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Class policy

Lecture:
1- Attendance is not mandatory but is recommended.

2-On-time arrival is expected. Late arrival and leaving the
class before ending the lecture will be punished .

3- Sending and receiving SMS or any item that can disturb
the lecture is prohibited .

Complementary Problems:

10 sets of problems from the texts and other sources will
be emailed and will be discussed in the teaching
assistant classes.



Grading policy:

Midterm-|
Midterm-l|
Midterm-II|
Seminar( or project)
TA class

Final Exam




1 Syllabus, policies and introductions

Elements of compressible flows and a review of thermodynamics

2 Governing equations of inviscid , compressible flows

Governing equations -continue

3 Normal shock waves and related topics

Normal shock waves —cont.

4 Normal shock waves —cont.

Oblique shock waves

5 Oblique shock waves-cont.

Oblique shock waves-cont. Midterm-I




6 Shock interactions and reflections

Shock interactions and reflections

7 Prandtl-Meyer expansion waves

Prandtl-Meyer expansion waves-cont.

8 Supersonic airfoils

Supersonic airfoils-cont

9 Compressible flow through converging-diverging ducts

Compressible flow through converging-diverging ducts-cont.

10 Compressible flow through converging-diverging ducts-cont.

Supersonic Wind tunnel Midterm-II




Week Date

S

11 Compressible flow in pipes with friction

Compressible flow in pipes with friction-cont.

12 Compressible flow in pipes with heat transfer

Compressible flow in pipes with heat transfer-cont.

13 Full potential equation

Linear theory in compressible subsonic flows

14 Linear theory in compressible subsonic flows-cont.

Linear theory in compressible supersonic

15 Linear theory in compressible supersonic-cont.

Introduction to hypersonic flows Midterm-III




| odynamics classifi n

* Low speed (Incompressible)
* Subsonic

* Transonic

® Supersonic

* Hypersonic




" DEFINITION OF CW

* Compressible Fluid

P+dp

L

&
v+dw
&.

11

Ty =5X 1010 mz/N for water at 1 Atm.

Ty =1X 107> mZ/N for air at 1 Atm.



Compressible flow is routinely defined as variable density flow.

P
ﬂ Incompressible Flow
v

\ D-I-dlh
v &




> — In cm/

Two thermodynamic

All thermodynamics properties vary

Thermodynamic properties are
so important in compressible
(high speed) Aerodynamics



A'briefreview onW

Perfect gas:

A perfect gas is one whose individual molecules interact only via direct
collisions, with no other intermolecular forces present.

P =pPRT

For air, R = 287 J/kg-K

Calorically Perfect

Perfect gas

Thermally Perfect
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_Intermal Energy and Enthalpy — —

consider a finite volume of gas consisting of a large number of molecules.
The sum of the energies of all the molecules in this volume is defined as the

internal energy (€) of the gas.

Arelated quantity is the specific enthalpy, denoted by h, and related to the
other variables by

h=e+pv

The units of e and h are (velocity)?, or m?/s? in Sl units.

For a calorically perfect gas: —
Y PEHEELS e=c¢c, T

h:%T'



S

h-e=pv=(,-c)T

C,C =R

pv=RT

Y= ¢/,
For air \\\\\\//////
v =14 Cy = : R
o, 71
y—-1 7 Y

§ Cp = R

L — 35 v —1



%!aw of Thermodynamics g

time I + df

e + de
h + dh




1. Adiabatic process, where no heat is transferred,
2. Reversible process, no dissipation occurs, implying
that work must be only via volumetric compression dw = —p dv
3. Isentropic process, which is both adiabatic and

reversible, implying —pdv = de

e + de

€ pdvo

L OXO Q-

Isentropic flow process .
from state 1 to state 2

1 I;F I;H I:Sa



Entriopy and the Second — /

Law

off Thetmodynamics
Consider a block of ice in contact with a red-hot plate of steel.

Experience tells us that the ice will warm up (and probably melt) and the steel
plate will cool down.

The first law allows that the ice may get cooler and the steel plate hotter—just as
long as energy is conserved during the process.

To ascertain the proper direction of a process, let us define a new state
variable, the entropy, as follows:

dS' ﬁql'ﬂ\-"
T
ds = 3_'? +ds. oq is the actual amount of heat added to the
T trrey system during an actual irreversible process
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dSirrcv 2 O

=

The above equations are forms of the second law of thermodynamics.

The second law tells us in what direction a process will take place.

The practical calculation of entropy is carried out as follows.

ds

_ Oqrey
T

3qg — pdv = de

dh =de+ pdv +vdp
Tds=de+ pdv

>

Ta’s—pdv=de- Tds=de+ pdv

T ds =dh — vdp
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/
/ dT  pdv
ds =c.,-F+—T—
de = ¢, dT and dh = c,,dr>
dT vd
ds = ¢, - Tp
pv = RT mp v/T =R/p = ds:cpd—;-—ﬁ%
. 4T P2 dp I, P2
— 5 = - £ ~si=c,In== — RIn=
5§ — 81 LI CPT /p:RP 5§y — 851 cpnTl np1

T
§) — 8| =culn—2+R1nE~%
T, U




Wc process, 6q = 0. Also, for a reversible process, ds;, = 0.
- Thus, for an adiabatic, reversible process, ds =0

T I
O—CPIH?%-——Rln? ‘ ln——-——*— T ‘
1 1

1

R
E—(Tz)w cp _ Y P2
T,




/ ntropic relations N

dp P po 1
—pdv = de - dv = d( ) — p2 - [)2 — _2_1

1 p1 15

de = ¢, dl" =

dp
P

Inp =



_ o
P32 (F’l)r Tz ¥y —=1)
E - Pl - (FI)

Why is this equation so important?

The answers rest on the fact that a large number of practical
compressible flow problems can be assumed to be isentropic
contrary to what you might initially think.

For example, consider the flow over an airfoil or through a rocket
engine. In the regions adjacent to the airfoil surface and the rocket
nozzle walls, a boundary layer is formed wherein the dissipative
mechanisms of viscosity, thermal conduction, and diffusion are
strong. Hence, the entropy increases within these boundary layers.



//
‘However, consider the fluid elements moving outside the boundary layer. Here, the
dissipative effects of viscosity, etc., are very small and can be neglected.
Moreover, no heat is being transferred to or from the fluid element (i.e., we are not
heating the fluid element with a Bunsen burner or cooling it in a refrigerator); thus,
the flow outside the boundary layer is adiabatic.

EXAMPLE

Consider a Boeing 747 flying at a standard altitude of 36,000 ft. The pressure
at a point on the wing is 400 Ib/ft2 . Assuming isentropic flow over the wing,
calculate the temperature at this point.

at a standard altitude of 36,000 ft, poo = 476 Ib/ft? and T, = 391 °R.

T y/(y—1) (y—U/y 400 0.4/1.4
L — (T_) »T = Too (_....P_) = 301 (—) =| 372 °R
o0



GOVERNING EQUATIONS
FOR
INVISCID,
COMPRESSIBLE

FLOW



Incompressible flow

Compressible flow

variables:

equations:

nmass , momentunn

Laplace's equation and

Bernoulli's equation,

—_—

Viop.p.,T

mass , momentum . elnergy

., state
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Closed surface 5

% p dV = volume integral of a scalar p over the
v volume V (the result is a scalar)

Let A be a vector field in space.
The volume integral over the volume V of the quantity A is written as:

f’# A dV = volume integral of a vector A over the
Y volume V (the result is a vector)



\\
Metween Line, Surface, and Volume Integrals

The line integral of A over C /s related fo the surface
integral of A over S by Siokes' theorem:

'?{A-ds=/f(vxﬁ}-d8
C
s

The surface and volume integrals of the vector field A are
related through the divergence theorem:

Haas= fHo-nav
$ 1%

If p represents a scalar field, a vector relationship analogous
above Equationis given by the gradient theorem:

foos= ffforo
hY \V

Closed surface §
Volume V



CONTINUITY EQUATION

)

é-gj\%&pdl’-k‘#pvfdﬂ —0
W 5

A

a | |
j@%ﬁ;dm#w-ﬂhu #{ﬁ‘f’l-d5=ﬁ%£?-fpﬂdv
; ¢ 3 v

dp _
S j%%tgadv—kjé#?-{pﬂdv‘-ﬂ —

ﬁ@@[i—er?-(pv;-] =0 - | a_'ﬂ+?.m1,r}=ﬂ

/ al
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ENTUM EQUATION

F = ma A more general form d
¥F=—mV
dt (m¥)

Physical principle:  Force = time rate of change of momentum

F = % pfdV — # P dS + Fiscous
Vv h

d ' a -
—(mV) =# (pV -dS)V + a—j%épwv
S VvV



// S /

d
—(mV)=F
d:(m)

J
a%p‘[d]} + # (pV-dS)V - —#pds + -#fpfdv + Fviscous
1% § § 1%

Apply the gradient theorem: -—# pdS = ——-% VpdV
S

%Md]}-p#( V.dS)V = %vpd‘t;*l*%pfd])‘I‘meus

V

V=ui+vj+wk



-~*«-\~§§::\“‘_ﬂ//ﬁ,?//////%%%/

component of momentum equation

ﬁ%g Yo gy + # (pV -dS)u = % 24V + ﬁ%ﬁpfx dV + (Fy)viscous
s

Apply the divergence theorem: # (oV-dS)u = # (puV)-dS = j‘%é V. (ouV)dy
hY hY 1%

d(pu) ap
% [T'l‘v (p HV)-l-a—'—ﬂfx

%

(fx)viscnus] dV =0

3 0
(pu) +V. (puV) — __£ — pfx + (fx)visc(}us
Y 0x
3(pv) P
o + (pvV) 3y + ofy +(F))
d(pw n o0
(gf ) + V. (pwV) = _5{2 + pfz + (Fz)vismus




ENE EQUATION\/

dg + dw = de

Let us apply the first law to the fluid flowing through the fixed control volume:

B, = rate of heat added to fluid inside control volume from surroundings
B, = rate of work done on fluid inside control volume
B; = rate of change of energy of fluid as it flows through control volume

By + B, = By

Rate of volumetric heating = # godV
V



q

/Bl - % 1pdV + Qyiscous .

v

F Time ¢

dr

Rate of doing work on moving body = F .V

1 Later time, ¢ +dt

Ty

V due to pressure force on §

Rate of work d fluid insid
ate of w one on fluid inside —#(pdS)-V
A}

inside V due to body forces

B, = _}fa{ PV - dS + }{#p(f-v:.dv W

h V

Rate of work done on fluid _ ﬁ%& (pfdV)-V
V



energy across control surface

V!
Eﬁ,ﬂ (E+"-2—) dV

The total energy contained in the elemental volume aV'/s

pe + V2/2)dVv:
V2
— 1 d
#fgp(e+ 2) V
%

Time rate of change of total energy 3 V2
(o) o

Net rate of flow of total V? /
= (pV-dS) [ e+ *—i—
)

inside V due to transient variations = —

of flow-field variables ot Y
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d

T
J

B,

\\

v V
_.G(E-I—?) dV—!—#(pV-dS} (E—I—
A

{ *

2

Vv
2

+_..._-.

J

—
]
J—

ot F(E 2

v

%épdv + Qvismu& — # F"v'ds‘i‘ %P(f‘v)dv + inﬁcous
g
V
) dV +#ﬂ (€+ -;2—
5

W

VE

)V-dS

Applying the divergence theorem

%)

V2
ot [p (e+ 2

Rt

V2

€+7

) V| =pa -7 V) 408V
+ Q:/iscous + W,'

vISCous




If the flow is steady (d/dr = 0),

inviscid {Qvis«:x:ms = 0 and Wyjseous = 0)

adiabatic (no heat addition, g = 0),

without body forces (f = 0)




W stag naﬂW

- Consider a fluid element passing through a given point in a flow where the
local pressure, temperature, density, Mach number, and velocity are p, 7, p,
M, and V, respectively

———————————

T T e T

N T TN R e I

IR e N L UG

I \ . ./ ! I |

N T Yo~ : -

I - I T -

total energy internal energy kinetic energy

j 1., hy = htiy? — ey 2y Ly o 40
€, = € 4+ 51[ ‘ o 5 P 5 o 0
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V.¥V=0
Dr TP

p D(p/p) _ p.aDp/Df —pDp/Dt _Dp pDp
Dt 02 Dt p Dt

D D 9
(p/p) _Dp . yv P

Dt Dt at
VepV=pV-V+V:.Vp

+V.-Vp+pV.V

D(e + V2/2)
p —

—V.pV
Dt P

D L Vz ﬁ ﬂp /
- — | =-pV/V -V, — + V/V ViV
pDr(-I_Z) P/ p+3r+ PP
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-~ DM&+VY2) p !
Tbr T

[f the flow is steady, dp/dt =0

D(h + V?/2) V?
=0 h 4+ — = const
P~y 0 ‘ 3

v?
h+ = = ho - h(.:cﬂnsll

For a calorically perfect gas, hg = ¢, 7To. - Ty = const

In an adiabatic flow Stagnation(Total ) temperature
remains constant



Adiabatic flow

hy, hy
T, Ty, ;I:!' ;I"n' :
il N 2502
I \\‘\
o2 = Ao, 2
Ty.2=Ty,

Isentropic flow

I H,

Pi Po, i
-»——»\.\\nm
1
Po,1 = Po, 2

Nonadiabatic flow
By, by
T|_1 Tﬂd ';El’ ;l_'ﬂ.. 2
2 f, 2

4]’*\\
hg o # by 2
Tu" 2 # Tﬂ."

—-—L_-_-_'

Nomsentropic flow

1 Po.i P2 Py, 2

-T_ — P2 Po, 2
Po, 2 =pn:|,|\;\
Po 2 F Py,

\
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At a point in an airflow the pressure, temperature, and velocity
are 1 atm, 320 K, and 1000 m/s. Calculate the'total temperature
and total pressure at this point.

1;1
h+—=-'.'l|] VE

2 ) o7+ =0l
h=¢,T \

R D O A ?:.:,l) 2
.= 1R . T“*T*"ch_T“L(zyR v

y — 1

_ : 2 _

To = 320 + [2[1_4}{137]] (1000)2 = 320 + 497.8

Ty =| B17.8K

By definition, the total pressure is the pressure that would exist if the
flow at th point were slowed isentropically to zero velocity.



Wusetheisentro ' ' In_to relate total to stati
itions.




Introduction to Shock Waves =
\\ e

Cem@bility of a fluid allows the existence of waves, which

are variations in , p, and h (or temperature T), which self

propagate through the fluid at some speed.

Ordinary sound consists of very small variations which move at the speed of

sound a

oscillating
speaker

sound wave crest



A shock wave has \/
Wtion In f
fow quantities and

moves at a larger
speed V. > a

p |

< shock wave / fast—moving
~ piston



Frw(UpstreaW

Upstream—Air Frame i Shock Frame
"
a-_ - - - _ _ _ ¥y ___ _ _ _
7,
V V
: - X
N
N
| .
L=y B
Vs =a V=V, V=V~
- 2 p
=0 -7, R
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A Downstream—Aiwr Frame
: |
|
L .
V ,
==,
-
| | —
,T/‘; | | 0
T o
| | time
A

This situation is closely
analogous to how a traffic
blockage propagates
backward against the
oncoming traffic.

Tratfic—blockage analogy

traffic speed "

— "shock speed"




ISsipation in Shock

The flow passing through a shock wave undergoes an adiabatic process,
since there is no heat being supplied (there’s nothing there to provide

heat!).

But because a shock wave is typically very thin less than 1 micron at sea level —
there are strong viscous forces acting on the fluid passing through it, so the process
IS irreversible. Therefore, the stagnation quantities have the following relations

across a shock wave:

ho,

Po
Po,

VoV

ho,

Pos
Pos




al Shock Waves

A normal shock wave appears in many types of supersonic flows.

o

Bow Shock

v

M=>1

—= | =

m
T

Nozzle Shock




_Shock jump relations o

We examine the flow in the frame in which the shock
IS stationary.

