Two phase fluid mechanics

Instructor: Valid Taghikhani

Fall 1388
Department of Chemical and Petroleum Engineering, Sharif University of Technology

1

Course syllabus

- Introduction to multiphase flow
- Hydrocarbon reservoirs
- Liquid mixture properties
- Gas/liquid mixture properties
- Basic concepts of two phase flow
- Mechanistic/empirical models
- Steady state correlations for horizontal, vertical and inclined pipes.
- Pigging and slug catchers
- Unsteady state multiphase flow
- Software application (OLGA, pvt-sim, PIPEPHASE)

What is Flow Assurance?

Flow assurance is an engineering analysis process to assure hydrocarbon fluids are transmitted economically from the reservoir to the end user over the life of a project in any environment, in which the knowledge of fluid properties and thermal-hydraulic analysis of the system is utilized to develop strategies for controlling the solids such as hydrates, wax, asphaltenes, and scale from the system.

The term "Flow Assurance" was first used by Petrobras in the early 1990s, it originally only covered the thermal hydraulics and production chemistry issues encountered during oil and gas production. While the term is relatively new, the problems related with flow assurance have been a critical issue in the oil/gas industry from very early days. Hydrates were observed causing blockages in gas pipelines as early as the 1930s and were solved by chemical inhibition using methanol by the pioneering work of Hammerschmidt.

Flow Assurance Challenges

Flow assurance analysis is a recognized critical part in the design and operation of subsea oil/gas systems. Flow assurance challenges mainly focus on the prevention and control of solid deposits which could potentially block the flow path. The solids of concern generally are hydrates, wax and asphaltenes. Sometimes scale and sand are also included. For a given hydrocarbons fluid these solids appear at certain combinations of pressure and temperature and deposit on the walls of the production equipment and flowline. Figure 17.1 shows the hydrate and wax depositions formed in hydrocarbons flowlines, which ultimately may cause plugging and flow stoppage.

The solids control strategies of hydrates, wax and asphaltenes include:

- thermodynamic control -- keeping the pressure and temperature of whole system out
 of the regions where the solids may form;
- kinetic control -- controlling the conditions of solids formation so that deposits do not form;
- mechanical control -- allowing solids to deposit, but periodically removing them by pigging.

References

- Two phase flow in pipes, 6th ed., J P Brill, H P Beggs.
- Multiphase flow in wells, J P Brill, SPE communication.
- Some technical papers.

Course grading scheme

- Written exams (up to 80%)
- Assignments (up to 5%)
- Class projects (up to 15%)

A mailing list and a taker to moderate the mailing list required. Who is the taker!?

Multiphase Production system

Production system

Well completion components

Figure 1.7 A sketch of a wellhead.

Figure 1.13 Conventional horizontal separator. (Courtesy Petroleum Extension Services.)

- Sizing, routing and layout
- Operability analysis
 - Slugging
 - Rate changes
 - Shut-down/Cool-down/Start-up
 - Blowdown
 - Liquid management/Pigging

Thermal management

- -Insulation/Burial
- -Bundles/Complex risers
- -Hydrates/Wax
- -Inhibition

The Flow Assurance Challenge

Multiphase Oil Systems Fluid challenges

Temperature!

Emulsion

Asphaltenes

$$p_{wf} = p_{sep} + \Delta p_h + \left(\Delta p_{fl} + \Delta p_l + \Delta p_{ch}\right)_f + \Delta p_{acc},$$

Session 2: Hydrocarbon phase behavior, flash calculations and pvt-sim

FIGURE 1-16 Typical p/T diagram for a multicomponent system.

FIGURE 1-26 Typical phase diagram of a retrograde system.

FIGURE 1-31 Phase diagram for a dry gas.

Source: After N. J. Clark, Elements of Petroleum Reservoirs, 2nd ed. Tulsa, OK: Society of Petroleum Engineers, 1969.

Flash separation

Main objective of flash calculations

- Optimum separation conditions: P and T
- Composition of separated oil and gas phases
- Producing gas/oil ratio
- API gravity of the stock tank oil
- Oil formation volume factor

Optimum conditions leads to:

- Minimum gas/oil ratio
- Minimum oil formation volume factor
- Maximum stock tank API gravity

FIGURE 5-8 Schematic illustration of n separation stages.

Fluid <u>M</u>anagement

Simulations

<u>Interfaces</u>
	🖕 PVTsim 16.0							
	File Edit View Fļui	d Ch <u>a</u> rFluid Options	Pure Component Utilities Window H	lelp				
Buddenset Summer Sum	Metric Units	- SRK	👻 ab Lumping	👻 Normal C7+ Char	CSP Visc/Thermal cond	P. 🛔 🖗 🖗 🚺 🚱 🎱	-	
<pre>Standau trybute Defaults from the the the the the the the the the the</pre>					Current fluid: No fluid selected			
	Simulations Explore							
🔓 Database: C:\Program Files\PVT sim 16\Demodata.fdb	 Database Open Database Open Database Open Database Create New Import Fluids Puplicate Fluid New Nor Fluids New Nor Plu New Nor Plu New New Hoy J QC of Fluid B Plus Fluid B Char Fluid B E dit Current Add to Data Import Flash Phase Envelope Property Generator H2S Unit Operations E S-SAGD Allocation PVT Simulation Regression Viscosity Tuning Wax Asphaltene Scale Hydrate DepoWax MMP Depth Gradient Cleaning for Mud Spread Else 	ase Database suid s Fluid uid Fluid egression egression ud dos base nt magement agement sheets ts						
🔧 start 🛛 🔯 Microsoft PowerPoint 🍐 PVTsim 16.0 🧷 🧔 🖏 8:35 AM	🔒 Database: C:\Progra	m Files\PVTsim 16\Dei	modata.fdb					
	🐮 start 🔢	🗿 Microsoft PowerPoi	nt 🧅 PVTsim 16.0			/ E	2 🙄 🏺 Search Desktop	🔎 🄇 8:35 AM

🧅 PVTsim 16.0							
File Edit View Flu	id Ch <u>a</u> rFluid <u>O</u> ptions Pur	re Component Utilities Window He	elp				
Metric Units	✓ SRK	👻 ab Lumping	 Normal C7+ Char 	 CSP Visc/Thermal cond 	- 🔒 🗣 🛯 🛍 😯 🧿 .		
				Current fluid: No fluid selected			
Simulations Explore	1						
 Flash & Unit Op(Flash Phase Env Property Gr Property Gr Property Gr Property Gr Property Gr Soft Openal Es-SAGD Allocation Open Structure Flash Open Hydrate Op PVT Simulations Critical Point Separatori Const Mass Const Mass Const Mass Const Mass Const Mass Const Vol D Wiscosity Swelling Te Multiple Co Flow Assurance Network Scale Hydrate Denot/Max Simul Inter Fluid Ma 	erations						
Output Explorer							
Flash Property Generator H2S Unit Operations ES-SAGD Allocation PVT Simulation Regression Viscosity Tuning Wax Asphaltene Scale Hydrate DepoWax MMP Depth Gradient Cleaning for Mud Spread P Database: C:Progr	Isheets ots	ata (db					
Database: U:\Progr	am Files\PV I sim 16\Demoda	ata.rdb					
🥶 start	Microsoft PowerPoint	PVTsim 16.0			م حرج المحرج	Search Desktop	2 (V) 8:35 AM

🧅 PVTsim 16.0						
File Edit View Fluid C	h <u>a</u> rFluid <u>O</u> ptions Pu	ire Component Utilities Window I	Help			
Metric Units	- SRK	👻 ab Lumping	Normal C7+ Char	 CSP Visc/Thermal cond 	🕋 🕸 🛯 🛄 😧 🕑 .	
			Current fluid: N	o. 1 Condensate Ahwaz		
Simulations Explorer						
 Reservoir VIP Black Oil VIP-COMP MORE Black Oil VIP-COMP MORE Black Oil Eclipse Black Oil Eclipse Comp Eclipse Comp Eclipse Black Oil Flow OLGA Compositic OLGA Wax OLGA Wax OLGA Wax PipePhase Process Prosper-MBAL Prosper-EOS Saphir WePs Version 12 CHN-1 	Corr mal Tracking r					
Interfaces						
Fluid <u>M</u> anagen	nent					
<u>S</u> imulations						
Uutput Explorer Flash Phase Envelope Property Generator H2S Unit Operations ES-SAGD Allocation PVT Simulation PVT Simulation Regression Viscosity Tuning Wax Asphaltene Scale Hydrate DepoWax MMP Depth Gradient Cleaning for Mud Spreadshee Plots	ets					
Database: C:\Documents	and Settings\Collin\D	esktop\123.fdb				
🐉 start 🔰 🌈 b	ow to remove a maili	• 🕒 🖕 PVTsim 16.0	🖕 Flexible License Mana	Microsoft PowerPoint	🧨 😰 🙄 🗧 Search Desi	top 🖉 😓 5:14 PM

PVTsim 16.0					S - S - S - S - S - S - S - S - S - S -
File Edit View Fluid CharFluid Option:	s Pure Component Utilities Window H	elp			
Save As	✓ ab Lumping	 Normal C7+ Char 	 CSP Visc/Thermal cond 	🗸 . 🍰 🕸 🌆 🚱 🗿 .	
Print			Current fluid: No fluid selected		
S Page Setup			Current hald. No hald selected		
G Print Setup					
Chan Database Ctribo					
Create New Database Ctrl+B					
Exit PVTsim					
New Char Fluid					
New Hysys Fluid					
New PRO/II Fluid					
Plus Fluid Regression					
🖉 Char Fluid Regression					
Clean for Mud					
Mix					
Weave					
Same Pseudos					
Edit Current					
Add to Database					
Export Current	<u></u>				
Fluid <u>M</u> anagement	-				
<u>s</u> imulations					
Output Explorer	-				
Flash					
Phase Envelope					
Property Generator					
Unit Operations					
ES-SAGD					
Allocation					
Regression					
Viscosity Tuning					
🛄 Wax					
III Scale					
Hydrate					
DepoWax					
Depth Gradient					
Cleaning for Mud					
Plots					
Database: C:\Program Files\PVTsim 16\D	emodata.fdb				
PVTsim 16.0				/ 10 🤊 ^a	Search Desktop

🖕 PVTsim 16.0)							
File Edit View	Fluid CharFluid Optio	ons Pure Compone	ent Utilities Window	Help				
Metric Units	Database	Ctrl+D	+ ab Lumping	 Normal C7+ Char 	 CSP Visc/Thermal cond 	🔹 🗸 🔹 🕸 🕴 🛍 😯 🤇) . .	
	Enter <u>N</u> ew Fluid	Ctrl+N			Current fluid: No fluid selected			
Simulations Expl	📧 Deļump		1					
Simulations Expl Database Dopen D Create I Import F Export F Select F New Ph New Ne New Ph New Ph QC of F Plus Fluid Char Fluid Char Fluid Char Fluid Char Fluid Char Fluid Same P Char Fluid Same P Char Fluid Same P Fluis I Plus Flui Plus Flui Same P Same P Plus Flui Plus Flui Plus Flui Same P Same P Plus Flui Plus Flui New Ph Plus Flui Same P Same P Plus Flui Plus Flui Same P Plus Flui Same P Same P Plus Flui Plus Flui Same P Same P Plus Flui Plus Flui Same P Same P Same P Same P Same P Same P Plus Flui Same P Same P Plus Flui Same P Plus Flui Same P Same P Sam		onent List omponent List Ind Dens Iw and Dens			Current fluid: No fluid selected			
	<u>P</u> lots							
🔒 Database: C:\P	rogram Files\PVTsim 16	Demodata.fdb						
🛃 start	PVTsim 16.0	🦉 ur	ntitled - Paint	Microsoft PowerPoint		e 1	🔊 😰 掌 Search Desktop	🔎 🍫 🔎 12:46 PM

🧅 PVTsim 16.0		🔳 🗗 🔀
File Edit View Fluid CharFluid Options	Pure Component Utilities Window Help	
Metric Units - SRK	🔹 ab Lumping 💿 🔹 Normal C7+ Char 💿 CSP Visc/Thermal cond 💿 📮 🏥 🥵 🦉 📮	
	Current fluid: TEST 3B HEAVY COND + SALTWATER	
Simulations Explorer		
 Reservoir VIP Black Oil VIP-COMP MORE Black Oil MORE Elos Eclipse Black Oil Eclipse Gi Eclipse Black Oil Corr Flow OLGA Compositional Tracking OLGA Wax Pipesim Multi Phase Meter PipePhase Process PRO/II Husvas 	Enter New Fluid Fluid Vell Test Fluid History	
Image: Hysys Image: Hysys Image: Hysys Image: Prosper-MBAL Image: Prosper-EOS Image: Hysys Image: Saphir Image: Hysys Image: Hysys <td>Composition Mol Mol wt Liquid Density Input composition in Fluid type N2 28.014 Co2 Huitor Input way fraction Characterized H2S 34.080 Save Char Fluid Options Options Options C1 16.043 Cancel Cancel Cancel</td> <td></td>	Composition Mol Mol wt Liquid Density Input composition in Fluid type N2 28.014 Co2 Huitor Input way fraction Characterized H2S 34.080 Save Char Fluid Options Options Options C1 16.043 Cancel Cancel Cancel	
Interfaces	C2 30.070 Caluate Sat point	
Fluid Management	C3 44.097 Print	
Simulations	nC4 58.124 Char Options	
Output Explorer	iC5 72.151	
 Flash Phase Envelope Property Generator H2S Unit Operations ES-SAGD Allocation 	nC5 72.151 C6 86.178 0.6640 C7 96.000 0.7380 C8 107.000 0.7650 C9 121.000 0.7810	
PVT Simulation Regression Viscosity Tuning Wax Asphaltene Scale Hydrate DepoWax MMP Depth Gradient Cleaning for Mud Spreadsheets Plots	Normalize <u>Clear</u> <u>Add Comps</u> <u>Mol to Weight</u> <u>Complete</u>	
 Database: C:\Documents and Settings\Col 	n\Desktop\fluid.fdb	
start / how to remove a n	aili 🥧 PVTsim 16.0 🥜 👳 🛽	2 🧳 Search Desktop 🖉 📀 5:08 PM

<u>S</u> imulations
<u>I</u> nterfaces
Fluid <u>M</u> anagement

PVTsim 16.0							
File Edit View Fļu	uid Ch <u>a</u> rFluid Options	Pure Component Utilities Window	Help				
Metric Units	- SRK	💂 ab Lumping	▼ Normal C7+ Char	 CSP Visc/Thermal cond 	- , 🖆 🕸 📶 🚱 🥥 ,		
			Current fluid: T	EST A SALES GAS TO C6			
Simulations Explore	1						
Simulations Explore Flash & Unit Op Flash & Unit Op Flash Phase Env Flash ES-SAGD Allocation Open Structure Flash Open Hydrate Op PVT Simulations Const Vol D Unit Operations Const Vol D Wiscosity Wiscosity Wiscosity Wiscosity Swelling Te Multiple Co Flow Assurance Wiscosity Wax Asphaltene Scale Hydrate Phase Envelope Property Generator H2S Unit Operations ES-SAGD Allocation PVT Simulation ES-SAGD Allocation PVT Simulation Regression Viscosity Tuning Wax Scale Property Generator H2S Unit Operations ES-SAGD Allocation PVT Simulation Regression Viscosity Tuning Wax Asphaltene Scale Property Generator H2S Unit Operations ES-SAGD Allocation PVT Simulation Regression Viscosity Tuning Wax Asphaltene Scale Hydrate DepoWax MMP	erations				Phase Envelope Molar Fraction Temperature / *C 1.000 Phase Fraction Molar Vol Phase Fraction Molar Vol Search for 3 phases X-axis Y- Temperature ▼ P OK	ressure / bara 5.000 lume •axis Pressure ↓ Cancel	
Depth Gradient							
Spread	ds <u>h</u> eets						
P	lots						
🔒 Database: C:\Progr	ram Files\PVTsim 16\Derr	nodata.fdb					
	🐻 Microsoft PowerPoin	t 🧅 PVTsim 16.0	👹 untitled - Paint		P 💀 🛙	🔋 ᅾ Search Desktop	🔎 🄇 8:39 АМ
	A DESCRIPTION OF A DESC						

🔂 Database: C:\Documents and Settings\Collin\Desktop\fluid.fdb -

🧅 PVTsim 16.0								
File Edit View Fi	ormat Chart F <u>l</u> uid Ch	arFluid Options Pure Component Uti	lities Window Help					
Metric Units	- SRK	✓ ab Lumping	 Normal C7+ Char 	 CSP Visc/Thermal cond 	👻 🛛 🚓 🌇 🛛 🕼 🙆 🔁 🔤			
5	100		Coursent Bride	No. 1 Condensate Aleura				
Simulations Explore	er	10	Current huid.	NU. I CUNUENSALE Ariwaz				
🖃 Elseh 🕇 Unit On	arations A	🚺 🖸 1: Phase Envelope - P vs	Т			🔏 🙋 Phase Env	relope	
					Convert		Laure Limite	
Phase Env	velope	No. 1 Condensate A	hwaz EOS	= SRK		Molar	Lower Limits	
😵 Property G	ienerator	i controlloute A	200	onn	1	Fraction	Temperature / *C	Pressure / bara
H2S H2S			Phase Envelope (mole)		1.000	-50.00	5.000
🧭 Unit Opera	ations		Vap/liq frac = 1.000					
SRED ES-SAGD		Temperati	ure/°C Pre	essure/bara			Phase Fraction	
		48.17		5.00				7 Volume
🝰 Flash Ope	n Structure	53.07		6.04			E Search for 3 phr	2000
🐝 Hydrate O	pen Structure	56.53		6.86 0.14				
PVT Simulation	s 🗧	61.10 65.00		0.14			X-axis	Y-axis
Critical Poi	int	70.75		3.00 11.46				Pressure 🗾
↑ Saturation	Point	75.60		13.60			OK	Canad
Const Mas	rest se Evo	80.50		16.14			<u> </u>	
Const Vol	Depl	85.40	È	19.15				
📱 🖁 Diff Deplet	tion	90.27		22.73				
🖷 Viscosity		95.06	1	26.97				
Swelling T	est	99.70	ĺ.	32.01				
B E Multiple Co	ontact	104.13	3	37.98				
Flow Assurance Wiscositu T		108.2	1	45.07				
Wax	aning	112.4/	/	55.35				
O Asphalten	e	116.1	7	70.83				
💿 Scale		117.3	(3	00.27 87 73				
Hydrate		116.6	3	101.01				
A/ DenoW/av	lations	114.6/		114.59				
<u>J</u> iniu Inte	utacions artacias	111.5	7	126.77				
Eluid Ma	anaces	- 102.9/)	148.99				
	anagement	94.41		163.50				
Output Explorer	1000	79.08		180.82				
E Flash	· · ·	59.27		192.48				
Phase Envelope []	I) Involope - Pius T	43.21		195.23				
Property Generato	r velope - r vs r	42.57 37.65		190.20				
H2S		27.55		192.90				
🛄 Unit Operations		26.85		192.69				
ES-SAGD		22.85		191.28				
Allocation		18.85	i i	189.58				
Begression		14.85		187.58				
Viscosity Tunina		10.85		185.28				
🛄 Wax		9.84		184.65				
🔝 Asphaltene		6.85		182.68				
🛄 Scale		2.00		179.79				
Hydrate		-1.10		173.11				
I Depowax		-9.15		169.33				
Depth Gradient	~	-9.23		169.25				
Sprea	ids <u>h</u> eets	-13.1{	ō	165.24				
E	Plots	79.41		140.00				
🔁 Database: C:\Doc	uments and Settings\Coll	in\Desktop\fluid.fdb						
🛃 start 🔰	now to remove a m	aili 🧅 PVTsim 16.0	🔓 Flexible License Mana	. Microsoft PowerPoint	/ 🐙	😰 彈 Search Des	:ktop	🔎 🌏 5:15 PM

PVTsim 16.0								
File Edit View Fl	uid Ch <u>a</u> rFluid <u>O</u> ptions Pu	ure Component Utilities Windov	v Help					
Metric Units	- SRK	👻 ab Lumping	👻 Normal C7+ Char	CSP Visc/Thermal conc	· · ·	\$ \$ I 🛍 😯 🧿 .		
			Current fluid: 1	FEST A SALES GAS TO	C6			
Simulations Explore	15							
 Flash & Unit Op Flash & Unit Op Flash Phase Em Phoperty G Property G Property G Poperty G ES-SAGD Allocation Open Structure Flash Open Flash Open PVT Simulation Critical Poi Saturation Separator Const Mas Const Vol Diff Deplet Viscosity Swelling T Multiple Cc Flow Assurance Scale Hydrate Multiple Ca Scale Hydrate Den/Wax Scale Hydrate Durbut Explorer Flash 	erations velope enerator tions tions tions tions tions tions tions tions tructure s the point Test s Exp Depl tion test the the the the the the the the the th				Flash P (bara) I	T (*C) PT non-aqu P Taqueou P T multi ph C K-factor C PP_Beta C T-Bgta <u>C</u> lear	Leous ← PH Is ← PS Iase ← ⊻T ← UV ← HS	
 Frash Phase Envelope Property Generator H2S Unit Operations ES-SAGD Allocation PVT Simulation Regression Viscosity Tuning Wax Asphaltene Scale Hydrate Depth Gradient Cleaning for Mud Spread 	dsheets	taya (dh						
Uatabase: L: VProg			No. of the second					0
stan	Microsoft PowerPoint	😳 🥥 PVTsim 16.0	👹 untitléd - Paint			8 8 Q .	Search Desktop	8:40 AM

PVTsim 16.0 _ 6 | File Edit View Format Chart Fluid CharFluid Options Pure Component Utilities Window Help Normal C7+ Char Metric Units SRK ab Lumping CSP Visc/Thermal cond 🔹 🚬 🔹 🐃 🛛 🛍 😮 🥥 🗸 Current fluid: No. 1 Condensate Ahwaz Simulations Explorer × 😑 1: Flash PT Non-aqueous Flash Flash & Unit Operations 📄 Flash Convert Comp Ext Comp Save Phase P (bara) T (°C) FT non-aqueous CPH Phase Envelope No. 1 **Condensate Ahwaz** EOS = SRK1.00 15.00 C PT aqueous C PS Property Generator H2S H2S C PT multi phase $\subset \underline{V}T$ Ø Unit Operations PT Flash at C K-factor $\subset \underline{U} V$ ES-SAGD 1.00 bara Allocation C Split-factor 15.00 °C CHS Open Structure C P-Beta 🍰 Flash Open Structure Vapor 👺 Hydrate Open Structure C T-Beta Mole% 100.00 PVT Simulations Weight% 100.00 🔪 Critical Point Volume 23827.72 cm³/mol T Saturation Point OK Clear Cancel Volume% 100.00 📲 Separator Test 0.0012 Exp Density g/cm^a Z Factor 0.9945 Const Vol Depl Diff Depletion Molecular Weight 28.25 Viscosity Enthalpy 680.6 J/mol 📲 Swelling Test Entropy 12.26 J/mol C Sentact Multiple Contact Heat Capacity (Cp) 49.17 J/mol C E Flow Assurance 40.66 J/mol C Heat Capacity (Cv) 12 Viscosity Tuning Kappa (Cp/Cv) 1.209 🔀 Wax JT Coefficient 0.8522 C/bara O Asphaltene Velocity of Sound 318.5 m/s Scale Viscosity 0.0106 cP Hydrate Thermal Conductivity 27.324 mW/m C Simulations Interfaces Volume, Enthalpy, Cp and Cv are per mole phase Fluid Management Output Explorer Flash (1) ~ 😑 1: Flash PT Non-aqueous 🛄 Phase Envelope Property Generator H2S Unit Operations ES-SAGD III Allocation PVT Simulation 🛄 Regression 🔲 Viscosity Tuning 🔢 Wax Asphaltene 🛄 Scale 🛄 Hydrate DepoWax MMP V Denth Gradient Spreadsheets Plots 🔒 Database: C:\Documents and Settings\Collin\Desktop\fluid.fdb 🎤 🗖 👩 🦿 Search Desktop 🔎 🔇 5:15 PM 🛃 start 🖉 how to remove a maili. 🛆 Flexible License Mana. Microsoft PowerPoint . PVTsim 16.0

🧅 PVTsim 16.0						
File Edit View Fluid Ch <u>a</u> rF	iluid Options Pure (Component Utilities Window	Help			
Metric Units 🗸	SRK	ab Lumping	 Normal C7+ Char 	 CSP Visc/Thermal cond 	- 🗸 🚔 👺 🛛 🔐 😮 🎱 🗸	
	SRK SRK Pepeloux		Current fluid: N	o. 1 Condensate Ahwaz		
Simulations Explorer	SRK Peneloux (T)					
 Flash & Unit Operations Flash 	PR PR Peneloux PR Peneloux (T)					
Phase Envelope	PR78 PR78 Peneloux	~				
H2S H2S						
🗭 Unit Operations						
ES-SAGD						
🚽 Open Structure						
🥵 Hydrate Open Structu	ure					
PVT Simulations Critical Point	a					
T Saturation Point						
📲 Separator Test						
Const Mass Exp						
Unst Vol Depl						
Viscosity						
Swelling Test						
Elem Accurance						
Viscosity Tunina						
🔀 Wax						
Asphaltene						
Scale						
DenoW/av	~					
<u>S</u> imulations						
<u>Interfaces</u>						
Fluid <u>M</u> anagement						
Output Explorer						
🛄 Flash	<u>^</u>					
Phase Envelope Property Generator						
H2S						
🛄 Unit Operations						
ES-SAGD						
PVT Simulation						
🔲 Regression						
Uiscosity Tuning						
🛄 Wax						
Scale						
Hydrate						
DepoWax						
Depth Gradient						
Cleaning for Mud	~					
Spreads <u>h</u> eets						
Plots						
Database: C:\Documents and	d Settings\Collin\Desk	top\fluid.fdb				
🐉 start 🖉 🖉 how t	to remove a maili	OPVTsim 16.0	👘 🧅 Flexible License Mana	Microsoft PowerPoint	🥜 🔛 🕄 🗧 Search Desk	top 🔎 🔗 5:16 PM

<u>Interfaces</u>
Fluid <u>M</u> anagement
<u>S</u> imulations

PVTsim 16.0								_ 6
File Edit View Flu	uid Ch <u>a</u> rFluid <u>O</u> ptions Pure	Component Utilities Window I	Help					
Metric Units	- SRK	🚽 ab Lumping	 Normal C7+ Char 	 CSP Visc/Thermal cond 	🖆 🍄 🛚 🛍 🚱) 🗿 🗸		
			Current fluid: No.	1 Condensate Ahwaz				
Simulations Explore	:T							
VIP Black (WIP-COMP MORE Blac MORE E055 Eclipse Bla Eclipse Bla Eclipse Bla Eclipse Bla Flow © OLGA Com © OLGA Com © OLGA Com © OLGA Wax © PipePhase Process Process ProPhase Process ProPhase Process Process Version 12	Dil Sk Oil Sck Oil mp ck Oil Corr positional Tracking se Meter SAL S CHN-file format		E PV Filuic Curr W Am Co	T tables to OLGA d selection Current Fluidater specificater s	and Settings\Collin\Des L = "GasCond", PHAS No. 1 Con H2S", "C1", "C2", "C3 000E+01,.60000E+0 1,.10000E+02, \ 280135E+02,.44009 2,.300698E+02,.4400 2,.721506E+02,.861 00000E+00,.00000E 0,.000000E+00,.000 0,.664000E+00, g/c .100000E+01 ATM.\	<pre>ktop\GasCon.tab E = TWO,\ densate Ahwaz OLGA ","nC4","iC5","nC5 1,.100000E+01,.700 000E+00,.100000E+ 8E+02,.340800E+ 968E+02,.340800E+ 968E+02,.581237E+ 780E+02) g/mol,\ +00,.000000E+00,.C 000E+00,.000000E+ m3,\</pre>	••••••••••••••••••••••••••••••••••••	Fluid 10 7000
<u>I</u> nter Fluid <u>M</u> a <u>S</u> imu	faces nagement lations		Co	MPOSITION STDTEMPERATUR GOR =99900 GLR =99900	E = .288150E+03 K, 0E+03 Sm3/Sm3,\ 0E+03 Sm3/Sm3,\	\ 	азе	
Output Explorer				STDGASDENSITY	= .120133E+01 kg/ = .000000E+00 kg/	m3,\ m3,\	erties-	
 Flash Phase Envelope Property Generator 	^			Total 0.000) <u>N</u> ormalize	C Compositional	C Water Packag	je
III H2S				Composition No. 1 Co	ndensate Ahwaz			
ES-SAGD				Save Fluid	Fluid Label GasCond		<u></u>	
Por Simulator Regression Viscosity Tuning Wax Asphaltene Social				tput Eile C:\Documents and Settings\Collin\Deckl	ion\GarCon tab	Table format	Bold artificial propertie	s Cancel
Hydrate DepoWax MMP Depth Gradient Cleaning for Mud Spread	dsheets							
Database: C:\Docu	ments and Settings\Collin\De:	sktop\fluid.fdb						
# start	A how to remove a mail.	A PVTsim 16.0	Flexible License Mana	Microsoft PowerPoint		🎤 😰 🍸 🧖 Search De	sktop	P (1) 5:13 F
		For and the second second					anavori 131	

