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Fuzzy Rules and Implication

(P
o Fuzzy if-then Rules
A fuzzy rule generally assumes the form
R: If x is A, then y is B.

where A and B are linguistic values defined by fuzzy sets on
universe of discourse X and Y, respectively.

0 The rule is also called a "fuzzy implication" or fuzzy conditional
statement. The part "x is A" is called the "antecedent" or "premise”,
while "y is B" is called the "consequence” or "conclusion".

0 In general, the antecedent and consequence are represented by the
form of linguistic variables.
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Fuzzy Rules and Implication
B
0 Fuzzy if-then Rules
Before we employ fuzzy if-then rules to model and analyze a
system, first we have to formalize what is meant by the expression:
R: "If x is A theny is B",
which is sometimes abbreviated as
R:A—>B
0 In essence, the expression describes a relation between two
variables x and y.
0 This suggests that a fuzzy rule can be defined as a binary relation R
on the product space X x Y.
Sharif University of Technology Industrial Engineering Dept.
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[

0 Fuzzy Implications

Based on the interpretations of the Cartesian product and various t-norm
and t-conorm operators, a number of qualified methods can be formulated
to calculate the fuzzy relation
R=A—->B

R can be viewed as a fuzzy set with a two-dimensional membership
function

Hr(x, y) = f{palx), pe(y)
where the function f, called the “fuzzy implication function™, performs the
task of transforming the membership degrees of x in A and y in B into
those of (x, y) in A x B. We introduce here two well known fuzzy
implication functions.
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Fuzzy Rules and Implication
(B

0 Fuzzy Implications

(1) Min operation rule of fuzzy implication [Mamdani]. It interprets the
fuzzy implication as the minimum operation.
Rc=AxB

= j xxy MA(X) A ps(Y) / (x, y)

where A is the min operator

(2) Product operation rule of fuzzy implication [Larsen]. It implements
the implication by the product operation.
Rp - A X B
= [y 1a®) - 10) /()
where . is the algebraic product operator
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Fuzzy Rules and Implication
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0 Example of Fuzzy Implications

Example 9.3 There is a fuzzy rule in the following.
If temperature is high, then humidity is fairly high.

It is a fuzzy rule and a fuzzy relation. We want to determine the
membership function of the rule. Let T and H be universe of discourse of
temperature and humidity, respectively, and let’s define variables t € T
and h € H. We represent the fuzzy terms “high” and “fairly high” by A
and B respectively:

A = *“high”, AcT

B = “fairly high”, Bc H
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Fuzzy Rules and Implication
(B

0 Example of Fuzzy Implications

Table 9.6. Membership of A in T (temperature)

t 20 30 40

palt) 0.1 0.5 0.9

Table 9.7. Membership degrees of B in H (humidity)

h 20 50 70 90
up(h) 0.2 0.6 0.7 1
Sharif University of Technology Industrial Engineering Dept.
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0 Example of Fuzzy Implications

then the above rule can be rewritten as
R(t, h): Iftis A, then h is B.
In the rule (relation), we can find two predicate propositions:

R(t): tis A

R(h): his B
the rule becomes

R(t, h): R(t) = R(h)

if we know membership functions of A and B, we can determine R, = A
x B by using the fuzzy implication function where Ry 1, < T x H.
Assume membership functions g(t) and gp(h) are given in (Tables 9.6 ,
9.7) respectively.
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Fuzzy Rules and Implication
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0 Example of Fuzzy Implications

In order to get the relation for the implication in the above fuzzy rule,
we have to select an implication function between A and B. For
simplicity, let’s take the min operation of Mamdani in the previous section.

Re(t,h)=A x B

= J‘ 2aa() A (h) / (t, h)

when we apply the min operation on the Cartesian product A x B, we
obtain the relation R¢ as shown in (Table 9.8.) This membership of R¢
represents the fuzzy rule. Note that u, (20, 50) = 0.1 is obtained by the

min between x4(20) = 0.1 and p(50) = 0.6. Similarly, u, (30, 20) =
0.2 from ux(30) = 0.5 and 25(20) = 0.2. u]
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0 Example of Fuzzy Implications
Example 9.4 Now suppose, we want to get information about the humidity
when there is the following premise about the temperature.

