium with d, = 2.437, d, = 2.706, d3 = 2.736 
and d4=2.795 A), the closest distance of approach, d,,  does not adequately express the 
size of the gallium atom when in a solid solution. A similar consideration may apply 
even in the case of an element which crystallizes in a typically metallic structure. For 
example, in zinc, with the close-packed hexagonal structure but a high value of the axial 
ratio, four possible values can be considered to represent the size of a zinc atom: 
spacings between atoms in the basal planes which also correspond to closest packing 
(dl =2.6649 A); spacings between the nearest neighbors of the adjoining basal planes 
which strongly depend on the axial ratio (d2=2.9129 A); an atomic diameter derived 
from the average volume per atom of the unit cell of zinc (d3 = 3.0762 A); and finally an 
atomic diameter calculated for a hypothetical structure with coordination number 12 
(d4=2.7535 A). For the purpose of the 15% rule, d,, has been chosen to represent the 
size of the zinc atom. However, when the behavior of lattice spacings of solid solutions 

Fig. 10. Trends in lattice spacings and volume per atom in the Cu-Zn system; circles indicate closest distance 
of approach, d, squares indicate volume per atom. (From MASSALSKI and KING [1961].) 

* The size factor is given by [(d, - d,,)/dA] x 100 where dA and d, are values of the closest distance of 
approach of atoms in the solvent and solute respectively. For a detailed account of the possible role of the size 
factor as defined above reference may be made to a review article by RAYNOR [1956]. 
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containing zinc is studied in detail, it appears that frequently the lattice spacings expand, 
or contract, when an opposite behavior might be expected from the value of the closest 
distance of approach. In fig. 10 the changes with composition in the closest distance of 
approach, d, and volume per atom in Cu-Zn alloys are shown. Within the primary solid 
solution based on copper the lattice spacings follow a curve which indicates that zinc 
behaves as if it possessed a larger size than that derived from its a spacing, since the 
lattice spacings of the alloys show a positive deviation from a line joining the closest 
distances of approach of copper and zinc. On the other hand, within the primary solid 
solution of copper in zinc, addition of copper to zinc again expands the a spacing of the 
latter despite the fact that the value of d for copper is indicated to be smaller than that 
for zinc. Thus, on a finer scale there are often discrepancies between the behavior of 
lattice spacings in the alloys and the estimated atomic sizes. For such reasons other 
attempts have been made to derive the average atomic size. For example, in fig. 10 the 
trend in the cy lattice spacing within the cy phase may be extrapolated towards pure zinc 
to give a hypothetical size of a zinc atom for the case where the face-centred cubic 
structure is maintained throughout the Cu-Zn system and on the assumption that the 
behavior of lattice spacings is linear. The obtained value is marked AAD in the figure, 
and it is close to the d4 value mentioned above. This method of estimating apparent 
atomic diameters (AAD), is due to AXON and HUME-ROTHERY [ 19481. Another approach 
makes use of the trend in the volume per atom (MASSALSKI and KING [1961]). Compari- 
son between the atomic sizes estimated from the volume per atom in the pure elements 
and the behavior of the volume per atom trends in the Cu-Zn system is shown in the 
upper portion oof fig. 10. 

7.2. The measurement of atomic size in terms of volume 

By analogy to the use of the apparent atomic diameter, a measure of the size of a 
solute atom in any particular primary solid solution or an intermediate phase may be 
obtained by extrapolating to the solute axis the plot of the mean volume per atom within 
that phase. In ffig. 10 such a procedure is illustrated for the a, y and E phases of the 
Cu-Zn system, providing values of the effective atomic volumes (MASSALSKI and KING 
[1961]) or partiaE molar atomic volumes. The different effective atomic volumes 
estimated in this way for the solute in each phase are independent of the coordination 
number or the structural anisotropy effects mentioned above. Thus, when the 
coordination number changes, the atomic volume rather than the interatomic distance 
tends to remain constant (MOTT [1962]). An extensive study of solid solutions of various 
B-sub-group metals (Zn, Cd, In, Tl etc.) in late transition elements such as Ni, Pd or Pt 
has shown that often the initial effective atomic volume of a solute, extrapolated to the 
pure-solute side, is practically the same in a number of different solvents (ELLNER 
[1978,1980]). A good example is provided by the behavior of Ga, fig. 11. At the same 
time, it may be seen from fig. 10 that the effective atomic volumes of zinc in the 
different phases are smaller than the atomic volume of pure zinc. Since these effective 
volumes are different in each phase, it appears that the contribution of the atomic size is 
variable according to composition and hence it may be desirable to designate several size 
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Fig. 11. Changes of atomic volume with composition in the binary Pt-Ga, Pd-Ga and Ni-Ga (from ELL= 
[19781.) 

Table 5 
Effective atomic volume of solutes in electron phases of the noble metals 

(from MAssALsKr and KING [1961].) 

Sub- Solute as Effective atomic volume of solute (A3) 

Au 
group (A3) 

c u  Ag 
(&= 11.8) (Q,= 17.05) (ao= 16.95) 

%.B:w) %*e, %8'.r ,nu.e, .n,.,:, %.8) 

I I B  Zn 15.2 14.15 14.7 14.7 14.8 14.5 14.8 
Cd 21.6 18.8 - 19.95 20.7 19.25 n.m 

23.7 n.m. - 20.75 22.4 20.2 n.m. Hg 
III B (Al) 16.6 14.2 - 15.5 16.1 15.2 - 

Ga 19.6 14.7 n.m 16.2 16.7 16.2 - 
n.m. 21.4" 

22.9 20.5 - 21.4 20.8" 
26'15 21.3 In 

- n.m. - 
- n.m. - 

TI 28.6 n.m. - 23.85 

IV B (Si) 20.0 12.5 n.m. n.m. 
22.6 15.1 15.8 17.5 - 17.4 - Ge 

Sn 27.05 21.9 - 22.7 23.3 22.2 22.5 
F% 30.3 n.m. - 26.7 - n.m. 

V B As 21.5 16.5 n.m. 18.85 n.m. n.m. 
Sb 
Bi 35.4 n.m. - 29.3 - n.m. 

- 
- 

30.2 22.3 n.m. 24.8 25.5 23.5 - 
- 

'Alternative data 
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factors in each binary system. The values of the effective atomic volumes, C&, f&, a, 
for solutes in several noble metal electron phases are listed in table 5 together with the 
atomic volumes of pure solvents, Q,, and of pure solutes, a,. An examination of the 
table shows that without exception all solutes show a decrease of the volume per atom 
on alloying and that this decrease appears to be greatest with solutes of highest valency. 
Hence, the atomic sizes of such elements as aluminium, indium, thallium or lead, which 
are considered to be an exception when measured in terms of the closest distance of 
approach, are found to be typical of a general trend for the B-subgroup elements with the 
noble metals when considered in terms of atomic volume (MASSALSKI and KING [ 19611). 
This generalization does not apply to transition elements and other solvents. MOTT 
[1962] has pointed out that if the volume of a solute atom in the solid solution is nearly 
the same as in its own pure metal one can expect the heat of solution to be small. Why 
a solute atom when placed in a hole similar to its own volume in the solvent tends to 
retain its original energy, even when the valencies of solvent and solute are different, is 
not altogether clear. 

7.3. Combined effects of size and electronegativity 

In the early 1950s, DARKEN and GURRY 119531 suggested that the extent of solid 
solubility in a given solvent metal may be assessed by testing simultaneously both the 
size and electronegativity differences between solvent and solute elements. They showed 
that in a combined plot of electronegativity (ordinate) and size (abscissa), which they 
called a map (see fig. 12) each element can be represented by a point (see also ch. 5, 
0 1.5). The closer any two points are on the map, the more likely is a high mutual solid 
solubility between the elements involved. In a typical Darken-Guny (D-G) plot, as in 
fig. 12, substantial solubility is usually indicated by an ellipse drawn around a given 
solvent point. WABER et al. [1963] have shown subsequently, following a statistical 
survey of 1455 systems for which experimental data exists, that over 75% of the systems 
obeyed the prediction of solid solubility assessed on the basis of a D-G plot. The 
usefulness of the D-G method is particularly well demonstrated for the actinide metals 
and rare-earths (GSCHNEIDNER [1980]). 

7.4. Strain in solid solutions 

A simple model which takes into account the difference between atomic sizes, and 
which can yield estimates of lattice strain, may be constructed using basic ideas of 
continuum elasticity. Several such models have been considered (DARKEN and GURRY 
[1953], ESHJZLBY [1956] and FRIEDEL [1955]). The general approach is illustrated 
schematically in fig. 13. 

Consider a rubberlike elastic matrix of a large volume V, in which a very small 
cavity has been drilled away of volume VI. Then, through an infinitesimally small 
opening (shown as a capillary opening in the figure) an amount of incompressible fluid 
of volume (VI -t AVl) is introduced which, therefore, expands the cavity by the amount 
AV,. Both the fluid and the matrix are now under stress and the matrix suffers an 
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Fig. 12. The Darken-Guny map with an ellipse drawn about the solvent tantalum. The two vertical lines are 
the tangents to the ellipse at the termini of the minor axis (*lS% of tantalum’s radius). (From GSCHNEIDNER 
119801.) 

expansion AVz, shown in the figure by the shaded portion, which is related to the 
increase in the volume of the cavity by the relationship 

A& / A v  = 3(1- V )  / (1 + v), (2) 

where Y is Poisson’s ratio. As pointed out by DARKEN and GURRY [1953], for most 
metals Poisson’s ratio is about 0.3 and hence AVJAV,, equals about 1.6, i.e., the 
volume-increase of a metal bulk will be larger than the increase in the volume of the 
cavity. The above model can be related to a solid solution in which the expanded cavity 
is replaced by several solute atoms and the bulk by a metal solvent matrix. In analogy to 
the expanded volume of the elastic matrix we may expect that in a substitutional solid 
solution on replacing an atom of the solvent (a cavity) by a somewhat larger-sized atom 
of the solute (the incompressible fluid) we should obtain a net expansion of the entire 
unit cell. The estimates of the strain energy associated with such an expansion have 
enabled a number of authors (DARKEN and GURRY [1953], ESHELBY [1956]) to show a 
direct link between the limitation of primary solid solubility and Hume-Rothery’s 15% 
rule. Lattice spacing measurements in solid solutions are also in qualitative agreement 
with the above model, but sometimes a lattice expansion is observed even if the solute 
atoms are considered to be smaller than those of the solvent. This discrepancy is usually 
due to the difficulty of being able to assess correctly the sizes of atoms and to the fact 
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Fig. 13. Model of an incompressible particle in an elastic matrix. 

that, on alloying, other factors not included in a crude assessment of size come into play, 
to mention only that the size of the solute atom in the pure element may differ consider- 
ably from its size in solid solution because of such factors as electron concentration, 
electrochemical effects and static displacements, etc. 

Calculations based on simple elastic models permit one to relate the strain energy to 
composition and atomic volume. A general equation expressing strain energy in a solid 
solution may be written as (MASSALSKI and KING [1961]): 

where A is a numerical constant, p is the shear modulus, a is the mean atomic volume 
and c the composition. In many alloy phases the variation of atomic volume with 
composition is nearly linear and hence for dilute solutions (for which O0 = l2) one may 
write: 

where .no is the atomic volume of the pure solvent and a, the effective atomic volume 
of the solute in the a phase. The relationship (aa -Clo)/Cho represents a measure of a 
volume-size-factor (MASSALSKI and KING [1961]) within a given alloy phase and a 
comparison of eqs. (3) and (4) shows that the strain energy for dilute alloys is related to 
the square of the volume-six-factor. Volume-size-factors have been calculated for 
numerous solid solutions and are available in tabulated form (KING [1966]). It should be 
pointed out that the use of a volume-size-factor rather than one based on the closest 
distance of approach necessitates the knowledge of the extrapolated effective atomic 
volumes of the solute within different phases and hence necessitates additional measure- 
ments within solid solutions. 

Ellner’s studies, for example the plot shown in fig. 11, confirm that in many solid 
solutions the initial behavior of the atomic volume with composition is practically linear 
(usually in the composition range up to about 30-40 at% of solute). The corresponding 
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effective atomic volume obtained from extrapolation to the pure solute side provides 
a measure of the departure of the atomic volume trend from a possible linear behavior - 
between the atomic volumes of the pure components. If the difference (CIS,,,,, - CI,,u,) 
is plotted against the difference between the partial molar heats of mixing 
(AH,,,, - AHSoiute) obtained from measurements (or calculations), a nearly linear 
relationship is obtained (ELLNER [1978,1980]). Thus, size effects find their expression 
in the corresponding chemical manifestations. 

- 

7.5. Deviation from Vegard’s law 

A study of available systems based on copper, silver and gold with the B-subgroup 
elements indicates that, when volume-per-atom trends are considered, alloying between 
any two elements causes a decrease in the volume per atom from a straight line joining 
the two values for the pure elements. A similar behavior is observed also when various 
interatomic spacings are measured and plotted within a solid solution, although in such 
cases the deviation can have positive or negative sign. The trends usually observed are 
illustrated in fig. 14. 

The expected linear dependence on composition of lattice spacing trends, to follow 
a line joining the values for the pure elements, has come to be known as Vegurd’s Law, 
although this law has only been found valid for a number of ionic salts (VEGARD [1921, 
19281) and is never quite true in metallic systems. Nevertheless, it is tempting to be able 
to calculate deviations from assumed linear behavior, without actually performing any 
measurement in a solid solution, and using solely the knowledge of various parameters 
in the pure components. Such an attempt has been made by FRIEDEL [1955] for the cases 
of dilute and concentrated primary solid solutions. Friedel used the atomic volumes, 

Fig. 14. The commonly observed trends in latticespacingcomposition curves in three typical binary alloy 
systems: (a) complete solid solubility; (b) partial solid solubility, A has higher valency than B; (c) presence of 
an intemediate phase, large electrochemical interaction between A and B. (After MASALSKI 119581.) 
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Poisson’s ratio, bulk moduli, and compressibilities. The elastic model illustrated in fig. 
13 is extended to the case in which both the matrix and the introduced fluid are 
compressible with compressibility coefficients x1 andx,. The atoms of solvent and solute 
are represented by radii r,, and r, which are derived from the atomic volumes of the 
elements using the relationship R =$IT?. The holes in the matrix are represented by the 
atoms of the solvent with radius r, and the introduced distortions by atoms of the solute 
with radius r,. On replacing an atom of the solvent by an atom of solute both suffer an 
elastic adjustment which may be represented by an average radius a common to both. 
Freidel has shown that at infnite dilution 

where Y is again Poisson’s ratio and x,, and xz are the compressibilities of the solvent 
and solute respectively. At a finite concentration c the total volume of the solvent will 
suffer an increase and the average radius of an atom in the solid solution may now be 
represented by r (derived from average atomic volume) which will be different from the 
initial radii r, and r, of both the solvent and solute. Following Friedel, the initial 
deviation of the average atomic radius r in a solid solution from a line joining the atomic 
radii of the solvent and solute, may be expressed-as follows: 

Comparison between calculated deviations using the above elastic model and the 
observed deviations (FRIEDEL [1955]) from the assumed Vegard’s Law shows a good 
general agreement for the cases where the solute atoms are considered to be bigger than 
the solvent atoms, but usually not vice versa. 

7.6. Measurement of actual atomic sizes in solid solutions 

The static distortions in a solid solution which can be related to the individual atomic 
sizes may be estimated from a modulation in diffuse X-ray scattering (WARREN et al. 
[ 19511, ROBERTS [1954] and AVERBACH [ 19561) and from a quasi-temperature reduction 
in the Bragg reflections (HUANG [1947], HERBSTEM et al. 119561 and BORE [1957, 
19591). In the former case the modulations of the diffuse X-ray intensity diffracted by a 
solid solution are described by coefficients, cui, related to the nature of local atomic order 
of atoms, and by size effect coefficients, pi, related to the differences in the sizes of the 
component atoms. According to theory, 

ai = l - P i / X ,  (7) 

and 

where 

References: p .  199. 



166' T. B. Massalski Ch. 3, $8 

and P i  =probability of finding an A atom in the I?' shell about a B atom; X,=mol 
fraction of A atoms; fA, fB = scattering factors of A and B atoms; ri = average interatomic 
distance to the ?' neighbor, calculated from lattice spacings; r L  =distance between two 
A atoms in the i* shell; riB =distance between two €3 atoms in the i* shell. 

8. Intermediate phases with wide solid solubility 

8.1. The electron phases 

Of all intermediate phases which possess wide solid solubility the most typically 
metallic are the ebctmnphases. Their discovery and studies have a historical aspect, and 
it is of interest to outline this briefly. 

.In the first quarter of this century, even before X-ray analysis had been applied to the 
study of such phases as the Cu-A1 and Cu-Sn &brasses, HUME-ROTHERY indicated the 
possibility that they possessed the same crystallographic structure as that of Cu-Zn p- 
brass. Systematic and detailed work of Westgren and his collaborators (WESTGREN and 
P H R A G ~ N  [1926], WESTGREN [1930]), has subsequently established the validity of this 
and similar suppositions. The circumstance that the formulas C a n ,  Cu,M and Cu,Sn 
could be ascribed to the three phases with identical p-brass structure caused Hume- 
Rothery to postulate the principle that the stability of these phases was in some way 
related to the ratio 3/2 between the number of valence electrons and the number of 
atoms. Following this empirical formulation many similarities between crystal structures 
of other intermediate phases have been noted and studied systematically particularly in 
systems based on copper, silver and gold; and they led to the recognition of the now 
well-established term electron compound. At present it is known that such phases are not 
compounds in the chemical sense and that they may exist over wide ranges of composi- 
tion. For this reason they should perhaps be called electronphuses. 

In the Cu-Zn system, which is somewhat typical of systems based on the noble 
metals, there are three characteristic electron phases commonly known as @brass, y- 
brass and &-brass. Although these phases possess quite wide ranges of homogeneity, it 
had been thought originally that their ranges of stability were in each case based upon a 
characteristic stoichiometric ratio of atoms, and the formulae suggested for the p-, 7- and 
8-brasses were CuZn, Cu,Zn, and C a n ,  respectively. From these formulae one obtains 
the electrodatom values of 3/2, 21/13 and 7/4 (1.50, 1.62 and 1.75) which have become 
widely accepted as characteristic of greatest stability of electron phases despite the fact 
that in some cases these values fall outside the range of stability of known electron phases. 

Following mainly the work of JONES [1934a,b, 1937, 19521, the stability of electron 
phases has been linked via a simple electronic theory of metals with possible interactions 
between the Fermi surface and the Brillouin zones, with the emphasis on the influence 
of such interactions on the density of states N(E) at the Fermi surface. The p-, y- and E- 

brasses possess the body-centred cubic, complex cubic and hexagonal close-packed 
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structures respectively; and it can be shown that at the onset of contact between the 
Fermi surface of free electrons and the principal faces of the respective Brillouin zones 
the zones are relatively full. The values of e /a  associated with the free-electron concept 
of the Fermi surface are: e/a = 1.48 for contact between the Fermi surface and the zone 
for p-brass, e/a  = 1.54 for contact between the Fermi surface and the { 300) and { 41 1 } 
faces of the large mne for y-brass, and e/a = 1.75 associated with the filling of the inner 
zone of 8-brass. These electrodatom values based on the Brillouin zone models bear 
similarity to the original e/a ratios based on chemical formulae (compare 1.5, 1.62 and 
1.75 with 1.48, 1.54 and 1-75), but it must be remembered that in both cases the actual 
values are derived from particular models put forward to interpret the stability of electron 
phases. The chemical formulae are now known not to be applicable, and the simple 
Brillouin-zone models suffer from the limitation already mentioned before that for the 
e / a  values quoted above the band gaps across the Brillouin zone must be assumed to be 
zero or near zero. Thus, as in the case of the theory of primary solid solutions, we are 
left with two possibilities: (i) The band gaps in the Brillouin zones are relatively large, 
and the Fermi surfaces are not spherical, but the stability may be described qualitatively by 

Table 6 
?Lpical electron phases based on noble metals, zinc and cadmium, and some transition elements. 

disordered bcc smc~ure y-brass ~ m a ~ e  P-Mn c/a = 1.633 c/a = 1.57 
e/a  range 1.36-1.59 e/a  range structure e/arange e / a  range 

1.54-1.70 e/a range 1.22-1.83 1.65-1.89 
1.40-1.54 

B Y P c E 

Cu-Be 
Cu-Zn 
CU-A1 
CU-Ga 
cu-In 
C u S i  
CuSn  
Mn-zn 

Ag-Zn Au-Al Cu-Zn 
Ag-Cd Cu-Cd 
Ag-A1 Cu-Hg 
Ag-In Cu-AI 

CU-Ga 
Ci-In 
M i  
M n  
Ag-Li 
Ag-Zn 
Ag-Cd 

Ag-In 

Zu-Cd 
Au-Ga 
Au-In 

Ag-Hg 

Au-% 

Mn-Zn 
Mn-In 
Fe-Zn 
CO-Zn 
Ni-Zn 
Ni-Cd 
Ni-Ga 
Ni-In 
Pd-Zn 
Pt-zn 
Pt-Cd 

CuSi  CU-Ga Cu-Zn 
Ag-A1 CuSi  Ag-Zn 
Au-AI CU-Ge Ag-Cd 
Co-Zn CU-AS Au-Zn 

CuSb  Au-Cd 
Ag-Cd Li-Zn 
Ag-Hg Li-Cd 

Ag-Ga 
Ag-In 
A g s n  

AgSb 
AuCd 

Au-In 
AuSn 
Mn-Zn 
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a model as that shown in fig. 6b which points to the existence of a relationship between 
the density of states and phase stability. (ii) The band gaps in the Brillouin zone are 
variable with composition and are small in the range of electron phases so that the nearly 
spherical model of the Fermi surface describes the situation adequately. Experimental 
estimates of the Fermi surfaces in alloys are still limited, but some measurements have 
been made in both dilute and concentrated solid solutions, and they indicate that the 
Fermi surface is distorted from the spherical shape, but not substantially (see for example 
PEARSON [1967], Massalski and MIZUTANI [1978] and KOLKE etal. [1982]). Although 
the details are still not clear, one is left with indisputable experimental correlations that 
show e/a to be an important factor in the stability of electron phases. Modelling of such 
stability in terms of electronic energy alone suggests that very small differences of the 
order of a few hundred cal/mole are involved between respective competing electron 
phases (MASSALSKI and MIZUTANI [ 19781). 

A list of typical electron phases is shown in table 6 in which are also shown the 
experimentally established ranges of stability of these phases. 

83. Electron phases with cubic symmetry 

The range of stability of the P-phases is shown in fig. 5b, above. The disordered 
&phases are stable only at high temperatures and upon cooling or quenching they usually 
decompose, unless they become ordered as in the Cu-Zn system. In all cases the range 
of homogeneity of the disordered P-phases decreases with the fall of temperature, 
causing the phase fields to have the characteristic V-shape as illustrated in fig. 15. The 
electronic structure of the @-phases appeacsto be closely linked with the Brillouin zone 
for the bcc structure formed by 12 { 110) faces, which constitute a rhombic dodeca- 
hedron. As mentioned in the preceding section, in the free electron approximation a 
spherical Fermi surface would just touch these faces at e /a=  1.48 (see fig.6~). If the 
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Fig. 15. The typical V-shaped phase fields of the disordered &phases (from MASSALSKI and KING [1961].) 
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Brillouin-zone faces have a finite discontinuity, the density-of-states curve should show 
a peak near the value of e/a associated with the contact between the Fermi surface and 
the Brillouin zone. This possibility has been made the basis of a theory of the occurrence 
and stability of the #%phases (JONES [1937, 19521). However, as pointed out above, if the 
gap across the faces of the Brillouin zone is assumed to be about 4.2 eV, the position in 
terms of e/a of the calculated peak in the density-of-states curve appears to occur at 
relatively low values of e /a  and bears no relation to the actual ranges of stability. 
Nevertheless, it is remarkable that the most stable compositions of the P-phases, 
represented by eutectoid points at the tips of the V-shaped portions of the phase fields 
(see fig. 15), veq nearly correspond to electron-concentration values associated with the 
free-electron model. More recent developments have centered on the measurement of 
properties, such as electronic specific heats, or the de Haas van Alphen effect (dHvA), 
that can be more directly related to the electronic structure. They show that the band 
gaps in the Brillouin zone are relatively small (- 3.5 eV), and that the Fermi surface 
contours approximate a free-electron sphere. However, the stability of the P-phases is 
undoubtedly related to the total electronic energy integrated from the density-of-states 
trends from the bottom of the energy band to the Fermi level, and not just to some 
specific condition such as an initial contact between the Fermi surface and the Brillouin 
zone (MASSALSKI and MIZUTANI [1978]). 

O Z n  O C u  x None 

( b )  

Fig. 16. The stn~~tur~? of y-brass. (a) Planar view. The structure is built up from 27 bcc cells stacked in three 
dimensions. Distances above the projection plane are indicated in terms of the large cell edge. (b) The gamma- 
brass structure derived from (a) by removing the comer and central atoms and displacing others. (From 
BARREIT and MASSALSKI [1966].) 
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The range of stability of the y-phases appears to be associated with no particular 
single value of electron concentration (see table 6) although there does seem to be a 
strong connection between the stability of y-phases and the large (Brillouin) zone (see 
JONES [1934a,b, 19601). The y-phases have a complex bcc structure with approximately 
52 atoms per cell (see fig. 16). They are usually ordered, certain related atomic sites 
being occupied by solute atoms and others by solvent atoms. The electronic structure of 
the y-phases and certain of their physical properties have been reviewed by MASSAJSKI 
and KING [1961] and MASSALSKI and MIZUTANI [1978]. On the whole, the y-phases are 
brittle and they are therefore of no primary metallurgical interest. However, from the 
point of view of electronic theories the y-phases are of historical interest because they 
were the first to be identified with a possible peak in the density-of-states curve 
associated with the contact of the Fermi surface with the Brillouin zone. Detailed 
calculations show that actually two closely positioned peaks are involved, corresponding 
to small band gaps, of the order of 1-2 eV. It is not surprising, therefore, that the Fermi 
surface associated with the y-phases appears to be nearly spherical. The interaction of 
such a spherical Fermi surface with a Brillouin zone which itself resembles a sphere (the 
zone is bounded by 48 faces), should produce a rapid decrease in the density of states 
once contact has occurred between the Fermi surface and the zone. This is indeed 
confirmed by experimental measurements of electronic specific heats which show a rapid 
decrease of the electronic specific heat coefficient y with composition. A similar effect 
is also observed in the cubic p-phases which possess the p-Mn structure (MASSALSKI and 
MIZUTANI [1978]). 

8.3. Electron phases with hexagonal symmetry 

Apart from the more complex v-, p- and certain other phases which possess cubic 
symmetry (see, e.g., MASSALSKI and KING [1961]), the remaining group of electron 
phases possess the close-packed hexagonal structure. These phases are most numerous of 
all intermediate phases based on the noble metals, and they may occur anywhere within 
the electron-concentration range between 1.32 and 2.00 except for the narrow region 
1.89-1.93. Together with the close-packed hexagonal primary solid solutions of zinc and 
cadmium with the noble metals (the q-phases) the close-packed hexagonal phases fall 
into three natural groups and are usually denoted by the Greek symbols y, E and q on the 
basis of electron concentration, axial ratio and solute content. The known s-phases 
always contain zinc or cadmium as their principal constituents (MASSALSKI and KING 
[1961]) and their range of stability varies between e /a=  1.65 and e /a  = 1.89 (see table 6). 
The stability of close-packed hexagonal electron phases again appears to be intimately 
linked with both contact and overlap of electrons across the Brillouin zone. 

The Brillouin zone for the close-packed hexagonal structure is shown in fig. 17 for 
an ideally close-packed structure. This zone is bounded by twenty faces, six of the 
{ 10.0) type, two of the I00.2) type, and twelve of the { 10.1) type. The energy discon- 
tinuity vanishes across certain lines in the {OO.l} faces (JONES [1960]) unless the 
structure is ordered, and hence these planes do not form a part of the energy zone. 
However, the I00.l) faces together with the { 10.1) faces may be used to obtain a 



Ch. 3, $ 8  Structure of solid solutions 171 

slightly smaller zone for the structure as described by JONES [1960]. Many of the 
measured electronic properties in hcp structures may be related to the Brillouin zone. The 
dHvA (de Haas van Alphen) data for pure hcp metals, for instance, are often interpreted 
in terms of the reduced zone scheme, while the low-temperature specific heat data can 
be more conveni.ently discussed in terms of the extended zone. If the extended "roofs" 
formed beyond the { 10.0) planes by the intersection of the { 1O.lj planes are removed, 
the resulting zone is still surrounded by energy discontinuities in all directions except 
along the lines of intersection between the { 10.1) and { 10.0) zone planes (line HL in 
fig. 17a). This smaller zone is sometimes known as the Jones zone and its electron 
content per atom is: 

where c /a  is the axial ratio. 
The importance of the electron concentration, e /a ,  as the major parameter controlling 

the properties and behavior of the hcp phases became clearly evident only after the 
relationship between c/a  and e /a  was established in detail. When e/a is constant, for 
example in a ternary system, c /a  also remains constant. However, when e / a  is allowed 
to change c / a  changes accordingly. In binary systems, the axial-ratio trends of all known 

and E phases conform to a general pattern as shown in fig. 18. Consideration of this 

00 2 overlap electron 'lens' 

I. ,00.2 . ( d )  

Fig. 17. The Brillouin zone of the hcp structure in the extended scheme (a) and in the reduced scheme (b). The 
possible contours of the Fermi surface in the vertical section of the corresponding Brillouin zone are shown in 
(c) and (d). The shaded areas correspond to the holes in pure Zn. The hole in (d) is known as a portion of the 
"monste?. (After MASSALSKI et al. [ 19751.) 
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behavior suggests a direct dependence of the structural parameters a and c on the 
interaction between Fermi surface and Brillouin zone (FsBz interaction): as the electron 
concentration increases, the resulting contacts and overlaps of the Fermi surface with 
respect to different sets of zone planes cause a distortion of the Brillouin zone. This in 
turn affects the lattice parameters in real space. The earlier models of the electronic 
structure of the hcp phases have been derived mainly from the interpretation of the trends 
in lattice parameters, but more recently the electronic structure has also been explored by 
additional techniques using, e.g., electronic specific heat, superconductivity, magnetic 
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Fig. 18. The trend of the axial ratio as a function of the electron concentration in various hcp alloy systems 
(from MASSALSKI and MIZUTANI 119781.) 



Ch. 3 , g S  Strucfure of solid solutions 173 

susceptibility, thermodynamic activity and positron annihilation. 
The distance from the origin to the respective zone plane in k-space is given by: 

and hence depends on the axial ratio. In the range of c / a  higher than 6, the I00.2) 
zone planes are closest to the origin, leading to the sequence b.2 e k,o.o e k,,, which 
holds in the r)-phases, where c /a  exceeds 1.75. The sequence k,o,o e k,,,,2 c k,,, holds for 
all c- and .+phase structures. The corresponding Jones zone holds, at most, only 1.75 
electrons per atom. Therefore, overlaps of electrons from the Jones zone into higher 
zones are expected at relatively low values of e/a. The interpretation of the lattice- 
spacing trends in the [-phase Ag-based alloys, whose axial ratios vary between 1.63 and 
1.58, strongly suggests that overlaps of electrons across the { 10.0} zone planes already 
occur at about 1.4 electrons per atom. The occurrence of possible overlaps across the 
{ 00.2) zone plane within the range of the €-phases has been inferred from measurements 
of the lattice spacings, electronic specific heat coefficient, the Debye temperature, the 
superconductivity transition temperature, the magnetic susceptibility and the thermo- 
dynamic activity (MASSALSKI and MIZUTANI [1978]). This is shown in fig. 19. In each 
case the onset of electron overlaps across the I00.2) zone planes has been proposed for 
the range of e / a  exceeding approximately 1.85 electrons per atom. All such measure- 
ments imply the occurrence of FsBz interactions that should be reflected also in the 
corresponding density-of-states changes on alloying. 

The available calculated density-of-states curves for the hcp structure are at the 
moment limited to several pure metals, such as Mg, Zn or Be. All these metals have two 
valence electrons per atom and may be represented by relatively similar features in the 
corresponding density-of-state curves. The positions of peaks and subsequent declining 
slopes occur more or less at the same electron concentration for all three cases, in spite 
of a large difference in the axial ratios, atomic volumes and electronic interactions. This 
strongly indicates that the main features of the respective density-of-states curves 
originate from the FsBz interactions in which e /a  plays an essential role. From this, one 
can conclude that a density-of-states curve for a disordered hcp alloy may also have 
essentially the same characteristic features. This is confirmed by experiments involving 
the measurement of electronic specific heats, which are directly proportional to the 
density of states at the Fermi level (fig. 20). 

The experimental coefficients y plotted in fig. 20 as a function of e / a  show that, 
irrespective of the solute or solvent species, all available y,,, values follow a very similar 
general trend over a wide range of electron concentrations. An increasing trend is evident in 
the lower e /a  range, culminating in a broad maximum at about 1.5 electrons per atom, and 
followed by a decreasing trend at higher e / a  values. The theoretical density-of-states curve 
for the hcp Zn, shown in units of &/mole K2 in the same figure allows a direct comparison 
between a relevant calculation and the experimental data. This shows that the large peak in 
the theoretical curves more or less coincides with the experimental peak on the abscissa. 

References: p.  199. 
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Fig. 19. Behavior of various physical properties in the &phase Ag-Zn alloy system: electronic specific heat 
coefficient y; Debye temperature 8,; axial ratio c/a; magnetic susceptibility due to conduction electrons ,y& 
second derivative of the free energy with respect to concentration (d*F/dX;) (in units of 4.2 ki/mol); 
superconducting transition temperature T,. prom MASSALSKI and MIZUTANI [1978].) 

The combination of contacts and overlaps with respect to a large number of zone 
planes is clearly responsible for the large peak in the N(E) curve in hcp metals. The 
distance of the { 10.1) planes from the origin of the zone is relatively insensitive to the 
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Rg. 20. Trends of electronic specific heat coefficients as a function of electron concentration for hcp Hume-Rothery 
alloys, shown against the band calculation for pure Zn (from MASSALSKI and MIZUTANI [1978].) 

axial ratio (eq. 9). Hence, the large peak may be expected to occur at similar e /a  values 
in most hcp structures. Once contact with the { 10.1) planes occurs, additional electrons 
will be allocated in the remaining hole regions of the Brillouin zone until overlaps across 
the { 10.1 1 or {0.2} zone planes become possible. Thus, until a sufficiently high e / a  is 
reached, a progressive decrease in the N(E) curve is expected as is actually seen in fig. 
20. Based on the above interpretation the likely Fermi surface topography for a typical 
hcp Hums-Rothery phase may be expected to be like that shown in fig. 21. The recent 
positron-annihilation studies of the Fermi surface in the g-phase Cu-Ge alloys, by 
SUZUKI et al. [ 19761 and K o m  et al. [ 19821 are entirely consistent with the conclusions 
drawn from the electronic specific heat data and earlier work on lau.ice spacings and 
axial ratios. Indeed, because of zone contacts and overlaps that are likely to occur in all 
hcp alloy phases, this particular group of alloys offers a most challenging research area 
for the positron-annihilation method. For the first time it has become possible to provide 

References: p .  199. 
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Fig. 21. A very likely Fermi surface topography in an hcp Hume-Rothery electron phase alloy. The 101 contact 
and 100 overlap are assumed to be present. (From MASALSKI and MIZUTAM [1978].) 

a direct evidence for the existence of the Fermi-surface concept in disordered electron 
phases, precisely along the lines predicted by numerous earlier interpretations based on 
indirect data. 

8.4. Laves phases 

An important group of related intermediate phases is obtained by alloying of elements 
whose atomic diameters, du and dBB, are approximately in the ratio 1.2 to 1. The exact 
lattice geometry requires that dM/dBB should be 1.225, but in known examples of this 
type of intermediate phases the ratio varies from about 1.1 to about 1.6. Much of the 
original work concerning the above phases is due to Laves and his co-workers. For this 
reason they are often called Laves phases (see ch. 4). 

Laves phases are close packed, of approximate formula AB,, crystallizing in one of 
the three structural types: 

1) C,, structure, typified by the phase MgZn,, hexagonal, with packing of planes of 
atoms represented by the general sequence ABABAB etc; 

2) the C,, structure, typified by the phase MgCq, cubic, with packing ABCABCABC; 
3) the C, structure, typified by the phase MgNi,, hexagonal, with packing ABACABAC. 
The main reason for the existence of Laves phases appears to be one of geometrical origin 

- that of filling space in a convenient way. However, within the given range of atomic 
diameters which satisfy the space-filling condition, it appears that often the choice as to which 
particular modification will be stable is determined by electronic considerations. The evidence 
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for this is particularly striking in the magnesium alloys studied by LAVES and Wrrm [1935, 
19361. The experimental results concerning the three modifications occurring in several 
ternary systems based on magnesium are shown in fig. 22 and are plotted in terms of electron 
concentration. Witte and his co-workers have carried out experiments suggesting that the 
phase boundaries on the electron-rich side of typical Laves structures occur at very nearly the 
same d a y  suggesting that the homogeneity of a particular structure may be restricted by an 
appropriate Brillouin zone. Measurements of the changes in magnetic susceptibility and 
hydrogen solubility of several alloys within the pseudobinary sections MgCu,-MgZn,, 
MgNi,-MgZn,, MgCu,-MgAl, and MgZn,-MgAl,, appear to support this hypothesis. The 
changes of the magnetic susceptibility in the pseudo-binary MgCu,-MgZn, system are shown 
in fig. 23. KLEE and W I ~  [I9541 proposed that they may be interpreted in terms of 
interactions between the Fermi surface and the Brillouin zone, the dip in the susceptibility 
prior to the termination of solid solubility indicating a dip in the density of states. 

Measurements of the electronic specific heats, that can be related to the density of 
states at the Fermi surface, have provided a further evidence of the importance of 
electronic factors in Laves phases. Examination of the trends of the electronic specific 
heat coefficient 71, as it varies in pseudobinary systems of MgCu, with polyvalent metals 
such as Zn, Al m d  Si, has shown that a sharp decrease of the density of states oaurs  
near the phase boundary before the MgCu, structure is replaced by a two-phase field. A 
possible interpretation of this is that an appropriate Brillouin zone becomes filled with 
electrons. In this respect the electronic specific heat data and the magnetic susceptibility 
data shown in fig. 23 are very similar (SLICK et al. [ 19651). 

+ + + + + + I +  ++ 
Mg-Cu- A I 

Mg-Cu-Zn 

Mg-Ag-Zn 

Mg-Cu-SI 

Mg-Co-Zn 

Mg-Zn-A' 

Mg-Cu-Ag 

Mg-Ag-AI 

1.33 1.4 1.6 1.8 2.0 2.2 

MgCu2-Type + ++++ MgNt,-Type m MgZn2-Type 

Fig. 22. The ranges of homogeneity in terms of electron concentration of several ternary magnesium alloys 
which possess the three typical Laves structures (from MASSALSW [I9561 after LAVES and W r m  [1936].) 
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Fig. 23. Variation of hydrogen solubility and magnetic susceptibility with electron concentration in quasi-binary 
systems MgCu,-MgZn, (from MASSALSKI [1956] after KLEE and W m  [1954].) 

8.5. Phases with wide solubility formed by the transition elements 

A number of intermediate phases formed by the transition elements possess wide 
ranges of solid solubility. They are often designated by various Greek or Latin symbols 
such as u, p, 8, x, P or R. For details reference may be made to TAYLOR [1961], NEVITT 
[1963] and ch. 5 which deals specifically with alloy compounds. 

The a-phase, the unit cell of which is tetragonal with c /a  = 0.52 and 30 atoms per 
cell, has received much detailed attention, chiefly because of the detrimental effect which 
the formation of this phase has on mechanical properties of certain steels. In the system 
Fe-Cr, for example, the a-phase separates out of the femtic matrix and causes 
brittleness, but in more complex steels such as Fe-Cr-Mn a-phases can also precipitate 
from the austenite phase. 

X-ray and neutron diffraction studies have shown that many of the phases listed 
above are structurally related to one another because they can be built up from layers 
that show close similarities. Thus, undoubtedly, atomic packing plays an important role 
in determining their stability. At the same time studies of stability ranges, particularly in 
ternary systems, have shown that the contours of the phase fields of the above phases 
often bear relation to the value of the average group number (AGN). Hence, much 
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speculation has been advanced about the electronic nature of their stability that might be 
similar to the electron phases of the noble metals. In fig. 24 the ternary phase relation- 
ships of some 19 ternary systems are shown at various temperatures as collected by 
NIEMIEC [1967]. The relationship between AGN and the contours of the cr-phase fields 
is particularly noticeable. It must be kept in mind however, that since the d-electrons 

Mn hln Fe 

V Fe V co v co  v N I  
hln CO co Fe 

W Fe M O  

Cr <.o Mo Lo Cr Cr C O  

Cr I'r 

Mn Mn 

hlo Ft. Mo CII Mo C O  
\\ Fr Co 

Cr Fr hlo Ni 

Fig. 24. Isothermal sections through a number of ternary phase diagrams between transition elements showing 
phase fields of phases with wide solid solubility. Values of average group number are indicated by dashed 
lines. (From NIEMIEC [1966].) 
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unquestionably contribute to e / a  in these phases, and since the d-bands are incompletely 
filled, the details of possible electronic interactions are bound to be complex and not 
necessarily related solely to some simple Brillouin-zone-Fermi-surface effects. For 
example, some of the bonding forces may be highly directional, or the number of 
“d-band vacancies” rather than electrons, may play a role. 

9. ktt ice spacings in solid solutions 

The measurement of precise values of lattice spacings in solid solutions has contrib- 
uted to the understanding of a number of factors which influence their stability and 
properties. Since the introduction of the Debydcherrer powder method some sixty years 
ago, the interest in the knowledge of lattice spacings in alloys has developed in three 
distinct directions: 

1) in connection with precision measurements of lattice parameters for studies of 
systematic structural similarities between related alloy phases; 

2) in connection with studies of relationships between lattice spacings, composition, 
electronic structure, size effects, local order, magnetic effects and numerous other 
properties of solid solutions; 

3) in connection with the use of the lattice-spacing method as a tool for determining 
phase boundaries in alloy systems. 

Detailed measurements of lattice spacing trends within individual alloy phases date 
back to the early 1930s. They were done mostly in terminal solid solutions of the noble 
metals and a few intermediate phases *. Today the available data fill large volumes 
(PEARSON [1958, 1967]), and further additions are rapidly growing. The importance of 
the behavior of lattice spacings in hcp electron phases, in connection with their electronic 
structure, has already been discussed in 0 8.3. Some additional aspects are discussed below. 

9.1. Lattice spacings in primary solid solutions 

The problem of lattice distortion in primary solid solutions of the monoralent noble 
metals has been considered by Hume-Rothery and by Owen and their associates 
(HTBE-ROTHERY [1964] and OWEN [1947]). The relationships obtained by OWEN [ 19471 
between the percentage lattice distortion and the solute valency in binary systems based 
on a common solvent are shown in figs. 25 and 26. The importance of valence difference 
is clearly demonstrated in the figures, but there appear to be departures from the general 
trends which have not been explained. In order to gain further insight into the particular 
role of the difference beween valencies of the component elements, RAYNOR [1949a] 
attempted to eliminate size contributions by assuming that the electronic and size effects 
in certain solid solutions are additive and can be analyzed separately. Raynor’s analysis 
was based on the assumption that a h e a r  Vegard‘s Law may be applied to the sizes of 

* For a review of some of these measurements see MASSALSKI [1958]. 
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Fig. 25. Percentage lattice distortion as a function of solute valency in solid solutions. Cu, Ag and Au with Zn, 
Ga, Ge and As. (From PEARSON [I9581 after OWEN [1947].) 

atoms as given by the closest distance of approach and is therefore open to some doubt 
(MASSALSKI and KING [1961]). 

Nevertheless, a detailed analysis of numerous solid solutions has shown that, after the 
assumed size contribution has been subtracted, the remaining lattice-spacing variation 
appears to be proportional to (V, - V,J2 for solutes (so) and solvents (sv) of the same 
period, and to (V, - Vs,)2+(V, - V,,) for solutes and solvents from different periods. 
Subsequently, PEARSON [I9821 has shown that a more general correlation is obtained, 
valid for a larger number of systems, if a size-effect correction, E, is calculated from a 
relationship of the form a =fE + k, where a is the lattice parameter, E is the average 
atomic diameter calculated from a linear relationship involving initial atomic diameters 
based on coordination 12, andfand k are constants. If an additional assumption is made 
that Ga, Ge, Sn, As, Sb and Bi contribute only two electrons to the conduction-electron 
concentration when alloyed with the noble metals, fifteen more systems appear to obey 
a uniform correlation. 

Studies of binary systems have been extended to ternary systems where it is found 
that lattice spacings of ternary alloys may often be calculated from binary data using 
empirical additive relationships. An example of a linear relationship between lattice 
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pig. 26. Percentage lattice distortion as a function of solute valency in solid solutions. Cu, Ag and Au with Ag, 
Cd, In, Sn and Sb. (From PEARSON [1958] after O w  [1947].) 

spacings and composition in the system Cu-Al-In (STIRLING and RAYNOR [1956]) is 
shown in fig. 27. ARGENT and WAKEMAN [1957] have shown that the expansion of the 
copper lattice by additions of zinc and gallium or zinc and germanium is additive in the 
respective ternary systems. Similar results hold also for additions of gallium and 
germanium to copper. Additive linear behavior suggests that in simple ternary solid solutions 
there is no appreciable solute-solute interaction, at least in dilute solutions where atoms of 
copper can effectively prevent contact beween solutes. Even in the system Ag-MgSb (HILL 
and AXON [1956-71) the strictly additive behavior of lattice spacings is still observed despite 
the fact that strong electrochemical differences between magnesium and antimony, and the 
tendency towards compound formation (Mg,SbJ, might be expected to favor clustering of 
magnesium and antimony atoms which should lead to the contraction of the lattice. However, 
when magnesium and silicon are dissolved in an aluminium lattice, contractions are observed 
which point to electrochemical interactions (HILL and AXON [ 195651). 

The lattice spacings of solid solutions of lithium, magnesium, silicon, copper, zinc, 
germanium and silver in aluminium have been studied and discussed by AXON and 
HUME-ROTHERY [1948] whose data are plotted in fig. 28. It may be seen from the figure 
that apart from silver, which produces virtually no change of lattice spacings, the 
aluminium lattice is expanded by magnesium and germanium and contracted by lithium, 
silicon, copper and zinc. Aluminium is an example of a trivalent solvent with a face- 
centered cubic structure. The first Brillouin zone can hold only two electrons per atom and 
must therefore be overlapped; but it has been shown (HARRISON 119591 and HARRISON 
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Fig. 27. Lattice spacings of (1 solid-solution alloys in the Cu-AI-In system along lines of constant copper 
content (from MASSALSKI [1958] after STIRLING and RAYNOR [1956]). 

and WEBB [196Q]) that the various portions of the overlapped and unoverlapped Fermi 
surface, when assembled together, resemble a free electron sphere. Hence, although 
overlaps exist in the aluminium structure and its alloys, their influence upon lattice 
spacings may be small. 

AXON and Hw-ROTHERY [1948] have shown that the extrapolated AAD (0  6.1) 
values for various elements dissolved in aluminium are influenced by the interplay of a 
number of factors such as relative volume per valence electron in the crystals of the 
solvent and the solute, the relative radii of the ions, and the relative difference in the 
electrochemical affinities. 

The changes in the lattice spacings in the system magnesium-cudmium at tempera- 
tures at which complete solid solubility occurs in this system (see fig. 1) have been 
studied by HUME-ROTHERY and RAYNOR [1940]. When magnesium is alloyed with 
cadmium, no change occurs in the nominal electron concentration, both elements being 
two-valent. The initial additions of cadmium to magnesium cause a contraction of the a 
lattice spacing but only a very slight increase in the axial ratio because the c lattice 
spacing decreases at about the same rate as does the u lattice spacing. When magnesium 
is added to cadmium at the opposite end of the phase diagram, both u and c also 
decrease, but c more rapidly, causing a rapid decrease of c/u. The presence of at least 
two electrons per atom in this system means that there must exist overlaps from the first 
Brillouin zone (see fig. 17) since the alloys are conductors of electricity. It is now known 
from direct measurements of the Fermi surface that in both pure cadmium and pure 
magnesium overlaps exist across the horizontal and vertical sets of planes in the Brillouin 
zone, and although the amounts of these overlaps are different in both cases the nature 
of the overlaps is similar. Hence the relationship between overlaps and trends in the 
lattice spacings and the axial ratio in the Mg-Cd system is open to speculation. 

In a similar way, because of the complexity of factors involved, the interpretation of 
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Fig. 28. The lattice-spacingcomposition curves of alloys based on aluminium as solvent (from MASSALSKI 
[1958] after AXON and HUME-ROTHERY 119481.) 

the lattice spacings of alloys of transition elements may be expected to meet formidable 
difficulties. The inner-core d-band shells are incomplete, and it is known that electrons 
from these shells can contribute both to bonding and to conductivity. 

The trends in the lattice spacings of the transition ekments of the Second Long 
Period (zirconium, niobium, molybdenum, rhodium and palladium), when dissolved in 
the hexagonal close-packed ruthenium, have been studied by HELLAWELL and H w -  
ROTHERY [1954]. In all cases the parameters c and c/a are increased by the formation 
of a solid solution and, at equal percentages of each solute, the increases are in the order 
zirconium 4 niobium + molybdenum + palladium 4 rhodium. The a parameters are 
diminished by zirconium and rhodium and increased by palladium, niobium and 
molybdenum. The axial ratio of ruthenium (1.5824) is considerably less than the ideal 
value (1.633), and the interatomic distance in the basal plane is greater than the distance 
between an atom and its nearest neighbor in the plane above or below. Hellawell and 
Hume-Rothery interprete the observed lattice spacings on the basis of “size differences” 
between component atoms as expressed by the minimum distance of approach between 
atoms in the pure elements and by a possible directional sharing of the electron cloud of 
zirconium which may take place on alloying. 

9.2. The relationship between lattice spacings and magnetic properties 

A survey of the lattice spacings of transition metal alloys as a function of composi- 
tion shows (PEARSON [1958]) that there are many inflections in the lattice spacing curves 
reflecting changes in the magnetic properties. The magnetic properties of metals and 
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alloys depend on the arrangement and separation of atoms in a structure, and therefore 
such changes as the ferromagnetic-paramagnetic transition might be expected to be 
related to some changes in the lattice spacings and the volume of the unit cell. 

The ferromagnetic-paramagnetic changes (F-P) and the antiferromagnetic- 
paramagnetic changes (A-P) are second-order transitions in which the ordering of the 
spin orientation develops gradually on cooling below the transition temperature, T,. Such 
changes are usually accompanied by a sharp change in the slope of the lattice-spacing 
curve as a function of temperature, such that the derivative dddT is discontinuous at T, 
(WILLIS and ROOKSBY [ 19541). Ferromagnetic-antiferromagnetic changes (F-A), on the other 
hand, are a first-order transition involving a discontinuous change of electron spin orientation 
and are accompanied by a discontinuous change in lattice spacing (WILLIS and ROOKSBY 
[1954]). The second order F-P and A-P changes are truly reversible while the first order 
changes are accompanied by the usual thermal hysteresis in the transition region. 

An example of the lattice-spacing changes accompanying an F-P transition is shown 
in fig. 29a for the system Mn-Sb (WILLIS and ROOKSBY [ 19541). In cases of a first-order 
transition at the Curie point, the discontinuous change in the lattice spacings may also be 
associated with some displacements of the different types of atoms in a structure, so that 
in such a case the change in the lattice spacing represents two processes occurring at the 
same time. According to ROBERTS [1956], the first-order transition at the Curie point is 
associated with a movement of about 10% of the manganese atoms into interstitial 
positions. The actual trend in the lattice spacings with temperature in the Mn-Bi system 
as determined by WILLIS and ROOKSBY [1954] is shown in fig. 29b. 

A definite anomaly is found in the temperature variation of the lattice spacings 
accompanying the F-P transition of pure nickel, but no pronounced anomalies are 
observed in the slope of the lattice spacings as a function of composition in nickel alloys 
at compositions at which the F-P change should occur (PEARSON [1958]). COLES [1956] 
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Fig. 29. (a) Lattice spacing of MnSb, which has a B8, type of structure as a function of temperature. (b) Lattice 
spacing of MnBi, which has a B8, type of structure as a function of temperature. (From PEARSON [I9581 affer 
WILLIS and ROOKSBY [1954].) 
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has reported a slight change of slope accompanying the F-P change in an alloy of 
nickel-35at. copper. This composition corresponds to alloys in which the Curie point 
occurs at room temperature. 

10. Defect structures 

In addition to the occurrence of clustering or ordering of atoms, which constitutes a 
departure from randomness, solid solutions can contain various imperfections which can 
be of three general types: point-, line- and surface imperfections, according to whether 
they are vacant sites or interstitial atoms, various types of dislocations, stacking faults, 
or small-angle boundaries. The nature of dislocations, their interactions and their 
properties are discussed in ch. 20. Below we shall briefly consider some aspects of 
vacancies in solid solutions and the presence of various stacking disorders. 

From the point of view of energy relationships, the presence of vacant sites in solid 
solutions may enhance stability, owing to their association with the entropy, the strain 
energy, or the electronic energy. Vacancies may be introduced by quenching from higher 
temperatures where their equilibrium number, due to entropy considerations, is higher 
than at lower temperatures, or they may be introduced by various irradiation processes, 
plastic deformation or, finally, by alloying. The calculation of the energy associated with 
the formation of vacancies or interstitials in a solid solution at finite concentrations 
presents several difficulties (see, for example, FUMI [1955], FRIEDEL [1954b], BROOKS 
[1955] and MANN and SEEGER [1960]). The subject is presented in great detail in ch. 18. 

-.  

10.1. Vacancies and vacant sites in structures of alloys 

From the point of view of the theory of alloys, vacancies are believed to be produced 
on alloying under certain conditions when the number of electrons per atom is kept 
constant or reduced. Evidence of this is provided by terminal solutions or electron phases 
with lattice defects. With the increase or decrease in the number of solute atoms a 
change can occur in the number of atoms per unit cell in a way which produces vacant 
lattice sites. It is believed that this takes place in order to maintain optimum electronic 
energy. Such vacancy populations, determined by composition and not by temperature, 
are distinguished as constitutional vacancies. (CmN [ 19791, AMELMCKX [ 19881). 

The work of BRADLEY and TAYLOR [1937] and TAYLOR and DOYLE [1972] on Ni-A1, 
and of LIPSON and TAYLOR [1939] on some ternary alloys based on this phase, are first- 
known examples of this phenomenon. The Ni-A1 alloy may be regarded as an electron 
phase analogous to &brass if nickel, a transition element, is assumed to have zero to 
near zero valency. At 50 at% this phase possesses a Cs-Cl ordered structure in which 
one kind of atoms, say nickel, occupy cube centers and the other kind of atoms, cube 
comers. The diameter of a nickel atom is smaller than that of an aluminium atom and 
hence, if nickel content is increased above 50 at%, the lattice parameter of the structure 
decreases in the expected manner while the density is increased. However, when the 
aluminium content is increased above 50 at%, an anomalous behavior is observed since 
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Fig. 30. (a, b) Lattice spacing and density of p-AlNi as a function of composition. (c) Lattice spacing of 
p-AlCo as a function of composition. (From PEARSON [1958] after original work of BRADLEY and TAYLOR 
[1937] and BRADLEY and SEAGER [1939].) 

the lattice spacing of the Ni-Al phase does not increase but actually decreases, and the 
fall in the density is much more rapid than would be expected from the replacement of 
nickel atoms by aluminium. This behavior is shown in fig. 30 in which the lattice 
spacing data for Co-Al (BRADLEY and SEAGER as quoted by PEARSON [1958]) are also 
included. BRADLEY and TAYLOR [1937] concluded that the observed anomalies could be 
explained if one supposed that in the aluminium-rich alloys there are less than two atoms 
per unit cell and that omission of atoms occurs from some lattice points with the creation 
of vacancies. On the nickel-rich side, the extra nickel atoms substitute in the usual way 
for aluminium atoms on the aluminium sublattice. The aluminium-rich side, however, is 
quite different: hardly any aluminium substitutes on the nickel sublattice; instead nickel 
atoms disappear from the nickel sublattice, leaving nickel vacancies. For instance, 
according to the most recent measurements (KOGACHI et al. [ 1992, 19951) at 46 at% Ni, 
10% of the nickel sites are vacant, most of the aluminium sites are filled. In this way the 
number of electrons per unit cell is kept constant and equal to approximately 3, 
corresponding to an e/a ratio of 3/2 characteristic of the &brass structures. Several other 
studies showed that a stoichiometric /3-NiAl quenched from a high temperature (as 
opposed to that slowly cooled) contained a high concentration of fhennaE vacancies; the 
most recently cited figure is 1.08% of vacancies at 1600°C. This is a very much larger 
thermal vacancy concentration than is found in other metals or alloys, even just below 
the melting temperature; so large that on cooling the vacancies will separate out into a 
population of voids visible in the electron microscope (EPPERSON et al. [1978]). 501.50 
NiAl containing such vacancies, all on the nickel sublattice, must also contain 
substitutional defects - that is some nickel atoms in the aluminium sublattice, also called 
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nickel antistructure atoms - to preserve the overall chemical composition: specifically, 
two vacancies must be accompanied by one substitutional defect. Such a trio of l i e d  
defects is now termed a triple defect. Parallels for the behavior of the NiAl alloys at high 
temperatures are found in other systems isomorphous with NiAl (see CAHN [1979]). 

The conclusion related to the dependence of constitutional vacancies on electron 
concentration has been criticized on the basis that the omission of atoms could also be 
interpreted in terms of size-effects. Since there is only one atom of aluminium in the unit 
cell of the Ni-A1 alloy, it appears possible that the omission of atoms with addition of 
aluminium in excess of 50% occurs as a result of an inability to squeeze an additional 
large aluminium atom in the place of a small nickel atom. A possible differentiation 
between an interpretation in terms of electronic considerations and one in terms of size 
considerations could be made by introduction of a further element into the Ni-Al alloy. 
The size-effect spatial theory requires that the loss of atoms should take place when the 
concentration of aluminium exceeds more than one per unit cell whereas the electronic 
theory requires that it should occur when a definite electron concentration, approximately 1.5, 
is exceeded. LIPSON and TAYLDR [1939] have shown that in two ternary systems, Fe-Ni-Al 
and Cu-Ni-Al, the general shape of the phase field of the ternary alloys based on Ni-A1 falls 
into the composition regions which indicate that electron concentration, rather than size, 
is the main factor determining the phase stability. A detailed analysis of constitutional 
vacancies in Ni-AI based on band energies has just been published by COTTRELL [1995]. 

The interpretation of the lattice spacings and density behavior in alloys based on 
Ni-A1 is limited by the fact that nickel, a transition element, must be assumed to possess 
zero valency in order to make it possible to assume that the above phase is an electron 
phase of the 3/2 type. However, further evidence of omission of atoms from sites in a 
unit cell has also been obtained in the study of some y-brasses (HUME-ROTHERY etal. 
[1952]) and AI-Zn primary solid solutions (ELLWOOD [1948, 1951-2]), in which no 
transition elements are involved so that the valence of the participating atoms is more 
definite. In the case of y-brass two particular binary systems were studied, Cu-A1 and 
Cu-Ga (HTJME-ROTHE~RY et al. 119521). In the former system, lattice spacing work and 
density data show that the number of atoms in the unit cell of the y-phase remains 
constant at about 52 as aluminium is increased to approximately 35.3 at%, after which 
the number steadily decreases. A similar effect has been observed in the Cu-Ga y-brass 
to occur at about 34.5 at% gallium. The data for Cu-A1 and Cu-Ga alloys are shown in 
fig. 31. HUME-ROTHERY et al. [1952] have interpreted the creation of vacant sites in 
y-brass structures in terms of the Brillouin zone of the y-brasses, suggesting that both the 
normal and the defect y-structures can hold no more than about 87-88 electrons per cell 
in order not to exceed an electron concentration of about 1.68-1.70. It appears that the 
high-temperature S-phase in the Cu-Zn system resembles a defect y-brass structure in 
that it possesses numerous lattice defects and vacant atomic sites. Other constitutional 
vacancies in brass-type alloys have been discussed by N o m  and SCHUBERT [1980]. 

Creation of lattice defects in which vacancies or excess atoms are involved occurs in 
intermediate phases probably more frequently than it was thought likely in the past. For 
example, in intermediate phases which crystallize in structures closely related to the 
NiAs structure, the basic structure, corresponding to the formula AB, can gradually 
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Fig. 31. The number of atoms per unit cell in the y-phases of the system Cu-Ga and &-AI as a function of 
electron concentration (after HW-ROTHERY etaL [1952].) 

change in the direction of compositions A2B by a gradual filling of certain vacant 
spaces* in the structure by the excess atoms of one of the components. In the series of 
phases such as NiS + NiSe + NiAs + Ni,Sb2 + Ni,Sn, -+ Ni2Ge + Ni,In. The 
number of nickel atoms becomes greater than 50 at% and X-ray work has shown that 
this is accomplished by nickel atoms gradually filling certain interstitial positions in the 
ideal NiAs structure. The typical NiAs structure may be regarded as based on a close- 
packed hexagonal lattice of metalloid atoms in which the metal atoms occupy the 
octahedral spaces between the close-packed hexagonal layers (see ch. 5). As the structure 
becomes filled with the excess of the more metallic atoms, it gradually acquires a 
pseudo-cubic symmetry and the metallic character increases considerably so that, for 
example, in the series quoted above the NiJn phase is almost indistinguishable from the 
Cu-A1 or Cu-Ca y-brasses. 

Constitutional vacancies in large concentrations have also been found in a number of 
oxides, especially those of the transition metals, and in some hydrides (e.g., TiHJ and 
carbides. In some instances there is also evidence of vacancy ordering. 

10.2. Stacking faults 

The possibility of the formation of stacking faults in typically metallic solid solutions 
has recently come to play an ever-increasing role in the understanding of many properties 
of solid solutions, particularly those with the face-centred cubic and the close-packed 
hexagonal structures. Such phenomena, for example, as the changes in electrical resistivity, 
work-hardening, recrystallization, creep, deformation texture, crystallography of phase 
transformations, corrosion, phase morphology and a number of others have been shown 
to be related to the presence of stacking faults and therefore to the stacking-fault energy. 

The face-centred cubic and close-packed hexagonal structures are closely related and, 
being both close packed, differ essentially only in the way in which the closest-packed 
planes are staclced together. It has been shown originally by BARRETT [1950] that 
stacking disorders exist in a cold-worked metal. Subsequently, several authors (PATERSON 

* These are analogous to the octahedral, tetrahedral and other vacant spaces which exist in the simple metallic 
structures as discussed in ch. 2. 
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[1952], WARREN and WAREKOIS [1955], WAGNER [1957], WILKENS 119571 and JOHNSON 
[1963]) developed theories which relate the effect of the presence of various types of 
stacking faults to the changes in the X-ray diffraction pattern of the face-centred cubic 
structure. The normal sequence of { 11 1 } planes in a face-centred cubic structure can be 
described as ABCABCABC using the usual A, B, C notation. The three typical stacking 
errors are illustrated by the characteristic stacking patterns shown in fig. 32. They are: 
(1) the intrinsic fault, corresponding to the removal of a close-packed layer of atoms, (2) 
the extrinsic fault, corresponding to the insertion of an extra close-packed layer of atoms, 
and (3) the twin (growth) fault, produced at the interface between two perfect crystallites 
which are in twin relation (see &AD [1953]). The intrinsic faults have received the most 
attention, and calculations based upon idealized models suggest that such faults should 
produce broadening and shifts in X-ray peak positions. This prediction has been verified 
experimentally in a number of pure metals (Cu, Au, Ag, Pb, Ni, etc.) and alloy systems 
(mostly based on the noble metals Cu, Ag and Au). Theoretical considerations of the 
influence of twin faults and extrinsic faults indicate that the corresponding X-ray line- 
broadening should be asymmetric in both cases and that the peak shifts resulting from 
the presence of extrinsic faults should occur in a direction opposite to the shift produced 
by intrinsic faulting (JOHNSON [1963]). Published work to date indicates that in metals 
intrinsic faults predominate. However in other materials, for example in silicon (AERTS 
et al. [1962a, b]), the stacking-fault energy of intrinsic and extrinsic faults may be of 
about equal magnitude. If, in addition, one considers the less idealized cases in which the 
distribution of stacking-fault density is variable in a specimen, the prediction of the over- 
all X-ray pattern becomes very complex (see for example, BARRETT and MASSALSKI 
[1966] p. 4.64). Nevertheless, the X-ray work has served as a useful means for compari- 
son between various metals and alloys and for the studies of trends in faulting probability 
with composition and temperature. 

In addition to the above mentioned X-ray analysis a direct estimate of stacking-fault 
energy y can also be made by studies of certain annealing or deformation features in 
metals and alloys and their changes with temperature, by studies of twinning frequency 
in metallographic samples (FULLMAN [1951] and BOLLING and WINEGARD [1958a, b]), 
by interpretation of dissociated dislocations (nodes) in transmission electron 
photomicrographs (HOWIE and SWANN [1961] and CHRISTIAN and SWANN [1965]) and 
other features such as cross-slip, creep, texture etc. [GALLAGHER [1970]). 

The possibility of the existence of stacking faults in hcp and bcc structures has been 

A B C A A  
C A B  B B  

B C A  c c  
A B  B A A  

B B B B C 
C A A A  A 

(a) (b) (c) (d) (e) 

C C C B 

Fig. 32. Planar view of atomic positions and stacking sequences for: (a) perfect fcc crystal; @) intrinsic fault; 
(c) extrinsic fault; (d) twin fault: (e) twin crystal. (After JOHNSON [1963].) 



Ch. 3, 0 10 Structure of solid solutions 191 

considered in a number of publications both from the experimental and the theoretical 
point of view. In bcc and hcp metals stacking faults do not produce line shifts (see 
WARREN C1959al). In hexagonal metals they produce broadening of certain reflections, 
which has been observed experimentally, particularly in the case of cobalt (EDWARDS 
and LIPSON [ 194.21). 

A number of attempts have been made to elucidate the factors which influence the 
changes of stacking-fault energy upon alloying. Although all such factors must be 
electronic in nature, it appears at the moment that a detailed interpretation is not possible. 
In a number of publications the changes of stacking-fault energy have been related to the 
electron concentration, certain size effects, the changes in the density of stat.es, and the 
changes in the topology of the Fermi surface (See GALLAGHER [1970].) 

In the case of fcc metals, recent measurements of the rate of loop annealing, the 
stability of tetrahedra introduced by deformation, of faulted dipoles, and of texture 
developed by rolling have led to the availability of quite precise information on the 
magnitude of y for materials in which extended nodes or extrinsic-intrinsic fault pairs 
cannot be observed. Thus, it is no longer essential to estimate the fault energy of such 
metals as Cu, Au, Al, and Ni by extrapolating node data or normalized X-ray faulting 
probability results, although the extrapolation procedures, too, have been improved and 
now lead to more reliable results. Reasonable estimates of y, probably accurate to SO%, 
are: yAg = 21.6 mT/m2, yPh = 30 d i m 2 ,  yAu = 50 d/m2,  ya = 55 mJ/m2, yAI = 200 d / m 2  
and yN, = 250 mJ/m2. Estimates of y in other elements from scaled rolling-texture data are 
subject to rather larger errors, but are the best values available at the present time: ye< 
5 mJ/m2, 7% e 10 dim2,  ym = 70 d /m2 ,  yR, = 75 d/m2,  Ypd = 130 mJ/m2 and yRh = 330 
d / m 2  (GALLAGHER [1970]). Advances have been made in theoretical estimates of y for 
pure materials (]BLANDIN ef aZ. [1966]), but difficulties are still experienced in applying 
the treatments to noble metals on account of their complex electronic structure. 

In fcc solid solutions, a satisfactory amount of numerically accurate information is 
now available for the variation of y (effective) with alloying, particularly in systems with 
copper, silver, and nickel as solvents. The form of the variation with E-group solutes in 
all cases follows the pattern established in the earliest studies in that y decreases with 
increasing solute concentration, and a considerable normalization of the data is achieved 
in plots with the electrodatom ratio as abscissa. 

Several authors have noted that straight-line relationships for the change of y with 
alloying can be obtained if y is plotted on a log scale and the abscissa is expressed in 
terms of a composition-dependent function [c/( 1 + c)]*, where c= (alloying concentra- 
tion)/(solubility limit) at high temperatures. Expressing the abscissa in this form appears 
to provide a normalizing effect similar to that which arises by using the e / a  ratio, but 
with the advantage that the solubility limit is in some systems more accurately known 
than is the effective valence of the solute. The relationship obtained for the fcc Cu-Si 
alloys is shown in fig. 33. Recent studies also suggest that in alloys of two fcc elements 
having complete mutual solubility, all compositions have y intermediate in value between 
the fault energies of the component metals. Such noble-metal-transition-metal alloys as 
have been studied have y of the same order as in the pure noble metal. Contrary to early 
studies, considerable extrinsic-intrinsic faulting has recently been observed in copper-, 
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Fig. 33. Semi-log plot of y versus [c/(l +c)J2 in the Cusi series (from GALLAGHER [1970]). 

silver-, and gold-base alloys, and measurements on fault pairs have revealed that the 
extrinsic and intrinsic fault energies are approximately equal (GALLAGHER [ 19701). 

10.3. Metastable structures* 

Many solid solutions whose properties have been outlined in the preceding sections 
can exist in a metastable condition at temperatures which fall outside the equilibrium 
range of stability but at which the rate of approach to equilibrium is so slow as to be 
negligible. One of the most frequently used methods for producing metastability is rapid 
quenching from a high temperature. During quenching a single-phase solid solution may 
be retained untransformed, or it may transform by changing its crystal structure, either 
by a martensitic or a “massive” process (see BARRETT and M A ~ ~ A L ~ K I  [1966]). 
Metastable solid solutions have also been obtained by a rapid cooling from the liquid 
state, using the “splat” or “crusher” cooling techniques (DUWEZ [1965,1967]), by a rapid 
cooling from the vapor state, using vacuum deposition techniques (MADER etal. [1963]) 
or sputtering (~MAssALsKI and Rrzzo I: 1988]), by various methods involving the quench- 
ing of liquid metals on a rapidly revolving copper wheel, and by surface melting methods 

* See also chapter 19. 
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using laser beams, electron beams, etc. (See D m z  [1978] and also ch. 7, $ 9.1.). 
Following these procedures, enhanced solubilities, non-equilibrium phases and 

unusual crystalline and amorphous structures have been obtained. For example, a 
continuous series of metastable solid solutions can be obtained in the Cu-Ag system in 
place of the well-known eutectic phase diagram corresponding to equilibrium conditions. 
In other instances solid solutions have been obtained that are amorphous, resembling a 
frozen liquid. A large number of metastable phases obtained by the various rapid-cooling 
techniques have most unusual crystalline (or non-crystalline) electrical, semiconducting, 
superconducting, magnetic and thermal properties. The research area of metallic glasses, 
in particular, has seen very rapid growth during the past two decades and numerous 
symposia and reviews on this subject have been published (see, e.g., MASUMOTO and 
SUZUKI 119821, PEREPEZKO and B O ~ I N G E R  [1983]; TORNBULL [1981]; JOHNSON 
119861). In order to produce a metallic glass, crystallization has to be prevented during rapid 
cooling of the liquid. Cooling rates exceeding lo6 K/s are usually needed to achieve this, and 
the most likely regions in phase diagrams where metallic glasses can be produced are the 
deep eutectic regions. The reason for this has been discussed in numerous publications. 
One of the possibilities is that, in deep eutectics, the crystallization competing with 
metallic-glass formation must be of a multi-phase form, which is kinetically difficult. 
Here, the To concept provides a very useful guide to the search for glass formation 
regions in metallic systems (MASSALSKI [ 19821). Hence, the chilled liquid becomes more 
and more viscous without crystallization until a glass transition temperature is reached 
when the liquid becomes a solid. The subject is discussed more fully in ch. 7, $9.1. 