A control volume is defined straddling the shock. The flow
In the shock has the following properties:

-

1. Flow is steady, so é()/ét = 0 in all equations. ——]-- T_ —__ 4
s
2. Flow is adiabatic, so q" = 0. d : i, 2y | &
P1 - P2
3. Body forces such as gravity are negligible, p, | . P2
|

- .
I D =

stationary a Control Volume

shock wave

The shock wave is a thin region of highly viscous flow.
The flow through the shock is adiabatic but nonisentropic
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?jﬁ pV-ndd =0 —prnA + paupA = 0 p1Uly = pPaig

x-Momentum

5@5 oV hudA + ngﬁ pi-idA = 0

—p1ufA 4+ pouzA — pA + ppA = 0

Energy prul + pr = pauy + po
ngﬁpﬁ:ﬁ. hodA = 0 —s —pittho, A + poushg,A = 0
T T
—_— h’-’-"l — h_GE —_ hy + Eu‘% = hs + Eué
Equation of State v—1

P2 = p2h

i




we first consider an infinitesimally weak shock wave, also known as a sound
wave. Because the velocity gradients and hence the viscous action is small,

the flow process through the wave is isentropic.

The objective here is to determine this a in j htdh
terms of the other variables by the N u=a arda 0,
: ‘ . 1 — —
governing applying equations » p+dp

The mass equation stationary
(1
pa = (p+dp)la+da) = pa + adp + pda da = —=dp
e

X-momentum

pa’ + p = (p+dp)(a+da)’

+ (p+dp) = pa® + a*dp + 2apda + p + dp

0

2Qapda + a*dp + dp

)



/Germhe mass and momentum equations

0 = 2ap (—% a’.p) + ﬂia’.p + dp =——> (] = _{,_.'3 d_j,-*_] 1 ar.p
- d
2 =
dp

We could now relate p and p and thus get dp/dp using the energy and state
equations and the above equation. But an algebraically simpler approach is to use

one of the isentropic relations instead, which are valid for this weak wave. The
simplest relation for this purpose is

m o (2) 2 amee = peer
n 1 pY

g =C}’py-l — (i) ]/.0?-[=Z£ —_— d_p = ﬂd_ﬁ
dp oY :

P P P



it clearly states that the speed of sound in a calorically perfect gas is a
function of temperature only.
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We definition of compressibility
- 1 (av)
5 " BP . L= —p [__ 12 (39) ]
, p* \op/
u:l[p—>du=“dﬁfﬁ 1
~ p@p/3p)s
1 i
,=— —» 4= —
pa? Pl

case of an incompressible fluid 7, = 0

—

Mach number M = V/a, iIs zero.
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—— [ -
Wto additional physical meaning of the Mach number,

consider a fluid element moving along a streamline. The kinetic
and internal energies per unit mass are V#/2 and e, respectively.

V2 VA2 V2 (r/DVE oy =)

— — = M?
e T  RT/(y -1 a*/(y -1 2

In other words, the Mach number is a measure of the directed
motion of the gas compared with the random thermal motion
of the molecules.

_____________________________________________

total energy internal energy kinetic energy



J EXANPLE > e ' B

Consider an airplane flying at a velocity of 250 m/s. Calculate its
Mach number if it is flying at a standard altitude of

(a) sea level, (b) 5 km, (c) 10 km.

for the standard atmosphere, at sea level, T, = 288 K.

Voo 250
aco = VY RT =/ (1.4)(287)(288) = 340.2 /s —p Moo = 7= = 705 =
(b) At5Kkm, = T, =255.7
doo = 1/ (1.4)(287)(255.7) = 320.5 /s —> Moo = - — = 555
(c) 10km —> Ty = 223.3.
Voo 250

= 4)(287)(223.3) = 299. o = —= =
doo = v/ (1.4)(287)(223.3) = 299.5 m/s—> M =353

0.735

=] 0.78

0.835




EXAMPLE > ——, /

Calculate the ratio of kinetic energy to internal energy at a point
In an airflow where the Mach number is:

(@ M=2, (b) M = 20,
(@) iz _yly =D, dHO0H 2% =] 112
e 2 2
2 — 1.4)(0.4
®) VE/'Z _ }f(]f2 I)Mz _ ( ;( )(20)2 _I 2

Examining these two results, we see that at Mach 2, the kinetic
energy and internal energy are about the same, whereas at the large
hypersonic Mach number of 20, the kinetic energy is more than a
hundred times larger than the internal energy. This is one
characteristic of hypersonic flows—high ratios of kinetic to internal
energy.



SPE RMS OF THE ENER o

we elaborate upon the energy equation for adiabatic flow,

V2 V’
hy + —- —'hz-i--—"
) 2
one-dimensional flow, 2 uz
h|+'—1 =h2+'“2‘
2 2
2 2 RT, u} yRT, u}
h=c,T Ui _ it} y&rhy up _ 2, W
p Q,CPT1+2 CPT2+2 _— }/—l+2 }/——1+2
2 2 2 2
ad i a U
(Il R 2_ 422




If we consider point to be a stagnation point,




////////%%(

~ \\
In a steady, adiabatic, inviscid flow,
ui 3
cp ' + — =c, T H = ¢, Ty = const
2 2
Th u2 Hz uz
__.=:l =:1 ==1'+
T + 2¢, T T 2vRT /[(y — 1) 20 /(y = 1)
. 2
N el (E)
2 a Tb __1
=14 —M
T 2




m re p, and total de

nsity p,,
These definitions involve an isentropic compression of the flow to zero velocity.

Po (po) Y (TO) y/(y—1)
p ~\p \T Po

The above equations are very important;
they should be branded on your mind.



“Consider a point in a general flow where the velocity

IS exactly sonic (i.e., where M = 1).

£0

T* 2

——— e,

To y+1

2 y/(y—1)
i)

-

5\ M-
—(y+l) |

For y = 1.4, these ratios are

T*
— = 0.833
Ty 0

p=l=

—_—_—
—

Po

0.528 -

3>

= (0.634

/

/



Consider a point in an airflow where the local Mach number, static pressure, and

static temperature are 3.5, 0.3 atm, and 180 K, respectively. Calculate the local
values of po, 7o,

_ ¥liy=1
E=(1+F21M2) po/p =76.27
M=35 e F :
é
To Y= 1yp To/ T = 3.45.
r 2

po = (%") p=7627(0.3 atm) = | 229 atm

R -
To= 72T =3.45(180) =| 621 E_'




calculation of the velocity at a point on an airfoil when we were given the pressure
at that point and the freestream velocity and pressure and-temperature is-required.

Calculate the velocity using a) incompressible , b) compressible assumptions for
the air flow

P =07345 aim

1I.'r|=d--"
C\
-—ﬂ-
po=1 atm
T.=15 ¢
W_=205m/s

a) incompressible

At standard sea level conditions, pae = 1.23 kg/m® and pac = 1.01 x 10° N/m®. Hence,

Poc + 30VE =p+ipV: 5 v;‘/“"“"’p%uﬁj
e

= 2(1.01 — 0.7545) % 10° 3
\/ 3 + (203) = [ 289.1 m/s




b) compressible

T.=15¢=288 K7~ a.=340.2m/ls—— M _=v_/a_.=340.2 m/s=0.6

0, oo

Poc

Ploo = Doy = (1.276)(1) = 1.276 atm

Recall that for an isentropic flow, the total pressure is constant throughout the flow.

Pol = Pooe = 1.276 atim

1.276 —s M;=09
Poi _ = 1.691 |
Pl 0.7545
The flow is isentropic, p1 _ { Ti viy=1 pr \ ¥y
P \T) =2 T =Tx (p—) =2 T1=266 K

ai =/ yRT —> 4] = 327m/s =2 V| = Ma; —>» | v1=204.3 m/s

3



LOW COMPRESSIB

There is no specific answer to this question;

We have stated several times in the preceding chapters the rule of thumb that a
flow can be reasonably assumed to be incompressible when M < 0.3, whereas it
should be considered compressible when M > 0.3.

There is nothing magic about the value 0.3, but it is a convenient dividing line. We
are now in a position to add substance to this rule of thumb.

Consider a fluid element initially at rest, say, an element of the air around
you. The density of this gas at rest is p 0 . Let us now accelerate this fluid
element isentropically to some velocity V and Mach number M:



1.0

i, ﬁ:ﬁf// 0 5% variation
B |
0.8 — I
|
— |
|
0.6 — |
|
il

ForM << 0.3,
0.4 }— the variation I
inplpgis |
| less than 5% i
|
0.2 | |
|
— |
|
| 1l 1 | | | | | | |
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To obtain additional insight into the
significance of Figure:
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W io p/po affectW

associated with a given change in velocity?

Euler's equation:

dp = —pVdV —> d_P=__1;de
p p VvV

If we now assume that the density is constant, say, equal to po

b pav delp _ P

> =V dp/p)  po




==
consider the flow of air through a nozzle starting in the reservoir at nearly zero
~_ velocity and standard sea level values of po = 2116 lb/ft2 and To = 510°R, and
| expanding to a velocity of 350 ft/s at the nozzle exit. The pressure at the nozzle exit
will be calculated assuming first incompressible flow and then compressible flow.

Incompressible flow: From Bernoulli’s equation,

P = po— %pl"l = 2116 — %(’EL[]{)2’.'157"?)-‘[35(]']1 =| 1970 Ib/fi*

Compressible flow: From the energy equation, Equation (8.30), with ¢, =
6006[(ft) (Ib)/slug”R] for air,

v? (350)?
= — — =519 — — . “
I'=Tg 2, 519 3(6006) 508.8°R
From Equation (7.32),
T\ Hr—h 508.8%\ 3
P _ (_) _ (__) = 0.9329

p =0.9329p; = 0.9329(2116) =| 1974 Ib/ft?

Note that the two results are almost the same, with the compressible value of
pressure only 0.2 percent higher than the incompressible value.

Also, note that the Mach number at the exit is 0.317 .



=

On the other hand, if this flow were to continue to expand to a velocity of goo ft/s, a
~_ repeat of the above calculation yields the following results for the static pressure at the
end of the expansion:

Incompressible (Bernoulli’s equation): p = 1153 Ib/ft’
Compressible: p = 1300 1b/fi

Here, the difference between the two sets of results is considerable—a 13 percent
difference. In this case, the Mach number at the end of the expansion is 0.86.



CALCULATIO

-WAVE PROPERTIES

1Y

pru; + i

h1—+-—uf

P2




R
v\ wug

Since h, = h, = hyg,

=1
d}

=

~_1
_-“L-If") o2 (1 +

=

I{’jr-'—l)gfi-g = (v=1)hg (v—1)h,, =

1 + M7
M= T4

Y M ]'_? - 5
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The My, — 17, My — 17 limit corresponds to infinitesimal shock, or a sound wave.

M3 M) function is not shown for My < 1, since this would correspond to an “expansion
shock™ which is physically impossible based on irreversibility considerations.

for = |
lim M:= | — = 0,378
1UI 2y 11

My =
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From the mass equation P2 Mm
™ o g
1. ; (ﬂ.’:_ljh'a
ui = Miai = M; 1—|—3',:_—1_-"l-ff
EEETEAN I 1 oyt
ot U1 2 j—
H (v—1)hs 2
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combination of the momentum equation and mass equation gives:

o 1
p2—pi = prui — paui = prug (1 - _) =| pruf (1 - F_)

1 FE
2 a2
T_E B P_Eﬂ ous = Irj.?'_j'l_{
T pipo
/o ':",r"—l—ljﬂ'fiz
o1 2+ (v—1)M7
I _h _ 2y i 2 4 (y—1)M;
i v+1 (a1t - 1) (v +1)M?

13
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Recall tha second law of t ' etermines the directi ich a

1 process can take.

—~

I P
53 = 5| :f_t,ln-T——Rin—

I 1

2
(M2
¥+ 1

. 2
_”] 24 (y an}

=5 = In l-l'-
T {l (y + DM}

2y 3
— Rln [1 -+ m{ﬂﬂfl - ]:II:|

we see that the entropy change s2 — sl across the shock is
a function of M1 only. The second law dictates that:

81 — &) iﬂ

ifM, =1, 5 =35 if M; = 1, thens: — 5, = 0

@1{1 .1-'1—.5'1{)

15
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What-happens to total conditions across a shock wave?

®

Fluid element
with actual
My, p,. Ty,
and s,

M, >1
—
P |
~ - i
- { 1)
L. 1
Ve A \

Imaginary state la
where the fluid
element has been
brought to rest is-
entropically. Thus,
in state la, the
pressure is pg ; (by
definition). Entropy

is still 5, . Temperature
is Ty, (by definition).

/
M, <1
——
A
- 1
l | '
| I 7

A

r—

with actual
Mz’ pz’ T2 ’
and s,

B
Fluid element

Imaginary state 2a
where the fluid
element has been
brought to rest is-
entropically. Thus,
in state 2a, the
pressure is pg 5, the
temperature is T 5,
and the entropy is
still 5.

16
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Consider a normal shock wave in air where the upstream flow properties are
ul= 680 m/s, T1= 288 K, and p1= 1 atm.
Calculate the velocity, temperature, and pressure downstream of the shock.

ay = +/yRTI = +/ 1.4(2871(288) = 340 m/s

mafm =45 T/T = 1.687, M; = 0.5774,

pr=P2p =450 atm) =| 4.5am |
Pl
T . -
T, = 22 T) = 1.687(288) =| 486K
|

ay = /¥ RT3 = /1.4(287)(486) = 442 m/s

iy = Maar =05774(442) = | 255 I'I'l.lrﬂj

19



EXAMPLE —

\\ /
onsider a normal shock wave in a supersonic airstream where the pressure

upstream of the shock is 1 atm. Calculate the loss of total pressure across the
shock wave when the upstream Mach number is

(a) M1 = 2, (b) M1 =4.

Compare these two results and comment on their implication.

(a) The upstream total pressure is obtained from Py = (FEL) P

m- ()™ > pou/py=17.824

(pm'j (1+H|\/|2j7_1
p01 (pOol) pl) p2 ) \p1) _ 2
p02 | pl )\ p2 ) p02 -

pon(pzj

| = y-=1 o)yt 2y 2
1+—M 1+ —— M7 -1
(pz pl ( + 2 2) (+y+1( 1 )j

2
Po
- v > PM:(PT> Puo,i
-1 -1
yoa| M 2 (2 1)
1+ > S l+jM1—l
M2 - v 2  pp2 = (0.7209)(7.824) = 5.64 atm

20



e loss of total pressure

P01 — po2 =T824 - 5.64 =| 2.184 atm

(b) M1 = 4.

Po,1 = (&) pr = (151.8)(1 atm) = 151.8 atm
i 2> po1 - poz2=I1518- m.m:l 130.7 atm ‘

Py o= (ﬁ%) Po | = (OLL3BENI5L.8) = 21.07 atm
Po, 1

In any flow, total pressure is a precious commaodity.

Any loss of total pressure reduces the flow's ability to do useful work. Losses
of total pressure reduce the performance of any flow device, and cost money.
We will see this time-and-time-again in subsequent chapters. In this example, we
see that for a normal shock at Mach 2, the loss of total pressure was 2.184 atm,
whereas simply by doubling the Mach number to 4, the loss of total pressure
was a whopping 130.7 atm.
The moral to this story is that, if you are going to suffer a normal shock wave in
a flow, everything else being equal, you want the normal shock to

occur at the lowest possible upstream Mach number. o



- I

A ramjet engine is an air-breathing propulsion device with essentially no
rotating machinery (no rotating compressor blades, turbine, etc.).

M_=1

The ramjet is flying at Mach 2 at a standard altitude of 10 km, where the air pressure and
temperature are 2.65 x 104 N/m2 and 223.3 K, respectively. Calculate the air temperature and
pressure at point 2 when the Mach number at that point is 0.2.

Po,oo

Mo =2 oD pom= ( )Pm = (7.824)(2.65 x 10™) = 2.07 = 10° Nfm*

O

To.oc = (@E) s = (1.8}(223.3) =401 9 K
Toe

22
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po.| = (-.P”'-_'_) Po,oo = (0.7209)(2.07 x 10°) = 1.49 x 10° N/m>
= F), o

Th1=Thmw =M1%K

(Poz) = — =| 1.45 x 107 N/m? l

'l
Mj_ = 0.2 PI = (—
o

pos = 1.49 = 10° N/m?