🧅 PVTsim 16.0										l.
File Edit View Flui	d CharFluid Options	Pure Component U	tilities Window	Help						
Metric Units	▼ SRK	▼ ab	Lumping	▼ N	ormal C7+ Char	 CSP Visc/Thermal cond 	· · · · · ·			
Simulations Explorer						Current fluid: No fluid selected				
Simulations Explorer Database © Open Datab © Duplicate Fluid © Duplicate Fluid © New Plus Fluid © New Plus Fluid © New Plus Fluid R © Char Fluid © Char Fluid © Delump © Char Fluid © Edit Current © Adit Data © Edit Current © Edit Current © Simula Impot	ase Database aids s Fluid uid Fluid Fluid egression egression d los base nt agement tions aces	₩ 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 13 14 15 16 17 12 12 13 14 15 12 12 13 14 15 12 12 12 12 12 12 12 12 12 12	Database Well TEST1 SEP GAS SEP LIQ TEST1 TEST 4 TEST 4 TEST TEST 5 TEST TEST	Test DST1 DST1 PT1 PT1 BHS BHS A B G A A B G A 3 B S 3 B S T 3 B S T 3 B T 3 B T 3 B T 3 B T 3 B T 3 B T 3 C 3 B T 3 DST1 S T 1 S S S S	Fluid GAS COND GAS COND GAS COND SEPGAS SEP LIQUID OIL OILH2S OIL CONDENSATE 1 SALES GAS HEAVY COND HEAVY COND HEAVY COND HEAVY COND HEAVY COND HEAVY COND HEAVY COND HEAVY COND VOL OIL OIL CONTAM CONTAM CONTAM CONTAM ULTRAMUD	Sample RECOMBINED TO C10+ RECOMBINED TO C20+ BOTTLE 4#16000 BOTTLE 4#16000 BOTTLE #K6000 C10+ C20+ DIFF LIB DATA CVD DATA NATURAL GAS 90.4 MOL% C1 TO C6 HEXVIVALUMPED 100% PURE 3179.5 m 3204.5 m 3241 m 3241 m 3241 m SATO EST MUD BASE OIL Import Delete	Text TEST LAB PVT LAB PVT LAB PVT LAB PVT LAB OIL LAB OIL LAB OIL LAB OIL LAB OIL LAB OIL LAB CVD LAB GAS LAB GAS LAB GAS LAB TBP LAB EOS= SRK TBP LAB EOS= SRK RESEARCH LAB SPE 14410 REFERENCE, SPE 14410 SPE	Type Plus Plus No-Plus Plus No-Plus		
Flash Flash Phase Envelope Property Generator H2S Unit Operations ES-SAGD Allocation PVT Simulation Regression Viscosity Tuning Wax Asphaltene Scale Hydrate DepoWax MMP Depth Gradient Cleaning for Mud Spread Plo	s <u>h</u> eets									
📩 Database: C:\Progra	m Files\PVT sim 16\Dem	odata.fdb								
🛃 start 🔰 🚺	PVTsim 16.0	🦉 untitled	- Paint	Micr	rosoft PowerPoint	an l		l 🥺 🕄 🗘	Search Desktop	

실 PVTsim 16.0	
File Edit View Fluid CharFluid Options	Pure Component Utilities Window Help
Metric Units SRK	🗸 ab Lumping 🗸 Normal C7+ Char 🗸 CSP Visc/Thermal cond 🔹 🖕 🍰 🐝 🕍 🥝 🥥 🗸
	Current fluid: No fluid selected
Simulations Explorer	
Database Open Database Oreate New Database Erate New Database Export Fluids Duplicate Fluids Delete Fluids Fluid Select Fluid New Char Fluid New No-Plus Fluid New Char Fluid New PRO/II Fluid Plus Fluid Regression Char Fluid Regression Char Fluid Regression Char Fluid Regression Char Fluid Mix Weave Same Pseudos Delump CharFluid Edit Current Add to Database Import Fluid Management	Selected Fluid Image: Selected Fluid Image: Selected Fluid Image: Selected Fluid Well Image: Selected Fluid Image: Selected Fluid Image: Selected Fluid Image: Selected Fluid Sample HEAVILY LUMPED Test Test Test Test Test History Component parameters updated to FVTsim 16. Imput composition in Fluid type Imput composition in Fluid type Component Mol wid Liquid gent* Imput composition in Fluid type Imput composition in Imput composin in Imput composition in </td
	iC4 0.929 58.124 Char Options
Output Explorer	nC4 1.709 58.124
Flash Phase Envelope Property Generator H2S Unit Operations ES-SAGD Allocation Pt/OF Conductors	iC5 0.739 72.151 nC5 0.849 72.151 C6 1.129 86.178 C7 1.749 90.570 C8 1.689 104.480 C8 1.689 104.480 Total % 102.001
PVT Simulation Regression Viscosity Tuning Vax Asphaltene Scale Hydrate DepoWax MMP Depth Gradient Cleaning for Mud Spreadsheets	Normalize <u>Clear</u> <u>Add Comps</u> <u>Mol to Weight</u>
Plots	

Sessions 3 and 4: (black oil and compositional models for Gas/liquid mixtures)

<u> </u>	SimSci PIPEPHASE Sim lit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>I</u>	ulation: DEMO2 🔤 🔤	
	Fluid Property Data Black	oil PVT Data	9 🖉 🗗 🥌
	Set Number 1 Gravities Oil 35.2 API Gas .654 sp gr Water 1.01 sp gr	Contaminants Nitrogen Carbon Dioxide Hydrogen Sulfide	0 Mole % 0 Mole % 0 Mole %
	Antoine Viscosity Data Temperature Viscosity OK	F CP CP Correlation data is no	osity data if e - internal s used when it specified.
•			4

SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🌚 💽	•
<u>File Edit View General Special Features Results Help</u>	-
Fluid Property Data	5
Property Sets Property Set 1 New A range of fluid correlations, black oil or empirical.	+
Edit Delete Delete	
DEMO2	
OK Cancel Help	
▲	+

SimSci PIPEPHASE Simulation: DEMO2 🌌 🖼 🗟 💌 🗸
<u>File Edit View General Special Features Results</u>
ا ا ا ا المالي ا
Blackoil PVT Correlations Data
Gas/Oil Ratio Vazquez
Viscositu Miving Volumetric
Oil/Water Mixing Average
Adjust OB/Water Mixing OK Cancel Help Help

SimSci PIPEPHASE Simulation: DEMO2 🌌 🖼 🗐 🚘	
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp	
	ng
Blackoil PVT Correlations Data	
Gas/Oil Ratio Oil FVF Vazquez Oil FVF Z-Factor Dil Viscosity Vazquez Gas Viscosity Lee Viscosity Mixing Volumetric Oil/Water Mixing Average Adjust Oil/Water Mixing OK Cancel Help Help	
	+

FIGURE 4-6 Typical gas solubility/pressure relationship.

Standing's correlation

$$R_s = \gamma_g \left[\left(\frac{p}{18.2} + 1.4 \right) 10^s \right]^{1.2048}$$

with

$$x = 0.0125 \text{API} - 0.00091(T - 460)$$

where:

 R_s = gas solubility, scf/STB T = temperature, °R D = svstem pressure. psia γ_g = solution gas specific gravity API = oil gravity, °API

Vasquez-Begg's correlation

$$R_{s} = C_{1} \gamma_{gs} p^{C_{2}} \exp\left[C_{3}\left(\frac{\text{API}}{T}\right)\right]$$

Values for the coefficients are as follows:

COEFFICIENTS	$API \leq 30$	API > 30
C ₁	0.362	0.0178
C_2	1.0937	1.1870
C_3	25.7240	23.931
$\gamma_{gs} = \gamma_g \left[1 + 5.912(10^{-5}) \right]$	$(API)(T_{sep}-4)$	$60) \log \left(\frac{p_{sep}}{114.7}\right)$

where

 $\gamma_{\rm gs} = gas$ gravity at the reference separator pressure $\gamma_{\rm g} = gas$ gravity at the actual separator conditions of $p_{\rm sep}$ and $T_{\rm sep}$ $p_{\rm sep} = actual separator pressure, psia$ $<math display="inline">T_{\rm sep} = actual separator temperature, °R$

Glaso's Correlation

Glaso (1980) proposed a correlation for estimating the gas solubility as a function of the API gravity, the pressure, the temperature, and the gas specific gravity. The correlation was developed from studying 45 North Sea crude oil samples. Glaso reported an average error of 1.28% with a standard deviation of 6.98%. The proposed relationship has the following form:

$$R_{s} = \gamma_{g} \left\{ \left[\frac{\text{API}^{0.989}}{\left(T - 460\right)^{0.172}} \right] (A) \right\}^{1.2255}$$
(4–26)

The parameter A is a pressure-dependent coefficient defined by the following expression:

 $A = 10^X$

with the exponent X as given by

 $X = 2.8869 - [14.1811 - 3.3093 \log(p)]^{0.5}$

EXAMPLE 4-10

Rework Example 4-8 and solve for the gas solubility using Glaso's correlation.

SOLUTION

The results are shown in the table below.

Oil	p	X	A	Predicted <i>R_s</i> , Equation (4–26)	Measured R_s	% Error
1	2377	1.155	14.286	737	751	-1.84
2	2620	1.196	15.687	714	768	-6.92
3	2051	1.095	12.450	686	693	-0.90
4	5884	1.237	17.243	843	968	-12.92
5	3045	1.260	18.210	868	943	-7.94
6	4239	1.413	25.883	842	807	4.34
					AAE	5.8%

 $X = 2.8869 - [14.1811 - 3.3093 \log(p)]^{0.5}$

 $A=10^X$

$$R_{s} = \gamma_{g} \left[\left(\frac{\text{API}^{0.989}}{\left(T - 460 \right)^{0.172}} \right) (\mathcal{A}) \right]^{1.2255}$$

SimSci PIPEPHASE Simulation: DEMO2 🌌 🖼 🗟 💌 👻	
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp	
	3
Blackoil PVT Correlations Data	
Gas/Oil Batio Standing Oil FVF Vazquez Z-Factor Standing Oil Viscosity Vazquez Gas Viscosity Lee Viscosity Mixing Volumetric Oil/Water Mixing Average OK Cancel Help Help	
	+

The oil formation volume factor, B_o , is defined as the ratio of the volume of oil (plus the gas in solution) at the prevailing reservoir temperature and pressure to the volume of oil at standard conditions. Evidently, B_o always is greater than or equal to unity. The oil formation volume factor can be expressed mathematically as

$$B_{o} = \frac{\left(V_{o}\right)_{p,T}}{\left(V_{o}\right)_{\infty}} \tag{4-37}$$

where

 $B_{o} = \text{oil formation volume factor, bbl/STB}$ $(V_{o})_{p,T} = \text{volume of oil under reservoir pressure, } p$, and temperature, i, bbl $(V_{o})_{sc} = \text{volume of oil is measured under standard conditions, STB}$

FIGURE 4-7 Typical oil formation volume factor/pressure relationship.

$$B_o = f\left(R_s, \gamma_g, \gamma_o, T\right)$$

Standing's Correlation

Standing (1947) presented a graphical correlation for estimating the oil formation volume factor with the gas solubility, gas gravity, oil gravity, and reservoir temperature as the correlating parameters. This graphical correlation originated from examining 105 experimental data points on 22 California hydrocarbon systems. An average error of 1.2% was reported for the correlation.

Standing (1981) showed that the oil formation volume factor can be expressed more conveniently in a mathematical form by the following equation:

$$B_{o} = 0.9759 + 0.000120 \left[R_{s} \left(\frac{\gamma_{s}}{\gamma_{o}} \right)^{0.5} + 1.25 \left(T - 460 \right) \right]^{1.2}$$
(4-38)

T = temperature, °R

 γ_{o} = specific gravity of the stock-tank oil, 60°/60°

 $\gamma_{\!_{g}}$ = specific gravity of the solution gas

Vasquez and Beggs's Correlation

Vasquez and Beggs (1980) developed a relationship for determining B_{o} as a function of R_{o} , γ_{o} , γ_{g} , and T. The proposed correlation was based on 6000 measurements of B_{o} at various pressures. Using the regression analysis technique, Vasquez and Beggs found the following equation to be the best form to reproduce the measured data:

$$B_{o} = 1.0 + C_{1}R_{s} + (T - 520) \left(\frac{\text{API}}{\gamma_{gs}}\right) [C_{2} + C_{3}R_{s}]$$
(4-39)

where

$$\begin{split} R &= \text{gas solubility, scf/STB} \\ T &= \text{temperature, °R} \\ \gamma_{\text{gs}} &= \text{gas specific gravity as defined by equation 4-25:} \\ \gamma_{\text{gs}} &= \gamma_g \left[1 + 5.912(10^{-5})(\text{API})(T_{\text{sep}} - 460) \log \left(\frac{p_{\text{sep}}}{114.7} \right) \right] \end{split}$$

Values for the coefficients C_1 , C_2 , and C_3 of equation (4–39) follow:

COEFFICIENT	$API \leq 30$	API > 30
C ₁	4.677×10^{4}	4.670×10^{-4}
C ₂	1.751×10^{-5}	1.100×10^{-5}
C ₃	-1.811×10^{-8}	$1.337 imes 10^{-9}$

Vasquez and Beggs reported an average error of 4.7% for the proposed correlation.

Glaso's Correlation

Glaso (1980) proposed the following expressions for calculating the oil formation volume factor:

$$B_{a} = 1.0 + 10^{4} \tag{4-40}$$

where

$$A = -6.58511 + 2.91329 \log B_{ob}^* - 0.27683 (\log B_{ob}^*)^2$$
(4-41)

 B_{ab}^{*} is a "correlating number," defined by the following equation:

$$B_{ob}^{*} = R_{s} \left(\frac{\gamma_{g}}{\gamma_{s}}\right)^{0.526} + 0.968(T - 460)$$
(4-42)

where T = temperature, °R, and γ_o = specific gravity of the stock-tank oil, 60°/60°. These correlations were originated from studying PVT data on 45 oil samples. The average error of the correlation was reported at -0.43% with a standard deviation of 2.18%.

Real Gas Z-Factor Standing-Katz Chart/correlation

FIGURE 3-1 Standing and Katz compressibility factors chart. Source: CPSA Engineering Data Book. 10th ed. Telsa, OK: Gas Processors Suppliers Association, 1987. Coursesy of the Gas Processors Suppliers Association.

$$Z = 1 - \frac{3.53 \, p_{\rm pr}}{10^{0.9813T_{\rm pr}}} + \frac{0.274 \, p_{\rm pr}^2}{10^{0.8157T_{\rm pr}}}$$

For example, at $p_{\rm pr}$ = 3 and $T_{\rm pr}$ = 2, the Z-factor from the preceding equation is

$$Z = 1 - \frac{3.53 \, p_{\rm pr}}{10^{0.9813T_{\rm pr}}} + \frac{0.274 \, p_{\rm pr}^2}{10^{0.8157T_{\rm pr}}} = 1 - \frac{3.53(3)}{10^{0.9813(2)}} + \frac{0.274(3)^2}{10^{0.8157(2)}} = 0.9422$$

73

SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🚳 🔻	•
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp	
File Edit Yiew General Special Features Results Help Blackoil PVT Correlations Data A range of fluid correlations, black oil or empirical. Oil FVF Vazquez Image: Standing Image: Standin	
Adjust Oil/Water Mixing OK Cancel Help Help	+

- *Dead oil viscosity*, μ_{od} . The dead oil viscosity (oil with no gas in the solution) is defined as the viscosity of crude oil at *atmospheric pressure* and system temperature, *T*.
- Saturated oil viscosity, μ_{ob} . The saturated (bubble-point) oil viscosity is defined as the viscosity of the crude oil at any pressure less than or equal to the bubble-point pressure.
- Undersaturated oil viscosity, μ_o. The undersaturated oil viscosity is defined as the viscosity of the crude oil at a pressure above the bubble-point and reservoir temperature.

FIGURE 4–14 Crude oil viscosity as a function of R_s and p.

Based on these three categories, predicting the oil's viscosity follows a similar threestep procedure.

Step 1 Calculate the dead oil viscosity, μ_{od} , at the specified reservoir temperature and atmospheric pressure without dissolved gas: $R_s = 0$.

Step 2 Adjust the dead oil viscosity to any specified reservoir pressure $(p \le p_b)$ according to the gas solubility at p.

Step 3 For pressures above the bubble-point pressure, a further adjustment is made to μ_{ob} to account for the compression of the oil above p_b .

Glaso's Correlation

Glaso (1980) proposed a generalized mathematical relationship for computing the dead oil viscosity. The relationship was developed from experimental measurements on 26 crude oil samples. The correlation has the following form:

$$\mu_{od} = [3.141(10^{10})](T - 460)^{-3.444} [\log(API)]^A$$
(4-78)

The temperature T is expressed in °R and the coefficient A is given by

 $A = 10.313[\log(T - 460)] - 36.447$

This expression can be used within the range of 50–300°F for the system temperature and 20–48° for the API gravity of the crude. Sutton and Farashad (1984) concluded that Glaso's correlation showed the best accuracy of the three previous correlations.

Beggs-Robinson Correlation

From 2073 saturated oil viscosity measurements, Beggs and Robinson (1975) proposed an empirical correlation for estimating the saturated oil viscosity. The proposed mathematical expression has the following form:

$$\mu_{\rm ob} = a(\mu_{\rm od})^b \tag{4-80}$$

where:

 $a = 10.715(R_s + 100)^{-0.515}$ $b = 5.44(R_s + 150)^{-0.338}$

The reported accuracy of the correlation is -1.83% with a standard deviation of 27.25%. The ranges of the data used to develop Beggs and Robinson's equation are

Pressure: 132–5265 psia Temperature: 70–295°F API gravity: 16–58 Gas solubility: 20–2070 scf/STB

Vasquez-Beggs's Correlation

Vasquez and Beggs proposed a simple mathematical expression for estimating the viscosity of the oil above the bubble-point pressure. From 3593 data points, Vasquez and Beggs (1980) proposed the following expression for estimating the viscosity of undersaturated crude oil:

$$\mu_{o} = \mu_{ob} \left(\frac{p}{p_{b}}\right)^{m} \tag{4-83}$$

where

$$m = 2.6p^{1.187}10^A$$

 $A = -3.9(10^{-5})p - 5$

The data used in developing the above correlation have the following ranges:

The average error of the viscosity correlation is reported as -7.54%.

3.2.3 Volumetric Flow Rates. After mass transfer calculations are completed, it is possible to calculate the in-situ volumetric flow rates of each phase. For the black-oil model, volumetric flow rates are determined from

$$q_o = q_{o_{\mu}} B_o, \qquad (3.1)$$

$$q_w = q_{w_{sc}} B_w, \qquad (3.2)$$

and

$$q_{g} = \left(q_{g_{sc}} - q_{o_{sc}}R_{s} - q_{w_{sc}}R_{sw}\right)B_{g}, \qquad (3.3)$$

where B_g is derived from the engineering equation of state to be

$$B_g = p_{sc} ZT/p Z_{sc} T_{sc} . \qquad (3.4)$$

3.2.3 Volumetric Flow Rates. After mass transfer calculations are completed, it is possible to calculate the in-situ volumetric flow rates of each phase. For the black-oil model, volumetric flow rates are determined from

$$q_o = q_{o_{ic}} B_o, \qquad (3.1)$$

$$q_w = q_{w_w} B_w, \qquad (3.2)$$

and

$$q_{g} = \left(q_{g_{sc}} - q_{o_{sc}}R_{s} - q_{w_{sc}}R_{sw}\right)B_{g}, \qquad (3.3)$$

where B_g is derived from the engineering equation of state to be

$$B_g = p_{sc} ZT/pZ_{sc} T_{sc} . \qquad (3.4)$$

Appendix B gives methods to predict gas compressibility, Z.

For the compositional model, volumetric flow rates are calculated from

and

$$q_g = w_t x_g / \rho_g, \qquad (3.6)$$

where x_g is the no-slip quality or gas mass fraction and is obtained from the results of a VLE calculation as follows,

$$x_g = \frac{VM_g}{VM_g + LM_L}.$$
 (3.7)

Example 3.2—Superficial Velocities: Black-Oil Model. An oil well is flowing 10,000 STBO/D with a producing gas/oil ratio of 1,000 scf/STBO or a gas-production rate of 10 MMscf/D. At a location in the tubing where the pressure and temperature are 1,700 psia and 180°F, calculate the in-situ volumetric flow rates and superficial velocities of the liquid and gas phases. Also calculate the mixture velocity and the no-slip liquid holdup. The following is known from the pressure/volume/temperature (PVT) example problem given in Appendix B.

$$B_o = 1.197 \text{ bbl/STBO}$$

 $B_g = 0.0091 \text{ ft}^3/\text{scf}$
 $R_s = 281 \text{ scf/STBO}$
 $d = 6.0 \text{ in.}$

$$A_p = \frac{\pi}{4}d^2 = \frac{\pi}{4}\left(\frac{6}{12}\right)^2 = 0.196 \text{ ft}^2.$$

With Eq. 3.1,

$$q_o = \frac{(10,000 \text{ STBO/D})(1.197 \text{ bbl/STBO})(5.614 \text{ ft}^{3/\text{bbl}})}{86,400 \text{ sec/D}}$$

 $= 0.778 \text{ ft}^3/\text{sec.}$

With Eq. 3.10,

$$v_{SL} = \frac{q_L}{A_p} = \frac{0.778}{0.196} = 3.97$$
 ft/sec.

With Eq. 3.3,

$$q_g = \frac{[10 \times 10^6 - (10,000)(281)](0.0091)}{86,400} = 0.757 \text{ ft}^3/\text{sec.}$$

With Eq. 3.11,

$$v_{Sg} = q_g/A_p = 0.757/0.196 = 3.86$$
 ft/sec.

With Eq. 3.12,

 $v_m = v_{SL} + v_{Sg} = 3.97 + 3.86 = 7.83$ ft/sec.

With Eq. 3.8,

$$\lambda_L = \frac{q_L}{q_L + q_g} = \frac{0.778}{0.778 + 0.757} = 0.507.$$

Example 3.1—Compositional-Model Flow Rates. A gas-condensate well is flowing at a rate of 500,000 lbm/D. At a given location in the pipe, a VLE calculation is performed on the gas composition, yielding

$$L = 0.05 \left(\frac{\text{mole liquid}}{\text{mole feed}}\right) V = 0.95 \left(\frac{\text{mole vapor}}{\text{mole feed}}\right),$$

$$M_L = 100 \left(\frac{\text{lbm}}{\text{mole liquid}}\right) M_{gV} = 20 \left(\frac{\text{lbm}}{\text{mole vapor}}\right)$$

and

$$\rho_L = 50 \text{ lbm/ft}^3 \rho_g = 5.0 \text{ lbm/ft}^3.$$

From Eq. 3.7,

$$x_g = \frac{(0.95)(20.0)}{(0.95)(20.0) + (0.05)(100.0)}$$

= 0.792 lbm vapor/lbm mixture.

With Eq. 3.5,

$$q_L = \frac{(500,000)(1 - 0.792)}{(86,400)(50)} = 0.024 \text{ ft}^3/\text{sec}$$

With Eq. 3.6,

$$q_g = \frac{(500,000)(0.792)}{(86,400)(5.0)} = 0.917 \text{ ft}^3/\text{sec.}$$

Session 5 and 6: Basic concepts of two phase flow

Liquid Holdup is the local liquid volume fraction

- Gas fraction is the local gas volume fraction

Pipe cross section with stratified flow

Liquid holdup + Gas fraction = 1

At Low Flow Rates Liquid Accumulates in the Flowline Increasing the Pressure Drop

Liquid Holdup Depends on Flowline Geometry and Flowrate

88

Liquid Holdup Can Lead to Liquid Slugging

- There are two types of slugging:
 - Hydrodynamic: Induced by the holdup and superficial velocities
 - Terrain: Induced by geometry changes in which liquid can accumulate
- In Real Flowlines, Hydrodynamic and Terrain Slugs Can Interact:
 - Difficult to predict slug length and frequency
- Slugging can lead to surges of liquid that can overwhelm slugcatchers
- Liquid holdup leads to increased pressure drops and reduced flow
- Pigs can be used to periodically remove liquid from the flowline

Pigging

- Gas lines in particular are periodically pigged to remove accumulated liquid
- The large liquid slug is caught in a large separator called a "Slug Catcher"

Types of Pigs

- Spheres:
 - Easy to handle.
 - Can be re-inflated to compensate for wear.
 - Negotiate irregular bends.
 - Little energy for movement < 2psi.
- Foam Pigs:
 - Inexpensive and versatile.
 - Can be fitted with brushes to remove deposits.
- Steel Pigs:
 - Durable with replaceable sealing elements.
 - Can also be equipped with brushes and blades.
- Solid-Cast Pigs:
 - Light in weight, allow for longer and more efficient sealing.

Phase velocities

 $\begin{array}{l} Q &= \mbox{local volume flow rate} \\ U_G &= Q_G / A_G \\ U_L &= Q_L / A_L \end{array}$

Superficial phase velocities (reduced phase velocities)

 $\begin{array}{l} A_T = A_G + A_L \\ U_{SG} = Q_G / A_T \\ U_{SL} = Q_L / A_T \end{array}$

Mixture velocity

UM = USL + USG

For the case of equal phase velocities, or no-slip conditions, the volume fraction of liquid in the pipe can be calculated analytically from a knowledge of the in-situ volumetric flow rates given in the previous section. Thus,

$$\lambda_L = \frac{q_L}{q_L + q_g}, \qquad (3.8)$$

where q_L is the sum of the oil and water flow rates for the black-oil model, or is given by Eq. 3.5 for the compositional model. If free water exists when the compositional model is used, the water flow rate must be added to the oil or condensate flow rate to account for all the liquid. Because the no-slip liquid holdup can be determined rigorously, it commonly is used as a correlating parameter to predict other multiphase-flow parameters, such as H_L .

When oil and water flow simultaneously in pipes, with or without gas, it is possible for slippage to occur between the oil and water phases. This type of slippage is normally small compared with the slippage that can occur between gas and liquid. However, slippage can be important when velocities are low, especially in horizontal wells where stratified flow can occur. Assuming no slippage, the oil fraction in a liquid phase is calculated from

$$f_o = \frac{q_o}{q_o + q_w}.$$
 (3.9)

The water cut, f_w , based on in-situ rather than stock-tank flow rates, is simply $1 - f_o$.

• Slip is the ratio of the gas velocity to the liquid velocity

normally \geq 1 for co-current horizontal or upwards flow for downward co-current flow the value may be < 1 Slip velocity between oil and gas phases

If there were no slip between phases, both the gas and liquid would flow at the mixture velocity. Because of the slip between phases, the liquid typically flows at a velocity less than the mixture velocity, while the gas flows at a velocity greater than the mixture velocity. Time- and space-averaged velocities for each phase can be calculated from a knowledge of the time- and space-averaged liquid holdup obtained from the empirical correlations. Thus,

$$v_g = \frac{v_{Sg}}{1 - H_L}$$
. (3.14)

A slip velocity can be defined as the difference between the actual phase velocities.

 $v_s = v_g - v_L. \qquad (3.15)$

A variety of other velocities are encountered in multiphase flow that pertain to flow mechanisms in specific flow patterns. Examples are rise velocities of small bubbles and larger bullet-shaped bubbles that often occur in bubble- and slug-flow patterns. Chap. 4 describes these in detail.

$\rho_L = \rho_o f_o + \rho_w f_w, \dots \dots \dots \dots \dots \dots \dots \dots \dots $	(3.16)
$\sigma_L = \sigma_a f_o + \sigma_w f_w, \dots \dots \dots \dots \dots \dots \dots \dots \dots $	(3.17)
$\mu_L = \mu_o f_o + \mu_w f_w \dots \dots$	(3.18)
$f_o = \frac{q_o}{q_o + q_w}.$	(3.9)

The water cut, f_w , based on in-situ rather than stock-tank flow rates, is simply $1 - f_o$.

Gas/Liquid Mixture. Numerous equations have been proposed to describe the physical properties of gas/liquid mixtures. In general, these equations are referred to as "slip" or "no-slip" properties, depending on whether H_L or λ_L is used as the volumetric weighting factor. Thus, for the case of two-phase viscosity,⁸

$$\mu_s = \mu_L H_L + \mu_g (1 - H_L) \quad \quad (3.19)$$

or

$$\mu_s = \left(\mu_L^{H_L}\right) \times \left[\mu_g^{(1-H_L)}\right] \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (3.20)$$

and

$$\mu_n = \mu_L \lambda_L + \mu_g (1 - \lambda_L). \quad (3.21)$$

The following expressions have been used to calculate multiphase-flow mixture densities.⁸

and

$$\rho_{k} = \rho_{L} \frac{\lambda_{L}^{2}}{H_{L}} + \rho_{g} \frac{(1 - \lambda_{L})^{2}}{(1 - H_{L})}.$$
 (3.24)

Eq. 3.24 contains the subscript k because it appears in the kinetic energy term for the specific case of a homogeneous-mixture, momentum-conservation equation.

When performing temperature-change calculations for multiphase flow in wells, it is necessary to predict the enthalpy of the multiphase mixture. Most VLE calculation methods include a provision to predict the enthalpies of the gas and liquid phases. If enthalpies are expressed per unit mass, the enthalpy of a multiphase mixture can be calculated from

$$h = h_L(1 - x_g) + h_g x_g$$
. (3.25)

3.4 Pressure Gradient

The pressure-gradient equation derived in Sec. 2.3 for single-phase flow can be modified for multiphase flow by considering the fluids to be a homogeneous mixture. Thus,

$$\frac{\mathrm{d}p}{\mathrm{d}L} = \frac{f\rho_f v_f^2}{2d} + \rho_f g \sin\theta + \rho_f v_f \frac{\mathrm{d}v_f}{\mathrm{d}L}, \qquad (3.26)$$

where the definitions for ρ_f and v_f can vary with different investigators. For vertical flow, $\theta = 90^\circ$, $\sin \theta = 1$, dL = dZ, and the equation can be written as

The pressure-drop component caused by friction losses requires evaluation of a two-phase friction factor. The pressure drop caused by elevation change depends on the density of the two-phase mixture which is usually calculated with Eq. 3.22. Except for conditions of high velocity, most of the pressure drop in vertical flow is caused by this component. The pressure-drop component caused by acceleration is normally negligible and is considered only for cases of high flow velocities.