11. Order in solid solutions 

The phenomena related to orderdisorder (0-D) changes in solid solutions comprise 
a very extensive literature and a detailed review of these is beyond the scope of this 
chapter. Nevertheless, the tendency for unlike atoms to occupy adjoining sites of a 
crystalline lattice, leading towards formation of superlattices, is a very prominent feature 
of many solid solutions; and we shall briefly consider this subject from the structural 
point of view. 

On the basis of thermodynamics (see ch. 5 )  it can be shown that an ordered arrange- 
ment of atoms in an alloy may produce a lower internal energy compared to a disordered 
arrangement, particularly if the segregation of atoms to designated atomic sites occurs at 
relatively low temperatures where entropy, associated with randomness, plays a lesser 
role. The condition of perfect order, such that the like atoms are never nearest neighbors, 
could be achieved only in a perfect single crystal with a simple metallic lattice and at 
compositions corresponding to stoichiometric ratios of atoms like AB, AB, AB,, etc. 
Actually, the presence of various imperfections and grain boundaries precludes this 
possibility in most cases. In addition, it is known that an ordered solid solution consists 
of ordered domains which may be perfectly ordered within themselves but which are out 
ofstep with one another. This results in more contact between like atoms at the bound- 
aries of adjacent domains. Ordered domains are sometimes called antiphase domains and 
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usually their number is quite large within each grain of the material. With the develop- 
ment of electron microscopy techniques, the presence of antiphase domains has been 
confirmed by direct observation in thin films (GLDSSOP and PASHLEY [1959], SATO and 
TOTH [1961]). 

A further departure from maximum order occurs in solid solutions whose composi- 
tions deviate from the optimum stoichiometric ratios of atoms. This is often associated 
with the fall of the ordering temperature on both sides of the ideal composition and by 
the change of other properties such as hardness, electrical resistivity, etc. 

When the interaction between unlike atoms is very strong, the critical temperature 
T,, at ,which disordering occurs, may lie above the melting point of the material. Alloys 
with this characteristic closeIy resemble chemical compounds. When the interaction 
forces are less intense, an ordered solid solution may become disordered at a critical 
temperature even though the composition corresponds to a stoichiometric compound-like 
formula. Many typical alloy phases show this behavior with temperature. Finally, if the 
ordering forces are weak, as for example at low atomic concentrations in terminal solid 
solutions, the critical temperature may lie below the temperature at which attainment of 
equilibrium is possible within a reasonable time. One may then speak of the disordered 
state being frozen in. It has been found that the activation energy necessary to switch 
atoms into disordered positions in a fully ordered alloy is of the same order of magnitude 
as the heat of activation for diffusion or for recovery from cold work, usually about 1.5-2 
eV. References to recent work on long range order in alloys are given by LAUGHLIN [1988]. 

11.1. Types of superlattices 

Simple superlattices in binary alloys with cubic structure occur near compositions 
corresponding to formulas A3B, AB and AB,. The Cu-Au system (see fig. lb, above) 
provides a well-known prototype of ordered solid solutions based on the fcc structure. 
The superlattices Cu3Au, CuAu and CuAu, have been investigated in great detail. In the 
case of Cu3Au the low-temperature structure, (fig. 34a) is cubic, but in the case of CuAu 
(fig. 34.4 alternate (002) planes contain either all copper or all gold atoms and a 
contraction occurs in the c direction, presumably as a result of attraction between atoms 
in these planes. This results in a tetragonal fcc structure with c/a ratio of 0.92. 

Order in bcc alloys again depends on composition. At 50 at% of solute the AB type 
of order results in the well-known CsCl structure (fig. 34b) which occurs, for example, 
.in ordered p-brass. When the composition is between approximately 25 and 50 at% of 
solute, a sequence of ordered structures based on the simple body-centred cube some- 
times becomes possible and such structures have been studied in detail (e.g., RAPACIOLI 
and AHLERS 119771, for p-Cu, Zn, Al). The superlattices that occur in the Fe-AI system 
(fig. 34d) and the Heusler alloys (Cu,MnAl), which are ordered when in the 
ferromagnetic condition, have received particular attention (see, for example, TAYLOR 
[1961]). With solute contents exceeding 50 at% the y-brass type of order and other more 
complex superlattices are possible. 

By analogy with the cubic structures, ordered superlattices occur frequently in close- 
packed hexagonal solid solutions. For example, in the Mg-Cd system the continuous 



Ch. 3, $11 Structure of solid solutions 19s 

0 Au Atoms 
0 Cu Atoms 

0 Cu Atoms 50% Cu 
0 Zn Atoms o ( 5 ~ %  Zn 

0 Au Atoms 
0 Cu Atoms TpJJ 

-0- 

(4 

i 
Fig. 34. Various types of ordered superlattices: (a) ordered cubic superlattice Cu3Au; (b) disordered and ordered 
stcuchlres of &brass; (c) the tetragonal superlattice of AuCu; (d) the structure of Fe,AI and FeAI: Al atoms fill 
the X sites in Fe+l  and the X and Y sites in FeAl. 

series of solid solution at high temperatures is broken at lower temperatures by the 
formation of ordered superlattices at compositions MgCd,, MgCd and Mg,Cd (see fig. 
Id, above). MgCd, orders to form the type of structure which is distorted from 
close-packed hexagonal, while the Mg,Cd is closepacked hexagonal but with the a axis 
doubled and the basal layers so arranged that each cadmium atom is in contact with three 
magnesium atoms in the adjacent layers. Cooling of alloys in the MgCd composition 
region produces an ordered orthorhombic structure. 

11.2. Long-period superlattices 

As mentioned in the previous section, the low-temperature annealing of CuAu alloys 
(below 380°C) produces a face-centred tetragonal structure whose unit cell is shown in 
fig. 34b. This structure is usually referred to as CuAu I. In the temperature interval 
between 380410°C another ordered structure has been detected (by JOHANSSON and 
LINDE [1936]) which is often described as CuAu II. The superlattice CuAu II is a 
modification of CuAu I and the unit cell of this structure is orthorhombic as shown in 
fig. 35a. The long cell is obtained by stacking five CuAu I unit cells in a row in the 
direction of one of the long-cell edges (6) and then repeating this unit at five cell 
intervals with a simultaneous out-ofstep shift at the boundary through a distance equal 
to the vectorial &stance$(a+c). The distance between each antiphase boundary may thus 
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a 

b 
0 Au 
e cu 
0 Zn 

Fig. 35. Long-period superlattices: (a) the structure of CuAu II; (b) the structure of Au-Zn. (After SCHUBERT 
et al. [1955].) 

be specified by Mx b where M denotes the domain size or the period. For CuAu II, 
M =  5. This superlattice is therefore called a one-dimensional long-period superlattice 
with a period equal to five. OGAWA and WATANABE [ 19541 have shown that a repulsive 
force arises at the junction of the long antiphase domains, which leads to a small local 
lattice-parameter increase in the direction of the long axis. This has the effect of a small 
periodic error in the diffracting lattice in this direction, and in electron-diffraction 
patterns it produces “satellite” reflections around the normal reflections. 

Many other long-period superlattices have been discovered in cubic alloys, particulq 
at the A3B compositions. Long-period superlattices have also been reported in hexagonal 
alloys (SCHUBERT et al. [1955]). The structure shown in fig. 35b corresponds to the 
orthorhombic structure Au3Zn. This long-period superlattice is based on Cu,Au and 
consists of four face-centred cells stacked together with a half-diagonal shift as shown in 
the figure. Most of the long-period superlattices at compositions A3B retain the cubic 
symmetry of atomic distribution and they can be either one-dimensional long-period 
superlattices or two-dimensional superlattices. Much of the recent work in this field is 
due to SCHUBERT etal. [1955] and to SATO and TOTH [1961,1962,1965]. 

The discovery of the long-period superlattices has presented a challenge to the theory 
of alloys because the usual atom-pair interaction models adopted for explanation of the 
order-disorder phenomena cannot be used unless one assumes extremely long-distance 
interactions. The most successful interpretation at the moment appears to be that such 
superlattices are a result of a complex interaction between the Fermi surface and the 
Brillouin zone (SATO and TOTH [1961,1962,1965]) and is therefore connected with the 
collective behavior of the free electrons. The Brillouin zone for the CuAu alloys is 
shown in fig. 36. The thin lines represent the zone for the disordered fcc structure. This 
zone is bounded by the octahedral { 111) and cubic (200) faces and can hold two 
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Fig. 36. The Brillouin zone of the disordered (thin lines) and ordered (thick lines) fcc structures (from SATO 
and Tom [1962].) 

electrons per atom. The thick lines represent the zone for the ordered CuAu I super- 
lattice. This zone, as a result of order in the lattice, is now bounded by the {OOl) and 
{ 110) faces and is therefore no longer symmetrical, the {loo} faces being much closer 
to the origin than the { 110) faces. The free-electron energies at the centers of the { 100) 
and { 110) faces are 2.4 eV and 4.8 eV respectively, while the energy at the Fermi 
surface corresponding to one electron per atom (Cu-Au system) is 6.5 eV. Therefore 
electrons should overlap into the larger zone. The existence of “satellite” reflections 
around the normal reflections in the b direction, corresponding to the long-range 
periodicity in the CuAu II superlattice, suggests that the Brillouin zone would show a 
slight splitting of certain faces. This is illustrated in fig. 37b and c which represents a 
horizontal section in the reciprocal lattice throught the zone shown in fig. 36. SATO and 

0 ‘\O O V 
0 O .  \ . .  

fa) ( b )  (e) 

Fig. 37. Horizontal section in reciprocal space through the Brillouin zone of fig. 36, showing possible Fermi surface 
contours for the Cu-Au superlattice: (a) CuAu i; (bc) CuAu II. (From BARRETT and MASSALSKI [1966].) 
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T o m  [1962] have proposed that at one electron per atom, the Fermi surface comes 
rather close to the { IlO} faces and, when the CuAu 11 superlattice is formed, the 
interaction between the Fermi surface and these split faces produces extra stabilization 
of the long-period structure. Since the period M governs the extent to which the satellite 
spots are separated in the reciprocal lattice, there should be a relationship between M and 
the electron concentration which governs the volume of the Fermi “sphere”. It can be 
shown that as e/a  increases, the Fermi “sphere” would fit better with respect to the 
{ l l O )  faces if their splitting were increased. This requires that the period M should 
decrease. SATO and TOTH [1961] have shown that additions of alloying elements to the 
CuAu II superlattice, resulting in changes of e /a ,  also poduce changes of the long-range 
period in the direction suggested by the above model. Furthermore, the model makes also 
possible the explanation of other characteristics of the long-period superlattices such as 
the nature of the distortion of the lattice, the concentration and temperature dependence 
of the distortion and of the periods, and the question whether or not the superlattice will 
be one-dimensional or two-dimensional. (Ordering in CuAu is treated by RAPSON 
[ 19951 .) 

11.3. Long-range order and short-range order 

Attempts to formulate a theory of ordering date back to the 1930s and are associated 
with the names of Borelius, Johansson and Linde, Dehlinger, Bragg and Williams, Bethe, 
Peierls, Takagi and others. Several comprehensive reviews exist on both the mechanisms 
of ordering and on various treatments of the subject, and they may be consulted for details; 
for example, those of NIX and SHOCKLEY [1938], LIPSON [1950] and GUTTMAN [1956]. 

The essential condition for a solid solution of suitable composition to become ordered 
is that dissimilar atoms must attract each other more than similar atoms in order to lower 
the free energy upon ordering. In terms of interaction energies between pairs of atoms of 
two atomic species A and B this condition is usually expressed as follows: 

where EM and EBB represent energies of l i e  pairs of atoms and Em represents the 
energy of the unlike pair. If this condition is satisfied for a given alloy of a 
stoichiometric composition, then at some suitably low temperature the structure will 
become perfectly ordered, the A and B atoms occupying designated sites in the lattice, 
which may be called the a and /3 sites. On warming up the energy will be supplied in 
the form of heat and will cause some A atoms to migrate into “wrong” p sites and vice 
versa, causing the atomic distribution to become more random. With perfect order at a 
low temperature the mathematical probability of finding an A atom on an a site and a B 
atom on a p site is unity. At higher temperatures, however, the probability that an a site 
is occupied by an A atom will be reduced to a fraction of unity, say p.  BRAGG and 
WILLIAMS [ 19341 have used this description to define the long-range orderparameter, S,  

S = ( p  - r) / (1 - r), 
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where r is the fraction of A atoms in the alloy. According to eq. (ll), S varies from one 
to zero as order decreases. 

The order-disorder change, like the magnetic change, is a cooperative phenomenon. 
As more atoms find themselves in “wrong” atomic sites due to thermal agitation the 
energy difference indicated by eq. (10) decreases and it becomes easier to produce 
further disorder. Eventually a critical temperature is reached, Tc, at which all distinction 
between different sites is lost. 

The simple approach as outlined above does not allow for the possibility of the 
existence of magnetic domains and other types of interruptions in the ordered array of 
atoms that may cause a departure from perfect order (as mentioned in a previous section) 
which makes it possible for a high degree of local order to exist even though its 
perfection is not absolute on a large volume scale. In order to describe such situations an 
alternative method of defining the state of order is possible which, instead of considering 
the probability of finding A or B atoms on designated a or p lattice sites, takes into 
acount the number of unlike nearest neighbors around a given atom. For example, the 
BE-M-LE [1935] short-range orderparameter, u, is defined by: 

where q denotes the fraction of unlike nearest neighbors at a given temperature and qr 
and qm correspond to the fractions of unlike nearest neighbors at conditions of maximum 
randomness and maximum order. As may be seen, u is defined in such a way that it 
would become unity for perfect order and zero for randomness. 

Actually, instead of reaching zero on disordering, u usually remains a definite value 
above T,. In terns of the relationship between atoms, u measures the state of order in the 
immediate vicinity of a given atom unlike the long-range order parameter, S, of Bragg 
and Williams which deals with the whole lattice. The description of the immediate 
surroundings of a given atom can be extended further to include several successive 
concentric shells corresponding to the first, second, third, etc., nearest neighbors 
(COWLEY [1950]). 
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(f) Stability and electronic structure of metallic glasses are discussed by: 
U. MIZUTANI, Prog. Mater. Sci. 28 (1983). 
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163, series E, (1989); and in a book by Alan H. C O ~ L ,  “Introduction to the Modem Theory o Metals”, 
Institute of Metals, London (1988). Interested readers should perhaps consult first the chapter on electronic 
theories in this book. 



CHAPTER 4 

STRUCTURE OF INTERMETALLIC 
COMPOUNDS AND PHASES 

PJCCARDO FERRO AND ADRIANA SACCONE 
Istituto di Chimica Generale 

Universitd di Genova 
Getwva, Italy 

R. u! Cahn and R Haasen?, e&. 
Physical Metallurgy;fourth, revised and enhanced edition 
0 Elsevier Science BT( 19% 



206 Riccardo Ferro and Adriana Saccone Ch. 4, 8 1 

1. Introduction 

1.1. Preliminary remarks and definition of an intermetallic phase 

In the field of solid state chemistry an important group of substances is represented 
by the intermetallic compounds and phases. A few general and introductory remarks 
about these substances may be presented by means of figs. 1 and 2. In binary and multi- 
component metal systems, in fact, several crystalline phases (terminal and intermediate, 
stable and metastable) may occur. 

Simple schematic phase diagrams of binary alloy systems are shown in fig. 1. In all 
of them the formation of solid phases may be noticed. In fig. l a  we observe the 
formation of the AB, phase (which generally crystallizes with a structure other than those 
of the constituent elements) and which has a negligible homogeneity range. Thermody- 
namically, the composition of any such phase is variable. In a number of cases, however, the 
possible variation in composition is very small (invariant composition phases or stoichiometric 
phases, or “compounds” proper, also called “point compounds” in binary alloys). 

In fig. l b  and IC, on the contrary, we observe that solid phases with a variable 
composition are formed (non-stoichiometric phases). In the reported diagrams we see 
examples both of terminal (lb, IC) and intermediate phases (IC). These phases are 
characterized by homogeneity ranges (solid solubility ranges) which, in the case of the 
terminal phases, include the pure components and which, generally, have a variable 
temperature-dependent extension. (In the older literature, stoichiometric and non- 
stoichiometric phases were often called “daltonides” and “berthollides”, respectively. 
These names, however, are no longer recommended by the Commission on the Nomen- 
clature of Inorganic Chemistry (IUPAC), LEIGH [1990]. 

More complex situations are shown in fig. 2, where some typical examples of 
isobarothermal sections of ternary alloy phase diagrams are presented. In the case of a 
ternary system, such as that reported in fig. 2a, we notice the formation of several, binary 
and ternary, stoichiometric phases. In the case shown in fig. 2b, different types of 
variable composition phases can be observed. We may differentiate between these phases 
by using terms such as: “point compounds” (or point phases), that is, phases represented 
in the composition triangle, or, more generally, in the composition simplex by points, 
“line phases”, “jeld phases”, etc. 

As a summary of the aforementioned considerations, we may notice that several types 
of substances may be included in a preliminary broad definition of an intermetallicphase. 
Both stoichiometric (compounds)phases and variable-composition (solid so1utions)phases 
may be considered and, as for their structures, both fully ordered or (more or less 
completely) disordered phases. 

For all the intermetallic phases the identification (and classification) requires 
information about their chemical composition and structure. To be consistent with the 
other field of descriptive chemistry, this information should be included in specific 
chemical (and structural) formulae built up according to well-defined rules. This task, 
however, in the specific area of the intermetallic phases (or more generally in the area 
of solid state chemistry) is much more complicated than for other chemical compounds. 
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T I  liquid 
a’ I 

A 

C) 
liquid 

at.%B - B A at.%B - B A 

Fig. 1. Examples of simple binary diagrams. 
a) A stoichiometric, congruently melting, compound is formed at the composition corresponding to the AB, 

formula. 
b) No intermediate phase is formed. The components show a certain limited mutual solid solubility. 
c) The two components show limited mutual solid solubility (formation of the a- and &phases). Moreover, 

an intermediate phase (7) is form& it is homogeneous in a certain composition range. 

This complexity is related both to the chemical characteristics (formation of variable 
composition phases) and to the structural properties (the intermetallic compounds are 
generally non-molecular in nature, while the conventional chemical symbolism has been 
mainly developed for the representation of molecular units). As a consequence there is 
not a complete, or generally accepted, method of representing the. formulae of 
intermetallic compounds. 

References: p. 363. 
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Ba 

a) 

BabAIS Ba,Al, BaAl, AI 

AI 

Ti Ti& TiAu TiAu, TiAu, Au 

b) 

Fig. 2. Isobarothermal sections of actual ternary systems (from Ternary Alloys", PETZOW and EFFENBERG, 
[I988 et sen.1). 

Ba-AI= system. A number of binary compounds are formed in the side binary systems. Moreover, a few 
ternary phases have been observed. 
7,: =Ba(A1,Ge,J2, line phase, stable for 0.41 cxc0.77; 
T ~ :  Ba,Al,G%, r3: Ba,,,Al,Ge,, r4: BaAI2-, point phases. 
Ti-Au-AI system. The binary systems show the formation of several intermediate phases, generally 
characterized by certain composition ranges (ideal simple formulae are here reported). Two ternary field 
phases are also formed. Their homogeneity ranges are close to TiAhAI (6,) and TiAuAl(8J. respectively. 
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Some details on these points will be given in the next sections. These will then be 
used for a descIiption of selected common phases and a presentation of a few character- 
istic general features of intermetallic crystallochemistry. For an exhaustive description of 
all the intermetallic phases and a comprehensive presentation and discussion of their 
crystallochemisltry, general reference books and catalogues, such as those reported in the 
list of references, should be consulted. More references to specific topics will be reported 
in the following sections. 

Those who are interested in the historical development of the intermetallic compound 
concept and science may refer to the review written by WESTBROOK [1977] on the past 
and future potential of intermetallic compounds. In this review Westbrook selected the 
following topics for the examination of their historic roots: 

a) the development of the modem concept of the intermetallic compound; 
b) the development of the phase diagram; 
c) the role of electron concentration in determining intermetallic phase stability; 
d) the role of geometrical factors in determining intermetallic phase stability; 
e) the point defect concept and its relation to non-stoichiometric compounds; 
f) the unusual role of grain boundaries in intermetallic compounds. 
Me reported information on the chronological growth in the number of binary metallic 

phase diagrams studied (starting from the year about 1830 with the systems Pb-Sn, 
Sn-Bi, etc.,) an'd of the intermetallic compounds. 

The first problems encountered while studying these substances are pointed out: 
typically that simple valence concepts were not applicable for rationalizing compound 
formulation and that several compounds seemed to exist over a range of composition and 
not at some specific ratio as with ordinary salts. The development of the systematics of 
the intermetallic phases and of their applications is then discussed and compared with the 
history of the rise of thermodynamics and crystallochemistry. 

The complexity and variability of solid state phenomena add to more practical 
reasons of interest in defining the peculiar approach to a systematic investigation of solid 
intermetallic phases. * 

1.2. Identification of the intermetallic phases 

The identification and crystallochemical characterization of an intermetallic solid 

a) Chemical composition (and the homogeneity composition range and its temperature 
phase requires the definition and analysis of the following points: 

and pressure dependence). 

* This chapter, as previously stated, will highlight the particular subject of the intermetallic solids. It may be 
worth reminding, however, that intermetallic substances can be found also in different aggregation states. (For 
the liquid state see, for instance, fig. 1). Important contributions to understanding systems in the liquid state 
(experimental measurements, thermodynamic properties forecasting, liquid state structure, theories and models) 
were brought about, for instance, by HOCH, ARPSHOFEN and PREDEL [1984], SOMM'ER [1982] and SINGH and 
SOMMER [1992]). A systematic description of the structure of amorphous and molten alloys (basic equation for 
the description of the structure of nou-crystalline systems, experimental techniques and elements of systematics) 
has been presented 'by LAMPARTER and S m  [1993]. 

References: p .  363. 
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b) Structure type (or crystal system, space group, number of atoms per unit cell and 
list of occupied atomic positions). 

c) Values of a number of parameters characteristic of the specific phase within the 
group of isostructural phases (unit cell edges, occupation characteristics and, if not fixed, 
coordinate triplets of every occupied point set). 

d) Volumetric characteristics (molar volume of the phase, formation volume 
contraction, or expansion,, space filling characteristics, etc.). 

e) Interatomic connection characteristics (local atomic coordination, long distance 
order, interatomic distances, their ratios to atomic diameters, etc.). 

Clearly, not all the data relevant to the aforementioned points are independent of each 
other. The strictly interrelated characteristics listed under d) and e), for instance, may be 
calculated from the data indicated in b) and c), from which the actual chemical composi- 
tion of the phase may also be obtained. 

For each of the aforementioned points (and for their symbolic representation) a few 
remarks may be noteworthy: these will be presented in the following. Crystallographic 
conventions, nomenclature and symbols will be used. For a summary of these and of the 
corresponding definitions the most important reference book is “International Tables for 
Crystallography”, HAHN [1989]. Several books, mentioned here in the reference list, 
contain, more or less detailed, introductions to the crystallographic notations. A few 
remarks on these points will be presented in this chapter (see especially table 3 and Sec. 
3.1 and 3.5.5); some examples moreover have been given in chapter 1. 

2. Chemical composition of the intermetallic phase and its 
compositional formula 

Simple compositional formulae are often used for intermetallic phases; these (for 
instance, Mg,Ge, ThCr,Si,, ...) are useful as quick references, especially for simple, 
stoichiometric, compounds, The following remarks may be noteworthy: 

Order of citation of element symbols in the formula 
The symbol sequence in a formula (LaPb, or Pb,La) is, of course, arbitrary and, in some 
particular cases, may be a matter of convenience. Alphabetical order has often been 
suggested (for example by IUPAC, LEIGH [1990]). A symbol sequence based on some 
chemical properties, however, may be more useful when, for instance, compounds with 
analogous structures have to be compared (Mg,Ge and Mg,Pb). Recently, in 1990, & 
international group of materials scientists coordinated by the Max Planck Institute for 
Metals Research of Stuttgart (Germany) (the so-called MSIT: Materials Science 
International Team) performing the critical assessment of a new series on ternary alloys 
edited by PETZOW and EFFENBERG [1988 et seq.] decided to adopt a symbol quotation 
order based on a parameter introduced by PETTIFOR [1984, 1986al In fact, in order to 
stress the chemical character of the elements and to simplify their description, PETTIFOR 
[1984, 1985, 1986a, 1986bl (see also chapter 2) created a new chemicalscale (x) which 
orders the elements along a simple axis. The progressive order number of the elements 
in this scale (the so-called Mendeleev number) may also be considered. The Mendeleev 



Ch. 4, $ 2  Structure of intermetallic compounds and phases 21 1 

numbers M (which, of course, are different from the atomic numbers) start, according to 
Pettifor, with the least electronegative elements He 1, Ne 2, ... and end with the most 
electronegative ones ... N 100,O 101, F 102 up to H 103. The Mendeleev Number (M) 
and the correlated “chemical scale x’’ are shown in table 1. The chemical meaning of 
these parameters may be deduced not only by their relation to the Periodic Table. By 
using them, in fact, excellent separation of similar structures is achieved for numerous 
&Bn phases with a given stoichiometry within single two-dimensional MA/MB maps, 
(see Sec. 8.7.). Notice, however, that in subsequent papers, on the basis of a progressive 
improvement of the structure maps, slightly different versions of the chemical scale had 
been reported. 

On the basis of the Pettifor’s scale, the suggestion has been made that the element E 
with a lower value ME (or ,yB> is quoted first in the formulae of its compounds. This will 
be generally adopted here. 

Indication of constituent proportions 
No special comments are needed for stoichiometric compounds (LaPb,, ThCr2Si2, ...). 

More complex notation is needed for non-stoichiometric phases. Selected simple 
examples will be given below and more detailed information will subsequently be 
reported, when discussing crystal coordination formulae. 
a) Ideal formulae 
While considering a variable composition phase, it is often possible to define an “ideal 
composition” (imd formula) relative to which the composition variations occur (or are 
considered to occur). This composition may be that for which the ratio of the numbers 
of different atoms corresponds to the ratio of the numbers of the different crystal sites in 
the ideal (ordered) crystal structure (as suggested by IUPAC, LEIGH [1990]). These 
formulae may be used even when the “ideal composition” is not included in the 
homogeneity range of the phase (Nb,AI for instance, shows a homogeneity range from 
18.6 at% Al which hardly reaches 25 at% Al. At the formation peritectic temperature of 
2060°C the composition of the phase is about 22.5 at% Al). 
b) Approximate formulae 
A general notation which has been suggested by IUPAC when only little information has 

Table 1 
Chemical order of the elements, according to PETTIFOR [1986a] 

la. For the elements, arranged here in alphabetical order, the values of the so-called Mendeleev number are reported. 

Ac 48 
Ag 71 
Al 80 
Am 42 
A r 3  
As 89 
At 96 
Au 70 
B 86 
Ba 14 

Be 77 
Bi 87 
Bk 40 
Br 98 
C 9s 
Ca 16 
Cd 75 
Ce 32 
Cf 39 
c1 99 

Cm 41 
c o  64 
Cr 57 
Cs 8 
Cu 72 
DY 24 
Er 22 
Es 38 
Eu 18 
F 102 

Fe 61 
Fm 37 
Fr 7 
Ga 81 
Gd 27 
Ge 84 
H 103 
He 1 
Hf 50 
Hg 74 

Ho 23 
I 97 
In 79 
Ir 66 
K 10 
K r 4  
La 33 
Li 12 
Lr 34 
Lu 20 

Md 36 No 35 
Mg 73 Np 44 
Mn 60 0 101 
Mo 56 Os 63 
N 100 P 90 
Na 11 Pa 46 
Nb 53 Pb 82 
Nd 30 Pd 69 
Ne 2 Pm 29 
Ni 67 Po 91 

h 31 
Pt 68 
Ftl 43 
Ra 13 
Rb 9 
Re 58 
Rh 65 
Rn 6 
Ru 62 
s 94 

Sb 88 
Sc 19 
Se 93 
Si 85 
Sm 28 
Sn 83 
Sr 15 
Ta 52 
Tb 26 
Tc 59 

Te 92 Yb 17 
Th 47 Zn 76 
Ti 51 Zr 49 
TI 78 
Tm 21 
u 45 
v 54 
w 55 
Xe 5 
Y 2s 

References: p. 363. 
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lb. The elements are arranged in the order of the Mendeleev Number M (and of the related chemical scale x). 
M 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Element 
He 
Ne 
Ar 
Kr 
Xe 
Rn 
Fr 
cs 
Rb 
K 
Na ' 
Li 
Ra 
Ba 
Sr 
Ca 
Yb 
Eu 
sc 
Lu 
Tm 
Er 
Ho 
DY 
Y 
Tb 
Gd 
Sm 
Pm 
Nd 
Pr 
Ce 
La 
Lr 
No 

X M 
0.00 36 
0.04 37 
0.08 38 
0.12 39 
0.16 40 
0.20 41 
0.23 42 
0.25 43 
0.30 44 
0.35 45 
0.40 46 
0.45 47 
0.48 48 
0.50 49 
0.55 50 
0.60 51 
0.645 52 
0.655 53 
0.66 54 
0.67 55 
0.675 56 
0.6775 57 
0.68 58 
0.6825 59 
0.685 60 
0.6875 61 
0.69 62 
0.6925 63 
0.695 64 
0.6975 65 
0.70 66 
0.7025 67 
0.705 68 
0.7075 69 
0.71 

Element 
Md 
Fm 
Es 
Cf 
Bk 
Cm 
Am 
Pu 
NP 
U 
Pa 
Th 
Ac 
Zr 
Hf 
Ti 
Ta 
Nb 
V 
W 
Mo 
Cr 
Re 
Tc 
Mn 
Fe 
Ru 
os 
c o  
Rh 
Ir 
Ni 
Pt 
Pd 

X M 
0.7 125 70 
0.715 71 
0.7 175 72 
0.72 73 
0.7225 74 
0.725 75 
0.7275 76 
0.73 77 
0.7325 78 
0.735 79 
0.7375 80 
0.74 81 
0.7425 82 
0.76 83 
0.775 84 
0.79 85 
0.82 86 
0.83 87 
0.84 88 
0.88 89 
0.885 90 
0.89 91 
0.935 92 
0.94 93 
0.945 94 
0.99 95 
0.995 96 
1.00 97 
1.04 98 
1.05 99 
1.06 100 
1.09 101 
1.105 102 
1.12 103 

Elemenl 
Au 
Ag 
c u  
Mg 
Hg 
Cd 
Zn 
Be 
Tl 
In 
Al 
Ga 
Pb 
Sn 
Ge 
Si 
B 
Bi 
Sb 
As 
P 
Po 
Te 
Se 
S 
C 
At 
I 
Br 
c1 
N 
0 
F 
H 

X 
1.16 
1.18 
1.20 
1.28 
1.32 
1.36 
1.44 
1 S O  
1.56 
1.60 
1.66 
1.68 
1 .80 
1.84 
1.90 
1.94 
2.00 
2.04 
2.08 
2.16 
2.18 
2.28 
2.32 
2.40 
2.44 
2.50 
2.52 
2.56 
2.64 
2.70 
3.00 
3.50 
4.00 
5.00 

to be conveyed and which can be used even when the mechanism of the variation in 
composition is unknown, is to put the sign = (read as circa or approximately) before the 
formula; for instance = CuZn. 
c) Variable composition formulae 
(Ni,Cu) or Ni,Cu,, (0 S x I 1) are the equivalent representations of the continuous solid 
solution between Ni and Cu, homogeneous in the complete range of compositions; other 
examples are: Ce,,L%Ni, (0 I x I 1); (TiI-,Crx)& (0 I x I 0.69); etc .... 

Similar formulae may also be used in more complicated cases to convey more information: 
A,,,+xB,Cp (... e x  < ...) (phase involving substitution of atoms A for B). 
A,,B may indicate that there are A-type vacant sites in the structure. 
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LaNi,H, (O< x a: 6.7) indicates the solid solution of H in LaNi,. 
d) Site occupation formulae 
According to the Recommendations by the Commission on the Nomenclature of 
Inorganic Chemistry, (LEIGH [ 1990]), additional information may be conveyed by using 
a more complicated symbolism; suggestions have also been made about the indication of 
site occupation and of their characterization. These points will be discussed in more 
detail in the following sections; in the meantime we may mention that, for the indication 
of site occupation, the following criteria have been suggested by the Commission: 

The site andl its occupancy is represented by two right lower indexes separated by a 
comma. The first index indicates the type of site, the second one indicates the number of 
atoms in this sit(:. (AA, for instance, means an atom A on a site occupied by A in the ideal 
structure, whereas AB represents an atom A in a site normally (ideally) occupied by B). 

A formula such as: 
MM,l-xNM,xM N,xNN,l-x or (M1-xNx)M(MxN1-x)N represents a disordered alloy (whereas the 

ideal composition is MN with an ideal MMNN structure). In this notation vacant sites may 
be represented by 0 or by v-. 

Mg,~,2~xSn,,xMg,~,xSn,,,~x shows a partially disordered alloy with some of the Mg atoms 
on Sn sites, and vice versa; 
( B i 2 - ~ T e x ) B , ~ ~ i * ~ e ~ - ~ ) ~ ~  shows the composition changes from the ideal Bi,Te, formula; 
Al~,lPdN,xPdpd,+x OPd,Px which shows that in the phase (corresponding to the ideal 
cornposition PdAl), every A1 is on an A1 site, but x Pd atoms are on A1 sites (1-x Pd 
atoms in Pd sites) and 2x Pd sites are vacant. 

This type of formula may be especially useful when discussing thermodynamic 
properties of the phase and dealing with solid solution models and quasi-chemical 
equilibria between point defects. 
e) Polymorphism descriptors 
Several substances may change their crystal structure because of external conditions such 
as temperature and pressure. These different structures (polymorphic forms) may be 
distinguished by using special designators of the stability conditions. (If the various 
crystal structures are known, explicit structural descriptors may obviously be added). A 
very simple, but systematic notation has been introduced by the MSIT (see before) which 
in the meanwhile has been adopted worldwide (see Introduction of all volumes on 
“Ternary Alloys” edited by PETZOW and EFFENBERG, [1988 et seq.]). The different 
temperature moijifications are indicated by lower case letters in parenthesis behind the 
phase designation, with (h) = high temperature modification, (r) room temperature 
modification and (1) = low temperature modification; (hl, h,, etc. represent different high 
temperature modifications). In the description of a number of modifications which are 
stable at different temperatures, the letters are used in the sequence h,, h,, r, l,, l,, ..., in 
correspondence to the decreasing stability temperature. 

Table 2, taken from Volume 3 of the series edited by PETZOW and EFFENBERG 
[1988], shows a few examples of this notation. (In this case, of course, the temperature 
and composition ranges of stability explicitly indicated for all the phases give additional, 
more detailed information). 

The following examples of alloy formulae have been reported: 
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Table 2 
An example of crystallochemical description of alloy system. 

Binary solid phases in the Ag-A1 system 
(from R T ~ W  and EFFENBERG [1988 eiseg.] and h&4SSALSKI [19!%]). 

Phase Pearson Lattice Maximum Composition 
Trivial Name, Ideal Formula, Symbol/ Parameters Range (at% A1) 

Temperature Range ("C) Prototype Om) 
_ _ ~  - 

cF4 a=408.53 (23°C) 0 to 20.4 
cu (at = 450'C) 

(h) CI2 a=330.2 (700°C) 20.5 to 29.8 
778-605 W (at 726°C) 

=21 to 24 

hP2 a = 287.1 (27at%A1) 22.9 to 41.9 
Mg c = 466.2 

a= 288.5 (Al-rich 
c-458.2 limit) 

cF4 a=404.88 (24°C) 76.5 to 100 
cu (at 567"C, AI-rich 

eutectic temperature) 

In connection with this group of descriptors we may perhaps remember indicators such 
as (am), (vt), etc. for amorphous, vitreous substances. For instance: 
SiO,(am) amorphous silica; Si(am)H, amorphous silicon doped with hydrogen. 

3. Crystal structure of the intermetallic phase and its representation 

3.1. Unit cell description (general remarks, lattice complexes) 

The characterization of a phase requires a complete and detailed description of its 
structure. As examples of such a description, we may consider the data (as obtained, for 
instance, from X-ray diffraction experiments) reported in table 3 for stoichiometric and 
variable composition phases. (For an explanation of the various symbols used in the table 
see the International Tables of Crystallography (HAHN [1989]. See also the examples 
reported in chapter 1). 

Following information is included in the table: 
- Crystallographic system, that is the coordinate system (and metrical relationships 
between the lattice parameters of the adopted unit cell: for instance, cubic: a =  b=c, CY =p 
= y = 90"; tetragonal: a = b # c, a =p = y = 90", etc.); and the specific values (in pico- 
meters) of the unit cell dimensions. 
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Table 3 
Examples of crystallographic description of phase structures 

(from VILLARS and CALVERT 119911). 

215 

~ ~ ~~~ 

CsCI (stoichiometric compound); 
Primitive cubic; a=:411.3 pm; space group Pmgm, No. 221, 
1 Cs in a): O,O,O; 
1 C1 in b): &,:; 
(The two special a) and b) Wyckoff positions have no free coordinate parameter.) The two occupancy 
parameters are 100%. 

Mg2Ge (stoichiometric compound): 
Face-centered cubic; a=638.7 pm; space group Fmgm, N. 225, 
Equivalent positions (O,O,& O,;,;; ;,O,#;$,+,O) + 
4 Ge in a): O,O,O 
8 Mg in c): $,$,i; &$,$ 
(No free parameters in the atomic positions of Mg and Ge. In this case the two occupancy parameters have 
been found to be 1130%.) 

MoSi, (nearly stoichiometric compound): 
body-centered tetra,gonal; a=319.6 to 320.8 pm and c=787.1 to 790.0 pm, according to the composition; space 
group 14/mmm, No. 139, 
Equivalent positions (O,O,O; i,i,i) + 
2 Mo in a): O,O,O 
4 Si in e): O,O,z; O,O,-z ; z=0.333 
(The Si position has the free parameter z, for which, in this particular case, the value 0.333 has been 
determined, the two occupancy parameters are loo%.) 

= CeaiSi, (ddisordt:red structure): 
hexagonal; a=406.1 to 407.1 pm; c=414.9 to 420.2 pm; space group P6/mmm, N. 191 
1 Ce in a): O,O,O, 
2 (Ni + Si) (in a ratio 1:3) in d): $, $, 4; $, J, $; 
(In this case the atomic sites corresponding to the d) Wyckoff position are randomly occupied by Ni and Si 
atoms in the given ratio and the overall composition correspond to 1Ce + 2 x (0.25 Ni + 0.75Si)). 

Cr,,P, (simple structure showing partially occupied sites): 
hexagonal; a=898.1 pm; c=331.3 pm; space group P6Jm, No. 176. 
2 P in a): O,O,i; O,O,$; (occupancy 50%) 

6 Cr in h): x,y,$; -y,x-y,$; -x+y,-x$; -x,-y,:; y,-x+y,:; x-y,x,$ (x= 0.5109, y=0.3740); (occupancy 100%) 
6 Cr in h): x,y,$; -y,x-y,i; -x+y,-x$; -x,-y,$; y,-x+y,j; x-y,x,i (x= 0.2108, y = 0.0144); (occupancy 50%) 

In this case several groups of atoms have the same type of Wyckoff positions: the h) position which has free 
parameters. These, of course, have different values for the different groups of atoms. The parameter values 
experimentally determined in this case for each atom group are reported. 

The partial occupancies found for the different positions are also reported. In this case in the a) Wyckoff 
position, for instants, only half of the sites are randomly occupied by P atoms; the others are vacant. The total 
number of atoms iri the unit cell is: P: 0 . 5 ~ 2 + 6 = 7 ;  Cr: 6 + 0 . 5 ~ 6 + 0 . 5 ~ 6 = 1 2 .  

6 P in h): XJ,~;  -Y,X-Y,.; -x+y,-~,f; -x,-Y,$; Y,-X+Y,;; x-Y,x,$ (x= 0.2851, ~ ~ 0 . 4 4 6 2 ) ;  (OCCUPEUICY 100%) 

6 Cr in h): X,Y,~; -!f,X-y,& -x+Y,-x$; -x,-Y,$; Y,-X+Y,;; X-Y,X$ (x= 0.2638, y=0.0137); ( O C C U P ~ ~ C Y  50%) 

- Bravais point lattice and space group (this describes the spatial symmetry of the 
structure on a rnicroscopic (atomic) level, and is represented by means of the Hermann 
-Mauguin symbol, composed by a letter representing the lattice type (P =primitive, 
I=body centered, etc., see table 4) followed by the symbols of the symmetry elements 
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Table 4 
Pearson Symbols 

System symbol 
a triclinic (anorthic) 
m monoclinic 
o orthorhombic 
t tetragonal 
h hexagonal (and trigonal 

and rhombohedral) 
c cubic 

Lattice symbol 
P primitive 
I body centred 
F all-face centred 
C side face centred * 
R rhombohedral 

* Instead of C, in the future, the symbol S wiIl probably be adopted according to the recommendation of the 
International Union of Crystallography. 

ordered according to their positions relative to the axes (for instance Pm3m is the symbol 
of the space group of the CsCl structure). 

As usual, the space group is also identified by the serialnumber (221 for Pm3m) 
reported in several compilations such as the “International Tables” which is the funda- 
mental reference book for crystallography (HAHN [ 19891). 

A list of the atoms contained in the unit cell and their coordinates (fractional 
coordinates related to the adopted system and unit cell edges) are then reported. These 
are usually presented in a format as M EZ in n: x,y,z. In the MoSi, structure, also reported 
in table 3, we have, for instance, four silicon atoms (that is: M El = 4 Si) in the position 
set coded as e and corresponding to the 4 coordinate triplets O,O,O; O,O,z; $,+,$ + z; 

well-defined site symmetry and by a multiplicity M. For each Wyckoff position M, is the 
number of equivalent points (positions) in the unit cell with the same site symmetry. The 
highest multiplicity M, of the given space group corresponds to the lowest site 
symmetry (each point is mapped onto itself only by the “identity operation”). This is the 
“general position”: the coordinate triplets of the M, sites include the reference triplet 
indicated as x,y,z (having three variable parameters). In a given space group, moreover, 
it is possible to have several specialpositions. In this case points are considered which 
are located on symmetry elements (without translations) or at the intersection of several 
such symmetry ,elements. Each point will be mapped onto itself by at least one of these 
symmetry operations: we will have as a consequence a reduction in the number of 
different equivalent points in the unit cell generated by all the characteristic symmetry 
operations. The multiplicity of these positions will be lower than M- (M in a special 
position is a divisor of that of the general position). We may also say that specific 
costraints are imposed on the coordinates of each point of a special position leading to 
triplets such as x,y,O (that is z = 0) or x,x,z (that is x = y), with two variable parameters, 
or x,$,$ or x,x,O (with one variable parameter) or O,O,O or &,&,O (with no variable 
parameter). In the International Tables of Crystallography, for each of the 230 space groups, 
the list of all the positions is reported. For each of the positions (the general and the special 
ones) the coordinate triplets of the equivalent points are also given. The different positions are 
coded by means of the Wyckoff letter, a, b, c, etc., starting with a for the position with the 
lowest multiplicity and continuing in alphabetical order up to the general position. 

--_ i,;,; - z. Such entries correspond to the so-called Wyckofpositions characterized by a 
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In the examples reported in table 3 it is also shown that for the positions withfie 
parameters the specific values of the parameters themselves have to be experimentally 
determined in order to present a complete description of the structure. 

Notice that, for instance, in the case of the MoSi, structure the different atomic 
positions in the unit cell are the following: 2 Mo in O,O,O, and in ;,$A and 4 Si in O,O,z; 
in O,O, - z; in ;,I, -+ z and in $,;,$ - z (corresponding, on the basis of the experimental 
value z = 0.333, to 0,0,0.333; 0,0,0.667; f,i,0.833; $,4,0.167). These positions have been 
described, according to the International Tables of Crystallography conventions, explicitly 
indicating the centring translations (O,O,O; h,;,;) + before the coordinate triplets. The 
symbol+means that, in order to obtain the complete Wyckoff position the components 
of these centring translations have to be added to each of the listed triplets. 

A similar presentation has been used for the Mg,Ge structure description. Notice that 
the coordinates are formulated modulo 1: thus, for instance, -x,-y,-z is written rather 
than 1-x,l-y,l-z. 

Finally, in the table, some more examples are reported as an introduction to more 
complex, partially disordered structures (random distribution of different atom types in 
the same positions, partially occupancy of certain positions). 

Considering now the simple structure of CsCl as an example we see that the 
“crystallographic description” reported in table 3 corresponds to the atom arrangement 
presented (with alternative representations) in fig. 3 and, in more details, in sec. 6.1.2). 

More generally, we may say that, from descriptions, such as those reported in table 3, the 
interatomic distances may be computed and, consequently, the coordinations and grouping of 
the various atoms may be derived: an example of this computation will be presented in sec. 
3.5.5. (A systematic listing of the crystal data relevant to all the known phases has been 
reported in a number of fundamental reference books such as (PEARSON [ 19671, LANDOLT- 
BORNSTEIN [1971], VILLARS-CALVERT [1985], VILLARS-CALVERT [1991], etc). 

For the criteria to be followed, especially when complex structures are involved, in 
the preparation and presentation of coordinate lists see PARTHE and GELATO [1984]. 
Their paper describes a proposal for a standardized presentation of inorganic crystal 
structure data with the aim of recognizing identical (or nearly identical) structures from 
the similarity of the numerical values of the atom coordinates. Different, equivalent (but 
not easily recognizable) descriptions could, in fact, be obtained by shift of origin of the 
coordinate system, rotation of the coordinate system, inversion of the basis vector triplet. 
(See also PARTHE etaE. [1993]). 

A description which in some simple cases could in a way be considered alternative 
to those exemplified in table 3 is based on the lattice complex concept. (Listing the 
symbols of the lattice complexes occupied by the different atoms in a structure, for 
instance, symbol P for the point O,O,O, and its equivalent points, provides in fact a means 
of describing arid classifying structures. This may be especially convenient for relatively 
simple structures particularly in the cubic system). 

A lattice complex may be defined as an arrangement of equivalent points that are 
related by space group symmetry operations including lattice translations (PEARSON 
[1972]). The sa.me lattice complex may occur in different space group types and may 
have more than one location in regard to a chosen origin for the unit cell. The number 
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a) b) 

Ch. 4, 0 3 

Fig. 3. Alternative representations of the unit cell of the CsCl compound. The two types of atoms are 
represented by means of the differently coloured spheres. 

the positions of the centers of the atoms in the unit cell are indicated. 
projection of the unit cell on the base plane. The values of the 3” (vertical) coordinate are given. 
the shortest interatomic distances are presented. 
packed spheres model. 
a group of 8 cells is represented in order to show that the actual structure of CsCl corresponds to a three- 
dimensional infinite repetition of unit cells. Notice the coordination around the white atom; it is similar to 
that around the black atom shown in e). 
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of degrees offieedom of a lattice complex, normally, is the same as that of any of its 
Wyckoff positions and is the number of coordinate (free) parameters x,y,z, that can vary 
independently. According to its number of degrees of freedom a lattice complex is called 
invariant, uni-, bi-, or trivariant. 

The invariant lattice complexes in their characteristic Wyckoff positions are repre- 
sented mainly by capital letters. Those with equipoints at the nodes of the Bravais lattice 
are designated by their appropriate lattice symbols. (Lattice complexes, from different 
crystal families that have the same coordinate description for their characteristic Wyckoff 
positions, receive the same symbol: for instance, lattice complex P corresponding to 
coordinate O,O,O. In such a case, unless it is obvious from the context which lattice is 
meant, the crystal family may be stated by a small letter, preceding the lattice-complex 
symbol as follows: c =cubic, t = tetragonal, h = hexagonal, o = orthorhombic, m = mono- 
clinic, a = anodhic = triclinic). Other invariant complexes are designated by letters that 
recall some structural features of a given complex, for instance D from the diamond 
structure, E from the hexagonal close-packing. Examples of two-dimensional invariant 
complexes are G (from graphite layer) and N (from kagomB net). (See table 4 and sec. 
3.5.2.) 

A short list of invariant lattice complex symbols is reported in the following. (For a 
complete list, for a more systematic description and formal definition, see chapter 14, 
Vol. A, of the International Tables of Crystallography, HAHN [1989]). 

- Lattice coqdex P:  (multiplicity, that is the number of equivalent points in the unit 
cell, 1); 
coordinates O,O,O; 
(crystal families: c, t, h, 0, m, a). 

coordinates O,O,O; $,$,$; 
(crystal families: c, t, 0). 

- Lattice complex I: (multiplicity 2); 

- Lattice cum,pZex J: (multiplicity 3); 
coordinates 0 11. 1 0 I* 1 L 0- ,2921 2 ,  $2,  212,  9 

(crystal families: c). 
- Lattice complex F: (multiplicity 4); 

mr&mtes  O,O,O; 0 .L Le 1 0 1. 11.0. 9292’ 2, 92, 292, , 
(crystal families: c, 0). 

- Lum’ce complex D: (multiplicity 8); 
(D from “Diamond”, see sec. 6.3.1) 
coordinatesOO0.”0.101- O L 1 * 1 L ~ . ~ 3 ~ *  

9 9 9 2321 I 2 ,  Y2* 9 2 9 2 ,  49474, 4’4949 
3 1 3 .  1 3  3 .  
4,494) 4,4947 
_ _ -  - - _  

(crystal families: c, 0). 

coordinates +,$$; a,$$; 
(crystal families: h). 

- Lattice complex E: (multiplicity 2); 
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- Lattice complex G: (multiplicity 2); 
(G fom “Graphite” layer, see sec. 6.3.4). 
coordinates $,$,O; 
(crystal families: h). 

coordinates O,O,O; id,$; $,i,i; 
(crystal families: h). 

The coordinates indicated in the reported (partial) list of invariant lattice complexes 
correspond to the so called “standard setting”. Some of the non-standard settings of an 
invariant lattice complex may be described by a shifting vector (defined in terms of 
fractional coordinates) in front of the symbol. The most common shifting vectors have 
also abbreviated symbols: P‘ represents $ 3 $ P (coordinates i,;,;), J’ represents $ 3 ; J 
(coordinates ;,O,O,; O,i,O; O,O,$); F” represents 4 4 F (coordinates 1 494949 11. 474949 2 2- 3 494949 1 2.2 4$474 2 i) 
and F”‘ represents $ # $ F. (The following notation is also used J* =J+J’ (complex of 
multiplicity 6). It can be seen, moreover, that the complex D corresponds to the 
coordinates F + F“. 

Simple examples of structure descriptions in terms of combination of invariant lattice 
complexes, may be: CsCl type P+ P’ (Cs in O,O,O; C1 in $,$,;), see table 3 and sec. 6.1.2.; 
NaCl type structure: F + F ,  see sec. 6.4.1; ZnS type structure: F+F”, see sec. 6.3.2.; 
NaTl type structure: D+D’, see sec. 6.1.4. 

Such combination of, original or transformed, invariant lattice complexes, are also 
indicated as connection patterns or constmction patterns or frameworks (or Bauverbade 
in the German literature, according to LAVES [1930]). These patterns are homogeneous 
if they may be described by the parameters of one point position, heterogeneous if, for 
their description, the parameters of two or more independent point positions are 
necessary. This terminology may give a short informative description of the crystal 
structure and is specially useful for cubic substances. (For its use in a systematic 
description and classification of cubic structures see HELLNER [ 19791). For non-invariant 
complexes and/or in crystal systems with symmetry lower than cubic, the geometrical 
configuration of the complex (and the coordination) may change significantly with free 
parameter value and with axial ratios and angles between the crystal axes. 

- Lattice complex R: (multiplicity 3); 

32. Structuraltypes 

Several intermetallic phases are known which have the same (or a similar) 
stoichiometry and crystallize in the same crystal system and space group with the same 
occupied point positions. 

Such compounds are considered as belonging to the same structure type. The 
reference to the structure type may be a simpler and more convenient way of describing 
the structure of the specific phase. The structure type is generally named afer the formula 
of the $rst representative identified: the “prototype”. Trivial names and symbols are also 
used in some cases (see sec. 3.4.). 

The various representatives of a specific structure type generally have different unit 
cell edges, different values of the occupancy parameters and of the free coordinates of 
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the atomic positions and, in the same atomic positions, different atoms (see, for instance, 
Sec. 3.5.5.). 

If these differences are small, we may consider the general pattern of the structure 
unaltered. 

On the other hand, of course, if these differences become larger, it might be more 
convenient to describe the situation in terms of a “family”, instead of a single structural 
type, of different (more or less strictly interrelated) structural (sub) types. According to 
Pmm and GELATO [1984], some structures may not really be isotypic but only 
isopointal, which means that they have the same space group and the same occupation 
of Wyckoff poisitions with the same adjustable parameters but direrent unit-cell ratios 
and difSerent atom coordinations (andor different values of Wyckoff free parameters). 

An interesting example may be given by the structures of MoSi,, reported in table 3, 
and CaC2 In this compound, Ca and C are respectively in the same positions as Mo and 
Si in the same space group 14/mmm: 
2 Ca in a): O,O,O; ;,+,;; 
4 C in e): O,O,z; O,O, - z; $,$,+ + z; 
The unit cell dimensions, however, correspond to a = 388 pm, c = 638 pm (c/a= 1.644 
instead of 2.463 as in MoSi,) and the free parameter z has the value 0.4068 (instead of 
0.333). These differences result in two different space arrangements (see fig. 4). 
Diatomic groups, such as C2, clearly evident in CaC, (and in a number of isostructural 
dicarbides and peroxides) are not formed in MoSi,. 

Very interesting general comments and definitions on this question have been 
proposed, for instance, by PEARSON [1972], and more recently by LIMA DE FARIA et al. 
[ 19901 According to these authors, two structures are isoconJigurationaZ 
(configurationally isotypic) if they are isopointal and are similar with respect to the 
corresponding Wyckoff positions and their geometrical interrelationships (same or similar 
positional coordinates, same or similar values of the unit cell axial ratios, c/a, a/b, b/c 
and cell angles a, p, y). 

Isotypism is found particularly with inorganic compounds. This behaviour has been 
discussed by PARTWE et al. [1993]. It has been underlined that to explain why two 
compounds adopt the same atom arrangement is not always simple. Following examples 
have been presrmted: 
- The isotypism of Gd4Ni,A1,3 and Y4Ni,A1,, may be easily explained because Gd and 
Y (elements of the same group of the Periodic Table) have comparable electron 
configuration and nearly the same atomic dimensions. 
- Li2Si03 and LiSi,N3 are isotypic (even if not in a rigorous sense owing to slightly 
different distorsions of the coordination polyhedra). They adopt an adamantine structure 
type (see sec. 6.3. and 7.2.1.) for which particular values of the electron concentration 
may be relevant even if obtained with elements from different parts of the Periodic 
Table. 
- GdNi and NiB represent another couple of isotypic compounds. The role (the position 
in the crystal structure), however, of the same atom, Ni, in the two compounds is 
exchanged. In IViB, the Ni atoms are those centring the trigonal prism (formed by Gd 
atoms). A reason for the existence of this structure type could possibly be related to the 

- z. 
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Mo or Ca 

0 Si or c 
Fig. 4. MoSi, (a) and CaC, (b) type structures: an example of isopointal  structure.^. Notice that, due to the 
different values of the c/a ratios and of the z parameters, there are different coordinations and atomic groupings 
(formation in CaC, of C-C, dumb-bell, discrete groups). 

atomic size difference of the elements involved (or, perhaps, to their relative position in 
Pettifor’s chemical scale). 
- The last (and most intriguing) example reported by PARTHE etal. [1993] is the couple 
of compounds Pu,,Rh, and Ca,,Sn,. For the present, the isotypism of these compounds 
of unusual stoichiometry cannot be expected and explained. 

As a conclusion to these comments, we may mention that two structures are defined 
crystal-chemically isotypic if they are isoconfigurational hnd the corresponding atoms 
(and bonds) have similar chemicaVphysica1 characteristics. 

Those interested in these concepts and in their historical development may refer also 
to a contribution by LAVES [1944], translated and reported by HELLNER [1979]. Condi- 
tions to be defined for calling crystal structures “equal” (isotypism), “similar” (homeo- 
typism) or “different” (heterotypism) were suggested, discussed and exemplified. 

We have finally to observe that, when considering phases having certain polar 
characteristics (salt-like “bonding”), the concept type and antitype may be useful. 
Antitypic phases have the same site occupations as the typic ones, but with the cation- 
anion positions exchanged (or more generally some important physicallchemical 
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characteristics of the corresponding atoms interchanged). As examples the structure types 
CaF, and CdI, .and their antitypes reported in sec. 6.4.2. and 6.5.2. may be considered. 
Notice, however, that for a structure such as the CsCl type, it does not matter whether 
we describe it a.s 1 Cs in O,O,O and 1 C1 in +,&,;, or as 1 Cs in +A,;. and 1 C1 in O,O,O. In 
this case the two descriptions are undistinguishable (see fig. 3): they correspond to a 
mere shift of the origin of the reference axes. The CsCl type is its own antitype. Similar 
considerations are valid also for other structures such as the NaC1, ZnS types, etc. 

3.3. Unit cell Pearson symbol 

The w e  of the so-called Pearson notation (PEARSON, [ 19721) is highly recommended 
(IUPAC, LEIGH 119901, “Ternary Alloys”, PETZOW and EFFENBERG [1988 et seg.]) for the 
construction of a compact symbolic representation of the structure of the phase. As fax 
as possible, it should be completed by a more detailed structural description by using the 
prototype formula which defines (as previously mentioned) a certain structure type. 

The Rearson symbol is composed of a sequence of two letters and a number. The first 
(small) letter corresponds to the crystal system of the structure type involved; the second 
(capital) letter represents the lattice type (see table 4). The symbol is completed by the 
number of the atoms in the unit cell. A symbol as tP10, for example, represents a 
structure type (or a group of structure types) corresponding to 10 atoms in a primitive 
tetragonal cell. 

In this chapter, the Pearson symbol will be used throughout; the convention has been 
adopted indicating in every case the number of atoms contained in the chosen unit cell. 
In the case, therefore, of rhombohedral substances for which the data of the (triple 
primitive) hexagonal cell are generally reported, the number of atoms is given which is 
in the hexagonal cell and not the number of atoms in the equivalent rhombohedral cell 
(FERRD and GIRGIS [1990]). So, for instance, at variance with VILLARS and CALVERT 
[1985, 19911, hR9 (and not rP3 or hR3) for the Sm-type structure. 

If the structure is not known exactly, the prototype indication cannot be added to the 
Pearson symbol. In some cases, moreover, only incomplete Pearson symbols (such as 
0?60, cF?, etc.) can be used. 

A criterion similar to Pearson’s for the unit cell designation was used by SCHUBERT 
119641 in his detailed and systematic description of the structural types of the 
intermetallic phases and of their classification. 

A slightly more detailed notation, moreover, for the unit cell of a given structure has been 
suggested by FREVEL [1985]. Four items of information are coded in Frevel’s notation: 
- the number o f  different elements contained in the compound, 
- the total number of atoms given by the chemical formula, 
- the appropriate space group expressed in the HERMANN-MAUGUIN notation and 
- the number of formulae for unit cell. 
The notation for the CaF, structure, for instance, is: 
2,3 F m h  (4). 

classification and cataloguing the different crystal structures suggested. 
Possible augmentation of the notation has been discussed by Frevel and its use for 
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According to PARTHE et al. [ 19931, a standardization procedure is at first necessary 
in the presentation of the relevant data characteristic of a crystal structure (see also 
PARTHE and GELATO [1984]). A convenient description of the structure types is then 
possible using the ‘‘Wychff sequence” (the letters of the occupied Wyckoff sites). This 
allows a finer classification of structure types and offers suggestions not only for 
recognizing isotypic structures but also possible structural relationships (substitution, 
formation of vacancy or filled-in structure variants). 

3.4. Structure trivial names and symbols 

A number of trivial names and symbols have been used (and are still in use) both as 
indicators, of a single phase in specific systems or as descriptors of certain structural 
types (or of families of different interrelated structural types). 

Among the trivial symbols, we may mention the use of Greek (and Roman) letters to 
denote phases. These have often been used to indicate actual phases in specific systems, 
for instance in a given binary system, phase a$, y, etc., in alphabetical order according 
to the increasing composition from one component to the other, while in a unary system 
the a, p, etc., symbols have often been used to denote different allotropic forms. 

Obviously ‘this notation (or other similar ones such as T,, 72 ,  T ~ ,  denoting “lSt”, “2nd”, 
etc., phase) may be useful as a quick reference code while discussing and comparing 
phase properties of alloys in a single specific system, but in general cannot be used as 
a rational criterion for denoting structural types. In a few cases, however, certain Greek 
(and Roman) letters have assumed a more general meaning (as symbols of groups of 
similar phases): for instance, the name “y-phases” which is an abbreviation of a sentence 
such as phases having the y-brass (the y-Cu-Zn) type structure. A short list, taken from 
LANDOLT-B~RNSTEIN [1971], of (Greek and Roman) letters which have also been used 
as descriptors of structural types, may be the following: 
y : y-brass type or similar structures 
E : Mg type 

7 : W,Fe,C or Ti,Ni type 

cr : cr phase or a-CrFe type 
x : a-Mn or Ti,Re, type 
w : w2 -(Cr,Ti) type (similar to the AlB, type) 
E : PbC1, or Co2Si type 
G : G phase, ThMn,, or CU#g& 
P : P phase or P-(Cr, Mo, Ni) 
R : R phase or R-(Co, Cr, Mo) 
TI : W$i, type 
T2 : Cr,B, type 
In a number of cases, names of scientists are used as descriptors. We may mention the 
following groups of structures (some of which will be described in more detail later). 
Chevrel phases. A group of compounds having a general formula such as KMo,S, 

5 : Mg type 

P : W,Fe, type 
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(M = Ag, As, Ca, Cd, Zn, Cu, Mn, Cr, etc.). Many representatives of these structure types 
are superconducting with critical T, as high as 10-15 K. 
Frank-Kasper phases. (For all of which the structure can be described as composed of 
a collection of distorted tetrahedra which fill the space: see sep. 6.6). This family of 
phases includes those of the structural types: Laves phases (a family of polytypic 
structures including the hP12-MgZn2, cF24-Cu2Mg and hP24-Ni2Mg types), tP30 
a-phases, oP56-P phases and hR39-W6Fe, type phases. 
H a g  phases. According to HAGG [1931], a number of compounds of the transition 
metals with small non-metal atoms (H, €3, C, N) have structures which can be described 
as “interstitial”, These correspond, generally, to a simple structures in which the small 
non metal atoms occupy interstices in a face centered cubic or body centered cubic 
framework of mletal atoms or, the interstices in other close packed structures. In the Hagg 
interstitial phases the relative atomic size of the two elements is of particular importance 
to the stability of the structure. 
See sec. 6.2.2. for a classification of the interstices (“holes”) in close packed structures, 
sec. 6.4.1. for NaC1-type related phases and sec. 6.5.5. for WC-type phases. 
Heusler phases. Magnetic compounds of the cFldMnCu,Al-type. (See sec. 6.1.3. on 
this structure which can be considered “derivative” of the CsCl type). 
Hume-Rothery phases. These designations can be connected to the research carried out 
as far back as 1926 by HUME-ROTHERY, WESTGREN and PHRAGMEN, etc. They observed 
that several compounds (electron compounds) crystallize in the same structural type if 
they have the average number of valence electrons per atom (the so-called VEC: valence 
electron concentration) included within certain well-defined ranges. Some groups of these 
phases (brasses. etc.) will be presented in sec. 6.1.5. and 7.2.2. (See also ch. 3, 9 8.1.) 
Nowotny phases. Chimney-ladder phases (see sec. 4.4.). 
Samson phases. Complex intermetallic structures with giant unit cells, based on 
framework of fused truncated tetrahedra (see sec. 6.6.5.) 
ZintI phases. This term was first applied to the binary compounds formed between the 
alkali or alkaline-earth elements and the main group elements from group 14 on, that is 
to the right of the “Zintl boundary” of the Periodic Table. These combinations not only 
yield some Zintl anions (homopolyatomic anions) in solution but also produce many 
rather polar or salt-like phases. A simple example may be a classical valence compound 
in which the more “noble” member achieves a filled “octet” and an 8-N oxidation state 
in salt-like structure (for example Na,As, Mg,Sn) (CORBETT [1985]). An important 
intermetallic structure discovered by Zintl (ZINTL and WOLTERSDORF [ 19351) was that of 
the cF16-NaTl-type (superstructure of the bcc lattice, see sec. 6.1.4.). The Na and T1 
atoms are arranged according to two (interpenetrating) diamond type sublattices; each 
atom is tetrahedrally coordinated by four like neighbours on the same sublattice and has 
four unlike neighbours on the other sublattice. This could be interpreted as a T1- array, 
isoelectronic wtth carbon in the limit of complete charge transfer. For a critical dis- 
cussion on the lVaT1-type structure, its stability, the role of the size factor, the compara- 
tive trend of the stabilities of CsCl and NaTl type structures, the application of modern 
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band-structure techniques, see HAFNER [1989]. Subsequent applications of the term “Zintl 
Phases” have been based on the structural characteristic of such polar phases. A review 
on this subject has been published by CORBETT [1985]. In this paper several phases are 
mentioned starting from compounds such as hR1 8-CaSi2 (containing rumple double 
layers of Si atoms resembling those of the As structure), mP32-NaGe and mC32-Nasi 
(respectively containing Ge, or Si atom, tetrahedra with the Na atoms arranged in the 
intervening spaces), up to complex alkali metal-gallium compounds exhibiting complex 
structures containing large interconnected usually empty gallium polyhedra, reminiscent 
of boron chemistry. It may be added that the concept of Zintl ions has been used also in 
the description of selected liquid alloys. It was proposed (VAN DER LUGT and GEERTSMA 
[1984], REIJERS et aE. [1990]) that in the equiatomic liquid alkali alloys with Sn and Pb 
the liquid consists of poly-anion clusters, such as Pb:- tetrahedra, formed by covalent 
bonding which are separated by alkali ions. 
Within the group of trivial names we may also include a few ‘)personal’’ names such as 
austenite (solid solution of C in y-Fe),ferrite (solid solution of C in a-Fe), martensite 
(see sec. 6.1.5.), etc., and a few mineralogical names such as pyrite, blende, cinnabar, 
etc. According to the IUPAC recommendations (LEIGH [1990]), mineralogical names 
should be used to designate actual minerals and not to define chemical composition. 
They may, however, be used to indicate a structure type. They should be accompanied 
by a representative chemical formula: 
cF8-ZnS sphalerite, hP4-ZnS wurtzite, cF8-NaC1 rock salt, cP12-FeS2 pyrite, etc. 

In closing this section we have to mention the Strukturbericht designation adopted 
from pre-war time by the editors of the Strukturbericht publications (and later Structure 
Reports) in abstracting crystal-structure determination. This designation is no longer 
recommended by the International Union of Pure and Applied Chemistry, but it is still 
used. 

According to this designation, each structure type is represented by a symbol 
generally composed of a letter (A,B,C,etc.) and a number (possibly in some cases 
followed by a third character). The letter was related to the stoichiometry according to 
the following form: A unary phases (or believed to be unary), B: binary compounds 
having 1:l stoichiometry, C: binary 1:2 compounds, D: binary m:n compounds, E...K 
types: more complex compounds; L: alloys, 0: organic compounds and S: silicates. 

In every class of stoichiometries, the different types of structures were distinguished 
by a,number andor a letter. (For instance, in the element class the frequently encoun- 
tered fcc structure, cF4-Cu-type, was called Al ,  in the 1:l group the common cF8-NaC1 
type was represented by B1, etc.). Equivalence tables between the Strukturbericht 
designation and the Pearson symbol-prototype may be found in PEARSON [1972], 
MASSALSKI [ 19901. 

The following is a partial list of these old Strukturbericht symbo2s for some types 
frequently occurring in metallic systems: 
AI: cF4-Cu; A2: cI2-W, A3: hP2-Mg; A3’: h P k L a ;  A4: cF8-C (diamond); AS: 

tI-Sn; A 6  t12-In; AT: hRG-cuAs; ...; A9: hp4-C (graphite); ...; A12: c I 5 k M n ;  ... 
; A15 cP8-Cr3Si; .... The A15 structure was previously considered to be that of a W 
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modification (and therefore a unary structure): later on the substance concerned was 
recognized to be a W oxide: W30 (isostructural with Cr3Si); ... ; A,: tP30+?U, ...; A,,: 

B1: cF8-NaC1; B2: cP2-CsC1; B3: cF8-ZnS (sphalerite or zinc blende); B4: hP4-ZnS 
(wurtzite); ...; BS,: hP4-NiAs; BS,: hP6-Ni,In; ... ; B11: tP4-yCuTi; ...; B19: 
oP4-AuCd; .B20: cP8-FeSi; ... ; B27: oP8-FeB; ...; B31: oP8-MnP; B32: cF16-NaT1; 
...; B35: hF’6-CoSn; ...; B,: cI16-UCo; ...; B,: oC8-CrB; ...; B,: hP2-WC; ...; Bi: 
hP8-TiAs; ... 

C1: cF12-CaF2; c1,: cF12-AgMgAs; C2: cP12-FeS, (pyrite); ... ; Cll,: t16-CaC,; 
C11,r t16-MoSi2, (the two C11, and c11b structures are closely interrelated, see fig. 
4); ...; C14: hP12-MgZn,; C15: cF24-Cu2Mg; C15,: cF24-AuBe5 (this structure is 
a derivative structure of the cF24-ChMg, C15 type, see figs. 42 and 44); (216: 
tI12-CuA12; ...; C22: hP9-Fe ,e...; (232: hP3-AlB2; ...; C36: hP24-Ni2Mg; ...; C38: 
tP6-ChSb; ...; C,: hP18-NiMg,; c b :  oF48-CuMg2; C,: t112-ThSi2; ... 

DO,: cI32-CoAs3; ... ; DO,: hP&Na3As; ... ; Dl,: tIlO-MoN4; D1,: o12&UA14; ...; Dl,: 

cPl-LYPo; ...; 4: llR3-pPo; ... 

tI1&Bd&;...; D2b: tI26-ThMnI2; ...; D81: c152-Fe3Zn,,; DS2: cI52-cU,Zn8; DS3: 
cP52-Cu&L,; DS4: cF116-Cr,C6; ... 

El,: OC 16-MgCuA1,; ...; E9,: tP4&FeCu2Al,;.. 

kl,: tP2-AuCn (I); L1,: cP4-AuCu3; L2,: cF16-MnCu2Al; Ll,: cF32-CuPt3; ...; 
En4: cP8-Cu3VS,;.. 

