
Towards Designing Arti�cial Neural Networks by Evolution�Xin Yao and Yong LiuComputational Intelligence Group, Department of Computer ScienceUniversity College, The University of New South WalesAustralian Defence Force Academy, Canberra, ACT, Australia 2600Email: xin@csadfa.cs.adfa.oz.auAbstractDesigning arti�cial neural networks (ANNs) for di�erent applications has been a keyissue in the ANN �eld. At present, ANN design still relies heavily on human expertswho have su�cient knowledge about ANNs and the problem to be solved. As ANN'scomplexity increases, designing ANNs manually becomes more di�cult and unmanage-able. Simulated evolution o�ers a promising approach to tackle this problem. Thispaper describes an evolutionary approach to design ANNs. The ANNs designed by theevolutionary process are referred to as evolutionary ANNs (EANNs). They representa special class of ANNs in which evolution is another fundamental form of adaptationin addition to learning (also known as weight training). This paper describes an evolu-tionary programming (EP) based system to evolve both architectures and connectionweights (including biases) of ANNs. Five mutation operators have been proposed in ourevolutionary algorithm. In order to improve the generalisation ability of evolved ANNs,these �ve operators are applied sequentially and selectively. Validation sets have alsobeen used in the evolutionary process in order to improve generalisation further. Theevolutionary algorithm allows ANNs to grow as well as shrink during the evolutionaryprocess. It incorporates the weight learning process as part of its mutation process.The whole EANN system can be regarded as a hybrid evolution and learning system.Extensive experimental studies have been carried out to test this EANN system. Thispaper gives some of the experimental results which show the e�ectiveness of the system.Keywords| Evolutionary Algorithms, Arti�cial Neural Networks, Learning, Evo-lution, Generalisation, Adaptation.1 IntroductionDesigning arti�cial neural networks (ANNs) through simulated evolution has been investi-gated for many years [1, 2, 3, 4]. It o�ers a very promising and automatic alternative todesigning ANNs manually. The advantage of the automatic design over the manual designbecomes clearer as the complexity of ANNs increases. Manual design of ANNs requiresthe designer to have very good knowledge in both ANNs and the problem to be solvedby the ANN. However, such knowledge is often unavailable for a non-ANN-expert facing areal-world problem.Evolutionary arti�cial neural networks (EANNs) [3, 4] refer to a special class of arti�cialneural networks (ANNs) in which evolution is another fundamental form of adaptation inaddition to learning. They provide a general framework for investigating various aspects�This work is supported by the Australian Research Council through its small grant scheme.



of simulated evolution and learning, including the automatic design of ANNs. The generalframework make it clear where the automatic design of ANNs �ts into the whole picture of ageneral adaptive system which can change its behaviours through changing its \hardware",i.e., weights and architectures, and its \software", i.e., learning rule. We will review such ageneral framework [5, 6] in Section 2. Then we discuss the issue of designing ANNs throughsimulated evolution in Section 3. Section 4 presents our latest evolutionary system whichcan evolve ANN's weights and architectures at the same time. Finally, Section 5 gives ourconclusions and indicates some future research topics.2 A General Framework for EANNsEvolution can be introduced into ANNs at various levels. At the lowest level, evolution canbe introduced into weight1 training, where ANN's weights are evolved. This evolutionaryprocess is similar to the learning process in the connectionist paradigm where weights areadjusted in order to learn certain functions. At the next higher level, evolution can beintroduced into ANN's architecture adaptation, where the architecture is evolved, ratherthan designed by human beings. At the highest level, evolution can be introduced intoANN's learning rule, i.e., the rule which speci�es how to adjust weights in weight training.Since the weight training has traditionally been regarded as a learning process, the evolutionof learning rules can be regarded as a process of learning to learn (weights). A generalframework of EANNs which includes the above three levels of evolution is given in Figure 1[3]. There have been some discussions on whether the evolution of learning rules is at thehighest level among the three in Figure 1 [3, 4]. From the point of view of engineering, thedecision on the level of evolution depends on what kind of prior knowledge is available. Ifthere is more prior knowledge about EANN's architectures than that about their learningrules or a particular class of architectures is pursued, it is better to put the evolutionof architectures at the highest level because such knowledge can be used to reduce the(architecture) search space and the lower level evolution of learning rules can be morebiased towards this kind of architectures. On the other hand, the evolution of learning rulesshould be at the highest level if there is more prior knowledge about them available or thereis a special interest in certain type of learning rules.Figure 1 provides us with a common framework for discussing various EANN models ifwe interpret the simulated evolution in a broader sense, that is, if we interpret simulatedannealing (SA), gradient descent search, exhaustive search, etc., as special cases of evolu-tionary algorithms. For example, the traditional back-propagation (BP) network can beconsidered as a special case of our general framework with one-shot (only-one-candidate)search used in the evolution of architectures and learning rules and the BP algorithm usedin the evolution of connection weights. In fact, our general framework de�nes a three-dimensional space where 0 represents one-shot search and +1 represents exhaustive searchalong each axis. Each EANN model corresponds to a point in this space, where the threecoordinates represent the three algorithms used by the EANN model in searching for theweights, architecture and learning rules. In this paper, we will describe an EANN modelwhich uses one-shot algorithm to search for the learning rule, a variant of evolutionaryprogramming (EP) to search for the architecture, and a hybrid BP-SA algorithm to searchfor the weights.1Weights include connection weights and biases. 2



