

ثبـت شـــــــده در وزارت فرهـــنتى و ارشـــــاد اســـــلامى

مصاحبه اختصاصى

 با رتبه هاى برتر آرشيــــــــــــــو جامـا برئر ؤالات زهـــــهـه سـآزمون هاى كنكور سراسرى آزمون هاى آزمايش

ميان تــرم و پايان تـــرم دبيــرستان و دانشـــــانـاه سراسرى ، پيام نور ، آزاد و المپياد

مشاوره تحصيلى و آمورشى كارشناسى ، ارشد و دكترى مشاوره انگيزشى و...

برنامه ريزى ، آموزش و آزمون

كتاب ، جزوه ، آزمونهاى تستى و تشريحى استاندارد

(0) instagram.com/ikonkuri

 هر چند كوچكك در جهت رشد و اعتلاى علمى اين عزيزان برداشته باشيم. كتاب حاضر نيز كه با زحمت شبانه روزى دوستان گرامى جناب آر آقاى شعبانى و و جناب
 شما داوطلبان كنكور سراسرى قرار گيرد. از شما معلمان و دانش آموزان گرامى هم تقاضا

 خوبان اين مرز و بوم ادا كرده باشيم.

مقدمهى مؤلفين

اللماس را جز در قعر زمين نمىتوان يافت و حقايق را جز در اعماق فكر نمىتوان كشف كرد. ويكتورهوكو
كتابى كه هم اكنون بيش روى شماست تأليف دكتر محمد شعبانى و دكتر ميثّم رضايى كتابى
 كه نگاه اين كتاب فقط متمر كز بر مطالب بيشدانشگامى نيست. نكات مهم و تغيير ات كتب زيست و آزمايشگاه ار و بر انيز در بر دارد.
 باشد عبارتند از:

1) در سناههما با بسيار مفهومى، تر كيبى و كامل تدوين شُدهاند.

 اميدواريم با تأليغ اين كتاب كمكى هرجند كوجك كرده باشيم به عدالت آموزشّى كه فقط دانشّ آموزان
 كتوانند از اين مطالب استفاده كنند جرا كه ما بيشتر از آنجه كه در كلاسهاى خود گنتهايم در اين كتاب نوشتهايم.
 ارزشمهند مىياشد.

 واريم. محمد شعبانى م苪

فهرست مطلب

Q
يروتئين سانى

تكنولوثیى نيستع

11

$$
\begin{aligned}
& \text { تستهاى جهار گزينهاى } \\
& \text { بإسخ تستهاى جهار گزينهاى }
\end{aligned}
$$

9 .
1.1
بيدايشوگّسترش زندكَع

ITF
iri
باست تستهاى جهار گزينهاریى

199

تغييروتحول

101
101
تستهاى جهاركز
ثاسخ تستهاى جهار گزينهاى
$18 T$
ثنتيك جمعيت

r.r
تستهاى جهار گزينتاى
آسخ تستهاى جهارگزينهاى

MY
بوياي جمعيتها واجتماعات زيستع

$$
\begin{aligned}
& \text { تستهاى جهار گزينهاى } \\
& \text { إسخ تستهاى جهار گزينهاى }
\end{aligned}
$$

y فصل

YAF
190

$$
\begin{aligned}
& \text { تستهاى جهار گزينهاى } \\
& \text { باسخ تـتـهاى جهار گزينهاى }
\end{aligned}
$$

پروتئين سازى

شكل 1-1

V بيمارى آلكإتونوريا نوعى بيمارى ارثى است و بناير اين علت آن را مىتوان به زنها نسبت داد. در بدن ماده الى به نام هموجنتيسيك اسيد ساخته مى تُود كه آزيهم مخصوصى آن را تجزيه مى كند. اما در ميتلايان به بيمارى آلكايتوتوريا آتزيم تجزيه كننده هموجنتيسيك اسيد وجود ندارد. به همين دليل اين ماده وارد خون شده و سـّن از طريق تراوش وارد ادرار شده و باعت بروز دو مورد مىشود () به دليل خاصيت اسيدى هموجنتيسيك اسيدPH ادرار كاهش بيدا مى كثد.

شكل ا-Y-ادرار افراد مبتلا به آلكامتونوريا در مجاور ت هوا

机 در واقع توانت بين يك ثقص ثنى (بيمارى آلكايتونور يا) ويك نقص آنزيمى (آنزيه تجزيه كننده هموجنتيسيك اسيد) رابطه برقرار كند. بهاين ترتيب

 انجام مىكرفت. اما بيدل وتيتوم رويكرد جديدى براى آزمايش هاى خود اتخاذ كردند. آنان جهثنهايى را بررسى كردند كه هريوط به زنهاى كنترل كننده: واكنش هاى مهرم متايوليكى، از قبيل توليد ويتامينها و آمينواسيدها يود.
() محيط كشت حداقل (شاهد): مخلوط رقيقى از انواع نمكها + كمى شكر (كلوكز + فروكتوز) به عنوان منبع كرين +يك نوع ويتامين، به نام بيوتين (Y) هحيط كثت كامل: محيط كشت حداقال + هر نوع ماده ى آلى. ٪) محيط كشت غنى شْده: محيط كشت حداقال + برخیى مواد آلى

V

 در سلول تبديل هر ماده به مادهُ ديگر نيازمند نوعى آتزيم است، مىتوان ارتباط بين ماده x x ارنيتين، سيترولين و آرزينين را به صورت مسير متايوليكى

 يا آررينين رشد خواهند كرد. چرا
 به سيترولين تبديل خواهد كرد و آتزيم 「 نيز سيترولين را بها آرزينين كه هدف نهايىى است تبديل مى كند و نوروسبوراكراسا رشد خواهد كرد. r
 قايدمالى نداشته و مشثكل رفع نخْواهد شـد.

رشد خواهند كرد.

(DNA به صورت رهز ذخيره شُدماند. مثظور از رهز علائمىاست كه از آنها براى ذخيره

اكر هر نوكلئوتيد علامت رمز يك آمينو اسيد باشد بازهاى T, G, G, C, Aعلامتهاى رمز جههار نوع آمينواسيل مىشوتد. بنايراين وقط حههار نوع آمينواسيد

 دست مىآيد كه بيشتر از تعداد رمز لازم يراى Y بنوع آمينواسيد است. در اين صورت يكى آمينواسيد ممكن است بيش از يك رمز داشته باتد.
() از اطلاعات موجود در DNA برای ساختن هروتئينها استفاده مى شود، اما جايكاه DNA در هسته و جايگاه هروتئين سازى (ريبوزوم) در سيتويلاسمم الست. بنايراين DNA نمىتواند مستقيما يرای ساختن هاروتينين مورد استثاده ورار گیيرد. به همين سبب، انتظار مىرود نوعى مولكول ميانجى ارتباط بين DNA

 سيتويلاسم. براين الساس و نيز ير اساس آزمايشها و مشاهدات ديگر، داتشمندان به اين نتيجه رسيدند كه اين مولكول ميانجى، RNA است. به اين نوع

 نشان میدهند. اين مولكول آمينواسيدها را يه ريبوزوم منتقل مىكند، ثا ريبوزوم آمينواسيدها را براساس اطلاعات موجود در mRNA كنار يكديكر رديف كند. ديگرى RNA ريبوزومىاست، كه آن را با rRNA نمايش میدهند. rRNA در ساختار ريبوزومها شُركت دارد.

4-4-جمع بندى:
 tRNA (r rRNA (r (r RNA - $\mathrm{V}-1$

شكل شا-
 علامتهای III, II, I مثخص مى كند.

1-9- مراحل رونويسى از ديد كتاب درسى:
مرحلهى ا: روتويسى با اتصال RNA يلى مراز به قسمتى از زن به نام راه انداز زن شُروع میشود. راه انداز، قسمتى از مولكول DNA است كه به RNA الما
 دارد. جايگاه آغاز روتويسى به اولين نوكلئوتيدى از DNA كفته مى شُود كه رونويسى مى شود. مرحلهى r RNA بلى مراز دو رشته DNA را از يكديگًر باز مىكند => شكسته شدن بيوند هيدروثنى'
 ريبوتو كلئوتيدهاى DNA، ريبوتوكلئوتيد مكمل را قرار میىهد و به علاوه، هر ريبونوكلئوتيد جديد را به ريبوتوكلئوتيد قبلى وصل مىى كند. RNA پلى
 ترجمه آزاد مىیشود.

شكل ا-هـ- رونويسى يِك ثن در ساول تخم يكـ دوزيست.
 مییّود كه محور آن DNA و شُاخههانى آن مولكول هانى RNA در حال تشكيل هستند.

 مییتواند زنجيره الى از أمينواسيدها را يسازد. هر نوع mRNA با پيام رمزى كه دارد باعت توليد نوع خاصى رشتهى پلى ثبتيدى مى شود. حال در صورتى
 (Y نيرثبرگّ و همكاران او رستهالى mRNA ساختند كه فقط نوكلئوتيدهاى يوراسيل دار (U) داشت. مولكول RNA ساخته شده را در در لوله آزمايشى ورار دادند كه داراى بيست نوع آمينواسيد. انواع tRNA. ريبوزوم. آنز يمهاى لازم براى ترجمه و ساير اجزا عصاره سلولى (مايع استخراج شـده از

 نوكلئوتيدى هستند، بنايراين نتيجه گرفته شد كه UUU، رمز قرار گرفتن آمينواسيد فنيل آلانين در يكى رشتهى هلى يبتيدى است.
 نوكلئوتيدى mRNA را يك كدون مى تامند. كدونها عمومى هستند ، يعنى در جاندارانيكسان اند.

 RNA موجود در هسته و كارخانه هروتئين سازى موجود در سيتویلاسم كه همان ريبوزوم باتد را كشق كردند كه كسى نبود جز همان مولكول DNA

 ناقاليا به اختصار tRNA ويكى هم مسئول برقَرارى بيوند بيتيدى بين آمينو اسيدها درون ريبوزوم يود به نامRRA RRNA RRA
 فنيل آلانين رو كثف كرد و بعداً محقعان ديكَه با انجام آزمايشاتى مثابه آزمايش آقاى نيرنبرگ رمز بقيه آمينو اسيدها رو نيز كثق كردند كه مهمرتريناشون

كه شُما بايد بلد باشيد عبارتند از كدون آغاز : AUG

كدون فنيل آلانين : UUU كدون سيستئين : كين : كي

كدون لوسين : CUU CUG
كدون آلانين : GCA : كدين
كدون آررينين : كون آلانين
كدون تريتتوفان : UGG
كدون هيستيدين : كيتون : كي
UGA UAG UAA : كدونهاى بايان

 آمينواسيدها بايد به ريبوزومها آورده مُوند. RNAه آما آمينواسيدها را به ريبوزومها میى آورثن.

شكل1-9- ساختار يكى مولكول tRNA. الеن) رابطه ى مكعلى بين نوكلئوتِيدهاي موحود در اين موجب

 بالايى آن جايِاه CCA . يعنى جايعاه اتصال آمينواسيد اختصاصى ديده مىشود. ب) ساختار سه بعدى است L اسر سلول شبيه حرف tRNA
 حداك: اء اءنوع RNNA وجود دارد.
tRNA (Tr ها (آنتى كدونها) دريو كاريوتها از روى DNA هسته توسط RNA هلى مراز III ساخته میشوند. سـس از طريق منافذ هسته الى وارد
 هاروكاريوتى ساخته مىىتود و در همان سيتويلاسم فعاليت خود را اانجام مىیدهد. ٪) ساختار اول tRNA به صورت تكى رشتهای است. ولى ساختار دوم آن برگ شبدرى است كه نتيجهُ رابطة مكمل بين نوكلئوتيدهاست. ساختار برگ

 F F ه) آنتى كدون: آنتى كدون قسمتى از مولكول tRNA است كه دارایى r عدد توكلئوتيد است. در خصوص آنتى كدونها موارد زير را به خاطر بسباريد V آنتى كدون در تمام RNA ها با با هم تثاوت دارد. V آنتى كدون تعيين مى كند RNAA آهـ آمينواسيدى را بايد حمل كند.
 و قثد دئوكسى ريبوز وجود ندارد.目 هر آنتى كدون در tRNA مكملـيكى از كدونهاى mRNA است. مبلا tRNA الى كه آنتى كدون GAA را دارد به كدون CUU متصل می شود و ثاقال لوسين الست. به اين ترتيب رمز CUU به لوسين ترجمه میى شود.
 (9) جايگاه CCA:

در قسمت انتهايى تمام RNA ها جايكاه CCA، يعنى جايكاه اتصال آمينو اسيد اختصاصى وجود دارد. تمام آميئواسيدها به قند ريبوتوكلئوتيد آدنين دار جايگاه CCA متصل مى شوند. تكA تكى رشتهاى است و باز مكمل ندارد.

 A) در ساختار RNA بازوى اضاقى در امتداد محل اتصال آمينواسيد قَرار دارد.

شكل V-1- فر آيند ترجعه

و اترثى است

 يتيدى وجود دارد و هم F نوع نوكلئوتيد با بيوند فسفودى استر وجود دارد. نوكلئوتيدهايى كه در ساختار ريبوزوم شُركت دارتن بازهاى دارتد و قندشان ريبوز است يعنى در ساختار ريبوزوم باز تيمين و قند دئوكسى ريبوز وجود ندارد. در ساختار ريبوزوم YF نوع مونومر وجود دارد.

 سلولهانیيو كاريوتى شبيه هستند. اما ريبوزومهاى موجود در مادة زمينه الى سيتويلاسم (سيتوسل) سلول هاى يو كاريوتى و ريبوزومهاى جاى
 RNA (هيوزومى ثقش آززيمى RNA
 هستك است. ولى RNA ريبوزومى RNروكاريوتها از روى DNA

 ^) ريبوزوم درون هسته و از روى زن هاى هستكَ ساخته میشود اما فعاليت ترجمd خود را درون سيتويلاسم انجام میدهد هس داخل هسته و هستك ريبوزوم وجود دارد ولى فاقد فعاليت است.

(ا) ويروسهها ريبوزوم ندارند و از دستگاه هروتئين سازى ميزبان استڤاده مى كنند.

 بلى مراز و...)، ميتوكندرى، كلرويلاست، هراكسى زوم (كاتالاز)، اسكلت سلولى و... توسط ريبوزومهاى آزاد موجود در سيتويلاسم ساخته مىشوتد.
() بخش كوجكاتر ريبوزوم در مجاورت كدون آغاز به mRNA متصل میشُود. كدون أغاز، AUG است و ميتونين را رمز مى مكند.
 (هر ريبوزوم دو جايگاه دارد:يكى جايگاه P (براى يلى يبتيد در حال ساخت) و ديكّرى جايكاه A (براى آمينواسيد).