2.2 Conservation of Mass

Conservation of mass simply means that for a given control volume, such as a segment of pipe, the mass in, minus the mass out, must equal the mass accumulation.¹ For a constant-area duct,

$$\frac{\partial p}{\partial t} + \frac{\partial (\rho v)}{\partial L} = 0. \qquad (2.1)$$

For steady-state flow, no mass accumulation can occur. Eq. 2.1 then becomes

$\frac{\partial(\rho v)}{\partial L} = 0.$				(2.2)
--	--	--	--	-------

It is evident from Eq. 2.2 that steady-state flow also is characterized by $\rho v = \text{constant}$.

2.3 Conservation of Momentum

Application of Newton's first law to fluid flow in pipes requires that the rate of momentum out, minus the rate of momentum in, plus the rate of momentum accumulation in a given pipe segment must equal the sum of all forces on the fluids.¹ Fig. 2.1 defines the control volume and pertinent variables. Conservation of linear momentum can be expressed as

$$\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial L}(\rho v^2)$$
$$= -\frac{\partial p}{\partial L} - r\frac{\pi d}{A} - \rho g \sin \theta. \qquad (2.3)$$

2.4 Pressure-Gradient Equation

Combining Eqs. 2.2 and 2.3, and assuming steady-state flow to eliminate the rate of accumulation of linear momentum, gives

$$\rho v \frac{\mathrm{d}v}{\mathrm{d}L} = -\frac{\mathrm{d}p}{\mathrm{d}L} - \tau \frac{\pi d}{A} - \rho g \sin \theta. \qquad (2.4)$$

Solving for the pressure gradient obtains

$$\frac{\mathrm{d}p}{\mathrm{d}L} = -\tau \frac{\pi d}{A} - \rho g \sin \theta - \rho v \frac{\mathrm{d}v}{\mathrm{d}L}, \qquad (2.5)$$

which also frequently is called the mechanical energy balance equation. Thus, the steady-state, pressure-gradient equation is a result of applying the principles of conservation of mass and linear momentum.

Eq. 2.5 clearly shows that the steady-state pressure gradient is made up of three components. Thus

The first component in Eq. 2.5, described in greater detail in Eqs. 2.7 through 2.9, results from friction or shear stress at the pipe wall. Friction losses normally represent 5 to 20% of the total pressure drop in wells. The second term in Eq. 2.5 is the pressure gradient caused by elevation change (often called the hydrostatic head or elevation component). It is normally the predominant term in wells and contributes from 80 to 95% of the pressure gradient. The final component in Eq. 2.5 results from change in velocity (often called acceleration or the kinetic energy component). It is normally negligible and can become significant only if a compressible phase exists at relatively low pressures, such as in gas-lift wells near the surface.

For upward flow in a well, pressure always drops in the direction of flow. It is common to show the pressure drop as positive in the direction of flow. Eq. 2.5 must be multiplied by -1 to yield a positive pressure gradient.

Evaluation of the wall shear stress or friction losses can be accomplished by defining a dimensionless friction factor that is the ratio of the wall shear stress to the kinetic energy of the fluid per unit volume.¹ Thus,

$f'=\frac{\tau}{\rho v^2/2},$		2.7)
-------------------------------	--	------

Newtonian fluids and flow through annuli, Fanning friction factors are retained to preserve original equations. Eq. 2.7 can be solved for shear stress

$$\tau = f \frac{\rho v^2}{8}. \qquad (2.8)$$

Substituting Eq. 2.8 into Eq. 2.5, the frictional component of the pressure-gradient equation becomes

$$\left(\frac{\mathrm{d}p}{\mathrm{d}L}\right)_f = \left(\frac{f\rho v^2}{8}\right) \left(\frac{\pi d}{\pi d^2/4}\right) = \frac{f\rho v^2}{2d}, \quad \dots \quad (2.9)$$
$$\frac{1}{\sqrt{f}} = 1.74 - 2\log\left(\frac{2\varepsilon}{d}\right). \qquad (2.16)$$

$$\frac{1}{\sqrt{f}} = 1.74 - 2\log\left(\frac{2\varepsilon}{d} + \frac{18.7}{N_{\text{Re}}\sqrt{f}}\right). \quad \dots \quad \dots \quad (2.17)$$

٠,

Fig. 2.2—Moody diagram.²

110

Sessions 7 and 8: two phase models for Vertical flow

4.2.1 Empirical Correlations. The empirical correlations to be discussed in this chapter can be placed in one of three categories:

Category "a." No slip, no flow pattern consideration. The mixture density is calculated based on the input gas/liquid ratio. That is, the gas and liquid are assumed to travel at the same velocity. The only correlation required is for the two-phase friction factor. No distinction is made for different flow patterns.

Category "b." Slip considered, no flow pattern considered. A correlation is required for both liquid holdup and friction factor. Because the liquid and gas can travel at different velocities, a method must be provided to predict the portion of the pipe occupied by liquid at any location. The same correlations used for liquid holdup and friction factor are used for all flow patterns.

Category "c." Slip considered, flow pattern considered. Not only are correlations required to predict liquid holdup and friction factor, but methods to predict which flow pattern exists are necessary. Once the flow pattern is established, the appropriate holdup and frictionfactor correlations are determined. The method used to calculate the acceleration pressure gradient also depends on flow pattern. The following list gives the published empirical correlations for vertical upward flow and the categories in which they belong.

Method	Category
Poettmann and Carpenter ¹	a
Baxendell and Thomas ²	а
Fancher and Brown ³	а
Hagedorn and Brown ⁴	b
Gray ⁵	b
Asheim ⁶	b
Duns and Ros ⁷	с
Orkiszewski ⁸	с
Aziz et al. ⁹	с
Chierici et al. ¹⁰	с
Beggs and Brill ¹¹	с
Mukherjee and Brill ¹²	с

Category "a." The three methods considered in this category differ only in the friction-factor correlation. In each method, field data based on Eq. 4.1 were used to calculate friction factors. For vertical flow of a homogeneous no-slip mixture, Eq. 3.26 can be expressed as

$$\frac{\mathrm{d}p}{\mathrm{d}Z} = \frac{f\rho_n v_m^2}{2d} + \rho_n g. \qquad (4.1)$$

Fig. 4.1—Category "a" friction-factor correlations.

Category "a" methods no longer should be used to predict multiphase-flow pressure gradients in wells. They can yield satisfactory results only for high-flow-rate wells for which the flow pattern would be dispersed-bubble flow. A no-slip condition characterizes the dispersed-bubble-flow pattern. Example 4.1—Using the Poettmann and Carpenter Method, Calculate the Vertical, Multiphase-Flow Pressure Gradient for Example 3.2.

Given: $\rho_L = 47.61 \text{ lbm/ft}^3$ and $\rho_g = 5.88 \text{ lbm/ft}^3$.

1. Determine no-slip mixture density:

 $\rho_n = \rho_L \lambda_L + \rho_g (1 - \lambda_L)$

= (47.61)(0.507) + (5.88)(0.493)

 $= 27.04 \text{ lbm/ft}^3$.

2. Determine friction factor:

 $\rho_n v_m d = (27.04)(7.83)(0.5) = 105.86 \text{ lbm}/(\text{ft-sec})$.

From Fig. 4.1, f = 0.0068.

3. Determine total pressure gradient:

$$\frac{dp}{dZ} = \rho_n + \frac{f\rho_n v_m^2}{2g_c d} = 27.04 + \frac{(0.0068)(27.04)(7.83)^2}{2(32.174)(0.5)}$$
$$= 27.04 + 0.35 = 27.39 \text{ psf/ft}$$
$$= 0.190 \text{ psi/ft}.$$

•

Category "b." Three methods are presented in this category. Hagedorn and Brown⁴ is a generalized method developed for a broad range of vertical two-phase-flow conditions. The Gray method⁵ is

a specialized one developed for use with vertical gas wells that also produce condensate fluids and/or free water. The Asheim⁶ method uses MONA, a computer program based on a method that incorporates some basic mechanisms but also permits the adjustment of empirical parameters to fit available pressure measurements.

The Beggs and Brill Method

$$p_{wf} = p_{sep} + \Delta p_h + \left(\Delta p_{fl} + \Delta p_l + \Delta p_{ch}\right)_f + \Delta p_{acc},$$

Fig. 6.3—Typical tubing-intake curve for producing wells.

Category "c." Slip considered, flow pattern considered. Not only are correlations required to predict liquid holdup and friction factor, but methods to predict which flow pattern exists are necessary. Once the flow pattern is established, the appropriate holdup and frictionfactor correlations are determined. The method used to calculate the acceleration pressure gradient also depends on flow pattern.

Segregated --MIMORINIC Stratified In Management and the second Wavy 11112 Annular Intermittent Plug Slug Distributed Bubble Mist

Fig. 4.16—Beggs and Brill¹¹ horizontal-flow patterns.

The equations for the modified flow-pattern transition boundaries are
$L_1 = 316\lambda_L^{0.302}, \qquad (4.110)$
$L_2 = 0.000925\lambda_L^{-2.468}, \dots \dots$
$L_3 = 0.10\lambda_L^{-1.452}, \dots \dots$
and
$L_4 = 0.5\lambda_L^{-6.738}.$ (4.113)

Segregated.

```
\lambda_L < 0.01 and N_{\rm Fr} < L_1
```

or

 $\lambda_L \ge 0.01$ and $N_{\rm Fr} < L_2$

Transition.

 $\lambda_L \ge 0.01 \text{ and } L_2 \le N_{\text{Fr}} \le L_3$

Intermittent.

 $0.01 \le \lambda_L < 0.4 \text{ and } L_3 < N_{\text{Fr}} \le L_1$ or

 $\lambda_L \ge 0.4$ and $L_3 < N_{\rm Fr} \le L_4$

Distributed.

 $\lambda_L < 0.4$ and $N_{\rm Fr} \geq L_1$

or

 $\lambda_L \ge 0.4 \text{ and } N_{\text{Fr}} > L_4.$ $N_{\text{Fr}} = \frac{v_m^2}{gd}.$ (4.109)

$$H_{L(0)} = \frac{a\lambda_L^b}{N_{\rm Fr}^c}, \qquad \dots \qquad (4.114)$$

TABLE 4.2—BEGGS AND BRILL ¹¹ EMPIRICAL COEFFICIENTS FOR HORIZONTAL LIQUID HOLDUP				
Flow Pattern	<u>a</u>	b	C	
Segregated	0.980	0.4846	0.0868	
Intermittent	0.845	0.5351	0.0173	

Distributed	1.065	0.5824	0.0609

 $H_{L(\theta)} = H_{L(0)}\Psi. \qquad (4.115)$

$$\Psi = 1.0 + C[\sin(1.8\theta) - 0.333 \sin^3(1.8\theta)], \quad \dots \dots \quad (4.116)$$

TABLE 4.3BEGGS AND BRILL ¹¹ EMPIRICAL COEFFICIENTS FOR C					
Flow Pattern	e	f	g	h	
Segregated uphill	0.011	- 3.7680	3.5390	- 1.6140	
Intermittent uphill	2.960	0.3050	-0.4473	0.0978	
Distributed uphill	No correction: $C=0$; $\Psi=1$				
All patterns downhill	4.700	-0.3692	0.1244	- 0.5056	

When the flow pattern falls in the transition region, the liquid holdup must be interpolated between the segregated and intermittent liquid-holdup values as

$$H_{L(\theta)_{Tr}} = AH_{L(\theta)_{Seg}} + (1 - A)H_{L(\theta)_{Int}}, \quad \dots \quad \dots \quad (4.118)$$

where

$$A = \frac{L_3 - N_{\rm Fr}}{L_3 - L_2}.$$
 (4.119)

 $f = f_n(f/f_n). \qquad (4.120)$

The normalizing friction factor, f_n , is determined from the smooth pipe curve on the Moody diagram (Fig. 2.2) or from Eqs. 2.12 or 2.13 by use of a Reynolds number defined as

$$N_{\rm Re} = \frac{\rho_n v_m d}{\mu_n} \qquad (4.121)$$

and μ_n is obtained from Eq. 3.21.

The ratio of the two-phase friction factor to the normalizing friction factor was correlated with the Beggs and Brill experimental data, resulting in

 $f/f_n = e^s, \qquad (4.122)$

where

and

$$y = \frac{\lambda_L}{\left[H_{L(\theta)}\right]^2}$$
 (4.124)

Example 4.7—Using the Beggs and Brill Method, Calculate the Vertical, Multiphase-Flow Pressure Gradient for Example 3.2.

Given: $\mu_o = 0.97$ cp, $\mu_g = 0.016$ cp, $\sigma_o = 8.41$ dynes/cm, and $\varepsilon = 0.00006$ ft.

1. Determine flow pattern: From Eq. 4.109,

$$N_{\rm Fr} = \frac{(7.83)^2}{(32.174)(0.5)} = 3.81.$$

From Fig 4.17 for $\lambda_L = 0.507$, the horizontal-flow pattern is intermittent.

2. Determine liquid holdup: From Eq. 4.114,

$$H_{L(0)} = \frac{(0.845)(0.507)^{0.5351}}{(3.81)^{0.0173}} = 0.574.$$

.

From Eq. 4.117,

$$C = (0.493) \ln \left[2.96(0.507)^{0.305} (11.87)^{-0.4473} (3.81)^{0.0978} \right]$$

= -0.048 < 0.

Therefore,

C = 0, $\Psi = 1.0$, and $H_{L(90)} = H_{L(0)} = 0.574$.

Apply Payne et al. correction factor:

 $H_{L(90)} = (0.924)(0.574) = 0.530.$

3. Determine friction factor: From Eq. 3.21,

 $\mu_n = (0.97)(0.507) + (0.016)(0.493) = 0.50$ cp.

From Eq. 4.121,

$$N_{\rm Re} = \frac{(1,488)(27.04)(7.83)(0.5)}{(0.50)} = 3.15 \times 10^5.$$

From Fig. 2.2 for $\varepsilon/d = 0.00012$, $f_n = 0.0155$. From Eq. 4.124,

$$y = \frac{(0.507)}{(0.530)^2} = 1.805.$$

From Eq. 4.123,
$$s = (0.591) / [-0.0523 + 3.182(0.591) - 0.8725(0.591)^2 + 0.01853(0.591)^4]$$
$$= 0.3873.$$

From Eq. 4.122,

$$\frac{f}{f_n} = e^{(0.3873)} = 1.473.$$

Therefore, $f = (1.473) (0.0155) = 0.0228.$
4. Determine pressure gradient:
$$\frac{dp}{dL} = \frac{(0.0228)(27.04)(7.83)^2}{(2)(32.174)(0.5)}$$
$$+ [(47.61)(0.53) + (5.88)(0.47)]\frac{(32.174)}{(32.174)}\sin(90^\circ)$$
$$= 1.17 + 28.00 = 29.17 \text{ psf/ft}$$
$$= 0.203 \text{ psi/ft.}$$

Beggs & Brill Correlation The Beggs & Brill correlation is developed for tubing strings in inclined wells and pipelines for hilly terrain. This correlation resulted from experiments using air and water as test fluids over a wide range of parameters. The performance of the correlation is given below. Tubing Size. For the range in which the experimental investigation was conducted (i.e., tubing sizes between 1 and 1.5 in.), the pressure losses are accurately estimated. Any further increase in tubing size tends to result in an over prediction in the pressure loss. Oil Gravity. A reasonably good performance is obtained over a broad spectrum of oil gravities.

- Gas-Liquid Ratio (GLR). In general, an over predicted pressure drop is obtained with increasing GLR. The errors become especially large for GLR above 5000.
- Water-Cut. The accuracy of the pressure profile predictions is generally good up to about 10% water-cut.

Payne *et al.* found that the Beggs and Brill method underpredicted friction factors. Because the Beggs and Brill method was based on data obtained in smooth pipe, Payne *et al.* recommended that the normalizing friction factor, f_n , be obtained from the Moody diagram (Fig. 2.2) or from Eq. 2.17 for an appropriate value of relative roughness. This change improved the pressure-drop predictions for the Beggs and Brill method for rough pipes.

$$\frac{1}{\sqrt{f}} = 1.74 - 2\log\left(\frac{2\varepsilon}{d} + \frac{18.7}{N_{\text{Re}}\sqrt{f}}\right). \qquad (2.17)$$

Payne *et al.* also found that the Beggs and Brill method overpredicted liquid holdup in both uphill and downhill flow. On the basis of their limited data, Payne *et al.* recommended these constant correction factors to improve liquid-holdup values.

If $\theta > 0$,

 $H_{L(\theta)} = 0.924 H_{L(\theta)}$. (4.126)

If $\theta < 0$,

 $H_{L(\theta)} = 0.685 H_{L(\theta)}$. (4.127)

However, the resulting liquid holdup for $\theta > 0^{\circ}$ should not be less than λ_L . The original Beggs and Brill method has been found to overpredict pressure drops in producing wells. Consequently, improved results should be obtained if the Payne *et al.* liquid-holdup correction factor is applied for wells.

Hagedorn and Brown Model

Hagedorn & Brown Correlation	This correlation was developed using data obtained from a 1500-ft vertical well. Tubing diameters ranging from 1-2 in. were considered in the experi- mental analysis along with 5 different fluid types, namely: water and four types of oil with viscosities ranging between 10 and 110 cp (@ 80°F) The correlation developed is independent of flow patterns and its performance is briefly outlined below.
	Tubing Size. The pressure losses are accurately predicted for tubing sizes between 1 and 1.5 in., the range in which the experimental inves- tigation was conducted. A further increase in tubing size causes the pressure drop to be over predicted.
	 Oil Gravity. The Hagedorn-Brown method is seen to over predict the pressure loss for heavier oils (13-25 °API) and under predict the pres- sure profile for lighter oils (40-56 °API)
	 Gas-Liquid Ratio (GLR). The pressure drop is over predicted for GLR greater than 5000.
	 Water-Cut. The accuracy of the pressure profile predictions is gener- ally good for a wide range of water-cuts.

Slug Catchers Can be Huge

- Often the largest part of a gas terminal.
- Must be able to catch the largest slugs from the pipeline and allow time for the liquid to be processed.

Horizontal Slug Catcher Vessel

- Can give small particle separation (10 microns) where there is more liquid and lower gas flow.
- Useful as three phase separator.
- Becomes expensive and heavy when large sizes are required.
- Good separation up to 5 700 bbls. slug size.

Vertical Slug Catcher Vessel

- Useful where small particle separation (10 microns) is required and gas flow is large in relation to liquid slug size.
- Equipment is expensive and heavy when large sizes are required.
- Good separation -- useful up to 5 700 bbls. slug size.

- Very economical where small liquid slugs are to be caught.
- Particle separation is poor and relatively unpredictable.
- Catches slugs up to 150 200 bbls.

Pipe Fitting Type Slug Catcher

This type of separation equipment typically has an impingement plate to knock out bulk liquids and a vertical column to form a gravity type separator, but it usually has insufficient area to effectively remove small particles. Normally, it is just used to catch the slugs of liquid and hold them. For economic reasons, these slug catchers are usually designed as pipe and fittings, rather than as pressure vessels.

The pipe fitting type slug catcher provides good slug separation and slug storage volume at a reasonable cost. Small particle separation is poor, but it improves at low flow rates. A slug catcher of this type can be used to protect a centrifugal type separator and the combination will give separation and slug storage capacity.

Harp type slug catcher

Slug Catcher Anatomy

The separator/slug catcher consists of several modules — distribution header, separation chambers, dry gas risers, storage harps, and liquids and sludge manifolds.

The **distribution manifold** takes the incoming gas/liquid stream, slows it down, and splits it into several smaller streams to allow uniform flow into the separation chambers.

In the **separation chambers**, the majority of the gas liquid separation is accomplished. The required length, size and number of these chambers is a combined function of gas flow, gas chemistry and other known conditions.

The Slug catcher for Troll has a Capacity of 2400 m³

Hagedorn and Brown developed this presssure-gradient equation for vertical multiphase flow

$$\frac{\mathrm{d}p}{\mathrm{d}Z} = \frac{f\rho_n^2 v_m^2}{2\rho_s d} + \rho_s g + \frac{\rho_s \Delta(v_m^2)}{2\mathrm{d}Z}.$$
(4.2)

Liquid-Holdup Prediction. A liquid-holdup value must be determined to calculate the pressure-gradient component that results from a change in elevation. To correlate the pseudo liquid-holdup values, Hagedorn and Brown used four dimensionless groups proposed by Duns and Ros.⁷

Liquid velocity number:

Liquid velocity number:

$$N_{Lv} = v_{SL} \sqrt[4]{\frac{\rho_L}{g\sigma_L}}.$$
 (4.3)

Gas velocity number:

$$N_{gv} = v_{Sg} \sqrt[4]{\frac{\rho_L}{g\sigma_L}}.$$
 (4.4)

Pipe diameter number:

$$N_d = d \sqrt{\frac{\rho_L g}{\sigma_L}}.$$
 (4.5)

Liquid viscosity number:

$$N_L = \mu_L \sqrt[4]{\frac{g}{\rho_L \sigma_L^3}} \qquad (4.6)$$

age-

If constants are included:

$$N_{Lv} = 1.938 v_{SL} \sqrt[4]{\frac{\rho_L}{\sigma_L}},$$
$$N_{gv} = 1.938 v_{Sg} \sqrt[4]{\frac{\rho_L}{\sigma_L}},$$
$$N_d = 120.872d \sqrt{\frac{\rho_L}{\sigma_L}},$$

and

$$N_L = 0.15726\mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}$$

where v_{SL} is in feet per second, v_{Sg} is in feet per second, ρ_L is in pounds per cubic foot, σ is in dynes per centimeter, μ_L centipoise, and d is in feet.

Friction-Factor Prediction. Hagedorn and Brown assumed that two-phase friction factors could be predicted in the same way as single-phase friction factors. Thus, f is obtained from the singlephase Moody diagram in Fig. 2.2 for a given relative roughness and a two-phase Reynolds number defined as

$$N_{\rm Re} = \frac{\rho_n v_m d}{\mu_s}, \qquad (4.7)$$

Acceleration Term. The pressure gradient resulting from acceleration is given by

where

$$\Delta(v_m^2) = v_{m1}^2 - v_{m2}^2.$$

and 1, 2 designate downstream and upstream ends of a calculation increment, respectively.

If E_k is defined as

$$\frac{\mathrm{d}p}{\mathrm{d}Z} = \frac{\left(\frac{\mathrm{d}p}{\mathrm{d}Z}\right)_{\epsilon l} + \left(\frac{\mathrm{d}p}{\mathrm{d}Z}\right)_{f}}{1 - E_{k}}.$$
 (4.10)

Example 4.2—Using the Modified Hagedorn and Brown Method, Calculate the Vertical, Multiphase-Flow Pressure Gradient for Example 3.2.

Given: $\mu_o = 0.97$ cp, $\sigma_o = 8.41$ dynes/cm, $\mu_g = 0.016$ cp, and $\varepsilon = 0.00006$ ft.

3.2.3 Volumetric Flow Rates. After mass transfer calculations are completed, it is possible to calculate the in-situ volumetric flow rates of each phase. For the black-oil model, volumetric flow rates are determined from

$$q_o = q_{o_{ic}} B_o, \qquad (3.1)$$

$$q_w = q_{w_w} B_w, \qquad (3.2)$$

and

$$q_{g} = \left(q_{g_{sc}} - q_{o_{sc}}R_{s} - q_{w_{sc}}R_{sw}\right)B_{g}, \qquad (3.3)$$

where B_g is derived from the engineering equation of state to be

$$B_g = p_{sc} ZT/pZ_{sc} T_{sc} . \qquad (3.4)$$

Appendix B gives methods to predict gas compressibility, Z.

For the compositional model, volumetric flow rates are calculated from

and

$$q_g = w_t x_g / \rho_g, \qquad (3.6)$$

where x_g is the no-slip quality or gas mass fraction and is obtained from the results of a VLE calculation as follows,

$$x_g = \frac{VM_g}{VM_g + LM_L}.$$
 (3.7)

Example 3.2—Superficial Velocities: Black-Oil Model. An oil well is flowing 10,000 STBO/D with a producing gas/oil ratio of 1,000 scf/STBO or a gas-production rate of 10 MMscf/D. At a location in the tubing where the pressure and temperature are 1,700 psia and 180°F, calculate the in-situ volumetric flow rates and superficial velocities of the liquid and gas phases. Also calculate the mixture velocity and the no-slip liquid holdup. The following is known from the pressure/volume/temperature (PVT) example problem given in Appendix B.

$$B_o = 1.197 \text{ bbl/STBO}$$

 $B_g = 0.0091 \text{ ft}^3/\text{scf}$
 $R_s = 281 \text{ scf/STBO}$
 $d = 6.0 \text{ in.}$

$$A_p = \frac{\pi}{4}d^2 = \frac{\pi}{4}\left(\frac{6}{12}\right)^2 = 0.196 \text{ ft}^2.$$

With Eq. 3.1,

$$q_o = \frac{(10,000 \text{ STBO/D})(1.197 \text{ bbl/STBO})(5.614 \text{ ft}^{3/\text{bbl}})}{86,400 \text{ sec/D}}$$

 $= 0.778 \text{ ft}^3/\text{sec.}$

With Eq. 3.10,

$$v_{SL} = \frac{q_L}{A_p} = \frac{0.778}{0.196} = 3.97$$
 ft/sec.

With Eq. 3.3,

$$q_g = \frac{[10 \times 10^6 - (10,000)(281)](0.0091)}{86,400} = 0.757 \text{ ft}^3/\text{sec.}$$

With Eq. 3.11,

$$v_{Sg} = q_g/A_p = 0.757/0.196 = 3.86$$
 ft/sec.

With Eq. 3.12,

 $v_m = v_{SL} + v_{Sg} = 3.97 + 3.86 = 7.83$ ft/sec.

With Eq. 3.8,

$$\lambda_L = \frac{q_L}{q_L + q_g} = \frac{0.778}{0.778 + 0.757} = 0.507.$$

1. Determine Duns and Ros dimensionless groups:

 $N_{Lv} = 1.938 v_{SL} \left(\frac{\rho_L}{\sigma_L} \right)^{\frac{1}{2}}$ $= (1.938)(3.97) \left(\frac{47.61}{8.41}\right)^{0.25} = 11.87,$ $N_{gv} = 1.938 v_{Sg} \left(\frac{\rho_L}{\sigma_L} \right)^{1/4}$ $= (1.938)(3.86) \left(\frac{47.61}{8.41}\right)^{0.25} = 11.54,$ $N_d = 120.872d \sqrt{\frac{\rho_L}{\sigma_L}}$ $= (120.872) \left(\frac{6}{12}\right) \sqrt{\left(\frac{47.61}{8.41}\right)} = 143.8,$ ınd 1 14

$$N_L = 0.15726\mu_L \left(\frac{1}{\rho_L \sigma_L^3}\right)$$

= (0.15726)(0.97) $\left[\frac{1}{(47.61)(8.41)^3}\right]^{0.25} = 0.0118.$

2. Determine liquid holdup: From Fig. 4.3, $N_{LC} = 0.0024$. From Fig 4.2, the abscissa, *a*, is

$$= \frac{N_{Lv} N_{LC}}{N_{gV}^{0.575} N_d} \left(\frac{p}{p_{sc}}\right)^{0.1}$$
$$= \frac{(11.87)(0.0024)}{(11.54)^{0.575}(143.8)} \left(\frac{1,700}{14.7}\right)^{0.1}$$
$$= 7.81 \times 10^{-5}$$

 $= 7.81 \times 10^{-5}$

$$\therefore \frac{H_L}{\psi} = 0.3.$$

a

From Fig. 4.4, the abscissa, a, is

$$a = \frac{N_{gv} N_L^{0.380}}{N_d^{2.14}}$$

$$=\frac{(11.42)(0.0118)^{0.380}}{(143.8)^{2.14}}$$

$$= 5.1 \times 10^{-5}$$

$$\therefore \psi = 1.0$$

and

$$H_L = \frac{H_L}{\psi}\psi = (0.3)(1.0) = 0.3.$$

- 3. Check validity of H_L : Because $H_L < \lambda_L$, set $H_L = \lambda_L = 0.507$.
- 4. Calculate slip density:

 $\rho_s = \rho_L H_L + \rho_g (1 - H_L)$

= (47.61)(0.507) + (5.88)(1 - 0.507)

 $= 27.04 \text{ lbm/ft}^3$.

5. Determine friction factor: From Eq. 3.19,

$$\mu_s = (0.97)^{0.507} (0.016)^{(1-0.507)}$$

= 0.13 cp.

From Eq. 4.7,

$$N_{\rm Re} = \frac{(1,488)(27.04)(7.83)(0.5)}{0.13}$$

 $= 1.21 \times 10^{6}$

and

$$\frac{\varepsilon}{d} = \left(\frac{0.00006}{0.5}\right) = 0.00012.$$

From Fig. 2.2 or Eq. 2.17, *f* = 0.0135.

6. Determine pressure gradient, neglecting kinetic energy effects: From Eq. 4.2,

$$\frac{dp}{dZ} = \frac{(0.0135)(27.04)^2(7.83)^2}{(2)(27.04)(32.174)(0.5)} + (27.04)\frac{(32.174)}{(32.174)}$$
$$= 0.70 + 27.04 = 27.74 \text{ psf/ft}$$

= 0.193 psi/ft.