— Th=|]| — T = —— = 399
Tps=4019K, 2 (Tn.z) (Toz) | 008 K

Air pressures and temperatures on the order of 1.42 atm and 399 K entering
the combustor are very tolerable conditions for low-speed subsonic
combustion.

e
4
L
W
T

23
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~ EXAMPLE B —

=
Repeat Example 8.10, except for a freestream Mach number = 10. Assume
that the ramjet has been redesigned so that the Mach number at point 2
remains equal to 0.2.

P0.00 = (@ﬁ) Poo = (0.4244 x 10°)(2.65 x 10%) = 1.125 x 10° N/m?

o0

for M =10, =

To.00 = (T%ﬁ) Too = (21)(223.3) = 4690 K
At point 1,
o1 = (ﬂl-) (Po.co) = (0.3045 x 1072)(1.125 x 10%) = 3.43 x 105 N/m>
0,00
I = Ty = 4K
po,2/p1 = 1.028 . .
o2 = pog = 343 x 107 Nfm
T2/ T2 = | D08

M: =102 Thar=Tp =49K

24



3.43 = 10°
pr = P2 (poz) = - =| 3.34 x 10° N/m? o=
P2 1.0238
. Ta A69)
J4 = | — T p— =| 4653 K
2 (Tu.z) (fp.2) 008

In aimospheres,

334 x 100 527 um
Pr= 10 = 10° _! ]

Compared to the rather benign conditions at point 2 existing for the case

treated in previous example, in the present example the air entering the
combustor is at a pressure and temperature of 32.7 atm and 4653 K—both
extremely severe conditions.

The temperature is so hot that the fuel injected into the combustor will decompose rather
than burn, with little or no thrust being produced. Moreover, the pressure is so high that the

structural design of the combustor would have to be extremely heavy, assuming in the first

place that some special heat-resistant material could be found that could handle the high
temperature.

In short, a conventional ramjet, where the flow is slowed down to al ow subsonic Mach
number before entering the combustor, will not work at high, hypersonic Mach numbers.

25



The solution to-this-problem-is-not to slow the flow inside the engineto low
;ub%trﬁﬁoeeds, but rather to slow it only to a lower but still supersonic
speed. In this manner, the temperature and pressure increase inside the
engine will be smaller and can be made tolerable.

In such a ramjet, the entire flowpath through the engine remains at supersonic
speed, including inside the combustor. This necessitates the injection and
mixing of the fuel in a supersonic stream—a challenging technical problem.
This type of ramjet, where the flow is supersonic throughout, is called a
supersonic combustion ramjet—SCRAMjet

26



a stovepipe jet, is a form of jet engine at contains no major moving parts

st






http://upload.wikimedia.org/wikipedia/en/c/c8/Hiller_YH-32_Hornet.jpg
http://upload.wikimedia.org/wikipedia/en/c/c8/Hiller_YH-32_Hornet.jpg

A scramjet (supersonic combustion ramjet) is a variation
of a with the key difference being that the flow in
the combustor is . At higher speeds it is
necessary to combust supersonically to maximize the
efficiency of the combustion process.

Inlet body Fuel injection Nozzle

Supersonic Combustion Supersonic
Compression Exhaust s

29


http://en.wikipedia.org/wiki/Ramjet
http://en.wikipedia.org/wiki/Supersonic

~_Supersonic Combusti

- SCRAMIET Engines

In this engine, compressors are not used.

Shock waves in front of the aircraft and inside the
inlet
slow down the flow and increase the pressure.

The flow inside the entire engine, including the
compressor,
IS supersonic.

Dryden Flight Research Center ED97 43968-03
FIRED UP: This is an artist's depiction of a Hyper-X
r wer i

An aerospace plane will use a SCRAMJET
engine.
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Subsonic Compressible Flow

. 1 /1)
Po _ (1 + T_Mﬂ)
P 2
(=1
2 o
- -
v=11\p
M, p "
—_— l: . Pﬂ
Do
P IP
T T T s
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MEASUREMENT OF VELOCITYIN'A

COMP] BLE FLOW

Pitot Tube

Stagnation pressure tap

~

\\

/ |

-.J Static pressure tap

i

V/? V, ’
— By Z, + _ P Z, + =
— y 29 ¥ 29
2
V=0
o p J/ 1 — 2
—V> 1< / Z. =7 V — \/ pl o p2
1~ 42 £
—
N Connect two ports to differential pressure transducer. Make sure
Pitot tube is completely filled with the fluid that is being measured.

Solve for velocity as function of pressure difference

32



1 vir=1)
Por _ (1 + F—Hf)
M 2
Y
M =
Wl = 2ai (_E?_l){r_mr —1
'y =1\ p

| Subsonic flow

Pitot pressure is

a b
{:__l_:} —— b~ the freestream

Unlike incompressible flow, a
knowledge of Po,1 and p1 is not
sufficient to obtain ul we also need
the freestream speed of

sound, al.
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Po2 _ Po2 P2
14 P2 Pi

|  Supersonic flow |

Pu.z — 1 E)H{}hl]
Poz _ (147 m
P2 ( 2

> 1 V/

d @ e! Pitot préssure is
the total pressure

i behind a normal shock p 5

a2 = LHIy = D/2M?
2 = 7 - -
yMi—(y — 1)/2

P 2y 2
=14+ I{ y — 1)

1 ¥

Rayleigh Pitot tube formula.

(O Ly 2

pi \dyMI=2(y —1) y + 1

e
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EXAMPLE

tube is inserted into an airflow where the static pressure is 1 atm.
Calculate the flow Mach number when the Pitot tube measures
(@) 1.276 atm, (b) 2.714 atm, (c) 12.06 atm.

First, we must assess whether the flow 1s subsonic or supersonic. At Mach 1, the Pitot
tube would measure py = p/0.528 = 1.893p. Hence, when pg < 1,893 atm, the flow is
subsonic, and when py = 1.893 atm, the flow is supersonic.

The flow is supersonic.

{(a) Pitot tube measurement = 1.276 atm.

The flow is supersonic.

(b) Pitot tube measurement = 2.714 atm. || r: _ (_L}jﬂ)”"'” 1-y +2v M} M =13
P \AyMi=2( - 1) v+1 ="
The flow is supersonic.
(c) Pitot tube measurement = 12.06 atm. s ( b + )W-n L=y 4200} M, — 3.0
pi \dyMI—2(y - 1) ¥+ 1

36
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/Consider a hypersonic missile flying at Mach 8 at an altitude of 20,000 ft, where
the pressure is 973.3 Ib/ft2 . The nose of the missle is blunt. Calculate the
pressure at the stagnation point on the nose.

For Mach 8, po,1/pl1= 82.87.

This portion of the bow
shock is normal to the

P = ppa = (E) (p1) = 82.87(973.3) =| 8.07 x 10% Ivfi®
Pi

Since 1 atm = 2116 Ib/fi?,

8.07 = 10* ‘ |
Ps = W =| 38.1 atm

blunt body

Note that the pressure at the nose of the missile is quite high—38.1
atm. This is typical of hypersonic flight at low altitude.

37
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Consider the Lockheed SR-71 Blackbird flying at a standard altitude of 25 km.
The pressure measured by a Pitot tube on this airplane is 3.88 x 10 N/m>.
Calculate the velocity of the airplane.

A A = =T B epa ] | ||

At an altitude of 25 km, p = 2.5273x103 N/ m?and T = 216.66 K.

o1 188 » 107
e = = 1535 | B2 (4
p 25273 % 108 P ( "

_ riy—1}
FTIME) M'l = 3-.4

Vi = Mya; = (3.4)(295) =] 1003 m/s \

38
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Expansion Waves




SOUND WAVE-PROPAGATION (pressure disturbance) /

(a) Stationary fluid

radial propagation only

Pressure disturbance occurring at an interval of every At
S'is the disturbance source



UAt

qmo¥~§ (b) Moving fluid

UBAL) _
Doppler shift

radial + axial propagation

Ma <1 subsonic



Case (c): U=c

Ma=1 sonic

all wavefronts touch
source S



http://physics-animations.com/Physics/English/swz_tmp.htm
http://physics-animations.com/Physics/English/swz_tmp.htm

Case (d): U>c




Speed of
Sound (M=1)

i at a
smuzuﬁ—F
. 1
jL = sin v
1
u

\.
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%mm airplane is flying at Mach 2 at an altitude of 16 km. Assume the
shock wave pattern from the airplane (see Figure 9.1) quickly coalesces into
a Mach wave that intersects the ground behind the airplane, causing a
"sonic boom" to be heard by a bystander on the ground. At the instant the

sonic boom is heard, how far ahead of the bystander is the airplane?

i = sin~! (T:E) — sin~! (%) —30° | - \

16 km

tan i =

16 km 16
d_,_ —

= = =| 27.7 km
tan u 0.577

L

——— e e G S ke G S e S i S G -

A
1~%
1
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Relation between the oblique shock-wave angle and the Mach angle.
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Mass continuity .

—

I
o

—plulﬂ + ,ﬂgugﬂ.

MUy = paug "

r-Nomentiun

ﬁpf"-ﬁudﬂ + @pﬁ-mﬂ — 0

—ptA + poulA — prA + A = 0

pus + p1 o= paud 4+ po

~-Nomentum

Sgﬁpﬁ-ﬁ.w dA + ﬂpﬁ--i' d4d = 0

—prurAwy + prugAwe = 0

Uy = w9 . 1
Energy . Equation of State
gﬂ oV ithydA = 0
—murhg A + paushy, A = 0 ~—1
ho, = hg, Pa = - — ,ﬂghg
1 1/, !
2, 2\ _ - w
hi + 5 (u1 —I—-u-l) = ha + 5 (uz + u.z)
1 1

hi + Euf = hs + —-1-:.%



ique/normal shock equivalence

It is apparent that equations mass, x-momentum , energy, state equations are in

fact identical to the normal-shock equations derived earlier. The one addition z-
momentum equation simply states that the tangential velocity component doesn’t
change across a shock.

The effective equivalence between an obligue and a normal shock allows re-use of

the already derived normal shock jump relations.
We only need to construct the necessary transformation from one frame to the other.

W)

change frames
of reference

SW
I

7
2 observer
I moving at W = W, =W,




efine the normal Mach number
~ components seen by the moving observer.

ity V1 sin 4 _
M, = — = = M, sinj
Lq |

l + M2

M2 =
M
_'nl-_!rﬂ — =

sin( 7 — &)




! The static property ratios are likewise |

obtained using the previous normal-
shock relations.

pr ([ D)ME
o 2+ (—1)MZ

P v+
hy _ p2pr
fiq P2

"":3
b5
|
|"'d
o,
| =
—
-
T
<)
-



To allow application of the above relations, we still require the wave angle 7.

—

-

Wy = 1w ‘ tELI'L[:j — IEII g M (“r—l—l ]lﬂff .'EillE j
| tan Uy 02 2 + (y—1)M¢Esin? 3

Solving this for & gives

2 M?sin® 7 — 1

tan 3 ME(~ + cos23) + 2

tan#d =




—

Starting from the known upstream Mach number M1 and the flow deflection angle
(body surface angle) 6, the oblique-shock analysis proceeds as follows.

#, My

2 MZsin®3 — 1
tan 3 ME(y +cos23) + 2

tand =

g

- R
pr (v +1)MZ

2+ (—1)MZ,

B2 _ 4 i(ﬂ-{gl—l)

m ~—+1
s _ p2pn
Ty P12

Pos _ P_z(h_l)”’”“"_”
Py ™ hﬂ




—— \/

2 M2sin?3 — 1

tanf =

tan 3 M2 (~v +cos23) + 2

detached shock __.--;
(bow shock) -
M,/ v 7 -
— /77 0> ~
! max ---.___-"




1-There is a maximum turning angle 8max for any given upstream Mach
number M1. If the wall angle exceeds this, or 8 > 8max, no obligue shock is
possible. Instead, a detached shock forms ahead of the concave corner.

Such a detached shock is in fact the same as a bow shock discussed
earller.

1. If0 <6max, two distinct oblique shocks with two different B angles are
physically possible. The smaller 5 case is called a weak shock, and is the
one most likely fo occur in a typical supersonic flow. The larger 5 case is
called a strong shock, and is unlikely to form over a straight-wall wedge.
The strong shock has a subsonic flow behind it.

2. The strong-shock case in the limit @ — 0 and B — 90-, in the upper-left
corner of the oblique shock chart, corresponds to the normal-shock case.

4- The Weak-shock case in the limit 8 — 0 and B —u, in the upper-left corner of
the obliqgue shock chart, corresponds to the normal-shock case.






ffect of increasing the deflectio




Example _ |

~ Consider a supersonic flow with M = 2, p =1 atm, and T = 288 K. This flow is
deflected at a compression corner through 20°. Calculate M, p, T, po, and TO
behind the resulting oblique shock wave.

forMl=2and §=20° mEp B=53.4°

Mn,1 =M1sin 8 =2sin 53.4° = 1.606. Mn, 2 =0.6684

l

P2_,8y I2_ 1355 P02 _g9s)
Pl T Po,1
Mo — Mp2 (0.6684 _| 191
£ 7T sin(B —60)  sin(53.4 — 20) '

py = Ez—pl =2.82(1 atm) =| 2.82 atm
1

T
T, = ?ir. — 1.388(288) =| 399.7K
|




po1/pr=7824 and Ty /T = 1.8

poz =225 py = 0.8952(7.824)(1 atm) =| 7.00 atm
1

T
Tos=To1 = -—;’_:’—Tl = 1.8(288) =| 5184 K
1




Ex X/
Consider o

: onsider an obliqgue shock wave with a wave angle of 30°. The upstream
flow Mach number is 2.4. Calculate the deflection angle of the flow, the

pressure and temperature ratios across the shock wave, and the Mach
number behind the wave.

M =2d4and 8 =30°|,..,_ 2 Msin®3 — 1 s co
I' P tang = tan 3 ME(y +cos25) 4+ 2 0 =065
P2 _| 1513
pi
M, =M;sing =24sin30° = 1.2 » T
= =| 1.128
Iy
M, 2 = 0.8422
M 0.8422
My = ——™m2 =1 2.11
sin{f — &)  sin(30 — 6.5)




/
Tww are illustrated by thisexample: s

1. This is a fairly weak shock wave only a 51 percent increase in pressure

across the wave. Indeed this case is close to that of a Mach wave, where

u= sint (1/M) =sin?t (1/2.4) = 24.6°. The shock-wave angle of 30° is not much
larger than p; the deflection angle of 6.5° is also small—consistent with the relative
weakness of the shock wave.

2. Only two properties need to be specified in order to define uniquely a given
oblique shock wave. In this example, M1and 6 were those two properties.

In pervious example, the specified M1and 6 were the two properties. Once any
two properties about the obliqgue shock are specified, the shock is uniquely
defined. This is analogous to the case of a normal shock wave studied in
Previous chapter. There, we proved that all the changes across a normal shock
wave were uniquely defined by specifying only one property, such as M1.



Ex X/
/nple

Consider an oblique shock wave with 8 =35°and a pressure ratio p2/p1= 3.
Calculate the upstream Mach number.

p2/pL =3 m) M, , = 1.64
My = M;sing
M, 166
M = e — = .
= Sng  sindse - L>S6
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e

—Consider a Mach 3 flow. It is desired to slow this flow to a subsonic
speed. Consider two separate ways of achieving this: (1) the Mach 3 flow
Is slowed by passing directly through a normal shock wave; (2) the Mach
3 flow first passes through an oblique shock with a 40° wave angle, and
then subsequently through a normal shock. These two cases are
sketched in Figure. Calculate the ratio of the final total pressure values
for the two cases, that is, the total pressure behind the normal shock for
case 2 divided by the total pressure behind the normal shock for case 1.
Comment on the significance of the result.

FPos

Po, Po2
— —
A
M | = 3 é
— » /
= MNormal shock
E
o
Z,
— — o >

Case |

Cm!l



Py

yﬁ“‘/’:& a (Fﬂl) =ﬂ-3233/
. case |

For case 2, we have Mnl1 = MI1sin B=3 sin40° = 1.93.