شكل ا-9- آغاز يروتئين سازى
|-1-1- مرحله ادامه ترجمه:
() شُروع مرحلة ادامه ترجمه با ورود RNAحامل دومين آمينواسيد به جايگاه Aاتثاق مىاقتّد كه در نتيجهى آن بيوتد هيدروزثى درون جايگاه A تشكيل

میى
 در جايكاه P، ديگا آمينواسيدى تخواهد داشت و بايد ريبوزوم را تركى كند.

مىتُود.
 سومين أمينواسيد به جايكاه A جرخها فوق دوباره تكرار مىیشود.

شكل 10-1-ادامهى بروتئين سازى
19-19- مرحله بايان ترجمه:
 Y عامل ثايان ترجمه درون جايگاه A ريبوزوم ورار مى

	زن، عامل تراتسفورماسيون، اگزون واينترون و توالى افزالينده (يوكاريوتى)، الثران و إبراتور و شالازميد (پاهروكاريوتى)، انتهاى ج-سبنده (DNA تكى رشتهاى)، جايكاه آغاز روتويسى (يكى نوكلنوتيد)، جايكاه و هريس تناسلى و هباتيت B	㒸
	روثونت اءزون، روونوتْاينترون، rRNA، mRNA، tRNA، اولين آزيمب حيات، اولين مولكول خود همانند سـاز، ويروئيد، مادة وراثتىايدز و موزاييك تنباكو(TMV) وهارى و آثنولانزا.	\sum_{\sim}^{4}
\%	 تروميويلاستين. DNA آنزيمهاى محدود كننده مانند EcoRI، فاكتورهاى انعقادى، ميكروسفر، روبيسكو، ثريون، كبسيد.	\%

الين جدول بدين معناست كه هر ماده الى كه از جنس DNA باشد توسط DNA هلى مراز، هر ماده الى كه از جنس RNA باثد توسط RNA بلى مراز و هر ماده الى كه از جنس يروتئين باشد توسط ريبوزوم سنتز مىشود حالا با الين جدول كه براى جمع آوريش خيلى وقت گذاشتيم به راحتى مىتونيد

بئيد كه هر ماده توسط هجى سنتز میشهـه.
I-ا-

 ترجمه ثيست.اين mRNA بايد ابتدا در هسته بالغ شود و وس از بلوع از طريق مناقذ موجود در غشاى هسته وارد سيتوهلاسم شـده و فعاليت خود را در آنجا انجام میىدهد.

 RNA (F

 پّل از روتويسى میتواند بلاقاصله ترجمه شُود.

زنجيره بلى ثيتيدى سنتز مىشود.

 جوش صورت (يروييونى باكتريوم آكنس)، عامل ديقترى (كورينه باكتريوم ديفتريا)، عامل كزاز، عامل يوتوليسم (كلستريديوم يوتولينم)، اسبيريليوم، باسيلوس، استافيلوكوكوس اورئوس، عامل بيمارى گال در گياهان.
() سلول ها از همه زنههاى خود به طور همزمان استڤاده نمى كنند. مثلا باكترى اشريشياكلاى مىتواند در غياب گلوكز از لاكتوز هم به عنوان منبع اترزى

 استفاده قرار تمى گيرد، میى گويند آن زن، خاموش است.اين كه دريك زمان مثخص، كدام زنها روشن و كدام زنها خاموش باشند، به تنظيهم بيان زن معروف است. Y يودنيا نبودنيك منيع غذايی، در ثمو جانداران نتش مهمیىدارد. توجه داشته باشيد كه بدن ما از صدها نوع سلول مختلث ساخته شـده است كه همكى

 را تعيين مى كند، نوع بروتئئينهاست.

 روتويسى تخواهد شُد.اين سدها در واقع بروتئينهاى يزرگى هستند به نام مهار كننده كه به توالى هاى مخصوصى از DNA به نام ابراتور متصل مى شُوتد.

 FF باكترى اشريشياكلاى براى آن كه بتواند از لاكتوز استفاده كند، به سه آنزيمر نياز دارد. داتشمندان درياقتند كه وقتى لاكتوز در هحيط نيست غلظت هر

 ساختارى (قسمتى از DNA كه از روى آن RNA ساخته مییشود) و بخش تنظيمه كننده (ابرانور + راه انداز) ساخته شـده الست. بخش تنظيمم كننده بيان همزمان زنهها را كنترل میى كند.
 كنْدهُ زن) ساخته شُده است

() زمانى كه لاكتوز در هحيط باكترى وجود ندارد. إيران لكى بايد خاموش شُود، جون وقتى لاكتوز نداريم احتياج به آتزيم تجزيه كننده همم نداريمه براى

() سلول هاییو اريوتى در متايسه با سلول هاى هروكاريوتى، از; DNA بيشتر برخوردارند و هماتند آنها، در هاسخخ به تحريكات محيطى، بعضى زنهاى خود

را روشن و بعضى ديگّر را خاموش مى كنند. اليرانها در سلول هاىيو كاريوتى وجود ندارند.
 دارد. مبلا تنظيم بيان زن ممكن است قبل از رونويسى. هنكام رونويسى، يا بعد از آن صورت كيرد. همحثنيناين تنظيمر بعد از خروج mRNA از هسته، هنحام ترجمهيا بعد از عمل ترجمه، ثيز ممكن است رخ دهد. غالباً تنظيم بيان زن دريوكاريوتها در هنكام شروع رونويسى است

 دريو كاريوتها علاوه ير راه انداز معمولا توالى هاى ديگّرى از DNA نيز در روتويسى دخالت دارند كه عوامل روتويسى به آن هها نيز متصل مى شُوند. افزاينده بخشى از مولكول DNA است كه به كمك عوامل رونويسى متحل به آن، رونويسى را تقويت مىكند. افزاينده بر خلاق راه انداز ممكن است هزاران نوكلئوتيد از زن ثاصله داشته باشد.
 عواهـل روتويسى به الززابتده و RNA
 منصهال به راه اتداز را فعال مى كند.
() يروتئينى به نام فعال كثنده روى بخشیى از DNA به نام توالى افزاينده قَرار مى گیيرد تا رونويسى تقويت شود.
(Y) بروتئينهايى به نام عوامل روتويسى به راه انداز متصل میى شُوند.

حلقه تشكيل میىدهد و هروتئين فعال كثنده كه خوديكى عامل روتويسى است سبب فقال كردن هروتئين عامل روتويسى كه به راه انداز متصل هستند میشود. RNA (F

DNA شكل ا- أا- كروموزوم و ساختار دو رشتهاى
 در سلولهایى بدنى، فقط خود فردى را كه جهش دا در او رخ داده است، متاثر مى كند.

「) به طور كلى جهشه هاى نتطهالى ممكن است باعت شوند كه هُروتين مورد نظر ساخته نشود، يا يروتئينى ساخته شود كه ترتيب، تعداد، يا نوع

 تاثيرى در بيان زن نخَواهد داشت

 برخى زنها دو نسخه دارد

 كروموزم هاى همنا
»كدون آغاز ديكِّرى نباشد => هروتئين ساخته نمى شُود"
1)...... GU AUG UUU CUC GUU GUA GCU GAA UGA GGU AAAآمييواسيد
r)... GC AUA UUU CUC GUU GUA GCU GA AUG AGG UAA A ...
"كدون آغاز ديكِرى در همان هار جوب باثد => باروتئين كوتاه مى شود.
1)......GC AUG UGA GAA GAG GCU GUU AUU AUA UCU AAA.... آمينواسيد
r)... GC AU AUG AGA AGA GGC UGU UAU UAU AUC UAA A ...
»كدون آغاز ديگّرى در هارجوب ديكّرى باشد => بايد بررسى كرد مثلا ممكن است هروتئين بلندتر شُوده
1)... GC AUG UUU CUC GUU GUA GCU GAA UAA UGC UGA... آمينواسيد
r)... GC AUG UUU CUC GUU GUA GCU GAA UAC UGC UGA ...
"سبب تغيير كدون هايان شُود هروتئين يلندتر مىتود"
1)... GC AUG GCU GUG AUU CUU UGU UUA UAG. . . آمينواسيد
r)... GC AUG GCU GUG AUU CUU UGU UAA UAG...

1)... GU AUG GCU GUG AUU CUU UGU UAG... .
r)... GU AUG GCU GUG AUU CUU UGC UAG.... .آينو اسيد

```
" جهش جاتشينى بى اثر => تبديل كدون UGU به UGC كه هر دو متعلق به آمينواسيد سيستين مىياشثد"
```


--با توجه به طرح رو به رو به دو سؤال زیر پֶاسخ دهيد ا. اختتال اصلى در افراد مبتلا به آلكابتونور يا كدام است؟ () عدم وجود زن (Y) عدم توليل هدموجنتيسيك اسيد A اختلال در زث (f
در ادرار دِيده مىشود. \qquad خلاف افراد ييمار Y.
(f) هموجنتيسيك اسيل

X (r

$$
A_{j ;}(r
$$

س. در مورد كم خونى داسـى شكل تزَينهى نادرست كدام است؟ () بيماران مغلوب خالص معمولادر دوران جنيـنـي مـميـرتد.

 ع. كدام جمله عبارت زيِر را به صورت نادرست تكميل مى كند. نوروسبورا كراسا همانند

$$
\begin{aligned}
& \text { () ولوكس هراسلولى محسوب میشُود. }
\end{aligned}
$$

0. نورورسيورا كراسا توانايی سنتز كدام يكـ از موارد زير را دارد؟ (
() بيوتين
¢) نمك و املاح
" آرزينين
¢. كدام ويرگّى از دلايل انتخاب شدن نوروسبوراكراسا براى انجام آزمايس ير روى آن يود؟
 (Y بى هوازی يودن
() مخمر يودن
.V كدام كز ينه در مورد كدونها صحيح است؟

(Y) همهي آمينو اسيدها بيش ازيیى كدون دارند.

^. د. در مورد آنزيهم غير يروتئينى موجود در سلولهاى مثز قرمز استخوان جناع كُز ينهى نادر ست كدام است؟ Y (Y) محل فعاليتاين آزيمبم در ريبوزوم است.
() دارای T نوع مونومر است
(\%) عاملإلجاد بيوند بيتيدى است.

1. كدام يك از سلولهاى زير از نظر ميزان انجام رونويسى از سايرين متفاوتاست؟
¢ (〒) سلول هاى استواثه الى روده
(
(Y) ثاسموسيت

II. راه انداز زن RNA بلى مراز II توسط كدام يك شنـاسايی میشود؟

$$
\text { RNA } \uparrow \text { بلى مراز هرو كاريوتى }
$$

RNA (T
RNA (\%

II يلى مراز RNA (Y
I
ץا. محل سنتز و فعاليت كدام RNAبليمراز. در كدام سلول يكى است؟
RNA ()
RNA (世

 فسفودى استر است§

$$
\begin{aligned}
& \text { Fi9 (F } \mathrm{Fr} \text {. (r) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { عץ. جهش در كدام يك از سلول هاى زير قطعاً به نسل بعد منتقل مىشود؟ }
\end{aligned}
$$

قطعأ إبراتور دارد.

داراى راه انداز است
توسط RNA لـلى مراز بروكار يوتى رونو يسى مىشود از رونو يسى آن حهار RNA إِجاد میشود. F (

هيستون	II
(F)	(\%) عوامل رونويسى

 $91-9 V$ (f

9१-१А (ए)
rI-rr (T
rr-ri()
סه. در سر اسبرم
()) براى روتويسى از چجند زن مجاور هوم يك راه انداز كاڤقى است.

؟६. كزينهى نادرست كدام است؟

 . EV

$$
\begin{aligned}
& \text { ^ع. در....................................... }
\end{aligned}
$$

Qع. در سلول حند نوع كدون وجود دارد كه حداقل داراى يك نوكلئو تيد گوانين دار باشد به شرطى كه براى آنها در سلول آنتى كدون وجود داشته باشد؟
rf (f
rV (
ra (Y
ヶV ()
-ه. در وقوع مراحل مختلف ترجمه كدام يكاز تز ينههاى زير ير سايرين تقدم دارد ؟
اها در حباب رونو يسى حداقل و حداكثر حند نوع باز آلى مىتواند وجود داشته باشد ؟(ا(ز راست به حی)
F-1 (F \quad F-r (r $\quad \Delta-r(t) \Delta-r()$
Yr

> سه. در سلول حند نوع كدون وجود دارد كه حداكثر داراى دو نوكلئوتيد يوراسيل دار باشد ؟ 91 (r) दr (r gr () عه. در سلول چند نوع كدون قابل ترجمه وجود دارد كه حداقل يك نوكلئوتيد با باز آلى دو حلقهاى در ساختار آن به كار رفته باشد ؟

00. كدام گزينه در خصوص افراد مبتلا به بيمارى فنيل كتونور يا نادر ست است ؟

 نياز بدن اوست
8¢. عمل رونويسى در كلستريديوم يوتولينهم در............... و در ماسموديوم عامل مالاريا در............ صورت مى يذيرد (Y سيتویالاسم - هسته
(1) هسته - هسته

كدام يك از آنز يههاى زير قادر به شكستن يبوند هيدروزنى نمىباشد ؟
EcoRI \quad RNA (F

ها.
rgl (f
DNA (r
RNA (Y
() آزيم محدود كنينده

ه9. كدام كز ينه در خصوص وقايع ترجمه نادر ستاست ؟
 r (آخرين آنتى كدونى كه درون جايگاه P ريبوزوم قرار میى
 (F) در مرحله آغاز و هايان ترجمه فقطيك مولكول L شمكا درون ريبوزوم وجود دارد.
.9. محل انجام تنظِيهِ يبان زن و محل اتصال آنزيم RNA يلى مراز به راه انداز در ريزويوس استولونيفر كجاست ؟

$$
\begin{aligned}
& \text { (Y) هسته - هسته و و سيتویلاسم } \\
& \text { () هسته - هسته } \\
& \text { (F) اغلب هسته - هسته إه } \\
& \text { r (اغلب هسته - هسته و سيتويلاسم } \\
& \text { (9). در زمان روشن شدن ايران لكى غلظت كدام مونوسوكاريد در سلول باكترى افزايس ييدا مـىكند ؟ }
\end{aligned}
$$

سף. كدام گز ينه نادرست است ؟

 90. حند مورد از موارد زير در مورد جاندار استفاده شُده در آزمايس بيدل و تيتوم صحيح است؟ همانثد اسبرماتوسيت ثائويه هابلوئيد است. بر خلاف اريتروسيت هوازى است. ير خلاف عامل بيمارى مالاريايوكار يوت استا است بر خلاف ريزوبيوم توانايـى سنتز كرين آلى ندارد.

3 (4)
(T) سه مورد
(Y دو مورد
() يك مورد

.9V

(r) سه نوع RNA در سـتز آن نتش دارند. "
توليد نايجاى آن باعت خودايمنى شده و در ساختار آن أن أيوند بيتيدى وجود دارد.

