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Class policy
Lecture:
1- Attendance is not mandatory but is recommended.

2-On-time arrival is expected. Late arrival and leaving the
class before ending the lecture will be punished .

3- Sending and receiving SMS or any item that can disturb
the lecture is prohibited .

Complementary Problems:
10 sets of problems from the texts and other sources will
be emailed and will be discussed in the teaching
assistant classes.



Grading  policy:

Midterm-I 15%

Midterm-II 15%

Midterm-III 15%

Seminar( or project)         10%

TA class                             5%

Final Exam                       40%



Weeks Date Items

1 Syllabus, policies and introductions

Elements of compressible flows and  a review of thermodynamics

2 Governing equations of  inviscid , compressible flows

Governing equations -continue

3 Normal shock waves  and related topics

Normal shock waves –cont.

4 Normal shock waves –cont.

Oblique shock waves

5 Oblique shock waves-cont.

Oblique shock waves-cont. Midterm-I



Week
s

Date Items

6 Shock interactions  and reflections

Shock interactions  and reflections

7 Prandtl-Meyer expansion waves

Prandtl-Meyer expansion waves-cont.

8 Supersonic airfoils

Supersonic airfoils-cont

9 Compressible flow through converging-diverging ducts

Compressible flow through converging-diverging ducts-cont.

10 Compressible flow through converging-diverging ducts-cont.

Supersonic Wind tunnel Midterm-II



Week
s

Date Items

11 Compressible flow in pipes with  friction

Compressible flow in pipes with  friction-cont.

12 Compressible flow in pipes with  heat transfer

Compressible flow in pipes with  heat transfer-cont.

13 Full potential equation

Linear theory in compressible subsonic flows

14 Linear theory in compressible subsonic flows-cont.

Linear theory in compressible supersonic

15 Linear theory in compressible supersonic-cont.

Introduction to hypersonic flows Midterm-III



Aerodynamics classification

Low speed (Incompressible)

Subsonic

Transonic

Supersonic

Hypersonic

Classification is base  on  flow 
compressibility



DEFINITION  OF  COMPRESSIBLE  FLOW

 Compressible Fluid

P P+dp



P+ dp

P

P+dp

P

Incompressible Flow

Compressible Flow

Compressible flow is routinely defined as variable density flow.



In  compressible flows 

Two  thermodynamic 

properties vary 

All   thermodynamics properties vary



A brief review on thermodynamics

Perfect  gas:

A perfect gas is one whose individual molecules interact only via direct 

collisions, with no other intermolecular forces present.

p = ρRT

For air, R = 287 J/kg-K◦

Perfect  gas

Calorically Perfect

Thermally Perfect



Internal Energy and Enthalpy

consider a finite volume of gas consisting of a large number of molecules.

The sum of the energies of all the molecules in this volume is defined as the

internal energy (e) of the gas.

A related quantity is the specific enthalpy, denoted by h, and related to the 

other variables by

h = e + pv
The units of e and h are (velocity)2, or m2/s2 in SI units.

For a calorically perfect gas: e = cv T

h = cp T



h − e = pv = (cp − cv)T

pv = RT

cp − cv = R

For air:



First Law of Thermodynamics



1. Adiabatic process, where no heat is transferred,

2. Reversible process, no dissipation occurs, implying 

that work must be only via volumetric compression

3. Isentropic process, which is both adiabatic and 

reversible, implying



E n tro py   a nd    th e   S e c o nd   
L a w
o f  T he rm odynam ic s

Consider a block of ice in contact with a red-hot plate of steel.

To ascertain the proper direction of a process, let us define a new state 

variable, the entropy, as follows:

Experience tells us that the ice will warm up (and probably melt) and the steel 

plate will cool down.

The first law allows that the ice may get cooler and the steel plate hotter—just as 

long as energy is conserved during the process.

δq is the actual amount of heat added to the 
system during an actual irreversible process



The above equations  are forms of the second law of thermodynamics. 

The second law tells us in what direction a process will take place.

The practical calculation of entropy is carried out as follows.





For an adiabatic process, δq = 0. Also, for a  reversible process, dsirr = 0. 
Thus, for an adiabatic, reversible process, ds = 0



Isentropic  relations

Integration



Why is this  equation so important?

The answers rest on the fact that a large number of practical

compressible flow problems can be assumed to be isentropic

contrary to what you might initially think.

For example, consider the flow over an airfoil or through a rocket

engine. In the regions adjacent to the airfoil surface and the rocket

nozzle walls, a boundary layer is formed wherein the dissipative

mechanisms of viscosity, thermal conduction, and diffusion are

strong. Hence, the entropy increases within these boundary layers.



However, consider the fluid elements moving outside the boundary layer. Here, the 

dissipative effects of viscosity, etc., are very small and can be neglected. 

Moreover, no heat is being transferred to or from the fluid element (i.e., we are not 

heating the fluid element with a Bunsen burner or cooling it in a refrigerator); thus, 

the flow outside the boundary layer is adiabatic.

E X A M P L E

Consider a Boeing 747 flying at a standard altitude of 36,000 ft. The pressure 

at a point on the wing is 400 lb/ft2 . Assuming isentropic flow over the wing, 

calculate the temperature at this point.



GOVERNING EQUATIONS 
FOR

INVISCID,

COMPRESSIBLE 

FLOW



Laplace's equation and
Bernoulli's equation,



Let A be a vector field in space. 

The volume integral over the volume V of the quantity A is written as:



Relations Between Line, Surface, and Volume Integrals

The line integral of A over C is related to the surface 

integral of A over S by Stokes' theorem:

The surface and volume integrals of the vector field A are 

related through the divergence theorem:

If p represents a scalar field, a vector relationship analogous to  
above Equation is given by the gradient theorem:



CONTINUITY EQUATION

FIX C.V. Divergence



MOMENTUM EQUATION

A more general form

Physical principle: Force = time rate of change of momentum



Apply the gradient theorem:



The x component of  momentum equation

Apply the divergence theorem:



ENERGY EQUATION

Let us apply the first law to the fluid flowing through the fixed control volume:





The total energy contained in the elemental volume dV is  
ρ(e + V2/2) dV:



Applying the divergence theorem





Consider a fluid element passing through a given point in a flow where the 

local pressure, temperature, density, Mach number, and velocity are p, T, p, 
M, and V, respectively

V, p, T, ρ V=0,p0 , T0, ρ0

brought to rest isentropically

Static and stagnation (Total) properties



=h



In an adiabatic flow Stagnation(Total ) temperature 

remains constant





EXAMPLE

At  a  point in an airflow the pressure, temperature, and velocity 

are 1 atm, 320 K, and 1000 m/s. Calculate the total temperature 

and total pressure at this point.

By definition, the total pressure is the pressure that would exist if the 

flow at th point were slowed isentropically to zero velocity.



Hence, we can use the isentropic relations in to relate total to static 

conditions.



Introduction to Shock Waves

Compressibility of a fluid allows the existence of waves, which 

are variations in , p, and h (or temperature T), which self 

propagate through the fluid at some speed.

Ordinary sound consists of very small variations which move at the speed of 

sound a



A shock wave has 

a finite variation in 

flow quantities and 

moves at a larger 

speed Vs > a



Frames (Upstream, Shock, Downstream)



This situation is closely 

analogous to how a traffic 

blockage propagates 

backward against the 

oncoming traffic.



Dissipation in Shock

The flow passing through a shock wave undergoes an adiabatic process, 

since there is no heat being supplied (there’s nothing there to provide 

heat!).

But because a shock wave is typically very thin  less than 1 micron at sea level —

there are strong viscous forces acting on the fluid passing through it, so the process 

is irreversible. Therefore, the stagnation quantities have the following relations 

across a shock wave:



Normal Shock Waves

A normal shock wave appears in many types of supersonic flows.



Shock jump relations

We examine the flow in the frame in which the shock 

is stationary.

A control volume is defined straddling the shock. The flow 

in the shock has the following properties:

The shock wave is a thin region of highly viscous flow.

The flow through the shock is adiabatic but nonisentropic

1. Flow is steady, so ∂()/∂t = 0 in all equations.

2. Flow is adiabatic, so q˙ = 0.

3. Body forces such as gravity are negligible,



Mass continuity

x-Momentum

Energy

Equation of State



Speed of Sound

we first consider an infinitesimally weak shock wave, also known as a sound 

wave. Because the velocity gradients and hence the viscous action is small, 

the flow process through the wave is isentropic.

The objective here is to determine this a in 

terms of the other variables by the 

governing applying equations

The mass equation

x-momentum



Combining the  mass and momentum equations

We could now relate p and ρ and thus get dp/dρ using the energy and state

equations and the above equation. But an algebraically simpler approach is to use

one of the isentropic relations instead, which are valid for this weak wave. The

simplest relation for this purpose is



it clearly states that the speed of sound in a calorically perfect gas is a 
function of temperature only.



Recall the definition of compressibility

Mach number M = V/a, is  zero.



In regard to additional physical meaning of the Mach number, 

consider a fluid element moving along a streamline. The kinetic 

and internal energies per unit mass are V2/2 and e, respectively.

In other words, the Mach number is a measure of the directed 

motion of the gas compared with the random thermal motion 

of the molecules.



EXAMPLE

Consider an airplane flying at a velocity of 250 m/s. Calculate its 

Mach number if it is flying at a standard altitude of

(a) sea level,                             (b) 5 km,                                  (c) 10 km.

(b)    At 5 km,

(c)  10 km



EXAMPLE

Calculate the ratio of kinetic energy to internal energy at a point 

in an airflow where the Mach number is: 

(a) M = 2,                                  (b) M = 20.

Examining these two results, we see that at Mach 2, the kinetic 

energy and internal energy are about the same, whereas at the large 

hypersonic Mach number of 20, the kinetic energy is more than a 

hundred times larger than the internal energy. This is one 

characteristic of hypersonic flows—high ratios of kinetic to internal 

energy.



SPECIAL FORMS OF THE ENERGY EQUATION

we elaborate upon the energy equation for adiabatic flow,

one-dimensional flow,



If we consider point to be a stagnation point,



in a steady, adiabatic, inviscid flow,



Total pressure p0 and total density po,
These definitions involve an isentropic compression of the flow to zero velocity.

The above equations  are very important; 

they should be branded on your mind.



Consider a point in a general flow where the velocity 

is exactly sonic (i.e., where M = 1).



EXAMPLE

Consider a point in an airflow where the local Mach number, static pressure, and 

static temperature are 3.5, 0.3 atm, and 180 K, respectively. Calculate the local 

values of po, To,

M = 3.5,

1



EXAMPLE

calculation of the velocity at a point on an airfoil when we were given the pressure 

at that point and the freestream velocity and pressure and temperature is required.

Calculate the velocity using a) incompressible ,  b) compressible  assumptions for 

the air flow

a) incompressible 

=
= 289.1 m/s

2



b) compressible 

T∞=15 c=288 K a ∞ =340.2 m/s M ∞ =V ∞ /a ∞ =340.2 m/s=0.6

Recall that for an isentropic flow, the total pressure is constant throughout the flow.

The flow is isentropic,

T1=266 K

327 m/s V1=294.3 m/s

3



WHEN IS A FLOW COMPRESSIBLE?

There is no specific answer to this question;

We have stated several times in the preceding chapters the rule of thumb that a 

flow can be reasonably assumed to be incompressible when M < 0.3, whereas it 

should be considered compressible when M > 0.3. 

There is nothing magic about the value 0.3, but it is a convenient dividing line. We 

are now in a position to add substance to this rule of thumb.

Consider a fluid element initially at rest, say, an element of the air around

you. The density of this gas at rest is p 0 . Let us now accelerate this fluid 

element isentropically to some velocity V and Mach number M:

4



To obtain additional insight into the 

significance of Figure:
5



How the ratio ρ/ρo affects the change in pressure 

associated with a given change in velocity?

Euler's equation:

If we now assume that the density is constant, say, equal to ρo

6



consider the flow of air through a nozzle starting in the reservoir at nearly zero 

velocity and standard sea level values of po = 2116 lb/ft2 and To = 510°R, and 
expanding to a velocity of 350 ft/s at the nozzle exit. The pressure at the nozzle exit 

will be calculated assuming first incompressible flow and then compressible flow.

Note that the two results are almost the same, with the compressible value of 

pressure only 0.2 percent higher than the incompressible value.

Also, note that the Mach number at the exit is 0.317
7



On the other hand, if this flow were to continue to expand to a velocity of 900 ft/s, a 
repeat of the above calculation  yields the following results for the static pressure at the 
end of the expansion:

Here, the difference between the two sets of results is considerable—a 13 percent

difference. In this case, the Mach number at the end of the expansion is 0.86.

8



CALCULATION OF NORMAL SHOCK-WAVE  PROPERTIES

9



10



11



Static  jump  relations

From the mass equation

12



The combination of the momentum equation and mass equation gives:

13



14



Recall that the second law of thermodynamics determines the direction which a 
given process can take.

we see that the entropy change s2 — s1 across the shock is

a function of M1  only. The second law dictates that:

15



What happens to total conditions across a shock wave?

16



17



18



Consider a normal shock wave in air where the upstream flow properties are 

u1= 680 m/s, T1= 288 K, and p1= 1 atm. 

Calculate the velocity, temperature, and pressure downstream  of the shock.

EXAMPLE

19



Consider a normal shock wave in a supersonic airstream where the pressure 

upstream of the shock is 1 atm. Calculate the loss of total pressure across the 

shock wave when the upstream Mach number is

(a) M1 = 2,       (b) M1 = 4. 

Compare these two results and  comment on their implication.

EXAMPLE

(a) The upstream total pressure is obtained from
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the loss of total pressure 

(b) M1 = 4. 

In any flow, total pressure is a precious commodity.

