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ure; and, by virtue of the equilibrium C, .y +2H,=CH,, a CH,~H, mixture of known
Py, and Py, has a unique activity of carbon at any temperature. Consequently, CO-CO,
and CH‘,—H2 mixtures can be used as gas phases of fixed activity of carbon for use in the
establishment of heterogeneous equilibria between a gas phase and a condensed phase.
Similarly, CO-CO, and H,-H,O mixtures can be used as gas phases of fixed oxygen
pressure and H,—H,S mixtures can be used as gas phases of fixed sulfur pressure. The
activities of carbon in liquid and solid iron have been determined by equilibrating iron
with CO-CO, and CH,-H, mixtures and measuring the equilibrium carbon content of the
metal phase, and the activities of oxygen and sulfur in liquid iron have been determined
by equilibrating iron with H,0-H, and H,S-H, mixtures, respectively. In more simple
gas—metal equilibria the activities of hydrogen and nitrogen in iron have been determined
by measuring the solubilities of the gases as functions of gas pressure. Activities in the
system Fe—Fe,0, have been determined by experimental observation of the variation of
the composition of small samples of condensed phases with temperature and oxygen
pressure imposed by an equilibrating gas phase. The variation, with composition, of the
activity of Fe in the system is determined by Gibbs-Duhem integration of the corres-
ponding measured variation of the equilibrium partial pressure of oxygen. The oxygen
content of liquid iron in equilibrium with pure liquid iron oxide at 1600°C is 0.23 wt%.
If the oxide of a less noble metal than iron is dissolved in the liquid iron oxide, the
activity of iron oxide, and hence the equilibrium oxygen content of the liquid iron are
decreased. If the latter is x wt%, the activity of FeO, relative to pure Fe-saturated iron
oxide as the standard state, in the oxide solution is x/0.23. This technique has been used
to determine the activity of FeO in CaO-FeO and CaO-FeO-SiO, melts saturated with
liquid iron.

One step more complex is the establishment of equilibrium between a gas phase and
two condensed phases. The equilibrium between manganese, manganous oxide and a
CO-CO, mixture, expressed as Mn+ CO,=MnO + CO requires:

K = Pco®uno ) (84)

Pco, Oyn

Thus, at a given temperature, the equilibrium between pure Mn (at unit activity) and Mn-
saturated pure MnO (at unit activity) occurs at a unique value of the ratio pco/ P, given
by eq. (84). If a metal more noble than Mn is embedded in an excess of MnO and
subjected to a lower peo/ Peo, ratio, manganese is transferred from the MnO to the metal
phase until the activity of Mn required by eq. (84) and the imposed peo/ Pco, is establish-
ed. The manganese content of the alloy corresponding to the 1mposed activity is
determined by chemical analysis. The other component of the alloy must be sufficiently
more noble than Mn that formation and solution of its oxide in the MnO phase is
negligible. The activity of Mn in Mn-Pt alloys has been determined in this manner.
Having determined this relationship, the activity of MnO in oxide melts containing
oxides more stable than MnO can be determined by equilibrating a small sample of Pt
with an excess of oxide melt and a CO-CO, gas mixture. Again, as Mn is distributed
between the Pt—Mn alloy and the oxide melt in accordance with eq. (84) and the imposed
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Peo’ Peo,» chemical analysis of the equilibrated Pt—Mn alloy yields a,;, and hence, from
eq. (84), the value of ay, in the oxide melt. In this application the other oxide compo-
nent must be of a metal which is sufficiently less noble than Mn that the extent of its
solution in the Pt Mn phase is negligible. This technique has been used to determine the
activity of MnO in systems such as MnO-SiO,, MnO-TiO,, MnO-Al,0;, MnO-B,0, and
MnO-CaO-Si0,.

Other examples of determination of activities by establishing equilibrium between a
binary alloy, a nonmetallic phase of known composition and a gas phase include:

Fe(in Fe—Ni alloys) + H,O=FeO + H,;

2Cr(in Cr-Ni alloys) +3H,0 =Cr,0; + 3H,;

3Mn(in Mn—Cu alloys) + CH, =Mn,C +2H,;

2Cu(in Cu—-Au alloys) + H,S =Cu,S + H,;

3Si(in Si—Ag alloys)+N, (in N,—H, mixtures) = Si;N,. (85)
Again, in this application, the “inert” metal must be sufficiently more noble than the
primary component metal that its occurrence in the equilibrium nonmetallic phase is
negligible. Corrections are required in systems where the nonmetallic phase is not a line
compound. Thus, for example, in eq. (85), the activity of FeO is that in the wustite
equilibrated with the imposed partial pressure of oxygen, relative to Fe-saturated wustite
as the standard state. Equation (85) has also been used to determine the activity of FeO
in FeO-Si0, melts by establishing the equilibrium Fe + H,0 =FeO (in FeO-SiO, melts)
+H,.

If the difference between the nobilities of the metals is small enough that an oxide
solution is produced in equilibrium with the binary alloy phase a different approach is
taken. For example, if a small specimen of an Fe-Mn alloy is equilibrated with an excess
of an FeO-MnO solid solution, the exchange equilibrium Fe+MnO = Mn+FeO is
established, wherein K =a,,,aro/ dp.0us0- From chemical analysis of the equilibrated
Fe-Mn alloy and knowledge of the activities in the system Fe Mn, the ratio yg,o/ Yuno in
the equilibrating oxide solution is obtained as:

YFeO — K aFeXMnO
Y Mo Ayin Xreo

’

and Gibbs—Duhem integration of the variation of this ratio with composition in the oxide
solution according to eq. (81) yields the individual activity coefficients, and hence
activities, of the components of the oxide solution. This technique has been used to
determine activities in the systems Fe,Si0,—Co,SiO, and Fe,Si0,~Mn,SiO,.

Activities have been determined by establishing equilibrium among three condensed
phases and a gas phase. As an example, the activity of SiO, in CaO-Mg0O-Al,0,-SiO,
melts has been determined by establishing the equilibrium

Si0, +2C = Si + 2CO (86)

in systems comprising a silicate melt, solid graphite, liquid iron and CO gas at 1 atm
pressure, and by establishing the equilibrium
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Si0, + 2S8iC = 381+ 2CO 8N

in systems comprising a silicate melt, solid SiC, liquid iron and CO gas at 1 atm
pressure. The activity of SiO, is obtained from chemical analysis of the equilibrated
liquid phases, knowledge of the equilibrium constants for the reactions given by eqs. (86)
and (87) and knowledge of the activity of Si in Fe-Si~C melts. Gibbs—Duhem integration
of the results yielded activities in the systems Ca0-Si0,, CaO-Al,0,, MgO-Si0,, CaO—
AlL0,-Si0,, MgO-Ca0-Si0, and MgO-AL,0,-Si0,.

10.3. Electrochemical measurement of activity

The EMF of a reversible galvanic cell, &, is related to the free energy change, AG,
for the cell reaction as AG=~zF¢ where F is Faraday’s constant and z is the number of
Faracays required for the cell reaction. Thus, in a concentration cell of the type

pure metal A lionic conductor containing metal A ions of valence z,lalloy A-B,

the cell reaction is A(pure) — A(in the A-B alloy) for which AG=RT Ina, (in the A B
alloy). Thus the activity of A in the alloy is obtained as Ina, =—(z,Fe/RT). The
determination of activity by measurement of the EMF of an electrochemical cell requires
that the electrolyte be a purely ionic conductor and that the valency z, be defined. A
further requirement is that the extent of the exchange reaction at the cathode—electrolyte
interface between B in the alloy and A in the electrolyte be negligible. If this condition
is not met, the measured EMF contains a contribution of unknown magnitude arising
from the transfer of electrolyte between regions of different composition. In practice the
extent of the exchange reaction is rendered negligible by ensuring that B is significantly
more noble than A. Molten chlorides are purely ionic conductors and hence these melts
are popular as liquid electrolytes. The concentrations of low valent cations in the
electrolyte are minimized by dissolving the chlorides in mixtures of alkali chlorides.

The activity of Al in Al-Ag melts in the range 700-800°C has been obtained from
measurement of the EMFs of cells of the type

Al T A (in KCE-NaCD | Al-Ag .

Similarly the activities of Cd in Cd-Pb, Cd-Bi, Cd-Sb and Cd-Sn alloys, and the
activities of Cu in Cu—Au melts and Ag in Ag—Au melts have been determined from
concentration cells with liquid chloride electrolytes.

The cell

Mg, IMgCly, ICl

2(g.1 atm)

is a formation cell in which the cell reaction is Mg + Cl, =MgCl,. With pure liquid Mg,
pure liquid MgCl, and CI, at 1 atm pressure, the free energy change is the standard free
energy change, AG®, and the EMF is the standard EMF, £°=-AG% 2F. Alloying the
anode with a more noble metal such as Al alters the free energy change for the cell
reaction to AG =AG®-RT Inay, (in the alloy) and hence the cell EMF to

e=¢e"+ gg— In ay,, (in the alloy). (88)
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Equation (88) has been used to determine the activities of Mg in Mg—Al melts from
EMF measurements in the range 700-880°C.
Similarly, the formation cell

Pb ;) PbO ;)| Oy, sy

has a standard EMF of £°=-AG% 2F. Alloying the PbO electrolyte with the oxide of a
less noble metal, such as SiO,, changes the cell EMF to:

e=¢g’~ % In a,,, (in PbO-Si0,),

and this has been used as the basis for electrochemical determination of the activities in
the system PbO-Si0, in the range 850-1050°C.

Within wide ranges of temperature and oxygen pressure, ZrOQ, and ThO, in the
fluorite structure, stabilized by solid solution with CaO and Y,O,, respectively, exhibit
unusually high conductivities and transport numbers for O*  of essentially unity.
Consequently CaO-ZrO, and Y,0,-ThO, have been used as solid electrolytes in oxygen
concentration cells of the type

Pt, O ,|Ca0-Z10, 10 Pt

2(g, at pressure P| 2(g, at pressure P )? *

in which the cell reaction is Oy pressuce Pty — O2gn pressure 72y a0d the cell EMF is & =—AG/4F
=—(RT/4F) InP,/P,. The oxygen pressure at the electrodes can be fixed by using
equilibrated metal-metal-oxide couples, e.g., with Fe-FeO and Ni-NiO the cell becomes

Fe, FeOlCa0-Zr0O, { Ni, NiO,

with a cell reaction of NiO + Fe =FeO + Ni. With the electrodes Fe-FeO and (Fe-Ni)-
FeO, the cell reaction is Fe ) — Fey e reni aitoyy and the cell EMF is

e=- ER; In a, (in the alloy). (89)

This method is similar to that discussed in connection with eq. (85). In the chemical
equilibration technique the oxygen pressure is imposed, and the Fe-Ni alloy in equi-
librium with FeO and the imposed oxygen pressure is produced in the experimental
apparatus. In the EMF technique the oxygen pressure in equilibrium with a given Fe-Ni
alloy and FeO is measured. Equation (89) has been used as the basis for electrochemical
determination of the activities in a large number of solid and liquid binary alloy systems,
the majority of which contained Fe, Co, Ni or Cu as the less noble metal. The activity
of Si in Fe-Si alloys at 1550°C and 1600°C has been determined with electrodes of Cr,
Cr,0; and SiO,, Fe-Si and activities in the systems Ta-W and Ta-Mo have been
determined with a Y,0,-ThO, electrolyte and Ta, Ta,O; and Ta—X, Ta,O; electrodes. The
activities of SnO in SnO-SiO, melts and PbO in PbO-SiO, melts have been determined
from cells of the type M, MOICaO-Z1O,M, MO-SiO,.

Other solid electrolytes which have been used include B-alumina and soft soda glass
for measurement of the activity of sodium in alloys, and glasses containing K* and Ag*
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for study of K and Ag alloys, respectively. It can be expected that, as new solid state
electrolytes are developed for possible use in fuel cells, they will be applied to the
determination of activities by EMF measurements.
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1. Introduction

The study of phase equilibria and phase transformations is central to nearly all
branches of metallurgy and materials science. Although departures from equilibrium will
occur in any real system, a knowledge of the equilibrium state under a given set of
conditions is the starting point for the understanding of most processes.

A phase diagram is a graphical representation of the loci of thermodynamic variables
when equilibrium among the phases of a system is established under a given set of
conditions. The phase diagrams most familiar to the metallurgist are those for which
temperature and composition are the axes. These are discussed in §§ 2 and 3 for binary
(two-component) and ternary (three-component) systems, and in § 4 for multicomponent
systems. However, the effect of other variables such as total pressure and chemical
potential of the components (e.g., the partial pressure of oxygen) may often be of
interest. In § 6, different types of phase diagrams are discussed along with the general
rules governing their construction.

Throughout the chapter, the thermodynamic origin of phase diagrams is stressed.
With the advent of modern computer techniques, the relationship between phase diagrams
and the thermodynamic properties of the system has become of increasing practical
importance. As discussed in §2.10, a quantitative coupling of the two is now possible.
Furthermore, as discussed in § 5, the computer-assisted thermodynamic approach often
permits good estimates of unknown multicomponent phase diagrams to be made, and can
often significantly reduce the experimental effort required to measure the phase diagram
of a system.

2. Binary phase diagrams

The temperature composition (7-X) phase diagram of the Bi-Sb system is shown in
fig. 1 (HULTGREN et al. [1963]). The abscissa is the composition, expressed as mole
Sfraction of Sb, Xg,. Note that X, = 1 — Xj;,. Phase diagrams are also often drawn with the
composition axis expressed as weight percent.

At all compositions and temperatures in the area above the line labelled liquidus,
single-phase liquid alloys will be observed, while at all compositions and temperatures

900} Liquid 903

Liquid + Solid

Temperature, K

Bi 0.2 0.4 0.6 0.8 Sb
Mole fraction XSb—»

Fig. 1. Phase diagram of the Bi-Sb system (after HULTGREN et al. [1963]).
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below the line labelled solidus, alloys exist as single-phase solid solutions. An alloy
sample at equilibrium at a temperature and overall composition between these two curves
will consist of a mixture of solid and liquid phases, the compositions of which are given
by the liquidus and solidus compositions at that temperature. For example, a Bi-Sb
sample of overall composition Xy, =0.60 at 7=700 K (at point R in fig. 1) will consist,
at equilibrium, of a mixture of liquid alloy of composition Xg, =0.37 (point P) and solid
alloy of composition Xg, =0.82 (point Q). The line PQ is called a tie-line or conode. As
the overall composition is varied at 700 K between points P and Q, the compositions of
the liquid and solid phases remain fixed at P and Q, and only the relative proportions of
the two phases change. From a simple mass balance, one can derive the lever rule for
binary systems: (moles of liquid)/(moles of solid)=RQ/PR. Hence, at 700 K a sample
of Bi-Sb alloy with overall composition Xg,=0.60 consists of liquid and solid phases in
the molar ratio (0.82 —0.60)/(0.60—-0.37) =0.96. Were the composition axis expressed as
weight percent, then the lever rule would give the weight ratio of the two phases.

Suppose that a liquid Bi-Sb alloy with composition X, =0.60 is cooled very slowly
from an initial temperature of 900 K. When the temperature has decreased to the liquidus
temperature of 780 K (point A) the first solid appears, with a composition at point B
(X5, =0.93). As the temperature is decreased further, solid continues to precipitate with
the compositions of the two phases at any temperature being given by the liquidus and
solidus compositions at that temperature and with their relative proportions being given
by the lever rule. Solidification is complete at 630 K, the last liquid to solidify having
composition Xy, =0.18 (point C).

The process just described is known as equilibrium cooling. At any temperature
during equilibrium cooling the solid phase has a uniform (homogeneous) composition. In
the preceding example, the composition of the solid phase during cooling varies along
the line BQD. Hence, in order for the solid particles to have a uniform composition at
any temperature, diffusion of Sb from the center to the surface of the growing particles
must occur. Since solid state diffusion is a relatively slow process, equilibrium cooling
conditions are only approached if the temperature is decreased very slowly. If a Bi-Sb
alloy of composition Xg, =0.60 is cooled very rapidly from the liquid, concentration
gradients will be observed in the solid grains, with the concentration of Sb decreasing
towards the surface from a maximum of X, =0.93 (point B) at the center. Furthermore,
in this case solidification will not be complete at 630 K since at 630 K the average
concentration of Sb in the solid particles will now be greater than Xg,=0.60. These
considerations are discussed more fully in ch. 9.

At X, =0 and Xz, =1 in fig. 1 the liquidus and solidus curves meet at the equilibrium
melting points, or remperatures of fusion, of Bi and Sb, which are: Tf(()m) =5445 K,
Tospy =903 K.

The phase diagram is influenced by the total pressure, P. Unless otherwise stated,
7-X diagrams for alloy systems are usually presented for P =const. =1 atm. However, for
equilibria involving only solid and liquid phases, the phase boundaries are typically
shifted only by the order of a few hundredths of a degree per bar change in P (see ch.
5, §3). Hence, the effect of pressure upon the phase diagram is generally negligible

References: p. 531.
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unless the pressure is of the order of hundreds of atmospheres. On the other hand, if
gaseous phases are involved then the effect of pressure is very important (§2.12).

2.1. The thermodynamic origin of phase diagrams

In this section we shall consider first of all the thermodynamic origin of siraple “lens-
shaped” phase diagrams in binary systems with complete liquid and solid miscibility.

An example of such a diagram was given in fig. 1. Another example is the Ge-Si
phase diagram in the lowest panel of fig. 2 (HANSEN [1958]). In the upper three panels
of fig. 2 are shown, to scale, the molar Gibbs energies of the solid and liquid phases, g°
and g', at three temperatures. As illustrated in the top panel, g* varies with composition

o(s)
9Ge -I' 1500°C o{s)
__9sj °
o Si
89y (Ge) ‘
o) Ag{
9Ge g{
o(f)
Si
L [}
A aetsn
? 9si
o
L =Y
® ol{)
L|=.| — Isi
o
o T A gqsi
0 ols)
a g E — 9si
(L]
*PZ Q o
2 1100°C
1500 —
(8] 1412°
o
o 1300
L =Y
3
-
2 1100
o
a
g 937°
P 900

Ge

Fig. 2. Ge-Si phase diagram (after HANSEN [1958]) and Gibbs energy-composition curves at three temperatures,
illustrating the common tangent construction.



Ch. 6, §2 Phase diagrams 475

between the standard molar Gibbs energies of pure solid Ge and of pure solid Si, g
and gg°, while g' varies between the standard molar Gibbs energies of the pure liquid
components g and gs?ﬂ). The molar Gibbs energies of mixing of the solid and liquid
phases, Ag* and Ag, are negative and are equal to the difference between the Gibbs
energy of the solution and a simple weighted average of the Gibbs energies of the pure
unmixed components in each phase.

The difference between gs‘i(l) and go is equal to the standard molar Gibbs energy of
fusion (melting) of pure Si, Ag;?si, =(gs" — gs). Similarly for Ge, Agr?c,e) =(86s ~ &o)-
The Gibbs energy of fusion of a pure component may be written as:

Ag} = Ar) - TAs?, (1

where Ak and As,0 are the standard molar enthalpy and entropy of fusion. Since, to a
first approximation, Ahfo and As,0 are independent of 7, Ag! is apgroximately a linear
function of 7. If T > Ty, then Ag/ is negative. If 7 < T/, then Ag; is positive. Hence,
as seen in fig. 2, as T decreases, the g° curve descends relative to g'. At 1500°C, g'<g*
at all compositions. Therefore, by the principle that a system always seeks the state of
minimum Gibbs energy at constant 7" and P, the liquid phase is stable at all compositions
at 1500°C. At 1300°C, the curves of g* and g' cross. The line P,Q,, which is the common
tangent to the two curves, divides the composition range into three sections. For
compositions between pure Ge and P, a single-phase liquid is the state of minimum
Gibbs energy. For compositions between Q, and pure Si, a single-phase solid solution is
the stable state. Between P, and Q,, total Gibbs energies lying on the tangent line P,Q,
may be realized if the system adopts a state consisting of two phases with compositions
at P, and Q, and with relative proportions given by the lever rule. Since the tangent line
P,Q, lies below both g° and g, this two-phase state is more stable than either phase
alone. Furthermore, no other line joining any point on g' to any point on g* lies below the
line P,Q,. Hence, this line represents the true equilibrium state of the system, and the
compositions P, and Q, are the liquidus and solidus compositions at 1300°C.

It may be shown that the common tangency condition also results in equal activities of
each component in the two phases at equilibrium. That is, equality of activities and
minimization of total Gibbs energy are equivalent criteria for equilibrium between phases.

As T is decreased to 1100°C, the points of common tangency are displaced to higher
concentrations of Ge. For T<937°C, g*<g' at all compositions,

It should be noted that absolute values of Gibbs energies cannot be defined. Hence,
the relative positions of g and gg" in fig. 2 are completely arbitrary. However, this
is immaterial for the preceding discussion, since displacing both g and g5 by the
same arbitrary amount relative to ggf,') and g(-?f) will not alter the compositions of the
points of common tangency.

It should also be noted that in the present discussion of equilibrium phase diagrams
we are assuming that the physical dimensions of the single-phase regions in the system
are sufficiently large that surface (interfacial) energy contributions to the Gibbs energy
can be neglected. For very fine grain sizes in the sub-micron range however, surface
energy effects can noticeably influence the phase boundaries.

References: p. 531.
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The shape of the two-phase (solid + liquid) “lens” on the phase diagram is determined
by the Gibbs energies of fusion, Ag; of the components and by the mixing terms, Ag*
and Ag'. In order to observe how the shape is influenced by varying Agr0 , let us consider
a hypothetical system A-B in which Ag® and Ag' are ideal Raoultian (§2.2). Let
Tga =800 K and Tgg, = 1200 K. Furthermore, assume that the entropies of fusion of A
and B are equal and temperature-independent. The enthalpies of fusion are then given
from eq. (1) by the expression Ahf0 =T7 Asfo since Agf =0 when T= T . Calculated
phase diagrams for Asfo =3, 10 and 30 }/mol K are shown in fig. 3. A value of As{ = 0
is typical of most metals (Richard’s rule). However, when the components are ionic
compounds such as ionic oxides, halides, etc., then As; can be significantly larger since
there are several atoms per formula unit. Hence, two-phase “lenses” in binary ionic salt
or oxide phase diagrams tend to be “fatter” than those encountered in alloy systems. If
we are considering vapour-liquid equilibria rather than solid-liquid equilibria, then the
shape is determined by the entropy of vaporization, As{ (§2.12). Since Asy=~ 10As,,
two-phase (liquid + vapour) lenses tend to be very wide.

(200 (30)

1000

800

1200} (10)
Liquid
1000 - .

Solid

Temperature , K

800 -1

1200}
(3)
Liquid

1000 -1

Solid

800 -
1 I L 1 ! ! 1 ]

A 0.2 0.4 0.6 0.8 8
Xg

Fig. 3. Phase diagrams for a system A-B with ideal solid and liquid solutions with Tj,, = 800 K and T}, =
1200 K, calculated for entropies of fusion Asj,, = Aspy, = 3, 10 and 30 J/mol K.
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2.2, Minima and maxima in two-phase regions

As discussed in ch. 6, § 6, the Gibbs energies of mixing, Ag* and Ag', may each be
expressed as the sum of an ideal (Raoultian) term which is purely entropic and which is
given by the Boltzmann equation for a random substitutional solution of A and B
particles, and an excess term, g-.

Ag = RT(X, In X, + X, In X;) + g%, )

where X, and X; are the mole fractions of the components. An ideal or Raoultian
solution is defined as one in which g®=0. Both the solid and liquid phases in the Ge-Si
system (fig. 2) are approximately ideal. With two ideal solutions, a “lens-shaped” two-
phase region always results. However, in most alloy systems, even approximately ideal
behaviour is the exception rather than the rule.

If g5>0 then the system is said to exhibit positive deviations from ideality. If g% <0,
then we speak of negative deviations,

Curves of g* and g' for a hypothetical system A-B are shown schematically in fig. 4
at a constant temperature below the melting points of pure A and B such that the solid
state is the stable state for both pure components. However, in this system g™" < g%® so
that g° presents a flatter curve than does g' and there exists a central composition region
in which g'<g". Hence, there are two common tangent lines, P,Q, and P,Q,. Such a
situation gives rise to a phase diagram with a minimum in the two-phase region as
observed in the Au-Cu system shown in fig. 5 (HULTGREN et al. [1963]). At a com-
position and temperature corresponding to the minimum point, liquid and solid of the
same composition exist in equilibrium.

A two-phase region with a minimum point as in fig. 5 may be thought of as a two-
phase “lens” which has been “pushed down” by virtue of the fact that the liquid is
relatively more stable than the solid. Thermodynamically, this relative stability is
expressed as g"¥ < "9,

Conversely, if g&">g" to a sufficient extent, then a two-phase region with a
maximum will result. In alloy systems, such maxima are nearly always associated with
the existence of an intermetallic phase, as will be discussed in § 2.8.

X B

Fig, 4. Isothermal Gibbs-energy-composition curves for solid and liquid phases in a system A-B in which
259 < g™, A phase diagram of the type in fig. 5 results.

References: p. 531.
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Fig. 5. Phase diagram of the Au—~Cu system (after HULTGREN et al. {1963]).

2.3. Miscibility gaps

If g8>0 for a solution, then the solution is thermodynamically less stable than an
ideal solution. In an alloy system this can result from a large difference in atomic
diameter of the components, which will lead to a (positive) lattice strain energy, or from
differences in valence, or from other factors.

In the Au-Ni system, g® is positive in the solid phase. In the top panel of fig. 6 is
plotted g&° at 1200 K (HULTGREN et al. [1963]) as well as the ideal Gibbs energy of
mixing, Ag"", also at 1200 K. The sum of these two terms is the Gibbs energy of
mixing Ag*=Ag" + g9, which is plotted at 1200 K as well as at other temperatures in
the central panel of fig. 6. Now,

Ag = RT(XAu InX,, +XyIn XNi)

is always negative and varies directly with T, whereas g& varies less rapidly with
temperature. As a result, the sum, Ag®=Ag** + g%, becomes less negative as T decreases.
However, the limiting slopes to the Ag'®® curve at X, , =1 and X,,=1 are both infinite

. ideal . ideal
(dim,a(ag™yax,. = Jim a(ag™) k= =),
whereas the limiting slopes of g® are always finite (Henry’s Law). Hence, Ag® will
always be negative as X,,— | and X; — 1 no matter how low the temperature. As a
result, below a certain temperature the curves of Ag® will exhibit two negative “humps”.
Common tangent lines P,Q,, P,Q,, P;Q, to the two humps define the ends of tie-lines of
a two-phase solid-solid miscibility gap in the Au-Ni phase diagram which is shown in
the lower panel in fig. 6 (HULTGREN et al. [1963]). The peak of the gap occurs at the
critical or consolute temperature and composition, 7, and X,.

When g&® is positive for the solid phase in a system it is usually also the case that
g™V < g9, since the unfavourable factors (such as a difference in atomic dimensions)
which are causing g** to be positive will have less of an influence upon g&¥ in the liquid
phase owing to the greater flexibility of the liquid structure to accommodate different
atomic sizes, valencies, etc. Hence, a solid—solid miscibility gap is often associated with
a minimum in the two-phase (solid + liquid) region as in the Au-Ni system.

Below the critical temperature the curve of Ag® exhibits two inflection points
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indicated by the letter “s” in fig. 6. These are known as the spinodal points. On the phase
diagram their locus traces out the spinodal curve as illustrated in fig. 6. The spinodal

4 1200K P

ideal
Ag = RT (Xp,InXa,t Xy InXy;

2 600K

1400

1200

1000

800

Temperature , K

2 Solids
P3 7 spinodal Q3
1 1 1 L 1 1 1 1 L

Au 0.2 0.4 0.6 0.8 Ni
XNi

Fig. 6. Phase diagram and Gibbs energy curves of solid solutions for the Au—Ni system (afier HULTGREN et al.
[1963]). Letters “s™ indicate spinodal points.
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curve is not part of the equilibrium phase diagram, but it is important in the kinetics of
phase separation as discussed in ch. § 15.

2.4. Simple eutectic systems

The more positive g° in a system is, the higher is T, and the wider is the miscibility
gap at any temperature. Suppose that g5 is sufficiently positive that 7, is higher than the
minimum in the (solid + liquid) region. The result will be a phase diagram such as that
of the Ag-Cu system shown in fig. 7 (HULTGREN et al. [1963]).

In the upper panel of fig. 7 are shown the Gibbs energy curves at 1100 K. The two
common tangents define two two-phase regions. As the temperature is decreased below
1100 K, the g* curve descends relative to g', and the two points of tangency, P, and P,,
approach each other until, at 7=1052 K, P, and P, become coincident at the composition
E. That is, at T=1052 K there is just one common tangent line contacting the two
portions of the g* curve at compositions A and B and contacting the g' curve at E. This
temperature is known as the eutectic temperature, Ty, and the composition E is the
eutectic composition. For temperatures below Ty, g' lies completely above the common

o
1300
h'4
® 100
[ S
3 A E (Tg= 1052 K) B
°
° 200l Solid Sy Solid S, .
a
g Solvus 2 Solids sol
olvus
~ line (s, +83) line
700
1 1 1 1 1 1 1 1 1
Ag 0.2 0.4 0.6 0.8 Cu
Xcu

Fig. 7. Phase diagram and Gibbs energy curves at 1100 K of the Ag—Cu system (after HULTGREN et al. [1963]).
Solid Ag and Cu are both fcc.
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tangent to the two portions of the g* curve and so, for T< T} a solid—solid miscibility gap
is observed. The phase boundaries of this two-phase region are called the solvus lines.
The word eutectic is from the Greek for “to melt well” since an alloy has the lowest
melting point at the eutectic composition E.

This description of the thermodynamic origin of simple eutectic phase diagrams is
strictly correct only if the pure solid components A and B have the same crystal structure
(see §2.6).

Suppose a Ag—Cu alloy of composition X, =0.28 (composition P,) is cooled from the
liquid state very slowly under equilibrium conditions. At 1100 K the first solid appears
with composition Q,. As T decreases further, solidification continues with the liquid
composition following the liquidus curve from P, to E and the composition of the solid
phase following the solidus curve from Q, to A. The relative proportions of the two
phases at any T are given by the lever rule. At a temperature T= (T +8) just above Ty,
two phases are observed: a solid of composition A and a liquid of composition E. At a
temperature T=(T;-8) just below Ty, two solids with compositions A and B are
observed. Therefore, at Ty, during cooling, the following binary eutectic reaction occurs:

liquid — solid, + solid,. 3)

Under equilibrium conditions the temperature will remain constant at 7=T until all the
liquid has solidified, and during the reaction the compositions of the three phases will
remain fixed at A, B and E. For this reason the eutectic reaction is called an invariant
reaction.

The morphologies of two-phase grains resulting from the co-precipitation of two
solids during eutectic reactions are discussed in detail in ch. 8.

2.5. Binary phase diagrams with no intermediate phases

2.5.1. Thermodynamic origin illustrated by simple regular solution theory

Many years ago VANLAAR [1908] showed that the thermodynamic origin of a great
many of the observed features of binary phase diagrams can be illustrated at least
qualitatively by simple regular solution theory. As discussed in ch. 5, §6.2, a regular
solution is one in which:

gt = QX, X, 4

where () is a parameter independent of temperature and composition,

In fig. 8 are shown several phase diagrams calculated for a hypothetical system A-B
containing a solid and a liquid phase with melting points of Tr?A) =800 K and Tr?m =
1200 K and with entropies of fusion of both A and B set to 10 J/mol K, which is a
typical value for metals. The solid and liquid phases are both regular with g5 =X, X;
and g"=Q'X,X;. The parameters {)* and {}' have been varied systematically to generate
the various panels of fig. 8.

In panel (n) both phases are ideal. Panels (I-r) exhibit minima or maxima depending upon
the sign and magnitude of (g¥"—g™®), as has been discussed in § 2.2. In panel (h) the liquid
is ideal but positive deviations in the solid give rise to a solid-solid miscibility gap as

References: p. 531.
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Fig. 8. Topological changes in the phase diagram for a system A-B with regular solid and liquid phases,
brought about by systematic changes in the regular solution parameters {}* and {). Melting points of pure A
und B are 800 K and 1200 K. Entropies of fusion of both A and B are 10.0 J/mol K. (PELTON and THOMPSON
[1975}.)

discussed above in § 2.4. On passing from panel (h) to panel (c), an increase in g%
results in a widening of the miscibility gap so that the solubilities of A in solid B and of
B in solid A decrease. Panels (a—) illustrate that negative deviations in the liquid cause
a relative stabilization of the liquid with resultant lowering of the eutectic temperature.

Eutectic phase diagrams are often drawn with the maximum solid solubility occurring
at the eutectic temperature (as in fig. 7). However fig. 8d, in which the maximum
solubility of A in the B-rich solid solution occurs at approximately 7=950 K, illustrates
that this need not be the case even for simple regular solutions.
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2.5.2. Liquid-liquid immiscibility - monetectics

In fig. 8e, positive deviations in the liquid have given rise to a liquid-liquid miscibil-
ity gap. An example of a real system with such a phase diagram is the Cu-Pb system
shown in fig. 9 (HULTGREN e? al. [1963]). If a Cu-Pb alloy with X, =0.10 is cooled
slowly from the liquid state, solid Cu begins to appear at 1260 K. Upon further cooling
the liquid composition follows the liquidus curve to point A at 7=1227 K. The following
invariant monotectic reaction then occurs;

liquid, — liquidy + Cu g, )

where liquid, and liquidy are liquids with compositions at points A and B. The temper-
ature remains constant at the monotectic temperature and the compositions of all phases
remain fixed until liquid, is completely consumed. Cooling then continues with precipita-
tion of copper with the liquid composition following the liquidus line from B to the
eutectic E.

Returning to fig. 8, we see that in panel (d) the positive deviations in the liquid are
not large enough to produce immiscibility but they do result in a flattening of the
liquidus which is often described as a “tendency to immiscibility”. An example of such
a flattened (or “S-shaped”) liquidus resulting from a positive g% is shown later for the
Cd-Pb system in fig. 12.

2.5.3. Peritectics

The invariant which appears in fig. 8i is known as a peritectic. The Au-Fe system
shown in fig. 10 (HULTGREN et al. [1963]) exhibits a peritectic PQR at 1441 K as well
as another at about 1710 K. The Gibbs energy curves, g' and g™, of the liquid and solid
face-centred cubic phases are shown schematically at the peritectic temperature of
T,=1441 K in the upper panel of fig. 10. One common tangent line PQR to g' and to the
two portions of g can be drawn.

Cu + Liquid o
1 300} 2 Liquids Liquid I
A B
w 1200 monotectic (T =1227K) N
“ 1100} .
[
£ =3
= 000} i
- L
Cu+ Liquid
2 o900} .
g' ——Cu
800
£
2 7oof Cu +Pb .
gutectic
600 1 ] ] 1 1 | ] | 1 E
Cu 0.2 0.4 0.6 0.8 Pb
Xpp

Fig. 9. The Cu—Pb phase diagram (after HULTGREN ef al. [1963]).
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Fig. 10. Phase diagram and Gibbs energy curves at the peritectic temperature of 1441 K for the Au-Fe system
(after HULTGREN et al. [1963]).

Suppose that a Au—Fe alloy of composition X, =0.65 is cooled very slowly from the
liquid state. At a temperature (7, +3) just above 1441 K, a liquid phase of composition
P and an fcc phase of composition R are observed at equilibrium. At a temperature
(T,-9) just below 1441 K, the two phases at equilibrium are liquid and solid with com-
positions P and Q respectively. The following invariant binary peritectic reaction thus
occurs upon cooling:

liquid + solid, — solid,. 6)

This reaction occurs isothermally with all three phases at fixed compositions (at points
P, Q and R). In the case of an alloy with overall composition between P and Q, the
reaction occurs isothermally until all solid, is consumed. In the case of an alloy with
overall composition between Q and R, it is the liquid which will first be completely
consumed.

A peritectic reaction between a liquid and solid, occurs on the surface of the particles
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of solid, which can rapidly become coated with solid,. By preventing contact between
liquid and solid,, this coating may greatly retard further reaction to such an extent that
equilibrium conditions can only be achieved by extremely slow cooling.

2.5.4. Syntectics

The invariant in fig. 8k in which a solid decomposes upon heating into two liquids
is known as a syntectic. It is rarely observed in alloy systems. Examples are found in the
K~Pb and K—Zn systems (HANSEN [1958]). A phase diagram similar to fig. §j, although
without the tiny miscibility gap, is exhibited by the Au-Pt system (HANSEN [1958]).

2.6, Limited mutual solid solubility

In § 2.4 the region of two solids in the Ag—Cu phase diagram of fig. 7 was described as
a miscibility gap in the solid phase. That is, only one g* curve was drawn. If, somehow,
the appearance of the liquid phase could be suppressed, then the two solvus lines in fig.
7, when projected upwards, would meet at a critical point (as in the Au—Ni system in fig.
6) above which one continuous solid solution would exist at all compositions.

Such a description is justifiable only if the pure solid components have the same
crystal structure. This is the case for Ag—Cu since solid Ag and Cu are both fcc. The
same assumption was made in our treatment of the peritectic Au-Fe system (fig. 10) in
which the region of two solids was treated as a miscibility gap. Again in this case this
description is permissible since Au and Fe are both fcc in this temperature range.

However, consider the simple eutectic system A--B in fig. 11 in which pure solid A
and B are hcp (hexagonal close-packed) and fcc respectively. In this case, if the
formation of the liquid phase could be suppressed the two solvus lines could not project
upward to meet at a critical point, since this would imply that above this critical
temperature a continuous series of solid solutions varying smoothly from hcp to fcc
could exist. Such a situation is prohibited by symmetry conditions. That is, one con-
tinuous curve for g° cannot be drawn. Each solid phase must have its own separate Gibbs
energy curve, as shown schematically in the upper panels of fig. 11. In this figure,g e
is the standard molar Gibbs energy of pure fcc A and gg? is the standard molar Gibbs
energy of pure hcp B. Such quantities may be defined in a number of different and non-
equivalent ways as will be discussed below.

A real system with a phase diagram similar to fig. 11 is the Cd—Pb system shown in
fig. 12 (ASHTAKALA et al. [1981]). Gibbs energy curves at a temperature below the
eutectic are shown schematically in the upper panel. Let us derive an expression for g
under the assumption that the Pb-rich fcc solid solution is a Henrian solution. As
discussed in ch. 5, § 6.2, when a solution is sufficiently dilute in one component, Henrian
behaviour may be assumed. That is, the activity of the solvent is ideal (Ggyen = Xeowens
Yo e = 1), while for the solute, g, = Y2 XKoo » Where the Henrian activity coefficient,
Yomee» 1S independent of composition. At T;=247.8°C in fig. 12, Cd in the Pb-rich fcc
solution at Xy, =0.940 exists in equilibrium with virtually pure solid hcp Cd. Thus, in the
fcc solution, ac~1.0 with respect to pure solid hcp Cd as standard state. Hence,
Yo = ey’ Xcs=1.070.060=16.67 at 247.8°C. We can now express g™ as:

References: p. 531.
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(hecp)
g° cp

A Xg B

Fig. 11. Phase diagram and Gibbs energy curves at two temperatures for a simple eutectic system A-B in
which pure solid A and B have different crystal structures.

g™ = (xCdggg’“” + Xpbgg,(f“)) + RT(XCd Inag, + X, In apb)
O(hep) 0(fec) 0 (7)
= (XCdng + Xpo 8o ) + RT(XCd In(ycgXcy) + Xpp In XPb)
However, since 'ygd is independent of composition we can combine terms as follows:
g = [XCd (ggghcp) +RTIn '}’gd) + XPbggl(:rCC)] ®
+ RT(Xoy In Xy + Xy In X3,).

Let us now define:

gar” = (8™ + RT Invg, ).



Ch. 6, §2 Phase diagrams 487

o{fcc)
3 9c¢d
[
RTlnYCd
o{l)
9cd
o({)
+ g?;(ch) 9pp
o(fce)
9pp
350
:—’ 320.85 Liquid 327.6
N\
o 250 AN -
- Tg =247.8 o072 0.940) |
"a 200} " Pb{fce)
~ « Cd (hcp)
) 150+ "
Q
= 1001~
(]
'-" 50
0 1 1 1 | L 1 1 L 1
0.2 0.4 0.6 0.8
Cd Pb
Xpp

Fig. 12, Phase diagram of the Cd-Pb system (after ASHTAKALA ef al. [1981]) and Gibbs energy curves
(schematic) at a temperature below the eutectic. Dashed lines indicate limiting liquidus slopes calculated for
zero solid solubility.

From eq. (8) it can be seen that relative to goy " defined in this way and to gm™ the

fcc solution is ideal. This is illustrated in fig. 12.

At1247.8°C in Cd-Pb, (g — g3y = RT1n y2, =R(247.8+273.15) In 16.67 = 12.19
kJ/mol. As a first approximation we could take this value to be independent of T, or as
a second approximation we could evaluate y°Cd at other temperatures along the solidus
and express (gor —gorP) as, say, a linear function of T.

Although the above treatment has the advantage of numerical simplicity, it suffers
from the difficulty that the numerical value of (gay "~ —go®) is solvent—dependent and
will be different for, say, solutions of Cd in fcc Cu and Cd in fcc Pb. For purposes of
predicting binary phase diagrams from first principles or for estimating ternary phase
diagrams from binary phase diagrams (§5.5) it would be desirable if 2% could be
defined to be system-independent so as to be truly the “standard molar Gibbs energy of
metastable fcc Cd”. A great deal of effort has been expended by the international
CALPHAD group under the impetus of Kaufman (KAUFMAN and BERNSTEIN [1970]) and

References: p. 531.
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co-workers to compile tables of lattice stabilities for metals in the fcc, hep, bee, and
liquid states (that is, to obtain a set of relative values of g**, g®™P, g% and g% for
every metal). In some cases, these can be calculated by extrapolating thermodynamic
data from regions of T and P where the phases are stable. In other cases, lattice
stabilities can be estimated partly from theoretical calculations and partly from the
analysis of a large number of binary phase diagrams followed by a judicious choice of
the “best” values which most closely fit the greatest number of systems, Tabulations of
lattice stabilities are now available for many metals (DINSDALE [1991]).

2.7. Calculation of limiting slopes of phase boundaries

In fig. 12 we see that the solubility of Pb in solid Cd is very small. The actual
solubility at Ty is about 0.14 mol% (HANSEN [1958]). In thermodynamic terms this
means that g™ increases very rapidly as Pb is added to solid Cd (see fig. 12), or that the
Henrian activity coefficient 5, is very large. The fact that the solubility of Cd in solid
Pb is much greater than that of Pb in solid Cd can be understood in terms of the
Hume-Rothery rule (ch. 4) that solubilities are greater when the solute atoms are smaller
than the solvent atoms, since the lattice strain energy will be less and hence g will rise
less rapidly upon addition of solute.

As discussed later in § 7, it is usually more difficult experimentally to determine a
solidus than it is to measure liquidus temperatures. However, if the liquidus has been
measured in the limit as X, .,— 1, then the limiting slope of the solidus can be
calculated. Let component B be the solvent in a system A-B. The partial Gibbs energies
of B along the liquidus and solidus are equal (gz — g5 =0). Hence:

(g5 —5°) — (&2 - &8®) = - (& - &5°) ©)
But: (gp - g5") = RT Ina, and (g5 - g5°) = RT Inag, where a; and aj are activit-
ies of B on the liquidus and solidus with respect to the pure liquid and pure solid
standard states respectively. Hence, eq. (9) may be written as:

RTInay — RT Inay = ~Aggy,. (10)

In the limit Xy — 1, Raoult’s Law holds for both phases. That is, a3 — X3 and a5 —
X3. Hence, in the limit, eq. (10) may be written as:

RTIn X3/X; = —Aggy,. (1)

Furthermore, in the limit, T— Ty, and from eq. (1) Aggg, — Ahgg, (1 —T/Tgg,). Finally,
limxn_'l (In Xy) =(Xz —1). Substituting these limiting values into eq. (11) we obtain:

. 1 s . ALD 0 \2
};Tl(dXB /dT - dX;/dT) = A /R(Tgy)) . (12)
If the limiting slope of the liquidus, lim, _)l(dXB'/dT), is known, then the limiting slope

of the solidus can be calculated via eq. (12) if the enthalpy of fusion is known.
For the Cd-Pb system, limiting liquidus slopes were calculated for both components
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from eq. (12) under the assumption that there is no solid solubility (that is, that d X /dT
=0). These are shown as the dashed lines on fig. 12. In Cd-rich solutions, agreement
with the measured limiting liquidus slope is very good, but in Pb-rich solutions the poor
agreement indicates the existence of appreciable solid solubility as has been confirmed
by direct measurement.

2.8. Intermediate phases

The phase diagram of the Ag—Mg system (HULTGREN e? al. [1963]) is shown in fig.
13. An intermetallic phase, B’, is seen centered approximately about the composition

T=1050K'
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Fig. 13. Ag-Mg phase diagram (after HULTGREN er al. [1963]) and Gibbs energy curves (schematic) at 744 K
and 1050 K.
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X =0.5. The Gibbs energy curve for such an intermetallic phase has the form shown
schematically in the upper panel of fig. 13. & rises quite rapidly on either side of its
minimum which occurs near X, =0.5. As a result, the 8’ phase appears on the phase
diagram only over a limited composition range. This form of the curve ¢ results from
the fact that when X, ,~X,,, a particularly stable crystal structure exists in which Ag and
Mg atoms preferentially occupy different sites. The two common tangents P,Q, and P,Q,
give rise to a maximum in the two-phase (8’ +liquid) region in the phase diagram.
(Although the maximum is observed very near X,,,=0.5, there is no thermodynamic
reason for the maximum to occur exactly at this composition.)

The Na—-Bi phase diagram is shown in fig. 14 (HANSEN {1958]}). Gibbs energy curves
at 700°C are shown schematically in the upper panel. g(Na, Bi, ) rises extremely
rapidly on either side of its minimum which occurs at X,=3/4, X5, =1/4. (We write
g(Na,,,Bi,,,) rather than g(Na,Bi) in order to normalize to a basis of one mole of metal
atoms.) As a result, the points of tangency Q, and Q, of the common tangents P,Q, and
P,Q, are nearly (but not exactly) coincident. Hence, the composition range over which
single-phase Na;Bi exists (sometimes called the range of stoichiometry or homogeneity
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Fig. 14. Na-Bi phase diagram (after HANSEN [1958]) and schematic Gibbs energy curves at 700°C.
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range of Na,Bi) is very narrow (but never zero). The two regions labelled (Na;Bi+
liquid) in fig. 14 are the two sides of a two-phase region which passes through a
maximum just like the (8’ +liquid) regions in fig. 13. Because the Na,Bi single-phase
region is so narrow we refer to Na,Bi as an intermetallic compound. In the case of
Na,Bi, any slight deviation from the stoichiometric composition causes a very large
increase in Gibbs energy. Owing to the large difference in electronegativities of Na and
Bi, Na,Bi could be considered to be a semi-ionic compound. Deviations from
stoichiometry would require the substitution of Na on Bi sites or vice versa which would
be energetically very unfavourable.

If stoichiometric Na;Bi is heated, it will melt isothermally at 775°C to form a liquid
of the same composition. That is, the melting behaviour of Na;Bi is similar to that of a
pure element. Such intermetallic compounds are called congruently melting or simply
congruent compounds. The B’ phase in fig. 13 might also be called a congruent inter-
metallic compound AgMg (or AgMg, ;). It is debatable, however, whether a phase with
such a wide range of composition should really be called a “compound”.

It should be noted with regard to the congruent melting of Na;Bi in fig. 14 that the
limiting slopes d7/dX of the two liquidus curves at the congruent melting point (775°C)
are both zero, since we are really dealing with a maximum in a two-phase region and not
with the melting of an element.

Another intermetallic phase, the £ phase, is also observed in the Ag-Mg system, fig
13. This phase has a narrow range of stoichiometry around the composition AgMg,. This
phase is associated with a peritectic invariant ABC at 744 K. The Gibbs energy curves
are shown schematically at the peritectic temperature in the central panel of fig. 13. One
common tangent line can be drawn to g', ¢, and ¢’

Suppose that a liquid alloy of composition X, =0.7 is cooled very slowly from the
liquid state. At a temperature just above 744 K a liquid phase of composition C and a 8’
phase of composition A are observed at equilibrinm. At a temperature just below 744 K,
the two phases at equilibrium are 8° of composition A and & of composition B. The
following invariant peritectic reaction thus occurs upon cooling (cf. §2.5.3):

liquid + B’(solid) — &(solid). (13)

This reaction occurs isothermally at 744 K with all three phases at fixed compositions (at
points A, B and C). For an alloy with overall composition between points A and B the
reaction proceeds until all the liquid has been consumed. In the case of an alloy with overall
composition between B and C, the 8 phase will be the first to be completely consumed.

The AgMg,(¢) compound is said to melt incongruently. If solid AgMg; is heated, it
will melt isothermally at 744 K, by the reverse of the above peritectic reaction (14), to
form a liquid of composition C and another solid phase, B’, of composition A.

Another example of an incongruent compound is the compound NaBi in fig. 14. This
compound has a very narrow range of stoichiometry. When heated, it melts incongruently
(or peritectically) at the peritectic temperature of 446°C to form another solid, Na,Bi, and
a liquid of composition Xy; = 0.53.

An incongruent compound is always associated with a peritectic. (The word peritectic
comes from the Greek for (loosely) “to melt in an indirect way”.) However, the converse
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is not necessarily true. A peritectic is not always associated with an intermediate phase.
See, for example, fig. 10.

For purposes of phase diagram computations involving very stoichiometric com-
pounds such as Na,Bi, we may, to a good approximation, consider the Gibbs energy
curve, g(Na,,Bi,, ), to have zero width. Then all we need is the numerical value of
g(Na,,,Bi, ;) at the minimum. This value is usually expressed in terms of the Gibbs
energy of fusion of the compound, Agfomammm), or in terms of the “Gibbs energy of
Sformation”, Agf?,,mmw" ,-0f the compound from solid Na and Bi according to the reaction
iNay, +Bi,=Na,,Bi, . Both these quantities are interpreted graphically in fig. 14.

2.9. Topology of binary phase diagrams
In ch. 5, § 8.2 the Gibbs phase rule was derived.:
F=C-P+2, (14)

where C is the number of components, P the number of phases in equilibrium, and F the
number of degrees of freedom or variance. That is, F is the number of parameters which
can and must be specified in order to completely specify the state of the system. In the
present context, the thermodynamic parameters are temperature, total pressure, and the
compositions of the phases at equilibrium. Since binary temperature-composition phase
diagrams are plotted at constant pressure, usually 1 bar, one degree of freedom is already
used up. In a binary system, C=2. Hence, for binary isobaric 7-X diagrams the phase
rule reduces to:

F=3-P 15)

Binary 7-X diagrams contain single-phase areas and two-phase areas. In the single-
phase areas, F=3—1=2. That is, temperature and composition can be varied indepen-
dently. These regions are thus called bivariant. In two-phase regions, F=3-2=1. If, say,
T is chosen, then the compositions of both phases are fixed by the ends of the tie-lines.
Two-phase regions are thus termed univariant. Note that the overall composition can be
varied within a two-phase region at constant T, but the overall composition is not a
variable in the sense of the phase rule. Rather, it is the compositions of the individual
phases at equilibrium that are the variables to be considered in counting the number of
degrees of freedom.

When three phases are at equilibrium in a binary system at constant pressure, F=3
— 3=0. Hence, the compositions of all three phases as well as T are fixed. There are two
general types of three-phase invariants in binary phase diagrams. These are the eutectic-
type and peritectic-type invariants as illustrated in fig. 15. Let the three phases concerned
be called «, B and vy, with 8 as the central phase as shown in fig. 15. @, 8 and *y can be
solid, liquid or gaseous phases. At the eutectic-type invariant, the following invariant
reaction occurs isothermally as the system is cooled:

B-oa+y, (16)

whereas, at the peritectic-type invariant the invariant reaction upon cooling is:
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aty—pB (amn

Some examples of eutectic-type invariants are: (i) eutectics (fig. 7) in which
a =solid,, B8 =liquid, vy =solid,. The eutectic reaction is 1 = s, +s,; (ii) monotectics (fig.
9) in which a =liquid,, 8 =liquid,, v =solid. The monotectic reaction is 1, = 1, +s; (iii)
eutecroids (fig. 10) in which & =solid,, 8 =solid,, y =solid;. The eutectoid reaction is
S, —> 8, +53; (iv) catatectics in which a =liquid, 8 =solid,, y =solid,. The catatectic
reaction is s; = 1+s,.

Some examples of peritectic type invariants are: (i) peritectics (fig. 10) in which
a =liquid, 8 =solid,, y =solid,. The peritectic reaction is 1+ s, — s,; (ii) syntecrics (fig. 8k)
in which a =liquid,, 8 =solid, y =liquid,. The syntectic reaction is 1,+1,— s; (iii) peri-
tectoids in which a =solid,, 8 =solid,, y =solid,. The peritectoid reaction is s,+ 5, —s,.

An important rule of construction which applies to invariants in binary phase
diagrams is illustrated in fig. 15. This extension rule states that at an invariant the
extension of a boundary of a two-phase region must pass into the adjacent two-phase
region and not into the single-phase region. Examples of both correct and incorrect
constructions are given in fig. 15. To understand why the “incorrect extension” shown is
not correct, consider that the (a +y) phase boundary line indicates the composition of the
y-phase in equilibrium with the a-phase as determined by the common tangent to the

Eutectic-type
invariant

a+f 5} B+y Y
a , 7
(4 Ve
corraect ‘/ l’
extansions \ a+y I incorrect
\ I extensions
i

Peritectic-type

corract invariant
extensions ’ a+y . corract

extansions

Fig. 15. Some topological units of construction of binary phase diagrams illustrating rules of construction.
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Gibbs energy curves. Since there is no reason for the Gibbs energy curves or their
derivatives to change discontinuously at the invariant temperature, the extension of the
(a +v) phase boundary also represents the composition of the <y-phase in equilibrium
with the a-phase. Hence, for this line to extend into a region labelled as single-phase y
is incorrect.

Two-phase regions in binary phase diagrams can terminate: (i) on the pure com-
ponent axes (at X, =1 or X;=1) at a transformation point of pure A or B; (ii) at a
critical point of a miscibility gap; (iii) at an invariant. Two-phase regions can also exhibit
maxima or minima. In this case, both phase boundaries must pass through their max-
imum or minimum at the same point as shown in fig. 15.

All the topological units of construction of binary phase diagrams have now been
discussed. The phase diagram of a binary alloy system will usually exhibit several of
these units. As an example, the Fe-Mo phase diagram (KUBASCHEWSKI [1982]) is shown
in fig. 16. The invariants in this system are: peritectics at 1540, 1488, and 1450°C;
eutectoids at 1235 and 1200°C; peritectoids at 1370 and 950°C. The two-phase (liquid
+7) region passes through a minimum at X,,,=0.2.

Between 910°C and 1390°C is a two-phase (« +) y-loop. Pure Fe adopts the fcc y
structure between these two temperatures but exists as the bcc o phase at higher and
lower temperatures. Mo however, is more soluble in the bcc than in the fcc structure.
That is, g™ < g™ ag discussed in §2.6. Therefore, small additions of Mo
stabilize the bee structure.

2.9.1. Order-disorder transformations
In fig. 13 for the Ag—Mg system, a transformation from an &’ to an « phase is shown
occurring at approximately 390 X at the composition Ag;Mg. This is an order—disorder
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1000
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800 H . )
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Fig. 16. Fe-Mo phase diagram (KUBASCHEWSKI [1982]).
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transformation. Below the transformation temperature, long-range ordering (superlattice
formation) is observed. An order parameter may be defined which decreases to zero at
the transformation temperature. This type of phase transformation is not necessarily a
first-order transformation like those considered so far in this chapter. Unlike transfor-
mations which involve atomic displacements over distances large compared with atomic
dimensions, order—disorder transformations, at least at the stoichiometric composition
(Ag;Mg is this example), occur by atomic rearrangement over distances of the order of
atomic dimensions. The slope of the curve of Gibbs energy versus T is not necessarily
discontinuous at the transformation temperature. For a detailed discussion see ch. 4,
§4.1.1, INDEN [1982], and PrTscH and INDEN [1991].

A type of order—disorder transformation of importance in ferrous metallurgy is the
magnetic transformation. Below its Curie temperature of 769°C, Fe is ferromagnetic.
Above this temperature it is not. The transformation involves a change in ordering of the
magnetic domains and is not first-order. Additions of alloying elements will change the
temperature of transformation. Magnetic transformations are treated in ch. 29. See also
MiopowNIK [1982], INDEN [1982] and HILLERT and JARL [1978].

2.10. Application of thermodynamics to phase diagram analysis

In recent years, the development of solution models, numerical methods and computer
software has permitted a quantitative application of thermodynamics to phase diagram
analysis. Computer programs are available which permit phase diagrams to be generated
from equations for the Gibbs energies of the phases. Other programs have been written
to perform simultaneous critical evaluations of available phase diagram measurements
and of available thermodynamic data (calorimetric data, measurements of activities, etc.)
with a view to obtaining optimized equations for the Gibbs energies of each phase which
best represent all the data. These equations are consistent with thermodynamic principles
and with theories of solution behaviour.

The phase diagram can be calculated from these optimized thermodynamic equations,
and so one set of self-consistent equations describes all the thermodynamic properties
and the phase diagram. This technique of analysis greatly reduces the amount of
experimental data needed to characterize a system fully. All data can be tested for
internal consistency. The data can be interpolated and extrapolated more accurately, and
metastable phase boundaries can be calculated. All the thermodynamic properties and the
phase diagram can be represented and stored by means of a small set of coefficients.

Finally and most importantly, it is often possible to estimate the thermodynamic
properties and phase diagrams of ternary and higher-order systems from the assessed
parameters for their binary sub-systems as will be discussed in § 5. The analysis of
binary systems is thus the first and most important step in the development of databases
for multicomponent systems.

The computer coupling of thermodynamics and phase diagrams is a growing field of
much current research interest. The international Calphad Journal, published by Per-
gamon Press, and an annual international meeting, the Calphad Conference, are now
devoted to this subject.
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2.10.1. Polynomial representation of excess properties

Empirical equations are required to express the excess thermodynamic properties of
the solution phases as functions of composition and temperature. For many simple binary
substitutional solutions, a good representation is obtained by expanding the molar excess
enthalpy and entropy as polynomials in the mole fractions X, and X, of the components:

hE = X, Xp(hy + h(X5 — X,) +

hy(Xg - X))+ h(Xg - X,)' +...)
sE = X, Xp(s +5,(Xs = X,) +

5,(Xg — X, ) +5,(Xg — X,)° +...)

(18)

19)

where the h; and s, are empirical coefficients. As many coefficients are used as are
required to represent the data in a given system. For most systems it is a good approx-
imation to assume that the coefficients h; and s; are independent of temperature.

If the series are truncated after the first term, then:

g% =hE - Ts® = X, X (hy — Ts,) (20)

This is the same as eq. (4) for a regular solution. Hence, the polynomial representation
can be considered to be an extension of regular solution theory. When the expansions are
written in terms of the composition variable (Xz—X,) as in eqs. (18) and (19) they are
said to be in Redlich—Kister form. Other equivalent polynomial expansions such as
orthogonal Legendre series have been discussed by PELTON and BALE [1986].

Differentiation of eqgs. (18) and (19) yields the following expansions for the partial
excess properties:

LEEWICENELZACES NN @1
hE = Xizoh,.[(xB - X,) +2iX5(X, - XA)H] 22)
sE = ngs,.[(x,, - X,)' -2, (X, - X,)"7] 23)
55 = X2 Y [(%a - X,) + 20, (%, - X,)"] 24)

i=0

2.10.2. Least-squares optimization

Eqgs. (18), (19) and (21) to (24) are linear in terms of the coefficients. Through the
use of these equations, all integral and partial excess properties (g%, %, %, g=, k", sF)
can be expressed by linear equations in terms of the one set of coefficients {4, s;}. It is
thus possible to include all available experimental data for a binary phase in one
simultaneous linear least-squares optimization as discussed by BALE and PELTON [1983],
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Lukas et al. [1977] and DORNER et al. [1980], and specialized software for such
optimizations is available.

The technique of coupled thermodynamic/phase diagram analysis is best illustrated by
an example. The phase diagram of the Cd-Na system with points measured by several
authors is shown in fig. 17. From electromotive force measurements on alloy con-
centration cells, several authors have measured the activity coefficient of Na in liquid
alloys. These data are shown in fig. 18 at 400°C. From the temperature dependence of
gfa =RT Iny,, the partial enthalpy of Na in the liquid was obtained via the Gibbs—
Helmholtz equation. The results are shown in fig. 19. Also, h® of the liquid has been
measured (KLEINSTUBER [1961]) by direct calorimetry.

Along the Cd-liguidus in fig. 17 the partial Gibbs energy of Cd in the liquid is equal
to that of essentially pure solid Cd with which it is in equilibrium:

1 _ _ols)
8ca = 8ca (25)
Hence,
1 o)y _ o8 _ o)
8ca ~8cd T 8ce ~ 8cu (26)
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0 10 20 30 40 50 60 70 80 100
450 T T . ¥ T ! T : T : T 4 . T L i L y;
400 L [
3504 2
321.108°C
O
& 300 I
Ly
b Metastable ST
= Liquid Miseibility .-~ ,” NN
@ 250 Gap S Yo F
— . 7 . S,
@ \,.' ; LN
o 7 ¢ " ‘.\
£ /'I II 3 A\
[1.} 2004 7 ; \I| A L
7 i  Metastable ' k!
’ ; ) Ay
~—(Cd) 7 f—Spinodal— 3 ©
s i [ t
150 ; i Voo -
s , \ Y :
z, 2
o o :
1oo§ 5] o ‘o ok87.8°C
94501
(Na)—~
50 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Cd Atomic Percent Sodium Na

Fig. 17. Cd-Na phase diagram calculated from optimized thermodynamic parameters (Reprinted from PELTON
[1988]).
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Fig. 18. Sodium activity coefficient in liquid Cd-Na alloys at 400°C. Line is calculated from optimized
thermodynamic parameters (Reprinted from PELTON [1988]).