بروتئين ترشح شده از بالاسموسيت يروتئينى كه بيشترين نقش را در انتقال Or خون دارد. (F
(r) سه مورد

رورتئين ترشَح شده از ماستوسيت
بروتئينى كه بيشترين نقس را در انتقال COr خون دارد (Y
() يك مورد

ג•ا．هنحام ترجمهى mRNA زير．هر گاه CGA به عنوان يكـ آنتى كدون در جايعاه A ريبوزوم قرار كرفته باشد．كدام كدون در جايعاه P قرار دارد؟

CGA（）
AUG（r
GCA
GGC（

فنيل آلاتين	C	B	A	
＋	＋	＋	＋	نوع وحثى（فاقد جهش）
＋	－	－	－	جهش
＋	－	＋	＋	Tr ${ }^{\text {r }}$
＋	－	－	＋	جr＊

I در جهش ياقتهى A（F
1 B（r در جهش ياقتهی C C（Y
r در مهر B（ ）
（
به لولهى آزمايِش افزوده نُشْده يود． ．
DNA آنزيم لازم يراى روتويسى از（٪）
r سنتز آرثينين را كامل مى كند. －11．در آزمايش نيرنبر گ．عصارهى سلولى براى تأمين

 III．كيكى نوروسبوراكراسا．فاقد آنزيمىاست كه

（99－－
ץاIا．در جهس يافتهاى كه فقط در حضور آرزينين رشد مىكند．ايتدا توليد كدام يكى از موارد زير دجار اختالل شده است؟〒 آرينين
（\％）ارنيتين （Y）آتزيم
（）سيترولين

（个 عدون AUG عوامل هايان ترجمه（
（F）كدون UGA عوامل هايان ترجمه
（99－－شnatu）
 ¢（ توليد آلولاكتوز و بروتئين هاى تنظيم كثنده متوقف مىتُود． （9ヶ－（4．

F（ UGA كدون－AUG كدون（） UGA آغاز كر－كدون tRNA（r

IIE．وقتى لاكتوز در اختيار باكترى نباشـد．درون سلول （）عامل تنظيم كثنده روى الهراتور قَرار می گیيرد．
 110．هنگام ييان يك زن （）در هر الـرواريوتها همواره ريبوزوم ثتش دارد．

11．اكر براى حذف رونوشت اينترونها ازيك RNA نابالغ 9 بيوند كووالانسى شكسته شود．DNA مريوط به اين RNA حند اكزون داشته است؟ （ar－
$r(t$
r（）

$$
\mu_{\circ}{ }_{0}
$$

$$
r_{00}\left(r^{2}\right.
$$

iva（t
10．（1
111．در مجموعهى ابران لك．كدام دو مولكول بهيكديكر متصل نمىشَوند؟
（Y הروتئين تنظليم كننده و الیراتور （f）عامل تنظيم كثنده و آيراتور
（）عامل تنظيم كنـنده و بروتئين تنظيم كثنده
پNA \uparrow
($4 x^{2}-($ man
119. در همهى سلولها.
() روتوشت جايگاه آغاز و هايان روتويسى، در tRNA وجود دارد. (Y) تثاوت اساسى اRNA هر جايگاه اتصال آمينواسيد به آن هاست
 RNNA (\% هاى كو RNA -Yا. كدام عبارت در مورد جايكاه هايان رونو يسى ثن. صحيح است؟

$$
\begin{aligned}
& \text { (Y) بخشی از مولكول mRNA است و ترجمه میى نُود. } \\
& \text { f بخشیى از مولكول DNA است كه روثويسى میشود }
\end{aligned}
$$

(9r - (anin)

$$
\begin{aligned}
& \text { Y بين الهراتور و ثن ساختارى قَرار دارد. } \\
& \text { (f) بخشیى از مولكول mRNA است. }
\end{aligned}
$$

....................
() در تزديكى جايكاه أغاز روتويسى قرار دارد.

(ヶ) ريبوزوم DNA (\%
روى راهانداز قرار مىگيرد.
II يلى RNA (Y ولى RNA ()
رو
روى ايراتور و.
سץا. در غياب.
(Y) عامل تنظيمى- هاروتئين تنظيمى- RNA

() إروتئين تنظيمى- عامل تنظيمى- RNA يلى مراز
(${ }^{\text {® }}$
() در جاندارانيو كاريوتى بعد از ورآيند روتويسى، اينترونها حذف میىنوتد.

A G T T G A

(T) مىتواند جايگاه تشخيص آززيم محدود كننده باشد،

(ساس -

RNA هروتئينهاى ريبوزومى، if
(سنجش (س (س)

III الیلى هراز RN، RNA (1) II
 يلى مراز II
§. كدام عبارت در مورديوكار يوتها. نادر ست است §V () در سيتوسل، mRNA ها فاقداينترون هستند

 A (f) شُكسته شُدن بيوند كووالاتسى بين آمينو اسيد و نوكلئوتيد A در جايكاه
（Y）يك محل آغاز و هايان هماثند سازی دارند．
（f）میتوانتد جدا از كروهزوم اصلى باكترى هال، هماتند سازى نمايند．
．．．．．．．．．．．．．．．．．．．1． 1 ．زنوم باكتريوفازها همائند بازميمدها （）الزيك مولكول DNA حلقوى تشكيل شده است．
 يراى رونويسى از زنههاى سازندهى سلولاز در د． ． ． ولى RNA（Y RNA（پ RNA（F
：T T اTموزش و＊ اسا．زاكوب و مونو．يراى توضيح
بيان همزمان زنها را كنترل مى كند؟ \qquad در باكترىها．مدل ابران را بيشنْهاد كردهاند كه．

（T）ساختار رن－رن هماى ساختارى و بخش تنظيمر كننده

¢ توالى اقززاينده
（٪）عوامل روتويسى
（

（آنوزشَ و برورشا）
（F）ماثند－سه
وع آنز هم براى انصال ريبونوكلئوتيدها دارند．

（Y）يك مولكول RNA ساخته مییشود．

（）（）
 Yץץا．ساختار شيميايى كدام با بقيه تفاوت اساسى دارد؟ （اليراتور
（），اماهنداز
سّاً．RNA بلى مراز در كدام نقش ندارد؟ （）تشكيل بيوند فسفودى استر
 سلول هاى يوكار يوتى ع عا．سلولهاى بروكاريوتى TY إرخلاف－سه
（）برخلاق－يكى هاّا．نوع قند و باز آلى در نوكلئوتيدهاى جايِكاه بايان رونويسى كدام است؟

 （）（ V V\％．در سلولى كه تمام زن ها به صورت ايران چند زنى هستئد．تعداد كدام دو مورد با همه براير است؟ （T）إبراتور ها و راه اندازها ها
（Y）تعداد متقاوتى زن دارند．

رگا．سلول كبدى و سلول شبكيهى حشَم متفاوت به نظر میرسند زيرا
（ ）زن هاى متقاوتى در هريك از انواع سلولها حها حضور دارند．

هץا．در يك سلول．انواع mRNA حند زنى ديده مىشود．كدام موارد همزمان مىتوانند دراين سلول موجود باشند؟ （Y）إيراتور و فعال كنينده
¢
（ا）اليران و آززيم محدود كثنده
「٪）رامآداز و اقزإينده
 （أموزا
（f）بيوتين
（ケ）سيترولين
（个）ارثيتين
（）آرئينين

در جايكاه．．．．．．．．．．．．．．．．．．．．．．．．．ريبوزوم قرار
ץ عأ．در روند ترجمه．

 (آموزشَ و برورش)

> rRNA (
> ساختارى ريبوزوتى RNA (千
() در محيط حداتاقل رشّد مى كتند.

٪٪) رشد آن خيلى سـريع است.
IE\&. IEE كدام در هستك سلولهاى يوكار يوتى ساخته مىشود؟

IEO. فقدان موقتى كدام دو مولكول. در روند رونويسى اختلالایِجاد نمى كند؟
(T) دئوكسى ريبوز و يوراسيلل ريبوز و گواتين

tRNA با آنتى كدون خاص. به صورت مصنوعى ســاخته شــده اسـت. اما به علتايـراد در آنتى كدون. هيح نوع آمينواســيدى به آن وصل
$\begin{array}{ll}\Delta(Y & 9(1) \\ \text { FH } & \text { r (r }\end{array}$
F (F

UUU (${ }^{*}$
AUC ${ }^{\top}$

نمىشود. آنتى كدونٍ اين tRNA كدام است؟ GAG (Y

CAA ()
(Ar سراسرى)

1EA. كدام در مورد مولكول tRNA. نادر ست است ؟

१عا. در تر يكودينا. محصول فعاليت كدام آنزيم. داراى آنتى كدون آغاز است ؟ II بلى مراز RNA () I 1 RNA ($广$ -10. كدام مطلب درست است ؟

101. كدام عبارت نادرست است ؟ "در گونهى مورد مطالعهى بيدل و تيتوم " .
 لَ
rاها در فر آيند ترجمهى زن اكتين (نوعى يروتئين تك رشتهاى) در سلولهاى عضلانى انسان و در حين جا به جايى ريبوزوم بر روى mRNA. (19 $19, س / m)$

(حاملـيك آمينواسيد خاص به جايكاه PRNA (\%
 (r) بيوند يتتيدى بين آمينواسيدها درون جايكاه A برقرار مى شُود.
 CGA. CGU. AUG. CGG. UAC.UGC.UUC.CAC.UGA-
AUG-UUC (${ }^{\text {© }}$
UAC-AAG (

UAC- UUC
ACG-UGC (

عاها اكر اشريشُياكالى در محيط فاقد لاكتوز قرار كِيرد.
() روتويسى از زن تنظيمر كنثده ادامه مییيابد.

100. در مكس سركه.

(Y) تنها يكَ راه انداز، رونويسى از جثند زن مجاور را ممكن میى سازد.
 ¢) علاوه بر راه انداز توالى هاى ديگًرى از DNA در روتويسى دخالت دارند. 104. يروز هر جهش نقطهاى در يك زن. همواره تغييرى در.............ايجاد مى كند.
() ترتيب آمينواسيدها
"
اها اتر در محيط باكترى إ.كلاى لاكتوزيافت نشُود. حتى يس از اتصال

 \& \& عوامل روثويسى به راه انداز، سدى در متايل حركت RNA يلى مراز ايجاد خواهد سـد.
(Y نتطهالى، ير بيان زن تاثير گذار (Y) تغيير چارحوب، نوعى جهش نتططهاى
. است.

 .19. كدام عبارت. در مورد بيان زن انسولِن در سلولهاى بانكراس انسان صحيح است ؟ () تنظيم بيان زن عمدتا ير عهدهمى اليران میىياشند.
 RNA (世

 (90. 10

AUG.CCA.AAU.CCC.GAG.UUC.UCC.AUC

AGG (\uparrow
AAG $(<$
UUC (r
UCC (

(1) الهراتور - RNA (
(Y) زن تنظيم كنثده - آلولاكتوز به هروتئين تنظيم كننده

س
(Y) تشكيل بيوند هيتيدى ميان دو آمينواسيد

 UGA حامل أمينواسيد با كدون tRNA جفت شدن (1) الم

(T) هر RNA از روى جـند زن مجاور رونويسى مى شود.

199. در همه باكترى هاى بيمارى زا..........

(1) كبك توروسنوراكراسا هماتند ساير قارجها هایلوئيد است. اهميت هايلوئيد يودن كيك نوروسبوراكراسا يه علت ندانتن نداشتن اللا هوشاتنده است زيرا در صورت رخ دادن جهش، به احتمال بيثترى آن را نمايان مى كننـن و به همين دليل بيدل و تيتوم از كبك نوروسبوراكراسا به عنوان گوتهى مورد مطالعهي خود استى استاده كردتد.
 شُدن هم ندارند. ضمنا نوروسبورا توانايى توليد تعداد فراوانىمهاگى، در مدت

زمان كوتاه هم دارد كه اين ويزگى بها هايلوئيد يودتش مريوط نيست. (Y) است:يعنى انرثى، كرين و نيتّروزن مورد نياز خود را از مواد غذايى (مواد آلىى)
 نداشتن كلرويلاست به اين معناست كه اين كبك كلروفيل، گرانوم و آنزيمم روبيسكو (آتزيمى كه در حرخره كالوين Cor را به قند تبديل مى كند) نيز

ندارد.
(آث) اين قارج از دستهى آسكوميستهاست كه توضيح كامل آن در فصل l ا آورده خواهد شد الما بد نيست چند نكته را در خصوص آسكوميستها

به خاطر بسباريد

- آسكوميستها معمولا به طريته غير جنسى توليا توليد مثل مى كنند.
 آسك كيسالى ميكروسكونى است كه در آنهاگیهاى هإلوئيد تشكيل

مى شُوند - در آسكوميستها هاگىهاى جنسى و غير جنسى هر دو محصول مستقيم تتسيم ميتوز مىیاتـند. - ثجرخهى زندگى كبكَ نوروسبورا كراسا به صورت زير مى باشد

درون هر آسكى (كيسه هاكَدار) هثت عدد هاگى جنسى از دو نوع به وجود مى آيد كه حاصل تقسيهم ميتوزاند. هس از رشّد ها ها هاكَ در محيط كشت حداقال با تقسيم ميتوز يك قارج ها هابلوئيد به وجود مى آيد. (F) كبك نوروسيوراكراسا همانند ساير قارجها ديواره سلولى دارد كه از
 است. حشرات نيز همانند قارجها ها داراى اسكلت خارجى

كيتين يوهه و درون بسترى از هروتئين قرار كرقته است - צزينه ا: ولوكس نوعى جلبك سبز هارسلولى و اتوتروف يوده و از لحاظ تعداد سلولها هماثند نوروسبورا مىیاتـد - كزينه r ب: استريتومايسز; نوعى باكترى هتروتروف الست و از لحاظ شيوه كسب انرزى هماثند كيك نوروسبورا الست يعنى اثرزیى كرين و نيتروزن مورد نياز خود را از مواد آلى (مواد غذايى) به دست مىى آورد.
(f) (V) T . در خصوص أوراد مبتلا به بيمارى آلكايتونوريا سه مورد مههم زير را به خاطر بسباريد
(1) در بيمارى آلكايتونوريا در اصل زن آثزيم تجزيه كننده هموجنتيسيك اسيد جهش بيدا كرده است واين آنزيم دراين افوراد وجود ندارد. (Y) در بيماران مبتلا به آلكايتونوريا زن آتزيم تجزيه كثنده هموجنتيسيك السيد وجود دارد ولى جهثیيا نقص بيدا كرده است. (ّ) دراين أوراد مقدار توليد هموجنتيسيك اسيد اوزايش بيدا نكارده است بلكه يه دليل فقدان آثزيم تجزيه كنثده هموجنتيسيك اسيد مقدار تجمعاين ماده درون خون افزايش ييدا كرده است.
(f) VT I .