7. If calculations had been made with the incorrect liquid-holdup value of 0.3, the pressure gradient would have been 0.14 psi/ft.

Modifications. Over the years, several modifications have been proposed to improve the Hagedorn and Brown pressure-gradient predictions.

In conversations with Hagedorn, he suggested the first modification when he found that the correlation did not predict accurate pressure gradients for bubble flow. He suggested that, if the Griffith and Wallis¹³ criteria predicted the occurrence of bubble flow, the Griffith¹⁴ bubble-flow method should be used to predict pressure gradient. This approach is part of the Orkiszewski⁸ method, presented later.

The second modification is much more significant and is possibly a result of Hagedorn and Brown correlating pseudo liquid-holdup values rather than measured ones. Liquid-holdup values obtained from Figs. 4.2 through 4.4 are often less than no-slip holdup values. This is physically impossible because, for upward multiphase flow, liquid cannot travel faster than the gas phase. When this incorrect prediction occurs, the liquid-holdup value must be replaced with one that is physically possible. The approach normally used is to proceed with the no-slip liquid holdup. No attempt has been made to investigate whether this problem is peculiar to a specific range of variables.

General Recommendations

In general, the Orkiszewski and Hagedorn & Brown model are found to perform satisfactorily for vertical wells with or without water-cut, and should therefore be considered equally as the first choice in such wells. As mentioned earlier, the Duns & Ros correlation is not applicable for wells with water-cut and should be avoided for such cases. The Beggs & Brill method is applicable for inclined wells with or without water-cut and is currently the best choice available for deviated wells. However, the method can also be utilized for vertical wells as the last choice. Finally, it should be noted that the performance of the multiphase flow models may not always be affected entirely by the particular flow variable against which the performance trend is indicated. In most cases, the performance of these models may be dependent on a combination of several of these flow variables considered. Therefore, keeping these limitations in mind, the above discussion could be used as a guide to eliminate or select a particular correlation in the absence of other relevant information. Example Problem by Hagedorn - Brown Method

Given:

$v_{sg} = 4.09 \text{ ft/sec}$	p = 720 psia
$v_{sL} = 2.65 \text{ ft/sec}$	$T = 128^\circ F$
d = 0.249 ft = 3.00 in.	$\mu_{o} = 18 \text{ cp}$
$N_{Ly} = 6.02$	µ = .018 ср
N = 9.29	$\rho_{\rm L}$ = 56.6 lbm/cu ft
N ₁ = 0.08	p = 2.84 lbm/cu ft
N = 41.34	e/d = .0006

۰.

Neglecting acceleration, calculate the flowing pressure gradient at these conditions.

Lockhart and Martinelli Correlation

The Lockhart and Martinelli³²correlation does not follow the friction factor analogy abut presents the two-phase pressure gradient in terms of a single-phase gradient multiplied by a correction factor. The single-phase gradients are calculated as if each phase flowed in the pipe alone. Although a correlation is given for liquid holdup, it is not required for pressure drop calculations. Acceleration was ignored in the Lockhart and Martinelli method.

The friction factors f_g and f_L are determined from Fig. 3.9 for values of the Reynolds numbers.

$$N_{\text{Reg}} = \frac{\frac{\rho_g v_{gg} d}{\mu_g}}{\frac{\mu_g}{g}} \text{ and } N_{\text{ReL}} = \frac{\frac{\rho_L v_{gL} d}{\mu_L}}{\frac{\mu_L}{\mu_L}}$$

The two-phase correction factors are correlated with a parameter defined as

The correlation is shown graphically in Fig. 4.7. They found that different curves existed for each \emptyset depending on the Reynolds number of each phase. They considered that laminar flow existed in a phase if the Reynolds number for that phase was less than 1000. The subscripts on the \emptyset terms represent turbulent or laminar flow, with the first subscript representing the liquid phase. For example, \emptyset_{LtL} is the correction factor applied to the single-phase liquid pressure gradient when the liquid phase is turbulent and the gas phase is laminar.

. .

Sessions 9 and 10: two phase flow through restrictions

Three restrictions commonly found in oil and gas production operations are chokes (or choke beans or positive-flow beans), velocitycontrolled subsurface safety valves, and conventional valves and fittings, often called piping components.

Chokes are installed in wells to control flow rates or pressures. They normally have slightly rounded entrances and can be several inches long. For example, the Thornhill-Craver choke beans are about 6 in. long with diameters from 1/8 to 3/4 in.¹ Fig. 5.1 shows a typical choke schematic.

The Willis choke² shown in **Fig. 5.2** is an example of an MOV. This choke consists of a stationary ceramic disk and a movable ceramic disk, each with two holes. The size of the opening can be changed by rotating the movable disk relative to the stationary disk, as shown in **Fig. 5.3**. When changing the opening size, the resulting flow path can cause the fluids to impact on the pipe wall downstream of the valve, potentially causing erosion problems. Erosion concepts are described in Chap. 6.

Fig. 5.2—Multiple orifice valve wellhead choke design (after Willis Oil Tool Co.²).

5.3.1 Single-Phase Liquid Flow. Single-phase liquid flow seldom occurs in wellhead chokes because wellhead pressures are almost always below the bubblepoint pressure of the produced fluids. Because sonic velocities are high for single-phase liquids, flow behavior is always subcritical. Eq. 5.1, which can be developed from a combination of Bernoulli's equation⁴ and conservation of mass, describes single-phase flow of an incompressible liquid through a choke.

$$q = CA \sqrt{\frac{2g_c \Delta p}{\rho}}.$$
 (5.1)

In oil field units, this equation becomes

$$q = 22,800Cd_{ch}^2 \sqrt{\frac{\Delta p}{\rho}}, \qquad (5.2)$$

where q is in B/D and d_{ch} = the choke diameter in inches. Choke diameter is frequently called "bean" size and is measured in 64ths of an inch.

The flow coefficient, C, in Eqs. 5.1 and 5.2 accounts for all irreversibilities, such as friction. C can be determined experimentally and depends primarily on the type of restriction (i.e., venturi, nozzle, orifice, or choke), the ratio of the restriction diameter to the pipe diameter, and the Reynolds number. Fig. 5.6 shows the flow-coefficient behavior for a nozzle.

5.3.2 Single-Phase Gas Flow. For gases, Bernoulli's equation can be combined with an isentropic (adiabatic-frictionless) equation of state. All irreversible losses are accounted for through a discharge coefficient. The resulting Eq. 5.3⁷ is applicable for both critical and subcritical flow. However, for critical flow, the pressure ratio $y = p_2/p_1$ is replaced by the critical-pressure ratio, y_c .

$$q_{sc} = \frac{C_n p_1 d_{ch}^2}{\sqrt{\gamma_s T_1 Z_1}} \sqrt{\left(\frac{k}{k-1}\right) \left(y_k^2 - y_k^{k+1}\right)}.$$
 (5.3)

where

$$C_n = \frac{C_s C_D T_{sc}}{p_{sc}}.$$
 (5.4)

Table 5.1 gives values for the constants in Eqs. 5.3 and 5.4 for both customary and SI units.

The critical-pressure ratio for a gas with a ratio of specific heats $k = C_p/C_v$ is given by

$$y_c = \left(\frac{p_2}{p_1}\right)_c = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$$
. (5.5)

TABLE 5.1-CONSTANTS AND UNITS FOR EQS. 5.37 AND 5.4		
Symbol	Customary	SI Metric
q _{sc}	Mscf/D	m ³ /d
d _{ch}	in.	mm
p	psia	kPa
т	°R	к
C _s	27.611	1.6259
C _D	0.865	0.865
ρ _{sc}	14.696 psia	101.325 kPa
T sc	519.68 °R	273.16 K
C _n	844.57	3.7915

Critical-Flow Boundary. Several authors have developed methods to predict the critical-flow boundary in multiphase flow.

Ashford and Pierce. Ashford and Pierce⁸ developed an expression for total-mass flow rate of a multiphase mixture. They assumed isentropic flow through the restriction, an incompressible liquid, no liquid flashing in the choke, and a homogeneous mixture. Eq. 5.6 assumes the derivative of the flow rate with respect to pressure ratio is zero at the critical boundary.

$$y_{c} = \frac{\frac{2R_{1}}{k\left(1+R_{1}y_{c}^{-\frac{1}{k}}\right)}\left[\left(\frac{R_{1}}{b}\right)(1-y_{c}^{b})-y_{c}+1\right]y_{c}^{-e}-1}{R_{1}},$$
(5.6)

where

$$b = \frac{k-1}{k}$$

and

$$e = \frac{k+1}{k}$$

Pipeline inspection gauge

A pipeline inspection gauge or pig in the pipeline industry is a tool that is sent down a pipeline and propelled by the pressure of the product in the pipeline itself. There are four main uses for pigs:

- 1. physical separation between different liquids being transported in pipelines;
- 2. internal cleaning of pipelines;
- 3. inspection of the condition of pipeline walls (also known as an Inline Inspection (ILI) tool);
- 4. capturing and recording geometric information relating to pipelines (e.g. size, position).

Session 11: Mechanistic models

The Taylor-bubble-rise velocity is equal to the centerline velocity plus the Taylor-bubble-rise velocity in a stagnant liquid column.

$$v_{TB} = 1.2v_m + 0.35 \left[\frac{gd(\rho_L - \rho_g)}{\rho_L} \right]^{\frac{1}{2}}$$
 (4.190)

$$v_{gLS} = 1.2v_m + 1.53 \left[\frac{g\sigma_L(\rho_L - \rho_g)}{\rho_L^2} \right]^{\nu_A} H_{LLS}^{0.5}, \quad \dots \quad (4.191)$$

$$H_{gLS} = \frac{v_{Sg}}{0.425 + 2.65v_m}.$$
 (4.194)

$$\overline{A} = H_{gLS}(v_{TB} - v_{gLS}) + v_m. \quad (4.196)$$

With v_{TB} and H_{gLS} given by Eqs. 4.190 and 4.194, respectively, \overline{A} can be determined readily from Eq. 4.196. Eq. 4.195 can be solved for H_{LTB} by use of an iterative-solution method. Defining the left side of Eq. 4.195 as $F(H_{LTB})$,

$$F(H_{LTB}) = (9.916\sqrt{gd})(1 - \sqrt{1 - H_{LTB}})^{0.5} H_{LTB}$$
$$- v_{TB}(1 - H_{LTB}) + \overline{A}. \qquad (4.197)$$

The derivative of Eq. 4.197 with respect to H_{LTB} yields

 $F'(H_{LTB}) = v_{TB} + (9.916\sqrt{gd})$ $\times (1 - \sqrt{1 - H_{LTB}})^{0.5}$ $+ \frac{H_{LTB}}{4\sqrt{1 - H_{LTB}(1 - \sqrt{1 - H_{LTB}})}} (4.198)$

Eqs. 4.197 and 4.198 suggest that the Newton-Raphson approach can be incorporated easily to determine H_{LTB} , the root of Eq. 4.197. Vo and Shoham also showed that, if a root exists in the interval of (0,1), the root is unique. Thus,

$$H_{LTB_{j+1}} = H_{LTB_j} - \frac{F\left(H_{LTB_j}\right)}{F'\left(H_{LTB_j}\right)}. \qquad (4.199)$$

The velocity v_{LTB} of the falling film around the Taylor bubble can be correlated with the film thickness, δ_L by use of the Brotz⁴¹ expression,

$$v_{LTB} = \sqrt{196.7g\delta_L}, \qquad (4.192)$$

where δ_L is the constant film thickness for fully developed slug flow. From geometrical considerations, v_{LTB} can be expressed in terms of the Taylor-bubble void fraction to give

$$v_{LTB} = 9.916 \left[gd \left(1 - \sqrt{H_{gTB}} \right) \right]^{1/2}$$
. (4.193)

The liquid-slug void fraction can be obtained from the correlation developed by Sylvester,⁴⁰ who used data from Fernandes *et al.*³⁹ and Schmidt.⁴²

Mass balances for steady-state liquid and gas transfer between the liquid slug and the Taylor bubble, respectively, are

$$(v_{TB} - v_{LLS})H_{LLS} = [v_{TB} - (-v_{LTB})]H_{LTB} \dots (4.188)$$

and

$$(v_{TB} - v_{gLS})(1 - H_{LLS}) = (v_{TB} - v_{gTB})(1 - H_{LTB}).$$
(4.189)

For fully developed slug flow, the elevation component of the pressure gradient occurring across a slug unit is given by

$$\left(\frac{\mathrm{d}p}{\mathrm{d}L}\right)_{el} = \left[(1-\beta)\rho_{LS} + \beta\rho_{g}\right]g\sin\theta, \quad \dots \quad (4.200)$$

where

$$\rho_{LS} = \rho_L H_{LLS} + \rho_g (1 - H_{LLS}). \quad \quad (4.201)$$

Eq. 4.200 assumes that the liquid film around the Taylor bubble does not contribute to the elevation component. Friction losses were assumed to occur only across the liquid slug and are neglected along the Taylor bubble. Therefore, the friction component of the pressure gradient is

$$\left(\frac{\mathrm{d}p}{\mathrm{d}L}\right)_{f} = \frac{f_{LS}\rho_{LS}v_{m}^{2}}{2d}(1-\beta), \quad \dots \quad \dots \quad \dots \quad \dots \quad (4.202)$$

where f_{LS} is obtained from a Moody diagram (Fig. 2.2) for a Reynolds number defined by

$$N_{\mathrm{Re}_{LS}} = \frac{\rho_{LS} v_m d}{\mu_{LS}}.$$
 (4.203)

Session 12: slug and pigs

Session 13: Heat Transfer in Multiphase flow

2.6 Conservation of Energy

_

Application of energy conservation to fluid flow in pipes requires that in a given pipe segment the energy in, minus the energy out, plus the heat energy transferred to or from the surroundings must equal the rate of energy accumulation.¹⁵

$$\frac{\partial}{\partial t}(\rho e) = \frac{\partial}{\partial L} \left[\rho v \left(e + \frac{p}{\rho g_c J} \right) \right] + \frac{Q \pi d}{A}. \quad (2.65)$$

For steady-state flow, Eq. 2.65 reduces to

$$\frac{\mathrm{d}}{\mathrm{d}L}\left[\rho v \left(e + \frac{p}{\rho g_c J}\right)\right] = \frac{-Q\pi d}{A}.$$
 (2.66)

The parameter J is the mechanical equivalent of heat and is necessary when dealing with customary units where mechanical energy and thermal energy have different units.

Expanding the left side of Eq. 2.66 yields

$$\rho v \frac{\mathrm{d}}{\mathrm{d}L} \left(e + \frac{p}{\rho g_c J} \right) + \left(e + \frac{p}{\rho g_c J} \right) \frac{\mathrm{d}(\rho v)}{\mathrm{d}L} = \frac{-Q\pi d}{A}.$$
(2.67)

In Eqs. 2.66 and 2.67, e is the intrinsic specific energy and is defined by

$$e = \frac{gL\sin\theta}{g_c J} + \frac{1}{2} \frac{v^2}{g_c J} + u. \quad (2.68)$$

Combining Eqs. 2.67 and 2.68 with Eq. 2.2 from conservation of mass principles yields

$$\rho v \frac{\mathrm{d}}{\mathrm{d}L} \left(\frac{gL \sin \theta}{g_c J} + \frac{1}{2} \frac{v^2}{g_c J} + u + \frac{p}{\rho g_c J} \right) = \frac{-Q\pi d}{A}.$$
(2.69)

Because specific enthalpy is defined as

$$h = u + \frac{p}{\rho g_c J}. \qquad (2.70)$$

Eq. 2.69 can be expressed as

$$\rho v \frac{g \sin \theta}{g_c J} + \frac{\rho v v}{g_c J} \frac{d v}{dL} + \rho v \frac{d h}{dL} = \frac{-Q \pi d}{A}. \quad (2.71)$$

Finally, solving for the enthalpy gradient yields

The heat flux, Q, is defined in terms of overall heat-transfer coefficient and temperature difference between the fluids and the surroundings. Thus,

$$Q = U(T_f - T_e). \qquad (2.73)$$

Eq. 2.72 clearly shows that the steady-state enthalpy-gradient equation is made up of three components. Thus,

where

$$\left(\frac{\mathrm{d}h}{\mathrm{d}L}\right)_{HT} = -\frac{U\pi d \left(T_f - T_e\right)}{w}.$$
 (2.75)

2.6.1 Wellbore Heat Transfer. When hot reservoir fluids enter a wellbore and begin to flow to the surface, they immediately begin losing heat to the cooler surrounding rock. The surrounding rock gradually heats up, reducing the temperature difference and the heat transfer between the fluids and the rock. Eventually, for a constant-mass flow rate, the earth surrounding the well reaches a steady-state temperature distribution. Prediction of fluid temperatures in the wellbore as a function of depth and time is necessary to determine the fluid's physical properties and calculate pressure gradients.

Because of the high thermal conductivity and relatively small radial distance between the flowing fluids and the borehole wall, heat transfer in this region normally can be considered steady state. All heat lost by the fluids instantaneously flows through the wellbore and into the surrounding rock. An axial cross section of a typical wellbore is shown in **Fig. 2.7**. The following description of steadystate heat transfer in a wellbore would have to be modified for other types of completions. Heat transfer within the tubing and in a fluid-filled annulus is primarily a result of convection. Heat transfer through the tubing and casing walls and through a cement-filled annulus between the casing and borehole wall primarily results from conduction.

Heat transfer resulting from conduction can be described by Fourier's equation in radial coordinates¹⁵

$$q = -2\pi r \Delta L k \frac{\partial T}{\partial r}, \qquad (2.76)$$

where q is the amount of heat flowing radially through a solid with thermal conductivity, k. Integration of Eq. 2.76 gives

$$T_2 - T_1 = \frac{q}{2\pi\Delta L} \frac{\ln\left(\frac{r_1}{r_2}\right)}{k_{1-2}}.$$
 (2.77)

Heat transfer resulting from radial convection can be described by¹⁵

 $q = 2\pi r \Delta L h \Delta T, \qquad (2.78)$

where h = local convective-film coefficient.

If steady-state heat transfer occurs in the wellbore, q is constant. Expressions for temperature change through the wellbore can be developed from Eqs. 2.77 and 2.78 as follows.

For convection in the tubing,

$$T_f - T_{ti} = \frac{q}{2\pi\Delta L} \frac{1}{r_{ti}h_f}.$$
 (2.79)

For conduction through the tubing wall,

$$T_{ii} - T_{io} = \frac{q}{2\pi\Delta L} \frac{\ln\left(\frac{r_{io}}{r_{ii}}\right)}{k_t}.$$
 (2.80)

For convection through the casing/tubing annulus,

$$T_{io} - T_{ci} = \frac{q}{2\pi\Delta L} \frac{1}{r_{ci}h_{an}}$$
. (2.81)

For conduction through the casing,

$$T_{ci} - T_{co} = \frac{q}{2\pi\Delta L} \frac{\ln\left(\frac{r_{co}}{r_{ci}}\right)}{k_c}.$$
 (2.82)

For conduction through the cement in the casing/borehole annulus,

$$T_{co} - T_{w} = \frac{q}{2\pi\Delta L} \frac{\ln\left(\frac{r_{w}}{r_{co}}\right)}{k_{cem}}.$$
 (2.83)

$$T_{co} - T_{w} = \frac{q}{2\pi\Delta L} \frac{\ln\left(\frac{r_{w}}{r_{co}}\right)}{k_{com}}.$$
 (2.83)

Heat transfer into the surrounding rock is by heat conduction and is a transient process. The transient radial-heat-conduction equation is identical to the diffusivity equation encountered in transient welltest analysis.³¹ The infinite-reservoir, line-source solution is

$$T_w - T_e = \frac{q}{2\pi\Delta L} \frac{f(t)}{k_e}, \qquad (2.84)$$

where T_e = the undisturbed geothermal earth temperature, f(t), is given by

$$f(t) = \frac{1}{2} E_i \left(\frac{-r_w^2}{4\alpha t} \right), \qquad (2.85)$$

and α = the earth thermal diffusivity defined as

$$a = \frac{k_e}{\rho C}.$$
 (2.86)

To monitor temperatures at the wellbore, the logarithmic approximation to the E_i solution is valid for times greater than 1 week.³² Thus, for x < 0.0025

$$E_i(-x) \approx \ln(x) + 0.5772$$
 (2.87)

and

 $f(t) = 0.405 + 0.5 \ln(t_{Dw}), \dots (2.88)$

where

$$t_{Dw} = \frac{at}{r_w^2}.$$
 (2.89)

Hasan and Kabir³³ showed that for typical reservoirs Eq. 2.88 can cause significant errors if applied to times less than 250 hours. They presented Eqs. 2.90 and 2.91 as simplified equations that, when used together, are valid for all times.

If $t_{Dw} \leq 1.5$,

$$f(t) = 1.1281 \sqrt{t_{Dw}} (1 - 0.3 \sqrt{t_{Dw}}).$$
 (2.90)

If
$$t_{Dw} > 1.5$$
,

$$f(t) = \left[0.4063 + 0.5 \ln(t_{Dw})\right] \left(1 + \frac{0.6}{t_{Dw}}\right). \quad \dots \quad \dots \quad (2.91)$$

Hasan and Kabir³⁴ also stated that, in most cases of oil production, the temperature difference across the annulus is usually small and convective (natural) heat transfer becomes important. Unfortunately, the literature reports no work on natural convection in vertical annular geometry. Hasan and Kabir recommended using

$$h_{an} = \frac{0.049 (N_{Gr} N_{Pr})^{1/3} N_{Pr}^{0.074} k_{an}}{r_{to} \ln \left(\frac{r_{Cl}}{r_{to}}\right)}, \qquad (2.92)$$

where the Grashof number, N_{Gr} reflects the extent of motion of the annulus fluid resulting from natural convection.

$$N_{\rm Gr} = \frac{(r_{ci} - r_{io})^3 g \rho_{an}^2 \beta (T_{io} - T_{ci})}{\mu_{an}^2}.$$
 (2.93)

The density of the heated fluid next to the tubing wall is less than the fluid next to the casing, creating a buoyancy force. The product of β (coefficient of thermal expansion) and the temperature difference is a measure of the density difference. The viscous force working against the buoyancy generates a circular motion of the fluid in the annulus. The Prandtl number, $N_{\rm Pr}$ is a measure of the interaction between the hydrodynamic boundary layer and the thermal boundary layer and is defined as

Combining Eqs. 2.79 through 2.84 determines the total temperature change between the fluids and the undisturbed geothermal temperature of the surrounding rock.

$$T_{f} - T_{e} = \frac{q}{2\pi\Delta L} \left[\frac{1}{r_{el}h_{f}} + \frac{\ln\left(\frac{r_{eo}}{r_{el}}\right)}{k_{t}} + \frac{1}{r_{cl}h_{an}} + \frac{\ln\left(\frac{r_{co}}{r_{cl}}\right)}{k_{c}} + \frac{\ln\left(\frac{r_{w}}{r_{co}}\right)}{k_{cem}} + \frac{f(t)}{k_{e}} \right]. \quad (2.95)$$

A simple expression for the total heat loss from the fluids in the tubing can be estimated from Newton's law of cooling,¹⁵

 $q = 2\pi r_{to} \Delta L U \Delta T, \qquad (2.96)$

where U = an overall heat-transfer coefficient. Comparing Eqs. 2.95 and 2.96, it is evident that $(r_{to}U)^{-1}$ is the bracketed term in Eq. 2.95.

Temperature profile

Because enthalpy is a state property, h = h(p,T), a change in enthalpy can be calculated by considering effects of temperature and pressure separately. Thus,

$$dh = \left(\frac{\partial h}{\partial T}\right)_{p} dT + \left(\frac{\partial h}{\partial p}\right)_{T} dp$$
$$= C_{p} dT + \left(\frac{\partial h}{\partial p}\right)_{T} dp. \qquad (2.97)$$

Consider an isenthalpic process so that

$$\mathrm{d}h = 0 = C_p \mathrm{d}T + \left(\frac{\partial h}{\partial p}\right)_T \mathrm{d}p,$$

or

$$\left(\frac{\partial h}{\partial p}\right)_T = -C_p \left(\frac{\mathrm{d}T}{\mathrm{d}p}\right)_h = -C_p \eta, \quad \dots \quad \dots \quad \dots \quad (2.98)$$

where η = the Joule-Thompson coefficient and represents isenthalpic cooling (or heating) by expansion. Combining Eqs. 2.97 and 2.98 gives

$$dh = C_p dT - C_p \eta dp. \qquad (2.99)$$

Combining Eqs. 2.99 and 2.72 gives

$$C_p \frac{\mathrm{d}T_f}{\mathrm{d}L} - C_p \eta \frac{\mathrm{d}p}{\mathrm{d}L} =$$

$$-\frac{g\sin\theta}{g_c J}-\frac{v}{g_c J}\frac{\mathrm{d}v}{\mathrm{d}L}-\frac{U\pi d}{w}\left(T_f-T_e\right). \quad (2.100)$$

Eq. 2.100 can be simplified to this differential equation.

$$\frac{\mathrm{d}T_f}{\mathrm{d}L} + \frac{T_f}{A} = \frac{T_e}{A} + \frac{1}{J\rho C_p} \frac{\mathrm{d}p}{\mathrm{d}L}\phi, \qquad (2.101)$$

where

$$A = \frac{C_p w}{U \pi d} \dots (2.102)$$
and

$$\phi = \left[\frac{J \rho \eta C_p \frac{dp}{dL} - \frac{\rho g \sin \theta}{g_c} - \frac{\rho v}{g_c} \frac{dv}{dL}}{\frac{dp}{dL}} \right] \dots (2.103)$$

If the surrounding temperature varies linearly with depth,

$$T_e = T_{ei} - g_G L \sin \theta, \qquad (2.104)$$

where T_{ei} = surrounding temperature at the inlet of the pipe and is often taken as the reservoir temperature. The geothermal temperature gradient, g_G , typically varies from approximately 1.0 to 2.0°F/100 ft of vertical depth, depending on the thickness of the earth crust, presence of volcanic activity, and other such factors.

Combining Eqs. 2.101 and 2.104 yields a generalized differential equation that incorporates both the enthalpy- and pressure-gradient equations with no limiting assumptions. Thus,

$$\frac{\mathrm{d}T_f}{\mathrm{d}L} + \frac{T_f}{A} = \frac{T_{ei}}{A} - \frac{g_O L \sin\theta}{A} + \frac{1}{J\rho C_p} \frac{\mathrm{d}p}{\mathrm{d}L}\phi. \quad \dots \dots \quad (2.105)$$

Eq. 2.106 degenerates to all the more restrictive approximate analytical expressions to predict temperatures of fluids flowing in pipes.

For the case of horizontal flow, where $\theta = 0^{\circ}$, and neglecting acceleration effects, Eq. 2.103 simplifies to

and Eq. 2.106 degenerates to

$$T_f = T_{\epsilon i} + (T_i - T_{\epsilon i})e^{-L/A} + \eta \frac{\mathrm{d}p}{\mathrm{d}L}A(1 - e^{-L/A}).$$

..... (2.108)

Eq. 2.108 is equivalent to the Coulter and Bardon³⁷ equation to predict temperatures in horizontal pipelines.

For an ideal gas, $\eta = 0$, and neglecting acceleration effects, Eq. 2.103 simplifies to

and Eq. 2.106 degenerates to

$$T_f = (T_{ei} - g_G L \sin \theta) + (T_i - T_{ei})e^{-L/A}$$

+ $g_G \sin \theta A (1 - e^{-L/A}) - \frac{g \sin \theta}{Jg_c C_p} A (1 - e^{-L/A}),$
For the case of an incompressible liquid,

$$\eta = -\frac{1}{JC_{\mu}\rho} \qquad (2.111)$$

and

$$\phi = \left(\frac{-\frac{dp}{dL} - \frac{\rho g \sin \theta}{g_c} - \frac{\rho v}{g_c} \frac{dv}{dL}}{\frac{dp}{dL}}\right) = \left(\frac{\tau \pi d}{\frac{A}{dL}}\right). \quad \dots \quad (2.112)$$

Neglecting friction, $\phi = 0$, and Eq. 2.106 degenerates to

$$T_f = (T_{ei} - g_G L \sin \theta) + (T_i - T_{ei})e^{-L/A}$$
$$+ g_G \sin \theta A (1 - e^{-L/A}), \qquad (2.113)$$

which is equivalent to the Ramey expression for incompressibleliquid flow.

Comparison of Eqs. 2.106 and 2.113 shows that the Alves *et al.*³⁶ solution is actually the Ramey equation for single-phase liquid, plus a correction term. The correction term is a function of the total pressure gradient and the dimensionless parameter, ϕ . Analysis of this dimensionless coefficient can show when consideration of the correction term becomes important.

Calculation of flowing temperatures as a function of depth and time can be very tedious because of the complexity of the overall heat-transfer coefficient in Eq. 2.96. Shiu and Beggs³⁸ proposed an empirical correlation for A that was developed from a broad set of flowing-temperature surveys. The resulting equation is independent of time

where w is in pounds per second, d_{ti} is in inches, and ρ_L is in pounds per cubic foot

Fig. 3.10—Marching algorithm for a calculation increment.

Session 14: Two phase flow and wells design application

objective

The mechanics of fluid flow in every component in a well's plumbing system affects the flow rate. Accurate well design is the key to achieving optimum flow rate. Consequently, understanding the mechanics of fluid flow through each component, from the reservoir to the first stage of separation, is imperative for accurate well design. The overall objective of this chapter is to present example applications of multiphase-flow theories to well design and optimization. It also provides a brief discussion of the reservoir flow into the wellbore to enable well design calculations.