HAUFFE [1940]

LANTRATOV and MIKHAILOVA [1971]

MAIOROVA et al. [1976]

ALABYSHEV and MORACHEVSKII [1957]

BARTLETT e al. [1970)

o< @0

RTIn X}, + g5 = -Agle, Q7

Therefore, from the experimental liquidus composition X¢,, and from a knowledge of the
Gibbs energy of fusion, gé:‘;” at the measured liquidus points can be calculated from eq.
27).

Similar equations relating the liquidus compositions along the Cd, Na,- and Cd,Na-
liquidus lines to the partial excess Gibbs energies of the liquid and to the Gibbs energies
of fusion of Cd;Na, and Cd,Na can be written based upon the graphical construction
shown in fig. 14,

The thermodynamic data for g,::u, hy, and h® as well as the measured liquidus points
and the Gibbs energies of fusion of the compounds were optimized simultaneously by a
least-squares technique to obtain the following optimized expressions (PELTON [1988]):

B = Xy Xy, (~12508 + 20316 (X, — Xcy)
2 (28)
~8714(X,, — X;)" J1/mol
s = XouX,,(-15.452 + 15.186(Xy, — Xc,)
2 3 (29)
~10.062(Xy, - Xca)” — 1122(Xy, ~ Xeo) ) J/mol K
AG® = 6816 -10.724 T J/gatom (30)

£(5CdiNaz)
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Fig. 19. Partial excess exthalpy of sodium in liquid Cd-Na alloys. Line is calculated from optimized
thermodynamic parameters (Reprinted from PELTON [1988]).

@ LaNTRATOV and MIKHAILOVA [1971]

A MAIOROVA et al. [1976]

O  BARTLETT et al. [1970]

AGI(%CdZNa) = 8368 —12.737 T J/g-atom 3D
AG}’(C 0 = 6201 -10.4344 T J/g - atom (32)
AG}’(Na) = 2598 —7.0035 T J/gatom (33)

The Gibbs energies of fusion of Cd and Na were taken from CHASE [1983] and were
not changed in the optimization. The optimized enthalpies of fusion of 6816 and 8368
J/g-atom for the two compounds in eqgs. (30, 31) were modified from the values of 6987
and 7878 J/g-atom measured by Roos [1916]. These changes are within the experimental
error limits. Eq. (28) reproduces the calorimetric data within 200 J/mol™. Egs. (22, 24)
can be used to calculate h,?a and ‘yl;},. The calculated curves are compared to the
measured points in figs. 18 and 19. The phase diagram shown in fig. 17 was calculated
from eqgs. (28) to (33). Complete details of the analysis of the Cd-Na system are given
by PELTON [1988].

It can thus be seen how one simple set of equations can simultaneously and self-
consistently describe all the thermodynamic properties and the phase diagram of a binary
system. The exact optimization procedure will vary from system to system depending on
the type and accuracy of the available data, the number of phases present, the extent of

References: p. 531.



500 A.D. Pelton Ch. 6, §2

solid solubility, etc. A large number of optimizations have been published in the Calphad
Journal since 1977.

2.10.3. Calculation of metastable phase boundaries

In the Cd—Na system just discussed, the liquid exhibits positive deviations from ideal
mixing. That is, g#®>0. This fact is reflected in the very flat liquidus in fig. 17 as was
discussed in § 2.5.2.

By simply not including any solid phases in the calculation, the metastable liquid
miscibility gap as well as the spinodal curve (§ 2.3) can be calculated as shown in fig.
17. These curves are of importance in the formation of metallic glasses by rapid
quenching (see ch. 19, §2.1).

Other metastable phase boundaries, such as the extension of a liquidus curve below
a eutectic, can also be calculated thermodynamically simply by excluding one or more
phases during the computations.

2.11. Solution models

Polynomial expansions, as in eqs (18, 19), give an adequate representation of the
excess mixing properties for simple substitutional solutions in which deviations from
regular solution behaviour are not too large. In other cases, more sophisticated models
are required.

The Gibbs energy of a regular solution is given by combining eqs. (2) and (4). The
ideal mixing term in eq. (2) is a consequence of the assumption that A and B atoms form
a random substitutional solution. The parameter {) in eq (4) can be interpreted as
resulting from the fact that the energy of A-B bonds in the solution is different from that
of A-A and B-B bonds. Suppose that A-B bonds are energetically favourable. The
solution is thereby stabilized, () <0 and g®<0. However, the distribution will then no
longer be random because A and B atoms will tend to favour each other as nearest
neighbours, and so the ideal mixing term, RT(X, InX, + X, InX}) in eq. (2) is no longer
correct. For relatively small deviations from ideality, the random mixing approximation
is often acceptable. However, for larger deviations, the non-randomness becomes
important. In such cases, a simple polynomial expansion for g* as in egs. (18,19) is
insufficient.

The regular solution model can be extended to account for this non-randomness
through the quasichemical model for short-range ordering developed by GUGGENHEIM
{1935] and FowLER and GUGGENHEIM [1939]. Many liquid alloy solutions exhibit short-
range ordering. The ordering is strongest when one component is relatively electropos-
itive (on the left side of the periodic table) and the other is relatively electronegative.
Liquid alloys such as Alk-Au (HENSEL [1979]), Alk-Pb (SABOUNGI et al. [1985]) and
Alk-Bi (PETRIC et al. [1988]), where Alk=(Na, K,Rb,Cs) exhibit strong short-range
ordering, as do liquid semiconductor solutions such as Ga—As and In-Sb. The quasiche-
mical model has been recently adapted to permit thermodynamic/phase diagram
optimizations of such systems (PELTON and BLANDER [1984, 1986, 1988]).
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Short-range ordering in liquid alloys has also been modeled by treating such solutions
as substitutional solutions of A atoms, B atoms and A, B, “complexes”. See for example,
LUCK et al. [1989]. For most alloy systems, however, such association models are not
physically realistic.

For an interstitial solution the ideal Gibbs energy of mixing is that of a random
distribution of the solute atoms over the interstitial sites. For example, in an interstitial
solution of C in y-Fe, X moles of C atoms are distributed over X, octahedral sites. The
molar Gibbs energy of mixing is thus:

X X. . X X, -
Ag = RT| —F— —Lln—c+( Fe
Xeo + Xo )\ X, Xg, X

C

X

e

Xc) In (XFe - Xc))

34
= RT| X.In X + X, In 1= X +g"°
1-2X, X,
The ideal activities are thus:
ag™ = X /(1-2X) 35)
ali;i%l = (1 - XC/XFe) (36)

When modeling an interstitial solution, one should employ these expressions.

A multicomponent interstitial solution such as M,-M,-C-N, where M, and M, are
metals, can be considered to consist of two sublattices: a metallic sublattice on which M,
and M, are distributed, and an interstitial sublattice on which C, N (and vacant sites) are
distributed. General sublattice models, of which such solutions are a special case, have
been discussed by HILLERT et al. [1985]. An example of application to the Fe—Cr-V-C
system is given in §5.

Examples of non-stoichiometric compound phases were shown in figs 13 and 16.
When these exhibit a relatively narrow range of stoichiometry, as is the case for AgMg,
in fig. 14, the phase is conveniently described as a dilute solution of defects in the
stoichiometric compound. For example, consider a compound A,_B,. The lattice sites
normally occupied by A atoms we shall call “A sites”, and those normally occupied by
B atoms are “B sites”. The dissolution of excess B in the compound can occur by the
formation of defects. Example of such defects are (i) B atoms occupying A sites; (ii)
vacant A sites; (iii) B atoms occupying interstitial sites; etc. Generally, one type of defect
will predominate in any given system when B is in excess, and this is called the majority
defect for solutions with excess B. When excess A is added to A,_B,, then another
majority defect predominates. It should, of course, be noted that certain compounds, such
as FeO, or Nb;Al near room temperature, do not even contain the stoichiometric
composition within their range of single-phase stoichiometry.

Despite the large number of defect types which can occur, a quite general thermo-
dynamic model can be proposed. Let X; be the mole fraction of the majority defects
which occur when A is in excess. This is the mole fraction of these defects on the
sublattice (or interstitial lattice) which they occupy. Similarly, X, is the mole fraction of
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the majority defects which occur when B is in excess. Let g, and g, be the energies
required to form one mole of each type of defect in the limit when X; and X, are very
small. Assume that the concentrations X, and X, are small enough that interactions
between defects are negligible (Henry’s Law) and that the number of lattice sites does
not change appreciably from that in the defect-free compound. Assume further that the
defects are randomly distributed. The molar Gibbs energy of the solution relative to the
hypothetical defect-free compound is then:
g= E(X1 InX, +(1-X,)In(1- X,))
B,

RT 1 1 (37)
+ (X, X, + (1-X,)In(1 - X,)) + — g, X, + g, X,
B, B B,
where 1/8, and 1/83, are the numbers of moles of lattice sites available to each type of
defect. For a given deviation from the stoichiometric composition represented by

A sB.s

X, X
d="2-—1 (38)
BZ Bl
and by minimizing g with respect to X, and X, it can be shown that:
Lo _[& "3
X & X, |7 B B
= exp| ————~ 39
(I—X,) (I_Xz] ’ RT &

If values of the energy parameters g, and g, are given, egs. (38, 39) can be solved for
any 6 to give X, and X, which can then be substituted back into eq. (37) to give g. When
g, and g, are very large, g rises very steeply on either side of its minimum, and the range
of stoichiometry is very narrow as for the case of the compounds in fig. 14. In the case
of the compound AgMg, in fig. 13, g, > g,. That is, it is easier to form defects by adding
excess Mg than by adding excess Ag. Hence, the Gibbs energy curve rises more steeply
on the Ag side, and as a result, Mg is more soluble in AgMg; than is Ag.

Defects are discussed in chs. 9, 18 and 20. For an example of an application of the
defect model to phase diagram calculations, see PELTON [1991]. For a treatment of defect
models as examples of general sublattice models, see HILLERT et al. [1985].

2.12. Binary phase diagrams involving a gaseous phase

The effect of total pressure, P, upon the Gibbs energy change for the transformation
of one mole of pure component A from the a- to the B-phase is given by:

P
gyt = Mgl + [ (R - vi)ap, (40)
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where Ag, “=#) is the standard (i.e. at P=1 atm) molar Gibbs energy of transformation
and where v, and v} are the molar volumes of the phases. For solids and liquids, molar
volumes are sufficiently small that the final term in eq. (40) is negligible unless P is very
large. If a gaseous phase is involved, however, this is no longer the case. If gaseous A
is ideal and monatomic, and since v} = RT/P>> UlA, the molar Gibbs energy of vapori-
zation is given by:

Ag: = Agy” + RTIn P. (41)
where Agﬁm is the standard Gibbs energy of vaporization (when P=1 atm) which is
given by:

Ag” = AR — TAs)"™ (42)

For example, the enthalpy of vaporization of Zn is Ak’ = 115300 J/mol at its normal

boiling point of 1180 K (BARIN et al. [1977]). Assuming that A#*" is independent of T,
we calculate that Asg.” =115300/1180=97.71 J/mol K. Hence, Agy, at any T and P is
given by:

Agl, = (115300 — 97.71T) + RT In P (43)

A similar expression can be derived for the other component, Mg.

Curves of g' and g" at a constant T and P are shown in the upper panel of fig. 20.
The common tangent construction generates the equilibrium vapour and liquid com-
positions. A temperature-composition phase diagram, at constant pressure, can then be
generated as the curve for g' descends relative to g' as the temperature is raised.
Alternatively, the isothermal pressure—composition diagram shown in the lower panel of
fig. 20 is generated as the curve for g* descends relative to g' as the pressure is lowered.
The diagram at 1250 K in fig. 20 was calculated under the assumption of ideal liquid and
vapour mixing (g°"=g¢""=0).

3. Ternary phase diagrams

In this section, an introduction to ternary phase diagrams will be given. A complete
discussion of the subject is beyond the scope of this chapter. For more detailed treat-
ments see PRINCE [1966], WEST [1965] or BERGERON and RISBUD [1984].

3.1. The ternary composition triangle

In a ternary system with components A-B—C the sum of the mole fractions is unity.
(X, +Xg+X)=1. Hence, there are two independent composition variables. A represen-
tation of composition, symmetrical with respect to all three components may be obtained
with the equilateral “composition triangle” as shown in fig. 21. Compositions at the
corners of the triangle correspond to the pure components. Along the edges of the
triangle are found compositions corresponding to the three binary subsystems A-B, B-C
and C-A. Lines of constant mole fraction X, are parallel to the B-C edge, while lines of
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Fig. 20. Pressure-composition phase diagram of the Zn-Mg system at 1250 K calculated for ideal vapour and
liquid solutions. Upper panel illustrates common tangent construction at a constant pressure and temperature.

constant X and X, are parallel to the C-A and A-B edges respectively. For example at point
ain fig. 21, X, =0, X3=0.7 and X.=0.3. At point b, X, =0.3, X;=0.2 and X.=0.5.

Similar equilateral composition triangles can also be drawn with coordinates in terms
of weight% of the three components.

3.2, Ternary space model

A ternary temperature—composition “phase diagram” at constant total pressure may
be plotted as a three-dimensional “space model” within a right triangular prism with the
equilateral composition triangle as base and temperature as vertical axis. Such a space
model for a simple eutectic ternary system A-B-C is illustrated in fig. 22. On the three
vertical faces of the prism we find the phase diagrams of the three binary subsystems,
A-B, B-C and C-A which, in this example, are all simple eutectic binary systems. The
binary eutectic points are at e, e, and e,. Within the prism we see three liguidus surfaces
descending from the melting points of pure A, B and C. Compositions on these surfaces
correspond Lo compositions of liquid in equilibrium with A-, B- and C-rich solid phases.

In a ternary system at constant pressure, the Gibbs phase rule, eq. (14), becomes:

F=4-P. (44)

When the liquid and one solid phase are in equilibrium, P=2. Hence, F=2, and the
system is bivariant. A ternary liquidus is thus a two-dimensional surface. We may choose
two variables, say T and one composition coordinate of the liquid, but then the other
liquid composition coordinate and the composition of the solid are fixed.
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Fig. 21. The equilateral temary composition triangle.
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Fig. 22. Perspective view of ternary space model of a simple eutectic ternary system. e, e,, e; are the binary
eutectics and E is the ternary eutectic. The base of the prism is the equilateral composition triangle.
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The A- and B-liquidus surfaces in fig. 22 intersect along the line ¢,E. Liquids with
Ocompositions along this line are therefore in equilibrium with A-rich and B-rich solid
phases simultaneously. That is, P=3 and so F=1. Such “valleys” are thus called
univariant lines. The three univariant lines meet at the ternary eutectic point E at which
P=4 and F=0. This is an invariant point since the temperature and the compositions of
all four phases in equilibrium are fixed.

3.3. Polythermal projections of liquidus surfaces

A two-dimensional representation of the ternary liquidus surface may be obtained as
an orthogonal projection upon the base composition triangle. Such a polythermal
projection of the liquidus of the Bi~Sn—Cd system (BRAY et al. [1961-62]) is shown in
fig. 23. This is a simple eutectic ternary system with a space model like that shown in
fig. 22. The constant temperature lines on fig. 23 are called liquidus isotherms. The
univariant valleys are shown as the heavier lines. By convention, the large arrows
indicate the directions of decreasing temperature along these lines.

Let us consider the sequence of events which occur during the equilibrium cooling
from the liquid of an alloy of overall composition a in fig. 23 (X =0.05, X;,=0.45,
Xc4=0.50). Point a lies within the field of primary crystallization of Cd. That is, it lies
within the composition region in fig. 23 in which Cd-rich solid will be the first solid to
precipitate upon cooling. As the liquid alloy is cooled, the Cd-liquidus surface is reached
at T = 465 K (slightly below the 473 K isotherm). A solid Cd-rich phase begins to
precipitate at this temperature. Now, in this particular system, Bi and Sn are nearly
insoluble in solid Cd, so that the solid phase is virtually pure Cd (note that this fact
cannot be deduced from fig. 23 alone). Therefore, as solidification proceeds, the liquid
becomes depleted in Cd, but the ratio X,/X; in the liquid remains constant. Hence, the
composition path followed by the liquid (its crystallization path) is a straight line passing
through point a and projecting to the Cd-corner of the triangle. This crystallization path
is shown on fig. 23 as the line ab.

In the general case in which a solid solution rather than a pure component or
stoichiometric compound is precipitating, the crystallization path will not be a straight
line. However, for equilibrium cooling, a straight line joining a point on the crystal-
lization path at any T to the overall composition point a will extend through the
composition, on the solidus surface, of the solid phase in equilibrium with the liquid at
that temperature.

When the composition of the liquid has reached point b in fig. 23 at 7 = 435 K, the
relative proportions of the solid Cd and liquid phases at equilibrium are given by the
lever rule applied to the tie-line dab: (moles of liquid)/(moles of Cd)=da/ab, where da
and ab are the lengths of the line segments. Upon further cooling the liquid composition
follows the univariant valley from b to E while Cd and Sn-rich solids co-precipitate as
a binary eutectic mixture. When the liquidus composition attains the ternary eutectic
composition E at 7 = 380 K the invariant ternary eutectic reaction occurs:

liquid — s, +5, +5,, (45)
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Fig. 23. Projection of the liquidus surface of the Bi-Sn~Cd system (after BRAY ef al. [1961-62]). Small arrows
show crystallization path of an alloy of overall composition at point a.

where s,, s, and s, are the three solid phases and where the compositions of all four
phases as well as 7 remain fixed until all liquid is solidified.

In order to illustrate several of the features of polythermal projections of liquidus
surfaces, a projection of the liquidus of a hypothetical system A-B—C is shown in fig.
24, For the sake of simplicity, isotherms are not shown, but only the univariant lines with
arrows to show the directions of decreasing temperature. The binary subsystems A—B and
C-A are simple eutectic systems, while the binary subsystem B-C contains one
congruent binary phase, £ and one incongruent binary phase, 8, as shown in the insert in
fig. 24. The letters e and p indicate binary eutectic and peritectic points. The & and &
phases are called binary compounds since they have compositions within a binary
subsystem. Two ternary compounds, n and ¢, with compositions within the ternary
triangle as indicated in fig. 24, are also found in this system. All compounds as well as
pure solid A, B and C (the “«, B and " phases) are assumed to be stoichiometric (i.e.
there is no solid solubility). The fields of primary crystallization of all the solids are
indicated in parentheses in fig. 24. The composition of the £ phase lies within its field,

References: p. 531.
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C

Fig. 24. Projection of the liquidus surface of a system A-B—C. The binary subsystems A-B and C-A are
simple eutectic systems. The binary phase diagram B—C is shown in the insert. All solid phases are assumed
pure stoichiometric components or compounds. Small arrows show crystallization paths of alloys of
compositions at points a and b.

since £ is a congruent compound, while the composition of the & phase lies outside of its
field since & is incongruent. Similarly for the ternary compounds, 7 is a congruently
melting compound while ¢ is incongruent. For the congruent compound 7, the highest
temperature on the 7-liquidus occurs at the composition of 7.

The univariant lines meet at a number of fernary eutectics E; (three arrows conver-
ging), a ternary peritectic P (one arrow entering, two arrows leaving the point), and
several ternary quasi-peritectics P’; (two arrows entering, one arrow leaving). Two saddle
points s are also shown. These are points of maximum 7 along the univariant line but of
minimum 7 on the liquidus surface along a section joining the compositions of the two
solids. For example, s, is at a maximum along the univariant E P’;, but is a minimum
point on the liquidus along the straight line {s;7.

Let us consider the events occurring during the cooling from the liquid of an alloy of
overall composition a in fig. 24. The primary crystallization product will be the £ phase.
Since this is a pure stoichiometric solid the crystallization path of the liquid will be along
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a straight line passing through a and extending to the composition of £ as shown on the
figure.

Solidification of £ continues until the liquid attains a composition on the univariant valley.
Then the liquid composition follows the valley towards the point P, in co-existence with &
and . At point P, the invariant rernary quasi-peritectic reaction occurs isothermally:

liquid + £ - 6 + ¢, (46)

Since there are two reactants in a quasi-peritectic reaction, there are two possible
outcomes: (i) The liquid is completely consumed before the e-phase; in this case,
solidification will be complete at the point P, . (ii) £ is completely consumed before the
liquid; in this case, solidification will continue with decreasing T along the univariant
line P/ E, with co-precipitation of § and { until, at E, the liquid will solidify eutectically
(liquid — 6 +¢{ +m). To determine whether condition (i) or (ii) occurs, we use the mass
balance criterion that, for three-phase equilibrium, the overall composition must always
lie within the tie-triangle formed by the compositions of the three phases. Now, the
triangle joining the compositions of 8, &, and ¢ does not contain the point a, but the
triangle joining the compositions of 8, ¢, and liquid at P, does contain the point a.
Hence, case (ii) occurs.

An alloy of overall composition b in fig. 24 solidifies with £ as primary crystal-
lization product until the liquid composition contacts the univariant line. Thereafter, co-
precipitation of £ and 8 occurs with the liquid composition following the univariant
valley until the liquid reaches the peritectic composition P. The invariant ternary
peritectic reaction then occurs isothermally:

liquid+e+B8 - ¢{. CO)

Since there are three reactants, there are three possible outcomes: (i) Liquid is consumed
before either £ or 8 and solidification terminates at P. (ii) £ is consumed first; solidifi-
cation then continues along the path PP,’. (iii) B is consumed first and solidification
continues along the path PP,”. Which outcome occurs depends on whether the overall
composition b lies within the tie-triangle (i) 8¢, (ii) B{P or (iii) &/P. In the example
shown, case (i) will occur.

3.4. Ternary isothermal sections

Isothermal projections of the liquidus surface do not give information on the
compositions of the solid phases at equilibrium. However, this information can be
presented at any one temperature on an isothermal section such as that shown for the
Bi-Sn—Cd system at 423 K in fig. 25. This phase diagram is a constant temperature slice
through the space model of fig. 22.

The liquidus lines bordering the one-phase liquid region of fig. 25 are identical to the
423 X isotherms of the projection in fig. 23. Point ¢ in fig. 25 is point ¢ on the uni-
variant line in fig. 23. An alloy with overall composition in the one-phase liquid region
of fig. 25 at 423 K will consist of a single liquid phase. If the overall composition lies
within one of the two-phase regions, then the compositions of the two phases are given

References: p. 531.
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Fig. 25. Isothermal section of Bi-Sn—Cd system at 423 K (after BRAY er al. [1961-62]). Extents of solid
solubility in Bi and Sn have been exaggerated for clarity of presentation.

by the ends of the tie-line containing the overall composition. For example, a sample
with overall composition p in fig. 25 will consist of a liquid of composition q on the
liquidus and a solid Bi-rich alloy of composition r on the solidus. The relative propor-
tions of the two phases are given by the lever rule: (moles of liquid)/(moles of solid) =
pr/pq, where pr and pq are the lengths of the line segments.

In the case of solid Cd, the solid phase is nearly pure Cd, so all tie-lines of the (Cd
+ liquid) region converge nearly to the corner of the triangle. In the case of Bi- and Sn-
rich solids, some solid solubility is observed. (The actual extent of this solubility is
somewhat exaggerated in fig. 25 for the sake of clarity of presentation.) Alloys with
overall compositions rich enough in Bi or Sn to lie within the single-phase (Sn) or (Bi)
regions of fig. 25 will consist, at 423 K, of single-phase solid solutions. Alloys with
overall compositions at 423 K in the two-phase (Cd + Sn) region will consist of two solid
phases.

Alloys with overall compositions within the three-phase triangle def will, at 423 K,
consist of three phases: Cd- and Sn-rich solids with compositions at d and f, and liquid
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of composition ¢. To understand this better, consider an alloy of composition a in fig. 25,
which is the same composition as the point a in fig. 23. In § 3.3 we saw that when a
alloy of this composition is cooled, the liquid follows the path ab on fig. 23 with
primary precipitation of Cd and then follows the univariant line with co-precipitation of
Cd and Sn so that at 423 K the liquid will be at the composition point ¢, and two solid
phases are in equilibrium with the liquid.

3.4.1. Topology of ternary isothermal sections

At constant temperature the Gibbs energy of each phase in a ternary system is
represented as a function of composition by a surface plotted in a right triangular prism
with Gibbs energy as vertical axis and the composition triangle as base. Just as the
compositions of phases at equilibrium in binary systems are determined by the points of
contact of a common tangent line to their isothermal Gibbs energy curves, so the
compositions of phases at equilibrium in a ternary system are given by the points of
contact of a common tangent plane to their isothermal Gibbs energy surfaces. A common
tangent plane can contact two Gibbs energy surfaces at an infinite number of pairs of
points. thereby generating an infinite number of tie-lines within a two-phase area on an
isothermal section. A common tangent plane to three Gibbs energy surfaces contacts each
surface at a unique point, thereby generating a three-phase tie-triangle.

Hence, the principal topological units of construction of an isothermal ternary phase
diagram are three-phase (o +f +) tie-triangles as in fig. 26 with their accompanying
two-phase and single-phase areas. Each corner of the tie-triangle contacts a single-phase
region, and from each edge of the triangle there extends a two-phase region. The edge
of the triangle is a limiting tie-line of the two-phase region.

For overall compositions within the tie-triangle, the compositions of the three phases
at equilibrium are fixed at the corners of the triangle. The relative proportions of the
three phases are given by the lever rule of tie-triangles which can be derived from mass
balance considerations. At an overall composition q in fig. 26, for example, the relative
proportion of the y-phase is given by projecting a straight line from the y-corner of the
triangle (point ¢) through the overall composition q to the opposite side of the triangle,
point p. Then: (moles of y)/(total moles) = qp/cp if compositions are expressed in mole
fractions, or (weight of y)/(total weight) =qgp/cp if compositions are in weight percent.

Isothermal ternary phase diagrams are generally composed of a number of these
topological units. An example for the Al-Zn-Mg system at 25°C is shown in fig. 27
(KosTER and DULLENKOPF [1936]). The B, v, 8, 6, 1 and { phases are binary inter-
metallic compounds with small (~1%) ranges of stoichiometry which can dissolve a
limited amount (~1-6%) of the third component. The T phase is a ternary phase with a
single-phase region existing over a fairly extensive oval-shaped central composition
range. Examination of fig. 27 shows that it consists of the topological units of fig. 26.

An extension rule, a case of Schreinemakers’s rule (SCHREINEMAKERS [1915]) for
ternary tie-triangles is illustrated in fig. 26. At each corner, the extension of the boundaries of the
single-phase regions, indicated by the dashed lines, must either both project into the triangle as at
point a, or must both project outside the triangle as at point b, and furthermore the angle between
these extensions must be less than 180°. For a proof, see LipsoN and WILSON [1940].

References: p. 531.
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Fig. 26. A tie-triangle in a ternary isothermal section illustrating the lever rule and the extension rule.

Many published phase diagrams violate this rule. For example, it is violated in fig. 27
at the &-corner of the (& +8 +7) tie-triangle.

Another important rule of construction, whose derivation is evident, is that within any
two-phase region tie-lines must never cross each other.

3.5. Ternary isopleths (constant composition sections)

A vertical isopleth, or constant composition section through the space model of the
Bi-Sn—Cd system is shown in fig. 28. The section follows the line AB in fig. 23.

Al 20 30 40 50 60 70 80 90 zp
Wt % Zn

Fig. 27. Ternary isothermal section of the Al-Zn-Mg system at 25°C (after K6STER and DULLENKOPF [1936]).
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Fig. 28. Isopleth (constant composition section) of the Bi~-Sn—Cd system following the line AB of fig. 23.

The phase fields on fig. 28 indicate which phases are present when an alloy with an
overall composition on the line AB is equilibrated at any temperature. For example,
consider the cooling from the liquid state, of an alloy of composition a which is on the
line AB (see fig. 23). At T = 465 K, precipitation of the solid (Cd) phase begins at point
a in fig. 28. At T = 435 K (point b in figs. 23 and 28) the solid (Sn) phase begins to
appear. Finally, at the eutectic temperature T, the ternary eutectic reaction occurs,
leaving solid (Cd) + (Bi) + (Sn) at lower temperatures. The intersection of the isopleth
with the univariant lines on fig. 23 occurs at points f and g which are also indicated in
fig. 28. The intersection of this isopleth with the isothermal section at 423 K is shown
in fig. 25. The points s, t, u and v of fig. 25 are also shown on fig. 28.

It is important to note that on an isopleth, the tie-lines do not, in general, lie in the
plane of the diagram. Therefore, the diagram gives information only on which phases are
present, not on their compositions. The boundary lines on an isopleth do not in general
indicate the phase compositions, but only the temperature at which a phase appears or
disappears for a given overall composition. The lever rule cannot be applied on an isopleth.

Certain topological rules apply to isopleths, As a phase boundary line is crossed, one and
only one phase either appears or disappears, This Law of Adjoining Phase Regions
(PALATNIK and LANDAU [1964]) is illustrated by fig. 28. The only apparent exception occurs
for the horizontal invariant line at T.. However, if we consider this line to be a degenerate
infinitely narrow four-phase region (L +(Cd) + (Bi) + (Sn)), then the law is also obeyed here.

Three or four boundary lines meet at intersection points. At an intersection point,
Schreinemakers’ rule applies (SCHREINEMAKERS [1915]). This rule states that the
boundaries of the phase field with the smallest number of phases, when extrapolated,
must either both fall within the phase field with the greatest number of phases (as at
point f in fig. 28) or else both fall outside this region (as at point g in fig. 28).

Apparent exceptions to these rules (such as, for example, five boundaries meeting at
an intersection point) can occur if the section passes exactly through a node (such as a
ternary eutectic point) of the space model. However, these apparent exceptions are really
only limiting cases. See PRINCE [1963] or PRINCE [1966].

References: p. 531.
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Fig. 29. Section of the Fe-Cr-V-C system at 1.5 wt.% Cr and 0.1 wt.% V (LEE and LEE [1992)).

4. Multicomponent phase diagrams

Only a brief outline of multicomponent phase diagrams can be presented here. For
more detailed treatments see PALATNIK and LANDAU [1964], PRINCE [1963], PRINCE
[1966] and HILLERT [1985].

For alloy systems of four or more components, two-dimensional sections are usually
plotted with one or more compositional variables held constant. Hence, these sections are
similar to the ternary isopleths discussed in § 3.5. In certain cases, sections at constant
chemical potential of one or more components (for example, at constant oxygen partial
pressure) can be useful. These are discussed in § 6.

Two sections of the Fe—Cr—V—-C system (LEE and LEE [1992]) are shown in figs. 29,
30. The diagram in fig. 29 is a T-composition section at constant Cr and V content,
while fig. 30 is a sectign at constant T=3850°C and constant C content of 0.3 wt.%. The
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Fig. 30. Section of the Fe-Cr-V-C system at 850°C and 0.3 wt.% C (LEE and LEE [1992]).
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interpretation and topological rules of construction of these sections are the same as those
for ternary isopleths as discussed in §3.5. In fact, the same rules apply to a two-
dimensional constant-composition section for a system of any number of components.
The phase fields on the diagram indicate the phases present at equilibrium for an overall
composition lying on the section. Tie-lines do not, in general, lie in the plane of the
diagram so the diagram does not give information on the compositions or amounts of the
phases present. As a phase boundary is crossed, one and only one phase appears or
disappears (Law of Adjoining Phase Regions). If temperature is an axis, as in fig. 29,
then horizontal invariants like the line AB in fig. 29 can appear. These can be considered
as degenerate infinitely narrow phase fields of (C + 1) phases, where C is the number of
components (for isobaric diagrams). For example in fig. 29, on the line AB, five phases
are present. Three or four phase boundaries meet at intersection points at which
Schreinemakers’ rule applies. This rule was given in §3.5. It is illustrated by the
extrapolations in fig. 29 at points a, b and ¢ and in fig. 30 at points b, ¢, n, i and s. The
applicability of Schreinemakers’ rule to systems of any number of components was noted
by HILLERT [1985], although no formal proof has been presented.

4.1. Zero phase fraction lines

An interesting and useful method of constructing multicomponent phase diagrams through
the use of zero phase fraction (ZPF) lines has recently been proposed (GUPTA et al. [1986]).
A ZPF line divides a two-dimensional phase diagram into two regions. On one side of
the line a phase occurs, while on the other side it does not. For example, in fig. 30 the
ZPF line for the o phase is the line abedef. The ZPF line for the y phase is ghijkl. For
the MC phase the ZPF line is mnciopq. The ZPF line for M,C; is rnbhspket, and for
M,;Cs it is udjosv. These five ZPF lines yield the entire two-dimensional phase diagram.
The usefulness of this methodology for estimating phase diagrams for multicomponent
systems from experimental data was discussed by GUPTA et al. [1986]. The method also
holds promise for the thermodynamic calculation of phase diagrams (§ 5).

4.2. Nomenclature for invariant reactions

As discussed in §2.9, in a binary isobaric temperature—composition phase diagram
there are two possible types of invariant reactions: “eutectic type” invariant reactions
(B > a +7v), and “peritectic type” invariant reactions (& +7y — B). In a ternary system,
there are “eutectic type” (@ — B +v +8), “peritectic type” (@ + 8 +y — 6) and “quasi-
peritectic type” (@ +8 — y +6) invariants (§3.3). In a system of C components, the
number of types of invariant reaction is equal to C. A reaction with one reactant, such
asa —> B +vy +8 +¢ is clearly a “eutectic type” invariant reaction but in general there is
no standard terminology. These reactions are conveniently described according to the
numbers of reactants and products (in the direction which occurs upon cooling). Hence,
the reaction @ +8 — y +8 +¢ is a 2 — 3 reaction; the reactiona > S +y+disal — 3
reaction; and so on. The ternary peritectic type 3— 1 reaction (@ +8 +7y —d) is an
invariant reaction in a fernary system, a univariant reaction in a quaternary system, a
bivariant reaction in a quinary system, etc.

References: p. 531.
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5. Thermodynamic calculation of ternary and multicomponent phase
diagrams

Among 70 metallic elements are formed 70!/3!67!=54740 ternary systems and
916895 quaternary systems. In view of the amount of work involved in measuring even
one isothermal section of a relatively simple ternary phase diagram, it is very important
to have means of estimating ternary and higher-order phase diagrams. The most fruitful
approach to such predictions is via thermodynamic methods. In recent years, large
advances have been made in this area by the international Calphad group. Many key
papers have been published in the Calphad Journal.

As a first step in the thermodynamic approach to calculating a ternary phase diagram
one critically analyzes the experimental phase diagrams and thermodynamic data for the
three binary subsystems of the ternary system in order to obtain a set of mathematical
expressions for the Gibbs energies of the binary phases as was discussed in §2.10 and
§ 2.11. Next, equations based on solution models are used to estimate the Gibbs energies
of the ternary phases from the Gibbs energies of the binary phases. The ternary phase
diagram is then calculated from these estimated ternary Gibbs energies by means of
common tangent plane or total Gibbs energy minimization algorithms.

For a phase for which the excess Gibbs energies in the binary systems have been
expressed by polynomial expansions (§2.10.1) a satisfactory estimation of the Gibbs
energy of the ternary phase can often be obtained with the following equation proposed
by KOHLER [1960]:

gt =(1- XA)zgg/c +(1- XB)zg:f/A +(1- XC)2g§/B (48)

In this equation, g° is the excess molar Gibbs energy at a composition point in the
ternary phase and gﬁc, gci, and 8,53 are the excess Gibbs energies in the three binary
subsystems at the same molar ratios X;/X., X./X, and X,/Xj as at the ternary point. If
the ternary solution as well as the three binary solutions are all regular then eq. (48) is
exact. In the general case, a physical interpretation of eq. (48) is that the contribution to
g" from, say, pair interactions between A and B particles is constant at a constant ratio
X,/Xg apart from the dilutive effect of the C particles which is accounted for by the term
(1 — X..)* taken from regular solution theory. Other very similar equations, all based upon
extension of regular solution theory, are also regularly used. These all give quite similar
results. For a discussion see SPENCER and BARIN [1979] or HILLERT [1980].

For more complex solutions involving structural ordering or more than one sublattice,
appropriate solution models for representing the binary properties have been discussed in
§2.11. In such cases, eq. (48) or similar equations should not be used for estimating the
ternary excess Gibbs energies. Rather, equations consistent with the appropriate solution
model should be used. For the quasichemical model, these have been discussed by
PELTON and BLANDER [1986]. For the sublattice model, see HILLERT et al. [1985].

As an example of the calculation of a ternary phase diagram, the experimental
isothermal section at 923 K of the Cr-Ni-Fe phase diagram is compared in fig. 31 with
the diagram calculated solely from optimized binary thermodynamic properties (CHART
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Fig. 31. Isothermal section at 923 K of the Cr—Ni-Fe phase diagram from CHART et al. [1979]. Lower diagram
is experimental; upper diagram is calculated from binary data.

et al. [1979]). Such estimated phase diagrams are often quite acceptable for many
purposes. However, the agreement between the experimental and calculated diagrams can
usuaily be greatly improved by the inclusion of one or more “ternary terms” with
adjustable coefficients in the equations for g% For example, the ternary term aX,XzXc,
which is zero in all three binary subsystem could be added to eq. (48) and the value of
the parameter a which gives the best optimized fit to measured ternary phase diagram
points could be determined. This, of course, requires that ternary measurements be made,
but only a very few experimental points will usually suffice rather than the large number
of measurements required for a fully experimental determination. In this way, the coupling of
the thermodynamic approach with a few well chosen experimental measurements can greatly
reduce the experimental effort involved in determining multicomponent phase diagrams.

An example of a coupled thermodynamic/phase diagram evaluation and calculation
for a multicomponent system is the work of LEE and LEE [1992] on the Fe-Cr-V-C
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system. The diagrams in figs 29, 30 were calculated thermodynamically by these authors.
For the solid alloy and carbide phases, interstitial sublattice models were used. For the
liquid phase, a substitutional model was employed. All available phase diagram and
thermodynamic data for the binary and ternary subsystems, as well as for the quaternary
system, were simultaneously optimized in order to obtain the best sets of binary and
ternary parameters of the model equations for g* for each phase as well as optimized
equations for the standard Gibbs energies of the compounds. In this way, all the diverse
data sets were smoothed and made consistent with each other and with thermodynamic
principles. Any desired type of two-dimensional phase diagram section for the quaternary
system can be calculated from the database of model parameters.

6. Phase diagrams with potentials as axes

So far we have considered mainly isobaric temperature~composition phase diagrams.
However, there are many other kinds of phase diagrams of metallurgical interest with
pressure, chemical potentials, volume, etc. as axes. These can be classified into geomet-
rical types according to their topological rules of construction.

For instance, binary isothermal P-X diagrams as in fig. 20 are members of the same
type as binary isobaric T-X diagrams since they are both formed from the same
topological units of construction. Other useful phase diagrams of this same geometrical
type are isothermal chemical potential-composition diagrams for ternary systems. An
example is shown in the lowest panel of fig. 32 (PELTON and THOMPSON [1975]) for the
Co—Ni-O system at T=1600 K (and at a constant total hydrostatic pressure of 1 atm).
Here the logarithm of the equilibrium partial pressure of O, is plotted versus the metal
ratio £ =ny/(0co+ny;), Where n,=number of moles of i. There are two phases in this
system under these conditions, a solid alloy solution stable at lower Po,» and a solid
solution of CoO and NiO stable at higher Po,- For instance, point a gives Po, for the
equilibrium between pure Co and pure CoO at 1600 K. Between the two smgle phase
regions is a two-phase (alloy + oxide) region. At any overall composition on the tie-line
cd between points ¢ and d, two phases will be observed, an alloy of composition d and
an oxide of composition c. The lever rule applies just as for binary T-X diagrams.

The usual isothermal section of the ternary Co-Ni-O system at 1600 K is shown in
the top panel of fig. 32. There are two single-phase regions with a two-phase region
between them. The single-phase areas are very narrow since oxygen is only very slightly
soluble in the solid alloy and since CoO and NiO are very stoichiometric oxides. In the
central panel of fig. 32 this same diagram is shown but with the composition triangle
“opened out” by putting the oxygen corner at infinity. This can be done if the vertical
axis becomes n =ny/(ng,+ny;) with the horizontal axis as & =ny/(n¢, +ny,). These are
known as Jdnecke coordinates. It can be seen in fig. 32 that each tie-line, ef, of the
isothermal section corresponds to a tie-line, c¢d of the log diagram. This under-
scores the fact that every tie-line of a ternary isothermal section corresponds to a
constant chemical potential of each of the components.

Another example of a log diagram is shown for the Fe—Cr-O system at 1573
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Fig. 32. Corresponding type-2 and type-3 phase diagrams for the Co-Ni-O system at 1600 K (from PELTON
and THOMPSON [1975]).

K in the lower panel of fig. 33 (PELTON and SCHMALZRIED [1973}). The corresponding
ternary isothermal section in Janecke coordinates is shown in the upper panel. Each of
the invariant three-phase tie-triangles in the isothermal section corresponds to an
invariant line in the log p,-£ diagram. For example, the (spinel + (Fe, Cr)O + alloy)
triangle with corners at poinzts a, b and ¢ corresponds to the “eutectic-like” invariant with
the same phase compositions a, b and ¢ at log Po,=_10'7' We can see that within a
three-phase tie-triangle, p,, is constant.

An example of yet another kind of phase diagram of this same geometrical type is
shown in fig. 34. For the quaternary Fe-Cr—O-SO, system at T=1273 K and at constant
Pso. = 107 atm, fig. 34 is a plot of log po, versus the molar metal ratio £ (PELTON
[1991]). Since log P, varies as —1/2 log ps, when pg, and T are constant, fig. 34 is
also a plot of log p, versus £.

It can be seen that the diagrams discussed above are of the same geometrical type as
binary T-X diagrams since they are all composed of the same topological units of
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construction as in fig. 15. Their interpretation is thus immediately clear to anyone
familiar with binary T-X diagrams. Chemical potential-composition diagrams (figs.
32-34) are useful in the study of high temperature oxidation of alloys, metallurgical
roasting processes, etc.

The log Po,'f diagrams in figs. 33, 34 were calculated by the same algorithm which
produced the binary phase diagram of fig. 17. This algorithm operates by computing
common tangent lines to the Gibbs energy—composition curves of the phases. The
diagrams in figs. 33, 34 were calculated from optimized mathematical expressions for the
Gibbs energy curves of all the phases. With these same optimized equations, logp, -¢
diagrams at other temperatures can be calculated, as can T-£ diagrams at constantp,
which are also of the same geometrical type. For details see PELTON et al. [1979].

Another important geometrical type of phase diagram is exemplified by P-T phase
diagrams for one-component systems as shown for H,O in fig. 35. In such diagrams,
which are discussed in ch. 5, § 3, bivariant single-phase regions are indicated by areas,
univariant two-phase regions by lines, and invariant three-phase regions by triple points.
An important rule of construction is the extension rule which is illustrated by the dashed
lines in fig. 35. At a triple point, the extension of any two-phase line must pass into the
single-phase region of the third phase.

Another kind of phase diagram of the same geometrical type is shown in fig. 36. For
the Fe-S—O system at T=800 K, the axes of the diagram are the equilibrium partial
pressures of S, and O,. Single-phase areas indicate which pure compounds of Fe are
stable under the given conditions. Two-phase regions are lines. Three phases can co-exist
only at triple points. The extension rule given above applies at all triple points. Such
stability diagrams or predominance diagrams are useful in the study of oxidation,
corrosion, roasting, etc. They have been treated in ch. 5, § 6.2 and have been discussed
by KELLOGG and Basu [1960], INGRAHAM and KELLOGG [1963], PELTON and
THOMPSON [1975], BALE et al. [1986] and BALE {1990]. They lend themselves to rapid
computer calculation by Gibbs energy minimization from thermodynamic data stored in
computerized data banks (BALE et al. [1986], BALE [1990]). Their usefulness is by no
means restricted to metal-sulphur—oxygen systems or to systems of three components.

As another example of this same geometrical type of diagram, a plot of RT lnpoz
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Fig. 35. Type-1 P-T phase diagram of H,0.
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Fig. 36. Type-1 predominance diagram for Fe-S—O at 800 K.

versus T for the Fe—O system is shown in fig. 37b. Again, one-, two-, and three-phase
regions are indicated by areas, lines and triple points respectively. In fig. 37a is the
binary T-composition phase diagram for the Fe—O system. The correspondence between
figs 37a and 37b is evident. Each two-phase line of fig. 37b “opens up” to a two-phase
region of fig. 37a. Each tie-line of a two-phase region in fig. 37a can thus be seen to
correspond to a constant p, . Triple points in fig. 37b become horizontal invariant lines
in fig. 37a. '

Yet another type of phase diagram is shown in fig. 38. This is an isothermal section at
constant molar metal ratio n¢/ (n, +ng,) =0.21 for the Fe—Cr—S—O system. This diagram was
calculated thermodynamically from model parameters (LAPLANTE [1993]). The axes are the
equilibrium sulfur and oxygen partial pressures. Three or four boundary lines can meet at an
intersection point. Some of the boundary lines on fig. 38 separate a two-phase region (« + )
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from another two-phase region (o +7). These lines thus represent the conditions for
three-phase (@ + 8 + %) equilibrium. The Law of Adjoining Phase Regions (§ 3.5) applies
to fig. 38 if these 3-phase lines are considered as degenerate infinitely narrow phase
fields.

6.1. Classification of phase diagrams

In a system of C components we can define (C+2) thermodynamic potentials, ¢,
These are T, P, u, iy, ..., it (Where g is the chemical potential of component j). For
each potential ¢, we can define a “corresponding” extensive variable q;. For the potentials
T, P and w; the corresponding extensive variables are S, V and n; (entropy, volume and
moles of component j). When two phases, « and 3, are in equilibrium, ¢} = df for all i.

If we choose any three potentials, designated ¢,, ¢, and ¢;, and if we hold ¢,, ¢s,
<o .4, constant, then a plot of ¢, versus ¢, will have the geometry of figs. 35, 36. Such
diagrams were termed type-I phase diagrams by PELTON and SCHMALZRIED [1973]. A
general type-1 diagram is shown in fig. 39b. On a type-1 diagram the lines give the
conditions for two-phase equilibrium, and the triple points are three-phase points.

If we now replace the ¢, axis of the type-1 diagram by the ratio q,/q; (or equival-
ently, by q,/(q,+0,)), then we obtain a “corresponding” type-2 phase diagram as
illustrated in fig. 39a. A corresponding type-2 diagram is also obtained by replacing ¢,
by q,/q, as in fig. 39d. Two-phase lines in the type-1 diagram become two-phase regions
with tie-lines in the corresponding type-2 diagrams. Triple points become invariant lines.

Consider the binary Fe-O system in fig. 37. Let ¢, =T, ¢, =g, ¢3=pr, ¢,=P. Fig.

q,/q,—= — =

Fig. 39. Schematic representation of the three types of phase diagrams illustrating the general topology of (a)
@, vs. a/qs, (b) @, vs, &, (¢) 0,/q; vs. §/q;, and (d) @, vs. q,/a;, plots. (@, ¢s, ... are kept constant).
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37b is a type-1 diagram of ¢, versus ¢, with ¢, constant. Fig. 37a is the corresponding
type-2 diagram obtained by replacing ¢, by the ratio q,/(q, + q;) = ny/(ng + ng,).

Figs 20, 32 (lower panel), 33 (lower panel) and 34 are also type-2 diagrams. Type-2
diagrams are exemplified by binary isobaric T-composition diagrams. Consider the
Fe~Cr—O system in fig. 33. Let ¢, =g, ¢, =fcr @3 =g, Ps=T, ¢5=P. the lower panel
in fig. 33 is a type-2 diagram of ¢, versus q,/(q,+q;) at constant ¢, and ¢;. In the
Fe—Cr—0-S0O, system in fig. 34 there is one more component and therefore, one more
potertial, ¢ = qbsoz. By also holding this potential constant, we obtain the type-2 diagram
of fig. 34.

If, as well as replacing ¢, in a type-1 diagram by q,/q,, we also replace ¢, by q,/qs,
then a corresponding type-3 phase diagram results as shown in fig. 39c. In this diagram,
triple points have become tie-triangles. Type-3 diagrams are exemplified by isothermal
isobaric sections of ternary systems as in figs. 25, 27 and 31. The upper panel of fig. 33
shows the type-3 diagram corresponding to the type-2 diagram in the lower panel. The
potential ¢, =u, has been replaced by q,/(q; +q;) =ny/(ng, +ng,). This gives the type-3
diagram in Jdnecke coordinates. This is usually transformed to the more usual Gibbs
triangle representation as illustrated in fig. 32.

For a more detailed discussion of this classification scheme, see PELTON and
SCHMALZRIED [1973] and PELTON and THOMPSON [1975].

Type-1, -2, and -3 phase diagrams are all sections at constant potentials (¢, ¢s, ... @.,,).
Hence, all tie-lines lie in the plane of the diagram. When sections are taken at constant
composition, then different geometries result. Fig. 38 is an example of a constant composition
section in which both axes are potentials. Figs 28 and 29 are constant composition
sections in which one axis is a potential, T, while the other axis is a composition
variable. In fig. 30, both axes are composition variables. The geometrical rules of
construction of these diagrams have already been discussed (§ 3.5, §4). The difference
among them is that fig. 30 contains no degenerate phase fields, while in fig. 38 lines can
be degenerate phase fields, and in figs. 28 and 29 only horizontal lines can be degenerate
phase fields.

For more detailed discussions of the classification of phase diagrams, including
projections and diagrams with more than two dimensions, see PALATNIK and LANDAU
[1964], PRINCE [1963] and HILLERT [1985].

As a final note on the topology of phase diagrams, the construction of multicomponent
constant—composition sections by means of zero phase fraction (ZPF) lines was discussed in
§4.1 and illustrated by fig. 30. It should be noted that this method applies to any two-
dimensional phase diagram section and can be used to construct any phase diagram in the
present article (with the exception of the projections in figs. 23, 24 and 27). When one
or both axes are potentials, then parts of the ZPF lines for two phases may be coincident.

7. Experimental techniques of measuring phase diagrams

It is beyond the scope of the present article to give a complete discussion of
experimental techniques. Only a brief survey of the major techniques will be presented
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with a view to providing the reader with some insight into the difficulties involved. More
detailed discussions are given by RAYNOR [1970], MACCHESNEY and ROSENBERG {1970},
BuUCKLEY [1970], and HUME-ROTHERY e? al. [1952].

As has been discussed in § 5, modern techniques of computer coupling of thermo-
dynamics and phase diagrams can significantly reduce the amount of experimental effort
required to characterize a phase diagram completely, particularly in the case of multi-
component systems.

7.1. Thermal analysis

Liquidus temperatures are commonly determined by the measurement of cooling
curves. Consider the binary alloy A-B of composition 1 in fig. 40. A sample of liquid
alloy, of the order of 50 g, is held in a crucible in a furnace. The furnace temperature is
then decreased slowly at a uniform rate, usually not exceeding 1°C per minute, while the
temperature of the alloy is measured by a calibrated recording thermocouple. A graph of
sample temperature versus time (the cooling curve) is shown in fig. 41a. At the liquidus
temperature (point a in fig. 40), solidification commences with the evolution of heat.
This causes a decrease in the cooling rate of the specimen with, ideally, a resultant
abrupt change of slope of the curve as shown in fig. 41a. When solidification is complete
at the solidus composition (point b in fig. 40), heat evolution ceases and, ideally, another
change of slope of the cooling curve is observed. From the “idealized” cooling curve of
fig. 41a, one can then read the liquidus and solidus temperatures. For an alloy of
composition 2, the idealized cooling curve is shown in fig. 41b. There is a change of

Temperature

Composition

Fig. 40. Binary phase diagram to illustrate some experimental techniques; solid circles: single-phase alloy, open
circles: two-phase alloy.
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Fig. 4. Cooling curves for alloys of compositions 1 and 2 of fig. 40.

slope at the liquidus, and a plateau at the eutectic temperature since, ideally, the sample
temperature remains constant until the invariant eutectic solidification reaction is
complete.

In a real experiment, however, cooling curves of the type labelled “realized” in fig.
41 are usually obtained. Some degree of undercooling (or supercooling) is almost always
observed. The sample must be cooled below the transformation temperature before
nucleation of the new phase occurs. The temperature then rises again. However, at a
liquidus the temperature will never rise all the way back up to the liquidus, so that some
extrapolation technique must be used to estimate the liquidus temperature. At a eutectic,
the equilibrium eutectic temperature may be regained by the sample after supercooling
provided that the quantity of material solidifying eutectically is large enough to yield a
sufficient evolution of heat. Supercooling may be minimized by stirring or by constantly
jolting the sample to induce nucleation.

It is important that temperature gradients within the sample be eliminated by stirring
and by the use of a furnace with a good constant temperature zone. Otherwise, part of
the sample will start to solidify before the rest and the cooling curve will show a
rounded rather than an abrupt change of slope.

At compositions where the liquidus is steep, such as the composition 3 in fig. 40, the
rate of heat evolution is small. That is, on descending from the liquidus at point f to a
point g an appreciable distance below the liquidus, only a small amount of heat is
evolved since, as can be seen from the lever rule, only a small amount of solid is
precipitated. Hence, it is more difficult to determine the exact temperature of the change
in slope of the cooling curve, and the technique of thermal analysis is less precise. For
very steep liquidus lines, a method of segregation and sampling or quenching may be
preferable, as will be discussed below.

For liquidus temperatures below about 1000°C, absolute accuracies of the order of
+ 1°C can be obtained by cooling curve methods under optimal conditions. For temperat-
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528 A.D. Pelton Ch. 6, §7

ures of the order of 100°C or lower, accuracies of £0.25°C may be obtained.

In principle, solidus temperatures can be determined by the method of cooling curves
as shown for the idealized curve in fig. 41a. In certain very favourable cases, with very
slow cooling rates, this may be possible. However, in most cases a curve such as the
“realized” curve of fig. 4la will be observed, in which determination of the solidus
temperature is extremely imprecise. The reasons for this are, firstly, that the solid phase
will contain concentration gradients so that solidification will not be complete at the
equilibrium solidus temperature; secondly, that the precipitated solid phase will insulate
the thermocouple from the sample thereby reducing sensitivity; and thirdly, that by the
time the solidus temperature is approached the sample temperature will have lagged well
behind the furnace temperature so that the cooling rate will start to accelerate rapidly.
For these reasons, solidus temperatures are better measured by heating curves which are,
in most respects, analogous to cooling curves. An important precaution here is to ensure,
by means of a long anneal, that the solid sample is homogeneous before commencing the
experiment. In general, it is more difficult to measure solidus temperatures with accuracy
than it is to measure liquidus temperatures.

In principle, a peritectic invariant can also be evidenced by a plateau on a cooling
curve. However, as discussed in §2.5.3, peritectic reactions are frequently greatly
retarded kinetically so that only a weak short thermal arrest may actually be observed.

In general, the precision of thermal analysis experiments may be increased by the use
of Differential Thermal Analysis (DTA) in which two thermocouples, connected in
opposition, are placed, respectively, in the sample and in a standard specimen which
undergoes no phase transformation in the temperature range of study. The danger in DTA
experiments is that, because of the large surface to volume ratio of the small samples
used, specimen temperatures often do not increase sufficiently after supercooling.

7.2. Sampling techniques and quenching techniques

As discussed above, thermal analysis may be inaccurate for determining the position
of a steep liquidus. In such a case, a segregation and sampling technique may prove best.
Suppose an alloy of overall composition and temperature in the (liquid + solid) region at
point g in fig. 40 is held at temperature until equilibrium is established. A specimen of
the liquid phase is then obtained, perhaps by suction in a ceramic tube. Chemical
analysis will then give the composition of the liquidus at this temperature. A similar
technique might be used to measure the compositions of the boundaries of a liquid-liquid
miscibility gap. Clearly these methods depend for accuracy on a clean separation of the
phases and on the prevention of oxidation and of volatilization losses while the sampling
device is inserted into the container.

The principle of gquenching techniques for solidus determinations is illustrated at
temperature T, in fig. 40. Samples at each of the four overall compositions shown at T,
are held at temperature long enough for equilibrium to be attained. They are then
quenched rapidly. When examined microscopically, samples from the two-phase zone
will exhibit regions of rapidly quenched liquid which can be distinguished from the solid
grains. In this way the solidus composition can be bracketed. Alternatively, one could
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quench samples of the same composition annealed at different temperatures, thereby
bracketing the solidus temperature as is also illustrated in fig. 40.

Because of the slowness of solid state reactions, thermal analysis is rarely a useful
technique for locating phase boundaries involving two solid phases. However, in such
cases annealing and quenching followed by microscopic observation to determine
whether one or two phases are present can often be used to bracket the phase boundary
as illustrated for the solvus line in fig. 40 at T,

Another method of determining phase boundaries in the solid state involves the
annealing of a sample in a two-phase (solid, + solid,) region followed by quenching and
subsequent quantitative analysis by any of several techniques to determine the com-
positions of the two phases present. The relevant techniques of quantitative metallo-
graphy are discussed in ch. 10, § 7, where several examples are quoted of the use of such
techniques to determine solid solubility limits.

In all techniques involving quenching, it is essential that the quench be as rapid as
possible so as to avoid any diffusion, segregation or reaction during cooling.

7.3. Other techniques

Suppose that one wishes to determine the compositions (points h and i) of the phase
boundaries at T, in fig. 40. Samples at a number of compositions at T, between points j
and k are annealed and quenched. The lattice spacings of the @ and B8 phases are then
measured by X-ray techniques. The lattice spacings, when plotted versus composition,
vary continuously in the single-phase regions, but remain constant in the two-phase
region. Extrapolation of the single-phase and two-phase portions of the lattice spacing
versus composition curve to their point of intersection then gives the composition of the
phase boundary. If too much decomposition occurs upon quenching, then high-temp-
erature X-ray techniques may be required to perform the measurements at temperature.

A technique which is similar in principle consists in measuring the electrical
conductivity of specimens at various compositions at 75 along the line between points j
and k. Again, sharp breaks in the plot of conductivity versus composition are noted at
the phase boundaries. This technique is often quite rapid, and can be carried out at
elevated temperatures without the necessity of quenching.

In the interdiffusion technique, polished pellets of compositions j and k are clamped
together and annealed at 7. Following quenching, a composition versus distance scan is
performed across the specimen by, say, microprobe analysis. A sharp discontinuity in the
curve is observed at the interface, the compositions at either side being the phase
boundary compositions h and i. This technique can also often be used to indicate the
presence and compositions of one or more intermediate phases in one single experiment
(see for example, SCHMALZRIED [1974]).

A great many other techniques of phase diagram measurement exist, such as dilatometric
(HUME-ROTHERY et al. [1952], SINHA et al. [1967]), hardness (BARREAU and CIZERON
[1979]), and magnetic measurements (ch. 29, § 6, also SucksmITH [1939]). The complete
determination of an alloy phase diagram usually requires a combination of several techniques
{e.g., a combination of dilatometry and magnetic measurements (SERVANT et al. [1973])).
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Institute of Science and Technology and with national organizations in several countries,
has undertaken a project whose goal is a complete critical evaluation of all binary and
ternary alloy phase diagrams. All available literature on phase equilibria, crystal
structures, and often on thermodynamic properties is cited and critically evaluated in
great detail by “category editors” who are each responsible for a group of systems.
Evaluations of important systems usually run to several pages. The evaluations are peer
reviewed and the majority are published in the Journal of Phase Equilibria, (formerly the
Bulletin of Alloy Phase Diagrams) (ASM International, Materials Park, Ohio). More than
2500 binary evaluations have been completed. Condensed versions of approximately
2800 evaluations have been published in three volumes (MASSALSKI ef al. [1990]). When
a “category” of evaluations (e.g. all binary phase diagrams with Cu) is completed, a
monograph is published as part of the ASM Monograph Series.

An extensive bibliography of binary and multicomponent phase diagrams of all types
of systems (metallic, ceramic, aqueous, organic, etc.) has been compiled by WISNIAK
[1981]. A bibliographical database known as THERMDOC on thermodynamic properties
and phase diagrams of systems of interest to materials scientists, with monthly updates,
is available through Thermodata (Domaine Universitaire, Saint-Martin d’Heres, France).

8.2. Texts and review articles

A large number of texts and review articles covering all aspects of the theory,
measurement and applications of phase diagrams are available. Only a selected few are
listed here. A classical discussion of phase diagrams in metallurgy was given by RHINES
[1956]. A definitive text on the theory of phase diagrams is that of PALATNIK and
LAUDAU [1964]. Treatments of the geometry of multicomponent phase diagrams are
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given by PRINCE [1963], PRINCE [1966] and HULTGREN [1985]. Good discussions of the
interpretation of binary and ternary diagrams are given by WEST [1965] and BERGERON
and RisBUD [1984]. A series of five volumes edited by ALPER [1970-1978] discusses
many aspects of the theory, interpretation, measurement and applications of phase
diagrams in materials science.
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1. Macroscopic and microscopic theories of diffusion

In this section we will present the macroscopic and microscopic theories of diffusion.
The former provides a description of the observed phenomena (which are fluxes), starting
from the formalism associated with the thermodynamics of irreversible processes; one
then obtains a formal expression of these fluxes as a function of thermodynamic forces
and of parameters which are called the phenomenological coefficients. In the latter
approach the fluxes are calculated by starting from atomic mechanisms. The parameters
used in this case are the jump frequencies; they have a clear physical meaning, as
opposed to the phenomenological coefficients which are only coefficients of
proportionality. This step encompasses two parts: on the one hand the random walk
modelling which starts with atomic jump frequencies and builds the macroscopic
diffusion coefficient, and on the other hand the jump theory which defines the jump
frequencies themselves from the very properties of the system and its defects. For both
formalisms, however, a knowledge of the underlying atomic mechanisms is required in
order to describe the diffusion phenomena properly. Thus we begin with a short review
of the possible mechanisms. Finally we present briefly the modern simulation tools, the
use of which is steadily increasing in diffusion studies.