در أوراد سـالم آثزيم تجزيه كننده هموجنتيسيك اسيد وجود دارد واين اسيد را تجزيه مىكند بنايراين در ادرار افراد سالم هموجنتيسيك اسيل ديده
 اسيد وجود دارد ولى در عوض مواد حاصل ازتجزيه هموجنتيسيك اسيد در ادرار اقاراد بيمار وجود ندارد جون هموجنتيسيك السيد تجزيه نمىشود.

كم خونى وايسته به گليول هایى قَرمز داسیى شُكل گزينه ا : افوادى كه برایاين بيمارى مغلوب خالص (HbsHbs) هستند،
 الز رسيدن به سن توليد مثل مىميرند. أوراد ناخالص (HbAHbs) عموما

 دراين مواقع وجود دارد. توضيح كاملالين مبحت در فصل ه همين كتاب در بخش برترى إوراد ناخالص ارارايه شُده است

 مبتلا هستند به دليل دارا يودن ثوع ثاقصى هموكلوبين، دالسى شكال

 جريان خون در آنها دشوار میى شود.

 بايد يراى اين صفت هتروزيكَوت باشند.

 طبيعى ندارند.

V(T) D .
ايتدا ويزگّى هاى بارز گوته یى مورد مطالعه بيدل وتيتوم يعنى كيك نوروسهورا

سلول هايىى كه فعاليت هروتئين سازى بيثترى دارند هر آن ها عمل روتويسى و توليد RNA و فعاليت آتزيم RNA يلى مراز بيشتر است و اين سلولها
 سال دوم خوانديد كه هر هروتئينى كه درون ليزوزوم قرار گرقفته باشديا

 غشاى كلبولهاى قرمز و هم بَنين هر هروتئينى كه قَرار باشد به خارج از سلول ترشَح شود و فعاليت خود را خارج از سلول انجام دهد توسط ريبوزومهاى روى غثشاى شُبكه آندویلاسمى ساخته شُده سبس بها درون

 （）إلاسموسيتها كه توليد پادتن مى كنثن． （T）ماستوسيتها كه هيستامين توليد مى كننا． （ F）لنثوسيتهای ا ه）ماكروفازها و سلول هاى هو شششى روده و كبد كه هروتئين مكمل توليد میى 9）غدههاى ترّ

 كلوكاگون ترشّح مى كثند． （f）『（1）小
در فرايند رونويسى باز كردن دو رشته ى DNA（شكسته شندن هيوند

 DNA
 بسباريد （1）آنزيم RNA هلى مراز مسئول ساخت RNA از روى DNA است． جنس اين آنزيما هروتئين است يعنى موثومر آن آمينواسيد و هيوند بين مونوهرهاى آن يتيدى است．اين آنزيم توسط ريبوزوم در سيتويالاسم ساخته میى شود．
（T）بيثترين تنوع عملكرد يراى RNA يلى مراز هروكاريوتى و كمترين تنوع عملكرد يراى RNA بلم هراز I است
 هون هروكاريوتها فقط يك نوع آززيم RNA بلى مراز دارند در صورتى كه

－گزينه זّ：قارج فنجاثى و كثى نوروسهورا هر دو متعلق به دستهى آسكوميستها مىییاشند．
 قارجها هايلوئيد بوده و در سلولهایى خود كروموزوم همتا ندارند．
（f）（V）（D ．
در محيط كثت حداقال آمينواسيد وجود ندارد جون كيك نوروسبوراكراسا آززيم سنتز كثنده آن ها را دارد و مى تواند انواع آمينو اسيدهاى مورد نياز خود را بسازد．
كبى نوروسبورا آزيمههاى لازم يراى سنتز ساكارز و بيوتين را ندارد．براى همين حتما به هحيط كشت بايد اضاڤه شُود．ولى دقَت كنيد كه ثوروسبورا آززيم هيدروليز كننده ساكارز（ساكاراز）را دارد و به همين علت به هـ هحيط

 سنتز آن ماده نيست
VT T T I ． 9
دو دليل انتخاب كبك نوروسيورا كراسا به عنوان گوثة مورد مطالعه بيدل و تيتوم： （1）هايلوئيد است و در صورت رخ دادن جهش، به علت نداشتن الل هم
 （Y）در مدت زمان كوتاهى تعداد فراواتى هاگ توليد مى
（rir T ．
 و براى آنها درون سلول هيج نوع الى وجود ندارد يعنى ما درون سلولها آنتى كدونهای AU AUU－AUC－ACU را انداريم．
 متيوتين و تريمتوقان －צزينه r：كدونهاى پايان（UGA－UAG－UAA）به هيج نوع

آمينواسيدى ترجمه نمى شُوند．
 RNA
（f）∇ T I ．
 ريبوتوكلوئيك اسيد مىيانـد． －צزينه ا：الين آتزيم از جنس RNA يوده و در ساختار خود داراي ${ }^{\text {F نوع }}$ نوكلئوتيد است．
－צزينه ז ז وظيفه rRNA ايجاد بيوند يبتيدى درون جايكاه A ريبوزوم

 هيلى مراز I است، البته فراموش F امر تشود كه در ميتوكندرى هاى اين سلول، rRNA توسط RNA بلى هراز

 بيوند يمتيدى را دارا است．

يلندترى دارند قديمىتر يوده و از جايكاه أغاز روويسى قاصله بيـترى دارند
 بلند است
「 「 RNA＞ DNA
 إيتدا mRNA ى فرضى را يررسى میکثيه： ．．．．CA AUG UUU CUU UGC UGU CGC． CAU … UAA GCCA

بيابيراين هلى بيتيد حاصل V عدد آمينواسيد از 9 توع خواهد داشت． （f）TT［T（V）． 19 آخرين كدونى كه ترجمه میى انتى كدون متعلق به آن GUA است و مكمل اين آنتى كدون در رنته CAT，DNA است

由TTT（V）．V
اولين كدونى كه وارد جايرًاه P ريبوزوم میشود AUG و اولين أنتى

 آلى دارند كه مجموعا میى شـود 10 حلقه． （v）Tr］（1）．1人 در مر حله آغاز ترجمه كدون آغاز درون جايگّاه P ريبيزومم، كدون دوم درون
 كاه آنتى كدون دوم نداريمر
 تـكيل تمىثود جون قتط يك مولكول tRNA درون جايكاه P ريبوزوم

。

－צزينه ا：ريبوزوم از جنس بيروتئين و rRNA میاي نوكلئوروتئين يوده و داراى TF نوع موتومر است．
（f）（r）（1）． 11
دريو كاريوتها ققط محصول RNA يلى مراز mRNA \＆II（كدون）است ترجمه میىشود و هروتئين ساخته میى شود．ولى tRNA ，rRNA

راه انداز زن تمام هروتينينهاىيو كاريوتى توسط RNA پلى مراز II شـناسايى
 انسولين، زن هاروتئين ريبوزومى، زن اتيدراز كرينيك و حتى زن خود RNA
 II هـى تواند زن خود را روتويسى كثد． （f）（D）IT IT RNA فعاليت مى كند ولى RNA يلى مراز III ，II I I در ريبوزومهایى سيتويلاسم ساخته می شوند و سبس از طريق مناڤذ موجود در غثهاى هسته وارد هسته شُده و در آنجا فعاليت مى كتنـند． －هارامسى نوعى تك سلولى از دسته ى آغازيان هزكدار يوده و يو كاريوتى ت
－تورون واحد عملكردى دستگًاه عصبى است و سلولى يو كاريوتى است －عامل كلودرد هركى نوعى باكترى استريتوكوكوس است．
 متايوليسميدر آن آنا رخ نمىيدهد． （V）［T］［T］
 （（1）آزيم RNA بلى مراز در روويويسى براى جـسباندن ريبونوكلئوتيدهاى جديد به ريبونوكلئوتيدهاى قيلى．
 ريبيونوكلئوتيدهاى جديد يه دئو كسى ريبيونوكلئوتيدهاى قيلى
 أززيم DNA يلى مراز قادر به هـكستن بيوند فسانودى استر طى ويرايش

 تشكيل ليوند فسفودى استر نيست （f）『T）（1）． －צّزينه 1：در ساختار بر مانثد مولكول DNA（محور ساختار هرمانثد）، مولكول RNA（ثناخهماى در حال تشكيل）و آزيم RNA RN بلى مراز（از

 نوع ثوكلئوتيد يوده و در صورت روتويسى RNA حاصل نيز داراى ${ }^{\text { }}$ نوع نوكلئوتيد مىياشد كه حداكثر درون سلول ^ ثنوع نوكلئوتيد وجود خواهد

به زادهها منتقل شُود: رد كزينه ال 1 - צزينه r در او رخ داده است، متاثر مىكثد. سلولهایى ثوليكولى نوعى سلولهاهاى سوماتيكى اند كه كامت نابالغ را الحاطه كرده و به آن مواد غذايى میى رساثند.

 توليد مثل مىكند كه در اين نوع توليد مثل غير جنسى هر كدام از سلولهاى دختر يك نسخه عينا از DNA سلول مادر درياقت مىكند بنابراين اءر در اين باكترى جهث رخ دهد قطعا به نسل بعد (سلولهایى

دختر) منتقل خواهد شد.

- צزينه 1: كدون نوعى RNA يوده و داراى ${ }^{\text {F }}$ - نوع نوكلئوتيد است. لاكتوز

و كالاكتوز.

- צزينه r: جايكاه آغاز روتويسى يه اولين ثوكلئتيدى از DNA كتّه
 نوكلئوتيد يوده و يكى نوع مونومر دارد. كيتين نيز نوعى كريوهيدرات يوده

كه داراى يكى نوع نوكلئوتيد (گلوكز) مىياشد.

 ساكارز نوعى دى ساكاريد است كه 「 نوع مونومر دارد كه عبارتند از گلوكز و فروكتوز. اين نكته را هم به خاطر داشته باشيد كه جايتاه آغاز روتويسىیيك نوكلئوتيد است و همچچنين از جنس DNA است هی در آن باز آلىيوراسيل و قْند ريبوز نمىتواند وجود داشته باشد. (t) (T) (T) V. \vee حداقاقل تعداد ثوكلئوتيدها در مرحله آغاز ترجمه يوده كه هئوز هيجز ثوع
 P ريبوزوم و كدون دوم درون جايكاه A ريبوزوم قرار گرفته است. حداكثر
 دو جايكاه P و A ريبوزم را انغال كرده اند و طبيعتا دو كدون همم درون اين جايگاهما حضور دارند. هر كدون و آنتى كدون نيز از

- كزينه r: اسڭكلت خارجى حشرات از جنس نوعى كريوهيدرات به نام

آمينواسيد مريوط به هروتئين.
 RNA
 RNA نوع نوكلئوتيد براى
 هاروتئين ساخته هـده استا بنايراين داراى Y نوكلئوتيد براى DNA و ס ז توع آمينواسيد هريوط به هاروتئين. (f) T ∇ (I).
 جون در آن فرايند رونويسى اتجام تشده و mRNA داراى نوكلئوتيدهاى يوراسيل دار به صورت مصنوعى درون آن قَرار كرقته يود.
 توكلئوتيدهاى يوراسيل دار داشت و فاقد رمز آغاز و هايان يود.
(f) (r) D I . Y
 هسته دار بدن داراى رمز مىياشـند اما ارنيتين و سيترولين آمينو اسيد نيستند بلكه يـش ساز آمينواسيد هستند براي همين در هسته رمز ندارند. تمام هروتئينههايى كه در بدن وجود دارند و فعاليت مىكينّد در تمام

 هروتئين مريوطه ساخته مىشود و يرخى ديگّر از زنها مورد استار استاده قورار تمىگیيرند به عنوان منال زن اتسولين در همة سلول هاى هستهدار بدن وجود دارد ولىالين زن فقط در جزاير لانگگرهانس لوزالمعده روشن است. اريتروسيتها فاقد هسته مىيانـند. مطلب بعدىالينكه روى سخن ما با هروتئينهاست و مـلا دى ساكاريد لاكتوز كه نوعى كريوهيدرات است در هستهى سلول هاى بدن ما دار الى رهز نيست.
(f) (T) (T). زن RNA يلى مراز داراى هo 9 نوكلئوتيد مىياشد كه مه1 أوكلئوتيد آن هريوط به اينترونها است كه رونونت آنهها در mRNA بالغ بآتى نمىماتد
 الين هY نوكلئوتيد در دو رشته ى DNA قرار كرفته اند اما همان طور
 بنايراين YRNA بالغ اين آتزيم دارالى نوكلئوتيد يوده كه تعداد بيوندهاى فسڤودى استر يراير است با ro9. r. [f] ∇ (1).

- Fزينه ا: آمينواسيدهاى يروتئين
 آنتى كدونها اء 4 نوع اند. - צزينه זّ در سلول

هنكام ترجمه يكى رشته mRNA كدون آغاز قتط وارد جايگاه P F ريبوزوم میشّود و طبيعتا آنتى كدون و مولكول tRNA هريوط به آن نيز فقط وارد A مايكاه P میود. نكته بعدى اين كه كدونهاي هايان وقط وارد جايكاه میشوند اما يراى آنها هيج آنتى كدون و tRNA ایى وجود ندارد بنابراين تعداد مولكولهاى tRNA عيور كرده از جايگاه A براير است با تعداد كل

If 1 if
(
فعال كننده نوعى هروتئين عوامل روتويسى است كه در تتويت عمل روتويسى سلولهاى يو كاريوتى نقش دارد. بنايراين بايدگزينه الى اتتخاب شود كه زن آن مخصوص سلول هالى يو كاريوتى باشد. - كزينه ا: بروتئين مهار كننده يا بروتئين تنظيم كننده نوعى هاروتئين هروواريوتى است كه در تنظيمه بيان زن در باكترى اشريشيا كالاى نتش دارده. - צزينه r RNA يلى مراز هاروكاريوتى همان طور كه از اسمم آن يرمى آيد مخصوص باكترىهاست

 يوكاريوتى اند و در سلول هایى هاروكاريوتى وجود ندارند.

نكته مهام زير را به خاطر يسباريد زنهايى كه به صورت اليران هستند: زن آنزيم محدود كنثده، زن تنظيم

 زن RNA ريبوزومییلرو كاريوتى به صورت اليران هستند. (f) (r) [1] درشٌت مولكول انتقال دهنده ى اكسيزن هروتئين هموگلوبين است كه از هجهار زنجيره ى يلى بيتيدى ساخته شده الست و موثومرهاى آن آمينواسيد هستند بنابراين اتصال سومين مونومر در دومين رشته ى هيلى بيتيدى هموكلوبين بر عهده ى rRNA است. rRNA تنها آنزيم غير هاروتئينى A است كه وظيفه ى برقَرارى بيوند بیتيدى بين آمينواسيدها در جايگاه ريبوزوم حين ترجمه را ير عهره دارد. (T) (T) (D).