Any loss of total pressure reduces the flow's ability to do useful work. Losses 

of total pressure reduce the performance of any flow device, and cost money.
We will see this time-and-time-again in subsequent chapters. In this example, we 

see that for a normal shock at Mach 2, the loss of total pressure was 2.184 atm, 

whereas simply by doubling the Mach number to 4, the loss of total pressure

was a whopping 130.7 atm.
The moral to this story is that, if you are going to suffer a normal shock wave in 

a flow, everything else being equal, you want the normal shock to

occur at the lowest possible upstream Mach number.
21



A ramjet engine is an air-breathing propulsion device with essentially no 

rotating machinery (no rotating compressor blades, turbine, etc.).

The ramjet is flying at Mach 2 at a standard altitude of 10 km, where the air pressure and 

temperature are 2.65 x 104 N/m2 and 223.3 K, respectively. Calculate the air temperature and 

pressure at point 2 when the Mach number at that point is 0.2.

EXAMPLE

22



Air pressures and temperatures on the order of 1.42 atm and 399 K  entering 

the combustor are very tolerable conditions for low-speed subsonic 

combustion.

23



Repeat Example 8.10, except for a freestream Mach number = 10. Assume 

that the ramjet has been redesigned so that the Mach number at point 2 

remains equal to 0.2.

EXAMPLE

for M =10,

At point 1,

24



Compared to the rather benign conditions at point 2 existing for the case 

treated in  previous example,  in the present example the air entering the 

combustor is at a pressure and temperature of 32.7 atm and 4653 K—both 

extremely severe conditions.

The temperature is so hot that the fuel injected into the combustor will decompose rather 

than burn, with little or no thrust being produced. Moreover, the pressure is so high that the 

structural design of the combustor would have to be extremely heavy, assuming in the first 

place that some special heat-resistant material could be found that could handle the high 

temperature.

In short, a conventional ramjet, where the flow is slowed down to a l ow subsonic Mach

number before entering the combustor, will not work at high, hypersonic Mach numbers.

25



The solution to this problem is not to slow the flow inside the engine to low 

subsonic speeds, but rather to slow it only to a lower but still supersonic 

speed. In this manner, the temperature and pressure increase inside the 

engine will be smaller and can be made tolerable.

In such a ramjet, the entire flowpath through the engine remains at supersonic

speed, including inside the combustor. This necessitates the injection and 

mixing of the fuel in a supersonic stream—a challenging technical problem. 

This type of ramjet, where the flow is supersonic throughout, is called a 

supersonic combustion ramjet—SCRAMjet

26



as a stovepipe jet, is a form of jet engine at contains no major moving parts and 

can be particularly useful in applications  requiring a small and simple engine for 

high speed use 

Ramjet

27



28
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A scramjet (supersonic combustion ramjet) is a variation 

of a ramjet with the key difference being that the flow in 

the combustor is supersonic. At higher speeds it is 

necessary to combust supersonically to maximize the 

efficiency of the combustion process. 

scramjet

29
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Supersonic Combustion Ram Jet
SCRAMJET Engines

In this engine, compressors are not used.

Shock waves in front of the aircraft and inside the 

inlet

slow down the flow and increase the pressure.

The flow inside the entire engine, including the 

compressor, 

is supersonic.

An aerospace plane will use a SCRAMJET 

engine.

30



Subsonic Compressible Flow

31



Pitot Tube

V
V1 =

1

2

Connect two ports to differential pressure transducer. Make sure 

Pitot tube is completely filled with the fluid that is being measured.

Solve for velocity as function of pressure difference

z1 = z2
1 2

2
V p p

Static pressure tap
Stagnation pressure tap

0

2 2

1 1 2 2
1 2

2 2

p V p V
z z

g g

MEASUREMENT OF VELOCITY IN A

COMPRESSIBLE FLOW

32



Unlike incompressible flow, a 

knowledge of Po,1 and  p1 is not 

sufficient to obtain u1 we also need 

the freestream speed of

sound, a1.

33



Supersonic Flow

34



Rayleigh Pitot tube formula. 

35



A Pitot tube is inserted into an airflow where the static pressure is 1 atm. 

Calculate the flow Mach number when the Pitot tube measures 

(a) 1.276 atm,   (b) 2.714 atm,    (c) 12.06 atm.

The flow is supersonic.

The flow is supersonic.

The flow is supersonic.

EXAMPLE

36



Consider a hypersonic missile flying at Mach 8 at an altitude of 20,000 ft, where 

the pressure is 973.3 lb/ft2 . The nose of the missle is blunt. Calculate the 

pressure at the stagnation point on the nose.

For Mach 8, po,1/p1= 82.87.

Note that the pressure at the nose of the missile is quite high—38.1 

atm. This is typical of hypersonic flight at low altitude.

EXAMPLE

37



Consider the Lockheed SR-71 Blackbird flying at a standard altitude of 25 km. 

The pressure measured by a Pitot tube on this airplane is 3.88 x 104 N/m2.

Calculate the velocity of the airplane.

At an altitude of 25 km, p = 2.5273x103 N / m2 and T = 216.66 K.

EXAMPLE

38



Oblique Shock 

and

Expansion Waves



SOUND WAVE PROPAGATION (pressure disturbance)

(a) Stationary fluid

U = 0

cDt

c(2Dt)
c(3Dt)

S

radial propagation only

Pressure disturbance occurring at an interval of every Dt

S is the disturbance source



U < c

cDt
c(2Dt)

c(3Dt)

UDt

U(2Dt)

U(3Dt)

S

(b) Moving fluid

Doppler shift

Ma < 1  subsonic

radial + axial propagation



Case (c):  U = c

Ma = 1  sonic

123

123
S

all wavefronts touch 
source S

http://physics-animations.com/Physics/English/swz_tmp.htm
http://physics-animations.com/Physics/English/swz_tmp.htm


Case (d):  U > c

123
S

c(2Dt)

c(3Dt)

UDt

U(2Dt)

U(3Dt)



 
1

sin M 



A supersonic airplane is flying at Mach 2 at an altitude of 16 km. Assume the 

shock wave pattern from the airplane (see Figure 9.1) quickly coalesces into 

a Mach wave that intersects the ground behind the airplane, causing a 

"sonic boom" to be heard by a bystander on the ground. At the instant the 

sonic boom is heard, how far ahead of the bystander is the airplane?





Relation between the oblique shock-wave angle and the Mach angle.





OBLIQUE SHOCK RELATIONS





Oblique/normal shock equivalence

It is apparent that equations mass, x-momentum , energy, state equations are in 

fact identical to the normal-shock equations derived earlier. The one addition z-

momentum equation simply states that the tangential velocity component doesn’t 

change across a shock.

The effective equivalence between an oblique and a normal shock allows re-use of

the already derived normal shock jump relations.

We only need to construct the necessary transformation from one frame to the other.



First we define the normal Mach number 

components seen by the moving observer.



The static property ratios are likewise 

obtained using the previous normal-

shock relations.





Oblique-shock analysis: Summary

Starting from the known upstream Mach number M1 and the flow deflection angle 

(body surface angle) θ, the oblique-shock analysis proceeds as follows.





1-There is a maximum turning angle θmax for any given upstream Mach 
number M1. If the wall angle exceeds this, or θ > θmax, no oblique shock is 
possible. Instead, a detached shock forms ahead of the concave corner. 
Such a detached shock is in fact the same as a bow shock discussed 
earlier.

1. If θ < θmax, two distinct oblique shocks with two different β angles are 
physically possible. The smaller β case is called a weak shock, and is the 
one most likely to occur in a typical supersonic flow. The larger β case is 
called a strong shock, and is unlikely to form over a straight-wall wedge. 
The strong shock has a subsonic flow behind it.

2. The strong-shock case in the limit θ → 0 and β → 90◦, in the upper-left 
corner of the oblique shock chart, corresponds to the normal-shock case.

4- The Weak-shock case in the limit θ → 0 and β →μ, in the upper-left corner of  
the oblique shock chart, corresponds to the normal-shock case.



Effects of increasing the upstream Mach number.



Effect of increasing the deflection angle



Consider a supersonic flow with M = 2, p = 1 atm, and T = 288 K. This flow is 

deflected at a compression corner through 20°. Calculate M, p, T, po, and T0  

behind the resulting oblique shock wave.

Example

for M1 = 2 and θ = 20° β = 53.4°

Mn,1 = M1 sin β = 2 sin 53.4° = 1.606. Mn, 2 = 0.6684



For M1 = 2,



Consider an oblique shock wave with a wave angle of 30°. The upstream 

flow Mach number is 2.4. Calculate the deflection angle of the flow, the 

pressure and temperature ratios across the shock wave, and the Mach 

number behind the wave.

Example



Two aspects are illustrated by this example:

1. This is a fairly weak shock wave only a 51 percent increase in pressure

across the wave. Indeed this case is close to that of a Mach wave, where

μ= sin-1 (1/M) = sin-1 (1/2.4) = 24.6°. The shock-wave angle of 30° is not much

larger than μ; the deflection angle of 6.5° is also small—consistent with the relative

weakness of the shock wave.

2. Only two properties need to be specified in order to define uniquely a given

oblique shock wave. In this example, M1and θ were those two properties.
In pervious example, the specified M1and θ were the two properties. Once any
two properties about the oblique shock are specified, the shock is uniquely

defined. This is analogous to the case of a normal shock wave studied in

Previous chapter. There, we proved that all the changes across a normal shock

wave were uniquely defined by specifying only one property, such as M1.



Consider an oblique shock wave with β = 35° and a pressure ratio p2/p1= 3. 
Calculate the upstream Mach number.

Example



Consider a Mach 3 flow. It is desired to slow this flow to a subsonic

speed. Consider two separate ways of achieving this: (1) the Mach 3 flow

is slowed by passing directly through a normal shock wave; (2) the Mach

3 flow first passes through an oblique shock with a 40° wave angle, and

then subsequently through a normal shock. These two cases are

sketched in Figure. Calculate the ratio of the final total pressure values

for the two cases, that is, the total pressure behind the normal shock for

case 2 divided by the total pressure behind the normal shock for case 1.

Comment on the significance of the result.

Example



For case 1, at M = 3,

For case 2, we have Mn1 = M1sin β= 3 sin40° = 1.93.





SUPERSONIC FLOW OVER

WEDGES AND CONES

The main differences between the supersonic flow over a cone and wedge, both 

with the same body angle, are that

(1) the shock wave on the cone is weaker,

(2) the cone surface pressure is less, 

(3) the streamlines above the cone surface are curved



Example

Consider a wedge with a 15° half angle in a Mach 5 flow, as sketched in 

the figure. Calculate the drag coefficient for this wedge. (Assume that 

the pressure over the base is equal to freestream static pressure, as 

shown in the figure )



The drag is finite for this case. In a supersonic or hypersonic inviscid flow  over a two-

dimensional body, the drag is always finite. D'Alembert's paradox does not hold for 

freestream Mach numbers such that shock waves appear in t he  flow.



SHOCK  INTERACTIONS  AND REFLECTIONS

consider an oblique shock wave generated by a concave corner,

Assume that a straight, horizontal wall is present above the corner,

The shock wave generated at point A, called the incident shock wave, 

impinges on the upper wall at point B.

Question: Does the shock wave simply disappear at point B? If not, 

what happens to it?

A

B



SHOCK  INTERACTIONS  AND REFLECTIONS

the flow must be tangent everywhere along the upper wall; if the flow in region 2

were to continue unchanged, it would run into the wall and have no place to go.

Hence, the flow in region 2 must eventually be bent downward through the angle θ

in order to maintain a flow tangent to the upper wall. Nature accomplishes this

downward deflection via a second shock wave originating at the impingement

point B 9. This second shock is called the reflected shock wave.



Assume that M1 is only slightly  above the minimum Mach number necessary for a 

straight, attached shock wave at the given deflection angle θ.

we know that the Mach number decreases across a shock .This  decrease may be 

enough such that M2 is not above the minimum  Mach number for
the required deflection θ through the reflected shock.

In such a case, our oblique shock theory does not allow a solution for a straight 

reflected shock wave.



Another type of shock interaction is shown in figure. 

At the intersection, wave A is refracted and continues as wave D. Similarly, wave B is
refracted and continues as wave C. The flow behind the refracted shock D is denoted by
region 4; the flow behind the refracted shock C is denoted by region 4'.

Across the slip line, the pressures are constant (i.e., p 4 = p4,) , and the direction (but 

not necessarily the magnitude) of velocity is the same, namely, parallel to the slip line. 

All other properties in regions 4 and 4' are different, most notably the entropy s4 #s4’).



The intersection occurs at point C, at which the two shocks merge

and propagate as the stronger shock CD, usually along with a weak

reflected wave CE. This reflected wave is necessary to adjust the flow so

that the velocities in regions 4 and 5 are in the same direction. Again, a slip

line CF trails downstream of the intersection point.



EXAMPLE

Consider an oblique shock wave generated by a compression corner with a 

10° deflection angle. The Mach number of the flow ahead of the corner is 

3.6; the flow pressure and temperature are standard sea level conditions. 

The oblique shock wave subsequently impinges on a straight wall opposite 

the compression comer. Calculate the angle of the reflected shock wave Φ

relative to the straight wall. Also, obtain the pressure, temperature, and 

Mach number behind the reflected wave.





Also, the normal component of the upstream Mach number relative to the 

reflected shock is

Note that the 

reflected shock 

is weaker than 

the incident 

shock,



DETACHED SHOCK WAVE IN FRONT OF A BLUNT BODY

The curved bow shock

which stands in front of a

blunt body in a supersonic

flow is sketched in Figure

δ is defined  as the shock detachment distance. 



The solution of this flow field is not trivial. Indeed, the

supersonic blunt-body problem was a major focus for

supersonic aerodynamicists during the 1950s and 1960s,

spurred by the need to understand the high-speed flow over

blunt-nosed missiles and reentry bodies.