‘ PR _ 07535 and M, = 0.588

Py
for M| = 3 and B = 40° ‘ g = 22°

M., 0588
M= GhB 0 sm@0—22) ‘ pos/ po, = 0.7674

(ﬂh) - (ﬂ;) (&) = (0.7535)(0.7674) = 0.578
POy / case 2 Py POz

(2)../(2)..- 5[
POy / case 2 POy J case | 0.3283 '
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(b) Oblique shock inlet
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RSONIC FLOW OVER

WEDGES AND CONES

Wedge

B =53.3°
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The main differences between the supersonic flow over a cone and wedge, both
with the same body angle, are that

(1) the shock wave on the cone is weaker,

(2) the cone surface pressure is less,

(3) the streamlines above the cone surface are curved



EX \/

Consider a wedge with a 15° half angle in a Mach 5 flow, as sketched in
the figure. Calculate the drag coefficient for this wedge. (Assume that
the pressure over the base is equal to freestream static pressure, as
shown in the figure)

D’ D’ D'
' _— _— —_
T oS T qie() T qic
P
D' = 2pylsing — 2plsind = (21 sin8) p2 — p1) ~
g
D' = 2pslsinf — 2plsiné = (2 sinB)(p2 — py) ° -« r:
= — i
"~ cosf .

P2

D' = (2ctané)(p2 — p1)

cq = (21an6) (u) _ (_
a1




1

1 YR 24
q1 = Emtﬁ v Vi =

27 ) _24.:::1
P2 — pI 4“1“5(;?1 )

— (2tan 8 — —1

= }(wzmp.mf) yM? \ pi

P1— Pl 4tané (Pz )
= (2 tan#@ = — 1
= ]((wl‘.lpqu) yM? \ pi

fnrM1=ﬂandE=15" ‘ ﬂ=2421:-

= Iplﬂfll

My, = Mysinp = 55in(24.2°) =2.05 mm) ? = 4.736
|

4tan@ { p3 4 tan 15°
Cd = — =1 == 4736 ~-1) =
Ve (Pl ) 4G }

The drag is finite for this case. In a supersonic or hypersonic inviscid flow over a two-
dimensional body, the drag is always finite. D'Alembert's paradox does not hold for

/

(0.114

freestream Mach numbers such that shock waves appear in t he flow.




SHOCK INTERACTIONS AND REFLECTIONS
] = )

PP

—

A
consider an oblique shock wave generated by a concave corner,
Assume that a straight, horizontal wall is present above the corner,

The shock wave generated at point A, called the incident shock wave,
Impinges on the upper wall at point B.

Ques [/ON. Does the shock wave simply disappear at point B? If not,
what happens to it?




SHOCK INTERACTIONS AND REFLECTIONS —

/

B
z 2

the flow must be tangent everywhere along the upper wall; if the flow in region 2
were to continue unchanged, it would run into the wall and have no place to go.
Hence, the flow in region 2 must eventually be bent downward through the angle 6
in order to maintain a flow tangent to the upper wall. Nature accomplishes this
downward deflection via a second shock wave originating at the impingement
point B 9. This second shock Is called the reflected shock wave.



Assume that M1/s-only slightly-above the minimum Mach number ng:esse(m a
graight,aﬁched shock wave at the given deflection angle 6.

we know that the Mach number decreases across a shock . 7//s decrease may be
enough such that M2 is not above the minimum Mach number for
the required deflection & through the reflected shock.

In such a case, our obliqgue shock theory does not allow a solution for a straight
reflected shock wave.




Another type of shock interaction is shown in figure.

At the intersection, wave A is refracted and continues as wave D. Similarly, wave B Is
refracted and continues as wave C. The flow behind the refracted shock D is denoted by
region 4, the flow behind the refracted shock C is denoted by region 4'.

Across the slip line, the pressures are constant (i.e., p 4 = p4) , and the direction (but
not necessarily the magnitude) of velocity is the same, namely, parallel to the slip line.

All other properties in regions 4 and 4' are different, most notably the entropy Sa4 #s4’).



The intersection occurs at point C, at which the two shocks merge

and propagate as the stronger shock CD, usually along with a weak
reflected wave CE. This reflected wave is necessary to adjust the flow so
that the velocities in regions 4 and 5 are in the same direction. Again, a slip
line CF trails downstream of the intersection point.



EXAMPLE

Consider an oblique shock wave generated by a compression corner with a
10° deflection angle. The Mach number of the flow ahead of the corner is
3.6; the flow pressure and temperature are standard sea level conditions.
The oblique shock wave subsequently impinges on a straight wall opposite
the compression comer. Calculate the angle of the reflected shock wave ®
relative to the straight wall. Also, obtain the pressure, temperature, and
Mach number behind the reflected wave.

B
Z 7




My =3.6and6 = 10°

Maximum
tumning

My = M;sinff; = 3.6sin24" = 1.464

¥

T
Mpr=07157 22 =232 2124 _
pi T -
M 0.7157
n.2 =296 =

M2= GhB =0 ~ snd—10)

ﬁl = 27.3° anﬁnuc

()

#-p-M diagram

M; =296and 8 = 10°

)| 3 8 =)
() 15 ) 45

Deflection angle 8 (°)

P=pH —-0=273-10=| 17.3°




Also, the normal component of the upstream Mach number relative to the
reflected shock is

M3 sin 7 = (2.96) sin 27.3% = 1.358,

&

T
=1991 = =1229 M,;=07572

&)
P2 I

. Mp 3 . 0.7572 .
Cosin(B; — ) sin(27.3—10)

M; 2.55

For standard sea level conditions, p; = 2116 Ib/f® and T} = 519°R. Thus,

Note that the

}
py=P3P2  (1991)(2.32)(2116) =| 9774 Ib/fe® reflected shock
P m )
o iIs weaker than
Ty = ?i?lr. = (1.229)(1.294)(519) =| 825°R the incident
2 1]

shock,



DETACHED SHOCK WAVE IN FRONT OF A BLUNT BODY

The curved bow shock
which stands in front of a
blunt body in a supersonic
flow is sketched in Figure

Strong shock

¢ .,L’ﬁ2<l

- fM2>l

max 6

0 Is defined as the shock detachment distance.



The solution of this flow field is not trivial. Indeed, the
supersonic blunt-body problem was a major focus for
supersonic aerodynamicists during the 1950s and 1960s,
spurred by the need to understand the high-speed flow over
blunt-nosed missiles and reentry bodies.



PRANDTL-MEYER EXPANSION WAVES

dv L.Nu
tan [l ~———_ A
av

From the u-V and du-dV velocity triangles:

dv 1

dfd =
tan g V




1 cosp xfrl — sin® p

Ji—sinfp  1—1/M2

= = sinp = 1/M
tan u SV sin g sin - 1/M
/ |
y1—1/M2 _ JIE=I

1/M AV

; 1 e 1”- A2 — 1 — ]. T
dt = —
tan g V




Prandtl-Meyer Function

~ 1 —].l.-'li"
V = Ma = Ma, (1 + T”)

1 v—1
InV = InM + Ina, — 5 111(1 + TU )

dV’ dM 1 v—1 —1
_ = — - =1 4 —M —21! dM
V M 2 ( + 2 ) 2
ﬁ B 1 dM
Voo 14 o
3 T v -1-'[5' — 1 dM
df = VM2 -1 —

T




o fﬂj? 1."..-":'1{2 — 1 dM
Ay, 1+ :"'E_l:llf? M

0
Gy — 6 = v(My) — (M)

| ) T S
where v(M) = ‘Vllf '_+ aretan‘l{f I'—I— (M2 —1) — arctanyM? —1

v (M) is called the Prandtl-Meyer function,
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How do the above results solve the
problem stated in Figure

1. For the given M1, obtain v(M1)

2. Calculate M2) from using 8+ v(M1)=v(M2)

3. Obtain M2 from Appendix C corresponding to the
value of M2) or using prandtl-Meyer function

. 1 1,2 ;] 1,2 .
L= (i) tan™! [J—f:’H’z — 1}} —tan~ ' (M?* — D)V
y—1 y+1

4. The expansion wave is isentropic; hence, po and TO
are constant through the wave.

T, T/Th. 1+[y—1/2IM; P2 _ P2/Po _ (1 + [(y — l)fZ]Mf)””'*”
1 - T/ To, T+ [(y — 1)/2]1M} P Pi/po 1+ [(y — 1)/21M;



How do you compute the inverse of the
Prandtl-Meyer Function?

|

= —tan
A

1

120
110
100
90
80
70
60
50
40
30
20
10

HAF) — tan 1)

/
0

10

Mach

15

25

d=+vM?-1.



In the usual approach for calculation, you compute the value of v
for the upstream Mach number and then add the angle thru
which the flow is turned. The downstream Mach number is that
which corresponds to the downstream v. But, there IS no easy
way to compute this.

Since the equation is relatively simple, most students of
compressible flow theory try to use algebraic and trigonometric
manipulations to obtain an expression for Mach as a function of
v. Alas, it does not seem possible and we are left with numerical
procedures.

Given a sufficiently dense table of v vs. Mach, one can do a
reverse table lookup.

This is probably the method of choice for students who are doing
an off-line calculation.



In simple shock-expansion theory. If one is developing a computing
procedure this approach can still be used by building a large table of
v versus Mach and then doing interpolation as Mach versus v.

There is a certain lack of elegance to this approach and people would

like a nice neat function that simply returned Mach for a given v.

In September 1975, 1.M. Hall published a paper in the Aeronautical
Journal in which he described an rational polynomial function that
approximated the inverse Prandtl-Meyer function with accuracy
sufficient for most engineering purposes.

The function is simply a cubic polynomial divided by a quadratic.



iy

Vo = Ef* v6—1)

A
B
C
D
E

1.3604
0.0962
-0.5127
-0.6722
-(,.3275

All of the constants
shown here are for y=1.4.
The original paper by Hall
describes the calculation
for other specific heats.



The accuracy of the Hall approximation is
guite good with the maximum error much
less that one-tenth of one percent.

0.06

0.05 / N
\
0.04 7

0.03 ;

0.02

per _cenl error

0.01 +

0.00

-0.01 R

0025710 20 30 40 50 60 70 80 90 100 110 120 130
nu,deg.



EXAMPLE

A supersonic flow with M1= 1.5, p1=1 atm, and T1 =288 K Is expanded
around a sharp comer) through a deflection angle of 15°. Calculate M2, p2,
72, P0O,2, TO,2 and the angles that the forward and rearward Mach lines make
with respect to the upstream flow direction.

. 1 1,2 ;] 1,2 .
L= (i) tan™! [J—f:’H’z — 1}} —tan~ ' (M?* — D)V
y—1 y+1

My =15 mm) p = 11.91°

v = v+ 8 = 1191 +15=2691" mmE) M;=20

My = L5, D) o, /p = 3.671and To/Ti = 1.45.

Ma = 2.0, ‘ po.2/p2=7824and T2/ T = | 8.

Since the flow is isentropic, Ty 2 = Ty, and pg 2 = po,)



P =

Pz pPo.2 Pol | .
= = —(1}(3.671){1 atm) =| 0.46Y9 atm
po2por pr VT 7824 (
Iy Tp2 Ty, 1
= - : = —{1 . —
T Tos Tox T, T l.E( 1 1.45)(288) 212 K

P02 = po1 = ?p[ — 3.671(1 atm) =| 3.671 atm
|

Ti
To2 =Ty, = -*;:"lﬂ = 1.45(288) =| 4176 K
|

Angle of forward Mach line = p; =| 41.81°

Angle of rearward Mach line = 3 — 8 =30 - 15 =

15°




EXAMPLE

An isentropic compression wave is one of the possible compression mechanisms
in SCRAMjets.

Consider the isentropic compression surface sketched in Figure. The Mach
number and pressure upstream of the wave are M1 = 10 and p1= I1atm,
respectively. The flow is turned through a total angl/e of 15°. Calculate the Mach
number and pressure in region 2 behind the compression wave. Compare the
results with those of a sharp corner.

®©
M =10
p=1latm
S TS

(a) Isentropic compression corner

My =10, =>» v, =102.3° —> m=v—-0=1023-15= ETSD—é My =64

for My = 10, po,1/p1 = 0.4244 x 10° and for M = 6.4, po,2/p2 = 0.2355 x 10*

_ _ (P (po2) (por) - _ : 5
P2 =POL= 2= (mz) (Fﬂ,l) ( P )Pl Bl ('11355 X 1‘3“) (DO£28> 1M




(&) Shock compression comer

M, =10andd = 15° = 8 = 20° —= M_,hl:Mlsinﬁ:{lﬂjsinlﬂ‘:':jdn,l

Ma1 =342, —> pa/p1 = 1332, po2/po1 =0.2322, and M, 5 = 0.4552.

- Mﬂl'l . ﬂ.4552 _
2T sin(B—-6) sin(20—15)

5.22

P2 = (PI!PI]PI = 1332{1} = 13.32 atm

The inefficiency of the shock wave is measured by the loss of total
pressure across the shock; total pressure drops by about 77 percent
across the shock. This emphasizes why designers of supersonic and

hypersonic inlets would love to have the compression process carried
out via isentropic compression waves.

it is a point design for the given upstream Mach number,



Shock-Expansion Theory




The diamond-shape airfoll
example of the application of shock-expansion theory,




Biconvex airfoil at low angle of attack



EXAMPLE

Calculate the lift and drag coefficiens for a flat plate at a 5° angle of attack in
a Mach 3 flow.

First, calculate p2/p1 on the upper surface

w=v +6 >\ fo ~ ~

where ¢ = @

for M| = 3, v = 49.76°

vy = 49.76° + 57 = 54.76° =——> M, = 3.27

for My = 3, po,/p1 = 36.73; for My = 3.27, po,/p2 = 55.

Since po; = Poys ey P2 _ PO [ POz _ 36.13 = 0.668
P om/ P2 35

Next, calculate p3/pl on the bottom surface.



From the 0-f-M diagram —> M, =3and 6 =5°, § = 23.1°

M"1|=M[&inﬁ=3$in231G=l17?’ —_> p3frp| =.I..453

! Cf = L = L = 2 (m—m)ms{r
L' =(p3s — pa)ccosa —> QS (y/2DpMic  yME\p1 o pr

(1.458 — 0.668) cos 5° =] 0.125

ﬂ-’_ , Cq = ﬂ' = 2 (pa—.ﬂz)ﬁiﬂﬂ'
— [;13 — pg}CSlnﬂf — q185 }-'Mf 1 |

= (1L.4)(3)72

.,

T (L4395

(1.458 — 0.668) sin5° =| 0.011

Note that to calculate these coefficients we did not need to know the freestream
pressure, density, or velocity. All we needed to know was:

1. The shape of the body

2. The angle of attack

3. The freestream Mach number



EXAMPLE

It has been suggested that a supersonic airfoil be designed as an isosceles
triangle with 10° equal angles and an 8-ft chord. When operating at a 5° angle of

attack the air flow appears as shown in Figure.
Find the pressures on the various surfaces and the lift and drag forces when flying

at M = 1.5 through air with a pressure of 8 psia.

From the @-8-M diagram ——> j7-15 angd 9=5° p=48°

M1n =M1 sin B = 1.5 (sin 48°) = 1.115



M2n = 0.900 and p2/pl = 1.2838

The Prandtl-Meyer expansion turns the flow by 20°:

vd =v2+20=6.7213 + 20 =26.7213 == M4 =2.012

Note that conditions in region 3 are identical with region 2.\We now find the
pressures. The lift force (perpendicular to the free stream) will be

[.= F; cos 3% — Fy cos 537 — Fy cos 157

The lift per unit span will be 3728 Ibf.



VISCOUS FLOW:
SHOCK-WAVE/BOUNDARY-LAYER INTERACTION

Shock waves and boundary layers do not mix.
Bad things can happen when a shock wave impinges on a boundary layer.

\

N
AN
\ shock wave Ri-:t::ih:‘l:‘ﬂé
N - =
“, Induced separation o -
"""-.__\ shock wave =~

"'0.‘ = o .I,-'II

\___I ."r

M. > | /

Separation Laocally Reaniachmen
Pt separated flow point



Example

Consider the arrangement shown in the following Fig.. A 15 Deg. half-angle diamond
wedge airfoil is in a supersonic flow at zero angle of attack. A Pitot tube is inserted into
the flow at the location shown in the Fig.. The pressure measured by the Pitot tube is
2.596 atm. At point a on the backface, the pressure is 0.1 atm. Calculate the free-

stream Mach number M/.