“Temperature is fairly high”
This fact is rewritten as

R(1): “tis A™ where A’ = “fairly high”
where the fuzzy term A’ < T is defined in (Table 9.9)

Table 9.8. Membership of rule Rc = A x B

h 20 50 70 90 Table 9.9. Membership function of A" in T (temperature)
1 — —
20 0.1 0.1 0.1 0.1 t 20 30 40
30 02 0.5 0.5 0.5 paft) o.01 .25 0.81
40 0.2 0.6 0.7 0.9
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0 Example of Fuzzy Implications

As we can see, A’ is not same with A and thus we apply the fuzzy
inference method of generalized modus ponens. We use the composition
rule of inference with the max-min composition.

R(h) = R(t) o R¢(t, h)
where R(t) is in (Table 9.9.) and R¢(t, h) in (Table 9.8.)

If we denote the result of the inference as B’, B’ is the information about

humidity when “temperature is fairly high” (Table 9.10). o

Table 9.10. Result of fuzzy inference

h 20 50 70 90
ug(h) 0.2 0.6 0.7 0.81
Sharif University of Technology Industrial Engineering Dept.
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1 Decomposition of Rule Base

o1 When we model a knowledge system, it is often represented
by the form of "fuzzy rule base".

0 The fuzzy rule base consists of fuzzy if-then rules.

0 In many cases, the fuzzy reasoning on the fuzzy rule base is
based on one level forward data-driven inference (GNP:
generalized modus ponens).

01 The rule base has' the form of a MIMO (multiple input multiple
output) system.

- 1 2 n 1
R = {R\ 05 Rymios -+ +» Rimvo)
where R,,,, represents the rule:
Ifxis A;and y is By, then z, is C;, ..., g is D,
Sharif University of Technology Industrial Engineering Dept.
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Inference Mechanism

1 Decomposition of Rule Base

The antecedent of R}, forms a fuzzy set A; x ... x B; in the

“product space” U x ... x V. The consequence is the “union” of q

independent control actions (z, + z, + ... +z,). Thus the ith rule R,
may be represented as a fuzzy implication.

R:WMO: (Aix...xB)=> (21'+ ... +Z)

Sharif University of Technology Industrial Engineering Dept.
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1 Decomposition of Rule Base

From the above statement, it follows that the rule base R may be
represented as the union

R= {g R;II.MO}

= (U [(4, %% B) = (2, +++++2,)]}

={U[(4,x-xB) > z], —{U U[(4,%xB)—>z]}

k=l i=l
n 4 n
U[(AJX“-KBJ:)—)Z1]1..., :{E{I RB:HS{)} “’hereRB:ﬂSﬂ=H[(AJ><.‘.XBF}_)ZJ]
i=l & X

n = {RB;,N,, RB.iu_\'m iy RB.:HS(J! g RB:HS{)}
U (4 X'”xBi)_"Z‘;]}

i=l
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1 Decomposition of Rule Base

In effect, the rule base R is composed of a set of sub-rule-bases RB} s,

where k = 1, 2, ..., q. The sub-rule-base RB};q,has “multiple input”

variables and a “single control” variable. Therefore the general rule
structure of a MIMO fuzzy system can be represented as a collection of
MISO fuzzy systems.

2 k
R= {RB.;usov RBMfsov Ty RBMISO’ "= RB.‘{HSU}

where RBj,q, represents the rule:

If xis A;and ..., and y is B; then z is C,, fori=1,2;:.,0

Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu
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o1 Two-Input/Single-Output Rule Base

For simplicity, let’s consider the general form of MISO fuzzy control rules
in the case of two-input/single-output systems.
Input: # is A" and v is B’
R,:ifuis A, and v is B, then is w is C,
else Ry: if w is A; and v is B, then is w is C,

else R,;: if w is A, and v is B, then is w is C,
consequence: w is C’
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Inference Mechanism

o1 Two-Input/Single-Output Rule Base

where u, v, and w are linguistic variables representing the process state
variables and the control variables, respectively. A;, B;, and C; are
linguistic values of the linguistic variables u, v, and w in the universe of
discourse U, V, and W respectively fori=1, 2, ... ,n.
The fuzzy control rule

R;: If w is A; and v is B; then w is C;
is implemented as a fuzzy implication relation R; and is defined as

Ri: (Ajand B)) > C; or

Mg, = i, ana 8, > c,) (s Vs W)

=, () and pz (V)] > g (w)
where “A; and B;” is a fuzzy set A; x Biin U x V.
R;: (A; and B;) — C; is a fuzzy implication relation in U x V x W, and
— denotes a fuzzy implication function.