1.1. The mechanisms of diffusion

In crystalline solids, the atoms occupy well defined equilibrium positions (regard-
less of thermal vibrations); they move by jumping successively from an equilibrium site
to another. The different possible mechanisms for dense structures are schematized in
fig. 1.

1.1.1. Exchange mechanisms

In the direct exchange mechanism (fig. 1-1) two neighbouring atoms exchange their
positions. This mechanism is unlikely for dense structures, for it would involve large
distortions and would then entail too large activation energies.

In the cyclic exchange mechanism as proposed by ZENER [1951], N atoms exchange
themselves simultaneously (in fig. 1-2, N = 4); the energy involved is much lower than
in the direct exchange, but this mechanism remains unlikely, because of the constraint
imposed by a collective motion.

At the present time there are no experimental supports for any such mechanisms in
crystallized metals and alloys. In metallic liquids cooperative motions are more likely
operating.

1.1.2. Mechanisms involving point defects

In thermal equilibrium a crystal always contains point defects. The best known are
vacancies, divacancies and interstitials. The presence of these defects in the crystals will
allow the atoms to move without too large lattice distortions. The properties of these
point defects are described in ch. 18.
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Fig. 1. Mechanisms of diffusion in crystals, after ADDA and PHILIBERT {1966]: (1) direct exchange, (2) cyclic
exchange, (3) vacancy, (4) interstitial, (5) interstitialcy, (6) crowdion.

1.1.2.1. Interstitial mechanisms. In the interstitial mechanism (fig. 1-4) the atoms
move from interstitial site to interstitial site. Usually small interstitial atoms, like
hydrogen or carbon in metals, diffuse through the lattice by this mechanism.

The interstitialcy is somewhat more complex; as sketched in fig. 1-5, the atoms move
from interstitial to substitutional site and vice versa. At higher temperatures, this
mechanism contributes to silver diffusion in the silver halides. In metals and alloys with
a dense structure the interstitial formation energy is so large that the concentration of
these defects is completely negligible at thermal equilibrium. The situation is quite
different when the material is out of equilibrium (for instance when it is plastically
deformed or irradiated); under these conditions one can create Frenkel pairs, namely an
equal number of vacancies and interstitials, which will both contribute to the diffusion.
In metals and alloys the self-interstitial atom is not centered on the interstitial site: it has
a dumbbell split configuration around a stable position. It is generally recognized that the
self-interstitial is split along a <100> direction in fcc and along a <110> in bee materials
(SCHILLING [1978]; ch. 18, §3.3.2.2). The case of the mixed dumbbell (one solute +one
solvent) is not so simple (see for example LAM ef al. [1983]). The elementary jumps for
these split interstitials are shown in fig. 2. At low temperatures, under irradiation, the
interstitial would have a crowdion configuration (SEEGER [1976]; fig. 1-6); at a higher
temperature this crowdion would convert into a split interstitial.

References: p. 651.
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before jump after jump

Fig. 2. Elementary jumps of the split interstitials (a) in fcc metals and (b) in bec metals.

1.1.2.2. Vacancy mechanisms. In metals and alloys, near the melting point, the
vacancy concentration is about 107 to 10™ site fraction. These vacancies allow the atoms
to move rather easily, and this mechanism is operating in most cases, with jumps to nearest
neighbour sites (NN), or also to next nearest neighbour ones (NNN) in bce crystals.

Besides monovacancies there are vacancy aggregates: divancancies, trivacancies, etc.,
which can contribute to the diffusion (ch. 18, §2.2.2.1). The ratio divacancies/
monovacancies generally increases with temperature, so that the divacancy contribution
to the diffusion also increases. We will see that numerous anomalies observed at high
temperature (leading to curvature of the Arrhenius plot) are attributed to the divancan-
cies. In dilute alloys there is often a binding energy between solutes and vacancies, and
the resulting solute—vacancy pairs (complexes) also contribute to the diffusion. The
relaxation mechanism which is a variant of the vacancy mechanism was proposed by
NACHTRIEB and HANDLER [1954]. The underlying idea is that a large relaxation around
a vacancy distorts its surroundings to such an extent that a liquid-like diffusion mechan-
ism can take place; this idea has now been abandoned.

Molecular dynamics calculations by DA FANO and JAcucct [1977] have shown that
at high temperatures, when the atom jump frequency becomes large, a dynamical
correlation between successive jumps can occur so that a vacancy can move more than
one jump distance; these vacancy double jumps are an alternative explanation for the
observed curvature of the Arrhenius plot.

1.1.2.3. Mixed mechanisms. For some systems it has been necessary to devise more
complex mechanisms in order to account for abnormally fast diffusion. The dissociative
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model by FRANK and TURNBULL [1956] was the first attempt at explanation. It assumed
that the fast diffusing solute dissolves both substitutionally and interstitially; the mass
transport is then due to a mixed vacancy and interstitial mechanism. MILLER {1969] has
improved this mechanism by introducing the idea of vacancy-interstitial pairs. For more
details see §4.3.2.

1.1.2.4. Short-lived Frenkel pairs. Numerical simulations have revealed that, at
least in non compact phases at high temperatures, short-lived Frenkel pairs can form
homogeneously and give rise to closed rings of replacement of various sizes (4 atoms and
above). At the end of the sequence the pair recombines (DOAN and AppA [1987]).

1.1.3. Mechanisms involving extended defects

Linear defects (dislocations) and planar defects (surfaces, interfaces, grain boundaries,
etc.) are disordered regions in which the atomic migration is easier than in the bulk.
These preferential paths of diffusion are called short-circuits. The diffusion mechanisms
are not yet well known but it is a topic where one is expecting rapid theoretical advances
owing to the increasing power of computers. For more details see § 7.

1.2. The macroscopic theory of diffusion

1.2.1. Generalities

Diffusion is an irreversible phenomenon; its description requires the use of the proper
formalism, namely thermodynamics of irreversible processes (TIP).

We refer the reader, for a detailed discussion of the subject, to specialized books and
articles (PRIGOGINE [1947], HOWARD and LIDIARD [1964], MUNSTER [1966], DEGROOT
and MAZUR [1969]).

For measuring a flux, it is necessary to define a frame of reference; for the crystal-
lized solid there are two preferred reference frames: the laboratory reference frame is
bound to the ends of the sample which are assumed to be not affected by diffusion (we
will neglect the sample size variation) whereas the lattice reference frame is rigidly
bound to the atomic planes. It is possible to mark this lattice reference frame with inert
markers such as very thin refractory wires, oxide particles, scratches on the surface etc..
These inert markers neither contribute nor alter the diffusion but “follow” the motion of
the neighbouring atomic planes. Hereafter we will denote fluxes measured with respect
to the laboratory frame by J° and fluxes measured with respect to the lattice frame by J.

The vacancy mechanism most commonly operates in metals and alloys; we will
present the TIP formalism with this assumption. We assume further that the medium is
isotropic; no chemical reactions take place; no viscous phenomena and no size variations
occur; and, last, that mechanical equilibrium is achieved. We will restrict the discussion
to the case of a binary alloy since only these alloys have been widely studied theoretical-
ly and experimentally.

1.2.2. Binary alloys and the vacancy mechanism

In a binary alloy there are three species: A, B and vacancies V; there will then be
three fluxes, J,, Jg and J, in the lattice reference frame or Jf, J: and J¢ in the

References: p. 651.
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laboratory frame. For a sample subjected to concentration gradients, Vn,, a temperature
gradient, VT, and an electric field, E, it has been shown (BREBEC [1978]) that:

L] * * & VT
J,==D,Vn, +(L,Z, + LABZB)eE —(Lp0Q; + LABQB)—T— 1)
ok x® * * VT
Jy = =Dy Vny + (LyyZy + LypZy JeE — (Ls, 05 + LB,,Q,,)T )
Ty =~(J, +Jp) 3)
sy _datdy @
n n
J?=J, +n,yand JJ =J, +nyy (5)

We have omitted the vector notation for simplicity but we must keep in mind that J;, Vn,,
VT, E and v are vectors. Symbols are defined in what follows.
D, and Dy are the intrinsic diffusion coefficients; they are given by:

DA — kT(p(ﬁ'i _ ﬁi} DB = kT(p[ﬁ - ﬂ] (6)

n, ng ng n,

where k is the Boltzmann constant and L,,, L,5, Lg, and Ly are the phenomenological
coefficients which depend on the intensive quantities such as temperature, concentration,
etc.; further they verify the Onsager reciprocity relation L; = L;;, (here Ly =Lg,); @ is
the thermodynamic factor of the A-B solution; it is given by:

dlog vy, dlogyg

=1+ =1+
dlog C, dlog C, 2

where y, and vy, are the thermodynamic activity coefficients. n,, ny and ny are the
numbers of A and B atoms and vacancies per unit volume, respectively.
The number of sites per unit volume is equal to:

n=n, +n,+ny
We now define the atomic fractions, taking into account the three species:

n n n
N,=-4% Ny=-L2and N, =%
n n n

or, taking into account only the A and B atoms:

Since ny is always small (ny <<n, +ng), the two definitions are practically equivalent.
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Z; and Z; are the effective valences for A and B and e the absolute value of the
charge of an electron. If the material is an insulator or an ionic conductor, these effective
valences are equal to the ionic valences z, and z;. In a metallic alloy for which the
electrical conductivity is due to the electronic carriers there is a momentum transfer from
these carriers (electrons or holes) to the A and B atoms. This is equivalent to a force
which has to be added to the electrostatic force; as a consequence an effective valence
can be defined (see §6).

Q. and Qg are energies per mole and are related to the heats of transport q, and
qs - Physically these heats of transport define the heat flux, J, associated with the matter
fluxes J, and J; when there is no thermal gradient. Actually it can be shown that:

* * VT
‘]q =qA‘]A+qB‘]B+a_T— (8)

which implies:
J, = q4Jy + qzJs when VT =0

In metals and alloys the assumption is often made that the vacancies are in thermal
equilibrium everywhere in the sample; this implies that the vacancy sources and sinks
(dislocations, grains boundaries, etc.) are effective enough to fulfil this assumption. When
this equilibrium condition is well obeyed we have:

0, = 4y — AHy, and Q; = g, — AH,

AHg, is the vacancy formation enthalpy in the alloy.

When the requirement of local equilibrium is not met, no simple relation holds
between Q;’s and q;’s.

Finally, v is the lattice velocity measured with respect to the laboratory frame. The
physical reason for the lattice displacements is related to the fact that vacancies are not
conservative species (they can be created or destroyed at certain lattice sites). In fig. 3
we Lave sketched the process responsible for the inert marker displacement; we see, in
this simple example, that the lattice moves to the right because the vacancies created on
the left are eliminated on the right.

We notice from equations (1)~(5) that the fluxes measured in the laboratory frame equal to:

‘]l? = CyJ, = CyJ, Jg = _(CB‘]A - CA‘]B)

so that Jf +Jf,J =0

1.2.3. Some special cases

1.2.3.1. Chemical diffusion. In the absence of electric fields and thermal gradients,
eqs. (1)—(5) become:

J,=-D,Vn,,  Jy=-DyVn,, v=(D,-D;)VN, ©)

References: p. 651.
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Fig. 3. Schematic representation of the displacement of inert markers (solid circles: atoms; squares: vacancies;
dashes: inert markers: (a) initial state; (b) creation of a plane of vacancies; (c, d, ¢) displacement of the vacancy
plane towards the right; (f) elimination of the vacancies. Comparison between (a) and (f) shows that the inert
markers are displaced to the right.

In the laboratory frame we have:
J:\’ = _Jg = 5VnA (10)
where:
D=N,D, + N,D, (11)
D is the chemical diffusion coefficient.
We see that, for binary alloys, the fluxes have the form of Fick’s first law:
J. =-DVn,
In the lattice frame there are two independent fluxes and thus two intrinsic coefficients,
whereas in the laboratory frame there is only one flux and one chemical diffusion
coefficient.
1.2.3.2. Dilute systems. For dilute alloys ng (or Cg) = 0 and ¢ — 1; on the other

hand it can be shown (§4.1.2.1) that Lyg/n, tends to a finite value, whereas Ly,/n,,
which is of the order of ng, tends towards zero. So:

L
= kT2 = D, (12)

np

Dy

,HB—DO
This coefficient is the solute diffusion coefficient at infinite dilution. It will be denoted by
Dy« to distinguish it from Dy and to recall that diffusion is generally studied with
radioactive isotopes which are used at great dilution; then we will also replace ng by ng..

D, does not become as simple as Dy because the cross-term L,z/ng does not tend to zero
with ng (§4.1.2.1).
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For these dilute systems the flux of solute is equal to:
nBaDB* nBtDBu-

kT?

Jgo = =Dg.Vny, + Z, eE - 0, VT (13)

where:

Zy =Zy+ %‘i Z, (the apparent effective valence)
'BB

0y =0+ %‘” 0O, (the apparent heat of transport)
‘BB

Because Z, = Z, and g, = g,(same chemical species) we have dropped the asterisk on B
inZ;, Z;', 0, and Q.
Equation (13) has the generalized form of Fick’s first Law:
J;=-DVn+<v> n

When B atoms are isotopes A* of the element A, eq. (13) becomes:

D L 2 n D *x
Jpo = =D, Vn,, + 0280 72 pp _ Mattar 14
A A A kT A sz QA ( )
It can be shown, (HOWARD and LIDIARD [1964]), that:
1 gy Lam (15)
f 0 LA"‘A"
The apparent valency and heat of transport are therefore given by:
zZ, = 24 and oy = L
Jo fo

where f; is the correlation factor for self-diffusion; its presence stems from the non-
ramdom character of the tracer atom displacements by a vacancy mechanism. D,. is the
self-diffusion coefficient, given by:

L *AX
D,. = kT~ (16)
AU

1.2.4. The various diffusion coefficients

Diffusion coefficients have the dimension Length® Time ™. In the international system
of units they are expressed in m%™. The CGS system (cm’™) is still widely used. We
will show now which experimental situations correspond to these various coefficients.

References: p. 651.
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The chemical diffusion coefficient D describe the interdiffusion of A and B (fig. 4a);
it can be measured from the curve C, (or Cg) versus X; in general it depends on the
concentration.

The intrinsic coefficients D, and Dy correspond to a similar experiment; but to obtain
them it is necessary to determine D and v [see egs. (9) and (11)]. v is obtained from the
displacement of inert markers (see Kirkendall effect, § 5.3.1.1). These coefficients depend
also on the concentration.

The solute diffusion coefficient at infinite dilution Dy. corresponds to the experimental
situation shown in fig. 4b. A thin layer of B* atoms has been deposited on the A surface
so that Cg. ~ 0 and B* diffuses in pure A.

The self-diffusion coefficient D,, corresponds to a similar situation when B* is
replaced by A*.

Two other diffusion coefficients are defined as shown in fig. 4c; they are the self-
diffusion coefficients in an homogeneous alloy AB which are denoted by DQf3 . The B* (or
A*) concentration is always negligible so that the alloy composition is not modified by
the diffusing species. These coefficients depend on the concentration. An alternative
notation often used for dilute alloys is:

Dis(Cy) = D}, Dye(Cy) = D}

where Cj is the concentration of B.

The macroscopic description presented above cannot account for the A* and B*
diffusion into AB alloys; it would be necessary to derive the flux equations for four
species A, A*, B, B* (plus vacancies); this is beyond the scope of this review and we
refer the reader to HOWARD and LIDIARD [1964] for more details. Thus it is possible to
show that the self-diffusion coefficients in the alloy and the intrinsic diffusion coeffi-
cients are related by:

D, = D::fgorA Dy = Dgfﬂo"s a7

where ¢ is the thermodynamic factor and r, and ry are terms which will be made
explicit in § 5.1.2. These relations, (17), were first established by DARKEN [1948] in a

B *{or A¥) A/\* or B¥

4]
]
A
(A
|1
11

A B A ;' AB
g
11
»
[

a b =

Fig. 4. Different types of diffusion experiments: (a) chemical diffusion — D ; (b) self or solute diffusion in
pure metals - D,. or Dy,; (¢) self-diffusion in homogeneous alloys ~ DjP or D3P
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simplified form for the case when r,=rgy=1.

1.2.5. Fick’s second Law
We have seen that the fluxes in a binary alloy have the form:

J;==-DVn, or J,=-DVn +n, <v>,

By using the conservation equation:

Wi _div],
ot

we obtain Fick’s second Law; this partial differential equation can be solved for given
initial and boundary conditions. D; and <v>; can then be obtained from a comparison
between the experimental and the calculated concentration curve C(x).

When D, and <v>, are constant and the diffusion is along the x direction Fick’s
second Law has the form:

on, 3n,
t=D —* 18
ot Lo’ (18)
or
2
Mo_p Ty, T (19)
ot ax ox

The geometry which is most commonly used for measuring D, is a thin layer
deposited onto a “semi-infinite sample” (see fig. 4b and 4c); in this case the solution of
eq. (18) has the well-known form:

2
n(x,1) = \/'n'QDt exp(— 4';)1) (20)

where Q is the quantity of the diffusing species deposited per unit surface, so that D, is
obtained from the slope of the straight line: log n; versus x°.

In the presence of an electric field, the equation to be solved is eq. (19); very often
the geometry used is a thin layer sandwiched between two semi-infinite samples. The
solution is then:

. _(x—<v>it)2
n{x,t) = 2 JmDr exp|: Tapr :|

<v>, is obtained from the displacement of the maximum of the curve ny(x) with respect
to the origin (defined by the welding interface).
For chemical diffusion (see fig. 4a), D is not constant, we have then to solve:

an, _ 9 ( B, %j 22)
ot ox dax

(21)
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MaTANO [1933] has shown that, when D, depends on x through n;

y

. Ix dn
D(n)=-—L 23
Bn) ==, (dn,/dx) @
the x origin must be chosen so that:
[xdn =0 4)

0

This origin defines the Matano plane. In fig. 5 the different terms of eqs. (23) and (24)
are illustrated.

Numerous solutions of the diffusion equation can be found in CRANK [1956] and
CaArRSLAW and JAEGER [1959]. We will see that in some cases Fick’s first law is not
valid; the first restriction is related to the discontinuous nature of crystals (lattice effect)
and will be discussed in § 1.3.5. The second restriction is met in chemical diffusion
(spinodal decomposition: CAHN [1967]; ch. 15, § 3.1). In both cases the discrepancy with
Fick’s law becomes noticeable only for harmonics of concentration with short wave-
lengths.

1.3. The random walk theory of diffusion
The aim of the random walk theory is to describe the observed macroscopic effects

from the atomic jumps which are the elementary processes in diffusion.

1.3.1. Einstein relation and flux expression
For a random walk motion, EINSTEIN [1905] has shown that the diffusion coefficient
of species i along the x direction is given by:

x?
= o

where X? is the mean square displacement along the x direction for the duration 7. If Xy
is the displacement of the k" atom along the x direction during 7, we have:

(25)

. N
X =YX 26)
k=1

where N is the number of diffusing atoms of species i.
In many cases the motion is not random but the expression (25) still holds provided
that 7 — 0.
According to LE CLAIRE [1958] and MANNING [1968], the flux J; measured with
respect to the lattice reference frame is equal to:
on oD,

Ji=<v>n-D—L-n— 27
ox ox @7
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|_» Matano plane

S

o F 3
Fig. 5. Matano method for the calculation of D . The Matano plane is defined by the equality of the two areas

F'O'M and FOM (hatched surfaces). Jjix dn, is equal to the area HPFO (doubly hatched surface), dn/dx is the
slope of the tangent to the concentration curve at P.

where:

<y> = lim X (28)
-0 7

D, is given by eq. (25) when 7 — 0, X2 is the mean displacement during 7 for species
i

These relations, (25), (27) and (28), are valid for anisotropic media but to save space
we have omitted the more precise notation D,, <v>;, etc...

1.3.2. Calculation of X and X? in terms of jump frequencies
It is easy to show that:

X=%% 29)
i=1
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F:Z?uﬁzrx, (30)
i=1

1=l j=i+l

where x, is the i th displacement along x and n is the mean number of atomic jumps
during 7. The overbar denotes an average over a large number of atoms.

1.3.2.1. Expression for X2. For a truly random walk motion the last term in eq.
(30), P=2 3% x; x;, vanishes. When X differs from zero (chemical diffusion, electro and
thermal diffusion, etc.) this term P is also different from zero but is has been shown that
the X contribution to P is of the order to 7 whereas the X, x,.2 term, eq. (30), is of the
order of 7; as a consequence the X contribution to P is negligible when 7 — 0.

But even if X =0, the P term is not necessarily equal to zero, owing to the mechan-
ism of diffusion. We will see later that for most diffusion mechanisms the successive
atomic jumps are not independent of each other, and that the motion is not a truly random
walk. This can be easily understood for the vacancy mechanism: the vacancy concentra-
tion is so low (~ 10™ to the melting point) that two consecutive atomic jumps are likely
due to the same vacancy and it is obvious that after one jump an atom has a greater than
random probability of making a reverse jump; there is correlation. This correlation
between the directions of two successive jumps initiated by the same vacancy reduces the
efficiency of the walk with respect to a truly random walk. Correlation occurs for all
defect-assisted diffusion mechanisms except for the purely interstitial and exchange
mechanisms; it is related to the low concentration of point defects (vacancies,
divacancies, interstitials, etc.) and decreases when this concentration increases (WOLF
{1980D).

How to take this effect into account will be reported in § 1,3.4. To summarize, we can
always calculate X* by assuming X = 0, because when t — 0, X* does not depend on X,

For a truly random walk motion, P=0 and we have:

X' = 1'2 Tx; 31n
k=1

where z is the number of jump directions, I', the mean atomic jump frequency for the k
direction and x, the displacement along x for a k-jump. Hence:

Z

Dmndom = % Z l-‘Itxlz' (32)

k=1
For cubic lattices all the frequencies I', are equal, and:

ri?

Drnmiom = ? (33)
where I'=3, T, is the total jump frequency and 1 is the jump distance (ay/2 for fcc,
1a/3 for bec). B -

1.3.2.2. Expression for X. With the same notation as for X2 we have:

X=7)ILx,=<v>7 (34)

k=1
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For the case where X is not zero, the potential energy of the atoms versus their position
is schematized in fig. 6 (for simplicity we have shown regular energy barriers which
correspond to a mean displacement X independent of x). The shape of this energy
diagram is due to a force F; acting on the atoms such that (see fig. 6):

2
The atom jumps are easier towards the right than towards the left (in fig. 6) and if AW
<< kT we have for thermally activated jumps:

: Ex; - _Ex
I(-) = I‘O(l + 2kT) I(«) = 1“0(1 2kT) (35)

where I, is the jump frequency when F,=0; — denotes jumps towards the right and <

jumps towards the left.
We then obtain, with egs. (34) and (35):

AW

<vs=X_ED (36)
T

kT

Energy

Potential

Position
Fig. 6. Schematic representation of the potential energy diagram of the atoms when a constant force is present.
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This expression is the Nernst—FEinstein relation.
F, has the following forms, according to the nature of the field acting on the atoms:

F, = Z;eE for an electric field,
=247 for a thermal gradient,
T dx

=-k il_c;%yi for a concentration gradient, 37

where Z; is the effective valence, Q,, = q, - hy,, Q. is the heat of transport for an a-
type jump of the species i, h,, is the vacancy formation enthalpy on a site from which
an a-type jump is possible, v, is the coefficient of activity of species i in the alloy at the
position x; this last term can be evaluated from a thermodynamical study of the alloy; we
will see in § 6 how it is possible to measure and calculate Z* and Q*. We observe that
with the microscopic approach there are as many heats of transport as there are different
types of jumps, whereas with the macroscopic approach the number of the heats of
transport is equal to the number of species.

The expression for X, eq. (36), is not complete because the diffusion mechanism can
give rise to an additional term; in order to go further it is thus necessary to adopt a
particular model for diffusion. We will consider the case of a binary alloy and a vacancy
mechanism.

1.3.3. Binary alloys and vacancy mechanism

In the case of a vacancy mechanism there is a coupling between A and B fluxes
through the vacancy flux. This coupling, known as the vacancy flow effect, contributes to
<v>; in addition to the force F,. The calculation of this term is rather tedious and for
more details we refer the reader to MANNING [1968]. Two cases have to be considered,
depending on whether it is a dilute or a concentrated alloy. The diffusion models and
results (expressions for L,,, L, and Lgy) are given in §4 for dilute alloys and § 5 for
concentrated alloys.

1.3.4. Correlation effects
For most diffusion mechanisms the successive atomic jumps are not independent; as

a result, the last term of eq. (30), P=2 2. x,;, does not vanish. The correlation factor
is defined as:

f = actual
D (38)

random
and from eq. (30) we obtain:
n-1 n no___
f=1+[22 ZTx,.J/ x; (39)
i=1

i=l j=i+l
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Thus the expression for D, eq. (33), becomes:

2
D =¢Il (40)

actual 6

In order to calculate f we have to evaluate P=2 X3, ?xj, which will depend on the
diffusion mechanism. BARDEEN and HERRING [1951] were the first to point out that
point-defect diffusion mechanisms involve a non-random-walk motion for the atoms, and
they calculated the correlation factor f for a vacancy mechanism.

The first useful estimation for f with the vacancy mechanism yields f=1 - 2/z, where
z stands for the coordination number of the lattice. Since, at each jump, the vacancy has
the probability 1/z to perform a backward jump, a fraction 2/z of the number of jumps
performed by a given tracer atom is lost, giving rise to an efficiency factor equal to
1—2/z. This argument cannot be used as such for evaluating the correlation factor for
solute diffusion, because the exchange frequency with a solute atom w, differs from that
with the solvent w, and because the solvent jump frequencies themselves are altered in
the immediate neighbourhood of the solute (see § 4.1). As a consequence, the walk of the
defect around the solute must be considered in more detail. Since the pioneering work of
BARDEEN and HERRING, numerous studies have been published on this topic; we refer
the reader to the books or articles by ADDA and PHILIBERT [1966], MANING [1968] and
Le CLAIRE [1970a].

The principal techniques used for the calculation of f are:

(i) Computer simulations; X:cma, is obtained by Monte Carlo simulations and com-
pared to X2 4. For more details see § 1.5.2.

(i) The pair association method; this technique is described in §4; the fluxes are
calculated from the diffusion model and by comparing with the macroscopic expressions
we obtain D, and then f with eq. (38). This technique can only be used for dilute
alloys.

(iii) The random walk method, this is the calculation of f from the expression (39). In
this type of calculation it is necessary to evaluate the return probabilities of the defect on
the neighbouring sites of the atom after the first exchange with this atom. To obtain these
probabilities, several methods have been used:

— The BARDEEN and HERRING [1951] technique;

— the matrix method (LE CLAIRE and LIDIARD [1956], MULLEN [1961], HOWARD [1966]);
~ the electrical analogue method (CoMPAAN and HAVEN [1956, 1958]);

— the integral methods, which have now superseded the previous ones. The return
probabilities are evaluated through 3-D integrals which are easily computed in a few
seconds with a very high accuracy. Tackling with a slightly different problem, the
ancestor paper introducing such integrals for random walk probabilities (MCCREA and
WHIPPLE [1940]) has been followed much later by others more directly devoted to
correlation calculations (MONTET [1973], BENOIST et al. [1977]; Koiwa [1978], IsHIOKA
and Korwa [1980]).

For self-diffusion, f is independent of temperature in isotropic materials (for vacancy
mechanism f=0.72 for bee, 0.78 for fcc and hep, 0.5 for diamond lattice; for divancancy
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mechanism £=0.475 for fcc and hep lattice). For impurity diffusion see § 4.

In some cases the knowledge of the correlation factor can allow us to choose among
several of the mechanisms of diffusion; it is then a very useful quantity, but as we will
see later, experiment does not yield f alone. What is measured is the isotope effect, E,
from which it is not obvious how to extract f (§ 1.4.3.3).

1.3.5. The limitation of Fick’s Law

We present here a first restriction of Fick’s Law, which is related to the discontinuous
nature of the lattice (MARTIN and BENOIST [1977]). Let us consider the case of one-
dimensional diffusion; the rate equations for an atomic plane n are:

d;:," =T(C,,, -2C, +C,,) (41)

where T is the atomic jump frequency and C, the concentration for the i plane.
We have to compare the solution of this rate equation, which takes into account the
discontinuous nature of the lattice, with the macroscopic equation:
aC s*C
=D

7% 42
ot o2 “42)

Let us suppose an infinite medium with an initial concentration variation according to a
sine form:

. 27X
C(O) = Cl + (CZ - Cl)SlI'l T
The solution will be:
. 2mX\ _o
C, =C +(C, - Cl)(sm T)e (43)

when t — oo, the concentration becomes homogeneous, C — C,.
By substituting eq. (43) in eqs. (41) and (42), we obtain:

2
a = 21‘[1 - cos 2—:‘5] ay = (%’1) D (44)

where a is the interatomic distance, subscript R stands for the solution of eq. (41) and F
for the solution of Fick’s Law, eq. (42).

In expanding cos (27a/A) and taking into account the fact that D=T"a” for this one-
dimensional diffusion, we obtain:

2\ 2 (27ra)2 2 (27ra)2
={— | D|l-={—| +=|—]| ... 4
o (/\) [ 410 A ) 610 #3)
We clearly see by comparing egs. (44) and (45) that the solutions of the rate equations
and of Fick’s equation are identical only when 2ma/A << 1, i.e., for large wavelengths.
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Since a concentration profile can be expanded in a Fourier series, the short-wavelength
components will evolve in a different manner than predicted by Fick’s Law. This effect
will be noticeable only for very short wavelengths (a; and ag differ by 3% for A =10a
and by 0.03% for A =100 a).

1.4. Jump frequency and diffusion coefficient calculation

We have shown above, eqs (33) and (40), that the diffusion coefficient is given as a
function of the jump frequency I of the diffusing species. Its calculation comes therefore
into the determination of this frequency, which itself can be done in the framework of
the statistical mechanical theory of fluctuations (LANDAU and LiFsHITZ [1984], FLYNN
[1972]). In fact the jump of an atom can be viewed as a particular fluctuation of the
local energy density during which the system undergoing diffusion passes from a stable
position to another over a barrier of higher energy, the so-called saddle hypersurface in
the configurational space spanned by the 3 N position variables.The statistics of the
fluctuations of the local energy density therefore control the jump frequency. The nature
of this saddle hypersurface is defined by the nature of the crystalline lattice and by the
mechanism at work (see § 1.1). Let us particularize for example to the case of a vacancy
mechanism, the other cases being easily handled in the same framework.

1.4.1. Vacancy concentration

In this case the relevant fluctuation can be decomposed into two steps: the formation
of the vacancy and the jump of a neighbouring atom into the vacancy. The probability
to observe a defect on a neighbouring site of the atom under consideration is given by:

P, = B exp(=G,/u7)

with G, the free enthalpy of the system containing the vacancy plus N atoms and P, a
normalizing constant. The relative probability with respect to the non defective state, i.e.
the vacancy concentration is therefore:

¢, = exp(—~(G, — G,)/kT) (46)

with G, the free enthalpy of the perfect crystal. In the so-called quasi-harmonic approxi-
mation, which in most cases works fairly well up to near the melting point (LUTSKO et
al. [1988]), these free enthalpies are given by:

3(N-1) (hw' ]

G=W+kT ) Ln e\+pV
a=] k T

with W the potential energy of the system in the relevant state, the third term correspond

to the work of the external pressure P, on the actual volume and the second, the so-

called vibrational entropy, corresponds to a summation over the 3 (N—1) non-zero normal

eigenfrequencies @_. The enthalpy difference in (46) takes now the form:

3(N-1) v
AG, = AH, = TAS, =W, - W, + kT ZLn(ZgJ+gx,(m—%) 47

a
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in which the eigenfrequencies @, and ®. pertain to the system with and without a
vacancy respectively; and V, and V, to the volume with and without the defect.

1.4.2. Vacancy jump

In order to handle the second step, the vacancy jump, two theories have been put
forth and later refined, the theory of Rate Processes (WERT and ZENER [1949], VINE-
YARD [1957]), and the Dynamical Theory (RICE [1958], SLATER [1959], FLYNN [1968]).
As will become clear, these two approaches emphasize different aspects of the jump, and
are complementary rather than contradictory.

1.4.2.1. Rate theory of jumps. The probability of finding a vacancy as a first
neighbour of an atom is a static property and as such the statistical thermodynamical
treatment given above is rigorous. This is no longer the case for the jump which has a
strong dynamic character: the jump proceeds as an hamiltonian trajectory in the phase
space and the successive positions during the jump are strongly correlated. However, it
is not possible to solve for them down to a calculation of the frequencies, so we need
approximations. In the rate theory one neglects completely the dynamical aspects: the
successive positions of the system during the jump are viewed as independent static
positions with an occupancy given by their equilibrium statistical weight all along the
jump path, including the saddle position. The dynamical correlations between successive
positions are lost, and therefore the jumping particle has no “memory”. Moreover the
saddle hypersurface is supposed to be planar as a consequence of the hypothesis of
harmonic interatomic interactions even at the saddle position.

The jump frequency of a vacancy, or the frequency in one direction for an atom (eq.
32), is defined as the flux Jg crossing the saddle hypersurface S, for a unit occupancy of
the stable position, which in our example includes a vacancy on the proper site:

L, =Js/P, yw Js =] Ps'ds

Ot §

where s is the unstable normal coordinate perpendicular to the saddle hypersurface S, s’
the corresponding “velocity” and Pg as above the statistical weight along S defined by:

Py = Rexp{—(G,)/kT}

3(N-1)-1 s 48)
Gs =W +kT Y, Ln(’:”T)H) v,
o=l

ext
Now we have for the migration frequency:
kT
T = - exp{~(G; - G, )/kT}
W (S 3(N-1) 49)
Gy ~G, =W, =W, + kT ZL ( ) kTZLn( ) P (Vs—V,)

Notice that in this expression the eigenfrequencies o, corresponding to motions
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restricted to the saddle hypersurface do not correspond one-to-one to the frequencies in
the stable position, ®g. Indeed the new modes of the system close to the saddle point
have no counterpart in the perfect nor in the defective system in the stable position. Moreover
the first product contains one fewer frequency than the second, for the reaction coordinate s
is quenched at the saddle value. A more homogeneous formula is generally written as:

T, = vexp{~(G; — G, )/kT} = vyexp{~(AG,, )/kT}
3(N-1)-1 3(N-1)

(50
AG, = W, - W, +kTLn{vo Il =/ Hw2}+ P(Vs - V,)
as a

which shows clearly that the so-called “attempt frequency”, v,, has no physical meaning
on its own, but only as a couple with the migration entropy. From (33) and (50) one
recovers the well known expression of the diffusion coefficient in cubic structures:

D = vya*f exp(—A—SF—;ﬁ"—)exp(— AHF;#) (51)

where, by comparison with eq. (50), one defines AS,; and ASg, respectively the defect
migration and formation entropies, AH,, and AHg, the corresponding enthalpies, ‘a’ the
lattice parameter.

As said above, in this approach the dynamic aspect of the jump is neglected.
However the system follows during the jump an hamiltonian trajectory in the phase space
and its successive positions are therefore correlated. These short time correlations have
two effects, multiple jumps one the one hand (DA Fano and JAacucct [1977], De
LorenzI and ERCOLESSI [1992]) which can be viewed as a new diffusion mechanism, the
existence of unsuccessful jumps on the other, in which the jumping particle turns back
just after having passed the saddle point. Following BENNETT [1975] these unsuccessful
events could amount to 10% of the jumps foreseen by the rate theory up to near the
melting point in a Lennard-Jones crystal, but to a larger value for other kinds of
interaction (GILLAN et al. [1987]). The main origin of this inefficiency lies in the
anharmonicity of actual interatomic interactions allowing for a curved rather than planar
saddle hypersurface; according to FLYNN [1987], a curved hypersurface can be crossed
twice. An improvement to the Vineyard approach as been proposed by TOLLER and col.
[1985] by considering the full manifold of the newtonian trajectories in the phase space,
and not simply the positions of the system in the configuration space. Topological
considerations allow to count now only the successful trajectories as a subset of all
possible ones, instead of counting only the static state of the system in the saddle
hypersurface, as in the rate theory approach. Using the first non-harmonic term, of third
order, for describing the curvature of the saddle hypersurface, a part of the above
mentioned 10% discrepancy is shown to be recovered, but the Molecular Dynamics
method is needed to account for the remainder (FLYNN [1987]).

1.4.2.2. Dynamic theory of jumps. Contrarily to the rate theory, in the dynamic one
the jump frequency is directly deduced from the atomic dynamics, the phonon contribution to
the fluctuations of the atomic positions, and not from an occupancy hypothesis about the
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states in configurational space. In this approach one defines a 1D reaction coordinate

measuring the progress of the jump along the jump direction, according to the scalar product:
Xx=(65—65s,) 0

where 8 s, and 8 s,; are the 3D displacements with respect to the stable positions s, and

S, Tespectively of the jumping atom and of the saddle point, and n the unit 3D vector

along the jump path. The position s, is generally defined as the center of gravity of the

atoms defining the saddle gate. All these coordinates fluctuate as a result of the random

superposition of phonons. The contribution of a phonon of frequency @, wave vector k
and branch A to x is given by:

x(t) = (2. n)(1 — exp(i. k s,5))exp(i (k. s, — w1)) (52)

where ug ) is the 3D amplitude vector of the phonon.

Last, it is assumed that the jump necessarily proceeds to completion, once a certain
critical value & of x has been reached. 6 remains in the theory an adjustable parameter,
which is supposed to depend only on the crystalline structure of the lattice.

It can be shown that upon superposition of harmonic vibrations of frequencies », and
amplitude X}, the critical value & is reached from below at a frequency w given by:

W= (Z () /2 (x?)’jmexp [42/ Z(x?)zj

The effect of the various phonons in (52) can be evaluated using k, =@, /v, in a Debye
model, v, being the sound velocity along the phonon branch A. At high temperature,
hw, /kT < 1; denoting by &, the energy in the mode @, A, one has:

lqu{Z _ 2£m\ 2kT

T NMw®  NMw?
and the summation over @ and A gives:
) 5 15M
w={(2)"v,exp| —— 53
(3)"v p[ kT 2(3v% +v7 + v,'?)] 53)

where v, v, and v, reflect the longitudinal and transverse sound velocities, v, is a mean
Debye frequency and M the mass of the particles.

As in the rate theory approach, one recovers an Arrhenius-like form of the diffusion
coefficient with the migration activation energy defined in the second bracket.

It is also possible to express this result as a function of the elastic constants, since
v?=c/p with p the specific mass. Using a properly weighted mean of the elastic moduli,
c, and taking ) as the atomic volume, FLYNN proposes:

2
w=(3)".v, exp (— ci1d ) (53')

kT

Using a value of § =.32 for fcc metals and 8 =.26 for bee ones, a quite good agreement
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is found with experimental values of migration energies (FLYNN [1968]). Other values
are sometimes used (SCHULTZ [1991]).

The most severe drawback of this approach lies in the implicit assumption that the
normal modes remain untouched during the jump. Its main interest relies in its ability
to handle the migration including the effects of the actual crystal dynamics. The
summation in (52) can now be made without any approximation thanks to the availability
of complete dispersion relations for various metals and to the development of the
numerical simulations, allowing for example a deeper understanding of the bcc metals
(see section 3.2).

1.4.3. Macroscopic parameters of diffusion

1.4.3.1. Variation with temperature. For self-diffusion in isotropic media, f is
independent of T, so that from eq. (51), D has the well-known Arrhenius form:

D = D, exp (— %) with D, = vya’ fexp (M)

and Q= AH, +AH,,
D, is the frequency factor and Q the activation energy.

For impurity diffusion, f depends on T and, strictly speaking, D has no longer the
Arrhenius form, but if we want still to recast its variation into the form of an Arrhenius
law, we can define Q as:

dlog D .
g=-k a(l/gT) hence we obtain: @ = AH. + AH,, - C
and D, = v, a’ fexp (Mﬂ) exp (—i) with C =k dlog f
k kT ayT)

If C depends on T, Q and D, will also depend on T but it is experimentally observed
that C is small and more or less constant so that impurity and self-diffusion behaviours
are qualitatively similar.

As a matter of fact, the Arrhenius plot (log D versus 1/T) is often curved; the
departure from a straight line is more or less substantial (curvature only at high
temperature, continuous curvature, two straight lines with different slopes). In general,
the activation energy increases with T. Several explanations are possible:

(1> The enthalpy and entropy terms depend on T (GILDER and LazARrRus [1975],
VAROTSOS and ALEXOPOULOS[1986]).

(2) Diffusion occurs by more than one mechanism. This is the case:

— for non homogeneous media; e.g. grain boundary + volume diffusion;

— when several types of jumps occur (DA FaNO and Jacucct [1977]);

— when several defects contribute to the diffusion. Monovacancies are responsible for
most of the diffusion processes and, at the present time, the curvatures at high tempera-
ture are generally ascribed to the increasing contribution of the divacancies (SEEGER and
MEHRER [1970)). If several defects contribute to the diffusion we have:
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D=Y D,

D is the measured diffusion coefficient and D, the contribution to the diffusion of the i
th defect.

(3) There is an intrinsic domain at high temperature and an extrinsic domain at low
temperature; this is mainly the case for semiconductors and ionic crystals. At high
temperature (intrinsic region) the point-defect concentration is only a function of the
temperature, whereas at low temperature (extrinsic region) the defect concentration is
mainly controlled by the impurity content. More complex situations can occur for
complex mechanisms (Hoob [1993])

Typically, for metals and alloys, D, is in the range of 10°— 10" m%s and Q in the
range of 100-600 kJ/mole (~ 1-6 eV), depending on the melting point of the material.

1.4.3.2, Variation with pressure. According to eqs. (50) and (51) the pressure
derivative of the activation enthalpy AG,, defines an activation volume AV along:

(M%D)_”j%—%%%%—wjz_Aw+Am
P )y kT kT

(54)

We have neglected the 0 log f/0P and all d log w, /0P terms; the former is strictly zero
for self-diffusion and the latter are generally small, of the order of 107 £ ({ is the
atomic volume), with respect to the volume variation due to defect formation.
AV =AV.+AV,, is the activation volume, where AV, and AV, are the defect formation
and migration volumes, respectively. In general, AV,, is small so that AV; is not very
different from AV. Typically AV varies from 0.5 to 1.3 €} at least in the case of a
monovacancy mechanism; in some cases AV is very small or even negative, which can
be an indication of an interstitial-type mechanism.

1.4.3.3. Variation with atomic mass. From an experimental point of view, the
isotope effect E is obtained by measuring simultaneously the diffusion coefficients D, and
D, of isotopes o and B of the same element with masses m, and m,. It can be shown
that E is given by:

D,/D; -1
_(mﬂ / _ma )'11'2__1

where f is the correlation factor. It is assumed that only the frequency » of the isotope-
vacancy exchange is altered by the mass difference according to:

dLn(») _ AR
—4d Ln(m)

= fAK (55)

where AK is the fraction of the kinetic energy in the unstable mode residing in the
jumping atom. Its value is therefore smaller than 1, of the order of .8 to .9 for self-
diffusion in simple fcc metals, and reflects the collective nature of the saddle position
crossing during the jump (LE CLAIRE [1966]). Equation (55) holds if, and only if, f has
the form:
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f=_"

u+vy

where u is a term which depends on all the frequencies involved but ». For fcc materials
BAKKER [1971] has shown that eq. (55) is valid for vacancy, divacancy and impurity-
vacancy pair mechanisms. For more complicated mechanisms such as the Miller
mechanism, eq. (55) is no longer valid (see LE CLAIRE [1970a] and PETERSON [1975]).
This is also the case for the the vacancy mechanism in ordered alloys with a B2
structure.

Isotope effect measurements can contribute to identification of the diffusion mecha-
nism through the correlation factor; but we have to know AK. Theoretical values of AK
can be calculated in the framework of the above mentioned jump theories. Unfortunately
they are not really sufficiently quantitative for that purpose. An expression has been
established by LE CLAIRE [1966], which allows AK to be estimated if the defect
formation volume AVg is known:

Ak ~ (1+5[1-av,))" (56)

In this expression, £ is the number of neighbouring atoms when the jumping atom is in
saddle-point position and AV; is expressed as a fraction of the atomic volume. For more
details about the isotope effect we refer the reader to LE CLAIRE [1970a}, PETERSON
[1975] and FLYNN [1987]).

1.5. Numerical simulation approaches

Thanks to the huge progresses of the power of the modern computers as well as of
the presently available models of interatomic interactions, the numerical simulation route
is now routinely used in diffusion studies (ADDA and CiccotTI [1985]). The main goal
of this approach is twofold. On the one hand numerical simulations are providing well-
controlled experiments and allow a proper check of the validity of the various theoretical
tools depicted above. Moreover, if realistic interatomic interactions are available, they
provide a fairly reliable substitute to actual experiments. This is now almost the case for
simple metals with s and p electrons (see for example GILLAN [1989]). On the other
hand, like numerical methods, they easily allow for a full treatment of the actual
problem: no approximation is needed, and the full anharmonicity can be introduced,
which proves to be particularly important in diffusion studies due to the high tempera-
tures involved and the strongly N-body character of the events.

The Molecular Dynamics (M.D.) and the Monte Carlo (M.C.) methods are the most
used simulation tools. As explained in the previous paragraph the main observables of
the diffusion theory, formation and migration energies for instance or the diffusion
coefficient itself, appear as thermodynamic ensemble averages in the phase space of the
system. Both of these methods aim therefore to furnish a full set of atomic configurations
using a properly choosen bias for selecting the most important parts of the phase space,
i.e. each configuration will be given a weight according to its Boltzmann factor in the
proper ensemble.
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In M.D,, by solving the Newton equations of motion the full trajectory of the system
in the phase space is built, and the proper weighting of the possible configurations
follows as a consequence of the hamiltonian equations. The ensemble averages can be
calculated as time averages thanks to the ergodic hypothesis. In M.C., a set of possibly
uncorrelated configurations is built by randomly moving the particles according to a rule
designed for achieving the proper importance sampling. The notion of trajectory, as well
as of time scale, is therefore lost to a large extent.

1.5.1. Molecular Dynamics method

For a broad coverage of the field the interested reader can find almost everything in
the following references: CiccoTT! and HOOVER [1986], ALLEN and TILDESLEY [1987],
MEYER and PONTIKIS [1991].

In this method the hamiltonian equations of motion are solved by stepwise numerical
integration for a system of N particles interacting by a properly chosen potential energy
function U. This function can have any degree of complexity (and realism!) from the
early empirical sum of interactions between pairs of atoms (GIBSON et al [1960],
RAHMAN [1964]), to the most recent quantum-mechanics-based N body potentials where
the full contribution of the electrons to the cohesive energy of the system is taken into
account (CAR and PARRINELLO [1985], LAASONEN [1994]). Periodic boundary conditions
are generally used by repeating on all sides of the primitive system replicas of itself. In
this way the spurious effects of free surfaces are avoided. Even in the largest simulations
the maximum size is of the order of 10° atoms for a maximum duration lower than 10~
seconds of actual time.

The first M.D. simulations were done at constant volume V and total energy E, in the
microcanonical ensemble, noted NVE, but more recently new methods appeared which
allow to produce trajectories in other ensembles: constant enthalpy (ANDERSEN [1980]),
constant stresses (PARRINELLO and RAHMAN [1981]), constant temperature (NOSE [1984],
Hoover [1985]). One must be nevertheless careful when using these new ensembles
since the dynamics of the fluctuations introduced is generally no longer the actual one.
If needed, special techniques can be used, tailored for studying rare events or non equi-
librium systems (BENNETT [1975], CiccoTT1 [1991]).

Once a well-equilibrated system has been prepared, the thermodynamic average of the
various physical observables can be calculated according to:

<f>=lim_, 1| f(t)de
0
The observable f, determined as a function of time along the trajectory, can be an
energy, enthalpy, temperature, pressure or stress, any correlation function, as well as the
mean squared atomic displacement, of special interest here.

In diffusion studies, M.D. has been used either in a direct approach or in an indirect
one. In the first the mean squared displacement of the atoms is directly computed from
the record of the successive atomic positions. Albeit conceptually simple, this approach
is limited by the available computing resources to calculation of diffusion coefficients
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higher than 10" m%s at most, which limits its application to the studies of liguids
(RAHMAN [1964]), or of interstitial diffusion at a quite high temperature (GILLAN [1986],
GENDRE et al. [1991]). In the indirect approach the M.D. is used for studying the
elementary events of the diffusion: the atomic mechanism at work in a given material
(BENNETT [1975], DoAN and ADDA [19871, DELAYE and LiMOGE [1993a]), and its
various thermodynamic properties, e.g. formation and migration energies, entropies and
volumes or associated local modes (WILLAIME [1990], DELAYE [1993]). At a high
temperature, the jump frequencies of the defects can also be directly calculated, allowing
for a direct check of the validity of the usual theoretical approaches in the diffusion
theory.

1.5.2. Monte Carlo method

Now the notion of trajectory is lost: a set of successive configurations II; is generated
by randomly moving one or several particles of a system. As in M.D., the system
contains N particles interacting by a properly chosen potential energy function U (the
limitations over N are of the same order as in M.D.), and periodic boundary conditions
also are frequently used. The configurations resulting from these random moves will be
taken as acceptable according to various rules which ensure that the set of configurations
contains each state according to its thermodynamical weight in the proper ensemble (for
a complete review of the field see VALLEAU and WHITTINGTON [1977] or BINDER ref.
S, in the ‘Further Reading’ list). Such a set forms a Markov chain. It can be shown that
it is sufficient that the acceptance rule, or transition probability p; between states II; and
IT, satisfies the microscopic detailed balance:

m.D,; =T Dy

for the various states IT, will be represented in the stationary Markov chain proportionally
to their proper Boltzmann weight ;. Various acceptance rules have been devised, the
most popular of which is the Metropolis scheme according to which:

a) p;=1 iftW, < W

AT (57)
b) p; = exp| - T itw, > W,

if W, and W, are the potential energies of states II; and II;
As a matter of fact the thermal averages are obtained simply as:

<f>= #if(ni)

with m the length of the Markov chain. The precise form of the acceptance rule
influences the rate of convergence towards the limit chain, but does not alter the
stationary behaviour. In this approach one of the key point is the source of the random
numbers used i) to generate the successive configurations ii) to decide of the acceptance
or not in case 57b). The art of building “good” generators of pseudo-random numbers is
a quite sophisticated one (see for example KNUTH [1968]). The best one for the present
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purpose is probably the so-called “Feedback Shift Register” method (ZIERLER [1959],
LEwIs and PAYNE [1973)).

The same comments apply here as in § 1.5.1 with respect to the extension of the
method, originally developed for the canonical ensemble, to isoenthalpic, isostress or
even Grand Canonical ones by using the proper weight. One of the subtleties of the M.C.
method is that the time variable has disappeared, since successive configurations in the
chain are not necessarily related by a physically possible path. However, this drawback
can be removed (BOCQUET [1987], LiMOGE and BOCQUET [1988]).

Except for the dynamic aspects, the use of M.C. is identical to that of M.D.: defect
structure and properties, thermodynamical averages calculation. Moreover, the M.C.
approach is particularly well-suited for studying the properties of random walks. Indeed,
in a random walk model, the full dynamics of the jump is condensed in a set of fre-
quencies, allowing to calculate by the direct method the diffusion coefficient in a very
efficient way. This method has proved to be particularly useful in complex systems, like
concentrated alloys, disordered materials etc., where analytical solutions for random walk
are not available (MURCH and ZHANG [1990]).

2. Experimental methods

We shall review the different techniques which allow the diffusion coefficients D to
be measured; for the heats of transport and effective valence measurements the reader is
referred to §6. Two kinds of methods are used to measure D: macroscopic methods,
which are based on Fick’s Law, and microscopic methods. With the former, we compare
the experimental concentration profiles (or a quantity which depends on it) with the
appropriate solution of Fick’s Law. The latter takes advantage of the fact that many
physical phenomena depend on the atomic jumps (for instance, NMR or Mossbauer
signals) and can be used to measure atomic jump frequencies. For the microscopic
methods it is, in general, necessary to know the diffusion mechanism precisely in order
to be able to deduce the jump frequency from the measured signal, whereas the
macroscopic methods yield D without any assumption on the diffusion mechanism.
Moreover it is not granted that the jumps detected are actually the ones involved in
macroscopic diffusion (a drawback of spectroscopic techniques), nor that they are
involved in the same manner as in actual diffusion (case of relaxation studies). But the
macroscopic methods entail a macroscopic displacement of the atoms and thus a large
number of jumps. At low temperatures, for small values of D, it is then necessary to
perform long anneals. Conversely, because they only involve a small number of jumps,
the microscopic methods require much shorter durations and they allow the variation of
D with time to be studied for systems which are not in equilibrium (systems under
irradiation, after quenching, during plastic deformation, etc.). For a given system the
combination of both kinds of techniques can help to determine the diffusion mechanism
(see for instance BRUGGER et al. [1980]). We will successively discuss these two types
of techniques.
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2.1. Macroscopic methods

Most frequently the quantity which is measured is the concentration C(x) at point x,
and the resulting concentration profile is compared with the appropriate solution of
Fick’s Law; but any quantity which depends on the concentration or on the flux can
allow the determination of the diffusion coefficient. In the first part we focus on methods
which determine the profile C(x); in the second part we briefly discuss other macroscopic
techniques. For more details see ADDA and PHILIBERT [1966], or PHILIBERT [ref. C)].

2.1.1. D from the C(x) curve

2.1.1.1. C(x) by sample sectioning. Generally the C(x) profile is obtained by
sectioning the diffusion zone and measuring the quantity of the diffusing species in each
slice (thickness Ax).

For sectioning, several techniques can be used:

Mechanical sectioning with precision lathe (10 um, 5x 107 m¥s), microtome (1 pm,
5x 10"®* m?%s) or grinding machine (1 wm, 5x 107'* m%s).

Chemical or electrochemical attack (50 A, 107 m¥s).

Sputtering by ionic bombardment (10 A, 5x107% mYs).

The numbers in parentheses indicate, respectively, the minimum thickness of the slices
and the minimum diffusion coefficient which can be obtained in practice.

The slice thickness, Ax, and the values of x can be measured by weighing; when Ax
is tco small, weighing becomes inaccurate and other techniques (optical methods,
Talystep) have to be used. The techniques most frequently employed for the determina-
tion of the concentration C(x) are activity counting (for the radioactive species) and mass
spectrometry. Each of them can, in principle, be utilized with one of the sectioning
methods described previously. They are very sensitive, especially activity counting which
allows the detection of atomic fractions as small as 10™'°. Ionic sputtering is associated
with mass spectrometry in commercial apparatus (ionic analyzers or SIMS, i.e. secondary
ion mass spectrometry, see ch. 10, table 4) and with activity counting in several devices
(see for instance GUPTA [1975]); both allow the determination of diffusion coefficients
as small 5x 107 m%s.

2.1.1.2. Non-destructive techniques. As a matter of fact all these techniques are
raethods of analysis which could be associated with the sectioning of the sample but they
also allow the determination of the profiles without sectioning.

The Castaing microprobe (electron microprobe analyzer). A thin electron beam
(¢ ~ 1um? analyzed zone ~ 1 wm?®) stimulates the X-fluorescence radiation of the element
to be studied (ch. 12, §2.2); the profile C(x) can be obtained by analyzing the sample
along the diffusion direction. This technique is convenient for studying chemical
diffusion. The sensitivity is of order of 10~ and it is not possible to measure diffusion
coefficients smaller than 10™° m?%s.

Nuclear reactions. The surface of the sample is bombarded with particles («, protons,
etc.) which induce a nuclear reaction with the element to be studied; the energy spectrum
of the out-going particles created by this nuclear reaction allows the determination of the
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concentration profile C(x). These techniques are convenient for the analysis of light nuclei.
Back-scattering. As previously, the surface of the sample is bombarded and one
studies the energy spectrum of the elastically back-scattered particles, from which it is
possible to obtain the concentration profile. In contrast with nuclear reaction methods, the
back-scattering method is convenient for the analysis of heavy nuclei.
For more details about these two last methods we refer the reader to the writings of
ENGELMANN [1977], PHILIBERT [ref. C)] and CHU et al. [1978].

2.1.2. Other macroscopic methods

There are numerous macroscopic techniques which allow the determination of
diffusion coefficients from measurements of properties depending on matter transport;
one obtains generally as a result the chemical diffusion coefficient. The most important of
these methods are the following:
— Measurement of the quantity of matter leaving or crossing a sample. This method is
much employed for gases and volatile products.
— Measurement of the growth rate of a new phase. When the growth is controlled by
diffusion it is possible to calculate D from the growth kinetics. This is fully explained by
SCHMALZRIED [1974].
— Measurements of compaction and deformation kinetics. Sintering of powders and creep
of crystals are in some cases controlled by bulk diffusion; it is then possible to deduce
D from compaction or deformation kinetics (ch. 31, §2.2).
— Measurements of the evolution of the concentration modulation by X-rays (or electrical
resistance). This method was initially developed by Coox and HILLIARD [1969] and used
for amorphous systems by ROSENBLUM et al. [1980], GREER and SPAEPEN [1985]. A film
of periodic composition is deposited by evaporation or sputtering; this film tends to
homogenize on heating, according to the solution given in § 1.3.5. The kinetics can be
followed by X-rays and

2
D=— ’\_2 4 [ In M)
87" dt I,

where I is the intensity of the satellite peak in the neighbourhood of the central spot. It
is also possible to follow this kinetics using the measurement of the electrical resistance
of the sample; this provides a very convenient measurement tool in complex environ-
ments, like high pressures or irradiation (WONNELL et al. [1992]).

This technique allows the determination of very small coefficients of diffusion
(~ 1077 m¥s).

The Gorsky effect, in spite of its being a macroscopic method, will be described in the
next section, together with relaxation phenomena.

2.2. Microscopic (or local) methods

The methods described here pertain to two groups: on the one hand, studies of
relaxation kinetics in out-of-equilibrium samples, on the other hand various spectroscopic
methods involving transition matrices disturbed by atomic jumps.
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2.2.1. Relaxation methods
The reader can find a very detailed theory of relaxation properties in solids as well
as experimental results in NowICK and BERRY [1972].
2.2.1.1. Thermodynamic aspects of relaxation. The internal energy of a system is
defined by the state variables, stresses, temperature, fields, etc., and by a set of n internal
variables, labelled v;, the equilibrium values of which, v;, are fixed by the values of the
state variables. These internal parameters can be, for example, the order parameters in an
alloy or the populations of the various energy levels that a system can occupy. If one of
the state variables changes suddenly, the various internal variables which are coupled
with it will relax to the new equilibrium values. In the cases of interest here, the
diffusional mobility D controls the relaxation towards equilibrium. We can then measure
a relaxation time 7, related to D by
2
p=k<
T
where a is a distance characteristic of the lattice, and k is a constant depending on the
specific model involved.
The internal energy varies according to:

dU = TdS + dU,, - Y, U,dv, (58)

where dU,,, is the energy supplied by the external forces and the dv; stand for the
variations of the internal variables. U, is the ordering energy associated with the i®
internal variable,

If the deviations from equilibrium, v;—v;, are not too large, the U, can be expanded
as

U, = —Z Ul(v, - v;) (59)

When the time evolution of the v;’s is first-order, one speaks of relaxation phenomena.
In this case:

dv, ; .
...L:—Zw;,’(vj—vj) (60)
One sees easily that it is always possible to find a set of n normals modes V, evolving
in time as:

V() = Ve[Vt = o) = V' Jexp (~1/7) (61)

In eq. (61), 7, is the relaxation time of the i th normal mode. In many cases the homo-
geneity of the sample is not perfect and, instead of a single-valued 7, we observe a
distribution 7r(r;) of times, corresponding either to the distribution of atomic environ-
ments or to the various relaxation paths.
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In diffusion studies of metals and alloys, the most frequently used external influences
are mechanical stresses, magnetic field or temperature jumps.

2.2.1.2. Anelasticity. In the case of mechanical stresses one speaks of anelasticity.
Two solicitation modes are used in these studies. The first one is the mechanical after-
effect: a static stress (or strain) is applied and the strain (stress) relaxation is followed in
time. The application for example of a constant stress leads to an instantaneous elastic
response defining the unrelaxed modulus M. Afterwards the system displays a relaxation
of the strain which corresponds at infinite time to the relaxed modulus M. The after-
effect anelasticity is then defined by three physical quantities:

— the relaxation intensity: A =(M; - M, )M_;

— the mean relaxation time T,

— the width of the relaxation time spectrum .