Pitot tube

M, > 1




The pressure at point ais the static pressure in region 3.

Pos 259
P Y 25.96
for pg, /ps = 25.96: > M =445
for MJ, = 4.45. > w =T1.27

> vy =v3—0 =71.27 —30=41.27°

vy = 41.27° > M, =126

> M,, = M;sin(8 —8) = 2.6sin( — 15)

M,, = 0.588.



Assume M; =4. Then §=27", M, = M,sinfi = 4sin27° = 1.816.

> M,, =0.588.
Putting these results into Eq: M,, = M;sin(f — 8) = 2.6sin(8 — 157)
0.588 = 2.65in 10.5° = 0.47

This does not check. We are going in the wrong direction

Assume M, = 3.5.Then f = 29.2°, M,, = 3.5sin29.2° = 1.71

> M,, =0.638.

0.588 — 2.6sin 10.5° = 0.47



PRANDTL-MEYER EXPANSION WAVES

dv L.Nu
tan [l ~———_ A
av

From the u-V and du-dV velocity triangles:

dv 1

dfd =
tan g V




1 cosp xfrl — sin® p

Ji—sinfp  1—1/M2

= = sinp = 1/M
tan u SV sin g sin - 1/M
/ |
y1—1/M2 _ JIE=I

1/M AV

; 1 e 1”- A2 — 1 — ]. T
dt = —
tan g V




Prandtl-Meyer Function

~ 1 —].l.-'li"
V = Ma = Ma, (1 + T”)

1 v—1
InV = InM + Ina, — 5 111(1 + TU )

dV’ dM 1 v—1 —1
_ = — - =1 4 —M —21! dM
V M 2 ( + 2 ) 2
ﬁ B 1 dM
Voo 14 o
3 T v -1-'[5' — 1 dM
df = VM2 -1 —

T




o fﬂj? 1."..-":'1{2 — 1 dM
Ay, 1+ :"'E_l:llf? M

0
Gy — 6 = v(My) — (M)

| ) T S
where v(M) = ‘Vllf '_+ aretan‘l{f I'—I— (M2 —1) — arctanyM? —1

v (M) is called the Prandtl-Meyer function,
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How do the above results solve the
problem stated in Figure

1. For the given M1, obtain v(M1)

2. Calculate M2) from using 8+ v(M1)=v(M2)

3. Obtain M2 from Appendix C corresponding to the
value of M2) or using prandtl-Meyer function

. 1 1,2 ;] 1,2 .
L= (i) tan™! [J—f:’H’z — 1}} —tan~ ' (M?* — D)V
y—1 y+1

4. The expansion wave is isentropic; hence, po and TO
are constant through the wave.

T, T/Th. 1+[y—1/2IM; P2 _ P2/Po _ (1 + [(y — l)fZ]Mf)””'*”
1 - T/ To, T+ [(y — 1)/2]1M} P Pi/po 1+ [(y — 1)/21M;



How do you compute the inverse of the
Prandtl-Meyer Function?

|

= —tan
A

1

120
110
100
90
80
70
60
50
40
30
20
10

HAF) — tan 1)

/
0

10

Mach

15

25

d=+vM?-1.



In the usual approach for calculation, you compute the value of v
for the upstream Mach number and then add the angle thru
which the flow is turned. The downstream Mach number is that
which corresponds to the downstream v. But, there IS no easy
way to compute this.

Since the equation is relatively simple, most students of
compressible flow theory try to use algebraic and trigonometric
manipulations to obtain an expression for Mach as a function of
v. Alas, it does not seem possible and we are left with numerical
procedures.

Given a sufficiently dense table of v vs. Mach, one can do a
reverse table lookup.

This is probably the method of choice for students who are doing
an off-line calculation.



In simple shock-expansion theory. If one is developing a computing
procedure this approach can still be used by building a large table of
v versus Mach and then doing interpolation as Mach versus v.

There is a certain lack of elegance to this approach and people would

like a nice neat function that simply returned Mach for a given v.

In September 1975, 1.M. Hall published a paper in the Aeronautical
Journal in which he described an rational polynomial function that
approximated the inverse Prandtl-Meyer function with accuracy
sufficient for most engineering purposes.

The function is simply a cubic polynomial divided by a quadratic.



iy

Vo = Ef* v6—1)

A
B
C
D
E

1.3604
0.0962
-0.5127
-0.6722
-(,.3275

All of the constants
shown here are for y=1.4.
The original paper by Hall
describes the calculation
for other specific heats.



The accuracy of the Hall approximation is
guite good with the maximum error much
less that one-tenth of one percent.
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EXAMPLE

A supersonic flow with M1= 1.5, p1=1 atm, and T1 =288 K Is expanded
around a sharp comer) through a deflection angle of 15°. Calculate M2, p2,
72, P0O,2, TO,2 and the angles that the forward and rearward Mach lines make
with respect to the upstream flow direction.

. 1 1,2 ;] 1,2 .
L= (i) tan™! [J—f:’H’z — 1}} —tan~ ' (M?* — D)V
y—1 y+1

My =15 mm) p = 11.91°

v = v+ 8 = 1191 +15=2691" mmE) M;=20

My = L5, D) o, /p = 3.671and To/Ti = 1.45.

Ma = 2.0, ‘ po.2/p2=7824and T2/ T = | 8.

Since the flow is isentropic, Ty 2 = Ty, and pg 2 = po,)



P =

Pz pPo.2 Pol | .
= = —(1}(3.671){1 atm) =| 0.46Y9 atm
po2por pr VT 7824 (
Iy Tp2 Ty, 1
= - : = —{1 . —
T Tos Tox T, T l.E( 1 1.45)(288) 212 K

P02 = po1 = ?p[ — 3.671(1 atm) =| 3.671 atm
|

Ti
To2 =Ty, = -*;:"lﬂ = 1.45(288) =| 4176 K
|

Angle of forward Mach line = p; =| 41.81°

Angle of rearward Mach line = 3 — 8 =30 - 15 =

15°




EXAMPLE

An isentropic compression wave is one of the possible compression mechanisms
in SCRAMjets.

Consider the isentropic compression surface sketched in Figure. The Mach
number and pressure upstream of the wave are M1 = 10 and p1= I1atm,
respectively. The flow is turned through a total angl/e of 15°. Calculate the Mach
number and pressure in region 2 behind the compression wave. Compare the
results with those of a sharp corner.

®©
M =10
p=1latm
S TS

(a) Isentropic compression corner

My =10, =>» v, =102.3° —> m=v—-0=1023-15= ETSD—é My =64

for My = 10, po,1/p1 = 0.4244 x 10° and for M = 6.4, po,2/p2 = 0.2355 x 10*

_ _ (P (po2) (por) - _ : 5
P2 =POL= 2= (mz) (Fﬂ,l) ( P )Pl Bl ('11355 X 1‘3“) (DO£28> 1M




(&) Shock compression comer

M, =10andd = 15° = 8 = 20° —= M_,hl:Mlsinﬁ:{lﬂjsinlﬂ‘:':jdn,l

Ma1 =342, —> pa/p1 = 1332, po2/po1 =0.2322, and M, 5 = 0.4552.

- Mﬂl'l . ﬂ.4552 _
2T sin(B—-6) sin(20—15)

5.22

P2 = (PI!PI]PI = 1332{1} = 13.32 atm

The inefficiency of the shock wave is measured by the loss of total
pressure across the shock; total pressure drops by about 77 percent
across the shock. This emphasizes why designers of supersonic and

hypersonic inlets would love to have the compression process carried
out via isentropic compression waves.

it is a point design for the given upstream Mach number,



Shock-Expansion Theory




The diamond-shape airfoll
example of the application of shock-expansion theory,




Biconvex airfoil at low angle of attack



EXAMPLE

Calculate the lift and drag coefficiens for a flat plate at a 5° angle of attack in
a Mach 3 flow.

First, calculate p2/p1 on the upper surface

w=v +6 >\ fo ~ ~

where ¢ = @

for M| = 3, v = 49.76°

vy = 49.76° + 57 = 54.76° =——> M, = 3.27

for My = 3, po,/p1 = 36.73; for My = 3.27, po,/p2 = 55.

Since po; = Poys ey P2 _ PO [ POz _ 36.13 = 0.668
P om/ P2 35

Next, calculate p3/pl on the bottom surface.



From the 0-f-M diagram —> M, =3and 6 =5°, § = 23.1°

M"1|=M[&inﬁ=3$in231G=l17?’ —_> p3frp| =.I..453

! Cf = L = L = 2 (m—m)ms{r
L' =(p3s — pa)ccosa —> QS (y/2DpMic  yME\p1 o pr

(1.458 — 0.668) cos 5° =] 0.125

ﬂ-’_ , Cq = ﬂ' = 2 (pa—.ﬂz)ﬁiﬂﬂ'
— [;13 — pg}CSlnﬂf — q185 }-'Mf 1 |

= (1L.4)(3)72

.,

T (L4395

(1.458 — 0.668) sin5° =| 0.011

Note that to calculate these coefficients we did not need to know the freestream
pressure, density, or velocity. All we needed to know was:

1. The shape of the body

2. The angle of attack

3. The freestream Mach number



EXAMPLE

It has been suggested that a supersonic airfoil be designed as an isosceles
triangle with 10° equal angles and an 8-ft chord. When operating at a 5° angle of

attack the air flow appears as shown in Figure.
Find the pressures on the various surfaces and the lift and drag forces when flying

at M = 1.5 through air with a pressure of 8 psia.

From the @-8-M diagram ——> j7-15 angd 9=5° p=48°

M1n =M1 sin B = 1.5 (sin 48°) = 1.115



M2n = 0.900 and p2/pl = 1.2838

The Prandtl-Meyer expansion turns the flow by 20°:

vd =v2+20=6.7213 + 20 =26.7213 == M4 =2.012

Note that conditions in region 3 are identical with region 2.\We now find the
pressures. The lift force (perpendicular to the free stream) will be

[.= F; cos 3% — Fy cos 537 — Fy cos 157

The lift per unit span will be 3728 Ibf.



VISCOUS FLOW:
SHOCK-WAVE/BOUNDARY-LAYER INTERACTION

Shock waves and boundary layers do not mix.
Bad things can happen when a shock wave impinges on a boundary layer.

\

N
AN
\ shock wave Ri-:t::ih:‘l:‘ﬂé
N - =
“, Induced separation o -
"""-.__\ shock wave =~

"'0.‘ = o .I,-'II

\___I ."r

M. > | /

Separation Laocally Reaniachmen
Pt separated flow point



Example

Consider the arrangement shown in the following Fig.. A 15 Deg. half-angle diamond
wedge airfoil is in a supersonic flow at zero angle of attack. A Pitot tube is inserted into
the flow at the location shown in the Fig.. The pressure measured by the Pitot tube is
2.596 atm. At point a on the backface, the pressure is 0.1 atm. Calculate the free-

stream Mach number M/.

Pitot tube

M, > 1




The pressure at point ais the static pressure in region 3.

Pos 259
P Y 25.96
for pg, /ps = 25.96: > M =445
for MJ, = 4.45. > w =T1.27

> vy =v3—0 =71.27 —30=41.27°

vy = 41.27° > M, =126

> M,, = M;sin(8 —8) = 2.6sin( — 15)

M,, = 0.588.



Assume M; =4. Then §=27", M, = M,sinfi = 4sin27° = 1.816.

> M,, =0.588.
Putting these results into Eq: M,, = M;sin(f — 8) = 2.6sin(8 — 157)
0.588 = 2.65in 10.5° = 0.47

This does not check. We are going in the wrong direction

Assume M, = 3.5.Then f = 29.2°, M,, = 3.5sin29.2° = 1.71

> M,, =0.638.

0.588 — 2.6sin 10.5° = 0.47



Compressible Flow Through Nozzles; —
Diffusers, and Wind Tunnels

Compressible Channel Flow

% ] ussvw Y
:T [ 1
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1-D Flow Quasi—1-D Flow
A quasi-one-dimensional flow is one in which all variables vary primarily along
one direction, say x. A flow in a duct with slowly-varying area A(x) is the case of
interest here. In practice this means that the slope of the duct walls is small. Also,
the x-velocity component u dominates the y and z-components v and w.



w equations—— /

pliéation of the integral mass continuity equation to a segment of the duct
bounded by any two x locations gives

5@5 oVRdA = 0 T

—M H1[/tfﬂ.l + o ug[/t'f;ﬁ = 0 !_ - : — X
! 2 . -

—m g Ay + pous Ay = 0

Since stations 1 or 2 can be placed at any arbitrary location x, we can define the duct mass flow
which is constant all along the duct, and relates the density, velocity, and area.

plr)u(lz) Alxr) = m = constant

If we assume that the flow in the duct is isentropic, at least piecewise-isentropic
between shocks,

1
1 . d N — 2
E = + 5 g g 2
41
ML ~—1 TI—1)
= M1 mat)
Pally 2



0.0 0.5 10 A L5 2.0

L . . . 1
The significance of pu is that it represents the inverse of the duct area, or 4 ~~ —

fall

It is evident that the maximum possible mass flux occurs at a location where locally M = 1.

y—3

il [yt 5 ~—1 2\ 1)
= — Wl —_‘1|,
t'f.“tf(pﬂﬂﬂ) (l M ) (1+ 2 ! ) =0 — M=1




}nicconditions \/

The stagnation conditions p, and a, were used to normalize the various quantities.

For compressible duct flows, it is very convenient to also define sonic
conditions which can serve as alternative normalizing quantities.

vy Isentropic
Duct Flow Isentropic [ Sonic—flow
Variables Stagnation ,” | Process
Process ff !
: - : e e
: —+—|- —_—— —-in , ===
.:":1 ~ . ! =4
p A et “ A =ce .-’i .."'1 _.."'1
_ ) =p-
a \ a=a, a a=d
M M '1'. M =1 M M = l

The advantage of the sonic-flow process is that it produces a well-defined sonic
throat area A* while for the stagnation process A tends to infinity, and cannot be
used for normalization.



meen the stagnation and sonic conditions are readily obtained
“from the usual isentropic relations, with M =1 plugged in.

Numerical values are also given fory =1.4

. B
P (1+- 1) = 06339

o 2

% . 1 —r-];r

a_ (1+ ! ) — 0.0129

i, 2

* “‘r'—]_ _":Tﬁ.—l.-l- _

P _ (1+'—) — (.5283

Po 2 —_—

m = puld = p'u' A"
note that «* = a* since M = 1 at the sonic throat.

A p*at o pe at a,

A* pou Po P g U



A F"_ Pt pe ata,

F Po P dp U
L ()
Po
1\ %
i1 ~—
dg ( 2

Y41
:Iz = ”( 5 ) This is the area-Mach relation

a*
i

l




\

1.0 1.2 prl4 1.6 1.8 2.0

If the duct geometry A(x) is given, and A is defined from the known duct mass flow
and stagnation quantities, then M(x) can be determined using the graphical
technique shown in the figure,



EXAMPLE ——— /
Consider the isentropic supersonic flow through a convergent-divergent
nozzle with an exit-to-throat area ratio of 10.25. The reservoir pressure and

temperature are 5 atm and 600°R, respectively. Calculate M, p, and T at the
nozzle exit.