L2,: tP24CuTi;. .. ; L60: tP4-CuTi3. 

3.5. Rational crystal structure formulae 

We know that all of the requisite structural information for a solid phase is contained 
(either explicitly or implicitly) in its unit cell and this can be obtained from the Pearson 
symbol-prototype notation (complemented, if necessary, by data on the values of lattice 
parameters, atomic positions, etc.). A number of features, however, which are especially 
relevant for chemical-physical considerations, such as local coordination geometries, the 
existence of clusters, chains or layers, etc., are not self-evident in the aforementioned 
structural descriptions and can be deduced only by means of a more or less complicated 
series of calculations. It should, moreover, be pointed out that the same structure can be 
differently viewled and described (FRANZEN [ 19861, PARTHE and GELATO [ 19841). The 
simple rock-salt structure, for instance, (see sec. 6.4.1.) can be viewed as cubic close 
packed anions with cations in octahedral holes, as XY, octahedra sharing edges, as a 
stacking sequence of superimposed alternate triangular nets respectively of X and Y 
atoms or as a cubic-close packed structure of a metal with non-metals in octahedral 
interstices, As a further example we may consider the Cu structure which, for instance, 
could be conveniently compared with those of Mg, La and Sm, or from another point of 
view, with the AuCu and AuCu, structures. In the two cases, as we will see in sec. 6.2, 
one would choose a different description and representation of the aforementioned Cu 
structure. 

In the different cases, some criteria may therefore be useful in order to give (in a 
systematic and simple way) explicit information on the characteristic structural features. 
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In the following sections some details will be given on a few complementary, 
alternative notations. 

3.5.1. Coordination and dimensionality symbols in the crystal coordination 
formula 

Several attempts have been carried out in order to design special formulae (crystal 
coordination formulae) which (in a convenient linear format) may convey explicit 
information on the local coordination geometry. A detailed discussion of these attempts 
and of their development (through the work, inter alios, of NIGGLI [1945, 19481, 
MACHATSCHKI [1938,1953], LIMA DE FARIA and FIGUEIREDO [1976,1978], PARTHE 
[1980a] and JENSEN [1984]) may be found in a review by JENSEN [1989], who presented 
and systematically discussed a flexible notation for the interpretation of solid-state 
structures. A short description of Jensen's notation will be given below. The different 
symbols used will be briefly presented. For the notation concerning the common 
coordination geometries a summary is reported in table 5. A report by the International 
Union of Crystallography Commission on Crystallographic Nomenclature (LIMA DE 
FARIA et al. [1990]) presents a concise description of similar alternative notations, a 
summary of which is also presented in table 5. 

The symbols suggested by Jensen, based on Niggli's proposals, indicate the local 
coordination environments by means of coordination number ratios. For instance, a 
formula AE,,,,* will indicate a binary compound where rn is the coordination number (the 
nearest neighbour number) of atoms E around A and n will be considered the coordi- 
nation number of E by A. The ratio m/n will be equal to the stoichiometric com- 
positional ratio. For instance, we will write NaCl,, to represent the hexa-coordination 

Table 5 
Suggested notations for common coordination geometries. 

a) from JENSEN [I9891 

1 Terminal 7" Monocapped trigonal prism 
2 Bent CN 2 8 Cube 
2' Linear CN 2 8' Square antiprism 
3 Pyramidal or in general non-planar CN 3 8" Dodecahedron 
3' Trigonal planar 8"' Bicapped trigonal prism 
3" T - p l m  8 Hexagonal bipyramid 
4 Tetrahedral 9 Tricapped trigonal prism 
4' Square planar 10 Bicapped square antiprism 
4" Base of a square pyramid with the 11 Monocapped pentagonal antiprism 

5 Trigonal bipyramid 12' Hexagonal close-packed or twinned 
5' Square based pyramid with the cuboctahedron 

central atom inside 12'' Isocosahedron 
6 Octahedron or trigonal antiprism 12 Hexagonal prism 
6' Trigonal prism ii Complex, distorted n-hedron 
6" Hexagonal planar ii Disordered structure in which it is 
7 Pentagonal bipyramid possible to define only an average 
7' Monocapped octahedron coordination number n 

central atom as the apex 12 Cubic closest-packed or cuboctahedron 
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Table 5-Continued 
~ -- 

b) from LIMA 1x3 FARIA et al. [ IggO] 

Coordination polyhedron around atom A 

Single neighbour 
lbo atoms collinear with atom A 
Two atoms non-collinear with atom A 
Triangle coplanar with atom A 
Triangle non-coplanar with atom A 
Triangular pyramid with atom A in the centre of the base 
Tetrahedron 
Square coplanar with atom A 
Square nonaplanar with atom A 
Pentagon coplanar with atom A 
Tetragonal pyramid with atom A in the centre of the base 
Trigonal bipyramid 
Octahedron 
Trigonal prism 
Trigonal antiprism 
Pentagonal bipyramid 
Monocapped trigonal prism 
Bicapped trigonal prism 
Tetragonal prism 
Tetragonal antiprism 
Cube 
Anticube 
Dodecahedron with triangular faces 
Hexagonal bipyramid 
Tricapped trigonal prism 
Cuboctahedron 
Anticuboctahedron (twinned cubooctahedron) 
Icosahedron 
Truncated tetrahedron 
Hexagonal prism 
Frank-Kasper polyhedra with 
14 vertices 
15 vertices 
16 vertices 

(in this case octahedral coordination) of C1 around Na (and vice versa) in sodium 
chloride. Similarly we will have: ZnS,; PH,,; CsCl,,; CaFw4; UCG/,,,; etc. According 
to one of Jensen's suggestions it is possible to add modifiers to the coordination numbers 
in order to specify not only topological but also geometrical characteristics of the 
primary coordination sphere. (For examples, 6: octahedral, 6': trigonal prismatic; 6": 
hexagonal planar; etc., see table 5a. 

Similar symbols were proposed by DONNAY et al. [ 19641 who suggested adding to the 
coordination number, one or two letters to indicate the geometry: y, pyramidal; 1, planar; 
c, cubic; etc. Detailed descriptions of the coordination polyhedra are obtained by means 
of the LIMA DE FARIA et al. [ 19901 symbols presented in table 5b. An advantage of the 
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Lima de Faria symbolism may be the existence of two alternative sets of symbols: 
complete and simplified. The simplified symbols give only a. numerical indication, 
without any distinction between different geometries; the complete symbols (clearly 
distinguishible from the previous ones) contain beside the numeric indication a descrip- 
tion of the coordination polyhedron. A selection of the Lima de Faria symbols, together 
with the Jensen’s suggestions, will be used here. 

According to Jensen, the dimmionaZity of a structure (or of a substructure of the same) 
is indicated by enclosing its compositional formula in square brackets and prefixing an 
appropriate SymboZ 8. The dimensionality index, d, may be d = 0 for a discrete molecular 
(cluster, ring) structure, d = 1 for a one-dimensional, infinite chain structure, d = 2 for a 
two-dimensional, infinite layer structure and d = 3  for an infinite three dimensional, 
framework structure. These are the Machatschki symbols (MACHATSCHKI [1947]). 

More complex symbols such as d;d or d‘&’d will represent intermediate dimension- 
ality (between d and d‘) or, second, the dimensionality indexes of different substructures 
(d’ and d”) followed by that of the overall structure (d). A few examples: 
Molecular structures 
Linear structures 1 [BeCl,] 
Layer structures 
Framework structures 3, [C] diamond, 
Substructures QCa[CO,] (finite ions); 

etc ...... 
If, in a A-B structure, one wishes to show not only the M B  coordination but also the 
B/B, or M A ,  self-coordinations this is done, according to the suggestion by Jensen via 
the use of a composite dimensionality index and the relative positions of the various 
ratios and brackets in the formula, with the last unbracketed ratio always refemng to the 
B/A coordination. So, for instance, 0_[(H,0)4,4] is a compact form for 
02 [(H,O)(H,O),,] to indicate the molecular packing in the ice structure. The formula 
2_3 Al[B,,,],,, or 323 [Aleby/sby][B3v3,]1zp~p/6p correspond to a more or less detailed descrip- 
tion of the AlB, type structure where the coordination of B around A1 is 12 (12p: 
hexagonal prismatic) and that of Al around B is 6 (6p: trigonal prismatic). The self- 
coordinations are bipyramidal for AVAl (8by: hexagonal bipyramidal) and trigonal-planar 
(31) for BIB (the B atoms form a two-dimensional net). 

Considering as a further example the compounds AB having the CsCl type structure, 
we may mention that according to Jensen, the two descriptions 3_33[AJ[Bw1],8 and 
3_[AB,,] (with and without the indication of the self-coordination) may also be used to 
suggest the bonding type (metallic if the A-A and B-B interactions contribute to the 
overall bonding, ionic, or covalent, if only A-B interactions have to be considered). 

More complex examples of the use of this notation may be given by the structures of 
typical fluorides for which ionic type, coordination formulae are here reported 
0P16 YF, : 3,[YF,,F,,,]; 
hP8 LaF, : 3_[LaF8,4Fy,]; 
cF16 BiF,: 3, [BiF&&J. 

Q [HI], Q [CO,], 

[C] graphite, 2 [As] 

lK[PO,] (infinite anionic PO; chain) 
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In all these cases the sum of the numerators of the coordination ratios gives the total 
coordination (of two groups of F atoms) around the metal atom. (The sums of the ratios 
give, of course, the stoichiometric coefficients). 

Another example may be represented by the hP6-Ni21n structure (3, [InNiw6Ni5,5]) 
described in sec. 6.5.3. 

A detailed example (AuCu,) of the application of the aforemtmtioned notation to the 
description of a simple intermetallic structure will be presented in sec. 3.5.5. (with the 
pertinent figs. 12 to 15). 

A few more examples will be reported in the following descriptions of a number of 
typical structures. 

In conclusicln to this description of “crystal coordination formulae” we have, 
however, to notice that the term “coordination number” (CN) may be used in two ways 
in crystallography (FRANK and KASPER [1958]). According to the first the coordination 
number, as previously mentioned, is the number of nearest neighbours to an atom. 
According to the other way, the definition of the coordination should be based on an 
”intelpretation” of the structure which depends not only on an evaluation of the inter- 
atomic distances to assign bonding versus non-bonding contacts but on considerations on 
the bonding mechanism (JENSEN [ 19891). These considerations are particularly important 
when thinking of metallic phases where it may be difficult to make distinctions between 
X-X, X-Y or Y-Y contacts. So, for instance, when considering the bc cubic structure of 
the W type, some authors define the coordination number as 8 (in agreement with the 
nearest-neighboms definition) but others prefer to regard it as 14 (including a group of 
6 atoms at a slightly higher distance). Further considerations on this subject is delayed 
to a discussion, in sec. 7.2.6., on alternative definitions of coordination numbers 
(weighted coordination number, effective coordination number). In sec. 7.2.7., on the 
other hand, the (atomic-environment types will be introduced, their codes presented and 
the results of tlheir use in the classification of the selected groups of intermetallic 
structure types summarized. 

3.5.2. Layer stacking sequence representation 
A large group of structures of intermetallic phases can be considered to be formed by 

the successive stacking of certain polygonal nets of atoms (or, in more complex cases, 
by the successive stacking of characteristic “slabs”). These structural characteristics can 
easily be described by using specific codes and symbols, which can be very useful for 
a compact presentation and comparison of the structural features of several structures. 
Many different notations have been devised to describe the stacking pattern (for a 
summary see PARTHE [1964], PEARSON [1972]). A few of them will be presented here. 
As an introduction to this point we may consider figs. 5-7 where typical simple close- 
packed structures are shown and presented as built from the superimposition of close- 
packed atomic layers. If spheres of equal sizes are packed together as closely as possible 
on a plane surface they arrange themselves as shown in fig. 5. (Their centres are in the 
points of a triangular net.) Each sphere is in contact with six others. Such layers may be 
stacked to give three-dimensional close packed arrays. If we label the positions of the 
(centres of the) spheres in one layer as A, then an identical layer may be superimposed 
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C 

Fig. 5. Close-packed bidhensional arrangement of equal spheres. The A, B, C coding used to indicate different 
relative positions is shown. (See also fig. 8.) 

on the first so that the centres of the spheres of the second layer are vertically above the 
positions B (for two layers, it is insignificant whether we choose the positions B or the 
equivalent position C). When we superimpose a third layer above the second (B) we 
have two alternatives: the centres of the spheres may be above either the A or the C 
positions. The two simplest sequences of layers correspond to the superimpositions 
ABABAB ... and ABCABCABC ... (more complex sequences may of course be con- 
sidered). The sequence ABAB.. ., corresponding to the so-called hexagonal close-packed 
structure (Mg-type structure) is shown in fig. 6. The sequence ABCABC ... having a 
cubic symmetry, is shown in fig. 7. It is the cubic (face-centered cubic) close-packed 
structure (also described as cF4-Cu type structure). 

A more complete representation of different layer sequences (which can be used not 
only for the description of close packed structures) may be obtained by using stacking 
symbols such as those shown in fig. 8, together with layer stacking indications. Fig. 8a 

bl 

Fig. 6. Hexagonal close-packing. 
a) A few spheres of three superimposed layers are shown. In this structure, the spheres of the layer III are just 

above those of the first one. 
b) Lateral view of the same arrangement. The stacking symbols corresponding to the Mg unit cell description 

reported in sec. 6.2.6. (Mg in $$,$ and f,$,:) are shown. (The ... BCBCBC ... sequence description is 
identical to a ... ABABAB ... or ... CACACA ... symbol). The heights of the layers are reported as fractions 
of the repeat unit along the z axis of the hexagonal cell (that is of the distance between levels 0 and 1). 



Ch 4, $ 3  Structure of intermetallic compounds and phases 233 

Fig. 7. Face-centered cubic close-packed structure of equal spheres. 
a) Sphere-packing: a group of eight cubic unit cells is shown. (One of the unit cell is indicated by the black 

atoms). 
b) A section of the same structure shown in a) is presented; it corresponds to a plane perpendicular to the 

cube diagonal. The typical arrangement of layers similar to that shown in fig. 5 is evidenced. 
c) A lateral view of the stacking of the layers in the fcc structure is presented. The layer positions along the 

superimposition direction (which corresponds to the cubic cell diagonal) are shown as fractions of the 
repeat unit (cell diagonal)). 

shows a network. of atoms which can be considered as a triangular net, T net, that is the 
36 net. We may incidentally notice that this notation, the Schlafli notation PN, describes 
the characteristics of each node in the network, that is the number N of P-gon polygons 
surrounding the node. In the reported 36 net all the nodes are equivalent: their polygonal 
surrounding corresponds to 6 triangles. (More complex symbols are used for nets 
containing non equivalent nodes: for instance, the symbol 3'434 + 3242 (2: 1) means that, 
in the given net, two type of nodes, 32434 and 3242, occur with a relative 2:l frequency. 
A symbol such as 3'4' means that the given node is surrounded, in this order, by 2 
triangles and 2 squares). 

In the case of the simple, 3', triangular net the aforementioned stacking symbols A, B, 
C, as can be seen in fig. 8c relate the positions of the nodes to the origin of the cell 
(which is defined as in fig. 8b). In the layer stacking sequencefull symbol, the component 
atoms occupying the layers are written on the base line, with the stacking symbols as 
exponents and the layer spacings in the form of suffixes, denoting the fractional height 
of the repetition constant along the direction perpendicular to the layers. In the case of 
Mg, for instance, With reference to the standard choice of the unit cell origin (two 
equivalent atomic positions for the two Mg atoms in $,+,$ and f ,$ ,&) ,  the symbol will be 
Mg:,4MgF,4 (which, with a zero point shift, is equivalent to M&gy,z). The symbol 
Cu$u~,,Cu$,, on the other hand, represents the cubic Cu structure as a stacking 
sequence of triangular layers viewed along the direction of the unit cell diagonal (which 
is perpendicular to the layers themselves). 

A few other nets, based on the hexagonal cell, are of frequent structural occurrence. 
Following Pearson's suggestions, the corresponding sequences of stacking symbols which 
have a wide application are here presented. Fig. 9 shows the hexagonal (honeycomb) net 
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0 0  

O 8 O  
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Fig. 8. Triangular net of points. 
a) and b) The 36 net and the corresponding (bidimensional) cell are shown. Notice that, in this case, the 

selected coordinate system corresponds to an interaxial angle of 120’. 
c) Different point positions (relative to the cell origin) and corresponding coding: 

A) the representative point, in the x,y plane (a, b plane with a=b), has the coordinate 0,O; 
B) with reference to the a, b constants the coordinate “doublet” of the representative point is f f; 
C) the representative point is in f. #. 

(H net) and the stacking symbols (a, b, c) used for relating the different positions of the 
nodes to the cell origin. (Notice that two nodes are contained in the unit cell.) 

A simple structure which can be described in terms of superposition of (even if far 
away, not close-packed) hexagonal layers is that of graphite: C!,,CC,,,. The hexagonal net 
is also called “graphitic” net. (see sec. 6.3.4. and fig. 33). 

Fig. 10 shows the three-ways bamboo weave net, known as kagomg, a net of triangles 
and hexagons (K net, the 3636 net of points). The different positions of the nodes (three 
nodes in the unit cell) are represented by the symbols (a, /3, y)  shown in fig. lob. 

Several (especially hexagonal, rhombohedral and cubic) structures may be convenient- 
ly described in terms of stacking triangular, hexagonal and/or kagomk layers of atoms. 
Examples will be given in the following sections. The specification of the spacing 
between the layers is useful in order to compare different structures, to recognize the 
close-packed ones (A, B, C symbols with appropriate layer distances) and to deduce 
atomic coordinations. 

We have to notice, however, that the A, B, C notation previously described is not the 
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Fig. 9. Hexagonal (6’) net of points. 
The net is shown in a). In b) the different positions of the points in the unit cell are indicated with the stacking 
symbols a, b, c. Notice that the unit cell contains two points. (Every point in the corner is in common with 
(belongs to) four adjacent hexagonal cells). 

only one devised. Several different symbols have been suggested to describe stacking 
patterns. (For a description of the more frequently used notations see PARTJB [19641, 
PEARSON [1972])1. 

A very common notation is that by JAGODZINSKI [1954]. This notation involving h 
and c symbols is applicable only to those structure type groups which allow not more 
than three possible positions of the unit layer (or more generally of the “unit slabs”. See 
sec. 4.3. on polytypic structures). The h, c notation cannot therefore be applied, for 
instance, to disiljcide types. The letters h and c have the following meaning: 
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Fig. 10. The 3636 (kagom6) net of points. 
The net is shown in a). In b) the different positions (relative to the hexagonal cell origin) are indicated by the 
symbols a, p,  y. Three points of the net are contained in the unit cell: notice that every point in an edge 
belongs to two adjacent cells. 

- the letter h is assigned to a unit slab, whose neighbouring (above and below) unit 
slabs are displaced sideways, in the same direction for the same amount: 
for instance ABABA or CBCBCB 

(h comes from hexugonu2: this is the stacking sequence of simple hexagonal structures 
such as hP2-Mg, hP4-ZnS wurtzite and hP12-MgZn2 types). 
- the letter c, on the other hand, is assigned to unit slabs whose neighbouring slabs 

hhh hhhh 
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have different sideways displacements: 
for instance AIBCABC or CABCAB 

(c comes from cubic: this is the stacking sequence found in cubic structures such as 
cFLCCU, cF8-ZnS sphalerite and cF24-Cu2Mg types). 

To denote the stacking sequence of the different structures it is sufficient to give only 
one identity period of the h, c symbol series. For instance: 
c F M u ,  c (instead of ABC); cF8-ZnS sphalerite, c; hP4-ZnS wurtzite, h; hP4-La, hc; 
hR9-Sm, hhc. 

As can be seen from the previously reported examples, the identity period of the h, 
c symbols is generally shorter than the A, B, C... letter sequence. The h, c...symbols may 
be condensed, e.g., hcchcchchc to (hcc),(hc),. (If the number of c letters in a Jagodzinski 
symbol is divided by the total number of letters one obtains the percentage of “cubic 
stacking” in the total structure). 

Another, common, notation for describing stacking of close-packed 36 nets (T nets) 
is that devised by ZHDANOV [1945] (a number notation equivalent to Jagodzinski’s 
notation). A short description of the Zhdanov symbol is the following: a “+” is assigned 
if the order between a layer and its previous partner follows the sequence corresponding 
to any two subsequent layers in the face-centered cubic type structure, that is 

A + B, B -+ C, C + A. Otherwise a “-” is assigned. For instance, the sequence 
“+++ - - -” (shortened 3 3  corresponds to ABCACB. 

Finally, as another simple example of description (and symbolic representation) of 
structures in terms of layer stacking sequence we may now examine structures which can 
be considered as generated by layer networks containing squares. A typical case will be 
that of structures, containing 44 nets of atoms (Square net: S net). The description of the 
structures will be: made in term of the separation of the different nets (along the direction 
perpendicular to their plane) and of the origin and orientation of the unit cell). 

Fig. 11 shows the different symbols (in this case numbers) suggested by FEARSON 
[1972] which will be used to indicate origin and orientation of the nets. These numbers 
will be reported as exponents of the symbols of the atoms forming the different nets. In 
this case too the relative height of the layers will be indicated by a fractional index. A 
few symbols of square net stacking sequences are the following: 
Po:: the simple cubic cell of Po (containing 1 atom in the origin) corresponds to a 

stacking sequence of type 1 square nets. 
WAWf,2: the body-centered cubic structure of W (1 atom in O,O,O and 1 atom in i,i,i) 

corresponds to a sequence of type 1 and type 4 square nets at the heights 0 and i, 
respectively. 
For more complex polygonal nets, their symbolic representation and use in the 

description, for instance, of the Frank-Kasper phases, see FRANK and KASPER [ 19581 and 
PEARSQN [1972]. (Brief comments on this point will be reported in sec. 6.6.) 

CCCC cccc 

3.5.3. Assembly of polyhedra 
A complemenitary approach to the presentation and analysis of the intermetallic phase 
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1 2 3 L 
0-0 0 0 0 0 0 0 0 0 0 0 0 0  

0-0 I I  0 0 b o  I 0 0 o r o l o  0 0 o r n o  0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0  

O < > : :  0 IOo 10. 
0 0 0 0 0 0 0 0 0 0 0 0  

5 
C )  

6 7 

Fig. 11. A bidimensional square (44) net is shown in a). 
b) Different positions of the representative point in the unit square are presented and coded (net of points 

aligned parallel to the cell edge). 
c) Codes used for different positions of a square net of points refemd to a larger squari cell with axes at 45O 

to the net alignment (and edges equal to d times the repeat unit of the net). 
In b) one point of the net is contained in the unit square, in c) there are two. 

structures consists of their description with Coordination polyhedra as building blocks. 
A classification of types of intermetallic structures based on the coordination number, 

configurations of coordination polyhedra and their method of combination has been 
presented by KRIPYAKEVICH [1963]. 

According to Kripyhkevich, a coordination polyhedron of an atom is the polyhedron, 
the vertices of which are defined by the atoms surrounding this atom: a coordination 
polyhedron should have a form as close as possible to a sphere, that is, it should be 
convex everywhere and have the maximum number of triangular faces. At the vertices 
of a coordination polyhedron of a given atom (in addition to atoms of different elements) 
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there can also be atoms of the same kind. A considerable variety of coordination 
polyhedra exists. In some cases, plane coordination polygons have to be considered. The 
number of vertices may vary from, say, 3 to 24. Generally, the structure consists of 
atoms with different coordination numbers; according to Kripyakevich, structures are 
most conveniently classified considering the type of coordination polyhedron of the 
atoms with the lowest coordination number. (For a general approach to the classification 
of atomic environment types and their description and coding in terms of coordination 
polyhedra see also sec. 7.2.7.). 

An important contribution to the structure analysis of intermetallic phases in terms of 
the coordination polyhedra has been carried out by FRANK and KASPER [1958]. They 
described several structure types as the result of the interpenetration of a group of 
polyhedra, which give rise to a distorted tetrahedral close-packing of the atoms. (The 
Frank-Kasper s iructures will be presented in sec. 6.6). 

In particular. SAMSON 11967, 19691 developed the analysis of the structural principles 
of intermetallic phases having giant unit cells. These structures have been described as 
arrangements of fused polyhedra rather than the full interpenetrating polyhedra (see a 
short description in sec. 6.6.5.). 

The principles of describing structures in terms of polyhedron-packing has been 
considered by GIRGIS and VILLARS [1985]. To this end they consider, in a given 
structure, the coordination polyhedra of all the atomic positions; structures are then 
described by packing the least number of polyhedra types. All the atoms in the unit cell 
ace included in the structure-building polyhedra. The polyhedra considered should not 
penetrate each other. 

According to GIRGIS and VILLARS [ 19851 structures are then classified mainly on the 
basis of the following criteria: 
- Number of polyhedra types employed in the description of the structure, 
- Characteristics of the polyhedra (number of vertices, symmetry), 
- Types ofpolyhedra packing (either three-dimensional distribution of discrete polyhedru 

As examples of structures described by packing of one polyhedron type we may mention: 
cP4-AuCu3 type:, three-dimensional arrangement of cubooctahedra (coordination number, 

tP3k(Cr,Fe) type, layer-like arrangement of icosahedra (CN 12). 

sharing corners, edges or faces, or layer-like distribution of polyhedra). 

CN, 12); 

For a general approach to the problem of structure descriptions in term of polyhedron 
packing a paper by HAWTHORNE [1983] should also be consulted. The following 
hypothesis is proposed: crystal structures may be ordered or classified according to the 
polymerization d those coordination polyhedra (not necessarily of the same type) with 
the higher bond valences. The linkage of polyhedra to form “clusters” is then considered 
from a graph-theoretic point of view. Different kinds of isomers are described and their 
enumeration considered. According to Hawthorne, moreover, it has to be pointed out that 
many classifications of complex structures recognize families of structures based on 
different arrangements of a fundamental building block or module (see the sec. 3.5.4. and 
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4.5. on recombination structures). Ifthis building module is a tightly bound unit within the 
structure it could be considered, for instance, as the analogue of a molecule in an organic 
structure. Such modules can be considered the basis of structural hierarchies that include, 
for instance, simple and complex oxides and complex alloy structures. These modules 
may be considered as formed by polymerization of those coordination polyhedra that are 
most strongly bonded and may be useful for a classification and systematic description 

As a conclusion to this section we may mention also the “environment polyhedra”, 
defined and coded by DAAMS et al. [1992]. A short decsription of this topic will be 
presented in sec. 7.2.7. 

of crystal structures. 

3.5.4. Modular aspect of crystal structure 
A very general, mainly geometric, approach to the description and classification of 

the different inorganic structures may be based on a systematic “Construction ofcomplex 
structural types” by means of a few operations applied to some building units. As has been 
suggested by ANDERSSON andHYDE [ 1982, 19891 a formal description and classification 
of the various crystal structures could be obtained in terms of a classification of the 
building units and of the construction mechanism. Building units may correspond to 
packets ofpoints (atoms) (blocks, clusters, bounded in three dimensions) or to groups of 
lines (rods, columns bounded in two dimensions, infinite in the third) or to groups of 
planes (slabs, sheets, layers, lamellae bounded in only one dimension, infinite in the 
other two). Structures may then be constructed from such portions by (discontinuous) 
symmetry operations (translation, reflection, or their combinations) repeated in a parallel 
way or by similar symmetry operations repeated in a cyclic way (involving rotation) (see, 
for instance, fig. 36). 

Emphasis to similar approach has been given by ZVYAGIN [1993]. He pointed out that 
many crystal structures can be represented as a composite of certain standard “construc- 
tion modules” and various combinations, distributions and arrangements of them. The 
simplest example of a modular structures is the densest packing of identical atoms (the 
atomic planes represent the construction modules forming various structures owing to a 
variation of the two possible placements of the successive plane relative to the preceding 
one). 

- module types (sheets, rods, blocks), 
- dimension of the modules, 
- variety of module type (single or mixed-module structures), 
- relative number of module types, 
- arrangement of adjacent modules (variations in these arrangements, periodicity/ 

Strictly related to this kind of description may be the concepts of “Recombination 
Structures’’ and of “Zntergrowth Structure Series” which will be presented in sec. 4.5. 

A classification of the different structures may be based on: 

aperiodicity of successive variations, etc.). 
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3.5.5. An exercise on the use of alternative structural notations (AuCu, type as an 

In the following, data concerning a few selected structures, will be presented. In this 
section, by using a simple structural type (cP4-AuCu3, 333 [ A U ~ ~ ] [ C U ~ ~ ] ~ ~ ~ ,  or, in more 
detail, 333 [ A U ~ , , ] [ C ~ ~ , ] , ~ , , )  a presentation will be given on the different ways of 
describing the structure. 

AuCu, is primitive, cubic. The space group is Pm3m (N. 221 in the International 
Tables for Crystallography, HAHN [1989]). In the unit cell there are 4 atoms in the 
following positions: 
1 Au in a) O,O,O; 

Several phases me known which have this structure; in the VILLARS and CALVERT 
compilation [I95111 there are around 450 listed: 1.7 % of all the reported phases. This 
structural type is the 8” in the frequency rank order (see sec. 7.1.). A short selection is 
presented in the following list: 
=HfPt3 a = 398.1 pm 
LaIn, a=473.21 pm 
La31n a = 509.0 rim 
Mn,R a=383.3 pm 
M a n ,  a =  386 pm 
Ni,Al a =  357.0 pm 
(Note that, in this structure type, in some cases, according to the phase stoichiometry, the 
same element mity occupy either the a) or the c) Wyckoff position). 

In the reported list the unit cell edges have been given. In the following, while 
discussing the characteristics of this structural type, we will consider the data referring 
to the prototype itself (a= 374.84 pm). 

e structure is shown in fig. 12, where the tridimensional sequence of the atoms is 
suggested by presenting a small group (eight) of contiguous cells. The unit cell itself is 
shown in figs. Kla and I3b, by using two different drawing styles. 

The subsequent figures 14a, 14b, 14c, 14d correspond to an analysis of the structure 
carried out in order to show the different local atomic arrangements (coordinations 
around the atoms in the two crystal sites). 

In the analysis of a structure, however, it is also necessary to take into consideration 
the values of the interatomic distances. It may be useful to consider both absolute and so 
called “reduced” values of the interatomic distances. In the case of the AuCu, phase, the 
minimum interatomic distance corresponds to the Au-Cu distance (Au in 0, 0, 0 and Cu 
in 0, +, i) which is the same as the Cu-Cu distance between Cu in 0, 3,; and Cu in 3.0, 
f. This distance is given by afi/2. 

For the AuCii, phase a = 374.8 pm and, therefore, (a, = 265.0 pm. This value could 
be compared, for instance, to the value 272 pm, sum of the radii of Cu and Au (as 
defined for a coordination number of 12) or to the value 256 pm of the Cu-Cu distance 
in the metal (Cu atom “diameter”). Reduced interatomic distances (d, = d/dmi,J may be 
defined as the ratios of the actual distance values to the minimum value. 

exam $e) 

3 Cu in c) 01-1- 1-01. 110. 
,2929 2, 97.9 2 9 2 9  9 

Pt,Al a =  387.6 pm. 
Ti,Hg a = 416.54 pm 
TiZn, a = 393.22 pm 
UPb, a=479.3 pm 
YAI, a=432.3 pm 
Y3AI a=481.8 pm 
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Fig. 12. cP4-AuCu3 type structure. A group of eight cells is shown. The light spheres represent Au atoms. In 
order to get a better view of the structure inside, the atomic diameters are not to scale. 

A$rst set of interatomic distances (and coordination) which can be considered in the AuCu, 
phase is that corresponding to the Au coordination around Au atoms (see fig. 14a): 

Considering as the reference atom, the atom Au in O,O,O, the next neighbours Au 
atoms are the six Au shown in fig. 14a, corresponding to the same Wyckoff position and 
having, in comparison with the reference atom, the coordinates 0,0,1; O,O,i; 0,1,0; O,i,O; 
1,0,0; T,O,O; all at a distance d = a =  374.8 pm, corresponding to a reduced distance 
&=d/d,,,,,= 1.414. 

In the same group of Au-Au interatomic distances a subsequent set is represented by 
distances such as those between Ab,os and Akj.1 (or AU,JJ  , A%,l.i, Au , etc.). This 
set corresponds to a group of 12 atoms (all at an absolute distance of a$?=530.1 pm, 
that is, at a reduced distance 4=d/dmin=2.000). 

A second set of interatomic distances (and coordination) corresponds to the Cu 
coordination around Au atoms: 

Considering as the reference atom, the atom Au in O,O,O, the next neighbours - -  Cu 
atoms are the 12 Cu reported in fig. 4-14b, in the coordinates: O&$; O,i,i; O,$,i; Ow,%; 
&O,&; z,O,i; $,O,$ +,$,@ $,T,O; z,i,O; $,$,to; all at a distance d =  a@/2= 265.1 pm, 
corresponding to a reduced distance d/d,, = 1.000. 

Considerin also the subsequent sets of Au-Cu distances, 24 atoms at d = 459.1 pm 
(4=d/dmin= f 3 = 1.732), 24 Cu at d=592.7 pm (dr=2.236), etc. we obtain the histo- 
gram reported in fig. 15b. 

A third group of interatomic distances (and coordination) which has to be considered is 
that corresponding to the Cu coordination around Cu atoms (see fig. 14c): 

Considering as the reference atom, the atom Cu in $,$,O, the next neighbours Cu 

A compact representation of these data is given by means of the bar-graph in fig. 15a). 
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bl 

Fig. 13. The cP4-AuCu3 unit cell is presented in different drawing styles. In a) an (approximate) indication of 
the packing and space filling is given. In b) the positions of the different atoms are reported in a perspective 
view of the unit cell and in c),  in some typical sections of the same at different heights: notice the square net 
arrangement. The first (and the third) section corresponds to the height 0 or 1 * c. The second to the height 
4 * c. For the first sxtion the position codes of the two atom, in the square net, are 1 and 4; for the second the 
code is 5. (Compare with fig. 11.) 

- 
atoms &e ~ c u  atoms in 1-01. 011- 111. 111- 101. 011- 111. 111- 2, 921 ,2rZ,  ,232y  2, 9 2 1  2 9  r2,  ,2,2, ,2.2, 2 ,  ,29 a11 at a 
distance d=  a42/2= 265.1 pm, corresponding to a reduced distance d/L= 1.OOO. 

The subsequent sets of Cu-Cu distances correspond to 6 Cu atoms (in coordinates 
such as $,i91; ;-,;,I: ;,;,O; etc.) at a distance d=  374.8 pm (4= 1.414), 16 Cu atoms at 
d = 459.1 pm (4 = 1.732), 12 Cu atoms at d = 530.1 pm (d, = 2.000), 16 Cu atoms at 592.7 
pm (4=2.236), etc. The corresponding histogram is presented in fig. 15c). 
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Fig. 14. cP~AuCU, type structure. Different fragments of the structure (of a few unit cells) are presented in 
order to show the various typical coordinations. (Cu atoms are represented by small dotted spheres) 
a) Au - 6 Au (octahedral); b) Au - 12 Cu (cuboctahedral); 
c) Cu - 8 Cu (tetragonal prismatic); d) Cu - 4 Au (square). 

The 8 Cu+4 Au at the same distance from Cu form a heterogeneous cuboctahedron. (Compare also with 
fig. 25.) 

The fourth (and last) type of interatomic distances (and coordination) characteristic of the 
AuCu, structure is given by Au coordination around Cu atoms (see fig. 14d). 

Considering as the reference atom one of the three equivalent atoms Cu in c), for 
instance, the atom in O,;,;, the next neighbours Au atoms are 4 Au in O,O,O; 0,0,1; 0,1,0; 
O,l, 1, respectively; all at a distance d = a @/2 = 265.1 pm, corresponding to a reduced 
distance Ud,, = 1 .OW. 

Subsequent sets of Cu-Au distances correspond to a group of 8 Au atoms (in 
coordinates such as 1,0,0; l ,O , l ;  l,l,O; etc.) at a distance d=459.1 pm (reduced distance 
Wd- = 1.732), to a group of 8 Au (in coordinates such as O,O,i; O,l,i; 0,0,2; etc.), at a 
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Fig. 15. cP4-AuCq type structure. Coordinations and distances. For each type of coordination the numbers (N) 
of near-neighbours atoms are plotted as a function of their distances from the central atom. (Relative values of 
the distances, d/d,,, have been used. In these histograms and in the subsequent ones d,, is the shortest 
interatomic distance observed in the structure. For details see the comments reported in sec. 3.5.5.) 

distance d = 592,.7 pm, d/d,, = 2.236, etc. The corresponding coordination histogram is 
presented in fig. 15d. 
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Lists of coordinating atoms (with distances from the references atom), coordination 
polyhedra, and next-neighbor histograms are presented systematically by DAAMS et al. 
[1991]. They, however, use a more compact representation giving for each atom in a 
given site the histogram corresponding to the total coordination. In our case, for Au the 
sum of the two histograms reported in figs. 15a and b and for Cu the sum of the 
histograms of figs. 15c and d. (Compare with fig. 25). For the different structures, 
moreover, the distances are related by Daams et al. to the d,,, observed in each 
coordination group instead of to the d- of the overall structure as adopted here. 

As a conclusion to the description of the different coordinations we may observe that 
those corresponding to the first distance sets are summarized in the symbol 

packing, therefore, this structure may be described as a tridimensional arrangement of 
cubooctahedra (see sec. 3.5.3.). 

Fig. 16, on the other hand, shows how for the same structure, alternative descriptions 
(layer stacking sequence descriptions) may be obtained and, according to Pearson, 
symbolized. In this figure the structure (viewed along the cube diagonal) is presented as 
a stacking sequence of triangular and kugome' nets. It corresponds to the symbol 
Aut Cu; AU;~ Cu& Au& C& (In the symbol we have the same number of triangular 
(A,B,C) Au atom nets and of kagomk (a&y ) Cu atom nets. These two net types are 
characterized by the presence of 1 and 3 points in the unit cell (see figs. 8 and 10). This, 
of course, corresponds to the total 1:3 stoichiometric ratio). The same structure, viewed 
along the unit cell edge direction, corresponds to a square net stacking sequence (see fig. 
13). The stacking symbol is A u ~ C U ~ C U : / ~  (These different symbols may be useful when 
comparing this structure with other structural types: for instance, the c F 4 - c ~  type, 
sec. 6.2.1., tK-AuCu(I) type, sec. 6.2.4., etc.). 

With reference to a description in terms of lattice complex combination, we may 

323 [A,,][B,8]1,/,. (333 [AU6/6][CUg/8]1~4 for the prototype). hl terms Of polyhedra 

A 

Fig. 16. cP4-AuCu, type structure. The unit cell is viewed along its diagonal. (Au atoms white, Cu black). The 
triangular arrangements of the atoms around the cube diagonal are evident. 
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finally note that the AuCu, type structure corresponds to a combination of P and J 
complexes (AuCu,: P+ J; see sec. 3.1.). According to HELLNER [1979] this structure may 
be considered as pertaining to a F-family as a consequence of a particular splitting of the 
points of the F complex. 

A few other comments on the AuCu, type structure and some remarks on the rela- 
tionship with other structural types will be reported in the following s a .  6.2.3.). 

4. Relationships between structures and structure ‘ yamilies” 

As clearly pointed out, for instance, by B ~ G H A U S E N  [1980] (see sec. 4.6.), one of 
the main objectives of crystal chemistry is to order the profusion of structure types and 
to show the general principles involved. To this end relations between cognate structures 
evidently play ED important role. 

The structures corresponding to different types may often be interrelated on the basis 
of some transformation schemes. These schemes can be used as criteria for classifying 
structure types ;md showing structural relationships. 

A few selected groups of interrelated structural types will be presented in the 
following sectisns. 

4.1. Degenferate and derivative structures, superstructures (defect, filled-up, 
derivative structures) 

An important and general scheme of structure transformation and interrelation is that 
described, for instance, by PEARSON [1972], by means of the concept of derivative 
structures and degenerate structures. 

A derivative structure can be considered being obtained from a reference structure by 
ordered atomic substitution, subtraction or addition processes or by unit cell distortions 
(or both). The opposite kinds of transformation correspond to the so-called degeneration 
processes. A derivative structure has fewer symmetry operations than the reference 
structure (a degenerate one has more). A derivative structure has either a larger cell or 
a lower symrnemy (or both) than the reference structure. 

It is possible, for instance, that a set of equipoints of a certain structure (considered 
as the reference structure) has to be subdivided into two (or more) subgroups in order to 
obtain the description of another (“derivative”) structure. The structure of the Cu type 
(cF4-type), for instance, corresponds to 4 Cu atoms in the unit cell, placed in O,O,O; $,$,O; 
$,O,i; O,$,$, whereas in the CPPAUCU, type structure the same atomic sites are subdi- 
vided into two groups with an ordered distribution of the two atomic species (1 Au atom 
in O,O,O, and 3 Cu atoms in $,$,O; $,O,$; O,$,i ). The AuCu, type structure can, therefore, 
be considered as a derivative structure of the Cu type. On the other hand, if we consider 
the AuCu, type as the reference structure, we may describe the Cu type as a degenerate 
structure. 

The aforementioned subdivision of a set of equipoints in more groups can be 
described in this case in terms of similar cubic cells (both of the original and of the 
derivative struciures). Notice, however, that in the case of Cu the conventional cubic cell 
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is face-centered. It is not primitive: it corresponds to 4 (rhombohedral) primitive cells, 
whereas, in the case of AuCu, the primitive unit cell is larger and it is identical to the 
cube. Because of the observation that these ordering processes may lead to a cell multiple 
of the original one, they are also referred to as forming superstructures (also called 
superlattices) (BARRETT and MASSALSKI [ 19661) of the original structure. An example 
where, due to ordering, we observe, perhaps in a more evident immediate way, the 
increase of the unit cell size (formation of a multiple cell) may be the structure of 
MnCu,Al type (see fig. 24 and sec. 6.1.3) which can be considered a derivative structure 
(superstructure) of the cP2-CsCl type structure (which in turn is a superstructure of the 
W-type structure, corresponding to a, non-primitive cubic, cI2 cell). 

Notice that the ordering may not lead to a multiple cell, if the symmetry of the 
ordered structure is reduced, relative to the original one. Nevertheless the name super- 
structure is generally used especially when we have the formation of a disordered solid 
solution regardless of whether there is multiplication of the edges of the cell. 

A contribution to the study of order-disorder interrelations between structures and to 
their classification into two groups on the basis of the presencdabsence of a diference in 
the translational symmetry (unit cell edge variations) has been given by WONDRATSCHEK 
and J E ~ C H K O  [1976] and by ALBEWNG et al. [19941. (The detectability of the two types 
of ordering by means of X-ray diffraction studies has been also discussed). 

ALBERING et al. [1994] especially studied the hP3-A1B2 type structure and its 
derivatives. A few of these are presented in fig. 17. A detailed description is given in 
sec. 6.5.6. Main features of several deformation and substitution derivatives of the AlB,- 
type were discussed by GLADYSHEVSKII et al. [1992]. 

A more complex case of structure interrelation which can be presented in terms of 
(even if “formal”) substitution is that which can be exemplified by considering structures 
such as those of NaCl (see fig. 18 and a detailed description in sec. 6.4.1.) and FeS, or 
CaC,. These structures may be compared: the cP12-FeS2 type may be described as 
having Fe atoms in the sodium ion positions and the centers of the discrete S,  dumb-bell 
groups at the chlorine ion positions. The passage from a structure containing spherical 
atoms to another one in which atomic groups substituted single atoms will generally 
result in a symmetry reduction. A clear example may be given by the t IWaC,  type 
which can also be compared with the NaCl type: Ca is in the sodium positions and the 
C, group in the chlorine positions. In this case, however, the long axes of the C-C 
groups are all aligned in one direction so that the unit cell is tetragonal instead of cubic. 
(See fig. 4 and a description of this structure and a comparison with the MoSi,-type in 
sec. 3.2.). In a similar way, we may, for instance, consider the K,RCl, structure 
essentially the same as the CaF,-antitype: the K ions are in the F ion positions and the 
centers of the PtC1, octahedral groups in the Ca ion positions. 

Derived structures may also be formed with the ordered introduction of vacant sites. 
As an example we may consider the hP3-Cd12 type structure (see sec. 6.5.2) which can 
be related to the W4-NiAs type structure in which the set of equivalent points O,O,O and 
O,O,$ is considered as being subdivided into two groups (each of 1 site) O,O,O, (occupied 
by 1 atomic species) and O,O,$ (vacant). We can, therefore, regard the hP3-Cd12 type 
structure as a defect derivative form of the hP4-NiAs type. 
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0 A I  

O B  

Fig. 17a,b. AlB,-type and derivative structures. 
a) Two sections of the hP3-AIB2 unit cell are presented at the height z = 0 (AI atoms) and z =+ (E atoms), 

respectively. 
b) The corresponiiling hexagonal net of B atoms in AlB, is shown (a projection of the unit cell is super- 

imposed. (Compare with fig. 9). The AI atoms (at the cell origin) are surrounded by 12 E, arranged in a 
hexagonal prism, and the B atoms are in sixfold coordination with AI, in the center of an AI trigonal 
prism. 

Similar considerations may be extended to include (besides substitution and subtrac- 
tion) ordered addition of atoms. In this case stuffed or jilled-up derivative structures are 
considered in which extra atoms have been added in an ordered way, on sites unoccupied 
in the reference structure. An example is the hP6-NiJn structure, which is a stuffed 
derivative structure of the previously mentioned NiAs structure. 

Another interesting example may be the fcc-derivative interstitial cP5 Fe,Npkase. It 
may be described as corresponding to the following atomic positions in the h 3 m  (or 
~ 4 3 m )  space group: 
1 Fe in a): O,O,iD; 1 N in b): i,i,f and 3 Fe in c): O,&,i; f , O , f ;  f,i,O. 
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0 Au 

o Si 

Th AuSi 

ErflhSi, 

Fig. 17c, d. AB,-type and derivative structures. 
c) and d) Hexagonal nets observed in AlB, derivative structures. In e) the AuSi net of the ThAuSi type 

stmcture and in d) the RhSi, net of the Er,RhSi, structure are shown. In c) and d) the Th and Er positions, 
corresponding to those of AI in AIB,, are not shown. The projections of the unit cells are presented notice 
the larger ceIl of the Er,RhSi, structure. 

This filled-up superstructure may therefore be described in terms of the occupation 
by N of an interstice (centered in 3;&,$) of a Cu-type (or AuCu,-type) structure. The N 
atom results octahedrally surrounded by 6 Fe atoms. This structure could also be 
described as a deficient NaC1-type derivative structure (see sec. 6.4.1.): the Fe atoms are 
in the same positions as the Na atoms in NaCl and one out of the four C1 positions is 
occupied by the N atoms. 

(For a description and a classification of the “holes”, octahedral and tetrahedral, in 
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Fig. 18. NaC1-type structure (see see. 6.4.1.). The positions in the unit cell of the two types of atoms are 
indicated. 

closed packed structures see sec. 6.2.2, see also Hiigg phases in sec. 3.4.). 
As a footnote to these observations, we have also to mention that frequently structural 

distortions (axial ratio and/or interaxial angle variations) accompany the formation of 
derivative structures (especially because of the ordered distribution of atoms of different 
sizes or of vacant sites). 

4.1.1. Ordering-disordering transformation 
In a number of metal systems for a given range of compositions depending, for 

instance, on the temperature, it is possible to observe alloys having both a certain 
degenerate structure and a corresponding (more or less) ordered derivative structure. The 
transformation from one structure to the other corresponds to a real process (ordering- 
disordering transformation). A large number of solid solutions become ordered at low 
temperature. 

In the specific case, for instance, of the Au-Cu system an alloy with the !iuCu, 
composition at high temperature, has the (disordered) C F K U  type structure. The two 
atomic species are equally distributed in the four atomic sites (which are therefore 
equivalent: each one is occupied by Au with a 25% probability and by Cu with a 75% 
probability). This random distribution may be also related to the possibility of gradually 
changing the overall composition of the alloy maintaining the same structure and giving 
the formation of solid solutions. For the Cu-Au alloys we have, at high temperature, a 
continuous solid solution ranging from Cu to Au (both having the same C F K U  type 
structure): in all the intermediate alloys we have the equivalence of all the atomic sites 
whose occupation gradually changes from pure Cu to pure Au. By lowering the 
temperature we have ordering processes corresponding to a change from a nearly random 
distribution of atoms among the structure sites into more ordered arrangements where 
certain sites are predominantly occupied by one kind of atom. In the specific case of the 
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AuCu, composition we have the transformation from the cF4-Cu type into the described, 
derivative type (cP4-AuCu3 type) structure. 

Typical examples of ordering processes are also the transformation from the p to p’ 
phases in the Cu-Zn system (from cI2-W type to cP2-CsC1 type) and the ordering of the 
FeAl phase in the CsCl type structure (see sec. 6.1.2.). Notice that, ordering in these 
metallic phases, may be an extremely complex sluggish process requiring slow cooling 
and/or long annealing of the alloys. Alloy samples with different degrees of ordering can 
be obtained by quenching at various cooling times. As a consequence the effects of 
ordering on a number of properties have been studied. Alloys such as Cu,Au and Fe,AI 
have been the subject of many of these studies. 

The Au-Cu system, in particular, is one of the earliest systems for which order- 
disorder type transformations were established. As a result, a very large volume of work 
has been carried out on the ordered AuCu and AuCu, phases. The description of the 
gold-copper system, reported by OKAMOTO and MASSALSKI [1987], may be considered 
as a reference to the review and to the assessment, not only for the specific system, but 
also for the investigation methods and discussion criteria of general interest. The 
following topics have been considered: 

Au-Cu phase diagram, Au,Cu, AuCu, AuCu, ordered phases (phase boundaries 
determination by X-ray studies, electrical resistometry, electron microscopy), crystal 
structure determination (by X-ray and electron diffraction methods), nature of 
ordering transformation in AuCu, short range order, anomalous behaviour in AuCu, 
at high temperatures (specific heat, thermal expansion measurements, etc.). Kinetic 
studies carried out by measuring gradual shift and intensity variation of the X-ray 
lines from a disordered to an ordered (superlattice) structure on samples after 
different quenching and annealing are reported. 

For a review on site preference of substitutional additions to CsCl type intermetallic 
compounds see KAO et aZ.[1994]. In this work dilute additions to NiA1, FeAl and CeAl 
are especially discussed. As another example we may mention that the addition of a third 
element to ordered Ni,AI (cP4-AuCu, type) occurs in different ways (OCHIAI et al. 
[1984]). For instance Sb, Si, Ge and Ga atoms replace preferably Al, while Cu and Co 
replace Ni. 

As a conclusion to this section, we may mention that a systematic description of 
ordering processes in alloys and of the superstructures which can be generated has been 
presented, for instance, by KHACHATURYAN [1983] in the framework of a theoretical 
treatment of structural transformation in solids. Two groups of superstructures have been 
specially considered substitutional and interstitial. 

a) Examples of substitutional superstructures. 
tZl0-MoNi,: a = 572.0, c = 356.4 pm. Space group I4/m, N.87. 
2 Mo in a): O,O,O; i,;,;. 
8 Ni in h): x,y,O; -x,-y,O; -y,x,O; y,-x,O; f+x,i+y,$; 

This superstructure is based on a fc cubic pseudocell. The atoms form close packed 
layers stacked in a 15 layer close packed repeat sequence. 

$-x,~-Y,;; *-Y,;+X,$; ;+Y,$-x,$, With ~ ~ 0 . 2 ,  y=0.4. 
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oZ4-MoPt2: a =  276.5, b = 829.6, c = 393.8 pm. Space group Immm, N.71. 
2 Mo in a): O,O,O; ;A,;. 
4 Pt in g): O,y,O; 0,-y,O; $,$+y,$; f,$-y,;, with y=O.353. 
It is 5n. close packed superstructure based on a fc cubic pseudocell. Distorted close packed 
triangular layers are stacked in close packed ABC sequence. 
tZ8-Til,: a = 383.6, c = 857.9 pm, c/a = 2.236. Space group 14/mmm, N.139. 
2 Ti in a): O,O,O; f,$,i. 
2 A1 in b) O,O,$;. $$O. 

The Superstructure may be described in terms of two, distorted, AuCu, type subcells 
stacked one above the other. 
tZld-ZrAl,: a=400.5, c =  1728.5 pm, c/a=4.316. Space group 14/mmm, N.139. 
4 AI in c): O,i,O,; ;,O,O; 3,0,$; O,$,$. 

4 Al in e): O,O,z:; O,O,-z; :,$,$+z; :,$,$-z; with z=O.361. 
4 Zr in e): O,O,z; O,O, - z; it$,$ + z; $,$,$ - z; with z = 0.122. 
This structure may be considered another, more complex, superstructure based on close 
packing. The height of the superstructure cell in the c direction corresponds to four cubic 
pseudocells. Fig, 19 gives a comprehensive presentation of some structural features of the 
MoNi4, MOP%, 'IlAl, and ZrAl, structural types. 
Fe&, cFl6-Li,.Bi type structure: This structure may conveniently be described as derived 
from bcc solid solution (see in sec. 6.1. the interrelated types cZ2-K the previously 
mentioned types cP2-CsC1, cFl4-MnCu& and cF16-Li3Bi; see also fig. 24). The Li,Bi- 
type structure, however, may be also considered as composed of four interpenetrating fc 
cubic arrays of atoms with Bi (or Al) at the cell comers and face centers and Li (or Fe) 
in the centers of the interstices. 
tP2-AuCu(Z), ciD4-AuCu, and tP4-E3Cu: These structures described in the following 
sections, 6.2. and in fig. 20, can be considered fcc based substitutional ordered super- 
structures. 
hR96-CuPt(I}: The equilibrium phase diagram of the Cu-Pt system shows the fcc 
continuous solid solution stable at high temperature and a number of ordered super- 
structure phases (with composition ranges) stable at lower temperatures. CuPt(1) is a 
complex, slightly distorted superstructure built up by 8 face centered cubic pseudocells. 
In the same Cu-Pt system other superstructures have been described for compositions 
around Cu& (rhombohedral CuPt(1I) type), CuPt, and CuPt,. 
hP&NiJn: This structure may be considered an example of a superstructure based on 
the hexagonal close packed structure. In the same way as by ordering the Cu-type 
structure the AiCu, type may be obtained, the Ni,Sn-type may be derived from the Mg 
type. Details of the structure are given in sec. 6.2.7. 

b) Examples of' interstitial superstructures 
tP3-FeNiN: a=283.0, c=371.3 pm, c/a= 1.312. Space group P4/mmm, N.123. 
1 Fe in a): O,O,O; 1 N in 6): $,$,O and 1 Ni in d): f,$,$. 

4 AI in d): 011. L O L .  1-03. 0 1 - 3  ,274, 29 94, 23 9 4 9  r2,S. 

4 AI in d): O L L .  10'. 103. 0'2 
,2349 2 9  3 4 9  21  94, ,294- 
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MoNid 0 
Ti  

Au 

Fig. 19. Fkamples of face centered based, substitutional superstructures. The unit cells of a few selected 
superstructures are shown by means of their projection on a convenient plane and cornpad with a similar 
projection of the cP4-AuCu3 type cell (on the face %a): tIlO-MoNi, (on the face %a), oI16-Mopt, (ab), 
tIS-Tii3 (a,c) t11&ZrA13 (a$). (The values of the coordinate along the third axis are indicated). 

This structure can be considered a superstructure of the AuCuO type, with 1 N atom 
inserted in an octahedral interstitice. This structure, as the previously described cP5-FeY 
type, can be considered an interstitial ordered phase. The oP5-Ta40 phase and the 
t18-FeJV phase are examples of bcc-based interstitial ordered phases. 
oP5-Ta40 a= 719.4, b = 326.6, c = 320.4 prn. Space group Pmmm, N.47. 
1 Ta in a): O,O,O; 1 Ta in b): f,O& 1 0 in h): +,;A; 2 Ta in 1): xll- ,2,2, -x,$,$ (with 
x = 0.225). 
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c = c‘ 

a’- - 

0 0 

0 
0 0 

e 

Fig. 20. AMCU type structures. The two types of atoms are shown. 
a) AuCu(1) type smcture. Both the tP2 cell (a and c edges) and a tP4 pseudocell (a’ and c edges) are shown. 

(The tetragonal pseudocell is shown in order also to make easier the comparison with the cubic, Cu-type, 
sbructwe). 

b) Sections of the large tP4-pseudo-cell. (Compare with fig. 13.) 
c) 0140-AuCu@) type structure. 

The cell can be described as formed by two superimposed slightly distorted bcc subcells 
of the metal atoms. The 0 atom is surrounded by a (slightly compressed) Ta atom 
octah&n. 
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4.2. Antiphase domain structures 

A special case of superstructures may now be considered. A typical example can be 
observed in the oI4O-AuCu(II) type structure (fig. 20 and sec. 6.2.4.). We first have to 
mention that ordering of the Au-Cu face-centered cubic (cF4-c~ type) solid solution, 
having a 50-50 atomic composition, distributes Cu and Au atoms alternatively on two 
layers, resulting in a tetragonal structure, tP;?-AuCu(I)) with the c axis perpendicular to 
the layers (see fig. 20a). The more complex structure, oP4O-AuCu(II) type, is obtained 
by a long-period ordering which results in an orthorhombic cell containing 10 (slightly 
distorted) AuCu(1) pseudocells (fig. 20b). This ordering corresponds to a periodic shift 
(every 5 cells along the orthorhombic b axis) of the structure by (a'+c) in the a',c 
plane. This out-of step shift corresponds to a "so-called" antiphase boundary. An 
antiphase domain may correspondingly be defined; in this case it contains 5 AuCu(I) 
type pseudocells. Several examples of one-dimensional long period structures found in 
1:l and 1:3 alloys and of two-dimensional long period structures (characterized by two 
different domain periods and two steps-shifts) found in 1:3 alloys have been presented 
by PEARSON [1972]; the role of the valence-electron concentration in defining the 
superstructure period has also been discussed. A general presentation of several antiphase 
boundaries (not only planar, but also cylindrical) and related structure groups may be 
found in the book of HYDE and ANDERSSON [1989]. 

It may be useful to mention here that antiphase domain boundaries play an important 
role in phase changes and microstructural stability of ordered alloys and intermetallics as 
well as affecting mechanical behaviour. The origin of antiphase domain boundaries has 
been examined and discussed by MORRIS [1992], emphasis has been given to the 
differences between a sharp boundary, as produced by crystal shear, and a relaxed fault 
structure. The kinetics of relaxation of shear produced fault have examined and it was 
shown by MORRIS [1992] that fast relaxation may affect the movement of dislocation by 
creating locking stresses as well as affecting cross slip behaviour significantly affecting 
mechanical properties. An important point in this study, as far as the origin of the 
antiphase domain boundaries are concerned, is the principle that a disordered crystal 
exists initially which subsequently becomes ordered. According to CAHN [ 19871, the 
observation of grown-in domain network is proof that the material existed, even if 
momentarily, in a disordered crystalline state before becoming ordered. In agreement 
with this, domain networks are commonly observed in weakly ordered alloys, for 
example AuCu,, FeNi, and sometimes FeAl, but not in strongly ordered intermetallics 
such as Ni,A1 and TiA1. A review on the interactions of ordering and recrystallization 
has been published by CAHN 119901. Aspects of recovery and recrystallization in the L1, 
(Co,,,,V,,,),V ordered alloy have been reported by GIALANELLA and CAHN [1993]. 

4.3. Homeotect structure types (polytypic structures) 

According to PARTHE [1964], two different structure types of the same formula X,Y, 
are called homeotect structure types, if every X atom has the same number of nearest X 
neighbours and the same number of nearest Y neighbours, and, conversely, if every Y 
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atom has the same number of nearest X and Y neighbour atoms. It is possible for several 
structure types to show this feature. 

All the different structure types of equal composition, which have (for corresponding 
atoms) the same kind of surroundings, form a set of homeotect structure types (the term 
polytypic structures is also used to denote the relationships observed with homeotect 
structures). 

According to PARTHE [1964] all structure types which belong to a homeotect set can 
be described as different stacking variants of identical structural unit slabs (“minimal 
sandwiches”). A11 structure types of a set are constructed by stacking identical unit slabs 
one on top of another. The various types differ only in the relative horizontal displace- 
ment of these units. (The vertical unit cell edges of the different types are integer 
multiples of a common unit which is the height of the unit slab characteristic for the 
homeotect structure type set). All structure types which belong to a homeotect set have 
the same space-filling curve. (See sec. 7.2.4.) 

A few important examples of groups of homeotect structure types will be described 
in the following sections. A short index of the same is the following list (in which the 
Jagodzinski-Wyckoff notation of the stacking pattern has been inserted, according to the 
indications given in sec. 3.5.2.). 
- Close-packed element structure types (see sec. 6.2.): Mg-type (h), Cu-type (c), La-type 

(hc), Sm-type (hhc). 
- Equiatomic letrahedral structure types (Carborundum Structure types) (see sec. 6.3.): 

Wurtzite-type (h), Sphalerite-type (c), Sic  polytypes (hc, hcc, hccc, hcchc, 
..(hcc),(hccc)(hcc),hc ... (hchcc),,(hcc),, .. (hcc),,hc ... ). 

- Laves phases (see sec. 6.6.4.): hP12 MgZn,-type (h), cF24 Cu,Mg-type (c), hP24 
Ni,Mg-type (hc), Laves polytypes (hhc, hhccc, etc.). 

Other important sets of homeotect structure types are those related to disilicide structure 
types (MoSi,, CrSi,, etc.), cadmium halide structure types, etc. (See PARTHE 119641, 
HYDE and ANDEXSON [1989]), or presented by certain groups of compounds such as 
rare earth trialuminides (VAN V u c m  and BUSCHOW [ 19651). 

From a general point of view, polytypism may be considered a special case of 
polymorphism: the two-dimensional translations within the layers are (essentially) 
preserved whereas the lattice spacings normal to the layers vary between polytypes and 
are indicative OF the stacking period (GUINIER et al. [1984]). As evidenced by ZVYAGIN 
[ 19871, we may distinguish various forms of polytypic structures, including (besides 
close-packing o F like and unlike atoms) polytypes of tetrahedral, octahedral and prismatic 
layers packed according to the laws of closest packings. Complex silicate structures, for 
instance, may be considered which are characterized by much variety in the orientations 
and displacements of the layers and also structures in which two-dimensional layers are 
conjoined with one-dimensional band and island groups. 

The aforemrmtioned papers (GUINIER et al. [1984], ZVYAGIN [19871) contain also 
suggestions and recommendations on the nomenclature and symbolism for use in the 
general case of either simple or complex polytypic structures. 

Another method for discussing polytypic structures has been suggested by Born and 

References: p .  363. 



25 8 Riccarda Ferro and Adriann Saccone Ch. 4, 54 

LAPTEV [1994]. The polytypic structures, described by means of special unit cell 
diagrams and crystal-chemical formulae, are distinguished by the number and type of 
Wyckoff positions. 

4.4. C himney-ladder structures (structure commensurability, structure 
modulation) 

In the cases of ordered alloys, described in the foregoing sections, long period 
structures were considered in which the near-neighbour coordination of the atoms 
remains essentially unchanged between one structural modification and another. 

More complex cases can, however, be considered. As an introduction to this point, 
we may remember that it is often convenient to describe structures as consisting, for 
instance, of two interpenetrating substructures (two different atom sets). 

As an example, an interesting group of phases TJ,,, may be considered which are 
tetragonal and are formed between transition metals T and p-block elements X (of the Ga 
and Si groups). In these phases, along the c axis, the unit cell (superstructure cell, 
supercell) contains n pseudocells of T atoms and m interpenetrating pseudocells of X 
atoms. These phases (Nowotny phases or “chimney-ladder” structures) contain rows of 
atoms X (the “ladder”), with variable interatomic spacing from one compound to another, 
which are inserted into channels (“chimneys”) in the T array. The T metals in all of the 
superstructures form a PSn-like array with the number of T metal atoms in the formula 
of the compound corresponding to the number of PSn-like pseudocells stacked in the c 
direction of the supercell (see sec. 6.3.1.). The arrangement of the atoms in these phases 
can be compared to that found in the structure of TiSi,. 

The following is a list of some chimney-ladder phases (phases containing as many as 
600 atoms in the unit cell have been described): 
tP20 Ru,Sn, (a=617.2 pm, c=991.5 pm, c/(2afi)=0.568) 
The Ru atoms form a PSn-like array with two pseudocells along the c direction of the 
supercell). 
tP32 Ir,Ga5 (a=582.3 pm, c = 1420 pm, d ( 3 a f i )  =0.575) 
tP36 Ir,Ge, (a=561.5 pm, c=1831 pm, c/(4afi)=0.576) 

tP192-VI7%, (a=591 pm, c=8365 pm, c/(l7afi)=0.589) 
(In V,,Ge,,, for instance, there are 17 pSn like pseudocells of V atoms and 31 Ge 
pseudocells stacked along the c axis). 
The atomic arrangements in a few chimney-ladder phases are shown in fig. 21 and compared 
with that found in TiSi,. (This structure corresponds to the orthorhombic cell oF24-TiSi2- 
type with a, = 826.7 pm, bo = 480.0 pm, co = 855.1 pm. It can be approximately described 
in terms of a smaller body-centered tetragonal pseudocell, shown in fig. 21a, having a’= 
a,-Jfi=c,/fi; c’=bo and c’/a,=0.58 (close to the “ideal” value l/fi =OS77 ...). 

The electron concentration appears to play some role in control of this family of 
structures as noted by Nowotny (SCHWOMMA et uZ. [1964a, 1964b], FLIEHER et uZ. [1968a, 
1968b1), JEITSCHKO and PARTHE 119671 and PARTHE [1969] and reported by PEARSON 
[1972]. 

... 
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Fig. 21. Nowotny phases, chimney-ladder structures (JEITSCHKO and PARTHE [1967]). 
a) The reference o;F24-TiSi2 type structure presented in terms of a tetragonal pseudo-cell (12 atoms in the 

pseudo-cell). 
b) tP120-Mn,,Si,,; c) tF'20-Ru2Sn3 and d) tI156-Rh,,Ge2, phases. 

(Notice that the metal atoms, black circles, form sequences of @-Sn like cells; compare with fig. 32 below). 

References: p. 363. 



260 Riccardo Ferm and Adriana Saccone Ch. 4, 0 4  

In the book of HYDE and ANDERSON [1989], the Nowotny phases are presented as 
a special case of a group of “one-dimensional, columnar misjit structures” which also 
include compounds such as BaJFe,SJ, and other complex sulphides. Layer misjit 
structures, such as those of some oxide-fluorides, arseno-sulphides, etc., are also 
presented and classified with reference to a concept of structure commensurability based 
on the recognition that (along one or more axes) the ratios between the different repeat 
units of various interpenetrating substructures can (or cannot) be represented as ratios 
between integer numbers. 

The coexistence of difSerent kinds of periodicity has also to be considered in the 
description of a quite different type of structure which is becoming increasingly common. 
In this, some atomic parameters (andor the partial occupancy of some sites) vary in a 
periodic way through the structure. The periodicity may or may not be commensurate 
with the unit cell of the basic structure. (The ratio between the repetition length of this 
parameter and the lattice constant may or may not correspond to the ratio between two 
integer numbers). Structures having these characteristics are often termed modulated 
structures (HYDE and ANDERSON [ 19891). Several non-stoichiometric compounds present 
such modulations (FeS,, Yb3S,, etc.). Various modulated structures have also been 
considered, for instance, for the NiAs-type structure (see sec. 6.5.1.). 

An interesting case of magnetic modulated structure is that reported for EuCo,P, 
(REEHuIs et al. [1992]). The positional structure of the atoms (of the atomic nuclei, 
nuclear structure) corresponds to the tIlO-ThCr,Si, type (see sec. 6.5.9). A magnetic 
structure has been also determined, which is related to the ordering of the magnetic 
moments of the Eu atoms. These moments are oriented perpendicular to the c axis and 
form an incommensurate spiral with the turning axis parallel to the c axis. The magnetic 
moments lie in the basal planes and they order parallel within these planes. Along the 
c axis, from one basal plane to the next one, there is a periodic rotation of the moments. 
The ratio, along the c axis, of the characteristic lengths of the magnetic and nuclear 
structures, is slightly dependent on temperature. At 64 K it is close to 5/6 (that is: there 
are 5 translation lenghts of the magnetic cell for 6 translation lengths of the nuclear 
structures). At 15 K the ratio was found to be close 6/7. If this magnetic structure is 
maintained at still lower temperatures, it may correspond to the exact 6/7 value. The 
ground state may then be called a commensurate structure with this ratio. 

4.5. Recombination structures, intergrowth structure series 

Some of the previously reported relationships between structures may be included in 
the general term “recombination” structures. Such structures (see LIMA DE FARIA et al. 
[ 19901) are formed when topologically simple parent structures are periodically divided 
into blocks, rods or slabs (that is structure portions which are finite or infinite in one or 
two dimensions, respectively) which are recombined into derivative structures by means 
of one or more structure building operations. The most important operations are: unit ceZZ 
twinning, crystallographic shearplanes, intergrowfh of blocks, rods or slabs of different 
structural types (for instance, intergrowth of cF24-MgCu2 type and hP6-caCu5 type slabs 
to obtain the h P 3 w N i ,  type structure), periodic out-of-plane, antiphase boundaries 
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(AuCu(II), as an example), rotation of rods or blocks. The frequency of structure 
building operators (and, therefore, the size of undisturbed structure portions) can vary by 
well defined increments, so that many phases may occur as members of homologous 
series. 

A few considerations about possible schemes of relationships between inorganic 
crystal structures based on a systematic “construction” of complex structural types by 
means of a few operations (symmetry operations, topological transformations) applied to 
some building units @int systems, clusters, rods, sheets), have been previously reported 
in sec. 3.5.4, following criteria suggested, for instance, by HYDE and ANDERSON [ 19891 
and by ZVYAGIN [1993]. 

We may add here that, within the “recombination” scheme, a very interesting method 
of describing, interpreting and interrelating complex structures is that based on the 
aforementioned “’intergrowth” concepf (KRIPYAKEVICH et al. [ 1972, 1976, 19791, GRIN” 
et ai. [1982, 19901, PARTHE et al. [1985], LIMADEFARIA [1990], PAN1 and FORNASINI 
[1990]). According to this concept, selected structure types may be considered as 
belonging to certain intergrowth structure series. The dzfereat structure types of an 
intergrowth series are described as being constructed from structure segments of more 
simple structures (the so-called “parent structures”). 

In an other way, we may say that, according to this approach, the construction 
modules instead of being defined on a mere geometrical basis, are selected with reference 
to specific crystallochemical criteria. To this end, groups (series) of similar complex 
structures are analysed in order to recognize “fragments” which could be identified as 
structure segments of more simple structural types. 

The structurc series are then classified according to the kind of fragments and the 
method of construction. On the basis of the kind of fragments the structure series is 
described as homogeneous or inhomogeneous: the homogeneous intergrowth structures 
consist of identical fragments, the inhomogeneous intergrowth structures consist of 
segments (differing in composition and/or coordination) belonging to different parent 
structures. According to the method of construction, the intergrowth structure series can 
be classified into one-dimensional (linear), two- or three-dimensional series. In a linear 
series we have the one-dimensional stacking (along one direction) of two-dimensional, 
infinite segments (slabs) of the parent structures. The different structures of a two- 
dimensional intergrowth series, on the other hand, are built up by aggregations of several 
one-dimensional fragments (infinite rods, columns). Finally, the structures of a three- 
dimensional intergrowth series are constructed from (zero-dimensional, finite) parent 
structure blocks stacked in three dimensions. 