Shanr umiversiry or 1ecnnology inausimal cngimeering vept.
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01 Compositional Rule of Inference

Lemma 1 (For 1 singleton input, result C” is obtained from C and
matching degree a;, Fig 9.1)
When a fuzzy rule R, and singleton input #, are given
Ri: Ifuis A thenwis C,
Or R:4-C
The inference result C’is defined by the membership function g (w)
He(w) = ay A pie(w) for Re (Mamdani implication)
He(w) = ay « uc(w) for Rp (Larsen implication)
where a; = (1)
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Inference Mechanism

01 Compositional Rule of Inference

A\ 4

Uy u w

Fig. 9.1. Graphical representation of Lemma 1 with R
(When a singleton input is given, C’is obtained from C and «,)
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01 Compositional Rule of Inference

Lemma 2: (For | fuzzy input, result C’is obtained from C and matching
degree a, Fig 9.2)

When a fuzzy rule R;: A — C and input 4 “are given, the inference result
C’is defined by the membership function s

HeAw) = ar A pidw)  for Re
Hc (W) = ar « uc(w)  for Rp
where a; =max [z (u) A pg(u)]
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Inference Mechanism

01 Compositional Rule of Inference

A A
Ha He

v

u W

Fig. 9.2. Graphical representation of Lemma 2 with R¢
(When a fuzzy set input is given, C’is obtained from C and &)
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B
0 Fuzzy Inference with Rule Base

0 In this section, we generalize the properties of compositional
rule of inference discussed in the previous section to the case
such as

n
R:U Ri
i=1
Kil Ai . Ci
Lemma 3 (Total result C”is an aggregation of individual results C/, Fig
9.3)
The result of inference C is an aggregation of resultC! derived from
individual rules.
n n n
C=dvllB=T/&sR=UC
i=1 i=1 i=l
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4/5/2011

11



Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu
.
Inference Mechanism
Hc(w)
A
Ri: 4, = C; «
Fig. 9.3. Lemma 3 (Total result C”is a union of individual result ;")
HcAw)
A
C, C!
R 2% A B C-‘g
a: W
w F,. 03 N
Sharif University of Technology 18- - (cont } :ngineering Dept.
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Inference Mechanism

0 Fuzzy Inference with Rule Base

Now, we generalize Lemma 3 to the case of multiple input variables
such as

RZUR;
i=l
Rii Ai and Bi 4 Ci

Colorally of Lemma 3: (Lemma 3 in the case of multiple inputs)
The result of inference C is an aggregation of result C! derived from

individual rules.

C'= (4, B)U R, =U(4, B)o R, =UC
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Inference Mechanism

01 Fuzzy Inference with Rule Base
Lemma 4: (R;: (4; x B; — C;) consists of R;': (4; > C,) and R;*: (B; = (),

Fig 9.4)
When there is a rule R; with two inputs variables 4; and B;, the inference

result C/ is obtained from individual inferences of R;': (4, = C,) and R;:
(B; — C)).
C/=(A",B")o(A4 and B, > C,)
=[4'o(4, = C)IN[B' = (B, —> ()] if Haxp, = Hq Aty (for R;)
=[4'°R'1N[B'>R’] whereR' =4, —C, and R’ =B, > C,
=C/NC? whereC/=A'oR and C’'=AoR’
C'=(A,B)o(A and B, > C))
[0 (4> C[B'o(B,>C)  if fyuy =ty -1ty (for Ry)

misusi i Logmes iy wept
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01 Fuzzy Inference with Rule Base

A; B, G
Ri:A4;x B; = C;

Rill A,- - C,'

Sharif University of Technology
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Inference Mechanism

[
01 Fuzzy Inference with Rule Base
7 3 A

& Bi CJ

/
\
Ri-l B, —> Cj {I \
i A
S S CC— -

Fig. 9.4. Lemma 4 (Rule R; can be decomposed into R;' and R;” and the result
C! of R; is an intersection of the results C;' and €7 of R;' and R}, respectively.)
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Inference Mechanism

01 Fuzzy Inference with Rule Base
Lemma 5: (For singleton input, C;is determined by the minimum match-

ing degree of A; and B;, Fig 9.5)

If the inputs are fuzzy singletons, namely, A’ = u0, B’ = v0, the
matching degree i is the minimum value between .1/ 4(u) and 1/ g{vo)
from the lemma 1, the inference result can be derived by employing
Mamdani’s minimum operation rule R¢ and Larsen’s product operation
rule Rp for the implication.