A 1 [ 2 v—1 -1
= —|—= (1 -—_.-u?)
A* T M L—+1( T3 ]

For Ae/A*=10.25 == M,=| 395

pe = 0,007 py = 0.007(5) =| 0.035 alm‘l

Pe 1 Te
Pe o gd oo —>
po 142 0 T T w12

Te = 024277 = 0.2427T(600) =| 145.6°R




M< _ — M Supersonic
/1\ nozzle
w

Supersonic

M>1 > M<I ;

M=1 diffuser



ds),
gm%dsnu—g{p

Az

pdA
: —(=prd1 + p242) +
~ P Ay 4 pauz Ay =

Aj

2
P+ mg Ay +f

Az

Aj

2
dA = prA; + pauz Ay
p




P e

1,.-1
#P(fﬂ‘T)v*dS:—#Fv-ﬂS
J 5

2

'l i
el (EI + E‘) (—uA) + o2 (Ez + EE) (H2Az) = —=(—pu Ay + pauada)

2

i !-l'.a1|
Puiy Ay + prug A, (t‘] + El) = Palia Ay + paliz Ay (E‘z + E‘)

2 2

U I
ﬂ‘|"15!]-!——l=E-|—l.'i'g--|——z
| 2 [iy] i

ul ul
hz”-‘“”””{} By 4+ =L = hy + =2

hg = const




Py Ay = P Ag

Az
pLAL+ prg Ay +f pdA = p1A; + pruz Ay

Aj

h+—=—=hi+ =
P T
P = mRT,
hl—'ﬂpTI

Five equations for the five unknowns P2, u2, p2, T2, and h2. We
could, in principle, solve these equations directly for the unknown
flow quantities at station 2



L @
®

plz)ulr)Alr) = m = constant d
> pTdp
A A +dA
— dipuA) =0 R I ki
I I.I+JI..|
# g+ g

Aj
Pl-l"lll‘l‘ﬂl“%fdll'{'f pdA = prA; + paz A, \
A e
pA+ putA+ pdA = (p+dp)A+dA)+ (p+dp)u+ du)*(A+dA)
Adp + Au“dp + pu* dA + 2pud du =0
dp = —pudu
s putdA 4+ pulddu+ Auldp =0
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_ Nozzle Flows |

Consider a duct with a throat, connected at its inlet to a very large still air
reservoir with total pressure and enthalpy pr, hr.

The duct exit is now subjected to an adjustable exit static pressure p,

Pa = DPr '”3 = (v—1)hy, = (v—1)h, e = VP _ Dy
’ (v—1)h, (v—1)hy
9 2 07, , a=
M = ﬁ[[.fjﬂ.-'llpﬁ_] T — 1]
=
P m — A\ T I -1)
m = peiAde = = o V. (1 + TUE'.E) A,
VIr—1)h <
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: \\ /
ass flux pu at the throat reaching its
maximum possible value p* a*, which is

given by:

w1

" a’ =T ~ — ] _ﬂl'u,—n
pglat = pga, A = 'h. (1 + = )
Jrr"ill:' g 1|||'II [ﬂ:r_]_]fri'.i,..

!

Therefore, the only way to change the mass flow of a choked duct is to change the
reservoir’s total properties p,. and/or hr.

poA*

¥ . (F+1) =1
JTo V R (:F+ 1)

=
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What happens in the duct when pe is reduced below pes that
produces chock condition In the convergent?

' !

I
A lot happens in the divergent section of ;%Q%%A/M:M‘éﬁf .
the duct. As the exit pressure is reduced : ¢ | e
below p e 3, a region of supersonic flow | J

|

|
appears downstream of the throat. | ;
However, the exit pressure is too high to |
|

|

allow an isentropic supersonic flow M
throughout the entire divergent section.

)

Instead,

|
For peless than pe3 but substantially I
higher than the fully isentropic value a |

) P 10 I Pe1lpo
normal shock wave is formed downstream Po L Pealpo
eal,
of the throat. doagh - et




Normal shock wave
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. . \\ /
___Supersonic-exit flows

With sufficiently low back pressure, the shock can be moved
back to nearly the exit plane.

M B
' __,.:-""f.- :
If the back pressure is reduced o — 74____5
further, below the sonic P |
pressure p* the exit flow f___...f" 5 ]
becomes supersonic, leading to | .
three possible types of exit flow. p i
Pf——————- - i
D ____H_ :_“bi.fhz_______;‘;;—pe Py




———, /

_ 1-Overexpanded nozzle flow

In this case, pg < p*

the exit flow is supersonic, but pg > p,, so the flow must adjust to a higher pressure.

M |
k ff-" !

The streamline at the edge of the jet / |

behaves much like a solid wall, I ————=—= it |

whose turning angle adjusts itself so rd ~

that the post-shock pressure is equal /---"’f

to Pg.

Overexpanded nozzle [ B > b,



Wed nozzle flow. ——— /

In this case, the back pressure is reduced further until pg = p..

P
A
-p.?"___ _______________ :
—__ o
The duct nozzle flow comes p — — —— Bt ﬁf:;g'—' ————— i
out at the same pressure as T
the surrounding air, and : ——Pe: Pp
hence no turning takes ! i
place. \ i |
i P
s 7

Matched nozzle P B — D



Wanded nozzle fmw_X/

In this case, the back pressure is reduced below the isentropic exit pressure, so that
Pg < PE.

p
A
The duct nozzle flow must p}"_—__:h_ —————————————— |
now expand to reach pg, E“‘%h I
which is done through Pr+————=—= e i
expansion fans attached to T~ P
the duct nozzle edges | 3
| . Pp
\ i i X
! Pe

/rUndere:-:pandEd nozzle Pp < D. Py



/ |

In the underexpanded and overexpanded nozzle flows, each initial oblique shock or
expansion fan impinges on the opposite edge of the jet, turning the flow away or towards
the centerline. The shock or expansion fan reflects off the edge, and propagates back to
the other side, repeating the cycle until the jet dissipates though mixing. These flow
patterns are known as shock diamonds, which are often visible in the exhaust of rocket

or jet engines.

_Jet-shock diamonds —
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= ——— Ol =

I _ 2 o N
M? (1 + - 5 L;Uf) = (p_? i) (1 + - 5 l) l (choked)

Hoe Don \
oo _ (f ) = f(M;y)
Pr Poy shock

where f(M1) is the shock total pressure ratio function, also available in
tabulated form above equation .

Therefore implicitly determines M1 just in front of the shock, which together
with the universal flow area function A/A* = f(M) determines the nozzle area at
the shock.



EXAMPLE —_— = //
/

Consider the isentropic flow through a convergent-divergent nozzle with an
exit-to-throat area ratio of 2. The reservoir pressure and temperature are 1
atm and 288 K, respectively.

Calculate the Mach number, pressure, and temperature at both the throat
and the exit for the cases where (a) the flow is supersonic at the exit and ()
the flow is subsonic throughout the entire nozzle except at the throat,
where M = 1.

(a) At the throat, the flow is sonic. Hence, — pg = 1_.[]'

pr = p* = L py = 0.528(1 atm) =| 0.528 atm

- _
— =(.833(288) =| 240K
TIJ- -

-
|
|--.|

L
{




e exit, the flow is supersonic. A fA® =2, ' M I:T-l 5
g = '

—

!
pe = %m = (1 atm) =| 0.0935 atm
T, 1
T. = —Th = —— =
e = 770 = T5e5 (289 =| 146K

(b) At the throat, the flow is still sonic. Hence, from above, Mt = 1.0, pt = 0.528 atm,

and Tt = 240 K.
However, at all other locations in the nozzle, the flow is subsonic. At the

exit, where Ae/A* = 2,

. 1 -
”e=|ﬂ-3 ‘ p;=§pu=1—“|{latm}= 0.94 atm |
T ! :
Te = 32T = 1575 289) =L13191:




EXAMPLE’\/

/

For the nozzle in previous example, assume the exit pressureis 0.973
atm. Calculate the Mach numbers at the throat and the exit.

In the previous example, we saw that if pe = 0.94 atm, the flow is sonic at
the throat, but subsonic. in this case, the flow is subsonic throughout
the nozzle, including at the throat. For this case, A* takes on a reference
value, and the actual geometric throat area is denoted by At.

P _ | #
M= =1.028
pe  0.973

A! . J"lr AE
A* AL A

A
M, =[ 0.2 i and f — 2064

= 0.5(2.964) = | 482

From the subsonic portion of Appendix A, for At/A* = 1.482, we have:



V = Velocity
m = mass flow rate
D= pressure

Thrust= F=m V. + (p.-p ) A,



EXAMPLE —_— /

/
Consider arocket engine. Liquid hydrogen and oxygen are burned in the

combustion chamber producing a combustion gas pressure and temperature
of 30 atm and 3500 K, respectively. The area of the rocket nozzle throat is 0.4
m2 . The area of the exit is designed so that the exit pressure exactly equals
the ambient atmospheric pressure at a standard altitude of 20 km.

Assume an isentropic flow through the rocket engine nozzle with an effective
value of the ratio of specific heats y = 1.22, and a constant value of the
specific gas constant R =520 J/(kg)(K).

(a) Calculate the thrust of the rocket engine.

(b) Calculate the area of the nozzle exit.

we first need to obtain the value of mass flow, and
exit velocity, ve.

The mass flow is constant through the nozzle and is equal to m" = puA
evaluated at any location in the nozzle.



A convenient location to evaluate m’ is at the

m o= p*u*a”
To obtain o*, we need gy = po/RTo. Noting that (1 atm) = 1.01 = 10° N/m?,

(3M(1.01 = 10%

_ (30 _ 3
M= s as0n) o0 keim

P 2 v _ 2 T 2 4'54'5_:]&21

E_(FH) '(1.22+1) '(ﬁ) -

p* = 0.622pp = 0.622(1.665) = 1.036 kg/m’



/X/

~ Al the throat, the flow velocity is equal to the local speed of sound, u* = a*

2 2
= = =05 mm) T*_— _ _
s yp+1 222 T* = 09017y = 0.901(3500) = 3154K

= /Y RT* = /(1.22)(520)(3154) = 1415 mVs

ho= p*u® A* = (1.036)(1415)(0.4) = 586.4 kg/s

Next, we need to obtain the exit velocity ve.

Po (l_l__lmz)_t'
Pe 2



where, from the statement of the problem, pe is equal to the ambient
pressure at a standard altitude of 20 km. From Appendix.D, at 20 km,
poo =5.5293 x 103 N/m2 .

Pe = Poo = 5520N /m*

el L2
— . F T
jp Y=y (o _ [Goaol x 1095 (548)%18 — 3 111
e 5529

Y- . 2
mp——— = _I I I_ I —_— — =
5 M, =1 — M?=(2.111) (D.EE) 19.19

M, =438

= F_l 2 ':.-.Ti =15E_
=1+ ——M? =311 ) == =1125K



/
~ ﬂe

= /¥ RT; = /(1.22)(520)(1125) = 8448 m/s

m) i, = Mo, = (4.38)(544.8) = 3700 m/s

Intermediate check: We can check this value of 3700 m/s for ue by directly using
the energy equation,

R 1.22)(520 J
p = Y -_';_._:'_"r'._]'_gggj.ﬁ,_

cplo =cple + v — | 0.22 kg K

r ]

ut = 2e,(Ty — Te) = 2{2B83.6)(3500 — 1125) = 1.3697 x 10
e = 3700 m/'s

T = riu, = (586.4)(3700) =[ 2.17 x 10° ﬂ




A,
T

A
At

)1:

|

TR 01— 17108

£c — 4136 EEEE) A = 41I6)AT = (4136)(0.4) =

16.5 m?



EXAMPLE \/

/ . - .
~ Calculate the mass flow through the rocket engine described in the
previous example using the closed-form analytical expression given:

Pﬂ-l"-‘ y ( 2 )[}'+l]_|"[;l"'—1:|

T MVE\G 1
We have po =30 atm, T0 = 3500 K, A*=0.4m2, R =520 J/(kg)(K), and y = 1.22.

po = 30 atm = (30)(1.01 x 10°) = 3.03 x 10° N/m?
y/R = 1.22/510 = 2.346 x 107>

2 2
o = 323 =09
y+1 222
y—1 022 10.09
. (3.03 x 10%)(0.4)

m V(2346 = 10~3)(0.9)10-0% = | 5832 kgfs]

3500

This result, obtained from a single equation, compares well with the value of
586.4 kg/s obtained from a sequence of calculations that is subject to a larger
cumulative roundoff error



DIFFUSERS
5 > —

In general,
we can define a diffuser as any
duct designed to slow an incoming
gas flow to lower velocity at the
exit of the diffuser. The incoming
flow can be subsonic, or it can be
supersonic, as discussed in the
present section.
or it can be supersonic, that will be
discussed

However, the shape of
the diffuser is drastically
different, depending on
whether the incoming
flow is subsonic or
supersonic.

| ~—

X *.s:

Sy

—_—
P A,

.} Test section

rSettlingr “Nozzle

chamber
{reservoir)

L_______/ A\Z

Diffuser .

{a) Open-circuit tunnel

~

-

—

Fan

Motor

Nozzle Diffuser
' Test sectiorl |
Settling V] | Vz : A
chamber ] e
(reservoir) pl ' P2, Az :p3

{b) Closed-circuit tunnel



/
/Theftﬁlpressure of a flowing gas is a measure of the capacity of the flow
to perform useful work. Let us consider two examples:

1. A pressure vessel containing stagnant air at 10-atm

2. A supersonic flow at M=2.16 and p = 1 atm

In case 1, the air velocity is zero; hence, po = p = 10 atm. Now, imagine that

we want to use air to drive a piston in a piston-cylinder arrangement, where useful
work is performed by the piston being displaced through a distance. The air is
ducted into the cylinder from a large manifold, in the same vein as the reciprocating
internal combustion engine in our automobile. In case, 1, the pressure vessel can
act as the manifold; hence, the pressure on the piston is 10 atm, and a certain
amount of useful work is performed, say, W1. However, in case 2, the supersonic
flow must be slowed to a low velocity before we can readily feed it into the
manifold. If this slowing process can be achieved without loss of total pressure,
then the pressure in the manifold in this case is also 10 atm (assuming /' =0),

and the same amount of useful work W1 /s performed. On the other hand, assume
that in slowing down the supersonic stream, a loss of 3 atm takes place in the total
pressure. Then the pressure in the manifold is only 7 atm, with the consequent
generation of useful work W2, which is less than in the first case; that is, W2 < W1.



A diffuser is-a-ductdesign OW an incoming gas flowmity
M of the diffuser with as small a loss in total pressure as possible.

Q {a) Ideal (iseatropic) supersanie diffuser

The art of diffuser design is to obtain as small a total pressure loss as possible,
that is, to design the convergent, divergent, and constant-area throat sections so
that Po2/Pol is as close to unity as possible

% A Weak normal shock

4

= _Z/‘L_/ s,

12:15:07 (b) Actual supersonic diffuser 1



/S@ONIC WIND-TUNNELS //
Imagine that you want to create a Mach 2.5 uniform flow in a laboratory for the

purpose of testing a model of a supersonic vehicle, say, a cone.
How do you do it?

S Test model

|
/”"’%,,% _________
A i’

—Zi— =2.637

|
|
|
po=17.09atm |
!
!

Here, the Mach 2.5 flow passes into the surroundings as a "free jet."
The test model is placed in the flow downstream of the nozzle exit.

Question:

can you accomplish your objective in a more efficient way, at less cost?

12:15:09 2
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/ . . . " .
Instead of the free jet, imagine that you have along constant-area section
downstream of the nozzle exit, with a normal shock wave standing at the end of
the constant-area section

Nozzle exit Normal shock
Constant area
i} - .
section
"/

W PIPIPIINIIITI AP0
M,=25

po = 2.4 atm A p;=pg=1atm
P.=0.14 atm

W//////////f//// .

— —— b

The static pressure ratio across the normal shock is p2/pe = 7.125.

12:15:09 3



The normal shock wave is acting as a diffuser, slowing the air originally at Mach
2.5 to the subsonic value of Mach 0.513 immediately behind the shock.

Hence, by the addition of this "diffuser,"” we can more efficiently-produce.our
uniform Mach 2.5 flow.

1. Anormal shock is the strongest possible shock, hence creating the largest total
pressure loss. If we could replace the normal shock with a weaker shock, the total
pressure loss would be less, and the required reservoir pressure po would be less
than 2.4 atm.

2. It is extremely difficult to hold a normal shock wave stationary at the duct exit;
in real life, flow unsteadiness and instabilities would cause the shock to move
somewhere else and to fluctuate constantly in position. Thus, we could never be
certain about the quality of the flow in the constant-area duct.

3. As soon as atest model is introduced into the constant-area section, the
oblique waves from the model would propagate downstream, causing the

flow to become two- or three-dimensional. The normal shock could not exist in
such a flow.