The well design methods presented in this chapter also are used to troubleshoot well problems. In this context, some of the key constraining phenomena in well design, such as gas-well loading, erosion, and formation of natural gas hydrates, are also discussed.

The plumbing system is an interfacing conduit between the reservoir and the surface handling facilities. Without it, the hydrocarbons cannot become a tangible asset. For optimal production, a well design requires complex engineering considerations that depend on well components. Optimal production yields a maximum return on investment, not a maximum production rate. **Fig. 6.1** shows the major components with substantial pressure losses in a typical well. A production system consists of the following major components.¹⁻⁹

- Porous medium.
- Completion (stimulation, perforations, and gravel pack).
- Tubing with safety valve and choke.
- Artificial lift system (pump and gas-lift valves among others).

• Flowline with choke and other piping components (valves, elbows, and other such elements) from the wellhead to the first-stage separator.

Fig. 6.3—Typical tubing-intake curve for producing wells.

6.3 Inflow Performance

Inflow performance relationship (IPR) is defined as the functional relationship between the production rate from the reservoir and the bottomhole flowing pressure. Gilbert² first proposed well analysis using this relationship. IPR is defined in the pressure range between the average reservoir pressure and atmospheric pressure. The flow rate corresponding to atmospheric bottomhole flowing pressure is defined as the absolute open flow potential (AOFP) of the well, whereas the flow rate is always zero when the bottomhole pressure is the average reservoir pressure, representing a shut-in condition. **Fig. 6.6** presents a typical IPR based on Darcy's law for single-phase liquid flow. The actual flowing bottomhole pressure also depends on the separator pressure and the pressure loss in the flow conduits up to the depth of midperforation.

6.3.1 Single-Phase Liquid Flow. For single-phase oil or liquids, the IPR shown in Fig. 6.6 is stated by Darcy's law^{10,11} for radial flow as

where $q_o = \text{oil}$ flow rate into the well, STBO/D; $B_o = \text{formation volume factor of oil, bbl/STBO, (see Appendix B); <math>\mu_o = \text{viscosity of oil, cp, (see Appendix B); } k_o = \text{effective permeability of the formation to oil, md; } h = \text{net thickness of the formation, ft; } \overline{p}_r = \text{average reservoir pressure, psia; } p_{wf} = bottomhole flowing pressure, psia; } r_e = \text{radius of drainage, ft} = \sqrt{A/\pi}$, where A is area of circular drainage, ft^2 ; $r_w =$ wellbore radius, ft; $s_t = \text{total skin; and } Dq_o = \text{pseudo-skin caused by turbulence. In oil wells, this term is insignificant, especially for low-permeability reservoirs.$

TABLE 6.5-EXAMPLE OF SKIN FACTORS AND AOFP's				
Skin, s	AOFP (STBO/D)			
-5	604			
-1	216			
0	186			
1	163			
5	110			
10	78			
50	23			

6.3.3 Single-Phase Gas Flow. Darcy's law for single-phase gas is

$$q_{g} = \frac{7.03 \times 10^{-4} k_{g} h \left(\bar{p}_{r}^{2} - p_{wf}^{2} \right)}{\bar{\mu}_{g} \bar{Z} T_{r} \left[\ln \left(\frac{r_{e}}{r_{w}} \right) - 0.75 + s_{t} + D q_{g} \right]}, \qquad (6.6)$$

where $q_g = \text{gas}$ flow rate, Mscf/D; $k_g = \text{effective permeability to}$ gas, md; $\overline{Z} = \text{gas}$ compressibility factor determined at average temperature and average pressure, fraction; $T_r = \text{average reservoir tem-}$ perature, °R; and $\overline{\mu}_g = \text{gas}$ viscosity calculated at average pressure and average temperature, cp.

Fig. 6.14---Typical systems graph.

Fig. 6.22A—Production-systems graph for GLR sensitivity.

Fig. 6.22B—GLR sensitivity for gas-lift design and optimization.

6.6 Gas-Well Loading

Gas wells often produce a liquid phase, such as oil, condensates, or even interstitial water. Depending on the phase behavior of the gas, it is even conceivable that a well producing dry gas may have liquid in the wellbore. This problem can be particularly severe in condensate or retrograde condensate reservoirs. If the velocity of the producing gas is sufficiently high, the wellbore liquids are produced to the surface and the well does not accumulate any liquids. However, in low-permeability gas wells, particularly with low reservoir pressures, the gas velocity may not be sufficient to lift the liquid phase to the surface unless the tubing diameter is reduced to attain the liquid unloading velocity. Lower velocities result in accumulation of liquid in the well. This liquid accumulation eventually can create enough hydrostatic pressure in the wellbore to curtail gas production severely, even completely stopping it with time. This phenomenon is called gas-well loading.34-42 In oil wells with high liquid velocity this may not be a problem. Artificial-lift methods can be used to mitigate the problem. In gas-condensate reservoirs, particularly in the presence of a large retrograde envelope, the effective permeability to gas can be severely reduced if condensation occurs near the wellbore. This may drastically reduce the gas velocity in the wellbore, causing severe well-loading problems.

6.7 Erosional Velocity

Erosion is the physical removal of pipe material in contact with a flowing fluid. Erosion limits the life of flow strings. Continuous excessive erosion often leads to mechanical failure, leakage, or both. Erosion is caused by cavitation or bubble collapse and by the impingement of liquid or solid particles on the pipe wall. But this subject is very controversial and often not emphasized in design. The mitigation procedure used in this section should be used as guidelines for proper design.

To control erosion, the American Petroleum Inst. (API)⁴³ recommends limiting the maximum velocity in the flow string to a critical value called erosional velocity. To ensure a predesigned life of flow strings, erosional velocity can be calculated from this empirical equation.

$v_e =$	≕ <u>C</u> ,	••••	•••••		•••••		(6.23)
---------	--------------	------	-------	--	-------	--	--------

where v_e is the erosional velocity in ft/sec, ρ is the density of the flowing fluid in lbm/ft³, and C is an empirical constant. For sand-free flow, the API study recommends C factors of 100 for continuous flow and 150 for intermittent flow. For sand-laden fluids, API

$$h = 496,920 [q_{sd}v_p^2/(Td^2)], \qquad (6.25)$$

where $h = \text{erosion penetration rate, mil/yr}; q_{sd} = \text{sand production rate, ft}^3/D; v_p = \text{particle impact velocity, ft/sec}; T = \text{elbow metal hardness, psi; and } d = \text{elbow diameter, in.}$

Salama and Venkatesh obtained this expression for erosional velocity in ft/sec. Assuming particle impact velocity equals flow stream velocity in Eq. 6.25.

$$v_e = 1.73 d / \sqrt{q_{sd}}$$
 (6.26)

This equation assumes hardness $T = 1.55 \times 10^5$ psi and an allowable penetration rate of h = 10 mil/year. **6.8.1 Permafrost/Marine Environment.** Permafrost is the frozen or semifrozen alluvial formation found in arctic climates. Depending on the geographical area, permafrost thickness may exceed 2,000 ft. Because of permafrost on Alaska's North Slope, some unusual production problems have been reported.^{57,58} Many of them are related to the abnormal geothermal gradients in the area. The permafrost zone is abnormally cold with low geothermal gradients (0.8 to 3.1°F/100 ft, on the basis of a study of 34 wells by Godbole and Ehlig-Economides⁵⁷), whereas the geothermal gradient below the base of permafrost was found by those authors and Lachenbruch *et al.*⁵⁸ to be in the range of 1.4 to 5.4°F/100 ft. There is also a significant difference in the flowing and static temperature gradients in these zones.

Similar problems⁶⁰⁻⁶² caused by abnormal temperature gradients also have been observed in marine pipelines, where a negative hydrothermal gradient⁶⁰ in sea water follows a positive geothermal gradient below the seabed. Thus, in a marine environment with subsea wells, wax deposition and hydrate problems⁶² may be expected, depending on the characteristics of the produced fluid.

Fig. 6.28—Geothermal and hydrothermal gradient in different environments.

Sessions 15: Gas Hydrates

Typical stable hydrate structures

S

sH

W. Mao et al, Physics Today 2007 241

Comparison Between Type I and Type II Hydrates					
	Туре І	Type II			
Water Molecules per Unit Cell	46	136			
Cages per Unit Cell					
Small	2	16			
Large	6	8			
Theoretical Formula [†]					
All cages filled	$\rm X \times 5^3\!\!/_4 H_2O$	$X \times 5^{2}_{3} H_{2}O$			
Mole fraction hydrate former	0.1481	0.1500			
Only large cages filled	$X \times 7^2 /_3 H_2 O$	$X \times 17 \ H_2O$			
Mole fraction hydrate former	0.1154	0.0556			
Cavity Diameter (Å)					
Small	7.9	7.8			
Large	8.6	9.5			
Volume of Unit Cell (m ³)	1.728×10^{-27}	5.178×10^{-27}			
Typical Formers	CH ₄ , C ₂ H ₆ , H ₂ S, CO ₂	C ₃ H ₈ , i-C ₄ H ₁₀ , N ₂			
† = where X is the hydrate former.					

Table 2-1 Comparison Between Type I and Type II Hydrates

Figure 2-1. The polyhedral cages of Type I and Type II hydrates

Effect of guest molecule size

Figure 2-2. Comparison of guest size, hydrate type, and cavities occupied for various hydrate formers. Modified from original by von Stackelberg, 1949

Typical Hydrate Equilibrium Curve

Hydrate-Forming Conditions for Methane							
Temp. (°C)	Press. (MPa)	Phases	Composition (mol %)				
			Aqueous	Vapor	Hydrate		
0.0	2.60	L _A -H-V	0.10	0.027	14.1		
2.5	3.31	L _A -H-V	0.12	0.026	14.2		
5.0	4.26	L _A -H-V	0.14	0.026	14.3		
7.5	5.53	L _A -H-V	0.16	0.025	14.4		
10.0	7.25	L _A -H-V	0.18	0.024	14.4		
12.5	9.59	L _A -H-V	0.21	0.024	14.5		
15.0	12.79	L _A -H-V	0.24	0.025	14.5		
17.5	17.22	L _A -H-V	0.27	0.025	14.5		
20.0	23.4	L _A -H-V	0.30	0.027	14.6		
22.5	32.0	L _A -H-V	0.34	0.028	14.6		
25.0	44.1	L _A -H-V	0.37	0.029	14.7		
27.5	61.3	L _A -H-V	0.41	0.029	14.7		
30.0	85.9	L _A -H-V	0.45	0.029	14.7		
Notes: Composition for the aqueous phase and for the hydrate is the mole percent of the hydrate former (CH ₄). For the vapor the composition							

is the mole percent water.

 Table 2-2

 Hydrate-Forming Conditions for Methane

Figure 20.4 Hydrate formation and dissociation regions.

Figure 20.5 Variation of hydrate formation time with subcooling (Ellision and Gallagher, 2001).

Gas Gravity Method

The gas gravity method was developed by Professor Katz and co-workers in the 1940s. The beauty of this method is its simplicity, involving only a single chart. The chart is simply a plot of pressure and temperature, with the specific gravity of the gas as a third parameter. Two such charts, one in SI Units and the other in Engineering Units, are given here in Figures 3-1 and 3-2.

The first curve on these plots (i.e., the one at the highest pressure) is for pure methane. This is the same pressure-temperature locus presented in Chapter 2.

The chart is very simple to use. First you must know the specific gravity of the gas, which is also called the relative density. Given the molar mass

Figure 3-1. Hydrate locus for sweet natural gas using the gas gravity method (SI Units)

K-Factor Method

The second method that lends itself to hand calculations is the K-factor method. This method originated with Carson and Katz (1942) (also see Wilcox et al., 1941), although additional data and charts have been reported since then. One of the ironies of this method is that the original charts of Carson and Katz (1942) have been reproduced over the years even though they were originally marked as "tentative" by the authors.

The K-factor is defined as the distribution of the component between the hydrate and the gas:

$$K_i = \frac{y_i}{s_i}$$
(3-2

where y_i and s_i are the mole fractions of component i in the vapor and hydrate, respectively. These mole fractions are on a water-free basis, and water is not included in the calculations. It is assumed that sufficient water is present to form a hydrate.

54 Natural Gas Hydrates: A Guide for Engineers

A chart is available for each of the components commonly encountered in natural gas that is a hydrate former: methane, ethane, propane, isobutane, n-butane, hydrogen sulfide, and carbon dioxide. Versions of these charts, one set in SI Units and another in American Engineering Units, are included in Appendix 3.

All nonformers are simply assigned a value of infinity. This is true by definition because $s_i = 0$ for nonformers, so there is no nonformer in the hydrate.

- 1. Input the temperature, T.
- 2. Input the vapor composition, yi.
- 3. Assume a value for the pressure, P.
- 4. Set the K-factors for all nonformers to infinity.
- Given P and T, obtain K-factors from the Katz charts (or from correlations) for the hydrate-forming components in the mixture.
- 6. Calculate the summation:

 $\sum y_i/K_i$

Note for nonformers the expression y_i/K_i is zero.

7. Does the summation equal unity?

That is, does $\sum y_i/K_i = 1?$

```
7a. Yes - Go to Step 10.
7b. No - Go to Step 8.
```

```
Update the pressure estimate.
```

8a. If the sum is greater than 1, reduce the pressure.
 8b. If the sum is less than 1, increase the pressure.
 8c. Use caution if the sum is significantly different from 1.

- Go to Step 4.
- 10. Convergence! Current P is the hydrate pressure.

```
11. Stop.
```

Figure 3-3. Pseudocode for performing a hydrate pressure estimation using the Katz K-factor method

Incipient Solid Formation

The other two methods are incipient solid formation points and are basically equivalent to a dew point. This is the standard hydrate calculation. The purpose of this calculation is to answer the question, "Given the temperature and the composition of the gas, at what pressure will a hydrate form?" A similar calculation is to estimate the temperature at which a hydrate will form given the pressure and the composition. The execution of these calculations is similar.

The objective functions to be solved are:

$$f_1(T) = 1 - \sum y_i / K_i$$
 (3-6)

$$f_2(\mathbf{P}) = 1 - \sum y_i / K_i$$
 (3-7)

Depending on whether you want to calculate the pressure or the temperature, the appropriate function, either Equation 3-6 or 3-7, is selected. Iterations are performed on the unknown variable until the summation is equal to unity. So, to use the first equation (Equation 3-6), the pressure is known and iterations are performed on the temperature.

Figure 3-3 shows a simplified pseudocode description of the algorithm for performing a hydrate formation pressure calculation using the K-factor method.

Hydrate physical properties

Molar Mass

The molar mass (molecular weight) of a hydrate can be determined from its crystal structure and the degree of saturation. The molar mass of the hydrate, M, is given by:

198

John J. Carroll 199

$$M = \frac{N_{w}M_{w} + \sum_{j=1}^{c} \sum_{i=1}^{n} Y_{ij}v_{i}M_{j}}{N_{w} + \sum_{j=i}^{c} \sum_{i=1}^{n} Y_{ij}v_{i}}$$
(8-1)

where N_w is the number of water molecules per unit cell (46 for Type I and 136 for Type II), M_w is the molar mass of water, Y_{ij} is the fractional occupancy of cavities of type i by component j, v_i is the number of type i cavities, n is the number of cavity types (2 for both Type I and II, but 3 for Type H), and c is the number of components in the cell.

Although this equation looks fairly complicated, it is just accounting for all of the molecules present and then using a number average to get the molar mass.

Table 8-1 summarizes the molar masses of a few hydrate formers. It is a little surprising that the molar masses of all six components are approximately equal (\sim 20 g/mol). This is because the hydrate is composed mostly of water (18.015 g/mol).

	Hydrate	Saturation		Hydrate Saturation Me		Molar Mass
	Туре	Small	Large	(g/mol)		
Methane	I	0.8723	0.9730	17.74		
Ethane	Ι	0.0000	0.9864	19.39		
Propane	Ш	0.0000	0.9987	19.46		
Isobutane	II	0.0000	0.9987	20.24		
CO ₂	I	0.7295	0.9813	21.59		
H_2S	I	0.9075	0.9707	20.87		
Note: Calculated using Equation 8-1. The saturation values were calculated using CSMHYD.						

		T	able 8-	-1	
Molar	Masses	of	Some	Hydrates	at 0°C
		_			

Density

The density of a hydrate, p, can be calculated using the following formula:

$$\rho = \frac{N_{w}M_{w} + \sum_{j=1}^{c} \sum_{i=1}^{n} Y_{ij}v_{i}M_{j}}{N_{A}V_{cell}}$$
(8-2)

where N_w is the number of water molecules per unit cell (46 for Type I and 136 for Type II), N_A is Avogadro's number (6.023 × 10²³ molecules/mole), M_w is the molar mass of water, Y_{ij} is the fractional occupancy of cavities of type i by component j, v_i is the number of type i cavities, V_{cell} is the volume of the unit cell (see Table 2-1), n is the number of cavity types (2 for both Types I and II, but 3 for Type H), and c is the number of components in the cell.

Equation 8-2 can be reduced for a single component in either a Type I or Type II hydrate to:

$$\rho = \frac{N_{w}M_{w} + (Y_{1}v_{1} + Y_{2}v_{2})M_{j}}{N_{A}V_{\text{cell}}}$$
(8-3)

Densiti	Densities of Some Hydrates at 0°C						
HydrateDensityDensityType(g/cm³)(lb/ft³)							
Methane	Methane I 0.913 57.0						
Ethane	I	0.967	60.3				
Propane II 0.899 56.1							
Isobutane II 0.934 58.3							
CO ₂	CO ₂ I 1.107 69.1						
H ₂ S	2S I 1.046 65.3						
Ice	_	0.917	57.2				
Water		1.000	62.4				
Note: Calculated using Equation 8-3. The saturation values were calcu- lated using <i>CSMHYD</i> . Properties of ice and water from Keenan et al. (1978).							

	Tal	ole 8-2		
Densities	of Son	1e Hydr	ates at	0°C

	-			
	Hydrate Type	Enthalpy of Fusion (kJ/g)	Enthalpy of Fusion (kJ/mol)	Enthalpy of Fusion (MBtu/lb)
Methane	I	3.06	54.2	23.3
Ethane	Ι	3.70	71.8	30.9
Propane	II	6.64	129.2	55.5
Isobutane	II	6.58	133.2	57.3
Ice		0.333	6.01	143

		Tat	ble 8	3-3		
Enthalpies	of H	Tusion	for	Some	Gas	Hydrates

- -

Note: Original values from Sloan (1998). Molar enthalpies of fusion converted to specific values (i.e., per unit mass) using the molar masses from Table 8-1.

Properties of ice and water from Keenan et al. (1978).

to a gas). For water, this is 2.83 kJ/g or 51.0 kJ/mol. This process is probably more comparable to the formation of a hydrate than the simple melting of ice.

One method for estimating the effect of temperature on the heat of fusion is the so-called Clapeyron approach. A Clapeyron-type equation is applied to the three-phase locus. The Clapeyron-type equation used in this application is:

$$\frac{\mathrm{d}\ln\mathrm{P}}{\mathrm{d}\mathrm{l}/\mathrm{T}} = \frac{\Delta\mathrm{H}}{z\mathrm{R}} \tag{8-4}$$

Heat Capacity

Limited experimental data are available for the heat capacity of hydrates. Table 8-4 lists some values. For comparison, ice is also included in this table. Over the narrow range of temperatures that hydrates can exist, it is probably safe to assume that these values are constants.

Thermal Conductivity

There have been limited studies into the thermal conductivity of hydrates; however, they show that hydrates are much less conductive than ice. The thermal conductivity of ice is 2.2 W/m·K, whereas the thermal conductivities of hydrates of hydrocarbons are in the range $0.50 \pm 0.01 \text{ W/m} \cdot \text{K}$.

Mechanical Properties

In general, the mechanical properties of hydrates are comparable to those of ice. In the absence of additional information, it is safe to assume that the mechanical properties of the hydrate equal those of ice. One should not

-	Hudnote	The second states in some cas regulates					
	Туре	Capacity (J/g.°C)	Capacity (J/mol·°C)	Capacity (Btu/lb·°F)			
Methane	I	2.25	40	0.54			
Ethane	I	2.2	43	0.53			
Propane	П	2.2	43	0.53			
Isobutane	п	2.2	45	0.53			
Ice 2.06 37.1 0.492							
Note: Original values from Makogon (1997). Properties of ice and water from Keenan et al. (1978).							

1	abl	e 8-4		
Heat Capacities	for	Some	Gas	Hydrates

Volume of Gas in Hydrate

The purpose of this section is to demonstrate the volume of gas encaged in a hydrate. Therefore, we examine only the methane hydrate.

The following are the properties of the methane hydrate at 0°C: the density is 913 kg/m^3 , the molar mass (molecular weight) is 17.74 kg/kmol, and methane concentration is 14.1 mole percent; this means there are 141 molecules of methane per 859 molecules of water in the methane hydrate. The density and the molar mass are from earlier in this chapter and the concentration is from Chapter 2.

This information can be used to determine the volume of gas in the methane hydrate. From the density, 1 m^3 of hydrate has a mass of 913 kg. Converting this to moles 913/17.74 = 51.45 kmol of hydrate, of which 7.257 kmol are methane.

The ideal gas law can be used to calculate the volume of gas when expanded to standard conditions (15°C and 1 atm or 101.325 kPa).

 $V = nRT/P = (7.257)(8.314)(15 + 273)/101.325 = 171.5Sm^3$

Therefore 1 m³ of hydrate contains about 170 Sm³ of methane gas. Or in American Engineering Units, this converts to 1 ft³ of hydrate contains 170 SCF of gas—not a difficult conversion. And 1 ft³ of hydrate weighs about 14.6 lb, so 1 lb of hydrate contains 11.6 SCF of methane.

By comparison, 1 m³ of liquid methane (at its boiling point 111.7K or -161.5°C) contains 26.33 kmol, which converts to 622 m³ of gas at standard conditions. Alternately, 1 m³ compressed methane at 7 MPa and 300K (27°C) (1,015 psia and 80°F) contains 3.15 kmol or 74.4 Sm³ of methane gas. The properties of pure methane are from Wagner and de Reuck (1996).

To look at this another way, to store $25,000 \,\mathrm{Sm^3}$ (0.88 MMSCF) of methane requires about $150 \,\mathrm{m^3}$ (5,300 ft³) of hydrates. This compares with $40 \,\mathrm{m^3}$ (1,400 ft³) of liquefied methane or $335 \,\mathrm{m^3}$ (11,900 ft³) of compressed methane.

Hydrate Prevention

20.3 Hydrate Prevention

Gas subsea systems typically contain small quantities of water, which allows them to be continuously treated with methanol or glycol to prevent hydrate formation. These inhibitors prevent the formation of hydrates by shifting the hydrate stability curve to lower temperatures for a given pressure. If the systems produce too much water, it is difficult to economically treat with methanol. As a result, the system designs have to incorporate insulation of almost all components of system and develop complex operating strategies to control hydrate formation during transient activities such as system start-up and shut-in.

Hydrate prevention techniques for subsea system include:

- Thermodynamic inhibitors
- Low-dosage hydrate inhibitors (LDHIs)
- Low-pressure operation
- Water removal
- Insulation, and
- Active heating.

Figure 20.6 Effect of thermodynamic inhibitors on hydrate formation.

Figure 20.7 Effect of salts on hydrate formation.

Figure 20.8 Effect of gas composition on hydrate formation.

Figure 20.9 Effect of MeOH on hydrate formation.

20.2.3 Effects of Salt, MeOH, Gas Composition

The hydrate dissociation curve may be shifted towards lower temperatures by adding a hydrate inhibitor. Methanol, ethanol, glycols, sodium chloride, and calcium chloride are common thermodynamic inhibitors. Hammerschmidt (1969) suggested a simple formula to roughly estimate the temperature shift of the hydrate formation curve.

$$\Delta T = \frac{KW}{M(100 - W)} \tag{20.1}$$

where, ΔT : temperature shift, hydrate depression [°C]

K : constant [-], which is defined in Table 20.1.

W: concentration of the inhibitor in weight percent in the aqueous phase.

M: molecular weight of the inhibitor divided by the molecular weight of water.

Inhibitor	K value	
Methanol	2335	
Ethanol	2335	
Ethylene glycol (MEG)	2700	
Diethylene glycol (DEG)	4000	
Triethylene glycol (TEG)	5400	

Table 20.1	Constant of	Equation	(20.1)	for various	inhibitors.
------------	-------------	----------	--------	-------------	-------------

20.2.4 Mechanism of Hydrate Inhibition

There are two types of hydrate inhibitors used in subsea engineering: thermodynamic inhibitors (THIs) and low-dosage hydrate inhibitors (LDHIs).

The most common thermodynamic inhibitors are methanol and MEG, even though ethanol, other glycols (DEG, TEG), and salts can be effectively used. They inhibit hydrate formation by reducing the temperature at which hydrates form. This effect is the same as adding anti-freeze to water to lower the freezing point. Methanol and MEG are the most commonly used inhibitors,

LDHIs include anti-agglomerants and kinetic inhibitors. LDHIs have found many applications in subsea systems in recent years. LDHIs prevent hydrate blockages at significantly lower concentrations, e.g., less than 1 weight percent, than thermodynamic inhibitors such as methanol and glycols. Unlike thermodynamic inhibitors, LDHIs do not change the hydrate formation temperature. They either interfere with formation of hydrate crystals or agglomeration of crystals into blockages. Anti-agglomerates can provide protection at higher subcooling than kinetic hydrate inhibitors. However, low dosage hydrate inhibitors are not recoverable and they are expensive. The difference in hydrate inhibition mechanism between LDHIs and THIs is shown in Figure 20.10.

Hydrate Remediation

20.4 Hydrate Remediation

Like the kinetics of hydrate formation, hydrate dissociation is a poorly understood subject and applying laboratory observations to field predictions has proven difficult. Part of the reason is the complicated interplay of flow, heat transfer, and phase equilibria. The dissociation behaviour of hydrate depends on the hydrate size, porosity, permeability, volume of occluded water, "age" of the deposit, and local conditions such as temperature, pressure, fluids in contact with the plug, and insulation layers over the pipeline. Hydrate remediation techniques are similar to hydrate prevention techniques, which include,

- Depressurization from two sides or one side, by reducing pressure below hydrate pressure at ambient temperature, the hydrate will become thermodynamically unstable.
- Thermodynamic inhibitors; the inhibitors can essentially melt blockages with direct hydrate contact.
- Active heating; by increasing temperature to above the hydrate dissociation temperature and providing significant heat flow to relatively quickly dissociate a blockage.
- Mechanical methods; drilling, pigging or scraping have been attempted, but are generally not recommended. thruster or pig inserted from surface vessel with coiled tubing through a work-over riser at launchers. Melting by jetting with MEG.
- Pipeline segment replacement.

20.4.1 Depressurization

Depressurization is the most common technique used to remediate hydrate blockages in production systems. Rapid depressurization should be avoided because it can result in JT cooling, which can worsen the hydrate problem and form ice. From both safety and technical standpoints, the preferred method to dissociate hydrates is to depressurize from both sides of the blockage. If only one side of a blockage is depressurized, then a large pressure differential will result across the plug, which can potentially create a high speed projectile.

When pressure surrounding a hydrate is reduced below dissociation pressure, hydrate surface temperature will cool below seabed temperature, and heat influx from the surrounding ocean will slowly melt the hydrate at the pipe boundary. Lowering pressure also drops hydrate formation temperature and helps prevent more hydrates from forming in the rest of the line. Because most gas flowlines are not insulated, hydrate dissociation can be relatively fast due to higher heat flux from pipeline surface, as compared to an insulated or buried flowline.

20.4.2 Thermodynamic Inhibitors

Thermodynamic inhibitors can be used to melt hydrate blockages. The difficulty of applying inhibitors lies in getting the inhibitor in contact with the blockage. If the injection point is located relatively close to the blockage, as may be the case in a tree or manifold, then simply injecting the inhibitor can be effective. Injecting inhibitor may not always help with dissociating a hydrate blockage, but it may prevent other hydrate blockages from occurring during remediation and restart.

If the blockage can be accessed with coiled tubing, then methanol can be pumped down the coiled tubing to the blockage. In field applications, coiled tubing has reached as far as 14800 ft in remediation operations, and industry is currently targeting lengths of 10 miles.

20.4.3 Active Heating

Active heating can remediate hydrate plugs by increasing temperature and heat flow to the blockage; however, safety concerns arise when applying heat to a hydrate blockage. During the dissociation process, gas will be released from the plug. If the gas is trapped within the plug, then the pressure can build and potentially rupture the flowline. Heating evenly applied to a flowline can provide a safe, effective remediation.

Active heating can remediate a block age within hours, whereas depressurization can take days or weeks. The ability to quickly remediate hydrate blockages can enable less conservative designs for hydrate prevention.

20.4.4 Mechanical Methods

Pigging is not recommended for removing a hydrate plug because they can compress the plug, which will compound the problem. If the blockage is complete, it will not be possible to drive a pig. For a partial blockage, pigging may create a more severe blockage.

20.4.5 Safety Considerations

Knowledge of the location and length of a hydrate blockage is very important in determining the best approach to remediation, although the methodology is not well defined, This information facilitates both safety considerations in terms of distance from the platform and time necessary to dissociate the blockage.

When dissociating a hydrate blockage, operators should assume that multiple plugs may exist both from safety and technical standpoints. The following two important safety issues should be kept in mind:

- Single sided depressurization can potentially launch a plug like a high-speed projectile and result in ruptured flowlines, damaged equipment, release of hydrocarbons to the environment, and/or risk to personnel.
- Actively heating a hydrate blockage needs to be done such that any gas released from the hydrate is not trapped.