It has been p3inted out ( G m ’  [ 19921) that slicing the parent structure into segments 
can be done in different ways. For a segment to be used in a particular structure series, 
for the members of which we are interested in predicting composition and symmetry, a 
number of requirements should be fulfilled. The segments should contain certain 
symmetry elements (in a linear series, for instance, all the segments used for the 
description usually contain some symmetry elements, mostly parallel to the stacking 
direction, which are retained in any stacking sequence, and represent the “minimal 
symmetry” of the series). The segments interfaces necessarily pass through atom centers. 

References: p .  363. 
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(The composition of the segment is proportional to the stoichiometry of the parent 
structure: by addition it is possible to obtain the compositions of all possible structures 
of the series). The segments, moreover, selected from different parent structures, must 
have, at least, one topologically equal interface in order to make the intergrowth possible. 
Additional requirements are necessary when the atomic arrangement on the interface 
permits more than one possibility of intergrowing and when more complex (two-, three- 
dimensional) series are studied. 

Considering, for instance, the particular case of the “linear intergrowth structure 
series”, we may mention that many, binary and ternary, intermetallic phases can be 
considered members of those series (both homogeneous and inhomogeneous). 

A representative of a structure belonging to a linear inhomogeneous series is 
presented in fig. 22. In this case, the parent structures are the oCS-CrB and oC12-upt, 
types. The intergrowth structure presented is the oC28-W3CoB3 (or Y3C03Ga) type. Its 
unit cell contains a segment arrangement corresponding to two repetition of a sequence 
containing a Upt, fragment followed by two CrB-type fragments. A simple code of this 
structure may be (2eBlupr2)F Other members of the series have been described, for 
instance: 
1,1,, (corresponding to the 0110-W,CoB, type); 
3QBlu, (corresponding to the mClS-Y,Co,Ga type); 
(4,l upt2)2 (corresponding to the oC&Y,Co,Ga type). 
It is interesting to observe that many real representatives of this series may be found in 
the Y-Co-Ga system. This may be considered an example of the fact that, often, several 
members of a certain intergrowth series have representatives in the same (binary and 
ternary) alloy system. In the same system (or in chemically analogous systems) represen- 
tatives of the parent structures may also be found (in the example reported, for instance, 
YCo has the CrB type structure). The interest of a crystallochemical description based on 
the intergrowth concept is thus evident. 

As a further simple example, we may mention the structure of the oClGNdNiGa, 
type belonging to the series BaAl,-AlB,. Its unit cell contains indeed two BaA1,-type 
segments and two AlB,-type segments. The simple code, previously considered, will be 
( lBaA141A1B2)2. (Notice, however, that in a more complex and detailed notation, super- 
scripted indexes may be added to the formulae of the segments in order to specify, for 
instance, their symmetry (GRIN‘ et al. [1982], PARTHE et aZ. [1985]). 

General compositional formulae are often used for representing a series (GRIN’ 
C19921). Mem+,,X5m+3,Y,,,, for instance, may be the overall formula of a series consisting 
of intergrown CaCwtype and CeCo,B,-type slabs. (For the hF%-CaCu, type and its 
ordered variant hP6-CeCo3B, type structures, see sec. 6.2.8.). Members of this series are 
the following structure types: hP12-CeCo4B (corresponding, in the aforementioned 
formula, to m = l ,  n=  l), hPl&Ce,Co,,B, (m=l,  n=2), hP24-Ce,Co,B3 (m=1, n=3), 
hP18-Nd&,B2 (m = 2, n = 1) and hP30-LugNi1p6 (m = 2, n = 3). We may notice in this 
case too, the close chemical analogy among the alloy systems (rare earth, nickel or 
cobalt, borides) forming structures corresponding to the different members of a given 
series. 
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4.6. Group-subgroup relations for the representation of crystal-chemical 
relationships 

According to the presentation given by B~NIGHAUSEN [1980], if two structures are 
topologically equivalent their interrelation may be conveniently expressed by group- 
subgroup relations between their space groups. Graphic representation of these relations 
leads to hierarchic ordering resembling a “jizmily tree”. At the top of the tree there is the 
so-called “aristotype” (a highly symmetrical structure). From the aristotype the other 
structures of the tree may be derived along specific routes of symmetry reduction. In 
order to obtain a well-defined description, the symmetry reduction is presented in terms 
of minimal steps (that is a given structure is followed by another whose space group is 
a so-called maximal subgroup (M) (see HAHN [1989]) of the space group (G) of the 
former structure). The minimal steps of symmetry reduction are characterized by the 
terms lattice-equivalenr (M contains all the translations of G, the crystal class of M is of 
lower symmetry than that of G), or class-equivalent (M and G have the same crystal 
class but belong to different space-group types: M has lost translational symmetry, that 
is the primitive cell corresponding to M is larger than that of G) or crystallographically- 
equivalent (G and M belong to the same space group type, that is, as in the previous 
case, M has lost translational symmetry). 
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Fig. 22. An example of the application a. ... : intergrowth concept. In a) and in b) two “parent” structures (CrB 
and UPtJ are presented. The projections of a few unit cells (defined by the continuous lines) on the b,c and a,b 
planes respectively are shown. The structure segments which have been correspondingly identified are shown 
by dotted lines. In c) a member (W,CoB, type structure) of the linear inhomogeneous series CrB-UR, is 
presented (the sequence of parallel building segments is indicated). The segments characteristic of the CrB and 
upt, structures have been indicated by I and II. In order to make easier the comparison, a few atoms with 
similar environments have been marked by the same numbers (or letters) in the parent and in the derived 
structures. 

5. Elements of systematic description of structure types. 
General remarks and references 

By means of the considerations previously presented some typical structures will be 
described in the following sections. On the basis of somewhat arbitrary criteria (such as 
high frequency of the structural type, existence of phases of considerable practical 
importance, possibility of presenting some features of general interest, etc.) the types to 
be described have been selected and presented in a few sections. This description, 
therefore, should be considered as only an initial introduction to a vast subject. As 
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already mentioned, complete and updated descriptions may be found in some reference 
books such as: LANDOLT-BORNSTEIN (HELLWEGE [ 19711, PREDEL [1991]), VILLARS and 
CALVERT [1985, 19911, MASSALSKI [1990] and D A A M S ~ ~  al. [1991] that report (in 
alphabetical order) all the known binary systems. They can be considered complete 
riformulation of “classic” books such as: HANSEN [1936], HANSEN and ANDERKO [1958], 
ELLIOTT [1965], Smm [1969], MOFPATT [1986]. Phase diagrams are presented and 
discussed; crystal structure data of the intermediate phases, moreover, are systematically 
given. A similar lay-out has been adopted in the Monograph Series on Alloy Phase 
Diagrams published by ASM International. The book of VILLARS and CALVERT [1991] 
consists of an “Handbook of Crystallographic Data” (in 4 volumes); DAAMS et al. [1991] 
published an “AtEas of Crystal Structure Types” (in 4 volumes). The “Handbook” reports 
all the data available for binary (and complex) intermetallic phases. The “Atlas” 
describes the different structural types presenting (both by using tables and drawings) 
atomic coordinates, interatomic distances and coordination polyhedra. 

For a general presentation of the Inorganic Crystallochemistry, see, for instance, 
WELLS [1970]. 

For a systematic classijcation of the intermetallic structure types, the following 
monographs may be consulted. 

SCHUBERT [ 119641 in his book “Kristallstrukturen Zweikomponentiger Phasen” 
(Crystal Structures of Binary Phases) described a few hundred structural types. In this 
book, Schubert paid great attention to chemical criteria for the description, classification 
and discussion of the properties of the different phases. The position of the elements 
involved in the Periodic Table was considered particularly relevant. For this purpose, the 
elements were considered by Schubert to be subdivided into the following families: 
A-metals (elements of the s-block of the periodic table), T-metals (transition metals), 
B-elements (elements of the p-block of the Periodic Table). The different structural types 
were then described according to the following chapter subdivision: 

Brass-type alloys and dose-packed sphere stacking and superstructure variants: AuCu,, 
AuCu, SrPb,, ZrAl,, ZrG%, Nb,Ga,,, etc.; Mg-type structure and superstructures 
Ni,Sn, etc.; body-centered sphere packing W structure and derivatives Fe,Si, CsC1, 
NaTl, Cu,Zn,, NiJn, etc. 

T-Tphases (among which the T element structures of the so-called Cr,Si family such as 
the PU, cI58-rwMn, hR3!?-w6Fe7, Th6Mn,,, etc., and then the Laves phase structures). 

B-B phases (structures considered as deformation variants of close-packed structures, 
such as Zn, In, etc., structures of B, graphite, structures of the diamond-family, of the 
P and As families, etc.). 

A-B phases (several types partly classified according to the stoichiometry: Li,Bi, Mg,Sn, 
Mg3Sb,, NaCl, etc.). 

T-B phases (T-rich borides, carbides, nitrides, oxides and hydrides, CuAI,, MoSi,, NiAs, 
FeSz struclums and their variants). 

PEARSON [1972], in his book “The Crystal Chemistry and Physics of Metals and Alloys”, 
discussed the characteristics and specific features (coordination, stability, relationships 
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with other structures, etc.) of about a thousand structure types. He was able to classify 
all these structures in 12 different families. The most important 10 are summarized here 
below. 
1) Valence compounds of non-metals (semiconducting compounds with anions forming 

close packed arrays, polyanionic compounds, polycationic compounds, group IV, V 
and VI elements and IV-VI and V-VI compounds, etc.). 

2) Metastable phases, interstitial phases, martensite (in this group of phases the Hagg 
interstitial phases formed by transition metal and small non-metal atoms such as H, 
B, C, N have been especially considered in these phases the non-metals occupy the 
interstices, generally the octahedral ones of the close-packed structures of the 
transition metals). 

3) Structures based on the close packing of the 36 close-packed nets (Cu and Mg structures 
and their derivative structures AuCu,, AuCu, Ti,Cu, TiAl,, Zd&, MoNi,, etc.). 

4) Structures derived by jlling tetrahedral, octahedral (and other) holes in close-packed 
arrays of atoms (sphalerite structure and derivative structures oP12-CuAsS, 
tIlbFeCuS,, t116-Cu3AsS,, etc., wurtzite structure and derivative structures, 
oP16-CuSbS2, oP16-Cu,AsS4, hP30-In,Se3, etc.; CaF, structure and distorted, 
defective, superstructures of CaF2; NaCl structure and derivative structures of the 
NaCl type; NiAs structure, etc.). 

5 )  Structure types dominated by triangularprismatic arrangements (hP2-WC, hR9-MoS2, 
tI 8-NbAs, tPG-Cu,Sb, oP36-Ta2P, hP3-A1B2, hP6-CaIn2, hP6-Ni2In and their 
variants, are examples of structure types included in this group). 

6) Structures based on simple cubic and body centered cubic packing (in this group the 
structure types cI2-W, tI2-Pa, martensite, cP6-CuZO, cP2-CsC1, tP4--TiCu, 
cFlbLi,Bi, cFlbNaT1, cFlbMnCu,Al, tP3-FeSi2, cI52-Cu5Zn, and several variants 
are considered. In this structure family the Nowotny chimney-ladder phases are also 
included). 

7) Structures generated by square-triangle nets of atoms: cubes and cubic antiprisms (for 
instance t112-CuA12, oP24-AuSn2, mC12-PdP2, oC20-PtSn4, tPlO-U,Si,, 
tP4O-FeCu2Al,, oPlbThNi, o120-UA14, etc.) 

8) Structures generated by alternate stacking of triangular and kagome' nets. (The struc- 
tures of hPdCaCu,, tI26-ThMn1,, hP38-Th2Ni,, and their variants are included in 
this family. The Laves phases cF24-Cu2Mg, hP12-MgZn2 and hP2&NiZMg types and 
several variants are considered in this family. However, they are also described, as 
Frank-Kasper structures, in the subsequent group). 

9) Structures in which icosahedra and CN 14, 15 and 16polyhedra play a dominant role. 
(Laves phases, ~ l .  phases: hR39-WZq; P phases: oP56-Mo-Cr-Ni phase, (which, at 
a composition corresponding to 42 at% Mo and 18 at% Cr, has a unit cell containing 
56 atoms in partial substitutional disorder); R phases: hR159-Mo-Co-Cr, etc. are 
included in this family, as well as a number of intermetallic phases with giant cells 
such as the cF1124-Cu,Cd3, cF1192-NaC4, cFl832-MgZA1, types studied by 
SAMSON [1969]. 



Ch. 4, $ 6  Structure of intermetallic compounds and phases 267 

10) Structum with large coordination polyhedra. (Structures are presented in which large 
coordination, polyhedra are contained: for instance cP36-BaHg1, in which Ba is 
surrounded by 20 Hg, t192-Ce5M&,, tI4&BaCd,,, cF112-NaZnl, in which 
coordination. polyhedra corresponding to coordination numbers (CN) 20, 22 and 24 
are present respectively). 

As a comment 110 the Pearson’s classification and description of structure types we may 
mention a paper by PEARSON [1985b] himself on the classification of the crystal 
structures of intermetallic phases according to building principles and properties. Five 
groups of phases have been evidenced 
1) Phases based on geometrical packings; 
2) Phases in which the band-structure energy is an unusually large fraction of the total 

3) Valency compounds; 
4) Framework structures; 
5) Hybrid framework structures with geometrical packings. 
A substantially geometrical approach has been adopted in their book “Znorganic Crystal 
structures”, by HYDE and ANDERSSON [ 19891 who presented and discussed the structure 
of more than a thousand inorganic compounds, explicitly ignoring “the artificial barrier 
between inorganic and mineral structures on the one hand and metallurgical structures 
(intermetallic compounds, borides, carbides, etc.) on the other,” In their treatment and 
classification of the structural types, they generate complex structures starting with 
relatively few basic structures and applying to segments of such structures, one or more 
of a few geometrical operations that are essentially symmetry operators. The “segments” 
or building units considered may be blocks (or clusters, bounded in 3 dimensions), rods, 
(or columns, bounded in 2 dimensions, infinite in the third), slabs (or lamellae, sheets, 
layers, the latter bounded in 1 dimension and infinite in the other two). 

energy; 

4. Description of a few selected structural types 

The selected structural types which will be presented in the following sections 
arranged in a few groups according to their crystallochemical interrelations are also 
alphabetically summarized, for reader convenience, in Appendix 1 : “Gazetteer of 
Intermetallic Phases”. 

For the different phases described, the values of the lattice parameters have been 
generally reported: this may indeed be useful in comparing different structures and in 
order to get a better idea of the real atomic packing. Notice, however, that, generally, for 
the various phases, several slightly different values have been reported in the literature 
(owing to different preparation and measurement techniques andor to the existence of 
certain, often not well-defined, homogeneity ranges). The reader interested in accurate 
values of the lattice parameters should therefore consult the original literature. 
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6.1. bcc W-type structure and derivative structures 

In this section a few structural types are presented which can be described as related 
to the simple body-centered cubic structure, cI2-W type. For some of them, fig. 23 
shows the normalized interatomic distances and the corresponding numbers of equidistant 
atoms. 

6.1.1. Structural type: cI2-W 
Body-centered cubic, space group Imjm, No. 229. 
Atomic positions: 
2 W in a) O,O,O; $,*,; 
Coordination symbol: 3 [W8/,] 
Layer stacking symbols: 
Triangular (TI nets: w ~ w ~ 6 w ~ 3 w ~ w ~ 3 w &  

Square (s) nets: W; W$ 
For the prototype itself, W, a = 3 16.5 pm. 
This structure can be compared with the CsCl type structure (which can be obtained from 
the W type by an ordered substitution of the atoms) and the MnCu,Al type structure 
(“ordered” superstructure of the CsCl type): see fig. 24a and 24b and notice the typical 
8 (cubic) coordination. 

The W-type structure is shown by a number of unary systems: Li, Na, K, Rb, Ba, Cr, 
Eu, Cr, Mo, V, Ta, W, etc., (as the only form or the room temperature stable form), Be, 
Ca, Sr, several rare earth elements, Th, etc., (as a high temperature form) and Q and 6 
Fe forms. 

The same structure is formed in a number of binary (or ternary) phases, for which a 
random distribution of the two (or three) atomic species in the two equivalent sites is 
possible. Typical examples are the p-Cu-Zn phase (in which the equivalent O,O,O; $,$,; 
positions are occupied by Cu and Zn with a 50% probability) and the p-Cu-A1 phase 
having a composition around Cu3AI (in which the two crystal sites are similarly 
occupied, on average by Cu, with a 75% occupation probability, and by Al, with a 25% 
occupation probability). A number of these phases can be included within the group of 
the “Hume-Rothery” phases (see sec. 3.4.). In the Villars-Calvert compilation 380 
phases (about 1.5% of the total number of phases considered) are listed under this 
structural type (which is the 11” in the frequency order). 

6.1.2. Structural type: cP2-CsC1 
Cubic, space group Pmgm, No.221. 
Atomic positions: 
1 Cs in a) O,O,O 
1 C1 in b) &$,; 
Coordination formulae: 
2 [CsCl],, or 3 [csC1],&,/.&b (ionic description) 
323 [X,6l [y6/61g/g or 323 [x60/601 [Y60/60]8&,/8cb (metallic description) 
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Fig. 23a,b. Trends 01’ interatomic distances and coordinations in a group of closely interrelated structures. 
a) cI2-W type structure: coordination around W. 
b) XY compounds of cP2-CsC1 type structure: 

(+) X-Y (or Y-.X) coordination. 
(*) X-X (or Y-Y) coordination. 

Layer stacking symbols: 
Triangular (T) nets: C S ~ C ~ , ” , C S & C ~ ~ , C S & C ~ ~ ~  
Square (si) nets: CS~CI;, 
For the prototype itself, CsC1, a=411.3 pm. 
See also fig. 3. The 8 coordination (cubic) of the two atomic species is apparent. 

The normalized interatomic distances and numbers of equidistant neighbours are 
shown in fig. 238. In the same figure data are also reported for the W type structure, 
which can be considered a degenerate structure of the CsCl type structure (in the W type 
structure the two atomic sites are equivalent) and of the derivative (superstructure) 
MnCu,Al type. 

The CsCl type structure is adopted by many of the 1:l intermetallics and by a few 
halide and chalcogenide 1 : 1 (ionic) compounds (for which, however, it is in competition 
with the NaC1 type structure (see sec. 6.4.1)). Of the monohalides only CsC1, CsBr, CsI, 
TlCl, TlBlr and ‘TlI (and of the monochalcogenides only, ThTe) have the CsCl type 
structure, while the rest with a lower atomic (ionic) ratio have the NaCl type structure 
(corresponding to a lower coordination, 6 instead of 8). 
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Fig. 23c,d. Trends of interatomic distances and coordinations in a group of closely interrelated  structure.^. 
c) cF16-MnCu2Al type structure: coordination around A1 (or Mn) 

(+) Al-Cu (or Mn-Cu); (*) Al-Mn (or Mn-Al); 
(0) AI-Al (or Mn-Mn). 

d) cF16-MnCu2Al type structure: coordination around Cu 
(+) Cu-Mn; (*) CU-A~; (0) Cu-Cu. 

As for the intermetallics, in the Villars-Calvert compilation, about 460 compounds 
(= 1.8% of the total number of phases considered) are listed under this structural type (7"' 
in the frequency rank order); about 300 phases are binary, the others are (more or less 
disordered) ternary phases. Among the binary phases we may mention 1 : 1 compounds 
such as those of alkaline earth and rare earth elements with Mg, Zn, Cd, Hg (and often 
with In, Tl, Ag, Au), those of A1 and Ga with Fe and Pt group metals. The p' Cu-Zn 
phase (stable at room temperature) belongs to this structural type; at higher temperature 
it undergoes the order-disorder transformation into the disordered cI2-W-type, p phase. 
FeAl also is an example of a phase having this (more or less) ordered structure. It 
corresponds to a solid solution range from = 23 to = 55 at% Al. It forms through ordering 
of the a Fe, cI2-W type, phase which has a solubility range from 0 to = 45 at% Al. 

Other interesting phases belonging to this structural type are: 
Ni&l,-x (homogeneous between 42 and 69 at% Ni) with good mechanical and oxidation 

resistance properties. (By quenching from high temperatures the formation of an 
ordered martensite is obtained which can be considered for shape memory behaviour). 



Ch. 4, $6 Structure of intermetallic compounds and phases 27 1 

bl 

Fig. 24. cFl[iMnCu,Al type structure. The unit cell is shown in a). This structure degenerates in the Li,Bi type 
if the Cu and Mn positions become equivalent. The small cube presented in b) corresponds to of the 
MnCu,Al unit cell and degenerates into a CsCl type cell if the atoms at the vertices (Mn+Al positions) are 
equal. Moreover a further degeneration in the W type will be obtained if all the atoms are equal. 

CoxA1,, (= 48 to 79 at% Co), CoxBe,, (26 to 53 at% Co), NiXBel, (= 25 to 52 at% Ni), 

For a discussion on substitutional additions to CsCl type alloys (site preference for dilute 
additions to NiAl, FeAI, CoA1, etc.) see KAoetaZ. [1994]. 

Finally, we may mention Ti,Pd,, (47 to 53 at%Pd) and TiPtl-x (46 to 54 at% Pt) 
which have the CsGl type structure at high temperature and the oP4-AuCd structure at 
low temperature. 

PdBe (- 50 a.t% Pd), CuxBe,, (= 51 to 53 at% Cu), etc. 

6.13. Structural type: cF16-MnCu2Al 
Face-centered cubic, space group Fm5m, No. 225. 
Atomic positions: 
4 A1 in a) O,O,O; i,fr,O; i ,O, i ;  O,;,; 
4 Mn in b) i,i,$; O,O,i; O,i,O; ;,O,O 
$ eu in ,)1LL. .!JL.1L1.LJ1.232.113. 211.111 4,4749 494949 494¶4’ 4,4749 4,474’ 4,494, 4,4747 4,494 
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Coordination formula: 
2 [ A ~ C ~ ~ M ~ W J  

son with the Li,Bi and NaTl type structures. 

The structure is shown in fig. 24. In this figure a comparison is also made with the CsCl 
type structure. It is apparent that if the two a) and b) sites are occupied by the same 
atomic species, the cell degenerates into a block of 8 equal cells (of the CsC1-type). We 
may also observe that, on the contrary, if a single atomic species were assigned to the b) 
and c) sites, another ordered structure would be obtained, corresponding to the 1:3 
stoichiometric ratio (Li,Bi-type or BiF,-type). 

In the Villars-Calvert compilation the phases belonging to the MnCu2Al and Li,Bi 
types are listed together. (See also sec. 6.1.3. and 6.1.4.). They are about 380 (= 1.5% of 
the total number of phases considered and 1 2 ~  in the frequency rank order). 

Among the ternary alloys, we may mention several Me’Me‘”le’‘i phases (with 
Me’ =Al, Ga, Ge, Sn; Me” =Ti, Zr, Hf, V, Nb, Mn, etc. and Me”’ =Co, Ni, Cu, Au, etc.). 
The compounds which crystallize with the MnCu,Al type structure (and particularly the 
magnetic compounds having this structure) are called Heusler Phases. In the specific case 
of the Al-Cu-Mn system this phase is ferromagnetic and stable above 400°C but it can 
be frozen by quenching to room temperature. It is assumed that its whole moment is due 
to the spin moment of Mn which has an unfilled d shell (5 electrons). Magnetic 
properties of Heusler phases are strongly dependent on the ordering of the atoms. 

For the layer stacking symbols, the data are reported in the next section in compari- 

For the prototype itself, MnC%Al, a=596.8 pm. 

6.1.4. Structural types: cF16-Li3Bi and cF16-NaT1 
cFId-Li,Bi type is face-centered cubic, space group Fm3m, No. 225. 
Atomic positions: 

4 Li in b) $,$,;; O,O,$; O,i,O; $,O,O 

Coordination formula: 
2 [BiLi,,Li,,] (ionic description) 
For the layer stacking symbols, see under the following description of the NaTl type. 
For the prototype itself, Li,Bi, a=672.2 pm. 

This structure (or BiF, structure) could also be described as derived from a cubic close- 
packed array of atoms (Bi atoms) by filling all the tetrahedral and octahedral holes with 
Li (or F) atoms. 

The cFl6-NaTl type structure is face-centered, cubic, space group Fdgm, No. 227. 
Atomic positions: 

4 Bi in a) O,O,O. 11.0 101. 0” , 2929  9 2, 929 ,292 

8 Li in c ) L 1 l .  331. 313.rJ3.323.113.311. 121 
4*4>4> 4 9 4 9 4 9  4,4747 494-43 4,4949 49494, 49494’ 4,494 

8 “1 in a) O,O,O; 0 11. 1 0 1. 11 0. 2 1 3 .  3 3 1. 11.1. 13 2 
, 2 3 2 9  2 5  rZY 2929 9 4,4943 4,494, 4,4349 4,494’ 

1 I 1  ‘ 0 0 . 0 1 0 . 1 ~ 0 . ~ ~ 1  112. 323 111 8 Na in b) T , ~ , ~ ;  T ,  , ,, ,T, , 2r2 r  I 4,4,4; 4r4r4; 4r4r4 ;  4,4r4. 
For the prototype, NaTI, a=747.3 pm. 
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LiZn, LiCd, LiAI, NaIn have this structure. 
This structure may be regarded as a completely filled-up fcc arrangement in which 

each component occupies a diamond like array of sites (see sec. 6.3.1. and, in sec. 3.4., 
“Zintl Phases”.) 
The structure may thus be presented as NaTl: D + D’ (see the descriptions in terms of 
combination of invariant lattice complexes reported in sec. 3.1.). 

The coordination formula is $3 Na[T14,4]4,4. 
All the three cF16-NaT1, Li,Bi and MnCu,Al types, which may also be considered 

as composed of four interpenetrating face centered cubic arrays (F + F’ -k F” + F”’), 
correspond to the same space filling as in 8 b.c. cubic (or in 8 CsCl type) cells (see fig. 
24). 

The layer stacking symbols of the NaTl structure are here reported in comparison 
with those of the cF16-Li3Bi and cF16-MnCu,Al types. 
Triangular (T) nets: 
NaTl type: 

Li,Bi type 
Bit  Li;,L Li;6 Li,P4 B i g  Li& L i i  Li&z B i g  Li:4 Li& Lik,lz 
MnCu,Al type 

Square (S) nets: 
NaTl type: 
Nai Na: T1: Na:;, Tl:, Tl;], TlP,, Na:, Tli4 N a 3  
Li,Bi type 
Si: Bi,“Lii Lip/4:Li:/4Li~/2Lip/zBi~,2Li,6,Li~,4 
MnCu2Al type: 
Ali Ali Mni CuE4 CuC4 Mn:, Mnfn Al:, Cui4 Cui4 

Na;: T C l Z  N44  Na,B, TGlZ =,A, Nag12 N a g  mi4 Na,c,,12 

A1t MnE6 cuG4 A1& cu&’2 Mn:’, cu& A1i3 c u i 4  Mn& cu&Z 

6.1.5. Comments on the bcc derivative structures 
In the family of bcc derivative structures we may include several other structural 

types. 
As an important defect superstructure based on the bcc structure we may mention the 

cPB-Cu,Al, type structure (AgJn,, Au91n4, Pd,Cd4,, Co,Zn,,, Cu,Ga4, Li,,Pb, can be 
considered reference formulae of selected solid solution phases having this structure). 
The large cell (a = 870.4 pm in the case of Cu,Al,) can be considered to be obtained by 
assembling 27 CsCl type pseudocells with two vacant sites. One vacant site occurs on 
each sublattice PJ,6Cu,,0 and Cu,,O. 
The y-brass, c152-Cu5Zn,-type structure can be similarly described as a distorted defect 
superstructure of the W type structure, in which 27 pseudocells are assembled together 
with two vacant sites (corner and body center of the supercell). In this case, however, the 
atoms, are considerably displaced from their ideal sites. The structure could also be 
described as built up of interpenetrating, distorted, icosahedra (each atom being sur- 

References: p .  363. 
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rounded by 12 neighbours). This description applies also to the cP52-Cu,A14 type 
structure. (Ag,Cd,, Li,Ag,, Ag,Zn,, V,Al,, Au,Cd,, Au,Hg,, Fe,Zn,,, NiGa,, V,Ga,, 
Ni,Zn,,, etc. crystallize in the cI52-Cu5Zn, structural type). 
Martensite. The iron-carbon martensite structure can be considered a tetragonal 
distortion of the body-centered cubic cell of Fe (a = 285 pm, c = 298 pm at = 1 mass% C 
(= 4.5 at%), in comparison to a = 286.65 pm for a-Fe, cI2-W type). Carbon is randomly 
distributed in the octahedral holes having coordinates O,O,i and i,i,O. Typically an 
occupancy of these sites of only a few % has to be considered. For a 100% occupancy 
the structure of the tI4-COO type (low-temperature form) is obtained with 2 Co in a) 
O,O,O; i,i,i; and 2 0 in b) O,O,i; $,i,O in the space group 14/mmm, No. 139. In the 
martensitic cell the position parameters of the Fe atoms have a range along the fourfold 
axis, so there is a displacement from the cell comers and body center and an enlargement 
of the octahedral holes containing carbon. (Notice, however, that “martensite” is also a 
general name used by metallurgists to denote all phases formed by diffusionless shear). 
Al-Cu-Ni continuous sequence of ordered structures. An interesting series of 
superstructures have been described by Lu and CHANG [1957a, 1957bl. For an assessed 
description of the system and of the intermediate phases see PRINCE [1991]. They all 
have hexagonal unit cells (some corresponding to rhombohedral structures) based on 
ordered sequences of pseudo cubic subcells slightly distorted in rhombohedra having the 
constant qhom included between 289 and 291 pm and the interaxial angle arhom included 
between 90.34 and 90.10’. (These data may be compared with the values a = = 288 pm 
and, of course, a =90’, for the cubic CsCl type unit cell of NiAl at the 50 at% Al 
composition). The hexagonal cells of the superstructures have a certain number of 
subcells stacked along c. A1 atoms occupy the corners of the subcells and Ni,Cu (Me) 
atoms or vacancies (Vac) occupy the centers in ordered array, vacancies occurring along 
the three triad axes (O,O,O; 3.3,~; ?,i,z). All together these phases corresponds to the 
.r-region lying in the ternary system in a domain included between = 7  and 12 at% Ni 
and between =27 and 38 at% Cu. The different T~ ordered structures correspond to the 
stacking of i subcells centred according to a definite sequence of Vac or Me atoms. 

7, = (Ni,Cu),Al,, hR24, a=411.9 pm, c=2512.5 pm (=5*502.5) 

.r6 = (Ni,Cu),Al,, hP30, a=411.3 pm, c=3013.5 pm (=6*502.3) 

.r7 = (Ni,Cu),Al,, hP36, a = 410.6 pm, c = 3493.8 pm ( = 7 *499.1) 

7 8  = (Ni,Cu),Al,, hR42, a = 410.5 pm, c = 3990 pm ( = 8 *498.8) 

T~~ = (Ni,CU),Al,,, hP51, a=411.5 pm, c=5528.9 pm (=  11*502.6) 

713 = (Ni,Cu),Al,,, hR63, a=411.3 pm, c=6517.3 pm (= 13*501.3) 

Following stacking variants have been described: 

stacking sequence VacMeMeMeVac = VacMe,Vac 

stacking sequence VacMe,Vac 

stacking sequence VacMe,Vac 

stacking sequence VacMe,Vac 

stacking sequence VacMe,Vac,Me,Vac 

stacking sequence VacMe,Vac,Me,Vac 



Ch. 4, 8 6 Structure of intermetallic compounds and phases 275 

T~~ +5 (Ni,Cu),&E,,, hw5, a =  409.6 pm, c = 7464.5 pm ( = 15 *497.6) 

T ~ ,  ?: (Ni,Cu)&l1,, hP87, a=410.1 pm, c=8449.9 pm (= 17*497.1) 

These structures appeared to be determined by the free electron concentration, They 
represent a so-called “continuous sequence of ordered structures” or, infinitely adaptive 
structures (HYDE: and ANDERSON [ 19891). These structures occupy a single-phase field 
in the system: it has been observed that, in such cases, may be ambiguous to define a 
phase in terms of a unit cell of structure. 

stacking sequence VacMe,Vac,Me,Vac 

stacking sequence VacMe,Vac,Me,Vac 

6.2. Close-packed structures and derivative structures 

In this section, a. few important elemental structures are described. Particularly the 
cubic (cF4-Cu type) and hexagonal close-packed (hP2-Mg) structures are presented. A 
few other stacking variants of identical monoatomic triangular nets are also reported. A 
group of structures which can be considered as derivative structures of Cu are also 
described. 

Normalized interatomic distances and numbers of equidistant neighbours are shown 
in figs. 25 and 26. 

6.2.1. Structural type: cF4-Cu 
Face-centered cubic, space group Fmgm, No. 225. 
Atomic positions: 
4 Cu in a) O,O,O; (I,+,;; +,O,+; +,i,O; 
Coordination formula: 3 [Cu,,,,] 
Layer stacking symbols: 
Triangular (T) nets: Cut  C u h  Cu& 
Square (s)  nets: CU; c u i  CU; 
For the prototype itself, Cu, a=361.46 pm. 

The atoms are arranged in close packed layers stacked in the ABC sequence (see 
sec. 3.5.2.). 

Several metals, such as AI, Ag, Au, a Ca, a Ce, y Ce, a Co, Cu, y Fe, Ir, /3 La, Pb, 
Pd, Pt, Rh, Q Sr, Q Th and the noble gases Ne, Ar, Kr, Xe crystallize in this structural 
type. Several bin;uy (and complex) phases having this structure have also been reported 
(solid solutions with random distribution of several atomic species in the four equivalent 
positions). 

6.2.2. Cu-derivative, substitutional and interstitial superstructures (tetrahedral 
and octahedral holes) 

Derivative structures may be obtained from the Cu type structure by ordered 
substitution or by ordered addition of atoms. As examples of derivative structures 
obtained by ordered substitution (andor distortion) in the Cu type we may mention the 
AuCu,, AuCu, Ti,Cu types, which are described here below. (In the specific case of the 
AuCu, type structure and the Cu-AuCu, types interrelation, see also sec. 3.5.5.). For a 
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Fig. 25. Distances and coordinations in the cF4-c~  and cP4-AuCu3 types structures. (Compare also with figs. 
14 and 15.) 
a) cF4Cu type structure 
b) cP&AuCu, type structure: coordination around Au 

c) AuCu, type structure: coordination around Cu 
(+) Au-CU; (*) Au-Au. 

(+) CU-CU; (*) CU-Au. 
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24] a] Mg-type(ideal) 
N 

1 

N bf Mg-type 

Fig. 26. Distances and coordinations in the hexagonal close-packed (Mg-type) structure. 
a) Ideal structure, c,la= 1.633 (first coordination shell corresponding to 12 atoms at the same distance). 
b) Mg-type structurtss with c/a= 1.579. 

The group of the first 12 neighbours is subdivided into 6 + 6 atoms at slightly different distances. 

systematic description of the derivative structures which may be obtained from the Cu 
type by oldered$lling-up it may be useful to consider that in a closest packing of equal 
spheres there are, among the spheres themselves, essentially two kinds of interstices 
(holes). These are shown in fig. 27. The smallest holes surrounded by a polyhedral group 
of spheres are those marked by T. An atom inserted in this hole will have four neigh- 
bours whose centres lie at the vertices of a regular tetrahedron (terruhedrul holes). The 
larger holes (octahedral holes) are surrounded by octahedral groups of six spheres. In an 
infinite assembly of close-packed spheres the ratios of the numbers of the tetrahedral and 
octahedral holes 1.0 the number of spheres are, respectively, 2 and 1. 

Considering the Cu type structure (in which the 4 close-packed spheres are in O,O,O; 
O,$,i; i,O,i; &&O) the centers of the tetrahedral and octahedral holes have the coordinates: 
4 octahedral holes in: 
111. '00. 0'0.  001. 2,2929 2' 3 , 729 3 9 92, 

2 sets of 4 tetrahedral holes in: 
1 1  I .  1 3 3 .  3 1 3 .  3 3 I .  
474949 49474, 494749 494947 

and in: 
3 3 3 . 3  1 I. 1 3 1 .  1 1 3 ' 4 q q ,  5 4 9 4 ,  T,T,;i, ;i>;i>T. 

- - - - - - - - - - - - 
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-0 

T 0 

Fig. 27. Voids in the closest packing of equal spheres; tetrahedral (T) and octahedral holes (0) are evidenced 
within two superimposed hiangular nets. 

Several cubic structures, therefore, in which (besides O,O,O; O,&$; f,O,&; &f,O) one (or 
more) of the reported coordinate groups are occupied could be considered as filled-up 
derivatives of the cubic close-packed structures. The NaCl, CaF,, ZnS (sphalerite), 
AgMgAs and Li,Bi type structures could, therefore, be included in this family of 
derivative structures. For this purpose, however, it may be useful to note that the radii of 
small spheres which fit exactly into tetrahedral and octahedral holes are 0.225.. and 
0.414 ..., respectively, if the radius of the close-packed spheres is 1.0. For a given phase 
pertaining to one of the aforementioned types (NaCl, ZnS, etc.) if the stated dimensional 
conditions are not fulfilled, alternative descriptions of the structure may be more 
convenient than the reported derivation schemes. 

Notice, moreover, that a fc cubic cell of atoms X in which all the interstices are 
occupied (the octahedral by X and the tetrahedral by Z atoms) is equivalent to a block 
of 8 X Z ,  CsCl type, cells (see figs. 3 and 24). This relationships (and other ones with 
other structures such Li3Bi and MnCu,Al) should be kept in mind when considering, for 
instance, phase transformations occurring in ordering processes. 

Similar considerations may be made with reference to the other simple close-packed 
structure, that is to the hexagonal Mg type structure. In this case two basic derived 
structures can be considered the NiAs type with occupied octahedral holes and the 
wurtzite (ZnS) type with one set of occupied tetrahedral holes. 
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6.23. Struc:tural type: cP4-AuCu3 
Cubic, space group P d m ,  No. 221; 
Atomic positions: 
1 Au in a) O,O,O 

Coordination formula: 333 [ A ~ 6 1 [ C ~ , l , ,  
Layer stacking symbols: 
Triangular, kagcimC (T,K) nets: 
Aut C: Auk Cu;, Au;~ Cup 
Square (s )  nets: AU; c u i  CU,, 
For the prototype itself, AuCu,, a = 374.8 pm. 
(See also sec. 3,5.5. for a detailed description of this structure.) 
This structure can be considered a derivative structure (ordered substitution) of the 
cF4-Cu type. 

A discussion of the characteristics of a number of ordered layer (super)structures 
involving a XY, stoichiometry has been reported by MASSALSKI [1989]. Sequences of 
layer structures (among which those corresponding to the cP4-AuCu3, hP16-TiNi3, 
hP24-VCo3, hR:36-BaPb3 types) as observed in V (or Ti) alloys with Fe, Co, Ni, Cu are 
described. The relative stabilities of the different stacking sequences have been analyzed 
in terms of a few parameters which characterize the interactions between various layers. 

3 in c) 0"; 101.110 
7292 29 $29 2127 

6.2.4. Structural types: tP2-AuCu (I) and oI4O-AuCu(II) 
tP2duCu( l )  is tetragonal, space group P4/mmm, No. 123; 
Atomic positions: 
1 Au in a) O,O,O; 
1 Cu in d) +,$,$; 
For the prototype itself, AuCu(I), a = 280.4 pm, c = 367.3 pm, c/a = 1.3 10. 
The unit cell could be considered either as a distorted CsCl type cell greatly elongated 
in the c direction or, better, as a deformed (and orderly substituted) Cu type cell. This is 
apparent from fig. 20 where the tp2 unit cell and two tP4 supercells having 
a' = a@ = 396.61 pm, c' = c = 367.3 pm are also shown. The larger cell is similar to a Cu 
type cell, slightly compressed (c'/a' =0.926) and in which the atoms placed in the center 
of the sidefaces have been orderly substituted. The coordinates in the tP4 
super(pseudo)celll are: 
Au in O,O,O, and i,$,O; 
Cu in f,O$ and 0 92 1 $2 I .  9 

and the correspoinding square nets stacking sequence is AuA Au: Cu f'. 
The long period superstructure of AuCu(I), discussed in sec. 4.2., resulting in the 
antiphase-domain structure of AuCu(II) is shown in fig. 20c. 

6.2.5. Structural type: tP4-Ti3Cu 
Tetragonal, space group P4/mmm, No. 123; 

References: p .  363. 



280 Riccardo Ferro and Adriana Saccone Ch. 4, 0 6 

Atomic positions: 
1 Cu in a) O,O,O 
1 Ti in c) ;,;,o; 
2 Ti in e) 011. '01. 92.21 2, 12, 

Coordination formula: 323 [ C k J  [Ti8/8],u4 
Layer stacking symbols: 
Square (S) nets: Cu: Ti: Ti :,. 
For the prototype itself, Ti3Cu, a = 415.8 pm, c = 359.4 pm, c/a= 0.864. This structure 
can be described as a tetragonal distortion of the AuCu, type structure. It may also be 
considered a variant of the previously described AuCu(1) type (compare with its tP4 
pseudocell). 

6.2.6. Structural types: hP2-Mg, hP4-La and hR9-Sm 
hP2-Mg type. Hexagonal, Space group P6Jmmc, No. 194. 
Atomic positions: 
2 Mg in c) T,T,T; T,T,T; 
Coordination formula: 2 [Mg,+,,g)] and ideally: 2 [Mg,,,,]. 
For the prototype itself, Mg, a =  320.89 pm, c = 521.01 pm, c/a= 1.624. 
Normalized interatomic distances and numbers of equidistant nei hbours are presented 
in fig. 26a for an "ideal" hexagonal close-packed structure (c/a = $- 813 = = 1.633), which 
corresponds to 12 nearest neighbours at the same distance, and, in fig. 26b, for a slightly 
distorted cells. 

The atoms are arranged in close-packed layers stacked in the sequence ABAB... (or BCBC ... 
see sec. 3.5.2.). The corresponding layer symbol (triangular nets) is Mg:2, Mg&. 

Several metals have been reported with this type of structure, such as: aBe, Cd, ECO, 
aDy, Er, Ho, Lu, Mg, Os, Re, Ru, Tc, aY, Zn, etc. Several binary (and complex) phases 
have also been described with this type of structure. These are generally solid solution 
phases with a random distribution of the different atomic species in the two equivalent 
positions. 

Other stacking vur-iunts of closepacked structures are the La type and Sm type 
structures. Characteristic features of these types are presented here below. 

1 2 1  2 1 3  

hP4-La type. Hexagonal, Space group PGJmmc, No. 194. 
Atomic positions: 
2 La in a) O,O,O; O,O,+; 

For the prototype itself, aLa, a = 377.0 pm, c = 1215.9 pm, c/a = 3.225. 
Layer stacking symbols: 
~ r i a n g ~ l a r  (T) nets: La: La,B, La& ~ a & .  

hR9-Sm type. Rhombohedral, space group H m ,  No. 166. 
Atomic positions: 

2 La in c) i2.L- 213- 
,3349 373*49 

3 Sm in a) o,o,o. 211. rzz. 
3 333937 393939 
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The La and Sm type structures belong to the same homeotect type set as Mg and Cu (see 
sec. 4.3.). All these close-packed element structures are stacking variants of identical slab 
types (monoatomic triangular nets). 

6.2.7. Structural type: hPS-Ni,Sn 
Hexagonal, Space group P6Jmmc, No. 194. 
Atomic positions: 
2 Sn in c): $,+,+; $,+,:; 
6 Ni in h): x,2x,i; -2x,-x$; x,-x,$; -x,-2x$; 2x,x,$; -x,x,$. 
For the prototype itself a=527.5 pm, c=423.4 pm, c/a=0.802 and x=O.833. 
(A projection of the cell is shown in fig. 28 and compared with that of the hP2-Mg type). 
The layer stacking symbol (triangular and kagom6 nets) is: 

(which may be compared with the symbol Mgz2, Mg& of the Mg type). 
This type is a superstructure of the closed packed (hP2-Mg) hexagonal structure in 

the same way as the AuCu, type is of the close-packed cubic (cF4-Cu) structure. It can, 
therefore, be considered a stacked polytype of the AuCu, type. 

Several phases belong to this type, for instance, Ti,Al, Fe3Ga, Fe,Ge, Fe,Sn, ZrNi,, 
ThAl,, YAI,, etc:. 
In the specific case of the rare earth trialuminides REAl,, the Ni,Sn type structure has 
been observed for LaAl, to GdA1, (and YAl,). For ErA1, to YbAl, and ScA1, the AuCu, 
type structure is formed. For the intermediate REAl,, intermediate stacking variants of 
similar layers have been described and their relative stabilities discussed (VAN VUCHT 
and BUSCHOW 1119651). In fig. 28b, the oP8-p TiCu, type structure is also shown. The 
close relationship between the two structures may be noticed. 

B 
Sn0.2, Nit25 G 7 5  NilL5. 

6.2.8. Struc~tud type: hP6-CaCb 
As another example of structures in which more complex stacking sequences can be 

observed we may mention here the hP6-CaCu5 type structure, which is the reference type 
for a family of structures in which 36 nets (and 63) are alternatively stacked with 3636 
(kagomk) nets of atoms. 

1 Ca in a) O,O,Ol, 
2 Cu in c) +,$,O; +,$,O; 
3 Cu in g> $,O,$; O,;,;; ;,+,+; 
For the prototype, a=509.2 pm, c=408.6 pm, c/a=0.802. 
The layer stacking symbol, triangular (T A,B,C), hexagonal (H: a,b,c) and kagomC ( K  
a,p,r) nets is: Cat  Cu: Cu;, (see fig. 29). 

The hP6-CaCu5 structure is hexagonal, space group P6/mmm, No. 191, with: 
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1: 2=1/4 0 Sn 
0 Ni 3: 2=3/4 

b) 

0 Ti o :z=o  
0 cu 2: z= 1/2 

Fig. 28. hPL-Ni,Sn type unit cell. 
a) Projection of the hPS-Ni,Sn type unit cell on the x.y plane (the values of the coordinate z are indicated). 

A Mg-type subcell is represented by the dotted lines. 
b) Projection of the oPB+-TiCu, type cell. Compare the similar arrangements of the atoms in the two 

structures. 

A large coordination is obtained in this structure: Ca is surrounded by 6 Cu + 12 Cu + 2 
Ca at progressively higher distances and the Cu atoms have 12 neighbours (in a non- 
icosahedral coordination). 

Several phases belonging to this structure are known (alkali metal compounds such 
as KAu,, RbAu,, alkaline earth compounds such as BaAu,, BaPd,, BaPt,, CaPt,, Can, ,  
etc., rare earth alloys such as LaCo,, LaCu,, LaPd,, LaPt,, LaZn,, etc., The compounds 
as ThFe,, ThCo,, ThNi,, etc.). Ternary phases have been also described, both correspon- 
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/ @ \  

i@\ I@\ 
@j 1 7 \P 0 Cu at 2=1/2 

@ Cu at z=O 

@ Ca at z=o @ 

0 Cu at 2=1/2 

@ Cu at z=O 

Fig. 29. Projection of the hP6CaCu5 type unit cell on the x,y plane. 

ding to the ordered derivative hP6-CeCo3B, type (1 Ce in a), 2 B in c) and 3 Co in g))  
and to disordered solid solutions of a third component in a binary CaCu, type phase. 

According tcr PEARSON [1972] several structures may be described as derived from the 
CaCm, type (for instance, the t126-ThMn1, type; hR57-ThJn1, type; hP38-Th2Ni,, type; etc.). 

As for the lbuilding principles of the CaCu, type some analogies with the Laves 
phases (see sec. 6.6.4) may be noticed. 

Cobalt-based rare earth alloys such as SmCo, (hP6-CaCus type) are important 
materials for permanent magnets. A short review on the properties of alloys for perma- 
nent magnetic materials has been reported by RAGHAVAN and ANTIA [1994]. Complex 
(especially iron) alloys have been mentioned starting from the Alnico (Fe-Al-Ni-Cs) 
alloys introduced in the thirties followed by ferrites and Co-based rare earth alloys (such 
as SmCo,) and then by Sm,(Co,Fe,Cu),, and Nc&Fe,,B (tP68) with a progressive 
decreasing of volume and weight of magnets per unit energy product. 

6.3. Tetrahedral structures 

This section is mainly dedicated to the presentation of a few typical so-called tetrahedral 
structures. For the simplest ones, normalized interatomic distances and numbers of equidistant 
neighbows are shown in fig. 30. The graphite structure will also be described. 

6.3.1. cF8-C (diamond) and tI4-/3Sn structural types 
cF&C (diamond) type. 
Face-centered cubic, space group F&m, No. 227. 
Atomic positions: 
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16- 

0- 
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“1 a) C (diamond)-type 
N 

L4 1 b) ZnS (sphalerite)-type 

8 C in a) O,O,O; 0 1 1. 1 0  1. 1 1 0- 11 1. 1 3 3. 3 13. 3 31. 
,2929 2 r  92, 2929 7 4,4947 4*4?4? 4’4949 4,474’ 

(This group of atomic positions corresponds to the so-called invariant lattice complex D; 
see sec. 3.1.). 
The coordination formula is 2 [C,,,] 
The layer stacking symbols are: 
Triangular (T) nets: C t  C& C:3 C:,, C& C,:,, 
Square (s) nets: C: C: cP, c ; ~  c;~ 
For the prototype itself, C diamond, a = 356.69 pm. 
The diamond structure is a 3-dimensional adamantine network in which every atom is 
surrounded tetrahedrally by four neighbours. The 8 atoms in the unit cell may be 
considered as forming two interpenetrating face centered cubic networks. If the two 
networks are occupied by different atoms we obtain the derivative cF8-ZnS (sphalerite) 
type structure. As a further derivative structure, we may mention the t116-FeCuS2 type 
structure (See fig. 31). These are all examples of a family of “tetrahedral” structures 
which have been described by ParthC and will be briefly presented in sec. 7.2.1. 

Si, Ge and aSn have the diamond-type structure. The tI4-pSn structure (a = 583.2 
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pm, c=318.2 pnn) (4 Sn in a) O,O,O; O&,; i,;,;; $,O,;; space group 14,/amd, No. 141) can 
be considered a very much distorted diamond type structure. Each Sn has 4 close 
neighbours, 2 more at a slightly larger (and 4 other at a considerably larger) distance. 
The PSn unit cell is reported in fig. 32. 

6.3.2. Structural types: cF8-ZnS sphalerite and hP4-ZnO (ZnS wurtzite) 
cFS-ZnS sphalerite 
Face-centered cubic, space group F43m, No. 216. 
Atomic positions: 

a) 

as 

0 Zn 

ea cu 

0 Fe 

O S  

Fig. 3 1. a) cF8-ZnS sphalerite and b) t116-FeCuS2 (chalcopyrite) type structure?. 
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Fig. 32. tI4+Sn type structure. 

4 Zn in a) O,O,O; O,$,$; i,o,$; 
4 s in c) 11.1.. 1.33. 3r3.33.L. 

In terms of a combination of invariant lattice complexes (see sec. 3.1) we may therefore 
describe the sphalerite structure as ZnS: F+F”. 
Coordination formulae: 
3 [ZnS,] (ionic or covalent description) 
333 [Zn,,,J[S,,,,]4,4 (metallic description) 
For the prototype itself, ZnS sphalerite, a=541.1 pm. 

Structural type hP4-ZnO or ZnS wurtzite 
hexagonal, P6,mc, No. 186. 
Atomic positions: 
2 Zn in b (1) 3,#,z; #,i,i -I- z; (z = zl) 
2 0 or 2 S in b (2) +,$,z; $,$,i+z; (z=z;?) 
Coordination formula: 3 [Zn04,J 
For the prototypes themselves, ZnO: a =  325.0 pm, c =520.7 pm, c/a = 1.602; ZnS 
(wurtzite): a = 382.3 pm, c = 626.1 pm, c/a = 1.638. The atomic positions correspond, for 
both types of atoms, to similar coordinate groups (to the same Wyckoff positions) with 
different values of the z parameter. For ZnO z,,=O, z,=O.382, and for ZnS zzn=O, 
zS = 0.371. 

4,474, 4,4943 494343 494943 

63.3. General remarks on “tetrahedral structures’’ and polytypes. 
tI16-FeCuS2, hP4-C lonsdaleite, oPlfGBeSiN2 types and polytypes 

Compounds, isostructural with the cubic cF8-ZnS sphalerite include AgSe, Alp, 
AlAs, AlSb, AsB, AsGa, AsIn, BeS, BeSe, BeTe, BePo, CdSe, CdTe, CdPo, HgS, HgSe, 
HgTe, etc. (possibly in one of their modifications). 

The sphalerite structure can be described as a derivative structure of the diamond type 
structure. Alternatively we may describe the same structure as a derivative of the cubic 
close-packed structure (cF4-Cu type) in which a set of tetrahedral holes has been filled- 
in. (This alternative description would be especially convenient, when the atomic 
diameter ratio of the two species is close to 0.225: see the comments reported in 
sec. 6.2.2.). 
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In a similar way the closely related hP4-ZnO structure can be considered as a 
derivative of the: hexagonal close-packed structure (hP2-Mg type) in which, too, a set of 
tetrahedral holes has been filled-in. 

Compounds, isostructural with ZnO include some forms of AgI, BeO, CdS, CdSe, 
CIS (X = H, C1, Br, I), MnX (X = S, Se, Te), MeN (Me = Al, Ga, In, Nb), ZnX (X = 0, 
S, Se, Te). 

In order to have around each atom in this hexagonal structure, four exactly equidis- 
tant neighbourintg atoms, the axial ratio should have the ideal value m, that is = 1.633. 
The experimental values range from 1.59 to 1.66. The ideal value of one of the parame- 
ters (being fixed at zero the other one by conventionally shifting the origin of the cell) 
is z=3/8=0.3750. 

The C diamond, sphalerite and wurtzite type structures are well-known examples of 
the “normal tetrahedral structures” (see sec. 7.2.1 .). 

Several superstructures and defect superstructures based on sphalerite and on wurtzite 
have been described. The tI16-FeCuS2 (chalcopyrite) type structure (tetragonal, a = 525 
pm, c = 1032 pm, c/a = 1.966) (see fig. 31b), for instance, is a superstructure of sphalerite 
in which the two metals adopt ordered positions. The superstructure cell corresponds to 
two sphalerite cells stacked in the c-direction. The c/2a d o  is nearly 1. As another 
example we may mention the oPl6-BeSiN, type structure which similarly corresponds to 
the wurtzite type structure. 

The degenerate structures of sphalerite and wurtzite (when, for instance, both Zn and 
S are replaced by C) corresponds to the previously described cF8-diamond type structure 
and, respectively, to the hP4-hexagonal diamond or lonsdaleite which is very rare 
compared with the cubic, more common, gem diamond. The unit cell dimensions of 
lonsdaleite (prepared at 13 GPa and lO0OT) are a=252 pm, c=412 pm, c/a= 1.635. 
(Compare with ZnS wurtzite). 

While discussing the sphalerite and wurtzite type structures we have also to remem- 
ber that they belong to a homeotect structure type set. (See sec. 4.3.) 

The layer stacking sequence s mbols (triangular nets) of the two structures are: 
Sphalerite: Znt  S;4 Zn& S;,, Zn, I! Slf)12 

wurtzite: zn; s : ~ ~  zn,C, s,CS7 . 
In the first case we have (along the direction of the diagonal of the cubic cell) a 

sequence ABC of identical “unit slabs” (“minimal sandwiches”) each composed of two 
superimposed triangular nets of Zn and S atoms. The “thickness” of the slabs, between 
the Zn and S atom nets is 0.25 of the lattice period along the superimposition direction 
(cubic cell diagonal: a 6 ) .  It is (0.25 6 *541) pm = 234 pm. In the WUrtzite structure we 
have a sequence BC of slabs formed by sandwiches of the same triangular nets of Zn 
and S atoms (their thickness is = 0.37 * c=(O.37 * 626.1) pm=232 pm). 

With reference to the aforementioned structural unit slab the Jagodzinski-Wyckoff 
symbol of the two structures will be: 
ZnS sphalerite: c; ZnS wurtzite: h. 
In the same (eqniatomic tetrahedral structure type) homeotect set many more structures 
occur often with very long stacking periods. Several other polytypes of ZnS itself have 
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been identified and characterized. The largest number of polytypic forms and the largest 
number of layers in regular sequence have, however, been found for silicon monocarbide. 
A cubic form of Sic  is known and many tenths of rhombohedral and hexagonal 
polytypes. (In commercial S ic  a six-layer structure, hcc, is the most abundant). All have 
the same kx = 308 pm, the c, of their hexagonal (or equivalent hexagonal) cells are all 
multiples of = 252 pm and range from 505 pm to more than 150000 pm (up to more than 
600 Si-C slabs in a regular sequence). 

6.3.4. An important non-tetrahedral C structure. The hP4-C graphite 
In comparison with the previously described tetrahedral structures of C we may 

mention here the very different structure that carbon adopts in graphite (see fig. 33). 
hP4-C graphite. Hexagonal, space group P6/mmc, No. 194. 
Atomic positions: 
2 C in b) O,O,f; O,O,i; 

Coordination formula: 2 [C3J 
The lattice parameters are a = 246.4 pm and c = 67 1.1 pm; c/a = 2.724. 
Different varieties, however, of graphite may be considered: the actual structure, in fact, 
and unit cell dimensions and layer stacking can vary depending on the preparation 
conditions, degree of crystallinity, disorientation of layers, etc. 
In crystalline hP&graphite, sheets of six-membered rings are situated so that the atoms 
in alternate layers lie over one other, and the second layer is displaced according to the 
stacking symbol Ck4 C:,4 (compare with fig. 9). Whereas in diamond the bond length is 
154 pm, in graphite the C-C minimum bond lenght is 142 pm in the sheets and 335 pm 
between sheets. This may be related to the highly anisotropic properties of this substance. 
(It may be said, for instance, that properties of graphite in the sheets are similar to those 
of a metal while perpendicularly are more like those of a semiconductor). 

In conclusion, notice also that in terms of combinations of invariant lattice complexes 
the positions of the atoms in the level f may be represented by $,$,f G and those in the 
level $ by &$,$ G (where G is the symbol of the “graphitic” net complex, here presented 
in non-standard settings by means of shifting vectors; see sections 3.1. and 3.5.2.). 

2 C in c-121. 212. 
3,3347 3.334, 

6.4. cF8-NaC1, cF12-CaF,, and cF12-AgMgAs types 

In this section the NaCl type, CaF2 type (and the related AgMgAs type) structures are 

In fig. 34 the normalized interatomic distances and the equidistant neighbours are 
described. 

shown for the NaCl and CaF2 structures. 

6.4.1. cFS-NaC1 type structure and compounds 
Face-centered cubic, space group Fmgm, No. 225. 
Atomic positions: 
4 Na in a) O,O,O; O,&,&; &O,f; f,$,O; 
4 Cl in b) $,+,+; $,O,O; O,i,O; O,O,$; 
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Fig. 33. Graphite sbucture. 
a) unit cell with the indication of the atoms at the levels z=a and 

also shown). 
b) the hexagonal net formed at level z=a is shown (four adjacent cells are indicated). 

(part of a second, superimposed cell is 

Coordination formula: 333 [Na,u,2][C1,,,&,6 
Layer: stacking symbols: 
Triangular (T) nets: Naf Cl:6 Na:3 Cl& Nai3 Cl& 
Square ( S )  nets: Nai Nai Cli  Cl;2 Cli2 Na;, 
For the prototype itself, NaC1, a = 564.0 pm. 

(A sketch of the NaCl unit cell is shown in fig. 18.) 
A large number of compounds belong to this structure type, besides several alkali 

metal halides, for instance, nearly all the (partially ionic covalent) 1 : 1 compounds formed 
by the rare earths and the actinides with N, P, As, Sb, Bi, S, Se, Te, Po, by the alkaline 
earths with 0, S, Se, Te, Po, etc. 

Notice that we may also describe this structure as a derivative of the cubic close- 
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Fig. 34. Distances and coordinations in the cF8-NaC1 and cFlZCaF, types structures. 

a) XY compounds of cFGNaC1 type structure: 
(*) X-X (or Y-Y) ~00rdination. 
(+) X-Y (or Y-X) coordination. 

b) cF12-CaF2 type structure. Coordination around Ca: 
(*) CaCa; (+) Ca-F; 

c) CaF, type structure. Coordination around F 
(*) F-F; (+): F-Ca. 

packed structure (cF4-Cu type), in which the octahedral holes have been filled in. This 
description, however, may be specially convenient when the atomic diameter ratio 
between the two elements is close to the theoretical value 0.414. In this case the small 
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spheres will fit iexactly into the octahedral holes of the close-packed arrangement of the 
metal atoms. (!See sec. 6.2.2.). This could be the case of a number of “interstitial 
compounds”. Compounds of the transition metals having relatively large atomic radii 
with non metals having small radii (H, B, C, N, possibly 0) may be simple examples of 
this type. (General properties of these compounds were discussed by HAGG [1931]). 

Examples of typical phases belonging to this group may be a number of “mono” 
carbides, nitrides, etc. 

The NaCl type structure is shown by several monocarbides MeC (or more generally 
MeC,,) such as Tic,, (homogeneous in the composition range c- 32-49 at% C), ZrC, 
(= 33-50 at% C), HfC,, (= 33-50 at% C) and ThC, (with a very large homogeneity 
range at high temperature). All the aforementioned monocarbides are stable from room 
temperature up 1.0 the melting points (which are among the highest known: = 3500°C for 
ZrC and = 4000°C for HfC). The carbides VC,, (37-48 at% C), NbC,, (40-50 at% C) 
are stable only at high temperature: at lower temperature, transformations associated with 
C-atom ordering have been reported, resulting in the formation of V,C7, V&, Nb& 
structures. WC,., is a NaCl type high temperature phase homogeneous between 37-39 
at% C. At 50 at% C another structure is formed: the hP2-WC type. 

Among the NaC1 type mononitrides we may mention VN,,. At high temperature (up 
to the melting point = 2340°C) we have a large homogeneity field (= 33-50 at% N). The 
composition chalnges result from variation in the number of vacancies on sites in the N 
sublattice, with x being the fraction of sites randomly vacant. At lower temperature, in 
the composition range 43-46 at% N, an ordering of the N atoms has been observed, 
resulting in a tetragonal superstructure containing 32 V atoms and 26 N atoms in the unit 
cell. In the W-N system, a WN-,, NaCl type phase, has been observed in the composi- 
tion range = 33-50(?) at% N; hP2-WC type structure, however, has been described at 50 
at% N. 

As a final example, we may mention the NaCl type phases formed in the V-O and 
Ti-O systems. The (VO,$) phase is homogeneous in the composition range 42 to 57 at% 
0. Lattice parameter determination in combination with density measurements evidenced 
that, in the structure, vacancies occur in both V and 0 sub-lattices through the entire 
range of composition. At the stoichiometric composition VO there are = 15% of sites 
vacant in each sublattice. 

In the T i 4  system, yTi0 (high temperature form, homogeneous in the composition 
range 35 to 55 at% 0) has the NaCl type structure. (Other forms of the monooxide 
PTiO, aTiO, pTi,-xC), aTi,-,O have ordered structures based on yTi0.) In the structure 
there are atoms missing from some of the sites. According to what is summarized by 
HYDE and ANDIZRSSON [1989], in TiOO.@ = 36% of the oxigens are missing, in TiO,,, 
(which, of course, can be represented also with the stoichiometry Ti,,Q) = 20% of the 
Ti atoms are missing and in = Ti0 both kinds of atoms are missing (= 15% of each): see 
fig. 35. 

6.4.2. cF12-CaF2 type and antitype structures and compounds 
Face-centered cubic, space group Fm3m, No. 225. 
Atomic position:s: 
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42 OA Q6 48 1.0 l2 1.4 1.6 1.8 

TiO, (XI 
Fig. 35. Experimental densities of titanium oxides (continuous lines). The upper dotted line gives the values 
computed for a 100% occupancy of the cation sites in the NaCl structure type (from HYDE and ANDERSON 
[1989]). 

4 Ca in a) O,O,O; (I,;,;; $,O,;; ;,;,(I; 

Coordination formula: 323 [Ca,2,,2][F6/618/4 
Layer stacking symbols: 
Triangular (T) nets: 

Square (S) nets: Cai Ca: Fi4 Fi4 Ca& Fi4 Fi4 
For the prototype itself, CaF,, a = 546.3 pm. 

8 F i n  c) $11 1 1 2  .!.A3 1 3  I 3 1 3  % r l  3 3 1  312 ,494; 4,494; 4,4$ a,+$ 4.434; 4,494; 4,494; 4,434; 

c a t  G I 2  F i 4  Ca,Bn G I 2  F7B112 caE3 F i 4  F,,C,12 

As pointed out in the description of the cubic close-packed structure (cF4-c~ type) this 
structure may be described (especially for certain values of the atomic diameter ratio) as a 
derivative of the Cu type structure in which two sets of tetrahedral holes have been filled in. 

A ternary ordered derivative variant of this structure is the cF12-AgMgAs type. 
Several (more or less ionic) compounds such as CeO,, UO,, Tho2, etc. belong to this 

structural type. 
Several M%X compounds, with Me = Li, Na, K, X = 0, S, Se, Te), also belong to this 

type. In this case, however, the cation and anion positions are exchanged, Me in c) and 
X in a) and these compounds are sometimes referred to a CuF2-untitype. Typical (more 
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metallic) phases having this structure are also, for instance, AuAl,, PtAl,, Mg,Pb, Mg,Sn, 
Mg,Ge, Mg,Si. 

6.4.3. Struc:tud type: cF12-AgMgAs 
Face-centered cubic, space group F43m, No. 216. 
Atomic positions: 
4 As in a) O,O,O; O,i,i; i ,O, i ;  i,),O; 
4 Ag in c) 4 I 1 .  L 3 3 .  312. 231. G f , ~ .  4,494, 4 9 4 9 4 9  494Y4Y 
4 Mg in d) 222. /Ira I L L -  ?_I/- 

4’4743 49494, 494749 434’43 

Layer stacking symbols: 
Triangular (T) nets: 
As; MglL A g i k q 3  M$, fg;IzAS& Mg$4Ag42 
square nets: Ag114 MgG4 Mg:4 Ag314 
For the prototype itself, AgMgAs, a=624 pm. 
In systematic investigations of MeTX ternary alloys (Me = Th, U, rare earth metals, etc., 
T=transition metal, X element from the V, IV main groups) several tens of phases 
pertaining to this structure type have been identified. For the same group of alloys, 
however, other structural types are also frequently found. The hP6-CaIn2 type and its 
derivative types often represent a stable alternative. The relative stabilities of the two 
structures (especially as a function of the atomic dimensions of the metals involved) have 
been discussed, for instance, by DWIGHT [1974], MARAZZA etal. [1980, 19881, WENSKI 
and MEWS [19&6]. 

6.5. hP4-NiAs, cP3-CdI,, hP6-Ni21n, oPlZ-Co,Si, oP12-TiNiSi types; hP2-WC, 
hP3-AI&, hP6-CaIn,, hP9-Fe2P types, tI8-NbAs, tI8-AgTlTe, and 
tI10-BaAl, (ThCr,Si,) types, t112-ThSi2 and tI12-LaPtSi types 

In this section a number of important interrelated structures are presented. A first 
group is represented by the cP3-Cd12, hP4-NiAs and hP6-Ni21n types. Some comments 
on the interrelations between these structures have been reported in sec. 4.1. A further 
comparison may also be made by considering their characteristic triangular net stacking 
sequences: 
hP3-Cd1, Cd; Iz4 IZ4 
hP4-NiAs Nit  AsZ4 N i h  AsZ4 
hP6-Ni2In Nit  NiE4 N i i  Ni:4 Ini4 

YVe see, on passing from CdI, to the NiAs type the insertion of a new layer at level 
3 and, from NiAs to NiIn,, the ordered addition of atoms at levels f and i. 

In this section, moreover, the typical non-metal atom frameworks characteristic of the 
AB,, and derivative structures (“graphitic” layers) and of LuThSi,, and derivative 
structures (“hinged”, tridimensional framework) will also be presented, compared and 
discussedl. 

The groups of more or less strictly interrelated structures which will be considered in 
this section are those corresponding to the hP2-WC, hP3-A1B2, hP6-CaIn2 and hP%Fe,P 
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types, and, respectively, to the tI8-NbAs, tI8-AgT1Te2, tIlO-BaAl, (and tIlO-ThCr,Si,) 
types and to the tI12-cr-ThSi2 and tI12-LaPtSi types. 

6.5.1. Structural type: hP4-NiAs 
Hexagonal, space group P6Jmmc, N.194, 
Atomic positions: 
2 Ni in a) O,O,O; O,O,$; 
2 As in c) $,$,$; $8,;; 
Coordination formula: 1,3 [Ni,,]As6,, 
For the prototype itself, a = 361.9 pm, c = 504 pm, c/a = 1.393. 
According to HYDE and ANDERSON [1989], the data reported have to be considered as 
correspondiag to an average slightly idealized structure, corresponding for several 
compounds to the form which is stable at high temperature. At room temperature, in the 
real structure, there are very small displacements of both Ni and As from their ideal 
average positions. The structure should, therefore, be better described by: 
2 Ni in a) O,O,z; O,O,h + z; (z = 0) 
2 As in b) $,%,z; +,$,$ + z; (z = $) 

The small (probably correlated) displacements of the atoms produce several sorts of 
modulated structures (see sec. 4.4.). 

in the space group P6,mc, No. 186. 

6.5.2. Structural type: hP3-Cd12 
Hexagonal, space group P3m1, No. 164. 
Atomic positions: 
1 Cd in a) O,O,O 
2 I in d) f,$,z; $,$,-z; 
Coordination formula: 2 [CdI,,] 
For the prototype itself, CdI,, a = 424.4 pm, c = 685.9 pm, c/a= 1.616 and z= 0.249. 
Typical phases pertaining to this structural type are COT%, HfS,, PtS,, etc. and also Ti,O 
(which, owing to the exchange in the unit cell of the metaVnon-metal positions may be 
considered to be a representative of the CdZ2-antitype). 

6.5.3. Structural type: hP6-NiJn 
Hexagonal, space group P~~/IIIIIIC, No. 194. 
Atomic positions: 
2 Ni in a) O,O,O; O,O,); 
2 In in c) 1 2 1  3,3,T; 2 1 3  

2 Ni in d) $ 2 2 -  211. 
, 3 9 4 9  3 9 3 9 4 9  

Coordination formula: 2 [InNi6/6Ni5,5] 
For the prototype itself, a=419 pm, c=512 pm, c/a= 1.222. 
Typical phases assigned to this structural type are, for instance: Zr2Al, Co,Ge, La21n, 
Mn,Sn, Ti& and several ternary phases such as: BaAgAs, CaCuAs, CoFeSn, LaCuSi, 



Ch. 4, $ 6  Structure of intermetallic compounds and phases 295 

VFeSb, KZnSb, etc. 
A distorted -#aria& of the InNi, type structure is the oP12-orthorhombic structure of 

the Co,Si, (or PbC1.J type: 2 [SiCo,,Co,,,], that is total coordination 10 of Co around Si 
with f +$ = $' = 2 Co atoms for each Si atom). A ternary derivative of this type is the 
oPl2-TiNiSi type (prototype of the so-called E phases). 