 مهار كثنده (هروتئين تنظيم كثنده) زمانى كه لاكتوز در محيط باكترى إما
 تنظيمر كننده يا همان قند آلولاكتوز هيج كاه بها اليران لكى متصل نمى تُود و ثقط زماثى كه لاكتوز در محيط باكترى باشد به هروتئين مههار كتنده متصل مىشود.

آزيمههاى ايجاد شده حاصل از ترجمهى mRNA إيران لكى در جذب و تجزيه ى لاكتوز (قند شُـرِ) نتش دارتن - گزينه ا: كازئين هيروتئين شير بوده و هنگام مصـرف شـير همراه با قند آن يعنى لاكتوز وارد بدن مى ششود.
 میشّود كه كوارش نشاسته رادر دهان آغاز كرده و نشاسته را به دیى ساكاريد مالتوز تبديل مى كند. بنايراين هيش ماده آزيّيم هتيالين نشاسته است
 بوده كه درون بسترى از يروتئين قَرار كرقته است
 است كه عبارتند از گلوكز و كالاكتوز.
 ذنهاى سلول هاى يو كاريوتى گسسته اند و داراى توالى هاى اگزون و اينترون میىياشند. اگزون و اينترون در فرايند روتويسى هر دو روتويسى مى شُوتد اما هنگام بالغ شدن RNA روتوشٌتهاى اينترون حذف شُده و فقط
 تر از RNA اوليه يوده و اين RNA بالغ هس از بالغ شُدن از طريق مناقذ موجود در غشاى هسته، از هسته خارج شُده و در ريبوزومهماى سيتويلاسم ترجمه هیى تُود بنايراين طول RNA در قسمتهای مختلف سلولهاى
 كوتاه شدن RNA را نيز ندارتد. - گزينه ا: عامل تبخال ويروسى است. ويروسهها زنده ثيستند و هيج گوثه فراييند متايوليسمىدر آنها را خن نمىدهد.
 مسموميت كثنده (كلستريديوم يوتولينم) لثروكاريوت يوده و توالىهاى اكزون و اينترون و بالغ و كوتاه شُدن RNA ندارند. - گّزينه ז': عامل اسهال خونى آميبى نوعى آغازى است و يوكاريوت محسوب مـىتُود.
(f) (T) (D).rq

همان طور كه میداتيد براى كدونهاى پايان هيج نوع آنتى كدونى وجود ندارد يعنى كدونهانى ثايان به هيرج آمينواسيدى ترجمه تمى تشوند. بنابيراين در يكَ رشته ى يلى بيتيدى تعداد آمينواسيدها براير است با تعداد كل كدونها منغهاي عدد (1) رشته بلى يبتيدى ذكر شُده 10 ا عدد آمينواسيد

دارد بنايراين تعداد كل كدونها در mRNA آن 18 عدى يوده است. در يك رشته mRNA در حال ترجمه كدونهاى پايان ثقط وارد جايگاه A ريبوزوم میىتوند بنايراين تعداد كدونهايى كه از جايكاه P ريبوزوم عيور میى كنند براير است با تعداد كل كدونها منهاى عدد (1) با اين تثاسير در الين رشته ى mRNA تعداد كدون هایى عبورى از جايگاه P ريبوزوم يراير است با تعداد كل كدونها يعنى 19 منمهاى ا كه مییتود 10 عدد كدون.

(f) $+(\square) \varepsilon$

- צزينه ا: مولكول tRNA تكى رشته الى است و بخش هایى دو رشته الى

أن، در نتيجه تاخوردگى هاى هولكول tRNA روى خود حاصل شده اند.

 ساير كدونها و مولكولهایى RNA ابتدا وارد جايگاه A A شده و سجس وارد جايگاه P مى شُود. - צزينه "٪: توالى نوكلئوتيدى CCA در همه ى مولكول هایى RNNA وجود دارد هم جن هنين اءر كدونى با توالى GGU داشته باشيهم آنتى كدون مكمل آن توالى CCA خواهد داشت، بنايراين در يك مولكول tRNA میتوان به صورت همزمان دو توالى CCA را مثاهده كرد. - צزينه بعدى آن درون سلول شبيه حرف L است.
(f) T T ∇. $(1$

كاقى است عدد IV ات اتسيمه ير عدد r كنيد و باقیى ماتده جواب خواهد يود
 [f (T) (T) EK - زنْهاى باكترى ها در واحدهايى يه نام الثران سازماندهیى شُده اند. هر اليران

قطعا راه انداز خواهد داشْت

 قطعيت ندارد.
 قطعيت ندارد. - تمام زنههاى باكترىها توسط آتزيم RNA پلى مراز ثرووكاريوتى روتويسى میشوند
 كه داراى

(+ (I . $\boldsymbol{\varepsilon}$
شُناسايى راه انداز در سلولهاى يو كاريوتى به كمكا هروتئينهاى عوامل روتويسى و در سلولهماى پروكاريوتى به تنهايىى صورت مییلئيرد. -

 در سلولهانى يو كاريوتى است.

مراز براى شُناسايىى راه انداز در سلولمهاى يو كاريوتى كمك میى كنثن.
 كه لاكتوز در محيط باكترى اشريشياكلاى وجود نداشته باشد سنتز مىیْود.

باكترىها داراى يك نوع ريبوزوم و يك نوع RNA پلى مراز هرو كاريوتى
 DNA هارند يكى DNA هم جثين باكترى ها دو نوع mRNA, rRNA حلتوى اصلى باكترى كه جـسبيده به غثهاى بلاسمايى است و يكى هم ثلازميد يا كروموزوم كمكى كه آن نيز نوعى DNA حلتوى و هروكاريوتى الست. البته هالازميدها در برخى باكترى هاها وجود دارند. [f] (V) [T] (1)
هميشه در يكا رشته mRNA تعداد روتوشتهاى اگز اتون يكى بيشتر از رونوشتهاى اينترون است بنابراين اين mRNA اوليه كه V رونوشت اگزون دارد 9 روثوشت ايثترون ثيز دارا میى اتشد. برایى بالغ شدن يكـ رشته mRNA

(f) [T) T (

كدون و آنتى كدون هر دو در اثر فعاليت آتزيم RNA يلى مراز به صورت مستقيم از روى رشته DNA الگو ساخته مىشوند. بنايراين الكَوى سنتز كدون و آنتى كدون CUA در رشته DNA الكو GAT يوده است. (f) + $+\square$.

اولين كدونى كه وارد جايگاه A ريبوزوم میشّود يك كدون هس از كدون آغاز است بنايراين اولين كدونى كه وارد جايگام A میى شُود مريوط به آمينواسيد سيستئين يوده كه داراى ז ثوع كدون میى اياشد كه عبارتند از و ACA آنتى كدونهای اين دو نوع كدون میشوند .UGC , UGU
 TGC
(f) [r 『 (1 .
 اورئوس الست گسسته تيوده و توالى هاى اگزون و اليترون ندارند. بنايراين ابتدا بايد محاسبه كنيم كه mRNA مريوط به اين رشته ى يلى بيتيدى

 در نظر بكَيريم كه مجموعا مىشتود ه كدون كه معادل 10 اع عدد نوكلئوتيد الست. ينايراين رشته DNA الكَ تيز 10 ال عدد توكلئوتيد داشته است اما بايد در نظر داشت كه DNA مولكولى دو رشته الى است و تعداد نوكلئوتيدهاى مولكول DNA براير است با با عدد نوكلنوتيد.
[f) [C © . \quad q
 يلى مراز به صورت مستقيم از روى الكوى DNA ساخته میى شوند. هم ار TRNA درون سلول در ساختار خود توالى دارند. بنايراين بايد توالى DNA اتتخاب شود كه مكمل توالى CCA در الى

الين شُرايط را دارد.

نمى گيرند به عنوان مثال زن انسولين در همه سلولهاى هستهدار بدن
وجود دارد ولىاين زن فتط در جزاير لانتارهانس لوزالمعده روشن است
 ماهيجهها وجود داشته و میىتواند هميشه متدارى اكییزن ذخيره داشته

باشد
－צزينه ז با بادتن ثوعى هروتئين دفاعى است كه محلول در خون يوده و
توسط －צزينه ז٪ كبسول باكترى استرهتو كوكوس نومونيا از جنس پلى ساكاريد است و الصلا از جنس ثروتئين نيست －كزينه f أ هرفورين نوعى هروتئين دفاعى است كه توسط لنفوسيتها ترشَح
 （T）［T（D）Eq در صورت سوال ذكر شده است كه حداقا يكى نوكلئوتيد تواثين دار داشته

باشد بنايراين دو و سه نوكلئوتيد گوانين دار ثيز مىتواند داشته باشد． －حالت ا：يكى نوكلئوتيد گواتين دار داشته باشد．و نوكلئوتيدهاى ديكّر كواثين نداشته باشند
نو r نوع $r \leftarrow\left\{\begin{array}{l}q=r \times r \times G(1) \\ q=r \times G \times r(r) \\ q=G \times r \times r(r)\end{array}\right.$
－حالت 「：دو نوكلئوتيد گواتين دار داشته باشـد و نوكلئوتيد ديگر گوانين

Q qleat $\leftarrow\left\{\begin{array}{l}r=G \times r \times G- \\ r=r \times G \times G- \\ r=G \times G \times r-\end{array}\right.$
－حالت＂٪：سه توكلئوتيد گواثين دار داشته باشٌ كه فقَط يك حالت يوده و كدون GGG است．
پّ مجموعا مىتوان با اين حالتها سوال ذكر شُده است كه برای اين كدونها آنتى كدون وجود داشته باشٌ
 نوع آنتى كدونى وجود ندارد．پس بايد كدونهاى UGA و UAG اا از اين مجموعه حذف كنيم．كدون UAA اصلا نوكلئوتيدگوانين دار ندارد و شامل
 （f）+ D 0. مراحل ترجمه و تحوه تشكیل و شُكسته شـدن بيوندها به ترتيب عبارت است از مرحله آغاز：تشكيل هثت بيوند هيدرورثى در جايكاه P：به علت رايطه
مكملى بين كدون و آنتى كدون آغاز.

مرحله ادامهد：
（）تشكيل بيوند هيدروثنى در جايتاه A ：به علت رابططه مكملى بين كدون و آنتى كدون دوم．

（7）T \square I ．ε

يك mRNA كه در بخشى رهز گّردان خود 99 نوكلئوتيد دارد دارای

 بنايراين تعداد آنتى كدون هالى عبورى از جايگاه P براير با تعداد كا

－در قسمت سر اسهرم، ميتوكندرى وجود ندارد، بنايراين، DNA حلقوى التوى وجود ندارد، طّس قطعا از ترجمه ى يكى رشته mRNA يى رشته إلى
بَتسَد ايجاد مى شُود.
 هاى روتويسى از يك DNA حالتوى است كه سر اسْرم فاقد آن مى باشد． الشّرم سلولى يو كاريوت الست و در يوكاريوت ها تنظهيم بيان زن اغلب در
 در سلول هاى يو كاريوتى RNA يلى مراز به كمك گروهیى از هروتئين ها بها ثام عوامل رونويسى راه انداز را شُناسايى مى كـى

D T I ．EG
A A צزينه ا：در مرحله هايان ترجمه عامل هايان ترجمه درون جايگاه
ريبوزوم قَرار مى كیيرد و ترجمه ها －گزينه r r r آثزيمى شيتيدى درون جايگاه A ريبوزوم در حين عمل ترجمه مى میاشد．

كرقته در جايگاه P را هيدروليز مى كند نه خود عامل هايان ترجمه．

 وجه انجام نمىیشود．
$[7] \times(\square) . \varepsilon V$
زن هروتئين ريبوزومىدر تمام سلولها وجود دارد غير از دو دسته سلول كه عبارتند از： ا سلولهای مرده مانْد سلولهاى كلاهك ريشه، سلولههاى باقت اسكلراتشيمم（فييرها و اسكلروئيدها）، سلول هاى آوند جوبى（تراكئيد و عناصر

آوندى）
r r r r r سلولهاى بالغ آوند آبكش در گیياهان اما زن آثزيم محدود كثنده فقط در سلول های هرووكاريوتى وجود دارد．
［ \downarrow（T）（1）．と人 تمام ثروتئينهايـى كه در بدن وجود دارند و فعاليت مى كثنند در تمام

 هاروتئين مريوطه ساخته مىشود و يرخى ديگر از زنها مورد استفاده قَرار
فصل ا - هروتئين سازى

مىياشد بنابراين دراين حالت ما حداقاقل سه نوع نوكلئوتيد خواهيم داشت نوكلئوتيدهاى سيتوزين دار با قند دئوكسى ريبوز در رـتّه DNA الكّو، وكلئوتيدهاى كوانين دار با قند دئوكسى ريبوز در رشته DNA غير الكَو و نوكلئوتيدهاى گوانين دار با قند ريبوز در رشتهـ RNA در حال ساخت حال اگر يه طور مثال هر هیهار نوع نوكلئوتيد را ما در رشته DNA الكو دانته باشيمه همين هجهار نوع نوكلئوتيد رادر رتّته DNA DNA غير الكو ثيز خواهيم داشت اما مكمل نوكلئوتيد آدثين دار در DNA نوكلئوتيديوراسيل دار در RNA خواهد يود بنايراين با وجود باز آلىيوراسيل در RNA و هم چَنْين نوع قِند به كار رقته در DNA و RNA حداكثر چَند نوع نوكلئوتيد در حباب رونويسى خواهيمر داشت ؟ بله ^نوع (T) [T (V) D . D

تنها حالتى كه براى اين سوال استنيا است حالتى است كه كدون مورد نظر سه نوكلئوتيد يوراسيل دار داشته باشد بينايراين جواب سوال مىتشود

بازهاى آلى دو حلته ایى كه در ساختار RNA به كار مى روتد عبارتند از آدنين و گوانين و بازهاى آلى تك حلته ایى به كار رفته در آن عبارتند از يوراسيل و سيتوزين. حالتى كه برای اين سوال استتنا است حالتى است كه در كدون مورد نظر ما نوكليوتيد با باز آلى دو حلته الى به كار ثرفته باشد يعنى ما مجاز به استفاده از نوكلئوتيدهاى يوراسيل دار و سيتوزين دار هستيم و با نوكلئوتيدهاى يوراسيل دار و سيتوزين دار مى توان ^^نوع كدون ساخت بنايراين در سوال ه9 نوع كدون وجود خواهد داشت كه در ساختار آن حداقال يكى نوكلئوتيد با باز آلى دو حلقه الى در ساختار آن به كار رقته باشد اما در صورت سوال كدونهاى قايل ترجمه خواسته شـده است است بنايراين بايد هر سه كدون هايان را از اين مجموعه حذف كثيهم حرا كها در ساختار هر سه ثاى آنها نوكلئوتيد با باز آلى دو حلقه الى به كار رڤته است سوال میشتود זّه نوع كدون. (f) [r] (D) . Δ فثيل كتونوريا (PKU):
(1) أرادى كه بيمارى فنيل كتوتوريا دارند، آززيمىرا كه آمينواسيد فنيل آلاتين را به آمييواسيد تيروزين تبديل مىكند، ندارند. به اين دليل، در اثر تجمع محصولات حاصل از متايوليسم غير عادى ثنيل آلاثين در بدن، در ورد عتب ماندگى ذهنى به وجود مى آيد. اگر كمى يس از تولد وجود اين بيمارى در كودك تشخيص داده شود، به كودى غذاهايـى داده مى شود كه متدار فنيل آلانين آنها كم و متناسب با نياز بدن اوست. در اين صورتاين آمينواسيد در بدن فرد تجمع نمىيابد.
(Y) دراين بيمارى، اساسا در زن آثزيم تبديل كنندهى فنيل آلاتين به تيروزين جهش ايجاد شده است، در نتيجه آمينواسيد فثيل آلاتين به آمينواسيد تيروزين تبديل نمى شود و ميزان تجمع آمينواسيد فنيل آلاتين

در خون اين أراد زياد مىشُود و در عوض تيروزين كم مى شُود.
 مولكول tRNA و آمينواسيد متصل به آن.
 ترك كرده و آميئواسيد متصل به RNNA موجود درون جايگاه A A A A A A A A
 از كدون مريوطه. Q) تشكيل بيوند هيدروثنى در جايكاه A : به علت ورود tRNA بعدى به جايكاه A. مرحله هايان: () شُكسته شُدن هيوند كووالاتسى در جايگاه P : جدا شُدن آخرين tRNA درون جايكاه P و بلى يتيد تازه سنتز شده.