PRANDTL-MEYER EXPANSION WAVES

From the u-V and du-dV velocity triangles:





Prandtl-Meyer Function



ν (M) is called the Prandtl-Meyer function,

θ







How do the above results solve the 

problem stated in Figure

1. For the given M1, obtain ν(M1)

2. Calculate v(M2) from using θ + ν(M1)= v(M2)

3. Obtain M2 from Appendix C corresponding to the 

value of v(M2)  or using prandtl-Meyer function

4. The expansion wave is isentropic; hence, po and T0 

are constant through the wave. 



How do you compute the inverse of the 

Prandtl-Meyer Function?



In the usual approach for calculation, you compute the value of ν

for the upstream Mach number and then add the angle thru

which the flow is turned. The downstream Mach number is that

which corresponds to the downstream ν. But, there is no easy

way to compute this.

Since the equation is relatively simple, most students of 

compressible flow theory try to use algebraic and trigonometric 

manipulations to obtain an expression for Mach as a function of 

ν.  Alas, it does not seem possible and we are left with numerical 

procedures.

Given a sufficiently dense table of ν vs. Mach, one can do a

reverse table lookup.

This is probably the method of choice for students who are doing

an off-line calculation.



In simple shock-expansion theory. If one is developing a computing 

procedure this approach can still be used by building a large table of 

ν versus Mach and then doing interpolation as Mach versus ν.

There is a certain lack of elegance to this approach and people would

like a nice neat function that simply returned Mach for a given ν.

In September 1975, I.M. Hall published a paper in the Aeronautical

Journal in which he described an rational polynomial function that

approximated the inverse Prandtl-Meyer function with accuracy

sufficient for most engineering purposes.

The function is simply a cubic polynomial divided by a quadratic.



All of the constants 

shown here are for γ=1.4. 

The original paper by Hall 

describes the calculation 

for other specific heats.



The accuracy of the Hall approximation is

quite good with the maximum error much

less that one-tenth of one percent.



A supersonic flow with M1= 1.5, p1=1 atm, and T1 = 288 K  is expanded  
around  a sharp comer) through a deflection angle of 15°. Calculate M2, p2, 
T2, P0,2, T0,2  and the angles that the forward and rearward Mach lines make 

with respect to the upstream flow direction.

EXAMPLE





EXAMPLE

An isentropic compression wave is one of the possible compression mechanisms 

in SCRAMjets. 

Consider the isentropic compression surface sketched in Figure. The Mach 

number and pressure upstream of the wave are M1 = 10 and p1= 1atm,   
respectively. The flow is turned through a total angle of 15°. Calculate the Mach 

number and pressure in region 2 behind the compression wave. Compare the 

results with those of a sharp corner.



The inefficiency of the shock wave is measured by the loss of total 

pressure across the shock; total pressure drops by about 77 percent 

across the shock. This emphasizes why designers of supersonic and 

hypersonic inlets would love to have the compression process carried 

out via isentropic compression waves.

it is a point design for the given upstream Mach number.



Shock-Expansion Theory



The diamond-shape airfoil
example of the application of shock-expansion theory,



Biconvex airfoil at low angle of attack



Calculate the lift and drag coefficiens for a flat plate at a 5° angle of attack in 

a Mach 3 flow.

EXAMPLE

First, calculate p2/p1 on the upper surface

Next, calculate p3/p1 on the bottom surface.



Note that to calculate these coefficients we did not need to know the freestream

pressure, density, or velocity. All we needed to know was:

1. The shape of the body

2. The angle of attack

3. The freestream Mach number



EXAMPLE

It has been suggested that a supersonic airfoil be designed as an isosceles

triangle with 10° equal angles and an 8-ft chord. When operating at a 5° angle of 

attack the air flow appears as shown in Figure. 

Find the pressures on the various surfaces and  the lift and drag forces when flying 

at M = 1.5 through air with a pressure of 8 psia.

M1 = 1.5  and  θ = 5°,       β= 48°:

M1n = M1 sin β = 1.5 (sin 48°) = 1.115



M2n = 0.900  and  p2/p1 = 1.2838

The Prandtl–Meyer expansion turns the flow by 20°:

ν4 = ν2 + 20 = 6.7213 + 20 = 26.7213 M4 = 2.012

Note that conditions in region 3 are identical with region 2.We now find the 

pressures. The lift force (perpendicular to the free stream) will be

The lift per unit span will be 3728 lbf.



VISCOUS FLOW: 

SHOCK-WAVE/BOUNDARY-LAYER INTERACTION

Shock waves and boundary layers do not mix.

Bad things can happen when a shock wave impinges on a boundary layer.



Example
Consider the arrangement shown in the following Fig.. A 15 Deg. half-angle diamond 

wedge airfoil is in a supersonic flow at zero angle of attack. A Pitot tube is inserted into 

the flow at the location shown in the Fig.. The pressure measured by the Pitot tube is 

2.596 atm. At point a on the backface, the pressure is 0.1 atm. Calculate the free-

stream Mach number MI.



The pressure at point a is the static pressure in region 3.



Putting these results into Eq:

This does not check. We are going in the wrong direction



PRANDTL-MEYER EXPANSION WAVES

From the u-V and du-dV velocity triangles:





Prandtl-Meyer Function



ν (M) is called the Prandtl-Meyer function,

θ







How do the above results solve the 

problem stated in Figure

1. For the given M1, obtain ν(M1)

2. Calculate v(M2) from using θ + ν(M1)= v(M2)

3. Obtain M2 from Appendix C corresponding to the 

value of v(M2)  or using prandtl-Meyer function

4. The expansion wave is isentropic; hence, po and T0 

are constant through the wave. 



How do you compute the inverse of the 

Prandtl-Meyer Function?



In the usual approach for calculation, you compute the value of ν

for the upstream Mach number and then add the angle thru

which the flow is turned. The downstream Mach number is that

which corresponds to the downstream ν. But, there is no easy

way to compute this.

Since the equation is relatively simple, most students of 

compressible flow theory try to use algebraic and trigonometric 

manipulations to obtain an expression for Mach as a function of 

ν.  Alas, it does not seem possible and we are left with numerical 

procedures.

Given a sufficiently dense table of ν vs. Mach, one can do a

reverse table lookup.

This is probably the method of choice for students who are doing

an off-line calculation.



In simple shock-expansion theory. If one is developing a computing 

procedure this approach can still be used by building a large table of 

ν versus Mach and then doing interpolation as Mach versus ν.

There is a certain lack of elegance to this approach and people would

like a nice neat function that simply returned Mach for a given ν.

In September 1975, I.M. Hall published a paper in the Aeronautical

Journal in which he described an rational polynomial function that

approximated the inverse Prandtl-Meyer function with accuracy

sufficient for most engineering purposes.

The function is simply a cubic polynomial divided by a quadratic.



All of the constants 

shown here are for γ=1.4. 

The original paper by Hall 

describes the calculation 

for other specific heats.



The accuracy of the Hall approximation is

quite good with the maximum error much

less that one-tenth of one percent.



A supersonic flow with M1= 1.5, p1=1 atm, and T1 = 288 K  is expanded  
around  a sharp comer) through a deflection angle of 15°. Calculate M2, p2, 
T2, P0,2, T0,2  and the angles that the forward and rearward Mach lines make 

with respect to the upstream flow direction.

EXAMPLE





EXAMPLE

An isentropic compression wave is one of the possible compression mechanisms 

in SCRAMjets. 

Consider the isentropic compression surface sketched in Figure. The Mach 

number and pressure upstream of the wave are M1 = 10 and p1= 1atm,   
respectively. The flow is turned through a total angle of 15°. Calculate the Mach 

number and pressure in region 2 behind the compression wave. Compare the 

results with those of a sharp corner.



The inefficiency of the shock wave is measured by the loss of total 

pressure across the shock; total pressure drops by about 77 percent 

across the shock. This emphasizes why designers of supersonic and 

hypersonic inlets would love to have the compression process carried 

out via isentropic compression waves.

it is a point design for the given upstream Mach number.



Shock-Expansion Theory



The diamond-shape airfoil
example of the application of shock-expansion theory,



Biconvex airfoil at low angle of attack



Calculate the lift and drag coefficiens for a flat plate at a 5° angle of attack in 

a Mach 3 flow.

EXAMPLE

First, calculate p2/p1 on the upper surface

Next, calculate p3/p1 on the bottom surface.



Note that to calculate these coefficients we did not need to know the freestream

pressure, density, or velocity. All we needed to know was:

1. The shape of the body

2. The angle of attack

3. The freestream Mach number



EXAMPLE

It has been suggested that a supersonic airfoil be designed as an isosceles

triangle with 10° equal angles and an 8-ft chord. When operating at a 5° angle of 

attack the air flow appears as shown in Figure. 

Find the pressures on the various surfaces and  the lift and drag forces when flying 

at M = 1.5 through air with a pressure of 8 psia.

M1 = 1.5  and  θ = 5°,       β= 48°:

M1n = M1 sin β = 1.5 (sin 48°) = 1.115



M2n = 0.900  and  p2/p1 = 1.2838

The Prandtl–Meyer expansion turns the flow by 20°:

ν4 = ν2 + 20 = 6.7213 + 20 = 26.7213 M4 = 2.012

Note that conditions in region 3 are identical with region 2.We now find the 

pressures. The lift force (perpendicular to the free stream) will be

The lift per unit span will be 3728 lbf.



VISCOUS FLOW: 

SHOCK-WAVE/BOUNDARY-LAYER INTERACTION

Shock waves and boundary layers do not mix.

Bad things can happen when a shock wave impinges on a boundary layer.



Example
Consider the arrangement shown in the following Fig.. A 15 Deg. half-angle diamond 

wedge airfoil is in a supersonic flow at zero angle of attack. A Pitot tube is inserted into 

the flow at the location shown in the Fig.. The pressure measured by the Pitot tube is 

2.596 atm. At point a on the backface, the pressure is 0.1 atm. Calculate the free-

stream Mach number MI.



The pressure at point a is the static pressure in region 3.



Putting these results into Eq:

This does not check. We are going in the wrong direction



Compressible Flow Through Nozzles, 

Diffusers, and Wind Tunnels

Compressible Channel Flow

A quasi-one-dimensional flow is one in which all variables vary primarily along 

one direction, say x. A flow in a duct with slowly-varying area A(x) is the case of 

interest here. In practice this means that the slope of the duct walls is small. Also, 

the x-velocity component u  dominates the y and z-components v and w.



Governing equations

Application of the integral mass continuity equation to a segment of the duct 

bounded by any two x locations gives

Since stations 1 or 2 can be placed at any arbitrary location x, we can define the duct mass flow 

which is constant all along the duct, and relates the density, velocity, and area.

If we assume that the flow in the duct is isentropic, at least piecewise-isentropic 

between shocks,



It is evident that the maximum possible mass flux occurs at a location where locally M = 1.

The significance of ρu is that it represents the inverse of the duct area, or

M = 1= 0



Sonic conditions

The stagnation conditions ρo and ao were used to normalize the various quantities.

For compressible duct flows, it is very convenient to also define sonic

conditions which can serve as alternative normalizing quantities.

The advantage of the sonic-flow process is that it produces a well-defined sonic 

throat area A* while for the stagnation process A tends to infinity, and cannot be 

used for normalization.



The ratios between the stagnation and sonic conditions are readily obtained 

from the usual isentropic relations, with M = 1 plugged in.

Numerical values are also given for γ = 1.4



This is the area-Mach relation



If the duct geometry A(x) is given, and A is defined from the known duct mass flow 

and stagnation quantities, then M(x) can be determined using the graphical 

technique shown in the figure,



Consider the isentropic supersonic flow through a convergent-divergent 

nozzle with an exit-to-throat area ratio of 10.25. The reservoir pressure and 

temperature are 5 atm and 600°R, respectively. Calculate M, p, and T at the 

nozzle exit.

EXAMPLE

For Ae/A* = 10.25





The momentum equation, Equation





Five equations for the five unknowns P2, u2, p2, T2, and h2. We 

could, in principle, solve these equations directly for the unknown 

flow quantities at station 2









Consider a duct with a throat, connected at its inlet to a very large still air 

reservoir with total pressure and enthalpy  pr, hr.

Nozzle  Flows

The duct exit is now subjected to an adjustable exit static pressure  pe





Mass flux ρu at the throat reaching its 

maximum possible value ρ* a*, which is 

given by:

Therefore, the only way to change the mass flow of a choked duct is to change the 

reservoir’s total properties pr and/or hr.



Question:
What happens in the duct when pe is reduced below  pe3 that 

produces chock  condition In the convergent?

A lot happens in the divergent section of

the duct. As the exit pressure is reduced

below p e 3 , a region of supersonic flow

appears downstream of the throat.

However, the exit pressure is too high to

allow an isentropic supersonic flow

throughout the entire divergent section.

Instead, 
For pe less than pe3  but  substantially 

higher than the fully isentropic value  a 

normal shock wave is formed downstream 

of  the  throat. 









Supersonic-exit flows

With sufficiently low back pressure, the shock can be moved 

back to nearly the exit plane.

If the back pressure is reduced 

further, below the sonic 

pressure p* the exit flow 

becomes supersonic, leading to 

three possible types of exit flow.



1-Overexpanded nozzle flow

In this case,  pB < p*

the exit flow is supersonic, but pB > pe, so the flow must adjust to a higher pressure.

The streamline at the edge of the jet 

behaves much like a solid  wall, 

whose turning angle adjusts itself so 

that the post-shock pressure is equal 

to pB.



2- Matched nozzle flow.

In this case, the back pressure is reduced further until pB = pe.

The duct nozzle flow comes 

out at the same pressure as 

the surrounding air, and 

hence no turning takes 

place.



3-Underexpanded nozzle flow.

In this case, the back pressure is reduced below the isentropic exit pressure, so that

pB < pe.

The duct nozzle flow must 

now expand to reach pB, 

which is done through 

expansion fans attached to 

the duct nozzle edges



Jet  shock  diamonds

In the underexpanded and overexpanded nozzle flows, each initial oblique shock or 

expansion fan impinges on the opposite edge of the jet, turning the flow away or towards 

the centerline. The shock or expansion fan reflects off the edge, and propagates back to 

the other side, repeating the cycle until the jet dissipates though mixing. These flow 

patterns are known as shock diamonds, which are often visible in the exhaust of rocket 

or jet engines.