Thermodynamic Hydrate Inhibitors			Kinetic Hydrate Inhibitors	Anti-Agglomerant Inhibitors		
			Applications			
1.	Multiphase	1.	Multiphase	1.	Multiphase	
2.	Gas & Condensate	2.	Gas & Condensate	2.	Condensate	
3.	Crude Oil	3.	Crude Oil?	3.	Crude Oil	
			Benefits			
1.	Robust & effective	1.	Lower OPEX/CAPEX	1.	Lower OPEX/CAPEX	
2.	Well understood	2.	Low volumes (< 1 wt%)	2.	Low volumes (< 1wt%)	
3.	Predictable	3.	Environmentally friendly	3.	Environmentally friendly	
4.	Proven track-record	4.	Non-toxic	4.	Non-toxic	
		5.	Tested in gas systems	5.	Wide range of subcooling	
			Limitations			
1.	Higher OPEX/CAPEX	1.	Limited subcoolings (<10°C)	1.	Time dependency?	
2.	High volumes (10-60 wt%)	2.	Time dependency	2.	Shutdowns?	
3.	Toxic / hazardous	3.	Shutdowns	3.	Restricted to lower watercuts	
4.	Environmentally harmful	4.	System specific - testing	4.	System specific - testing	
5.	Volatile - losses to vapour	5.	Compatibility	5.	Compatibility	
6.	'Salting out'	6.	Precipitation at higher temps	6.	Limited experience	
		7.	Limited exp. in oil systems	7.	No predictive models	
		8.	No predictive models			

Table 20.3 Summary of applications, benefits & limitations of chemical Inhibitors (Pickering et al.).

E.D. Sloan, C.A. Koh 2008 283

Hydrate in the Solar system

- Ubiquitous presence in the Universe?
 - CO₂ and CH₄ clathrates on Mars
 - CH₄ clathrates on Titan
 - Source of plumes on Saturn's moon
 Enceladus
 - Clathrates in Halley's comet

W. L. Mao Stanford University

Figure 3. Proposed progression of hydrate formation. [Modified from Brooks et al. (1986).]

Production test of Mallik 2002 as hydrate production research well program

How can we recover natural gas hydrate?

We do not yet know how to recover gas from natural hydrate. We are not aware of a really practical proposal for how to recover methane from natural hydrate. We do know that there are formidable technical difficulties: (a) Although the total gas amounts are huge, most natural hydrate represents a quite low energy density; (b) substantial latent heat must be provided for dissociation; (c) the sediments are often fine grained, unconsolidated, and low permeability silts.

There are four main possibilities:

- 1. add heat and raise the temperature to out of the stability field
- depressurize the section by pumping, especially within the free gas below the BSR. The hydrate may then dissociate downward into the low pressure gas layer. However, the dissociation latent heat still must be provided
- 3. add antifreeze such as methanol; it may be possible to recover the methanol with the gas for re-use
- 4. replace the methane in the hydrate with CO_2 . An intriguing possibility is to inject the unwanted greenhouse gas CO_2 into natural methane hydrate deposits where it forms CO_2 hydrate in exchange for methane gas which, in turn, is recovered. CO_2 hydrate appears to be more energetically favourable than methane hydrate so such a replacement should occur. This an attractive way to get rid of troublesome CO_2 and recover valuable methane.

Although there are no clear answers today, it is worth remembering that many years were required to develop the technology for economic recovery of many other resources; tar sands are an example. Sometimes the answers come very quickly, sometimes only after many years. Gas hydrate is a very large potential resource, it just needs some very bright people with new ideas to find the solutions.

Liquid Hydrocarbons

The K-factor method is designed for calculations involving a gas and a hydrate. In order to extend this method to liquid hydrocarbons, the vapor-liquid K-factor should be incorporated. For the purposes of this book, these K-factors will be denoted K_V to distinguish them from the K-factor defined earlier. Therefore

$$K_{vi} = \frac{y_i}{x_i}$$
(3-8)

where x_i is the mole fraction of component i in the nonaqueous liquid.

56 Natural Gas Hydrates: A Guide for Engineers

1.	Input the temperature, T.
2.	Input the vapor composition, yi.
з.	Assume a value for the pressure, P.
4.	Set the K-factors for all nonformers to infinity.
5.	Given P and T, obtain K-factors from the Katz charts (or from correlations) for the hydrate-forming components in the mixture.
6.	Calculate the summation:
	$\sum y_i/K_i$
	Note for nonformers the expression $\boldsymbol{y}_i/\boldsymbol{K}_i$ is zero.
7.	Does the summation equal unity?
	That is, does $\sum y_i/K_i = 1$?
	7a. Yes - Go to Step 10. 7b. No - Go to Step 8.
8.	Update the pressure estimate.
	8a. If the sum is greater than 1, reduce the pressure. 8b. If the sum is less than 1, increase the pressure. 8c. Use caution if the sum is significantly different from 1.
9.	Go to Step 4.
10.	Convergence! Current P is the hydrate pressure.
11.	Stop.

Figure 3-3. Pseudocode for performing a hydrate pressure estimation using the Katz K-factor method

Computer methods

From a thermodynamic point of view, the hydrate formation process can be modeled as taking place in two steps. The first step is from pure water to an empty hydrate cage. This first step is hypothetical, but it is useful for calculation purposes. The second step is filling the hydrate lattice. The process is as follows:

pure water (α) \rightarrow empty hydrate lattice (β) \rightarrow filled hydrate lattice (H)

The change in chemical potential for this process is given as:

$$\mu^{H} - \mu^{\alpha} = (\mu^{H} - \mu^{\beta}) + (\mu^{\beta} - \mu^{\alpha})$$
(4-1)

where μ is the chemical potential and the superscripts refer to the various phases. The first term after the equals sign represents the stabilization of the hydrate lattice. The variation in the models used to estimate this term separates the various models. The second term represents a phase change for the water and can be calculated by regular thermodynamic means. This term is evaluated as follows:

$$\frac{\mu^{\beta} - \mu^{\alpha}}{RT} = \frac{\Delta\mu(T, P)}{RT} = \frac{\Delta\mu(T_{O}, P_{O})}{RT_{O}} - \int_{T_{O}}^{T} \frac{\Delta H}{RT^{2}} dT + \int_{P_{O}}^{P} \frac{\Delta v}{R\overline{T}} dP \qquad (4-2)$$

where R is the universal gas constant, T is the absolute temperature, P is the pressure, H is the enthalpy, v is the molar volume, the subscript O represents a reference state, and the Δ terms represent the change from a pure water phase (either liquid or ice) to a hydrate phase (either Type I or II). The bar over the temperature in the last term indicates that this is an average

The first model for calculating hydrate formation was that of van der Waals and Platteeuw (1959). They postulated a statistical model for hydrate formation. The concentration of the nonwater species in the hydrate was treated in a manner similar to the adsorption of a gas onto a solid. For a single guest molecule, this term is evaluated as follows:

$$\mu^{H} - \mu^{\beta} = RT \sum_{i} v_{i} ln(1 - Y_{i})$$
(4-3)

where v_i is the number of cavities of type i and Y is a probability function. The Y is the probability that a cavity of type i is occupied by a guest molecule and is given by:

$$Y_i = \frac{c_i P}{1 + c_i P} \tag{4-4}$$

The c_i in this equation is a function of the guest molecule and the cage occupied, and P is the pressure. Although it is not obvious from this discussion, the c_i 's are also functions of the temperature.

Parrish and Prausnitz

The approach of the original van der Waals and Platteeuw (1959) method provided a good basis for performing hydrate calculations, but it was not suf-

94 Natural Gas Hydrates: A Guide for Engineers

ficiently accurate for engineering calculations. One of the first models with the rigor required for engineering calculations was that of Parrish and Prausnitz (1972). There are two major differences between the original van der Waals and Platteeuw (1959) model and that proposed by Parrish and Prausnitz (1972). First, they extended the model to multicomponent mixtures of hydrate formers. This is done as follows:

$$\mu^{\mathrm{H}} - \mu^{\beta} = \mathrm{RT}\sum_{i} \nu_{i} ln \left(1 - \sum_{\mathrm{K}} Y_{\mathrm{K}i}\right)$$
(4-5)

where the second sum is over all components. The probability function for a component becomes:

$$Y_{Ki} = \frac{c_i P_K}{1 + \sum_i c_{ij} P_j}$$
(4-6)

Second, Parrish and Prausnitz (1972) replaced the partial pressure in Equation 4-6 with the fugacity. There is no simple definition for the thermodynamic concept of fugacity. Usual definitions given in thermodynamics textbooks rely on the chemical potential, which is an equally abstract quantity. For our purposes, we can consider the fugacity as a "corrected" pressure, which accounts for nonidealities. Substituting the fugacity into Equation 4-6 results in:

$$Y_{Ki} = \frac{c_i \hat{f}_K}{1 + \sum_i c_{ij} \hat{f}_j}$$
(4-7)

where \hat{f}_1 is the fugacity of component i in the gaseous mixture. This allowed their model to account for nonidealities in the gas phase and thus to extend the model to higher pressures. In addition, some of the parameters in the

Ng and Robinson

The next major advance was the model of Ng and Robinson (1977). Their model could be used to calculate the hydrate formation in equilibria with a hydrocarbon liquid. First this required an evaluation of the change in enthalpy and change in volume in Equation 4-2, or at least an equivalent version of this equation.

In the model of Ng and Robinson (1977), the fugacities were calculated using the equation of state of Peng and Robinson (1976). This equation of state is applicable to both gases and the nonaqueous liquid. Again, small adjustments were made to the parameters in the model to reflect the switch to the Peng-Robinson equation. Similarly, the Soave (1972) or any other equation of state applicable to both the gas and liquid could be used; however, the Soave and Peng-Robinson equations (or modifications of them) have become the workhorses of this industry.

It is important to note that later versions of the Parrish and Prausnitz method were also designed to be applicable to systems containing liquid formers.

Calculations

Now that one has these equations, how does the calculation proceed? For now we only consider the conditions for incipient solid formation. For example, given the temperature, at what pressure will a hydrate form for a given mixture?

96 Natural Gas Hydrates: A Guide for Engineers

First you perform the calculations assuming the type of hydrate formed. Use the equations outlined previously to calculate the free energy change for this process. This is an iterative procedure that continues until the following is satisfied:

$$\mu^{H} - \mu^{\alpha} = 0$$

Commercial Software Packages

Several software packages that are dedicated to hydrate calculations are available. Two of these are EQUI-PHASE Hydrate from D.B. Robinson and

98 Natural Gas Hydrates: A Guide for Engineers

Associates in Edmonton, Alberta, and a program by INFOCHEM in London, England. Also, the package *CSMHYD* is available with the book by Professor E.D. Sloan (Sloan, 1998) or by contacting him directly at the Colorado School of Mines in Golden, Colorado.

Most of the popular, general-purpose process simulation programs include the capability to predict hydrate formation. This often includes warnings about streams where hydrate formation is possible. These include *Hysys* from Hyprotech (Calgary, Alberta), *Prosim* from Bryan Research & Engineering (Bryan, Texas), and *Aspen* from Aspen Technology (Cambridge, Massachusetts).

At pressure greater than 10 MPa, none of the three software packages is highly accurate. *EQUI-PHASE Hydrate* predicts a hydrate temperature that is consistently less than the correlation. At extreme pressures, the error is as much as 1°C. On the other hand, both *Prosim* and *CSMHYD* predict that the hydrate forms at higher temperatures than the correlation. At very high pressure, the errors from *Prosim* become quite large. For example, at 50 MPa (7,250 psia), the difference is larger than 2°C. With *CSMHYD*, for pressure up to 50 MPa, the errors are less than 2°C; however, as the pressure continues to increase, so does the observed error.

Ethane

Figure 4-3 shows the hydrate locus for pure ethane. This figure demonstrates that this locus is different from that of methane. First, ethane tends to form a hydrate at a lower pressure than methane. More significantly,

Figure 4-3. Hydrate loci of ethane (points from correlation)

104 Natural Gas Hydrates: A Guide for Engineers

Physical properties

Molar Masses of Some Hydrates at 0°C					
	Hydrate	Saturation		Molar Mass	
	Туре	Small	Large	(g/mol)	
Methane	Ι	0.8723	0.9730	17.74	
Ethane	Ι	0.0000	0.9864	19.39	
Propane	П	0.0000	0.9987	19.46	
Isobutane	II	0.0000	0.9987	20.24	
CO ₂	Ι	0.7295	0.9813	21.59	
H ₂ S	Ι	0.9075	0.9707	20.87	
Note: Calculated using Equation 8-1.					
The saturation values were calculated using					
CSA	CSMHYD.				

 Table 8-1

 Molar Masses of Some Hydrates at 0°C

$$M = \frac{N_{w}M_{w} + \sum_{j=1}^{c} \sum_{i=1}^{n} Y_{ij}v_{i}M_{j}}{N_{w} + \sum_{j=1}^{c} \sum_{i=1}^{n} Y_{ij}v_{i}}$$
(8-1)

where N_w is the number of water molecules per unit cell (46 for Type I and 136 for Type II), M_w is the molar mass of water, Y_{ij} is the fractional occupancy of cavities of type i by component j, v_i is the number of type i cavities, n is the number of cavity types (2 for both Type I and II, but 3 for Type H), and c is the number of components in the cell.

Density

The density of a hydrate, ρ , can be calculated using the following formula:

$$p = \frac{N_{w}M_{w} + \sum_{j=1}^{c} \sum_{i=1}^{n} Y_{ij}v_{i}M_{j}}{N_{A}V_{cell}}$$
(8-2)

where N_w is the number of water molecules per unit cell (46 for Type I and 136 for Type II), N_A is Avogadro's number (6.023 × 10²³ molecules/mole), M_w is the molar mass of water, Y_{ij} is the fractional occupancy of cavities of type i by component j, v_i is the number of type i cavities, V_{cell} is the volume of the unit cell (see Table 2-1), n is the number of cavity types (2 for both Types I and II, but 3 for Type H), and c is the number of components in the cell.

Equation 8-2 can be reduced for a single component in either a Type I or Type II hydrate to:

$$\rho = \frac{N_{W}M_{W} + (Y_{I}v_{1} + Y_{2}v_{2})M_{j}}{N_{A}V_{cell}}$$
(8-3)

Densities of Some Hydrates at 0 C					
	Hydrate Type	Density (g/cm³)	Density (lb/ft ³)		
Methane	Ι	0.913	57.0		
Ethane	I	0.967	60.3		
Propane	П	0.899	56.1		
Isobutane	II	0.934	58.3		
CO ₂	I 1.107		69.1		
H_2S	Ι	1.046	65.3		
Ice	e — 0.917 57.2				
Water	Water — 1.000 62.4				
Note: Calculated using Equation 8-3. The saturation values were calcu- lated using CSMHYD. Properties of ice and water from Keenan et al. (1978).					

		Table	8-2		
Densities	of	Some	Hydrates	at	0°C

Enthalpies of Fusion for Some Gas Hydrates				
	Hydrate Type	Enthalpy of Fusion (kJ/g)	Enthalpy of Fusion (kJ/mol)	Enthalpy of Fusion (MBtu/lb)
Methane	I	3.06	54.2	23.3
Ethane	Ι	3.70	71.8	30.9
Propane	п	6.64	129.2	55.5
Isobutane	п	6.58	133.2	57.3
Ice		0.333	6.01	143

Table 8-3						
Enthalpies	of Fusion	for Some	Gas	Hvdrates		

Note: Original values from Sloan (1998). Molar enthalpies of fusion converted to specific values (i.e., per unit mass) using the molar masses from Table 8-1.

Properties of ice and water from Keenan et al. (1978).

to a gas). For water, this is 2.83 kJ/g or 51.0 kJ/mol. This process is probably more comparable to the formation of a hydrate than the simple melting of ice.

One method for estimating the effect of temperature on the heat of fusion is the so-called Clapeyron approach. A Clapeyron-type equation is applied to the three-phase locus. The Clapeyron-type equation used in this application is:

$$\frac{\mathrm{d}\ln\mathrm{P}}{\mathrm{d}1/\mathrm{T}} = \frac{\Delta\mathrm{H}}{\mathrm{zR}} \tag{8-4}$$

Heat Capacity

Limited experimental data are available for the heat capacity of hydrates. Table 8-4 lists some values. For comparison, ice is also included in this table. Over the narrow range of temperatures that hydrates can exist, it is probably safe to assume that these values are constants.

Thermal Conductivity

There have been limited studies into the thermal conductivity of hydrates; however, they show that hydrates are much less conductive than ice. The thermal conductivity of ice is 2.2 W/m·K, whereas the thermal conductivities of hydrates of hydrocarbons are in the range 0.50 ± 0.01 W/m·K.

Mechanical Properties

In general, the mechanical properties of hydrates are comparable to those of ice. In the absence of additional information, it is safe to assume that the mechanical properties of the hydrate equal those of ice. One should not

Heat Capacities for Some Gas Hydrates				
	Hydrate Type	Heat Capacity (J/g.°C)	Heat Capacity (J/mol·°C)	Heat Capacity (Btu/lb.°F)
Methane	I	2.25	40	0.54
Ethane	Ι	2.2	43	0.53
Propane	п	2.2	43	0.53
Isobutane	П	2.2	45	0.53
Ice		2.06	37.1	0.492
Note: Original values from Makogon (1997). Properties of ice and water from Keenan et al. (1978).				

Table 8-4

Volume of Gas in Hydrate

The purpose of this section is to demonstrate the volume of gas encaged in a hydrate. Therefore, we examine only the methane hydrate.

The following are the properties of the methane hydrate at 0°C: the density is 913 kg/m^3 , the molar mass (molecular weight) is 17.74 kg/kmol, and methane concentration is 14.1 mole percent; this means there are 141 molecules of methane per 859 molecules of water in the methane hydrate. The density and the molar mass are from earlier in this chapter and the concentration is from Chapter 2.

This information can be used to determine the volume of gas in the methane hydrate. From the density, 1 m^3 of hydrate has a mass of 913 kg. Converting this to moles 913/17.74 = 51.45 kmol of hydrate, of which 7.257 kmol are methane.

The ideal gas law can be used to calculate the volume of gas when expanded to standard conditions (15°C and 1 atm or 101.325 kPa).

 $V = nRT/P = (7.257)(8.314)(15 + 273)/101.325 = 171.5Sm^3$

Therefore 1 m^3 of hydrate contains about 170 Sm^3 of methane gas. Or in American Engineering Units, this converts to 1 ft^3 of hydrate contains 170 SCF of gas—not a difficult conversion. And 1 ft^3 of hydrate weighs about 14.6 lb, so 11b of hydrate contains 11.6 SCF of methane.

By comparison, 1 m³ of liquid methane (at its boiling point 111.7K or -161.5°C) contains 26.33 kmol, which converts to 622 m³ of gas at standard conditions. Alternately, 1 m³ compressed methane at 7 MPa and 300K (27°C) (1,015 psia and 80°F) contains 3.15 kmol or 74.4 Sm³ of methane gas. The properties of pure methane are from Wagner and de Reuck (1996).

To look at this another way, to store $25,000 \,\mathrm{Sm^3}$ (0.88 MMSCF) of methane requires about $150 \,\mathrm{m^3}$ (5,300 ft³) of hydrates. This compares with $40 \,\mathrm{m^3}$ (1,400 ft³) of liquefied methane or $335 \,\mathrm{m^3}$ (11,900 ft³) of compressed methane.

Session 15: Pigging and Slug Catchers

Different flow pattern in a vertical flow

Different flow pattern in a horizontal flow

Hydrodynamic parameters in a slug flow

Total pressure gradient as a function of slug parameters.

$$\left(\frac{\mathrm{d}p}{\mathrm{d}L}\right)_{el} = \rho_{LS}g\left(\frac{L_{LS}}{L_{SU}}\right), \qquad (4.298)$$

where the slip density for the gas/liquid mixture in the liquid slug is

$$\rho_{LS} = \rho_L H_{LLS} + \rho_s (1 - H_{LLS}) . \qquad (4.299)$$

The acceleration pressure-gradient component is related to the amount of energy required to accelerate the liquid film, which is initially flowing downward, to the existing upward in-situ liquid velocity in the liquid slug.

$$\left(\frac{\mathrm{d}p}{\mathrm{d}L}\right)_{acc} = \rho_L \frac{H_{LTB}}{L_{SU}} (v_{LTB} + v_{TB}) (v_{LTB} + v_{LLS}). \quad \dots \quad (4.300)$$

For a fully developed Taylor bubble, H_{LTB} and v_{LTB} are the average liquid holdup and film velocity in the entire film zone, respectively. The friction pressure gradient is obtained from

where the Fanning friction factor, f', is determined by the method presented in Chap. 2. The corresponding Reynolds number for the slug body is determined by Eq. 4.280, where ρ_{TP} is replaced by ρ_{LS} , the slug-body slip density given by Eq. 4.299.

The total pressure gradient for the slug-flow pattern then can be expressed by combining Eqs. 4.298 through 4.301 to obtain

Various types of slugs

- Terrain slugs
- Hydrodynamic slugs
- Riser based slugs
- Pigging slugs

Why slug flow?

- Frequently observed
- Leads to higher pressure gradient
- Causes Mechanical damage
- Can decrease the production rate
- Leads to a chaotic and intermittent flow

At Low Flow Rates Liquid Accumulates in the Flowline Increasing the Pressure Drop

Liquid Holdup Depends on Flowline Geometry and Flowrate

322

Liquid Holdup Can Lead to Liquid Slugging

- There are two types of slugging:
 - Hydrodynamic: Induced by the holdup and superficial velocities
 - Terrain: Induced by geometry changes in which liquid can accumulate
- In Real Flowlines, Hydrodynamic and Terrain Slugs Can Interact:
 - Difficult to predict slug length and frequency
- Slugging can lead to surges of liquid that can overwhelm slugcatchers
- Liquid holdup leads to increased pressure drops and reduced flow
- Pigs can be used to periodically remove liquid from the flowline

Hydrodynamic Slugging is Predicted by a Flow Map

Hydrodynamic Slugging Depends on the Inclination of the Flowline

Hydrodynamic Slugging is Well Understood

• The frequency of hydrodynamic slugging can be estimated from the Shea correlation:

$$F_{sL} = \frac{0.68 \cdot U_{SL}}{D^{1.2} \cdot L^{0.6}}$$

 $F_{sL} = slug frequency$ (1/s) (= no of slugs/observation time period)

D = pipeline diameter (m)

L = pipeline length (m)

- U_{sL} = superficial liquid velocity (m/s)
- Mild terrain effects can be accounted for with a fudge factor "Delay Constant"

Shea, R.H., Rasmussen, J., Hedne, P. and Malnes, D.: Holdup predictions for wet-gas pipelines compared. Oil & Gas Journal, May 19, 1997

Terrain Slugging is More Complex

Terrain or "severe" slugging causes large surges in pressure and liquid

- A: Liquid bridges a low spot in the flowline
- B: Upstream pressure builds up
- C: Pressure pushes liquid accumulation out of the low spot
- D: The pressure accumulation is released

Terrain Slugging is often Periodic

• Often characterized by a buildup and release of the liquid

Hydrodynamic Slugs Can Interact with the Terrain Slugs

Slugging can be Induced by Transient Operations

Rate Changes:

• Increasing flowrate reduces holdup

Restart:

During shutin, liquid settles in dips

A-Liquid Distribution After Shutdown

Modeling Slug Flow

- Accurate modeling slug formation and behavior is complex
- Requires tracking of the slug front and tail of each slug
- Slugs grow in inclined flow and shrink in declined flow

Without "Slugtracking" OLGA is Poor at Predicting Slug Length and Frequency

Slug catches: a simple multiphase separator

Slug Catchers Can be Huge

- Often the largest part of a gas terminal.
- Must be able to catch the largest slugs from the pipeline and allow time for the liquid to be processed.

Horizontal Slug Catcher Vessel

- Can give small particle separation (10 microns) where there is more liquid and lower gas flow.
- Useful as three phase separator.
- Becomes expensive and heavy when large sizes are required.
- Good separation up to 5 700 bbls. slug size.

Vertical Slug Catcher Vessel

- Useful where small particle separation (10 microns) is required and gas flow is large in relation to liquid slug size.
- Equipment is expensive and heavy when large sizes are required.
- Good separation -- useful up to 5 700 bbls. slug size.

- Very economical where small liquid slugs are to be caught.
- Particle separation is poor and relatively unpredictable.
- Catches slugs up to 150 200 bbls.

Pipe Fitting Type Slug Catcher

This type of separation equipment typically has an impingement plate to knock out bulk liquids and a vertical column to form a gravity type separator, but it usually has insufficient area to effectively remove small particles. Normally, it is just used to catch the slugs of liquid and hold them. For economic reasons, these slug catchers are usually designed as pipe and fittings, rather than as pressure vessels.

The pipe fitting type slug catcher provides good slug separation and slug storage volume at a reasonable cost. Small particle separation is poor, but it improves at low flow rates. A slug catcher of this type can be used to protect a centrifugal type separator and the combination will give separation and slug storage capacity.

Harp type slug catcher

Slug Catcher Anatomy

The separator/slug catcher consists of several modules — distribution header, separation chambers, dry gas risers, storage harps, and liquids and sludge manifolds.

The **distribution manifold** takes the incoming gas/liquid stream, slows it down, and splits it into several smaller streams to allow uniform flow into the separation chambers.

In the **separation chambers**, the majority of the gas liquid separation is accomplished. The required length, size and number of these chambers is a combined function of gas flow, gas chemistry and other known conditions.

The Slug catcher for Troll has a Capacity of 2400 m³

Pigging

- Gas lines in particular are periodically pigged to remove accumulated liquid
- The large liquid slug is caught in a large separator called a "Slug Catcher"

Types of Pigs

- Spheres:
 - Easy to handle.
 - Can be re-inflated to compensate for wear.
 - Negotiate irregular bends.
 - Little energy for movement < 2psi.
- Foam Pigs:
 - Inexpensive and versatile.
 - Can be fitted with brushes to remove deposits.
- Steel Pigs:
 - Durable with replaceable sealing elements.
 - Can also be equipped with brushes and blades.
- Solid-Cast Pigs:
 - Light in weight, allow for longer and more efficient sealing.