12:15:09 4
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HMt us replace the normal shock with the oblique shoci diffuser
shown in Figure

=

l_ Nozzle _}‘Test scction"< Diffuser ’I

\j/ M,
Po —
/\Pe
Ay =A%
(Nozzle throat) (Diftuser throat)
(First throat) (Second throat)

The main source of total pressure loss in a supersonic wind tunnel is the
diffuser.
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/U

—~

Question: How does A, > differ from A, |7

*
-"1':, z ﬂ['[ll
A pias

> ooy Aoy O AT
ﬂrl iy py/RTY p;

Hence, the flow throughout the wind tunnel is adiabatic,

- ‘rd‘f.z - pt
Ar 3

P2

12:15:09 6



Poz2 = Poa ‘ Aa = Al

Only in the case of an ideal isentropic diffuser, where p0O = constant,

‘ Ar.l —_ ﬂr,l

12:15:09 7
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For the preliminary design of a Mach 2 supersonic wind tunnel,
calculate the ratio of the diffuser throat area to the nozzle throat area.

Assuming a normal shock wave at the entrance of the diffuser (for starting),

M=2  mEp  po2/po, =0.7209

A:,E _Po1 1 _
A Po.2 0.7209

*

1.387

12:15:09 8
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VI&%USﬁ)W: SHOCK-WAVE/BOUNDARY-LAYER INTERACTION INSIDE

NOZZLES

The adverse pressure gradient across the shock causes the
boundary layer to separate from the nozzle wall. A lambda-type
shock pattern occurs at the two feet of the shock near the wall,
and the core of the nozzle flow, now separated from the wall,
flows downstream at almost constant area.

12:15:09
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"EXAMPLE T s

/

A supersonic nozzle is designed to operate at Mach 2.0. Under a certain
operating condition, however, an obligue shock making a 45° angle with the flow
direction is observed at the nozzle exit plane. What percent of increase In
stagnation pressure would be necessary to eliminate this shock and maintain
supersonic flow at the nozzle exit?

12:15:09 10



/
=

For M1 =2.0, ——  p1po1 =0.1278.

The component of M1 normal to the oblique wave is M1sin 45° = 1.4142

From the normal shock relations, —— pp/p7-2 7667

pb/pol= (pb/pl)(Pl/Pol) = (2.1667)(0.1278) = 0.2769

po1=(1/0.2769)Pb = (3.6114)Pb

On the other hand, for supersonic exit flow with no shocks (i.e., Match nozzle )
pol= (1/0.1278)pb = 7.8247Pb

Thus, an increase of:
[(7.8247 - 3.6114)/3.6114]100 = 116.7 percent
In stagnation pressure is required.

12:15:09 11
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i T= [Ft' B Fu}Ae r 'rﬂv::'

When a supersonic nozzle is operating in the under-
or overexpanded regimes, with flow in the nozzle
independent of back pressure, the exit velocity is
unaffected by back pressure. Thus, over this range of
back pressures,the above shows that larger thrusts
are developed in the underexpanded case (Pe > Pa)
and smaller thrusts in the overexpanded

case (Pe < Pa)-

12:15:09 12



/

Thrusi )
|.1¢*=,1g;1h upper limat

Mote: The design value refers
to a perfectly expanded

nozrle.

underexpandsd

.
-— = = = - —

- =

overexpanded

e rrrrr ____...;__
e

[Rp——

Hack Pressure

For back pressures greater than the upper limit indicated, a
normal shock appears in the diverging portion of the nozzle, the exit
velocity becomes subsonic, and this analysis no longer applies.

12:15:09 13



cowl

throat

plug

{a) Annular Plug Nozzle (b) Truncated Annular Plug Nozzle

The plug nozzle was studied in the 1950s and '60s and reconsidered for
use on the RLV X-33in the 1990s.

This device is intended to allow the flow to be directed or controlled by
the ambient pressure (since ambient pressure varies with altitude, this
mechanism is termed altitude adaptation)

rather than by the nozzle walls.

In this nozzle, the supersonic flow is not confined within solid walls, but
IS exposed to the ambient pressure.

12:15:09 14



___Piug nozzle operation at the design

pressure ratio is depicted in Figure

{a) Wave pattern for design (b) Streamlines for design

The annular flow first expands internally up to Mach 1 at the throat. The remainder
of the expansion to the back pressure occurs with the flow exposed to ambient
pressure. Since the throat pressure is considerably higher than the back
pressure, a Prandtl-Meyer expansion fan is attached to the throat cowling as
shown.

The plug is designed so that, at the design pressure ratio, the final expansion
wave intersects the plug apex.

12:15:09 15



To produce a maximum axial thrust, it is necessary for the exit flow to
have an axial direction. Therefore, the flow at the throat cowling must
be directed toward the axis so that the turning produced by the
expansion fan will yield axial flow at the plug apex.

{a) Underexpanded (b) Overexpanded

The expansion along the plug is controlled by the back pressure,

whereas the converging-diverging nozzle expansion is controlled by nozzle geometry.

12:15:09 16



g2ty af Techaniapgy

Piug Nozzle teeriny Facully

C-D Nozzle

Back Pressure

Comparison of Thrust and Back Pressure for Plug and C-D Nozzles
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EXAMPLE ——

/

Performance computations comparing overexpanded plug and C-D nozzles

A rocket nozzle is designed to operate with a ratio of chamber pressure to ambient

pressure pc/pa of 50. Compare the performance of a plug nozzle with that of a

converging diverging nozzle for two cases where the nozzle is operating overexpanded.:
pc/pa =40 and pc/pa = 20.

Make the comparison on the basis of thrust coefficient CT = T/(Pc At),

where T is the thrust and At is the area of throat. Assume that y=1.4 and in both cases

Neglect the effect of non axial exit velocity components.

12:15:09 18



g For the design case:

From p,/p, = p,/p. = 1/50 = 0.02,

and since in the design case the flow is isentropic, we can determine the
Mach number at the exit:

M, = 3.2077 > TJT, =TT, = 0.3270.

Now, from the definition of the thrust coefficient,

C(mY)  (pAVY. ( P )m _ (p)( P )(z;)w,af)weae)

Cr = = — =zt
T pA, PeA, RT,) p.  \p.J\RT,)\T, P

12:15:09 19



/Beme nozzleis choked, Mt = 1, and therefore,

—

+ 1\Y(1-7)
L. (T ) = 0.5283

Pe 2
T 2
TS = 0.8333

: =[ 0.5283p, ][\/(1.4)(12){0.8333)7,:

R(0.8333T,) P ](3-2077)\/(1.4)(R)((}.3270)Tc = 1.4862

For the converging-diverging nozzle operating off design:

Af( Pe — Pﬂ) AE(PE Pa)
Pe Pe

Cr = (Cq)design + = 1. +
T ( T)dtmgn A.-p,; 1.4862 At

where at M, = 32077, AJA, = AJA" = 5.1584. So for p/p, = 40,

12:15:09 20



i - \\ /
= M + ® - — |46 4
Cr = 14862 + 5 1534(50 40) 1.460
For p./p, = 20,

Cr = 1.4862 + 5.1584(0.02 — 0.05) = 1.3314

For the plug nozzle:

Flow in the plug nozzle does not continue to expand below ambient pressure, so
there is no pressure term in the expression for thrust.

Now, at fﬂ =40, M, =30570, =% = 03485, and
Fi

3

m,V,

. — [ 0.5283p, ][AI\/L:I(R){).BE-}?;T.L.
T = pA, | R(08333T,) It oA,
12:15:09 o

]3.05?0\/ 1.4R(0.3485T,) = 1.4622



T,
/ whereas for p/p, = 20, M, = 2.6015, ?f“ = 0.4249, and C; = 1.3740
C

The plug nozzle is marginally superior to the C-D nozzle near the design
point when operating in the overexpanded regime; however, the gap widens
as the chamber-to-ambientpressure ratio decreases.
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_ Adiabatic Duct Flow with Friction

v'Area changes
Friction,
heat transfer
Are the most important factors affecting the properties in a flow
system. Up to this point we have considered only one of these

factors, that of variations in area.

Friction must be included for flow through long ducts,
especially if the cross-sectional area is small.

Here, we study compressible flow with significant wall
friction, but negligible heat transfer in ducts of constant

Cross section.



/
/

/ T
Fanno Flow - Thermodynamics

TX, fe—

Steady, 1-d, constant area, adiabatic
flow with no external work but with

 ——

P
Vv
M

friction
Conserved quantities
e since adiabatic, no work: h_=constant

e since A=const: mass flux=pv=constant

— combining: h,=h+ (pv)?/2p=constant

* On h-s diagram, can draw Fanno Line
— line connecting points with same h, and pv



s—sl=CVInI—RIn£=CVIn1+RIn!

Fanno line T, o, T, v,

V=\/2Cp(T0—T) h0=h+v_2
2

573 In1+7_1ln =1

C T, 2 T,-T

=InT +7/T_lln(T0 ~T )+ const




\\/

~_Atpoint P
1 r-1
dS/dT:O » ?_Z(TO—T)_O
2 i— 7/_1 —7/R 2 2
Cp(To—T)=V7 T Vi(-1) V? m) V' =RT=a
2 R

T high — Vlow— above P,M<1
Tlow — V high— below P, M>1




/' ———

Fanno Line

Velocity change (due to
friction) associated with , LM<l ___________
entropy change

 Friction can only
Increase entropy

— can only approach M=1

— friction alone can not allow
flow to transition between Y
sub/supersonic

» Two solutions given (pv,h,,s): subsonic &
supersonic

— change mass flux: new Fanno line

(pv)¥

maxX



Fanno Line - Choking

Total friction experienced
by flow increases with :
length of “flow’, e.g., h,
duct length, L h
For long enough duct,

M_=1 (L=L__ )

What happens if L>L_ .

e flow already “choked”

e subsonic flow: must move t
different Fanno line (- - -), i.e., lower mass flux S

1 M

— supersonic flow: get a shock (— — =)



/\ /

P I P+dP

TW
Energy Equation C,dT+VdV=0

Continuity Equation
pV = Const.




=

~ | Momentum Equation p I P+dP

Ty

PA - (P+dP)A -t Ddx=pVA(V+dV-V)




——
[oaminorsws | [P=pRT
E} dP _dp dT
P p T

Mach Number kRT




5 E} C,dT + VdV =0 X/
Z:’ dp+dV:O
p V
:3 ’ | dx |
.I} dP:dp+dT
P p T
E} 2dM  2dV  dT
M VvV T
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Fanno Line — Mach Equations

YM2(1+ v—lej N —y(y —1)M* fdx

dm* 2 T h 2) D
= 21— M

(X.6) (X.8)

dp  dv_ —yM? fdx

dp_—V'V'Z[1+(v—1)M2] fdx PV 2(1_,\,,2) D

P 21— m2) P (X.9)
) dsd M? fd
+ canwrite eachas only f(M) 95 __9Po _ Y -

R p, 2 D (X10

* p, loss due to entropy rise



P/roperty Variations

Look at signs of previous equations to see how
properties changed by friction as we move along flow

e (1-M2) term makes M<1 different than M>1

M<1 M>1
S * Friction increases s, =p, drop
p() Y y
M 1 * Friction drives M—1
h,T | | * h,, T, const: h, T opposite to M
p A
5 ’ " *p, p same as T (like isen. flow)
I\ *pV=const: v opposite of p
V A 4
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A Solution Method

Need to integrate (X.6-10) to find how properties
change along length of flow (fdx/D)

e can integrate or use tables of integrated values

 Mach number variation M, — M,

'\f"-z (1— MZ)UIM2 _T f (Re,surface)dx %X X2

vE ’YM4(1+ _1M2) 0 D \ function of

2 Reynolds number
1 2 2 3 v) and surface
j (1_ My)dl\l/l A IE)max Eo)ughness
2 4 - 2

E/Il M (1+ 2 M j 1) use avg. f

fL oy 2) to tabularize solution,
— D =f(M) only use reference condition:

M,=1, L,=L

max



p

_\\

ljse of Tables

To get change in M, use change

in fL__ /D (like using A/A*)
M3 2
L 3 L-Mm 2
D e yM4(l+y_|\/|2j
1 : 1 /
= j<}d|\/|2— | {}dMZ
x.11) Mt M
fL fLman B fLman
D D Ju D Ju

LM

so if you know 7L/D and M., 1)
look up 7L, /D at M,

2) calculate 7L /D at M,

3) look up corresponding M,

* Find values in Appendix E in John



fl,., 1-M’
T +1

D
v M
M 27




D Property Changes

To get changes in T, p, p,,, ... can also
use M=1 condition as reference
condition (*)

- Integrate (X.7-10), e.g., g = Mo M=l

po l\fl‘-z 11+ (’Y 1)'\/'2 sz P1, T1, Poa P2, T2, Po2

2
w P 2 1+Y21M2 M
I 1%
P2 _ \ I P _ 1 2
P1 |\/|§( yMz\ p* Myl Y12
L\ 2 J




/

Fanno Flow Property Changes

Summarize results in terms of reference conditions
T  (y+1)2 Y+

* L p . 1 T 2(1—’y)
T 1Y e - = M(T*j
2 (X.12) Po (X.14)

p 1T \ :P* M|
00 MVT" (x13) VAR T (X.15)

* |n terms of initial and final properties

( -1 A M T il
2 _\ Y M \/ T -
T, (1,712 I:>)<117 o Por - Mzl Th
1 1+ =M | XD (X.18)
\ J

2 Vo _pr_ My [T,
(X.16) (T,=const) Vi p, M\ T (x19)
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Example
« Given: Exit of supersonic nozzle connected to straight
walled test section. Test section flows N, at : L
i Dot em, 0005~

test

. Find: — N

- M, T, p at end of test section

B po,exit/po,inlet
- L., for test section

maX

« Assume: N, Is tpg/cpg, y=1.4, steady, adiabatic, no
work



/
Solution rorr
* Analysis: —\/
- Me ﬂ_ — fLman — fLman Ml:Mtest MZ:Me
(x.11) D D )30 D Ju, —/\
fL 0.005(100)

ﬂj 05229 _0.4722
Me

D

(Appendix E) L, M. =270 another solutionis M=0.605, but
e = 2.

since started M>1, can’t be

_ _ subsonic
T 1+y21|\/|12 T
— — 0) _
(Toconst) T,=T; v 1 =118K

1+ "M32 1+*% ~M?
2 2 2 2



Solution (con’t)

Popy=p =L |25 (x17)

MZ Tl _V Mletest
-1 v—1
P = p01(1+—y2 Mlzj —/\

T, 1+((y—1)/2)M?
500kPa _ ., i, 12 (v-1)/2) 1114

B 283'5 | T, 1+((y—1)/2)M3
p, =13. 6kPa—\/1 14 =16.1kPa

_ po,e/po,test

v+1

2(1-
(x18) Doz - M, (TZ 2 =£(1.14)‘3=o.75
P M, T 2.7

25% loss in stagnation pressure due to
friction



\\/

/
Solution (con’t) gorme ¢
~ Lmax —\/I\/I =M M,=M
ﬂ—max D 1= Miest €
e = D)Mtw T =N
:O.52220'ﬂ
0.005

=10.4m 10 m long section would have M=1 at
exit

AE3450



g —— 0
L<L,.,, Back Pressure ... |
Py
Last problem (supersonic ;
duct), what would happen MM MM,

if calculated exit pressure
(P) did not match actual
back pressure (p,)

P/Pos | - JeEk 'shock

1 | - at ex

* Pp<pPe:: €XpPansion outside
duct (underexpanded)

* pe,f< pb<pe,sh: Ob”que : : : x:
shocks outside duct (overexpanded)
* Pesn<Py: shocks inside duct (until shock reaches

~throat)

AE3450




SL Presst 4
>L,,,, Back Pressure
: L P
Can't have flow transition —\ﬂol
to subsonic with pure M=M,.,  M2"Me

Fanno flow -/\ Pe

—shock in duct

* Shock location
determined by
back pressure . . .
— raise p, | | Y
— shock moves upstream until shock

reaches M=1 location in nozzle

AE3450



Rayleigh Flow

Rayleigh flow is model describing a frictionless flow with heat transfer
through a pipe of constant cross sectional area.