Ju("'("v):aa‘ AJU(“,(W) fOF RC
/‘l(‘;(w):a.‘ -,UC'_(W) for RP
where a; = p, (uy) A py (vy) =minfe, (u,), py (v,)]
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Inference Mechanism

01 Fuzzy Inference with Rule Base

min

U 0 H v v - W

Fig. 9.5. Lemma 5 (& is the minimum matching degree between A4 (1) and B{v).)
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0 |

01 Fuzzy Inference with Rule Base

Lemma 6: (For fuzzy input, C/ is determined by the minimum matching
degree of (4" and 4,) and (B’ and B,), Fig 9.6)

If the inputs are given as fuzzy sets A’ and B’, the matching degree ¢ is
determined by the minimum between (4’ and 4;) and (B" and B;). From
the lemma 2, the results can be derived by employing the min operation for
R¢ and the product operation for R.

He (W) =a; A i (W) for R
He, (W) =a; « fie (W) Jor R,
where a; = min[mjix(,uf,,(u) Ay (1)), mflx(,uﬂ,(v) A Hy (v)]
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0 Fuzzy Inference with Rule Base

min

(J(ih.
L

shavandi@sharif.edu

(A" and A4;) and (B’ and B,).)

Sharif University of Technology

Fig. 9.6. Lemma 6 (¢; is the minimum matching degree between
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O

methods.

0 Mamdani Method
o Larsen Method
0 TSK Method
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Based upon the previous lemmas, now we develop inference
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Inference Methods: Mamdani Method
[

This method uses the minimum operation R¢ as a fuzzy implication and
the max-min operator for the composition. Let’s suppose a rule base is
given in the following form.
Ri:ifuisA;and vis Bijthenwis C;, i=1,2,...,n
forue UveV,andwe W.
then, R; = (4; and B;) = C; is defined by
Mg, = Hiu, and B,~c,) (Us Vs W)
(1) When input data are singleton u = uy, v = v
He(w) = [FA, () and Hp, (v)] > He, (W)
The Mamdani method uses the minimum operation (A) for the fuzzy
implication (—). From lemma 5,

He; (W) =a; A pie, (W)

where a, = 1, (uy) Aty (V)

Sharif University of Technology Industrial Engineering Dept.
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Inference Methods: Mamdani Method
[

From the previous Lemma 3, we know the membership function g of
the inferred consequence C is given by the aggregated result derived from
individual control rules. Thus, when there are two rules R, and R,,

M (W)= fe; V He,
= [, A e, WV [, A pre, (W)]
The procedure of Mamdani fuzzy inference when the inputs are given as
singletons is represented in (Fig 9.7).
Therefore in general, from Lemma 3,

(W) = Vi, A pre, (0]= V s, (w)

%
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Inference Methods: Mamdani Method

Uy Vo

Fig. 9.7. Graphical representation of Mamdani method with singleton input

Sharif University of Technology Industrial Engineering Dept.

Fuzzy Sets. Chapter 6- Fuzzy Logic shavandi@sharif.edu

Inference Methods: Mamdani Method

From Lemma 6,
p(.;(w) =a; A fie (W)
where a; = min[max(u ,(u) A p, (u)), max (s, (v) A fy (v))]

From Lemma 3, we have the aggregated result
n n
ﬂ("(w) = Z[ai N He, (w)]= XI He: (w)
n
el e
i=]
The graphical interpretation of this inference is given in Fig 9.8.
The result C’ is a fuzzy set and thus if we want to obtain a deterministic

control action, a defuzzification method is used which will be discussed in
the next chapter.

[ (2) When input data are fuzzy sets, 4 “and B” -

Sharif University of Technology Industrial Engineering Dept.
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Inference Methods: Mamdani Method
-, Hg, He, -

[
B A B ' G
a /\

0”—[‘!4’ O_M_— ﬂc"

-

0

Vv min w

Fig. 9.8. Graphical interpretation of Mamdani method with fuzzy set input
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Inference Methods: Mamdani Method
[

Example 9.5 There is a fuzzy rulebase including one rule such as :
R:Ifuis A thenvis B
where A=(0, 2, 4) and B=(3, 4, 5) are triangular fuzzy sets.

If an input is given as singleton value =3, how can we calculate the
output B using the Mamdani method?

Sharif University of Technology Industrial Engineering Dept.
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Inference Methods: Mamdani Method

[
Example 9.5

We can see the matching degree between A and u, is a=0.5 Therefore
the output B’ is obtained by the intersection between B and a=0.5. That is,
B’ is expressed by the lower area of 0.5 in B(Fig.9.9).