THE EVOLUTION OF LEARNING RULES

evaluation of learning rules

reproduction of learning rules

THE EVOLUTION OF ARCHITECTURES

evaluation of architectures

reproduction of architectures

THE EVOLUTION OF WEIGHTS

evaluation of weights

reproduction of weights

TASKS

Figure 1: A general framework for EANNs.
3



3 Automatic Design of ANNs Through EvolutionThe evolution of architectures provides an automatic way to design ANNs. It is obviousfrom the general framework in the previous section that any algorithm can be used toimplement such simulated evolution. There are constructive and pruning algorithms whichlearn ANN's architectures and weights, but they are \susceptible to becoming trapped atstructural local optima" [7]. In addition, they \only investigate restricted topological subsetsrather than the complete class of network architectures" [7]. Evolutionary algorithms, likegenetic algorithms, EP, and evolution strategies, are better suited to the task of evolvingANN's architectures [8].Evolving ANN's architectures by evolutionary algorithms is not an easy task. The manyto many mapping between genes and phenotypes has caused two major problems in evolvingANNs. The �rst problem is the noisy �tness evaluation problem. That is, we normally useone phenotype's �tness to approximate its genotype's �tness. For example, the �tness of atrained ANN (from a random set of initial weights) is often used to represent the �tness ofthe ANN's architecture. Such evaluation of the architecture is noisy because it depends onthe random initialisation and the training algorithm used. One genotype may have manydi�erent phenotypes.The second problem is the well-known permutation problem (or competing conventionsproblem). That is, one phenotype may have many di�erent genotypes. For example, twostrictly-layered feedforward ANNs which order their hidden nodes di�erently are function-ally equivalent, but may have di�erent genotypic representations.In order to alleviate the above two problems in the evolutionary design of ANNs, wehave decided to evolve the architecture and the weights at the same time using an EPalgorithm. The simultaneous evolution of the architecture and weights means that eachindividual in the population is an ANN with the architecture and weights. Its evaluationis more accurate because we are evaluating an ANN with the architecture and weights. Wedo not use the �tness of an ANN with the architecture and weights to represent that ofthe architecture. The use of an EP algorithm avoids crossover operators which will not bee�ective due to the permutation problem.4 A New System for Designing ANNs | EPNetWe have developed a new evolutionary system for designing ANNs automatically. The mainstructure of the system, EPNet, is given in Figure 2.The EPNet system is built upon an EP algorithm which adopts a rank-based selectionscheme [9] and �ve mutations; hybrid training, node deletion, connection deletion, connec-tion addition and node addition [10, 11, 12]. Hybrid training is the only mutation in EPNetwhich modi�es ANN's weights. It is based on a modi�ed BP (MBP) algorithm with anadaptive learning rate and an SA algorithm. The other four mutations are used to growand prune hidden nodes and connections. Only feedforward ANNs are considered in EPNetat present.The number of epochs used by MBP to train each ANNs in a population is de�ned bytwo user-speci�ed parameters. There is no guarantee that an ANN will converge to even alocal optimum in a generation. Hence this training process is called partial training.The �ve mutations are attempted sequentially. If one mutation leads to a better o�-spring, it is regarded as successful. No further mutation will be applied. In other words,4



Hybrid training

addition
connection/node

connetion deletion

hidden node
deletion

Random initialisation
of ANNs

Initial partial training

Rank-based selection

Obtain the new
generation

stop?

successful?

successful?

successful?