Pigging a way to keep the pipeline hygienic

Double pigging system

Session 16 PIPEPHSE and OLGA

PIPEPHASE provides engineers with a graphical environment for developing and executing oil & gas production network models.

h

PIPEPHASE benefits:

Analysis of Multiphase Flow Systems Field-Wide Network Simulation Time-Dependent Production Planning

	Edit	View	Seneral	imulation Sciences	Inc. PIPER	PHASE	27 23 B 🚘 (
	<u>- an</u>						ØØØ2 📑	
								+
*								+

🛥 Sir	mulation Sciences	Inc. PIPER	PHASE	27 28 8 28 10
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral	Special Features	<u>R</u> esults	<u>H</u> elp	
Ct&ate <u>N</u> ew Simulation Open Existing Simulation Close	<u>s x</u> eex	QË.		
<u>S</u> ave Save <u>A</u> s				•
Edit <u>K</u> eyword File <u>I</u> mport Keyword File <u>E</u> xport Keyword File				
<u>R</u> un <u>R</u> un Remote				
<u>C</u> opy Simulation Delete <u>S</u> imulation				
View Output File				
•				*

Eile E	Simulation Sciences Inc. I dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> es Create New Simulation	PIPEPHASE ** S B S &
	Create New Simulation Current Directory: Existing Simulations: applib demo ras demo1 !-a-] demo1 !-c-1 demo1 Create Directory C:\SIMSCI\PPHASE\USER Simulation Name:	To create a new simulation, enter the name of the simulation file.
+		*

	urrent Directory	Existing Simulations:	
	applib ras [-a-] [-c-]	demo demo1	
[(Create Directory C:\SIMSCI\PPHASE Simulation Name:) ENUSER DEMO2	PIPEPHASE will take a few seconds to configure a database for a new project file.
	OKCa	ncel Help	

		Si	mSci PIPEPHA	SE Simulatio	n: DEMO2	207 25 8 25 26	-	
<u>F</u> ile	<u>E</u> dit <u>V</u> iev	v <u>G</u> eneral	<u>Special Feat</u>	ures <u>R</u> esul	ts <u>H</u> elp			
C C C C C C C C C C C C C C C C C C C								
	Project User			Date 0/ Site	1/30/96			
	Description				PIPEPI few seco a data p	HASE will take a onds to configure base for a new roject file.		
		OK	Can	cel				
•							+	
	Si	mSci PIPEPHASE Simu	Ilation: DEMO2	207 🛂 🗄 强 🕸 🔻 🔺				
-------------------------------	-------------------	------------------------------------	---------------------	-----------------				
<u>File_Edit</u> <u>V</u> iev	w <u>G</u> eneral	<u>Special Features</u> <u>R</u>	esults <u>H</u> elp					
	- > 	A 🔛 🖂 🚍 😪 6 Simulation Descript	ion					
Project	DEMO	Date	04/30/96					
User	SIMSCI	Site	BREA, CA					
Description		R DECLINE OF A TWO V	VELL FIELD					
2	OK	Cancel	Help					
*				*				

🛥 SimS	ci PIPEPHASE Simulation: D	EM02 🔤 🖼 😰 💌 🔺
<u>File Edit View General S</u>	pecial Features <u>R</u> esults	Help
		▶◐▨▨▨◢▫▫▯◙
Sin	ulation Definition	+
Simulation Type	Single Link	
Fluid Type	Blackoil ±	
Phase Designation	Mixed	
	Input Check Only	
	input check only	
		•
		+

Eile E	SimSo dit <u>V</u> iew <u>G</u> eneral <u>Sp</u> Let let let let let let let let let let l	ci PIPEPHASE Simulation Decial Features <u>R</u> esults	: DEM02 2 8 8 8 • • Help
	Sim	ulation Definition	
	Simulation Type Fluid Type	Single Link 🛃	Set up the simulation model and fluid type. For example: * Single-Link Model * Network Model or
	Phase Designation	Mixed Mixed	* Single-Well Gas-Lift Analysis
	OK	Cancel Help	
+			*

😑 SimSc	i PIPEPHASE Simulation:	DEMO2 🌌 📓 🚍 🅸 🔻 🔺
<u>File Edit Yiew G</u> eneral <u>S</u> p	ecial Features <u>R</u> esults	<u>H</u> elp
Sim	ulation Definition	*
Simulation Type	Single Link	Set up the simulation model and fluid type. For example:
Fluid Type	Network Model Gas Lift Analysis	* Single-Link Model * Network Model or * Single-Well Gas-Lift Analysis
Fnase Designation	Input Check Only	
OK	Cancel Help	
3 ₂		
*		*

► SimS File Edit Yiew General Sin □ □ □ □ □ □ □ □ □ □ Sin	ci PIPEPHASE Simulation: pecial Features <u>R</u> esults	DEMO2 22 28 2 20 1 4 Help 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Simulation Type Fluid Type Phase Designation OK	Network Model	PIPEPHASE is able to model a wide wide variety of fluid types such as: * Black Oil, * Condensate, or * Compositional.
+		+

SimS File Edit Yiew General S D ➡ ➡ ➡ ➡ ▲ □ 2	ci PIPEPHASE Simulation: pecial Features <u>R</u> esults	
Simulation Type Fluid Type Phase Designation	Network Model	PIPEPHASE is able to model a wide wide variety of fluid types such as: * Black Oil, * Condensate, or * Compositional.
1		+

Image: Simple state Simple state Eile Edit Yiew General Simple state Image: State Image: State Image: State State State	ci PIPEPHASE Simulation: D pecial Features <u>R</u> esults	DEMO2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Sin	nulation Definition	•
Simulation Type Fluid Type Phase Designation OK	Network Model	PIPEPHASE is able to model a wide wide variety of fluid types such as: * Black Oil, * Condensate, or * Compositional.
		+

SimSci PIPEPHASE Simulation: DEMO2 20 20 20 20 20 20 20 20 20 20 20 20 20	* *
	5
Simulation Definition	+
Simulation Type Network Model	
Phase Designation Mixed	
Input Check Only Cancel Help	
	+

Input Dime	ensions		
Petroleum 🛛 🖸	Fine Length	in	
F 👤	Coarse Length	ft	±
psig 🛃	Pipe Length	ft	±
lb-mol/hr	Water Density	sp gr	±
lb/hr	Oil Density	API	±
bbl/day 🛃	Gas Density	sp gr	±
MM ft3/day	Power	hp	±
Liquid Volume 🛓	Duty	MM Btu/hr	±
Btu/hr-ft-F 🛃	Viscosity	сР	±
3tu/hr-ft2-F	Velocity	mi/hr	
	Input Dim Petroleum F psig b-mol/hr b/hr b/hr bl/day tiquid Volume Btu/hr-ft-F tu/hr-ft2-F	Petroleum F F	Petroleum Fine Length F E Coarse Length ft psig Pipe Length ft b-mol/hr Image: Second

201-0288-021-011-1	mpat Din	IGHSIOHS		
System	Petroleum 🛃	Fine Length	in	±
Temperature	F	Coarse Length	ft	±
Pressure	psig 🛓	Pipe Length	ft	*
Molar Rate	lb-mol/hr	Water Density	sp gr	*
Weight Rate	lb/hr	Oil Density	API	*
Liquid Volume Rate	bbl/day 🛃	Gas Density	sp gr	1
Gas Volume Rate	MM ft3/day	Power	hp	1
Default Basis	Liquid Volume !	Duty	MM Btu/hr	
Conductivity	Btu/hr-ft-F	Viscosity	сР	±
Heat Transfer Coefficient	Btu/hr-ft2-F	Velocity	mi/hr	±
	OK Can	cel Help		
PEHASE has flex he units of measu data can be ente	ibility in re that ered.			

	Input Di	mensions			
System	Petroleum	Fine Lenath	lin	•	么▣▣□
Temperature	English Metric	Coarse Length	ft	±	
Pressure	SI parg =	Pipe Length	ft	±	
Molar Rate	lb-mol/hr !	Water Density	sp gr	*	
Weight Rate	lb/hr 🐰	Oil Density	API	±	
Liquid Volume Rate	bbl/day 🛓	Gas Density	sp gr	±	
Gas Volume Rate	MM ft3/day 🔮	Power	hp	±	
Default Basis	Liquid Volume 🔮	Duty	MM Btu/hr	±	
Conductivity	Btu/hr-ft-F 🛃	Viscosity	сР	±	
Heat Transfer Coefficient	Btu/hr-ft2-F	Velocity	mi/hr	±	
IPEHASE has flexit the units of measure data can be ente	OK Ca Dility in e that red.	ncel Help			5

	Input Dir	nensions		
System	Petroleum ±	Fine Length	in 🛓	
Temperature	F 🛓	Coarse Length	ft 🛃	-
Pressure	psig 🛓	Pipe Length	ft 🛃	
Molar Rate	lb-mol/hr 🔝	Water Density	sp gr 🛨	
Weight Rate	lb/hr !	Oil Density	API N 🛃	
Liquid Volume Rate	bbl/day 🛓	Gas Density	lb/ft3 😾 kg/m3	
Gas Volume Rate	MM ft3/day !	Power	API SD GI	
Default Basis	Liquid Volume 👻	Duty	MM Btu/hr 🛨	
Conductivity	Btu/hr-ft-F 👲	Viscosity	cP 👲	
Heat Transfer Coefficient	Btu/hr-ft2-F	Velocity	mi/hr 👤	
	OK Car	ncel Help		
PEHASE has flexit	pility in	- 10		
ne units of measur data can be ente	e that red.			

	Input Di	nensions		0	
System	Petroleum 生	Fine Length	in	±	
Temperature	F	Coarse Length	ft	±	
Pressure	psig 🛓	Pipe Length	ft	±	
Molar Rate	lb-mol/hr	Water Density	sp gr	±	
Weight Rate	lb/hr	Oil Density	API		
Liquid Volume Rate	bbl/day 🛓	Gas Density	sp gr	±	
Gas Volume Rate	MM ft3/day !	Power	hp	*	
Default Basis	Liquid Volume 📓	Duty	MM Btu/hr	*	
Conductivity	Btu/hr-ft-F 🛃	Viscosity	сР	•	
Heat Transfer Coefficient	Btu/hr-ft2-F	Velocity	mi/hr	±	
	OK Ca	ncel Help	n		
PIPEPHASE w	hanges				
of Clobal Do	faults				

	Input Di	imensions			
System	¥6	PIPEPHASE			oy Li
Temperature Pressure Molar Rate Weight Rate	Warning: An the PIPEPHA Default, Calo Network Met User-defined values must as needed.	y changes will conver ASE defined Global culation Method, and hod values. defaults and other be changed manually	t <u>Cok</u>		
Liquid Volume Rate	bbl/day 🔮	Gas Density	sp gr		
Gas Volume Rate	MM ft3/day	Power	hp	±	
Default Basis	Liquid Volume !	Duty	MM Btu/hr	±	
Conductivity	Btu/hr-ft-F 🛃	Viscosity	сР	*	
Heat Transfer Coefficient	Btu/hr-ft2-F	- Velocity	mi/hr		
PIPEPHASE users of any o of Global Do	OK Ca will warn changes efaults.	incel Help		1.2	

Set Number 1 Gravities Oil API	Enter fluid properties: for black oil fluids, this includes gravities and sour gas fractions.
Water sp gr	Hydrogen Sulfide 0 Mole %
Antoine Viscosity Data Temperature Viscosity	F CP
<u> </u>	Cancel Help

Set Number 1 Gravities	operty Data Black	oil PVT Data	◙∠⊫₽□∉
Gravities	<u>.</u>		
Gas .654 Water 1.01	API sp gr sp gr	Carbon Dioxide Hydrogen Sulfide	2 % % 0 Mole %
Antoine Viscosity Data Temperature Viscosity)к	F cP Cancel	osity data if e - internal s used when it specified.

<u>File</u> dit	SimSci PIPEPHASE Simu <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> Fluid Property Data Blacko	ilation: DEMO2 22 2 esults <u>H</u> elp IPVT Data	sessor. Dec:
	Set Number 1 Gravities Oil 35.2 API Gas .654 sp gr Water 1.01 sp gr	Contaminants Nitrogen Carbon Dioxide Hydrogen Sulfide	0 Mole % 0 Mole % 0 Mole %
	Antoine Viscosity Data Temperature Viscosity OK	F CP CP Correlations data is no	osity data if e - internal s used when it specified.
			•

-	SimSci PIPEPHASE Sim	ulation: DEMO2	
<u>File</u> Edit	View <u>G</u> eneral Special Features <u>F</u> المحاصلة Fluid Property Data	Results Help	24505
	Black Set Number 1	oil PVT Data	
	Gravities Oil 35.2 API Gas .654 sp gr Water 1.01 sp gr	Contaminants Nitrogen Carbon Dioxide Hydrogen Sulfide	0 Mole % 0 Mole % 0 Mole %
	Antoine Viscosity Data Temperature Viscosity		just Standing Data Tabular Data
		Cancel Help	merate PVT Table
L		25	
+			•

SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌 🔺
<u>File Edit View General Special Features Results H</u> elp
D 🖆 Filia levil 🛆 🕞 B Fluid Property Data
Property Sets Property Set 1 A range of fluid correlations, black oil or empirical.
Image: New Image: Image

SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌	•
<u>F</u> ile <u>E</u> dit <u>Y</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp	A42 -
	3
Blackoil PVT Correlations Data	-
Gas/Oil Ratio Vazquez	
	+

😑 SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌	•
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp	
	ר
Blackoil PVT Correlations Data	1
Gas/Oil Ratio Oil FVF Z-Factor Oil Viscosity Vazquez Gas Viscosity Lee Viscosity Mixing Volumetric Oil/Water Mixing Average Addpast Oil/Water Mixing OK Cancel Help Help	+
+	+

= SimSci PIPEPHASE Simulation: DEMO2 🌌 🖼 🗟 💌 🖌
<u>File Edit View General Special Features Results Help</u>
Blackoil PVT Correlations Data
Gas/Oil Ratio Standing Oil FVF Vazquez Z-Factor Standing Oil Viscosity Vazquez Gas Viscosity Lee Viscosity Mixing Volumetric Oil/Water Mixing Average OK Cancel Help Help
•

Sim:	nSci PIPEPHASE Simulation: DEMO2 🛛 🌌 🔀	8 3 0
<u>File Edit Yiew G</u> eneral <u>S</u>	<u>Special Features</u> <u>R</u> esults <u>H</u> elp	
	A CALARA A A A A A A A A A A A A A A A A A	2 6 0 6
Blackoil PVT Co	Correlations Data	
Gas/Oil Ratio Oil FVF Z-Factor Oil Viscosity Gas Viscosity Viscosity Mixing Oil/Water Mixing Adjust Oil/Water OK Can	Standing Vazquez Standing Standing Standing Glaso Glaso Lee Volumetric Volumetric Average Average Average Help	es
		*

Sim	Sci PIPEPHASE Simulation: DEMO2	S 🗄 🔜 🌆 🔽 🔺
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u>	<u>Special Features</u> <u>R</u> esults <u>H</u> elp	a ta ko an taki inika i
Blackoil PVT Co	orrelations Data	
Gas/Oil Ratio Oil FVF Z-Factor Oil Viscosity Gas Viscosity Viscosity Mixing Oil/Water Mixing Adjust Oil/Water OK Can	Standing Vazquez Standing Glaso Lee Volumetric Volumetric Woelflin Ater Mixing ncel Help Help	urves or ed.
		+

File Edit View General	1Sci PIPEPHASE Simulation: DEMO2 🔤 🖼 😰 💌 🔺 Special Features Results Help
Blackoil PVT	Adjust Oil/Water Mixing
Gas/Oil Rati Oil FV	Inversion Point Water Fraction
Z-Facto	Water Viscosity Fraction Multiplier
Oil Viscosit	
Gas Viscosit	
Viscosity Mixin	
Oil/Water Mixin	
Adjust OilA	
	Cancel Help
L+	*

SimSci PIPEPHASE Simulation: DEMO2	27 26 8 24 10
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp	
	9 9 9 2 📑 🗋 🍯
Blackoil PVT Correlations Data	
Gas/Dil Ratio Standing	Ť.
Oil FVF Vazquez 👱	
Z-Factor Standing	
Oil Viscosity Glaso 👱 💂	
Gas Viscosity Lee 👱	
Viscosity Mixing Volumetric 🛨 ations Data	
Oil/Water Mixing TWoelflin 👱 Gas Data	
Adjust Oil/We MWoelflin	
	+
	+

😑 SimSci PIPEPHASE Simulation: DEMO2 🏾 🌌 🖼 🔯	•
<u>File Edit View General Special Features Results Help</u>	_
	16
Blackoil PVI Correlations Data	N984
Gas/Oil Ratio Standing . Oil FVF Vazquez .	1
Z-Factor Standing	
Oil Viscosity Glaso	
Gas Viscosity Lee	
Viscosity Mixing Volumetric 🛨 ations Data	
Oil/Water Mixing Average Gas Data	
Adjust Oil/Water Mixing	
OK Cancel Help Help	
	+

= SimSci PIPEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌 🔺
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp
D E Fluid Property Data
Property Sets
Edit Delete
Retrieve Data from File: DEM02 Litt Gas Data
Cancel Help
•

— <u>F</u> ile <u>E</u> dit	SimSci Pl View <u>G</u> eneral <u>S</u> peci	IPEPHASE Sim al Features	ulation: DEMO2 Z Results <u>H</u> elp	ø 🔀 🗄	
	Fluid P	roperty Data Black	oil PVT Data		605
	Set Number 2		Contaminants		14.1.2
	Gas Water	sp ³ gr sp gr	Nitrogen Carbon Dioxide Hydrogen Sulfide	0 0 0 0	Mole % Mole % Mole %
	Antoine Viscosity Data Temperature Viscosity	-		udjust Star Tabula	nding Data u Data
		0K	Cancel Help	ienerate f	WT Table
	The user is allowed multiple PVT sets. each well (source have unique flu characteristic	to enter Usually e) will uid :s.			
+	100				+

SimSci PIPEPHASE Simu	lation: DEMO2	
View General Special Features He Fluid Property Data Blackoi	esults <u>H</u> elp	22 67 0 5
Set Number 2 Gravities Oil 35.4 API Gas .710 sp gr Water 1.012 sp gr	Contaminants Nitrogen Carbon Dioxide Hydrogen Sulfide	0 Mole % 0 Mole % 0 Mole %
Antoine Viscosity Data Temperature Viscosity	F CP D	fjust Stending Date Tabular Date merate FVT Table
OK C.	ancel Help]
		•

SimSci PIPEPHASE Simulation: DEMO2 🏧 🖼 🗟 🔫 🔺
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults <u>H</u> elp
□ 🛎 🖬 Ios est de les Barrier Data
Property Sets
Property Set 2
Delete
Retrieve Data from File: Correlations Data DEM02 Lift Gas Data
OK Cancel Help

😑 Sir	nSci PIPEPHASE Si	imulation: [DEM02	w 🔀 🗄 🚉	🕸 🗸 🔺
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral	Special Features	<u>R</u> esults	<u>H</u> elp		
━━━━━	8 - 2 - *				06
	R		Su press limits	itable defaults f sure and temper and segment of are provided.	or ature ptions
					+
•					+
SimSci PIPEPHASE Simulation: [DEMO2 🌌 🖾 🗑 🚖 🕸 🔻 🔺				
---	--				
<u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults	Help				
◧▰▰◈▰◈▥◬▯◿◪▨▨៙៙	• 🖉 🖉 🖉 🖉 🗋 🍯				
Enter Calculation Methods	(
	Suitable defaults for pressure and temperature limits and segment options are provided.				
	•				
	*				

nter Ca	Maximum Number	of Segments	بر تتعا	-1	
11101 0.2	Sphering Time In	crement	10	sec	Suitable defaults for
	Segments		1	-	pressure and temperature
	Segmenting Sp	ecification b	y Length	<u>*</u>	limits and segment options
	Horizontal	2000	ft		
	Vertical	500	ft		
		000			
	Limits	Minimum	Maximum	1	
	Pressure	-12.69	25000	Disig	
	Temperature		800	 	
		-00	000		22
			Boa Cohoio	na Anatonia	
		<i>"</i>	. 19 10 O DARS	37 222 22	
		Cane			
		Conc			
8					

Enter Ca	Maximum Number	of Segments	20	7]6
	Sphering Time Inc Segments Segmenting Sp Horizontal Vertical Limits Pressure	ecification by 2000 500 Minimum -12.69	10 y Length ft ft Maximum 25000	sec	Su press limits	itable defaults for sure and temperatu and segment optic are provided.	re
	Temperature	-60	800 Use Spherin el	F Ing Analysis Help			

PRAL Algorithm		The formation steps
low Allocation	Diameter 🛃	Number of Preliminary 1
low Loops	No detection	and a second sec
Fluid Properties	Evaluate Once per Link 📓	The experienced user can
aximum Iterations	20	set parameters to help
Number of Interval Halvings	3	convergence - suitable defaults are pre-set for the paviso user
Slip Angle Towrate Damping	0 bbl/day	Use Blasius Approximation
Pressure Damping	0 psi	
] No Flow Reversa] Use Small Backw] Prevent Below M	ıls vard Flow through Regulator inimum Well Flowrates	Broadening of Critical Flow Regime in Chokes Exponential
	OK Cancel	
	OK Cancel	

	PBAL	Enter Solution Tolerances
BAL Algorithm	Diameter 🛃	Number of Preliminary
low Loops	No detection 🛃	Steps
luid Properties	Evaluate Once per Link 📓	The experienced user can
aximum Iterations	20	set parameters to help
lumber of Interval Ialvings	3	convergence - suitable defaults are pre-set for
Slip Angle	5 Deg	the novice user.
lowrate Damping	0 bbl/day	Use Blasius Approximation
Pressure Damping	0 psi	
No Flow Reversa Use Small Backy Prevent Below M	als ward Flow through Regulator finimum Well Flowrates	Broadening of Critical Flow Regime in Chokes Exponential
	OK Cancel	Help

	SimSci PIPE	PHASE Simulation:	DEMO2 🔤	S 🗄 🚖 🕸 🔽
<u>File E</u> dit <u>V</u> iew <u>G</u> e	neral <u>S</u> pecial F	eatures <u>R</u> esults	<u>H</u> elp	
D 🚔 🖬 🗗 🚽 📢	≻ <u> </u>	1 🗖 🕺 🖉 🛑		9 🖉 o , D 🗳
Enter Network Methor	ls		a na anta na se	
		N		
		3		
Global dofault	values are			
used througho	ut the entire			
simulation for	the devices.			
]				

	SimSci DI	EDHASE Simul	ation: DEM02	227 23 9 4	
File Edit View	General Snecia	Features Be	sults Heln		
	₩� <u></u>				
Enter Global Def	aults	0			
					+
		1			
Global de	efault values are				
used thro	ughout the entire				
simulation	1 for the devices.				
		8			
					•

🛥 SimSci PIF File Edit View General Specia	PEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌 🔺
Glo	bal Defaults
Pressure Drop Method Defaults Flow Correlations Palmer Corrections Inside Diameters Flow Device Inside Roughness Absolute 1.8000e-003 in Relative 4.4709e-004 Flow Efficiency 100 % HW Coefficient 150 Transition Re 3000 Global default values are used throughout the entire simulation for the devices.	Thermal Defaults Heat Transfer Defaults Heat Transfer Coefficients Soil Heat Transfer Water Heat Transfer Air Heat Transfer Pipe Heat Transfer
•	*

— File	Edit	View	G	S eneral	imSci F Spec	IPEPHA ial Feat	ASE Simu ures Re	lation: sults	DEMO2 Help		227	1	3	2 - 4
	A CONTRACTOR OF CONTRACTOR			in contractory	G	obal De	efaults	50500 miles 200	- All Control Cont					
F F F F	Flow De Flow De Abs Canaditation Flow Efficient Flow Coefficient Flow Flow Flow Flow Flow Flow Flow Flow	Drop M Flow C Palmer Inside evice I solute lative ciency ficient n Re bal de d thro ulation	detho Corre Diar nsida 1.80 (1.80 (1.80 (1.80 (1.80 (1.80)) (1.80	od Defa lations ections. neters e Rough DOOe-OO 709e-OO 100 150 3000 It valu out the r the d	ults		ermal Defa Heat Heat S W P	ults Transfe oil Hea ater He Air Heat	fer Defa er Coeffic t Transfe at Transfe t Transfe t Transfe	ults cients. r fer r	Help			
+														•

🛥 SimSci F	PIPEPHASE Simulation: DEMO2	27 26 8 2 40
<u>File Edit View General Spec</u>	ial Features <u>R</u> esults <u>H</u> elp	
G	lobal Defaults	R[]6]
G Pressure Drop Method Defaults Flow Correlations Palmer Corrections Inside Diameters Flow Device Inside Roughness Absolute 1.8000e-003 in Relative 4.4709e-004 Flow Efficiency 100 % HW Coefficient 150 Transition Re 3000 A wide selection of	Pressure Drop Flow Correlations Pipe BBM	
empirical correlations and mechanistic methods.		4
+		*

SimSci PII File Edit View General Specia	PEPHASE Simulation: DEMO2 🔤 🖼 🕸 💌 🔺
Gla	bal Defaults
Pressure Drop Method Defaults Flow Correlations Palmer Corrections Inside Diameters Flow Device Inside Roughness Absolute 1.8000e-003 in Relative 4.4709e-004 Flow Efficiency 100 % HW Coefficient 150 Transition Re 3000 Pipe and tubing schedule information are taken from industry - standard databases.	Thermal Defaults Heat Transfer Defaults Heat Transfer Coefficients Soil Heat Transfer Water Heat Transfer Air Heat Transfer Pipe Heat Transfer OK Cancel Help
+	+

<u>Lun Ficw General Specia</u>	
Dia	neter Defaults
Pipe Inside Diameter Default Actual Actual Nomingl Schedule 40 Schedule 40 Actual Inside Actual Inside Actual Inside Actual Outside TB01 Actual Outside Actual Outside Actual Actual Outside Pipe and tubing schedule information are taken from industry - standard databases.	Riser Inside Diameter Default Actual 8.000 in Schedule 40 Annulus Inside Diameter Default Actual 6.065 in 0K Cancel Help

ea:	East Treat Tellera	Diamete	n Defaulto		
20		Diamen			
	Pipe Inside Diameter D O Actual Nominal 8	efault 4.026 in 000 重 in	Riser Inside Dia Actual	meter Default 4.026 in 8.000 🖹 in	
	Schedule 4.		Schedule	40	
	Tubing Diameter Delaŭ	4.026 in	Annulus Inside [Diameter Default 6.065 in	
	O Nominal 4	.000 in		COLVA In	
	Actual Outside	4.339 in	ОК С	ancel Help	
	Pipe and tubing schedule informati are taken from indus standard database	on try - es.			

Diam	eter Defaults 🛛 👘 📋
Pipe Inside Diameter Default ○ Actual 4.026 ● Nominal 4.000 € Schedule 40 € Tubing Diameter Defaults • ○ Actual Inside 4.026 in ● Nominal 4.000 € in Schedule 100 € in Schedule 100 € in ● Nominal 4.000 € in Schedule TB01 € in Actual Outside 4.339 in	Riser Inside Diameter Default Actual Nominal Schedule 40 Annulus Inside Diameter Default Actual 6.065 in OK Cancel
Pipe and tubing schedule information are taken from industry - standard databases.	

	Diameter	Defaults		
Pipe Inside Diameter Do Actual Nominal Schedule	efault 4.026 in .000 ± in 0 ±	Riser Inside Dia Actual Nominal Schedule	meter Default 4.026 in 8.000 in 40 in	
Tubing Diameter Defau O Actual Inside	lts 4.026 in 875 🗶 in	Annulus Inside I Actual	Diameter Default 6.065 in	
Schedule TB Actual Outside	01 ± 4.339 in		Cancel Help	

<u> </u>	<u>E</u> dit <u>V</u> iew	Sii <u>G</u> eneral	nSci PIPI <u>S</u> pecial	EPHASE Simulatio Features <u>R</u> esul	on: DEMO2 🔤 🔤 I ts <u>H</u> elp	
	ssure Drop Mel Flow Cor Palmer Co Inside D ow Device Ins Absolute 1 O Relative 4 w Efficiency / Coefficient ansition Re	thod Defau relations iameters ide Roughr .8000e-003 .4709e-004 100 150 3000	Glob	Thermal Defaults	ansfer Defaults The user can set the default surrounding heat transfer for flow devices. Heat Transfer Cancel Help	
+						+

<u>-ile E</u> dit <u>V</u> ie [,]	w <u>G</u> eneral	<u>Special Features</u> Global Defaults	sults <u>H</u> elp
Pressure Drop Flow	Method Default: Heat	Transfer Defaults	ults
Palm Insi Flow Device Absolut Relativ Flow Efficient HW Coefficie Transition Re	Default Heat Pipe Tubing Riser Annulus Ambient Tempe Temperature G Calculate P	Transfer U-Value Pipe in Air Pipe in Water U-Value erature 80 F radient 1 F/1 randtl Number Cancel Help	The user can set the default surrounding heat transfer for flow devices. t Transfer 00ft ancel Help

□ Pressure Drop	Global Defaults	s
Flow	Heat Transfer Defaults	fer Defaults
Palm Insi Flow Device Absolut Relativ Flow Efficient HW Coefficie Transition Re	Default Heat Transfer Pipe U-Value Tubing U-Value #Riser U-Value Annulus U-Value Annulus U-Value * <	The user can set the default surrounding heat transfer for flow devices.

<mark>→ SimSciP</mark> <u>File E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> peci	IPEPHASE Simulation: DEMO2 🛛 💯 🖾 😰 💌 🔺
GI	obal Defaults
Pressure Drop Method Defaults	Thermal Defaults
Palmer Corrections	Heat Transfer Coefficients
Inside Diameters	Soil Heat Transfer
Flow Device Inside Roughness	Water Heat Transfer
Absolute 1.8000e-003 in Relative 4.4709e-004	Air Heat Transfer
Flow Efficiency 100 %	
Transition Re 3000	OK Cancel Help
	<i>.u</i> ,

-	SimSci PIPEPHASE Simulat	tion: DEMO2 🛛 🜌 🖼 🗐 🚘 🅸 🔻 🔺
<u>File Edit View</u> □ 🖆 🖬 ⊷ ∼	<u>General</u> <u>Special Features</u> <u>Res</u> <u>Straulation Description</u> Simulation <u>Definition</u> Input Units of Measurement	ults Help
	<u>P</u> VI Data <u>C</u> omponent Library <u>T</u> hermodynamic Method	The level of detail on the output report can be
	P <u>r</u> int Options <u>O</u> utput Units of Measurement Calculation <u>M</u> ethods <u>N</u> etwork Methods Global Defaults	controlled.
		-

	SimSci PIPEPHASE Simulat	ion: DEMO2 🛛 🜌 🚨 🚘 🅸 🔽 🔺
Eile Edit View	<u>General</u> <u>Special Features</u> <u>Rest</u> <u>Simulation Description</u> Simulation <u>Definition</u>	ults Help
	<u>PVT Data</u> <u>Component Library</u> Thermodynamic Method	The level of detail on the output report can be
	P <u>r</u> int options Output Units of Measurement Calculation <u>M</u> ethods <u>N</u> etwork Methods <u>G</u> lobal Defaults	controlled.
		-

ile <u>E</u> dit ⊻iew <u>G</u>	eneral <u>S</u> pecial Fe	atures <u>R</u> esults <u>H</u> elp	6
RAS Database		Iteration Printout	
Input Reprint	FULL	Connectivity Plot	
Device Detail	SUMMARY ±	Taitel Dukler Flow Pattern Map	
Device Style	BOTH ±	The RESULTS ACCESS	
Property Data	NONE	SYSTEM (RAS) allows users to transfer data	
Plots	NONE	between PIPEPHASE and Windows spreadsheet	
Flash Report	FULL	programs	
Slug Report	NONE		
	OK Cano	el Help	

-	E	Si	imSci PIPEP	PHASE Si	mulation:	DEM02	227 🛛	i 8 😫	
File	<u>Edit View</u>	General	Special F	eatures	Results	Help			
		≫	Print 0	2 🗐 😪 Options] [] []
	RAS Datab	ase FUL	.	🗌 🗆 Ite	eration Prin	tout	3		1
	Input Reprint		L 🛓		Connectivity Plot				
	Device De	etail SUM	IMARY 🛓		Taitel Dukler Flow Pattern Map				
	Device S ¹	tyle BOT	H 🛓	9 7	The RESULTS ACCESS	ss			
	Property Data	ata NON	NONE		SYSTEM (RAS) allows users to transfer data				
	Plots		NONE		between PIPEPHASE and Windows spreadsheet				
	Flash Reg	port FULI	L 🛓		programs				
	Slug Rep	port NON	IE !						
	22	OK	Can	ncel	Help				
			•6 2.5 0.0	100		_			

Ш

SimSci PIPEPHASE Simulation: D)EM02 🌌 🖼 🗐 🚖 🌚 🔽 🔺
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> eneral <u>S</u> pecial Features <u>R</u> esults	Help
□凰┢┥┥▥◬▯◪◪▯◪◖◧	
Add SOURCE to flowsheet	
	Lay down the nodes on the flow diagram by selecting the appropriate icon from the tool bar.
•	+

Source Name S001 Mandatory Data Pressure Fixed psig Estimated psig	Enthalpy Temperat In the mandatory section
Oil Flow Rate O Fixed Fixed Estimated Bas / Oil Ratio Water Cut	Properties PVT Property Set 1 Use Reference Source
Disable Source	Cancel Help

Mandatory Data Pressure	Source Name S001	
Oil Flow Rate O Fixed E stimated 7000 bbl/day Itse Reference Source	Mandatory Data Pressure Fixed 2100 psig Estimated psig	Temperature 105 F
Gas / Oil Ratio 450 ft3/bbl Water Cut 10 %	Oil Flow Rate O Fixed bbl/day © Estimated 7000 bbl/day	Properties PVT Property Set 1 Use Reference Source
	Gas / Oil Ratio 450 ft3/bbl Water Cut 10 %	

Pressure is estimated, better Image: Fixed psig Image: Fixed psig Image: Fixed bbl/day Image: Fixed fit3/bbl Image: Fixed fit3/bbl	Source Name S002		When a pressure is
Oil Flow Rate O Fixed • Fixed • Estimated • bbl/day	Pressure Image: Strength of the strengt of the strength of the strength of the strength of the st	Enthalpy Tempera	is estimated. Better estimates enable rapid convergence for large networks.
Gas / Oil Ratio ft3/bbl Water Cut %	Oil Flow Rate O Fixed 661/day Image: Stimated 661/day	Properties PVT Pro Use B	operty Set 1 👤 oterance Source
	Gas / Oil Ratio ft3/bbl Water Cut %		
Uisable Source IIII I ancel Holp	Disable Source	Cancel	Halp

Pressure 2600 psig © Fixed 2600 psig C Estimated psig Oil Flow Rate Properties © Fixed bbl/day @ Estimated 11000 bbl/day fise flatmance Somee Gas / Oil Ratio 455 Water Cut 11.1	Source Name S002	
Oil Flow Rate O Fixed Estimated 11000 bbl/day Gas / Oil Ratio 455 ft3/bbl Water Cut	Pressure Fixed Constant Co	Enthalpy Temperature 125 F
Gas / Oil Ratio 455 ft3/bbl Water Cut 11.1 %	Oil Flow Rate O Fixed bbl/day Estimated 11000 bbl/day	Properties PVT Property Set 1 ± Itse Reference Source
	Gas / Oil Ratio 455 ft3/bbl Water Cut 11.1 %	

Reservoir Namo	e / Descripti R	on eservoir D	ata				
Reservoir D Production Cumulative Reservoir © Decline	escription Basis Production Decline e Curve	DEMO Oil and W O	/ater Standard	Volume ±	mulativ rould be new	e production e zero for a v field.	
0 672 64 0 6as in 0K		Cancel	MM ft3			D984	

		Reserv	oir Decline Curve	207 25 8 2 2 10 4	
WorkSh	eet <u>M</u> odify	<u>A</u> dd <u>∧</u> tter	198	F1=Help	
	Reservoir Pres		Reservoir Pressure (psig) Cumulative Production (bb		ulative Production (bbl)
1	2600.000		0		
		Enter decli cum	reservoir pressure ne as a function of ulative production.		