Determination of Choked Nozzle Flows



where f(M1) is the shock total pressure ratio function, also available in 

tabulated form above equation . 

Therefore implicitly determines M1 just in front of the shock, which together

with the universal flow area function A/A* = f(M) determines the nozzle area at 

the shock.



Consider the isentropic flow through a convergent-divergent nozzle with an 

exit-to-throat area ratio of 2. The reservoir pressure and temperature are 1 

atm and 288 K, respectively. 

Calculate the Mach number, pressure, and temperature at both the throat 

and the exit for the cases where (a) the flow is supersonic at the exit and (b) 
the flow is subsonic throughout the entire nozzle except at the throat, 

where M = 1.

E X A M P L E

(a) At the throat, the flow is sonic. Hence,



At the exit, the flow is supersonic.

(b) At the throat, the flow is still sonic. Hence, from above, Mt = 1.0, pt = 0.528 atm,  

and Tt = 240 K. 

However, at all other locations in the nozzle, the flow is subsonic. At the

exit, where Ae/A* = 2 ,



E X A M P L E

For the nozzle in previous example, assume the exit pressure is 0.973 

atm. Calculate the Mach numbers at the throat and the exit.

In the previous example, we saw that if pe = 0.94 atm, the flow is sonic at 

the throat, but subsonic. in this case, the flow is subsonic throughout 

the nozzle, including at the throat. For this case, A* takes on a reference 

value, and the actual geometric throat area is denoted by At.

From the subsonic portion of Appendix A, for At/A* = 1.482, we have:





Consider a rocket engine. Liquid hydrogen and oxygen are burned in the 

combustion chamber producing a combustion gas pressure and temperature 

of 30 atm and 3500 K, respectively. The area of the rocket nozzle throat is 0.4 

m2 . The area of the exit is designed so that the exit pressure exactly equals 

the ambient atmospheric pressure at a standard altitude of 20 km. 

Assume an isentropic flow through the rocket engine nozzle with an effective 

value of the ratio of specific heats y = 1.22, and a constant value of the 

specific gas constant R = 520 J/(kg)(K).

(a) Calculate the thrust of the rocket engine.

(b) Calculate the area of the nozzle exit.

E X A M P L E

we first need to obtain the value of mass flow, and
exit velocity, ue.

The mass flow is constant through the nozzle and is equal to m. = puA

evaluated at any location in the nozzle.



A convenient location to evaluate m
.

is at the



Next, we need to obtain the exit velocity ue.



where, from the statement of the problem, pe is equal to the ambient 

pressure at a standard altitude of 20 km. From Appendix D, at 20 km, 

poo = 5.5293 x 103 N/m2 .



Intermediate check: We can check this value of 3700 m/s for ue by directly using 

the energy equation,





EX A M P L E

Calculate the mass flow through the rocket engine described in the 

previous example using the closed-form analytical expression given:

We have po = 30 atm, T0 = 3500 K, A* = 0.4 m2 , R =520 J/(kg)(K), and γ = 1.22.

This result, obtained from a single equation, compares well with the value of 

586.4 kg/s obtained from a sequence of calculations that is subject to a larger 

cumulative roundoff error



DIFFUSERS

In general,

we can define a diffuser as any 

duct designed to slow an incoming 

gas flow to lower velocity at the 

exit of the diffuser. The incoming 

flow can be subsonic, or it can be 

supersonic, as discussed in the 

present section.

or  it can be supersonic, that will be 

discussed 

However, the shape of 

the diffuser is drastically 

different, depending on

whether the incoming 

flow is subsonic or 

supersonic.



The total pressure of a flowing gas is a measure of the capacity of the flow 

to perform  useful work. Let us consider two examples:

1. A pressure vessel containing stagnant air at 10 atm

2. A supersonic flow at M = 2.16 and p = 1 atm

In case 1, the air velocity is zero; hence, po = p = 10 atm. Now, imagine that
we want to use air to drive a piston in a piston-cylinder arrangement, where useful

work is performed by the piston being displaced through a distance. The air is

ducted into the cylinder from a large manifold, in the same vein as the reciprocating

internal combustion engine in our automobile. In case, 1, the pressure vessel can

act as the manifold; hence, the pressure on the piston is 10 atm, and a certain

amount of useful work is performed, say, W1. However, in case 2, the supersonic
flow must be slowed to a low velocity before we can readily feed it into the

manifold. If this slowing process can be achieved without loss of total pressure,

then the pressure in the manifold in this case is also 10 atm (assuming V =0),
and the same amount of useful work W1 is performed. On the other hand, assume
that in slowing down the supersonic stream, a loss of 3 atm takes place in the total

pressure. Then the pressure in the manifold is only 7 atm, with the consequent

generation of useful work W2, which is less than in the first case; that is, W2 < W1.



A diffuser is a duct designed to slow an incoming gas flow to lower velocity 

at the exit of the diffuser with as small a loss in total pressure as possible. 

The art of diffuser design is to obtain as small a total pressure loss as possible, 

that is, to design the convergent, divergent, and constant-area throat sections so 

that Po2/Po1 is as close to unity as possible

112:15:07



SUPERSONIC WIND TUNNELS

Imagine that you want to create a Mach 2.5 uniform flow in a laboratory for the

purpose of testing a model of a supersonic vehicle, say, a cone.

How do you do it?

Here, the Mach 2.5 flow passes into the surroundings as a "free jet." 

The test model is placed in the flow downstream of the nozzle exit.

can you accomplish your objective in a more efficient way, at less cost?

Question:

212:15:09



Instead of the free jet, imagine that you have a long constant-area section 

downstream of the nozzle exit, with a normal shock wave standing at the end of 

the constant-area section

The static pressure ratio across the normal  shock is p2/pe = 7.125.

312:15:09



The normal shock wave is acting as a diffuser, slowing the air originally at Mach 

2.5 to the subsonic value of Mach 0.513 immediately behind the shock.

Hence, by the addition of this "diffuser," we can more efficiently produce our 

uniform Mach 2.5 flow.

3. As soon as a test model is introduced into the constant-area section, the

oblique waves from the model would propagate downstream, causing the

flow to become two- or three-dimensional. The normal shock could not exist in 

such a flow.

1. A normal shock is the strongest possible shock, hence creating the largest total 

pressure loss. If we could replace the normal shock with a weaker shock, the total 

pressure loss would be less, and the required reservoir pressure po would be less 

than 2.4 atm.

2. It is extremely difficult to hold a normal shock wave stationary at the duct  exit; 

in real life, flow unsteadiness and instabilities would cause the shock to move 

somewhere else and to fluctuate constantly in position. Thus, we could never be 

certain about the quality of the flow in the constant-area duct.
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Hence, let us replace the normal shock with the oblique shock diffuser 

shown in Figure

The main source of total pressure loss in a supersonic wind tunnel is the

diffuser.
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Hence, the flow throughout the wind tunnel is adiabatic,
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Only in the case of an ideal isentropic diffuser, where p0 = constant,
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For the preliminary design of a Mach 2 supersonic wind tunnel, 

calculate the ratio of the diffuser throat area to the nozzle throat area.

E X A M P L E

Assuming a normal shock wave at the entrance of the diffuser (for starting),

M=2
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VISCOUS FLOW: SHOCK-WAVE/BOUNDARY-LAYER INTERACTION INSIDE

NOZZLES

The adverse pressure gradient across the shock causes the 

boundary layer to separate from the nozzle wall. A lambda-type 

shock pattern occurs at the two feet of the shock near the wall, 

and the core of the nozzle flow, now separated from the wall, 

flows downstream at almost constant area.
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E X A M P L E

A supersonic nozzle is designed to operate at Mach 2.0. Under a certain

operating condition, however, an oblique shock making a 45° angle with the flow

direction is observed at the nozzle exit plane. What percent of increase in

stagnation pressure would be necessary to eliminate this shock and maintain

supersonic flow at the nozzle exit?
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For M1 = 2.0, p1/po1 = 0.1278.

The component of M1 normal to the oblique wave is M1sin 45° = 1.4142

From the normal shock relations, Pb/P1= 2.1667.

pb/po1= (pb/p1)(Pl/Po1) = (2.1667)(0.1278) = 0.2769

On the other hand, for supersonic exit flow with no shocks (i.e., Match nozzle )

po1= (l/0.1278)pb = 7.8247Pb

po1=(1/0.2769)Pb = (3.6114)Pb

Thus, an increase of:

[(7.8247 - 3.6114)/3.6114]100 = 116.7 percent 

in stagnation pressure is required.
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When a supersonic nozzle is operating in the under-

or overexpanded regimes, with flow in the nozzle

independent of back pressure, the exit velocity is

unaffected by back pressure. Thus, over this range of

back pressures,the above shows that larger thrusts

are developed in the underexpanded case (Pe > Pa)
and smaller thrusts in the overexpanded

case (Pe < Pa)·
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For back pressures greater than the upper limit indicated, a

normal shock appears in the diverging portion of the nozzle, the exit

velocity becomes subsonic, and this analysis no longer applies.
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The plug nozzle was studied in the 1950s and '60s and reconsidered for 

use on the RLV X-33 in the 1990s.

This device is intended to allow the flow to be directed or controlled by 

the ambient pressure (since ambient pressure varies with altitude, this 

mechanism is termed altitude adaptation)

rather than by the nozzle walls. 

In this nozzle, the supersonic flow is not confined within solid walls, but 

is exposed to the ambient pressure.
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Plug nozzle operation at the design 

pressure ratio is depicted in Figure

The annular flow first expands internally up to Mach 1 at the throat. The remainder 

of the expansion to the back pressure occurs with the flow exposed to ambient 

pressure. Since the throat pressure is considerably higher than the back 

pressure, a Prandtl-Meyer expansion fan is attached to the throat cowling as 

shown. 

The plug is designed so that, at the design pressure ratio, the final expansion 

wave intersects the plug apex.
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To produce a maximum axial thrust, it is necessary for the exit flow to 

have an axial direction. Therefore, the flow at the throat cowling must 

be directed toward the axis so that the turning produced by the 

expansion fan will yield axial flow at the plug apex.

The expansion along the plug is controlled by the back pressure, 

whereas the converging-diverging nozzle expansion is controlled by nozzle geometry.
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Comparison of Thrust and Back Pressure for Plug and C-D Nozzles
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Performance computations comparing overexpanded plug and C-D nozzles

Example. E X A M P L E

A rocket nozzle is designed to operate with a ratio of chamber pressure to ambient

pressure pc/pa of 50. Compare the performance of a plug nozzle with that of a

converging diverging nozzle for two cases where the nozzle is operating overexpanded:

pc/pa = 40 and pc/pa = 20.

Make the comparison on the basis of thrust coefficient CT = T/(Pc  At),

where T is the thrust and At is the area of throat. Assume  that  γ=1.4  and in both cases

Neglect  the effect of non axial exit velocity components.
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For the design case:

and since in the design case the flow is isentropic, we can determine the 

Mach number at the exit:

Now, from the definition of the thrust coefficient,
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Because the nozzle is choked, Mt = 1, and therefore,

For the converging-diverging nozzle operating off design:
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For the plug nozzle:

Flow in the plug nozzle does not continue to expand below ambient pressure, so

there is no pressure term in the expression for thrust.
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The plug nozzle is marginally superior to the C-D nozzle near the design 

point when operating in the overexpanded regime; however, the gap widens 

as the chamber-to-ambientpressure ratio decreases.
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Area changes

Friction, 

heat transfer

Are the most important factors affecting the properties in a flow 

system. Up to this point we have considered only one of these 

factors, that of variations in area.

Adiabatic Duct Flow with Friction

 Friction must be included for flow through long ducts, 

especially if the cross-sectional area is small.

 Here, we study compressible flow with significant wall 

friction, but negligible heat transfer in ducts of constant 

cross section.



Fanno Flow - Thermodynamics
 Steady, 1-d, constant area, adiabatic

flow with no external work but with
friction

 Conserved quantities

 since adiabatic, no work: ho=constant

 since A=const: mass flux=v=constant

L

p

T



v

M

x, f

?