yes

yes

yes

no

no

no

no

 Mutations

Further training

yesFigure 2: The main structure of EPNet.only one of the �ve mutations will be applied each time. The order of deletion �rst andaddition later encourages the evolution of compact ANNs. EPNet puts a lot of emphasis onthe behavioural links between parents and o�springs. It deletes and adds connections prob-abilistically according to their importance in the ANN. Node deletion is done at random,but node addition is achieved through splitting an existing node.In order to improve the generalisation ability of evolved ANNs, we have used two vali-dation sets in EPNet. The �rst one is used to compute the �tness of each ANN. After theevolutionary process, all the ANNs in the �nal population will be trained further by MBPon the combined training and the �rst validation set. The ANN which performs the beston the second validation set will be the �nal output of EPNet.We have tested our EPNet on a number of arti�cial and real-world data sets, includingthe parity problem [10, 12] of various sizes, four medical diagnosis problems [11], and theAustralian credit card assessment problem [12]. We also tested our EPNet on another verydi�cult arti�cial problem | the two-spiral problem. The result of a typical run by EPNeton the problem is shown in Figure 3.5 ConclusionThis paper addresses the issue of automatic design of ANNs. It is argued that the evolu-tionary approach o�ers a very promising and competitive alternative to designing ANNsmanually or by a constructive/pruning algorithm. The evolutionary design of ANNs is dis-cussed in a general framework of EANNs, which provides a common basis for comparing5



-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

Class 0
Class 1

(a) (b)Figure 3: (a) The training data set of the two spiral problem with 194 examples. (b) Thedecision region formed by the ANN evolved by EPNet. There are 14 hidden nodes and 131connections in the ANN.and investigating various EANN models. A new evolutionary system for designing ANNs,EPNet, is described. Experimental studies were carried out for a number of problems. Thispaper reports the result on the well-known two-spiral problem. Our future work includesparallelisation of the EPNet system and improvement of the hybrid training since it is themutation which consumes most of the computation time.References[1] J. D. Scha�er, D. Whitley, and L. J. Eshelman, \Combinations of genetic algorithmsand neural networks: a survey of the state of the art," In D. Whitley and J. D. Scha�er,editors, Proc. of the Int'l Workshop on Combinations of Genetic Algorithms and NeuralNetworks (COGANN-92), pages 1{37. IEEE Computer Society Press, Los Alamitos,CA, 1992.[2] X. Yao, \A review of evolutionary arti�cial neural networks," International Journal ofIntelligent Systems, 8(4):539{567, 1993.[3] X. Yao, \Evolutionary arti�cial neural networks," International Journal of Neural Sys-tems, 4(3):203{222, 1993.[4] X. Yao, \Evolutionary arti�cial neural networks," In A. Kent and J. G. Williams,editors, Encyclopedia of Computer Science and Technology, volume 33, pages 137{170.Marcel Dekker Inc., New York, NY 10016, 1995.[5] X. Yao, \Evolution of connectionist networks," In T. Dartnall, editor, Preprints of theInt'l Symp. on AI, Reasoning & Creativity, pages 49{52, Queensland, Australia, 1991.Gri�th Univ.[6] X. Yao, \The evolution of connectionist networks," In T. Dartnall, editor, Arti�cialIntelligence and Creativity, pages 233{243. Kluwer Academic Publishers, Dordrecht,1994. 6



[7] P. J. Angeline, G. M. Sauders, and J. B. Pollack, \An evolutionary algorithm thatconstructs recurrent neural networks," IEEE Trans. on Neural Networks, 5(1):54{65,1994.[8] G. F. Miller, P. M. Todd, and S. U. Hegde, \Designing neural networks using geneticalgorithms," In J. D. Scha�er, editor, Proc. of the Third Int'l Conf. on Genetic Al-gorithms and Their Applications, pages 379{384. Morgan Kaufmann, San Mateo, CA,1989.[9] X. Yao, \An empirical study of genetic operators in genetic algorithms,"Microprocess-ing and Microprogramming, 38:707{714, 1993.[10] Y. Liu and X. Yao, \A population-based learning algorithm which learns both architec-tures and weights of neural networks," Chinese Journal of Advanced Software Research(Allerton Press, Inc., New York, NY 10011), 3(1):54-65, 1996.[11] X. Yao and Y. Liu, \Evolving arti�cial neural networks for medical applications," InProc. of 1995 Australia-Korea Joint Workshop on Evolutionary Computation, pages1{16. KAIST, Taejon, Korea, September 1995.[12] X. Yao and Y. Liu, \Evolutionary arti�cial neural networks that learn and gener-alise well," Accepted by the 1996 IEEE International Conference on Neural Networks,Washington, DC, USA. 3-6 June 1996.

7