6.5.4. Structural types: oP12-Co2Si (PbCl;) and oPl.2-TiNiSi 
Orthorhombic, space group Pnma, N.62. 
In these structural types the atoms are distributed in three groups of positions correspon- 
ding (obviously with different values of the x and z free parameters) to the same type of 
Wyckoff positions (Wyckoff position c). 
Atomic positions: in Co2Si in TiNiSi 
c (1)) x,+,z; +-x.,:,++z; 4 co 4 Ti 
-x 3 -Z' I+x r L z .  

c (2)) x,;,z; +-x.,$,++z; 4 co  4 Ni 
-x 3 -Z' L+x r LZ. 

c (3)) x,f,z; &-x.,$,++z; 4 Si 4 Si 
-x 3 -Z' L+x r LZ. 

For the prototypes: 
Co2Si: a=491.8 pm, b=373.8 pm, c=710.9 pm, a/c=O.692; x,(,,=O.O38, z,(,,=O.782; 

TiNiSi: a =  614.84 pm, b = 366.98 pm, c = 701.73 pm, a/c = 0.876; x,(,) = 0.0212, 

Co,Si is the prototype of a group of phases (also called PbC1, type) which can be 
subdivided into two sets according to the value of the axial ratio a/c which is in the 
range from 0.6'7 to 0.73 for one set (for instance, Co,Si, Pd,Al, Rh,Ge, Pd,Sn, Rh,Sn, 
ek.) and in the range from 0.83 to 0.88 for the other set (for instance PbCl,, BaH,(h), 
CqSi, Ca2Pb, GdSe,, ThS,, TiNiSi, etc.) (PEARSON [1972]). 

The ternary variant TiNiSi type is also called E-phase structure. Many ternary com- 
pounds belonging to a MeTX formula (Me=rare earth metal, Ti, Hf, V, etc., T=transit- 
ion metal of the Mn, Fe, Pt groups, X=Si, Ge, Sn, P, etc.) have this structure. 

949 9 2 ,492 9 

94, Y 2 ,492 , 

~ 4 9  7 2 9492 9 

x,(~) = 0.174, z,(~, = 0.438; x,(~, = 0.702, z ~ ( ~ ,  = 0.389. 

z,(,,=0.8197; ~,(,,=0.1420, ~,(,,=0.4391; ~,(,,=0.7651, ~,(,,=0.3771. 

4 - 5 5  Structural type: hP2-WC 
Hexagonal, space group P6m2, No. 187. 
Atomic positions: 
1 W in a) O,O,Cl,; 

1 C in d) $,$,+; 
For the prototype itself, a = 290.6 pm, c = 283.7 pm, c/a = 0.976. 
This structure type with the axial ratio c/a close to 1 is an example of the Hagg 
interstitial phases formed when the ratio between non-metal and metal radii is less than about 
0.59. The structure can be described as a tridimensional array of trigonal prism of W- 
atoms (contiguous on all the faces). Alternate trigonal prisms are centered by C-atoms. 

References: p .  363. 
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Compounds belonging to this structure type, for instance, are: IrB, OsB, RUB, MoC, 
WC (compare, however, with the NaCl type phase), NbN, WN, MOP, etc. 

6.5.6. Structural types: hP3-AIB2 and hP3-BaPtSb; h B w ,  Cr-Ti phase 

Structural type: hP3-A1B2 
Hexagonal, space group P6/mmm, No. 191. 
Atomic positions: 
1 A1 in a) O,O,O; 

Coordination formula: 323 [Al&j[B3,3]1U6 
For the prototype itself, a = 300.5 pm, c = 325.7 pm, c/a= 1.084. 
The structure can be considered a filled-up WC structure type. The B-atoms form a 
hexagonal net and center all the AI trigonal prisms. The arrangement of the boron atoms 
in their layers is the same as that in graphite (see fig. 9 and sec. 6.3.4). (See sec. 6.5.10. 
for a comparison between the planar graphitic net and similar threedimensional networks). 

Several B, Si, Ge, Ga, etc., binary and ternary compounds have been described as 
pertaining to this structure or, possibly, to its variants (many of them deficient in the 
second component and corresponding to different stoichiometries in the 1:2 to 1:1.5 
range). The axial ratio of phases with this structure varies between very wide limits. The 
relationships between axial ratio, atomic radii ratio of the elements involved and the role 
of the different bonds have been discussed by PEARSON [1972]. In the specific case of 
AlB, (c/a= 1.08) the important role of the graphite-like net of B-atoms in determining 
the phase stability has been evidenced. 

2 B in d) L z L .  z r l .  3,3923 3,3729 

A disordered, AlB, type, ternary phase (= Ce,NiSi,) has been presented in table 3. 
A variant (ordered derivative structure) of the hP3-A1B2 type, previously discussed 

in sec. 4.1 and presented in fig. 17, is the hP3-BaPtSb type, hexagonal, space group 
P6m2, No. 187. Another compound with this structure is, for instance, ThAuSi. The 
atomic positions are the following: 
1 Ba (or Th) in a): O,O,O; 
1 Pt (or Au) in d) ;,$A; 
1 Sb (or Si) in f): $,$,;. 
The layer-stacking sequence symbols of the three previously mentioned structures are: 
WC type, tiangular (T) nets; 

AlB, type, triangular, hexagonal (T, H) nets: 
w; co”,; 

Alt  B;,; 
ThAuSi type, triangular, hexzgonal (T,H) nets: 
Tht Au,”, Si&. 

Another ordered derivative structure of the AlB, type is the Er,RhSi3 type, hexagonal, 
space group P62c, No. 190 with the following atomic positions: 
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2 Er in b): O,O,+; O,O$; 

6 Er in b): x,y,i; -y,x-y,i; y-x,-x$; y,x,:; x-y,-y,$; -x,y-x,$ 
12 Si in i): x,y,z; -y,x-y,z; y-x,-x,z; x,y,&z; -y,x-y,hz; y-x,-x,&z; 

(with z,=O; x,,=0.481; y,=0.019; xsi=0.167; ysi=0.333; zsi =O). 
The different ordering relationships between these structures have been discussed in 
sec. 4.1. (see also fig. 17). 

Finally, while considering the structural characteristics of the AlB, type phases, we 
may mention that boron-centered triangular metal prisms are the dominating structural 
building elements in the crystal structures of simple and complex metal borides. Building 
blocks of centered triangular prisms as base units for classification of these substances 
have been considered by ROGL [1985, 19911 in a systematic presentation of the crystal 
chemistry of borides. 

We may mention here, also as an example of “modular” description, that several 
Structures may be described in terms of cyclic translations about a 6, axis of blocks of 
AlB, type columns: see fig. 36. 

4 in 0: 12z .  1.2L-Z. 2 1  z* 2L.L+z. 
3 9 3 9  i 3,392 ? 3939- 9 3,392 9 

y,x,--z; x-y,-y,-z; -x,y-x,-z; y,x,;+z; x-y,-y,;+z; -x,y-x,;+z. 

Structural type: hP3-o, Cr-Ti 
The w-phase, a iabiquitous metastable phase in Ti (or Zr or Hf)-transition metal systems, 
is approximately isotypic with AlB,. (The axial ratio of the unit cell, however, instead of 
being close to unity, is very much smaller and has a value of about 0.62.) The compo- 
nents are randomly arranged. One third of the atoms are distributed in a triangular net at 
z = 0 forming trigonal prisms. Two thirds of the atoms are placed near the centers of the 
prisms (slightly displaced alternately up and down) forming a rumpled 63 net at 2-3. 

(The space group is PSml.) 

6.5.7. Structural type: hP6-CaIn2 
Hexagonal, space group P4/rnmc, No. 194. 
Atomic positions: 
2 Ca in b) O,O$; O,O,$; 
4 In in f) 12 z’ 211 +z. 21. - z. 12 1 

Layer stacking symbol: 
Triangular (T) nets: 

For the prototype itself, a=489.5 pm, c = 775.0 pm, c/a = 1.583 and z = 0.455. 
This structure can be described as a distortion (a derivative form) of the AIB, type 

structure. Ca-atoms form trigonal prisms alternatively slightly off-centered up and down 
by In-atoms. 
In fig. 37 the normalized interatomic distances and the equidistant neighbours are shown 
for the NiAs and CaIn, structures. 

393, 9 $ 9 3 9 2  7 3739 9 3 , 3 , F z ;  

h L  ca;4 b ; O  In&o Ca44 In&O 

References: p .  363. 
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Fig. 36a,b,c. AIBz-type derivative structures generated by cyclic translation of blocks of AIBz-type columns. 
The projections of the unit cells (all having the same c value) on the x,y plane are shown. 
a) hP22X!e,Ni2Si, structure (a= 1211.2 pm, c=432.3 pm). 
b) hP40-=Ce,Ni2Si, structure (a= 1612.0 pm, c=430.9 pm). 
c) hP64-=Pr,,Ni,Si1, structure (a= 1988.1 pm, c=425.5 pm) 
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Fig. 36d. AlB,-type derivative structures generated by cyclic translation of blocks of AIB,-type columns. The 
projections of the unit cells (all having the same c value) on the x,y plane are shown. 
d) hP22-Ce6Ni,Si, structure (compare with a)): the arrangement of the building blocks around the z-axis (6, 

symmetry axis) is shown. 
Black circles represent the rare earth atoms (Ce or Pr), open circles Si (and Si+Ni); small circles are atoms at 
level 4, large circles at level 8. Double circles (at cell origin) represent Ni atoms at level 0 and at level ). 

6.5.8. Structural type: hP9-Fe2P 
Hexagonal, space group P&m, No. 189. 
Atomic positions: 
1 P iii b) O,O,i 

3 Fe in f) x,O,O; O,x,O; - x,- x,O; 
3 Fe in g) x,O,i; O,X,~; - x,- x,$; 
For the prototype itself, a =  586.5 pm, c = 345.6 pm, c/a = 0.589 and x (f) = 0.256 and 

In the F%P type structure there are 4 different groups of equipoints. The distribution of 
P and Fe atoms in different groups of positions is reported. A number of isostructural binary 
compounds are known. To the same structure, however, ternary (or even more complex) 
phases may be related if different atomic species are distributed in the different sites. 

This structure can be considered as an example of more complex structures built up 
by linked triangular prisms of Fe-atoms. 

Several ordered ternary phases have structures related to the Fe,P type. 

2 p c> $ 2  0. 2 . 1  0. 9 3 ,  9 333, 9 

x (g) = 0.594. 

6.5.9. Structural types: tI8-NbAs, t18-AgT1Te2 and tI10-BaAl, (ThCr,Si2) 
The three structural types tI8-NbAs, tI8-AgTlTe2 and tI10-BaAl, (with its ordered 

ternary variants such as the t110-ThCr2Si,) belong to a group of interrelated structures. 

References: p.  363. 
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2 4 [  a) NiAs-type 
N 

I *  I+  

1 2 d / d h  

N 2 L [  b) NiAs-type 

1 2 d / d h  
Fig. 37a,b. Distances and coordinations in the hP4-NiAs and hP6-C!aIn2 types structures. 
a) hP4-NA type structure. Coordination around Ni: 

(+) Ni-As; (*) Ni-Ni. 
b) hP4-NiAs type structure. Coordination around As: 

(+) As-Ni; (*) As-As. 

All these structures contain among their building parts layers of (metal atoms) triangular 
prisms with specific distributions of the (non-metal) atoms centering the prisms 
(PEARSON [1972]). The prisms are parallel to the basal planes of t.he tetragonal unit cells. 

Features of the hP2-WC type structure (characterized by an array of trigonal prisms 
alternatively centered by C-atoms) are, therefore, present in the aforementioned struc- 
tures. (In the hP2-WC structure, of course, the prism axes are lying in the e-direction of 
the hexagonal cell.) 

Another convenient description of these group of structures may be in term of 44 net 
layer stacking. The corresponding square net symbols for the 8-layers stacks are the 
following ones: 
tIS-NbAs: 
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. c )  CaIn,-type 

. 

N "[ d) Caln,-type 

8 1 * * I* 

1 1.2 1.4 1.6 1.8 2 d/d, 
Fig. 37c,d. Distances and coordinations in the hP4-NiAs and hP6-CaIn2 types structures. 
c) hP6-CaIn2 type structure. Coordination around Ca: 

(+) Ca-In; (*) Ca-Ca; 
d) hP6-CaIn2 type structure. Coordination around In: 

(+) In*, (*): In-In. 

Structure type: tl'8-NbAs 
Body-centered tetragonal, space group I4,md, No. 109. 
4 Nb in a(1): O,O,z; (I,$,+ +z; $,;,i +z; 3,0,$ +z; 
4 As in a(2): O,O,z; O,&$ + z; &,&,$ + z; f,O,+ + z; 
For the prototype itself a=345.2 pm, c=1168 pm, c/a=3.384, z(Nb) =0, z(As)=0.416. 

Structural type: tI8-Ag TlTe, 
Body-centered tetragonal, space group I4m2, No. 119. 
2 TI in a): O,O,O,; ;,$,;; 

4 Te in e): O,O,z; O,O, - z; i,;,; + z; &&&z; 
For the prototype itself, a = 392 pm, c = 1522 pm, c/a = 3.883 and z(Te) = 0.369. 

Structural type: tIl&BaAl, ana' tI10-ThCrJi2 
The ThCr,Si, is one of the ordered ternary variant of the BaAl, type, frequently found in 
several ternary compounds. 

The two structures may be described by the following occupation of the same atomic 
positions in the space group I4/mmm (No. 139). 

2Aginc ) :  O ~ ~ - ? - O ~ .  ,2149 2 ,  9 4 9  

References: p ,  363. 
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in BaAl, in ThCr2Si2 
a) O,O,O; $,&+ 2 Ba 2 Th 
d) 0". ,294, 10'. 2 ,  94, 4 A1 4 Cr 

e) O,O,z; O,O, - z; 4 A1 4 Si 

For the prototypes themselves: 
BaAl,, a =453.9 pm, c =  1116 pm, c/a=2.459 , z=O.38 
ThCr2Si2: a = 404.3 pm, c = 1057.7 pm, c/a = 2.616, z = 0.37, 
The unit cell is presented in fig. 38. 

Normalized interatomic distances and numbers of equidistant neighbours are reported 
in fig. 39 for the ternary ThCr2Si2 type. 
Many ternary alloys MeT2X2 (Me=Th, U, alkaline-earth, rare earth metal, etc., T=Mn, 
Cr, Pt family metal, X=element of the fifth, fourth and occasionally third main group) 
have been systematically prepared and investigated (PARTHE and CHABOT [1984], ROSSI 
et al. [ 19791). A few hundreds of them resulted in the ThCr2Si2 (or other A14Ba deriva- 
tives) structure. The peculiar superconductivity and magnetic properties of these materials 
have been reported. The ThCr2Si2 type structure, can be described as formed by T2X2 
layers interspersed with Me layers. The bonding between Me and T2X2 layers has been 
considered as largely ionic. In the T2X2 layers T-X (covalent) and some T-T bonding 
have to be considered. A detailed discussion of this structure and of the bonding involved 
has been reported by HOFFMANN [1987]. 

In the specific case of the RET2X2 phases (RE = rare earth metal) the data concerning 

10'. 0". 

_ _ -  1 1  1 +z.II.L-z. 

51 9 4 9  92-49 

29292 9 29292 3 

Th 0 
Fig. 38. Unit cell of the t110-ThCr2Si2 type structure (a derivative structure of the t110-BaA14 type). 
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b) ThCr2Si2-type 
16 

N 

i9 + - 
+ 0 * *  + * 

o *  * 0 

16 1 C )  ThCr2Si2-type 

Fig. 39. Distances and coordinations in the tIlO-ThCr,Si, type structure. 
a) Coordination around Th: 

b) Coordination around Cr: 

c) Coordination around Si: 

(+) Th-Si; (*) Tn-m, (0) Th-Cr; 

(c) Cr-Si; (*) Cr-Cr; (0) Cr-Th. 

(+) Si-Cr; (*) Si-Si; (0) Si-Th. 

ten series (T=Mn, Fe, Co, Ni, Cu; X=Si, Ge) have been analysed by PEARSON 11985aI. 
It has been observed that the cell dimensions are generally controlled by RE-X contacts. 
In the case of M:n, however, the RE-Mn contact has to be assumed to control the cell 
dimensions (see sec. 7.2.5.). 

Magnetic phase transition in RET2X, phases have been described by SZYTULA [1992]. 

References: p.  363. 
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Structural distortions in some groups of RET,X, phases (REI\Sn,), leading to less 
symmetric cells, have been reported by LATROCHE et al. [ 19921. 

An interesting compound belonging to the RET,X, family is EuCo,P,. In a neutron 
diffraction investigation of this phase carried out by REEHurs et al. [ 19921 the positional 
(nuclear) and the magnetic structures were determined. The ordering of the magnetic 
moments of the Eu-atoms and the relation (commensurability) between this ordering and 
that of the atomic positions were studied (see sec. 4.4.). 

6.5.10. Structural types: tI12-aThSi2 and tI12-LaPtSi 

The aThSi, type structure, and its lattice-equivalent ternary LaPtSi type derivative 
can be considered, filled up t18-NbAs type derivative. These structures can be described 
in terms of layers of (metal atoms) triangular prisms parallel to the basal planes of the 
tetragonal cells, the prism axes in one layer being rotated 90" relative to those of the 
layers above and below. 

In the NbAs type structure the As atoms only center alternate Nb prisms. In the 
CwThSi, type structure all the Th-prisms are centered by Si instead of only half of them 
(PEARSON [1972]). 

We may also compare the three structures in terms of 44 net layer stacking (along the 
c-direction of the tetragonal cells): See also fig. 40. 
tI8-NbAs: 
mi %?25 Nb& As,:6, NbC?75 As& 

~ %408 %217 nb325 si:33 %!42 n b 4 5  

Ld -408 sb217 L%?25 b 2 3 3  si142 w45 b : S 8  si:67 L%275 &!83 si19Z 

t112-cuThSi2: 

tI12-LaPtSi: 

Structural type: tIl2-aThSi, 
body-centered, tetragonal, space group 14,/amd, No. 141, 
4 Th in a): O,O,O; O,;,:; ;,;,$; ;,O,$; 
8 Si in e): O,O,z; O,;,: + z; ;,O,$-z; ;,$,$z; &,$,& + z; $,O% + z; O$$-z; O,O, - z. 
For the prototype itself a = 412.6 pm, c = 1434.6 pm, c/a = 3.477 and z(Si) = 0,416,. 
Structural type: tIl2-LaPtSi 
body-centered, tetragonal, space group I4,md, N. 109. 
4 La in a(1): O,O,z; O,$,+ +z; $,$,; +z; ),O$ +z; 
4 Pt in a(2): O,O,z; O,&i + z; ;,;,+ + z; f,o,: + z; 
4 Si in a(3): O,O,z; O,+$ +z; &+,+ +z; ),O,$ + z. 
For the prototype itself a = 424.90 pm, c = 1453.9 pm, c/a = 3.422 and z(La) = 0 (fixed 
conventionally), z(Pt) = 0.585 and z(Si) = 0.419. 
The unit cells of the two structures are presented in fig. 40. 
The ThSi, type structure according to PEARSON [ 19721 is primarily controlled by the Th- 
Si contacts, with the Si-Si contacts exerting a certain influence. Each Si atom has three 
close Si neighbours resulting in the three dimensionally connected framework schemati- 
cally shown in fig. 40d. This framework (and the Si-Si coordination) can be compared 

si,k7 n b 2 7 S  s&3 
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a)  b) 

Th Si2 LaPtSi NbAs 

0 Th La Nb 
@ s i  Pt vac 

0 Si Si AS 

Fig. 4Oa,b. Crystal structures of ThSi, and LaF’tSi (a) and NbAs (b) with the indication of the atoms which, in 
the three structures, occupy the different sites. (Notice the defective character of the NbAs type. structure in 
comparison with the ThSi, type.) In c) different sections of the LaF’tSi structure unit cell are presented with the 
indication of the heights along the z-direction and of the codes used for the different atomic position in a 
square net (compare with fig. 11). In the NbAs structure, the sections at z=0.08, 0.33, 0.58 and 0.83 are not 
occupied by any atoms. The dotted lines in a) show a part of the three-connected framework of Si (or Pt,Si) 
atoms. A larger portion of the framework is presented in d). 

with the planar graphite hexagonal nets and therefore with, for instance, the hP3-A1B2 
type structure (and its ordered variants). In the case of ThSi,, however, one vertex of 
each hexagon is always missing and we have parallel sets of planar chains interconnected 
to similar perpendicular sets. 

It may be interesting to mention that the characteristic structure of this network 
described as “hinged’ network should have the peculiar feature that the entire framework 
could undergo reorganisation by a nearly barrierless twisting type motion. According to 

References: p .  363. 
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BAUGHMAN and GALVAO [1993] and MOORE [1993], unusual mechanical and the& 
properties may be predicted for substances having all their atoms arranged in such a 
framework. These special properties, therefore, may be envisaged for- hypothetical 
compounds such as polyacetylene, polydiacetylene, polyphenylene, (BN), phases, etc. and 
perhaps for substances containing the hinged network as a part of their structure 
(“cmwded” hinged network crystals) such as ThSi, compounds. 

Finally considering the AB, and the aThSi, type structures we may notice that the similarity 
of their bonding arrangements may be further confirmed by the existence of the AlB, structure 
also for a different form of ThSi, (p form, high temperature form) and (as a defective 
structure) for = Th,Si,. Following the description presented by BAUGHMAN and GALVAO 
[1993]) the AlB, type structure could be called a “crowded” graphitic network structure. 
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6.6. Tetrahedrally close-packed, Frank-&per structures, Laves phases, 
Samson phases 

6.6.1. General remarks 
A number of structures of several important intermetallic phases can be classified as 

tetrahedrally close-packed structures. As an introduction to this subject we may remember, 
according to SHOEMAKER and SHOEMAKER [1969] that in packing spheres of equal sizes the 
best space filling is obtained in the cubic or hexagonal close-packed structures (or in their 
variants). In those arrangements there are tetrahedral and octahedral holes (see the comments 
on this point reported in the description of the C F M U  type structure in sec. 6.2.2). The local 
mean atomic density (the average space filling) is somewhat higher at the tetrahedral holes 
than in the larger octahedral ones, A more compact arrangement might, therefore, be obtained 
if it were be possible to have only tetrahedral interstices. It is, however, impossible tofill 
space with regular tetrahedra throughout. By introducing some variability in the sphere 
dimensions it is possible to obtain packing containing only tetrahedral holes. The tetrahedra 
are now no longer regular: the ratio of the longest tetrahedron edge to the shortest, however, 
needs not exceed about 9 in a given structure. The corresponding crystal structure can be 
considered to be obtained from the space filling of these tetrahedra (which share faces, edges 
and vertices). In structures containing atoms of approximately the same size and within the 
aforementioned limits of edge-length ratio, the sharing of a given tetrahedron edge (i.e. an 
interatomic link ligand) either among 5 or 6 tetrahedra has to be considered the most favored 
situation (according to the systematic analysis of these structures carried out by FRANK and 
KASPER [1958, 19591). On the assumption that only 5 or 6 tetrahedra may share a given edge 
the number of tetrahedra that share a given vertex is limited to the values 12,14, 15 and 16. 
The 12 (or 14, 15, 16) tetrahedra sharing a given vertex form, around this point, a 
coordination polyhedron with triangular faces. The radii of this polyhedron are the edges 
shared among 5 or 6 component tetrahedra and connect the central atom with the polyhedron 
vertices, five-fold or six-fold vertices, that is vertices in which 5 or 6 faces meet. 

The four possible coordination polyhedra are shown in fig. 41 and correspond to the 
following properties: 
coordination 12 (regular, or approximately regular, icosahedron): 12 vertices (1 2 five-fold 

coordination 14: 14 vertices (12 five-fold and 2 six-fold ) and 24 faces. 
coordination 15 15 vertices (12 five-fold and 3 six-fold) and 26 faces. 
coordination 16 16 vertices (12 five-fold and 4 six-fold) and 28 faces. 
(For symbols used in the coding of the vertex-characteristics see sec. 7.2.7). 
Several structures {Frank-Kasper stnrctures) can be considered in which all atoms have 
either 12 (icosahedral), 14, 15 or 16 coordinations. These can be described as resulting 
from the polyhedra presented in fig. 41. These polyhedra interpenetrate each other so that 
every vertex atom is again the center of another polyhedron. All structures in this family 
contain icosahedra and at least one other coordination type. 

Frank and Kasper demonstrated that structures formed by the interpenetration of the 
four polyhedra contain planar or approximately planar layers of atoms. (Primaly layers 
made up by tessellation of triangles with hexagons and/or pentagons were considered, 

vertices) and 20 faces. 
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CN 15 

CN 16 

a) b) 

Ch. 4, $ 6  

Fig. 41. The coordination polyhedra of the Frank-Kasper structures, are shown in two different styles. 
a) 

b) 

the relative positions of the coordinating atoms are shown (the central atoms are not reported). (For the 
coordination numbers (CN) 12 and 14, one atom of the coordination shell is not visible). 
the corresponding triangulated polyhedra are shown. Vertices in which 5 or 6 triangles meet are easily 
recognizable. 
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and intervening secondary layers of triangles and/or squares). For a classification and 
coding of the nets and of their stacking see PEARSON [1972] and also SHOEMAKER and 
SHOEMAKER [1969] or FRANK and KASPER [1958, 19591. 

A short summary of structural types pertaining to this family is reported in table 6; 
for a few of them, some details or comments are reported in the following. 

6.6.2. cpS-Cr,Si type structure 
This structure is also called W30 or p-W type (it was previously believed to be a W 

modification instead of an oxide) or A15 type (see section 3.4). 
Cubic, space group P m h ,  No. 223. 
Atomic positions: 
2 Si in a) O,O,O; +,$,&; 

This structure type is observed for many phases formed in the composition ratio 3:l by 
several transition metals with elements from the 111, IV, V main groups (or with Pt 
metals or Au). Phases having this structural type are, for instance, Mo,AI, Nb,Al, V3A1, 
Ta3Au, Ti3Au, cr3Pt, Cr30s, cr6A1si, V6A1Sn, Nb6GaGe, etc. A number Of compounds 
with this structure have been found to have significantly high superconducting transition 
temperature, T, (among the highest known, before the discovery of the families of super- 
conducting complex oxides, such as Ba2YCu30,, or = Bi,(Ca,Sr),Cu,O,, etc.). 
Examples of superconducting, Cr3Si type, phases are: 
Nb3Ge (T,=23.1! K, sputtered films), Nb3Ga (Tc=20.7 K, bulk), Nb,Sn (T,= 18.1 K), 
V3Si (T, = 16.8 IC), V3Ga (T, = 14.1 K), Nb3Au (T, = 11.5 K), Nb3Pt (T, = 9.2 IC), Mo,Ir 
(T, = 8.8 K), etc. 
The Cr,Si type structure does not always remain stable in these materials down to 0 K, 
yet the change in crystal structure, when it occurs (for instance, with a tetragonal 
structure formed at low temperature as a result of a martensitic transformation) seems not 
correlated with T,. Solid solutions in general have lower T, values than the stoichiometric 
compounds. (Other superconducting intermetallic phases belonging to different structural 
types are, for instance, LuRh,B, (T,= 11.7 K, YPd,B3C, (T,=23 K), quaternary 
lanthanum nickel. boro-nitrides, etc. See CAVA et al. [1994a, 1994b1). 

6Crin~)$O.I .rO1-. '1O.I2.0.Olr.012 9 921 47 92, 2949 3 2949 9 ,2949 ,294. 

6.6.3. u phase type structure, (tP3O-aCr-Fe type) 
In the space group P4Jmnm, No. 136, the two atomic species, Cr and Fe, are 

distributed in several sites with a nearly random occupation. Different atom distributions 
have been proposed in the literature (also owing to different preparation methods and 
heat treatments). The following distribution is one of those reported in DAAMS et aZ. 
[1991]: two atoms in sites a) (with a 12% probability for Cr and 88% for Fe), 4 atoms 
(75% Cr, 25% Fe) in sites f), 8 atoms (62% Cr, 38% Fe) in a set i) of sites, 8 atoms 
(16% Cr, 84% Fe) in another set i) and 8 atoms (66% Cr, 34% Fe) in j). The structure 
can be considered as made up of primary hexagon-triangle layers containing 3636 + 3'6' 
and 6, nodes (in a 3:2:1 ratio) at height = 0 and 3 separated (at height = and %) by 
secondary 3'434 layers (that is layers, in which every node is surrounded, in order, by 2 
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Table 6 
Examples of tetrahedral closepacked structures. 

structural % of atoms in the center 
types values) for the reported of a polyhedron with CN 

Unit cell dimensions (rounded 

prototype [pm] 12 14 15 16 

cp&cr,Si a=  456 25 75 
(also called W30 
or B-W type or 
A15 type phase). 

tP3OaCr,Fe,* a=  880 
u phases C =  456 

hR39- w&-/ a= 476 
CL P k  c=2562 

a= 543 
c =  539 

oP52 = Nbai,&l,,* a=  930 
M phases b= 493 

c = 1627 

oP56=Mo2,Cr~i,* a=1698 
P phases b= 475 

c= 907 

hR159 = Mo,,Cr,,Co,,* a=  1090 
R phases c=1934 

33 53 13 

55 15 15 15 

43 28 28 

55 15 15 15 

43 36 14 7 

51 23 11 15 

cI162Mgl I&,,&* a=1416 61 7 7 25 

Laves Phases: 
cF24-chMg a= 704 

hPlZMgZn, a=  522 
c= 856 

hP24-Ni2Mg a= 482 
c=1583 

67 33 

67 33 

67 33 

* For these phases the reported formulae generally correspond to an average composition within a solid solution 
field. This also in relation with a (partially) disordered occupation of the different sites. 

triangles, 1 square, 1 triangle and 1 square). 
As pointed out by Pearson (by studying the near-neighbours diagram: see sec. 7.2.5.a) 

the a-phase structure is a good example of a structure which is controlled by the 
coordination factor: all the known phases are closely grouped around the intersection of 
lines corresponding to high coordination numbers. (The most favorable radius ratio for 
the component atoms is included between 1.0 and 1.1.) It is also possible that the 
electron concentration plays some role in controlling the phase stability. The different 
phases are grouped in the range 6.2 to 7.5 electrons (s, p and d) per atoms. 
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6.6.4. Laves phases: cF24-CuzMg (and cF24-Cu4MgSn and cF24-AuBe$, 
hP12-MgZn, (and hPl%UzOsA13 ) and hP24-NizMg types 

General remarks 
The Laves phases form a homeotect structure type set (a family of polytypic struc- 

tures). In all of them (described in terms of a hexagonal cell) three closely spaced 36 nets 
of atoms are followed (in the z direction of the same cell) by a 3636 net (see figs. 8 and 
10). The 36 nets are stacked on the same site as the kagom6 3636 nets which they 
surround (for instance: p-BAC-y-CAB in the “two slabs” MgZn, type (h) structure, 
/3-BAC-y-CBA-a-ACB in the “three slabs” MgCu, type (c) .structure, a-ABC-y- 
CI3A-a-ACB-P-BCA in the “four slabs (hc)” NizMg type structure, etc.: see sec. 4.3. on 
homeotect structure type). The Laves phases, as Frank-Kasper structures, (see table 6), 
can also be described by alternative stacking of pentagon-triangle main layers of atoms 
and secondary triangular layers (parallel to (110) planes of the hexagonal cell). The 
importance of the geometrical factor in determining the stability of these phases has been 
pointed out (PEILRSON [1972]). The role of the electron concentration in controlling the 
differential stability of the different Laves phase types has been also observed. By 
studying, for instance, solid solutions of Cu,Mg and MgZn, with Ag, AI, Si (LAVES and 
W m  [1936], KLEE and WITTE [1954]) it was observed that for an average VEC 
(valence electron concentration) between 1.3 and 1.8 e/a (electrons per atom) the Cu,Mg 
structure is generally formed, for VEC values in the range from = 1.8 to 2.2 e/a 
generally the MgZn, type structure is obtained. The Ni,Mg type can be observed for 
intermediate values of VEC between 1.8 and 2.0. 

It may be useful, however, to mention that depending, for instance, on the tempera- 
ture different Lives type structures may be observed in the same chemical system. An 
example may be: the Ti-Cr system for which 3 different structures have been described 
a-TiCr, (MgCu;, type, homogeneous in the composition range = 63-65 at% Cr), stable 
from room temperature up to = 122OOC; p-TiCr, (MgZn, type, homogeneous from 64 to 
66 at% Cr), high temperature phase stable from 80OOC up to 127OOC; and y-TiCr, 
(Ni2Mg type, -65-66 at% Cr), high temperature phase stable from 1270°C up to the 
melting point (137OOC). Notice that the cu and P forms, which can coexist in the 
temperature range from 800°C up to 122OOC have slightly different compositions. 

Many (binary and complex solid solutions) Laves phases are known. Typically Laves 
compounds XM, are formed in several systems of X metals such as alkaline-earths, rare 
earths, actinides, Ti, Zr, Hf, etc, with M=Al, Mg, VIII group metals, etc. 

Before passing to a detailed description of the principal Laves types, a few more remarks 
can be made concerning the Luvespolytypes. An interesting example may be given by the 
Li-Mg-Zn alloyis (MELNIK [1974], MALLIK [1987]). This system is one of the richest in the 
Laves phases among the known ternary systems. It contains, besides MgZn,, eight ternary 
compounds L, (the index n denotes the number of slabs) in the following sequence: 
b: MgZn, (hP), a =  521.4 pm; c = 856.3 pm (= 2*428.1) 
L,: Mg(Lio.o+hl.93) (W), a =  521.3 pm; c = 3422 pm (E 8 *427.8) 
L14: Mg(Lio,,,Sh,.,9) (hP), a =  521.5 pm; c = 5989 pm (= 14*427.8) 
I+: Mg(Li,,2$5nl.80) (hR), a = 522 pm; c = 3841 pm (= 9 *426.8) 
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Llo: Mg(Lb.uZnl,n) (hP), a=522.3 pm; c=4278 pm (E  10*427.8) 
L4: Mg(Li,2Szn,75) (hP), a = 522.7 pm; c = 1709 pm (E 4 *427.3) 
L’4: Mg(Lb,&n,,) (hP), a =  1046 pm; c =  1705 pm (=4*426.3) 
L’3: Mg(Lii.&n,J (hR), a= 1051 pm; c =  1285 pm (=3*428.3) 
b: Mg(Li,,,7Zn,,) (cF), a = 522.6 pm; c = 1290 pm ( E  3 *430) 
Notice that the structures with n = 3 and 4 exist not only in an ordinary form L4, Ni,Mg, 
and &, MgCu, type cubic, (a=744.8 pm, here described in terms of an equivalent set of 
hexagonal axes) but also with doubled unit cell edge a (Ni2Mg type and MgCu, type 
superstructures L’4 and L’&. 

Structural type: cF24-Cuflg and derivative structures 
Face-centered cubic cF24-Cu2Mg, space group Fdjm, No. 227. 
Atomic positions: 
8 Mg in a) O,O,O; 011. r01. 110. 313. 3 3  1 -  111- 1 3 3 .  92721 29 9 2 9  2929 9 4,4949 4,459 494¶4¶ 4r4*49 
16 Cu in d) _ _ _  5 5 5  -__. 5 1 1  - 1 5 1  _ _ _  1 1 5  _ _ _  3 7 1  _ _ _  3 3 5  7 7 5  7 3 1  

Coordination formula: 333 [Mg4,4][Cu,6]1w6 
For the prototype itself, Cu2Mg, a=704 pm. 
Fig. 42 shows the MgCu, packing spheres structure. 
Normalized interatomic distances and numbers of equidistant neighbours are shown in 

Ordered variants of this type of structure are the Cu,MgSn type structure and the AuBe, 
type structure. The packing spheres structure of AuBe, is shown in fig. 44. The atomic 
positions of the two structures correspond to the following occupation of the same 
equipoints in the space group F43m (No. 216). 

a) O,O,O; O,$,+; h,o,+; h,+,O 4 Sn 4 Au 
c) ill. 34-49 133. 4,494, 4 Mg 4 Be 

e) x,x,x; -x,-x,x; -x,x,-x; x,-x,-x 16 Cu 16 Be 

7 1 3  7 5 7  3 1 1  3 5 3 1 3 7  1 7 1  
898,s; 8,8989 89K8,K; 8,898; 89898; 8?898; 8,898; X181K; 8,898; 8,898; 8,898; 898.8; X38,g; 89x98; 

_-- 5 3 3. _ _ -  5 7 7. 
89898- 898*89 

fig. 43. 

in Cu4MgSn in AuBe, 

3 1 3 . 3 3 1 .  4’4743 4*4*4, 
_ _ _  - _ _  

x,;+x,ax; -x,;-x,;+x; -x,;+x,;-x; x 32- 1 x 92- 1 x; 
i+x,x,+x; kx,-x,+x; &x,x,&x; $+x,-x,&x; 
@x,++x,x; &-x,&-x,x; $-x,++x,-x; +x,gx,-x. 
(x E 0.625 = 8) 

We can see that the 8-atom equipoint of the Cu2Mg type structure has been subdivided 
into two different, ordered, 4-point subsets in the two derivative structures. 

Layers stacking symbols, triangular, kagomk (T,K) nets: 
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Fig. 42. cF24-MgCu2 type structure (1 unit cell is shown). 

Structural type: hP12-MgZn2 
Hexagonal, space group P6Jmmc, N. 194, 
Atomic positions: 
2 Zn in a) O,O,O; O,O$; 

6 Zn in h) x,2x,i; -2x,- xf; x,- x,:; - x,-2x,$; 2x,x,%; - x,x 94’ 3* 
For the prototype itself, MgZn,, a=522 pm, c=856 pm, c/a= 1.640, zMg=0.O62 and 
X, = 0.830. 
Coordination formula: 333 [Mg4,4] [Zn,,] 12/6 

Layer stacking symbols, triangular, kagomC (T,K) nets: 

Fig. 45 shows the packing spheres structure for the MgZn, compound. 
A ternary ordered variant of this structure corresponds to three different atomic species 
in the three equipoint set. An example may be U20sA13 (2 Os in a), 4 U in f) and 6 A1 
in h)). 
Structural type: hP24-Nif lg  
Hexagonal, space group P6,/mmc, No. 194. 
Atomic positions: 
4 Mg in e) O,O,z; O,O,i + z; O,O, - z; O,O,i - z; 

4 Mg in f) i 2 z* 2 11 +z* 21 - z* 12 1 - z- 93, 9 3,332 9 3 9 3 9  9 3,392 ? 

Znt MgO% z d 2 5  MgO% z%:O M&C56 z%?75 MgO?W 

4 M g i n f ) f 2 ~ . 2 1 1 + z + z ; ~ , i , - z . 1 2 1 - ~ .  9 3 9  9 3’3’2 39392 7 

4 N i i n f ) 1 2 ~ . 2 1 1 + ~ . 2 1  1 2 1  
393, 9 3,392 9 393,- z; T,J,T - z; 

6 Ni in g) $,O,O; O,$,O; i,$,% $,O,$; Oh,;; 4,i.i; 
6 Ni in h) x,2x,i; - 2x, - x,$; x, - x,$; - x, - 2x,$; 2x,x,:; - x,x,i; 
For the prototype itself, Ni,Mg, a = 482 pm, c = 1583 pm, c/a = 3.284 and z (eMg) = 0.094, 
z (fMg)=0.8442, z (fNi)=0.1251, and x (hNi)=0.1643. 
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Fig. 43. Distances and coordinations in the cF24-MgCU, type structure. 
a) Coordination around Mg: 

b) coordination around Cu: 
(+) Mg-CU; (*) Mg-Mg. 

(*) Cu-cU; (+) CU-Mg. 

The structure can be described by the following layer stacking sequence triangular, 
hgom6 (T,K) nets: 

Coordination formula: 
323 l-Mg4/41 [Ni6/6112/6 

6.6.5. Structures based on frameworks of fused polyhedra, Samson phases 
In addition to the Franl-Kasper phases, other structures may be considered in which 

the same four coordination polyhedra prevail although some regularity is lost. Many of 
these structures and, in particular the giant cell structures studied by SAMSON [1969] can 
be described as based on frameworks of fused polyhedra rather than the full interpen- 
etrating polyhedra. Among the most important polyhedra we may mention the truncated 
tetrahedron: it is shown in fig. 46. It can be related to the CN 16 polyhedron (Friauf 
polyhedron) of fig. 41. The two polyhedra can be transformed into each other by 
removing (adding) the 4 six-fold vertices of the CN 16 polyhedron (corresponding to 
positions out from the center of each of the 4 hexagons of the truncated tetrahedron). 
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Fig. 44. Unit cell of the cF24-AuBe5 type structure. (Compare with the cF24-MgCu2 type structure, fig. 42.) 

Several other coordination polyhedra occur in giant cell structures in addition to the 
Frank-Kasper polyhedra and to the truncated tetrahedron. (The most important are 
polyhedra corresponding to CN between 11 and 16). 

The following phases represent a few examples of structures to which the 
aforementioned considerations specially apply: 
cI58-a-Mn (a = 891.4 pm) type structure (and its binary variants, c158-Ti,Rez4 or X-phase 
and cIS8-y-Mg,,Al,,), cFl124-Cu4Cd3 type (a= 2587.1 pm); cF1192-NaCd, type 
(a=3056 pm); cF1832-MgzA1, (a=2823.9 pm), etc. (In the giant cell structures partial 
disorder and/or partial occupancy in some atomic positions have been generally reported, 
for cF1124-Cu4Cd3, for instance, the structure was described as corresponding to the 
occupation, in several Wyckoff positions, of 388 atomic sites by Cd-atoms, 528 by 
Cu-atoms and of 208 by Cu- and Cd-atoms in substitutional disorder.) 

7. On some regularities in the intermetallic compound formation and 
structures 

7.1. Preliminary remarks 

As already mentioned in the previous sections, several thousands of binary, ternary 
and quaternary intermetallic phases have been identified and their structures determined. 
In a comprehensive compilation such as that by VILLARS and CALVERT about 2200 (in 
the first edition, [1985]) or about 2700 (second edition, [1991]) different structural types 
have been described. The specific data concerning about 17500 different intermetallic 
phases (pertaining to the aforementioned structural types) have been reported in the lst 
edition and 26000 in the 2"d one. 

As an introductory remark, a little statistical information about the phase and 
structure type distributions may be interesting. 
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Zn 

Fig. 45. Unit cell of the hP12-MgZn2 type structure. 

For this purpose, we may consider the group of phases described in the compilation by 
VILLARS and CALVERT [1991]. This, in fact may be considered a fairly representative sample 
even if the number of new intermetallic phases (and structural types) is constantly increasing. 

As a first observation we may notice that the number of phases pertaining to each 
structural type is not at all constant. Table 7 shows that a very high number of phases 
crystallize in a few more common structure types. About 25% of the known intermetallic 
phases belong to the first 12 more common structure types and about 50% of the phases 
belong to 44 types (that is less than 2% of the known structural types). 

This kind of distribution seems to be significant even if table 7 contains only an 
approximate list. (Some changes may actually be obtained by a more accurate attribution 
of different phases to a certain structural type or to its degenerate or derivative variants). 

The distribution of the phases among the different types is summarized in fig. 47, 
where (in a double logaritmic scale) the number of phases belonging to each structural 
type is plotted against the rank order of the type itself. According to a suggestion of the 
authors of this chapter, in the same figure a curve is presented which has been computed 
by fitting the reported data by means of eq. (1): 

N, = A(r + ro)-B 

where N, is the number of phases corresponding to the structure type having rank r (A, 
B and r,, are empirical constants whose values have been determined by the fitting (see 
also FERRO et al. 119951). 

It may be interesting to point out that the aforementioned equation is that suggested by 
MANDELBROT [1951] as a generalization of ZIPF’S law [1949] (which corresponds to the 
special case of r,,= 0 and B = 1). This law, in linguistics, relates for a given text the recurrence 
frequency (NJ of a word to its rank (recurrence order). The formula had been deduced to 
define a cost function for the transmission of linguistic information and minimizing the 
average cost. (The word “cost” was considered to be related to the complexity of the word 
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Fig. 46. Truncated polyhedron (12 vertices) related, by the addition of 4 more coordinate atoms out from the 
centers of the hexagonal faces to the Friauf polyhedron (CN 16), reported in fig. 41. 

itself). (Eq. (€) may be considered a special case of a general “Rank Size Rule”.) 
We note, moreover, the larger numbers of phases having highly symmetric structures 

(cubic, hexagonal or tetragonal structures). The most frequent orthorhombic and 
monoclinic structures are the 6th and the 58th respectively in a general list such as 
reported in table 7. This may be partially related to a certain greater ease in solving 
highly symmetric structures but probably also contains an indication of a stability 
criterion. The Laves’ stability principles (presented in sec. 7.2.3.) and, specially, the 
“symmetry principle” may be mentioned. 

Considering ,then the phase composition as a significant parameter, we obtain the 
histogram shown in fig. 48 for the distribution of the structural types and of the intermetallic 
phases (as obtained from the 2nd edition of Villars-calvert) according to the stoichiometry 
of binarypmtotypes (that is, for instance, the binary and ternary Laves phases, the AIB,, 
CaIn,, etc., type phases are all included in the number reported for the 66 to 67.99 
stoichiometry range, even if the real stoichiometry of the specific phase is different). We may 
note the overall prevalence of phases and (to a certain extent) of structural types, which, at 
least ideally, may- be related to simple (1:2, 1:1, 1:3, 2:3, etc.) stoichiometric ratios. 

The restriction of the phases concentration to a limited number of stoichiometric ratios is 
also valid (and, perhaps, more evident) for the ternary phases. We may notice in fig. 49 
(adapted from a paper by RODGERS and VILLARS [ 19931) that seven stoichiometric ratios 
(l : l : l ,  2:1:1, 3:1:1, 4:1:1, 2:2:1, 3:2:1, 4:2:1) are the most prevalent. According to 
Rodgers and Villars they represent over 80% of all ternary known compounds. 

We have, ho’wever, to remark that, considering only selected groups of (binary or 
ternary) alloys, quite different stoichiometric ratios may be predominant. As an example 
we may mention the binary alloys formed by an element such as Ca, Sr, Ba, rare earth 
metals, actinides, etc., with Be, Zn, Cd, Hg and, to a certain extent, Mg. Many com- 
pounds are generally formed in these alloys. Among them, phases having very high 
stoichiometric ratios are frequently observed, such as, for instance: CaBe,,, LaBe,,, 
BaZn,,, BaCd,,, Bag , ,  BaHg,,, Bag, , ,  WZn,,, LaZn,,, h c d , , ,  LaCd,,, ThZZn,,, 
Pu,Zn,,, Ce,Mg,,,, La,Mg,,, LaMg,,, etc. 

73. On some factors which control the structure of intermetallic phases 

A systematic: description of bond characterization from thermodynamic properties in 
intermetallic compounds (and considerations concerning the stability of intermetallic 
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Fig. 47c. Distribution of the inkmetallic phases among the structural types. In a double logarithmic diagram 
the phase numbers (expressed as ratios to the total number) are plotted versus the rank order of the structural 
type. The continuous line corresponds to the Mandelbrot’s equation. 
a) Number of pha!;es belonging to the overall different structural types. (Compare with Table 6). 
b) Number of pha!;es belonging to the cubic structural types. 
c) Number of phases belonging to the hexagonal structural types. 

phases) has been reported by ELLNER and PREDEL [1994]. Some information about the 
computation of the enthalpy of formation of alloys according Miedema’s model will be given 
in sec. 8.5. On this subject we may mention the peculiar properties of alloys of extraordinary 
stability formed by elements such as Al, Ti, Zr, Hf with the transition metals Re, Ru, Os, 
Rh, Ir, Pd, Pt, characterized by very high formation heats and discussed by BREWER 
E1973, 19901 as example of generalized Lewis acid-base interactions in metallic systems. 

A general presentation and discussion of the origin of structure of crystalline solids 
and the structural stability of compounds and solid solutions have been given by Pettifor 
(see chapter 2 of this book). 

In this section and in the following one a brief sampling of some semiempirical useful 
correlations and, respecively, of methods ofpredicting phase (and structure) formation will 
be summarized. The search for regularities and criteria for the synthesis of new represen- 
tatives of particular structure types has been carried out by many authors. Several factors 
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Fig. 48. Distribution of binary intermetallic phases and structural types, according to the stoichiometry. 
a) Distribution of the structural types. 
b) Distribution of the intermetallic phases. 
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Fig. 49. Distribution of the known ternary intermetallic phases according to their stoichiometry. 
a) In a representative portion of a general composition triangle, the more common stoichiometries are shown. 

were recognized to be important in controlling the structural stability and some of them 
were used as coordinates for the preparation of “classiJication and prediction maps”, in 
which various compounds can be plotted and separated into different structure domains. 

Intermetallic phases, therefore, could be classified following the most important factor 
which controls their crystal structure (PEARSON [1972], WESTBROOK [1977], GIRGrS 
[1983], HAFNER [1989]). 

- Chemical bond factor, 
- Electrochemical factor, (electronegativity diference) 
- Energy band factor, electron concentration 
- Geometrical factor 
- Size factor 

According to PEARSON [1972], following factors may be evidenced: 
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Fig. 49. Distribution of the known ternary intermetallic phases according to their stoichiometry. 
b) For the same compositions shown in a), an indication is given of the number of phases. 

In the following paragraphs a few comments will be reported on this matter. Emphasis, 
however, will be given only to those aspects which are more directly related to a 
description of the “geometrical” characteristics of the phases. For the other questions 
reference should be made to other parts of this volume. 

For an introduction to the electronic structure of extended systems, see HOFFMANN 
[1987, 19881. 

7.2.1. Chemical bond factor and electrochemical factor 
A chemical bondfactor can be said to control the structure when interatomic distances 

(and as a consequence unit cell dimensions) can be said to be determined by a particular 
set of chemical bonds. Two different situations can be considered: bonds having high 
ionic characteristics (largely non-directional, the larger anions tend to form symmetrical 
coordination polyhedra subjected to the limitation related to the aniodcation atomic size 
ratio) or bonds having covalent character (the directional characteristic of which tend to 
determine the structural arrangement in the phase). 

To an increasing weight of the chemical bond factor (ionic and/or covalent bonding) 
will, of course, correspond, in the limit, the formation of valence compounds. According 
to PARTHE [1980b] a compound C,A, can be called a normal valence compound if the 
number of valence electrons of cations (ec) and anions (eA) correspond to the relation 
(normal valence compound rule): 

(2) me, = n(8 - eA)  
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Table 7 
Intermetallic phases: The most common structural types 

(from the data reported in VILLARS and CALVERT [1991]). 

Number of phases Relative Frequency 
structwal belonging to each type 
type Total Binary Ternary Specific Cumulative Rank order 

cFS-NaC1 
cF24-Cu2Mg 
tI10-BaAl, 
cF4-c~ 
hP12-Mgzn2 
oPlZCo,Si 
CP2-cSCI 
cP4-AuCu3 
hPWaCu, 
hP2-Mg 
cI2-w 
cF16-BiF3 
W F % P  
cI28-ThsP4 
hP3-AIBz 
cF8-ZnS 
cF56-1~gA1,O4 
t126-ThMn1, 
hP 16-Mn,Si3 

cP&cr3Si 
hP4-NiAs 
tP6-CuzSb 
cP5-CaTi03 
cF116-WMn2, 
oC8CrB 
tP68-BFe,4Nd, 
hR57-ThJn1, 
oP8-MnP 
oPl(i-Fe,C 
hP6-NiJn 
cP12-FeSZ 

hP38-Ni1,Th2 

hRlZNaCrS, 
tI16-FeCuS2 
cF12-AlLiSi 
cF124aFZ 
cP40-Rr,Rh4Sn, 
hR36-Be3h% 
oP8-FeB 

~ 4 - C e & ~ , S ,  

hP6-caIn2 

o I 1 2 - c ~  

hR45-Mo,Pbs8 
W5-&03 
tP2-AuCU 

863 
806 
723 
605 
580 
495 
461 
454 
405 
393 
382 
379 
375 
358 
327 
302 
30 1 
296 
290 
288 
260 
241 
227 
225 
202 
193 
185 
160 
156 
155 
154 
152 
149 
145 
145 
144 
139 
135 
133 
126 
122 
121 
115 
115 
112 

318 
243 

19 
520 
148 
95 

307 
266 
106 
362 
309 
39 
11 

117 
122 
40 
11 
38 

177 
0 

82 
101 
74 
3 

49 
120 

0 
36 
33 

101 
54 
50 
11 
62 
61 
9 
0 
1 

87 
0 

49 
73 
0 

22 
82 

545 
563 
704 
85 

432 
400 
154 
188 
299 
31 
73 

340 
364 
241 
205 
262 
290 
258 
113 
288 
178 
1411 
153 
222 
153 
73 

185 
124 
123 
54 

100 
102 
138 
83 
84 

135 
139 
134 
46 

126 
73 
48 

115 
93 
30 

0.0332 
0.0310 
0.0278 
0.0233 
0.0223 
0.0191 
0.0177 
0.0175 
0.0156 
0.0151 
0.0147 
0.0146 
0.0144 
0.0138 
0.0126 
0.0116 
0.0116 
0.0114 
0.0112 
0.0111 
0.0100 
0.0093 
0.0087 
0.0087 
0.0078 
0.0074 
0.0071 
0.0062 
0.0060 
0.0060 
0.0059 
0.0059 
0.0057 
0.0056 
0.0056 
0.0055 
0.0053 
0.0052 
0.0051 
0.0048 
0.0047 
0.0047 
0.0044 
0.0044 
0.0043 

0.0332 
0.0642 
0.0921 
0.1154 
0.1377 
0.1567 
0.1745 
0.1920 
0.2076 
0.2227 
0.2374 
0.2520 
0.2664 
0.2802 
0.2928 
0.3044 
0.3160 
0.3274 
0.3385 
0.3496 
0.3596 
0.3689 
0.3777 
0.3863 
0.3941 
0.4015 
0.4086 
0.4148 
0.4208 
0.4268 
0.4327 
0.4385 
0.4443 
0.4499 
0.4554 
0.4610 
0.4663 
0.4715 
0.4767 
0.48 15 
0.4862 
0.4909 
0.4953 
0.4997 
0.5040 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
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If we consider only the s and p block elements, the number of valence electrons of the 
elements correspond to their traditional group number) In this case (considering that no 
anions are formed from the elements of groups I, 11 and 111) following formulae can be 
deduced for the normal valence compounds (formed in binary systems with large 
electronegativity difference between elements): 
- 144 - 224 - 3443 - 135 - 2352 - 35 - 4354 
- 126 - 26 - 3263 - 462 - 5263 - 17 - 272 
- 373 - 474 - 575 - 67, 
(in these formulae each element is indicated by a number corresponding to its number of 
valence electrons; for instance: 
17 represent NaC1, KC1, etc, 3263 A1203, etc.) 

bonds between cations and anions we have (general valence compound rule): 
In the more general case where some electrons are also considered to be used for 

(3) 

In this formula, which can only be applied if all bonds are two-electron bonds and 
additional electrons remain inactive in non-bonding orbitals (or, in other words, if the 
compound is semiconductor and has not metallic properties) e,, is the average number 
of valence electrons per cation which remain with the cation either in non-bonding 
orbitals or (in polycationic valence compounds) in cation-cation bonds; similarly e, can 
be assumed to be the average number of anion-anion electron pair bonds per anion (in 
polyanionic valence compounds). 

In a more limited field than that of the previously considered general octet rule, it 
may be useful to mention the “tetrahedml structures” which form a subset of the general 
valence compounds. According to PARTHE [1963, 1964, 19911, if each atom in a 
structure is surrounded by 4 nearest neighbours at the comer of a tetrahedron, the 
structure is called “normal tetrahedral structure”. The general formula of this structure, 
for the compound C,A,,, is (normal tetrahedral structure): 

(4) 

(This may be considered a formulation of the so-called GRIMM-SOMMERFELD [ 19261 Rule). 

4& (all compositions, for instance, C, Ge, Sic) 
35 (BP, NSb, etc.), 26 (BeO, MgTe, ZnS), 17 (CuBr, AgI), 
326, 3,7, 252 (ZnP,, Z ~ S , ) ,  2372, 15, and 1263. 
(ternary or more complex combinations may be obtained by a convenient addition of 
different binary formulae; for instance: 
14,5, = (15, + 44): for instance CuGe2P, 
136, = ( 1263 + 3,6)/2: CuAlS,, CuInTe,,, etc. 
1,246, = ( 126, + 26 +4): for instance C%FeSnS4 (Fen), etc.) 
The aforementioned rule may be extended to include the “defect tetrahedral structures” 
where some atoms have less than four neighbours (general tetrahedral structure): 

m(ec - ecc) = n(8 - e, - eM) 

(me, + neA)  = 4(m + n)  

For the same elements previously mentioned the possible combinations are: 
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(me,  + neA)  = 4(m + n) + ~ ~ ~ ~ ( m  + a )  

In this formula NNBo is the average number of non-bonding orbitals per atom. 

be represented. Examples of formulae of defect tetrahedral structures are: 
40374 (Si&, Sn14); 406, (GeS,); 360546, (Ga,As,Se,), 1,5,06, (CuSbS,); etc. 
Notice that the aforementioned compositional scheme is a necessary condition for 
building the tetrahedral structures, but not every compound that fulfills this condition is 
a tetrahedral compound. The influence of other parameters, such as the electronegativity 
difference, has been pointed out. By means of a diagram as shown in fig. 50, the 
separation of tetrahedral structures from other structures may be evidenced (MOSER and 

As a final comment to this point, we may mention that when one component in a 
binary alloy is very electropositive relative to the other, there is a strong tendency to 
form compounds of high stability in which valence rules are satisfied (PEARSON [ 19721). 
Such alloys are considered to show a strong electrochemical factor. 

By adding the symbol 0 (zero) to the described notation, vacant tetrahedral sites can 

W O N  [1959]). 

7.2.2. Energy band factor, electron concentration 
The properties of a solid on principle could be calculated on the basis of the states of 

the electrons in the crystal. The status of the understanding of the structures of the solids 
and indications on the technical and computational problems have been presented in other 
chapters. 

We may mention here that if the stable crystal structure may be described as 
controlled by the number of electrons per atoms, the phase is called an “electron 
compound)). An important class of electron compounds (generally showing rather wide 
homogeneity ranges) are the Hume-Rothery phases. 

These include several groups of isostructural phases, each group corresponding to a 
given value of the so-called valence electron concentration (VEC). Three categories of 
Hume-Rothery phases are generally considered: those corresponding to VEC values of 
3/2 (that is three valence electrons every two atoms), 21/13 and 7/4, respectively. 

VEC = 3/2, body centered cubic, (cI2-W type): CuZn, = Cu,Al, = Cu,Sn, etc. 
VEC pi: 3/2, complex cubic, (cP20-p Mn type): Cu,Si, Ag,Al, Au,Si, etc. 
VEC = 21/13, complex cubic, 52 atoms in the unit cell (or superstructures) 

Representatives of the Hume-Rothery phases are the following: 

(cP52: = Cu$J4, = CqGa,, Aga, ,  = Co,Z%,, etc.; cI52: = CusZn8, y-brass, = Ag,C$, 
Ag,Zn8, Ru3Belo, etc.; cFM8: Fe,,Znz9, etc.) 

VEC = 7/4, hexagonal close-packed, (hP2-Mg type or superstructures): = AgZn,, 
= Au,Ge, = Ag,Al,, etc. 

The VEC in all the aforementioned cases, for which approximate “ideal” formulae have been 
indicated, were calculated assuming the following “valence”: transition elements with non- 
filled d-shells: 0; Cu,Ag,Au: 1; Mg and Zn,Cd,Hg: 2; Al,Ga,In: 3; Si,Ge,Sn: 4; Sb: 5. 

The given ratios indicate ranges (which can even overlap). It has to be noted, 
moreover, that the number of electrons to be considered may be uncertain. The VEC 
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Fig. 50. Mooser-Pearson diagram separating AB compounds into covalent (0) and ionic (+) types after 
Hum-ROTHERY [1967]. The representative points of the different components are plotted in the map ii, average 
quantum number, versus the electronegativity difference multiplied by the radius ratio. (RA and R, radii of the 
anion and cation elements). 

values, therefore, indicate only a composition range where one of the aforementioned 
structure types may occur. 

According to GIRGIS [1983] the existence field of the electron phases may be 
especially related to the combinations of d elements with the elements of the Periodic 
Table columns from 11 to 14 (from Cu to Si groups). 

7.23. Geometrical principles and factors, Laves' stability principles 
LAWS [1956], when considering the factors which control the structures of the metallic 

elements, presented three principles that are interrelated and mainly geometric in character. 
a) The principle of efficient (economical) use of space (space-jiilling principle). 
b) The principle of highest symmetry. 
c) The principle of the greatest number of connections (connection principle). 
These principles may be considered to be valid to a certain extent for the intermetallic 
phase structures and not only for the metallic elements. 

(See also some comments on this point as a result of the atomic-environment analysis 
of the structure types summarized in sec. 7.2.7.) 

a) Spacefilling principle 
The tendency to use the space economically (to form structures with the best space-filling) 
which is especially exemplified by the closest-packing of spheres is considered to be the 
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result of a specific principle which operates in the metal structures (and also in ionic and, 
to a lesser degree, in van der Waals structures). This principle is less applicable to 
covalent crystals because the characteristic interbond angles are not necessarily compat- 
ible with an efficient use of the space. Among the metallic elements, 58 metals possess 
a close-packed arrangement (either cubic or hexagonal) which, in the assumption that the 
metal atoms are indeformable spheres having fixed diameters, corresponds to the best 
space-filling; 23 of the remaining metals crystallize in another highly symmetric structure, 
the body-centered cubic, which corresponds to a slightly less efficient space-filling. 

(The space-filling concept has been analysed and discussed by several authors: we 
may mention LAVES [1956], Pmm [1961], PEARSON [1972]. A short summary of this 
discussion will be reported in the following, together with some considerations on the 
atomic dimension concept itself). 
b) The principle of highest symmetry (symmetry principle) 
According to Laves a tendency to build conJigurations with high symmetry is evident and 
is called the symmetry principle. This tendency is particularly clear in metallic structures, 
especially in the simple ones. 

However, according to HYDE and ANDERSSON [1989], for instance, the validity 
extension of this principle is difficult to evaluate. As time passes, crystallographers are 
able to solve more and more complex crystal structures and these tend to have low 
symmetry. The symmetry principle could perhaps be restated by observing that a crystal 
structure has the highest symmetry compatible with efficient use of space and the 
specific requirements of chemical bonding between nearest neighbours. 

For a discussion on the “symmetry principles”, its alternative formulations and the 
history of its development, papers by BRUNNER [1977] and by B~NIGHAUSEN [1980] 
may be consulted. In these papers a number of statements have been reported which 
perhaps may be considered equivalent. When considering close sphere packings, the 
following statements are especially worthy of mention. 
a) A tendency to form arrangements of high symmetry is observable. 
b) Points are disposed around each point in the same way as around every other. 
c) Atoms of the same type tend to be in equivalent positions. 

c) The principle of the greatest number of connections (connection principle) 
To understand the meaning of this principle it may be at first necessary to define the 
concept of connection. To this end we may consider a certain crystal structure and 
imagine connecting each atom with the other atoms present in the structure by straight 
lines. There will be a shortest segment between any two atoms. We will then delete all 
links except the shortest ones. After this procedure, the atoms that are still connected 
constitute a “connection”. The connection is homogeneous if it consists of structurally 
equivalent atoms, otherwise it is a heterogeneous connection. 

Such connections may be finite or 1,2, 3 dimensionally infinite and are respectively 
called islands, chains, nets or lattices. Symbols corresponding to the letters I, C, N, L 
(homogeneous connections) or i, c, n, 1 (heterogeneous connections) have been proposed. 
(see also the dimensionality indexes reported in sec. 3.5.1.). 

As pointed out by Laves (for instance, LAVES [1967]) metallic elements and 
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intermetallic phases show a tendency to form multidimensional (possibly homogeneous) 
connections (connection principle). 

7.2.4. Atomic dimensions and structural characteristics of the phases 
a) Atomic radii and volumes 
A few comments about the atomic dimension concept may be useful also in order to 
present a few characteristic parameters and diagrams (such as space-filling parameters, 
reduced strain parameters, near-neighbours diagrams, etc.). 

Quoting from a comprehensive review on this subject (SIMON [1983]) we may 
remember that ever since it has been possible to determine atomic distances in molecules 
and crystals experimentally, efforts have been made to draw conclusions from such 
distances about the nature of the chemical bonding and to compare interatomic distances 
(dimensions) in the compounds with those in the chemical elements. Distances between 
atoms in an element can be measured with high precision. As such, however, they cannot 
be simply used in predicting interatomic distances in the compounds. In rational 
procedure, reference values (atomic radii) have to be "extracted" from the individual 
(interatomic distances) measured values. Various functions have been suggested for this 
purpose. In the specific case of the metals it has been pointed out that interatomic 
distances depend primarily on the number of ligands and on the number of valence 
electrons of the atoms (PEARSON [1972]). 

Pauling's rule (PAULING [19471): 

I?,, = Rl - 30 log n (pm) (6) 

relating radii for bond order (bond strength) n (number of valence electron per ligand) to 
that of strength 1, gives a means of correcting radii for coordination and/or for effective 
valencies. It has been shown (PEARSON [1972], SIMON [1983]) that, no matter what the 
limitations may be of any particular set of metallic radii (or valencies) that is adopted, 
the Pauling's relation appears to be reliable, giving a basis for comparing interatomic 
distances in metals. According to SIMON [1983] slightly better results could be obtained 
changing the Pauling's formula to: 

R, = Rl(l - A log n) (7) 

where A is not constant but can be represented as a function of the element valency. 
The subsequent point is to select some system of (a set of) atomic radii which can be 

used when discussing interatomic distances. 
The radii given by ~ A T U M  et al. [ 19681 (and reported in table 8, together with the 

assumed "valencies") are probably the most useful for discussing metallic alloys. These 
radii have been reported for a coordination number of 12; they were taken from the 
observed interatomic distances in the fc cubic (cF4-Cu type) structure and in the 
hexagonal close-packed hP2-Mg type structure (averaging the distances of the first two 
groups of 6 neighbours, if the axial ratio has not the ideal 1.633.. value) or from the bc 
c12-W type. Since the coordination is 8 in the cI2-W type structure, for the elements 
having this structure the observed radii were converted to coordination 12 by using a 
correction given by the formula: 
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Table 8 
Radii (CN 12) of the Elements (from TEATUM et al. [1968])” 

Element “Valence” Radius 
(pm) 

Element “Valence” Radius 
(Pm) 

H -1 77.9 Sb 
Li 1 156.2 Te 
Be 2 112.8 cs 
€3 3 92.0 Ba 
C 4 87.6 La 
N -3 82.5 Ce 
0 -2 89.7 Ce 
Na 1 191.1 Pr 
Mg 2 160.2 Nd 
AI 3 143.2 Pm 
Si 4 132.2 Sm 
P -3 124.1 Eu 
S -2 125.0 Eu 
K 1 237.6 Gd 
Ca 2 197.4 Tb 
s c  3 164.1 DY 
Ti 4 146.2 Ho 
V 5 134.6 Er 
Cr 6 128.2 Tm 
Mn 5 130.7 Yb 
Mn 7 125.4 Yb 
Fe 8 127.4 Lu 
c o  9 125.2 Hf 
Ni 10 124.6 Ta 
c u  1 127.8 W 
Zn 2 139.4 Re 
Ga 3 135.3 os 
Ge 4 137.8 Ir 
As 5 136.6 Pt 
Se 6 141.2 Au 
Rb 1 254.6 Hg 
Sr 2 215.1 T1 
Y 3 177.3 Pb 
zr 4 160.2 Bi 
Nb 5 146.8 Po 
Mo 6 140.0 Fr 
Tc 7 136.5 Ra 
Ru 8 133.9 Ac 
Rh 9 134.5 Th 
Pd 10 137.6 Pa 
Ag 1 144.5 U 
Cd 2 156.8 NP 
In 3 166.6 Pu 
Sn 2 163.1 Pu 
Sn 4 158.0 Am 

a) The elements are arranged according to their atomic number. 
Noble gases and halogens are not included. 

5 
6 
1 
2 
3 
3 
4 
3 
3 
3 
3 
2 
3 
3 
3 
3 
3 
3 
3 
2 
3 
3 
4 
5 
6 
7 
8 
9 

10 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
6 

-4.8 
5 
4 

157.1 
164.2 
273.1 
223.6 
187.7 
184.6 
167.2 
182.8 
182.2 
180.9 
180.2 
204.1 
179.8 
180.1 
178.3 
177.5 
176.7 
175.8 
174.7 
193.9 
174.1 
173.5 
158.0 
146.7 
140.8 
137.5 
135.3 
135.7 
138.7 
144.2 
159.4 
171.6 
175.0 
168.9 
177.4 
280 
229.4 
187.8 
179.8 
162.6 
154.3 
152.8 
164 
159.2 
173.0 
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RCNI = 1.0316 RcNs - 0.532 (pm) (8) 

which was empirically obtained from the properties of elements having at least two 
allotropic modifications, cI2-W type and either cF4-Cu type or hP2-Mg type. The radii 
in the two structures (calculated at the same temperature by means of the known 
expansion coefficients) were compared and used to construct the reported equation. For 
the other metals (that is for the more general problem of the radius conversion from any 
coordination to coordination number 12) a percentage correction was applied (by using 
a curve which ranges from about +3% for the conversion from CN 8 to CN 12 to about 
+20% for the conversion from CN 3 to CN 12) as suggested by LAVES [1956] in a 
detailed paper dealing with several aspects of crystal structure and atomic sizes. 

While dealing with atomic dimension concepts, atomic volumes may also be considered. 
A value of the volume per atom, V ,  in a structure may be obtained from the room 
temperature lattice parameter data by calculating the volume of the unit cell and dividing 
by the number of atoms within the unit cell. See also the table reported by KING [1983]. 

An equivalent atomic radius could be obtained by computing, on the basis of the 
space-filling factor of the structure involved, the corresponding volume of a “spherical 
atom” using the relationship Vsph= (4 7~ R3/3). 

In the cP2-W type (CN 8) structure we have V,,= 0.68 V, (only a portion of the 
available space is occupied by the atomic “sphere”, see the following paragraph b). In 
the cF4-Cu type, and in the “ideal” hP2-Mg type (CN 12) structures we have V, = 0.74 
Vat. Considering now the previously reported relationship between qm 12) and R,, we 
may compute for a given element, very little volume (VaJ changes in the allotropic 
transformation from a form with CN 12 to the form with CN 8. (The radius variation is 
nearly counterbalanced by the change in the space filling). 