In many cases the experimental data are well fitted with a Gaussian spectrum
(Nowick and BERRY [1972]):

7(t) = (B«/;)_l exp —( In(1/7)/ ,3)2

The second mode is the internal friction mode. In this case, stress and strain are
periodic with a frequency w according to:

T = g, expit, & = &, exp i(wt — @)

The phase factor ¢ between stress and strain expresses the energy dissipation due to
anelasticity. One can show that ¢ is related to T by:

T

1+ (or) 2

tang ~
The phase factor displays a Debye resonance versus w, or versus temperature
variation through the temperature dependence of 7; the maximum value, ¢, is obtained
for w7 =1. In real experiments the measurements are made either in forced, or in free,
damped oscillations. One can then measure the energy absorbed per cycle, dw/w, or the
magnification factor at the resonance Q (inverse of Full Width at Half Maximum
(FWHM) of the ef,— versus-w curve) as a function of temperature, In the free case one
measures the logarithmic decrement & =In [g(t)/e(t+T)], where T is the oscillation
period.
All these physical quantities are related by:
Sw

2wsing ~ %T ~26~— and PATA L

w Tira” ©

The study of the value of ¢ versus w, at various temperatures, gives the relaxation
time 7 versus temperature. We deduce D, the diffusion coefficient, as

_ka’

T

D
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A great variety of experimental set-ups have been used. The reader will find many
references in NOWICK and BERRY [1972]. The most commonly used are the torsion
pendulum, either in internal friction or in after-effect mode, and the resonant bar at
higher frequency. The corresponding D’s which can be measured are given in table 1.

2.2,1.3. Snoek relaxation. In body-centered cubic metals the interstitial defect has
a tetragonal symmetry, in both octahedral and tetrahedral sites. Owing to this lower
symmetry it can give rise to an anelasticity effect, the so-called Snoek effect (SNOEK
[1939]). In most cases experimental results are, in bcc metals, in good agreement with
the octahedral model (see fig. 7 and § 4.2.1). Under a uniaxial tensile stress o along the
Oz axis, there is a splitting of the energy levels of the three kinds of sites S,, S, S,, in
favor of S, sites. The ordering energy [eqs. (58) and (59) is: U,=vyo, where vy is the
lattice parameter variation along Oz axis due to the redistribution from S, and S, to S,
sites. The associated internal variable is v=(n,—n/3), n and n, being the total atomic
fraction and the atomic fraction of solute on S, sites, respectively. Taking I" as the total
solute frequency jump, one easily shows that I' =2/(37), and D is given by

aZ

D =
367

(64)

where a is the lattice parameter. (See also ch. 22, §4.3.)

2.2.1.4. Zener relaxation. In face-centered cubic metals, an interstitial solute has the
same symmetry as the lattice. Therefore there is no anelasticity associated with interstitial
solutes. On the other hand, a pair of substitutional solute atoms B of non-zero size effect
in a solvent metal A represents a defect of orthorhombic symmetry. Their reorientation
under stress then gives rise to an anelastic relaxation which can be seen in all lattices of
higher symmetry. ZENER [1943, 1947] was the first to point out the existence of an
internal friction peak in a 70:30 «-brass, which he further analyzed as the effect of the
reorientation of solute pairs (now called the Zener effect). LE CLAIRE [1951] has analyzed
the kinetics of their reorientation and shown how it allows the solute jump frequencies
to be determined. Nevertheless this model in terms of solute pairs suffers from several
weaknesses:
— Ccntrary to Snoek relaxation, the Zener effect can be observed only in concentrated
alloys, because of its dependence on the square of the B concentration. The description
in terms of isolated pairs therefore becomes less satisfactory.
— Several parameters of the relaxation (the anisotropy, the temperature dependence of D)
are badly accounted for by the pair model.
- The solute mobility alone is involved in Le Claire’s analysis of the kinetics. However,
Nowick [1952] has shown that the mobility of both species is needed to produce a
relaxation.

Clearly we need a full description of the ordering under stress to give a good account
of the Zener effect. LE CLAIRE and LOMER [1954] and WELCH and LE CLAIRE [1967]
have given a solution to this problem in the framework of Cowley’s order parameters (up
to the second-nearest neighbours for the latter authors). The most elaborate analysis of
the kinetics for the first model is due to RADELAAR [1970]. He simultaneously calculated

References: p. 651.
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Q)

Fig. 7. Characteristics of octahedral interstitial sites in bcc lattices. There are three kinds of sites S,, S, and S,.

x My

For an S, site the first-neighbour distance in the z direction is a/2 and a/V2 in the xOy plane.

Ty, the relaxation time for ordering, and DAA,B and DQ\?, the tracer diffusion coefficients
of respectively A* and B* in the alloy:

Tp ~ azg(a)(CA/D;f + CB/D:P) (65)

where g(a) is a smooth function of «, the short range order parameter. No equivalent
analysis exists for Welch and Le Claire’s model.

One clearly sees that the (approximate) formula (65) does not allow one diffusion
coefficients alone to be deduced from 7 values. The relaxation time appears to be a
“Zener-averaged” function of the various atomic jump frequencies and not that particular
arrangement which gives the diffusion coefficients. In most cases for example, 7 appears
to be a thermally activated quantity, the activation energy of which is lower than that of
either DA* or DAY (Nowick and BERRY [1972)).

Nevertheless, while the use of Zener relaxation in measuring diffusion coefficients is
a delicate task, this effect is of paramount interest in studies of the behaviour of point
defects in alloys in, or out of, equilibrium (BERRY and OREHOTSKY [1968], BALANZAT
and HILLAIRET [1980]).

2.2.1.5. Gorsky effect. Any defect B which produces a lattice dilatation is also able
to give rise to an anelastic relaxation. This is the well known Gorsky effect (GORSKY
[1935]) the complete theory of which was given by ALEFELD et al. [1970]. Indeed, the
migration of positive (resp. negative) dilatation centres down (resp. up) a macroscopic
strain gradient produces a relaxation of stresses, which is detectable if the diffusion
coefficient is high enough (VOLKL [1972]).

One easily shows that the diffusion coefficient Dy« of the B defect is related to the
relaxation time 7y by (ALEFELD et al. [1970]):

2
DB* = _L (g) (66)
PTr \T
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where d is the length of the diffusion zone and ¢ the thermodynamic factor (§ 1.2.2). The
main interest of the Gorsky relaxation is to give access to Dy, without the need of any
diffusion model. Note that here the length scale is d, the sample size, and not a, the
atomic size [eqs. (64) or (65)]. We see in table 1 that this method is well suited for high
diffusion coefficients.

2.2.1.6. Magnetic relaxation in ferromagnetic alloys. In ferromagnetic alloys the
local interactions between a magnetic momentum and local order give rise to relaxation
phenomena similar to those observed under stress. Their origin is to be found in the
induced anisotropy energy, the theory of which was built up by NEEL [1951, 1952,
1954] and TANIGUCHI [1955]. We have an ordering energy U, given by [see egs. (58)
and (59)]:

U =wcos® 6 (67)

1

where 6 is the angle between the local moment and the symmetry axis of the defect
under consideration. The origin of w lies in the perturbation by the defect of i) exchange
integrals between magnetic atoms ii) spin—orbit coupling.

This anisotropy energy gives rise to three kinds of relaxations.

Table 1
Diffusion coefficient ranges accessible through different techniques.

Method Relaxation time 7 Range of Dy.

or Frequency @ accessible (m?/s)
Elastic after-effect 10<7 <10°s 10 < D, < 107
(Zener or Snoek)
Intemal friction | Hz<w < 10° Hz 100 < Dy, < 1077
(Zener or Snoek)
After-effect and Approximately same 10% <Dy <107®
internial friction as above

in Gorsky relaxation

Torque measurement 10<7<10°s 108 <Dy < 107
(magnetic anisotropy

method)

NMR field gradient - 10« Dy <107
Pulsed NMR 107<7<0.1s 10 <Dy <10
Maossbauer - 107¥ <Dy <107
Neutron scattering - 102 <Dp.< 107

The first, analogous to the Snoek relaxation, is due to reorientation of interstitial
impurities in bee crystals during a change of field direction. The relationship between
jump frequency, relaxation time and diffusion coefficient is the same as in the Snoek
relaxation.

The second is the analogue of the Gorsky effect. In a domain wall the interaction
between the magnetostrictive stresses and the strain field of interstitials can be minimized
by diffusion through the wall. This diffusion gives rise to an after-effect. The relaxation

References: p. 651.
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time is a factor (5/a)® larger than the preceding one (as in the mechanical case), & being
the domain wall thickness (KRONMULLER [1978]).

The third can be called a magnetic Zener effect and is due to the ordering of
ferromagnetic alloys in a magnetic field. The theory was built up by NEEL [1954] in a
quasi-chemical model and by VILLEMAIN [1970] with inclusion of second-nearest
neighbour order. The link between relaxation time and diffusion is as difficult to
establish as in the Zener effect. However, the sensitivity is extremely high and allows
study of diffusion at exceedingly low defect concentrations (107 — 107" vacancy fraction,
CHAMBRON and CAPLAIN [1974]). (See also ch. 29, §5.3.3.3).

2.2.1.7. Kinetics of short-range ordering. Any physical property sensitive to atomic
order can be used to follow the kinetics of ordering and therefore to study atomic
mobility: resistivity (RADELAAR [1966], BARTELS [1987], YU and LUCKE [1992]), X ray-,
electron- or neutron diffraction (PENiSSON and BOURRET [1975]). Nevertheless we need
to relate quantitatively the order parameter and the measured quantity. Further, the link
between ordering kinetics and diffusion coefficients is as difficult to establish as in the
Zener effect.

2.2.2. Spectroscopic methods

2.2.2.1. Nuclear magnetic resonance. In a static magnetic field H, (say 10° Gauss)
a nuclear spin of magnitude I takes a precession motion at the Larmor frequency w,
Simultaneously the degeneracy of the 2I1+1 energy levels is raised. A macroscopic
sample is an assembly of nuclear spins and will then display a magnetic moment along
H,, M,, and a transverse part M,, zero at equilibrium. If we apply a transverse radio-
frequency magnetic field H, with a pulsation @ near w, this field will induce transitions
between the 2[+1 Zeeman levels of each spin. Experiments show, and theory confirms
in many cases (ABRAGAM [1961]), that the time evolution of the total moment of the
sample M is given by the Bloch equation:
eq
M _ YMAH ~ M _M oM, V[D. V(M - M”")] (68)
a L L
where vy is the gyromagnetic ratio, M* the equilibrium value of the magnetic moment
and D the diffusion coefficient of the nuclei. T, is the relaxation time of the longitudinal
part M, and corresponds to an energy transfer between lattice and spins system. T, is the
relaxation time of the transverse part M,. The values of T, and T, are fixed by various
interactions between spins, either direct or indirect via electrons. On each nuclear site
these interactions create a local field (approx. 1 Gauss) which fluctuates, due to atomic
vibrations and jumps. It induces transitions between levels and then settles their lifetime.
However, if the frequency of the atomic displacements becomes of the order of magni-
tude of the frequency of the precession motion due to this local field, the spins will be
sensitive only to the time average of it. This average is zero and the lifetime is no longer
limited by interactions: this is the so-called motional narrowing of absorption lines,
which explains part of the variation of T, and T, with temperature.
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Equation (68) shows that two techniques can be used to determine diffusion coeffi-
cients. Firstly, the last term of eq. (68) gives a time evolution of M when the sample is
put into a field gradient G according to:

2

M, (1) = M, exp(— TL - % D720272t]

The measurements of M, versus time t then gives D without any further hypothesis
(ABRAGAM [1961]).

We can also measure either the width of absorption lines in steady-state resonance (@
near w,), or the decay of M, and M, parts with time after the perturbation by a “‘pulse”
of I, field. In this last case, the decays fit the laws M, =M, [1—exp (- /T))] or M, =M,
exp (—2t/T,). Now the BLOEMBERGEN et al. theory [1948] expresses T, and T, in terms
of Fourier transforms of the time correlation function of dipolar interactions (the main
interaction in many cases) due to nuclear motions. We then have to postulate a diffusion
mechanism, to calculate correlation functions and to compare it with experimental T
values in order to deduce a diffusion coefficient.

The original work of Bloembergen was done for diffusion in liquids and later
extended to the case of random walk and defect mechanism in lattices (TORREY [1954]),
including correlation effects (WOLF [1979]). Self-diffusion in aluminum was measured
by NMR by SEYMOUR [1953] and by SrokAS and SLICHTER {1959].

2.2.2,2. Mossbauer effect. Gamma rays can be emitted or absorbed by excited
nuclei. According to the Heisenberg principle, and controlled by the half-life time 7 of
the nuclei, the width I = 7/ of the corresponding lines can be very narrow, of the order
of 107 eV for example. Owing to the recoil energy of the emitter, the emission line of
free nuclei is shifted by a much larger amount. This shift then prevents the resonant
absorption by other nuclei. On the other hand, if the emitter is embedded in a crystal a
part of the emissions occurs without recoil. This is the Mossbauer effect. In this case
resonant absorption can occur. However, if one of the emitting or absorbing nuclei is
moving, either by thermal vibration or diffusion jumps, the line is broadened by self-
interference effects. This broadening is the main effect which has been used to give
access to atomic mobility. More precisely, SINGWI and SIOLANDER [1960a] have shown
that the emission, or absorption, cross-section is given by:

a{w) = %‘1[ J. exp[i(Kr - W)~ 2—2 ltl]G:(r, 1)drdt (69)

where G (r,t) is the Van Hove autocorrelation function and K the wave vector of the
v photon of frequency 2m/w. In a classical system G, gives the probability of finding at
(r,t} a particle located initially at (0,0). Therefore G,(r,t) contains all the information
about diffusion processes. SINGwI and SIOLANDER [1960a, b] have given the theory of
diffusion broadening in the case of liquids and of random jumps on an empty lattice (i.e.
interstitial case). In the last case the broadening is given by:

N
AT = 15_’1 D(1-a) and a = %Zexp(iKRn) (70)
n=l

References: p. 651.
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where b is the jump distance and R, the N possible jump vectors. Equivalent formulas
have been given for the vacancy mechanism (WOLF [1983]). This dependence can give
very valuable informations about the anisotropy of diffusion (FLINN [1980]), as well as
on the jump vectors (SEPIOL and VOGL [1993a]). Nevertheless the constraints of: (i) high
recoilless fraction (large detectable signal), and (i) measurable AL/T, say between 10~
and 10%, limit the available tracers to ’Fe, "*Sn, "*'Eu and '*'Dy (JanoTt [1976]).

The other aspects of the Mossbauer spectroscopy, the so-called hyperfine interactions,
isomeric shift, magnetic dipolar and electric quadrupolar interactions, have also been
used for studying the various jump frequencies of interstitial iron atoms in Al, Fe, Zr, Nb
(YosHIDA [1989]).

2.2.2.3. Quasi-elastic neutron scattering. A monoenergetic neutron beam can be
scattered by nuclei embedded in a solid without any energy transfer, that is, without
phonon emission or creation. This is the exact parallel, in the case of neutrons, of the
Mossbauer effect for y photons. More precisely, VAN HOVE [1954] has shown that eq.
(69) gives the incoherent scattering differential cross-section for scattering vector K and
energy transfer w. In this case I' has to be taken as zero, and o appears to be the (r,t)
Fourier transform of G, Therefore atomic motions, as given by G(rt), induce a
broadening of the elastic peak, the measurement of which versus w gives access to
atomic mobility. The formula (70) works for describing the K and jump vectors depen-
dences of the broadening.

Two experimental techniques can be used (SPRINGER [1972]). For the first, one uses
small K values, corresponding to large r, where G,(r,t) is well represented by:

G,(r,t) = (4mDt)™* exp(-r* /4 Dx)

The quasi-elastic peak then has a Lorentzian shape with a FWHM of 2 # K?> D. The use
of this method, at low K, is therefore limited by the energy resolution of spectrometers.

In the second method, one starts from a diffusion model which allows G, to be
calculated. One then fits the parameters of the model to scattering measurements at
various K vectors, using the K dependence of the broadening. If one works with fairly
large K, then small r, the method is very sensitive to the details of the jump mechanism,
(PETRY and VoGL [ref. M)], VOGL et al. [1989)).

Neutron scattering techniques, owing to an energy resolution of the spectrometers
much more limited than in the case of Mossbauer spectroscopy (~ 107 with back-
scattering geometry, against ~ 107 eV), are best suited for fast diffusion, like that of
hydrogen in metals (GISSLER [1972]), sodium self-diffusion (AT SALEM et al. [1979]) or
high temperature studies in 8-Ti, a fast diffuser (PETRY er al. [1991]).

3. Self-diffusion in pure metals

The pure metals are undoubtedly the most studied with regards to their point defects
and diffusion properties. The traditional distinction was between normal and anomalous
self-diffusion, the latter taking place in about ten body-centered cubic metals. A detailed
review on this point of view can be found in PETERSON [1978]. However, there has been
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deep progress in the understanding of this aspect in the last years, and the paradigm has
now changed to distinguish between diffusion in close-packed phases, i.e. fcc and hcp
ones, as opposed to diffusion in bee ones.

Diffusion parameters for various pure elements have been gathered in table 2.

According to LE CLAIRE [1976], normal self-diffusion complies with the three
following empirical rules:

— tke diffusion coefficient obeys the Arrhenius law: D =D, exp (- Q/kT);

~ the D, values range from 5x 107 to 5x 107~ m¥s;

~ the activation energy is related to the melting temperature by the expression: Q =34T,,,
(Q in calories per mole), or 0.14 T, (Q in kJ/mole), where T,, is the melting point of the
metal (in Kelvin). This behaviour, forming the base of the Van Liempt relation, is well
obeyed by compact metals (see fig. 8a for fcc ones). In bee structures the dispersion is
much greater (fig 8b).

All these properties can be qualitatively understood in the framework of the above
mentioned theories of diffusion by the vacancy mechanism, keeping in mind that a
proper formation energy for a vacancy has to be related to the cohesive energy of the
material and therefore to its melting point.

The term of anomalous diffusion was formerly reserved for describing ten systems
which present very low values of the frequency factor D, and of the activation energy Q:
B-Ti, B-Zr, B-Hf, y-U, &-Pu, y-La, §-Ce, B-Pr, y-Yb and 3-Gd. All these metals also
display a more or less important curvature of the Arrhenius plot (fig. 9b).

However, one often observes a slight positive curvature in the Arrhenius plot even in
the so-called normal metals (Al, Ag, Au, Cu and Ni); it is frequently restricted to high
temperatures but sometimes it is present over the whole temperature range. This
curvature is always upward.

self-diffusion fcc self-diffusion bee
600 —————— — T —— 600 LA T T
L Re w
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Ir N Cr
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3 Co Th z v
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Al u Eu "2y
L ALAAS P NGET
1oc - Pu la B too .T! Perly Ty -
Li . Z
L LRy ¢ b
a  Pe
0 (ASVUP U T S N S T RS S | IS S ° o S TP N R G | PR N
o 1000 2000 2000 4000 0 1000 2000 3000 4000
Tm Tm
a) b)

Fig. 8. Van Liempt relation for metals. Fig 8a) fcc metals, fig 8b) bce metals, The straight line represents the
Van Liempt relation: @ =0.14 Ty, in kJ/mole. bee structures are widely dispersed around the line, contrarily to
fcc ones.
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Fig. 9. Diffusion coefficients in an Arrhenius plot normalized to the melting point of the element considered.
a) in fcc metals; the range of diffusion values is quite narrow and the curvatures, if any, are small. b) same
curves in bee metals; the diffusion coefficient vares widely from one element to the other according to a
systematics controlled by the row number in the Mendeleev classification, the curvatures also are frequently
strong.

3.1. Self-diffusion in fcc and hep metals

The vacancy assumption for the diffusion in these metals is now well accepted by
everyone (but see also § 4.2.2). Nevertheless there are still some controversies as regard
to the origin of the possible curvature of the Arrhenius plots. In order to explain this
curvature, three hypotheses can be retained among all the possibilities which have been
discussed in § 1.4.3.1.:

— A vacancy mechanism occurs over the whole temperature range but because of a
strong thermal expansion coefficient for the vacancy, (GILDER and LAZaRrUS [1975]), or
due to the variation of the elastic constants with the temperature, (VAROTSOS and
ALEXOPOULOS [1986]), D, and Q increase with temperature.

— Both vacancies and divacancies contribute to the diffusion, with an increasing
participation of the latter at high temperatures (SEEGER and MEHRER [19701).



Table 2

Self-diffusion parameters for pure elements.

Element (see com- C.S. T, (K) D, (m*s™)x 10° @ (kJ/mole) Temp. range Q=.1422T, D(T)m%™") D (ph. tr) (m’s™) Reference

ments at end) (K) Van Liempt

Ag fcc 1234 D, =0.046 0,=1698 594994 175.5 49x 107" Rem and MEHRER (1982)
Dy,=3.3 0,=218.1

Al fcc 933 2.25 144.4 673-883 132.7 1.85% 1072 BEYELER and ADDA (1968)

Au fcc 1336 0.084 174.1 1031-1333 190 1.3x 1072 HERZIG et al. (1978)

Be hex 1560 lc 052 157.4 836-1342 221.8 2.79% 10 DuPpouy et al. (1966)
/¢ 0.62 165 841-1321 id 1.85% 107°

Ca bec 1116 8.3 161.2 773-1073 158.7 2.36x 107" PAVLINOV et al. (1968)

Cd hex 594 Lc 018 82 420-587 B84.5 1.11x107™ Mao (1972)
e 012 71.9 id id 1.69x 1072

Cey T<999 fec  y/8 999 0.55 153.2 801-965 152.3% 537x 107 (999 K)  DARIEL ez al. (1971)

Ced T>999 bec 1071 0.007 84.7 1018-1064  152.3 49x10™ 236X 107" (999 K)  LANGUILLE et al. (1973)

Co fcc 1768 2.54 304 944-1743 2514 2.65x 107" LEE et al. (1988)

Cr bec 2130 1280 4419 1073-1446  302.9 1.86x 1072 MUNDY et al. (1981)

Cu fecc 1357 Dy, =0.13 Q,=198.5 1010-1352 193 597x 107" BARTDORFF et al. (1978)
Dy, =4.6 0,=238.6

Er hex 1795 Lc 451 302.6 1475-1685  255.2 7.05x 107" SPEDDING and SHIBA (1972)
e 37 301.6 id 62x 107"

Bu bcc 1099 1 144 771-1074 156.2 1.43x 107" FROMONT and MARBACH (1977)

Fea T<1183 bec  e/y 1183 121 281.6 1067-1168  257.2% 445x 107" (1183 K)  GeisE and HERZIG (1987)

Fe y 1183<T<1663 fcc  y/8 1663  0.49 284.1 1444-1634  257.2% 14x 1077 (1183 K)  Heuman and IMM (1968)

5.83% 107 (1663 K)
Fed T>1663 bec 1809 2.01 240.7 1701-1765  257.2 225x 10" 55%x 107 (1663 K)  JaMEs and LEAK (1966)




Element CS. T,(K) Dy (m’s™)x 10* Q (K/mole) Temp. range Q=.1422T, D(T,Jm’s™) D (ph. tr.) (m’s™") Reference
K) Van Liempt
Gd g bec 1585 0.01 136.9 1549-1581 2254 3.07x 107" FROMONT and MARBACH (1977)
Hfa 7<2013 hex «/B82013 Lc 0.28 348.3 1538-1883  355.5% 2.56x% 107 Davis and MCMULLEN (1972)
/lc 086 370.1 14701883 2.14x 107 (2013 X)
Hf 3 7>2013 bec 2500 0.0011 159.2 2012-2351 3555 5.19%x10™"  8.13x 1072 (2013 K) HERZIG et al. (1982)
In tetr 430 lc 37 78.5 312-417 61.1 1.08x 107"
e 27 78.5 id id 7.85% 107" DICKEY (1959)
Ir fecc 2716 0.36 438.8 2092-2664 3862 1.3x 107" ARKHIPOVA (1986)
K bec 336 Dy, =0.05 Q1=372 221-335 478 1.32x 107" MUNDY et al. (1971)
Dy,=1 Q2=47
Lag T<1134 fcc B/y1134 15 188.8 923-1123 169.6* 3% 107 (1134 K) DARIEL et al. (1969)
Lay T>1134 bec 1193 0.11 125.2 1151-1183  169.6 3.62x 107" 1.88% 107 (1134 K) LANGUILLE and CALAIS (1974)
Li bec 454 Dy =0.19 Q1=53 220-454 64.5 3.13x 107" HEITIANS et al. (1985)
Dy, =95 02=762
Mg hex 922 Llc 175 1382 775-906 131.1 2.59% 1072 COMBRONDE and BREBEC
/e 178 139 237x 107" (1971)
Mo bec 2893 8 488.2 13602773 4114 1.22x 107 MAIER et al. (1979)
Na bec 371 Dy, =57 Q1=35.7 194-370 52.7 1.75x 107" Munpy (1971)
D,=0.72 02=48.1
Nb bec 2740 0.524 395.6 13542690  389.6 1.5x 1072 EINZIGER et al. (1978)
Ni fcc 1726 Dy, =0.92 Q1=278 815-1193 245.4 9.35x 107" MAEER et al. (1976)
Dy, =370 02=357
Pb fcc 601 0.887 106.8 470-573 854 4.63x 107" MILLER (1969)
Pd fec 1825 0.205 266.3 1323-1773 2595 49x107™" PETERSON (1964)




Element CS. T, (K) D; (ms™")x 10*° Q (k}/mole) Temp. range Q=.1422T, D(T,)m%™) D (ph. tr) (m%™) Reference
(K) Van Liempt
Prg T>1068 bec 1205 0.087 123.1 1075-1150 171.3 4x10™" DARIEL et al. (1969)
Pt fcc 2042 Dy, =0.06 Q1=259.7  850-1265 290.3 1.4% 107" REIN et al. (1978)
Dy,=0.6 @2=365
PufB 395<T<480 m  B/y 480 0.0169 108 409-454 129.8% 2.98% 107 (480 K)  WADE et al. (1978)
Puy 480<T<588 ort  v/8 588 0.038 118.4 484--546 129.8* 4.95% 107 (480 K)  WADE et al. (1978)
1.15% 107 (588 K)
Pud 588<T<730 fec 8/8 730 0.0517 126.4 594-715 129.8* 3.05x 1077 (588 K)  WADE et al. (1978)
4.66% 107 (730 K)
Pue T>753 bcc 913 0.003 65.7 788-849 129.8 522x 10" 83x 107 (753K)  CorneT (1971)
Rb bec 312 0.23 39.3 280-312 444 6.05% 107 HoLcoMB and NORBERG (1955)
Re hex 3453 511.4 1520-1560 491 NOIMANN et al. (1964)
Rh fcc 2239 391 903-2043 3184 SHALAYEV ez al. (1970)
Sb trig 904 Lc 01 149.9 773-903 1285 2.17x 107" CorbEs and KiM (1966)
/lc 56 201 1.36x 107"
Se hex 494 Lc 100 135.1 425-488 702 5.18x 1077 BRATTER and GOBRECHT (1970)
e 02 115.8 1.1x 1077
Sn tetr 505 Llc 21 108.4 455-500 71.8 1.29% 107 HUANG and HUNTINGTON
llc 128 108.9 6.9x% 107" (1974)
Ta bcc 3288 0.21 4236 1261-2993 4675 3.9% 107 WERNER et al. (1983)
Te tig 723 Llc 20 166 496-640 102.8 2.03x 107" WERNER ef al. (1983)
/lc 0.6 147.6 13%x 107"
Tha T<1636 fcc a/B 1636 395 299.8 998-1140 287.7* Scumitz and Fock (1967)
Tia T<1155 hex a/B 1155 6.6x10° 169.1 1013-1149  275.8* 1.48x 107" (1155 K)  DyMeNT (1980)




Element CS. T,(X) D, (m*s™")x 10° Q (kJ/mole) Temp. range Q=.1422T, D(T,Ym%™) D (ph.tr) (m%™) Reference
(X) Van Liempt
Tig T>1155 bee 1940 D(m%™")=3.5% 107 x 1176-1893 2758 31x 107" 54% 107 (1155 K)  KOHLER and HERZIG (1987)
exp(—328/RT)xexp{4.1 (T, /T)*}
Tla T<507 hex a/B 507 lc 04 94.6 420-500 82+ 7.16x 107" SHIRN (1955)
/lc 04 95.9 5.2x 1078 (507 K)
TIB T>507 bcc 577 0.42 80.2 513-573 82 23%x 107 2.29% 107 (507 K)  CHIRON and FAIVRE (1985)
Ua T<9%l ot a/B 941 0.002 167.5 853-923 199.8*% 1% 107" (941 K) ADDA and KIRIANENKO (1962)
UpB941<T<1048 tetr B/y 1048  0.0135 175.8 973-1028 199.8* 235x 1076 (941 X)  ADDA et al. (1959)
2.33% 107" (1048 K)
Uy T>108 bec 1405 0.0018 115.1 1073-1323 1998 9.46x 102 3.29x 107 (1048 K) ADDA and KIRIANENKO (1959)
v bec 2175 1.79 331.9 1323-1823  309.3 3.05x 10™ ABLITZER et al. (1983)
26.81 372.4 1823-2147
w bec 3673 Dy, =0.04 0,=525.8 1705-3409  522.3 1.7x 1072 MUNDY et al. (1978)
Dy, =46 Q,=665.7
Ya T<1752 hex a/B1752 Lc 5.2 280.9 1173-1573 2564 2.19% 107" GORNY and ALTOVSK1I (1970)
/lc 0.82 252.5 2.43% 107 (1752 K)
Yba T<993 hex a/B 993 0.034 146.8 813-990 156% 6.4x10™" (993 K)  FROMONT et al. (1974)
YbB T>993 bec 1097 0.12 121 995-1086 156 208x 10"  518x 1072 (993 K)  FROMONT et al. (1974)
Zn hex 693 Lc 018 96.3 513-691 98.5 9.92x 107 PETERSON and ROTHMAN (1967)
/e 013 91.7 1.59% 10
Zra T<1136 hex a/B 1136 no value Curved 779~1128 302* =5107"% (1136 K) HORVATH et al, (1984)
Ath. plot 6.14% 107 (1136 K)
ZrB T>1136 bec 2125 D(m2s™)=3x10%x 1189-2000 302 137x 107" HERZIG and ECKSELER (1979)

exp(-3.01/RT) x
exp{3.39(T,/T)"}
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Comments on table

These self diffusion data have been extracted from the compilation by MEHRER et al. (Ref. B).

Column 1: Symbol of the metal.

Column 2: Crystal stucture. bcc = body centered cubic, fcc = face centered cubic, hex = hexagonal, m =
monoclinic, ort = orthorhombic, tetr = tetragonal, trig = trigonal.

Column 3: Melting temperature. For the phases which do not melt (for instance Ce y, Fe a etc.) we have
given the temperature of the phase transition.

Column 4: Experimental D, The value in m’s™ is multiplied by 10° (so that it is in cm’s™).
For some of the metals the Arrhenius plot is curved and D has the form: D= Djexp (- Q,/RT) +
Dgexp (- Q/RT), in these cases Dy, and Dy, are given (they are also multiplied by 10°).
For Ti and Zr which have strongly curved Arrhenius plots special expressions are given for D (in
m?s'without any multiplying factor).

Column 5: Experimental Q in kJ mole™. Same remarks as for column 4.

Column 6: Temperature range of the experimental determination of D.

Column 7: Empirical value of Q according to the Van Liempt relation. For the phases which do not melt this
value is followed by an *,

Column 8: Value of D at the melting point.

Colurnn 9:  For metals which display several phases the values of D are given at the temperature boundaries
of the phase. For instance U, is stable between 941 and 1048 K, D values at these temperatures
are given in column 9.

Column 10: References.

— A vacancy mechanism occurs and the curvature is due to the dynamical correlation
between successive jumps (vacancy double jumps) (DA FANO and Jacuccr [1977]).

Experimentally the following data are available: frequency factor D,, activation
energy Q, isotope effect E and activation volume AV. When the Arrhenius plot is curved,
we notice that D, and Q increase with T whereas E decreases; for example, for silver
self-diffusion, E decreases from 0.72 to 0.58 when T increases from 673 to 954°C. Any
of the three assumptions can explain these experimental data: the decrease with tempera-
ture of the isotope effect is obvious for the mixed vacancy—divacancy mechanism since
the correlation factor for the divacancy mechanism is smaller than for the vacancy
mechanism. As a result, since the contribution of the divacancies to the diffusion
increases with T, the apparent correlation factor and then the isotope effect will decrease.
But this variation of E with T can also be explained with the two other assumptions.
Likewise the variation of D, and Q with T is compatible with all three hypothesis. The
variations of AV with P and T have not been frequently studied; in the case of silver AV
increases with T, but remains constant for gold and aluminium. The increase with T has
been interpreted as resulting from an increase of the divacancy contribution at high
temperatures (REIN and MEHRER [1982]).

However, measurements of defect properties after quenching can only be understood
if vacancies and divacancies are present (PETERSON [1978]); in addition, the analysis of
tracer and NMR data on self-diffusion in sodium seems also to favour the mixed
vacancy—divacancy mechanism (BRUNGER et al. [1980]). Although these two statements
are not very general a consensus does exist in favour of the mixed vacancy—divacancy
mechanism. Thus, in general when the Arrhenius plots are curved the data are fitted by
assuming a two-defect mechanism; in addition a possible dependence of enthalpies and
entropies on temperature is sometimes taken into account (see for instance SEEGER and
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MEHRER [1970] or PETERSON [1978]). Nevertheless the discussion is still open, since
divacancies might also be formed during the quench, and the role of divacancies is
among the “Unsolved Problems” for some experts (MUNDY [1992]).

In hcp metals the limited number of available data is compatible with a slight
decrease of the ratio of the activation energies of the diffusion parallel to perpendicular
to the ¢ axis with increasing ¢/a ratio, the activation energies being the same in the ideal
lattice (Hoob [1993]).

3.2. Diffusion in bce metals

Self-diffusion in bcc metals presents three characteristics which do not comply with
the previous picture. At first there is a much larger scatter of the diffusivity in bcc metals
than in the compact phases, and some of them display an unusually large absolute value
of D (fig. 9b); second, they frequently exhibit much larger curvatures than the fcc or hep
systems, much to large to be accounted for by a divacancy contribution; last they show
a systematic variation of D with the position in the classification which has to be
explained, e.g. metals of the same column, like Ti, Zr, Hf in the group 4, have for all of
them a very small activation energy and a large curvature (fig 9b). Many explanations
have been proposed in order to account for these anomalies: strong contribution of short-
circuits, presence of extrinsic vacancies due to impurities, interstitial mechanisms, etc.
All these assumptions have been ruled out by experiments. The very origin of this
behaviour is now recognized to be linked to the electronic structure of the metal and to
the structural properties of the bce lattice.

At first the diffusion mechanism is now proved by quasi elastic neutron scattering
experiments, to be the vacancy one with nearest-neighbour jumps, either in sodium (AIT
SALEM et al. [1979]) or in B-Ti (PETRY et al. [1991]). A small fraction of N.N.N. jumps
could also contribute, the fraction being independent of temperature. The same mechan-
ism very likely is also at work in other bcc metals.

The key point now is the recognition that the bce structure is intrinsically soft with
respect to some specific shear deformations; moreover this intrinsic softness can be
enhanced (as in B-Ti) or lowered (as in Cr) according to specific features of the
electronic structure controlled by the number of d electrons (HO et al. [1983, 1984]). This
softness is the very origin of the numerous martensitic phase transformations observed
between bce and hep or @ phases, under ambient or high pressure in several of the
metals displaying a range of stability in the bcc structure. It is also manifested by the
presence in the phonon dispersion curves of a whole branch of soft phonons at large
wave vector, from the longitudinal q=2/3[111] to the q=1/2[110] phonons. These
phonons are precisely the ones which control most efficiently both the jump of the
vacancy and the martensitic bcc to hep phase transformation (1/2 [110]) or to @ phase
(273 [111]). Being of low frequency, they contribute to large fluctuations of the reaction
coordinate and therefore give rise to a small migration enthalpy as well as to high
diffusion coefficients (see § 1.4.2.2 and eq. (52-53)) (HERZIG and KOHLER [1987], PETRY
et al. [1991]). Using experimental dispersion curves, in the framework of the dynamical
theory, it is possible to calculate migration enthalpies in good agreement with the
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experimental values (SCHOBER et al. [1992]). In this respect the 1/2[110] phonon is twice
as efficient as the 2/3[111] one to promote the jump (WILLAIME [1991]).

Moreover, using inelastic neutron diffraction methods, the 1/2[110] phonon has been
shown to be strongly anharmonic and to soften as temperature decreases in the “most
curved” metals (Ti, Zr and Hf) (PETRY and col. [1991]). In this approach the curvature
of the Arrhenius plots also can be qualitatively explained, as well as the decrease of the
isotopic effect with decreasing temperature (from 0.285 at 916°C to 0.411 at 1727°C in
Zr), in contrast with the data of isotope effects in self-diffusion in other structures.

In this picture the whole of the effect appears to be due to the migration term, being
small and T-dependent. However we can also expect that these soft phonons will be
linked with large relaxations around the vacancy, corresponding to specific features also
for the formation contribution in bce metals. Indeed it is recognized (SCHULTZ [1991],
SCHOBER et al. [1992]) that in this respect Cr displays an anomalously large formation
enthalpy and Ti an anomalously small one. In Cr the 1/2[110] phonon softens with
increasing temperature. Since the diffusion activation enthalpy appears to be a constant
in the whole temperature range, the formation enthalpy should then increase with T
according to the preceding analysis (SCHOBER et al. [1992]). The analysis of the
electronic structure of bee metals indeed allows for a systematic variation of the vacancy
properties with the number of d electrons: due to the presence of a quasi-band gap in the
band structure for a number of electrons of 4, and a maximum around 2, the above
mentioned variations of formation terms can be understood (WILLAIME and NASTAR
[1994]).

Negative activation volumes have been found for §-Ce and &-Pu, pointing possibly to
an interstitial diffusion mechanism resulting from specific electronic structure effects
(CornNET [1971]).

In alkali metals the migration enthalpy is very low, of the order of one tenth of the
formation part (SCHULTZ [1991]). The calculated vacancy formation enthalpy also forms
a very important part of the experimental activation enthalpy, or is even greater than it.
An interpretation in term of a Zener ring mechanism (see § 1.1.1), has been recently
proposed (SEEGER [1993]).

3.3. Prediction of the self-diffusion coefficients

There are three possible ways to predict the diffusion coefficients:
— by theoretical calculations;
— by simulation (see § 1.5.)
-- by empirical laws.

3.3.1. Theoretical calculations of D

Using one of the theories given in paragraph 1.4 and 1.5, the calculation of the
enthalpies and entropies of formation and migration of the defect involved in the
diffusion mechanism allows the determination of the diffusion coefficient. The techniques
used in this type of calculation are beyond the scope of this review and we refer the
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reader to the general references at the end of this chapter and to specialized treatises, for
instance GERL and LANNOO [1978] (see also ch. 18 by WOLLENBERGER).

3.3.2. Empirical relations

Empirical relations are numerous, and we only present the most important;

— The Zener formula (ZENER [1951]). This has been established for interstitial
solutions and therefore deals only with migration. The idea is that the migration free
enthalpy is due to the elastic work required to strain the lattice so that the interstitial can
jump. The relation has been empirically extended to self-diffusion. This expression
relates the entropy of diffusion AS to the activation energy Q via Young’s modulus (or
shear modulus):

As = 2P2
Ty

where A is a constant which depends on the lattice (A =0.55 for fcc and 1 for bec);
B =-d (u/py)/d(T/Ty,), where p is Young’s modulus (or shear modulus) and u, the
value of w at 0 K; T, is the melting temperature. The review by LAZARUS [1960] shows
that there is a pretty good agreement between experimental and calculated values of AS.

— The Varotsos formula (VAROTSOS [1978], VAROTSOS and ALEXOPOULOS [1986]).
This is based on the idea that the free enthalpy of diffusion has the form AG=CB{),
where C is a constant which depends on the lattice, B is the bulk modulus (the inverse
of the compressibility y) and ) the atomic volume. Thus for cubic materials:

D= azyexp(—@) p=l__y®
kT X av
The agreement with experimental data seems fairly good.

— Other empirical relations. These include the Van Liempt relation: Q=32 Ty (at
present one prefers Q=34 T,); the Nachirieb relation: Q=16.5 L,, (at present one
prefers Q=15.2 L), L, is the latent heat of melting; finally the Keyes relation:
AV =4xQ, where AV is the activation volume.

4. Self- and solute-diffusion in dilute alloys

This section recalls the expressions of the tracer diffusion coefficients, correlation
factors, and phenomenological coefficients L;’s as functions of the atomic jump
frequencies in the frame of standard models which are today widely accepted as good
descriptions of impurity effect in diffusion studies. The two methods which have been
currently used in the past to establish the expression of the L;’s are also briefly
reviewed. Finally, it is recalled how to determine the atomic jump frequencies starting
from the experimental determination of various macroscopic quantities, together with the
difficulties usually encountered.

The first part of this section deals with the substitutional alloys for which the vacancy
mechanism is expected to be dominant. A short second part deals with the interstitial
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dumbbell mechanism in substitutional alloys, since this case is encountered in irradiation
experiments. The third part deals with those alloys which do not meet the requirements
of a “normal” diffusion behaviour and in which the solute diffusivity is often much
larger than the solvent diffusivity.

4.1. Vacancy diffusion in dilute A-B alloys

4.1.1. Standard models for bec and fce alloys

In the fcc lattice, the difference between the first and second neighbour distances is
large enough to allow us to ignore the interaction between a solute atom and a vacancy
beyond the nearest-neighbour distance. The same dissociative jump frequency w, is
therefore attributed to the three possible dissociative jumps (fig. 10) which separate a
vacancy from a neighbouring solute atom; w, is the frequency of the reverse jump. w,
stands for the solute-vacancy exchange and w, for the vacancy jump around the solute
atom which does not break the solute-vacancy complex. w, is a jump not affected by the
solute atom. Detailed balancing implies that:

w,/w; = exp(-Ez/kT)

where E; is the binding energy of the vacancy-solute pair (Ep is negative for an
attractive binding). This is the so-called “five-frequency model”.

All the physical quantities which will be compared to experimental diffusion data in
dilute alloys are functions of only three independent ratios of these five jump fre-
quencies, namely w,/w,, w,/w, and w,/w,.

In the bece lattice, conversely, the second-neighbour distance is close to the first-
neighbour distance and the solute-vacancy interaction energy is not negligible at the
second-neighbour distance. Four distinct dissociative frequencies are defined for a
vacancy escaping from the first-neighbour shell (w;, w; and w;’) and from the second-
neighbour shell (w;). The frequencies of the reverse jumps are w,, w;, w; and w,,
respectively (fig. 11). The solute-vacancy exchange frequency is w,. If we denote the
interaction energies at the first- and second-neighbour distances by E;, and Eg,,
respectively, detailed balancing requires that:

wi/W, = w/w} = exp(~Ey,/KT)
we/ws = exp(~Ep,/kT)
WeW,/Wswy = Wy /W)

The calculation of tracer diffusion coefficients has never been performed with the
whole set of frequencies. Simplifying assumptions have always been made to reduce the
large number of unknown parameters.

—MODELI assumes that w; = w” = wg=w,. These equalities imply in tums w; = w;" and
w,Ws=w,w,. All the physical quantities which will be compared to experimental data
can be expressed as function of wy/w, and w,/w; only.

— MODEL II restricts the interaction to first neighbour distances and assumes that
w;=w; =w, and ws=ws=w, These equalities imply w,=w,;=w,". The physical
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Fig. 10. Standard five-frequency model for solute diffusion in fcc lattices by a vacancy mechanism. The
encircled figures denote more and more distant shells of neighbours around the solute atom (solid circle).

quantities which are to be compared with the experimental data are function of w,/w, and
w,/w, only.

4.1.2. Kinetic expressions of the phenomenological coefficients L, ,, L3, Ly,

and Ly,

The purpose of the calculation is to express these coefficients as functions of the
jump frequencies, the solute and vacancy concentrations, and the various interaction
energies between the species. Two methods have been used so far.

4,1.2.1. Kinetic theory. In this theory, also-called pair association method, the
stationary fluxes J,, J; and J are calculated in the presence of a constant electric field
E, which biases the jump frequencies of the vacancy. The bias can take two distinct
values, ¢, and &g, according to the chemical nature of the atom which exchanges with
the vacancy. Hence:

wy =wy(ltey),  wi=w(l+e,) fori=2

where the superscript + stands for a jump fequency in the direction of the electric field
(+) or in the reverse direction (=). It can be shown that £, and gy are proportional to the
thermodynamic forces Z, ¢E and Z; ¢E, respectively, which act upon the species A and
B. The final kinetic expressions of the fluxes are then compared with the
phenomenological expressions in order to deduce the L;’s.

For an fcc lattice, the calculation has been carried out at first order in Cy and to an
increasing degree of accuracy by including more and more distant shells from the solute
(HowARD and LiDIARD [1963], MANNING [1968], BOCQUET [1974]). For a bec lattice
the calculation has been published in the frame of the two approximations quoted above
(SERRUYS and BREBEC [1982b]). For both structures, the common form of the results is
the following:
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Fig. 11. Standard model for solute diffusion in bee lattices by a vacancy mecharism.

nD,,(0)
=—A"(1+p,C
a4 f,kT (1+5,C)
nC.D..(0
Ly =Ly = BkTB()G
nCyD;.(0)
Lo = kT

where n is the number of lattice sites per unit volume; D,. (0) and Dg. (0) are the
solvent and solute tracer diffusion coefficients in pure A (C;=0); G is the vacancy wind
term L ,5/Lgg Which accounts for the coupling between J, and Jy through the vacancy
flux J,,. Tables 3 and 4 summarize the expressions of D,. (0), Dg. (0), b, and G for both
structures. A comprehensive series of papers by FRANKLIN and LIDIARD [1983, 1984],
and LIDIARD [1985, 1986] gives a full account of a synthetic reformulation for this
method.

The function F, always smaller than unity, is a correction to the escape frequency w,
or w, which accounts for that fraction of the vacancies which finally returns in the
neighbourhood of a tracer atom: the same function appears in the expression of the
correlation factor and in the phenomenological coefficients for all the models where the
solute vacancy interaction is restricted to a first neighbour distance (fcc model and bcc
mode) II). More functions appear in the other case (bcc model I). The accuracy in the
calculation of these functions increases with the size of the matrix used for the random
walk calculation of the defect. The first evaluations (MANNING [1964]) have been
recently revised by integral methods (KOIWA and ISHIOKA [1983]). In the same way, the
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Table 3
Theoretical expressions of various quantities entering the phenomenological coefficients in an fec lattice
(f,=0.78145)

D,. = 25*C,w,f., D,.(0) = 25%C, %;— Wofy!
u=w,/w, v=wi/w, w=w,/wy;

DA‘(CB) = DA‘(O)(I + blCB);
fo =2+ TFV)/(2 +2u + TFv);

X
b, = —34+16§i+1(4—'+14xz);
v

[i] V]
G (Bv-2)+(T-TF)(Yyw -1}
- 1+ 3.5Fy ’

14(1 = F)(1 = w)[3v = 2 + (1 + u + 35v)(lw = 1)] + (w/v)(3v - 2)*
1+u+35Fy
10w* +1803122w + 924.3303w? + 1338.0577w
2w +40.1478w’ +2533w? + 595.9725w + 4352839

b, =-19+w(4/v +14) -

.
b

F=7-

C. is the vacancy concentration in pure A; s is the jump distance.

expression of the linear enhancement factor for self-diffusion b, contains coefficients X,
X, and X, for the fcc lattice and X, X,, X; and X, for the bce one: these coefficients are
functions of the partial correlation factors for the different solvent jump types in the
vicinity of an impurity; they reduce identically to f, when all the jumps frequencies are
equal, that is, for the case of self-diffusion. They have been numerically tabulated for the
fcc lattice (HOWARD and MANNING [1967]) as well as for the bec lattice (LE CLAIRE
[1970b], JonES and LE CLAIRE [1972]). Defining a larger number of solvent jump types,
revised and more accurate values have been obtained recently (IsHioka and Korwa
[1984]).

4.1.2.2. Linear response method. In the linear response method, a time-dependent
(but spatially uniform) external field E(t) is applied to the alloy and instantaneous values
of the fluxes J,, J5 and Jy are calculated. It is shown that the calculation of the L;’s
reduces to the solution, by a Green’s function method, of closely related random-walk
problems in the unperturbed (E=0) state of the system. This general formalism has been
adapted for the first time to mass transport in solids (ALLNATT [1965]): all the possible
trajectories of the vacancy around the tracer atom are automatically taken into account
and not only those contained in a few coordination shells, as was done in the pair
association method.

The formalism has been illustrated by an application to various cubic structures
(ALLNATT [1981], OxaMURA and ALLNATT [1983a]) and has confirmed (and
generalised) the results previously obtained by the kinetic method, namely the general



Ch. 7, §4 Diffusion in metals and alloys 587

Table 4
Theoretical expressions of various quantities entering the phenomenological coefficients in a bec lattice
(£,=0.72714)

4 4 , W) TFw;
D,.(0) = = s*C,w, Dy {0) = =s°Cow, —* =—31 _
A( ) 3 ofo s( ) 3 sCw, W, 5 T 2w, + TFw,

DA‘(CB) = DA'(O)(l + blcn)

Quantity Expression
Model I Model II
u wy/ Wy wy/ W,
v wy/ Wi wy/ Wy
6X 8X 6X, +8X.
b, _3g4 1t T _age oty
0 0
, 8% 18X, , 6%+ 18X,
% %
F, =2 +2F,(u-2)u-1)
+3F, (3u+3.096)
F (u- 1)2
: u +0.8082
F u+0.1713
! u +0.8082
p w2 rE-1) 2471 -F)(u-1)
7F 4, 7Fu
F, +2F v S1\
b Ta6u-22- ~15 + 14u|1-(1 - P 22
A o 2v+TF T (-5 u
put-10-F@ -1y
@v+TPu
TF 2u?+5.175u +2.466 31> +33.43u° +97.384 + 66.06
u +0.8082 u? +8.68u°% +18.35u +9.433

forms for the phenomenological coefficients, and the number of distinct functions F to
be used (ALLNATT and OKAMURA [1984]). Finally, the equivalence between the kinetic
and linear response methods has been demonstrated by LIDIARD [1987], and ALLNATT
and LipIARD [1987a]: the former theory focusses on the jumps of a given chemical
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species when paired to the defect which causes its migration and is well suited to dilute
alloys where such pairs can be easily defined; the latter follows the path of a given
species by separating it into a direct part when in contact with a defect, and a correlated
part where the immobile species waits for the return of the defect. It is more general and
can be applied to concentrated alloys (see below § 5).

4.,1.3. Experimentally accessible quantities

We restrict ourselves to the experiments which are commonly used to deduce the
vacancy jump frequencies at the root of the models for bee and fec lattices.

The measurements performed on pure solvent A consist in determining:

— the solvent and solute tracer diffusivities D,. (0) and Dg. (0);

— the isotope effect for solute diffusion, f; AKy. The AKjy factor must be evaluated in
some way to extract fy. Several theories have tried to determine AKj as a function of the
ratio my/mg where my and m, are the masses of the solute and of the solvent respectively
(AcHAR [1970], FEIT [1972]): but they apparently do not fit with the experiments
performed in lithium (MUNDY and McFaLL [1973]).

The measurements of alloying effects are performed on dilute A-B alloys and
comparison is made with the same quantities determined in pure A, in order to extract
the slope of the linear resulting variation. These measurements usually determine:

— The linear enhancement factor b, for solvent tracer diffusion D,. (C;), defined by

D,.(C5) = D,.(0)(1 + b,Cy).

Tables 3 and 4 give the expressions for the enhancement factor b, which contain the
coefficients X, X, and X, for the fcc lattice and X, X,, X;and X, already defined above.

The solute diffusion coefficient Dy, also varies linearly with the solute concentra-
tion, according to:

D,.(Cy) = Dy (0)(1 + BC,).

The expression of B, has been calculated only in the frame of simplified models which
do not take into account the solvent partial correlation factors in the presence of solute
pairs. But it introduces additional frequencies of the vacancy in the vicinity of two solute
atoms (which were not necessary for b,) as well as the binding energy between solute
atoms. A thorough overview has been presented recently on this point (LE CLAIRE
[1993]). It is experimentally observed that b, and B, often have the same sign and are
roughly of equal magnitude whenever the diffusion mechanism is the same for A" and B
in the alloy (it is not true in Pb-based alloys, § 4.2.2). This means physically that the
preponderant effect of the solute is to increase (or decrease if b,, is negative) the total
vacancy concentration, which affects solvent and solute diffusivity roughly to the same
extent.

— The linear enhancement factors by and by for the shift of inert markers and solvent
tracer markers in an electric field. If we denote the rates of these shifts by V,, and V.,
by and by are defined according to:
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Vi(Cs) = V(01 +b4Cs),  Vae(Cs) = Viu(0)1 + b,C)

b, and b; have been calculated as functions of the vacancy jump frequencies (DOAN
(1972]; BocQuEer [1973]; DoaN and BoCQUET [1975]; LIMOGE [1976a)) and are given
by:

Z, D (0)
Z, D,.(0)

D,.(0)
b, =b, +f, 2~
M A Q DA.(O)li

Z

b, =b, +1+f,G .
T A 6 zZ

(1+G)+G]

— The vacancy wind term G=L,z/Ly; can be measured from the solute enrichment or
depletion in the neighbourhood of a sink (ANTHONY [1971, 1975]) or by combining
tracer diffusion experiments with Kirkendall shift measurements in differential couples
A+ A—-B (HEUMANN [1979]; HosHINO et al. [1981a]; HAGENSCHULTE and HEUMANN
[1989]).

4.14. Determination of vacancy jump frequencies

Jump frequencies depend on the interatomic potential which should, in principle, be
deduced from ab-initio calculations. Unfortunately an accurate knowledge of these
potentials is far from being currently acquired, except for particular systems, and one
usually proceeds differently. Jump frequencies are instead fitted to the experimental
results.

As already mentioned, diffusion data yield only three jump frequency ratios for an fcc
lattice and only two for a bcc one; thus only three independent measurements are
required in the former case and two in the latter. Any additional result is highly desirable
and is used to check the consistency of the experiments. If this consistency cannot be
maintained in view of a new result, this may mean that one (or more) experimental
results are not worthy of confidence or that the model does not correctly represent the
experimental system.

All the dilute alloys of fcc structure, for which we know the jump frequency ratios,
are displayed in table 5. Whenever the number of experiments is equal to three, one
reference only is quoted. When the experimental data are redundant, several references
are given. The error bars on the final values of these ratios are large: at least 50% for the
best cases, up to an order of magnitude for the worst. We have to keep in mind that any
ratio which departs too much from unity (say less than 107 or larger than 10%) may be
an indication that the weak perturbation assumption at the root of the model is violated
in the alloy under consideration. A similar table of jump frequency ratios has been
published elsewhere (HERZIG et al. [1982]). For bce alloys, similar tables can be found
in fairly recent reviews (LE CLAIRE [1978], AGARWALA [1984]).

The search for the frequency ratios is not always straightforward, as can be seen from
the following examples:

— Al-Cu: the value of the self-diffusion coefficient is still today highly controversial. At
585 K it is measured or evaluated to be 1.66 10 m%s (FRADIN and ROWLAND [1967]),
3.03 107 m¥s (SEEGER et al. [1971]), 3.66 107 m*/s (BEYELER and ADDA [1968)), 3.73
1073 m¥s (LuNDY and MURDOCK [1962]) and 4.51 107" m?/s (PETERSON and ROTHMAN
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Table 5
Jump frequency ratios for dilute fcc alloys.
Alloy T(K) Dg/Dye S b, by G Ref. wy/w, wy/w,  w,/w,
Ag-Cd 1060 3.8 0.4} 4 c 2.6 0.3 0.85
1133 3.28 0.71 9.2 b 0.49 0.07 0.52
1153 3.18 6.5 -12 a 0.5 0.07 0.46
1197 2.96 0.62 13.7 b 1.7 0.8 1.7
Ag-In 1064 5.7 0.35 17.5 c 4.7 0.7 1.9
Ag-Sn 1043 5.8 0.46 15.6 c 1.8 0.2 1.1
Ag-Zn 1010 4.1 0.52 12.6 d 1.53 0.27 1.15
1153 3.9 0.57 12.7 d 1.54 0.39 1.30
1153 39 12.7 6 a 1.20 0.26 1.12
Au-In 1075 8.6 0.26 71 e 212 45 5.5
1175 7.5 0.26 49 e 40 73 42
Au-Sn 1059 16.4 0.16 130 e NO SOLUTION
16.4 0.16 73 f 1.5 1.2 6.3
1129 12.93 73 -0.5 n 312 42 7.1
Au-Zn 1058 6.2 0.15 24 e 942 85 29
1117 57 0.15 23 e 973 85 2.6
Cu-Au 1133 1.15 0.9 8.1 g 0.2 0.1 0.6
Cu-Cd 1076 10.2 35 -0.7 h 0.1 1 3
1076 10.2 022 35 h 7.6 0.6 2.8
Cu—Co 1133 0.81 0.85 0 g 2 42 1.2
1133 0.81 0.88 0 g 0.3 0.4 0.76
Cu-Fe 1293 1.1 0.8 -5 i 04 0.09 03
Cu-In 1005 133 42 -0.71 j 18 0.5 3
1089 11.4 43 -0.57 j 11 1 4
1089 12 0.07 43 e 33 0.8 3.2
Cu-Mn 1199 4.2 0.36 5 ¢ 34 0.35 0.95
Cu-Ni 1273 036 -5 0.07 k 0.2 1 1
1273 0.36 -53 0.12 1 027 0.42 0.53
Cu-Sb 1005  24.1 79 -1.2 i 15 0.40 5
Cu-Sn 1014 15.5 40 ~-1.06 J 13 0.2 2
1014 17 0.15 40 e 7.5 0.14 1.7
1089 13.6 48 -0.84 j 7 0.33 3
1089 14.1 0.15 48 e 11 05 33
Cu-Zn 1168 3.56 0.47 7.3 m 25 0.5 1.2
1168 33 8 -0.22 k 3 0.5 1
1220 34 0.47 8.8 m 3.6 0.9 1.5

* DOAN and BOCQUET [1975]; ® BHARATI and SINHA [1977]; © HERZIG et al. [1982]; ¢ ROTHMAN and PETERSON
[19671; ° HiLGepIECK [1981]; " REINHOLD ef al. [1980]; * ECkSELER and HERZIG [1978); " HOSHINO ef al.
[1981b]; ' BocQuET [1972]; ! HOSHING et al, [1982]); * HIRANO [1981]; | DAMKOHLER and HEUMANN [1982];
™ PETERSON and ROTHMAN {1971]; " HAGENSCHULTE and HEUMANN [1989].
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[1970]). Using ANTHONY'’s result, which establishes that no detectable solute redistribu-
tion occurs in the neighbourhood of a vacancy sink, very different values of G=L,g/Ly,
are deduced according to the value which is retained for the self-diffusion coefficient. It
is easy to check that one obtains G=-0.4; — 0.01; + 0.203; + 0.226, and + 0.43, respective-
ly. The jump frequency ratios which stem from such scattered values of G are highly
different of course; in addition they do not fit with the measurement of inert marker
shifts in dilute alloys (LIMOGE [1976a]).

Finally, according to SEEGER et al. [1971], 40% of the total diffusivity at 858 K is

due to divacancies. This fact cannot be ignored any longer, and a revised version of the
atomic model should be presented to take properly into account the contribution of the
divacancies to diffusion and electromigration.
— Au-Sn: the extracted value for b, is sometimes very sensitive to the way chosen for the
fitting whenever D,.(Cg) exhibits a pronounced curvature. A rough fitting extracts a
value which is not compatible with the other data and does not allow to deduce the jump
frequency ratios (HERZIG and HEUMANN [1972]); a more careful fitting gives reasonable
values (REINHOLD et al. [1980]). It must be noted however that the direct measurement
of the vacancy flow factor G at a slightly different temperature on dilute couples yields
noticeably different values (HAGENSCHULTE and HEUMANN {1989]): the departure from
the previous ones cannot be accounted for by the small temperature difference, or would
imply unusually high activation energies for these frequency ratios.

Although the partial correlation factors are not analytically known, it is possible to
check the internal consistency of the experimentally determined quantities in the frame
of a given diffusion mechanism. For instance, once the ratio Dg./D,. is known, a
constraint on the possible values for u,v and w is imposed, which in turn, restrains the
possible range for other quantities like b, or G. For instance, b, is kept to a minimum if
the vacancy spends most of its time in exchanging with the solute (u=w,/w, — o) and
keeping the exchanges with the solvent to the lowest possible value which is compatible
with the solute diffusion (v=w=0). Assuming that X, =f; and using the tabulated value
X, (u—> oo, v=w=0)=0.4682 yields (MILLER [1969]):

b = 18 + 1945 2"

A*

I the experimental value for this term is noticeably smaller, it means that the vacancy
mechanism alone cannot account for the diffusional behaviour of the system and that,
probably, other diffusion mechanisms must be looked for. A similar limitation has been
established for the bce structure, although no simple analytical formula is available (LE
CLAIRE [1983]). In the same spirit, it has been shown that the vacancy flow term G in
bee alloys ranges from —2 to a maximum value which depends on the same ratio
Dg./D,. and on the model (I or II) to be chosen (ILNMA et al. [1985]).

— Pb-Cd: self-diffusion in lead meets the usual requierements of normal diffusion. On the
other hand, the solute diffusivity is roughly 20 times larger than the solvent diffusivity:
this fact alone is not an indisputable proof that another mechanism is operating. MILLER
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{1969] poinied out that the linear enhancement factor b, exhibited a value which was
noticeably smaller than b}™. This is the reason why he proposed a new mechanism with
interstitial-vacancy pairs (§4.2.2).