Now, consider the case that input is given as a triangular set A'=(0, 1,
2) . That is,

Ha(x) =x for 0 <x<1
= -x+2 for 1< x<2
=0 otherwise

We can obtain the mathching degree 0=2/3 and then B’ is the lower part
of 2/3 in B (Fig 9.10). u]

Sharif University of Technology Industrial Engineering Dept.
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Inference Methods: Mamdani Method
[

Example 9.5 l
1

0 2 3
Tr.ru

Fig. 9.9. Fuzzy inference with input ty=3

4 i 4 5

A i B

0 2 4 0 3 4 5

Fig. 9.10. Fuzzy inference with input A'={(0, 1, 2).
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Inference Methods: Larsen Method

This method uses the product operator Ry for the fuzzy implication and the
max-product operator for the composition. For the following rule base,
R:ifuisA;and vis Bithenwis C;, i=1,2,...,n
then
R, =(A4, and B))— C, is defined by

AuR, » )u(xl, and B; »C; )(u’v" W)

(1) When the singleton input data are given as u = up, v = vy, from
Lemma 5 we have

Juc;(w) = [/’1,1, (uy) and Hp, (V)] = He, (w)
= [/-‘A, (o) A pg (Vo) » e, (W)

=a,; « e (W) wherea; = p, (u,) A pig (V)

Sharif University of Technology Industrial Engineering Dept.
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Inference Methods: Larsen Method

From Lemma 3,

(W) = Vit e, (09)) =V ficy (W)

n
C'sUC
i=1
The graphical representation of this method with singleton input is given
in (Fig 9.11
Sharif University of Technology Industrial Engineering Dept.
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Inference Methods: Larsen Method

| 1, lie |
| |
1

=

| —
=

Fig. 9.11. Graphical representation of Larsen method with singleton input
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Inference Methods: Larsen Method

(2) When the input data are given as the form of fuzzy sets 4" and B’
from Lemma 6, we know

He (W) =@« phe, (W)
where e, = min[max (g, (u) A g, (u)), m?x(/u,,.(v) A g (V)

From Lemma 3, we have
He (W)= ,_Y][a: - He, (W)] = El Her (W)
c=UC

The graphical interpretation of this inference is shown in (Fig 9.10.)
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Inference Methods: Larsen Method
- Hy, Hp, He, —
]
| ¢
He
1
0
Fig. 9.12. Graphical representation of Larsen method with fuzzy set input
Sharif University of Technology Industrial Engineering Dept.
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Inference Methods: Larsen Method

Example 9.6 There is a fuzzy rule
R:ifuis Aand vB thenwis C
where A=(0, 2, 4), B=(3, 4, 5) and C=(3, 4, 5)
i) Find inference result C' when input is uy =3, vv=4 by using Larsen
method
ii) Find inference result C' when input is A=(0, 1, 2) and B=(2, 3, 4).
The solutions are illustrated in (Figs 9.13 , 9.14), respectively.
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Inference Methods: Larsen Method

(B " s e
Example 9.6 1 [ B /\c

IR IVARE W

2 $ 3° 4 .5 3 4 5
iy T\’n

Fig. 9.14. Larsen method with input A'=(0, 1, 2), B'=(2, 3, 4).
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Inference Methods: TSK Method

This method was proposed by Takagi, Sugeno, and Kang. A typical
fuzzy rule in this model has the form
If u is A and v is B then w = f{u, v),

A and B are fuzzy sets in the antecedent while w = f(u, v) is a crisp
function in the consequent. Usually f(x, v) is a polynomial in the input
variable # and v, and thus this method works when inputs are given as
singleton values (Fig 9.16).

For simplicity, assume we have two fuzzy rules as follows.

R,:ifuis A; and v is B, then w = fi(u, v)=pju + qiv +r1,
Ry:ifuis Ayand vis By then w=fi(u, v)=pau + quv + 1,
where pi, p2, qi, and g, are constant.

The inferred value of the control action from the first rule is fi(ug, vo)
where 1, and v, are singleton inputs, and «; is the matching degree. The
inferred value from the second is fy(«, v) with the matching degree a,.
The matching degrees are obtained like in the previous methods.
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weighted average.
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[

They are all crisp values. The aggregated result is given by the

0

This method also saves the defuzzification time because the final result
wy 1s a crisp value.
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