This generally is in agreement with the experimental observations (PEARSON [1972]). 
We will see that on the basis of the atomic dimensions of the metals involved 

(expressed, for instance, as RrRy or R,/Ry) many characteristic structural properties of 
an X,Y, phase may be conveniently discussed and/or predicted (sizefactor effect). As a 
further comment to this point we may mention here two “rules”, the VeguniZ and the 
Biltz-Zen’s ruZes, which have been formulated for solid solutions and to a certain extent 
for ordered compounds. These rules, mutually incompatible, are very seldom obeyed; 
they may, however, be useful either as approximations or for defining reference behaviours. 
The first one, VEGARD’S rule [1921], corresponds to an additivity rule for interatomic 
distances (or lattice parameters or “average” atomic diameters). For a solid solution &B1-x 
(x=atomic fraction) between two components of similar structure it takes the form: 

(9) 
The BILTZ [1934], (or ZEN [1956]) rule has been formulated as a volume additivity rule: 

dAB = xdA + (1 - x)dB 

v, ‘ X 4  +(l-x)V, (10) 

These rules are only roughly verified in the general case (for the evaluation of interatomic 
distances weighted according to the composition and for a discussion on the calculation and 
prediction of the deviations from Vegard’s rule see PEARSON [I9721 and SIMON [1983]). 
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As contributions to the general question of an accurate prediction of the variation of 
the average atomic volume in alloying we may mention a few different approaches. 
MIEDEMA and NIESSEN [ 19821 calculated atomic volumes and volume contractions on the 
basis of the same model and parameters used for the evaluation of the formation enthalpy 
of the alloy (see sec. 8.5). In a simple model proposed by HAPNER [1985] no difference 
of electronegativity and no charge transfer were considered. Volume (and energy) 
changes in the alloy formation were essentially related to elastic effects. Good results 
have been obtained for alloys formed between s and p block-elements. An empirical approach 
has been suggested by MERLO [ 19881. Deviations from Biltz-Zen trend have been discussed 
and represented as a function of a “charge transfer atomic parameter” which correlates with 
Pauling’s electronegativity. This approach has been successfully employed for groups of 
binary alloys formed by the alkaline earths and the bivalent rare earth elements. 

Negative experimental deviations from Vegard’s rule (and values of the volume 
contractions) have been sometimes considered as an approximate indication of the 
formation of strong bonds and related to more or less negative enthalpies of formation 
(KUBASCHFJWSKII [1967]). This indication is only very poor in the general case. For 
selected groups of alloys, however, the existence of a correlation between the formation 
volume and enthalpy (A,,V and AfomH) has been pointed out (even if only as an 
evaluation of relative trends). This is the case of the rare earth (RE) alloys. As noticed 
by GSCHNEIDNER [ 19691 considering the trivalent members of the lanthanide series, we 
may compare the atomic volume decreasing observed in the metals (RE) (lanthanide 
contraction) with the decreasing of the average atomic volume measured in a series of 
lUZMex compounds. If this diminution is more (less) severe in the compounds than in the 
RE metal series, this is considered an indication that the bonding strength in the REM% 
compounds increases (decreases) as we proceed along the series from La to Lu; the heats 
of formation are expected to increase (decrease) in the same order. To make this 
comparison the unit cell volumes of the compounds are divided by the atomic volumes 
of the pure metals. The volume ratio for the series of compounds are then divided for 
that corresponding to a selected rare earth, this giving a relative scale. If the resultant 
values increase, with the atomic number of the rare earth, then the lanthanide contraction 
is less severe in the compounds (in comparison to the rare earth element) and a decrease 
of the heat of formation is expected (conversely if the relative volume ratio decreases, an 
increase of the heat of formation (more negative enthalpy of formation) is expected). 

(Examples of this correspondence will be examined in sec. 8.6., see also fig. 59.) 

b) Spacefilling parameter (and curves) 
The spucelfillingpurumerer introduced by LAVES [1956] and by PARTHE [1961] gives a 
means of studying the relationships between atomic dimensions and structure. For a com- 
pound, it is defined by the ratio between the volume of atoms in a unit cell and the 
volume of unit cell. 

(471. / 3)(Zi?ziRi3) 
P =  v,, 
(q, Ri number and radius of type i atoms). 
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To calculate the space filling value for a specific compound, one has to know the radii 
of the atoms and the lattice constant. Neither of these is needed for the construction of 
a spacejlling curve of a crystal structure type: it is sufficient to know the point positions 
of the atoms and the axial ratios. The curve is based on a hard sphere model of the 
atoms: the cell edges are expressed as functions of the atomic radii (R, and R, for a 
binary system) for the special cases of X-X, X-Y and Y-Y contacts. The parameter can 
then be given (and plotted) as a function of the Rx/R, ratio. 

Considering, for instance, the cF8-ZnS-sphalerite type structure (PAR& [ 19641) the 
space filling can be given by: 

where a is the cubic cell edge and R, and R, are the radii of the atoms in the a) and c) 
positions (4 Zn and 4 S, respectively) in the unit cell. (See the description of the 
structure in sec. 6.3.2.). 

In the case that the two atoms (or, more accurately, the hard spheres) occupying the 
Zn and S sites are touching each other, then the sum of the two radii must be equal to 
one-quarter of the cubic cell diagonal. 

R, + R~ = a 8 / 4  (13) 

By expressing the unit cell volume as a function of the sum of the radii we obtain: 

( 4 a / 3 ) ( 4 R :  + 4 4  

(4’ / 3&)(R, + Ry)3 
4 0 =  

Introducing the radius ratio E =RX& one obtains: 

This equation describes the middle section (0.225 <E <4.44) of the space-filling curve for 
the sphalerite type structure plotted (with log scales) in fig, 51. 

(The other sections, 0 < E  < 0.225 and 4.44 <E < - correspond to the cases in which 
Y-Y atoms or X-X atoms are touching.) 

In the versus E diagram every structure type is generally characterized by its own 
individually shaped space-filling curve. The space-filling curves, however, of all binary 
structures belonging to one brneotect structure set coincide with one curve (see sec. 4.3). 

By assuming appropriate values for the radii R, and R, it is possible to compare, 
with the specific curve of a given structure, the points representing actual compounds. 
Generally a good agreement is found for ionic structures (and/or compounds) while it is 
often observed that the rp versus E points for particular metallic phases lie above the 
space-filling curves, indicating a denser packing and emphasizing the lack of unique radii 
associated with X-X, X-Y, etc. contacts (compressible atom model) (PEARSON [1972]). 

In the specific case of unary structures (element structures), providing that there are no 
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Fig. 51. Space filling diagram for the CsCI, NaCl and ZnS structures (from PARTHE [1961]). 

variable atomic positional parameters or axial ratios, there is a unique space-filling parameter 
(independent of atomic size for every structure type). For the cF.I1cu type structure, for instance, 

qJ = ( 4 d  3)(4R’ 1 u’) 

Assuming the atoms to be hard spheres a = 2 fi R, then p = 0.740 (which is the highest 
value for an infinite collection of close-packed hard spheres of the same radius). qpical  
space-filling parameters of elemental structures are the following: 
C F K U  type 0.740 
hP2-Mg type 0.740 

cI2-W type 0.680 
t IW-Sn type 0.535 
cP1-Po type 0.524 
cF8-Diamond 0.340 
Several other considerations and applications of the space filling concept may be found 
in PARTHE [ 19611, for instance: space-filling diagrams of ternary structures, applications 
of space-filling concept for discussing and predicting possible pressure structures, etc. 

A similar treatment has been made by LILJ and BASSETT [1986] defining a special 
“volumetric index” a, considering that the molar volume V of a crystal must be a linear 
function of the cube of the nearest neighbor interatomic distance Ln 

(for the “ideal” value, c/a= 1.633.., of the axial ratio. It is 
cp = 0.65 in the case, for instance, of Zn, for which c/a= 1.86). 
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V = adk (17) 

where a is a function of the axial ratio, axial angle@) and positional parameters of a 

Within a group of isostructural substances small variations are therefore generally 
observed in the a-value. If ddn is given in nm and V in cm3/mol (moles of atoms or 
moles of formulae) the following a-values may be mentioned: 
425.9 (cF4-Cu); 425.9 to 485.0 (hP2-Mg for 1.633 I c / a l  1.86; 463.6 (c12-W); 
589.7 (tIWSn, c/a= 0.5456); 602.2 (cP1-Po); 927.2 (cF8-diamond); 927.1 (cP2-CsCl); 
1204.4 (cF8-NaC1); = 1843 (hP4-C graphite): etc. 
The a-values are the slopes in the plots of the molar volume versus the cube of the 
interatomic distances for given types of structures such as those illustrated in fig. 52a. 
These indexes (as the space-filling parameters) may be useful, for instance, in a 
systematic description of the effect of pressure on the phase transformations which may 
be observed for a given compound. In a discussion of high-pressure phases (of elements, 
oxides and silicates) with implications for the Earth’s interior, LIU and BASSETT [ 19861 
presented data relevant to several families of compounds in a number of graphs such as 
those of fig. 52b. The transformations at increasing pressure from C graphite to diamond, 
from Si and Ge diamond type to PSn type, the modifications of a number of 1:l 
compounds from NaCl to CsCl type structure and also for elements, such as Cd and Zn, 
the preservation of the same structure but with c/a approaching the “ideal” 1.633 value 
can all be effectively summarized in these type of graphs. 

crystal structure. 

7.2.5. Reduced dimensional parameters 
a) Reduced strain parameter and near-neighbours diagrams 
By means of the comparison between the space-filling theoretical curves and the actual 
values of intermetallic phases it has been observed that an incompressible sphere model 
of the atom is unsuitable when discussing metallic structures. 

PEARSON 119721 suggested the use of a model which allows the atoms of a binary 
X-Y alloy to be compressed until subsequently (and according to the structure geometry) 
X-X, X-Y, Y-Y contacts are established. The contacts are considered to occur when the 
X-X, X-Y and Y-Y interatomic distances in the compound structure, d,, dxr and d, are 
equal to 2 R, (=Dx), R,+R, and 2 RY(=DY) (Rx, R,, D,, D, atomic radii and 
diameters, respectively). According to Pearson, the metallic radii choosen are those 
appropriate for the coordination of the atoms (compare with sec. 7.2.4.). The distances 
between all the close atoms in the structure may be expressed ifi terms of the cell (and 
atomic site) parameters. (As an example see, for instance, the phases XY,, AuCu, type, 
described in sec. 3.5.5. and in figs. 12, 13, 14. In these phases around each X atom there 
are 6 X atoms at a distance equal to the unit cell edge d, = a. Around the X atoms there 
are 12 Y atoms at a distance dxy=afi/2), and around the Y atoms at the same distance 
d, = a fi/2). All these distances may thence be expressed as a function of one of them, 
selected as a reference. (In the case of the AuCu, type phase, for instance: 
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Fig. 52. Trends of the molar volumes of selected groups of phases as a function of the nearest neighbours 
interatomic distances. 
a) Schematic trends for X, Y, Z, etc., structural types. (Y may represent a structure type for which, for 

instance, owing to different cla ratios, several volume values may correspond to the same 63.  The 
hyphens 1 + 2, 2 + 3 (or 2 + 3'), etc. from 1 to 2 etc., represent different behaviours (and transfom- 
ations) that may be observed by increasing pressure. 

b) Actual trends for a group of common crystal structure types. 

d ,  = d X a / 2 ,  dy = d,2/2/2 

A reduced strain parameter is then defined with referen e to a arbitrarily selected set of 
contacts. With reference to the d, distances the strain parameter may be defined as 
S = (D, - d,)/D,. This parameter gives an indication of the atomic dimension compres- 
sion. It is computed, as a function of the ratio is = D,/D, = R,/R,, for the different kinds 
of interatomic contacts. 

In the aforementioned AuCu, type phases, we have 3 cases corresponding to X-X, 
X-Y and Y-Y contacts. 

If X-X atoms are touching d,=D,, then the strain parameter S, will be 
(Dx - D,)/D, = 0 for all the s-values. 

If X-Y atoms are considered to be in contact dxy=dx f i /2  will be equal to 
$(Dx + Dy) so we will have: 

If, on the other hand, the Y-Y atoms are those which are considered to be in contact we 
will have: 
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dy  = dx&/’2 = Dy;dx = Dy& and Goa) 

The values of the strain parameters are then plotted, according to PEARSON [ 19721, as 
a function of E = R,/R,. Several straight lines are obtained (see figs. 53,54,55) the lines 
corresponding to the reference contacts are horizontal and set at zero. What matters is 
only the relative position of the different straight lines (which does not change by taking 
another contact as the reference one: a rotation will only be obtained of the whole 
diagram). The diagram is called Near-Neighbour Diagram. In the diagram, points may 
also be plotted which represent actual phases. (To this end the experimental d,, dxy, etc., 
values will be used). 

According to PEARSON [1972], when a point representing a specific phase has a larger 
value of the strain parameter than that of a particular contact line, then the contacts 
corresponding to that line are to be considered (on the basis of the D, and D, assumed 
for the components) compressed. If, on the other hand, the experimental points lie below 
a line then those contacts have not been established. 

Figs. 53 to 55 represent the data and the trend for a few structure types. For 
compounds having the cF8-ZnS sphalerite structure (see sec. 6.3.2.) it can be seen that 
the X-Y (Zn-S) bonds (corresponding to a tetrahedral coordination) are the most 
important in controlling the structural characteristics. The different points, representing 
actual compounds, are very close indeed, for a wide range of diameter ratio and of 
electronegativity differences to the line corresponding to the X-Y contacts. (The X-X 
and Y-Y contacts are not formed). The structure can, therefore, be considered as formed 
by a skeleton of presumably covalent (and directional in character) X-Y bonds. An X-Y 
chemical bond can similarly be recognized as important in several compounds having 
cF12-CaF2 type (or antitype), cF16-Li3Bi, hP3-CdI2, hPg-Na,As, etc., type structures. 
The different behaviours of more “metallic” phases can be seen in fig. 53 and fig. 55. 

The AuCu, type near-neighbour diagram (fig. 53) shows the importance of contacts 
corresponding to high coordinations. A similar trend can be observed for the XY, Laves 
phases (see fig. 55 for the MgCu, type) for which, moreover, a certain compression of the 
X-X contacts generally results. (The X-X curve is, for E > 1.25, far below the data points). 

Many near-neighbour diagrams have been presented by PEARSON (1972) and 
systematically discussed for several structure types in order to show the importance of 
factors such as geometrical or chemical bond factors in controlling occurrence and 
structural characteristics of different phases. 

For an analysis of the meaning and the applications of these diagrams see also SIMON 
[1983]. A representation, in generalized near neighbour diagrams, of structure families 
for alloy phases with given XY, compositions has been presented and discussed. 

b) Unit-cell dimension analysis 
While discussing the interest in an analysis of the dimensional characteristics of phases 
with given structures and reconsidering advantages and limitations of the near-neighbour 
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Fig. 53. Near neighbour diagram for binary phases with XY, formula belonging to the cP4-AuCu3 structural 
type (according to PEARSON [1972]). The lines corresponding to the different contacts are shown. 

diagrams, Pearson himself has proposed [1985a] a new analytical method based on plots 
as functions of the CN 12 atomic diameters determined from elemental structures and in 
which attention is paid to the group and period of the component elements in the 
selection of subsets of the data of phases to be considered together. 

As an example of such an analysis we may consider the data reported in fig. 56. 
Phases are considered which pertain to the tI1O-ThCrzSi, type; the structure contains 
three different position sets, as described in sec. 6.5.9. It is one of the most populous of 
the different structure types. In particular, there are ten almost complete groups of data 
for RIET2Xz phases given by rare earth metals (RE) with T=Mn, Fe, Co, Ni, Cu and 
X = Si or Ge. The data reported in fig. 56 are those concerning the RENi,Ge2 compounds. 
According to PEARSON [ 1985al and PEARSON and VILLARS [ 19841 the contacts of interest 
between pairs (i,j) of the three components (RE, T, X) are defined by the relation: 

A, = + ( D ~ + D ~ ) - ~ ,  (21) 

where D,  Dj are the atomic diameters and dij is the interatomic distance between i and 
j atoms (obtained from the experimental structure data). Generally it has been observed 
(see fig. 56) that A, varies linearly with D, (for series with different RE but the same 
T and X components). 

A parameter fij may thus be defined by: 

A, = AjDRE + kg (22) 

If a specific f,, is of the order of zero (see, for instance, A- in fig. 56) this can be 
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Fig. 54. Near neighbour diagram for binary phases with XY formula belonging to the cF8-ZnS stn~ctural type 
(according to PEARSON [1972]). 

considered an indication that the particular ij contact is independent of change in D, and 
therefore it can be assumed to control the cell dimensions (as the size of RE changes in 
the series of phases having the same T and X components). For the different RET2X2 
phases it was observed that fREx= 0 for T =Fe, Co, Ni, Cu and X= Si, Ge, whereas 
f,,=O for T=Mn. 

Structural aspects of chemical bonding in another family of phases formed by similar 
groups, RE-T-X, of elements (1 : 1 : 1, RETX compounds) have been analysed by B AZELA 
[1987] using the same technique. 

For a general discussion on the dimensional analysis of the structures of the metallic 
phases with special reference to the hR57-Th2Zn,,, tI26-ThMn1, and hP6-CaCu5 type 
structures see also PEARSON [ 19801. 

7.2.6. Alternative definitions of coordination numbers 
We have seen in the previous sections that the determination of the coordination 

number of an atom in a structure is clearly recognized as an important point in the 
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Fig. 55. Near neighbur diagram for binary phases with XY, formula belonging to the cF24-MgCu2 structural 
type (according to FEARSON f19721). 

definition of that atom’s contribution to the bulk material properties and in the character- 
ization of the structure itself. Several properties (for instance, atomic size, atomic valence 
and magnetic properties and species stability and reactivity) are know to be coordination 
number dependent. 

In many cases the coordination number (or ligancy) of a central atom is readily 
obtained by enumerating the number of neighbours; we have seen, however, that there 
are numerous cases where the criteria for the enumeration procedure may be ambiguous. 
As an introductory summary of this point see, for instance, CARTER [1978], O’KEEFFE 
[ 19791). 

As already pointed out by FRANK and KASPER [1958] the term “coordination number” 
has been used in two ways in crystallography. According to the first (more precisely 
defined, in principle) the coordination number, (CN), is the number of the nearest 
neighbours to an atom. According to this definition in the hexagonal closepacked 
hP2-Mg type structure CN is 6 unless the axial ratio c/a has exactly the “ideal” value 
& (= 1.63299..), in which case it is 12. (see fig. 26). In this structure the mentioned 
definition is seldom applied with rigour, that is, the CN in the hP2-Mg type structure is 
generally regarded as 12, even with c/a slightly different from the “ideal” value; that is 
not only the first group but also the very close second group of distances are considered 
together, More difficulties arise in less symmetrical structures and when there is a high 
coordination number. Near neighbours with slightly different interatomic distances are 
often found and it may be difficult to determine (and to state in an unambiguous way) 
how many should be considered as coordinating the central atom. Several schemes for 
the calculation of an “effective” coordination have been proposed. 

According to FRANK and KASPER [1958] the computation of the coordination number 
may be based on the definition of the “domain” of an atom in a structure. This is the 
space in which all points are nearer to the centre of that atom than to any other. It is a 
polyhedron, (Voronoi polyhedron, Voronoi cell, Wigner-Seitz cell), each face of which 
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Fig. 56. RENi,Ge, phases (RE== earth) with the tIlO-ThCr,Si, structure (from pEaRs0~ [1985a]). 
a) plot of Aij (= ‘/pi + Dj) - dij) versus D,. 
b) plot of the cla axial ratio of the cell versus DR6. 

is the plane equidistant between that atom and a neighbour. (Every atom whose domain 
has a face in common with the domain of the central atom is, by the Frank-Kasper 
definition, one of its neighbours). The counting of the faces of the domainpolyhedron 
gives %e number of neighbours: the set of neighbours is the “coordination shell”. (The 
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coordination polyhedron, of course, is the polyhedron whose edges are the lines joining 
all the atoms in the coordination shell. The domain (Voronoi) polyhedron and the 
coordination polyhedron, therefore, stand in dual relationship, each having a vertex 
corresponding to each face of the other). 

According to the Frank-Kasper definition the coordination number is unambiguously 
12 in the hexagonal close-packed metals and assumes the value 14 in a body-centered 
cubic metal. Generally in several complex metallic structures this definition yields 
reasonable values such as 14, even when the nearest neighbour definition would give 1 
or 2. 

According, for instance, to O'Keeffe, however, this definition may lead to some 
difficulties (the value 14 for the bcc structure, higher than that of closest packing does 
not seem entirely reasonable, the difficulty becomes more acute in a structure as that of 
diamond for which a very high value, 16, is computed according to the mentioned 
definj tion). 

For a better quantrjcation of the coordination number, several alternative schemes 
have been proposed. For example, a simple procedure is based on the identification of a 
gap in the list of interatomic distances (and to add atoms up to this gap). A similar 
procedure (O'KEEFFE [1973]) may be to add atoms to the coordination polyhedron in 
order of increasing interatomic distances and to stop when the next addition would result 
in a non-convex polyhedron. BRUNNER and SCWARZENBACH [ 19711 suggested cutting 
off the coordinating atoms at the largest gap in the Zist of the interatomic distances (see 
also sec. 7.2.7). According to BRUNNER [1977] the largest gap in the list of reciprocal 
interatomic distances is used to limit the coordination polyhedra. It has also been 
suggested to weight the contribution of the atoms according a weight that decreases with 
interatomic distances (BHANDARY and GIRGIS f19771) or according to a bond strenghts 
of the Pauling type (BROWN and SHANNON [1973]). Non integral coordination numbers 
may of course be obtained. 

In relation with the Frank-Kasper proposal, previously reported, O'KEEFFE [ 19791 
suggested that coordinating atoms contribute faces to the Voronoi polyhedron around the 
central atonr and their contributions are weighted in proportion to the solid angle 
subtended by that face at the center. 

By using this definition increaqing values of the (weighted) CN coordination number 
are obtained for the structures: diamond (4.54), simple cubic (6), body-centered cubic 
(10.16), face-centered cubic (12) (in agreement with the increasing packing density). 

A more complex weighting scheme has been suggested by CARTER 119781 on the 
basis of the following assumptions: 
The interactions of a central atom with its ?" neighbour is considered as being measured 
by a certain parameter Ai (XAi = &, finite). 
The CZN as a function of all the A, should satisfy the following conditions: 
- GN(Ai) is dimensionless and 2 1 if any neighbours with non-zero Ai exists; 
- CN(A,) is a continuous function of the Ai (its slope may not be); 
- if N interactions exist such that A, =A2 = ... =AN, for all neighbours with non-zero Ai, 

then CN(Ai) = N; 
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- if some of the 4 are unequal, then CN(AJ < N; 
- if m of the A, are equal and large and N-m equal are small, then 

The formula proposed by Carter for the quantification is: 
m < CN(A,) e N. 

(where wi are finite weighting factors). Definitions and measures of Ai might include 
bond strenghts, bond energies, bond orders, etc.). 

As an example, the structure of the CsCl type has been discussed by Carter using 
several criteria of evaluation of Ai. In a geometrical approach a weighted coordination 
number (varying from 8 to 14 to 6) as a function of atomic radii difference was described. 

We may finally mention the so-called “effective coordination number” ECoN, 
proposed by HOPPE [1979] and HOPPE and MEYER [1980] computed by means of a 
rapidly converging function of the distances. According to Hoppe’s scheme (which may 
be related to Brunner’s suggestions previously mentioned), individual contributions 
ECoNj, of all neighbours to the coordination number are summed together. Each 
contribution ECoNj quickly becomes vanishingly small with increasing atomic distances 
dj according to an expression such as ECoNj = exp ( 1-(dj/dd6), where d, is a reference 
distance (the “mean fictive” atomic size) which has to be determined beforehand from 
the structure. The trend of the ECoN has, for instance, been discussed as a function of 
the axial ratio c/a for the hexagonal closest packing of spheres (hP2-Mg structure). 
Values of ECoN ranging from say 11.94 (for c/a = 1.57 as Ho or Er) to 12.02 (for the 
“ideal” c/a value, 1.633..,) and to 11.02 (c/a= 1.856, as for Zn) or to 10.74 (c/a= 1.886, 
as for Cd) have been computed. ECoN for different Laves phases have been presented. 
For a number of NaCl and CsCl type compounds, moreover, values have been given to 
show the dependence of ECoN as a function of varying ionic radii. 

(For a discussion on the “effective coordination number” its relation with atomic size, 
bond-strength, Madelung constant, etc., see also SIMON [1983]. For a computation of the 
heats of formation based on the so-called effective coordination see a suggestion by 
KUBASCHEWSKI [1958], and for a discussion on the application and limits of this 
suggestion see BORZONE et al. [1993].). 

7.2.7. Atomic-environment classification of the structure types 
DAAMS et aZ.[ 19921 and D m s  and VILLARS [ 1993, 19941 in a series of reviews have 

given an important contribution to the problem of the classification of intermetallic 
structural types, reporting a complete description of the geometrical atomic environments 
found in the structural types of cubic, rhombohedral and hexagonal intermetallic 
compounds, respectively. To define an atomic environment they used the maximum gap 
rule (see sec. 7.2.6.). The Brunner-Schwarzenbach method was considered, in which all 
interatomic distances between an atom and its neighbours are plotted in a histogram such 
as those shown in figs. 15, 23, 25, etc.. (The height of the bars is proportional to the 
number of neighbours, and all distances are expressed as reduced values relative to the 
shortest distance). In most cases a clear maximum gap is revealed (see, for instance, in 
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fig. 23 the gap between the second and the third bar). The atomic environment is then 
constructed with the atoms to the left of this gap (8 + 6 in the example of fig. 23). To 
avoid, in some particular cases, bad or ambiguous descriptions, however, a few additional 
rules have been considered. In those cases, for instances, where two (or more) nearly 
equal maximum gaps were observed, a selection was made in order to keep, in a given 
structure type, the number of different atomic environment types as small as possible. A 
convexity criterion for the environment polyhedron was also considered (the coordination 
polyhedron has to be defined as the maximum convex volume around only one central 
atom enclosed by convex faces with all coordinating atoms lying at the intersections of at 
least three faces). This rule was specially used where no clear maximum gap was detectable. 

The different atomic environment types were characterized by a polyhedron code 
based on the number of triangles, squares, pentagons, hexagons, etc. that join each other 
in the different vertices (coordinating atoms). The polyhedron code gives the number of 
equivalent vertices with the number of faces in the above-mentioned sequence as an exponent. 
For example, a quadratic pyramid has four corners adjoining two triangles and one square (no 
pentagons or hexagons) and one corner adjoining four triangles: its code, therefore, is 
421.0.014.0.0.0 (or briefly 42.'14.0 with coordination number 5). The cube, 8 equivalent 
vertices, adjoining 3 squares, has the code the octahedron 64" and the Frank-Kasper 
polyhedra have the codes Kfo; 125.0260; 125.0360 and 125.0460 (see sec. 6.6. and fig. 41). 

DAAMS et al. [ 19921 have analysed all the cubic structure types reported in VILLARS 
and CALVERT [1985], after excluding all oxides and a few types with improbable 
interatomic distances, thus leaving 128 structure types representing 5521 compounds. 
Their analysis showed that these cubic structure types have 13917 atomic-environments 
(point sets). Of those environments 92% belong to one of the 21 most frequently 
occurring atomic-environment types, which are those reported in the following list: 

- 92220.3 - 85.24.016.0 - 125" (icosahedron) - 12"2 (cp. cubic) and 1222 (cp. hexagonal) 
(the same code describes the cubic as well as the hexagonal atomic environment of the 

43.O (t,&-&&on) - 42.114.0 - 64 (ocWe&on) - 35."34J"'3~o - - 65,034.0 - 85.02"fJ - 66.043.0 

ideal close-packing) - 10a.2250 - 105.026.014.0 - 112z24.1 - 125026.0 - 8°360.4 - 125.036.0 - 
12.3.046.0 - 126.064.0 

Of the 5521 compounds crystallizing in the mentioned 128 structure types, 46% belong 
to a single-environment group (structures in which all atoms have the same type of 
environment), 37% have two environment types, 9% three and the rest four or more 
environments. (= 98% of the cubic compounds crystallize in structure types with 1,2,3 
or 4 atomic environment types). 

In a subsequent paper (DAAMS and VILLARS [1993]) the results of a similar classifica- 
tion of the rhombohedral intermetallic structure types were reported. The 195 
rhombohedral structure types reported in VILLARS and CAL~ERT [ 199 11 were analysed. 
51 types have improbable interatomic distances or correspond to oxides with no 
intermetallic representatives and were excluded. The remaining 144 types (corresponding 
to 1324 compounds) were considered. It was observed that 14 atomic environment types 
are greatly preferred. Out of 6356 investigated point sets 71% belong to one of these 14 
frequent atomic environment types which are those reported in the following list: 
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3 (loose triangle); 43.0; 64.0; 61.2 (trigonal prism) 80.3; 65.034.0. 64.043”. 92903. 125.0. 12x2 
(cubic type); 105.026.014.0; 125.026.0. 80360.4. 125.046.0 

9 9 , 
, , . (Compare this list with the previous 

one of the cubic compounds: notice that several atomic environment types are reported 
in both lists.) 
Of the 1324 rhombohedral compounds crystallizing in one of the 144 types, 19% belong 
to a single-environment group, 15% combine two environment types, 25% three 
environments; 34% four and the rest , 7%, five or more environments ( ~ 9 4 %  of the 
rhombohedral compounds crystallize in structure types with 1, 2, 3 or 4 environment 

The results of a similar analysis of the intermetallic hexagonal structure types have 
been reported by DAAMS and VILLARS [1994]. Of 442 structure types 315 (clearly 
intermetallic and correctly refined) were considered. In this case too it was observed that 
a small group of atomic environments is greatly preferred. The 23 atomic environment 
types most frequently occurring in the 315 hexagonal structure types are reported in the 
following list (to be compared with those previously reported for cubic and rhombohedral 
structure types): 

types). 

3; 43.0; 4, 64.0. 61.2; 35.034.0131); 80.3. 65.034.0. 64.043.0. 65.034.016.0. 92.220.3. 85.024.015.0. 125.0; 122.2 
(cubic); 122.2 (hexagonal); 105.026.014.0, 64.133.032.219.0. 125.026.0. 122.226.0. 65.063.029.0. 125.036.0. 

9 7 , 9 9 , 
I I 9 I 9 , 

7 . (The 3 and 4 codes correspond to “irregular” atomic environment types. 125.046.0. 125.0860 
The reference atom is not included in the plane (volume) of the polygon (polyhedron) 
formed by the 3 (4) coordinating atoms.) 
Out of 20131 poit sets investigated (belonging to 5646 compounds crystallizing in one 
of the aforementioned 315 hexagonal structure types), 81% (16392) belong to one of 
these 23 atomic environment types. Of the 5646 compounds, 14% belong to a single 
environment group; 35% combine two environment types; 32% three; 11% four and the 
rest (7%) five or more (93% of the hexagonal compounds crystallize in structure types 
with 1, 2, 3 or 4 atomic environment types). 

As a result of these analysis several relations between structure types have been 
shown and discussed. Emphasis has been given to the fact that, in all the structure types 
considered (cubic, rhombohedral, hexagonal) it may be observed that: “Nature prefers 
one of the most symmetrical atomic environment types. Remarkably these atomic 
environment types (21 in the cubic shctures, 14 in the rhombohedral and 23 in the 
hexagonal ones) are equally often found in single-environment up to poly-environment 
groups meaning that even in complex structures, symmetrical arrangements are pre- 
ferred‘‘. The formation of the geometrically most simplest structure types containing a 
small number of different atomic environment types was also noticed. 

As a comment, we may observe that the results of these analyses can be compared 
with the “Stability Principles” stated by Laves (see sec. 7.2.3.). 

In conclusion to this section we may mention a paper by VILLUS and DAAMS [1993] 
concerning an atomic environment classification of the chemical elements. Critically 
evaluated crystallographic data for all element modifications (and recommended atomic 
volumes) have been reported. Special structural stability diagrams were used to separate 
atomic environment type stability domains and to predict the structure (in terms of 
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environment types) of hitherto unknown high pressure and high temperature modifica- 
tions (see sec. 8.4.). 

8. Semi-empirical approaches to the prediction of (intermetallic) 
compound formation 

8.1. General remarks on procedures of prediction of compound and structure 
formation in alloy systems 

In the previous sections a brief sampling of some correlations has been given which 
relate crystallochemical characteristics of the phase to the properties of the component 
elements. This group of correlations may be considered as a first reference point for a 
number of methods of predicting the formation, in a given system, of a compound and/or 
of a certain structure. It is well known that, in scientific literature, more and more space 
is dedicated to the question of the forecast of chemical equilibria in simple and complex 
systems. A clear indication of this interest, both from a general and a technological point 
of view, may be seen in the development and success of a number of monographs and 
periodic publications and proceedings on this subject. Several approaches to this problem 
have been considered: we may mention, with special attention to metal systems, the 
explicit over-all summary already presented by KAUFMAN et al. (see KAUFMAN and 
BERNSTBIN [1970]) and the more recent discussion by MASSALSKI [1989]. 

The role of a thermodynamic approach is well known: a thermodynamic control, 
optimization and prediction of the phase diagram may be carried out by using methods 
such as those envisaged by KUBASCHEWSKI and EVANS [1958], described by KAUPMAN 
and NESOR [1973], ANSARA et al. [1978], HILLERT [1981] and very successfully 
implemented by LUKAS et al. [1977, 19821, SUNDMAN et al. [1985]. The integration of 
phase diagram calculations into the design of multicomponent alloys, and performance 
prediction, has been discussed by MIODOWNIK [ 19931. The knowledge (or the prediction) 
of the intermediate phases which are formed in a certain alloy system may be considered 
as a preliminary step in the more general, and complex, problem of assessment and 
prediction of all the features of phase equilibria and phase diagrams. (See also ALDINGER 
and SEIFERT [1993]). 

Evidence has to be given to the phase stability problem (MASSALSKI [1989]). The 
significant progress and the limits, of the first principles calculations may be mentioned 
(HAFNER [1989], PETTIFOR, chapter 2), the usefulness, however, of a number of 
semiempirical approaches has to be pointed out. Several schemes and criteria have been 
suggested to forecast and/or optimize the data concerning certain properties. In the 
following a short outline will be reported on some prediction methods based on selected 
correlations between elemental properties and structure formation. 

8.2. Stability diagrams, structure maps 

Several authors have tried to classify and order the numerous data concerning the 
different intermetallic substances by using two (or three) dimensional structure maps 
(stability, existence diagrams). 
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These maps were prepared by selecting coordinates based on those parameters 
(generally properties of the component elements) which were considered to be determi- 
nant factors of the structural stability and phase formation control. 

As an introductory example to this subject we may remember the well known 
diagrams developed by DARKEN and GURRY [ 19531 for soZid solution prediction. In such 
diagrams (as shown in fig. 57) all elements may be included. The two coordinates 
represent the atomic size (generally the radius corresponding to CN 12) and the 
electronegativity of the elements. It is well known that the first table of electronegativity 
values was introduced by PAULING [ 19321. Several alternative definitions have since 
been proposed. A reliable compilation extensively used in discussing the metallurgical 
behaviour is that by TEATUM et al. [1968]. References to other scales will be reported later. 

To determine the solid solubility of the different elements in a given metal, in the 
Darken and Gurry map, the region with the selected metal (Mg, for instance, in fig. 57) 
in the center can be considered. Generally we observe that elements which have high 
solubility lie inside a small region around the selected metal. As a rule of thumb an 
ellipse may be drawn in the diagram (with the selected metal in the center), for instance, 
with f 0.3 electronegativity unity difference in one axis and f 15% atomic radius 
difference on the other axis. For those elements for which there is a low (or a negligible) 
solubility a larger region has to be considered. 

For a review of the application of the Darken and Gurry method to predict solid 
solubilities see GSCHNEIDNER [1980]. An improvement of the method by means of 
simultaneous use of rules based on the electronic and crystal structures of the metals 
involved, is also presented. 

The diagrams reported in figs. 50 and 58 are examples of other structure stability 
maps which have been suggested and successfully used in order to obtain a good 
separation (classification) of typical alloying behaviours (compound formation, crystalli- 
zation in a certain structure type, etc.). 

As an outline of more general approaches along these lines we may mention a 
selection of a few methods proposed by several researchers. 

83. Savitskii-Gribulya-Kiselyova method (cybernetic computer-learning 

Cybernetic computer-learning methods have been proposed by SAVITSKJI et aZ. [ 19801 
for predicting the existence of intermetallic phases with a given structure and/or with 
certain properties. The computer learning, in this case, is a process of collecting 
experimental evidence on the presence (or absence) of a property of interest in various 
physicochemical systems (defined by means of a convenient selection of the properties 
of the components). 

As a result of machine learning a model is produced of characteristic exhibition of a 
property (for instance, the formation of a particular type of chemical compound) which 
corresponds to a distribution “pattern” of this property in the multidimensional represen- 
tative space of the properties of the elements. The subsequent pattern recognition 
corresponds to a criterium for the classification of the hown compounds and for the 

prediction system) 



Ch. 4, $ 8  Structure of intermetallic compounds and phases 347 

Radius (CN12) 
Fig. 57. Darken and Gurry diagram for the element Mg. (Solubility in Mg greater (m, or less (0) than 5 atom 
% is indicated.) 

prediction of those still unknown. 
Examples of this approach reported by Savitskii are the prediction of the formation 

of Laves phases, of CaCu, type phases, of compounds XY,Z4 (X, Y any of the elements, 
Z = 0, S, Se, Te), etc. (Data on the electronic structures of the components were selected 
as input). 

The main principles and applications for the cybernetic prediction of inorganic 
substances which would have pre-defined properties have been summarized and 
discussed by KISELYOVA 119931. 

8.4. Villars, Villars and Girgis approaches (analysis of the dependence of the 
behaviour of alloy systems on the properties of the component elements) 

In an examination of the binary structure types (containing more than five representa- 
tives, VKLARS and GIRGIS [1982] observed that 85% exihibited the following reg- 
ularities: 
a) linear dependence of interatomic distances on concentration weighted radii; 
b) narrow ranges of the space-filling parameter and of the unit cell edge ratio c/a (and 

c) dependence between the position of the elements in the Periodic Table (in the s, p. 
b/a) for the representatives of a given structure types; 

d, f blocks) and their equipoint occupation in the structure; 
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Fig. 58. Kubaschewski’s plot of the regions of preference for formation of certain type of binary equilibrium 
diagrams (R,, & and X, are atomic radius, heat of sublimation and electronegativity of element i). 

d) narrow grouping of the phases pertaining to a given structure type, in isostoichio- 
metric diagrams based on the positions of the components in the Periodic Table. 

These relationships have been used to predict the existence and/or the structure type (and 
the unit cell characteristics) of binary intermetallic compounds. 

By using a systematic procedure to find the relevant element properties representing 
the alloying behaviour of binary systems VILLARS [1983, 19851 defined three expressions 
for atomic properties which enable systems that form compounds to be separated from 
those that do not. 

A systematic elimination procedure was also used by VILLARS [1982] to find atomic 
property expressions which could be used to distinguish the crystal structures of 
intermetallic compounds. 182 sets of tabulated physical properties and calculated atomic 
properties were considered. These were combined, for binary phases, according to the 
modulus sums, differences and ratios. The best septtrations were obtained by using three- 
dimensional maps, which, for a binary &By, x<y compound, were based on the 
following variables (VILLARS and HULLIGER [1987], VILLARS etal. [1989]): 
ZVE, averaged sum of the valence electrons of the elements A and B, defined by 

ZVE = ( x  VE, + y VEB) / ( x  + y ) ,  (24) 

AX, electronegativity difference, according to the MARTYNOV-BATSANOV [ 19801 scale 
defined by 
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L u  = [2 x / (x + Y)](XA - XB) 

A (r, -I- r&, difference of Zunger’s pseudo-potential radii sum (ZUNGER [ 1981]), defined by 

The relevant data concerning the different elements have been reported in table 9 (from 
VILLARS [1983]). 

Several structural types, corresponding to about 5500 binary compounds and alloys, 
were considered. 147 structure types were classified as 97 coordination types. The 
applications of these maps (which, in the most favorable cases, make it possible to 
predict not only the coordination number and polyhedron but also the structure type or 
a limited number of possibilities) were discussed. The possible extension to ternary and 
quaternary phases was also considered. 

As an example of an investigation of a selected group of ternary alloys we may 
mention a paper by HOVESTREYDT [1988]. In analogy with the work of V i h  a three- 
dimensional structure stability diagram was constructed. For the equiatomic RETX 
compounds formed by the rare earth metal (RE) with transition metal (T) and Ga, Si or 
Ge (X) the variables considered were: the difference in atomic radii r, - r,, the 
Martynov-Batsanov electronegativity of the T metal and the expression GT + G, + Px, 
related to the position in the Periodic Table of the T and X elements, where G is the 
group and P the period number. A good separation was obtained for the 8 structural 
types considered (corresponding to 202 compounds). 

Special, modified, structure stability diagrams have been used for the elements by 
VILLARS and DAAMS [1993]. Maps were built by using the variables valence electron 
number and Zunger pseudopotential radius and reporting the atomic environment types 
(see see. 7.2.7) found in the element structures. A simple separation into different 
stability domains was observed. By including the high temperature, high pressure crystal 
structure data, a prediction was made of the atomic environment modifications, hitherto 
unknown for several elements, to be found under high pressure, high temperature 
conditions. (See sec. 7.2.7.). 

An empirical relation between band gap and Zunger’s orbital electronegativity in 
sp-bonded compounds has been determined by MAKINO [ 1994al using a formula derived 
from the bond orbital model. Based on the bond orbital model and Zunger’s orbital 
electronegativity, new structural maps of AB, AB, and AB, compounds between transi- 
tion metals have been successfully constructed (MAKINO [1994b]). 

8.5. Miedema’s theory and structural information 

The model for energy effects in alloys suggested by Miedema and coworkers is well 
known. By assigning two coordinates (@ and nws) to each transition element it was 
possilbb to separate all those binary alloys with positive heats of formation from those 
with negative values (MIEDEMA [ 19731). 

Successive steps in the formulation of the model have been described, for instance, 
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Table 9 
Valence Electron Number (VE), Martynov-Batsanov electronegativity 

and Zunger’s pseudo potential sum R, (from VILLARS [1983]). 

H 1  
2.10 
1.25 

Li 1 Be2 El VE 
0.90 1.45 X M B  
1.61 1.08 Rz 

Nal Mg2 
0.89 1.31 
2.65 2.03 

K 1  Ca2 Sc3 Ti4 V 5  Cr6 Mn7 Fe8 Cog Nil0 Cu Zn 

B 3  C 4  N 5  0 6  F 7  
1.90 2.37 2.85 3.32 3.78 
0.795 0.64 0.54 0.465 0.405 

A13 Si4 P 5  S 6  C17 
1.64 1.98 2.32 2.65 2.98 
1.675 1.42 1.24 1.10 1.01 

2 Ga3 Ge4 As5 Se6 Br7 
0.80 1.17 1.50 1.86 2.22 2.00 2.04 1.67 1.72 1.76 1.08 1.44 1.70 1.99 2.27 2.54 2.83 
3.69 3.00 2.75 2.58 2.43 2.44 2.22 2.11 2.02 2.18 2.04 1.88 1.695 1.56 1.415 1.285 1.20 

Rbl Sr2 Y 3  Zr4 Nb5 M06 Tc7 Ru8 Rh9 Pd10 Agl l  Cd12 In3 Sn4 Sb5 Te6 I 7  
0.80 1.13 1.41 1.70 2.03 1.94 2.18 1.97 1.99 2.08 1.07 1.40 1.63 1.88 2.14 2.38 2.76 
4.10 3.21 2.94 2.825 2.76 2.72 2.65 2.605 2.52 2.45 2.375 2.215 2.05 1.88 1.765 1.67 1.585 

C s l  Ba2 La3 Hf4 Ta5 W6 Re7 Os8 Ir9 R10  Au11 Hg12 T13 Pb4 Bi5 Po6 At7 
0.77 1.08 1.35 1.73 1.94 1.79 2.06 1.85 1.87 1.91 1.19 1.49 1.69 1.92 2.14 2.40 2.64 
4.31 3.402 3.08 2.91 2.79 2.735 2.68 2.65 2.628 2.70 2.66 2.41 2.235 2.09 1.997 1.90 1.83 

R 1  Ra2 Ac3 
0.70 0.90 1.10 
4.37 3.53 3.12 

Ce3 Pr3 Nd3 Pm3 Sm3 Eu3 Gd3 Tb3 Dy3 Ho3 Er3 Tm3 Yb3 Lu3 
1.1 1.1 1.2 1.15 1.2 1.15 1.1 1.2 1.15 1.2 1.2 1.2 1.1 1.2 
4.50 4.48 3.99 3.99 4.14 3.94 3.91 3.89 3.67 3.65 3.63 3.60 3.59 3.37 

Th3 Pa3 U 3  Np3 pU3 Am3 
1.3 1.5 1.7 1.3 1.3 1.3 
4.98 4.96 4.72 4.93 4.91 4.89 

For a few elements, such as the rare earths, the Martynov-Batsanov electronegativity was not available, Pauling values were reported. 

w 
8 
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by NIESSEN et al. [1983] and by DEBOER et al. [1988]. 

proportional to the expression: 
The enthalpy of formation of solid and liquid binary alloys was described as 

f [ - P ( A @  *)’ + Q(hn,”3)2 - R] 

where f is a concentration (and molar volumes) dependent function, A@* = @:- @; where 
@i* is the work function of each element, closely related to its electronegativity, (the 
values tabulated by Miedema, however, have been slightly readjusted by amounts 
comparable to the experimental uncertainty of work function values), nws is the electron 
density at the boundary of the Wiper-Seitz cell for each element. P, Q and R are 
constants for specific groups of elements (their values are related to the position in the 
Periodic Table of the elements involved). In the same model (MIEDEMA and NIESSEN 
[ 19821) the volume variation in the formation of the intermetallic compound is evaluated 
as proportional to (A@*)[(A(n,>-’]). 

Although the way to predict formation enthalpies of alloys was introduced as an 
empirical one it is important to observe that the model incorporates basic physics. A 
quantum-mechanical interpretation of Miedema’s parameters has already been proposed 
by CHELIKOWSKY and PHILLIPS [1977, 19781. 

Extensions of the model to complex alloy systems have been considered. As an 
interesting application we may mention the discussion on the stabilities of ternary 
compounds presented by DEBOER et al. [1988]. In the case of the Heusler type alloys 
XYT, for instance, the stability conditions with respect to mechanical mixtures of the 
same nominal composition (XY, + Z, X + Y2Z, X Y  + YZ, etc.) have been systematically 
examined and presented by means of diagrams. 

The Miedema’s parameters, A@*, An,”, moreover, have been used as variables for 
the construction of structural plots of intermetallic phases (ZUNGER [ 1981]), 
WASEKHARAN and GIRGIS [1983]). According to Rajasekharan and Girgis on a A@*, 
AnWsm map, considerable resolution is obtained among the binary systems in which 
different structure types occur. The points corresponding to the systems in which the 
Laves phases (or the phases of types as Cr,Si, TiAl,, etc.) occur show linear relationships 
on the map. (The good separation, moreover, between the line connecting the Cr,Si type 
phase points and that of the Laves phase points, can be related to the almost total 
exclusion of the Cr$i type phases from the 250 binary systems containing Laves phases 
and that of the Laves phases from the about 90 binary systems in which a Cr,Si type 
phase occur). (See also ch. 2, 0 7). 

8.6. Prediction of the properties of selected families of alloys: 
Gschneidner’s relations as an example 

Stability maps and/or correlation diagrams may be especially simple and easy to 
handle for selected groups of similar alloys. (For instance, alloys of the elements of the 
same group of the Periodic Table). 

As an example we may mention the alloys of the rare earth metals (especially the 
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“trivalent ones”). It is well known that, within this family of elements, several properties 
change according to well-recognized and systematic patterns. The atomic number itself 
can be used in this case as a simple and convenient chemical parameter). In several 
instances it has been pointed out that a systematic consideration of the crystal structures 
(and of the phase diagrams) of alloys formed by analogous elements (as those of the 
trivalent rare earth family) enables a number of empirical regularities to be deduced and 
theoretical statements to be made. (See a general discussion on this subject by 
GSCHNEIDNER [1969, 19711, the comments by YATSENKO et al. [1979, 19831, COLINET 
et al. [1984a, 1984b], VASSILIEV et aZ. [1993], FERRO et al. [1994] and SOMMER et al. 
[1995] on alloys thermodynamics, the papers by MASSALSKI [1989] on the applications 
of this behaviour to phase diagram assessment, by PARTHE and CHABOT [1984], ROGL 
[I9841 and by IANDELLI and PALENZONA [1979] for a systematic crystallochemical 
description. See S ~ M  [1984] for examples and a discussion of the properties of the 
rare earth metals themseives. See also some comments of this point in sec. 7.2.4.a). 
Criteria based on the mentioned characteristics have been used in assessment procedures 
and in the prediction of phase diagrams and of phase (and structure type) formation. Fig. 
59 may be considered as an example of such typical trends and of their correlations. 
Special applications (prediction of Pm-alloys) have been described by SACCONE et al. 
[1990] and (forecast of selected phase diagrams) by BORZONE et al. [1990], FERRo etal. 
[1993] and SACCONE et al. [1995]. The applicability of similar criteria to the assessment 
and prediction of phase equilibria in selected groups of ternary rare earth alloys 
(containing two different RE metals) has been exemplified by GIOVANWINI et al. [1994, 
1995a, 1995bl in the description of complex Mg-RE alloy systems. 

Considering other families of similar compounds we may mention as an other 
example of systematic descriptions of selected groups of phases and of the use of special 
interpolation and extrapolation procedures to predict specific properties, the contributions 
given by GUILLERMET et al. [1991, 19921 (cohesive and thermodynamic properties, 
atomic average volumes, etc. of nitrides, borides, etc. of transition metals). 

8.7. Pettifor’s chemical scale and structure maps 

We have seen that in a phenomenological approach to the systematics of the crystal 
structures (and of other phase properties) several types of coordinates, derived from 
physical atomic properties, have been used for the preparation of (two, three-dimension- 
al) stability maps. Differences, sums, ratios of properties such as electronegativities, 
atomic radii, valence electron numbers have been used. These variables, however, as 
stressed, for instance, by VILLARS et aZ. [1989] do not always clearly differentiate 
between chemically different atoms. 

As already mentioned in sec. 1 of this chapter, PETTIFOR [1984, 1985a, 1986al 
created a chemical scale (x) which orders the elements along a single axis. This scale 
(and the progressive order number of the elements in this scale: the so-called Mendeleev 
number, M) starts with the least electronegativity element and ends with the most 
electronegative one (see table 1). 

For binary compounds (and alloys) X,,Y,,, (with a given n:m ratio) two-dimensional 
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Fig. 59. Gschneidner’s plots for some rare earth (RE) alloys. 
a) REIn, compounds 
b) RETl, compounds 

Following data are reported as a function of RE atomic number: Formation enthalpy, volume ratio relative 
to cerium (see sec. 7.2.4.a) and reduced melting temperature TR. This is the ratio (KelvinKelvin) of the 
melting point of the phase and of the melting point of the involved earth metal. (e) experimental values; 
(0 )  hypothetical values (reference values) of TR computed for compounds assumed to have a constant 
melting point. The difference between the experimental and computed slopes of TR curves is considered 
to be an indication of the variation of the thermal stability of the phases along the series). 
In these cases, all the diagrams show a decreasing phase stability for an increase of the atomic number. 

xX xy (or M,, My) maps may be prepared. See chapter 2, $6.2 and the simplified 
version reported in fig. 60 for the reader’s convenience. It has been proved that by using 
this ordering of the elements an excellent structural separation may be obtained of the 
binary compounds of various stoichiometries (n:m= 1:1, 1:2, 1:3, 1:4, ...., 1:13, 2:3,2:5, 
..., 2:17, 3:4, ..., etc.) (PETTIFOR [1986a]). See also VILLARS et al. [1989] who have 
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Me L 

L1 0 

csct 
NaCl 

ZnS 

Fig. 60. Simplified version of the Pettifor’s map for AB compounds. The elements are arranged along the axes 
according to their Mi, Mendeleev number. As an example the existence regions of the NaCl, CsCl and cubic 
ZnS type phases are evidenced. For more details see chapter 2, 5 6.2. 

updated the Pettifor maps for several stoichiometries. 
An extension of the application of these maps to the systematic description of certain 

groups of ternary alloys has been presented also by PETTIFOR [1988a, 1988bl. Composi- 
tion averaged Mendeleev numbers can be used, for instance, in the description of 
pseudobinary, ternary or quaternary alloys. All these maps show well defined domains 
of structural stability for a given stoichiometry, thus making the search easier for new 
ternary or quaternary alloys with a particular structure type and which, as a consequence, 
have the potential of interesting properties and applications (PETTIFOR [ 1988a, 1988bl; 
see also ch. 2, 96.2). 
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Appendix 1. Gazetteer, in alphabetic order, of intermetallic phases 
cited in this chapter. 

(In the formulae of the phases in the 1st column the element symbols are in 
alphabetical order, in the prototype formulae they are in the Pettifor's order (see sec. 2). 
Heavy-faced characters have been used for the phases corresponding to the prototypes) 

Phase and Corresponding Section 
Prototype Prototype of this chapter 

Strukturberichte Symbols 
cF4-Cu 
cP20-Mn 

hP&Ni&n 

c152-Cu,Zn8 
hP4-ZnO 
cP52-Cu&b 
cI52-CuJn8 
cF8-ZnS (sphalerite) 

hP2-Mg 

~F'l2-AgMgAs 

tISdgTITe, 
hP2-Mg 
cI52-Cu5Zn, 
C F M U  
cF8-ZnS (sphalerite) 
cF12-CaF2 
PP3-AIB, 
tI10-BaAl, 
cP2-CsC1 
cP8-Cr3Si 
cI2-w 
cI2-w 
tIl2-CUAI, 
cP52-ChAb 
cFIB-MnCu,Al 

3.4 
6.2.1 
7.2.2 
7.2.2 
6.5.3 
6.4.3 
6.1.5, 7.2.2 
6.3.3 
6.1.5, 7.2.2 
6.1.5, 7.2.2 
6.3.3 
6.5.9 
7.2.2 
6.1.5, 7.2.2 
6.2.1 
6.3.3 
6.4.2 
6.5.6, 6.5.10 
6.5.9 
6.1.2 
6.6.2 
6.1.1 
7.2.2 
5 
6.1.5, 7.2.2 
3.4, 6.1.3 
6.1.5 
6.1.5 
6.1.5 
6.1.5 
6.1.5 
6.1.5 
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A~,,(CU,Ni),, 
A1 , , (~ ,WI2  
AlCuS, 
A1,Er 
AlFe 
AIFe, 
A1,Gd 
Al,,Gd,Ni, 
AI,La 
A13Mg2 
A4zMg17 
AIMo, 
AIN 
AINb, 
AlNi, 
ALNiX 
AI,Ni,Y,, 
Al,OsU, 
AIP 
AlPd, 
AIR, 

AlSb 
A1,Sc 
AISnV, 
A1,Th 
AIR, 
AI,Ti 
A1,Tm 
AIV, 

AIY, 
AI,Y 
A1,Y 
A1,Yb 
AlZr, 
A l J r  
AI,Zr 
A13Zr, 
Ar 
AsB 
AsCaCu 
ASCUS 
As& 
Ashi 
AsNa3 
AsNb 
AsNi 
As,Zn 
Au 
AuBe, 
Au,Cd, 
AuCu 0 

M2R 

Al*V5 

Riccardo Feme and Adriana Saccone 

tI1 WuFeS, 
cP4-AuCu3 
cP2-CsCl 
cF16-BiLi3 
hP8-Ni,Sn 

hP8-Ni,Sn 
cF1832-MgzAI3 
~15811-Mg,7Al, 
cP8-Cr3Si 
hP4-ZnO 
cP8Cr3Si 
cP4-AuCu3 
cP2-csC1 

~PIZ-U~OSAI~ 
cF8-ZnS (sphalerite) 
OP 1 2-Co2Si 
cP4-AuCu3 
cF12-CaF2 
cF8-ZnS (sphalerite) 
cP4-AuCu3 
cP8Cr3Si 
hP&Ni,Sn 
hP&Ni,Sn 

c P ~ A u C U ,  
cP8-Cr3Si 
c152-Cu5Zn, 

hPI-Ni,Sn 
cP4-AuCu3 
cP4-AuCu3 
hP&Ni,In 
hP12-MgZn, 
tIlbA1,Zr 
hW-Zr,A!, 
cF4-Cu 
cF8-ZnS (sphalerite) 
hP6-Ni2h 
oPl2-CUASS 
cF8-ZnS (sphalerite) 
cF8-ZnS (sphalerite) 
hP8-Na As, 

hP4-Ni As 
mP24-ZnP2 
cF4-Cu 
cKZCAuBe, 
c152-Cu5Zn, 

tIS-TiAl, 

cP~-AuCU, 

tIS-Nb As 

tP2-AuCu 

6.1.5 
6.1.5 
7.2.1, 6.3.3 
6.2.7 
6.1.2 
4.1.1(a) 
6.2.7 
3.2. 
6.2.7 
6.6.5, 5 
6.6.5 
6.6.2 
6.3.3 
6.6.2 
3.5.5 
6.1.2 
3.2. 
6.6.4 
6.3.3 
6.5.4 
3.5.5 
6.4.2 
6.3.3, 7.2.1 
6.2.7 
6.6.2 
6.2.7 
6.2.7 
4.1.l(a) 
6.2.7 
6.6.2 
6.1.5, 7.2.2 
3.5.5 
6.2.7 
3.5.5 
6.2.7 
6.5.3 
6.6.4 
4.1.1(a) 
Table 6 
6.2.1 
6.3.3 
6.5.3 
5 
6.3.3 ' 

6.3.3 
3.4. 
6.5.9 
4.1, 6.5.1 
7.2.1 
6.2.1 
6.6.4 
6.1.5, 7.2.2 
4.1.1,.6.2.4 
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AuCu (II) 

Au,Ge 

Au,In, 
Au,K 
AuNb, 
AuSiTh 
AuSn, 
AuTa, 
AuTi, 

BCeCo, 

B3Ce,Co, 
B,Ce3Col, 

B3CoVV, 
BCr 

BIr 
B,Lu,Ni,, 

B,Nd,lVi,, 
BNi 
BOs 
BRu 
Ba 
BaCd,, 

AuCUS 

Au,Hg, 

B,CXP%Y 

W e C S  

s,covv* 

B,Cr, 

B 4 L a 4  

B@u&+-,Y 
BdzOI) 
B a g , ,  
BaPb, 
BaPtSb 
a-Be 
Be 
Be,$o, 
Be,,Cu, 
BeN,Si 
Be,,Ni, 
Be0 
BePd 
BePo 
BeS 
BeSe 
BeTe 
Bi,(Ca,Sr),Cu,O, 

BiLi, 
BrCS 
BrCu 
BrTI 
C(diamond) 

BiF3 

oI40-AuCu 
cP~-AuCU~ 
hP2-Mg 
c152-Cu5Zn, 
cPSZCu,Al, 
hPbCaCu, 
cP8-Cr3Si 
hP3-BaF'tSi 
oP24-AuSn2 
cPS-Cr,Si 
cP8-Cr3Si 

hP12-CeC04B 

h=%C%B3 
hP6-CeCo.,B2 

hPl&Ce3C0,$4 
oIlO-W,CoB, 
oC~S-W~COB, 
OCS-CrB 
t132-Cr,B3 
hP2-wc 
hP30-Lu,Ni1,B, 

hPlS-Nd,Ni,,B, 
oC8-BCr 
hpzwc 
ha-WC 
CIZW 
tI48-BaCd1, 

oP12-CozSi 
cP36-BaHg1, 
bR36-BaPb3 
hP3-BaPtSb 
hP2-Mg 
cI2-w 
cP2-csCl 
cP2-CsC1 
oPlfi-BeSiN, 
cP2-CsCl 
hp4-ZllO 
cP2-Csc1 
cF8-ZnS (sphalerite) 
cF8-ZnS (sphalerite) 
cF8-ZnS (sphalerite) 
cF&ZnS (sphalerite) 

cF16-BiF3 
cF16-Li3Bi 
CP2-cSCl 
hP4-ZnO 
ca-Csc1 
cF8-c 

4.1.1, 4.2, 6.2.4 
3.5.5, 4.1,4,1,1, 6.2.3. 
7.2.2 
6.1.5, 7.2.2 
6.1.5, 7.2.2 
6.2.8 
6.6.2 
6.5.6 
5 
6.6.2 
6.6.2 
6.6.2 
4.5 
4.5, 6.2.8 
4.5 
4.5 
4.5 
4.5 
4.5 
3.4 
6.5.5 
4.5 
6.6.2 
4.5 
3.2 
6.5.5 
6.5.5 
6.1.1 
5 
6.6.2 
6.5.4 
5 
6.2.3 
6.5.6 
6.2.6 
6.1.1 
6.1.2 
6.1.2 
6.3.3 
6.1.2 
6.3.3 
6.1.2 
6.3.3 
6.3.3 
6.3.3 
6.3.3 
6.6.2 
3.5.1, 6.1.4 
4.1.1, 6.1.4, 6.2.2 
6.1.2 
6.3.3, 7.2.1 
6.1.2 
6.3.1 
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C(graphite) 
C (lonsdaleite) 
C,Ca 

CMo 
CI_,Hf 

C I - m  

CSi polytypes 
C1-2-h 
C1-*li 
CI-.XV 
C5V6 
GV8 
cw 
CbXW 
Cl-Xzr 

GNb6 

u-Ca 
p-Ca 
CaCu, 
CaF, 
CaIn, 
C a P  
CaSi, 
Ca,Si 
Ca31Sn*o 
Cd 
Cd3Cu, 
CdI, 
Cd,Na 

CdPO 
CdS 
CdS 
CdSe 
CdSe 
CdTe 
a-Ce 
y-Ce 

Ce,Ni,, 
=Ce,NiSi, 
Ce&Vi,Si3 
Ce,Ni,Si, 
CeO, 
ClCU 
ClNa 
CI,Pb 
ClCS 
ClTl 
c o  
a-co 

Cd43P4 

Ce5Mg4, 

Riccardo Fern and Adriuna Saccone 

hP4-C 
hP4-C 
tI6-CaG 
cF8-NaC1 
hP2-wc 
cF8-NaC1 
mC22-Nb6C, 

cF8-NaCl 
cF%-NaCl 
cF8-NaCl 
m??44-V6C, 
cP6C-V8C, 
m-wc 
cF8-NaC1 
cF8-NaC1 
cF4-Cu 
cI2-w 
hP6-CaCu5 
cF12-CaF2 
hP6-CaInZ 
OP 1 2-Co,Si 
hRlS-CaSi, 
oP12-Co,Si 
tI204-PU,,Rhm 
hP2-Mg 
cF1124-Cu&d, 
hP3-CdI2 
eF1192-NaCdz 
cP52-Cu+414 
cF8-ZnS (sphalerite) 
cF8-ZnS (sphalerite) 
hP4-ZnO 
cF8-ZnS (sphalerite) 
hP4-ZnO 
cF8-ZnS (sphalerite) 
cF4-Cu 
cF4-Cu 
t192-CeSM&1 
hP36-Ce,Ni1, 
hP3-AlB2 
hP22-CefiizSi3 
hP4RCe,Ni,Si3 
cFlZ-CaF, 
hP4ZnO 
cF8-NaC1 
oPlZ-PbCI, 
cP2-CsCI 
CP2-CSC1 
hP2-Mg 
cF4-Cu 

Co-Cr-Mo (R phases) 3.4 
Co,EuP, tI 1 O-ThCr,Si, 

6.3.4 
6.3.3 
3.2 
6.4.1 
6.5.5 
6.4.1 
6.4.1 
4.3, 6.3.3, 7.2.1 
6.4.1 
6.4.1 
6.4.1 
6.4.1 
6.4.1 
6.4.1, 6.5.5, 5 
6.4.1 
6.4.1 
6.2.1 
6.1.1 
4.5, 6.2.8 
3.2, 6.2.2, 6.4.2 
6.4.3, 6.5.7 
6.5.4 
3.4 
6.5.4 
3.2 
6.2.6 
5, 6.6.5 
3.2.4.1, 6.5.2 
5, 6.6.5 
6.1, 7.2.2 
6.3.3 
6.3.3 
6.3.3 
6.3.3 
6.3.3 
6.3.3 
6.2.1 
6.2.1 
5 
4.5 
6.5.6, Table 3 
4.1, 6.5.6 
4.1, 6.5.6 
6.4.2 
6.3.3 
6.2,2, 6.4.1 
3.4, 6.5.4 
4.1.1, 6.1.2, Table 3 
6.1.2 
6.2.6 
6.2.1 

4.4, 6.5.9 
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CoFeSn hP6-Ni2In 
CO3GaY3 oC2&W3CoB, 
Co4GaY4 mClS-Y,Co,Ga 
CosGaY5 oC44-Y,Co5Ga 
Co,Ge hP6-Ni2In 
Co,Ge,RE t110-ThCr2Si, 
C0,La hPMaCu, 

Co,RESi, tI 1 0-ThCr,Si, 
Co,Si oP12-CqSi 
Co,Sm hPXaCu, 
COT% hP3-Cd12 

w%, cP52-Cu&14 
cr cI2-w 
d r - F e  tP3O-uCr-Fe 
Cr-Mo-Ni (P phases) 
cr30s cP8-Cr3Si 
CrnP, hP 19-26-Cr1,P, 
Cr3Si cP8-Cr3Si 
Cr,Si,Th tIlO-ThCr,Si, 
Cr3Pt cP8-Cr3Si 

a-Cr,Ti c F M u , M g  
F-Cr,Ti hP12-MgZn, 
y-Cr,Ti hP12-Ni2Mg 
c u  cF4-Cu 
CuFeh tI16-FeCuS2 

%G%M tIlO-ThCr,Si, 
CUI hP4-ZnO 
cu,La 
CuLaSi hP6-NiJn 

cu16Mg6si7 cF11 6-Th6MnZ3 
Cu4MgSn cF24-C yMgSn 

Cu,RESi, tI 1 0-ThCr,Si, 
CUS,Sb oPlCCuSbS, 
Cu,Si t** 
Cu,Sn 
CuTi3 tP4-Ti3CU 
@-)Cu-Zn cI2-w 
@'-)Cit-Zn cP2CsCl 
Cu5Zn, cISZ-CusZn, 
Diamond: see C (diamond) 
a-Dy hP2-Mg 
E phases: see oP12-TiNiSi 
Er hP2-Mg 
Er,RhSi, hPZ4-ErZRhSi, 
Ell cI2-w 
cr-Fe (8) cI2-w 
y-Fe cFecU 

COO tM-CoO 

C0,V hm4-VCO3 

or-Cr-Ti phase hP3-CPTi 

cwa, CP52-Cu& 

h P &C a C u , 
CUaW cF24-CuZMg 

c u p t o  hRW-CuPt(I) 

6.5.3 
4.5 
4.5 
4.5 
6.5.3 
6.5.9 
6.2.8 
6.1.5 
6.5.9 
6.5.4 
6.2.8 
6.5.2 
6.2.3 
6.1.5 
6.1.1 
6.6.3, Table 6 
3.4, Table 6 
6.6.2 
Table 3 
6.6.2, Table 6 
6.5.9 
6.6.2 
6.5.6 
6.6.4 
6.6.4 
6.6.4 
6.2.1 
5, 6.3.1, 6.3.3 
6.1.5 
6.5.9 
6.3.3 
6.2.8 
6.5.3 
3.4, 4.3, 6.6.4, Table 6 
3.4 
6.6.4 
4.1.la 
6.5.9 
5 
7.2.2 
7.2.2 
4,1,1 a, 6.2.5 
4.1.1, 6.1.1, 7.2.2 
4.1.1, 6.1.2 
6.1.5 

6.2.6 

6.2.6 
6.5.6 
6.1.1 
6.1.1 
6.2.1 
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Fe3Ga hPS-Ni,Sn 
Fe3Ge hP8-Ni3Sn 
Fe,Ge,RE t110-ThCr2Si, 
Fe,N cPS-Fe,N 
FesN tIS-Fe,N 
FeNNi tP3-FeNfl 
F%P hP!LFep 
Fe,RESi, tI 1 O-ThCr,Si, 
FeSz (pyrite) cP12-FeS, 
FeSbV hP6-Ni21n 
Fe,Sn hP&Ni,Sn 
%W' hR39-WPg 
F%Zn,o cI52-Cu5Zn8 
Frank-Kasper phases 
G phases: see cF116-MnSTh, 
GaGeNb, cP8Cr3Si 

GaN hP4-ZnO 
GaNb, cP8-Cr3Si 

GaV, cP8-Cr3Si 
Ga7V6 c152-Cu5Zn, 
GdNi oCS-CrB 
GdSe, oP12-Co2Si 
Ge cF8-C (diamond) 
Ge,Ir4 tP36-Ir,GeS 

Ge2Mn2RE tI 1 O-ThCr2Si, 
GeNa mP32-NaGe 
GeNb, cP&Cr,Si 
Ge2N@E tIlO-ThCr,Si, 

GasIr, tP32-Ir,Ga, 

G&Ni c15zcu5zn, 

cF 12-CaF2 

oP12-Co2Si 
tP192-V,,W1 

GRh, 
Ge,,v17 
Graphite: see C (graphite) 
Hlgg phases 
Heusler phases 
Hfs, hP3-Cd1, 
HgS cF8-ZnS (sphalerite) 
HgSe cF8-ZnS (sphalerite) 
HgTe cF8-ZnS (sphalerite) 
HgZ, cP4-AuCu3 
HPt, cP4-AuCu3 

Hume-Rothery phases 
InLa, hP&Ni,In 
InLa, cP4-AuCu, 
In,La cP4-AuCu3 
InN hP4-ZlO 
InNi, h W-Ni,In 
IT1 cP2-Csc1 
Ir C F M U  
IrMo, cPS-Cr,Si 
K cI2-w 

Ho hP2-Mg 

6.2.7 
6.2.7 
6.5.9 
4.1, 4.1.1 b 
4.1.1 b 
4.1.1 b 
6.5.8 
6.5.9 
4.1 
6.5.3 
6.2.7 
3.43, 6.6.3, Table 6 
6.1.5 
3.4, 6.6 

6.6.2 
4.4 
6.3.3 
6.6.2 
6.1.5 
6.6.2 
6.1.5 
3.2. 
6.5.4 
6.3.1 
4.4 
6.4.2, Table 3 
6.5.9 
3.4 
6.6.2 
6.5.9, 7.2.5 b 
6.5.4 
4.4 

3.4 
3.4, 6.1.3 
6.5.2 
6.3.3 
6.3.3 
6.3.3 
3.5.5 
3.5.5 
6.2.6 
3.4, 6.1.5, 7.2.2 
6.5.3 
3.5.5 
3.5.5 
6.3.3 
6.5.3 
6.1.2 
6.2.1 
6.6.2 
6.1.1 
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KZO cF12-CaF2 
Kr C W U  

KZS cF12-CaF2 
KSbZn hP6-Ni21n 
w e  cFlZCaF, 
K,Te cF 1 XaF ,  
a-La hP4-La 
p-La cF4-Cu 
LaNi, hPMaCu, 
Lan, hPWaCu, 
LaPtSl tI12-LaPtSi 
Laves phases 

Li cI2-w 
Li-Mg-Zn Laves polytypes 
Li20 cFlZCaF, 
Li,O,Si 
LiN,Si, 
Li,d% cP52-Cu,A14 
Li,S cFlZCaF, 
Li,Se cFlZ-CaF, 
Li,Te CF 1 2-CaF2 
Lonsdaleite: see C (lonsdaleite) 

Lazn, hP6-cacl15 

hP2-Mg 

hP2-Mg 
hP24-NiJWg 
cF12-CaF2 
cF12-CaF2 
cF12-CaF2 
hPlZMgZn, 
e158 a-Mn 
tI 1 O-ThCr,Si, 
hP4-ZnO 
hP4-ZnO 
hP6-Ni21n 
hP4-ZnO 
tIZCThMn, 
cFl16-Th,$En, 
cP4-AuCu3 
cI2-w 
tIlO-MoN& 
hP2-WC 
016-M0& 
t16-MoSiz 
hP4-ZnO 

cF8-NaCl 
cF8-NaC1 
hP2-wc 
cI2-w 
cF 1 2-CaF2 

hP2-WC 

6.4.2 
6.2.1 
6.4.2 
6.5.3 
6.4.2 
6.4.2 
6.2.6 
6.2.1 
6.2.8 
6.2.8 
6.5.10 
3.4,4.3, 6.6.4, Table 6 
6.2.8 
6.1.1 
6.6.4 
6.4.2 
3.2. 
3.2. 
6.1.5 
6.4.2 
6.4.2 
6.4.2 

6.2.6 
Table 6 
6.1.5 
6.2.6 
3.4, 6.6.4, 4.3, Table 6 
6.4.2 
6.4.2 
3.4, 6.4.2 
3.4, 6.6.4, 4.3, Table 6 
6.6.5 
6.5.9 
6.3.3 
6.3.3 
6.5.3 
6.3.3 
6.2.8 
3.4 
3.5.5 
6.1.1 
4.1.la 
6.5.5 
4.1.la 
3.2, Table 3 
6.3.3 
6.5.5 
6.4.1 
6.4.1 
6.4.1, 6.5.5 
6.1.1 
6.4.2 

References: p .  363. 