Like the fcc alloys, there are several bec systems in which the b, factor is too small
to be compatible with the high value of the solute-to-solvent diffusivity ratio, namely Zr-
based alloys (Co, Cr, Fe), Ti-Co, Nb-Fe and U—Co. The isotope effect measurements,
when available in these systems (ABLITZER [1977]; ABLITZER and VIGNES [1978]), are
not compatible with the frequency ratios in the frame of a pure vacancy mechanism:
another mechanism resting on a dissociative model similar to MILLER’s one for Cd in Pb
is commonly thought to come into play.

4.1.5. Determination of the solute-vacancy binding energy

The only relevant quantity for determining the binding energy Ep of the
solute~vacancy complex is the ratio w,/w,, which cannot be deduced from the knowledge
of wy/w,, wy/w, and w,/w,.

DIRkES and HEUMANN [1982] worked out a simple procedure for simulating the
vacancy trajectory around the solute and proposed to extract from this trajectory the
desired quantity. It is true that the only knowledge of the ratios w,/w,, wy/w, and w,/w,
is sufficient to determine, at each step of a Monte Carlo simulation, the direction of the
most probable next jump. But these authors used an incorrect definition of the vacancy
concentration on a first neighbour site of the solute. This concentration is not related to
the number of times that the vacancy was located on a first-neighbour site of the solute,
but rather to the time the vacancy actually spent on this site.

This definition needs the knowledge of the mean residence time of the vacancy on
each site (that is, the inverse of the total escape frequency from this site). It is easily
checked that the fraction of the total time which has been spent on a first-neighbour site
involves one more independent frequency ratio w,/w, (BOCQUET {1983a]). Moreover, the
assumption w,+4w,+7w;=12w, which is invoked here and there in the diffusion
literature for the fcc alloys has no physical justification and is totally arbitrary.

Diffusion experiments by themselves are not sufficient to determine this binding
energy. Experiments of another kind must be added: for instance a direct determination
of the total vacancy concentration in a dilute alloy, by comparing the macroscopic
thermal expansion and the increase in lattice parameter as already done for Al-Ag and
Al-Mg (BEAMAN et al. [1964]; BEAMAN and BALLUFFI [1965]).

4.2. Dumb-bell interstitial diffusion in dilute A-B alloys

The self-interstitial atom in a compact structure is too large to content itself with an
octahedral or tetrahedral position as smaller solute atoms do; it minimizes the distortion
of the surrounding lattice by sharing a lattice site with a neighbouring atom and making
up a dumb-bell-shaped defect denoted by I, , aligned along <100> (<110>) direction in
a fce (bee) structure. The migration mechanism involves a translation to a first neighbour
site combined to a rotation of its dissociation axis (see chap. 18). The diffusion coeffi-
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cient of a substitutional solute atom has been calculated with this mechanism at work for
bee and fee lattices, under the assumption that it can be incorporated into the defect
under the form of a mixed dumb-bell I,; which does not possess necessarily the same
symmetry (BoCcQUET [1983b, 1991]); the phenomenological coefficients have been
calculated for the fcc lattice by the kinetic method (ALLNATT et al. [1983]) as well as by
the linear response one (OKAMURA and ALLNATT [1986], CHATURVEDI and ALLNATT
[1992], SINGH and CHATURVEDI [1993]). But these models cannot be checked experi-
mentally as thoroughly as in the vacancy case, since the frequencies cannot be deter-
mined by a clever combination of diffusion experiments; the interstitial defects are
necessarily produced by irradiating the solid, and their contribution to diffusion is
intricately linked with that of thermal and irradiation-produced vacancies.

4.3. A-B alloys with a high solute diffusivity

4.3.1. Purely interstitial solutes

Light elements like H, C, N, O are known to dissolve interstitially in many bcc and
fcc metals. No theoretical criterion has yet been found to predict with confidence the
localization of the interstitial atom in the host lattice. In many bcc metals C, O and N are
believed to be located on octahedral sites; but dual-occupancy models
(octahedral + tetrahedral position) have been invoked to account for the upward curvature
of their Arrhenius plot at high temperatures (FARRARO and McLELLAN [1979]). For the
case of hydrogen, a simple empirical rule has been proposed (SOMENKOV and SHIL’ STEIN
[1979]): H dissolves in the tetrahedral position in all the host metals which have an
atomic radius larger than 0.137 nm (Sc, Ti, Y, Zr, Nb, La, Hf, Ta, W) and in the
octahedral position for the others (Cr, Mn, Ni, Pd). Vanadium is the link between the
two groups and is believed to have a dual occupancy. In Fe, H is expected to be located
in octahedral sites although no clear experimental proof has ever been given. The
insertion into the host lattice is accompanied by a (generally) large distortion of the
surroundings, which can give rise to Snoek-type or Gorsky-type relaxations (§ 2.2).

Although in an interstitial location, the solute atom is believed to interact with
vacancies of the host; the diffusivity and the phenomenological coefficients have been
calculated with the linear response method (OKAMURA and ALLNATT [1983b]).

The diffusivity of such interstitials in metals has been measured over orders of
magnitude by complementary techniques (relaxation methods, tracers, out-gassing, etc...).
The Arrhenius plot is straight or exhibits a small curvature at high temperatures. This
curvature has been tentatively explained by different models (FARRARO and MCLELLAN
[1979]), either a single mechanism with a temperature-dependent activation energy or
several mechanisms (or defects) acting in parallel.

For very light interstitials like hydrogen and its isotopes, or the positive muon w”,
quantum effects play a significant role at low temperatures. Several regimes are expected
to be observed in the following order with increasing temperature (STONEHAM [1979];
Kenr [1978]):

(1) coherent tunneling, the interstitial propagates through the lattice like a free electron;
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(ii) incoherent (or phonon-assisted) tunneling, the ground state levels of an occupied and
an unoccupied interstitial site have different energies; the tunneling process requires the
assistance of phonons which help to equalize the levels of neighbouring sites;

(iii) classical regime, the jumping atom receives from the lattice the amount of energy
which is required to overcome the potential barrier of the saddlepoint configuration;
(iv) high-temperature regime, the residence time on a site is comparable to the time of
flight between two neighbouring sites.

The second and third regimes have been observed in many systems. Whether coherent
tunneling can actually be observed in real systems or not is still controversial (STONEHAM
[1979]; GRAF et al. [1980]).

Let us mention the reversed isotope effect which is observed in fcc metals at low
temperatures: tritium is found to diffuse faster than deuterium, which diffuses faster than
hydrogen. Several models have been proposed to account for this anomaly (TEICHLER
[1979]; KAUR and PRAKASH [1982]). See also ch. 18, § 3.3.2.7 for the interaction of self-
interstitials with solute atoms.

4.3.2. Complex diffusion mechanisms

The most widely studied case is that of dilute Pb-based alloys.

In lead, several solute atoms (Cu, Ag, Au, Pd, Ni, Zr) diffuse from 10° to 10° times
faster than the solvent tracer. Other elements (Na, Bi, Sn, Tl) diffuse roughly at the same
rate. A third group (Cd, Hg) diffuses at rates between the two extremes. It is well
established that these properties are in no way related to any short-circuit diffusion path
and that they reflect a bulk property. We already mentioned in §4.1.4 why a pure
vacancy mechanism should be rejected for cadmium diffusion in lead.

The high value of the diffusivities led many investigators in the past to think in terms
of an interstitial-like diffusion mechanism; it can be shown however, by particular
examples, that a purely interstitial mechanism would not yield a value of the linear
enhancement factor b, consistent with experiment. This is why many authors proposed
more complex mechanisms involving interstitial-vacancy complexes, interstitial clusters,
and today the consensus is roughly as follows:

- very fast diffusers dissolve partly as substitutionals and partly as interstitials in lead.
The total diffusivity is therefore the sum of both contributions; pairs made up of an
interstitial solute and a host vacancy are expected to play a dominant role; the
phenomenological coefficients L;; have been calculated for this mechanism (HUNTLEY
[1974], OkAMURA and ALLNATT [1984]);

— multidefects (interstitial solute atoms sharing one substitutional lattice site) are
necessary to account for the diversity of experimental results, especially for the signs and
the orders of magnitude of the linear enhancement coefficients b, and B, (WARBURTON
[1975], KusuNoOKI et al. [1981]), as well as for the low value of the isotope effect
measurements;

— solute atoms which diffuse roughly as fast as the solvent dissolve presumably as
substitutionals (except Sn: DECKER et al. [1977]);

A general and detailed atomic model including all these defects is still lacking, apart
from an attempt by VANFLEET [1980]. The reader is referred to an extensive review by



Ch. 7, §5 Diffusion in metals and alloys 595

WARBURTON and TURNBULL [1975].

Lead is not a unique case however, since similar problems arise in other polyvalent
metals like Sn, In or Tl (WARBURTON and TURNBULL [1975]; LE CLAIRE [1978]), in the
«-phase of Zr, Ti and Hf (Hoop [1993], NakaJiMa and Koiwa [1993], KOPPERS et al.
[1993]), in bee metals like Nb (ABLITZER [1977]; SERRUYS and BREBEC [1982a]), and for
rare-gas diffusion (He) in fcc metals like Au, Ni, Al (WiLsoN and Bisson [19737;
MEL:US and WILSON [1980]; SCHILLING [1981]). The interaction energy between the
smaller solutes and the intrinsic point defects of the host, namely the vacancy one, is
believed to be high (above 1 eV); this feature, when combined with a very low solubility
in the host, can lead to behaviours, which have puzzled the experimentalists for long.
The general interpretation (KOPPERS er al. [1993]) distinguishes three different tempera-
ture ranges: in the first (high-temperature) one, the native intrinsic vacancies are more
numerous than those trapped by the impurity atoms, and the self-diffusion is normal; at
intermediate temperatures (second range), the extrinsic vacancies trapped by the impurity
atoms become dominant, and the apparent activation energy for self-diffusion is markedly
decreased; at the lower temperatures (third range) where the impurity atoms precipitate
into clusters, the number of trapping sites is reduced to such an extent that the intrinsic
defects play again the dominant role. It ensues an unusual downward curvature of the
Arrhenius plot over the low and intermediate temperature ranges. Depending on the ratio
of the melting temperature to the -8 transformation temperature, the interaction
energies between impurity and vacancies and between impurities themselves, not all the
three regimes are automatically observed. In a-Zr, which has been for long the arche-
type, the (practically unavoidable) Fe impurity has been found to give rise to the regimes
2 and 3 with the downward curvature observed for self- as well as solute-diffusion; the
determining experiments have been carried out only recently since ultra-high purity Zr
was not available before (HooD [1993]). For a-Hf, only regimes 1 and 2 are observed,
but the impurity which is responsible of the upward curvature is not yet identified
(KOPPERS et al. [1993]). At last for «-Ti, the impurity is believed to be oxygen which is
easily incorporated into this highly reactive metal (NAKAJIMA and Koiwa [1993}).

5. Diffusion in concentrated alloys

We shall restrict ourselves to binary alloys. The first two sections are devoted to the
diffusion of A* and B* tracer atoms in homogeneous disordered and ordered alloys. The
third section will deal with chemical diffusion, that is, diffusion in the presence of
chemical gradients.

5.1. Diffusion of A* and B* tracers in homogeneous disordered alloys

5.1.1. Experimental results

Diffusion measurements in concentrated binary alloys are legion, but only few alloys
have been investigated throughout the whole composition range: Ag—Au (MALLARD et al.
[1963]), Au-Ni (KURTZ et al. {1955]; REYNOLDS et al. [1957]), Co-Ni (MILLION and
KuUcera {1969, 1971], HIRANO et al. [1962]); Cu-Ni (MONMA et al. [1964]), Fe-Ni
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(CapLAIN and CHAMBRON [1977], MILLION et al. [1981]), Fe-Pd (FILLON and CALAIS
[1977]), Ge-Si (McVAY and DUCHARME [1974]), Nb-Ti (GIBBS et al. [1963]; PoNTAU
and LAZARUS [1979)), Pb-T1 (RESING and NACHTRIEB [1961}). For Fe-Ni, the diffusion
has been studied both through a magnetic relaxation method which yields apparent values
for the formation and migration energies of the vacancy and by tracers.

Two general trends can be outlined:
— The same kind of empirical correlation as for self-diffusion in pure metals are observed
between the preexponential factors D, and the activation energy Q, or between Q and the
melting temperature T,, of the alloy.
— The diffusion coefficients D, and Dg for a given temperature and composition do
not differ by more than one order of magnitude. When they do, it might be an indication
that the diffusion mechanism for the two tracers is not the same (Ge~Si or Pb—TI). Some
cases still offer matter for controversy, like Ge-Si alloys (PIKE et al. [1974]). For brevity,
DA? and Dj? will be denoted by D,. and Dy, in what follows.

5.1.2. Manning’s random alloy model

In this model, the simplest which can be thought of, the alloy is assumed to be
random and the vacancy exchanges at rate w, with A atoms, and wg with B atoms,
whatever the detailed atomic configuration of the local surroundings (fig. 12). The most
important finding lies in the fact that the vacancy no longer follows a random walk; its
successive jumps are correlated and a vacancy correlation factor f, smaller than unity
shows up in the final expressions (MANNING [1968], [1971]):

_ 2 . 2 —
DA“‘(B‘) - M CVfA(B)wA(B) DV = /\s fVW

where f,=(C,w,f, + Cywpfp)/f; and fy=My/(M,+2) is the correlation factor for self-
diffusion, w=C,w, + Cywy, and finally, f, 5 =Mf, W/ (M, W+2w,4) for A(B).

Consistent expressions of the phenomenological coefficients L; have been established
in this frame:

kT M,D’
c,Cc.D,..D
L = L — 2 A~ B™A* *B‘
an = T = ST TM, D
1, = "Celax (|, 2CaDy
kT M,D

where n is the average number of sites per unit volume, and D is the average
CaD,« + CgDge. At last it can be easily shown that the vacancy wind corrections showing
up in the expressions of the intrinsic diffusivities [see egs. (17)] are given by:
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Fig. 12. Manning’s random alloy model.

C(Dy - Dy.)
M,D’
Cy(Dys ~ D)
M,D’

=142

p =142

The L;’s are not independent since they are functions of D,. and Dy. only; they obey the
relationship:

12
L, = folLu * L) (1 Lol f(f)LMLBB} _1

2(1 + fO) f:(LAA + LBE)2

The same expressions have been later recovered following two different routes:

i) in a formal derivation resting on two macroscopic assumptions related to the
invariance of the functional relationship between mobility and flux between the pure
substance and the average alloy (LIDIARD [1986]);

ii) in a mean-field treatment of the diffusion problem, resting on the adoption of a
preliminary consistency equation over the diffusivities, namely:

C,D,. +C,D,. =£,C,D,

the right-hand side of the above equality being nothing but the tracer self-diffusivity in
the average alloy (BocQuer [1987]).

Manning’s approximation appeared fascinating and very appealing since the only
independent quantities are the easily accessible tracer diffusivities. It has been the object
of very numerous Monte Carlo simulations, which can take into account the detailed
occupancy of the sites surrounding the vacancy and can check the accuracy of the
approximation. These simulations essentially show that the approximation is indeed
quantitatively excellent over the whole concentration range, as long as the disparity
between the jump frequencies is not too large, say 10° < W,/ W < 10° (BOCQUET [1973],
DE BRUIN ef al. [1975], [1977], ALLNATT and ALLNATT [1984]). An analytical more
sophisticated method for the self-consistent decoupling of the kinetic equations has been
worked out and yields the same conclusion (HOLDSWORTH and ELLIOTT [1986],
ALLNATT [1991]). BEven in dilute alloys, the approximation turns out to be satisfactory
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for all quantities but the linear enhancement factor b, (ALLNATT and LiDIARD [1987b]).

In the same spirit, the same kind of approximation has been worked out for the
dumbbell interstitial mechanism in random two-frequency alloys on fcc and bec lattices.
Although no simple analytical expressions can be established for the tracer diffusivities
(BOCQUET [1986]), a similar functional dependence of the L;’s versus the D,.’s as above
can be proposed after replacing f, by the product fyu, (BOCQUET [1987]), where u, is the
ratio of the tracer average squared jump length to that of the defect. u,=1/2 for fcc
structures and 7/15 for bee ones (BOCQUET [1983b, 1991]). The numerical simulations
show a good agreement only in special cases for the fcc lattice, and a disagreement for
all the cases investigated in the bcc lattice (BOCQUET [1990b]): the reason for these
discrepancies has not been elucidated so far, in spite of a recent treatment involving the
more sophisticated linear response method (CHATURVEDI and ALLNATT [1994]).

5.1.3. Atomic models for diffusion in non-random disordered alloy

The attempts to improve the alloy model beyond the random approximation and to
include the effect of short-range ordering on diffusion have historically followed two
different routes.

The first one consisted in extending the dilute alloy models by including more and
more solute clusters of increasing size together with the corresponding modifications of
the solute and solvent jump frequencies in their neighbourhood. This route turned out to
be not well fitted to this purpose, due to the rapidly increasing number of unknown
parameters which yielded intractable results, together with the intrinsic impossibility to
deal with cluster overlap (BOCQUET [1973]); only rough approximations can be proposed
by selecting a few solute clusters which are believed to have a dominant influence
(FaupeL and HeEHENkAMP [1987]). But this choice is totally arbitrary and physically
unjustified; as a consequence, this route has now been abandoned.

The second route, at the expense of some loss of accuracy, approximates the effect
of the local surroundings on the height of the potential barrier by using a small number
of pair interaction energies for the stable (E;) and the saddle-point (Eijf ) configurations.
The merit of such a description lies in the fact that it connects simply and consistently
the thermodynamics (reflected in the E;’s) and the kinetic behaviour of the alloy
(reflected in the Eijf’s). The model was used first to account for the kinetics of short-
range ordering in Ag-Au alloys (RADELAAR {1968, 1970]) and Fe-Ni alloys (CAPLAIN
and CHAMBRON [1977]). Later it was improved to take into account correlation effects
in short-range ordered alloys (STOLWIK [1981], ALLNATT and ALLNATT [1992]): the
analytical formula obtained for the tracer diffusivities and the associated correlation
factors are in fair agreement with Monte-Carlo simulations over a reasonably large range
of the thermodynamic parameter mastering the order, namely [2 E,p — (E,, + Eg)l/kT.
The agreement deteriorates to some extent for the lower temperatures where systematic
departures show up.

Independently from the search for better expressions of the D..’s, a systematic
investigation of the phenomenological coefficients L;’s has been carried out numerically
by simulating non-random alloys using such pair energies; and the most intriguing result
of the last ten years is that the functional dependence of the Ly’s upon the D;’s
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established by Manning for random alloys is still preserved in non-random ones with a
fairly good quantitative agreement (MURCH [1982a, 1982b, 1982c}, ZHANG et al.
[1989a], ALLNATT and ALLNATT [1991]), except at the lower temperatures or dilute
concentrations; the latter restrictions are not a surprise, since they correspond to those
actual situations where the departure from randomness is expected to be the largest. The
basic reason for such an agreement is still not understood. Following previous tentative
papers (HEUMANN [1979]; DAYANANDA [1981]), an active research effort has recently
been undertaken to establish more general relationships between the L;’s and the various
diffusivities (tracer, chemical) (ALLNATT and LIDIARD [1987c], LIDIARD et al. [1990],
QN and MURCH [1993a)).

Before closing this section, the main limitations of such models in the present state
of the art must be recalled:

— they do not calculate D,. and Dy. but only the activation energies for diffusion Q.
and Qg., with the correlation effects included in the best case. The preexponential factors
Dy, and Dy are not known and are arbitrary assumed to remain constant, since no model
is available which would account for their variations throughout the whole composition
range.

— they use pair energies and assume implicitly that the energy of the alloy can be
sumrned in this way, which is not always true (namely, transition metals). Even if
effective pair energies can be defined, the electronic theory of alloys must be used to
predict the variations of these pair energies as function of the composition on physically
grounded arguments for each specific alloy (DUCASTELLE [1978])).

~ finally, they cannot have any predictive power: while pair energies in the stable
position can be deduced from thermodynamic measurements, saddle-point pair energies
conversely can only be deduced from experiments involving diffusion jumps, that is,
from the diffusion experiments themselves.

5.2. Diffusion of A" and B’ tracers in ordered binary alloys

In the last ten years, intermetallics have been the object of intensive study for their
attractive practical properties: some of them are indeed characterized by a high melting
temperature, high elastic limit (see ch. 24), high resistance against corrosion and (or)
creep (LIU eral. [1992}). Before reviewing in more detail the different ordered structures,
some preliminary and general ideas should be recalled here.

Tae progress in the understanding of phase stability from ab initio calculations based
on the local density functional approximation (LDF) has allowed research people to
address very basic points, namely, the physical reasons leading a given alloy to adopt a
well-defined structure or symmetry. Such calculations are able to explain the reason why
Ti Al, is tetragonal (DO,,), while Ti; Al is hexagonal (DO,,) and Ti Al is cubic (L1,);
or why Ni, Al (L1,) exists whereas there is no corresponding close-packed phase for Ni
Al; (PETTIFOR [1992]). However, the problem of the point defects has not yet been
addressed.

The existence of the so-called constitutional (or structural) defects is probably
connected to the preceding point but has not yet received an unambiguous experimental
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confirmation as well as a firmly grounded theoretical explanation. Starting with the
simple case of the B2 structure as an illustration, the stoichiometric A-B alloy is
perfectly ordered at 0 K and the N, (Ny) atoms occupy the a (8)-sites. When the
temperature is raised, several kinds of defect are believed to appear:

— antistructure or substitutional defects: A atoms can occupy B-sites and are denoted A,,
their number is N,;, B atoms can occupy a-sites (B,, Ng,);

~ vacancies denoted by V, on a-sites and V, on B-sites. Depending on the atomic
interactions, the alloy will choose preferentially one type of defect or the other (or some
combination of the two). Up to this point, these defects have been introduced as a pure
manifestation of thermal excitation in a stoichiometric alloy.

However, for a non-stoichiometric alloy, one must think of the way to accommodate
the departure from stoichiometry. The same defects (antistructure atoms or vacancies)
have been also invoked; but in this case they are expected to be much more numerous
than in the thermal case, since their concentrations will be of the order of the
stoichiometry offset (up to several percent) and to survive even at O K unlike thermal
ones. The difficult point in looking at actual systems at finite temperatures is to decide
which part of the observed vacancies or antisite defects has a thermal origin and which
part has a structural one. The undisputable fingerprint of structural defects (their non-null
concentration at 0 K) is unfortunately very difficult to use practically: in many systems
indeed, high concentrations of vacancies (at room temperature and above) have un-
doubtedly been evidenced by a careful comparison between density and lattice parameter
measurements: but their apparent migration energy has often be found to be large, and
one cannot safely state that equilibrium properties rather than quenched-in defects ones
are measured. Phenomenological models like bond-breaking pictures (NEUMANN [1980],
KiM [1991]) or the Miedema “macroscopic atom” model (DE BOER et al. [1988]) using
rough expressions for configurational entropies cannot claim to be anything but guiding
approximations to decide which type of defect is most likely to appear. A rapidly
growing number of model defect calculations using semi-empirical potentials is presently
observed (CLERI and ROSATO [1993], REY-LOSADA et al. [1993]) but the approximations
involved are probably still too crude to solve this question. The problem requires
undoubtedly accurate ab initio calculations of ground-state energies, together with a
minimisation procedure which would allow charge transfers (KocH and KOENIG [1986]),
local relaxations as well as the settlement of an arbitrary vacancy concentration; such
calculations would tell us whether the ternary (A,B,V) is most stable in the investigated
lattice structure at low temperatures or whether a phase separation between ordered
phases of other symmetries (and, or) concentrations occurs. If the existence of these
structural vacancies can be theoretically proven, one must remember however that their
properties are in no way different from those of the so-called thermal ones although they
have received a different name. Indeed, the total vacancy concentration at finite
temperatures minimizes the free-energy of the alloy: but in the present case, the existence
of two sublattices and of suitable atomic interactions implies that the result of the
calculation is more sensitive to a small variation of the composition, than to a tempera-
ture change, unlike the case of the disordered alloy at the same concentration.

Tracer diffusion measurements are still performed and are still highly desirable, as a
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first insight into the transport mechanisms. Correlation factors have been calculated in
various structures and for various jump mechanisms (BAKKER [1979], ARITA et al
[1989], WEILER et al. [1984], SZABO et al. [1991]). While isotope effects were measured
with the hope of determining the jump mechanism, it was shown later that, for B2
structures, such a measurement does not yield the correlation factor (ZHANG et al.
[1989b}); this is rather unfortunate since these (very difficult) experiments have been
performed only on alloys with this symmetry (PETERSON and ROTHMAN [1971],
HiLGEDIECK and HERZIG [1983]).

Spectroscopic methods like nuclear magnetic resonance (NMR), quasi-elastic Moss-
bauer line broadening (QEMLB) and quasi-elastic neutron scattering (QENS) appear
today as the best candidates to clarify the atomic diffusion mechanisms in ordered alloys;
NMR techniques measure the frequency (ies) of the diffusing species (TARCZON ef al.
[1988]), while QEMLB and QENS give besides access to the individual jump vectors
(see §2.2.2 and VOGL et al. [1992]). Although some intermediate modelling is still
necessary for the final interpretation, they yield the most confident information gained so
far. The most important result obtained up to now is that diffusion in ordered structures
seems to proceed simply via nearest-neighbour jumps of a vacancy defect. Finally, the
ability of the positron annihilation (PA) technique to measure vacancy concentration with
confidence is also being currently improved (BALOGH et al. [1992]).

The preceding point helps to solve old ill-formulated problems about the migration
mechanisms in ordered alloys. The 6—jump cycle was initially designed for transporting
atoms without altering the long-range order (McCoMBaIE and ELcock [1958], ELcock
[1959], HUNTINGTON ef al. [1961]): this condition is unnecessarily stringent since local
and thermally activated fluctuations of the long-range order (LRO) must necessarily
occur in a real system, the only requirement being the conservation of the average LRO
through detailed balancing: this remark has been the starting point of a new formalism
(Path Probability Method or PPM) for the evolution of cooperative systems (KIKUCHI
[1966]; SATO [1984]). The 6—jump cycle is thus not necessary. Moreover, it is also very
improbable: many computer simulations show that such cycles never go to completion
and are destroyed while underway by strongly correlated backward jumps (ARNHOLD
[1981]). In the same way, the triple defect has been introduced only for thermostatistical
reasons (large difference between vacancy formation energies on both lattices): but it was
implicitly thought that it should migrate as a whole, that is, without dissociating. This
unnecessary constraint has led previous investigators to imagine a mechanism of highly
concerted vacancy jumps (STOLWUK et al. [1980], VAN OMNEN and DE MIRANDA
[1981]), which has never been clearly evidenced neither experimentally nor theoretically.

At last, a growing body of practical knowledge has been gained through the use of
macroscopic measurements like chemical diffusivity (DAYANANDA [1992]), kinetics of
long range order recovery after irradiation or plastic deformation (CAHN [1992]), internal
friction (GHILARDUCCI and AHLERS [1983]), degradation of superconducting temperature
in A5 compounds (BAKKER [1993]): these experiments yield effective quantities which
are of importance for mastering the practical properties of these materials. But a detailed
atomistic model is still lacking which would link these effective energies to the usual
parameters deduced from tracer diffusion experiments.
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For sake of space, the reader will be referred to a recent compilation of experimental
results (WEVER [1992]).

5.2.1. Ordered alloys with B2 structure

The B2 structure has been more extensively studied than the others: it is made of two
interpenetrating simple cubic lattices, & and 8. Each a-site is surrounded by eight first-
neighbour B-sites and conversely. The existing alloys belong to two distinct groups:

(i) In the first group (AgCd, AgMg, AgZn, AuCd, AuZn, BeCu, BeNi, CuZn, NiZn)
the defects are mainly antistructure defects on both sublattices (A, and B,) the departure
from stoichiometry is compensated by Ag defects for A-rich alloys and B, defects for B-
rich alloys. The apparent formation energy Ey of thermal vacancies can be different on
the two sublattices.

(ii) In the second group (CoAl, FeAl, NiAl, PdAl, CoGa, NiGa, PdIn), for which
will denote the sublattice of the transition metal A, maintenance of equal @ and 8 site
numbers allows formation of paired defects only (Ag +B, or V, +V,). If V;; costs more
energy than A, +V,, then V, +V; converts into the triple defect Ay +2V,. Symmetrically,
if B, costs more than 2V, (mainly due to size effects), then B, + A; converts also into
the same triple defect. The departure from stoichiometry is therefore compensated in two
different ways: for an A-rich alloy the major defect is Ag; for a B-rich alloy, the major
defect is V,. In the latter case, very high structural vacancy concentrations on one
sublattice are expected and (indeed) experimentally observed (up to 10% in CoGa on the
gallium-rich side). All the theoretical calculations performed so far (e.g., EDELIN [1979])
are based on a zeroth-order treatment (BRAGG and WILLIAMS [1934]); not withstanding
their crudeness, they account qualitatively well for all the presently known experimental
situations, provided reasonable values of the adjustable pair energies E; are chosen.

A first and simple explanation has been proposed to account for the fact that a
particular alloy belongs to the first or to the second group (NEUMANN [1980]). Using a
crude bond-breaking picture, this author shows that the number of substitutional defects
is dominant whenever the mixing enthalpy AH; is (algebraically) higher than —0.3
eV/atom; the number of triple defects is dominant otherwise. It is very gratifying to
ascertain that this correlation is very well obeyed. The existence of structural defects
(namely in CoGa) has been however questioned recently on the basis of a similar model
(Kim [1991]): but the controversy rests entirely on the relative values of the bond
energies, which are nothing but phenomenological parameters and which cannot be
extracted from experimental quantities by undisputable procedures.

In a growing number of experimental systems, a combination of lattice parameter and
sample length measurements (SIMMONS and BALLUFFI's technique; ch. 18, §2.2.2.2)
yields the total vacancy concentration increase between a reference state at room
temperature and the high temperature state: (CoGa: VAN OMNEN and DE MIRANDA
[1981]; AlFe: Ho and DopD [1978], Paris and LESBATS [1978]; GaNi: Ho et al. [1977],
CoSc and InPd: WAEGEMAEKERS [1990]). The concentration of vacancies for the
reference state is determined by a density measurement at room temperature. PA
techniques have also been used, which confirm the previous determinations. But the
concentration of anti-site defects is usually not directly reachable through spectroscopic
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methods; only an indirect determination of their number is possible if such defects can
be associated with some macroscopically measurable quantity. As an example, from the
measurement of the quenched-in magnetisation of a Co—Ga alloy, the number of antisite
atoms Cog,, which are the only Co atoms to be surrounded by like neighbours and, as
such, are assumed to be the only ones to bear a magnetic moment, is indeed found equal
to half of the number of vacancies. This beautiful result points strongly in favor of the
very existence of the triple defect in this alloy (Lo Cascio [1992]).

Other experimental techniques are necessary in order to gain a sharper insight into the
defect populations on each sublattice. First results have been obtained through positron
annihilation in CuZn (CHABIK and ROZENFELD [1981]) or direct observation in a field
ion microscope in AlFe (PARIS and LESBATS [1975]); but extracting meaningful values
from the raw data requires a delicate analysis of positron trapping at vacancies for the
first technique, and a careful analysis of image contrast for the second.

5.2.1.1, Experimental results. Most of the experiments measured the tracer
diffusion coefficients D,. and Dg. as a function of temperature and composition. The
reader is referred to a recent compilation for the detailed results and references (WEVER
[1992]]. Without entering into details, the following trends can be outlined:

— At constant composition, the activation energy for diffusion is higher in the ordered
than in the disordered phase (when it exists). There is a break of the Arrhenius plot at
the critical temperature T, of ordering, and a large fraction of the increase in activation
energy is due to correlation effects. In the ordered phase, the Arrhenius plot is often
more or less curved (KUPER et al. [1956]). Simple models show that the migration and
formation energies (Ey, E;) of the vacancy and, therefore, the total activation energy Q,
exhibit a quadratic dependence upon the long-range order parameter S (GIRIFALCO [1964]):

Ey = Ep(l+2,8*) Ep = E)1+a,8*) and Q= Q{1+ ,S%)

The experiments are not entirely conclusive however:

— In CuZn, the diffusion coefficients of Cu® and Zn" tracers (KUPER et al. [1956]) have
been plotted logarithmically as function of (1+apS?)/T (GIRIFALCO [1964]). The
Arrhenius plot is a straight line only if the theoretical values Sgy, of the long-range order
parameter (BW stands for Bragg and Williams) are arbitrarily replaced by the experimen-
tal values S,,, which have been determined by X-ray measurements. It has been checked
however that S, is not well accounted for by a Bragg-Williams approximation and that
a more sophisticated treatment including short-range order (SRO) must be used instead
(CowLEY [1950]). An interesting observation is that SCZ‘leey is equal to Sy, at the same
temperature: therefore the quadratic dependence of Q upon Seip can be interpreted as a
linear dependence of Q on Sy as well. The last difficulty lies in the fact that, as already
mentioned above, most of the change in the activation energy comes from the tempera-
ture dependence of the correlation factor, which is not included in Girifalco’s analysis.
— In AlFe alloys, the migration energy of the vacancies which have been retained by
quenching varies roughly as S? (RIVIERE and GRILHE [1974]). But it is clear from the
data that the results, within the error bars, can as well be accounted for by a linear law.
— In CoFe alloys, the observation of a Portevin—Le Chatelier effect is related to vacancy
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migration and the effective migration energy varies quadratically over a large range of
S extending from 0.1 to 0.9 (DINHUT et al. [1976]).
— At constant temperature, the diffusion coefficients vary with composition and exhibit
a minimum at stoichiometry (or in the close neighbourhood of stoichiometry). This
minimum is more or less pronounced (V-shaped curve for AgMg or AINi) and corre-
sponds to a maximum of the activation energy. The existence of this maximum is
understandable, since the formation and migration energies of the vacancy are both
increasing functions of the long-range order parameter which goes through a maximum
at stoichiometry. D,. and Dy, differ by no more than a factor of two or three for the
alloys in which the defects are predominantly of substitutional type (AgMg, AuCd,
AuZn).
— For alloys belonging to group ii), a marked asymmetry between hypo-and-hyper
stoichiometric compositions is exhibited: very high vacancy contents show up which
correspond to an excess of B component (Ga in NiGa and CoGa; Al in FeAl or CoAl).
The difference between D,. and Dg. is more pronounced than above for the alloys
{between one and two orders of magnitude).The apparent vacancy formation energy is
usually low (typically 0.4 eV per vacancy), and a minimum shows up at stoichiometry.
An effective migration energy can also be determined by following the kinetics of
thermal equilibration through the macroscopic length of the sample: the previous analysis
of NiGa and CoGa in terms of two diffusion mechanisms (nearest-neighbour plus next-
nearest-neighbour jumps: VAN OMNEN and DE MIRANDA [1981]) has been recently
revisited: with the only assumption that the departure from the equilibrium value of the
vacancy concentration follows a first order kinetics, it turns out that a simple vacancy
mechanism with NN jumps only can account fairly well for the observed kinetics
(WAEGEMAEKERS [1990]). A puzzling result however is that the sum of the effective
formation and migration enthalpies is approximately equal to the activation energies for
tracer diffusion in NiGa, but significantly lower in the case of CoGa,

5.2.1.2. Atomic mechanisms for diffusion in ordered B, alloys. Several atomic
mechanisms have been proposed: nearest-neighbour (NN) or next-nearest-neighbour
(NNN) jumps. The triple-defect (TD) has been unnecessarily assumed to migrate as a
whole and the migration of the divacancy 2V, was supposed to occur through a
correlated sequence of NN vacancy jumps with species A and NNN vacancy jumps with
B. The direct determination of jump vectors has been performed only very recently on
FeAl alloys. The most probable path for Fe diffusion consists of sequences of two
consecutive NN jumps, implying a transitory residence on a 8-site and resulting in the
net displacements along <110>, <100> and <111> depicted on figure 13a (SEPIOL and
VoGL [1993Db]).

5.2.2. Ordered alloys with L1, structure

The L1, structure of the A;B compound is such that the B component occupies one
of the four sc lattices which make up the host fcc lattice: each B atom has twelve
nearest-neighbour A atoms, whereas each A atom has four unlike neighbours and eight
like ones. Due to this last property, it is commonly believed that A should diffuse
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Fig. 13. Observed jump mechanisms for ordered alloys by QEMLB: (a) B2 structure with a — b — a jump
sequences; (b) DO; structure withe & 8,0 & ¥, 8 & 8 and y & & jumps; (c) B8 structure with (oi) &> (dti)
jumps.

markedly faster than B species: it has been experimentally checked only recently on
Ni;Ge where Ni (as well as Fe or Co tracer) diffusivity is indeed found to be one order
of magnitude larger than Ge diffusivity (YASUDA et al. [1993]). Direct measurements of
vacancy concentrations in Ni;Al suggest that mainly antistructure atoms accommodate the
departure from stoichiometry (AOKI and Izumr [1975]): model calculations with the
embedded atom method (EAM) agree with this picture and predict low vacancy concen-
trations on both sublattices, with a marked preference for the sublattice of the major
component (FOILES and DAw [1987]; XIE and FARKAS [1994]); the same results are
suggested by EAM calculations for Cu;Au (JOHNSON and BROWN [1992]). It is worth
noticing that Ni Al is the only alloy in which the vibrational entropy has been measured
in the ordered and disordered phase (ANTHONY et al. [1993]): the reduction in entropy
when passing to the ordered phase is equal to 0.3 k; per atom. In Co;Ti alloys, on the
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Ti-poor side, the diffusivity of Co tracer increases with approaching stoichiometry and
the isotope effect, which can be shown to equal f AK in L1, structures (ITO ef al. [1990]),
is small (ITOH et al. [1989]).

5.2.3. Ordered alloys with L1, structure

The L1, compound AB is such that the (001) planes of the host fcc lattice are
alternately filled with A and B atoms. In TiAl alloys, the diffusion of Ti tracer complies
the empirical rules of normal diffusion in compact structures (KROLL et al. [1993]) and
no structural vacancies are expected from PA measurements on either side of the
stoichiometric composition (SHIRAI et al. [1992]).

5.2.4. Ordered alloys with DO, structure

The DO, structure for this A,B compound can be viewed as the occupancy by B
atoms (Al, Si, Sn, Sb) of a fcc lattice (named B), the parameter of which is twice that of
the host bce lattice; the others sites belong to three other fcc lattices with the same lattice
parameter (e, ¥, 8) which are occupied by A atoms (Fe, Ni, Cu, Ag). A, and A; have 4
A, +4B, as first neighbours, while A, and B, have 4A, +4A; (fig. 13b). As a conse-
quence, B atoms have only unlike nearest neighbours. The major component has
generally the larger diffusivity which increases with increasing the concentration of the
minor component: Cu,Sn (PRINZ and WEvVER [1980], ARrIiTA et al. [1991]); Cu,Sb
(HEUMANN et al. [1970]), Ni,Sb (HeumManNN and STUER [1966]). QEMLB in
stoichiometric Fe,Si (SEpioL and VOGL [1993a]) and QENS in Ni, .Sb,,, (SEPIOL ef al.
[1994]) indicate that the transition metal (Fe, Ni) atoms diffuse by NN jumps between
«, v and & sublattices; the departure from stoichiometry for Fe,,, Si,_, is accommodated
by antisite Fe; which are shown to participate also strongly to diffusion. PA measure-
ments in Fe,  Al,_, cannot separate Vg from V, and gives an apparent vacancy
formation energy of 1.2 eV (SCHAEFER et al. [1990]): structural vacancies are not
expected from the data.

5.2.5. Ordered alloys with B8 structure

The B8 structure for this AB compound is made of a compressed hcp lattice for the
B component (In, Sn, Sb, As, Ge) with a ¢/a ratio of the order of 1.3; the A component
(Ni) occupies either the octahedral interstices (o0i) or the doubly tetrahedral ones (dti).
Antistructure atoms Nij, are however believed in Niln. The large number of (oi) + (dti)
sites allows the compounds to accommodate a significant positive departure of Ni atoms
from stoichiometry, while still maintaining high concentrations of vacancies on the (oi)
sites as large as several percent, even for Ni-rich alloys. The Ni* diffusivity is roughly
10? times that of Sb* (HAHNEL et al. [1986]) or Sn* (SCHMIDT et al. [1992a, 1992b)).
The determination of Ni jump vectors in NiSb compounds shows that Ni atoms jumps
essentially from (oi) to (dti) sites, the vacancies on (oi) sites being crucial for allowing
easy (dti) to (oi) backward jumps (fig 13c). Direct (0i—oi) or (dti—dti) jumps are excluded
(VoGL et al. [1993]).
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5.2.6. Ordered alloys with B3, structure

The B3, structure for this AB compound is made of two interpenetrating diamond
lattices. Only two ordered alloys have been investigated so far, namely 8-Li-Al and 8-Li-
In. Structural vacancies V; and antisite Li,, (or Lij,) are believed to be the dominant
defects, both defects coexisting at stoichiometry with noticeable concentrations. Li
diffusion studied by NMR relaxation exhibits an activation energy of the order of one
tenth of an eV and a diffusion coefficient in the range 10°-10”" cm?™ at room tempera-
ture. A significant interaction is found between the immobile Li,, or Li,, antisite atom
and the vacancy on the Li sublattice (attraction for the first, repulsion for the second).
(TARCZON et al. [1988], TOKUHIRO ef al. [1989]).

5.2.7. Ordered alloys with A1S structure

The A15 structure for this A;B compound is made of a bee lattice for B atoms (Ga,
Sn, Au, Si), together with a split interstitial A-A (A=Nb, V, Cr) dissociated along
<100>, <010> and <001> directions in the faces (001), (100) and (010) of the elementary
cubic cell, respectively. When bringing together the cubic cells, the split interstitials
make up linear chains along the corresponding directions. The only alloy in which both
diffusivities have been measured is V,Ga: the activation energy of the transition element
is high (4.3 eV), and Ga, which is found to diffuse in grain-boundaries with an unex-
pectedly high activation energy, is probably the slowest component in bulk diffusion
(BAKKER [1984]). Superconductivity occurs along the chains of the transition metal; the
thermal disorder, which is believed to be mainly antistructural by analogy with Nb,Sn
(WELCH et al. [1984]), can be retained by quenching from higher temperatures: it
degrades the superconducting transition temperature T, in a reversible way, since a
subsequent annealing restores the original value. A simple model relates the drop of T,
to the amount of antistructural defects (the vacancies, which are necessary for atomic
transport, are neglected) (FAHNLE [1982]]. An apparent formation energy of 0.65 eV for
antisite defects is deduced from the variation of T, with the quenching temperature (VAN
WINKEL et al. [1984]). The healing kinetics of T,, attributed to vacancy bulk migration,
is dominated by the slowest bulk diffusivity of Ga atoms: it has been measured at
different temperatures with an apparent migration energy of 2.2 eV; however one is left
with the contradiction that Ga is the slowest component with the lower activation energy
(VAN WINKEL and BAKKER [1985]). Further studies on these compounds are currently
in progress (Lo CasCIO et al. [1992]).

5.3. Chemical diffusion

When diffusion takes place in a region of the sample where the chemical gradients
cannot be ignored, the diffusion coefficients of the various components are no longer
constant, as in homogeneous alloys, but depend on space and time through the composi-
tion.

In what follows, we examine the case of chemical diffusion and the Kirkendall effect
in binary alloys. The reader is referred to more extensive reviews for the case of multi-
phase and multi-component systems (ADpDA and PHILIBERT [1966], KIRKALDY and
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Young [1987}). The interdiffusion of two elements having different partial molar
volumes implies a volume change of the sample which must be taken into account for an
accurate measurement of chemical diffusivities (BALLUFFI [19601). The change of the
average atomic volume in neighbouring parts of the sample induces however the birth
and the development of stresses, which are usually partially released by some amount of
plastic deformation. The inclusion of such effects in the analysis of Kirkendall effects
started only recently and is currently under progress (STEPHENSON [1988]; SzABO et al.
[1993}); they will be ignored in what follows.

5.3.1. Chemical diffusion in binary systems and Kirkendall effect

5.3.1.1. Description and interpretation of a typical experiment. The simplest
diffusion experiment to carry out consists in clamping together two pieces of pure metals
A and B, to anneal this couple long enough and to determine, at the end of the run, the
concentration profile all along the sample. What is observed is a spreading of the initially
step-like profile together with a shift of the initial welding interface (defined by inert
markers such as oxide particles or tungsten wires) with respect to the ends of the couple
which have not been affected by the diffusion (fig. 14). This shift results from the
Kirkendall effect and finds its origin in the fact that the diffusivities D, and Dy are not
equal. Indeed, if D, is larger than Dy, species A penetrates into B at a faster rate than B
into A: as a consequence, the B-rich part of the sample must increase its volume to
accommodate the net positive inward flux of matter. This increase will be achieved at the
expense of the A-rich part by shifting the interface towards A. This observation was
reported for the first time by SMIGELKAS and KIRKENDALL [1947] on copper—zinc alloys:
the zinc is the faster diffuser and the welding interface (called Kirkendall plane) shifts
towards the zinc-rich side of the couple. This experiment was a milestone in the history
of solid-state diffusion: it definitely ruled out the assumption of a direct exchange A <> B
mechanism which was formerly proposed and which would have implied equal diffusivi-
ties for both species.

It must be noted that a Kirkendall effect has also been observed in fluids: it is
expected indeed to be very general, since the first convincing interpretation of the
phenomenon is not based on any detailed mechanism for matter transport (DARKEN
[1948]).

The simultaneous measurements of the displacement rate v of the Kirkendall plane
and of the chemical diffusivity D in that plane yield the intrinsic diffusion coefficients
D, and Dy for the composition of the Kirkendall plane. In order to know D, and D; at
several concentrations, one should prepare the corresponding number of differential
couples, which are made of two alloys with different compositions. In fact it can be
shown that a single experiment is needed, provided that a complete set of inert markers
has been inserted on both sides of the welding interface (CORNET and CALAIS [1972]).

In what follows we suppose that the observed effect is unidirectional, and that only
one space coordinate x is needed, in conjunction with the time variable t, to describe the
evolution of the system. The transformation x/ \/t— —A in Fick’s second Law shows that
the solution C(x,t) can be expressed as a one-variable function C(A). We know from
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Fig. 14. Kirkendall effect experiment with a diffusion couple made of two pure metals A and B.

experiment that the Kirkendall plane has a constant concentration during the diffusion
anneal, and accordingly that it is characterized by a constant value of A. As a conse-
quence, the Kirkendall shift Ax varies as \/t— ; Do exception to this simple law has ever
been reported.

A similar behaviour has also been observed for any inert marker which is not located
in the Kirkendall plane at t=0; after a time lag, the duration of which depends on the
distance from the Kirkendall plane, the inert marker starts moving with the same time
law (LEVASSEUR and PRHILIBERT [1967]; MoNTY [1972]).

Up to now no atomic mechanism for matter transport has been mentioned; but if we
know it, something more can be said about the Kirkendall plane.

We suppose in the following that the vacancy mechanism is operating. In all the
experiments performed so far, the inert markers are invariably made of materials which
have a high melting temperature. The formation and migration energies of the vacancy
in such materials are significantly larger than in the surrounding matrix. As a conse-
quence, the markers are impermeable to the vacancy flux. Under this condition, it can be
shown that such a marker shifts along with the lattice planes (KRIvOGLAZ [1969]),
whatever the type of its interface with the matrix (coherent or incoherent). Thus the
measurement of the Kirkendall shift is nothing but the measurement of the lattice plane
shift.

The above formalism can be easily enlarged to account for the case in which the
average atomic volume varies with the concentration of the alloy (BALLUFFI [1960]).

5.3.1.2. Vacancy wind effect — Manning’s approximation. In the original formula-
tion of the Kirkendall effect, the flux J, of species A stems only from the chemical
potential gradient Vi, of species A (DARKEN [1948]).

At infinite dilution, the solid solution becomes ideal (¢ = 1) and the intrinsic diffusion
coefficient D, must tend towards the tracer diffusion coefficient D,, . Hence:

Dy =Dy - ¢, Dy = Dy, - ¢.

These relationships are known as Darken’s equations; we know however, from the
thermodynamics of irreversible processes, that the off-diagonal term cannot be neglected.
More general expressions can be established [see egs. (6)]:
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There is no simple way to relate theoretically the L;’s to experimentally accessible
quantities such as tracer (or intrinsic) diffusion coefficients. This has been done only in
the particular case of a simplified random-alloy model (MANNING [1968]) for which
¢ =1. These expressions are arbitrary assumed to hold even for a non-random alloy
where the thermodynamic factor ¢ is no longer unity. Hence the final expressions for the
intrinsic diffusivities are still given by eqs. (17) with the random values of the vacancy
wind corrections r, and ry recalled in § 5.1.2. Hence:

C,Co(Dy — Dy.)’
M,D’(C,D;. +CyD,.)

D=(C,Dy + CBDA.){I +2

The last term in the brackets is called a vacancy wind term since it reflects the coupling
between the transport of species A and B through the vacancy flux. We note that
Manning’s equations predict a chemical diffusion coefficient D always larger than that
given by Darken’s equations. The match of both sets of equations with experimental
results will be reviewed in the following section.

Before closing this section, a last remark should be made concerning the structure of
Darken’s or Manning’s expressions: in both sets of equations the thermodynamic factor
¢ enters in a multiplicative way. In some cases the variations of ¢ with the respect to
concentration or temperature may outweigh the variations of other factors. This situation
can be met accidentally as in Au-80 at % Ni (REYNOLDS et al. [1975]) but is also
expected to happen in well-defined situations: for any alloy which tends to unmix at low
temperatures, ¢ goes through zero at the top of the coexistence curve at some critical
temperature T.. It is easy to show that the maximum of the coexistence curve is such that
the second derivative of the molar free energy, df/dCy, vanishes. A short derivation
yields:

d* kT (l+dlogyA] kT

act ¢\ Taege, )" cc,

where vy, is the activity coefficient of species A.

A convincing illustration of a vanishing D has been reported for Nb-34 at % H

(VOLKL and ALEFELD [1978]). At critical temperature T, the Arrhenius plot of D bends
downwards and D falls several orders of magnitude, whereas the Arrhenius plot of the
hydrogen tracer diffusion exhibits a normal behaviour. This phenomenon is called critical
slowing down; the top of the coexistence curve is the very point where the alloy hesitates
between two conflicting forms of behaviour:
— high-temperature behaviour where all the concentration fluctuations flatten out (D > 0);
— low-temperature behaviour where the concentration fluctuations of large wave-lengths
are amplified (D <0) in order to allow the system to decompose into two phases of
different compositions (spinodal decomposition).
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5.3.1.3. Experimental check of vacancy wind effect. Let us recall first that accurate
measurements are difficult: in many cases the Kirkendall shift is of the same order of
magnitude as the diameter of the inert markers; cavities are often observed on the side
of the faster diffusing species, indicating a local vacancy supersaturation; the thermody-
namic factor is not known better than within 5-10 percent (ELDRIDGE and KOMAREK
[1964]). The departure of the actual experimental conditions from the theoretical
assumptions (vacancies everywhere at thermal equilibrium, purely unidirectional fluxes,
etc.) probably induce further errors of unknown magnitude.

Only a few systems have been explicitly studied to compare Manning’s and Darken’s
formulations, namely: AgAu (MEYER [1969], DALLWITZ [1972], MonTY [1972], AgCd
(ButrYMOWICZ and MANNING [1978], IORIO et al. [1973], AINi (SHANAR and SEIGLE
[1978], AuCu (HEUMANN and ROTTWINKEL [1978], CuZn (SCHMATZ et al. [1966], TiVa
(CARLSON [1976]). Without entering into great detail, two general trends can be extracted
from these studies:

— In most cases, Manning’s vacancy wind correction to Darken’s expressions for D,
and Dy improves the agreement of the experimentally measured values of the Kirkendall
shift Ax and of the ratio D,/Dy with the corresponding calculated quantities. “Calculated”
means that D, and Dy, are evaluated by plugging the experimental values of D, ., Dy, and
@ into Manning’s or Darken’s equations.

— However, whereas the ratio D,/Dy is fairly well accounted for, the individual values
of D, and Dy are often larger than the calculated ones (by a factor of two in the case of
AuCu!) and the experimental Kirkendall shift has also a tendency to be larger than the
theoretical one. (Except for AINi, where D, is smaller than D, for both models.)

The reason for the discrepancy is not yet clearly understood. As pointed out by
CARLSON [1978], Manning’s correction to Darken’s expressions holds only for a random
alloy, a condition which is never fulfilled in real systems. But, as outlined above,
Manning’s approximation is quantitatively reasonable even in the non-random case; the
problem of the experimental accuracy should be clarified first.

5.3.2. Ternary alloys

The expressions of the three matter fluxes I, J,, J; in the lattice reference frame
introduce nine independent phenomenological coefficients (or intrinsic diffusion
coefficients if the chemical potentials gradients are expressed as concentration gradients).
Neglecting the vacancy concentration C, against the matter concentrations C,, C, and C;
and eliminating one of the concentrations (say C;) yields flux expressions with only six
independent new coefficients. Expressing at last, the three fluxes in the laboratory
reference frame, together with the condition J 2410 +3)=0 we are finally left with only
four independent chemical diffusion coefficients D}, D3, D), D, the superscript ‘3’
recalling that C, is the dependent concentration and is evaluated through C;=1-C,—-C,
and the tilde (~) recalling that interdiffusion coefficients are determined (BOCQUET
[1990a]). A beautiful analytical approach has been worked out on simplified systems,
where the above diffusion coefficients are assumed to be concentration independent, a
condition which holds in practice whenever the terminal concentrations of the diffusion
couples are close to one another (differential couples). This analysis enlightens all the

References: p. 651.
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characteristic features to be encountered in the practical studies of ternaries, namely, the
existence of maxima in the concentration—penetration curves, the possible occurrence of
zero-flux planes, together with the general properties of diffusion paths (THOMPSON and
MORRAL [1986]). The extension to concentration dependent diffusivities can be made
straightforwardly with the help of numerical methods.

6. Electro- and thermomigration

At temperatures where diffusion is noticeable, atoms of a pure metal, or of an alloy,
are caused to drift by a gradient of electric potential or temperature. We saw (§4.1.2)
that this phenomenon, also called the Soret effect in the case of thermal gradients, has
been used to study phenomenological coefficients. It has also been used practically to
purify some refractory metals. Last, but not least, it is a way to study the electronic
structure of point defects (vacancies, impurity atoms) at high temperatures and its
variation during a jump. Careful reviews of all aspects of electromigration can be found
in VERBRUGGEN [1988] and Ho and Kwok [1989].

6.1. Thermodynamic aspects

Starting with the equations (1)~(5) in §1.2.2,, if J, and J, are the electron and the
heat flux, respectively, we define (Doan [1971]) the valency and the heat of transport

by:
" J . J
2= (—] and g, = [—") an
JA Jg=E=0 JA Jp=VT=0

The effective valence Z, and the reduced heat of transport Q, introduced in § 1.2.2.
are then given by:

Z,=z,-z4 and Q, =g, —AH,, (72)

and the equivalent relations for the B component.

The form of Q, is due to the effect of the temperature gradient on the vacancies. It
is derived under the hypothesis of a local equilibrium concentration of vacancies. It has
therefore no counterpart in the electric field case. Any deviation from this equilibrium

(see § 8) invalidates the comparison between microscopic evaluations of g* and experi-
mental Q*.

In self-diffusion, B stands for an isotope of A, so eqgs. (1)—(5) give, in the case of
electromigration:
eE D,
Zn,
kT f,
where {, is the self-diffusion correlation factor. The thermomigration case is given by an
analogous equation, Q, and —VT/T replacing Z, and E.

Jyuw=-D.Vn,.+2Z,
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Such self-diffusion experiments then give access to the true values Z, and Q, .
For solute diffusion, one calculates easily (dropping the Vng, term):

eE} - « L . eE
Jy = ngDy. E[ZB +Z, ﬁ} =ZgnyDy, 7(.7

Measurements can then give access only to the apparent effective valence Z; (or heat
of transport Qg"). This value differs from the true one, Zj, by the vacancy wind term
Z, L,/Lap (MANNING [1968]). The ratio L,y/Lgy varies approximately from +2 to —2
and can then give a very large correction to Zg, especially in polyvalent solvents.
Equations (1)—(5) are written in the lattice frame, and so are defined the Z}, andQ}
values. But if the fluxes are, for some reason, measured in another reference frame, they
give access to other values of coupling coefficients. For example in the laboratory frame,
one obtains:

eE * D. *
13=n,,o,,*;7—,[z; D—z*j

where the bracketed term defines the apparent effective valence in the fixed frame.

6.2. Microscopic analysis

Atoms in a metal under a gradient of potential or temperature are submitted to a force
which has a double origin. On one hand, one finds a static part called direct in the
electric case, or intrinsic in the thermal one. The direct force is due to the unscreened
action of the electric field on the true ionic charge [eq. (72), term z,] and the intrinsic
contribution corresponds to the enthalpy transfer due to an atomic jump (WIRTZ [1943],
BRINKMAN [1954], LE CLAIRE [1954]). In this approximation the heat of transportq,
[eq. (72)] is nothing else than a part of the migration enthalpy (HUNTINGTON [1968]). On
the other hand electrons and phonons in metals are highly mobile carriers, either thermal
or electrical. Therefore their scattering at atoms which are neighbours of a vacancy gives
rise to a second contribution: the electron or phonon breeze.

In the case of electromigration FIxS [1959] and HUNTINGTON and GRONE [1961]
have given a model of this scattering part, treating electrons as semiclassical particles.
BosvIEUX and FRIEDEL [1962] have used the free-electron model in the Born approxima-
tion to give a quantum-mechanical expression of the z* term. More rigorous treatments
of this term have been developed later, either in the framework of the linear response
theory, or of the muffin-tin approach (KUMAR and SORBELLO [1975], TURBAN et al.
[1976], ScHAICH [1976], RIMBEY and SORBELLO [1980], GuprTa [1982], VAN EK and
LopDER [1991]). Controversies are still running on the existence either of a screening
effect in z*, which could partially or exactly cancel the direct force (TURBAN et al.
[1976], LopDER [1991]), or other contributions behind the carrier scattering (GUPTA
{1986]). However all these treatments give essentially the same basic results, their main
interest being to define more precisely the range of validity for the preceding models.
The results are the following:

References: p. 651.
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(i) For a free electron gas the scattering part of the effective valence is given by:

saddle stable
Z = -Z—A[mou - fo] (73)
2 Py

where Ap™™ and Ap{™" are the residual resistivities (expressed in wQcm per at%) of
atoms of species i (i=B or A) in saddle or stable position (their sum, Ap{™" + Ap;™*,
is denoted by Apg, in table 8, below); p, is the matrix resistivity and f; is a correction
term due to the neighbouring vacancy (zeroed for an interstitial solute). We find that in
normal metals, owing to the order of magnitude of Ar and p,, the (possible) direct term
is completely negligible.

(ii) In polyvalent metals, or transition metals, with a hole conductivity, one has to
take into account the details of the Fermi surface and of the scattering atom, electron
velocities, wave function character, anisotropic scattering. Schematically two opposite
contributions like eq. (73) are found, one for electrons and one for holes, which yields
a partial compensation between them. The link with the residual resistivities is lost. In
that case, the effective valence is much lower, and the calculations are quite involved
(FIks [1973], HUNTINGTON and Ho [1963], LIMOGE [1976b], GUPTA [1982], VAN EK
and LoDDER [1991]).

The situation is more troublesome in thermomigration. FIKs [1961], GERL [1967] and
SORBELLO [1972] have calculated the phonon scattering contribution. The result, as given
by Gerl, is a positive term, of the order of 100 kJ/mole (or lower after CROLET [1971])
and linear in temperature, contrary to SCHOTTKY’s calculation {1965]. The electron term
is more firmly established and according to GERL [1967]:

q; o Z"

and so gives a negative contribution in normal metals. The final Q" is then the result of
the compensation between four terms, and theoretical calculations are very questionable
(DOAN et al. [1976]). Some years ago, it was proposed to use directly the thermodynamic
definition of q* eq. (71) to calculate it (GILLAN [1977]); but this way has not been much
followed till now to give quantitative results.

6.3. Experimental methods

In electro- or thermotransport, three techniques have been used. In the first, one
measures the total atomic flux J,+J, =~ J,. This is done by measuring the displacement
of inert markers with respect to the ends of the sample. This method can be used only
for self-diffusion but is able to yield a good accuracy if vacancy elimination conditions
are well controlled (GERL [1968]; LIMOGE [1976a]).

In the second method one establishes a steady state between the external force, either
E or VT, and the induced concentration gradient. Measurement of the contration profile
gives access to effective valence, or heat of transport, in the laboratory frame (fig. 15a).
The accuracy is generally not very high and the method is restricted to solute diffusion.
Moreover the assumptions concerning the equilibrinm vacancy concentration must be
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carefully checked.

In the third method one uses a thin deposit of tracer between two bulk samples of
solvent. This deposit will spread (§ 1.2.5.), as a Gaussian in electromigration, and
simultaneously displace (fig. 15b) due to the extemnal force. This displacement with
respect to the welding interface gives the coefficient Z**, or Q**, The accuracy is very
high and the method is as suitable for self-diffusion as for solute diffusion (GILDER and
LAzARUS [1966], DoAN [1971]), although its use in thermomigration needs some care
(CrOLET [1971]).

6.4. Experimental results and discussion

The reader can find an exhaustive review of experimental results on electromigration
in PRATT and SELLORS’ monograph [1973]. For thermomigration he is referred to
ORIANI’s article [1969], see also WEVER [1983].

Let us first discuss thermomigration results.