	Reservoir De	ecline Curve 🏧 🖾 😥	\$
WerkSh	eet <u>M</u> odify <u>A</u> dd After	F1=H	elp
45	Reservoir Pressure (psig)	Cumulative Production (bbl)	
1	2600.000	0.000	
2	1800.000	5000000	2

	Reservoir D	ecline Curve	27 26 🗉 🚖 🌚 🗢
<u>W</u> orkShe	et <u>M</u> odify <u>A</u> dd After	100	F1=Help
Sive	Reservoir Pressure (psig)	Cumula	tive Production (bbl)
Delete	2600.000	0.000	
<u>C</u> ancel	1800.000	5000000	
<u>I</u> nfo			

	Reservoir De	ecline Curve 🎫 🖼 🗐 🚎 🍪 🗘
WorkShe	et <u>M</u> odify <u>A</u> dd After	F1=Help
Sive	Reservoir Pressure (psig)	Cumulative Production (bbl)
<u>D</u> elete	2600.000	0.000
<u>C</u> ancel	1800.000	5000000
<u>I</u> nfo		

		Link <l001> Device Data</l001>	22 25 8 25 00 0
<u>O</u> K Ca <u>n</u> cel <u>E</u> dit Delete Copy Paste Link Help		Click o icon window pe autor	IPR Device and a data entry for reservoir inflow enformance data matically pops up.
From N	ode Typ	e: SOURCE Desc:	

	Link <l001> De</l001>	vice Data 🏾 🌌 📓	😫 🕸 😫
<u>OK</u> Cancel Edit <u>E</u> dit Delete <u>C</u> opy Paste Link <u>H</u> elp	Inflow Performance Relationship PR Name EOOI PR Model Vogel Deliverability Basis Oil IPR Model Data Decline Data Advanced IPR Options OK Cancel Help	Click on the "IPR" device icon and a data entry window for reservoir inflow performance data automatically pops up.	
Device#=1	Name: E001 Type: IPR DEVICE	Desc: INCOMPLETE	

	Ti	ubing	20 25 🗉 🔁 🕸	
Tubing Name E002 Mandatory Data Measured Wireline Depth True Vertical Depth Inside Diameter Actual Nominal Schedule	1500 ft ft Default 4.026 in 2.875 in TB01	Thermal Calculations Heat Transfer Default Changing tubing pro or angle can be simulated with multij tubing devices.	file	
Tubing Inside Rough Absolute Relative	ness 1.8000e-003 in 4.4709e-004	Pressure Drop Meth		
	OK Ca	ancel Help		
evice#=2 Name:	E002 Type: TUBING	Desc: INCOMP	LETE	₽ ↓

	1	Tubing	20 25 🖻 🔁 🎰	1
ubing Name E002				R A
Mandatory Data Measured Wireline Depth	1500 ft	Thermal Calculations Heat Transfer Default	<u>.</u>	
True Vertical Depth Inside Diameter	1450 ft Default	U Value	Btu/hr-ft2-F	Z Z
Actual Nominal	4.026 in	Temperature Gradient	F7100ft	
Schedule	TB01	Heat Transfer Dat		Þ,
Tubing Inside Rough	ness 1.8000e-003 in	Pressure Drop Met	nod	***
O Relative	4.4709e-004			#
	ОК	Cancel Help	y L	
			<u>گ</u>	
vice#=2 Name:	E002 Type: TUBIN	G Desc: INCOMP	LETE	

Link <l001> Devic</l001>	ce Data	27 26 8 <u>26</u> 0
Choke Name E003 Choke in Well Mandatory Data Choke Specification Calculate Pressure Drop	Well-head choke d	liameter.
Inside Diameter 4.025 in Resistance Coefficient 1.03 Specific Heat Ratio 1 Calculation Method Fortunati		
OK Cancel Help		
Device#=3 Name: E003 Type: CHOKE	Desc: INCOMPLET	E

Link <l001> Devi</l001>	ce Data 🛛 🖉 😫 🗐	*
Link <l001> Devia</l001>	ve Data	
Device#=3 Name: E003 Type: CHOKE	Desc: INCOMPLETE	

	Pipe	27 25 🗄 🔁 🍪	4	
Pipe Name E004 Mandatory Data Length ft	Thermal Surfac	e flow line data - ote defaults.		
Elevation Change0ftInside DiameterDefault1Actual4.026inNominal4.0001	n Heat Trans	aufts Btu/hr-ft2-F		
Pipe Inside Roughness • Absolute • Relative	in Sphere Inside Diameter	op Method		
ОК	Cancel Help			
Device#=4 Name: E004 Type: Pl	PE Desc: IN	ICOMPLETE	<mark>}</mark> →	
		Pipe	207 25 🗄	
--	---	---	--	--
Pipe Name E004 Mandatory Data	L ft	Thermal I Heat Tra	Surface flow line data - note defaults.	
Elevation Change Inside Diameter Actual Nominal	-5 ft Default 4.026 in 4.000 in	Override U Value Ambient Tempera	Global Defaults Btu/hr-ft2-F F Heat Transfer Data	
Fipe Inside Roughner Absolute Relative	40 ***	Sphere Insid	e Diameter in	
	ОК	Cancel	Help	
Device#=4 Name:	E004 Type: PIPE		Desc: INCOMPLETE	

	Link •	<l002> Device Data</l002>	207 🕰 🗄 🔁 🌺
Tubing Name E006			
Mandatory Data Measured Wireline Depth True Vertical Depth Inside Diameter Actual	1631 ft 1515 ft Default ★ 4.026 in 2 875 ⊯ in	Thermal Calculations Heat Transfer Default Overside Global Defaults U Value Temperature Gradient	Image: Second secon
Schedule Tubing Inside Rough Absolute Relative	TB01	Heat Transfer Data Pressure Drop Meth	
		Cancel Help	
evice#=2 Name:	E006 Type: TUBIN	G Desc: INCOMP	LETE

	Link <l002> Device Data</l002>	207 23 🕑 📴 🏠
Choke Name E007 Choke Mandatory Data Choke Specification Calculate Inside Diameter 4.025 Resistance Coefficient 1.03 Specific Heat Ratio 1 Calculation Method Fortunati OK Cancel	in Well Pressure Drop in Help	
Device#=3 Name: E007 Type: 0	HOKE Desc: II	NCOMPLETE

Link <l002> Dev</l002>	rice Data 💴 🔀 🗐 🚖 🎼 💠
Link <l002> Dev Choke Choke Name E007 Choke in Well Mandatory Data Choke Specification Inside Diameter 2 in Resistance Coefficient 1.03 Specific Heat Ratio Calculation Method Fortunati</l002>	rice Data
OK Cancel Help Link Help Help Device#=3 Name: E007 Type: CHOKE	Desc' INCOMPLETE

		Pipe	207 🔀 🗐 💆	3. 🕸	¢
Pipe Name E00	8			pe	RA 1
Mandatory Data —		Thermal Calculations			Acr -
Length	4070 ft	Heat Transfer Default	*	IJ	
Elevation Change	207 ft	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	12	PR	P
Inside Diameter	Default +	U Value	Btu/hr-ft2-F		
áctual	4.026 in	Ambient	F	202	-17-
Nominal	4 000 Min	remperature		्री	₹
Schedule	40	Heat Transfer Data	i	*-	1MP
	to to the second		20		*
⊂Pipe Inside Roughn	less	Sphere Inside Diameter	în	*	***
Absolute Belative	1.8000e-003 in	Pressure Drop Meth	od	Q	2
- Holdard	1			¢,	6
		Cancel Help		4	1
= 1) 25	221			T	
				DPDT	<u></u>
				6	U
				പ്	
)evice#=1 Name:	E008 Type: PIPE	Desc: INCOMPL	.ETE		

i Si	imSci PIPEPHASE Simulation: DEMO2 🛛 🌌	× = <u>*</u> • •
<u> </u>	Sink	
▫�ሎ┥ݠݞ▯	Sink Name D004 Injection Well	22 605
	Pressure Fixed Sig Estimated	*
5001	Oil Flow Rate O Fixed Bbbl/day Estimated 20000 bbl/day	
	Disable Sink	•
5002	OK Cancel Help	
•		•

Time (day) Data 365	Eile	Edit	<u>V</u> iew form Tin	Sir <u>G</u> eneral ne Steppina	nSci PIPEPHASE Simulation: DEMO2 2015 2015 2015 2015 2015 2015 2015 201
	P	Time 365 730 IPEPH fea fin	(day) HASE ti ture is eld pla	Data me steppi used for nning.	Time Stepping Changes Reservoir/Device Name Reservoir Production Decline Link Name Device Type Device Name Parameter OK

Image: Stepping Charges Time (day) Data 365 730 1096 Image: Stepping Charges Image: Stepping Charges Stepping Charges Reservoir/Device Name Image: Stepping Charges Image: Stepping Charges <tr< th=""><th><u>F</u>ile</th><th><u>E</u>dit <u>V</u></th><th>iew</th><th><u>G</u>eneral</th><th>Special Features <u>Results</u> <u>Help</u></th></tr<>	<u>F</u> ile	<u>E</u> dit <u>V</u>	iew	<u>G</u> eneral	Special Features <u>Results</u> <u>Help</u>
Time (day) Data 365 730 1096 1096 1096 Device Type All Types Device Name Parameter V Parameter V OK Cancel Help Notice, reservoir decline characteristics will cause production decline with time.		Perfor	m Tin	ne Steppina	Calculations Time Stepping Changes
		Time (da 365 730 1096 	rese racte se pi	Data	Reservoir/Device Name Reservoir Production Decline Link Name Device Type All Types Device Name Parameter OK Cancel Help

Sin <u>File Edit ⊻iew G</u> eneral	nSci PIPEPHASE Simulation: DEMO2 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019
Perform Time Stepping	Time Stepping Changes
Time (day) Data 365	Reservoir/Device Name Reservoir Production Decline Link Name L002 Device Type All Types Device Name E006 Parameter Inside Diameter UK Cancel Help
+	•

— <u>F</u> ile	<u>E</u> dit	⊻iew	Sir <u>G</u> eneral	nSci PIPE <u>S</u> pecial I	PHASE Simula Features <u>R</u> e	ation: DEMO2 sults <u>H</u> elp	W S (
	Pe	form Tin	ne Steppina	Time S	Stepping			2 0 6
	Time 365 730 1096 	examp erface f ned; t mulate	Data Data	Time Ste	pping Change eservoir/Device Reservoir Prod Link Name Device Ty Device Na Parameter Ins	S Name duction Decline L002 Pe All Types ame E006 decline decline H		
+								4

	Time Stepping	Time Stepping	
		Time Stepping Changes	
Time (day 365 730 1096	Data	Reservoir/Device N Reservoir Produ Link Name Device Typ Device Nam Parameter Insid OK Ca	Name uction Decline LOO2 All Types EOO6 Me EOO6 Me Help Ancel Help

	<u>ile E</u> dit	Option	<u>s 1</u> еп	nplate E <u>x</u>	ecute	Mac	ro <u>y</u>	Wind	0W	Help	p				ę
		12		V 4 D		8	5	2 1A							
Ê.	· •								1		_			-1	Ŀ
	PPPP	III	PPPP	EEEEE	PPPP	H	Н	1		÷.					
	P I	ΡI	ΡI	ΡE	PF	Р Н	H	A	n	he r	esu	Its sum	mary is	5	Γ
	P I	ΡI	PI	ΡE	ΡF	νн	Н	A		g	ene	erated in	nan		
	PPPP	Ι	PPPP	EEEE	PPPP	HH	HHH	A			0	utput file	9.		
	Р	I	Р	E	Р	н	Н	AAI							
	Р	I	Р	E	Р	н	H	A	A	S	S	E			
	Р	III	Р	EEEEE	Р	н	H	A	A	SS	S	EEEEE			
				VE	RSION	7.01	B2								
**	*******	******		********	*****	*****	****	***	****	****	***	******	******	***	
×														¥	
* *				SIMULA	TION S	SCIEN	CES	INC						* *	
* * *				SIMULA	TION	SCIEN	CES	INC						* * *	
* * *				SIMULA	TION S	SCIEN	CES	INC	-					* * *	
* * * *	INTERNA	TIONAL	CORP.	SIMULA 	TION S	SCIEN MI	CES 	INC	- IRGI	N IS	LAN	DS		* * * *	
* * * *	INTERNA	TIONAL	CORP.	SIMULA 	TION S	SCIEN MI	D-US	INC A/V	. RG I	N IS	LAN	DS		* * * * *	
* * * * *	INTERNA BREA,	TIONAL Ca 926	CORP.	SIMULA Headquar Sa	TION S	SCIEN MI	D-US HOUS	INC A/V Ton	IRGI	N IS 770	LAN 	DS USA		* * * * *	
* * * * * *	INTERNA BREA, PHONE	TIONAL Ca 920 (714)	CORP. 521, U	SIMULA Headquar Sa 0412	TION S	MI	D-US Hous Phon	INC (A/V) (TON	 , TX (713	N IS 770) 68	LAN 192, 3-1	DS USA 710		* * * * * *	
* * * * * * *	INTERNA BREA, PHONE	CA 926 (714) (800)	CORP. 521, U3 579-1 827-3	SIMULA Headquar Sa 0412 7999 (USA	TION STERS	SCIEN MI	D-US Hous Phon	INC A/U Ton	IRGI , TX (713	N IS 770) 68) 23	LAN 192, 3-1 1-2	DS USA 710 754 (U:	SA)	* * * * * * *	
* * * * * * * *	INTERNA BREA, PHONE	FIONAL Ca 926 (714) (800) (800)	CORP.	SIMULA Headquar Sa 0412 7999 (USA 4672 (Cal	TION STERS	SCIEN MI 	D-US Hous Phon Fax	INC (A/V) (TON	IRGI , TX (713 (800	N IS 770) 68) 23) 68	LAN 192, 3-1 1-2 3-6	DS USA 710 754 (U: 613	SA)	* * * * * * *	
* * * * * * * * * *	INTERNA BREA, PHONE	FIONAL Ca 926 (714) (800) (800) (800)	CORP. 521, U3 579-1 827-3 427-3 443-3	SIMULA Headquar Sa 0412 7999 (USA 4672 (Cal 4418 (Can	TION STERS	SCIEN 	D-US Hous Phon Fax	INC A/V TON	, TX (713 (800 (713	N IS 770) 68) 23) 68	LAN 92, 3-1 1-2 3-6	DS USA 710 754 (U! 613	SA)	* * * * * * * *	
* * * * * * * * * *	INTERNA BREA, Phone Fax	TIONAL Ca 926 (714) (800) (800) (800) (714)	CORP. 521, U3 579-1 827-1 427-1 443-1 579-1	SIMULA Headquar Sa 0412 7999 (USA 4672 (Cal 4418 (Can 0236	TION STERS	SCIEN MI 	D-US Hous Phon Fax Lora	INC A/U TON E	IRGI , TX (713 (800 (713	N IS 770) 68) 23) 68	LAN 192, 3-1 1-2 3-6	DS USA 710 754 (U: 613	SA)	* * * * * * * * *	
* * * * * * * * * * *	INTERNA Brea, Phone Fax PC BB	TIONAL CA 926 (714) (800) (800) (800) (714) S (714)	CORP. 521, U3 579-1 827-3 827-3 427-3 579-1 579-1	SIMULA Headquar Sa 0412 7999 (USA 4672 (Cal 4418 (Can 0236 7415	TION STERS	SCIEN MI C0	D-US Hous Phon Fax Lora	INC A/U TON IE	IRGI , TX (713 (800 (713	N IS 770) 68) 23) 68	LAN 92, 3-1 1-2 3-6	DS USA 710 754 (U: 613	SA)	* * * * * * * * * *	
* * * * * * * * * * * *	INTERNA Brea, Phone Fax PC BB:	TIONAL CA 926 (714) (800) (800) (800) (714) S (714)	CORP. 521, U3 579-1 827-3 427-3 443-3 579-1 579-3	SIMULA Headquar Sa 0412 7999 (USA 4672 (Cal 4418 (Can 0236 7415	TION STERS	SCIEN MI C0 	D-US Hous Phon Fax Lora Auro	INC A/U TON E IDO IRA,	IRGI , TX (713 (800 (713	N IS 770) 68) 23) 68 8001	LAN 92, 3-1 1-2 3-6	DS 710 754 (US 613 USA	SA)	* * * * * * * * * * *	
* * * * * * * * * * * * *	INTERNA Brea, Phone Fax PC BB: Eastern	TIONAL CA 926 (714) (800) (800) (800) (800) (714) S (714) USA/EA	CORP. 521, U3 579-1 827-3 827-3 827-3 827-3 827-3 827-3 579-3 579-3	SIMULA HEADQUAR 5A 0412 7999 (USA 4672 (CAL 4418 (CAN 0236 7415 CANADA	TION STERS	SCIEN MI C0 	D-US HOUS Phon Fax Lora Auro Phon	INC A/V TON E IDO IRA, E	IRGI , TX (713 (800 (713 (713 (713	N IS 770) 68) 23) 68 8001) 75	LAN 92, 3-1 1-2 3-6 4, 0-1	DS 10 710 754 (U 613 USA 000	SA)	* * * * * * * * * * * *	

<u>F</u> ile	<u>E</u> dit	<u>Options</u>	Template	E <u>x</u> ecute	Macro Wi	ndow <u>H</u> elp	492¥
		8	Q 🔍 🛛	4 🗈 🐖	🏙 🖭 🖌	100 G	
• • PAC • • B • P	REA, HONE	RIM/WEST CA 92621 (714) 5 (800) 5	ERN CAN , USA 79-0412	ADA	FAX JAPAN Minato Phone	The results summary generated in an output file.	′ is
• • • F	AX	(800) 4 (800) 4 (714) 9	27-4672 43-4418	(CALIF.) (CANADA)	FAX South an	81-3-3432-4633	* *
	00.001720		and count T.		CARACA PHONE PHONE	 IS, 1060, VENEZUELA 58-2-993-2506 58-2-993-8725	* * *
e e					FAX	58-2-993-2717	* * *
****	(SM (R)	********) SIMSCI PIPEPH	IS I	*********** A SERVICE A TRADEMAR	********************** 1ARK OF SIM (OF SIM	WLATION SCIENCES INC.	****
		(c) COF	YRIGHT 1990, S	1985, UPDA 1991, 1993 (MULATION 3 ALL RIGHT3	TED 1986, 1 2, 1993 AND Sciences in S Reserved	987, 1988, 1989, 1994 MC.	
	(R)						

```
Programmer's File Editor - [demo2.out]
                                                           207 🔉 😑 🔼 🕵
                                                                             $
-
- File Edit
            Options
                     Template Execute Macro Window Help
                                                                             $
                                      1 12 CE
                       -
B
                    Q
                            Æ
                                                                              +
     SIMSCI PIPEPHASE Version 7.01 B2 keyword file
    S
                                                     The results summary is
                                                        generated in an
       General Data Section
                                                           output file.
    TITLE PROJECT=DEMO, USER=SIMSCI, DATE=04/30/96,
    SITE=BREACA
         $----$
    ** WARNING ** STRING HAS MORE THAN 4 CHARACTERS
                  EXCESS TRUNCATED
    $
    DESCRIPTION THREE YEAR DECLINE OF A TWO WELL FIELD
    DESCRIPTION
    DESCRIPTION
    DESCRIPTION
    Ś
    DIMENSION RATE(LU)=BPD
    PRINT INPUT=FULL, DATABASE=FULL
    CALCULATION NETWORK, BLACKOIL
                                        , PRANDTL
    DEFAULT NOMD=4, SCHE= 40, NOMT=2.875, *
    SCHT=TB01, IDRISER=4.026, IDANNULUS=6.065
    SEGMENT DLHORIZ(FT)=2000, DLVERT(FT)=500
+
                                                                            +
```


		Program	mer's File	Editor - [demo2.out]		207 25 🗄 🖂 🕸 🗖	+ +
Restore		nplate	Execute	Macro	Window	Help	a se de la capita de	\$
<u>M</u> ove Size Mi<u>n</u>imize Ma <u>x</u> imize		AR DEC	LINE OF	A TWO W	🖌 🏦 🖨 ELL FIELD)		•
Clase	Alt+F4							
S <u>w</u> itch To.	Ctrl+Esc	PD						
Save Scre <u>E</u> xit Windo CHLCOL \$ DEFAUL	en)ws HTTUM METWURK T NOMD=4, SCH	TABASE , Black IE= 40,	E=FULL Koil Nomt=2.	, PR 875, *	ANDTL			
SCHT= \$ SEGMEN \$ \$ Ne \$	TB01, IDRISER T DLHORIZ(FT) twork Data Se	=4.026, =2000, ection	, IDANNUL DLVERT(F	US=6.06 T)=500	5			
NETWOR \$ Soluti \$	K DATA ON PBALANCE T Data Soctio							
SET SE	OPERTY DATA	Π 11 ΔΡΤΙ	-35 2 0	ROULCOS	SPCD)=0	654	¥	+
• SET SE	THE L. BRAULT		-17.7. 1	NHOL NHY				+

File	<u>E</u> dit <u>V</u> iew	<u>G</u> eneral	mSci PIPE <u>S</u> pecial F	PHASE SI Features	mulation <u>R</u> esults	: DEMOZ : <u>H</u> elp			21
	=			RAS Plot (Options				6
	Title	•				174	🔵 🖲 Nor	malized Length	
	X-Axis Labe Y-Axis Labe					Th ir	e results 1 a table	may be view or plot form	wed at.
							🗌 Nor	malized Y-Axis	
	Plot Definition	8						Edit Delete View	
	51. 			10		10			2
			ОК	Canc	el	Help			

Title	RA	S Plot Data Options	The secults of	
Time Step 0.00	¥	X-Variable Total Leng	in a table or	plot format.
Device Selection		Y-Variable		
Link Name	±	O Device Variable		*
Device Type	*	State Variable	Pressure	±
Device Name		O Fluid Property		
All Devices in the	Link	O Hydraulic Variable		*
		O Distance Variable		
		a		_
Add Selec	tion	Done	el Help	

	Tiala.	RAS Plot Data O	ptions	Atena Locile
Time Ste	0.00 0.00 365.00	₹ X-Variable Tr	in a table o	nay be viewed ir plot format.
Device S	ele 730.00	Y-Variable -		
Link Na	me L001		riable	*
Devic	е Туре	! 🖲 State Varia	able Pressure	±
Device	e Name	🔄 🛛 🔿 Fluid Prop	erty	
🛛 All De	vices in the Link	O Hydraulic '	Variable	*
		O Distance V	/ariable	×
1				

Time Step 730.00 Time Step 730.00 X-Variable Total Leng Device Selection Link Name L001 N C Device Variable
X-Variable Total Leng Device Selection Link Name L001 N N N N N N N N N
Device Selection Y-Variable Link Name L001 •
N 12 L
Device Type 🛛 🕅 🖲 State Variable Pressure
Device Name Similar Stuid Property
All Devices in the Link
O Distance Variable

	<u>ні т</u> іся		<u>o</u> pectal f	RAS Plot	<u>A</u> csuits Options		The u	iser car	n view I several	
	X-Axis Lal	oel					time s studi	teps or ies at a	r case time.	
	Y-Axis Lal)el						ar conga	" <u> </u>	1. 20
								Sacowers Sawa	US V AUGU	
PI	ot Definiti	ons	T	Sector Sector 1	01 41 0			*********	AU 17580	
	ot Definiti ime 0.00: ime 365.0 ime 730.0	ons Pressure vs.): Pressure): Pressure	Total Length vs. Total Leng vs. Total Leng	in Link L(gth in Link ath in Link	01, All De L001, All I L001, All I	vices)evices)evices			Add	
	ot Definiti ime 0.00: ime 365.0 ime 730.0	ons Pressure vs. J: Pressure J: Pressure	Total Length vs. Total Len vs. Total Len	in Link Lü gth in Link ath in Link	01, All De L001, All I L001, All I	vices Devices Devices			Add Edit Delete View	
	ot Definiti ime 0.00: ime 365.0 ime 730.0	ons Pressure vs.): Pressure): Pressure	Total Length vs. Total Len vs. Total Len OK	in Link Lügth in Link oth in Link oth in Link Canc	01, All De L001, All I L001, All I L001, All I	vices Devices Devices Help			Add Edit Delete	

	_	-		RAS Plot	Options		The	user can	view
4	Title						the resu	Its from	several
X-4	xis Label	1					time : stud	steps or lies at a f	case time.
Y-(vis Label								
Plot	Definitions								
Plot Time Time	Definition: 0.00: Pre 365.00: 1 730.00: 1	s Sssure vs. Pressure Pressure	. Total Lengl vs. Total Len vs. Total Len	h in Link L(ìgth in Link ìgth in Link	001, All D L001, Al L001, Al)evices II Device II Device	5		Add E dit Delete View

— <u>F</u> ile	<u>E</u> dit <u>V</u> iew	Si <u>G</u> eneral	mSci PIPEPH/ <u>S</u> pecial Feat	ASE Simulati tures <u>R</u> esu	on: DEMO Its <u>H</u> elp	02 🌌 🖾 🗏 🕵	*
			RAS	Plot Option	5		5
	Title					Normalized Length	
	Y-Axis Labe					The user can export or save the data.	
	Note					Normalized Y-Axis	
	Plot Definitior Time 0.00: Pr	is essure vs. 7	Total Length in	Link L001, All	Devices	Add	
	Time 365.00: Time 730.00	Pressure v: Pressure v:	s. Total Length s. Total Length	in Link L001, . in Link L001	All Devices All Devices	Edit	
						Delete Viq w	
			OK	Cancel	Hel	р р	
8		_					6
+							+

		Microsoft Excel 22	* 🚨 🔄 🐿 🔹 💠
Restore			
Move		6 ª ª ᡏ ♥ ♥ ₽ Σ ⋦ ᢓ↓ Ă↓ ፟፟፟፟፟፟ E ♣	🛨 💡 🍋
5120 Minimize			
Maximize	2		
Close	Alt+F4		
Switch To			

le	<u>E</u> dit	⊻iew	<u>G</u> eneral	<u>Special Fea</u>	tures <u>R</u> esults <u>H</u> el	р Р
]		Res	sults Acces	RA ss System	S Plot Options	<u></u>
		Table Options Plot Options				Normalized Length Actual Length X-Variable Total Length
			Special (Other Op	Plots tions		Normalized Y-Asis
_					1, All Devices D01, All Device D01, All Device	S Add Edit Delete
	2 1			ок Ц	Cancel	elp