– combining: ho=h+ (v)2/2=constant

• On h-s diagram, can draw Fanno Line

– line connecting points with same ho and v
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Fanno Line
 Velocity change (due to 

friction) associated with 
entropy change

h

s

ho

v=0

smaxvmax

M<1

M>1

(v) (v)

M=1

• Friction can only 
increase entropy

• Two solutions given (v,ho,s): subsonic & 
supersonic

– change mass flux: new Fanno line

– friction alone can not allow 
flow to transition between 
sub/supersonic

– can only approach M=1



Fanno Line - Choking
 Total friction experienced

by flow increases with
length of “flow”, e.g.,
duct length, L

 For long enough duct,
Me=1 (L=Lmax)

 What happens if L>Lmax

 flow already “choked”

 subsonic flow: must move to
different Fanno line (– – –), i.e., lower mass flux

– supersonic flow: get a shock (– – –)

h

s

ho

M<1

M>1

(v)

M=1

M1 Me

L











Fanno Line – Mach Equations
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• can write each as only f(M)

• po loss due to entropy rise



Property Variations
 Look at signs of previous equations to see how 

properties changed by friction as we move along flow

 (1-M2) term makes M<1 different than M>1

M<1 M>1

s

po

M

h,T

p



v

• Friction increases s, po drop

• Friction drives M1

• ho,To const: h,T opposite to M

• p,  same as T (like isen. flow)

•v=const: v opposite of 



A Solution Method
 Need to integrate (X.6-10) to find how properties 

change along length of flow (fdx/D)
 can integrate or use tables of integrated values

only )M(f
D

Lmax 
f

   
 








 



L

0

M

M
24

22

D

dxsurfaceRe,

M
2

1
1M

dMM1
2
2

2
1

f

function of 

Reynolds number 

(v) and surface 

roughness

• Mach number variation

 
D

L

M
2

1
1M

dMM1 max

1

M
24

22

2
1

f









 





1) use avg. f
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Use of Tables
 To get change in M, use change

in f Lmax/D (like using A/A*)

• Find values in Appendix E in John

so if you know f L/D and M1, 1) 

look up f Lmax/D at M1

2) calculate f Lmax/D at M2

3) look up corresponding M2
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TD Property Changes
 To get changes in T, p, po, ... can also

use M=1 condition as reference
condition (*)

• Integrate (X.7-10), e.g.,
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Fanno Flow Property Changes
 Summarize results in terms of reference conditions

• In terms of initial and final properties
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Example
• Given: Exit of supersonic nozzle connected to straight 

walled test section. Test section flows N2 at 

Mtest=3.0, To=290. K, po=500. kPa,

L=1m, D=10 cm, f=0.005

• Find:

- M, T, p at end of test section

- po,exit/po,inlet

- Lmax for test section

• Assume: N2 is tpg/cpg, =1.4, steady, adiabatic, no 

work 

Mtest

L



Solution
• Analysis:

– Me

– T

another solution is M=0.605, but 

since started M>1, can’t be 

subsonic

(X.11)
eM

max

0.3

max

D

L

D

L

D

L











fff M1=Mtest

L

M2=Me

4722.0
10

)100(005.0
5222.0

D

L

eM

max 


f

(Appendix E) 70.2Me 

K118

M
2

1
1

T

M
2

1
1

M
2

1
1

TT
2
2

o

2
2

2
1

12 












(To const)



Solution (con’t)
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25% loss in stagnation pressure due to 

friction
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AE3450

Solution (con’t)

10 m long section would have M=1 at 

exit

m4.10
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AE3450

L<Lmax, Back Pressure
 Last problem (supersonic 

duct), what would happen 
if calculated exit pressure 
(pe,f) did not match actual 
back pressure (pb)

• pe,f < pb<pe,sh : oblique 

shocks outside duct (overexpanded)

shock 

inside

pe,sh

shock 

at exit

O

U

p*/po

x

1

pe,f

p/po1

• pe,sh<pb : shocks inside duct (until shock reaches 

~throat)

• pb<pe,f : expansion outside 

duct (underexpanded)

M1=Mtest

L

M2=Me

pe

pb

po1
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L>Lmax, Back Pressure

 Can’t have flow transition
to subsonic with pure
Fanno flow
shock in duct

p*/po

x

1

pb

p/po1

• Shock location 

determined by 

back pressure 

– raise pb

– shock moves upstream until shock 

reaches M=1 location in nozzle

M1=Mtest

L

M2=Me

pe

pb

po1



Rayleigh Flow

Rayleigh flow is model describing a frictionless flow with heat transfer 

through a pipe of constant cross sectional area.

In practice Rayleigh flow isn’t a really good model for the real situation. Yet, Rayleigh 

flow is practical and useful concept in a obtaining trends and limits such as the 

density and pressure change due to external cooling or heating.

the heat transfer can be in two directions not like the friction (there is no 

negative friction).



Continuity

Energy

This is the first major flow category for which the total enthalpy has not
been constant.



Momentum



lines of constant temperature:

point 3 is 

reached where 

the temperature

is a maximum. 

Is this a limiting 

point of some 

sort?



To answer these questions, we must turn 

elsewhere

For a T = constant  line,

For an S = constant line,



We now see that not only can we reach 

the point of maximum temperature, but

more heat can be added to take us 

beyond this point.

From point 3 to 4, 

we add heat to the 

system and its 

temperature 

decreases.

the effects of heat 

addition are normally 

thought of as causing 

the fluid density to

decrease. This requires 

the velocity to increase 

since ρV = constant by 
continuity.

This velocity increase automatically

Some of the heat that is added to the system is converted into this

increase in kinetic energy of the fluid,



Noting that kinetic energy is proportional to the square of velocity, we 

realize that as higher velocities are reached, the addition of more heat is 

accompanied by much greater increases in kinetic energy. Eventually, we 

reach a point where all of the heat energy added is required for the kinetic 

energy increase.

Let’s discuss the h(T)-s diagram



Equation of state







For heat addition, the entropy must increase and the flow moves to the right.



Limiting Point

Is valid anyplace along the Rayleigh line. Now for a 
differential movement at the limit point of maximum 

entropy, ds = 0 or s = const.

(at the limit point)

This is immediately recognized as sonic velocity.



We have been discussing a familiar heating process along the upper branch. 
What  about the lower branch?



Another interesting fact can be shown to be true at the limit point.

(at the limit point)

The stagnation enthalpy increases as long as heat can be added. At the point of 

maximum entropy, no more heat can be added and thus ht must be a maximum 
at this location.





Stagnation Conditions



REFERENCE STATE ANDTHE RAYLEIGH TABLE

We introduce still another ∗ reference state defined as before, in that the Mach

number of unity must be reached by some particular process.





Values for the functions represented in equations are listed

in the Rayleigh table



APPLICATIONS

The procedure for solving Rayleigh flow problems is quite similar to the 

approach used for Fanno flow except that the tie between the two locations 

in Rayleigh flow is determined by heat transfer considerations rather than 

by duct friction. The recommended steps are, therefore, as follows

1. Sketch the physical situation (including the 

hypothetical ∗ reference point). 

1. 2. Label sections where conditions are known or 

desired.

3. List all given information with units.

4. Determine the unknown Mach number.

5. Calculate the additional properties desired.



For Figure, given M1 = 1.5,  p1 = 10 psia, and M2 = 3.0, find p2 and
the direction of heat transfer.

Example

The flow is getting 

more supersonic, or 

moving away from 

the ∗ reference point.



Given M2 = 0.93, Tt2 = 300°C, and Tt1 = 100°C, find M1 and p2/p1.
To determine conditions at section 1 we must establish the ratio

Example



Example

A constant-area combustion chamber is supplied air at 400°R and 10.0 psia

(Below figure). The air stream has a velocity of 402 ft/sec. Determine the exit 

conditions if 50 Btu/lbm is added in the combustion process and the chamber 

handles the maximum amount of air possible.



Rayleigh table



How much more heat (fuel) could be added without changing conditions at 

the entrance to the duct?





CORRELATION  WITH  SHOCKS

Some similarities between Rayleigh flow and normal shocks

1. The end points before and after a normal shock represent states with the 

same mass flow per unit area, the same impulse function, and the same 

stagnation enthalpy.

2. A Rayleigh line represents states with the same mass flow per unit area and

the same impulse function. All points on a Rayleigh line do not have the same

stagnation enthalpy because of the heat transfer involved. To move along a

Rayleigh line requires this heat transfer.



Shock Wave  Equations Rayleigh  Flow  Equations



For every point on the supersonic branch of the Rayleigh line there is a 

corresponding point on the subsonic branch with the same stagnation enthalpy. 

Thus these two points satisfy all three conditions for the end points of a normal 

shock and could be connected by such a shock.







Example

Air enters a constant-area duct with a Mach number of 1.6, a 

temperature of 200 K, and a pressure of 0.56 bar . After some heat 

transfer a normal shock occurs, whereupon the area is reduced as 

shown. At the exit the Mach number is found to be 1.0 and the 

pressure is 1.20 bar. Compute the amount and direction of heat 

transfer.



The flow from 3 to 4 is isentropic; thus:

From the Rayleigh table we find M3 = 0.481 and from the shock table, M2 = 2.906.



THERMAL CHOKING DUE TO HEATING

Once sufficient 

heat has been 

added, we reach 

Mach 1 at the end 

of the duct. 

The T –s diagram 

for this is shown as 

path 1–2–3. This  is 

called thermal 

choking



Example

let us add sufficient fuel to raise the outlet stagnation temperature to 3000°R. 

Assume that the receiver pressure is very low so that sonic velocity still 

exists at the exit. The additional entropy generated by the extra fuel can only 

be accommodated by moving to a new Rayleigh line at a decreased flow rate 

which lowers the inlet Mach number. If the chamber is fed by the same air 

stream some spillage must occur at  the entrance. We would like to know the 

Mach number at the inlet and the pressure at the exit.



Since it is isentropic from the free stream to the inlet:



Suppose that in the previous example we were unable to lower the

receiver pressure to 4.78 psia. Assume that as fuel was added to raise the

stagnation temperature to 3000°R, the pressure in the receiver was

maintained at its previous value of 5.15 psia.

This would lower the flow rate even further as we move to another

Rayleigh line with a lower mass velocity, and t his time the exit velocity
would not be quite sonic.
Although both M2 and M3 are unknown, two pieces of information are
given at the exit. Two simultaneous equations could be written, but it is

easier to use tables and a trial and-error solution.

The important thing to remember is that once a subsonic flow is thermally
choked, the addition of more heat causes the flow rate to decrease. Just
how much it decreases and whether or not the exit remains sonic

depends on the pressure that exists after the exit.



Shock Wave  Equations Fanno Equations







o Area changes, Friction and Heat transfer are the most
important factors affecting the properties in a flow system.

o Up to this point we have considered only one of these
factors, that of variations in area. In a real flow situation,
however, frictional forces are present and may have a decisive
effect on the resultant flow characteristics.

o Friction must be included for flow through long ducts,
especially if the cross-sectional area is small.

o Here, we study compressible flow with significant wall
friction, but negligible heat transfer in ducts of constant cross
section. 1



o Consider one-dimensional, steady, adiabatic flow with no
external work but with friction of a perfect gas with constant
specific heats through a constant-area channel.

L


p
T
v
M

x, f

?

Fanno line flow

2



o Conserved quantities:
 Since adiabatic, no work: ho = constant
 Since A = const: mass flux = ρv = constant

L


p
T
v
M

x, f

?

ho = h + (v)2/2 = constant

3



o On h-s diagram, we can draw Fanno Line – The line
connecting points with same ho and ρv.

o Assuming constant specific heats, with state 1 a reference
state in the flow, above Equation may be integrated to
produce

4



o From the energy equation, we have

So that

5



o The Fanno line represents the locus of states that can be
obtained under the assumptions of Fanno flow for a fixed
mass flow and total enthalpy.

o Consider the point of
tangency P, where dΔs/dT = 0.

Differentiating

6



o So that M = 1 at point P.

7



o According to the energy equation, higher velocities are
associated with lower enthalpies or temperatures.

o The section of the Fanno
line on T-s coordinates
that lies above point P
corresponds to subsonic flow.

o The section of the Fanno

line on T-s coordinates
that lies below point P
corresponds to supersonic flow.

T high       V low       above P , M < 1

T low        V high      below P , M > 1
8



o Consider subsonic adiabatic flow in a constant-area tube.
The flow is irreversible because of friction, so for this
adiabatic case, ds > 0. In other words, the entropy increases
in the flow direction.

o Returning to the T-s diagram, we
see that for a given mass flow,
the state of the fluid continually
moves to the right, corresponding
to an entropy rise. Thus,

 For subsonic flow with friction,
the Mach number increases to unity.

h

s

ho

v=0

smaxvmax

M<1

(v) (v)

9



o Consider subsonic adiabatic flow in a constant-area tube.
The flow is irreversible because of friction, so for this
adiabatic case, ds > 0. In other words, the entropy increases
in the flow direction.

o Returning to the T-s diagram, we
see that for a given mass flow,
the state of the fluid continually
moves to the right, corresponding
to an entropy rise. Thus,

 For supersonic flow, the entropy
must again increase, so the flow
Mach number here decreases to unity.

Friction alone can not allow flow to transition between sub/supersonic
flows.

h

s

ho

v=0

smaxvmax

M<1

M>1

(v) (v)

M=1

10



o Suppose now that the duct is long enough for a flow initially
subsonic to reach Mach 1 and that an additional length is
added.

o The flow Mach number for
the given mass flow cannot
exceed unity without decreasing
the entropy. However, from the
second law of thermodynamics, this is impossible for an
adiabatic flow.

o The additional length brings about a reduction in mass flow;
the flow jumps to another Fanno line. Essentially, the duct is
choked due to friction.

11
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o Suppose the inlet flow is supersonic and the duct length is
made greater than the Lmax required to produce Mach 1.

o With the supersonic flow unable to 
"sense” changes in duct length 
occurring ahead of it, the flow 
adjusts to the additional length by 
means of a normal shock rather than 
a flow reduction. 

o The location of the shock in the
duct is determined by the back
pressure imposed on the duct.

h

s

ho

M<1

M>1

M=1

M1 Me

L

13



o From practical considerations, it is necessary to determine
the change in properties with actual duct length. This
requires the use of the momentum equation, with a term
accounting for the frictional forces acting on the control
volume.

o Select a control volume as shown in Figure

14



o Applying the momentum
equation for steady flow,
we get

Define the hydraulic diameter as

For a circular duct

For a square duct S = the width of each side

15



o Since the area over which friction acts, As, is equal to the
perimeter of the duct times the incremental length dx, it may
be replaced using the hydraulic diameter to obtain

o define a friction coefficient
f is dependent on the flow Reynolds number and the relative
wall roughness ε/Dh. However, since
for Fanno flow, the flow rate and the diameter are constant,
and assuming constant dynamic viscosity, we see that the
Reynolds number is also constant and therefore does not
affect the friction coefficient.

16



Some texts define a friction coefficient:

That is, they use the skin friction coefficient as the friction coefficient.
The friction coefficient in those texts is referred to as the Fanning friction factor.
The friction coefficient used here is sometimes referred to as the Darcy friction factor.
The relation between the two friction coefficients is f = 4"f".

17



o It is desirable to integrate above Equation to obtain, for
example, an expression for Mach number and pressure
change over a given duct length. First we divide the foregoing
equation by p:

o To obtain an expression for M in terms of x, dV/V and dp/p
must be replaced in this Equation.