6.4.1. Thermomigration

In table 6, the heat of transport q for interstitial solutes are displayed: this case does
not raise of course the delicate problem of the vacancy local equilibrium! It can be
noticed first that q, has generally the same sign for all solutes in a given solvent. There
is also some correlation between Z, and qg, but opposite to the one predicted by Gerl’s
model. According to NAKAJIMA et al. [1987] there is a good correlation between theqg
and the migration enthalpies of the three isotopes of Hydrogen in V, Nb and Ta. In table
7, we display the heat of transport in self-diffusion in common metals. The strong
scattering of the experimental values can be seen at once, either for a given

Lefore
pure A solvent
¥
1
anade : cathode
|
steady state ] [3
, thin layer of ltracer
concentrahan
after
T
I
anode : !
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L K 4 )
initial solute concentralion A N ;
aussian: distribation of tracer
< 0 9 : g
B —_—
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Fig. 15. Experimental methods in electro- and thermomigration. (a) Steady state method: initially the sample
has a homogeneous solute concentration; during the current flows a steady-state gradient of concentration is
established, the force due to the current flow being equilibrated by the force due to the gradient. (b) The tracer,
initially deposited as a thin layer, is spread as a Gaussian in electromigration and also displaced as a whole
with respect to the welding interface.
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Table 6

Effective valences and heats of transport of interstitial impurities.

Y

Solvent Solute Zy qy (kJ/mole)
Ti H ~1° +21.7°
C »0? _
(0] <0? -
\' H L5¢ 1.41
o l1to1.5° 171029 ¢
N - 171029 ¢
c - —421
Fe, H 0.25° -33t0-23"
D 04° -3310-23°
C 43* —7110-100°
N 5.7°% —75°%
Ni H 05° -63t0-0.8"
D 0.7 -6310-08"°
C - _
Y H -03t10-09% -
N -09t0-28* -
o -12t0-26° -
Zr, C >0° -
N - >0°
o <0? -
Nb H 2514 121
C 06° 54"
o 65t0-2* -67"1
Pd H »0* _
Ta H 05¢ 28,51
0 Oto2* -20t0 ~80¢
N - —-10to—40¢8

* PRATT and SELLORS [1973]; ® ORIANI [1969]; © MARECHE et al. [1979];
4 ERCKMANN and WIPF [1976]; ¢ MATHUNI ef al. [1976]; f PETERSON
and SmiTH. [1982); ¢ MATHUNI ef al. [1979]; * CARLSON and SCHMIDT
[1981}; { Uz and CARLSON [1986]; ' NAKAJIMA ef al. [1987].

Ch.7, §6

element or for similar elements. This underlines the experimental difficulties and also a
possible departure from equilibrium of the vacancy distribution (§§ 1.2.2, 6.1 and 8.1).
Transition metals display large Q. values. This has been explained by HUNTINGTON
[1966] as the result of additive contributions of electrons and holes, contributions which
are of opposite sign in electromigration, leading to small Z*,

6.4.2. Electromigration

In table 6 are also given the Z 5 values for interstitial solutes. As in thermomigration,
most interstitial solutes migrate in the same direction in a given solvent. The hole
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Table 7
Thermomigration — effective heats of transport
in self-diffusion, after OR1IANI [1969].

Metal Q,, (kJ/mole) *
Na -63

Al -63to—84;+46
Cu -226; 0, +16.7
Ag 0

Au =-27;0

Pb +8.8

Zn -0.8; 0; +9.6 to 14.6
Fc"} <0; 0; +38 0 314
Fe,

Co +221 to + 1380
Ni <0

Pt +38 to +56

Ti <0; +773

Zr -29 to -502

* For some elements there are several ex-
perimental values from different authors,
separated by commas.

contribution is clearly seen in transition metals with hole conductivity. In table 8 are
displayed Z g of various solutes in copper, silver and aluminium. We have also shown
the residual resistivities Ap), given by resistivity measurements in dilute alloys and Apg,,
deduced from electromigration studies using relation (73) (LIMOGE [1976b]). Unlike
thermomigration, we see that our predictive understanding of the electron breeze term is
fairly good in these quasi free-electron metals, provided experimental resistivities are
used. The solute valence effect, varying as zg(zz—z,), is for example well reproduced in
copper and silver. The case of aluminium is less satisfactory, probably owing to (i) a
badly accounted-for vacancy wind effect and (ii) fairly strong band-structure effects in
this polyvalent metal. For the same reason the solvent and the various solutes have low
Z' in lead, smaller than in Al (RockoscH and HERZIG [1983]). Transition metal solutes
give rise to large valences due to the formation of a virtual bound level.

6.5. Electromigration in short-circuits

Migration under external forces, mainly an electric field, takes place also in diffusion
short-circuits, such as surfaces and grain boundaries (GB) (Apam [1971]). A first
manifestation of this phenomenon is the induced migration of GB under an electric field.

This result is now well established both at high temperatures, T/T,,>0.7 (LORMAND
[1970]) and at lower temperatures, T/T, ~0.3 (HAESSNER et al. [1974]). The interpreta-
tion however is not clear; namely, it is not obvious how to deduce the migration of an
atomic configuration, such as a GB, from the sum of the forces exerted on the constitu-
ent atoms. A second manifestation, of great technological impact, is the large matter
transport along short circuits in the samples which have a high ratio (surface + GB

References: p. 651.
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Table 8
Valence effect in solute electromigration in normal solvents
(after LIMOGE [1976b}).

Solvent Solute  Zp (a) Apgy Apy
Puem/at%)  ©(ulcm/at%)
Copper Cu -8 0.98 033
(1300 K) Ag -6 0.62 0.35
Cd -9 1.14 1.31
In - 16 2.36 3.95
Sn -30 5.13 83
Sb - 40 6.64 10.9
Silver Ag -75 043 038
(1150 K) Zn - 187 2.1 2.9
Cd -30 38 2.2
In -435 5.7 6.1
Sn - 69 9.9 11.6
Sb -103 15 15
Aluminium Al -13.7 0.73 <0.9
(900 K) Cu -62 0.26 L5
Ag -173 1.01 2.1
Cd - 169 1.02 1.5
Au -194 1.21 >22
Fe — 148 9.9 11.6

s Zg is the true effective valence. .
® The resistivity sum App,, is deduced from Zy by eq. (73).
¢ Ap,, is the resistivity sum as directly measured.

area)/(bulk). This is the case for the very thin stripes of evaporated aluminium used as
electrical connections in solid-state electronic devices, run through by current density as
high as 10° Amp/cm?. The local divergences of atomic fluxes (triple junctions, hot points)
tend to develop vacancy supersaturations and stresses, leading to the formation of voids
and hillocks. Rapid breaking or short-circuits intervene, even at low temperatures
(D’HEURLE [1971]). Experiments done under well-controlled conditions, for solute
diffusion in silver bicrystals (MARTIN [1972)) or in thin aluminium films (D’HEURLE and
GANGULEE [1972]), do not show any striking difference between volume and grain
boundary valences. Nevertheless, a theory of the GB electromigration force remains to
be built. The addition of some solutes (copper, chromium, magnesium) that segregate
and/or precipitate at grain boundaries, can enhance the life time by orders of magnitude
(D’HEURLE and GANGULEE [1972]). The precise role of these solute is not well under-
stood (LLOYD [1990], SMALL and SMITH[1992]).

6.6. Electromigration as a purification process

Reviews of this topic have been done by PETERSON [1977] and ForT [1987]. The
basis of the method is very simple: if a solute impurity displays a non-zero effective
apparent valence Zy , it will segregate to one end of a sample, of length 1, during an
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electromigration experiment (see fig. 15a). There remains then a depleted, purified, zone
elsewhere. But as the time needed is proportional to 41*/(Z ; D,), one easily sees that this
method is especially efficient for interstitial solutes, or in the liquid state. In fact it has
been used mainly for interstitial gaseous impurities in refractory metals, but also for
transition metal solutes in Zr (ZEg [1989]) or rare earth (FORT [1987]).

7. Diffusion along short-circuits

Short-circuits consist of all the regions of the lattice which have lost their perfectly
ordered structure: dislocations, grain boundaries and interfaces, free surfaces. They have
in common the following properties:

— The diffusivity is much higher than in the bulk and is detectable in a temperature range
where bulk diffusion is negligible.

— The disordered regions interact chemically with the point defects, the diffusing species
and with the components of the alloy: the concentrations in the short-circuits are different
from those in the bulk.

— They can be modified by the diffusion process itself, which can lead to changes in the
ledge and kink densities on a surface, diffusion-induced migration of a grain boundary,
etc.

— Their detailed atomic structure is often unknown; when an approximate knowledge is
available (as in the case of low-index surfaces), the structure always appears very
complex. Extensive simulation work in the last ten years have tried to correlate the
macroscopic properties of the boundary (energy per unit area, cleavage fracture energy)
to basic microscopic properties (compacity and orientation of the crystalline planes
brought into contact) through the use of various semi-empirical potentials: the densest
planes seem generally to give rise to low energy grain-boundaries with high cleavage
fracture energy (see WOLF [1990a, 1990b, 1991] and references therein). However, no
relationship with the behaviour at higher temperatures is available, where point defect
generation and possible reconstruction are expected.

— The properties of point defects at surfaces and grain boundaries (formation and
migration energies, interaction with the substrate or with other defects) are not yet firmly
established.

We recall first the phenomenological approach which has been fruitfully used to
interpret grain-boundary diffusion experiments, as well as some recent progress in this
area. We next treat the atomistic approach to grain-boundary diffusion and will mention
the use of molecular dynamics calculations. The case of surface diffusion will be treated
separately.

7.1. Phenomenological approach

The basic idea of the continuous models consists of modeling the (one-) two-
dimensional short-circuit as a (pipe) slab, along which the diffusion coefficient D" is
much larger than that in the bulk D.

The diffusion equations are then written in both media with suitable matching
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conditions at the interfaces. For the grain boundary depicted in fig. 16, the two following
equations are written:

% _ DAc > a
ot

for the balance equation in the bulk; 2a is the thickness of the boundary, and

ac’ ,d9*¢ D adc N
= —2+'——“la+e |xl<a,s-—)0
o dy ox

for the balance equation in the grain boundary; the first term is the usual flux divergence
term along the y direction; the second term accounts for the lateral exchanges between
the slab and the bulk; the concentration inside the boundary is assumed independent of x.

The matching conditions at the interface x=+a depend on the problem under

consideration:

— for self-diffusion, ¢’ =c,

— for solute diffusion ¢’ =kc, where k is the grain-boundary segregation factor and under
the assumption that ¢’ remains much smaller than the solute concentration inside the
boundary at saturation. For the case of a grain boundary in a concentrated alloy or the
case of an interface in a two-phase system, the reader is referred to BERNARDINI and
MARTIN [1976]. (See also ch. 13 concerning equilibrium grain-boundary segregation,
especially §4).

The solution has been calculated only under simplifying assumptions pertaining to the
geometry of the short-circuit or the type of the source. Only one isolated short-circuit is
considered; it is assumed to be perpendicular to the surface where the source is
deposited.

— Whenever the source is of finite thickness, its concentration is uniform along the plane
y=0; the surface diffusion coefficient of the deposited species is taken to be infinitely

— 'P
| O
>

grain 1 grain 2

Dy tD2
IR REN tt tt ¢t
° .a

Fig. 16. Equiconcentration profile in the continuous model of grain-boundary diffusion. The slab thickness is
2a; y=0 is the plane of the tracer deposit.



Ch. 7, §7 Diffusion in metals and alloys 621

fast to prevent any depletion of the tracer in the area where the short-circuit emerges
from the bulk.

7.1.1. Semi-infinite bicrystal

The problem of an infinite source (constant surface concentration) has been solved in
an approximate way by FISHER [1951] and in exact form by WHIPPLE [1954]. The
problem of the finite source has been solved by SUZUOKA [1961a,b, 1964].

The theoretical quantity which is used to analyze the experiments is not the concen-
tration C(x,t) but its integral T along a plane at depth y from the surface:

Cy.1) = J C(x,y, t)dx + J C'(y,t)dx + J C(x, y,t)dx
oo +a a

It is ascertained that:
— The grain-boundary diffusion coefficient D’ cannot be directly determined, because it
shows up in all the expressions in the form 2akD’. A separate measurement of k and an
evaluation of 2a is needed to go further.
— The overall shape of the solution is practically independent of the initial condition
(infinite source or thin layer) provided that the quantity b=(D’/D)[ka/(Dt)"?] is large
enough (in practice, larger than 5). In that case, log C varies as y% (Lg CLAIRE [1963]).
A more detailed discussion of the validity of the above solution can be found elsewhere
(MARTIN and PERRAILLON [1979]).

7.1.2. Semi-infinite crystal with an isolated dislocation

A revised version of the calculation has been proposed (LE CLAIRE and RABINOVITCH
[1981]). It is shown that log C varies linearly with y for distances which are large
compared to the penetration depth into the bulk {y >4(Dt)"?3;

ral ’ 172
é‘logC =—A/(k azD _az)
dy D

where A is a slowly varying function of the time and a the radius of the pipe. The slope
of the straight line is thus nearly independent of time in the case of diffusion along an
isolated dislocation pipe: this is in contrast with the case where the dislocations are
closely arranged into walls or boundaries and in which the slope varies as t* (LE
CLAIRE [1963]). The calculation of correlation effects in dislocation pipe diffusion
requires an atomistic modelling of the dislocation core: the two attempts made so far on
simple structural models show that the usual form of the correlation factor can be used
even in the case where bulk and pipe diffusivities are widely different (ROBINSON and
PETERSON [1972], QIN and MURCH [1993b, 1993c]). Molecular Dynamics (MD)
simulations of vacancy and interstitial diffusion along a dissociated edge dislocation in
copper show that the mobility of the interstitial defect is much larger than that of the
vacancy; but that their respective contribution to mass transport are comparable; at last,
the existence of the stacking-fault ribbon extends the dimensionality of their migration
path to 2-D, slowing down their mobility accordingly (HUANG et al. [1991]).

References: p. 651.
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7.1.3. Short-circuit networks

In actual crystals, short-circuits are present in high concentration and their orienta-
tions with respect to the diffusion direction are more or less random. They make up
some kind of connected network along which diffusion is much faster than in the bulk.
Three diffusion regimes can be distinguished, according to the bulk penetration depth
(D) being smaller than, equal to or larger than a characteristic length 1 of the network:
1 is the average diameter of the grains in the case of a grain-boundary network and the
average distance between two pinning points in the case of a dislocation network
(HARRISON [1961]):

(i) When bulk diffusion is totally negligible and when the penetration depth along the
network is larger than 1, the concentration profile is expected to be similar to a bulk
diffusion profile with D’ instead of D. This is called Harrison'’s C regime.

(ii) When bulk diffusion is not negligible but (Dt)”* remains much smaller than I, the
short-circuits do not interact with each other: no significant amount of the diffusing
species which has diffused through and out of a first short-circuit ever reaches another
short-circuit. It can be shown that an approximate value of 2akD’ (or ka’D’) can be
deduced from plotting log C as a function of y (LEVINE and MACCALLUM [1960]): this
is called Harrison’s B regime.

(iii) Whenever the bulk diffusion depth is larger than 1, the diffusion fields of
neighbouring short-circuits overlap and none of the solutions quoted above can be used.
This is Harrison’s A regime. A simple expression of the effective diffusivity D, can be
proposed, taking into account the fraction f of the lattice sites which belong to the short-
circuits (HART [1957]):

Dy =fD'+(1-£)D

A detailed mathematical analysis of the penetration profiles versus dislocation density
shows that the effective diffusion coefficient D,; is reasonably given by Hart’s formula,
as soon as the bulk penetration distance (Dt)? is larger than 10 I; this limit, which is
grounded on a firmer basis, is one order of magnitude lower than that determined by
Harrison (LE CLAIRE and RABINOVITCH [1983]). The same analysis shows further that
the influence of existing dislocation densities upon the determination of bulk diffusivities
in pure metals performed so far should be negligible (LE CLAIRE and RABINOVITCH
[1982)).

Harrison’s classification has been later extended to the case where the grain bound-
aries are moving at rate V (CAHN and BALLUFFI [1979]); Harrisson’s A regime is
encountered whenever (Dt)'? or Vt is larger than 1; Harrison’s B regime is split into
distinct regimes according to the velocity of the grain boundary; Harrison’s C regime
remains untouched.

Let us mention that a continuous approach has been proposed for Harrison’s A
regime (AIFANTIS [1979]; HiL1 [1979]). A diffusion field is associated with each family
of high-diffusivity paths. The total solution results from the superposition of these
diffusional fields, which are connected with each other and with the bulk through quasi-
chemical reactions. Interesting new features have been predicted, in particular a non-
Fickean character of the diffusion in simple cases.
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7.1.4. Experimental results

The reader is referred to the compilation of experiments by MARTIN and PERRAILLON
[1979]. It is observed that:
— For self-diffusion, the apparent activation energy in a grain boundary is roughly
0.4-0.6 times the activation energy for bulk diffusion.
— For solute diffusion, the apparent activation energy includes the interaction energy of
the solute with the boundary.
— For diffusion along the interface separating two phases of different chemical composi-
tions, the results are still too scarce and somewhat controversial, The first experiments
in Ag-Fe (BONDY et al. [1971]; JOB et al. [1974]) or Ag—Cu (PERINET [1975]) showed
unusually large activation energies; recent experiments in a/y interfaces of stainless
steels JUVE-DuC et al. [1980]), however, exhibit activation energies which agree fairly
well with the activation energy for diffusion along grain boundaries of the y-phase.

7.2. New advances in grain-boundary diffusion

7.2.1. Impurity effects
This topic is treated in chapter 13, §5.2.

7.2.2. Diffusion-induced grain-boundary migration (DIGM)

The diffusion of two chemically different species along a grain boundary may under
certain conditions induce a lateral displacement of this boundary (DIGM). In the same
way, a thin liquid film (during sintering for instance) often migrates towards one grain
at the cost of the other (LFM). Contrarily to the initial observations, the condition of a
vanishingly small lattice diffusion is not a prerequisite; and the displacement is observed
in a fairly large temperature range and for an increasing number of alloy systems. This
lateral movement (perpendicular to the grain-boundary plane) is not necessarily uniform
along the boundary and as a consequence the latter is very often distorted. The swept
area which is left in its wake has a different chemical composition from that of the bulk
(fig. 17) and may correspond to a better mixing of the alloy or to phase separation. The
driving force of this evolution is still highly controversed. A first series of models
attributes its origin to the free energy decrease which accompanies the change in
chemical composition of the swept area (FOURNELLE [1991]). In a second series of
models, the driving force stems from the release of elastic energy: the solute diffusing in
the grain-boundary leaks out of the latter and changes the composition of the nearby
zone, building up a coherency strain with respect to the undiffused bulk (a situation
which prevails only if the bulk diffusivity of the solute is not too large, that is, if the
solute does not migrate as fast as an interstitial); the elastic constants are generally
anisotropic and the amount of elastic energy will necessarily be different in the two
adjacent grains. The grain with the higher elastic energy will shrink and dissolve at the
benefit of the other by the sweeping movement of the boundary or of the liquid film
(Baik and YOON [1990]). In both cases, the free energy loss over-compensates the
energy increase due to the increase of the grain boundary surface. The only mechanism
proposed so far invokes the climb of grain-boundary dislocations (BALLUFFI and CAHN
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Fig. 17. Lateral displacement of a grain boundary due to a Kirkendall effect along the boundary. The hatched
regions have a composition different from that of the surrounding matrix. The dashed line is the initial position
of the boundary.

[1981]); it embodies no driving force in itself but offers only a means to move laterally
the boundary. It holds however only for DIGM and not for LFM. Beautiful experiments
on carefully oriented Cu bicrystals (symmetrical and asymmetrical tilt boundaries)
immersed in Zn vapor suggest that the coherency strain model, together with the climb
of dislocations in the core of the grain boundary, accounts only roughly for the experi-
mental results concerning the low misorientations (KING and DixiT [1990]); but the
results depend heavily on the detailed structure of the boundary which varies while
changing its orientation during the experiments. On the other hand, the calculated elastic
effects are often found to be much too low to be consistent with the heavy curvatures of
the boundaries sustained in many experiments (LIU et al. [1989], Kuo and FOURNELLE
[1991]); this observation points back to the relevance of the chemical effects.

7.3. Atomistic approach to diffusion in short-circuits

7.3.1. Atomic model for grain-boundary diffusion

The continuous approach has proved its efficiency for interpreting the experimental
results which have been collected up to now. However, it raises several questions:

— What is the grain boundary thickness? How can it be defined in a precise way?

— What is a diffusion coefficient inside a grain-boundary?

— Is the assumption of local equilibrium between the bulk and the grain boundary
Jjustified?

—~ What does the solution looks like for very short times, i.e. , times smaller than a jump
period in the bulk?

BENOIST and MARTIN [1975a, b]) were able to answer these questions with the
following simple model. The grain boundary is modelled as a (100) plane of a simple
cubic array, in which the atom jump frequency is I and is supposed to be larger than
the jump frequency I of the atom in the rest of the lattice. T'; and I’y stand for the atom
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jump frequencies from the bulk into the grain-boundary and conversely. The starting
transport equation is written as follows:

L) S (L, - ()T,

ot
where C(r,t) stands for the tracer concentration on site r at time t; I, _, , for the jump
frequency from site r’ to site r; X, is extended to sites 1’ which are first neighbours of
site 1. The solution is calculated with a boundary condition corresponding to the instan-
taneous source of the continuous approach. The main results can be summarized as
follows:
— In the limit of large bulk penetration (more precisely, a large number of jumps in the
bulk, i.e. t>>1), the solution is equivalent to Suzuoka’s solution (see §7.1.1).
The expression for the parameter 3 is:

gD da TN 1
D (py)® T T, )"

Since the bulk diffusion coefficient is I'b? (b is the lattice parameter), the comparison of
the two solutions yields D’ =T"b? the segregation factor k is equal to I'/T', and the grain-
boundary thickness is b.

In the case where the grain boundary is modelled as p parallel planes, it is found that
its thickness is pb. It must be noticed that this thickness is not altered even if the bonds
between the sites in the bulk and the sites in the boundary are stretched perpendicularly
to the boundary plane. The “thickness” of the grain-boundary is not related to the actual
atomic relaxations at the grain-boundary but only to the number of high-diffusivity paths
which are available for the tracer.

— In the limit of a small penetration depth into the bulk, the identification with the
continuous solution is impossible. At very short times (I't<0.1) the exact solution tends
towards a Gaussian with I"b? as diffusion coefficient.

This model has been modified to account for more realistic grain-boundary structures,
but still disregard the correlation effects. We refer the reader to the original papers
(CoOSTE et al. [1976]).

For long, the sophistication of the modelling has been several steps forward with
respect to the available experimental information. Only recently, an impressive series of
grain-boundary Ag diffusivity measurements, using a clever accumulation method of
improved accuracy, has been undertaken in Au bicrystals of well-controlled tilt angle
(Ma and BALLUFFI [1993a]); the diffusion coefficients (and the activation energies as
well) do not exhibit any cusp at those particular orientations which correspond to
coincidence site lattice boundaries (CSLB) of short-period and low-2. This was taken as
an indication that the core of the boundary is made up of several structural units derived
from relatively short-period delimiting boundaries which are nearby in the series; in this
picture, the change in tilt angle is reflected in a continuous change in the mixture of
these structural units. An atomistic modelling resting on the embedded atom method
(EAM) suggests that vacancy, direct interstitial and intersticialcy mechanisms are
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probable candidates for matter transport along the boundary. The change in activation
energy experimentally observed is accounted for by additional jumps of higher energies
(MA and BALLUFFI [1993b]). At last, the magnitude of the correlation factor for the
intersticialcy mechanism is found to be roughly equal to that of the vacancy one. Thus,
a relatively large correlation factor is no longer the indisputable fingerprint of a vacancy
mechanism at work, contrarily to previous findings (ROBINSON and PETERSON [1972]).
This last result, together with that concerning the diffusion in a dissociated dislocation,
suggests that the vacancy mechanism is not necessarily the dominant mass transport
mechanism, as thought before from preliminary simulation work (BALLUFFI et al. [1981];
Kwok et al. [1981]; CicCOTTI et al. [1983]). It is worth mentioning however that the
activation volume for self-diffusion in a tilt boundary of Ag bicrystals is consistent with
the vacancy mechanism (MARTIN et al. [1967]).

7.4. Surface diffusion

Although free surfaces can actually play the role of short-circuits for bulk diffusion
(inner surfaces of cavities, surfaces along a crack), they have been mostly studied for
their own sakes.

We shall not repeat hereafter the continuous approach which has been already used
for interface or grain-boundary diffusion; grain 2 in fig. 16 has only to be replaced by
vacuum and the exchanges between the surface and the vacuum suppressed. As in the
case of a grain boundary, the characteristic quantity which appears in equations is 6D,,
where & is the “thickness” of the surface layer and D, the surface diffusion coefficient.
We will focus in the following on the atomistic point of view.

7.4.1. Atomic structure and point defects

A surface is essentially made up of terraces which are portions of low-index surfaces;
these terraces are separated by ledges of atomic height, along which kinks are present
(TLK model: fig. 18). Ledges and kinks have a double origin:

— A geometrical one, to provide the misorientation of the actual surface with respect
to the dense planes of the terraces (® and o angles in fig. 18).

— A thermally activated one for entropy purposes.

Such a description is thought to hold in a range of low temperatures where the
formation free energy of ledges is large enough to keep their thermal density at a low
level and where reconstruction or faceting are not observed (in practice between 0 K and
0.5T,).

As predicted by BURTON et al. [1951] a dramatic change in the surface topology
occurs at some transition temperature Ty, at which the formation free energy of the
ledges vanishes (or becomes very small): as a consequence the surface becomes
delocalized (ch. 8, §5.1). This transition (called roughness transition) is due to a large
number of steps of increasing height which make the edges of the terraces indistinguish-
able. This has been clearly illustrated by Monte Carlo simulations on (100) surfaces of
a simple cubic lattice (LEAMY and GILMER [1974]; VAN DER EERDEN et al. [1978])
Figure 17 of ch. 8 shows examples of LEAMY and GILMER’s computations. Ty is roughly
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Fig. 18. Terrace-Ledge~Kink (TLK) model for low~index surfaces. The formation of adatoms (the exira atoms
bulging out from the plane of a low-index surface) and advacancies (the anti-defects to adatoms) is represented.

given by
Tr=0.5¢/k,

where ¢ is the strength of the first-neighbour bond. This transition has indeed been
observed on several metals using He scattering spectroscopy (for a recent overview, see
LAPUIOULADE [1994]). In what follows, we restrict ourselves to surfaces maintained
below Tjg.

Point defects are also present, namely adatoms and advacancies (see fig. 18); they can
be created pairwise at a site of a terrace or separately at a ledge or a kink. The latter
case is energetically favoured with respect to the others and is thought to be dominant.
Multi-defects can also form by clustering adatoms or advacancies.

Theoretical calculations of point-defect properties on low-index surfaces have so far
been performed first with very crude potentials (WYNBLATT and GIOSTEIN [1968];
PERRAILLON ef al. [1972]; FLAHIVE and GRAHAM [1980a]), and later, refined with atomic
potentials derived from the embedded atom method (EAM) (THOMPSON and HUTTING-
TON [1982], DESJONQUERES and SPANJAARD [1982], Liu et al. [1991], Liu and ADAMS
[1992], SANDERS and Dg PrISTO [1992]). It is worth noticing that their results do not
differ very much, even quantitatively: this is undoubtedly an indication that the formation
energies of point defects depend only on very fundamental and simple properties of the
surfaces (like the number of lateral neighbours or the packing):

— The formation and migration energies for adatoms and advacancies are found to be
highly sensitive to surface orientation.

- The formation energies for both kinds of defect are comparable, except for the (100)
surface of an fcc lattice, where the formation energy of the advacancy is significantly
smaller than the corresponding energy for the adatom. Therefore, both defects are
expected to contribute significantly to matter transport. They will be created in roughly
equal amounts, either separately at kinks or pairwise at terrace sites.

— The migration energies have been mainly calculated for adatoms on fcc and bec
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surfaces, and for the vacancy on Cu (PERRAILLON et al. [1972}) and Ni (L1U and ADAMS
[1992]) surfaces; the advacancy is in most cases the slower-diffusing defect.

For fcc lattices, the migration energies of adatoms increase roughly with increasing
surface roughness: E_ (111)<E_ (113)~E_, (331)<E,, (001)<E,, (210). For bcc lattices,
the migration energies are roughly in the following order: E, (110)~E, 211)~E_
(321)<E, (310)<E_, (001)<E_ (111). It is worth noticing however that, due to the
presence of the defect concentration term, the surface self-diffusivities are not necessarily
in the same order: a compensation effect occurs, which pairs a low migration to a large
defect formation energy (on the (111) surface of fcc lattice, namely). As a result, the
surface diffusivity of Ni is expected to be noticeably larger on (113) and (133) surfaces
than on any other (L1U and ADAMS [1992]).

A further difficulty stems from the fact that diffusion is expected to be highly
anisotropic on non-perfect surfaces: the migration energy along dense rows or in deep
channels is usually smaller than the migration energy across these rows or channels. This
may obscure the ordering of low-index surfaces with respect to their migrational
properties.

Diffusion is thought to take place through individual jumps only at very low
temperature and to exhibit a marked anisotropy due to atomic roughness (T <0.15T,). At
higher temperatures, several new mechanisms have been proposed: jumps to more distant
neighbours, contribution of multidefects performing collective jumps caused by a strong
forward dynamical correlation. Exchange mechanisms involving two or more atoms are
believed to play a significant role since they imply a smaller distortion of the surround-
ing than the hopping of a single atom: after having been observed and simultaneously
calculated for the change of channel of the diffusing adatom (BASSETT and WEBBER
[1978], HALICIOGLU and POUND [1979]), they have been invoked for the crossing of
steps on (111) Al surfaces (STUMPF and SCHEFFLER [1994]), and even recently for the
mere migration on (100) Cu (HANSEN ef al. [1993], BLACK and TIAN [1993]) or the
dimer migration on (100), (110) and (111) Ir (SHIANG and TSONG [1994]). Similar
mechanisms have also been proposed for bulk or surface diffusion of semi-conductors
(PANDEY [1986], FEIBELMAN [1990], KaXIRAS and ERLEBACHER [1994]). All these
mechanisms had been previously observed in molecular dynamics calculations on fcc
Lennard—Jones crystals (TULLY et al. [1979]; DE LORENZI et al. [1982]). At last, at still
higher temperatures, a delocalization of the adatom is predicted, which spends most of
its time in flight rather than on equilibrium sites. The theory of atomic jump at a surface
rests on the same model as that for the bulk, namely the reaction rate theory, which
considers the saddle point configuration as a possible equilibrium fluctuation; but the
dynamical corrections (multiple crossings of the saddle surface, dynamical forward
correlation leading to multiple jumps) have been treated slightly differently, starting from
the flux—flux correlation function formalism used in the theory of chemical reactions
(CuANDLER [1978, 1986, 1988], VOTER and DoLL [1985]). Only recently, a more
phenomenological theory has been developed, which covers all the diffusive regimes
from the lower temperatures (individual jumps) to the higher ones ((2-D flight of a
nearly free adatom over the surface): the particle is described by a continuous equation
of motion, including an effective friction term which accounts for the interaction with the
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vibrating substrate (ALA-NISSILA and YING [1992]). Quantum effects are easily taken
into account and reproduce the diffusion by tunneling expected for very light atoms (H)
on metal surfaces (HAUG and METIU [1991], ZHANG et al. [1990]).

The next step in the analysis is to deduce a macroscopic surface diffusion coefficient
Dy as a function of the individual atomic jump frequencies (that is, including the defect
concentrations) which have been measured or calculated. Following CHOI and SHEWMON
[1962], one is intuitively led to write it as:

1& .
Dy =—Y Td’
4i=1

where p is the total number of jump types, I'; and d, their frequency and length.
However, this expression holds only under restrictive conditions:

— All the diffusion mechanisms must contribute independently to matter transport. At
each step, the diffusing atom should be allowed to make a choice between all the p
available jump types which are at its disposal.

— All the sites of the surface should be equivalent. The defects should be in equilibrium
everywhere and their concentrations should be uniform all over the surface, with no
preferential occupancy or trapping sites. This requirement can only be met for close-
packed perfect surfaces with no ledges or kinks, e.g., a (111) surface in the fcc lattice.

Real surfaces are not perfect: ledges and kinks are thought to trap the defects.
Moreover the jump frequency for the motion along a ledge is different from the
frequency for jumping over the ledge. If ledges and kinks could be uniformly distributed
over the surface, the equivalence of the surface sites would be maintained and the same
expressicn of Dg could still be used.

As a matter of fact, we know that the misorientation of a real surface from a perfect
one is provided by one (or more) periodic array(s) of ledges and kinks. This periodicity
(as opposed to uniformity) contradicts the assumption of equivalence between sites, and
a new analysis has to be carried out. This has been done only for (310), (h10) and (h11)
surfaces (h is any positive integer) of the fcc lattice (COUSTY et al. [1981]; CousTy
[1981]), thanks to the atomistic approach which has been already worked out for grain-
boundary diffusion (BENOIST and MARTIN [1975a, b]): the method consists of defining
a new unit supercell containing all the different types of sites and making up such a
basic pattern that it can be used to generate the surface sites by translations in two
directions. Effective jump frequencies across this cell, in the direction of the ledges and
perpendicularly to them, can be determined by matching the solution of the discrete
approach to Suzukoa’s solution with the same boundary conditions. The exchanges of
matter between bulk and surface are taken into account; but, in its present form, this
model requires the knowledge of the atom jump frequencies out of (and into) all the
different types of surfaces sites, which is far beyond the scarce experimental information
presently available. Careful tracer measurements have been performed con such Cu
surfaces, yielding the diffusion coefficients parallel D, and perpendicular D, to the steps.
The main result is that D, is found not to depend on the step density; conversely, D,
increases linearly with it, and is thought to decrease with the kink density along the steps.
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7.4.2. Experimental results

74.2.1. Microscopic data. The Field Ton Microscope (FIM) technique (ch. 10,
§5.2.1.) has provided an irreplaceable insight into the migration mechanisms and
migration energies of adatoms deposited on low-index surfaces. Table 9 sums up the
experimental values (rounded to the nearest tenth of an eV for simplicity) which have
been obtained on W (CowaN and TSONG [1975], GRAHAM and EHRLICH [1974, 1975],
FLAHIVE and GRAHAM [1980b]), Ni (TUNG and GrRAHAM [1980]), Rh (AYRAULT and
EHRLICH [1974]) and Pt (BASSETT and WEBBER [1978]). Solute adatoms diffusing on
surfaces have been reviewed (EHRLICH and STOLT [1980]), and the modification of self-
diffusion on surfaces to which impurities have segregated is treated in ch, 13, §5.2. An
interesting and recently published overview must be quoted (EHRLICH [1994]). Calcu-
lated values have not been included since they are intrinsically short-lived and submitted
to the fluctuations of the continuous theoretical improvements appearing on the scientific
market.

The anisotropy of the adatom jump frequency, which is theoretically expected from
the geometrical structure of the surface, is often observed. But it depends on the
chemical nature of the diffusing adatom: on the (110) surface of Pt, Au adatoms diffuse
only along channels parallel to <110> whereas Pt and Ir adatoms diffuse two-
dimensionally with no noticeable anisotropy (BASSETT and WEBBER [1978]).

All the calculations performed so far indicate that diffusion should be very easy on
(111) surfaces of fcc metals; this is experimentally observed for Rh but not for Ni, and
this difference is not yet understood.

Recent FIM experiments have measured the trapping energy of a self-adatom to a
foreign one buried in the first surface layer (KELLOG [1994]); a complex exchange
mechanism has also been observed for Re deposited on an (100) Ir surface (CHEN and
TSONG [1994]); the trapping energy, when measured, is large and comparable to (or even
higher than) the migration energy on the surface.

Remarkable results have been obtained by the promising technique of He scattering
spectroscopy, since not only the frequencies but also the jump vectors are measured. The
diffusion anisotropy (and, thus, the crystalline character) is maintained on (110) surfaces
of Pb close to the melting point: jumps along close-packed rows are more frequent and
often multiple, when compared to transverse ones. The resulting diffusion coefficient is
larger than that in the bulk liquid phase (FRENKEN et al. [1990]); this result is not in
agreement with recent simulations on metallic Cu aggregates suggesting that partial
surface melting might occur at high temperatures (NIELSEN et al. [1994]). The diffusion
of isolated Na atoms on (100) Cu surfaces proceeds via a significant fraction of multiple
jumps between 200 K and 300 K (ELL1s and ToenNNIES [1993]); but the extraction of a
migration energy requires a careful separation of the vibrational and of the diffusional
component of the observed spectra (CHEN and YING [1993)).

‘We must remember however that such data, although of importance, cannot be used
to deduce straightforwardly an absolute value of the surface diffusion coefficient Dg or
any information about its possible anisotropy, for two reasons:
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Table 9
Experimental values of migration energies of self-and-solute adatoms on various low-index planes
obtained by FIM technique (in eV).

Diffusing Studied surface
adatom (// and | stand for paralle] and perpendicular to dense rows)

W (110) W (211), W (321),
w 0.9 0.75 0.85
Ta 0.75 0.5 0.7
Re 1. 0.85 0.9
Ir 0.75 0.6
Pt 0.65
Mo 0.55

Rh (100) Rh (110), Rh(110),  Rh (111 Rh(113),  Rh(133),
Rh 0.9 0.6 0.9 0.15 0.55 0.65

Pt (110), Pt (110), Pt (113), Pt (133),

Pt 0.85 0.8 0.7 0.85
Au 0.65 0.55
Ir 0.8 0.8 0.75

Ni (100) Ni (110), Ni (110), Ni (111) Ni (113), Ni (133),
Ni 0.65 0.25 0.3 0.35 0.3 045

— The surface diffusion coefficient Dy incorporates the concentration of defects, which
cannot be reached by the FIM technique since the diffusing atom is deposited from a
vapour onto the surface at a temperature where no matter exchange between the bulk and
the surface is allowed: the adatom is therefore in high supersaturation and its formation
energy cannot be measured with this technique. On the other hand, the formation energy
of advacancies has been tentatively measured above room temperature by positron
annihilation on copper and silver. The values which are reported are close to 1 eV within
experimental uncertainty, that is, only 20% lower than the corresponding energy in the
bulk (LYNN and WELCH [1980]). But an appropriate model for the state of a positron at
a metallic surface is not presently available and the validity of this technique for probing
the advacancies is still questioned (KOGEL [1992], STEINDL et al. [1992]).
— The surface diffusion coefficient Dg is usually measured at a range of much higher
temperatures where other diffusion mechanisms may come into play.

7.4.2.2. Macroscopic data. Mass transfer experiments consist in measuring the rate
at which a solid changes its shape (at constant volume) in order to minimize its surface
free energy. Several techniques can be used: thermal grooving of a grain boundary
(MuLLINS and SHEWMON [1959]), blunting of a sharp tip observed by conventional
transmission electron microscopy (NICHOLS and MULLINS [1965a]) or scanning tunneling
microscopy (DRECHSLER et al. [1989]), decaying of an isolated (or of a periodic array of)
scratch (es) (KING and MULLINS [1962]; NicHOLS and MULLINS [1965b], JAUNET e al.
[1982]). The possible contributions of bulk diffusion or the evaporation—condensation
mechanism must be subtracted to deduce the part due to surface diffusion only. This
technique does not yield the surface diffusion coefficient Dg but the product ysD, (where
vs is the surface tension) or, more precisely, some average of this product over the
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orientation of all the facets making up the macroscopic profile.

A second technique involves the use of a radioactive tracer and consists in measuring
the concentration profile of the diffusing species on surfaces of well-defined orientation:
it has been used for pure copper (COUSTY et al. [1981], GHALEB [1983]). This technique
does not yields Dg but the product §Dg where 8 is some “thickness” of the surface layer
in the continuous approach. For both techniques two crucial points must be checked
throughout the diffusion run:

— The absence of any impurity or any two-dimensional superstructure of impurities, both
of which might significantly alter the diffusion rate (BONZEL [1976]).

— The absence of any reconstruction of the surface: this point can only be checked for
the radiotracer technique, because mass transfer experiments are performed on surfaces,
the profile of which evolves in time.

Three points must be noted: (i) The apparent activation energy for self-diffusion is
systematically and significantly larger than the migration energy of adatoms which is
measured with the FIM technique. The difference is attributed to the energy which is
required to form the defects contributing to matter transport. This means physically that
the density of defect sources and sinks (steps, kinks) is probably large enough to insure
the equilibrium defect concentration throughout the experiment at such temperatures. (ii)
The self-diffusion Arrhenius plot is often curved (RHEAD [1975]). If this curvature is not
an artefact of the experimental techniques, several explanations can be proposed:
contribution of several kinds of defects (advacancies and adatoms, clusters of adatoms,
etc.), contribution of multiple jumps, formation of thermal kinks (NEUMAN and HIRSCH-
WALD [1972]), local melting of the surface (RHEAD [1975]). (iii) Whether the crystallo-
graphic structure of the surface induces a marked anisotropy of the surface diffusion
coefficient or not is still a matter of controversy: at 0.6 T,, on (110) surfaces of pure
nickel, the scratch-decaying technique shows a rather large anisotropy (between one and
two orders of magnitude: BONZEL and LATTA [1978], JAUNET et al. [1982]), whereas the
tracer technique for copper self-diffusion (Cousty [1981]) or for silver diffusion on
copper (ROULET [1973]) exhibits only small differences (at most a factor of 4).

Another route has been followed with diffusion studies at higher coverages ranging
from several tenths of a monoatomic layer to several layers (thick deposites) (BUTZ and
WAGNER [1979]): these experiments yield a chemical diffusion coefficient, implying the
intervention of significant adsorbate—adsorbate interactions. Extensive numerical
simulations have been performed to explain how to determine the pronounced maximum
of the diffusion at compositions corresponding to ordered structures (BOWKER and KING
[1978a,b], UEBING and GOMER [1991], TRINGIDES and GOMER [1992]).

Several points remain somewhat obscure today:

— in the presence of various contaminants (Bi, S, Cl) the surface self-diffusivity can
be increased by orders of magnitude and reach much higher values than those typical of
bulk liquid state, as high as 10 m%s (RHEAD [1975]). As a rule, chemical interactions
of non-metallic character play an important role and give rise to very high surface
diffusivities on ionic crystals like alkali-halides for instance (YANG and FLYNN [1989]).

- surface electromigration of metallic adatoms on semi-conductor surfaces differs
markedly from the bulk case; the electrostatic field is 10° times larger, whereas the
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current density is 10° times smaller. As a result, the electrostatic driving force on the
solute adatom is much larger than the wind force from the charge carriers, and the
metallic ions move in most cases towards the cathode. However, the reversal of the
migration direction for Al on (111) Si as a function of the deposited layer thickness is
not understood (YASUNAGA [1991]).

— the connection between diffusion and the possible existence of precursor effects in
wetting is not understood (ADDA ef al. [1994]).

8. Diffusion under non-equilibrium defect concentrations

Up to now we have discussed diffusion problems involving point defects in thermal
equilibrium. In particular, we focused mainly on vacancies; but in some conditions, often
of a great technological importance, a high supersaturation of point defects, interstitials
and vacancies, can be sustained in steady state. With respect to diffusion, an acceleration
of kinetics is the main phenomenon to be observed. Interstitials however have in most
cases a high formation enthalpy, and therefore a zero equilibrium concentration. In the
case where interstitials are created, apart from an acceleration, new phenomena which are
unknown at equilibrium can appear, as we shall see in § 8.3.2.

If point defects are created in a material exceeding their thermal equilibrium
concentration, a supersaturation will build up, which results from a competition between
creation and elimination, and enhances the diffusion. The new diffusion coefficient can
often be written as :

Dacc = kava + kiDiCi (74)

where k;, and k, are coefficients depending on the various jump frequencies of the
defects, D, and D, are their diffusion coefficients and C, and C, their fotal concentrations.
The problem of enhanced diffusion is then to calculate the actual C; and C, according to
the experimental conditions of creation and elimination.

Many situations are now known in materials science where this situation prevails.
Without claiming to be exhaustive, we mention the following cases: (i) If vacancy sinks
are not very efficient in a sample submitted either to a quench or to a temperature
gradient, we can observe a vacancy supersaturation. (ii) Such a supersaturation can also
be created in an alloy by vacancy injection from the surface by a Kirkendall mechanism
due to preferential depletion of one of the components, by dissolution or oxidation
(BURTON [1982], STOLWUK et al. [1994]). (iii) Point defects are also created during
plastic deformation. (iv) Under irradiation by energetic particles, a high level of
supersaturation can be sustained.

In all these cases the point defect supersaturation is able to accelerate the diffusion
and to induce various phase transformations. Let us look first at those cases which
involve vacancies only.

8.1. Quenched-in vacancies

Vacancy sinks include free surfaces, dislocations and grain boundaries. Vacancies can

References: p. 651.
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also be lost for diffusion by agglomeration as dislocation loops, stacking fault tetrahedra
or voids. In some cases (very low dislocation density or surface oxidation for example),
the sinks become ineffective, and a supersaturation builds up in the volume which in turn
enhances diffusion beyond the thermal equilibrium value. A very important example of
the role of quenched-in vacancies is given by the kinetics of age-hardening in alloys
displaying precipitation-hardening. We know that GP zone formation is far too rapid to be
accounted for by thermal diffusion only: the role of quenched-in vacancies was stressed
early (GUINIER [1959]) and later the importance of vacancy-solute complexes (GIRIFALCO
and HERMAN [1965]) was recognized in the so-called “vacancy pump” model.

Another very interesting application is the enhancement after a quench of the ordering
kinetics in alloys. This phenomenon is at the root of a method for studying defect
properties in metals by relaxation measurements (§ 2.2: see also RoBROCK [1981]).

The quenched-in vacancies could also be at work in samples undergoing diffusion
under strong thermal gradients (MATLOCK and STARK [1971]). These authors measured
the heat of transport of aluminium and found Q,; values of 46 kJ/mole in a single
crystal and —8.4 kJ/mole in a polycrystalline sample, pointing to the importance of the
vacancy formation enthalpy in eq. (72). The same conclusion was drawn from measure-
ments of solute diffusion in a temperature gradient in aluminium or silver (MCKEE and
STark [1975]), SHIH and STARK [1978]). In all these cases, grain boundaries are
apparently the only efficient vacancy sinks. The polycrystalline sample is then at
equilibrium but not the single crystal. In this last case the hot end imposes its vacancy
concentration to the cold one. Therefore the diffusion coefficient is fixed by (i) the hot-
end vacancy concentration, (ii) the local vacancy mobility, and is then strongly enhanced
in the cold part of the sample. The same effect has been recently observed by HEHEN-
KAMP [1993] in silver using radiotracer measurements and the positron annihilation
method. The level of supersaturation observed is of the order of 50 to 100. One can
wonder wether at these levels, nucleation of cavities or vacancy clusters should not
occur, since they have already been observed in Kirkendall’s or electromigration
experiments at much lower supersaturations in the same material (MONTY [1972]).
Moreover carefully controlled experiments failed to detect such an effect in aluminium,
either by measuring the local silver diffusion coefficient at different places along the
gradient (BREBEC [1977]), or by measuring the actual vacancy sink activity also all along
the gradient by a method using the deplacement of inert markers (LIMOGE [1976a]).
Indeed the establishment of a strong enough temperature gradient in a metallic sample is
a difficult task, and artefacts are not always avoided, giving rise to an actual gradient
much less than expected.

8.2. Cold-work-induced defects

It is now firmly established that during plastic deformation, point defects, probably
mainly vacancies, are created by dislocation interactions (WINTENBERGER [1959],
FRIEDEL [1964], GONZALES ef al. [1975a,b]). Two main origins have been proposed. The
first one correspond to the annihilation of sufficiently elongated dipoles of edge
dislocations which “evaporate” as defects, and the second to non conservative motion of



Ch. 7,88 Diffusion in metals and alloys 635

jogs. The first process is believed to occur mainly in the walls of the dislocation cell
structure observed during fatigue experiments or in persistent slip bands (P.S.B.). If we
neglect the thermal elimination of defects, a typical concentration could amount to 107
at. (EssMAN and MUGHRABI [1979]). However, the very high dislocation density in that
case probably prevents such a high supersaturation level (RUOFF and BALLUFFI [1963]).
In the second case the production rate could amount to 107 at. in typical low cycle
fatigue experiments, and elimination occurs by diffusion to the walls of the cell or by
sweeping by the moving dislocations (TSoU and QUESNEL [1983]). The supersaturation
can be quite large at not too high temperatures. Whatever the production mechanism,
these excess vacancies have been shown to produce cavity nucleation and growth during
fatigue tests in various alloys (ARNAUD er al. [1985]). It is then clear that diffusion will
be also accelerated, but that any attempt to determine this enhancement by classical
macroscopic methods (§ 2.1) is hopeless. Artefacts due to surface roughness induced by
the slip bands (RUOFF [1967]) or pipe diffusion in dislocation will always screen the
actual effect. However, this enhancement can be rendered visible by a local method
sensitive to a small number of jumps, such as the Zener effect (NEUMANN et al. [1961])
or GP zone formation kinetics (KELLY and CHioU [1958]). Indeed an acceleration of
diffusion has been observed by NM.R. (see §2.2.2.1.) in a deformed NaCl crystal
(DETEMPLE et al. [1991]). The same phenomenon is believed to be at the origin of the
dynamic boron segregation at grain boundaries in microalloyed steels: the excess
vacancies created during rolling (deformation rates of 1-10/sec.) drag the boron atoms
to boundaries by a flux coupling mechanism (MILITZER et al. [1994]).

8.3. Irradiation-induced defects

The knowledge of the various effects of the irradiation of solids by energetic
particles, electrons, neutrons, ions, or photons, is of paramount importance in several
domains of materials science: nuclear industry, microelectronics or surface treatment,
among others. The topic has been reviewed several times, but not exclusively, by ADDA
et al. [1975], S1zMAN [1978], ROTHMAN [1981], BREBEC [1990], WOLLENBERGER ef al.
[1992], MARTIN and BARBU [1993]. The domain encompasses three main topics:
radiation-enhanced diffusion, segregation and precipitation and phase changes, all of them
being generally more or less present simultaneously in any radiation environment.

8.3.1. Irradiation-enhanced diffusion

Fig. 19 shows the result of a diffusion measurement by a tracer method in nickel
under self-ion irradiation at an energy of 300 KeV. Three parts can be seen in this graph:
thermal diffusion at high temperature; between 1000 K and 700 K, a radiation-enhanced
domain corresponding to a thermally activated regime with a lower activation energy;
and below 700 K, an athermal part. The efficiency of this last mode is quite high, the
resulting squared displacement amounting to 125 A*dpa. (MULLER et al. [1988]). Clearly
the origins of the enhancement must be multiple in order to explain this behaviour.

References: p. 651.
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Fig. 19. Self-diffusion coefficient in nickel under self-ion irradiation at 1.2 10 dpa/s, full symbols, or 1.2 10
dpa/s, empty dots, dashed line thermal self-diffusion.

8.3.1.1. Defect creation. Under irradiation by energetic particles, the atoms of an
alloy suffer elastic and inelastic collisions with the projectiles. Except for very high
densities of energy transfer, of the order of several KeV/Angstrom (BARBU et al. [1991]),
the electronic excitations are not expected to produce defects. On the contrary the part of
the energy which is transfered elastically to a target atom (the primary knocked atom or
PK.A. ) will displace it, if the transfer is higher than a threshold E; of the order of 20
to 50 eV in metals. A Frenkel pair is then created, a lattice vacancy on the initial site
and an interstitial on the arrest position. If the energy received by the P.K.A. is high
enough, it will in turn act as a projectile and initiate a cascade of displacements, also
called a displacement spike, in the target. The interstitials being created generally at the
end of a replacement collision sequence (R.C.S.) will be found at the periphery of the
cascade and the vacancies form a dense core at the center. The higher the collisionnal
cross section between the moving atoms and the atoms at rest, the more frequent the
collisions and the denser the cascade. However a new picture has appeared recently
according to which the cascade core is in fact in a molten state, the so-called thermal
spike, since the mean kinetic energy of the atoms in the cascade core during 10™ sec can
amount approximately to 1 eV. This picture is mainly based on Molecular Dynamics
simulation results (DiaZ DELA RUBIA et al. [1987]). In this picture the vacancy creation
is the result of the ultra fast quench of the molten core, the interstitials are created either
by the few R.C.S. escaping from the melt or by a new mechanism of interstitial loops
punching from the melt (DIAZ DELARUBIA and GUINAN [1992]).

The number of defects created is generally given in the literature with respect to the
formula Ny=KT/2E;, (TORRENS and ROBINSON [1972]) where Ty, is the elastic energy
given to the lattice and K an efficiency factor near 0.8. However as soon as the energy
of the PK.A. is higher than a few keV, the vacancy rich core contains too many defects,
and collapses more or less into clusters, even at liquid He temperature. The number of
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detectable defects is therefore reduced to roughly one third of the above mentioned N,
(AVERBACK et al. [1978]). At higher temperatures the defects start to diffuse thermally,
and their very inhomogeneous distribution triggers an efficient elimination, either by
vacancy-interstitial recombination or by clustering. Finally the fraction of defects able to
produce radiation enhanced diffusion is further reduced down to a few percents of N, in
the case of dense cascades. The efficiency of the radiations for producing the so-called
freely migrating defects is therefore decreasing from 1 MeV electrons, which are
producing only isolated Frenkel pairs with an efficiency of 1, to the heavy ions and even
more neutrons which give rise to an efficiency going down to a few 107> (WIEDERSICH
[1990]). (See also ch. 18, §4.)

8.3.1.2. Collisional diffusion. This effect is also frequently called Jon-Beam Mixing,
and has been recently reviewed (AVERBACK and SEIDMAN [1987], REHN and OKAMOTO
[1989], CHENG [1990]). Indeed, inside a collision cascade the atoms, as a result of the
collisions or of the molten state of the matter, will experience an enhanced diffusion not
solely due to the presence of point defects. Four origins have been proposed for this new
mobility: i) the direct displacement of the knocked atoms, ii) the displacement under
subthreshold collisions of the defects already present, iii) the activated jumps of the same
defects in the intense thermal field of the spike, iv) the diffusion in the molten core. The
first term has been repeatedly shown to give rise to too low a mobility, some A%sec at
most under heaviest ion irradiations, for explaining the kinetics of ion-beam mixing
(LIMOGE et al. {1977], SERAN and LiMOGE [1981], BARCZ et al. [1984]), despite careful
theoretical modeling (LITTMARK and HOFFER [1980]). Nevertheless this negative result
has been recently questioned, at least in low Z matrices (KOPONEN [1991]). In the second
approach (SERAN and LIMOGE [1981]), the vacancy defects are expected to jump under
subtreshold collisions along dense rows ([110] in fcc metals), i. e. involving an energy
lower than E,;. Taking into account the actual vacancy concentration in the cascade the
above mentioned order of magnitude (fig. 19) is easily explained without any further
assumption. The third approach also furnishes the proper order of magnitude provided the
migration enthalpy is reduced to roughly one third of the normal value (KM et al.
[1988]). The differences between these last two approaches is probably rather small, and
they can be viewed as different points of view on the same phenomenon, since each of
them rely on a highly idealized description of the state of the matter inside the core,
discrete energy transfers in the first case, and equilibrium thermal effects in the second.
In the fourth model, atoms are diffusing in the liquid core of the cascade (JOHNSON et al.
[1985]). Assuming even in the liquid state a thermally activated diffusion scaling with
the cohesive energy of the solid, and taking into account the thermodynamical factor in
the liquid (see eq. (7)), a qualitative agreement with experimental results can be obtained.

Nevertheless the present authors have the feeling that several well established results
(correlation between mixing efficiency and characteristics of diffusion by a vacancy
mechanism in the solid, no effects of the solute atomic mass on the mixing (KIM et al.
[1988])), are not well accounted for in this approach. On the one hand the actual mixing
is probably the result of the superposition of at least the first three effects; on the other
hand we are still lacking of a proper model for the physical structure of the cascade core, for
which neither the liquid droplet nor the heavily damaged solid are perfectly adapted concepts.

References: p. 651.
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8.3.1.3. Diffusion by thermally activated jumps. This mode of diffusion enhance-
ment, usually called radiation-enhanced diffusion (R.E.D.), can be observed in a medium
temperature range, fig. 19, where it is controlled by the thermally activated jumps of the
freely migrating defects created by the irradiation. According to the § 8.3.1.2. the denser
the cascade, the higher the plateau due to ion-beam mixing, and therefore the narrower
the domain of R.E.D. The contribution of the free defects to diffusion is controlled by
the equation (74). Two methods have been used for calculating the defect concentrations
C, and C,. The first is the Monte Carlo simulation method (DORAN [1970], LANORE
[1974]). We have no space to discuss it here and refer the reader to the original articles.
The other one, a quasi-chemical approach, was initially proposed by LOMER [1954] and
progressively refined since. The ingredients of Lomer’s model are the following:
— production rate G of spatially uncorrelated point defects (the so called freely migrating
ones)
~ motion by random walk with coefficients D; and D,
- annealing by mutual recombination at a rate K, at fixed sinks (supposed to be
uniformly distributed) at rates K; and K,, or at surfaces, generally treated as a boundary
condition
- only pure metals where considered in the initial formulation, but now the extension at
least to dilute alloys has been done, in the limit of a solution remaining homogeneous.

Since interstitials are present the set of equation (1)-(3) (§1.2.2.) has to be com-
pleted. The necessary coefficients have been calculated by BARBU [1980] and ALLNATT
et al. [1983] for fcc dilute solutions (see also §4.2 and § 5.1.2 for concentrated alloys).
It can be shown using a proper thermodynamic model of the solution that the four fluxes
can be written:

QJ; = =D, VC, — Dy, VC, — (M, + M3 VG,
QJ, = -D,VC, - D,,VC,

QJ, = -D,VC, - D,VC,

J,==dg+1J, -1,

(75a)

These equations define i) in the absence of solute concentration gradients the
diffusion coefficient of the defects Dy and Dy, written above D, and D, for simplicity,
ii) in the absence of defect concentration gradients the diffusion coefficient of B,
My, + My, which can be put easily in the form (74). If the solute concentration remains
homogeneous, the defect concentrations are then solutions of the following equations:

ac,

=G-— DiV(QJV) - KrCle - KV(CV - C‘(") )’
K (75b)
E=G- Div(QJ,) - K,CC, - K,C,

where Cy is the concentration of thermal vacancies.
These equations have generally to be solved numerically. Nevertheless, far from the
surface, after a very complex transient regime, the duration of which is of the order of
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1/K, with K the lower of K, and K;, one obtains under the hypothesis of the interstitials
being the more mobile defects, a steady-state regime characterized by:

- D,C;=D, (C,— Cy) when elimination at sinks prevails

-C=C,- Cy when mutual recombinations prevail

- C,~(G/D,)" at low temperatures, i.e., for dominant mutual recombination

- C,~(G/D,) L at high temperatures, i.e., for dominant sink elimination, where L is the
mean distance between sinks. At very high temperatures, T/T, 20.5, the defect mobility
is sufficient to prevent any noticeable defect supersaturation, and the enhancement is
negligible. In table 10 are given the main characteristics of D,_, [see eq. (74)] in Lomer’s
model. To analyze the experiments it must be kept in mind that in most cases they are
done near the surface: a correction is then necessary (ERMERT et al. [1968]).

In dilute solid solutions we can observe rather severe effects on defect mobility
whenever i) a strong defect-solute attractive interaction exists, ii) the pair is immobile (in
the case where the pair cannot migrate without dissociating). These two conditions are
not linked to one another for the vacancy, but are for the dumbbell interstitial in fcc
structures, except may be for very small solutes. In this case the so-called caging effect
induces a strong decrease of the mobility of the interstitial defect in the alloy, as long as
the concentration is not higher than the percolation limit in the given structure. Beyond
this limit the defect can find diffusion paths which do not break the pair (ROCQUET
[1986]).

The enhancement being noticeable only at low temperatures, that is at low mobility,
D,.. will be lower than 10™® m%s, and the experiments are very difficult. This fact, as
well as the badly known actual level of freely migrating defects, can explain the fairly
general discrepancy which has been observed for long between the tracer experiments
and the predictions of Lomer’s model. The measured values were generally too high,
either in self or solute diffusion (ADDA et al. [1975], BREBEC [1990]). However, Lomer’s
model also rests on numerous approximations, for example in the calculations of the
various rate terms, K, K; or K,, particularly in concentrated alloys [eq. (74)].

Relaxation methods, however, are well suited to this case, owing to their high
sensitivity, and their ability to follow all along the kinetics during the complex transient

Table 10
Characteristics of D, ., in Lomer’s model [eq. (74)]; after ADDA ef al. [1975]

Régime of climination Activation energy of D, Dose-rate dependence
(G =dose rate)

Term due to Term due to Total

interstitials vacancies
Recombination only iH, H,-\H. complex G
in the transient regime
Elimination on sinks 0 0 0 G
Elimination both by
recombination and on sinks  1H}, iH, +H, G

Hi, and H, are the migration enthalpy of, respectively, the interstitial and the vacancy.
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regime preceding the stationary state. The results of HALBWACHS [1977], HALBWACHS
and HILLAIRET [1978] and of HALBWACHS et al. [1978a,b] on Ag—Zn alloys by Zener
relaxation display a good agreement with the predictions of Lomer’s model, if one
assumes that, in these alloys, the vacancies are less mobile than interstitials. The use of
electron irradiations avoided the ambiguity of the actual level of freely migrating defect
production. This result, confirmed by electron-microscopy studies (REGNIER and
HALBWACHS [1980]), has given the first evidence of the large pairing effect on the
interstitial mobility in solid solutions.