(f) (\checkmark (D. 01

حباب رونويسى دارای حداقال 「 و حداكثر ه نوع باز میى اشد. جحرا؟ هحلى را كه در آن رشتهى DNA الكَو و غير الكَو و هم جَنين رشتّه RNA در حال ساخت وَرار گرقته است را حباب روتويسى مى ناميهم. حال اكر به عنوان منال تمام بازهاى آلى به كار رفته در رشته DNA الكَ دلـو سيتوزين باشد تمام بازهاى آلى در رشته DNA غير الكو كه مكمل آن يوده و هم ثَنين در رشته RNA در حال ساخت گوانين خواهد يود و بنابراين حداقال اتواع باز آلى كه در حباب رونويسى به كار میرود 「 نوع خواهد يود. حال اگر هر F نوع باز آلى آدنين، گواثين، تيمين و سيتوزين در رشته
 كه مكمل رشته الكو هست ثيز وجود خواهند داشت اما توجه داشته باشيد كه مكمل باز آلى آدنين در رشتَه RNA در حال ساخت باز آلىيوراسيل يوده چون در RNA هيّج گاه باز آلى تيمين به كار نمىروو بنايراين حداكثر تعاد انواع بازى كه در حباب رونويسى میتواند وجود داشته باشد ه هنوع خواهد يود

+ + © D. Or

است كه عبارتند از
() ()
(r قند ريبوزيا دئوكسى ريبوز
(r ات ا (
بثايراين براى محاسبه تعداد اثواع نوكلئوتيد علاوه بر نوع باز آلى بايد نوع قند رانيز در نظر بتَيريم. حال با توجه به تعريف حباب رونويسى در نكتهى قبلى و همم حثين با در نظر گرڤقتناين نكته اگر به عنوان مـال در رشته الكو همه نوكلئوتيدهاى آنها سيتوزين دار باشند همه توكلئوتيدها در رشته DNA غير الكو كه مكمل رشته الكو است و همم جنين رشته RNA به كار رقته در DNA دئوكسى ريبوز و قند به كار رقته در RNA ريبوز
(f) (T) (.9

RNA اتحصال يلى هراز به راه اتدالز	تنظهيم بيان ن	ترجمه	رونوبسى	رمـانتد ــازی	نوع سـول
-			سبتوبلاسم	سيتويلاسم>	¢رو كاريوت
ميتويلاسم	اغلب هــته	سيتويلاسم\%	سبتوياxما	سيتويلاسم	بوكاريوت

ريزوهوس استولونيڤر عامل كبك سياه نان ويو كاريوتى است. () + 『 (1. 91

 میى شود و غلظلت مونوساكاريدهاى گلوكز و گالاكتوز درون سلول باكترى اقزايش مییيابد. + (V) (1) . F
در زمانى كه اليران لكى فعال مىیباشد آلولاكتوز كه نوعى كريوهيدرات است

 نوكلئيك است متصل مىیّود بنايراين تركيبى كه در زمان خاموت يون

 آلولاكتوز در محيط باكترى قَرار مىییيرد يروتئين مههار كثنده از اليراتور جدا
شـده و به آن متصل مى شُود.

$$
\pm T \nabla \square .9 \mu
$$

- צزينه ا: جايكاه آغاز و هايان روتويسى برخلاق راه انداز روتويسى مى شـوند و جزو زن ساختارى اليران ها هحسوب میی شوند.

mRNA
- צزينه \ddagger (أمينواسيدهاى ميتونين و تريبتوفان فقط يك كدون دارند
(T) [+ (9 を

	تنداد رمز أغاز	تعداد هحصول ترجمه		تعداد جايكاه آعاز رونويسى	جايكاه يايان رونويـى	راه انـازار	نوع توالى
1	1	1	1	1		1	Sis
n	n	n	1	1	1	1	\% ${ }^{\text {n }}$

در سلولهاى هرو كاريوتى چجون هسته ندارند، هم روتويسى و هم ترجمه در سيتويلاسم صورت مى گیيرد. ولى در سلولهانىيو كاريوتى رونويسى در هسسته است ولى هروتئين سازى در سيتويلاسمم صورت مى
 هسته ندارند اما عمل رونويسى دريوكاريوتها در هسته و در ميتوكندرى
 يوكاريوتى درون اندامكاهالى ميتوكندرى و كلروهلاست نيز DNA وجود دارد البته از نوع حلقويش تجون جد اين دو تا اندامك باكترى يوده طبق نظريه درون همزيستى كه توضيح كاملترش در در فصل r ا همين كتاب اراريه DNA شده است الما مطلب اصلى الين يود كه جوناين دو تا النامك داراراي

RNA اتصال بلى هراز به راه اتداز	تنظهم بيان ن	ترجمه	روتويسى	هماتند سازى	نوع سلول
	سينوّبلاسم	سيتوبيلاسم	سيتوبلا	سبتوبلاسما	خروكاربوت
مسيتويلاسمه وم	اغلب هسته	سيتوبيلاسما	هستيولاسم و		يوكاريوت

كلستريديوم يوتولينم عامل يوتوليسم و ثروكاريوتى اما بالاسموديوم عامل مالاريا يوكاريوتى است + (D D D . V

آتزيمههايى كه قادر به شُكستن بيوند هيدرورثنى هستند عبارتند از () آزذيم RNA بلى مراز در شُروع روتويسى يراى جدا كردن دو رشته

ازيكديكر. DNA
 زا يكديگّر. r) آنزيم EcoRI در شُروع مههندسى ثنتيك براى برش زن خارجى و همم

چَنين يرس هِازميد.
V r T T I . $\Delta \lambda$

) آنزيم DNA آلى مراز در ويرايش طى هماتثند سازى.

(\downarrow (1.09
 ندارد بنايراين آخرين آنتى كدون كه درون جايكا همان آخرين آنتى كدونى است كه درون جايگاه A ريبوزوم قرار گرقفته است.

 وسط رشته ى mRNA به كار رفته باشد و يك كدون معمولى باشد مانتد تمامى كدونها إتدا وارد جايكاه A و سبس وارد جايگاه P ريبوزوم میى

جايكاه P ريبوزوم وجود دارد.
\% هروتيني كه بيشترين نتش را در انتقال دارد هموگلوبين است كه

$$
\begin{aligned}
& \text { [7] [D] } 9 \text { (1) }
\end{aligned}
$$

به طور كلى RNA يلى هراز هرو اريوتى روتويسى از زنهاى هارو اريوتى را انجام میدهد. * فعال كثندميك يروتئينيوكاريوتى است بنايراين هروكاريوتها فاقد زن براى آن مىیاتشند.
 است الما خود رونويسى ثمىشـود. ڤ ضمنأ در ميتوكندرى و كلرويلاست يك يو كاريوت RNA يلى مراز ثاروكاريوتى ، رونويسى از زنهاى DNA حلقوى را به عههـ دارد. بنابرين نوروسبورا كراسا هم به عثوان يكا يوكاريوت ميتوكندرى دارد و رونويسى از جايگاه آغاز آن در ميتوكندرى به كمى RNA للى مراز هروكاريوتى انجام

مـى
\% آززيم محدود كننده ثيز آنزيم باكتريايى است كه جايكاه هايان آن توسط RNA
(T) ∇ D. V .
tRNA با ورود عامل هايان ترجمه به جايگاه آثز موجود در جايكاه P را با هلى ثيتيد هيدروليز مى كند.
(F) \boldsymbol{V} (1) V

AAATGCTTTTTATGTGA

هـانتن سازی

TTTACGAAAAATACACT

, ونوبسی,

A AUG CUU UUU AUG UGA

 بيوتد يبتيدى است
: آخرين كدون وارد شُده به جايگًاه AUG ، P میياشٌد كه مكمل آنتى كدون UACOWA * سومين كدون وارد شده به جايگاه A همان AUG است كه با كدون آغاز فرقى تدارد.
 يلى بيتيد حاصل از آزمايش نيرنبرگ فتط آميئو اسيد فنيل آلانين داشت.

جاندار استفاده هـده در آزمايش بيدل و تيتوم كبى نوروسبوراكراسا
 است. همحجنين هماثند هر جاندار زندمى سالمىى آمينواسيدهاى مورد نياز برای رشدش را خودش مى سازد.
 است بنايرين بى هوازى است. \& \% ريزوبيوم باكترى هتروتروفى است كه توانايى تثبيت نيترورزن دارد.
(V) T T (1) .c9 به طور كلى محيط كشت حداقاقل نوروسهورا شامل ويتامين(بيوتين)، نمكها و ساكارز است منظور از گزينههای الف، ب و ج به ترتيب ويتامين BIr، ماده صغرا (حاوى املاح يا همان ثمكها) و ساكارز است. اما مادمى غير آلى كه براى تبديل
 ساير گزينهها شباهت كمترى به محيط كهت حداتها (+ (T) 1.9 V

هروتئينه هاى دفاعى محلول در هالاسما شامل هيروتئينهاى مكمل و وادتنها

 كه تعداد بيوند و آب آزاد شـده حاصل از بيون آيوند موتومرها با همم براير است و از رابطهى رو به رو كه در آن n مهمان تعداد موثومر است بيروى می آند. n - تعداد رشته

بنايرين هادتن كه بيش ازيكى زنجيرهى يلى ثيتّيدى دارد قطعاً تعداد ييوند
ثيتيدى آن هم كمتر از أ أتا مىياشد.
 \#: يراى سنتز هر هيروتئين mRNA، tRNA، rRNA به كار میرود.
 (f) (r) (1 . 9 A

طيق شُكل رو به رو از همو كلوبين و خطط كتاب

درسى در صنحهى YA بـال دوم در مورد ثادتن تنها اين دو هروتئين به طور
 \% هروتيئن ترشَح شده از ماستوسيت هيستامين مىیاشد.

* هروتيئن ترشّح شـده از هلاسموسيت هادتن است * انيدرازكرينيك است كه در غثشاى كّليول قرمز قرار دارد كه تركيب مى كند و بدين ترتيب در انتقال Y دارد.
: دريو كاريوتها عالاوه بر راه انداز معمولاً توالىهاى ديگّرى به نام توالى
اقزاينده وجود دارد. (T)[T].VG با توجه به شكل با اضافه كردن تيامين، ريبوفلاوين، نياسين، آررينين، فوليك اسيد، نوكلئيك اسيد ، اينوزيتول، كولين، p-آمينوينزوئيك اسيد، بيريدوكسين به محيط كشت حداقال، محيط كشت غنى شُده ساخته شد.حالا گزينهها را يررسى كنيمه * منظور از گزينهى ا السيد فوليكى است كه همراه با ويتامين BIT براى خون سازى ضرورت دارد و نيود آن موجب آنمى مى شود. \% منظور از گزينهى 「 تيامين (مى خواتيد به بيرووات در تبديل شدن به استيل كواتزيم A كمكا می كند. DNA دريوكاريوتها) ساخته مى شُود RNA DNA واست كه هر دو دو توكليكي اسيدند كه به ترتيب در فرايندهاى هماتند سازى و روتويسى ساخته میى شُوند.
 محافظت مى شُود.
 شـكل IV خلاصه ى آزمايش هاى بيدل و تيتوم روى كهك نرورسيوراكراسا

T T T (T) VV رشتهى الكُوى اين TGGAGCGTC , شتّهی مكملاين الكوكACCTCGCAG الست
[\square (T) (1) .Vィ
اقزإينده توالى از DNA يو كاريوتهاست. ساختارهاى دئوكسى ريبوتوكلئيك اسيدى (DNA) :رامانداز، اليراتور، جايگاه آغاز روتويسى، جايگاه هايان رونويسى، اينترون، اگزون، انتهاى جچسبنده، أزإينده، هلازميد، زن (T) T I .Vq

براى كريوهبدراتها و ليّيبدها زنى وجود ندارد.
 يلى ساكاريدى میییو شاند، ديواره تارج، كيسول باكترىهانا، كيتين به كار رفته در اسكلت خارجى حشرات

* * كلسترول غثها، كلسترول و ليستين در صغرا، سويرين در نوار كاسبارى،

منظور از جهش نتطهى نوع اول، جانشينى است كه در آنيكى نوكلئوتيديك

نويسى تغييرى اليجاد نخواهد شـد
 ساختَه نمىتُود.
 تغييريابد جون هر دو كدون مريوط به آمينو اسيد سيستئين است تأثيرى در بيان زن ندارد.
\% در جهش جانشينى تغيير در نوكلوتيد سوم يك كدون معمولا اثر تخريبيى كمترى خواهد داشت. مثا CUU بهـ CUC مريوط به آمينو اسيد لوسين است و ياUGU به UGC مريوط به آمينو اسيد سيستئين است.
(T) (1) VE

منظور از جهش نتطهى نوع دوم، جهش اقزالش يا كاهش است است كه قطعاً طول رشتهى حاصل از رونويسىيا همان RNA تغيير بيدا خواهد كرد

 است جهار چوب خواندن كدونها تغيير شيدا نكند. ": بر خلاف جهش جاثش جاثشينى جايكًاه اول تا سوم كدون تاثيرى بر روى اثر تخريبيى جهش ندارد. (F) (T) .Vo

تنظيم بيان ثن ممكن است قيل از رونويسى، هنگّام روتويسى، يا بعد از آن صورت گیيرد. همجنْين اين تنظيمم بعد از خروج mRNA از هسته، هنگام
 در يوكاريوتها در هئگام شُروع روتويسى است

 RNA

حم (T). 1 ع در روثويسى، يكى از دو رشته DNA به عنوان الكُو استفاده مىتون اما در ههمانثن سازى هر دو رشته DNA الكو است

| نكته \|| 1 تقاوت هماتند سازى و رونويسى | | | |
| :---: | :---: | :---: | :---: |
| رونريسى | همانـد سازى | تقاوت | |
| 1 | r | تعداد رشتهاهاى الكّر | |
| 1 | r | تعداد رشتههاى حاصل | |
| RNA | DNA | نرع مر/كرل حاصل | |
| DNA | DNA | نرع مولكول الكّر | |
| يك طارفه | دور طرفه | جهت | |
| $\begin{gathered} \text { بخشى ازز مولكول DNA } \end{gathered}$ | كل مرلكرل DNA | بخشى از DNA كه الكّرست | |
| U | T | A | |
| يلى RNA | يلىمداز DNA | نوع آثزيم | |
| ندارد | دارد | توانايى
 ويرايش | تثاوت آنزيمهها |
| | ندارد | توانايى باز | |
| دارد | | كردن دو DNA | |

هروتئين ڤعال كننده دريوكاريوتها موجب تقويت رونويسى مىشود در حالى كه اليران مخصوص ثارو كاريوتها مى مياشد * تركيب كليكويروتئينى آلولاكتوز و هروتئين مهار كنثنه، اليران را روشن
\# تركيب نوكلئويروتئينى هروتئين مهار كـنده و اليراتور، الهران را خاموش

در تمام سلولهاى هسته داريك جاندار(به جز گّامتها)تمام زنهايكسان
 سلول هاى متقاوت، با همم متقاوت اند. [(V) (I) AV
 چجثد نكته در مورد ARNA ایى كه مكمل كدون AUG است
: آنتى كدون آن UAC است : حامل متيونين است

(V)TTID.