362 Riccardo Ferro and Adriana Saccone Ch. 4, App. 

Na,S 
Na$e 
Nasi 
Na2Te 
NaTl 
NaZn,, 
Nb,Sn 
Nb3p1: 
Ne 
NilPr13Silo 
Ni,Si,RE 
NiSiTi 
Ni,Sn 
Nil1Th2 
Ni,Ti 
Ni2Zn,, 
Ni,Zr 
Nowomy phases 
os 
OTa, 
02m 
O,,Ti 
OTi, 
03J 
O,,V 
ow3 
OZn 
P phases 
Pb 
Pb3U 
Pd 
Pd2Sn 
Pdl-xTi, (r) 
Pd,-xTi, (h) 
a-Po 
Pt 
PtMn, 

PGRESn, 
PtS, 

Pt,-x~, (r) 
Pt,-,TiX (3) 
&TJ 
pu,,Rh, 
Pyrite: see FeS, 
X phases 
RE (rare earth) alIoys 
RE (metals) 
Rb 
Re 
Re,Ti&-phase) 
Rh 
Rh,Sn 

cF12-CaF2 
cF12-CaF2 
mC32-Nasi 
cF12-CaF2 
cFl6-NaTI 
cF112-NaZn1, 
cP8-Cr3Si 
cPI-Cr,Si 
cF4-Cu 
hP64-PrI,Ni,Si,, 
tI 10-ThCr,Si, 
oPl2-TiiiSi 
hPS-Ni,Sn 
hP3%-Th2Ni,, 
hP16-Tai3 
c152-Cu,Zn8 
hPd-Ni,Sn 

hP2-Mg 

cFlZCaF, 
cF8-NaC1 
hP3-Cd1, 
cFlZCaF, 
cF8-NaC1 
cP&Cr,Si 
hP4-ZnO 
oP56-(Cr-Mo-Ni) 
cF4-Cu 
cP4-AuCu3 
cF4cit  
oP12C0,Si 
oP4-AuCd 
cP2-csCl 
cP1-Po 
cF4-Cu 
cP&AuCu, 
hP3-Cd12 
tIlO-ThCr,Si, 
oP4-AuCd 
cP2-CsC1 

OPS-"~@ 

oc12-uPt2 
t1204-h3,Rh, 

hR159 Co-Cr-Mo 

cI2-w 
hP2-Mg 
cISS-Ti,Re, 
cFecU 
oP12-Co,Si 

Ru- hP2-Mg 

6.4.2 
6.4.2 
3.4 
6.4.2 
3.4, 6.1.4 
5 
6.6.2 
6.6.2 
6.2.1 
4.1,6.5.6 
6.5.9 
6.5.4 
6.2.7, 4.1.la 
6.2.8 
6.2.3 
6.1.5, 7.2.2 
6.2.7 
4.4 
6.2.6 
4.1.lb 
6.4.2 
6.4.1 
6.5.2 
6.4.2 
6.4.1 
6.6.2 
6.3.2 
Table 6 
6.2.1 
3.5.5 
6.2.1 
6.5.4 
6.1.2 
6.1.2 
3.5.2 
6.2.1 
3.5.5 
6.5.2 
6.5.9 
6.1.2 
6.1.2 
4.5 
3.2. 

Table 6 
8.6 
6.1.1, 6.2.6 
6.1.1 
6.2.6 
6.6.5 
6.2.1 
6.5.4 
6.2.6 
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RuSn, 
Samson phases 
SZn(spha1erite) 
SZn(wurtzite) 
s2Th 
SeZn 
Si 

p-Si,Th 
&i5Th3 
Si,Ti 
SiJJ, 
SiV, 
Si,W, 
sm 
a-Sn 
P-Sn 
SnTi, 
a-Sr 
Sr 
T, phases: see Si,W, 
T, phases: see B,Cr, 
Ta 
Tc 
TeTh 
TeZn 
a-Th 
Th 

T i n 3  
V 
W 

a-Si,Th 

m a 1 7  

tF%-Ru,Sn, 

cFS-ZnS 
hP4-ZnO 
oP12-Co2Si 
hP4-ZnO 
cF8-C (diamond) 
tI12e-ThSi, 
hP3-AIBz 
hP3-AIB2 
oF24-TiSi2 
tPlO-U,Si, 
cP8-Cr3Si 
t132-W,Si3 
bR9-Srn 
cF8-C (diamond) 
tI4-fi-Sn 
hPb-Ni,In 
cF4-Cu 
cI2-w 

cI2-w 
hP2-Mg 
cP2-csc1 
hP4-ZnO 
cF4-Cu 
cI2-w 
hR57-Th2Zn, 
cP4-AuCu3 
cI2-w 
cI2-w 

Wwtzite: see SZn (wurtzite) 
Xe cF4-Cu 

Zintl phases 

p-(Cu-Zn) 
p'-(Cu-Zn) 
8-m type 
Y-(ClqZn*) 
Il-cperw,) 

CY-Y hP2-Mg 

zn hP2-Mg 

a-phases (see (a) Cr-Fe) 3.4 
X-phase:see Re&, 
o-phase : see o-Cr-Ti 
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1. Introduction 

The first years of quasicrystal structure analysis were marked by the investigation of 
badly characterized samples with non-crystallographic diffraction symmetry, called 
“quasicrystals” for short, with spectroscopic and powder diffraction techniques. It was 
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Fig. Al.  (a) HRTEM image of perfectly ordered icosahedral AI,Cu$e,, with enlarged part in (b) (from 
HIRAGA, ZHANG, HIRABAYASHI, INOUE and MASUMOTO [1988], and (c) REM photograph of a single crystal 
with pentagon-dodecahedral morphology (from TSAI, INOUE and MASUMOTO [ 19871. 

not at all clear whether these samples were homogenous and quasiperiodically ordered 
(fig. Al), whether they were twinned approximants (fig. A2), i.e. closely related 
structures with huge unit cells, or had rather a kind of complicated crystalline nano- 
domain structure. The generalization of models based on single experimental results 
caused confusion in many cases until investigation learnt that the experimental findings 
were strongly dependent on chemical composition, thermal history and growth conditions 
of the samples. It turned out that most stable quasicrystals transform to crystalline phases 
at lower temperature or higher pressure running through intermediate states with 
sometimes complicated modulated andor nanodomain structures. Some structural 
principles of quasicrystals and their relationships to approximants are now fairly well 
understood: both the quasiperiodic and periodic related structures are built from the same 
clusters. Whether the structural units order periodically or quasiperiodically can be 
influenced by slight changes in composition for stable samples and also by the annealing 
conditions for metastable ones. 

References: p .  408. 
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Fig. A3. Penrose tiling (bold lines) with deflated tiling drawn in (light lines). The deflation rules for the fat, and 
skinny rhombs are also shown in the lower part of the drawing. The edge lengths of the deflated tiles are 
smaller by a factor T than the original ones (from SOCOLAR and STEINHARDT [1986]). 

Quasiperiodic translational order: there is no nontrivial translation leaving the tiling 
invariant. The mass density function is quasiperiodic, i.e. it can be expressed as a 
finite sum of periodic functions with periods incommensurate to each other. For 
example, the function is quasiperiodic f(x) = cos x+cosax if a is an irrational 
algebraic number (i.e., an irrational solution of an equation of the type a,,x" + an_lxn-' 
+ ... a,=O). 

Orientational order: each edge of each unit tile is oriented along one of the set of 
orientational star axes. Except in singular cases, there is no rotational or mirror 
symmetry in a quasiperiodic tiling. 

Indeterminacy of the construction process: the infinite pattern is not determined by a 
finite region. Starting from a finite region allows an uncountable infinity of ways to 
continue the construction. All resulting tilings belong to the same local isomorphism 
class and are homometric structures (i.e., have the same diffraction patterns). 

Local isomorphism: any region, however large it might be, belonging to a given infinite 
tiling, can be found in any other different (i.e., non superposable) tiling. 

References: p .  408. 
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Self-similarity: to any PT a different PT can be associated, whose tiles are smaller by a 
factor T and which includes all the vertices of the former tiling (this operation is 
termed deflation). The local matching rules can be obtained from the deflation 
operation. 

The Penrose tiling may serve as quasilattice for structures with two-dimensional 
quasiperiodicity and five-fold orientational order (decagonal phases). A three-dimensional 
variation of the PT, with prolate and oblate rhombohedra for unit cells (their volumes in 
the ratio ~ : 1  like their frequencies) may represent a quasilattice for the icosahedral 
quasicrystals (fig. A4). 

In the course of a normal crystal structure analysis, the determination of the correct 
crystal lattice, which has to be one of the 14 Bravais lattices, never poses any problems. 
In the case of quasicrystal structure analysis, however, for a given diffraction symmetry 
an infinite number of different quasilattices are possible. Thus, the selection of the 
quasilattice cannot be separated from the determination of the quasicrystal structure itself. 
Helpful as the tiling approach may be for the understanding of the geometrical principles 
of a quasicrystal structure, it is not suited for performing ab initio structure analyses of 
quasicrystals. This has to be done by means of the higher-dimensional approach. 

2.2. Higher-dimensional approach 

Quasiperiodic structures can always be decribed as sections of higher-dimensional 
periodic structures (JANSSEN [ 19861). Five-fold rotational symmetry, for instance, which 
is incompatible with three-dimensional translational order, can be a symmetry operation 
of a four-dimensional lattice. Thus, non-crystallographic symmetries in the three- 
dimensional space R3 can become crystallographic in R" space. It is quite natural, 
consequently, to describe quasiperiodic structures with their non-crystallographic 
symmetries as periodic structures in the R". For the axial quasicrystals, which are 
quasiperiodic in two dimensions and periodic in the third one, the five-dimensional 
embedding space B5 is necessary. The icosahedral phases can be embedded in the R6, and 
one-dimensional quasicrystals in the R4. 

The principles of the higher-dimensional embedding method are demonstrated on the 

Fig. A4. Prolate (left), and oblate (right) rhombohedron, the unit tiles of the three-dimensional Penrose tiling, 
with special sites marked. 
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simple example of the one-dimensional quasiperiodic Fibonacci sequence, which can be 
described as a quasiperiodic section of a two-dimensional periodic lattice (fig. A5). 

The Fibonacci sequence may be obtained from the substitution rule 

where E denote ‘long’ and S denotes ‘short’. Starting with L one obtains the sequences 

Fig. A5. Embedding of a one-dimensional quasicrystal with point atoms in the Etz. The observed diffraction 
pattern of the Fibonacci sequence in the physical (external, parallel) space V, corresponds to a projection of an 
appropriate two-dimensional reciprocal lattice down the complementary (external, perpendicular) space V, 
(upper drawing). The quasiperiodic structure, connected via Fourier transform with reciprocal space, 
consequently results from a section of V, with the two-dimensional hypercrystal. Since the slope of V, is 
irrational with regard to the lattice vectors, the hyperatoms have to be extended (line-shaped) to get a non- 
empty intersection (lower drawing). 

Refemces: p .  408. 
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sequence number of 
L S  

L 
LS 
LSL 
LSLLS 
LSLLSLSL 
LSLLSLSLLSLLS 
LsLLsLsLLsLLsLsLLsLsL 

1 0  
1 1  
2 1  
3 2  
5 3  
8 5  

13 8 

where F, = + K-l are the Fibonacci numbers with lim 

One finds that the substitution rule always leaves the existing sequence invariant. Thus, it 
corresponds to a self-similarity operation in the case of an infinite Fibonacci sequence. 
Replacing the letters L and S by intervals of length 7 and 1 one gets, because of the relation 

= r. 
n - w  F 

n 

=-- - r  L L + S  
S L  
- 

a smcture invariant under scaling by a factor T", n being an integer. 
In fig. A6 the correlation between hyperatoms in the five-dimensional description and 

the actual quasiperiodic structure is illustrated on the example of decagonal Al,,Co,,Ni,, 
(cf. section 3.2.2). 

One big advantage of the higher-dimensional approach is that the structural informa- 
tion can be given in closed form. It is mainly contained in the position and shape of the 
hyperatoms. In terms of the tiling-decoration method, it would not be sufficient to define 
the type of tiling (what needs not always be possible in closed form) and the decoration 
of the unit tiles since, generally, the decoration can be context dependent. 

23. Symmetry of quasicrystals 

A first classification of quasicrystals, without knowing anything about their structure, can 
be performed by means of their diffraction symmetry. As for regular crystals, the diffraction 
symmetry is equivalent to the centrosymmetric point group related to the space group of the 
crystal structure. Experimentally observed have been phases with diffraction symmetries 
Wrnmm, lO/mmm, 12/mmm, and m33 so far, called octagonal, decagonal, dodecagonal and 
icosahedral phases, respectively. Systematically absent reflections in the diffraction patterns 
(fig. A7) allow the assignment of centered lattices and symmetry elements with translation 
components in the higher-dimensional description. 
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Fig. A6. Physical space electron density map (atomic structure in the (xl, x,)-plane) of decagonal A1,oCo,,Ni,, 
with aluminum, and transition metal atoms, bond lengths, and pentagon-rectangle structure motifs marked 
(upper part of the drawing). In the lower part of the drawing, a section containing the perpendicular-space 
direction x, is shown to visualize the generation of real atoms from the hyperatoms marked 1, 2, and 3. The 
outline of one unit cell is also drawn in. 

Fortunately, the number of possible superspace groups is very limited owing to the 
restriction that the corresponding point group has always to leave invariant the point 
group of the physical subspace. Thus, for the icosahedral phase, the combination of the 
three Bravais groups, generating the primitive (P), the body-centered (I) and the face- 
centered (F) hypercubic lattice, with the point groups 235 and m%, produces only six 
symmorphous and five non-symmorphous superspace groups: P235, P235,, 1235, I235,, 
F235, F235,, P21m55, P2Iq35, I21m55, F2/m35, F21q35. 

3. The structure of quasicrystals and approximants 

Depending on the preliminary character of our present knowledge of the real structure 
of quasicrystals, the following classification and description of quasicrystal structures 
may be revised in future. The fundamental relationships between quasicrystals and 

References: p .  408. 
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Fig. A7. First-layer X-ray precession photograph of decagonal AI,, ,Mn,, ,Pd,, with symmetry lO/mmm. The 
zonal systematic extinctions (marked by arrows) obey tenfold symmetry. 

approximants* seem to be fairly reliable, however. The metastable quasicrystals 
mentioned in the following have all been prepared by rapid solidification methods (melt- 
spinning or splat-cooling); stable quasicrystals have been grown from the melt in the 
same way as any other metal crystals. 

3.1. One-dimensional quasicrystals 

There are only a few, mostly metastable phases known which are periodic in two 
dimensions and quasiperiodic in the third one (table Al). The structural units in these 
phases are ordered along one direction similarly to a Fibonacci sequence (Fibonacci 
phases). Well-studied examples are A1-Pd, Al-Cu and Al-Cu-Ni phases with basic 
cP2-CsC1 type structure and vacancies ordered quasiperiodically along the [ 11 11 direction 
(CHATTOPADHYAY, LELE, THANGARAJ and RANGANATHAN [ 19871). Fibonacci phases 
also often occur as intermediate states during the transition icosahedral ++ crystalline or 
decagonal ++ crystalline phase. Examples of the latter case were found in the systems 
Al-Ni-Si, Al-Co-Cu and Al-Cu-Mn (HE, LI, ZHANG and Kuo [1988]; LI and Kuo 
[1993]). 

A stable one-dimensional quasicrystal as transformation product from the decagonal 
phase was found in a fully annealed Al,,Cu,~e,@n, sample. It has six-layer periodicity 

* A crystalline phase with a structure closely related to that of a quasicrystal is called an approximant. If both 
structures can be transformed into each other by a rotation in superspace the crystalline phase is called a 
rational approximant. 
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Table A1 
Systems with one-dimensional quasiperiodic (Fibonacci) phases (approximate compositions. given). Stable decagonal 

phases are marked by a star. 

GaAs-AlAs artificial TODD, M~RLIN,  CLARKE, MOHANTY 

Mo-V artificial KARKUT, TRISCONE, ARIOSA and 

AI-Pd, AI-Cu-(Ni) 

AI&& 

A165C~2OCO15 
*AI~sCUZOF~IOM~~ 

*&Fe lopdl5 

and AXE [1986] 

FISCHER [ 19861 
CHATTOPADHYAY, LELE, THANGARAJ and 
RANGANATHAN [ 19871 

HE, LI, ZHANG and Kuo [1988] 

TSAI, INOUE, NZASUMOTO, SATO and 

TSAI, MASUMOTO and YAMAMOTO [1992] 
YAMAMOTO [ 19921 

&5cu2oMni5 

along the original tenfold axis and eight-layer periodicity perpendicular to it (TSAI, 
INOUIE, MASUMOTO, SATO and YAMAMOTO [1992]). Another one was prepared from 
slowly cooled A1,,Pd,5Felo (TSAI, MATSUMOTO and YAMAMOTO [ 19921). Its structure can 
be derived from a decagonal quasicrystal by introducing a finite linear phason strain." 

By means of molecular beam epitaxy, Fibonacci phases were constructed from GaAs 
and AMs layers (TODD, MERLIN, CLARKE, MOHANTY and AXE [1986]), as well as from 
Mo and V layers (KARKUT, TRIscom, ARIOSA and FISCHER [1986]), in order to study 
their physical properties. 

3.2. lbo-dimensional quasicrystals 

Two-dimensional quasicrystals consist of quasiperiodically ordered atomic layers 
which are stacked periodically. They combine the structural characteristics of both 
quasicrystals and regular crystals in one and the same sample. According to their 
diffraction symmetry octagonal, decagonal and dodecagonal quasicrystals are known so 
far. 

3.2.1. Octagonal phases 
The known octagonal phases (table A2) are all metastable and closely related to the 

cF2O-pMn type, whose lattice parameter, a=6.315 A, is preserved along the translation- 
ally periodic direction of the quasiperiodic phases (fig. A8). 

* A strain field introduced parallel to the perpendicular space is called a phason-strainfield. In the case of a 
uniform shift of the hyperatoms along the perpendicular space coordinates one gets a Zinearphason-strainfiezd. 
This is equivalent to rotating the hypercrystal relative to to the parallel space, producing a rational approximant. 

References: p .  408. 
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Table A2 
Systems with octagonal phases (approximate compositions given). In the second column the translation period 

along the eight-fold axis is given. 

Ni,,SiV,, 
Cr5Ni,Si, 
Mn,Si 
Al,Mn,,Si,, 6.2A WANG, FUNG and KUO [1988] 
Fe-Mn-Si WANG and Kuo [1988] 

WANG, CHEN and Kuo [1987] 

CAO, YE and Kuo [1988] 6.2A 

3.2.2. Decagonal phases 
Decagonal phases (table A3) are built in many cases from quasiperiodically packed 

columnar clusters with eigensymmetry lO,/mmc or 10,mc. The clusters are periodic along 
their tenfold axes, their translation periods can be -4 A, -8 A, -12 A, -16 A, -24 A and 
-36 8, corresponding to stackings of 2,4, 6 ,  8, 12 and 18 flat or puckered atomic layers. 
All decagonal phases have needle-like decaprismatic crystal morphology, indicating 
preferred crystal growth along the periodic direction (fig. A9). 

(4 
Fig. A8. (a) HRTEM image taken from octagonal Cr-Ni-Si. Nuclei of the p-Mn structure are marked by an 
arrow. (b) A tiling model of the octagonal phase with p-Mn structure units (hatched) indicated (from WANG 
and Kuo [1990]). 
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Table A3 
Systems with decagonal phases (approximate compositions given). In the second column the translation period 
along the tenfold axis is given. In the third column the closely related crystalline phase (approximant) is listed. 

Stable decagonal phases are marked by stars. 

*Al,,Co,,Cu,, 4 8, A1,& 
*A1,,Co,,Ni15 4 8, A1,,Co4 

*A1,Cu,,Rh,o 4 A Al,,Co, 
*Al,,Ni,,Rh,, 

*A1,,Fe5Ni, 4 A A1&0, 

I ONi 15 4 A  
A1,Ni 4 A  
Fe52Nb1, 4 A Zr,Al, 

*Al1,Co4 88, AI,,Co, 

A1,Mn 12 A p-Al,Mn 
A17g:Fe,,6Mn,9,, 12 A 
*A170SMn16SPd13S l2 pu-A14Mn 

AI-Cr(Si) 12 A Al,&r, 

Al,5Cu,~e15 12 8, Al,,Fe, 
A~6,~r7CU,Fe8 12 8, Al,,Fe, 

A165@u&n15 

A1,Ir 16 8, A1,Ir 
A1,Pd 16 A A1,Pd 
A1,Pt 16 8, A1,Pt 
A1,Os 16 8, Al,,Os, 
A1,Ru 16 A A1,,Ru4 

AI,Rh 16 A Al,Rh, 
A1,Fe 16 A Al,,Fe, 

Al,,Mg,Pd,, 16 8, A1,Pd 

*A1,,Fel$dlo 16 8, A1,,Fe4 
*A1,,Rul,Pd,, 16 8, AI,,Fe, 
*Al,,Os,,Pd,, 16 A AI,,Fe, 
Al$Ji(Si) 16 A Al,(Ni, Si), 

Al,,Cr,,Cu,, 36 A 

STEURER and Kuo [1990] 
STEURER, HAIBACH, ZHANG, KEK and 
LUCK [1993] 
TSAI, INOUE and MAsumtO [1989] 

LEMMERZ, GRUSHKO, FREIBURG and 
JANSEN [ 19941 
ZHANG and Kuo [1989] 
LI and Kuo [1988] 
HE, YANG and YE [I9901 

MA and Kuo E1994 1 
STEURER [ 199 11 
MA and STERN [1987] 
STEURER, HAIBACH, ZHANG, BEELI and 
NISSEN [ 19941 
Kuo [1987] 

HE, Wu and Kuo [1988] 

LIU, KOSTER, MULLER and ROSENBERG 
[ 19921 

MA, WANG and Kuo [1988] 

Kuo [1987] 
BANCEL, HEINEY, STEPHENS, GOLDMAN 
and HORN [1985] 
WANG and Kuo [1988] 
FUNG, YANG, ZHOU, ZHAO, ZHAN and 

KOSHIKAWA, EDAGAWA, HONDA and 
TAKEUCHI [ 19931 

SHEN [1986] 

TSAI, INOUE and MASUMOTO [ 199 11 

LI and Kuo [1988, 19931 

OKABE, FURIHATA, MORISHITA and 
FUJIMORI [ 19921 

References: p .  408. 
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Fig. A9. Single crystals with decaprismatic growth morphology of decagonal (a) Al,,Co,,Ni,,, and (b) 
Al,Co,Cu,, (from TSAI, INOUE and MASUMOTO [1989]). 

Crystals of the decagonal phase epitaxially grown on icosahedral quasicrystals exhibit 
a defined orientation relationship: the tenfold axis of the decagonal phase is parallel to 
one of the fivefold axes of the icosahedral phase. Thus, in many cases decagonal phases 
can be considered as approximants of icosahedral quasicrystals. Stable decagonal phases 
were observed so far in the systems Al-Co-Cu (HE, ZHANG, WU and KUO [1988]), 
Al-Co-Ni, Al-Cu-Rh, Al-Ni-Rh (TSAI, INOUE and MASUMOTO [ 19891) and Al-Me-Pd 
with Me=Mn, Fe, Ru, Os (BEELI, NISSEN and ROBADEY [1991]; TSAI, INOUE and 
MASUMOTO [1991]). The Al-Mn-Pd system is the only one for which both stable 
icosahedral and decagonal phases are known. 

Three different basic decagonal structure types were identified hitherto: A1,Co,,Cu2, 
and Al,,Co,,Ni,, belong to the deca-Al-Co-Cu type, A1,,Mn2,, A1,o~SMn,,,,Pd,, and 
Al,,Cu,,Cr,Fe, to the deca-Al-Mn type, Al,d;e,$d,,, Al,,Ru,$d,,, Al,,Os,,Pd,, and 
Al,,Mn,Pd, to the deca-Al-Fe-Pd type. In all cases the most probable superspace group 
of the average structures is PlO,/mmc (table A4). 

It is remarkable that all three decagonal structure types result from different stacking 
sequences of only three types of layers: A, B and C. In all cases, similar columnar 
clusters are formed with interplanar bonds stronger than intraplanar ones. It is also 
noteworthy that the electron density maps, projected along the tenfold axis, show the 
respective hyperatoms all centered at the same special positions on the [11110] diagonal 
of the five-dimensional unit cell, as is the case for a general Penrose tiling. This means 
that at least a substructure of any decagonal phase shows close resemblance to a 
decorated Penrose tiling. For the description of the full structure, however, only a context 
dependent decoration is adequate. 
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Multiplicity 

4 

2 

Table A4 
Selected symmetry information on the five-dimensional superspace group P105/mmc. p is an integer with 

OSp 24. Reflection condition: h,h2h,Ii,h,=2n. 

Wyckoff position site symmetry coordinates 

C 5m k(pl5 p15 p15 p15 x,) 
+@I5 p15 pl5 pl.5 +-xJ 

__ 
b 1om2 &@I5 p15 pl5 p15 t )  

1 2 a Sm2 (0 0 0 0 O), (0 0 0 0 3) 

Deca-Al-Co-Cu type: 
For AI-Co-Cu, there exist studies on phase equilibria and transformation properties 
(GRUSHKO [1993]; DAULTON, KELTON, SONG and RYBA [1992]; DONG, DUBOIS, 
DEBOISSIEU and JANOT [ 1991]), on structural relationships to approximants (LIAO, Kuo, 
ZHANG and URBAN [1992]; DONG, DUBOIS, KANG and AUDIER [1992]; DAULTON and 
KELTON [1992]; SONG and RYBA 119921; Kuo [1993]), on twinning and microdomain 
structures (SONG, WANG and RYBA [1991]; LALJNOIS, AUDIER, DENOYEN, DONG, DUBOIS 
and LAMBERT [ 1990]), as well as investigations using high-resolution transmission 
electron microscopy (€€REM) (REYES-GASGA, LARA, RIVEROS and JOSE-YACAMAN 
[1992]; HIRAGA, SUN and LINCOLN [1991]), the extended X-ray absorption fine structure 
( E M S )  technique (DONG, Lu, YANG and SHAN [ 1991]), scanning tunneling micro- 
scopy (KORTAN, BECKER, THIEL and CHEN [1990]), or fast-ion channeling (PLACHKE, 
KUPKE, CARSTANJEN and EMNCK [1993]). For Al-Co-Ni the stability range between 
500" C and the melting point was investigated (KEK [1991]), and a wealth of HRTEM and 
electron diffraction studies of the decagonal phase in comparison with its approximant phases 
was performed (e.g., HIRAGA, LINCOLN and SUN [1991]; EDAGAWA, ICHIHARA, SUZUKI 
and TAKEUCHI [1992]). Also a large number of theoretical studies have been published 
dealing with structure modelling or tiling decoration to understand the rules governing 
the formation of quasiperiodic phases (HENLEY [1993]; R o w  [1993]; WIDOM and 
F'HILLIPS [1993]; KANG and DUBOIS [1992]; BURKOV [1991]; BURKOV [1992]). 

From the results of the five-dimensional single crystal X-ray structure analyses of 
decagonal Al&o,,Cu, (STEURER and Kuo [ 19901) and A1,0Co,5Ni,, (STEURER, 
HAIBACH, ZHANG, KEK and LOCK [1993]), the following characteristics of the deca-Ai- 
Co-Cu structure type can be derived: 

(1) Two-layer structure with approximate translation period 4 A. There are two planar 
layers stacked with sequence Aa (a means A rotated around 36" under the action 
of the 10,-screw axis). At lower temperature a disordered superstructure doubling 
the translation period is observed. 
There are two hyperatoms per asymmetric unit on the special Wyckoff position 
(b): one with p = 2 consisting mainly of transition metal (marked l), and one with 
p = 4  (marked 2) consisting of AI atoms (fig. A10). 

(2) 

References: p .  408. 
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0.0 0.5 1 .o 1.5 [ lOOlO]  2.0 

Fig. A10. Characteristic (101 10) section of the five-dimensional electron density of decagonal Al,,Co,,Ni,,. The 
hyperatoms 1, and 2 generate an atomic layer A separated by e2 8, from the symmetrically equivalent layer a 
generated by the I0,screw axis which is parallel to [OOlOO]. 

Shape and chemical composition of the hyperatoms are roughly compatible with 
tiling models like the binary tiling model (BURKOV [1991]), for instance. 
Columnar clusters (0% 20 8,) with eigensymmetry 105/mmc can be identified as 
basic structural units (fig. All) .  Their cross sections can be described as parts of 
a Penrose tiling with edge lengths qz2 .5  A. The unit rhombs are decorated by 
atoms on the vertices and in some cases on the diagonals. 
The global structure can be described as a rhombic tiling with unit tiles of edge 
length ar= 20 8, (equivalent to the distance between two = 20 A columnar clusters), 
decorated by the columnar clusters at the vertices and at one position on the long 
diagonal of the fat rhomb (fig. A12). 
The formation of a network of icosagonal rings of pentagonai and rectangular 
structure motifs may act as weak matching rule stabilizing quasiperiodic tilings 
(fig. A13). 
A closely related approximant structure is that of monoclinic Al,,Co, (HLJDD and 
TAYLOR [ 19621; BARBIER, TAMURA and VERGER-GAUGRY [ 19931). It contains 
locally similar structure motifs (pentagon-rectangle strips) which are arranged in a 
different way (wavy bands instead of icosagons), however (fig. A14). 

Deca-Al-Mn type: 
Decagonal Al,,Mn,, A170.5Mn16,jPd,g and A1,,Cu2,Cr7Fe, are representatives of the deca- 
A1-Mn type with - 12 A translational period. Stable decagonal A170.5Mn16,5Pd13, may be 
considered as Pd-stabilized Al,*Mn,,. There exist several HRTEM (BEELI, NISSEN and 
ROBADEY [1991]; HIRAGA, SUN, LINCOLN, KANEKO and MATSUO [19911; HIRAGA and 
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SUN [1993]; BEELI and NISSEN [1993]) and X-ray diffraction investigations (FREY and 
STEURER [1993]; STEURER, HAIBACH, ZHANG, BEELI and NISSEN [1994]) and also structure 
determinations of the approximants A1,Mn (HIRAGA, KANEKO, MATSUO and HASHIMOTO 
[1993]) and p-AL,, ,,Mn (SHOEMAKER [ 19931). Stable decagonal Al,,Cu,Cr,Fe,, Le., Fe- 
stabilized metastable (?) Al,Cu,,,Cr,,, and its approximants were studied by (LIu, K~STER, 

+ + 
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Fig. A l l .  (a), and (b): Schematic drawings illustrating how the =20 8, columnar clusters (shown in sections) 
agglomerate to a fat decorated Penrose unit rhomb. (c) Stacking principle of the layers A and a along the line 
drawn in the uppermost section of (a). 

MULLER and ROSENBERG [1992]; KANG, DUBOIS, MALAMAN and VENTURINI [1992]). 
The X-ray single-crystal structure analyses of Al,,Mn,, (STEURER [1991]) and 

Al,o,Mnl,,Pdl, ( S T ~ E R ,  HAIBACH, ZHANG, BEELI and NISSEN [1994]) allow the 
characterization of the deca-Al-Mn type in the following way: 

Six-layer structure with approximate translation period 12 A. One puckered (k0.3 
A) layer A (related to the layer a of the deca-Al-Co-Cu type) and one planar layer 
B are stacked with sequence ABAaba. 
Four hyperatoms per asymmetric unit: two on the Wyckoff position (c); one with 
p= 1, x,=O.O63 (marked l), consisting in its core region of transition metal (TM) 
and in its remaining part of AI, and one with p = 3, x5 = 0.1 13 (marked 2), consist- 
ing of Al. Two further hyperatoms are located on Wyckoff position (b), one with 
p=O (marked 4), consisting mainly of Al, and one with p = 3  (marked 5), of 
similar chemical composition as hyperatom 1 (fig. A15). 
Shape and chemical composition of the hyperatoms are roughly compatible with 
tiling models such as the triangular tiling model (BURKOV [1992]; WELBERRY 
[ 1989]), for instance. 
Columnar clusters (diameter = 20 A) with point symmetry lO,/mmc can be 
identified as basic structural units. Their cross sections can be described as sections 
of a Penrose tiling with edge lengths a, = 2.5 A of the unit rhombs (fig. A16). 
The global structure can be described as a random Robinson-triangle tiling with 
unit tiles of edge lengths S = 20 A, and L = TS, decorated by the columnar clusters 
on the vertices (fig. A17). 
The decagonal phase shows close resemblance to the respective icosahedral phase, 
orthorhombic A1,Mn (HIRAGA, KANEKO, MATSUO and HASHIMOTO [1993]), and 
hexagonal p-A&.12Mn (SHOEMAKER [1993]), which has nearly all Mn atoms 
icosahedrally coordinated. 
Contrary to the phases with deca-Al-Co-Cu type, those with deca-Al-Mn type show 
icosahedral pseudosymmetry and can be considered as rational approximants of 
icosahedral quasicrystals. There is also a larger amount of Mackay icosahedra (MI) or 
fragments of MI present in this structure type than in the other decagonal ones. 
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Fig. A12. (a) HRTEM image of decagonal AI,,Co,,Ni,, (b) simulation image calculated from the 20 8, 
columnar cluster (from HIRAGA [1992]). 
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Fig. A13. Parallel space section with Penrose tiling from the type of q=20 8, rhombs shown in fig. A l l  
indicated. The pentagonal and rectangular structure motifs form a network of interconnected icosagons. 

Deca-Al-Fe-Pd type: 
The stable decagonal phases A18,,Fel,Pdl,, Al,,Ru,,Pd,,, Al,,Os,$d,, (TSAI, INOUE and 
MASUMOTO [ 19911) and Al,,Mn,Pd, (TSAI, YOKOYAMA, INOUE and MASUMOTO [1991]) 
belong to the deca-Al-Fe-Pd type with 16 8, translational periodicity. A1,~el,Pd,, is the 
only one of this group studied so far by X-ray single-crystal diffraction (HAIBACH, 
ZHANG and STEURER [1994]), electron diffraction and HRTEM (TSAI, INOUE and 
MASUMOTO [1993]), and also by Mossbauer spectroscopy (LAWTHER and DUNLAP 
[ 19931). A stable one-dimensional quasiperiodic phase, a rational approximant of the 
decagonal phase, was also identified in the system Al-Fe-Pd (TSAI, MASUMOTO and 
YAMAMOTO [1992]). On the basis of early results, the deca-Al-Fe-Pd type may be 
characterized in the following way: 

(1) Eight-layer structure with approximate translation period 16 8,. Two puckered 
(kO.3 8,) layers A and C, and one planar layer B are stacked with sequence 
CABACaba, with C identical to c. 
Four hyperatoms per asymmetric unit: one on the Wyckoff position (a), one on the 
Wyckoff position (c) with p = 1, x5 = 0.125, and two with p = 0 and 2 on (b). 

(2) 
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Fig. A14. Schematic drawing of the puckered atomic layer of the monoclinic approximant AI,,Co, with the 
same pentagon-rectangle strips as found in the decagonal phase. One unit cell is also drawn in. 

(3) 

(4) 

Shape and chemical composition of the hyperatoms are roughly compatible with 
tiling models like the binary tiling model (BURKOV [1991]), for instance. 
Columnar clusters (0 = 20 A) with point symmetry lO,/mmc can be identified as 
basic structural units. Their cross sections can be described as section of a Penrose 
tiling with edge lengths q ~ 2 . 5  A of the unit rhombs. 
The global structure can be described as a rhombic tiling with unit tiles of edge 
lengths a, = 20 A decorated by the columnar clusters at the vertices and at one site 
on the long diagonal of the fat rhombs. 

(4) 

3.2.3. Dodecagonal phases 
Beside one, probably stable, dodecagonal T4Te phase (KRUMEICH, CONRAD and 

HARBRECHT [1994]), only metastable dodecagonal phases are known so far (table A5). 
These phases are closely related to the tP3O-cCrFe type phases, which are built up from 
hexagon-triangle and triangle-square layers (fig. A18). The c lattice parameter of the (T- 

phase corresponds with 4.544 A to the translation period of the dodecagonal phases. 

3.3. Icosahedral phases 

The icosahedral phases discovered so far (table 6) can be grouped into two main 
c laws  (HENLEY and ELSER [ 19861): the ico-Al-Mn structure type (A) with quasilattice 
constant a, - 4.6 A and free electron per atom ratio of - 1.75, and the ico-AI-Mg-Zn 
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Fig. A15. Characteristic (101 10) section of the five-dimensional electron density of decagonal AI,,,Mn,,,Pd,,. 
The hyperatoms create a six-layer structure ABAaba. 

structure type (B) with 4- 5.2 A and free electron per atom ratio of - 2.1. The A type 
phases contain 54-atom Mackay icosahedra as structural building elements which also 
occur in the approximant a-Al-Mn-Si, while the B type consists of 137-atom Bergmann 
rhombic triacontahedra which are also typical for Frank-Kasper phases like 

Table A5 

period along the twelve-fold axis is given. Stable dodecagonal phases are marked by a star. 
Systems with dodecagonal phases (approximate compositions given). In the second column the translation 

cr70.6Ni29.4 ISHIMASA, NISSEN and FUKANO [ 19851 

CHEN, LI and Kuo [I9881 } Ni2V, 4.5 A 
Ni,,SiV,, 4.5 A 
*Ta,Te 20.7 8, KRUMEICH, CONRAD and HARBRECHT 

[ 19941 
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Mg,,(Al,Zn), for instance. The A-type icosahedral phases are mostly aluminum- 
transition metal compunds contrary to the B-type phases which rarely contain transition 
metals. 

The first quasicrystal structure ever studied was that of metastable ico-Al-Mn and 

(a) 

Figure continued on p .  394 
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Fig. A16. (a) Schematical drawings illustrating how the =20 8, columnar clusters (shown in sections) agglomer- 
ate to a Robinson triangle (coincidence lines are dotted). (b) Stacking principle along the full line drawn in the 
uppermost section of (a). The pentagons and decagons in the right upper part marked by a bracket form one 
half of a 54-atom Mackay icosahedron illustrated in (c). 

structural resolution. The discovery of very well ordered icosahedral quasicrystals in the 
systems A l 4 - M e ,  with Me=Fe, Ru, Os (TM, INOUE and MASUMOTO [1987]; TSAI, 
INOUE and MASUMOTO [ 1988lb) and Al-Me-Pd, with Me = Mg, Mn, Re (TSAI, INOUE, 
YOKOYAMA and MASUMOTO [ 19901; KOSHIKAWA, SAKAMOTO, EDAGAWA and TAKEUCHI 
[1992]) brought the turning point. During the last years, structure analyses focused on 
ico-Al-Cu-Fe (CORNIER-QUIQUANDON, QUIVY, LEFEBVRE, ELKAIM, HEGER, KATZ and 

MOZER [ 19931) and ico-Al-Mn-Pd (BOUDARD, DEBOISSIEU, AUDIER, JANOT, HEGER, 
BEELI, NISSEN, VINCENT, IBBERSON and DUBOIS [ 19921). In both cases, the ternary phase 
diagrams have been intensively investigated and the phase transitions studied (AUDIER, 
DURAND-CHARRE and DEBOISSIEU [1993]). 

GRATIAS [ 199 11; CORNIER-QUIQUANDON, BELLISENT, CALVAYRAC, CAHN, GRATIAS and 

3.3.1. Brimitbe hypercubic icosahedral phases 
Representatives of stable quasicrystals with superspace group Pm% are ico- 

Al,M[n,,Si, (JANOT, DEBOISSIEU, DUBOIS, and PANNETIER [ 1989]), ico-Al,CuLi, 
(DEBOISSIEU, JANOT, DUBOIS, AUDIER and DUBOST [ 19911; YAMAMOTO [1992]), ico- 
G~,$4g36.7Z&,2,, (OHASHI and SPAEPEN [ 19871) and ico-Al,,M&Pd,, (KOSHIKAWA, 
SAKAMOTO, EDAGAWA and TAKEUCHI [1992]). The structures of ico-Al,,Mn,,S& and ico- 
Al6CuiL1, (fig. A19) were analysed using X-ray powder diffraction and neutron scattering 
techniques. Of the large number of papers dealing with other structure sensitive methods, 
only two HRTEM studies will be quoted (HIRAGA [1991]; NISSEN and BEELI [1993]). 
The results are shortly summarized as follows: 

References: p .  408. 
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Table A6 
Systems with icosahedral phases (approximate compositions given). The quasilattice constant q=l/a*,,, is 
listed in the second column. The structures with face-centered hypercubic unit cells are. marked by F, the 
ico-AI-Mn-Si structure type is labeled by A, and that of ico-(AI, Zn)-Mg by B. Stable quasicrystals are 

marked by asterisks. 

A1-MO 

A1,Ru 
A14V 4.75 A 
A1-W 

AI(Cr,,Fex) 
Al(Mn,-,Fe,) 
A162Cr19Si,9 4.60 A 

A165Cu20Mn15 F 
*A~~,CU~OOS~, 4.51 8, F 
*A1,,Cu20Ru,5 4.53 8, F 
A165Cu20V,5 4.59 A 
A17,,FemTa,, 4.55 A 
A173Mn2,Si, 4.60 A 
A4&n20Ge20 
A175.5Mn17.5RU4Si3 

Al,Mn,,,Fe,,Si, 4.59 a 
AI,5Mnl,Cr,Si, 

*A170,5Mn8,5P&1 4.56 A F 
*A170,,P~o,,Re, 4.60 F 

*AI-Mn-Pd-B 4.55 A F 
"AI-Cu-Mn-B 4.51 A F 

A 
A 

A 

A 

A 
A 

A " 1  
A 
A 

A 

A 

A 
A 

A 

A " 1  
A 
A 
A 
A 
A 

A 
A 

A 

A " 1  

ZHANG, WANG and Kuo [1988] 
BANCEL, HEINEY, STEPHENS, GOLDMAN 
and HORN [ 19851 
SHECHTMAN, BLECH, GRATIAS and CAHN 
[ 19841 
CHEN, PHILLIPS, VILLARS, KORTAN and 
INOUE [ 19871 
BANCEL and HEINEY [ 19861 
ANLAGE, FULTZ and KRISHNAN [1988] 
CHEN, PHILLIPS, VILLARS, KORTAN 
and INOUE [ 19871 

SCHURER, KOOPMANS and van der 
WOUDE [1988] 
INOUE, KIMURA, MASUMOTO, TSAI and 
BIZEN [1987] 
SRINIVAS, DUNLAP, BAHADUR and 
DUNLAP [1990) 
BANCEL and HEINEY [1986] 

TSAI, INOUE and MASUMOTO [1988a] 
EBALARD and SPAEPEN [1989]; TSAI, 
INOUE and MASUMOTO [1988d] 
HE, Wu and Kuo [1988] 

TSAI, INOUE and MASUMOTO [1988b] 

TSAI, INOUE and MASUMOTO [1988a] 
TSAI, INOUE and MASUMOTO [1988c] 
GRATIAS, CAHN and MOZER [ 19881 
TSAI, INOUE and MASUMOTO [1988d] 
HEINEY, BANCEL, GOLDMAN and STEPHENS 
[ 19861 
MA and STERN [1988] 
NANAO, DMOWSKI, EGAMI, RICHARDSON 
and JORGENSEN [ 19871 

TSAI, INOUE, YOKOYAMA and 
MASUMOTO [ 19901 

YOKOYAMA, INOUE and MASUMOTO [ 19921 
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Table A6-Continued 

A ;\ A 

F F i }  

M72pd25v3 F 
A170Fe13pd17 F 
A172Cr8Pd20 F 

I OPdl 5 F 

* AI-Pd-Cr-Fe F 

* Al- Pd-Mo-Ru 
" Al-Pd-CO-V 

*Al-Pd-W-OS F A 

AlS2Mg,,Pd3, 4.63 8, F 

Ti,Fe 4.72 8, F 
Ti,Mn 4.79 8, F 
Ti,Co 4.82 8, F 

T%6Ni2*si16 F A  

F A  " 1  A~,LMg*Rh,, 

:1 A 
Ti,(N i,V) F A 

v41Ni36si7.3 A 
Pd58.8U'20.6Si20.6 5.14 A A 

*AI,M&Pd,, 5.13 8, B 

*A1,CuLi3 5.04 A B 
A1,CuMg4 5.21 8, B 

A151Cu12.5- 5.05 8, B 
wXm36.5-x) 
Al5&i,,Mgz 5.17 8, F B 

A16AULi3 5.11 8, 
Al,,Zn,,Li,, 5.11 A 
A15dV[g3,Ag,, 5.23 A 

AI-Ni-N b B 

"> 
(A1,Zn),Mg3, 5.15 8, B 
(A1,Zn,Cu),,Mg3, 5.15 8, B 

*Ga,,Mg,,Zn,, 5.09 B 
*Mg-Y-Zn B 
*Mg-Y-Zn-Zr B 

Nb-Fe B 

TSAI, YOKOYAMA, INOW and 
MASUMOTO [ 19901 

YOKOYAMA, TSAI, INOUE, 
MASUMOTO and CHEN [1991] 

KOSHIKAWA, EDAGAWA, HONDA and 
TAKEUCHI [ 19931 

KELTON, GIBBONS and SABES [1988] 

ZHANG, YE and Kuo [1985] 
CHATTERJEE and O'HANDLEY [ 19891 
Kuo, ZHOU and LI [1987] 
POON, DREHMANN and LAWLESS [ 19851 

KOSHIKAWA, SAKAMOTO, EDAGAWA and 
TAKEUCHI [ 19921 

SAINTFORT and DUBOST [1986] 
SASTRY, RAo, RAMACHANDRARAO and 
ANANTHARAMAN [ 19861 
SHEN, SHIflET and POON [1988] 

NIIKURA, TSAI, INOUE, MASUMOTO and 
YAMAMOTO [1993] 

CHEN, PHILLIPS, VILLARS, KORTAN 
and INOm [1987] 
MUKHOPADHYAY, CHATTOPADHYAY, and 
RAGANATHAN [ 19881 

HENLEY and ELSER [1986] 
MUKHOPADHYAY, THANGARAJ, CHATTO- 
PADHYAY and RANGANATHAN 119871 
OHASHI and SPAEPEN [ 19871 
Luo, ZHANG, TANG and ZHAO [1993] 
TANG, ZHAO, Luo, SHENG and ZHANG 
[ 19931 
Kuo [1987] 
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Multiplicity 

6 

Table A7 
Selected symmetry information on the six-dimensional superspace group Pm% 

Wyckoff position site symmetry coordinates 

C mS ~ ( 1 0 0 0 0 0 )  

1 b m3S & ( l  1 1  1 1  1) 

1 a m55 (0 0 0 0 0 0)  
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Fig. A17. (a) HRTEM image of decagonal A1,0,5Mn,6,5Pd,, with a point to point resolution of 2 A, and (b) 
comparison with the projected decagonal AI-Mn structure (from BEELI and NISSEN [1993]). (c) Physical space 
projection of the electron density of decagonal 5Mn,6, 5Pd,, with large, and small ROBINSON triangles drawn 

The hyperatoms occupy the Wyckoff positions (a), (b) and (c) (table A7), Le., the 
vertices, the body center and the mid-edge positions of the six-dimensional 
hypercubic unit cell. In the case of ico-Al,,Mn,,Si,, one hyperatom is centered at 
(a), its core consisting of Mn and the surrounding part of AUSi. The second 
hyperatom is located at the body center (b), (c) remains unoccupied. Ico-Al,CuLi, 
has AUCu-hyperatoms at (a) and (c), and one Li-hyperatom at (b) (figs. A20 and A21). 
The structures of ico-A1,,Mn,,Si6, ico-Al,CuLi, and their related crystalline phases 
show close resemblance in the six-dimensional description. This confirms the 
assumption that cubic ( Y - A ~ ~ ~ M ~ , ~ S ~ , ,  and R-Al,CuLi, are (1,l)-approximants 
related to the icosahedral phases merely by a hyperspace rotation. 
There exist orientation relationships for epitaxially grown a-Al,,Mn,,Si,, on 
icosahedral Al,,Mn,,Si,: [loo] of the cubic phase is parallel to a twofold direction 
of the icosahedral phase, and [ 11 11 is parallel to a threefold one. 
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Fig. A18. Dodecagonal tiling as example for a quasilattice with twelve-fold symmetry. 

Fig. A19. Single crystal of ico-Al,,CuLi, with triacontahedral shape (from KORTAN, CHEN, PARSEY and 
K~MERLING [1989]). 
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(4) cr-AI,,Mn,,Si,, contains a high percentage of atoms forming slightly distorted 
Mackay icosahedra (78.3%), and its structure can be described by a near-bcc 
packing of these 54-atom polyhedra. Ico-A1,,Mn,,Si6, on the other hand, contains 
66.6% of atoms in regular but often fragmented Mackay icosahedra. 
R-Al,CuLI, can be described as bcc packing of distorted Pauling triacontahedra or 
104-atoms Samson complexes (fig. A22). These structure motifs are also locally 
present in ico-A&CuLi,. In the Penrose tiling description, there are icosahedral 
clusters placed on the twelvefold vertices. 

(5) 

3.3.2. Face-centered hypercubic icosahedral phases 
The face-centering of the six-dimensional hypercubic unit cell results from chemical 
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Fig. A21. Hyperatoms of the ideal ico-Al,CuLi, structure derived from the R-AI,CuLi, structure: (a) vacant 
twelve-fold, (b) vertex AYCu, (c) mid-edge AYCu, (d) body-center Li surrounded by (e) AVCu hyperatoms. The 
domain (a) has to be subtracted from (b) to remove unoccupied twelve-fold vertices (from YAMAMOTO [1992]). 

ordering of the atoms. Therefore, the resulting structure may also be described as a 
superstructure, with twice the lattice parameters of the primitive hypercubic unit cell used 
in the preceding paragraph: the Wyckoff positions occupied are often named n, = (0 0 0 
0 0 0), n,=)(l 0 0 0 0 0), bc,=f(l 1 1 1 1 1) and bc,=f(l 1 1 1 1 1). 

Representatives of stable quasicrystals with superspace group Fm% are ico- 
Al-Cu-Me, with Me=Fe, Ru, Os (TSAI, INOUE and MASUMOTO, 1989; TSAI, INOUE and 
MASUMOTO [ 1988bl) and ico-Al-Me-Pd, with Me=Mn, Re (TSAI, INOUE, YOKOYAMA 

ELKAIM, HEGER, KATZ and GRATIAS [ 199 11; CORNIER-QUIQUANDON, BELLISENT, 
CALVAYRAC, CAHN, GRATIAS and MOZER [ 19931) and ico-Al,,,Mn,,Pd,, (BOUDARD, 
DEBOISSIEU, AUDIER, JANOT, HEGER, BEELI, NISSEN, VINCENT, IBBERSON and DUBOIS 
[ 19921) were analysed using X-ray diffraction and neutron scattering techniques on 
single- and polycrystalline samples, and by HRTEM (BEELI, NISSEN and ROBADEY 
[1991]; HIRAGA [1991]; KRAKOW, DI VINCENZO, BANCEL, COCKAYNE and ELSER 
[ 19931). Ico-A1,,Cu,,Ru1, was investigated by anomalous X-ray diffraction on poly- 
cnstalline samples (Hu, EGAMI, TSAI, INOUE and MASUMOTO [ 19921). The results of the 
structure analyses can be summarized briefly: 

(1) The hyperatoms occupy the positions n,, n,, bc, and bc,, i.e. the vertices, mid-edge 
positions, and body centers of the subhypercubes of the six-dimensional face- 
centered hypercubic unit cell. In the case of ico-Al,,Cu,,Fe,,, Fe is concentrated at 

and MASUMOTO [ 19901). ICO-A1,,CU2,Fe,2 (CORNIER-QUIQUANDON, QUIVY, LEFEBVRE, 

References: p .  408. 



404 m! Steurer App. Ch. 4, 9 3  

Y 

P 
C .- .- 
a 

2 ". a 
L 
a 
P 

the core of hyperatoms centered on n, and n2 and surrounded by successive shells 
of Cu and Al. Cu also occupies the body center bc,, while bc, remains unoccupied. 
For ico-A1,0,,Mn8,,Pd,, (fig. A23) was found that Mn occupies the core of the 



App. Ch. 4, $ 3  The structure of quasicrystals 405 

b 

Fig. A23. (a) Single crystal of ico-AI,,Mn,$d,, with shape like an (b) icosidodecahedron (from TSAI, INOUE, 
YOKOYAMA and MASUMOTO [1990]). 

hyperatom on n, surrounded by an intermediate Pd and one outer A1 shell, the 
hyperatom at n2 consists of Mn surrounded by Al; at bc, a small Pd and at bc, 
possibly a small A1 hyperatom may be located (fig. A24). 
The shapes of the hyperatoms for Al,,Cu,,Fe,, were assumed as a large triaconta- 
hedron at n,, a truncated triacontahedron of the same size at n2 and a small 
polyhedron bounded by twofold planes at bc, (fig. A25). For A1,,,,Mn8,,Pd2, only 
spherical hyperatomic shapes were used in the refinements. 
Since the hyperatoms at the lattice nodes have a subset in common with the 
triacontahedra generating a canonical Penrose rhombohedra tiling, also a subset of 
the atoms in the three-dimensional quasicrystal structure is located on the vertices 
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of a Penrose tiling. The location of the other atoms, however cannot be described 
by a simple decoration of the unit tiles, a context dependent decoration would be 
necessary. 
In the three-dimensional structure of ico-A1,0,,Mn,,5Pd,, two types of pseudo- 
Mackay cluster are present: type 1 refers to a large icosahedron of MdA1 and a 
icosidodecahedron of PdAl, type 2 to a large icosahedron of Mn/Pd and a 
icosidodecahedron of Al. The small icosahedron core of MI is absent. 

(4) 
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Fig. A25. The shapes of the hyperatoms in ico-AI,Cu,,Fe,,. (a) Fe/Cu/Al triacontahedral hyperatom in the 
origin n,, (b) mid-edge (n,) Fe/Cu/Al hyperatom, and (c) CdAl hyperatom at bc, (from 
CORNIERQUIQUANDON, QUIVY, LEFEBVRE, ELKAIM, HEGER, KATZ and GRATIAS [ 19911). 
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I .  Introduction 

Metallurgical thermodynamics is concerned with the equilibrium states of existence 
available to systems, and with the effects of external influences on the equilibrium state. 
The thermodynamic state of a system is defined in terms of state variables (or state 
functions) and the state variables occur in two categories; intensive variables such as 
pressure, P, and temperature, T, the values of which are independent of the size of the 
system, and extensive variables such as internal energy, U, and volume, V, the values of 
which are dependent on the size of the system. The simplest equation of state is the ideal 
gas law, 

PV = nRT 
where n is the number of moles of the gas and R is the universal gas constant. In 
considering a fixed quantity of ideal gas, only two of the state functions in eq. (1) are 
independent and the other is dependent. Thus, in a three-dimensional diagram employing 
P, V and T as ordinates, the equilibrium states of existence of the fixed quantity of gas 
lie on a definite surface. In any reversible change of state of the gas the path of the 
process lies on this equilibrium surface, such that, in moving from the initial to the final 
state, the gas passes through a continuum of equilibrium states. Under such conditions 
the work, w, done on or by the gas during the process is given by: 

and thus the magnitude of w is dependent on the actual process path taken over the 
equilibrium surface between the final and initial states. In an irreversible process the 
state of the gas momentarily leaves the equilibrium surface while moving between the 
initial and final states. 

1.1. The First and Second Laws of Thermodynamics 

When a system undergoes a process in which it moves from one state to another, the 
change in the internal energy of the system, AU, is given by: 

where q is the heat entering or leaving the system and w is the work done on or by the 
system during the change of state. For an increment of the process the change is: 

(4) 
Equations (3) and (4) are statements of the FirstLaw of Thermodynamics. By convention, 
heat entering the system and work done by the system are positive quantities. Equation 
(3) is remarkable in that, although the individual values of q and w are dependent on the 
path taken by the system between the initial and final states, their algebraic sum (which 
is the difference between U, and U,) is independent of the process path. Thus integration 
of eq. (4) to obtain eq. (3) requires that the process path be known and that the process 

dU = dq - dw. 



Ch. 5 ,  J 1 Metallrrrgical rhemodynamics 415 

be conducted reversibly. 
The Second Law of Thennodynamics states that, for a reversible change of state, the 

integral of dq/T is independent of the process path. As one of the properties of a state 
function is that the difference between the values of the hnction in any two thermo- 
dynamic states is independent of the process path taken by the system in moving 
between the two states, the term dq/T is the differential of a state function. The state 
function entropy, S, is thus defined as: 

dS = dq ,  1 T .  

If change in volume against an external pressure is the only form of work performed 
during a reversible change of state of a closed system, the work performed is given by 
eq. (2), and substitution of eqs. (2) and (5) into eq. (4) gives: 

(6) 

Equation (6), which is a combination of the First and Second Laws of Thermodynamics, 
gives the variation of U (as the dependent variable) with S and V (as the independent 
variables). 

From consideration of the difference between reversible and irreversible processes 
and the Second Law, eq. (6) gives the following criteria for thermodynamic equilibrium 
in a closed system of fixed composition: 

du = T ~ S  - pav. 

(i) 
(ii) 

S is a maximum at constant U and V; 
U is a minimum at constant S and V. 

Equation (6) involves the extensive thermodynamic properties S and U as independent 
variables. Although it is possible to measure and, with sufficient ingenuity on the part of 
the experimenter, to control the volume of a system, experimental control of the entropy 
of a system is virtually impossible, and consequently the criteria for equilibrium obtained 
from eq. (6) are not of practical use. From the practical point of view it would be 
desirable to have an equation as simple in form as eq. (6) but in which the independent 
variables are the intensive properties P and T, both of which are amenable to exper- 
imental measurement and control. Such an equation would also provide a criterion for 
equilibrium in a constant pressureconstant temperature system. 

1.2. Auxiliary thermodynamic functions 

The required auxiliary state functions are generated by Legendre transformations of 
U. For example, in eq. (6), written as 

a Legendre transform, H, of U is obtained using: 
u= UCS, v), 

U - H  
v - 0  (7) 

At constant S, the tangent to the variation of U with V passes through the points U =  U, 
V= V and U=H, V= 0. Rearrangement of eq. (7) gives: 

References: p .  469. 
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H = U + P V ,  

dH = dU + PdV + V U .  

cW = TdS -+ VdP, 

which, on differentiation, gives: 

(8) 

(9) 

in which the extensive variable V has been replaced by the intensive variable P.  The 
transform H is called the enthalpy. 

Substitution of eq. (6) into eq. (8) gives: 

Writing eq. (9) as 
H =  H(S, P) ,  

a Legendre transform, G, of H is obtained as: 

T = ( S )  =- H-G 
p s-0  

or: G = H - TS, 
which, on differentiation, gives: 

dG = dH - TdS - SdT = -SdT + V U ,  
in which the extensive variable S has been replaced by the intensive variable T. This 
transform, G, is called the Gibbsfree energy. Being dependent on the independent 
variables T and P,  the Gibbs free energy is the most useful of thermodynamic functions 
and provides the practical criterion that, at constant T and P, thermodynamic equilibrium 
is established when the Gibbs free energy is minimized. 

A third Legendre transform yields the Helmholtz free energy, or work function A, 
defined as 

A =  U-TS. 
In a multicomponent system containing n1 moles of component 1, n2 moles of 

component 2, ni moles of component i ,  etc.: 

and thus, 
G = G(T, P,  nl, n2, ..., ni) 

The derivative 

is of particular significance and is called the chemical potential, pi, or the partial molar 
free energy, q, of the component i .  Thus, in view of eq. (ll), eq. (12) can be written as 
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dG = -SdT + VdP + @ni, (13) 

and the equilibrium state of any system undergoing any type of reaction at constant 
temperature and pressure can be determined by application of this equation. 

2. Metallurgical thermochemistry 

2.1. The measurement of changes in enthalpy 

In order to distinguish between the value of an extensive property of a system 
containing n moles and the molar value of the property, the former will be identified by 
the use of a prime (3, e.g., with respect to enthalpy, H' =nH. 

From eqs. (5) and (9), for a process occurring reversibly at constant pressure P: 
dH' = dq, 

which, on integration, gives: 

Thus, in a system undergoing a process in which the only work performed is the work 
of expansion or contraction against the constant pressure P, the change in enthalpy, A H f ,  
can be measured as the heat qp entering or leaving the system during the constant 
pressure process. In the case of heat entering the system the process involves an increase 
in the temperature of the system and the constant pressure molar heat capacity, c,, is 
defined as: 

AH' = qp. 

The constant pressure molar heat capacity of a system can be measured by the methods 
of calorimetry. In metallurgical applications the measured values are fitted to an equation 
of the form 

cp = a + b~ + CT-~.  

For example, the constant pressure molar heat capacity of solid silver varies with 
temperature in the range 298-1234 K as: 

- 21.3 + 8.54 x 10-3T + 1.51 x 105T-2J/K mole 
cP.&(.) - 

and hence, from eq. (14), the difference between the molar enthalpy of solid Ag at a 
temperature T and the molar enthalpy at 298 K is 

Refarences: p ,  469. 
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= 21.3(T - 298) -!- 4.27 x 10"(T2 - 2982) 

- 1.51 x 105(L T - L ) J / m o l e ,  298 

which is thus the quantity of heat required to raise the temperature of one mole of solid 
Ag from 298 K to T. 

Transformation of a low-temperature phase to a high-temperature phase involves the 
absorption of the latent heat of the phase change, e.g., the transformation of one mole of 
silver from the solid to the liquid state at the normal melting temperature of 1234 K 
requires a heat input of 11.09 kJ. Thus at 1234 K the molar enthalpy of melting of Ag, 
AH,, is 

- 
AHm,Ag.1234K - *Ag(1),1234K - *Ag(s),1234K = 1'09kT* 

The molar heat capacity of liquid Ag is independent of temperature, ~ ~ , ~ ~ ~ , ~ = 3 0 . 5  J/K 
mole, and the difference between the molar enthalpy of liquid Ag at a temperature T and 
the molar enthalpy of solid Ag at 298 K is 

As chemical reactions involve the absorption or evolution of heat, they also necessar- 
ily involve changes in enthalpy. For example, when conducted at 298 K, the oxidation 
reaction 

2Ag(,) + 3 0 2 ( g )  = *g20(,) 

is accompanied by the evolution of 30.5 kJ of heat per mole of Ag20 produced. Thus, 

q = AH = -30.5kJ, 

or the system existing as one mole of Ag20 has an enthalpy of 30.5 kJ less than the 
system existing as two moles of Ag and half a mole of oxygen gas at 298 K. 

As the enthalpies of substances are not measurable quantities, i.e., only changes in 
enthalpy can be measured (as the evolution or absorption of heat), it is conventional to 
designate a reference state in which the relative enthalpy is zero. This reference state is 
the elemental substance existing in its stable form at 298 K and P = 1 atm. In practice the 
designation of P = 1 atm is relatively unimportant as the enthalpies of condensed phases 
are not significantly dependent on pressure and the enthalpy of an ideal gas is indepen- 
dent of pressure. Thus, in the above example: 

AH,% = HAg$3(~),298 - 2HAg(s),298 -- H02(g),298. 
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As HAg(s),298 and Ho(g),298 are arbitrarily assigned values of zero, the relative molar 
enthalpy of Ag,O at i98 K is simply equal to the experimentally-measured molar heat of 
formation of Ag20 at 298 K. At any other temperature T: 

mT = HAg20,T - 2HAg.T - 3 H 0 2 , T  

where 
1 

“p = ‘p.Ag20 - 2cp,Ag - T cp,02‘ 

The enthalpy-temperature diagram for the oxidation of silver is shown in fig. 1. 

2.2. The measurement of entropy 

From eqs. (5) and (14), we find: 

Thus, the variation of entropy with temperature at constant pressure is obtained from 
measured heat capacities as 

T C  
ST = So + X d T .  

O T  
Nernst’s heat theorem, which is also known as the Third Law of Thermodynamics, 

states that all substances at complete internal equilibrium have zero entropy at 0 K, Le., 
S,,=O. Thus, in contrast to enthalpies, the entropies of substances have absolute values. 

According to Gibbs, entropy is a measure of the degree of disorder in a system. Thus 
the entropy of the gaseous state is greater than that of the liquid state, which, in turn, is 
greater than that of the solid state. The transformation of a solid to a liquid at the normal 
melting temperature, T,, involves the absorption of AH, per mole. Thus, at T,, the molar 
entropy of the liquid exceeds that of the solid by the molar entropy of fusion, AS,, given 
by eq. (5 )  as: 

ASm = AH,,, i T,. 

This corresponds with the fact that the liquid state is more disordered than the solid state, 
and ASm is a measure of the difference in degree of order. For simple metals, with 
similar crystal structures and similar liquid structures, AS, lies in the range 8-16 J/K. 
This correlation is known as Richard’s rule. Similarly, at the normal boiling temperature, 
Tb, the molar entropy of boiling, AS,, is obtained from the molar heat of boiling as: 

References: p .  469. 



420 D. R. Gaskell Ch. 5, 82 

1 1 1 1 1 1 1 1 1 1 1 l  
200 400 600 800 1000 1200 1400 

temperature, K 

Fig. 1. The enthalpy-temperature diagram for the reaction 2Ag+fO,=Ag,O. 

For simple metals ASb= 88 J/K, which indicates that the difference in disorder between 
the gaseous state at 1 atm pressure and the liquid state significantly exceeds the 
corresponding difference between the liquid and solid states. The correlation = 88Tb 
is known as Trouton’s rule. 

Although the degrees of disorder, and hence the entropies of condensed states, are not 
noticeably dependent on pressure, the entropy of a gas is a significant function of 
pressure. As the internal energy, V ,  of an ideal gas is dependent only on T, an iso- 
thermal compression of an ideal gas from P, to P2 does not involve a change in V.  
Thus, from eq. (3), the work of compression, w, equals the heat transferred from the gas 
to the isothermal surroundings at the temperature T. This transfer of heat from the gas 
decreases its entropy by the amount 
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which, from eq. (l), gives: 

Thus 

Si - S; = nRln(P,/P,), 

which corresponds with the fact that a gas at high pressure is a less disordered state than 
a gas at low pressure. 

As changes in entropy are caused by the transfer of heat, chemical reactions involving 
heat changes necessarily involve changes in entropy. At 298 K and 1 atm pressure, the 
molar entropies of Ag,,,, OZk, and Ag,O,, are 42.7, 205 and 122 JK, respectively. Thus 
the entropy change for the oxidation 

at 298 is: 

AS = 122 - (2 x 42.7) - (0.5 x 205) = -65.9 J/K mole. 

This can be viewed in two ways: (i) the entropy decrease is due to the loss of the heat 
of oxidation from the reacting system, or (ii) the degree of disorder in the system 
existing as one mole of Ag,O is less than that when the system exists as two moles of 
Ag and half a mole of oxygen gas at 1 atm pressure. 

The variation, with temperature, of the entropy change for the reaction is determined 
by the heat capacities of the reactants and products as: 

The entropy-temperature diagram corresponding to fig. 1 is shown in fig. 2. 

due to a chemical reaction occurring at a temperature T, AGp is 
From the definition of Gibbs free energy, eq. (lo), the change in Gibbs free energy 

AG, = AH, - TAS. 

Thus, the variation of the change in Gibbs free energy with temperature can be 
determined from measurement of the variation, with temperature, of the constant pressure 
molar heat capacities of the reactants and products and measurement of the enthalpy 
change of the reaction at one temperature. For the oxidation of solid silver, such data 
give 

AG, = -34200 + 87.9T - 1.76TlnT - 10.8 x 10-3T2 
(16) + 3.2 x 105T-'Jlmole Ag20. 

References: p .  469. 
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Fig. 2. The entropy-temperature diagram for the reaction 2Ag+@, = Ag,O. 

3. Phase equilibrium in a one-component system 

At constant T and P the equilibrium state is thit in which the Gibbs free energy has 
its minimum possible value. In a one-component system the states of existence available 
are the gaseous and liquid states and the various allotropic or polymorphic forms of the 
solid state. At any T and P the state with the lowest Gibbs free energy is the stable state. 
For the transformation 

solid + liquid: 

AG,,, ( P ,  T )  = G(ll (P,  T )  - G(s, (P,  T )  = AH, ( P ,  T )  - TAS, ( P ,  T).  (17) 

If AGm is negative, the transformation decreases the Gibbs free energy of the system 
and hence the liquid is stable relative to the solid. Conversely, if AG, is positive the 
solid is stable relative to the liquid. As absolute values of enthalpy cannot be measured 
it follows that absolute values of Gibbs free energy cannot be measured. Thus only 
changes in G can be measured. 

The solid and liquid phases coexist in equilibrium with one another in that state at 
which AGm=O, Le., where G(,,=G,,. From eq. (15), at any pressure P this equilibrium 
occurs at the temperature T, given by 



Ch. 5,  $ 3  Metallurgical thermodynamics 423 

T, = AH,/hS,, 

and hence T, is the equilibrium melting temperature of the solid at the pressure P. From 
eq. (lo), G is decreased by decreasing H and increasing S and hence nature prefers states 
of low enthalpy and high entropy. As H,,, > Hco and S,, > S(s, the enthalpy contribution to 
G favors the solid as the stable state and the entropy contribution favors the liquid as the 
stable state. In eq. (17) the entropy contribution to AG is temperature-dependent and the 
enthalpy contribution is not. Thus, at high temperatures the former contribution domi- 
nates, at low temperatures the latter contribution dominates, and at a unique temperature 
T, the two contributions cancel to make AG=O. 