The tracer experiment which has probably for the first time evidenced the R.E.D. in
self-diffusion is the one depicted in fig. 19. The authors have been able to adjust in a
coherent manner on the experimental results the various parameters entering the model;
in particular they invoke a temperature dependent sink density and an efficiency for the
production of freely migrating defects amounting to 1.5% only of the Kinchin and Pease
value, in agreement with the recent simulation results on defect production in cascades.

8.3.2. Irradiation-induced segregation and precipitation

Irradiation-induced segregation, leading eventually to precipitation in undersaturated
alloys, is now a well established phenomenon in a large number of systems (for a quite
recent review of experimental results see RUSSELL [1985], also ENGLISH ef al. [1990]).
We display in table 11 the characteristics of such precipitation in a few binary alloys.
This effect has to be clearly distinguished from a simple radiation-enhanced precipitation
in an oversaturated alloy.

At a given defect creation rate G, the segregation or the precipitation of a non-
equilibrium phase appear in a well defined temperature interval (see figs. 20 and 21). A
new variable, or more precisely a new control parameter, has to be added to the classical
phase diagram: the defect creation rate (or irradiation flux), in addition to temperature,
pressure and composition (ADDA et al. [1975]).

Two ways have been explored to explain these results. The first one is a constraint-
equilibrium one: the stored energy due to point defects might displace the free enthalpy
curves, to such an extent that it renders stable under irradiation a phase which is
normally unstable. Careful calculations of this effect have shown that the order of
magnitude of the possible displacement is too low to explain the great majority of the
results (BOCQUET and MARTIN [1979]). In the second approach, initially proposed by
ANTHONY [1972] for vacancies, the elimination of irradiation-created point defects by
diffusion to sinks, like surfaces or dislocations, results in defect fluxes which induce,
through the flux coupling terms, local solute supersaturations. These supersaturations can
grow beyond the solubility limit, resulting in a precipitation. Indeed both terms Dgy, and
Dy, (eq. 75a)), if positive, can give rise to such a segregation.

Many authors have developed this idea for dilute alloys and proposed more or less
approximate expressions for the coupling terms due to interstitials (OxAMOTO and
WIEDERSICH [1974], JoHNSON and LAM [1976], BARBU [1978, 1980]).

As shown in table 11, two forms of segregation or precipitation have been observed,
and can be explained in the present framework. The first one is heterogeneous, and
occurs on sinks, either pre-existing to, or created by, the irradiation. The most elaborate
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Fig. 20. “Phase diagram”, in a flux-temperature section, for the system Ni-Si irradiated by 1 MeV electrons
(after BARBU and MARTIN [1977]). Solid line; precipitation borderline for a concentration of 6 at% Si, dashed
line idem for 2 at% Si.

numerical solutions of the above set of equations give a fairly good account of experi-
mental results. In particular, the role of sinks, dislocation loops or surfaces is well
understood. Nevertheless in this approach the position and the slope of the low-tempera-
ture borderline remains to be explained (BARBU [1978]). In all theses models the solute
supersaturation results from a balance between the interstitials, which always carry the
solute down the gradient and the vacancies, which can act in both directions (BARBU
[1980]). At higher temperatures the phenomenon disappears owing to the lowering of the
defect supersaturation.

A second kind of precipitation, the homogeneous precipitation, was discovered later
(table 11), where precipitates are not associated with any pre-existing defect sink. By
studying the stability of the set of equations (75) with respect to concentration fluctu-
ations, CAUVIN and MARTIN ([1981], [1982]) have been able to show that, due to the
recombination term, the homogeneous solution can become unstable with respect to small
concentration fluctuations, giving rise to solute precipitation. Before reaching this
instability, the system may become metastable with respect to the growth of large enough
precipitates. The analysis of the nucleation problem taking into account the
supersaturation of defects, allows to calculate a solubility limit under irradiation. Models
have been proposed for incoherent precipitates of oversized solutes (MAYDET and
RusSELL [1977]), or coherent ones, wether over- or under-sized (CAUVIN and MARTIN
[1981], [1982]), the latter providing a good agreement with results obtained in Al-Zn
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Fig. 21. Solvus line in the Al-Zn system under 1 MeV electron irradiation (after CAUVIN and MARTIN [1981]).
Open half-circles: no precipitation; solid half-circles: precipitation at low, or high, flux; dashed line: solvus line
without irradiation.

Table 11
Binary alloys where radiation-induced precipitation has been found.
Alloy Projectile Precipitate Morphology
Ni-Be Ni* jons B-NiBe at interstitial dislocation loops
Ni-Si neutrons v’-Ni,Si at interstitial dislocation loops
Ni* ions v’-Ni,Si at interstitial dislocation loops
electrons v’-Ni;Si at interstitial dislocation loops
H* ions v’-Ni,Si homogeneous, coherent, in regions of
non-uniform defect production
Ni-Ge electrons v’-Ni,Ge at cavities or dislocations lines
Al-Zn neutrons B-Zn homogeneous precipitation
electrons GP zones +3-Zn homogeneous precipitation
Al-Ag electrons {100} silver-rich homogeneous precipitation
platelets
Pd-w H*, N* ions bcc W at dislocation loops
electrons Pd; W homogeneous
W-Re neutrons X-WRe, homogeneous
Cu-Be electrons G.P. zones+y homogeneous
Mg-Cd electrons Mg,Cd ?
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alloys under electron irradiations. The origin of this mode of precipitation is to be found
in the enhanced recombination probability for the defects in solute rich zones in case of
attractive solute-defect interaction.

The theoretical situation is less favourable for concentrated alloys since the available
models both for the thermodynamics and for the phenomenological coefficients are much
less safe (see § 5.1.2). They are generally based on the random alloy model of MANNING
[1971] and discard the specific trapping effects of solutes on the interstitials. As a
consequence they do not introduce properly the coupling terms (WIEDERSICH et al.
[1979]), The more elaborate treatments still suffer from restrictive assumptions
(BOCQUET [1987], LIDIARD et al. [1990]). The interest of treating the thermodynamics of
the alloy and the dynamics at the same level of approximation, has been evidenced by
GRANDIEAN et al. [1994], who where able to reproduce a whole segregation profile in
NiCu alloys.

8.3.3. Irradiation-induced phase transformations

In the two preceding paragraphs we have sketched specific models for irradiation
enhanced diffusion and segregation/precipitation phenomena. More generally an alloy
under irradiation can be described as a dissipative dynamical system which can display
a very rich behaviour in response to an irradiation: the system will develop an evolving
microstructure with voids, dislocations loops, precipitates, displaying, or not, steady
states. The nature and the relative stability of these states can be studied thanks to a
whole bunch of methods like deterministic approaches, Langevin equations, Master
equation, Monte Carlo simulation, ... which allow to draw dynamical phase diagrams.
These topics however are too far from the point of view of the diffusion and the
interested reader can found in the specific section of the bibliography the relevant
references.

Irradiation-induced segregation and phase transformations are further discussed in
ch. 18, §4.7.

9. Diffusion in amorphous metallic alloys

The study of diffusion properties in amorphous metallic alloys (A.M.A.), has been
quite active in the past ten years both because these materials have been used as models
of disorder for more complex glasses, like oxide ones, but also because they pose an
interesting question from the point of view of solid-state physics: what level of structural
disorder is sufficient and/or necessary for invalidating the notion of point defect (LIMOGE
et al. [1982])? The reader is referred to recent reviews (AKTHAR ef al. [1982], ADDA et
al. [1987], MEHRER and DORNER [1989] and LiMOGE [1992b]), and to the general
references on metallic glasses given at the end. The topic is still highly controversial on
some points, so the present authors will try, as everybody engaged in the hottest debates,
to separate as clearly as possible the established facts from more subjective interpreta-
tions.
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9.1. A primer of metallic glasses

Whatever the preparation mode, vapor condensation, ultrafast quench, it is now
recognized that after a proper annealing a unique metastable equilibrium structure is
obtained. We have given in fig. 22 a schematic picture of the evolution of the viscosity
and self-diffusion in a supercooled liquid during a quench. Two parts are clearly
distinguishable. First a high-temperature one, above the so-called glass transition T,
where the system flows. The diffusion mechanism is of a collective type and, as far as
it can be checked, the Stokes—Einstein relationship is obeyed. In this part the well-known
WiLLIAMS-LANDEL-FERRY [1955] expression works as a mere fit at least as well as any
other expression; in particular it describes rather well the near divergence of the viscosity
at a finite temperature T, which gives rise to the phenomenon of the glass transition.
Around T, a rather abrupt change is observed and a new regime sets in, which has all the
characteristics of a mobility in solids. In the following, we will be interested in this latter
part, that is, sufficiently below T,.

As a consequence of these very rapid quenches the glassy alloys are metastable, and
as compared to silicate glasses, more “meta” than “stable”. As soon as an enhanced
temperature allows a sufficient mobility they evolve in a twofold manner. On the one
hand they relax towards the (hypothetical) equilibrium liquid structure, probably
becoming locally more ordered, and therefore decreasing the mobility. On the other hand
if sufficiently large fluctuations of topological and chemical order can form, they will
crystallize; the crystallization is controlled by diffusion.

The study of diffusion is thus a quite difficult task. First the allowed (mobility X
time) window is very limited by the onset of crystallization: most of the measurements
are for example done in a temperature range of less than 100 K, and over two decades
of D at most, the total penetration being typically less than 100 nm in tracer experiments.
Needless to say, the D values obtained are at the lower limit of the available techniques,
imperatively restricting the temperature range where diffusion can be studied. As a
second drawback, during this short time the structure itself will evolve: a proper
preliminary anneal is generally needed for obtaining a reasonably stabilized structure.
This minimum requirement as not been always met in the first studies. Finally, a
characteristic feature of the glasses is the wide distribution of physical properties
prevailing in non translationally invariant systems. As probed by local methods (see
§2.2) activation energy spectra are frequently found with halfwidth of the order of tenths
of an eV.

Glassy alloys have now been discovered in a great number of systems. With respect
to diffusion two families only have been studied: the M-Me group where M is a late
transition metal or a noble one (or a mixing of them), and Me a metalloid in a concen-
tration between 15% and 25% at.; and the M-M group, alloying an early transition metal
(and big) with a late (and small) one in a broader composition range, from 20% to 80%
at. approximately. The level of local order is thought to be much more developed in the
first class than in the second. As a consequence the properties of the two groups are
possibly different. (See also ch. 19, §4).
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Fig. 22. Viscosity (n) and diffusion (D) evolutions during two rapid quenches of a liquid. Above T,, in the
liquid range, 7 and D obey the Stokes-Einstein relation. Below T,, depending on the quench rate, the
isoconfigurationnal viscosity evolves according to the “slow” or the “fast” curve. The Stokes—Einstein
relationship is no longer obeyed, the diffusion being generally much underestimated.

9.1.1. Experimental portrait of the diffusion behaviour

I) At first, a thermally activated equilibrium diffusion can be defined in all these
materials, after a proper annealing. One of the most intriguing characteristics of the
diffusion in A.M.A. is its “normal” behaviour: diffusion is arrhenian versus T (but on a
quite limited temperature range), and not dispersive (penetration plots are gaussian and
D does not depend on time). Apparently D is controlled by a single activation energy Q,
or by a very narrow distribution (but see § 9.3), in contradiction with local measurements
(see above, §2.2).

In table 12 a non exhaustive set of tracer determinations of self-and-solute diffusion
measurements in various alloys have been gathered. They have been choosen according
to the level of confidence the present authors can reasonably have in them. A few of
them displaying quite unrealistic diffusion parameters have however been kept in order
to give a clue to the possible uncertainty remaining in the other ones.

II) In the first class the best measurements have converged toward i) a Q value of the
order of 0.7 to 0.8 of an equivalent solute solvent couple in the crystalline state, ii) the
D, are within +2 orders of magnitude of the corresponding terms. Nevertheless in the
first row the D, value of the P** tracer (5.10™"° m%sec!) is a reminiscence of the stone
age in the studies of glassy metals during which the D, where supposed to be able to
cover 38 (!) orders of magnitude (LIMOGE et al. [1982]). The same comment applies
probably also to P diffusion in the second row; in both cases the value of the P diffusion
coefficient is nevertheless in the same range as the one of the other tracers.

IID) In the second class the diffusion of the late T.M. (Fe, Co, Ni, Cu), small atoms,

References: p. 651.
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occurs with a Q nearly equal to the one prevailing in the a-Zr, but not in the «-Ti
matrix, and a D, of the same order, albeit a bit smaller. A marked correlation has been
found (HAHN and AVERBACK [1988]) between the value of D and the size of the solute,
reminiscent of the one observed in the crystalline a-Zr or ¢-Ti matrices (HooD [1978]).
The diffusivity of small solutes is orders of magnitude larger than the diffusivity of big
ones. With regard to the mobility of the early T.M. (big atoms) the situation is quite
confusing: as probably the mobility is related to the size of the tracer, the results for Au,
Ag, Zr and Hf in the various Zr-rich alloys are not consistent, contrarily to the Ti-based
alloys, where the recent results are more in line with the behaviour of the first group
(row 10). More generally neither for the small nor for the big solutes is the consistency
between nearby alloys in the same laboratory (rows 11 and 12) or for similar systems
in different laboratories (rows 7, 8 and 9) satisfactory. The possibility to deduce from
these results safe values for the activation energies, and even more for the Dy, is not
obvious.

Among the experiments which cast a specific light on the possible atomic mechan-
isms the following results have been obtained.

IV) The isotopic effect has been measured for Co diffusion in a CoFeNbB alloy; it
decreases during the relaxation, from 0.5 to 0.1 in a well-relaxed glass (RATZKE ef al.
[1992]).

V) The activation volume has been determined in a FeNiPb glass for chemical
diffusion yielding a value of 1 ) (LiMoGE [1987], [1990]), in a CoFeNDbB alloy for the
Co tracer, yielding a result of —0.06 {) (RATZKE and FAUPEL [1992]), and last in a series
of NiZr alloys in which the activation volume for the Co tracer varies rather strongly
with the concentration from 0.8 to 1.6 {} (HOFLER et al. [1993]).

VI) Under irradiation, diffusion is enhanced. This has been shown in the first group,
using either electron irradiation, that is producing only isolated Frenkel pairs and
excluding cascade mixing, (BARBU and LIMOGE [1983]), or heavy ions (TYAGI ef al.
[1991a]), and also in the second group using electrons (LIMOGE [1987]) or heavy ions too
(AVERBACK and HAHN [1988]). When measured, the flux dependence is sublinear, of the
order of 1/2, pointing in crystals to a recombination regime (see § 8.3.1.3). Irradiations
at low temperature (30 K) followed by isochronal annealings produce stages similar to
the ones in crystalline metals (AUDOUARD and JOUSSET [1979]).

VII) Positron annihilation spectroscopy, possibly due to the competition between
vacancy trapping and a high level of volume trapping, does not provide a clear answer,
but the results are not incompatible with the existence of vacancy defects in both kind of
alloys (TRIFTHAUSER and KOGEL [1987]).

VIII) As sketched on the figure 22, the Stokes—Einstein relationship is not obeyed
below T,. On the contrary, the viscosity deduced from creep measurements evolves as !
whatever the duration of the experiment (LIMOGE ef al. [1882], LIMOGE and BREBEC
[1988]), at least in the first group of alloys: with regard to the deformation there is no
“equilibrium” structure on any accessible time scale. But the activation energies of
diffusion and viscosity are generally very similar.

IX) Hydrogen diffusion has been reviewed by KiIRCHEIM [1988]. Tt has been much
studied in PdSi and NiTi alloys by various methods. The main characteristic is that D
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Table 12
Diffusion parameters in various metallic glasses.
Alloy Tracer D, m*/sec Ouw Quyat (V) Reference
Fey,Niy P ,Bg Fe® 1.0x10° 2.0 29 a
p* 5.5%x 107" 81 a
Fe* 2.7x10? 24 29 b
Fe,Ni B, P2 1L.ox10% 3.1 b
Ni® 4.0x10™ 2.14 c
Au 1.9%107 2.09 d
Feg, By, Fe® 46x10° 2.1 e
Pd,,CuSi,, Au 12x107° 1.78 d
Fe® 3.1x107 1.5 e
Fe,,Zr, > 2.1x10° 2.5 e
Co¥ 8.0x107 1.52 f
CogoZr), Au'® 7.9%x 10" 2.84
Co0,,Tiy B! 1.77x107 1.63 g
Co® 3.7x107 1.42 1.52 (@ Zr) h
Ni® 1.7x107 1.47 .8 (@ Zr) h
NigZs, Cu 12x10°* 1.69 i
Au 4.8x10° 2.09 i
Hf 8x10™"” .75 j
Ag 1.2x107™ 82 k
CuyZs,, Au 1.3x107 1.55 k
Nig,Tig, B 7.4x107 2.05 1
Be 1.7x 107 22 1
Fe 2.5%x107 233 1.2 (a-Ti) 1
Si 5.8x107* 2.35 1
FexZr,, Fe® 2.6x10! 26 e
Fe* 6.0x10™ 23 <1
Fe, 75,4 Vil 7.0x10° 3.2 3.1

* VALENTA et al. [1981]; ® HORVATH et al. [1985]; ¢ TYAGI et al. [1991b]; ¢ AKTHAR ef al. [1982]; © HORVATH
et al. [1988]; * DORNER and MEHRER [1991]; ¥ LA ViA ef al. [1992]; ® HOSHINO et al. [1988]; | HAHN and
AVERBACK [1988]; § Wu [1991]; ¥ STELTER and LAZARUS [1987]; ' SHARMA ef al. [1993].

increases with the H concentration with a concomitant decrease of both activation energy
and D, term. The diffusion in a Pdg,Si,, alloy can be lower at low concentration than in
the crystalline phase, but higher at high concentration (LEE and STEVENSON [1985]).
These results can be understood by assuming a distribution of site energies for H, the
lowest being filled first and acting like traps which decrease D. A gaussian distribution
is usually assumed (KIRCHHEIM et al. [1982]), although in-elastic and quasi-elastic
neutron scattering are more in agreement with bimodal distributions (RUSH et al. [1989]).
This bimodal distribution has been seen by H permeation studies in a NiTi system (Kim
and STEVESON[1988]).

References: p. 651.
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9.1.2. Mechanism proposals

We enter here a more subjective part. Three possibilities are presently explored,
namely the so-called collective mechanism, the point defect route and the free volume
approach. Lacking space, we will not present here the free volume approach (COHEN and
TURNBULL [1961], SPAEPEN [1981]) since in its present state, it is basically an inconsist-
ent vacancy model (LIMOGE [1992a)]), which moreover contradicts point VIII) above
(among others).

Five reasons are generally invoked to support the proposal of a collective mechanism:
i) the difficulty to figure out a defect in the absence of a lattice, ii) the extreme values
of the Dy’s, iii) the arrhenian behaviour, iv) the small value of the isotope effect, v) the
slightly negative value observed for the activation volume in one alloy. The D,’s have
been shown particularly to be correlated with the Q’s, with a correlation coefficient quite
different from the one prevailing in crystals, obtained through Zener’s model (§ 3.3.3).
This unusual coefficient has been taken as the indication of a new mechanism at work
(SHARMA et al. [1989]). The points i) ii) iii) iv) will be developed in the next two
paragraphs. We have no explanation for the experimental contradictions on point v),
except that diffusion under pressure is an extremely difficult task in itself, and systematic
errors (surface oxidation, thermal gradients, ...) are not easy to avoid, particularly in the
glassy systems for the reasons given above, Moreover negative activation volumes are
difficult to understand in compact phases. We nevertheless have the feeling that the
strongest motivation for that proposal is simply that the glassy state can be obtained in
a continuous evolution from the liquid state, making the transposition very natural,
despite the break in the D versus 1/T plot in fig. 22. No proposal has been made for
describing the diffusion event at an atomic level.

The defect proposal is based on the following ideas: i) a sufficient amount of local
order in amorphous metallic alloys for defining a defect, ii) a close analogy for D, and
Q between crystalline and credible results in many glasses, for similar compositions, iii)
the existence of irradiation effects, iv) the activation volume measurements, v) from point
VIII) above different defects are involved in diffusion and creep, vi) the defect viewed
as an energy density fluctuation which must exist in a glass as in any other thermody-
namic system. A vacancy defect has been proposed for the first group of alloys and
possibly for the large atoms in the second, and an interstitial defect for the small solutes
in the second group.

We have no room here to discuss these proposals in detail and the interested reader
can find quite extensive developments in the reviews quoted at the beginning, or in the
general references given at the end. We would like to emphasize that almost all of these
arguments are mere analogies. In order to get firmer conclusions we need to develop a
better understanding of the atomic mechanism itself, and of its statistical properties. This
is the purpose of the following two paragraphs, chiefly in the case of the vacancy
proposal for which the most developed studies have been done.

9.2. Simulation approach of the self-diffusion process

The direct simulation of the diffusion, generally by Molecular Dynamics, is a delicate
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task since the lowest accessible values of D are of the order of 10™"' m%s given the
present-day limitations of the computing possibilities, to be compared to the 10 m?s
which is the typical goal. The direct simulations are therefore limited to the liguid range,
giving few informations on the solid one. The other way is to devise a (and of course if
possible all) probable atomic mechanism(s), involving a defect or not, and to study its
properties, coming back to macroscopic diffusion using the proper statistical theory.

In the first approach it has been shown several times recently that when the diffusion
becomes of the order of 107" m?s, the diffusion in the liquid turned progressively from
a collective behaviour to a jump one, involving three to five atoms (MIYAGAWA ef al.
[1988], WAHNSTROM [1991]). In the absence of any activation energy determination for
these jumps, it is not possible to determine wether they are still active at the much lower
temperatures which are of interest here, and which role they could play in diffusion. It
is also not possible to build a proper statistical theory for them.

Several works have attempted to characterize point defects in simple models of
glasses, using mostly Lennard—Jones interactions (BENNETT et al. [1979], DoYyaMa et al.
[1981], LAAKONEN and NIEMINEN [1988, 1990]). These studies generally denied any
interest in the notions of interstitial or vacancy, since the latter disappeared quite rapidly
after their introduction into a model glass at a non-zero temperature. However, given the
small size of the systems studied in simulation, and the possibility that a glass contains
sources and sinks for the various possible defects, this elimination is possibly normal if
the temperature is high enough to allow the defect to jump (LIMOGE and BREBEC [1988]).
This is indeed what has been observed in a careful statistical study of the properties of
vacancies in a Lennard-Jones glass: it has been shown that it is possible to define a
vacancy defect in this simple model glass (DELAYE and LIMOGE [1992, 1993a, 1993b]).
These vacancies are associated with a high level of local order, of a spherical nature in
this case. They can jump as soon as the temperature is high enough, and these jumps are
frequently collective like those observed in crystalline metals at high temperature,
involving from three to five atoms. The least ordered regions in the glass act as defect
sources and sinks, and this characteristic feature persists over duration quite long with
respect to the duration of a jump sequence. The thermodynamical properties of the
vacancy (formation and migration energies, entropies and volumes) were shown to be in
quite good agreement with the knowledge gained in actual glasses. We have shown in
figure 23 an example of these thermodynamic properties.

Using the results of the theory of the random walk on a random lattice (see §9.4)
LIMOGE [1992b)] and LIMOGE et al. [1993] have been able to build a model for the
vacancy-mediated diffusion in amorphous metals in reasonable agreement with the
experimental results.

The goal now is to check wether the other mechanisms which can be imagined, can
be characterized and inserted in a statistical model in a similar way, to compare them
with the experiments,

9.3. Random walk on a random array

Due to the lack of translational symmetry, in an amorphous solid the local properties

References: p. 651.
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a. Formation enthalpies, in eV, versus formation volumes, % of an atomic volume.
Rapidly quenched system: (Jat 2.5 kbar.
Slowly quenched system: © at 0. kbar; ®@at 0.8 kbar; £ at 2.5 kbar.
b, Same formation enthalpies as in figure 8a but versus local pressure:
Rapidly quenched system: © at 2.5 kbar.
Slowly quenched system: @ at 0.8 kbar

are distributed. In our case the activation energies determined by local probes show a
more or less broad spectrum (BALANZAT [1980], RETTENMEYER et al. [1986]), correspon-
ding to a very large spreading of the jump frequencies. The site and the saddle point
energies display such a distribution. However they have very different properties and
effects upon diffusion, at least in a 3-D space: the saddle disorder tends to accelerate
diffusion but the site one slows down a tracer particle. It has only recently be realized
that the opposite effects of the two kinds of disorder should produce qualitatively new
kinds of behaviour. A theory of the interstitial diffusion at low concentration, combining
an analytical approach and Monte Carlo simulations, for the random walk on an energeti-
cally random lattice has been built (LIMOGE and BoCQUET [1988, 1989, 1990, 1993]. The
main results are the following:

— with respect to long range diffusion, the two kinds of disorder do not add but more or
less compensate each other. The diffusion coefficient of a tracer particle can be calculated
in a mean field approximation as:

D" = exp[—ﬂ(?c - &) exp(% B? (fo-c2 -o? )D (76)

for gaussian distributions of site and saddle point energies, described by their mean
value, & and &, and their variances, o, and o; f is a slowly varying function of Bo,
as well as of the nature of the underlying lattice, the high temperature limit of which is
unity.

— for values of the 0”’s compatible with the experimental orders of magnitude, as deduced
from the relaxation measurements, the non gaussian regime cannot be detected by
macroscopic diffusion measurements since the dispersive regime lasts at most a few
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jumps, but is accessible to local probes. Once more the two disorders do not add, but the
saddle one appears to be dominant, with regard to the dispersive behaviour.

It is clear from the equation (76) that the residual term (exp (B*(fo2— 02)/2) can be
without proper judgement incorporated into an apparent Dy, thus appearing very much
different from the true pre-exponential factor which is related to an activation entropy (in
the above model D, equals 1); depending on the nature of the dominant disorder, very
large or very low apparent D, are obtained. Using the experimental orders of magnitude,
the expected deviations can amount to very large values, say of the order of 102, even
for undetectable residual curvatures of the Arrhenius plots. Finally, it is interesting to
note that in a non perfectly compensated case, one can easily demonstrate that the result
of this effect is a Zener-like correlation between the apparent preexponential term and the
apparent activation energy, the order of magnitude of which is exactly what is found in
the experimental results (LIMOGE [1992b]).

All the features of diffusion in amorphous metals can therefore be taken into account
at the present day in the framework of the standard defect-mediated models. Of course,
this cannot exclude that other mechanisms could compete and be even more efficient, for
example the collective relaxation events mentioned above. The proper treatment of these
other possibilities, collective or not, is a matter for years to come.

Note added in proof: A very recent work (OLIGSCHLEGER and SCHOBER [1995])
based on M.D. simulations in model glasses reported on the existence of collective
relaxation events of low energy, which could partly answer our questions, if transposable
to diffusion.
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1. Introduction

In this chapter, we give a general view of the formation of the solid from its melt.
This process is generally driven by the extraction of heat from the melt and the first
section deals with heat flow during conventional casting, directional solidification, and
rapid solidification processing. Next, the fundamentals of the freezing process are treated
under the headings: i) Thermodynamics of solidification, ii) Nucleation, iii) Interface
attachment kinetics, iv) Solute distribution for planar and nearly planar solid-liquid (S—-L)
interfaces, v) Cellular and dendritic growth and vi) Polyphase solidification. Subsequent-
ly, fluid flow and associated phenomena are discussed. The last portion of the chapter
deals with the application of these fundamentals to conventional and continuous casting,
welding processes, manipulation of structure and new and emerging solidification
processes. Rapid solidification is not treated separately, but is included in the headings
above in an attempt to provide a general understanding of the solidification process as
the solidification rate is increased.

2. Heat flow in solidification

When hot metal is poured into a mould, the rate at which it can lose heat is control-
led by a number of thermal resistances. Figure 1 shows schematically the thermal
conditions for a simple geomeiry of solidifying metal. In different parts of the metal-
mould system heat transfer may occur by conduction, convection or radiation. The formal
treatment of this problem involves considerable complexity as a consequence of the
continuous generation of latent heat at the moving S-L interface, the nature of the S-L
interface geometry which can be cellular or dendritic for alloys, and the variation of the
physical properties of the metal-mould system with temperature. The major impediments
to the removal of the latent heat are the solidifying metal itself, the metal-mould
interface, and the mould. For these, the solidification process is primarily controlled by
heat diffusion and Newtonian heat transfer across the mould-metal interface. Many
numerical software packages are now available to solve the heat flow problem and are
becoming more widely used to treat the complex shapes involved in industrial foundry
applications.

In the following sections we describe heat transfer inside the solid/liquid metal
system, heat transfer to the mould, examples of heat flow analysis in 1-D and more
complex geometries, as well as software developments and the use of controlled
solidification geometries for research purposes.

2.1. Heat transfer within the solidfliquid metal system

If the system under consideration involves an interface between solid and liquid that
has a relatively smooth shape, as in the case of solidification of pure substances or dilute
alloys, it is convenient to treat the phases as two different media. For pure conduction
heat diffusion equations are applied separately to the solid and liquid.
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Fig. 1. Thermal conditions for solidification of a simple geometry of a pure superheated liquid metal. In the
figure, K corresponds to heat transfer by conduction, N to Newtonian heat transfer across the mould-metal
interface, C to convective heat transfer, and R to heat transfer by radiation.

(%, 1)

div| K grad Ty(%,1)] = C; > 4))
. = L 9L, (3,1)
di[K, grad T,(%,1)] = C; = )
and the heat flux and temperatures are matched at the S-L interface using
KG, - K,G, =LV, 3)
L=T%=T @)

where K =solid thermal conductivity, K; =liquid thermal conductivity, Gg=normal
component of the thermal gradient in solid, G; =normal component of the thermal
gradient in the liquid, V=normal velocity of the S~L interface, 7;=interface temperature
which may depend on curvature and V (see §5), 7 =liquid temperature, 7;=solid
temperature, Cp" =volumetric liquid specific heat, CpS = volumetric solid specific heat,
and L =volumetric latent heat.

Convection within the melt can also be important and influences solidification at both
the macroscopic and microscopic levels. At the macroscopic level it can change the
shape of the isotherms and reduce the thermal gradients within the liquid region. Also the

References: p. 830.
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local solidification conditions, macrosegregation, and microstructure can be affected by
convection. In particular the orientation of columnar dendritic structure, the occurrence
of the columnar-to-equiaxed (CET) transition and nucleation initiated by dendrite arm
detachment are all influenced by convection (see §9).

When solidification of alloys that exhibit a large solidification range are treated, a
mushy zone (see § 7) is usually present. In this case the solid and liquid phases are often
treated as a single domain (RAPPAZ and STEFANESCU [1988] and Rarpaz [1989]). The
heat diffusion equation to be solved is

oT (x, t) )

div[K(T) grad T(%,1)] + Q = Co(T) ——=*
where K(T) is the thermal conductivity, CP(T) is the volumetric specific heat and Q is the
heat source term associated with the phase change.

Al ©
at
with fy(¥,t) being the solid fraction. To solve eq. (5) a relationship for f(£,f) must be
known.

The simplest and most widely used method assumes that f depends only on 7. Then
egs. (5) and (6) can be combined as

II(%,1) t)

po )

div|K(T) grad T(%,1)] = [c (T)-L dT]

This equation can be rewritten according to two different numerical techniques. When the
specific heat method is considered the equation is

di| K(T) grad T(z,1)] = Cy(1) 22 aT(x’ i3 ®)
where C; is an altered specific heat
dfy
Ce(T C,(T)-L—
0= - 155 ®

that includes the latent heat. When the enthalpy method is used, instead of treating the
temperature as a variable, the volumetric enthalpy H is adjusted and equation (7)
becomes

div[K(T) grad T(%,1)] =

JH(%,1)
Y (10

where
H(T) = [[C(T")dT + L1 - £(T)) an

RAPPAZ [1989] discussed the advantages and disadvantages of using the equivalent
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specific heat method (eq. (8)) and the latent heat method (eq. (10)). In standard macro-
scopic modeling of solidification the relationship f5(7), C; (T), or H(T) can either be
deduced from DTA-type measurements or from a simple solute model as that of SCHEIL
[1942] to be discussed in § 6.

More complex methods, where f; is not simple a function of 7, must be considered
if the details of nucleation and growth or solid diffusion (BRODY and FLEMINGS [1966])
are to be coupled to the macroscopic heat flow (Rarpaz [1989]). For example, for
columnar dendritic growth, f; depends on the local isotherm velocity and temperature
gradient, as well as the temperature.

2.2. Heat transfer at the metal-mould interface

The heat flow from the solidifying metal is often limited by the metal-mould thermal
resistance. This resistance is quantified by the value of the heat transfer coefficient, h;,
defined by

q = h(Ts - T,), (12)

corresponding to a Newtonian heat transfer model where ¢ is the heat flux across the
interface, T;g is the metal temperature and T}, the mould temperature, both at the metal-
mould interface. When the melt first enters into contact with the mould wall, the mould
surface is at a low temperature and the liquid is at the melting point plus the superheat.
The thermal contact is not perfect and the h; value depends on the complex nature of the
contact between metal and mould as shown in fig. 2a. Also important are the thermal
resistance imposed by any coating present on the mould surface (BILONI [1977]) and the
“air gap” that often develops between the mould surface and the solidifying metal due to
metal shrinkage (DAS and PAUL [1993]). Consequently, the physical nature of the thermal
contact can change with time and from point to point and may also depend on the
wetting capacity of the melt, existence of oxides, grease, efc.

Ho and PEHLKE [1984], [1985] and CAMPBELL {1991a], [1991Db] give a clear picture
of the heat flow at the metal-mould interface including the origin, development, and
nature of the so called “air gap”. The following facts must be considered:

1) When the metal enters the mould, good contact exists between the molten metal and
the mould surface as PRATES and BILONI [1972] and MORALES et al. [1979] proved
through the analysis of the casting surface structure. Contact occurs at the peaks of the
mold surface roughness where large supercooling creates predendritic nuclei (BILONI and
CHALMERS [1965]). The application of pressure enhances the contact and the 4, value can
be increased dramatically (CAMPBELL [1991a]). 2) After the creation of a solidified layer
with sufficient strength, the casting and mould both deform due to thermal contraction
and the contact is reduced to isolated points at greater separations than that determined
by the surface roughness. The interface gap starts to open and the conduction across the
interface decreases drastically. Consequently, the A; value falls by more than one order
of magnitude. When radiation is neglected, the important mechanism becomes the
conduction of heat through the gas phase in the gap. In this case =K/, where ¢ is the
equivalent thickness averaged over the metal-mould interface and K; an effective thermal

References: p. 830.
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Fig. 2. Nature of the thermal contact between the metal and the mould and equivalent Newtonian model of the
metal-mould interface. (a) The complex nature of the contact and different types of heat transfer occurring at
the interface are shown schematically. At point A good local contact assures a higher heat conduction. As a
consequence, k; will locally be higher than at the rest of the metal-mould interface. (b) The equivalent
Newtonian model is based on an effective value of the gap, ¢, to yield an average value of h;,
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conductivity of the gas. Then, h; corresponds to an average value represented by the
equivalent model of fig. 2b but local values can be considerably different. The important
aspects for modelling 4; are the identity of the gas in the gap and the gap thickness.

Ho and PEHLKE [1984] and CAMPBELL [1991a], [1991b] discuss the nature of the gas
in the gap. For iron and steel castings in sand moulds, the gas present is likely to be
hydrogen. This is significant, because of the high thermal conductivity of hydrogen,
which is of the order of seven times greater than for air. For metallic moulds the lower
H content in the gap will result in a lower thermal conductivity, but the h; value may still
be twice that of air (CAMPBELL [1991b]). These conclusions must be considered seriously
when h; values are estimated for heat transfer calculations.

The width of the gap is treated as a thermal expansion effect of the casting and the
mould. If the mould expansion is considered homogeneous, transient heat flow con-
sideration yields (CAMPBELL [1991a)]) that &D is proportional to

a(T, - T)+ay(T, - T,), (13)

1]

where e=gap size, D=casting diameter, T, =freezing point, T,;=temperature of the
mould interface, T, = original temperature of the mould, a,=casting thermal diffusivity,
ay=mould thermal diffusivity.

However, in general, there will be powerful geometrical effects and the gap thickness can
change differently in various parts of the mould. Therefore, the situation in shaped casting is
complicated as CaMPBELL [1991b] affirms and has yet to be tackled successfully by
theoretical models. Indeed Ho and PELKE [1984] and [1985] demonstrate the difference in A,
value obtained for chilling surfaces located at the top or bottom of a cylindrical Al casting.

MEHRABIAN [1982] reported the measurement of 4, in splat cooling, in pressurized
aluminium against a steel mould and in liquid die casting against a steel mould. He
estimates that an upper limit exists for practically achievable heat transfer between liquid
and substrates of about ;= 10°-10° J/m?Ks. Table 1 gives the order of magnitude of A,
for different conditions of a metal in contact with a mould.

Careful measurements and analysis are necessary to obtain accurate heat transfer
coefficients. Using thermocouple measurements and numerical solution of the inverse
heat conduction problem, Ho and PEHLKE [1985] have obtained h; values that show the
onset of gap formation, and its time evolution.

More recently HAO et al. {1987] performed experiments with ductile iron and
discussed the effect on &, of the expansion of graphite precipitated during the solidificat-
ion period. SHARMA and KRISHMAN [1991] discussed the effect of the microgeometry of
moulds considering several combinations of V grooves upon the mould or chill surface.
Das and PAUL [1993] determined 4, in castings and quenching using a solution technique
for inverse problems based on the Boundary Element Method (BEM).

2.3. Heat flow in one dimensional solidification geometries

Two examples of the analysis of one dimensional heat flow during solidification are
given here. The first is often applicable in ordinary casting processes, while the second
applies to rapid solidification.

References: p. 830.
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2.3.1. Freezing at mould wall

The pioneering work by PIRES er al. [1974] analytically treated the case where the
effects of a finite heat transfer coefficient at the metal-mould interface and conduction in
the both metal and mould are important. Later, GARCIA and PRATES [1978] and GARCIA
et al. [1979] obtained similar results. CLYNE and GARCIA [1980] reviewed the analytical
solutions, known now as the “Virtual Adjunct Method” (VAM), and described various
limiting cases. The basic assumptions are: i) Conductive heat flow is unidirectional with
semi-infinite metal and mould regions. ii) The Newtonian interface resistance is
represented by a heat transfer coefficient, A;, which remains constant throughout the
process. The important case of variable #; is not treatable by exact analytical methods.
iii) The metal solidifies with a planar S-L interface that remains at the equilibrium
melting point. iv) The metal solidifies with zero superheat in the liquid. v) Convection
currents and radiation losses are assumed to be small. vi) The thermal properties of the
metal and mould do not change with temperature. The analytical solution for the
solidification time, t5, as a function of the distance solidified, X, has the form:

t(X) = AX* + BX (14)
where
A=—r, (15)
4d°ag
Lps
B=——" 1
Wt -1, a4

with ¢ evaluated numerically from the equation
2 1
ex M terf = ——. 17
¢ P(¢ )[ }) N 7

Here, ag is the thermal diffusivity of the solid metal, M=(K sC5/KyCy)"*=mould
constant, subscripts or superscripts S and M refer to solidified metal and mould,

Table 1
Order of magnitude of heat-transfer coefficient, h;, for different processes. MEHRABIAN [1982].
Process h; (J/m*Ks)
Massive mould, polished 4x 10°
Massive mould, coated 7.5% 107
Cooled mould, polished 5% 10°
Cooled mould, coated 10°
Pressure-Cast 3% 10°-3x 10*
Die-cast 5% 10*
Drop-smash 10*-10°

Splat-cooling 10°-10°
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respectively, C, is the volumeiric specific heat, and L* is the dimensionless latent heat
given by L/C(T,-T,). The two terms in eq. (14) describe respectively: (i) the time
necessary to solidify a metal of specified thickness if h, were infinite, that is, if the
thermal contact between metal and mould were perfect and (ii) the time necessary to
solidify a metal of specified thickness if the thermal conductivity of the mould and metal
were large and h, # oo, that is, the second term only considers the effect of the Newtonian
thermal resistance at the metal-mould interface. PIRES et al. [1974] and GARcCIA and
PRATES [1978] successfully checked eq. (14) for the particular case of efficient refriger-
ation of the chill mould in unidirectional solidification of Sn, Pb, Zn and Al. In this case,
M=0 giving a more simplified form of the general solution. GARCIA et al. [1979]
extended the experiments to moulds where M # 0. These authors calculated the h; value
from the experimental curves, X=Af1), through eq. (16).

GaRrcia and CLYNE [1983] consider that in the case of Al-Cu alloys, having an
appreciable temperature range of solidification, this method can be used without major
modification. An analytical treatment that takes account of the mushy zone has been
developed by LIPTON et al. [1982]. In addition, the VAM method has been extended to
freezing processes involved in certain types of splat cooling (CLYNE and GARCIA [1981]).
When the effects of superheat are considered, numerical methods are necessary, as shown
for example by HILLS et al. [1975].

2.3.2. Rapid freezing in contact with a cold substrate with initial melt super-

cooling

Rapid cooling of a melt often causes the liquid phase to be cooled below the melting
point. The interplay of liquid volume to be frozen, melt supercooling and external heat
transfer to a cold substrate controls the solidification speed as in splat cooling. Theoret-
ical details of this process have been examined numerically by CLYNE [1984]. A major
complication occurs for heat flow analysis when high solidification velocities are
involved even for pure materials. The temperature of the S-L interface T;, cannot be
treated as a constant, equal to the melting point, T, but rather it is a function of the
interface velocity. As a result, the heat flow analysis depends on the details of this
function, which are even more complicated for dendritic growth and for alloys (see § 5
and 7). CLYNE [1984] treats the case of a pure metal freezing with a smooth (non-
dendritic) S-L interface governed by a kinetic law for the interface velocity given by
V=u(T,—T,) where u is the linear interface attachment coefficient taken as 4 cm s K™
(see §5).

Calculations show the importance of the initial supercooling AT on the development
of high solidification velocities. Large values of AT can develop if nucleation on the
substrate is difficult. Figure 3 (from CLYNE [1984]) shows temperature-time plots at two
positions inside a 50 um thick layer of an Al melt cooling in contact with a substrate
with h;=10° Wm™ K. For example, at a position 5 um from the substrate, the
temperature in the liquid drops until nucleation occurs near the substrate at a dimension-
less supercooling A8 =ATAL/ CPL)_=_ 0.4, which he assumes to be predicted from homo-
geneous nucleation theory (see § 4). The temperature at this position then rises rapidly as
the S-L interface proceeds from the substrate towards the 5 wm position. After the

References: p. 830.



678 H. Biloni and W.J. Boettinger Ch. 8, §2

aasalassatansatanaalasaglasantasashanaalaasatosnss
- . o
- . o
< . .
4 . h; = 105w/m2K -
1 ! i
* o
) ' Cu substrate s
-4 : r
1 . Al melt (50 um) "
1000 -: : -
1 ' -
) . [
r . b
4 . o
- . o
- . 3
¢ -
] . o
’ -
T 4 .:......,........................t
m 4 . -
- . o
4 . 50 um -
] . .
) . [
900 A . -
-4 * -
4 -
4 -
4 5u_m 9
T -
K g
4 o
- -
1 -
4 9
4 o
L -
4 o
2 -
< -
4 9
-4 -
800 -
g . L
4 . s
4 N t
“ .
-+ a -
4 . |
< . -
o ) .
-4 A -
""""""L"‘VYT'T""]"v“'“"“"Y"Yr""v'

0 100 200

t (us)
Fig. 3. Calculated temperature—time histories for two positions within a liquid layer 5 and 50 pm from a
chilling substrate. Nucleation occurs at the substrate surface at time, f,, at an undercooling of ~0.4 L/ C:; The
recalescence afier the passing of the liquid—solid interface is evident at both positions. CLYNE [1984].

tN



Ch. 8, §2 Solidification 679

interface passes the 5 wm position, the temperature falls slowly. A plot for the tempera-
fure at the 50 pm position shows a smaller initial drop in temperature followed by a
gradual rise as the interface approaches. The supercooling of the interface when it passes
the 5 and 50 um position is approximately 25 and 5 K respectively which correspond to
interface velocities of 100 cm s™ and 20 cm s™'. Thus, the initial supercooling produces
a much higher solidification rate close to the chill than would be possible without initial
supercooling.

2.4. Heat flow in more complex solidification geometries

In general the analysis given above is useful for one-dimensional heat flow. In more
complicated geometries there are several aspects that lead to difficulties, including the
nonlinearity of the heat transfer problem due to the latent heat of fusion, the geometric
complexity of shaped castings, the disparities in thermal properties between the metal and
mould. Also the treatment of temperature dependent properties and heat transfer
coefficient. In this framework, the techniques of numerical modeling are necessary.

From the pioneering work of HENZEL and KEVERIAN [1965], applying successfully
the Transient Heat Program (THP) to heavy steel cast production, an explosive growth
of computer modeling techniques have arisen, especially in the last 15 years (BERRY and
PEHLKE [1988]). As a result macroscopic modeling of solidification processes are well
developed and different processes can be treated. We shall present here the application
of these methods in two cases: controlled directional solidification and rapid solidification
of atomized metal droplets into powder. In § 10 we discuss the application of numerical
modeling of heat flow to welding and continuous casting processes.

2.4.1. Heat flow in controlled directional solidification of metals

Although a number of variations in the construction of DS equipment has been
described in the literature, in many cases the process used is the Bridgman technique
where a cylindrical crucible is moved through at a fixed temperature gradient, G,, with
a constant translation velocity V°. It is often assumed that the interface will remain
stationary with respect to the furnace during most of the growth period and that the
growth velocity of the interface, V, is equal to that of the crucible or the moving furnace
(V). However, CLYNE [1980a], [1980b] combined experimental investigation of
commercial purity Al with mathematical modeling to determine the relationship between
the interface and the traverse speed. He used a finite difference model to investigate a
number of facets of the process. It was calculated that V can differ from V' by 50% or
more over a significant distance in some cases. The difference between V and V' was
found to increase as the thermal diffusivity of the metal increases. The model was used
to examine the conditions under which the departure from ideal behavior would be
significant and some practical steps were suggested to eliminate this problem.

2.4.2. Powder solidification

Levi and MEHRABIAN [1982] examined theoretically the heat flow during rapid
cooling of metal droplets. Relationships were established between atomization paramet-

References: p. 830.
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ers, growth kinetics, and interface velocity. They developed a numerical solution based
on the enthalpy method for simulating the solidification process from a single nucleation
event occurring at the powder surface and their results are compared with the trends
predicted from a Newtonian cooling model. They also discuss the implications of single
vs. multiple nucleation events. Their results stressed the importance of the initial
supercooling, AT, when nucleation occurs, on the development of high solidification
velocities. Figure 4 adapted by BOETTINGER and PEREPEZKO [1985] from LEvVI and
MEHRABIAN [1982] shows the interface temperature and interface velocity as solidificat-
ion proceeds from one side of the droplet to the other, increasing the fraction solid. The
curves shows the case of an initial supercooling of A8 =0.5 (~182 K for Al) for various
values of A, The velocity starts at a high value (>3 m/s) and slows as the interface
moves across the droplet. This decrease in velocity is due to the evolution of the latent
heat at the S-L interface and the resultant reduction in the interface supercooling. The
effect of changing the heat transfer coefficient by two orders of magnitude is primarily
to alter the velocity after the fraction solid exceeds the dimensionless initial supercooling
(0.5 in this case). Growth at small fraction solid is controlled primarily by heat flow inside
the powder particle, while growth at large fraction solid is controlled by external heat flow.
If no initial supercooling were present, the growth velocities across the entire particle would
be near those seen at large fraction solid (fig. 4), which are typically less than 10 cm/s,

2.5. Software packages

Different numerical methods have been used to treat solidification. Rappaz [1989]
discusses five main computational techniques: i) The finite difference method (FDM)
with or without the alternative implicit direction (ADI) time stepping scheme, ii) The
finite element method (FEM), iii) The boundary element method (BEM), iv) The direct
finite difference method (DFDM), v) The control volume element method (VEM). He
discussed the basic advantages and/ or inconveniences of these methods using schematic
2-dimensional enmeshments that are associated with the five main computational
techniques. OHNAKA [1991] analyzed solidification for a thermal conduction model and
reviewed critically these computational techniques. BERRY and PEHLKE [1988] give a
comprehensive view of the steps to be taken when solidification modeling is used,
stressing the fact that the thermophysical properties and details about mould material are
often poorly known. Indeed, conditions such as moisture, property dependence on
temperature, etc., would require an almost limitless data base. Software packages permit,
through suitable interactions, the generation of maps displaying the variation of specific
criteria functions that affect casting soundness, such as local temperature gradient,
freezing time, front speed or cooling rate.

DantziG and WIESE [1986] and WIESE and DaNTZIG [1988] have focused on a
technique to reduce the computation time involved in FEM methods for sand castings.
Considering that the number of nodes located within the mold is far greater than those
within the casting, the authors replace the sand mold by a set of boundary conditions
applied at each element on the surface of the casting. This method was initially proposed
by NivaMma {1977] and later by WeI and BERRY [1980] and is known as the Q-Dot
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Fig. 4. Calculated interface temperature (LEvI and MEHRABIAN [1982]) for the solidification of a powder
particle initially undercooled by 1/2 L/ Cl';. The temperature rises and the velocity falls as growth proceeds from
the point of nucleation on the powder surface across the powder particle. The effect of various values of the
heat transfer coefficient A, is also shown. The velocity scale on the right was added by BOETTINGER and
PEREPEZKO [1985].

method. More recently DANTZIG and LU [1985] and DANTZIG and WIESE [1985]
developed the Boundary Curvature Method (BCM). In both techniques the heat flow
from the surface of the casting is treated using a library of special functions, related to
the local geometry, which contain the information about heat flow from that shape into
a mould material. The BCM method seems to adapt better to arbitrary shapes in three
dimensions than the Q-Dot method. DANTZIG and WIESE {1986] present an example of
a complex casting (a cylinder block section) stressing the fact that this problem would
have required much greater computation time without the BCM.

2.6. Experimental methods involving controlled solidification

The difficulties associated with predicting external heat transfer in casting has lead to
the development of two research techniques of controlled solidification: unidirectional
solidification and solidification with prescribed bulk supercooling. Much of the under-
standing of solidification laws comes from unidirectional solidification experiments based
on the simple principle that the extraction of latent heat must be achieved without
allowing the melt to supercool sufficiently to permit the nucleation of crystals ahead of
the solidification front. In practice this requires a heat sink that removes heat from the

References: p. 830.
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solid and a heat source that supplies heat to the melt. The extensive use of such
techniques by CHALMERS and his school (CHALMERS [1964], [1971]) produced the basis
of modern understanding in solidification. The basic heat flow objectives are to obtain a
unidirectional thermal gradient across the interface and to move it so that the interface
moves at a controlled rate. For a planar S-L interface the gradients are related by eq. (3).
Based on this idea different techniques have also been developed to obtain single crystals
employed for research purposes. FLEMINGS [1974] gives details of the different techni-
ques used. Heat flow in controlled directional solidification (DS) is treated in § 2.4.1.

Another directional controlled process corresponds to the extraction of heat via a
botton chill. Growth occurs in a direction parallel and opposite to the heat flux direction.
In this situation a better control of microstructure and properties is obtained in com-
parison with conventional casting. However the microstructure is not uniform as in the
Bridgman method, because V and G decrease with the distance from the chill. It is
possible to improve the microstructure uniformly by programmed furnace temperature
and withdrawal rates.

The above examples of controlled solidification do not involve bulk liquid super-
cooling. However, when a crystal is nucleated at a specified temperature and grows
freely into the liquid, the bulk supercooling AT plays a major role in determining the
structure observed during the solidification process. This type of study has been
performed with both low and high supercooling and important structural information has
been obtained in organic material analogues (GLICKSMAN [1981]) and metallic alloys
(FLEMINGS and SHIOHARA [1984], WILLNECKER ef al. [1989], [1990]). More details will
be given in § 11.

3. Thermodynamics of solidification

3.1. Hierarchy of equilibrium

The process of solidification cannot occur at equilibrium. However it is clear that
different degrees of departure from full equilibrium occur and constitute a hierarchy
which is followed with increasing solidification rate. This hierarchy is shown in Table 2
(BOETTINGER and PEREPEZKO [1985]).

The conditions required for global equilibrium, (i), are usually obtained only after
long term annealing. Chemical potentials and temperature are uniform throughout the
system. Under such conditions no changes occur with time. Global equilibrium is
invoked for descriptions of solidification that apply the lever rule at each temperature
during cooling to give the fraction of the system that are liquid and solid as well as the
compositions of the (uniform) liquid and solid phases. This situation is only realized
during solidification taking place over geological times.

During most solidification processes, gradients of temperature and composition must
exist within the phases. However one can often accurately describe the overall kinetics
using diffusion equations to describe the changes in temperature and composition within
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Table 2
Hierarchy of Equilibrium.

i.  Full Diffusional (Global) Equilibrium
a. No chemical potential gradients (composition of phases are uniform)
b. No temperature gradients
c. Lever rule applicable
ii. Local Interfacial Equilibrium
a. Chemical potential for each component continuous across the interface
b. Phase diagram gives compositions and temperatures only at Solid-Liquid interface
c. Correction made for interface curvature (Gibbs—Thomson Effect)
iii. Metastable Local Interfacial Equilibrium
a. Important when stable phase cannot nucleate or grow fast enough
b. Metastable phase diagram (a true thermodynamic phase diagram missing the stable phase or phases)
gives the interface conditions
iv. Interfacial Non-Equilibrium
a. Phase diagram fails to give temperature and compositions at interface
b. Chemical potentials are not equal at interface
c. Free energy functions of phases still lead to criteria for the “impossible” (Baker and Cahn {1971)}

each phase and using the equilibrium phase diagram to give the possible temperatures
and compositions for boundaries between the phases, e.g., at the solidification interface.
The Gibbs-Thomson effect is included to determine shifts in equilibrium due to the
curvature of the liquid-solid interface. This condition is called the local equilibrium
condition, (ii) in table 2.

For a dilute alloy the liquidus and solidus of the phase diagram can often be
represented as straight lines (fig. 5). The local equilibrium condition for a curved
interface is given in this case by

T=T,+mC -TIK, (18)
and
C; = k,Cy, (19)

where T; and 7, are the interface temperature and pure solvent melting temperature, m;,
is the liquidus slope, C,” and Cg are the compositions at the interface of the liquid and
solid, T is the ratio of the liquid—solid surface energy to the latent heat per unit volume,
K, is the mean curvature of the interface (defined as positive when the center of
curvature is in the solid), and k, is the equilibrium partition coefficient.

Local equilibrium is never strictly valid, but it is based on the notion that interfaces
will equilibrate much more quickly than will bulk phases. The conditions described in (ii)
of Table 2 are widely used to model the majority of solidification processes that occur in
castings. For example, under the assumptions of fast diffusion in the liquid phase, neglig-
ible diffusion in the solid phase, and local equilibrium at the interface, the Scheil Equat-

References: p. 830.
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Fig. 5. Solidus-liquidus relationships for dilute binary alloys. For a liquid composition of C; the equilibrium
solid composition is k,Cy. For a solid of composition, C, the equilibrium liquid composition is Cy/k,.

ion (see §7.3) gives a reasonable first approximation to the “nonequilibrium” dendritic
coring or microsegregation in conventional castings. Clearly phase diagrams constitute an
essential part of the data base for the modeling and analysis of solidification problems.

Metastable equilibrium, (iii) in Table 2, can also be used locally at interfaces and is
important in ordinary metallurgical practice. For example, one can understand the
microstructural change of cast iron from the stable gray form (austenite and graphite) to
the metastable white form (austenite and cementite) with increasing solidification rate
(and interface supercooling) using information from the stable and the metastable phase
diagrams combined with a kinetic analysis (JONES and KURZ {1980]). The eutectic
temperature and composition for white cast iron are well defined thermodynamic
quantities just as they are for gray cast iron. Metastable equilibrium is represented by a
common tangent construction to the molar free energy vs. composition curves for the
liquid, austenite, and cementite phases and thus minimizes the free energy as long as
graphite is absent. When solidification is complete, a two phase mixture of austenite and
cementite can exist in a global metastable equilibrium. The concept of local metastable
equilibrium is, especially important during rapid solidification (PEREPEZKO and
BOETTINGER [1983], PEREPEZKO [1988]) because some equilibrium phases, especially
those with complex crystal structures, have sluggish nucleation and/or growth kinetics
and are absent in rapidly solidified microstructures.

An example of a metastable phase diagram superimposed on a stable phase diagram
is given in fig. 6 for the Al-Fe system. If Al;Fe is absent, phase boundaries involving a
metastable phase, AlFe, which is isomorphous with AlMn, are obtained. In particular
a metastable eutectic, L —> Al+ Al;Fe occurs. Transitions of microstructures involving
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a metastable phase diagram (dot-dashed lines) involves a eutectic L>Al+Al[Fe. The T, for the solidification
of Al solid solution is shown dashed. The solvus curves are omitted for clarity. MURRAY [1983a].

AlFe to those involving Al;Fe have been observed with increasing solidification speed
by ADAM and HOGAN [1972] and by HUGHES and JONES [1976]. The competitive growth
kinetics of the two can also be analyzed using the stable and metastable phase diagrams.

For local equilibrium, whether stable or metastable, the chemical potentials of the
components for the liquid and solid are equal across the interface. In Table 2, however,
another situation is described in (iv), and relates to a situation where chemical potentials
can not be approximated as being equal across an interface growing at a high rate and
large supercooling. These rapid growth rates can trap the solute into the freezing solid at
levels exceeding the equilibrium value for the corresponding liquid composition present
at the interface. Thus the chemical potential of the solute increases upon being incor-
porated in the freezing solid in a process called solute trapping. This increase in chemical
potential of the solute across the interface must be balanced by a decrease in chemical
potential of the solvent in order for crystallization to occur; i.e., to yield a net decrease

References: p. 830.
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in free energy (BAKER and CAHN [1971]). The free energy change during solidification,
AG, is given by

AG = [(ud - ut)(1- G- (2 - mD)s) 20)

where us and ug are the chemical potentials for species A and B in the solid, andu;
and p.f are the chemical potentials in the liquid. These potentials are functions of the
temperature and solid or liquid composition (Cg or C,") at the interface during solidif-
ication. Despite the loss of interface equilibrium during rapid solidification, the free
energy functions of the solid and liquid phases and their associated chemical potentials
can be used to define the possible range of compositions that can exist at the interface
at various temperatures. This restriction is obtained by the requirement that AG be
negative. Figure 7 shows the region of allowable solid compositions at the interface for
a fixed liquid composition, C,_' , at the interface as a function of interface temperature
(BOETTINGER [1982]). Such allowable regions can be calculated from a thermodynamic
model of the system of interest.

3.2. T, curves

For any selected pair of liquid and solid compositions, a thermodynamic temperature
can be described that is the highest temperature where crystallization can occur as shown
in fig. 7. However one often considers a limiting case, called partitionless solidification,
which is favored at very high solidification rate, where the composition of the solid
formed at the interface, Cy, equals the composition of the liquid at the interface, C; .
The 7, temperature is the highest temperature where this can occur (APTEKAR and
KAMENETSKAYA [1962]), (BILONI and CHALMERS [1965]). This is the temperature where
the molar free energies of the liquid and solid phases are equal for the composition of
interest; i.e., the temperature where AG=0 for C; = C, in Equation (20). As illustrated
in fig. 7, a T, curve represents only part of the thermodynamic information available,
when solidification occurs without local equilibrium.

T, curves exist for the liquid with stable or metastable phases, and lie between the
liquidus and solidus for those phases. In fact for dilute alloys the slope of the 7, curve
is m, [(Inky)/ (k,— 1)]. Figure 8 shows schematically, possible T, curves for three eutectic
phase diagrams (BOETTINGER [1982]). An important use of these curves is to determine
whether a bound exists for the extension of solubility by rapid melt quenching. If the 7
curves plunge to very low temperatures as in fig. 8a, single phase a or crystals with
composition beyond their respective 7, curves cannot be formed from the melt. In fact,
for phases with a retrograde solidus, the 7, curve plunges to absolute zero at a com-
position no greater than the liquidus composition at the retrograde temperature, thus
placing a bound on solubility extension (CAHN et al. [1980]). Experiments on laser-
melted doped Si alloys seem to confirm this bound (WHITE et al. [1983]). Eutectic
systems with plunging T, curves are good candidates for easy metallic glass formation.
An alloy in the center of such a phase diagram can only crystallize into a mixture of
solid phases with different compositions regardless of the departure from equilibrium.
The diffusional kinetics of this separation from the liquid phase frequently depresses the



Ch. 8, §4 Solidification 687

N L \\ ¢
>N L \ L

o o
12N
@ [
3 £ \
[

= N i \

Z«,/ \, (TO é/x \4——- TO

~ // \
///‘ N b i
Composition Composition

(@) (b)

Fig. 7. The shaded regions indicate thermodynamically allowed solid compositions that may be formed from
liquid of composition at various temperatures. The T, curve gives the highest temperature at which partitionless
solidification (Cj = Cy) can occur. In (b) the T, temperature plunges and partitionless solidification is impossible
for liquid of composition C[. BOETTINGER [1982].

solidification temperature to near the glass transition, 7,, where an increased liquid
viscosity effectively halts crystallization.

In contrast, alloys with T, curves which are only slightly depressed below the stable
liquidus curves, as in fig. 8b, ¢, make good candidates for solubility extension and
unlikely ones for glass formation. In fig. 8b the crystal structures of @ and B are different
and the T, curve cross, whereas in fig. 8c the crystal structures are the same and the T
curve is continuous across the diagram. At temperatures and liquid compositions below
the T, curves, partitionless solidification is thermodynamically possible. Ni-Cr and
Ag-Cu are examples of the behavior in fig. 8b and c.