 ريبونوكلئوتيد مكمل را قَرار مىدهد (تشكيل بيوند هيدروثتى) و به علاوه، هر ريبونوكلئوتيد جديد را به ريبونوكلئوتيد قبلى وصل مى كند (تشكيل

بيوند فسقودى استر)

(هيدروزنى).
VTr (T) N
برالى كريوهيدراتها و ليّيدها رنى وجود ندارد. و كزسول باكترى از جنس هيلى ساكاريد است.

 مى كثد تا باكترى به سطوح مختلف بِجسبد. : باكترى استريوكوكوس نومونيا داراى دو سويهى كـيسول دار و بى كيسول
": كبسول و بيلى هر دو كمك به جسبيدن باكترىها به سطوح مختلف
 سريع آب در رودخانه قرار دارند يا به بافتهاى درون بدن آدمى بیانسبند، كـسول است ثه بيلى.

(f) [D D Ar زمانى كه لاكتوز در محيط باكترى وجود داشته باند لاكتوز وارد باكترى شنده و درون سيتويلااسم باكترى لاكتوز به آلولاكتوز (عامل تنظيم كننده) تبديل مىتُود. آلولاكتوز به هروتئين مهار كنناه متصل میى مُود و تغييراتى در شُكال آن يديد میى آورد كه بر اثر اين تغييرات، مهار كننده ديكر نمىتواند
 رنى انجام شده و يك mRNA سه زنى بديد میى آيد كه حاصل رو نويسى

 مستقيماً به جايگاه P وارد مى شود.

 و يكَ عدد حلته به نام آنتى كدون است tRNA تهارعدد بازوى اصلى دو رشتهالى وجود دارد. بخش هاى دو رشتهاى در نتيجه تاخوردگى هاى مولكولهایى tRNA روى
 * مانتد شكال زير ساختار سه بعدى tRNA در سلول شبيه به حرفا

شكل 19 ساختار سه بعدى tRNA در سلول.
tRNA*
 عيروكاريوتى ساخته مىتُود. (f) [D D . 1 \& جايگاه هايان رونويسى از جنس DNA هـ σ [T] T].90
ريزوبيوم باكترى است ويكى نوع RNA بلى مراز دارد. اما ريزوم كه ساقهى (ما زير زمينى است و يوكاريوت مییياشد سه نوع RNA بلى مرازا!ب!! (بهتر يود طراح محترم اين سوال بها اين نكته دقت میكرد كه اغلب سلول هالى يوكاريوتى ميتوكندرى دارتد و روتويسى از زن آنها توا توسط RNA يلىمراز هروكاريوتى صورت مى گيريرد.) وازءمهاى مشابه امايكى دنيا تقاوت \% ريزوم : ساقهى زير زمينى كه در سرخس و زنيق است كه هرسلولى * (ريزوبيوم : باكترى تثبيت كنندهى نيتروزن، هتروتروڤ، معمولأ در غدههاى روى ريشه گياهان (مانثد سويا، لوبيا، بادام زمينى، يوتجه و شبدر) زندگى مى كنـند.
 از مواد گياهى و جانورى در حال تجزيه تغذيه مى كند و هإيلوئيد الست. يكى نوع آن ريزويوس استولونيةر (كبك سياه نان) میىياشد. " ريزوئيد: همان نخينههايى است كه توسط قارج ريزويوس الستولونيڤر به درون نان نثوذ مىكند.
 و دو زير واحد كوچكَ و بزر گ دارد.

است
 هروتئينهاىيو كاريوتى هستند و توسط RNA يليمراز هرو كاريوتى رونويسى نمى شُوند.
vir + (1).^9
ساختارالثراتور از DNA مىییاشد ويوراسيل و ريبوز در آن وجود ندارد.
(f) $(\underset{\sim}{1}) .9$

ابتدا به شْكل زير نتاه كنيد تا چجند نكته از ساختار هر مانند را مرور كثيم.

 تشكيل می شود كه محور آن DNA و شُاخههاى آن مولكولههاى RNA در حال تشكيل هستند.
 RNA

 \# اتواع مونوهر به كار رفته دراين ساختار میتواند (RNA+DNA+
(F) (T) IT . 91

RNA ولا هراز در متايل رشتهى الكويش دئوكسى ريبوتو كلئوتيد DNA
هلي مراز ريبونو كلئوتيد قرار میىدهد. هإلى مراز DNA بلى مراز توانایى باز كردن دو رشته را دارد اما خير
RNA هالى مراز خير. DNA \# (f) © (T) © . $\boldsymbol{\sim}$ RNA تنها مهار كنثنه هيروتئينى ها هروكاريوتى استا
 تثاوت اصلى RNA ها در آنتى كدون آنهاست. كه نوع آمينواسيدى كه حمل مىى كثن به آن بستگّى دارد. \# tRNA به طور اختصاصى ثقط مسئول حمل عـى نوع آمينواسيد است. tRNA وج وجود ندارد.
 اختصاصى سـده است و آمينو اسيد به قند ريبوتوكلئوتيد آدنين دار آن متصل مىتود.

فصل (- هروتئين سازى
** توجه داشته باشيد كه هر كدون AUGG ايه معناى كدون آغاز نيست
 ابتدا وارد جايكًاه A ريبوزوم میى شُود.
σ (T) T T W
 RNA
ويكى رشته RNA و سه آتزيم ساخته شُود.

 \% تعداد رشتههاى حاصل در هماثند سازى 「 و در روتويسى ال الست. : فورآيند ويرايش فتط در همانند سازى انجام مى شـود. : توكلئوتيدهاى مورد استفاده در هماتند سازى و در رونويسى عاووه بر اين كه در قندشان متقاوتند ممكن است در باز آلى هم تقاوت داشته باشند. (F) (\downarrow (1 1. با توجه به هُ نكل زير محصول ترجمهى يك
 بتيد است كه توسطيك ريبوزوم ساخته میى تود.

(T) T I 1.9

در مرحله آغاز بخش كوجكتر ريبوزوم در مجاورت كدون آغاز به mRNA متصل مى شُود. و رايطه مكملى بين كدون و آنتى كدوناليجاد مىتشود

A A تشكيل بيوندهاى بیتيدى در جايكا

 P از جارو * tRNA
(f) T (D) I. V
 آمينواسيد خود را از دست داده الـت، از جايگاه P خارج مىشود.

I،)

 رشتهى الكَو ريبوتوكلئوتيد قرار میىهد (تشكيل بيوندهيدروزنى) و بعل

ريبونو كلئوتيدها را به هم متحل مى كند (تشكيل بيوند فسفودى استر)
© (T) (V) .9V
هاروتئينهاى مههار كننده بها اليراتور و آتزيم RNA ليلى مراز به راه انداز متصل میى
عاملى كه سبب فقال سُدن اليران لكَ مـى شود، آلولاكتوز است كه ماهيت هيدرات كرينى دارد.

وقتى لاكتوز وارد باكترى شُود به آلولاكتوز تبديل میىشود. آلولاكتوز به

 كرده است ديگُر نمىتواند به إيراتور بیسسبد بنايرين از روى آن آن بلثد شُده و

RNA
Tf T © (1) . 99
در اليران لك، در هيى اتصال آلولاكتوز به هروتئين تنظيم كننده (مهار كننده)،

 "ش در هی روشّن شُدن الهران لكى غلظت RNA ، سه آتزيم، لاكتوز، گالاكتوز، كلوگّز در باكترى بالا میروود.
f $+\square \square 1$...
 هRNA ها نهايتاً رشته يلى بیتيد ساخته

σ (r) (1) . 1.
در ساختار برگ شبدر RNA
 بلى ثيتيد را با آخرين tRNA را هيدروليز مى كند共 ندارد (tRNA)
\# دومين tRNA قتط با كدون جايكاه A ارتباط مكملى برقرار مى كند و با جابه جايى ريبوزوم به جايگاه P منتقل مى شُود.
 RNA متيوثين حمل مى كند. ضمنأ فقط آنتى كدون UAC مكمل كدون آغاز است كه مستقيماً وارد جايكاهP ريبوزوم میشون

وقتى لاكتوز در محيط باكترى نباشديعنى درون باكترى هم آلولاكتوزى
 تنظيم كننده（مهار كننده）بر روى اليراتور قرار میى
 لاكتوز میى شود． وقتى لاكتوز در دسترس باكترى نباشد آلولاكتوز توليد نمىشود اما هروتئينهاى تنظيم كنثنه همواره در حال توليد هستند．
درون باكترى بروتئين هايى كه هميشه در حال توليد هستند

كه همواره توليد مى شود و ايران لك را خاموش نكّه مى دارد.
（f）\checkmark T I ． 110
يراى بيانيك زن بايد رونويسى صورت گیرد، و روتويسى توسط آنزيم RNA ：ماريوكاريوتها سه نوع آنزيم RNA هلى مراز در رونويسى زن هسته تتش دارند． （f）（r）［1． 119

 با توجه به شهكل زير

و يكى تشكيل مىشود． ＊يكى از تغييرات در اغلب RNAهاى يوكاريوتى كوتاه شُن مولكول ．اوليه است RNA
\qquad
mRNA
（f）［r（ $\sigma .11 \mathrm{~V}$

 بنابرين RRNA بالغ مها نوكلئوتيد دارد． （ + T T 111 A عامل تنظيم كنثنه（آلولاكتوز الت）كه به مهار كثنده متصل مىشود نه به اليراتور．
（T）CD® ．1．人 كدوتى كه مكمل آنتى كدون CGAمى اكر GCU در جايگاه A باشد كدون قبلى آن در جايگاه P مى

vir（ 1 ． 1.9
 در حضور ڤنيل آلاتين و ماده A رشد مى كند．و جهشياقتهى ب در حضور

C \rightarrow B \rightarrow A \rightarrow فنيل آلانين
بنايرين در جهش ياقتهى ا، A به فنيل آلانين تبديل نمىشود و در محيط تجمع مى يابد．
『（T）D ． 1 ．
در آزمايش نيرنبرگ RNA ساخته شُده به لوله آزمايش اضاقه هـده بود ونياز به روتويسى نيود． ＊عصارة سلولى در لولة آزمايش نيرنبرگ شامل tRNA يك mRNA مصنوعى كه تمام نوكلئوتيدهاى آن يوراسيل داشت． \＃\＃درلوله آزمايش نيرنثرگ DNA（زن）وجود ندارد جون DNA مستقيمأ در ترجمه نقش ندارد．
（ V ＋+1 ． 111 بيوتين در محيط كثت حداقاقل نوروسبورا قرار دارد و هر ماده ای كه در محيط كثت حداقلىيك جاندار باشثديعنى آن جاندار توانايى سنتز آن ماده را ندارد．
＊：نوروسبورا آنزيمهايى دارد كه بتواند ساكارز موجود در محيط كثت حداقلش را تجزيه كثد و از گلوكز آن الستڤاده كند． ：＂نوروسبوراى سالم مانثن هر جاندار سالم ديكّرى آتزيمهاى مورد نياز براى رشدش را خودت تامين مى كند．
 و برقرارى بيوتد（ فسثودى استر ）بين ريبوتوكلئوتيدها را دارد． （F）（r）（ 1 ． 11 r جهش موجب اختلال در توليد آز⿰زيم مىتشود و اكر آتزيم توليد نشود در توليد يرخى مواد اختلالالايجاد مىشود． （t）DTD． 11 W كدون AUG كه مريوط أمينواسيد متيونين است میتواند در جايكاه
 كدون آغاز و مكمل آن RNNA آغاز كر است كه فقط وارد جايكاه PA ريبوزوم میىْود．ضمناً كدونهانى چايان（UAA－UGA－UAG）و عامل هايان ترجمه فقط وارد جايكاه A ريبوزوم مىتشوند．

توانايى ويرايش دارد.

دو رشتهى توالى جايگًاه تشخيص آنزيم محدود كننده عكس يكَ ديگًراند. (f) $+\square$ I Irs
rيوند بيتيدى ايجاد مى كند كه در يوكاريوتها (لامثرى) زن آن
 به عهدهى آنزيمىالست كه با ورود عامل هايان ترجمه به جايكاه A A فعال میشود و زناين آنزيم توسط RNA پليمراز II رونويسى میى (T) [T] IYV در هسته عاوه بر راه انداز و جايكًاه آغاز روتويسى معمولاً توالى ديگرى از DNA اينترونها توالى از DNA مییاشثند هس بديرهى است كه در mNA وجود نداشته باشند. در RNAها، آمينو اسيد با بيوند كووالاتسى به قند نوكلئوتيد آدينين دار متصل است. در رثنوم (DNA) تعداد بيوندهاى هيدروثنى، بيشتر از تعداد بيوتدهاى وْسقودى استر است.