18



o From continuity, ρV = constant

o Taking the logarithm of this expression and then
differentiating produces

o Moreover, from the definition of the Mach number, we have

19



or

20



But, for this adiabatic flow, To = constant, so

Logarithm and 

differentiating

21



Expanding the right-hand side and comparing the numerator of both sides reveals that

This equation may be integrated term by term to determine M as a function of duct
Length. It is convenient for Fanno flow (frictional, constant-area, adiabatic flow) to
choose, as a reference point, M = 1 and L = Lmax. For the lower limit of integration,
select x = 0 at M = M.

22
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If it is required to find p versus M or (fdx/D), dV/ V can be eliminated from

24
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The above equation can be found by an alternative approach that has the advantage 
of not requiring integration.
Since we are dealing with adiabatic flow of a perfect gas,

The density ratio follows immediately from the perfect-gas relation:

26



Because of the irreversibilities involved with Fanno flow, the total pressure will always 
decrease in the direction of flow, which is not the case for isentropic flow.

Because the flow is also one dimensional and adiabatic, the equations for the
conservation of mass and energy, but not momentum, for flow through a normal 
shockwave are the same as that for Fanno flow.

27



For computational purposes, the reference state where the Mach number
reaches unity is used, and, as mentioned previously, the symbol for this state
is *.

28



• Look at signs of previous equations to see how properties 
changed by friction as we move along flow
– (1-M2) term makes M<1 different than M>1

M<1 M>1
s

po

M

h,T

p



v

• Friction increases s po drop

• Friction drives M1

• ho,To = const: h,T opposite to M

• p,  same as T (like isen. flow)

•v=const: v opposite of 

29



o To get change in M, use change in f Lmax/D (like using A/A*)

o If you know f L/D and M1,
1. Look up f Lmax/D at M1

2. Calculate f Lmax/D at M2

3. Look up corresponding M2
30
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Find values in Appendix F in 
“Gas Dynamics”, James E. John
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Flow enters a constant-area, insulated duct with Mach number of 0.60,
static pressure of 150 kPa, and static temperature of 300 K. Assume a
duct length of 45 cm, a duct diameter of 3 cm, and a friction coefficient
of 0.02.
Determine the Mach number, static pressure, and static temperature
at the duct outlet. Assume that γ = 1.4.

32
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o Very often, a situation occurs 
where a duct is fed by a nozzle, 
with the duct back pressure and 
nozzle stagnation pressure the 
known quantities. Consider a 
duct supplied by a converging 
nozzle, with flow provided by 
a reservoir at pressure pr. 

o Assuming isentropic nozzle flow, 
with Fanno flow in the duct, the 
system static pressure distribution
p versus the distance x can be 
determined for various back pressures. 
(pr is maintained constant.)

34



o As pb is lowered below pr curves (a) and (b) in are obtained, with
pressure decreasing in both nozzle and duct.
o Eventually, when the back pressure is decreased to that of curve (c),
Mach number 1 occurs at the duct exit. Further decreases in back
pressure cannot be "sensed" by the reservoir; for all back pressures
below that of curve (c) [e.g., the underexpanded flow at curve (d)],
the mass flow rate remains the same as that of curve (c).
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A constant-area duct that is 20 cm in length by 2 cm in diameter
is connected to a reservoir through a converging nozzle, as
shown in Figure. For a reservoir pressure and temperature of 1
MPa and 500 K, determine the maximum air flow rate in
kilograms per second through the system and the range of back
pressures over which this flow is realized.
Repeat these calculations for a converging nozzle with no duct.
Assume that f is equal to 0.032 and that γ = 1.4.

37



For maximum mass flow through the nozzle-duct system, M2 is equal to
unity. For this condition, the actual fL/D of the duct becomes equal to

38



so the system is choked over the range of back pressures from 0 to
465.8570 kPa.

If the duct were to be removed, choking would occur with Mach 1 at the 
nozzle exit. For this condition

So the maximum mass flow rate is:

For this case, the system is choked over the back-pressure range from 0
to 528.3 kPa.

39



40



When a duct is connected to a reservoir through a converging-diverging nozzle, the
situation becomes somewhat more complex.

Subsonic flow in both nozzle and duct

If the duct is long enough (see the dashed curve in the figure), the system reaches
Mach 1 first at the duct exit; in this case, the nozzle is not choked. Once Mach 1 is
reached, no further increase in mass flow rate can occur by reduction of the system
back pressure.

41



o With supersonic flow at the nozzle exit, there is the possibility of
shocks in the duct. Note, however, that once the back pressure is just
low enough to produce Mach 1 at the nozzle throat, the system is
choked, with no further increase in mass flow possible.

o Unlike the case previously discussed, here, once the throat velocity
reaches the velocity of sound, the mass flow rate is unaffected by duct
length; that is, the conditions at the throat remain fixed, and
therefore Now the system is choked by the nozzle, not the
duct.

o Let us consider the flow pattern obtained with supersonic flow at
the duct inlet in the following two cases:

1. L < Lmax

2. L > Lmax

42



o pe,f < pb < pe,sh : oblique 
shocks outside duct 
(overexpanded)

shock 
inside

pe,sh

shock 
at exit

O

U

p*/po

x

1

pe,f

p/po1

o pe,sh < pb : Shock waves inside 
duct. For a high-enough 
back pressure, the shock 
moves into the nozzle, thus 
eliminating supersonic flow 
in the duct.

o pb < pe,f : Expansion outside 
duct (underexpanded). the 
exit Mach number must be 
either supersonic or unity.

M1=Mtest

L

M2=Me

pe

pb

po1
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A converging-diverging nozzle with area ratio of 2 to 1 is supplied
by a reservoir containing air at 500 kPa. The nozzle exhausts into
a constant-area duct of length-to-diameter ratio of 10 and
friction coefficient f of 0.02.
Determine the range of system back pressures over which a
normal shock appears in the duct. Assume isentropic flow in the
nozzle and Fanno flow in the duct. Assume that γ =1.4.
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Shock at the duct inlet

46



Shock at the duct exit

From the normal-shock relations:

203.918 kPa < pb <  238.596 kPa

47



• Supersonic flow + (L > Lmax)
 a normal shock occurs in the duct

p*/po

x

1
pe

p/po1

M1=Mtest

L

M2=Me
pe

pb

po1

o pb > pe : The normal shock 
moves upstream toward the 
duct inlet, with the exit 
Mach number subsonic and 
the back pressure equal to 
the exitplane pressure.

o pb < pe : Expansion waves must 
occur at the duct exit (with the 
exit-plane Mach number equal 
to unity).

For a high-enough back pressure, the shock moves into the nozzle, thus eliminating 
supersonic flow in the duct.

(Shock location is determined by back pressure) 
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• Given: Exit of supersonic nozzle connected to straight walled 
test section. Test section flows N2 at Mtest = 3.0, To = 290. K, 
po=500. kPa,

• L = 1m, D = 10 cm, f = 0.005

• Find:
- M, T, p at end of test section
- po,exit/po,inlet

- Lmax for test section

• Assume: N2 is tpg/cpg,  = 1.4, steady, adiabatic, no work 

Mtest

L

50



• Analysis:

 Me

 T

another solution is M=0.605, but since 
started M>1, can’t be subsonic
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10.4 m long section 
would have M=1 at exit

m

m
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Compressible flows

Differential Approach



Velocity Potential Equation

IRROTATIONAL FLOW

Vorticity is twice the angular velocity of a fluid element

A flow where                          throughout is called a Rotational flow 

Examples of rotational flows.



Examples of irrotational flows.



Consider an irrotational flow in more detail

irrotationality conditions



Consider Euler's equation without body forces.



Similarly





The velocity potential equation

For irrotational flow,

Hence, we can define a scalar function

where Φ, is called the velocity potential.



we eliminate ρ



Recalling that the 

flow is isentropic,





velocity potential equation.

From the energy equation



Note that  the velocity potential equation is a nonlinear partial differential
equation. It applies to any irrotational, isentropic flow: subsonic, transonic, 

supersonic, or hypersonic

It also applies to incompressible flow, where                        

, hence yielding the familiar Laplace's equation,

a

There is no general closed-form solution to the velocity 

potential equation,



Linearized Flow

In terms of the velocity potential,



Inserting in velocity potential equation:

The above equation is called the perturbation-velocity potential equation



Since the total enthalpy is constant 

throughout the flow,











LINEARIZED PRESSURE COEFFICIENT





Where  ε is small.

From the binomial expansion, neglecting higher-order terms,



linearized pressure coefficient, 



LINEARIZED SUBSONIC FLOW

Consider the compressible subsonic flow over a thin airfoil at small angle of

attack (hence small perturbations),

The usual inviscid flow boundary condition must 

hold at the surface, i.e., the flow velocity must be 

tangent to the surface.



The subsonic compressible flow over the airfoil is governed by the

linearized perturbation-velocity potential equation .

For two-dimensional flow, this becomes

It can be transformed to a familiar incompressible form by considering a 

transformed coordinate system





Boundary condition in 

Boundary condition in 

it demonstrates that the shape of the airfoil in

(x, y) and (ξ,η) space is the same



Pressure coefficient

This is called the Prandtl-Glauert rule; it is a similarity rule which relates incompressible 

flow over a given two-dimensional profile to subsonic compressible flow over the same 

profile



These are also called the Prandtl-Glauert rule

They are exceptionally practical aerodynamic formulas for the approximate 

compressibility correction to low-speed lift and moments on slender two-

dimensional aerodynamic shapes.

An important effect of compressibility on subsonic flowfields can be seen by

noting that



IMPROVED COMPRESSIBILITY

CORRECTIONS

The importance of accurate compressibility corrections reached new highs 

during the rapid increase in airplane speeds spurred by World War II.

Efforts were made to improve upon the Prandtl-Glauert rule discussed 

prevously the more popular formulas are given below.

In an effort to obtain an improved compressibility correction, Laitone

applied locally in the flow, i.e.,

where M is the local Mach number. In turn, M can be related to M∞ and the 

pressure  coefficient through the isentropic flow relations.

The resulting compressibility correction  is:



Another compressibility correction that has been adopted 

widely is that due to von Karman and Tsien



Comparison of several 

compressibility corrections 

with experiment for an 

NACA 4412 airfoil at an 

angle of attack α = 1◦53'. 

Note that the Prandtl-Glauert rule, although 

the simplest to apply, under predicts the 

experimental values, whereas the mproved

compressibility corrections are clearly more 

accurate.

This is because both the Laitone and 

Karman-Tsien rules bring in the nonlinear 

aspects of the flow.



CRITICAL MACH NUMBER

We have now finished our discussion of linearized flow and the associated 

compressibility corrections. such linearized theory does not apply to the 

transonic flow regime

Linearized flow will fail even for M∞ lower than 0.8



For isentropic flow,





Effect of airfoil thickness on critical Mach number.

For high-speed 

airplanes, it is desirable 

to have Mcr as high as 

possible. Hence, modern 

high-speed subsonic 

airplanes are  usually 

designed with relatively 

thin airfoils.



In this, we illustrate the estimation of the critical Mach number for an 

airfoil using

(a) the graphical solution discussed in this section, and 
(b) an analytical solution using
a closed-form equation

Consider the NACA 0012 airfoil at zero angle of attack

The pressure coefficient distribution over this airfoil, measured in a wind 

tunnel at low speed, is given. From this information, estimate the critical

Mach number of the NACA 0012 airfoil at zero angle of attack.

Example



(a) Graphical Solution. First, let us accurately plot the curve of CpC r versus 
Mcr from Equation

From the pressure coefficient distribution given in  the figure.

The minimum value of Cp on the surface  is -0.43.





(b) Analytical Solution.

Question: How accurate is the estimate of the critical Mach number in this 
example?

Wind tunnel measurements of the surface pressure distributions for this 

airfoil at zero angle of attack





A Comment on the Location of Minimum

Pressure (Maximum Velocity)

The point of minimum 

pressure (hence 

maximum velocity) does 

not correspond to the 
location of maximum 
thickness of the airfoil.

Nature places the maximum 

velocity at a point which satisfies 

the physics of the whole flow field, 

not just what is happening in a local 

region of the flow.

The point of maximum velocity is 

dictated by the complete shape of 

the airfoil, not just by the shape in a 

local region.



DRAG-DIVERGENCE MACH NUMBER: 

THE SOUND BARRIER

The value of M ∞at 

which this sudden 

increase in drag starts 

is defined as the drag-

divergence Mach 

number. Beyond the 

drag-divergence Mach

number, the drag 

coefficient can become 

very large, typically 

increasing by a

factor of 10 or more.



•Design for higher speed aircraft

The question as to whether one may delay the drag 
divergence Mach number to a value closer to 1 is a 

fascinating subject of novel aerodynamic designs:

•– Use of thin airfoils

•– Low-aspect-ratio wing

•– Use of sweep of the wing forward or back

•– Removal of boundary layer and vortex generators

•– Supercritical technology

•– Area-rule technology



Airfoil with 

10% Thickness

Bell-x1







Swept-Back Wings







X-29



Removal of boundary layer and
vortex  generators

• A major disadvantage of swept wings is that there is

a spanwise flow along the wing, and the boundary

layer will thicken toward the tips for sweepback and

toward the roots for sweep forward.

• The spanwise flow may be reduced by the use of stall

fences and vortex generators.

• Wing twist is another possible solution to this

spanwise flow condition.















THE  AREA  RULE

For almost a century, it was well known by ballisticians that the speed of a 

supersonic bullet or artillery shell with a cross-sectional area was higher than 

projectiles with abrupt or smooth variation of discontinuous area distributions. 

In the mid-1950s, an aeronautical engineer at the NACA Langley Aeronautical 

Laboratory, Richard T. Whitcomb, put this knowledge to work on the problem of 

transonic flight of airplanes.











Linearized Flovvs



For example, the one-dimensional equations are inadequate for the design 

of the contour of such a nozzle (A versus x). Likewise, the flow over a 

cambered supersonic wing cannot  be predicted on the basis of a simple 

one-dimensional theory

So far, We have dealt almost exclusively with one-dimensional flow. 