4. Nucleation

4.1. Nucleation in pure liquids

Nucleation during solidification can be defined as the formation of a small crystal
from the melt that is capable of continued growth. From a thermodynamic point of view
the establishment of a S-L interface is not very easy. Although the solid phase has a
lower free energy than the liquid phase below T, a small solid particle is not necessarily
stable because of the free energy associated with the S—L interface. The change in free
energy corresponding to the liquid-solid transition must therefore include not only the
change in free energy between the two phases but also the free energy of the S-L
interface. From a kinetic point of view it is possible to arrive at the same result on the
basis that the atoms at the surface of a very small crystal have a higher energy than the
surface atoms of a larger crystal (CHALMERS [1964]). Therefore, the equilibrium
temperature at which atoms arrive and leave at the same rate is lower for a very small

References: p. 830.
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Fig. 8. Schematic representation of T, curves for liquid to crystal transformations in three types of eutectic
systems. BOETTINGER [1982).

crystal than for a larger one. Consequently for each temperature below T, a solid
particle can be in equilibrium with the liquid when its radius of curvature has a particular
value, known as the critical radius. Because at higher supercooling there is more bulk
free energy to compensate for the surface free energy, the critical radius decreases with
increasing supercooling.

On the other hand, at any supercooling, there exists within the melt a statistical
distribution of atom clusters or embryos of different sizes having the character of the
solid phase. The probability of finding an embryo of a given size increases as the
temperature decreases. Nucleation occurs when the supercooling is such that there are
sufficient embryos with a radius larger than the critical radius (HOLLOMON and TURN-
BULL [1953]).

4.1.1. Calculation of the critical radius and energy barrier
The change in the free energy per unit volume, AG, to form a solid embryo of
spherical shape of radius, r, from liquid of a pure material involves the variation of the

volume free energy and the surface free energy associated with the S—L interface and is
given by

LAT
T

m

AG = AG, +AG, = —%m‘g +4myg r?, (21)

where AG, is the change in free energy on solidification associated with the volume and
AG, is the free energy associated with the interface, g is the S-L interfacial free
energy, L is the latent heat per unit volume and AT is the supercooling. The critical
radius, 7, occurs when AG has a maximum given by the condition, d(AG)/dr=0, as
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Figure 9, due to KURZ and FiSHER [1989], gives a comprehensive picture of the
variation of the free energy of an embryo as a function of its radius and AT: (a) At
temperatures T greater than T, both AG, and AG, increase with r. Therefore the sum AG,
increases monotonically with r. (b) At the melting point, AG,=0 but AG,; still increases
monotonically. (c) Below the equilibrium temperature the sign of AG, is negative
because the liquid is metastable while the behavior of AG, is the same as in (a) and (b).
At large values of r, the cubic dependence of AG, dominates over AG; and AG passes
through a maximum at the critical radius, r". When a thermal fluctuation causes an
embryo to become larger than r’, growth will occur as a result of the decrease in the
total free energy. Nucleation in a homogeneous melt is called homogeneous nucleation
and from eq. (21) the critical energy of activation for an embryo of radius r* is given by

16 ys,_T2
TPAT?
The unlikelihood that statistical fluctuations in the melt can create crystals with a
large radius is the reason why nucleation is so difficult at small values of the super-
cooling. Thus, homogeneous nucleation is only possible for high supercooling (on the
order of 0.25 T,) according to the HOLLOMON and TURNBULL [1953] theory. However
small contamination particles in the melt, oxides on the melt surface or contact with the
walls of a mould may catalyze nucleation at a much smaller supercooling and with fewer
atoms required to form the critical nucleus. This is known as heterogeneous nucleation.
In fig. 10, homogeneous and heterogeneous nucleation are compared for a fiat
catalytic surface and isotropic surface energies. For this simple case, the embryo is a
spherical cap that makes an angle 6 with the substrate given by

Yoo = Yes = Yo €086, 24)

(22)

AG" = (23)

where vy, is the catalyst-liquid interfacial free energy and vy the catalyst—solid inter-
facial free energy. At a supercooling, AT, the critical radius of the spherical cap is again
given by eq. (22), but the number of atoms in the critical nucleus is smaller than that for
homogeneous nucleation as a consequence of the catalytic substrate. Indeed the thermo-
dynamic barrier to nucleation AG" is reduced by a factor f(6) to

2
AG" = 16 ?Z;Z £(6) 25)
where
2
£(6) = (2 + cos 0)‘(11 — cosf) . 26)

If nucleation occurs in a scratch or a cavity of the catalytic substrate, the number of
atoms in a critical nucleus and the value of AG” can be reduced even more. For a planar
catalytic surface, the reduction in the free energy barrier compared to that for homo-

References: p. 830.



690 H. Biloni and W.J. Boettinger Ch. 8, §4

L A
| ‘ T>Tm
g 9
rd
;."p’;_-é
0 0
a) r >
AG = AG;j
0
AGy
T=Tm
D

Fig. 9. Volume, surface and total values of the free energy of a crystal cluster as a function of radius, r, at three
temperatures: (a) T>7T,, (b) T=T,, and (c) T<T,. Kurz and FISHER [1989].

geneous nucleation depends on the contact angle. Any value of 6 between 0° and 180°
corresponds to a stable angle. When 6 =180° the solid does not interact with the
substrate, f6)=1 and the homogeneous nucleation result is obtained. When 6 =0°, the
solid “wets” the substrate, i0)=0, and AG"=0. As a result, solidification can begin
immediately when the liquid cools to the freezing point. From the classical heterogeneous
nucleation point of view, a good nucleant corresponds to a small contact angle between
the nucleating particle and the growing solid. According to eq. (24) this implies that y
must be much lower than y,. However, in general, the values of y and vy, are not
known and, therefore it is rather difficult to predict the potential catalytic effectiveness
of a nucleant. TILLER [1970] pointed out that there is no clear insight into what deter-
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Fig. 10. Schematic comparison of (a) homogeneous and (b) heterogeneous nucleation of a crystal in a
supercooled liquid. The interface energies are assumed to be isotropic and in (b) the catalytic surface is
assumed to be flat.

mines # and how it varies with (i) lattice disregistry between substrate and the stable
phase, (ii) topography of the catalytic substrate surface, (iii) chemical nature of the
catalytic surface and, (iv) absorbed films on the catalytic substrate surface.

4.1.2. Nucleation rate

The rate of homogeneous nucleation, /, is the number of embryos formed with a size
that just exceeds the critical value per unit time per unit volume of liquid. Similarly, the
heterogeneous nucleation rate is considered per unit area of active catalytic site. To
determine the rate of nucleation, it is necessary to find expressions for the number of
embryos that have critical size and the rate at which atoms or molecules attach to the
critical nucleus.

By considering the entropy of mixing between a small number, N,, of crystalline
clusters, each of which contains n atoms, and N, atoms of the liquid, an expression for
the equilibrium number of clusters with n atoms can be obtained as,

References: p. 830.
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where kj is Boltzmann’s constant, AG, is the value of AG, obtained from eq. (21) for a
cluster of radius, r, containing n atoms. In particular, the number, N,’, of clusters of
critical radius, r, is given by

N, = exp| — AG, A (28)
N, kT

where AG, corresponds to the critical size cluster.

If one can assume that an equilibrium number of critical nuclei can be maintained in
the melt during the nucleation process, the homogeneous nucleation rate (#nuclei/time/
volume) is then given by

I=Kp Ny (29)
N,

x

where K, is a constant involving the product of the number of atoms per unit volume and
the number of atoms on a nuclens surface, and where v is the rate at which atoms can
attach to the critical embryos. This is called the steady state nucleation rate. The value
for v is usually thought to scale with DL/aoz, where D, is the diffusion coefficient in the
liquid and a, is the atomic jump distance. For metals, this attachment rate is fairly
independent of temperature and so

K.
I =K, exp ——| 30

2 P ( TATZ) G0
K, typically has a value of 10*2/m’s. For nonmetallic melts, where the diffusion coef-
ficient in the liquid can depend strongly on temperature,

AG +AG
I=K exp[—'l—-1], (31)
¢ kT

where K, includes the pre-exponential factor for diffusion, and AG; is the activation
energy for diffusion. For heterogeneous nucleation, similar expressions can be developed
but is described per unit area of catalytic surface.

An evaluation of eq. (30) shows that as the supercooling is increased, I increases very
rapidly at a critical supercooling in the range of 0.2 T, to 0.4 T,,. Changes in the pre-
exponential term in eq. (30) by orders of magnitude do not appreciably affect the
calculated supercooling for sensible nucleation rates. This rapid rise in nucleation rate
with temperature effectively defines a nucleation temperature.

During rapid cooling of the melt especially to large supercoolings in glass forming
alloys, atomic transport may be too slow to maintain an equilibrium number of clusters.
This requires the examination of transient nucleation theory and effectively introduces a
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delay time into nucleation kinetics that can be important during glass formation or during
devitrification as described by THOMPSON et al. [1983].

One of the major assumptions of the classical nucleation theory is that the free energy
per unit volume and free energy per unit surface area are independent of the size of the
embryo. Since the interface between solid and liquid is usually considered to be diffuse
on the level of a few atomic dimensions (see §5), embryo that are a few atomic
dimensions in radius cannot be described classically. This leads to a radius (or temperat-
ure) dependence of the surface energy as shown by LARSON and GARSIDE [1986] and
SPAEPEN [1994]. PEREPEZKO [1988] has pointed out that if 8 approaches zero for a
heterogeneous nucleation process, the thickness of the spherical cap can approach atomic
dimensions, even when the cap radius is much larger, a fact that would also necessitate
a nonclassical approach to heterogeneous nucleation.

4.2, Effect of melt subdivision

When a volume of liquid metal is converted to an array of liquid droplets, large
supercoolings prior to solidification are often obtained in many of the droplets. This fact
leads to a method for the study of nucleation and to understand the supercooling often
obtained in metal droplets created by atomization. For the study of nucleation this
method was pioneered by TURNBULL and CECH [1950] and continued most notably by
PEREPEZKO and ANDERSON [1980]. An example of the effect of supercooling on
microstructure development is given for atomized Al-8%Fe alloys by BOETTINGER et al.
[1986].

If the nucleating sites contained within a given liquid volume are distributed
randomly, the arrangement of nucleants among the droplets may be described by a
Poisson distribution. For this case the nucleant free droplet fraction, X, is represented by
X =exp(-mv) where m is the average number of nucleants per volume in the melt and v
is the droplet volume. Based on experience with droplet emulsion samples (PEREPEZKO
and ANDERSON [1980]), supercooling effects become measurable for size refinement
below about 100 pm diameter and can become appreciable for powder sizes less than
about 10 xm. This suggests that typical values for nucleant densities within the volume
of a melt must be in the range from about 10°-10° cm™. The relatively sharp selection
of a given X value (e.g., X=0.9) with the droplet volume indicates the important role of
size refinement in achieving large supercooling. Similar relationships can be developed
for surface nucleant distributions.

4.3. Experiments on nucleation in pure metals

PEREPEZKO and ANDERSON [1980] have summarized the principal techniques for
nucleation experiments conducted at slow cooling rates as shown in fig. 11. The most
common corresponds to the dispersion of a pure metal into droplets within a suitable
medium. For metals that melt below 500°C, organic fluids with added surfactants are
used to form the droplet dispersion. In addition to the isolation of nucleants discussed
above, the surfactant probably plays a role in rendering some nucleates inactive, For
systems with high melting points, molten salts and glasses have been employed. In both
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Fig. 11. Sample configuration for different supercooling methods. (after PEREPEZKO and ANDERSON [1980]).

cases, independence and separation of droplets are maintained by a thin inert coating
which must be non-catalytic to nucleation. Such dispersions of droplets can be thermally
cycled in a DTA or DSC to determine the supercooling of the majority of droplets prior
to nucleation. PEREPEZKO [1984] summarizes the maximum supercoolings obtained by
his coworkers and by previous work. Maximum supercoolings in the range of 0.3-0.4 T,
are typically obtained. Often maximum supercoolings are used to compute the liquid—
solid surface energy using the homogeneous nucleation temperature. Such procedures can
provide only a lower bound on the value of the surface energy, unless it is known that
the nucleation is indeed homogeneous. It may be that heterogeneities still limit the
observed maximum supercoolings in most metals.

In practice the predictive capability of nucleation theory is limited by the unavailab-
ility of data for liquid—solid surface energy, which appears in the nucleation rate
expression as yg,°, and by a lack of knowledge about the catalytic sites present in liquid
metals and alloys. Improvements in the independent experimental determination of yg
for metals would be invaluable in allowing a clearer evaluation of theoretical interface
models and more reliable nucleation and growth rate calculations. While the measure-
ments of surface energy using techniques such as grain boundary grove experiments (for
example GUNDUZ and HUNT [1985] and HARDY er al. [1991]) is preferable, the
difficulty of these measurements has led to the development of theoretical models.
SPAEPEN [1975] and SPAEPEN and MEVER [1976] estimate the surface energy based on
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the configurational entropy of a structural transition that enforces polyhedral atomic
packing in the interfacial region. Their result is equivalent to the expression

_ oA1/n,)L

Yso = — B
Yi 13
NB

where N, is Avogadro’s number, V,, is the molar volume and « is a numerical factor
related to the atomic packing (0.866 for fcc and hep and 0.71 for bec metals). Kim et al.
[1988a], [1988b] have used this model to calculate homogeneous nucleation rates for the
fce and bee phases for all compositions in Fe—-Ni alloys. Due primarily to the higher «
values for fcc as described above, nucleation of fcc phase is predicted to dominate in
these alloys even for compositions where bcc has a higher liquidus. Indeed this is
confirmed in their own experiments in 3-30 um size powders as well as in the earlier
work of CECH [1956].

(32)

4.4. Alloy nucleation

For a binary alloy, AG, in eq. (21) depends not only on the temperature but also on
the composition of the liquid and of the solid nuclei. Thus for a given liquid com-
position, critical values of nucleus composition as well as size are required to determine
AG". If the surface energy and f(6) are constants independent of cluster composition, the
smallest value of r* (hence easiest nucleation) is obtained if the composition of the
critical cluster maximizes AG,. For alloy nucleation the appropriate expression for AG,
is obtained by dividing the expression given in eq. (20) by the molar volume of the solid.
It is apparent from eq. (20) that AG, would be maximized for a composition of the solid
where ,ug - mp=ps - pmr;ie., by a parallel tangent construction as shown in fig. 12.
This maximum driving force condition has been proposed (HILLERT [1953], THOMPSON
and SPAEPEN [1983]) to find the favoured nucleus composition for a given temperature and
liquid composition. In order to use this condition, one must have a thermodynamic model for
the alloy of interest; i.e., the free energy functions for the liquid and solid phases must be
known. For simple analysis, regular solution models are often employed for the liquid and
solid phases. More precise models that fit the measured phase diagram and other thermody-
namic data are often available in the literature. In contrast, by including a simple model of the
composition dependence of the surface energy, ISHIHARA ef al. [1986] have shown that the
critical nucleus composition can approach the bulk liquid composition at large supercoolings.

Experience with alloy supercooling indicates that the composition dependence of the
nucleation temperature, Ty, refiects the composition dependence of liquidus temperature
T,. For example in the Pb-Sb system, the supercooling results shown in fig. 13 reveal
that Ty follows a similar trend to T, even for different T levels resulting from catalytic
sites of different potency, i.e., different surface coatings (RICHMOND et al. [1983]). The
maximum AG, condition to determine nucleus composition has been used to successfully
predict the composition dependence of measured values of Ty in various alloy systems
(THOMPSON and SPAEPEN [1983]).

References: p. 830.
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Fig. 12. Schematic free energy versus composition curves for liquid and solid at three temperatures: (a) above
the liquidus for composition x;, (b) at the liquidus, and (c) below the liquidus at an arbitrary nucleation
temperature. The composition of a nucleus, xy, that maximizes the free energy change at the temperature given
in (c) is given by the parallel tangent construction. THOMPSON and SPAEPEN [1983]).
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Fig. 13. Summary of nucleation temperatures for Pb—Sb alloys which generally follow the liquidus slope

(RICHMOND et al. [1983)). Supercooling trends at different levels are produced by different droplet surface
coating treatments.

4.5. Experiments on heterogeneous nucleation

While it is clear that most nucleation processes are heterogenous, and the formalism
of embryo/ substrate interaction is useful, rarely have the heterogeneities been identified
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with any certainty. The most common way to control the catalytic substrate is to use
binary alloys, typically of the simple eutectic type, and to determine the nucleation
temperature of each solid phase in the presence of the other. These experiments can be
performed using entrained droplets (SOUTHIN and CHADWICK [1978], with analysis by
CANTOR and DoOHERTY [1979], MOORE et al. [1990], KiM and CANTOR [1991]) or the
droplet emulsion technique used extensively by PEREPEZKO and coworkers. A typical
thermal cycle for a collection of droplets employed for this purpose is shown in fig. 14.
A composition on one side of the eutectic is first melted to determine the characteristic
double peaked endotherm corresponding to eutectic (@ +83) and primary phase (8)
melting. The sample is then cooled to form solid at 7y and then reheated. After eutectic
melting, heating is halted and the sample is equilibrated in the (liquid +/) two phase
field. During subsequent cooling, the nucleation peak observed at T,, is then the
nucleation temperature of « on 8. In Perepezko’s work great care was taken to confirm
that 8 was indeed the catalytic surface and that « formed rather than a metastable phase.
A summary of such measurements is given in Table 3 where AT, is taken as the
difference between the eutectic temperature and T,,.

One simple idea put forward originally by SUNDQUIST and MONDOLFO [1961] was
that of a nonreciprocal potency; i.e., that if « is an effective nucleant for 8, then 8 was
an ineffective nucleant for a. Writing two expressions as in eq. (24), one for the contact
angle, 6,5, of @ on a B substrate and one for the contact angle, 6,,, of 8 on an «
substrate and eliminating v,,, it is easy to show that

l+cos,;  Ya

. 33
T+cosby,  vYa. &3

Thus if ¥ >¥,1 6,5 <6p,, and B is a more effective substrate for the nucleation of «
than « is for 8. For example, values of liquid solid surface energy for both Pb and Sn
phases in contact with eutectic liquid have been measured by GuNDUZ and HUNT [1985]
using the grain boundary groove technique. They find that yg, >vp,. (132 and 56
erg/ cm?, respectively). Thus the contact angle for nucleation of Pb on a Sn substrate is
smaller than the contact angle for Sn on a Pb substrate. Thus both factors in the product,
Y’ A0) in eq. (25), contribute to a lower activation energy for nucleation for Pb on Sn.
This is consistent with the results in Table 3 for Pb—Sn.

Recently HOFFMEYER and PEREPEZKO [1988] have intentionally added heterogeneous
sites to pure Sn. Using the droplet emulsion technique and by carefully changing the

Table 3
Heterogeneous Nucleation in the Presence of the Primary Phase (PEREPEZKO [1994])
System Pb-Sn Pb—-Cd Pb-Sb Pb-Ag Bi-Cd Bi-Ag
Substrate Pb Pb Fb Pb Bi Bi
AT, (°C) 80 69 43 27 61 28
Substrate Sn Cd Sb Ag Cd Ag

AT,(°C) 22 39 23 40 94 160
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Fig. 14. Example of the interrupted thermal cycle using the droplet emulsion technique that can be used to
measure the heterogeneous nucleation temperature, T}, of & phase on a 8 substrate. PEREPEZKO [1992].

droplet coatings to prove that spurious nucleation by the coating was unimportant, they
measured the nucleation temperature of Sn in the presence of various stable oxides,
sulphides, and tellurides. The supercooling response of each class was identical even
though the lattice disregistry within each class varied. This result indicates that a common
surface reaction product may form in each class and catalyze the nucleation process.
More details about heterogeneous nucleation and grain refining will be given in § 11.

4.6. Formation of metastable phases by supercooling

One of the most dramatic effects of large supercoolings prior to solidification is the
possibility of forming metastable phases. An elegant yet simple example occurs for pure
Bi (YOON et al. [1986]). A dispersion of Bi droplets was cooled from above the Bi
melting temperature of 271°C to approximately 50°C where nucleation took place. Upon
reheating the dispersion, melting of a metastable phase occurred at 174°C. If one
examines the pressure~temperature diagram for Bi and extrapolates the melting curve for
the high pressure Bi(II) phase to atmospheric pressure, one obtains a metastable melting
point for Bi(Il) very close to 174°C. In addition performing the supercooling experiment
with an increase in ambient pressure modified the melting point of the metastable phase
in a manner consistent with it being Bi(II). Thus the formation of metastable Bi(Il)
occured rather than the stable Bi(I) phase at large supercooling.

The bulk free energy change for solidification, AG, (eq. 21) is always largest for the

References: p. 830.
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stable phase. However in the context of the heterogeneous nucleation theory described
above, a metastable phase may make a smaller contact angle with a particular catalytic
site than does the stable phase. Thus the barrier for nucleation of a metastable phase may
be smaller than the barrier for the stable phase. Of course one must always supercool
below the melting point of the metastable phase in order for AG, for the metastable
phase to be negative. Similarly metastable phases have been formed in alloy systems. In
fact in the Pb-Sn system, by avoiding the nucleation of the stable Sn phase, the
metastable Pb liquidus and solidus curves have been measured more than 80K below the
Pb-Sn eutectic temperature as shown in fig. 15 (FECHT and PEREPEZKO [1989]). When
nucleation did occur in this supercooled state, a metastable phase was formed.

4.7. Grain size predictions in castings

Perhaps one of the most elusive problems in the prediction of cast microstructure
involves the grain size. THEVOS et al. [1989] and STEFANESCU et gl. [1990] have found
it necessary to postulate respectively the existence of a distribution of catalytic sites or
a cooling rate dependence for the number of sites to predict accurately the grain size of
castings. This subject will be discussed in more detail in §9 and 11.

5. Interface kinetics

As mentioned in § 3, local equilibrium is often a good approximation for interface
conditions during growth of metals and alloys under casting conditions. Here we quantify
the degree of nonequilibrium (interface supercooling) required to move an interface
between a crystal and a melt at a given velocity. First we describe pure materials and
then describe alloy effects focussing on the nonequilibrium incorporation of solute into
a growing crystal at high solidification velocity.

5.1. Pure materials

The nature of the S-L interface and the rate at which atoms attempt to join the
crystal can have a decisive influence on the kinetics and morphology of crystal growth.
For solidification of a pure material, the parameter which governs the atomic or
molecular attachment kinetics is the interface supercooling, AT, which is the difference
between the thermodynamic melting point and the interface temperature. The dependence
of AT, on growth velocity is the subject of this section. The discussion of bulk super-
cooling and supersaturation and their effect on transport of heat and solute will be
addressed in later sections on dendritic and polyphase growth.

An interface can advance by two basic processes depending on the nature of the S—L
interface. (i) Non-uniform (or lateral growth) advances the interface by lateral motion of
steps that are typically interplanar distances in height. An atom or molecule can attach
itself to the solid only at the edge of a step and as a result the crystal only grows by the
passage of steps. The relationship between the lateral spreading rate and the effective
growth rate normal to the interface is very sensitive to the number and formation
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Fig. 15. The stable Pb—Sn phase diagram (solid line), including measured and calculated metastable extensions
(dashed line) of liquidus and solidus curves. FECHT and PEREPEZKO [1989].

mechanism of new steps. (ii) Uniform or continuous growth advances the interface
without needing steps, that is, growth can equally well proceed from any point. For a
given material and supercooling, it is important to determine which type of growth
occurs. The supercooling required for lateral growth at a given interface velocity, is
typically much larger than that for continuous growth. Moreover, an interface that
advances by continuous growth can propagate with a smoothly curved interface on a
microscopic scale while lateral growth leads to facets. Whereas growth from the vapor
or growth from supersaturated aqueous solutions is easily observed and usually occurs by
lateral growth, such atomic scale observations are not usually possible for melt growth.
Thus the nature of the S-L interface for metals is the subject of various models. In fact
there is strong evidence that most metals freeze by continuous growth.

References: p. 830.
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5.1.1. Interface structure

There are two approaches involved in the description of the transition in order from
a liquid to a crystal across an interface. In the first, atoms are considered to belong to
either the crystal or the liquid and the interface is considered to be sharp. The geometry
of the surface that separates the two types of atoms may be smooth or meandering on an
atomic scale. The former is called a facetted interface while the later is called a rough
interface. In either case the atomic position of atoms in the crystal at the interface are
considered to be in perfect crystallographic positions. The second approach includes the
additional possibility of a gradual transition in atomic position from the randomness
associated with a liquid to the perfect registry of the crystal. This later is called a diffuse
interface. Indeed if the thickness of the transition layer is of the same order as the
roughness, the distinction between rough and diffuse is lost. A facetted interface provides
the most difficult situation for growth while a diffuse/rough interface moves most easily.
First we describe sharp interface structure models and later describe models based on
diffuse interfaces.

JacksoN [1958] has considered a sharp interface model and estimates the conditions
when a facetted or a rough interface will occur between liquid and solid. Using a near-
neighbor bond model and assuming that a random arrangement of atoms are added to an
atomically planar crystal surface, he obtained an expression for the change in free energy
as a function of the fraction, x, of the N possible sites occupied by “solid atoms” as

AG _ a'x(1-x)+xInx+ (1~ x)In(l - x), (34)
RT,
where
. [,
a = {RTm }5, (35

R is the gas constant, L, the molar latent heat and £ is a factor depending on the
crystallography of the interface. This factor is always less than 1 and is usually greater
than 0.5 and is largest for close-packed planes. This theory has been successfully used
to classify and categorize growth morphologies (JACKSON [1971]). Figure 16 shows plots
of eq. (34) for different values of . When o” <2, the minimum value of AG occurs at
x=1/2; i.e., when half the sites are full. This represents a rough interface. Solidification
will then occur by continuous growth because there are so many sites for easy attach-
ment. In these circumstances, from a macroscopic point of view the S-L interface is, in
general, non-faceted and may exhibit curvature on a scale much larger than atomic
dimensions. When @">2, minima in x occur at small and large values of x indicating a
interfacial layer with only a few filled (or empty) sites. This represents a smooth
(facetted) interface. Solidification must then occur by layer or lateral growth. Planes that
are not close-packed have smaller values of ¢ and thus for some materials, can exhibit
roughness while close-packed planes may be facetted. Planes that are rough will grow
faster than the close-packed planes leading to a crystal growth shape composed only of
slowly growing close-packed interfaces.



Ch. 8, §5 Solidification 703

2.0 T T T T T T T 1
1.5

1.0

5

[ 4

(VY]

=z

& o5

)

g

5

O

—05 L L1

01 02 03 04 05 06 07 08 09 1.0

OCCUPIED FRACTION OF SURFACE
SITES X

Fig. 16. Change in free energy of a monolayer at the liquid—solid interface as a function of the fraction, x, of
sites that are occupied. The value of o depends most strongly on the entropy of fusion and to a lesser extent
on the crystallographic orientation of the face. JACKSON [1958].

Another approach to interface roughness comes from the consideration of how thermal
vibrations affect the surface energy of a step on an otherwise facetied interface (CHERNOV
[1984]). It is found that the step energy vanishes when L_/RT, falls below a critical value
of order unity. When the step energy goes to zero there is no barrier to surface roughen-
ing. This analysis gives the same qualitative result as Jackson’s approach. Various
statistical multilevel models of interface structure and Monte Carlo simulations (TEMKIN

References: p. 830.
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[1964, 1969], LEaMY and JACKSON [1971], JACKSON [1974]) also indicate the importance
of the ratio L,/RT,, presented in eq. (35). A common feature of all these models is that
the roughness of the interface increases with decreasing L,/RT,. Figure 17 shows
simulations of an interface at several values of L /RT, (LEaMY and GILMER [1974]).

Molecular dynamics simulations have also been used to model interface structure.
Because the position of each atom is computed as a function of time, the approach
allows an interface to be diffuse. Indeed simulations show that the transition between
liquid and solid for a material with a Lennard—Jones interatomic potential takes place
over several atomic layers (BROUGHTON ef al. [1981]). Such potentials are thought to
approximate nondirectional metallic-like bonding. Figure 18 shows the calculated
structure of successive (111) layers between the liquid and crystal. In another technique,
density functional theory, superposition of ordering waves are employed to represent the
local atomic density (OxTOBY and HAYMET [1982]). This method also shows the
interface to be several atom layers thick. The expansion relating the free energy to the
local density uses order parameters that describe the amplitude of the ordering waves
through the interfacial region. This is in fact a generalization of the gradient energy
approach of CAHN [1960] except that liquid structure factor data are used to determine
the interface thickness and gradient energy coefficient.

5.1.2, Continuous growth

The growth of a rough, sharp interface is called continuous or normal growth because
the interface can propagate normal to itself in a continuous manner due to the large
number of sites for easy atom attachment. To obtain the velocity-supercooling function
for continuous growth of single-component melts, the growth velocity is typically
expressed as a product of a factor involving the thermodynamic driving force for
solidification and a kinetic prefactor involving the interface mobility:

V(1) = V,(T)[1 - exp(AG/RT,)) (36)

where T, is the interface temperature and AG is the Gibbs free energy change per mole
of material solidified (defined to be negative for solidification). The bracketed term in eq.
(36) represents a difference between the “forward flux” (liquid — solid) and the
“backward flux”. The kinetic prefactor, V(7), is the rate of the forward flux alone, and
corresponds to the hypothetical maximum growth velocity at infinite driving force. Near
equilibrium, the exponential can be expanded, resulting in a linear relation between
velocity and supercooling:

V() = V(1) Bl G37)

that is often written as
V = pAT,, (38)

where p is called the linear interface kinetic coefficient.
In conventional modeling of interface kinetics (WILsON [1900], FRENKEL [1932],
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Fig. 17. Surface configuration showing increasing roughness with decreasing values of L_/RT,. After LEAMY
and GILMER [1974].

TURNBULL [1962], JACKSON [1975]) it is assumed that the rate of the forward reaction,
i.e., the rate at which atoms can jump across the interface to join the solid, is similar to
the rate at which atoms can diffuse in the melt. Consequently, the kinetic prefactor is
assumed to scale with the diffusivity in the liquid:

V. =f D, /a,, (39
where a, is an interatomic spacing and f| is a geometrical factor of order unity. Since the

shear viscosity, hg, of the melt is usually more readily measured, this scaling is often
rewritten in terms of hg using the Stokes—Einstein relation, resulting in:

V. = f, k;T/h, (40)

where f, is another geometrical factor of order unity. Because of the temperature
dependence of D, (or hg), V will first increase linearly, then go through a maximum and
finally decrease as the supercooling increases. This relation has extensive experimental

References: p. 830.



706 H. Biloni and W.J. Boettinger Ch. 8, §5

(111) face
NV RN B 3N BN 3| 2ag AT
R I RE B 3 I BN 4 St A B
ELF TSN L E YK
R LG s Y I o A AT Y
4 PRI 2ID N O BX P R 2 4
N IR S R BN FERAZ S AP
FFSXEL SRS EEE R
Layer 5 Layer 6

Layer 7 Layer 8

Fig. 18. Trajectories of the molecules in layers parallel to a (111) interface going from solid (layer 5) into the
liquid (layer 8) that were obtained by molecular dynamics simulations by BROUGHTON e al. [1981].

support for the crystallization of oxide glasses and other covalent materials (JACKSON et
al. [1967]). However a prefactor that scales with viscosity has never been verified for
monatomic melts such as liquid metals (BROUGHTON et al. [1982]).

TURNBULL and BAGLEY [1975] pointed out that for simple molecular melts in which
the intermolecular potential is largely directionally independent, crystallization events
may be limited only by the impingement rate of atoms with the crystal surface and
therefore can be much more rapid than diffusive events. According to their collision-
limited growth model,

v, =tV @D
where Vj is the velocity of sound and f; is another numerical factor of order unity. The

important consequence is that Vg is about three orders of magnitude greater than D;/q,
for typical metallic melts, resulting in a correspondingly more mobile crystal/melt
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interface. In addition no maximum is expected in the velocity-supercooling curve. The
collision-limited growth model has been confirmed by the analysis of the velocities of
rapidly growing dendrites growing into pure Ni melts (CORIELL and TURNBULL [1982]),
by molecular dynamics calculations on Lennard-Jones systems (BROUGHTON et al.
[1982]) and by pulsed laser melting experiments on Cu and Au (MCDONALD et al.
[1989]). In the molecular dynamics simulation of growth, BROUGHTON et al. [1982]
approximate their results by eq. (36) with V, given by (3k,T,/m,)"* where m, is the
atomic weight. This speed is the average thermal velocity and corresponds to the velocity
at which atoms can strike the lattice sites. For Ni at its melting point, this velocity is
8.6 x 10*cm/s which is only slightly less than the speed of sound for liquid Ni estimated
by CORIELL and TURNBULL [1982]. For Ni at small supercoolings, this value of V, yields
a kinetic coefficient, ., of 200cm/ sK corresponding to negligible interface supercoolings
under ordinary solidification conditions. In addition, RoDwWAY and HUNT [1991] using
the Seebeck effect to measure the velocity-interface supercooling relation for Pb have
obtained a value of 28 cm/sK for u that agrees well with that predicted by BROUGHTON
et al. [1982] using the average thermal speed for this lower melting point material, Both
values are orders of magnitude greater than would be predicted for interface kinetics
governed by diffusive jumps.

5.1.3. Growth of a diffuse interface

Another approach to modelling continuous growth comes from the consideration of
a diffuse interface. MIKHEEV and CHERNOV [1991] have estimated the kinetic coefficient
for Pb using this approach. For a gradual transition in the density of atomic planes, the
model predicts that the kinetic coefficient is proportional to the thickness of the transition
width. Thus a diffuse interface propagates faster at a given level of supercooling than a
sharp interface. Spatial and temporal frequency data obtained from bulk liquid structure
factor measurements, obtained with neutron scattering experiments on simple monatomic
liquids, are employed to estimate the transition width and rate at which atoms can
readjust into correct atomic positions. The estimate of the linear kinetic coefficient of 28
cm/sK for Pb is in excellent agreement with the data of RODWAY and HUNT [1991].

An earlier model for a diffuse interface (CAHN [1960], CAHN ef al. [1964]) also
shows the interface mobility to increase with interface thickness. This concept was also
incorporated into models for lateral growth (see item 5.1.4.) involving diffuseness of the
step edge. In all cases, the diffuseness increases the mobility of the interface over what
would be expected for a sharp interface.

5.1.4. Twe dimensional nucleation controlled growth

If the interface is atomically smooth and free of any defects, the growth rate is limited by
the nucleation of surface clusters. These clusters must form on the interface in order to create
the necessary surface steps for lateral growth. The lateral spreading rate is assumed to occur
quite rapidly at a speed determined by the continuous growth law described above. The
classical theory of two-dimensional nucleation was developed by VOLMER and MARDER
[1931]. The growth law (for the formation of cylindrical surface clusters) has the form:

References: p. 830.
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_ 2
V ~ exp M (42)
Lk, TAT,

where vy, is the ledge energy per unit area and h is the step height. In the classical theory
the constant of proportionality scales with the diffusion coefficient but it could scale with
the speed of sound as does the prefactor for continuous growth. According to eq. (42) the
growth rate is effectively zero at small supercooling and increases sharply at some
critical supercooling. HILLIG [1966] has found that the “constant” of proportionally may
in fact depend on AT,. When the number of nuclei is extremely high, the growth is better
described by the continuous mechanism.

5.1.5. Growth by screw dislocations

If one or more screw dislocations emerge at the S—L interface it is not necessary to
nucleate new layers to provide the sites for lateral attachment. The step generated by
each dislocation moves one plane each time it sweeps around the dislocation (FRANK
[1949]). It was shown by HILLIG and TURNBULL [1956] that the distance between
neighboring turns of the spiral is inversely proportional to A7,, and therefore the total
length of step is directly proportional to AT7,. For small supercooling, the rate of growth,
therefore, will be

V ~ (AT, 43)

because the rate of growth per unit length of step should also be proportional to AT,
(CHALMERS [1964]). Figure 19 schematically shows the growth laws for continuous,
2D-nucleation, and screw dislocation-assisted growth laws.

Another source of steps at the S-L interface is the reentrant angle resulting from the
emergence of twin planes at the S—L interface. This mechanism is found to be important
for Si and Ge. See FLEMINGS [1974].

5.1.6. Transition between continuous growth and facetted growth

The model of CAHN [1960], CAHN et al. [1964] predicts a smooth transition from
lateral growth at low supercooling to continuous growth at high supercooling. The
transition begins at a critical supercooling, A7, , and ends at wAT, . The critical value
depends on the surface energy and the degree of diffuseness. For a material with a very
diffuse interface, AT, may be so small that lateral growth is impossible to observe. An
experiment showing the transition predicted by the theory has been performed by
PETEVES and ABBASCHIAN [1986] on Ga. The transition to continuous growth occurs at
a supercooling of about 4K and a growth rate of about 5 mm/s for the (111) face.

With increasing supercooling other models can also predict a transition to continuous
growth., CHERNOV [1984] considers the nucleation of a disk on an otherwise facetted
interface. If L, /RT,,>2 the edge energy is nonzero and the surface is facetted and the
growth will be lateral. At some value of increased supercooling, the driving force is
comparable to the work of creating a new disk and the moving interface becomes rough.
This kinetic roughening then permits growth to proceed in a continuous manner.
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Fig. 19. Growth rate versus interface supercooling according to the three classical laws of interface kinetics.

5.2. Binary alloys

BAKER and CAHN [1971] described the general formalism for the interface conditions
for solidification of a binary alloy in terms of two response functions. One choice for
these functions describes the interface temperature, 7;, and the composition of the solid
at the interface, Cs. Neglecting orientation effects, these response functions can be
written as follows:

T, =7(v.C]) - T,TK, (44)
and
C; = Ck(v.C)), (45)

where V is the local interface velocity. The functions T(V, C,’) and k(V, C,’) must be
determined by a detailed kinetic model for the interface. At zero velocity they are very
simply related to the phase diagram: T(0, C,) is the equation for the phase diagram
liquidus and k(0, C,") is the equation for the equilibrium partition coefficient k,, which
can depend on composition. The dependence of k on curvature is thought to be negligible
(FLEMINGS [1974]). The possible forms for the functions T and k are constrained by the
condition that AG <0 as described in fig. 7 above. The kinetic partition coefficient can
also depend on the crystallographic orientation of the growing interface. If a crystal

References: p. 830.
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grows with a S-L interface having regions that are curved and facetted, the incorporation
of solute into the crystal behind the facet can be quite different from the rest of the
crystal. BRICE [1973] calls this the facet effect. This effect will be neglected in the
remainder of this chapter.

Several models for the dependence of the partition coefficient on velocity, eq. (45),
have been formulated for continuous growth. The model formulated by BAKER [1970] is
quite general. Other theories predict that the partition coefficient changes monotonically
from its equilibrium value to unity as the growth velocity increases. In these models the
interface partition coefficient is significantly changed from the equilibrium value, &, only
when a dimensionless growth velocity, V/V,, approaches one. Here V}, is the diffusive
speed for atom exchange between the crystal and the liquid. Vj, is a ratio of a diffusion
coefficient, D,, for that exchange to the interatomic distance, a; The value of this
diffusion coefficient should be bounded by those of the liquid and the solid, but
experimentally appears to be closer to that of the liquid. Using a value for a liquid
diffusion coefficient typical of metals (2.5 10~ cm?/s) and a length scale of 0.5 nm, V;,
should be less than 5 m/'s. Experimental evidence (SMITH and AZIZ [1994]) suggests that
Vp is in the range between 6 and 38 m/s. Thus in ordinary solidification where V<« 1
m/'s the local equilibrium assumption is valid. The functional form of the models of
Az1z [1982] and of JACKSON et al. [1980] for non-facetted growth is given by

Lot VY

=T (46)

This expression is valid only for dilute alloys where the composition dependence of &,
can be neglected. At a velocity of Vj, the partition coefficient is the mean of the
equilibrium partition coefficient and unity (see fig. 28a). Because eq. (46) has no
dependence on composition, it cannot treat the situation shown in fig. 7b), in which
partitionless solidification is impossible for some compositions. The Aziz model has been
generalized to treat non-dilute alloys by Aziz and KApLAN [1988] and to include the
possibility that solute drag dissipates some of the available free energy.

In the continuous growth model of Aziz, the process that accomplishes the formation
of the crystal structure from the liquid and the process that establishes the compositions
at the interface are considered to be distinct. Indeed for metals, the former may only be
limited by the rate at which atoms hit the interface (collision limited growth) whereas the
latter process requires diffusive interchanges between liquid and solid to reach equilib-
rium partitioning. It is this separation of time scales that permits solute trapping at high
velocity where there is insufficient time for the diffusive rearrangements before the solute
is buried under additional crystal. For this reason the k(V) expression given above
involves a diffusion coefficient, whereas the model assumes that the interface temperature
equation can be obtained in an identical manner to a pure material, eq. (36), employing
eq. (41). It is however necessary to use the value for AG obtained for alloys, eq. (20)
rather than the simple expression based on AT,.

For dilute solutions, an analytical expression for the interface temperature can be ob-
tained (BOETTINGER and CORIELL [1986]. In this case AG from eq. (20) can be given by
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A6 _1-k,
RT, m

(T, +m.C] — T) + Cl[k — {1 ~ In (k/ky))} @7)

Expanding eq. (36) for small AG gives V=—V (AG/RT,) where V, is taken here as the
speed of sound. One can then summarize the two response functions for a flat interface
as follows:

. RT*V
T =T, +m(V)C. - me v (48)
and
C, = kC,, (49)
where m, (V) is given by
my (V) = mL{l .k k(ll :Zk/k"))}’ (50)

with k (i.e. &(V)) given by eq. (46). For a curved interface, eq. (48) must include an
additional term for the Gibbs-Thomson effect. Note that for V=0, eq. (48) and (49) revert
to the local equilibrium conditions. As k goes to unity, the term in the large brackets in eq.
(50) changes the effective liquidus slope from the equilibrium value of m, to the slope of
the 7, curve, which is m; [(Inky)/ (k,— 1)]. The last term in eq. (48) can be identified as a
interface kinetic supercooling necessary to drive the formation of the lattice.

Figure 20 shows a plot of the response functions obtained using eqs. (46), (48)—(50)
superimposed on a phase diagram including the liquidus, solidus, and T; curves. The plot
gives the liquid composition at the interface and the interface temperature as a function
of interface velocity for a fixed solid composition. This would be the case for directional
solidification at different but constant velocities. The figure is based on a phase diagram
for Ag—Cu with T, =960°C, k,=0.44 and m; =-5.6 K/at.%, Cs =5 at%Cu, V=5 m/s,
and V,=2 x 10’ m/s. At zero velocity, the composition of the liquid lies on the liquidus
curve, a situation that corresponds to local equilibrium. At intermediate velocities (about
1 m/'s) the composition of the liquid moves towards the composition of the solid but
with an increased interface temperature. At higher velocities the liquid composition
continues to approach the solid composition but the interface temperature drops below
the 7, curve. At still higher velocities, where the partition coefficient is essentially unity,
the temperature drops sharply with increasing velocity.

This analysis provides a pair of thermodynamically consistent response functions for
dilute alloys. For concentrated alloys no simple expressions can be written because &,
depends on composition. However, given a thermodynamic description of the liquid and
solid phases and values for the two kinetic parameters V;, and V,, the response functions
can be calculated numerically (Aziz and KapPLAN [1988]). Figure 21 shows the result for
all compositions of an ideal binary alloy. Effective liquidus and solidus curves are shown
for several interface velocities. These curves give the combinations of C,’, Cs, and T,

References: p. 830.



712 H. Biloni and W.J. Boettinger Ch. 8, §5

5 ce !
4 ]
950 —
A |
] ]
. LIQuUID
2 g00
By ]
(1d -
2] !
= i '
b ]
! i
E p=
T} - |
. - |
o
850 ] |
- i
] |
1 |
4 |
i |
800 T 1 T T T T T 1T € ) ¢ 371 vV s vV v v 7 » 1T 7 1T 1T ¢ v ¢£ ¢v 10
5

0 10 15

COMPOSITION (at %)

Fig. 20. Plot of interface temperature vs. liquid composition at the interface for a fixed solid composition, (=5
at %), forming at the indicated velocities (in m/s) superimposed on the phase diagram.

possible as interface conditions at the indicated velocities. A related model, which
includes solute drag (Aziz and KAPLAN [1988]), can also be reduced to a simple
analytical expression for dilute alloys (AzZiZ and BOETTINGER [1994]). Extensive
experimental research has been focused on testing these models (KiTTL et al. [1994]).
These solute trapping ideas have been extended to ordered intermetallic phases by
BOETTINGER and Aziz [1989]. Rapid solidification experiments indicate that some
compounds, which are normally ordered at the solidus, can be forced to solidify into the
chemically disordered form of the crystal structure (INOUE, et al. [1984], HUANG, et al.
[1986], BOETTINGER et al. [1988a)], HUANG and HALL [1989]). The theory treats the
trapping of disorder by a consideration of solute trapping on each sublattice of the
ordered phase. At high rates, there is insufficient time to proportion the solute onto each
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Fig. 21. Kinetic interface condition diagram for ideal liquid and solid with pure component melting points as
shown, pure component entropies of fusion equal to R, and V/ V,, = 100. Dashed lines: equilibrium liquidus and
solidus labeled zero, dash-dot lines: kinetic liquidus and solidus at different interface velocity given as values
of V/V,, dotted line: T, curve. Aziz and KaPLAN {1988].

sublattice and a chemically disordered crystal can be formed. Often however, this
disordered phase reverts to the equilibrium ordered phase during solid state cooling with
a resultant microstructure consisting of a high density of antiphase domains. An
approximate expression giving the solidification velocity at which the long range order
parameter, 7, at the liquid solid interface goes to zero is given by

Vn—>o = VD[T::/Tm - l]’ (5D

where T is the melting point of the ordered phase and T is the temperature where the
solid phase would disorder during heating if melting could be prevented; i.e. the
metastable critical temperature for the order—disorder reaction. Clearly the closer T, is to
the melting point, the lower is the velocity to obtain disorder trapping. Strongly ordered
compounds cannot usually be disordered by rapid solidification techniques.

References: p. 830.
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6. Solidification of alloys with planar and nearly planar S-L interfaces

The analysis of the shape of the S-L interface on a scale larger than atomic dimen-
sions begins with a consideration of plane front growth. Plane front growth is used
extensively to control the solute distribution that remains in a solid after freezing,
especially in the area of crystal growth of materials for electronic applications. It is also
important as a starting point to understand the more complex interface shapes involving
cellular and dendrite growth. To achieve planar growth, it is necessary to obtain a S-L
interface that is both macroscopically and microscopically planar. The former is achieved
by controlled directional solidification with good furnace design and avoiding convection
in the melt. The latter is achieved by avoiding interface instabilities due to constitutional
supercooling (C.S). This section will summarize important work in these two areas.

6.1. General formulation of diffusion controlled growth

In general, the transport of solute during directional solidification in the absence of
convection with a planar S-L interface growing in the z-direction is described by the one
dimensional diffusion equation

Fc_1ic

& Do’
that must be solved for the composition C in the liquid and solid subject to conditions at
the interface given by

(52)

C, = kC, (53)
and
aC,
D2 -p, %CZL‘ - V(C, - G). (54)

The use of &, in eq. (53) corresponds to the local equilibrium assumption and can be
modified for rapid solidification using eq. (46).

6.2. Solute redistribution during one dimensional solidification

Four limiting cases of the diffusional transport and the resultant solute distribution
can occur during unidirectional plane front solidification of a rod (fig. 22).

6.2.1. Equilibrium freezing

Here the S-L interface advances so slowly that diffusion in both phases maintains
global equilibrium at all time (see § 3). If the phase diagram predicts the solid to be a
single phase for the bulk alloy composition, any difference in solid and liquid composi-
tion occurring during the solidification process will disappear after solidification is
complete (fig. 22a). In more quantatative terms, a Peclet number (Pe), defined by
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DIRECTION OF INTERFACE MOTION

Fig. 22. Solute distribution remaining in the solid after one-dimensional solidification: (a) complete diffusion
in solid and liquid; (b) complete mixing in liquid-no solid diffusion; (c) diffusion in liquid only; (d) partial
mixing in liquid, including convection.

_ LV

k= D (55)
for each phase, especially the solid, must be much smaller than unity, where L, is the
length of the sample. Only under unusual circumstances can the lever rule be expected
to apply during solidification. One such case is Fe—C growing at very low velocity
because of the high solid state diffusivity of C in Fe. In substitutional alloys, equilibrium
freezing does not occur in any practical casting or crystal growth situations.

6.2.2. Complete liquid mixing, with ne solid diffusion

The conditions considered in this limiting case are: i) complete mixing of the liquid;
ii) no solid state diffusion; iii) constant and equal solid and liquid densities; iv) local
equilibrium at the S-L interface. The assumption of complete liquid mixing and no solid
diffusion is often made because diffusion in the liquid is typically orders of magnitude
faster than in the solid. In this case eq. (52) is replaced by a statement of solute
conservation. When a fraction of the rod, f;, is solidified, the concentration of the
remaining liquid is found to obey the following differential equation

dC, 1-k,

= —=df,, 56
CL l_fs > ( )

which is easily integrated for constant &, to
C, =G (1-£)*", (57a)

where C, is the nominal alloy composition. After freezing is complete, this process
leaves a solute distribution in the solid (fig. 22b) given by

References: p. 830.
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Cs = koCo1— )7, (57b)

where now f; is taken as the fractional distance down the rod. Indeed in this model, the
rod geometry with a planar interface is not a necessary assumption if the Gibbs—
Thomson effect can be neglected, and the equations are valid for any interface shape as
long as fg is taken as volume fraction. The temperature of the interface can be simply
obtained by substituing eq. (57a) into eq. (18).

GULLIVER [1922], HAYES and CHIPMAN [1938], SCHEIL [1942] and PFANN [1952] all
developed the same type of equation, also called the “nonequilibrium lever rule”.
Equations (57) can only be considered a limiting case since most real systems have at
least some solid state diffusion and some level of incomplete liquid mixing. For alloys
containing a eutectic (see § 8) the liquid composition may reach the eutectic composition.
In this case, the remaining liquid will freeze as a eutectic mixture. For cases when £,
depends on composition, eq. (56) can be numerically integrated.

6.2.3. Solid diffusion during solidification

BroDY and FLEMINGS [1966] were the first to account for diffusion in the solid. They
retained the assumption of complete liquid mixing, approximated the solute concentration
gradient in the solid at the S—L interface and derived the following expressions:

ko-1
. f
C: = kGl 1 - —— 58
s °°{ (1+a,,ko):| 8

and

(ko—1)/(1-2agko)
G = koGl ~ 11— 204k :
Equation (58) considers the case where V is constant and eq. (59) considers the case
where the growth is parabolic, i.e. V~ "2, The parameter a, is a measure of the extent
of diffusion of solute in the solid and is defined as:

@y = Dszt -

L,

where f;=local solidification time, that in the simplest case, where V=constant, is given

by V/L, BRODY and FLEMINGS [1966] also obtained numerical solutions of the solid
diffusion equation.

Equations (58) and (59) are good approximations only when a, <<1, i.e., with limited

solid diffusion during the solidification process. However problems occur when a, becomes

larger, as has been demonstrated by FLEMINGS et al. [1970]. Kurz and CLYNE [1981]
postulated an empirical variable, £}, applicable for the parabolic growth law, given by

call—expl - L]~ Lexol o L
Q= ao[l exp( %J 2exp( 2, )] (61)

(59

, (60)
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The value for €} is then used to replace e, in eqgs. (58) or (59). This new variable was
postulated because it provides two limiting cases corresponding to the ordinary Scheil
Equation (no solid diffusion, e, =0 or ) =0) and to the lever rule (complete solid
diffusion, e, =0 or () =0.5) respectively.

Another form for ) with the proper limits was given by OHNAKA [1986]. He
approximately solved the diffusion equation under the assumption that the solute
distribution in the solid can be represented by a quadratic curve and has derived another
form for () valid for parabolic growth, given by

Q = a,/1 + 2a,, (62)

KoBayasHi [1988] developed an exact analytical solution involving a slowly converging
series and showed that the approximate solutions above always underestimate the soiute
composition at the S-L interface with large deviations when k; is small and o, is large.
Another useful approximation for solid diffusion has been given by WANG and BECKER-
MANN [1993].

The above analytical solutions have limitations, because all the physical properties
must be constant, and Cg can only be calculated at the S-L interface. While this does
permit one to calculate the fraction of solid versus temperature curve that is required for
heat flow modelling (eq. (7)), it does not give the solute profile that remains in the solid.
Numerical solutions can overcome these limitations. BATTLE [1992] gives a review of the
several models developed. Among them the recent model of BATTLE and PEHLKE [1990]
has approached the one dimensional problem in a general form. The method combines
solution of the diffusion equation for heat and solute through out the entire rod using the
technique of MEYER [1981]. GANESAN and POIRIER [1989] used numerical calculations
of solid diffusion to point out that «, can not be treated as a constant during solidificat-
ion. Consequently, eq. (59) overestimates the extent of diffusion in the solid. This effect
is more pronounced when k, < 0.4, Diffusion during solidification is also important when
dendritic or cellular dendritic growth is considered. This will be discussed in § 7.

6.2.4. Steady-state diffusion controlled freezing

Another practically important limiting case of one dimensional solidification occurs
when all the assumptions described in § 6.2.2. apply, except item i). In this case mixing
in the liquid is not complete and is governed by diffusion. Figure 22¢ shows the resulting
solute distribution along the rod after solidification. Three distinct regions occur: an
initial transient, a steady-state region and a terminal transient. The first is required to
establish the steady state boundary layer of solute ahead of the interface and the third
arises from the interaction of the boundary layer with the end of the specimen. The
diffusion boundary layer in the liquid ahead of the S-L interface is a region of the
system that transports the solute missing from the initial transient in the solid and
maintains a constant solid composition in the central region of the rod. The moving
boundary layer changes the liquid interface composition from C, to Cy/k,, and disappears
at the end of solidification by “depositing” its solute in the final transient. Figure 23
(Kurz and FisHER [1989]) shows the distribution of solute in the liquid and solid along
the rod during unidirectional solidification.

References: p. 830.
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Fig. 23. Development of initial and final transient during steady-state diffusion controlled planar solidification
for an alloy of composition C,. After KURZ and FISHER [1989].

When the steady state condition has been reached in the central region of the bar, the
solute distribution in the liquid in front of the interface is given by (TILLER ef al. [1953]):

1-k% |4
C. = Co[l + A 0 exp(— D—L z):| (63)

where D, is the solute diffusion coefficient in the liquid and z the distance from the
interface. Note that the liquid concentration at the interface is Cy/k, producing a solid
composition C,. In eq. (63) the thickness of the solute rich layer is given by the
characteristic distance, D,/ V.

It is quite important to know the extent of each of the three regions shown in fig.
22c. The reader is refered to VERHOEVEN et al. [1988], [1989] for a summary of analysis
of the initial and final transients.

6.2.5. Convection effects. Freezing with partial mixing in the liquid (Boundary
Layer Approach)
Free convection, due to solute or thermal gradients in the liquid, or forced convection,
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due to crystal rotation or electromagnetic forces, strongly influence segregation. This
subject has been reviewed by various authors: HURLE [1972], CARRUTHERS [1976],
PiMPUTKAR and OSTRACH [1981], GLICKSMAN et al. [1986], BROowN [1988], FAVIER
[1990]. Fluid flow has important technological consequences for the processing of
electronic materials where the solute distribution determines the quality of the devices.

The interval between the extreme cases of complete mixing and diffusion controlled
freezing was bridged by the pioneering work of BURTON et al. [1953]. In this simple
approach, a diffusion layer of thickness 8y is assumed near the interface outside of which
the liquid composition is maintained uniform by convection. A general expression for an
effective distribution coefficient is then obtained.

k ky

of = .
ko + (1= k) exp[(—l‘;—BF) Z—Sjl

The solute distribution (fig. 22d) is then given by

(64)

G = kgL~ £)7 =1 (65)

Fluid flow affects the solute distribution through the parameter V86z/D; in eq. (64). For
vigorous convection in the liquid, 8 — 0, k; —> k;, and eq. (65) is the same as the
Schiel result. For negligible convection, 8z — e, £z — 1, and eq. (65) gives a constant
solute profile. The model has been quite successful in modeling axial segregation in the
presence of laminar and turbulent convection during plane-front growth.

This simple approach, while particularly easy to use, neglects many factors which
have been more recently considered. A major effort has been made to include time
dependence in the BURTON et al. [1953] model when Czochralski and Bridgman crystal
growth is considered (WiLsoN [1978], [1980], FAVIER [1981a], [1981b], (FAVIER and
WILSON [1982]). More recently CAMEL and FAVIER [1984a}, [1984b] and FAviER and
CAMEL [1986] used an order of magnitude analysis and scaling to examine different flow
regimes in terms of dimensionless numbers in Bridgman crystal growth. We defer more
complex models of convection until later.

6.2.6. Zone melting

The most important variables in the zone melting process are: (i) zone length; (ii)
charge length; (iii) initial distribution of solute in the charge; (iv) vapor pressure and (v)
zone travel rate (constant or variable). Manipulation of these variables can produce a
large variety of impurity distributions in the solid charge. The most important variation
of the method used to obtain high purity metals and semiconductors is zone refining.
Figure 24 shows a schematic view of a multipass zone refining device, a more efficient
system than the single pass system originally developed. The reader is referred to the
important contributions of PFANN [1966] concerning this technique as well as the zone
leveling and the Temperature Gradient Zone Melting (TGZM) techniques reviewed by
BiLonI [1983].

Recently RopwAy and HUNT [1989] established a criterion for optimizing the zone

References: p. 830.
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Fig. 24. Schematic of zone-refining, showing three molten zones travelling along an ingot. PFANN [1966].

length during multipass zone refining. The technique has been applied numerically, to
model the redistribution in a rod, for various values of k,. The important ¢onclusions are:
(i) a Variable Zone Size along the bar (VZS) during the process, causes a considerable
increase in the rate at which the ultimate distribution is approached, compared to a fixed
zone size process. This leads to a significant improvement in the usable fraction of the
rod. (ii) the optimum zone length at any stage in the process is independent of the kg
value. Consequently for a material containing many impurities with different &, values
(ko<1 or ky> 1), the VZS is optimum for all of them.

6.3. Lateral segregation

In the previous discussion we have assumed the interface to be planar. In the event
that the thermal distribution of the crystal growth apparatus is not perfect, macroscopic
curvature of the interface can develop. If convective mixing can be neglected, CORIELL
and SEKERKA [1979], and CORIELL et al. [1981] have modeled the lateral segregation that
will be present for a given shape. Their numerical and analytical results treat the segregat-
ion in terms of the distance that the interface deviates from planarity (5,), the sample
width, the characteristic diffusion distance (D,/V) and the partition coefficient, k. The
radial segregation is greatest when , is small and when 8 /(D,/V) > 1. Detailed calculat-
ions of lateral segregation due to convection driven by longitudinal and radial gradients,
typical of Bridgman growth upward and downward, are described by CHANG and BROWN
{1983]. Experiments performed by SCHAEFER and CORIELL [1984] in the transparent
succinonitrile—acetone system show the effect of radial gradients at a S-L interface.

6.4. Morphological stability of a planar interface

In §6.2 it was assumed that the S-L interface was microscopically planar during
solidification. Thus the composition profile induced in the solid varied only in the
direction of growth. However even if the heat flow is controlled to be unidirectional and
the isotherms are planar, a planar interface may be unstable to small changes in shape.
Lateral composition variations can then be induced in the solid on a scale much smaller
than the sample width. The morphological stability theory defines the conditions under
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for all values of A. The conditions giving the stability—instability demarcation (o =0)
reduce to an equation with three terms corresponding to the three factors contributing to
the overall stability of the interface, the thermal field, the solute field and the capillarity
forces. The stability equation is

4a’T,T
G- m Get. + ’TA—;" =0. 67)
The parameter G is the conductivity weighted temperature gradient given by
G = K G; +_KI_GL , (68)
2K

where K=(K, +Ky)/2 is the mean of the liquid and solid thermal conductivities. The
parameter G, is the composition gradient in the liquid, which for a planar interface
moving at constant velocity, is obtained from eq. (63) and is given by
VCylky —1
G, = M_ (69)
kD,

The parameter £, can usually be set equal to unity. However £, may deviate significantly
from unity under rapid solidification conditions, where VA /2D, » 1. In general its value
is given by

2k,

1-2k, - [1 + (431)} ﬂw |

Technically eq. (67) is correct only when VA /24 is small, where a is the liquid or
solid thermal diffusivity. This condition is almost never violated even during rapid
solidification. See KURZ and FISHER [1989] for a complete description of this detail.

If the left hand side of eq. (67) is positive, the interface is stable. The first term is
stabilizing for positive temperature gradients; if the temperature gradient is negative
(growth into an supercooled melt), this term is destabilizing. If a pure material is
considered, this is the only possible destabilizing term. Thus a planar interface in a pure
material is only unstable for growth into an supercooled melt. The second term represents
the effect of solute diffusion in the liquid and, being negative, is always destabilizing.
The third term, involving capillarity, has a stabilizing influence for all wavelengths,
though its effect is largest at short wavelengths. This is the sort of stabilizing effect to
be expected from surface energy which tends to promote an interface shape with the least
area, namely a plane.

Figure 26 shows a plot summarizing the stability of a planar interface for dilute
Al-Cu alloys. Figure 26a shows the value of o vs. A for selected values of G, V, and C,
(200 K/cm, 0.1 cm/s and 0.1 wt%Cu). Under these conditions a range of wavelengths
have positive o, and are therefore unstable. The smallest unstable wavelength is usually
referred to as the marginal wavelength and the wavelength with the largest value of o is

=1+

(70)
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