For the two-phase equilibrium to exist, 

G(l) = G(.$,, 

dG(1, = q s ,  

and maintenance of the two-phase equilibrium with variation in T and P requires that T 
and R be varied in such a manner that 

or, from eq. (ll), such that 

-S(,)dT t yl,dP = -S(,dT t ys)dP, 

i.e., 

(0 1 d~)eq = ('(1) - '(3)) / ( ~ 1 1 -  YE)) = Urn/Avrn 

(dP/dT)eq = AH,/TAV,. (18) 

As equilibrium between the two phases is maintained, AH,,, = TAS,: 

Equation (18) is the CZupeyron equation, which, on integration, gives the variation of T 
and P required for maintenance of the two-phase equilibrium. Strictly, integration 
requires knowledge of the pressure and temperature dependences of AH, and AV,. 
However, for relatively small departures from the state P =  1 atm, T,, AH, and AV, can 
be taken as constants, in which case: 

Equation (18) can be applied to condensed phase-vapor phase equilibria by making the 
approximation AV= V(", - V,,,,,, phase, V,, and assuming ideal behavior of the vapor 
phase, Le., V,,,=RT/P, Le., 

Equation (19) is the CZuusius-Clupeyron equation. 

References: p.  469. 
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If AHb (the molar enthalpy of boiling) is not a function of temperature (which 
requires cHv)=cpg)), integration of eq. (19) gives 

1nP = -- mb + const., 
RT 

and if AH, is a linear function of T (which requires that Acp be independent of tempera- 
ture) given by AHbsT= AH, + AcpT, integration gives 

AH, Ac 
RT R 

In P = - - + -In T + const. 

as either (i) the variation of the saturated vapor pressure with temperature or (ii) the 
variation of the equilibrium boiling temperature with pressure. Experimentally measured 
vapor pressures are normally fitted by an equation of the type 

1nP = -A/T + BlnT + C. 

The solid, liquid and vapor states exist on surfaces in G-T-P space. The solid- and 
liquid-surfaces intersect at a line (along which G,,, = G(sJ and projection of this line onto 
the basal P-T plane of the G-T-P diagram gives the pressure dependence of T,. 
Similarly the vapor- and liquid-surfaces intersect at a line, projection of which onto the 
basal P-T plane gives the variation, with temperature, of the saturated vapor pressure of 
the liquid. Similar projection of the line of intersection of the surfaces for the solid and 
vapor states gives the variation, with temperature, of the saturated vapor pressure of the 
solid. The three lines of two-phase equilibrium in G-T-P space intersect at a point, 
called the triple point, at which all three phases are in equilibrium with one another. 
Consideration of the geometry of the intersections of the surfaces in G-T-P space shows 
that, in a one-component system, a maximum of three phases can exist in equilibrium. 
Alternatively, as the three phases co-exist in equilibrium at fixed values of T and P the 
equilibrium is invariant, Le., has no degrees of freedom. The phase diagram for H,O is 
shown in fig. 3 and a schematic representation of the section of G-T-P space at 1 atm 
pressure is shown in fig. 4. In fig. 4, the slope of any line at any point is -S for that state 
and hence the “steepness” of the lines increases in the order solid, liquid, vapor. Also the 
curvatures of the lines are ( a 2 ~ / a ~ ” > ,  = - (as/agp = - C / T .  

4. Chemical reaction equilibrium 

From eq. (13), at constant T and P, the Gibbs free energy varies with composition in 
a chemically reacting system as 

dG‘ = c.dni.  

The reaction proceeds spontaneously in that direction which involves a decrease in Gibbs 
free energy, and reaction equilibrium is attained when, thereby, the Gibbs free energy is 
minimized, i.e., when dG’ =O. 

Consider the water-gas reaction 
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Fig. 3. The phase diagram for H,O. 

H * q g )  + C q g )  = Hqg) + co,. 
At equilibrium: 

dG = cH2dnH2 + Gco2dnco2 - cH20dnH20 - Gcodnco = 0 

or, in view of the stoichiometry requirement 

-dnHtO = -dn, = dnH2 = dnCO,: 

dG = (9, + cm2 - GH2, - ~cco)dnH2 = 0 

Thus, at equilibrium: 

The isothermal transfer of a mole of ideal gas i from the pure state at the pressure Pi and 
temperature T to an ideal gas mixture at the partial pressure pi involves a change in 
Gibbs free energy: 

(21) AG = q. - Gi = RTln(pi/4). 

Rejhmes: p .  469. 
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Fig. 4. Schematic representation of the variations of G,,, Gm and G(") with temperature at P =  1 atm for H,O. 

Again, as only changes in Gibbs free energy can be measured, it is convenient to select 
a standard state for the gas and consider the Gibbs free energy of the gas in any other 
state in terms of the difference between the free energy of the gas in this state and the 
free energy of the gas in the standard state. The standard state for an ideal gas at the 
temperature Tis the pure gas at 1 atm pressure and in this state the Gibbs free energy is 
the standard free energy, designated e. Thus eq. (21) can be written as: 

= G: + RTlnpi .  (22) 

Substitution of eq. (22) into eq. (20) and rearrangement gives: 

PH2 PCO2 (G& + GL2 - G&, - G&) = -RT In ___. 
PHZO Pco 

Being the difference between the standard free energies of the products and the standard 
free energies of the reactants, the left-hand side of eq. (23) is termed the standardfree 
energy for the reaction at the temperature T, AG,", and, being dependent only on T, it 
has a definite fixed value at any T. Consequently the quotient of the partial pressures of 
the reactants and products occurring in the logarithm term on the right-hand side of eq. 
(23) has a fixed value at any T. This term is called the equilibrium constant, Kp, and 
hence the equilibrium state in any reacting system is such that 
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AG; = -RTIn K,. 

427 

(24) 

For the general reaction 

Dalton’s law of partial pressures in an ideal gas mixture gives 

pi  = XiP, 

where X, being the ratio of the number of moles of i in the gas to the total number of moles 
of all species, is the moZefpactian of i in the gas and P is the total pressure of the gas. 
Thus 

where K, is the equilibrium constant expressed in terms of the mole fractions of the 
reactiants and products occurring at reaction equilibrium. From the definition of AG:, Kp 
is independent of pressure and hence, from eq. (25), K, is only independent of pressure 
if c+d-a-b=O. 

From eqs. (24) and (15): 

AG; = - R T h  K, = AH: - TAS:. 

Thus 

dln K AH; or 2,- a~ R T , ’  

For the water-gas reaction: 

CO + H,O = CO, + H,; 

AG; = -36400 + 32.OTJ/mole; 

thus 

( 36400 ) (-32.0) 
8.31441 - 8.3144 ’ 

K p  = exp - 

The reaction of a moles of CO with b moles of H,O produces x moles of each CO, and 
H, and leaves (a - x)  moles of CO and (b - x )  moles of H,. Thus at any point along the 
reaction coordinate in a reacting mixture at the constant pressure P: 

References: p .  469. 
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and at reaction equilibrium: 

Pco2Pn2 - - X 2  

PCOPH20 (a - - ‘1 8.3 144T 8.3 144 
= K, = exp(-) 36400 exp (-) -32.0 

If one or more of the reactants and/or products occurs in a condensed state the 
attainment of equilibrium involves both phase and reaction equilibrium. For example, at 
a temperature T the equilibrium 

2Ag(s) + 3 0 2 ( g ,  = Ag20,,, 

Ag@) = &(,) and Ag20, = Ag,o(,), 

2Ag(”) + 30qg) = Ag,O(,). 

(26) 

requires the establishment of the phase equilibria 

and, in the vapor or gas phase, requires establishment of the reaction equilibrium 

(27) 

Conditions for the phase equilibria are pAg= pig (the saturated vapor pressure of solid 
silver at temperature T )  and pAg,. = pAgZO (the saturated vapor pressure of solid Ag20 at 
temperature T), and thus, as the equilibrium constant K for the vapor phase reaction, 
given by eq. (27), has a fixed value at temperature T, the equilibrium oxygen pressure, 
po2, is uniquely fixed by: 

0 

Alternatively, reaction equilibrium in the vapor phase requires that: 
- 

(28) - 
2GAg(v) + 3 ‘02(g) - G A g 2 0 ( ~ ) ’  

and the two-phase equilibria require that: 

and 

(30) - 
‘A&O(v) - ‘Ag20(s)’ 

From eq. (1 l), at constant T, dG = VdP, and hence eq. (29) can be written as: 

Gpc,) + RTlnPZ = GL(.) + p v*g(s)de (31) 

where G&) is the standard molar free energy of solid Ag at temperature T. The integral 
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on the right-hand side of eq. (31) is negligibly small and hence eq. (31) can be written as: 

G:g(v) + RT In P i g  = G:g(s,. 

Similarly, eq. (30) can be written as: 

Substitution of eqs. (32) and (33) into eq. (28) gives: 

2G:g(s) + + G:z(g) + RTln Pt2* = G&20(s). 

where AG: is the standard free energy change for the reaction given by eq. (26) and 
po2(es,n is the value of po, required for equilibrium between Ag,,, Ag,O,, and oxygen 
gas a t  temperature T. The variations of AH:, -TAS; and AG: [given by eq. (16)] are 
shown in fig. 5. Thus, from eq. (34), pol(en,485K) = 1 atm, at which temperature AGo=O. 
At T<485 K, AG: is a negative quantity and hence pol(qT) < 1 atm. At T>485 K,AG: 
is a positive quantity and hence polces.n > 1 atm. 

5. Ellingham diagrams 

In 1944 ELLINGHAM published diagrams showing the variation, with temperature, of the 
standard free energies of formation of a number of oxides and sulfides, and pointed out that 
these diagrams “would show at a glance the relative stabilities of the various substances 
within a given class at any temperature, and would thus indicate, in a direct fashion, the 
range of conditions required for their reduction to the corresponding elements. It would 
provide, in fact, what might be described as a ground plan of metallurgical possibilities 
with respect to the reduction of compounds of the specified class”. Such diagrams, which 
are now available for a wide range of classes of compounds, are known as EZZinghum 
diagrams, and the Ellingham diagram for oxides is shown in fig. 6. (See also ch. 14, 
p 2.1). 

In order to facilitate comparison of the stabilities of the various oxides, the standard 
free energies are for the reaction 

Le., for reactions involving the consumption of one mole of 0,. By choosing this basis: 
(2-dy)M + 0, = (2/y)MXOp 

and hence, in addition to being a plot of AG: versus temperature, the Ellingham diagram 
is a plot of the variation, with temperature, of the oxygen pressure, po2(q,n, required for 
equilibrium between the metal and its oxide. The free energy change for the change of 
state 02(T, P =  1 atm) 02(T, P =  p,) is: 

References: p .  469. 
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Fig. 5. The variations of AZ& -TA$ and AQT with temperature for the reaction 2Ag +& = Ag,O. 

AG, = RT In po, , 
and thus, in the Ellingham diagram, lines of constant po, radiate from the origin, A@ = 0, 
T = 0 K, with slopes of R In pol.  Consequently, a nomographic scale of p can be placed on 
the edges of the diagram and pol(es) at any point on an Ellingham line is obtained as the 
reading on the nomographic scale which is collinear with the given point and the origin of the 
diagram. The Ellingham diagram is thus a stability diagram, in that any point in the diagram 
lying above the Ellingham line for a given oxide is a state in which pozm >P,,(~, T )  

4 



Ch. 5, 5.5 Metallurgical thermodynamics 43 1 

ZL. .- 
KELVIN temperature,% 

0 
-1 

-2 
-3 
-4 

-6 

-8 

-1 0 

-1 2 

44 

-1 6 

-18 

-20 

-22 

-24 

-26 

-28 

-30 

WpO2 ( a m  \.loo \-8o \a y o  p \ -38 \ -34 

Fig. 6. The Ellingham diagram for several oxides. 

and hence, in d l  states above the line the oxide is stable relative to the metal. Converse- 
ly, any point lying below the Ellingham line for the given oxide is a state in whichpOo 
~ p , , ( ~ ,  and hence, below the line, the metal is stable relative to the oxide. f i e  
Ellingham line thus divides the diagram into stability fields and, if it is required that a 
given oxide be reduced, the thermodynamic state must be moved from a point above the 
Ellingham line for the oxide to a point below the line, Le., must be moved from a 
positlion within the oxide stability field to a position within the metal stability field. 

The magnitude of AG: is a measure of the relative stability of the oxide and hence, 
with increasing stability, the Ellingham lines occur progressively lower in the diagram. 
Consequently, in principle, the element A can reduce the oxide B,O,,, if, in the diagram, 
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the Ellingham line for A,O,., lies below that for BxOy. 

lines are virtually linear, being given by 
Over the ranges of temperature in which no phase transitions occur the Ellingham 

AG; = A +  BT. 

In this expression A, the intercept of the line with the T=O K axis, is identified with 
AH", the standard enthalpy change for the oxidation, and B, the slope of the line, is 
identified with -A$', the standard entropy change for the reaction. The Ellingham lines 
for the oxidation of solid and liquid metals are more or less parallel with one another, 
with slopes corresponding to the disappearance of one mole of oxygen gas in the 
standard oxidation equation. Consequently, the stabilities of these oxides are determined 
primarily by the magnitudes of their enthalpies of formation. 

At the temperature of a phase change the slope of the Ellingham line changes by an 
amount equal to the entropy change for the phase transition. The slope increases at the 
transition temperatures of the metal and decreases at the transition temperatures of the 
oxide. These changes in slope are most noticeable at normal boiling temperatures, e.g., 
at 1090°C the slope of the Ellingham line for MgO increases by 190.3 J/K, which is the 
entropy of boiling of 2Mg, and at 1484°C the slope of the Ellingham line for CaO 
increases by 174.2 J/K, the entropy of boiling of 2Ca. 

Carbon is unique in that it forms two gaseous oxides, CO and CO,, and the positions 
of the Ellingham lines for these oxides are of particular significance in extraction 
metallurgy. The Ellingham line for CO has a negative slope due to the fact that the 
oxidation 

2C+O, = 2 c o  

c t 0, = co, 
involves the net production of one mole of gas, and, because the oxidation 

does not involve a change in the number of moles of gas, the Ellingham line for CO, is 
virtually horizontal. The enthalpy change for the oxidation of C to form CO as C+fO, 
= CO is -1 11 700 J and the enthalpy change for the oxidation of CO to CO, as CO +$O, 
= CO, is -282 400 J. Thus the standard enthalpy change for the Ellingham line for CO 
is 2 x (-1 11700) = -223400 J and the standard enthalpy change for the Ellingham line for 
CO, is (-11 1700) -I- (-282400) =-394100 J. Thus, on the basis that the stability of an 
oxide is determined primarily by the magnitude of AH", it would appear that CO, should 
be more stable than CO. However, as the Ellingham line for CO has a negative slope, 
which means that the stability of CO increases with increasing temperature, the Elling- 
ham lines for the two oxides intersect. Consequently, although CO, is more stable than 
CO at lower temperature, the reverse is the case at higher temperatures. The gaseous 
phase in equilibrium with solid carbon is a CO-CO, mixture in which the ratio pco/peo, 
increases with increasing temperature. For a total pressure of 1 atm, the equilibrium gas 
contains less than 1 % CO at temperatures less than 400"C, contains less than 1% CO, at 
temperatures greater than 980°C, and is an equimolar mixture at 674°C. The "carbon 
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line" in the diagram, which is the continuum of states in which carbon is in equilibrium 
with a CO-CO, mixture at 1 atm pressure, follows the CO, Ellingham line up to about 
400°C and then curves down gently to tangentially meet and join the Ellingham line for 
CO at about 1OOO"C. Along the carbon line the ratio p,.,/pm2 is fixed by the equilib- 
rium 

c + eo, = 2c0, 

co++o, =co, 
and, by virtue of the equilibrium 

the oxygen pressure is also fixed. Thus the carbon line divides the other oxides into two 
classes, those with Ellingham lines which lie above the carbon line, and those with 
Ellingham lines which lie below the carbon line. With respect to the former class, the 
carbon line lies in the stability field of the metal and hence carbon is a potential reducing 
agent for these oxides, whereas, with respect to the latter class, the carbon line lies in the 
oxide stability field and hence carbon cannot reduce the oxide, Furthermore, if the 
Ellingham line for a metal oxide intersects the carbon line, the temperature of inter- 
section is the minimum temperature at which the oxide may be reduced by carbon. Thus, 
for example, FeO cannot be reduced by carbon at temperatures less than 675°C. 

Whether or not carbon can be used as a reducing agent is determined by the stability 
of any carbide phase which may form, Le., by the sign of the standard free energy for 
formation of the carbide from metal and carbon. For example, in the Ellingham diagram 
the carbon line intersects with the Ellingham line for SiO, at 1676"C, and hence above 
this temperature liquid Si is stable relative to SiO, in the presence of C and its equilib- 
rium CO-CO, gas mixture at 1 atm pressure. However, for the reaction 

Si(,) + C = Sic, 

the standard free energy change is AG," =-122600+37.02' J and hence Sic is stable 
relative to liquid Si in the presence of carbon at 1676°C and P= 1 atm. 

The stability fields in the system Si-0-C at 1676°C are shown in fig. 7 as functions of 
log pco and log pa,. Line A is the variation of pco and pco, required for the equilibrium 

Si(,) + 2C0, = SiO, + 2CO. 

Line B is the corresponding variation required for the equilibrium 

Si(,) + 2CO = Sic + CO,, 
and line C is the variation for the equilibrium 

Sic + 3C0, = SiO, + 4CO. 

These lines divide the diagram into stability fields for Si, Sic and SiO, and meet at the 
values of pm and pCs2 required for the four-phase equilibrium involving the three 
condlensed phases Si, Sic and SiO, and the CO-CO, gas phase. Line D is the variation 
of pco and pco, required for the equilibrium between carbon and the gas phase at 1676°C 
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Fig. 7. The stability diagram for the system Si -OC at 1949 K. 

and, as such, represents the compositions of CO-CO, gas mixtures which are saturated 
with carbon. The field below line D is designated “unstable” gas, as any gas mixture in 
this field is supersaturated with carbon and hence will spontaneously undergo the carbon 
deposition reaction 

2‘0 + ‘(graphite) + cop 
until, thereby, the composition of the gas lies on line D. The dashed line is the (pco+ 
pco2)= 1 atm isobar. Consequently, the system containing solid carbon and a gas phase 
at 1 atm pressure exists at the state a, and as this state is in the field of stability of Sic, 
SiO, is not reduced to Si by carbon at 1676°C. However, if the standard free energy for 
formation of S ic  had been positive, lines B and C would have occurred below line D in 
the diagram and, as shown by the dashed-dotted extension of line A, the equilibrium 
Si-SiO,-C would occur at the state a, which is the state of intersection of the carbon line 
with the Ellingham line for SiO, in the Ellingham diagram. 
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6. The thermodynamic properties of solutions 

6.1. Mixing processes 

The relationship between entropy and the “degree of mixed-up-ness” is quantified by 
Boltzmann’s expression as: 

S’ = k In W, 
where S’ is the entropy of the system and W is the number of microstates available to the 
system”. In the simplest of mixing processes, W is the number of distinguishable 
arrangements of the constituent atoms on the sites available to them. Consider the mixing 
of NA atoms of solid A and NB atoms of solid B as the process: 

state 1 + state 2, 
Le., unmixed A and B + mixed A and B. 

In state 1, interchange of the positions of A atoms in the crystal of pure A and/or 
interchange of the positions of B atoms in the crystal of pure B does not produce a 
distinguishably different arrangement and hence W sub1 = 1. However, the NA atoms of 
A and NB atoms of B can be placed on the NA + NB lattice sites of the mixed crystal 
(state: 2) in (NA + NB)! ways, of which (NA + NB)!/NA!NB! are distinguishable. Thus 

(NA + NB)! w, = 
NA!NB! 

Thus, for the process: 

(NA + NB)! AS’ = ,Ti - S: = kln W, - kln = kln 
NA!NB! (35) 

If NA and NB are sufficiently large numbers, Stirling’s theorem can be applied as 

In (NA NB)! = (NA + NB)ln(NA + NB) - NA *nNA - NB 
NA!NB! 

= -NA In XA - NB In X,, 

where, respectively, XA and X ,  are the mole fractions of A and B in the mixed crystal. 
Thus, the change in entropy, As””, due to mixing, is 

A S M  = k In ( N A  In X, + NB In XB), 

and, if NA + NB =No (Avogadro’s number) then the molar entropy of mixing is 

* The equivalence between this definition of entropy and the definition in terms of heat flow (51.1) is 
demonstrated in general terms in many texts; a particularly clear treatment is provided in ch. 2 of FAST’S book 
(see bibliography). 
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ASM = -R( X, In X, + XB In XB). (36) 

This increase in entropy is caused by the increase in the number of spatial configurations 
made available to the system as a result of the mixing process and, hence, is conjig- 
urational in origin. If there is no change in enthalpy on mixing, the Gibbs free energy 
change due to the mixing process is given by 

(37) 

Alternatively, consider the following. Consider that p l  and p,” are the saturated 
vapor pressures of pure A and pure B at temperature T and that pA and pB are the partial 
pressures of A and B exerted by the mixed crystal (or solid solution) of composition X, 
at temperature T. Consider that one mole of A is isothermally evaporated from pure solid 
A to form A vapor at the pressure p i ,  that the mole of A vapor is isothermally expanded 
to the pressure p ,  and is then isothermally condensed into a large quantity of the solid 
solution. As the evaporation and condensation processes are conducted at equilibrium, 
they do not involve any change in Gibbs free energy and hence the change in Gibbs free 
energy for the three-step process is simply that caused by the change in pressure from 
P A  to PA, is . ,  

AGM = -TASM = RT(XA In X, + X, In X,). 

0 

AG = ’*(in the solution) - ~ i ( p u r e )  = ( P A  /pi)* 

Similarly, for the corresponding three-step process for B, 

Thus, for the mixing of nA moles of A and nB moles of B: 

AG’ = G’(so1ution) - G’(unmixed A and B) 

= (nACA + nBCB) - (n,G; + nBGi) 

= nA(CA - G:) + nB(cB - G:), 

which, from eqs. (37) and (38), can be written for one mole of solution as 

A G ~  = R$X, ln(p,/p;) + X, ln(pB/pi)]. (39) 

Comparison of eqs. (37) and (39) indicates that, if the mixing process does not involve 
a change in enthalpy, 

Equation (40) is an expression of Raoult’s Law and a solution conforming with this 
behavior is said to exhibit Raoultian ideal behavior. If the energies of the pure states and 
the solution are considered to be the sums of the pair-wise bond energies between 
neighboring atoms, Raoultian ideal mixing requires that: 
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where Em, EM and E B B  are the pair-wise bond energies of A-By A-A and B-B pairs, 
respectively. If the condition given by eq. (41) is not met, the isothermal mixing process 
is accompanied by the evolution or absorption of heat, which, for mixing at constant 
pressure, represents a change in the enthalpy of the system. In such a situation random 
mixing of A and B atoms does not occur and hence the entropy of mixing is no longer 
given by eq. (36). 

Any change in the enthalpy on mixing arises from a redistribution of the atoms 
among their quantized energy levels and this gives rise to a change in the thermal (as 
distinct from the configurational) component of the entropy of the system. Boltzmann’s 
equation can be written as 

where Wan, is the number of distinguishable ways in which the atoms can be distributed 
on the available sites and Wtb, is the number of ways in which the energy of the 
system can be distributed among the particles. Thus, for the mixing process, 

and hence AS’ is only given by eq. (35) if Wt,,-,(l) = WM(2), i.e., if no redistribution of 
the energy occurs, and hence no change in enthalpy occurs. This condition is required for 
Raoultian ideal mixing. If 

the solution exhibits a tendency towards ordering, i.e., towards maximizing the number 
of A-B contacts, and if 

the solution exhibits a tendency towards clustering or phase separation, i.e., towards 
minimizing the number of A-B contacts. 

Configurational entropy is responsible for the occurrence of vacancies in metals. Consider 
a perfect single crystal containing N atoms on N lattice sites. If a single atom is removed 
from a lattice position within the crystal and is placed on the surface of the crystal, random 
placement of the vacancy on N +  1 sites gives rise to a configurational entropy of 

( N  + l)! 
N! 

S = kln-. 

This process involves an enthalpy change AHv and, as the vibration frequencies of the 
nearest-neighbor atoms to the vacancy are altered, a change occurs in the thermal 
entropy, AS,,,. Thus, for the formation of N, vacancies, 
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AG' = AH' - TAS' 

( N + N , ) !  
= N,AH, - N,AS,,T + kT In 

N ! N , !  

+ N ,  In- N v  1. N = Nv(AH, - N,AS,,) + 
N + N, 

The formation of vacancies in an initially perfect crystal is thus a spontaneous process 
which proceeds until, thereby, the Gibbs free energy of the crystal is minimized, in 
which state 

From eq. (42), this condition occurs when 

--- 
N + N ,  

The fraction of vacant sites in a crystal can be determined from simultaneous measure- 
ment of the thermal expansion of a sample, A V l ,  and the change in the lattice parameter, 
Audu,,, as measured by X-ray diffraction (see ch. 18, 52.2.2.2). As the former is 
influenced by both the increase in the average spacing between lattice planes and the 
creation of vacancies, and the latter is a measure only of the average spacing between 
planes, the increase in the fraction of vacant lattice sites is proportional to the difference 
between A V l  and Audu,. Measurements of this type on aluminum give: 

N + N ,  

from which AH,=73.3 kJ/mole and AS,=20 J/K mole. At the melting temperature 
660°C this gives the fraction of vacant sites as 9 x lo4. 

of 

The thermodynamic properties of solutions which do not exhibit Raoultian ideal 
behavior are dealt with by introducing the concept of activity. The activity, a, of the 
component i in a solution is defined as: 

(43)  
and, from eq. (40), is equal to the mole fraction, Xi, in a Raoultian ideal solution. Thus, 
the molar free energy of formation of a binary A-B solution, AG", is given by 

(44)  

The free energy of formation of n moles of a solution, AG'', can be written in terms 

0 
ai = pi/Pi 

AGM = RT(XA In uA + X, In a,). 

of the partial molar free energies of mixing of the components as: 
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AG'M = nAACF + 
or, the molar free energy, AG', as: 

hGM = XAACE t XBAG:, (45) 

where AGM = cj - GP (the difference between the molar free energy of i in the 
solution and the molar free energy of pure i )  is termed the partial molarfree energy of 
mixing of i. The partial molar free energy of mixing of i and the molar free energy of 
formation of the solution are related as: 

A G ~  = A G ~  + (1 - xi) - 
T.P 

Comparison of eqs. (39) and (45) shows that in a Raoultian ideal solution 

AGM = RT In Xi, 

and comparison of eqs. (39) and (44) shows that, generally, 

AGM = RTlna,. (47) 

A typical ideal variation of AGM with composition is shown in fig. 8. In this figure the 
tangent drawn to the free energy curve at any composition intercepts the XA= 1 axis at 
AGf and intercepts the X,, = 1 axis at A??:. This construction is a geometric represent- 
ation of eq. (46). Also, as Xi + 0, ai + 0 and hence, from eq. (47), A??: + -, i.e., 
the vertical axes are tangents to the curve at its extremities. The relationship between the 
variaFions of the tangential intercepts with composition is given by the Gibbs-Duhern 
equafion: 

X,d In U, -t XBd hl UB = 0. (48) 

Usually, the activity of only one component of a solution is amenable to experimental 
measurement, and the activity of the other component, and hence AGM, are obtained from 
integration of the Gibbs-Duhem equation. 

The activity coeflcient, yi, is defined as yi = a/Xi  and hence eq. (44) can be written as: 

AGM = RT(X, In X, + X, In XB) + RT(XA In yA + XB In yB). (49) 

The first term on the right-hand side of eq. (49) is the molar free energy of formation of 
a RaouItian ideal solution, AG'jd, and the second term, being the difference between the 
actual molar free energy of solution and the ideal value, is called the excess molar free 
energy of mixing, G"'. 

6.2. Regular solution behavior 

A regular solution is one which has an ideal entropy of mixing and a nonzero 
enthalpy of mixing. The properties of such a solution are best examined by means of a 
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The variation of AGM with composition in an ideal system at loo0 K. 

simple statistical model of the mixing of NA atoms of A and N B  atoms of B. If the 
internal energy, U‘, of the solution can be taken as the sum of the pair-wise bond 
energies then 

’‘ = ‘AB EAB + ‘AA EAA + ‘BB EBB 9 (50) 

where Pi is the number of i-j pairwise bonds and E@ is the energy of the bond relative 
to i and j at infinite separation. If the coordination number of an atom is z, the number 
of bonds involving A atoms, NAz, is given by 2PAA+PAB and, similarly, the number of 
bonds involving B atoms, NBz, is given by 2PBB + PAB. Thus: 

Pfi = 3 NAZ - 3 PAB and PBB = 3 N B z  - 4  PmI 

substitution of which into eq. (50) gives: 

u’ = 3 N A Z E A A  + 3 N B z E B B  + p A B [ E M  - (Efi f E B B ) / 2 ] *  

The first two terms on the right-hand side represent the internal energies of NA atoms of 
A and NB atoms of B before mixing and hence, for the mixing process: 
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AU' = P,[E, - (E,  + &,)/2]. (5 1) 

If the mixing process, conducted at constant pressure, does not involve a change in 
volume, then, as PAV' =0, AH' = AU' and eq. (51) is the expression for the enthalpy of 
mixing. As random mixing of the atoms is assumed, the number of A-B bonds is 
calculated as the product of the probability of occurrence of an A-B pair and the number 
of pairs of atoms. The former is given by: 

2 NA NB 
NA+NB NA+NB' 

and the latter is $(NA + NB)z, and hence: 

For the mixing of nA moles of A (=nANo atoms of A) and nB moles of B (=nBN, atoms 
of B), eq. (52) becomes: 

or, per mole of solution: 

AHM = 'AxBNO2[ EAB - ( EAA + 

If IE,I>I(E,+EBB/21, AHM is negative, which leads to exothermic mixing, and if 
1E,I < I(E,+EBB/21, A H  is positive, which leads to endothermic mixing. On the other 
hand, if EAB is the average of EM and EBBI AH is zero and Raoultian ideal mixing 
occurs. For any given system, 

' = NOz[EAB - (EAA + EBB)/2] 

is a constant, and hence, in a regular solution, A P  is a parabolic function of com- 
position, given by: 

AHM = 'XAXB, (53) 

and ASM = -R(XA In XA + XB In XB). (36) 

For any extensive thermodynamic property Q, the relationship between AGY and 
AQM in a binary system is given by: 

and thus, in a regular solution, from eq. (53): 
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AFy = a(1- xi)2, 
and from eq. (36): 

AqM = -RInXi. 

The partial molar free energy of mixing of i can be expressed variously as 

A q M  = - TAqM = AqM*id + = RTInXi + RTln yi, 

and hence, in a regular solution: 

9" = bqM = ~ ~ l n y ,  = a(i - xjr. 
Consequently, the limiting values of yi as Xi + 1 and Xi + 0 are unity and exp(CI/RT), 
respectively; i.e., with increasing dilution, the solvent approaches Raoultian ideal behavior 
and the activity coefficient of the solute approaches a constant value designated 7:. The 
tendency of yi towards a constant value as Xi + 0 is expressed as Henry's Law, i.e.: 

'yi + 7: asxi  + 0, 
and if yi is constant over some finite range of composition of dilute solution of i, 
component i is said to exhibit ideal Henrian behavior in this range, its activity being 
given by: 

Application of the Gibbs-Duhem relation, eq. (48), shows that, over the composition 
range in which the solute B exhibits ideal Henrian behavior, the solvent A exhibits ideal 
Raoultian behavior. 

The occurrence of Henrian ideal behavior gives rise to the concept of the Henrian 
standard state, illustrated in fig. 9 which shows the activity of B as a function of 
composition in the system A-B. The Raoultian standard state is pure B, located at the 
point R where a, = 1. If, however, pure B behaved as it does in dilute solution in A, 
extrapolation of its activity along the Henry's Law line would give an activity of y; in 
the hypothetical pure state at X, = 1, relative to the Raoultian standard state. This 
hypothetical pure state is the Henrian standard state, located at the point H in fig. 9, and, 
relative to this standard state, the activity of B in any solution, h,, is 

k = fflxB, 

where fB is the Henrian activity coeficient. In the range of dilute solutions over which B 
exhibits Henrian ideal behavior, fe = 1 and hence: 

hg = x,. 
If the vapor pressure of B in the Raoultian standard state is p i ,  then the vapor pressure 

of B in the Henrian standard state is y ip; ,  and hence the change of standard state, 
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Fig. 9. Illustration of the Raoultian and Henrian standard states. 

i7. i%e thermodynamic origin of phase diagrams 

In the definition of activity, given by eq. (43), pp is the vapor pressure of pure i at 
the temperature of interest. However, depending on the convenience of the situation, 
either pure solid i or pure liquid i can be chosen as the standard state. At temperatures 
below the triple point, & , l i d )  < P&q"id)y and so the activity of i in a solution, relative to 
pure solid i as the standard state, is larger than the activity relative to pure liquid i as the 
standard state. Conversely, at temperatures higher than the triple point temperature the 
reverse is the case. The activities on the two activity scales are related as 

0 

0 = exp(AG;,JRT). 'i(reiative to solid standard state) 

%(relative to liquid standard state) 

Pi(1iquid) 

Pi(so1id) 

=- 
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Consider the molar free energies of mixing in the system A-E, the phase diagram for which 
is shown in fig. loa. For simplicity of discussion it will be assumed that both the solid and 
liquid solutions exhibit ideal Raoultian behavior. The molar free energies, at temperature T, 
are shown in fig. lob. Pure liquid A and pure solid B are chosen as the reference states and 
are located at points a and b respectively. G:(d is located at c, where G&, - GAG) = -AGmA 
at temperature T, and G& is located at d where G&- G&) =AG:, at temperature T. 
Thus, relative to unmixed pure liquid A and pure solid B as the reference state, the molar 
free energy of the unmixed pure liquids (given by line ad) is X,AG:,B and the corre- 
sponding free energy of the unmixed pure solids (given by line eb) is -X,AG&. Upon 
mixing to form Raoultian ideal solutions, the molar free energies decrease by LRT(XA 
lnXA+XB lnX,I and hence, relative to the chosen reference state: 

0 0 

AG'(solid solutions) = -XAAG;,, + RT(X, In X, + X ,  In XB), 

and 

AGM(liquid solutions) = X,AG:,, + RT(XA In X, + X, In XB). 

The double tangent drawn to the two free energy curves touches the curve for the 
solid solutions at g and the curve for the liquid solutions at f, with the intercepts at 
X, = 1 and X, = 1 being e and h respectively. As the equilibrium state is that of minimum 
free energy, points f and g divide the composition range into three regions. At com- 
positions between a and f the homogeneous liquid solution has the lowest possible free 
energy and at compositions between g and b the homogeneous solid solution has the 
lowest possible free energy. However, at compositions between f and g, a two-phase 
mixture of liquid solution of composition f and solid solution of composition g, the free 
energy of which lies on line fg, has a lower free energy than both the homogeneous solid 
solution and the homogeneous liquid solution. Thus point f is the limit of solution of B 
in liquid A and g is the limit of solution of A in solid B, and so points f and g are, 
respectively, the liquidus and solidus compositions at temperature T. 

Furthermore, for phase equilibrium: 

CA(in liquid solution f)  = GA(in solid solution g), 

and 

CB(in liquid solution f )  = CB(in solid solution g) 

AGF(in liquid f)  = AG:(in solid g), or 

and 

AGf(in liquid f )  = AG:(in solid g). 

These requirements state that, for phase equilibrium, the tangent to the molar free energy 
curve for the liquid solutions at the liquidus composition f is also the tangent to the 
molar free energy curve for the solid solutions at the solidus composition g. Geometrical- 
ly, this condition is such that, simultaneously, 
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- AG:,A 

e 

liquid solutions 

solid solutions 
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A mole fraction of B B 

Fig. 10. (a) The phase. diagram for the system A-B. @) The ideal free energy of mixing curves for the system 
A-B at temperature T. 

(54) ca+ae=ce and db+bh=dh,  
where: ce = AEf (relative to solid A as the standard state) 

ae = A Z Z  (dative to liquid A as the standard state) 

dh = AEF (relative to liquid B as the standard state) 

bh = A??: (relative to solid B.as the standard state) 

= RT In XA (at the composition g), 

= RT In XA (at the composition f), 

= RT In X, (at the composition f), 

= RT In X, (at the composition g). 
and 

References: p .  469. 
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Thus eqs. (54) become: 

AG:,, + RT In X, (liquidus) = RT In XA (solidus), 

and 

-AG:, + RT In X, (solidus) = RT In XB (liquidus). 

As X,(liquidus) +XB(liquidus) = 1 and X,(solidus) +X,(solidus) = 1, the solidus and 
liquidus compositions (in a Raoultian system) are thus uniquely determined by the values 
of AG;., and AG;,, as: 

- 1 - exp( -AG;,, / RT) 

- [exP(-AG:,B/RT)][exP(AG;,A /RT)] 
xA(liquidus) - 

and 

(55) 

The phase diagram for the system Si-Ge, calculated from eqs. (55) and (56) and the 
known variations of A&m,si and AG:,oe with temperature, is compared, in fig. 11, with 
the liquidus and solidus lines determined experimentally by thermal and X-ray analysis. 
As is seen, the behavior in the system is very close to Raoultian. 

Raoultian behavior is very much the exception rather than the rule, and even 
complete mutual solid solubility between A and B requires that A and B have the same 
crystal structure, similar atomic sizes, similar electronegativities, and similar valences. 
The requirement of similar atomic size arises from the introduction of a strain energy 
into the lattice when the solvent and substitutional solute atoms are of differing size. This 
strain energy always increases the Gibbs free energy and, hence, can significantly 
influence the phase relationships in the system. It is found that terminal solid solutions 
extend only a few atomic percent into a binary system if the atomic diameters differ by 
more than 14%. Significant differences in electronegativity cause the formation of 
intermetallic compounds such as Mg,Si, Mg,Sn and Mg,Pb, and differences in valences 
can cause the formation of electron compounds such as occur in the systems Cu-Zn and 
CuSn.  

Although Cu and Ag are chemically similar, the atomic radius of Ag is 13% larger 
than that of Cu and hence, as shown in fig. 12a, Cu and Ag form a simple eutectic 
system. In this system it is presumed that Ag exhibits Raoultian ideal behavior in the Ag- 
rich a-solid solution and that Cu exhibits Raoultian ideal behavior in the Cu-rich P-solid 
solution. Consequently Cu in a and Ag in /3 exhibit Henrian ideal behavior and, at 1000 
K, the activities of the components, relative to the pure solids as standard states, are as 
shown in fig. 12b. At 1000 K, saturation of the a-phase with Cu occurs at X+.=O.9, and 
hence, as Ag obeys Raoult's law in the a-phase, aAg=0.9 at this compos~tion. Phase 
equilibrium between a saturated with Cu and /3 saturated with Ag requires that the 
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Fig. 11. Comparison of the phase diagram for the system Si-Ge as determined experimentally by X-ray and 
thermal analysis, with that calculated assuming Raoultian ideal behavior in both the solid and liquid solutions. 

activities of both Ag and Cu be the same in both phases, and hence aAg=0.9 in the Ag- 
saturated &phase of composition X,, = 0.04. Similarly, a, = 0.96 in the Ag-saturated fi 
(at X, = 0.96) and in the Cu-saturated a (at XAg = 0.9). Thus, in the a-phase, Henrian 
behavior of Cu is given by: 

a, = 9.6Xc,, (57) 

and in the &phase, Henrian behavior of Ag is given by: 

aAg = 22.5XA,. 

8. Reaction equilibrium involving solutions and the Gibbs phase rule 

8.1. The dependence of the equilibrium state on activity 

In $4 it was shown that, at constant temperature and pressure, equilibrium is 
established in the reaction 

aA + bB = cC + m>, 
when 

aGA + bcB = cG, + dG,. (58) 

References: p .  469. 
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Fig. 12. (a) The phase diagram for the system Ag-Cu. (b) The activities of Ag and Cu in the system Ag-Cu 
atlooOK. 

As: 

= G: + RTlna,, 

eq. (58) can be written as: 

aEag AG; = -RT In - 
aiai ' 
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where the quotient in the logarithm term is Kr the equilibrium constant for the reaction. 
Consider the oxidation, at 1000 K, of Cu from an Ag-Cu alloy of X,=O.OS. From 

eq. (57), the activity of Cu in this alloy, relative to pure solid Cu as the standard state, 
is 

a, = 9.6X, = 9.6 x 0.08 = 0.768. 

For the reaction: 

4 q S )  + Oqg) = 2CU20(,) 

AG: = -336810 + 142.5T J. 

Thus, A G ~ m  =-194300 J=-8.3144x 10o0 lnK,, and so: 
2 

acu20 

a," Po, 
K,,, = 1.41 x 10" = 7. (59) 

Oxidation of the Cu occurs when the oxygen pressure in the system has been increased 
to the level at which a,,,o = 1. From eq. (59) this oxygen pressure is: 

= 2.04 x lO-''atrn. 
1 - 

- (0.768)4 x 1.41 x 10" 

From eq. (16), AGP, for the reaction 

2Ag(,) + + Oqg) = A&O(,) 

has the value 31 062 J. Thus: 

Thus, with uAg = 0.92 (Raoultian behavior in the a-solid solution) and po2 = 2.04 x lo-'' 
atm: 

'Ag20 - - 2.9 x 10-7, 

which shows that the equilibrium oxide is virtually pure Cu,O. As the oxygen pressure 
in the system is further increased, the Cu content in the alloy decreases in accordance 
with eq. (59). Thus the alloy in equilibrium with virtually pure CbO and air (oxygen 
fraction 0.21) at 1000 K is that in which 

= 0.0043, 
= [ 1.41 x 10" l ] " "  x 0.21 

or X, = %/9.6 = 4.5 x lo4. 

At this oxygen pressure the activity of AgzO in the equilibrium oxide phase, with aAg = 
1, is: 

References: p.  469. 
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aAg20 - - 0.024 x 1 x 0.21”* = 0.011, 

and so the equilibrium oxide phase is still essentially pure ChO. 

8.2. The Gibbs phase rule 

The complete description of a thermodynamic system containing C components 
existing in P phases requires specification of the temperatures, pressures and com- 
positions of each of the P phases. As the composition of each phase is defined when the 
concentrations of C - 1 of its components are known, the total number of variables in the 
description is P pressures + P temperatures + P(C - 1) concentrations =P(C+ 1). For 
thermodynamic equilibrium in the system, each of the P phases must be at the same 
temperature and same pressure and the activity (or partial molar free energy) of each of 
the individual components must be the same in each of the P phases. Thus, for equilib- 
rium, there are (P - 1) equalities of temperature, (P - 1) equalities of pressure and (P - 
1)C equalities of activity, and hence the total number of equilibrium conditions, given as 
the number of equations among the variables of the system, is (P - 1)(C+2). The 
number of degrees of freedom, F, which the equilibrium system may have, is defined as 
the maximum number of variables which may be independently altered in value without 
disturbing the equilibrium in the system. This number is obtained as the difference 
between the total number of variables available to the system and the minimum number 
of equations among these variables that is required for maintenance of the equilibrium, 
1.e.: 

F = P(C + 1) - ( P  - 1)(c + 2) 
= C + 2 - P .  

Equation (60) is the Gibbs phase rule and is a powerful tool in the determination of 
possible equilibria which may occur in multicomponent, multiphase systems. 

In the simplest of applications, i.e., in a one-component system, F = 3 - P. Thus, with 
reference to the phase diagram for H,O, shown in fig. 3, for the existence of a single 
phase F = 2 and so the pressure and temperature can be varied independently without 
disturbing the equilibrium, i.e., with F=2 the state of the system can be moved about 
within the area of stability of the single phase in the pressure-temperature diagram. 
However, for a two-phase equilibrium the state of the system must lie on one of the lines 
in fig. 3 and thus only the pressure or the temperature can be varied independently. From 
the phase rule, F = 1 and hence the two-phase equilibrium is univariant. The triple point, 
where the three phases are in equilibrium, occurs at fixed values of temperature and 
pressure, in accordance with F =  0 from the phase rule. The three-phase equilibrium is 
thus invariant and three is the maximum number of phases which can be in equilibrium 
with one another in a one-component system. 

In a binary system, the inclusion of a second component adds an extra degree of 
freedom to each equilibrium and hence the maximum number of phases which can be in 
equilibrium with one another in a two-component system is four. However, phase 
diagrams for binary systems of metallurgical interest are normally presented for a 
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pressure of 1 atm, i.e., they are the 1 a m  isobaric sections of the phase equilibria 
occumng in pressure-temperature-composition space, and hence one of the degrees of 
freedom is used in specifying the pressure. Thus, at an arbitrarily selected pressure such 
as 1 atm, the maximum number of phases which can exist in equilibrium with one 
another in a binary system is three (unless, by chance, the arbitrarily selected pressure 
happens to be that at which an invariant four-phase equilibrium occurs). In the binary 
system A-B, considered at constant pressure, the available variables are T, a, and aB. For 
the existence of a single phase, such as a, p or liquid in fig. 12a, the phase rule gives 
F = 2 ,  and hence any two of T, U, and aB may be varied independently. For any two- 
phase equilibrium, F= 1 and hence the specification of any one of the three variables 
fixes the state of the system. For example, specification of the temperature at which the 
two-phase equilibrium exists fixes the compositions of the equilibrated phases on the 
appropriate liquidus, solidus or solvus lines; and specification of the composition of one 
of the equilibrated phases fixes the temperature at which the chosen composition lies on 
the appropriate liquidus, solidus or solves line and fixes the composition of the second 
phase at the other end of the tie-line between the two equilibrated phases. The three- 
phase equilibrium with F = 0 is invariant, and, in fig. 12a, the eutectic equilibrium occurs 
at a fixed temperature at which the compositions o f  the a, /3 and liquid phases are also 
fixed. 

If some, or all, of the components of a system can react chemically with one another 
to produce new chemical species, a distinction must be drawn between the terms 
component and species. For example the components silver and oxygen in the binary 
system Ag-0 are capable of reacting to form the new species Ag,O, and hence an 
equilibrium among the three species Ag, AgzO and 0, can occur in the two-component 
system. The equilibrium among Ag, Ag,O and 0, is called an independent reaction 
equilibrium. In a system containing N species and existing in P phases among which 
there are R independent reaction equilibria, the number of variables is P(N+ l), Le., P 
pressures + P temperatures + P(N - 1) concentrations. However, if the species i and j 
react to form the species k, reaction equilibrium requires that 

q + q  = 9, 
and this is an additional equation required among the variables. Thus, if R independent 
reaction equilibria occur, the number of equations among the P(N+ 1) variables, required 
for equilibrium is (P - 1) equalities of temperature f (P - 1) equalities of pressure + (P 
- l)N equalities of activity+R=(P-l)(N+2)+R, and hence the number of degrees of 
freedom, F, is 

F = P(N + 1) - (P - 1)(N + 2) - R 
= ( N -  R ) + 2 -  P .  

Comparison with eq. (60) indicates that 

C = N - R ,  

Refewnces: p .  469. 
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Le., the number of components in a system equals the number of species present minus 
the number of reaction equilibria. Equation (61) is normally used to calculate the number 
of independent reaction equilibria from knowledge of the number of components and the 
number of species. For example, in the two-component system Ag-0, the independent 
reaction equilibrium among the three species is 

2Ag + 3 0, = Ag,O. 

For equilibrium among the phases metal, metal oxide and oxygen gas in the two- 
component system, F =  1 and thus only T or pol can be selected as the single degree of 
freedom. Selection of T fixes AG: and hence, via eq. (34), fixes poz, and vice versa. 

Consider the various equilibria which can occur in the ternary system Si-C-0, for 
which a stability diagram is shown in fig. 7. It can be considered that this system 
contains the six species Si, SiO,, Sic, C, CO and CO,, and hence R = 6 - 3, i.e., there are 
three independent reaction equilibria. These are derived as follows. The chemical reaction 
for formation of each compound from its elements is written: 

Si + 0, = SiO,, 
Si + C = Sic, 
c + 0, = co,, 
c + + o ,  =co. 

These equations are then combined in such a way as to eliminate any elements which are 
not considered as species in the system, and the minimum number of equations so 
obtained, is the number of independent reaction equilibria, R. In this case oxygen is not 
considered as species, and elimination of 0, gives: 

c + co, = 2c0, (9  

Si + C = Sic, 
and 

Si + 2C0, = SiO, -t 2CO 

(ii) 

(iii) 

as the independent equilibria. From the phase rule, the maximum number of phases 
which can coexist in equilibrium is five (the condensed phases Si, SiO,, Sic, C and the 
gas phase CO-CO,). This equilibrium is invariant and occurs at the temperature T, at 
which AG& = O  and at the pressure P=p,+pm2 at which K,,, = pm/pm2 andK(ci),Tq 
= (pm/p,)’ are simultaneously satisfied. If the temperature is ar%itrarily fixed, as is the 
case in fig. 7, the maximum number of phases which can coexist in equilibrium is four 
(three condensed phases and a gas phase). One such equilibrium occurs in fig. 7 at point 
b. For the coexistence of two condensed phases and a gas phase at the arbitrarily selected 
temperature, F =  1, and such equilibria lie on the univariant lines A, B, C and D in fig. 
7, and for equilibrium between a single condensed phase and a gas phase, F=2,  
corresponding to areas of single condensed phase stability in fig. 7. 

Occasionally situations are found in which it might appear, at first sight, that the 
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phase rule is not obeyed, and usually, in such situations a degree of freedom is used by 
a condition of stoichiometry in the system. For example, in the reduction of ZnO by 
graphite to produce Zn vapor, CO and C02, it might appear that the three-phase 
equilibrium (ZnO, C and the gas phase) in the three-component system (Zn-042) has 
F = 5 - 3 = 2 degrees of freedom, and that, with the five species ZnO, C, ZqV), CO and 
C02, two independent reaction equilibria occur, which can be selected as 

(iv) ZnO(s) + q g r )  = q”) + qg) 

and 

(Vii) 

However, selecting T, which fixes the values of K(iv) and K,, and any one of pzn, pCo orpmz 
as the two apparent degrees of freedom does not fix the state of the system, i.e., does not 
allow simultaneous solution of eqs. (vi) and (vii). This difficulty arises because the 
stoichiometry requirement has not been taken into consideration, i.e. that, as all the Zn 
and 0 occurring in the gas phase originates from the stoichiometric ZnO, the condition 

(viii) 

must also be satisfied. This stoichiometric requirement decreases F to unity and hence 
selecting T as the single degree of freedom fixes the partial pressures of Zn, CO and CO, 
as the values required for simultaneous solution of eqs. (vi), (vii) and (viii). 

9, The thermodynamics of suflaces and inteflaces 

9.1. The Gibbs adsorption isotherm 

In passing from one phase to another in a heterogeneous system, some of the 
properties undergo significant changes as the boundary between the two phases is 
traversed. The thin region over which these changes occur is called the inteflace, and a 
complete thermodynamic analysis of the system requires consideration of the thermo- 
dynamic properties of the interface. 

Consider fig. 13 which shows the variation of the concentration, cl, of the component 
1 across the interface region in a system comprising equilibrated CY and p phases. 
Calculation of the total number of moles of component 1 in the system as the sum 
cf V” + cfV6, where V and b#? are the volumes of the phases, involves the assumption 

References: p .  469. 
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Fig. 13. The variation, with distance, of concentration on passing through the interface between two phases. 

that the values cy and c f  occur up to some plane in the interface region, and evaluation 
of cPV" + cfVB requires that a mathematical plane be located somewhere in the 
interface region. In fig. 13 it is seen that the number of moles of component 1 in the 
system, calculated as C ~ V "  + c f V B ,  is only equal to the actual number of moles of 1 in 
the system, n, when the boundary plane X-X is located such that the shaded areas in fig. 
13 are equal. If the boundary plane is located to the right of X-X, say at X'-X', then: 

n, < CPV" + c,BvB 

or, if the boundary plane is located to the left of X-X: 

n, > CPV" + c,BvB. 

The difference between n, and C ~ V "  + cf3Vp defines the surface concentration of 
component 1 ,  r,, (moleskm'), as: 

T,A, = n, - (cPV" + cfVs), 

where A, is the area of surface between the two phases. Thus, with the boundary located 
to the left of X-X, r, is a positive quantity and with the boundary located to the right of 
X-X, rl is a negative quantity. In a single-component system where the boundary is 
between a condensed phase and a vapor phase, it is logical to locate the boundary at 
X-X so that the surface concentration is zero. However, with two or more components 
in the system it is not generally possible to locate the interface at a position at which 
more than one of the surface concentrations are zero. In such a case X-X is located such 
that the surface concentration of the solvent, rl, is zero and the surface concentration of 
the solute, r2, is not zero. This is illustrated in fig. 14. 
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distance 

Fig. 14. The variations, with distance, of the concentrations of solvent and solute on passing through an 
interface, and illustration of the origin of surface concentration of the solute. 

The definition of surfiace free energy per unit area, G,, is analogous to that for the 
surface concentration, i.e.: 

where G’ is the total free energy of the system. 
The surfiace tension, (+, is defined as: 

cT=(g) 9 

T.P.ni 

and hence, when surfaces are included in the discussion, eq. (13) is written as: 

dG‘ = -S’dT + V’dP + d, + qdni (63) 

If the surface area is increased by dA, at constant T, P, and n ,  combination of eqs. (62) 
and (63) gives: 

G,dA, = adg + (C Fn; +C G’n!). (64) 

As phase equilibrium is maintained, = Gf ; mass balance requires that: 

dn,u + dnf = -q.d4, 

in which case eq. (64) can be written as: 

Gsdq = ad4 + C G r i d 4  

References: p. 469. 
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or: 

G, = u + x q r i ,  
i.e., the surface free energy is the surface tension plus the free energy due to the surface 
concentrations of the components. 

Complete differentiation of eq. (65) gives: 

dG, = d u  + G d r i  + r i d q ,  (66) 

and the differential of G, for conditions of fixed surface area and fixed P gives: 

dG, = -S,dT + q.d.dT;:. 
Combination of eqs. (66) and (67) gives: 

d u  = -S,dT - TdG,, 

which is Gibbs' equation for surface tension. At constant T, eq. (68) gives, for the binary 
system A-B in which r,=O: 

Equation (69, which is known as the Gibbs adsorption isotheim, indicates that any solute 
which lowers the surface tension has a positive value of r and hence is concentrated in 
the surface, and, conversely, any solute which raises the surface tension has a lower 
concentration in the surface than in the bulk phase. 

The influence of dissolved oxygen on the surface tension of liquid iron at 1550°C is 
shown in fig. 15 as the variation of cr with the activity of oxygen relative to the 1 weight 
percent standard state. The surface concentration of oxygen at any concentration of 
oxygen in the bulk phase is obtained from the slope of the line and the Gibbs adsorption 
isotherm. At high oxygen contents the slope of the line approaches the constant value of 
-240 dyne/cm, which corresponds to saturation coverage of the surface by adsorbed 
oxygen. From the Gibbs adsorption isotherm this saturation coverage is calculated as 

= 9.5 x 1 0 ' ~  atoms/cm2 240 
8.3144 x lo7 x 1823 

r,, = 6.023 x iou x 

9.2. The Langmuir adsorption isotherm 

Consider the equilibrium between the component i in a vapor phase and i adsorbed 
on the surface of a condensed phase. If is is considered that the atoms of i are adsorbed 
on specific adsorption sites on the surface of the condensed phase, the limit of adsorption 
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Fig. 15. The variation of the surface tension of Fe-0 melts with activity of oxygen at 1550°C. 

occurs when all of the available sites are occupied by adsorbed atoms. This limit 
corresponds to the surface being covered by a monolayer of adsorbed atoms at the 
surface concentration r:. At surface concentrations, Ti, less than that corresponding to 
monolayer coverage, the fraction of surface sites occupied, Bi (or the fractional saturation 
of the surface) is defined as: 

(70) 

At equilibrium, the rates of adsorption and desorption of i are equal, the former being 
proportional to the pressure of i in the vapor phase, pi, and the fraction of unoccupied 
surface sites, (1 -e,), and the latter being proportional to the fraction of surface sites 
occupied by i, i.e.: 

r. 8. = I r; * 

k,pi(l - Oi) = kdei, 

where k, and k,, are the rate constants for the adsorption and desorption reactions, 
respectively. Thus: 

(71) ‘i pi = Ki - 
i - e i ’  

where 

Ki = k,/k, = exp(-AG:/RT), 

References: p .  469. 
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and AGP is the change in molar free energy accompanying the transfer of one mole of 
i from the vapor state at 1 atm pressure to the adsorbed layer on the surface at the 
surface concentration c. Equation (71), which is Langmuir 's adsorption isothenn, shows 
that 8, is proportional to pi  at small Oi and (1 - 8J is inversely proportional to pi at large Oi. 

Alternatively, eq. (71) can be written as: 

a, = K(-. 4 
1 - e, 

BELTON has combined the Gibbs and Langmuir adsorption isotherms by substitution of 
eqs. (70) and (72) into eq. (69) to give: 

da Kla. -- - -RT 
d In a, 

= -RT8,r;" = -RT Ko -, 
1 + K,la, 

which, on integration between the composition limits Xi' and Xi" , becomes: 

1 + K'a!' d' - a' = -RT yo In - 
1 + K'a! a 

(73) 

If Langmuir's isotherm holds at all compositions, one limit can be taken as the pure 
solvent, in which case eq. (73) becomes 

(74) 

where cf refers to the surface tension of the pure solvent. Curve-fitting of eq. (74) with 
the experimental data shown in fig. 16 and d = 1788 dyne/cm, Po =240 dyne/cm, gives 
K = 220. Thus, if oxygen adsorbed on liquid iron exhibits ideal Langmuir behavior: 

a' - (T = -RT I7: ln(1 + K'a,). 

220 = [wt%O] 
1 + 220 * [wt%O] * 

e, = (75) 

Equation (75) is shown in fig. 16 in comparison with the variation of 8, obtained from 
the slopes in fig. 15 as Bo = J?d r", 

A number of applications of the Gibbs and Langmuir absorption isotherms will be 
found in ch. 13, 592 and 4. 

9.3. Curved interfaces 

The existence of surface tension gives rise to the interesting phenomenon that the 
equilibrium vapor pressure exerted by a spherical droplet is a function of the radius of 
curvature of the droplet. This phenomenon, which was first discussed by Kelvin in 1871, 
is of importance with respect to the dependence of the limit of solid solution of one 
component in another on the particle size of the second phase. 

The general equation 

dG' = -S'dT + V'dP + d, + Gdn, (63) 
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Fig. 16. The variation, at 155OoC, of the fractional coverage of the surface of liquid iron by adsorbed oxygen 
with concentration of oxygen in the melt. 

was tacitly applied to systems containing flat interfaces. However, provided that CT is not 
a function of the radius of curvature of the interface, and that the interface within the 
system does not influence the exterior pressure, eq. (63) can be applied to the transfer of 
matter across curved interfaces. The partia2 molurfree energy, E ; ,  defined from eq. (63) 
as: 

pertains to the addition of i to the system in such a manner that A, remains constant. 
However, in a process involving the transfer of matter to a small spherical droplet, A,, 
being dependent on the volume, and hence on the amount of matter in the droplet, is not 
an independent variable. The incremental increase in volume of a droplet caused by the 
addition of dn, moles of the various components is: 

where 7 is the partial molar volume of i in the system. From the relationship between 
the surface area and the volume of a sphere, 

substitution of which into eq. (63) gives: 

References: p .  469. 
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dG’ -S’dT + V‘dP + ( + ?)Ini. 

Comparison with eq. (63) gives the identity 

(76) 
- 2 p  Gi = G: + - 

I 

as the variation of partial molar free energy with spherical particle size. From the 
relationship between partial molar free energy and activity, eq. (76) can be written as 

2Fu 

RT, 
lna, = ha,* +-. (77) 

In a limited terminal solid solution of B in A, in which B obeys Henry’s Law, the 
activity of €3 at the limit of solubility is: 

% = YixB(sat)y 

and hence, from eq. (77), the solubility limit varies with particle size of the second phase 
as 

where XB(sat,rl is the solubility limit when the second phase occurs as a dispersion of 
spherical particles of radius r and is the solubility limit when the second phase is 
massive. Equation (78), which is known as the Thomson-Freundlich equation, provides 
a thermodynamical explanation of the phenomenon of Osnvald ripening (see ch. 9, Q 
3.2.2). When the second phase, precipitating from a primary solid solution, occurs in a 
range of particle sizes, it is observed that the particles of radius greater than some 
average value grow and that the smaller particles redissolve in the matrix. As the 
concentration of solute in the matrix at the interface between the matrix and a small 
precipitate is greater than that at the interface between the matrix and a large precipitate, 
a concentration, and hence activity, gradient exists between the two interfaces. This, in 
turn, provides the driving force for the diffusion of dissolved solute from one interface 
to the other, with the overall result that the larger particle grows and the smaller particle 
dissolves. Equation (78) is also of interest in that it indicates that no such quantity as 
“maximum solubility” exists. 

10. The measurement of thermodynamic activity 

Although activities are thermodynamic functions of state, their magnitudes and 
variations are determined by the interactions among the constituent particles of the 
system, which, in turn, determine bond energies and influence the spatial configurations 
assumed by the particles. Thus measurement of activities within a class of similar simple 
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systems can be expected to provide, at best, some fundamental understanding of the 
natures of these interactions or, at least, a basis for correlation of the behavior, which can 
then be used for extrapolation of the behavior of more complex systems. 

The molar free energy of formation of a solution or compound from its pure 
components is obtained from the activities via eq. (44) and as the various phase 
equilibria occurring in a materials system are determined by the variations, with 
composition, temperature and pressure, of the relative free energies of the various phases, 
such equilibria can be most precisely determined by accurate measurement of activity. 
Also, the activity of a component in a solution is a measure of the minimum free energy 
required to convert the component from its state in solution to the pure state in any 
proposed extraction or refining process. 

En the majority of the experimental methods the activity of only one component is 
measured. In such cases the activities of the other components can be obtained by 
integration of the Gibbs-Duhem equation. For constant temperature and total pressure 
this expression is ZXid lna,=O or, in a more convenient form, XX,d lny,=O where 
yi=nJXj is the activity coefficient of i. Applied to the binary system A-B in which the 
variation of yA is known across the entire range of composition: 

10.1. Determination of activity by experimental measurement of vapor pressure 

The experimental technique for the measurement of vapor pressure is determined by 
the magnitude of the pressure to be measured, and the various techniques which have 
been developed can be classified as absolute methods (direct and indirect static methods) 
and indirect methods (effusion and transpiration methods). 

The earliest activity measurements were made on binary alloys of Hg with Zn, Au, 
Ag and T1 at temperatures near the boiling point of Hg. The partial pressure of Hg 
exertsd by an amalgam is so much greater than the partial pressure of the other 
component that the former can be equated with the total vapor pressure of the amalgam. 
In the first studies the alloy was used as the sealing liquid in a U-tube null-point 
manometer. The vapor in equilibrium with the alloy is contained in the closed arm of the 
manometer, and hydrogen, the pressure of which is measured at a second manometer, is 
introduced to the other arm until the meniscuses in both arms are at the same level. The 
vapor pressures of amalgams at lower temperatures have been measured using various 
devices such as membrane manometers, quartz spiral manometers and ionization gages. 

Tbe partial pressures of Zn and Cd over a-Ag-Zn-Cd alloys and of Zn over 
a-brasses have been measured by resonance absorption spectroscopy. In studying the Zn 
alloys, light produced by a spark between Zn electrodes, is passed through a sample of 
vapor in equilibrium with the alloy, and the absorption of the 3076 A resonance line is 
measured. As absorption of the 3035 8, resonance line does not occur, it is used as an 
interrial standard and the vapor pressure, p ,  of Zn is obtained from Beer's Law as 
-ln(Z3m~Ims) = Kpd/T where I is the intensity of the transmitted light, K is the absorp- 
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tion coefficient, T is  the absolute temperature and d is the distance travelled by the light 
through the sample of vapor. 

The dew point method is well-suited to systems containing a distinctly volatile 
component and has been applied to measurement of the activity of Zn in binary alloys 
containing Cu, Al, Ag, Au, Zr, Th, U, and Y, and the activity of Cd in Ag-Cd alloys. 
Experimentally, the alloy is placed at one end of a long initially evacuated tube which is 
heated to the desired temperature T,. The temperature of the other end of the tube is 
lowered until condensation of the volatile component is observed at the temperature T,. 
As the pressure within the tube is uniform, the partial pressure of the volatile component 
exerted by the alloy at TI equals the saturated vapor pressure of the pure volatile 
component at T,. The use of fused silica tubes, which permits visual observation of 
condensation at the cooler end, has limited the temperature to less than 1100°C and, 
generally, measurements have been made in the range 400-900°C. In a similar isopiestic 
technique, the pure volatile component is placed in the cool end of an initially evacuated 
tube maintained in a known temperature gradient, and weighed quantities of the pure 
second component are placed at intervals along the temperature gradient. The volatile 
component is transferred from the vapor phase to the specimens of nonvolatile com- 
ponent until the alloys in equilibrium with the prevailing pressure of the volatile 
component are formed. In this technique, which has been applied to measurement of the 
activities of A1 in solid A1-Fe and A1-Ni alloys, the compositions of the equilibrated 
alloys are determined gravimetrically. 

Application of the dew point and isopiestic techniques to measurement of activity 
requires knowledge of the temperature dependence of the saturated vapor pressure of the 
volatile component. 

In the rrunspirution technique, an inert carrier gas is passed over a sample at a flow 
rate which permits evaporation of the alloy to occur to the extent necessary to saturate 
the carrier gas. This technique has been used to measure the activities in liquid F e C u  
and Fe-Ni alloys. The material evaporated from the sample is condensed downstream 
and is chemically analyzed. The total amount of evaporation into unit volume of the 
carrier gas at the total pressure P is determined by measuring the weight loss of the 
sample or by quantitative analysis of the amount of condensate recovered from a known 
volume of gas. If nFe. n, and nHe are the numbers of moles of Fe, Cu and He carrier gas 
in the sampled volume, the partial pressure of Fe is calculated, from the ideal gas law, 
as pR = PnFe/(nFe + n, + n&). An advantage of this technique is that the activities of both 
components are measured and hence internal consistency of the results can be checked 
using the Gibbs-Duhem equation. However, in order that surface depletion of the more 
volatile component be avoided, the rates of diffusion in the alloy must be faster than the 
rates of evaporation. 

In the efsusion technique the alloy to be studied is placed in a Knudsen cell (a sealed 
crucible containing a small orifice in its lid) and the crucible is heated in vacuum to the 
desired temperature. Phase equilibrium is established between the vapor phase and the 
condensed phase in the cell and, if the dimensions of the orifice are small in comparison 
with the mean free path of the vapor species, the passage of vapor species through the 
orifice is not disturbed by collisions. Thus the rates of effusion of the vapor species are 
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proportional to their vapor pressures within the cell. From gas kinetic theory, the number 
of particles in a vapor phase striking unit area of the containing wall in unit time is 
Q.25 IZC, where n is the density of vapor species and F = (8RT/IW)”2 is the average speed 
of the particles. Consequently, the weight loss, W, due to effusion through an orifice of 
area .A in time t is pAt/(211MRT)”2 and hence the pressure, p, of the species in the cell 
is p = (W/At)(211RT/M)’/2. If a radioactive tracer is added to the alloy, very small 
amounts of effusing substance can be detected. For example, gamma-ray spectrometry of 
neutron-irradiated Au-Cu alloys has facilitated estimation of quantities as small as lo-’’ g. 

The transpiration and effusion techniques require that the molecular weights of the 
vapor species be known and hence they can only be used to study systems in which no 
complex vapor molecules are formed. 

The problems caused by complex molecule formation can be eliminated by mass- 
spectrometric analysis of the vapor effusing from the Knudsen cell. In the Knudsepa cell- 
time ofJtight mass-spectrometer combination, the beam of particles effusing from the cell 
is introduced to the ionization chamber of the mass-spectrometer through a slit, Ioniza- 
tion iis produced by a pulsing electron beam and after each pulse the ionization chamber 
is cleared of ions by a pulse of small negative potential. The ions are then subjected to 
a continuously maintained high negative potential which accelerates them into a field-free 
drift tube, and the time required for a given ion to traverse the drift tube and be detected 
is proportional to (m/e)’/2. The ion current, Z,+, measured for the species i is related to 
the vapor pressure of i as: 

pi = KI,!T, 

where the constant K is determined by the ionization cross-section of the ion, the detector 
sensitivity and the geometry of the Knudsen cell-ion source. The application of the 
technique to measurement of activities in binary systems was greatly facilitated by a 
manipulation of the Gibbs-Duhem equation which allows the variations, with com- 
position, of the activity coefficients of the individual components to be obtained from the 
corresponding measured ratio of the activity coefficients as: 

From eq. (80): 

substitution of which into eq. (81) gives: 

Use lof a mass-spectrometer requires that a pressure of less than lo-* atm be maintained 
in the areas of the ion source, analyzer and detector. This technique has been applied to 
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measurement of activities in a large number of binary and ternary systems containing V, 
Cr, Fe, Co, Ni, Cu, Ag, Au, Al, T1, Pb, Sn, Bi, Sb, and In. 

10.2. Determination of activity by establishing heterogeneous equilibrium 

Heterogeneous equilibrium at constant temperature and pressure requires that the 
partial molar free energy, and hence activity, of each component of the system be the 
same in each of the phases present, i.e., ai (in phase I) =ai (in phase 11) =a, (in phase 111) 
=.... Thus, if the activity of a component can be fixed at a known value in any one of 
the phases, its value in every other phase is known. 

One of the more simple heterogeneous equilibria involves a binary liquid, saturated 
with one of its components. In a simple binary eutectic system exhibiting virtually 
complete mutual immiscibility in the solid state, the saturated liquids on the liquidus 
lines are in equilibrium with virtually pure solids. Thus, in the melt of A-liquidus 
composition at the liquidus temperature T, the activity of A relative to pure liquid A as 
the standard state equals the activity of pure solid A relative to liquid A as the standard 
state, both being given by aA = exp( -AG;,/RT) where AG:,, is the molar free energy 
of melting of A at temperature T. Activities have been calculated in this manner along 
liquidus lines in such systems as Ag-Si and Ag-Pb. 

Fe and Ag are virtually immiscible in the liquid state, and when Si is added as a 
solute to coexisting liquid Fe and Ag it is distributed between the two liquids such that 
its activity is the same in both phases. The activities of Si in liquid Fe and liquid Fe-C 
alloys have been determined by chemical analysis of equilibrated Fe and Ag liquids 
containing Si, and knowledge of the activity of Si in Ag-Si alloys. In a similar manner 
the activity of Ag in A1-Ag alloys has been determined from measurement of the 
equilibrium partitioning of Ag between the virtually immiscible liquids AI and Pb, and 
the activity of A1 in AI-Co alloys has been determined by partitioning Al between the 
virtually immiscible liquids Ag and Co. 

The respective equilibrium constants for the reactions C02 + C,,,,,,,, = 2CO and 
CO +io2 = COz are: 

2 
Pco K4 = ~ 

Pco2ac 

and 

Pco, 
Pco Po, 

K5 = ~ t2 - (83) 

Thus, at a fixed temperature, which determines the values of K4 and K5, a CO-CO, gas 
mixture of known pco and pco, has an activity of carbon given by eq. (82) and a partial 
pressure of oxygen given by eq. (83). Similarly, by virtue of the equilibrium H2+$O2= 
H20, an H2-H20 mixture of known pHa and p%o exerts a unique partial pressure of 
oxygen at any temperature; by virtue of the equilibrium H2+iS,=H2S, an H2-HzS 
mixture of known pH, and pHaS exerts a unique partial pressure of sulfur at any temperat- 
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