Exceptions were the treatment of oblique shocks and Prandtl-Meyer 

flow in yet even these cases could be handled componentwise as 

equivalent one dimensional flows.

One-dimensional analysis has been shown to be useful for obtaining good

engineering approximations to a wide variety of flow problems. However, such

an analysis is necessarily an approximation; no real flow exists that is truly

one dimensional. Furthermore, many problems cannot even be approached

with a one dimensional analysis

For these, and a great many other, practical cases, we must develop the 

equations of motion for multidimensional gas dynamics and find means 

for solving these equations subject to prescribed boundary conditions.



A Review of the Governing Equations



Summary on Governing Equations

The connection between various flow field models



IRROTATIONAL FLOW

Vorticity is twice the angular velocity of a fluid element

A flow where                          throughout is called a Rotational flow 

Examples of rotational flows.



Examples of irrotational flows.



Consider an irrotational flow in more detail

irrotationality conditions



Consider Euler's equation without body forces.



Similarly





The velocity potential equation

For irrotational flow,

Hence, we can define a scalar function

where Φ, is called the velocity potential.



we eliminate ρ



Recalling that the 

flow is isentropic,





velocity potential equation.

From the energy equation



Note that  the velocity potential equation is a nonlinear partial differential
equation. It applies to any irrotational, isentropic flow: subsonic, transonic, 

supersonic, or hypersonic

It also applies to incompressible flow, where                        

, hence yielding the familiar Laplace's equation,

a

There is no general closed-form solution to the velocity 

potential equation,



Linearized Flow

In terms of the velocity potential,



Inserting in velocity potential equation:

The above equation is called the perturbation-velocity potential equation



Since the total enthalpy is constant 

throughout the flow,











LINEARIZED PRESSURE COEFFICIENT





Where  ε is small.

From the binomial expansion, neglecting higher-order terms,



linearized pressure coefficient, 



LINEARIZED SUBSONIC FLOW

Consider the compressible subsonic flow over a thin airfoil at small angle of

attack (hence small perturbations),

The usual inviscid flow boundary condition must 

hold at the surface, i.e., the flow velocity must be 

tangent to the surface.



SIMILARITY  LAWS FOR SUBSONIC FLOW

For small-perturbation, 

linearized, compressible flow

For incompressible, two-

dimensional, steady potential flow,

Solutions to Laplace's equation are available for a wide variety of boundary

conditions. Thus, it would seem logical to try to transform the linearized,

compressible potential equation into the incompressible potential equation,

so as to utilize available incompressible flow solutions for problems in

compressible flow.





In order to transform

For example, consider compressible flow over a thin airfoil of chord c and 

thickness t.



for small perturbation flow:

To satisfy the boundary conditions at the body surface in the incompressible 

plane, it is necessary that:

since



It is important also to compare the pressure coefficients in the two planes.

For compressible flow,

For incompressible flow

By definition



Dropping smaller terms, we obtain

For the compressible plane,



The same relationship holds for other airfoil characteristics 

involving a ratio of the Y dimension to the x dimension.



Thus, the lift coefficients for the airfoils in the compressible and incompressible

planes are in the same ratio as the pressure coefficient:

The similarity relations are called the Goethert rules.

It must be emphasized that these rules are valid only for thin airfoils with small 

angles of attack, small camber ratios, and so on.



Example

Application of Goethert similarity 

rules for subsonic flow past a

two-dimensional airfoil

A two-dimensional airfoil has a thickness ratio (maximum thickness to

chord) of 0.04 and a camber ratio of 0.015. When tested in a low-speed

wind tunnel (incompressible flow, M∞ = 0) at an angle of attack of 3°, the

lift coefficient CL is measured to be 0.6. It is desired to determine the

performance of a similar airfoil at M ∞ = 0.5. Using the Goethert rules,

determine the geometrical characteristics of the related airfoil in

compressible flow at the given M ∞, and determine the lift coefficient.

Solution:





Although the Goethert rules have been shown to possess some

application, it would seem far more useful to have a comparison between

performance of the same airfoil in compressible and incompressible

flows

Let us consider two airfoils in the incompressible plane, related to a third foil 

in the compressible plane. The first incompressible airfoil. 



we need a relation between the pressure 

coefficients for the incompressible airfoils.

It can be shown that for thin bodies in incompressible, two-dimensional 

potential flow, related by

With f being the same function for all bodies,

which means that:



This expression relates the pressure coefficient on a body immersed in two-

dimensional compressible flow of Mach number M∞ to the pressure coefficient on

the same body immersed in an incompressible flow.

Let us now attempt to determine the shape of a third incompressible airfoil call

it C-that has the same pressure coefficient at corresponding points as the

compressible foil



Therefore, for

The similarity laws for subsonic compressible flow, as given by Eqs. are

called the Prandtl-Glauert rules.



Example
Application of the Prandtl-Glauert

similarity rule for subsonic Dowpast a

two-dimensional airfoil

The two-dimensional airfoil of the previous example, when tested in a low-speed 

wind tunnel at an angle of attack of 3°, is found to have a lift coefficient CL of 

0.6. Determine the lift coefficient  of the same airfoil at M∞ = 0.50.

Solution
From the Prandtl-Glauert similarity rule,

we compared the lift coefficients of two different airfoils, one in 

incompressible flow and the other, of different dimensions, in compressible 

flow



IMPROVED COMPRESSIBILITY

CORRECTIONS

The importance of accurate compressibility corrections reached new highs 

during the rapid increase in airplane speeds spurred by World War II.

Efforts were made to improve upon the Prandtl-Glauert rule discussed 

prevously the more popular formulas are given below.

In an effort to obtain an improved compressibility correction, Laitone

applied locally in the flow, i.e.,

where M is the local Mach number. In turn, M can be related to M∞ and the 

pressure  coefficient through the isentropic flow relations.

The resulting compressibility correction  is:



Another compressibility correction that has been adopted 

widely is that due to von Karman and Tsien



Comparison of several 

compressibility corrections 

with experiment for an 

NACA 4412 airfoil at an 

angle of attack α = 1◦53'. 

Note that the Prandtl-Glauert rule, although 

the simplest to apply, under predicts the 

experimental values, whereas the mproved

compressibility corrections are clearly more 

accurate.

This is because both the Laitone and 

Karman-Tsien rules bring in the nonlinear 

aspects of the flow.



CRITICAL MACH NUMBER

We have now finished our discussion of linearized flow and the associated 

compressibility corrections. such linearized theory does not apply to the 

transonic flow regime

Linearized flow will fail even for M∞ lower than 0.8



For isentropic flow,





Effect of airfoil thickness on critical Mach number.

For high-speed 

airplanes, it is desirable 

to have Mcr as high as 

possible. Hence, modern 

high-speed subsonic 

airplanes are  usually 

designed with relatively 

thin airfoils.



In this, we illustrate the estimation of the critical Mach number for an 

airfoil using

(a) the graphical solution discussed in this section, and 
(b) an analytical solution using
a closed-form equation

Consider the NACA 0012 airfoil at zero angle of attack

The pressure coefficient distribution over this airfoil, measured in a wind 

tunnel at low speed, is given. From this information, estimate the critical

Mach number of the NACA 0012 airfoil at zero angle of attack.

Example



(a) Graphical Solution. First, let us accurately plot the curve of CpC r versus 
Mcr from Equation

From the pressure coefficient distribution given in  the figure.

The minimum value of Cp on the surface  is -0.43.





(b) Analytical Solution.

Question: How accurate is the estimate of the critical Mach number in this 
example?

Wind tunnel measurements of the surface pressure distributions for this 

airfoil at zero angle of attack





Linearized perturbation-velocity potential equation

where

where

For subsonic flow

For supersonic flow,



Consider the supersonic flow over a body or surface which introduces small changes in

the flowfield, i.e., flow over a thin airfoil, over a mildly wavy wall, or over a small hump

in a surface.







There is no real need to worry about the formal sign

. For any practical application, it is suggested the use of the Eq. along the body

with common sense to single out the compression and expansion surfaces on a 

body.

If the surface is a compression surface, Cp must be positive, no matter

whether the surface is on the top or bottom of the body. 

Similarly, if the surface is an expansion surface, Cp must be negative.





The axial force coefficient

the pressures act normal to the surface, and hence there is no component

of the pressure force in the x direction.

The assumption that a is small



Example
Consider a flat plate at angle of attack in a supersonic flow. Calculate lift 

and drag coefficient

The normal force coefficient



Within the approximation of linearized theory, cl depends only on a and is 

independent of the airfoil shape and thickness. However, the same 

linearized theory gives a wave-drag coefficient in the form of



o We have studied the effects of area change and friction on a
gas flow. For these cases, flows were assumed to be adiabatic.

o In this session, the effect of heat addition or loss on a one-
dimensional gas flow will be investigated. To isolate the
effects of heat transfer from the other major factors we
assume flow in a constant-area duct without friction.

o At first this may seem to be an unrealistic situation, but
actually it is a good first approximation to many real
problems, as most heat exchangers have constant-area flow
passages. It is also a simple and reasonably equivalent process
for a constant-area combustion chamber.

1



o In systems where high rates of heat transfer occur, the
entropy change caused by the heat transfer is much greater
than that caused by friction, or

Thus

and the frictional effects may be neglected.

2



o To isolate the effects of heat transfer we make the following
assumptions

 Perfect gas with constant specific heats
 Steady flow
 One-dimensional flow
 Constant area
 Negligible friction
 No shaft work
 Neglect potential

o We proceed by applying the basic concepts of continuity,
energy, and momentum.

3



o Consider the control volume shown in Figure, in which a
small amount of heat δq, expressed in joules per kilogram
(J/kg), is added to the flow.

4



o The continuity equation is

so that

or

5



o The momentum equation is

Since the only forces acting
on the control volume are pressure
forces. With ρV = constant, we can integrate the preceding
equation to obtain

6



o The energy equation is

For a perfect gas,

So that

From the definition of stagnation enthalpy and stagnation
temperature

This is the first major flow category for which the total enthalpy has not been constant.

7



o It is now necessary to express the basic equations in terms
of Mach number and arrange the results into a form suitable
for application to engineering problems.

o Let’s discuss the Rayleigh line on a p-v diagram

o Historical Note: For a constant value of ρV, momentum
equation on a p-v diagram, is a straight line with a negative
slope and was named the Rayleigh line by Aurel Stodola in
his classic book Steam and Gas Turbines, McGraw-Hill (1927),
p. 84. The corresponding flow is thus called Rayleigh line
flow.

8



o Rayleigh line:
o Lines of constant temperature:

o Point 3 is reached
where the temperature
is a maximum.
Is this a limiting
point of some sort?
Have we reached
some kind of a
choked condition?

9



To answer these questions, we must turn elsewhere. Recall that the addition of 
heat causes the entropy of the fluid to increase since

From our basic assumption of negligible friction,

For a T = constant  line,

For an S = constant line,
the isentropic line 

has the greater 
negative slope

10



We now see that 
not only can we 
reach the point of 
maximum 
temperature, but
more heat can be 
added to take us 
beyond this point.

11



From point 3 to 4, 
we add heat to the 
system and its 
temperature 
decreases.

The effects of heat 
addition are normally 
thought of as causing the 
fluid density to
decrease. This requires 
the velocity to increase 
since ρV = constant by 
continuity.

This velocity increase automatically

Some of the heat that is added to the system is converted into this increase in kinetic 
energy of the fluid.

12



Noting that kinetic 
energy is proportional to 
the square of velocity, we 
realize that as higher 
velocities are reached, 
the addition of more 
heat is accompanied by 
much greater increases 
in kinetic energy. 
Eventually, we reach a 
point where all of the 
heat energy added is 
required for the kinetic 
energy increase.

13
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o To facilitate computation, as well as any tabulation of these
expressions, let state 2 be a reference state at which Mach
number 1 occurs, as was done for both isentropic and Fanno
flows. More physical significance will be attached to the
Mach 1 state later. Denoting the properties at Mach 1 by (*),
we see that

18
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o To facilitate computation, as well as any tabulation of these
expressions, let state 2 be a reference state at which Mach
number 1 occurs, as was done for both isentropic and Fanno
flows. More physical significance will be attached to the
Mach 1 state later. Denoting the properties at Mach 1 by (*),
we see that

19
19



20



o To gain a better understanding of the effect of heat addition
on Mach number, let us determine the locus of states for a
given mass flow on a T-s diagram; the resultant plot is
termed the Rayleigh line.

21
21



For heat addition, the entropy must increase and the flow moves to the right.

Limiting Point

22



This equation is valid anyplace along the Rayleigh line. Now for a differential 
movement at the limit point of maximum entropy, ds = 0 or s = const.

(at the limit point)

This is immediately recognized as sonic velocity. The upper branch of the Rayleigh
line, where property variations appear reasonable, is seen to be a region of subsonic
flow and the lower branch is for supersonic flow.

23
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Another interesting fact can be shown to be true at the limit point.

(at the limit point)

The stagnation enthalpy increases as long as heat can be added. At the point of
maximum entropy, no more heat can be added and thus h0 must be a maximum at
this location.

2

0
2

V
h h  0dh dh VdV 

0 0dh 
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sq w  0dh
0 sdh Tds Tds  0dh

T
ds


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The procedure for solving Rayleigh flow problems is quite similar to the
approach used for Fanno flow except that the tie between the two locations in
Rayleigh flow is determined by heat transfer considerations rather than by
duct friction. The recommended steps are, therefore, as follows

1. Sketch the physical situation (including the hypothetical ∗ reference 
point). 

2. Label sections where conditions are known or desired.

3. List all given information with units.

4. Determine the unknown Mach number.

5. Calculate the additional properties desired.

27



For Figure, given M1 = 1.5,  p1 = 10 psia, and 
M2 = 3.0, find p2 and the direction of heat 
transfer.

The flow is getting more 
supersonic, or moving away 
from the ∗ reference point.