$\nabla \pi+\square .1 r q$ رثوم باكتريوفارْها همانثن هالازميدها مىتوانثن همانثن سازى مستقل از كروموزوم اصلى داشته باشند. : ثـازميد DNA حلقوى كوحكى است كه در بعضى از باكترى ها وجود دارد كه به آن كروموزوم كمكى نيز مى كويند. زيرا اداراى زن هايیى متقاوت با كروموزوم اصلى است. ماتند زن متاومت به آنتى بيوتيك. "شاكتريوقاز ويروسى است كه ميزبان آن باكترى مى باشد .اين ويروس با كجسيد جند وجهى و دم ماربيجى خود بر روى باكترى قَرار مى گیيرد ديواره يتّيدو كليكانى باكترى (البته جنس ديواره ى باكترى، جزء موارد بيشتر بداثيد است) را سوراخ كرده و DNA خطى خود را به باكترى تزريق مى كند. () هاى اوليه طى حذف اين روتوشٌت ها كوتاهتر مى شُود.
 () در سلولهاى يوكاريوتى ممكن الست رونوشت جايكاه آغاز ويا روتوشت جايكاه بايان جزئى ازاينترونها باريا باشند و حذف شوند.
 كدون هايان ندارند يعنى اينطور ثيست كه اكر روتوشت آنها كدون آغاز ويا كدون پايان حذف مى مُوند.
 توالى CCA مییباشد.
 میى
(+ (1 . M.
جايكاه پايان رونويسى زن، توالى از DNA است كه از آن رو نويسى مىشود. \# :
*: داراى قند دئوكسى ريبوز است و رونويسى مى دنود * جايگاه هايان رونويسى ريطى به كدون ثايان ندارد به عنوان منال ممكن الست در رونوشت جايگًاه هايان رونويسى حتى كدون هايان وجود نداشته باشد و كدون هايان قبل از رونوشت اين جايكاه باشد.
 راه انداز در ززديكى جايكاه آغاز روتويسى قراردارد. جايكاه آغاز روتويسى به
 خود رونويسى نمى شُود. (f) V (I)IY الكوى كدون يعثى DNA كه توسط DNA ليلى مراز سنتز میشود و خود كدون در باكترى توسط RNA يلى مراز هرو كاريوتى سنتز میىشود. (f) T (\square (وقتى عامل تنظيمى (آلولاكتوز) در باكترى نباشد، هروتئين تنظيمى روى

 ،طيق ساخنار يرگ شبدرى tRNA بازوهای تزديك به جايگاه اتصال اسيد آمينه در tRNA، به نكَهـدارى آن در

ريبوزوم كمك مى كنند.

اينترون ها مى اياشد نه خود آن ها.

(f) (T) (1).1YO
 باتند هس از جنس DNA مییاشند كه سنتز كنبدمى آن DNA هلى هراز

Abstract

（f）［r（（ ）RNA RNA استر در هنگًام رونويسى را دارد． RNA RNA رو نويسى را دارند． ليكاز مراز 「－هليكاز 「 ［f］©（r）©

آنزيم كه اتصال ريبوتوكلئوتيدها اتجام میىدهد．RNA
 هلى مراز برو كاريوتى اند．
 RNA

يا كلرويلاست خود هستند． ©（ + ©（D）
جايگاه هايان روتويسى توالى از DNA است كه قند آن از نوع دئوكسى ريبوز است و همجنين باز آلى آن نمىتواند يوراسيل باشد． （ + （ (\square)（D）．
 در هروتئين ايجاد مى شُود و قايليت اتصال آن به اليراتور از دست رفته و از

رونويسى را آغاز مى كند. كه حاصل آنيكى رشته RNA بلى پرتيد حاصل مى شُود．

شـكل Y باكتريرفار
『 + T（ 1 ．
 （III رونويسى كمك میى

شناسايـى راه انداز را به تنهايايى دارد．
 روده كور و بزر گ اسب، روده مورياته و كولون بزرگ انسان وَرار دارند توانايى
 تازكدار جانور مانثن توسط RNA يلى مراز II و در باكترى مها توسط RNA ليلى مراز هرو كاريوتى صورت مى
（f）（D）I I
زاكوب و مونو برای توضيح تحوْى بيان هماهنًّ زن ها در باكترى مدل اليران را بيشنـهاد كردند． هر الثران از يكى يا جَند زن سـاختارى و بخش تنظهِم كننده ساخته شُده است．منظور از زن ساختارى همان قسمتى از DNA است كه از روى آن RNA

عوامل روتويسى هروتئينى هستند اما ساير گزينهها از جنس دئوكسى ريبونوكلئيك اسيد هستند． ساختار هالى دئوكسى ريبونوكلئيك اسيدي（DNA）：رامانداز، اليراتور، جايگاه آغاز روتويسى، جايگاه هايان روتويسى، اينترون، اگزون، انتهاى چجسبنده، اقازإينده، پالازميد، زن ساختارهاى ريبونوكلئيى اسيد：rRNA ، mRNA ، tRNA كدون، آنتى كدون، روتوشت اينترون، رونوشت اگّزون．
 عوامل روتويسى، عامل هايان ترجمه، محدودكننده، هليكاز، هروتئين ريبوزومیى
فصل ا - هروتئين سازى
*: فعال كثنده : هروتئينى است كه روى بخشى از DNA به نام توالى افزاينده قَرار مى گیيرد تا رونويسى تثويت شود.
(f) DTD IE

همه كدونها ، از جايگًاه A ريبوزوم وارد میشوتد و از جايكًاه P خارج مى شُوند به جزدو استقنا مهرم 1:كدون آغاز كه فقط وارد جايگاه P ريبوزوم میى شُود. r:كدون هايان: كه ڤقط وارد جايگاه A ريبوزوم میینود.
 اهميت هايلوئيد يودن كبك نوروسهورا كراسا به علت نداشتن اللا هوشانتده است زيرا در صورت رخ دادن جهشى، به احتمال بيشترى آن نمايان مییّود. ضمثأ نوروسبورا كراسا توانايى توليد تعداد وراواتى هاتى، در مدت زمان كوتاه همم دارد كه اين ويزگى به هايلوئيد يودنش هريوط نيست نوروسهورا كراسا از دستهى آسكوميستهاست كاست كه داراي توليد مثل جنسى
 تعسيم ميتوز مىیيانـند. (f) (T) (1 . 1 と

هستك محال ساخته شُن بـش سازه هاى ريبوزوم است. محل سنتز RNA ريبوزومى (rRNA) خود هستك الست و هحل سنتز ثروتئن ريبوزومى و هر طروتئين ديگّرى، در سيتويالسم و درون ريبوزوم میى
محل سنتز mRNA هروتينينهاى ريبوزومىدر سلوليو كاريوتى هسته مىییاشد. RNA درون سيتويلاسم سنتز مىتُود. $\nabla[\pi] 1$ IEO در فرايند رو نويسى RNA ساخته مىشود كه موثومرهاى آن ريبو نو كلئوتيد است و هيجج ريبو نوكلئوتيدى دئوكسى ريبوز و باز آلى تيمين ندارد. (f) (+ (1) .) \& در روتوشْت رشته الكَوى رو به رو يك mRNA ای ساخته مى شود كه
 به كار میرود

ACTAATACCAAACGATTT

رونوبسىى

UGAUUAUG GUU UGC UAA A بديهى است كه برای كدون هايان آنتى كدون و آميينو اسيدى وجود ندارد. (f) (T) I IV

در سلول یراى كدونهاى هايان، آنتى كدون وجود ندارد يعنى آنتى كدونهاى ACU ، AUC ، AUU وجود خارجى ندارند.

تعداد RNA يلى مرازه ها و رامانداز ها با هم براير مییياشتد.

(تمام سلولهاى ديبلوئيد زنده بدن محتواى رنتيكى يكسانى دارند اما آنجه
 در سلولهاى كبدى زن سنتز هورمون هروتئينى اريتروهويتين روشن است اما در سلول شبكيه همين زن خاموش المت. سلولهاى زندماى كه ثاقد زن هستند: اريتروسيت بالغ، آوند آبكشى، سلولهاى زندماى كه زنها را به طور كامل ندارتن:اسْرم، اسهرماتوسيت ثانويه، تخمك، اووسيت ثانويه، دومين گويجّها قطبى سلول هرده كه فاقد زن هستند: سلول عناصر آوندى، تراكئيد، اسكلروئيد،
mRNA RNA

 ∇ (r) +1 . 1ε. هر ثاه مادمای جزء محيط كثت حداقاقل جاتدارى باشد اولا آن جاندار قططا توانايى سنتز آن را ندارد. ثاثياً در ساير محيط كثـتهاى ثناهد، كامل، غنى شده نيز وجود دارد. دراين سوال به اين نكته دقَ كنيد كه نوروسبورايى كه تحت تاثير انعه قَرار
 جهثیى نشده است كه در رشد آن اختلال ايجاد كند. () محيط كثت حداقاقل (شاهد): مخلوط رقيقى از انواع نمكهها + كمى شْكر (كلوكز+ فروكتوز) : منيع كرين + يكى نوع ويتامين، به نام بيوتين. (Y) محيط كشت كامل: محيط كثت حداقاقل + همهل جور مواد آلى. (٪) محيط كثت غنى شُه: محيط كثت حداقاقل + يرخى مواد آلى
(f) T (\checkmark. $1 \varepsilon 1$

RNA توانايى رونويسى زن RNA ريبوزومیى زن هاروتين ريبوزومیى، زن آنزيمه RNA

 قرار گرفته است.

- צزينهى 「" بيوند يتّيدى بين آمينواسيدها درون جايكاه A قبل از جا يه

جايى ريبوزوم صورت میيذئيرد. رد كزينهى rer rer

 vir i (1 . 10 r

CGA.CGU.AUG.CGG.UAC.UGC.UUC.CAC.UGAكدون آغار
 كدون بايان

 اولين آنتى كدونى كه درون جايكاه P ريموزوم UAC كه درون جايكاه P قرار میگيرد AUG میياتد. (T) (V) 10ع

 - كزينهى r

ته تك رنى
 باشد، مقدارى از أن تبديل به ألولاكتوز میى گردد. آلولاكتوز به باروتئين

(T) TT . 100

 - צزينهى r : در هستهى سلولهاییيوكاريوتى سه نوع آتزيم RNA بلى

 (T) TD 109

 الا يروز هر نوع جهش نتطهالى دريكى رن با تغيير مولكولهاى رونويسى همراه است
(7) (V) I IE入 ساختار سه بعدى RNA در سلول شبيه حرف L ا است. ساير گزيثهها در ست میيابـند.
(f) (T) (1). $1 \varepsilon 9$

در يركى ميانى مولكول tRNA، هـ هاز وجود دارد كه با هي هي باز ديكَرى از أهو tRNA قوستى از مولكول tRNA است و هم جمينين تريكودينا نوعى آغازي موكيار
 tRNA (T)TTI 10.

 رونويسي نمى نوتد.

 زنتيكى

 كنبده دارد و در جهت تتويت عمل رووويسىاليفاى تقش میكيند.
(r) (T) (1). 101

(f) r (V) (1) . 10 r

 A و با آمينواسيد موجود در جايگًاه A بيوند بيتيدى يرقرار میى ايكند يه اين

 (RNA

 كنثده) با تشكيلـيك حلته در DNA در كنار RNA بلى مراز و ساير عوامل رونويسى روى راه انداز قَرار مىییيرند. با قرار گرقتن كليهى الين عوامل

 (T) (T) (D. 191 چس از خروج tRNA حاوى آنتى كدون CUC از جايكاه P P ريبوزوم tRNA كدون AGG وارد جايگاه A ريبوزوم میگردد. (t) (T) (\downarrow. 19 Y

زمانى كه لاكتوز در محيط باكترى وجود دارد: إيران بايد روشن باشتد تَون براى تجزيه و جذب قند لاكتوز r عدد آثزيم هيدروليز كننده نياز داريمr. يراى روشن شُدن زن بايد يروتئين مهار كثنده از روى اليراتور كنده شُود.
 لاكتوز به آلولاكتوز (عامل تنظيم كنثده) تيديل مىشىود. آلولاكتوز به هروتئين مهار كثنده (هروتئين تنظيمر كننده) متصل مىتُود و تغييراتى در
 اليراتور متصل شُود و بنايراين اليران روسن مى تُود. همم هجنين بايد تاكيد كرد كه شـناسايى راه انداز در سلولهایى هرو كاريوتى
 ثروتينين تنظيم كننده ثيز از رونويسى و ترجمهلى رثى به نام زن تنظيم

كنثده توليد مى شُود.
$\nabla+\pi$ (1). 19 r

 گزينها ای وجود ندارد.

+ (T) (D) 19を
درون ريبوزومها ترجمه مییّود و از روى آن هروتئين ساخته مییّود.
 - گزينه r : ترجمه از كدون آغاز سُروع و تا كدون ها نوكلئوتيدهاى قيل از كدون آغاز و توكلئوتيدهاى بعد از كدون هايان با آن

 مى كتند. تائيد
- كزينه F F محل ت توليد مولكولهاى حاصل از روتويسى در هسته و محل توليد مولكولهاى حاصل از ترجمه درون ريبوزومهاى سيتوهالاسمى F مى
[f] (T) (1) 10 V
- وقتى لاكتوز در محيط باشد، درون باكترى به آلولاكتوز (عامل تنظيم

 - كزينهى r

رد كزينهى
∇ (r) +1$] .10 \wedge$

- گّزينهى ا: به طور عمده دو نوع جهش نتطهالى وجود دارد

 خوانده مىشود، اقزايش ، يا كاهش ثوكلئوتيدها رمز سه حرفى را به هم

میريزد. رد گزينها
 تغييريابد، تون هر دو كدون مريوط به آمينواسيد UGC به UGU

[f] [r] (D). 109

 RNA

 - צزينهى r

ترجمه میى - צزينهى F F : جفت شُدن RNA آغازی با تخستين رمز قَبل از اتصال دو

(f) (T) (1).
-
سلول هاییو كاريوتى وجود ندارند. رد گزينهي ال

 هروتئينها بها نام عوامل رونويسى صورت مى(T) .180

 - كزينهى

 - צزينهى

 آنزيم RNA بلى مراز هروكاريوتى يدون كمك هروتئينهانى عوامل رونويسى
 تائيد 5زينها
 اول. رد گزينهى 1.

- كزينهى r r : عمل روتويسى در سلولمهاىيوكاريوتى توسط سه نوع آتزيمس RNA هلى RNA

- گزينهى

 F روى خود حاصل تمده اثن. رد گزينها ∇ (r) I . 19 V
در تمام سلولها اعم از هيروكاريوتى (ماثند كورينه باكتريوم ديفتريا) ويايو كاريوتى (ماتند هارامسى)، از روى هر ثنْ، مستقيما RNA توليد

 مولكولى انتقال میدهد (مولكول RNA) كه داراى بيوندهاى فسغودى