28



Given M2 = 0.93, Tt2 = 300°C, and Tt1 = 100°C, find M1 and p2/p1. 

To determine conditions at section 1 we must establish the ratio

29



A constant-area combustion chamber is supplied air at 400°R and 10.0 psia.
The air stream has a velocity of 402 ft/sec. Determine the exit conditions if 50
Btu/lbm is added in the combustion process and the chamber handles the
maximum amount of air possible.

30



Rayleigh table

31
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In previous example, how much more heat (fuel) could be added without
changing conditions at the entrance to the duct?

33



There are some similarities between Rayleigh flow and normal shocks:

1. The end points before and after a normal shock represent states with the
same mass flow per unit area, the same impulse function, and the same
stagnation enthalpy.

2. A Rayleigh line represents states with the same mass flow per unit area
and the same impulse function. All points on a Rayleigh line do not have
the same stagnation enthalpy because of the heat transfer involved. To
move along a Rayleigh line requires this heat transfer.

34



Shock Wave  Equations Rayleigh  Flow  Equations

35



For every point on the supersonic branch of the Rayleigh line there is a corresponding
point on the subsonic branch with the same stagnation enthalpy. Thus these two
points satisfy all three conditions for the end points of a normal shock and could be
connected by such a shock.

36
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Shock Wave  Equations Fanno Equations

38



The Fanno continuity and energy equations and the Rayleigh continuity and
momentum equations collectively are the same as the continuity, momentum, and
energy equations developed for the normal shock. Thus, the locus of states before and
after a normal shock appears on a T-s diagram at the intersection of the Fanno and
Rayleigh lines.

39

Fanno flow
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Air enters a constant-area duct with a Mach number of 1.6, a
temperature of 200 K, and a pressure of 0.56 bar . After some heat
transfer a normal shock occurs, whereupon the area is reduced as
shown. At the exit the Mach number is found to be 1.0 and the pressure
is 1.20 bar. Compute the amount and direction of heat transfer.

41



The flow from 3 to 4 is isentropic; thus:

From the Rayleigh table we find M3 = 0.481 and from the shock table, M2 = 2.906.

42



In Subsonic Rayleigh flow, 
once sufficient heat has 
been added, we reach 
Mach 1 at the end of the 
duct. 
The T –s diagram for this 
is shown as path 1–2–3. 
This  is called thermal 
choking.

Reduction of the receiver 
pressure below p3 would 
not affect the flow 
conditions inside the 
system. However, the 
addition of more heat will 
change these conditions.

43



Now suppose that we add
more heat to the system.

The only way that the 
system can reflect the 
required additional 
entropy change is to move 
to a new Rayleigh line at a 
decreased flow rate. This 
is shown as path 1–2’–3’– 4 
on the T –s diagram. 
Whether or not the exit 
velocity remains sonic 
depends on how much 
extra heat is added and on 
the receiver pressure 
imposed on the system.

44



Let us add sufficient fuel to the combustion chamber to raise the outlet
stagnation temperature to 3000°R. Assume that the receiver pressure is very
low so that sonic velocity still exists at the exit. The additional entropy
generated by the extra fuel can only be accommodated by moving to a new
Rayleigh line at a decreased flow rate which lowers the inlet Mach number. If
the chamber is fed by the same air stream some spillage must occur at the
entrance. We would like to know the Mach number at the inlet and the pressure
at the exit.

45



Since it is isentropic from the 
freestream to the inlet:

46



Suppose that in the previous example we were unable to lower the receiver
pressure to 4.78 psia. Assume that as fuel was added to raise the stagnation
temperature to 3000°R, the pressure in the receiver was maintained at its
previous value of 5.15 psia. This would lower the flow rate even further as we
move to another Rayleigh line with a lower mass velocity, and this time the
exit velocity would not be quite sonic.

Although both M2 and M3 are unknown, two pieces of information are given
at the exit. Two simultaneous equations could be written, but it is easier to
use tables and a trial and-error solution.
The important thing to remember is that once a subsonic flow is thermally
choked, the addition of more heat causes the flow rate to decrease. Just how
much it decreases and whether or not the exit remains sonic depends on the
pressure that exists after the exit.

47



The parallel between choked Rayleigh and Fanno flow does not quite extend into the
supersonic regime. Recall that for choked Fanno flow the addition of more duct
introduced a shock in the duct which permitted considerably more friction length to
the sonic point. Figure shows a Mach 3.53 flow that has Tt/Tt

∗ = 0.6139. For a given
total temperature at this section,
the value of Tt/Tt

∗ is a direct indication
of the amount of heat that can be
added to the choke point. If a
normal shock were to occur at this
point, the Mach number after the
shock would be 0.450, which also has
Tt/Tt

∗ = 0.6139. Thus the heat added
after the shock is exactly the same as
it would be without the shock.
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Air (γ = 1.4, R = 0.287 kJ/kg·K, and cp = 1.004 kJ/kg· K) enters a ramjet
combustion chamber with a velocity of 100 m/s and static temperature of 400
K.
 Determine the maximum amount of heat that can be added in the
combustion chamber without reducing the mass-flow rate.
 For this qmax, find the fuel-air ratio.
 If the fuel-air ratio were to be increased by 10 percent, determine the
reduction in m for the same inlet stagnation pressure and temperature.
Assume the heating value of the fuel to be 40 MJ/kg, neglect the fuel flow rate
in comparison with the air flow rate, and assume the air to behave as a perfect
gas with constant specific heats. Neglect friction.

First, the inlet Mach number is computed as follows:
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Applying the energy equation to the flow in the combustion chamber, we get

From the Rayleigh flow relations, we have
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If the fuel-air ratio were to be increased by 10 percent,

from the energy equation, we have
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Thus, the 10-percent increase in fuel-air ratio results in a slight increase of inlet
static pressure.
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The heat exchange at a fluid-solid interface can be described by Newton's law 
of cooling,

When a fluid is made to flow over the surface, the heat exchange that occurs
is termed a forced convection.

When the heat exchange takes place as a result of fluid motion brought about
by density differences within the fluid, it is termed a natural convection.

The mean heat transfer coefficient depends upon the geometry, the flow
conditions, and the fluid properties. For convective flows involving air, h
ranges approximately from 10 to 500 W/m2•K. This range is determined from
what are usually termed "low-speed correlations“.
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Low speed is defined in terms of the Eckert number

When this nondimensional number is small (low V or high ΔT), the situation is
regarded as "low speed." As may be easily verified, at speeds approaching sonic velocity
(300 m/s for air) and for a temperature difference of 100°C, the Eckert number is close
to unity.

For Eckert numbers on the order of unity ("high-speed flows"), viscous dissipation
terms within the energy equation become important and have a significant effect on
the temperature distribution.

In fact, for these "high-speed flows," the temperature of the surface can actually 
exceed the freestream static temperature even if the surface is perfectly insulated.
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This energy exchange is sometimes referred to as aerodynamic or frictional heating, 
and the temperature is called the adiabatic wall temperature Taw.

For gases, Taw is relatively close to the stagnation temperature T0.

So, for high-speed gas flows, the convective heat transfer may be expressed by

and the low-speed mean heat transfer coefficient may still be employed.

In ducts, through which gases flow, there can be a heat exchange at the inside surface 
as well as at the external surface. 
Moreover, heat must be conducted through the duct wall. To account for all of these 
heat exchanges, an overall heat transfer coefficient U is often used.
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When the wall thickness is small and the thermal conductivity is high, the overall heat 
transfer coefficient of the pipe is

q
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Nitrogen (γ = 1.4. R = 0.2968 kJ/kg•K, and cp = 1.038 kJ/kg•K) enters an
uninsulated duct at Mach 2.0, with a stagnation temperature of 1000 K and
stagnation pressure of 1.4 MPa. Heat is lost from the nitrogen to the outside
ambient air at 20°C,with the mean overall heat transfer coefficient U equal to 60
W/m2 •K. The duct's diameter is 5 cm, and its length is 2 m. Determine the
outlet stagnation temperature, outlet Mach number, and percent of change of
stagnation pressure. Neglect friction.
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Energy equation:
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To find M2 use the Rayleigh relations, starting from

From this value, we find that M2 = 2.0251. 
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Accordingly, we may further write that
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Linearized Supersonic Flow



Linearized perturbation-velocity potential equation

where

where

For subsonic flow

For supersonic flow,



Consider the supersonic flow over a body or surface which introduces small changes in

the flowfield, i.e., flow over a thin airfoil, over a mildly wavy wall, or over a small hump

in a surface.







There is no real need to worry about the formal sign

. For any practical application, it is suggested the use of the Eq. along the body

with common sense to single out the compression and expansion surfaces on a 

body.

If the surface is a compression surface, Cp must be positive, no matter

whether the surface is on the top or bottom of the body. 

Similarly, if the surface is an expansion surface, Cp must be negative.





The axial force coefficient

the pressures act normal to the surface, and hence there is no component

of the pressure force in the x direction.

The assumption that a is small



Example
Consider a flat plate at angle of attack in a supersonic flow. Calculate lift 

and drag coefficient

The normal force coefficient



Within the approximation of linearized theory, cl depends only on a and is 

independent of the airfoil shape and thickness. However, the same 

linearized theory gives a wave-drag coefficient in the form of



Elements of

Hypersonic Flow



Almost everyone has their own definition of the 

term hypersonic. 

If we were to conduct something like a public 

opinion poll among those present, and asked  

everyone to name a Mach number above which 

the  flow of a gas should properly be described 

as hypersonic there would be a majority of 

answers round about 5  or 6, 

but it would be quite possible for someone to 

advocate, and defend, numbers as small as 3, or 

as high as 12.



QUALITATIVE  ASPECTS  OF  HYPERSONIC FLOW

1-Thin shock layer



2- viscous interaction

(a) No viscous interaction (b) Viscous interaction



3- high temperatures in the shock layer

h=

T0=65000 K

six times 

hotter than 

the surface

of the sun!

Qc+Qr



Let us examine these high-temperature effects in more detail.

The presence of these free electrons in the shock layer is responsible for the 

"communications blackout" experienced over portions of the trajectory of a 

reentry vehicle.



Associated with the high-temperature shock layers is a large amount of heat

transfer to the surface of a hypersonic vehicle

Indeed, for reentry velocities, aerodynamic heating dominates the design of 

the vehicle,

The usual mode of aerodynamic heating is the transfer of energy from the hot 

shock layer to the surface by means of thermal conduction at the surface;

The gas normal to the surface, then  

is the heat transfer into the surface.

Because ∂T/∂n is a flow-field property generated by the flow of the gas

over the body, qc is called convective heating.

For reentry velocities associated with ICBMs (about 28,000 ft/s), this is the 

only meaningful mode of heat transfer to the body.

However, at higher velocities, the shock-layer temperature becomes

even hotter. From experience, we know that all bodies emit thermal radiation, and

from physics you know that blackbody radiation varies as T4;



Convective and radiative heating rates of a blunt reentry vehicle as a 

function of flight velocity.



NEWTONIAN  THEORY

note how close the shock wave lies to the body surface.

Schematic for Newtonian impact theory.



Hence, the time rate of change of momentum is

from Newton's second law,

Therefore, when the purely directed motion of the particles in

Newton's model results in the normal force per unit area, N/A

this normal force per unit area must be construed as the pressure 

difference above P∞, namely, p -p∞ on the surface.





The result that the maximum pressure coefficient approaches 2 at 

M∞        ∞ can be obtained independently from the one-dimensional 

momentum equation,



Limitation:  M∞       ∞  & γ=1.4

Cp,max for a given M∞ can be readily calculated from normal shock-wave 
theory.

Modified Newtonian law.



Surface pressure distribution, paraboloid, M∞ = 4. Comparison of 

modified newtonian theory and time-dependent finite-difference 

calculations.



THE LIFT AND DRAG OF WINGS AT HYPERSONIC SPEEDS: 

Newtonian results for a flat plate at angle of attack

Question: At subsonic speeds, how do the lift coefficient CL and drag 

coefficient CD for a wing vary with angle of attack α?

1. The lift coefficient varies linearly with angle of attack, at least up to the stall;

2.The drag coefficient is given by

Since CL is proportional to α, then CD varies as the square of α.



Question: At supersonic speeds, how do CL and CD for a wing vary with α?

1- Lift coefficient varies linearly with α,

2. Drag coefficient varies as the square ofα,

The characteristics of a finite wing at supersonic speeds follow essentially 

the same functional variation with the angle of attack,



Question: At hypersonic speeds, how do CL and CD for a wing vary with α ?





Nonlinear even at 

small angle of attack



The value of (L/D)max and the angle of attack at which it occurs are 

strictly a function of the zero-lift drag coefficient denoted by cd,o.

At small angles of attack







Accuracy Considerations

Consider an infinitely thin flat plate at an angle of attack of 15° in a Mach 8 

flow. Calculate the pressure coefficients on the top and bottom surface, the lift 

and drag coefficients, and the lift-to-drag ratio using

(a) exact shock-expansion theory, 

(b) Newtonian theory. Compare the results.

(a) the upper surface,



on the bottom surface from the oblique shock theory,



The axial force on the plate is zero,

(b)



Discussion: From the above worked example, we see that 

newtonian theory underpredicts the pressure coefficient on the 

bottom surface by 29 percent, and of course predicts a value of 

zero for the pressure coefficient on the upper surface in 

comparison to -0.0219 from exact theory—an error of 100 percent. 

Also, newtonian theory underpredicts cl and cd by 36.6 percent. 

However, the value of  L/D from newtonian theory is exactly correct. 





HYPERSONIC SHOCK-WAVE RELATIONS AND

ANOTHER LOOK AT NEWTONIAN THEORY

Consider the flow through a straight oblique shock wave.





It is interesting to observe that, in the hypersonic limit for a slender wedge, 

the wave angle is only 20 percent larger than the wedge angle—a graphic 

demonstration of a thin shock layer in hypersonic flow.

an exact relation for Cp behind an oblique shock wave





MACH NUMBER INDEPENDENCE