In practice Rayleigh flow isn’t a really good model for the real situation. Yet, Rayleigh

flow is practical and useful concept in a obtaining trends and limits such as the
density and pressure change due to external cooling or heating.

the heat transfer can be in two directions not like the friction (there is no

negative friction).

LT R R RN RN RN RN

|
P11
P
T1|

flow
direction

—_—

p3
Py
T

heat transfer

(in and out)

. |4 .
AN }\Yi\ NN
Q



Continuity
m = pAV = const

pV = const

pV =G = const

Energy
hit +q = hp + wy

This is the first major flow category for which the total enthalpy has not

been constant.

R

|
P11
P |
T1|

flow
direction

—_—

|4

T T T R
«

heat transfer

hin+q =hp

(in and out)



Momentum

PI1A — p2A = pAV (V, = V))
pr—p2= pV(Va =V =G (Vo —Vp)

P14+ GV, =P24+GV;

p+ pV? = const




GZ
p = const

I

lines of constant temperature: PV = CcONsl

Increasing temperature

point 3 is
reached where
the temperature
IS a maximum.

Is this a limiting #
point of some
sort?

Point of maximum temperature

Rayleigh line

CDngtant

v=1/p



To answer these questions, we must turn

elsewhere
)
ds, = od
T
Fora T =constant line, pPu = RT = const
dp P
ydv+vdp =0 — = ——
I T P dv v
For an S = constant line, P v’ = const
dp p
v dp + pyv’ ldv =0 — = —y—
dv v




We now see that not only can we reach
the point of maximum temperature, but
more heat can be added to take us

beyond this point.

From point 3 to 4,
we add heat to the
system and its
temperature
decreases.

the effects of heat
addition are normally
thought of as causing
the fluid density to
decrease. This requires
the velocity to increase
since pV =constant by
continuity.

N\ \ Increasing entropy
\ \ /
N, \ N
N \:.;.
\\ \\ Point of maximum temperature
™,

Point of maximum entropy

Increasing

temperature
H.S',fﬂnt

This velocity increase automatically

Some of the heat that is added to the system is converted into this
increase in kinetic energy of the fluid,



Noting that kinetic energy is proportional to the square of velocity, we
realize that as higher velocities are reached, the addition of more heat is
accompanied by much greater increases in kinetic energy. Eventually, we
reach a point where a// of the heat energy added is required for the kinetic
energy increase.

Let’s discuss the h(T)-s diagram

ds = cp%,zn ‘—fP}—J-

- T
S_St_fplnT*——"R]nF"-



P

P = RT
"
V2 = M2 = M2y RT p(l +yM~) = const
p+ pVE = const

pr_ l4+yM?

P1 1+VM22
M? = 1 + Zf_* 1
)4 14

T-': FE ™M

Equation of state - =_=-



m

P= Vv
V=M~YyRT T
= Const.
M!
PM

p(l+ }/Mz) = const

Tl +yMH _ T,(1 + yM3)

M: M3

I _ (-4 y)M*
™ (1T - yM%?




P [(T=pPP=1_ [T
£/ T

- (o <%

P y  ~+ ) —apT/T*)
P* I - 2




ok T P
it MRS S S el BTN [h'+ D+ /Ty F 1) —4;;(1“,-'1**}}
Cs r* Y 2
X
&
Q’Q
" M=1, &
&
"
E og - Subsonic Flow
:
= heating
E 06 A "
E cooling
g Supersonic Flow
§ 0.4
§ heating
= "
_ coulingf
o T T T T T T T 1
1.5 A3 A1 0.9 0.7 08 0.3 01 0.1

Deltas (Change in Dimensionless Entropy)

For heat addition, the entropy must increase and the flow moves to the right.



Limiting Point

+ ¢ t
} — = COIs
/ P
1
dp + G* (—%) =0
Ie)
dj — _{Jh — VE
l; 2
dp  p
L.Ir.:_:l
Is valid anyplace along the Rayleigh line. Now for a

differential movement at the limit point of maximum
entropy, ds =0 or s =const.

2 ap
Ve = (_) This is immediately recognized as sonic velocity.
§=C

dp
(at the limit point)



We have been discussing a 7familiar heating process along the upper branch.
What about the lower branch?

/ Nncreasing pressure
Upper
branch
‘g / Limiting point
h
Heating .
Lower branch | / Rayleigh line
—~




Another interesting fact can be shown to be true at the limit point.

dp = V?* dp
f.";
Ids =dh — — -
M=1,ds=0 dh, =0
(at the limit point)
V2
hy =h+ 3 dh; =dh+Vv dV

The stagnation enthalpy increases as long as heat can be added. At the point of
maximum entropy, no more heat can be added and thus At must be a maximum
at this location.




5{; — @f{’x + dh; dog = dh,

dh;
lh, = Tds, = T ds !
an; = as, = A ds
/ Stagnation curves
psoniC,
S“?E Maximum static enthalpy
”~ . .
” d Maximum stagnation enthalpy
u‘nﬁﬂﬂm A Maximum entropy
’5__. 6&.}& y Mach number = 1|
h oo
psomic 2"
S ; |
Rayleigh line
X
> :
Qa“r%‘o Heating
& .
" _ Cooling
s




Stagnation Conditions

—1 . . B )
ﬂ:T(l—l—V—ME) ‘ In I ( + [(¥ 1}/2];142_3)
. I Ty X1+ [(y = 1)/2]M,*

T, (1 + mﬁ)f M, (1 +[(y = WZIME)
M2 \1+[(y —1)/21M}?

P P2 (l + [(y — ]]lesz)}’a"{]f—]]

pi i \1+1(y — D/2IM?

P2 o 1 + }*’M]j (] + [{},— — I}KZIMEE)FHF_”
Pl B 1 4+ }*"M.;,E 1 4+ [(]; — I}KZIMIE




REFERENCE STATE ANDTHE RAYLEIGH TABLE

We introduce still another * reference state defined as before, in that the Mach
number of unity must be reached by some particular process.

4
T

e i e i e o . S — T — — ——

I |
I i
! Additional hypothetical L
1 |
| 1
| I
J

B M<1 heat transfer

i

|

i A A £ f _

i /T / | ;,.«/_ E'" _|
o ;d O
M, M, M =1

Additional heat transfer

* Rayleigh 1" and 2°

| :t
I
-
4| -
1 ,--‘"*/
..--f"'é\

Isentropic Rayleigh line




p2 1+ ;VMIE

P 14y M2

Py = p M, = M (any value)

pr=p° M =1

P

T M2(1 .
=25 f(My)

| 4+ v M*
i - =M1
TRV F(M,y




2(1 M- — 1]
- 21 +y) (L%F

T .
' — M) = f(M.y)
T,* (1 4+ M=)~ 2

o 1ty 1+Hy—nﬂmﬂF””{_ﬂM |
pt 14+ yM? (v +1)/2 - S

Values for the functions represented in equations are listed
In the Rayleigh table



APPLICATIONS

The procedure for solving Rayleigh flow problems is quite similar to the
approach used for Fanno flow except that the tie between the two locations
in Rayleigh flow is determined by heat transfer considerations rather than
by duct friction. The recommended steps are, therefore, as follows

1. Sketch the physical situation (including the
hypothetical * reference point).

1. 2. Label sections where conditions are known or
desired.

3. List all given information with units.
4. Determine the unknown Mach number.

5. Calculate the additional properties desired.



Example

For Figure, given M1 = 1.5, p1 =10 psia, and M2 = 3.0, find p2 and
the direction of heat transfer.

I
1
!
i
1
D —
|
[
!
|

P2 f | ) @ q @
P = p1 = (0.17635) 05783 (10) = 3.03 psia
P* pi 578
/ / Stagnation curves
The flow is getting 4
. S.u‘é‘:
more supersonic, or _. Maximum static enthalpy
moving away frorn_ 7 . o Maximum stagnation enthalpy
the x reference point. o Maximum entropy
‘:’ﬁo - o Y Mach number = 1
h r o
Subsone o” ©
/ Rayleigh line
'\tl
e}%ﬁ Heating
S -
T Cooling




Example

Given M2 =0.93, Tt2 = 300°C, and Ttl = 100°C, find M1 and pZ/p1.
To determine conditions at section 1 we must establish the ratio

Iy Ty I (3?3-|- 100

- —\ 273 1200

- = " ) (0.9963) = (0.6486
LY oL\

T,/ T,* = 0.6486 » M, = 0.472

Py PP %

D D * I
—> i:P*P—:{l.ﬂssm( ):{}.593
1.8294



Example

A constant-area combustion chamber is supplied air at 400°R and 10.0 psia
(Below figure). The air stream has a velocity of 402 ft/sec. Determine the exit
conditions if 50 Btu/lom is added in the combustion process and the chamber
handles the maximum amount of air possible.

| .
—- I . __I
. — i | |
Air —_— 1 Chamber | 1
| | l
> | / ! A
—_ -] [ .r’( .———_; ———
;'l = ?gﬂu Illl'a @ ¢ = 50 Bu/Ibm @ g ®
l B

V, = 402 ft/sec

I =T =400°R p> = p; = 10.0 psia Vo = V| = 402 ft/sec
ay = /ye.RT> = [(1.4)(32.2)(53.3)(400)]"% = 980 ft/sec

|14 40?2

My=—=— =0.410
T @ 980




Tin .
Ty = —2T5 = (400) = 413°R

T 0.9675
Ti> T
M; =041 » = = 0.5465 2 =06345 2= 10428
Iy r p*
qg 90 o
AT, = — = 0oa = 208°R » Tis = Tip + AT, =413+ 208 = 621°R
Cp L

Ty Tz T 621
T. Tix T, 413

. T
Rayleigh table M;=0603 —=09196 22— 15004



_pnr = (1.5904) L)Hnm—am sia
T Logag ) T TP

T T'“T*T—m@mﬁ
3= 2= 091960 5oears

) (400) = 580°R
T+ T

How much more heat (fuel) could be added without changing conditions at
the entrance to the duct?

| > | ||

— :

1 > | |

| > | v

0 O ¥ @

T, = 400°R T, = 400°R
p, = 10.0 psia p, = 10.0 psia M; =10
V) =402 ft/sec V, =402 ft/sec Py ="



M, = 0.41 and T;; = 413°R.

Ts=T*= LT, = ( ) (413) = 756°R

(0.5465

*
pr=p*=2Lp, = (
: 1.9428

) (10.0) = 5.15 psia

g = cp AT, = (0.24)(756 — 413) = 82.3 Btu/lbm



CORRELATION WITH SHOCKS
Some similarities between Rayleigh flow and normal shocks

1. The end points before and after a normal shock represent states with the
same mass flow per unit area, the same impulse function, and the same
stagnation enthalpy.

2. A Rayleigh line represents states with the same mass flow per unit area and
the same impulse function. All points on a Rayleigh line do not have the same
stagnation enthalpy because of the heat transfer involved. To move along a
Rayleigh line requires this heat transfer.



Shock Wave Equations Rayleigh Flow Equations

4 N (T N

M Vi=p Vs }DV = (G = conslt
Vlz Vf
h1+2—:h1+2 hfl_i_q:hi'?
2 2
pr+ V" =pr+ eV, P + o Vl = ¢onst

\_ RN /




Stagnation curves

Subsonic Rayleigh line

Supersonic

R

For every point on the supersonic branch of the Rayleigh line there is a
corresponding point on the subsonic branch with the same stagnation enthalpy.
Thus these two points satisfy all three conditions for the end points of a normal

shock and could be connected by such a shock.



shock

'\.,‘

Supersonic Subsonic

—

Rayleigh flow

/

Ravyleigh flow

5 7 o -

o

Rayleigh line




X |
I
M=3.53 q / M=
T/ =0.6139

- Normal shock |
| i
1
a 1

|
R :
RE X l
I
M=3.53 ) N )= 0.450 q/ M =

T /T = 0.6139 (same heat transfer)

1.0



Example

Air enters a constant-area duct with a Mach number of 1.6, a
temperature of 200 K, and a pressure of 0.56 bar . After some heat
transfer a normal shock occurs, whereupon the area is reduced as
shown. At the exit the Mach number is found to be 1.0 and the

pressure is 1.20 bar. Compute the amount and direction of heat
transfer.

— e e

Air ———+—»

%

M, =1.60
T, =200 K
p = (.56 bar




The flow from 3 to 4 is isentropic; thus:

Pz = p :Ep =
A * 7 10.5283

) (1.20) = 2.2714 bar
Py

&

From the Rayleigh table we find M3 = 0.481 and from the shock table, M2 = 2.906.

T 1
T,J=_”TJ:( ){zﬂm:aﬂzkz
T, 0.6614

&

T. T.*
5 T"; Tf_]"“ — m.ﬁazm(
f rl

T;

= (302) =226 K
0.8842

% e

g = cp(Tha — Tp1) = (1000)(226 — 302) = —7.6 x 10" J/kg



THERMAL CHOKING

Once sufficient
heat has been
added, we reach
Mach 1 at the end
of the duct.

The T —s diagram
for this is shown as
path 1-2-3. This is
called thermal
choking

Original duct choked, M, = 1

Supply air i .
|

= constant I i

P, = constant I — }

vV, =0 I /’. / :

1

Rayleigh line for
original heat
transfer

7
|
1
|
|
4
|
|
I
added @

New Rayleigh line
at lower flow rate




Example

let us add sufficient fuel to raise the outlet stagnation temperature to 3000°R.
Assume that the receiver pressure is very low so that sonic velocity still
exists at the exit. The additional entropy generated by the extra fuel can only
be accommodated by moving to a new Rayleigh line at a decreased flow rate
which lowers the inlet Mach number. If the chamber is fed by the same air
stream some spillage must occur at the entrance. We would like to know the
Mach number at the inlet and the pressure at the exit.

External diffusion >
| I i I
—— T :
| ——— e —> |
I -‘h—_""'--..___- |
- = .
O ©
T, = 400°R M, =7 M, =
p, = 10.0 psia T,; = 3000°R
V, =402 ftfsec py =

M, =0.41



Since it is isentropic from the free stream to the inlet:

Ity = I = 413°R

since M3 = |, we know that T35 = T, %,

In T2 Tis 413
= = —— | (1)y=0.1377
T+ TaT* (3{}{}{}){ }

from the Rayleigh table. M> = 0.176 and p,/p* = 2.3002.

P2 P2 P
P2 Pr1 P

y pt
p3=p—;Lpz=(|1(
P P2

3 p1 = (0.9786)(1) ( ) (10.0) = 10.99 psia

(.8907

) (10.99) = 4.78 psia

2.53002



Suppose that in the previous example we were unable to lower the
receiver pressure to 4.78 psia. Assume that as fuel was added to raise the
stagnation temperature to 3000°R, the pressure in the receiver was
maintained at its previous value of 5.15 psia.

This would lower the flow rate even further as we move to another
Rayleigh line with a lower mass velocity, and t his time the exit velocity
would not be quite sonic.

Although both M2 and M3 are unknown, two pieces of information are
gliven at the exit. Two simultaneous equations could be written, but it is
easier to use tables and a trial and-error solution.

The important thing to remember is that once a subsonic flow is thermally
choked, the addition of more heat causes the flow rate to decrease. Just
how much it decreases and whether or not the exit remains sonic
depends on the pressure that exists after the exit.



-~

p1Vi=paVa

V,2 V,?
h _1 — hn =
|+ 5 2+ 5

Shock Wave Equations Fanno Equations

p1 Vi = p;2 V2




Variation of p + pV?/g. in Fanno flow.

p+oV?g,

M<1 M=1.0 M=>1



-«— Stagnation curves for
Rayleigh flow

-+— Stagnation reference for
Fanno flow and shock

Rayleigh line

Fanno line
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o Area changes, Friction and Heat transfer are the most
important factors affecting the properties in a flow system.

o Up to this point we have considered only one of these
factors, that of variations in area. In a real flow situation,
however, frictional forces are present and may have a decisive
effect on the resultant flow characteristics.

o Friction must be included for flow through long ducts,
especially if the cross-sectional area is small.

o Here, we study compressible flow with significant wall

frzctlon but negligible heat transfer in ducts of constant cross ..




o Consider one-dimensional, steady, adiabatic flow with no
external work but with friction of a perfect gas with constant
specific heats through a constant-area channel.

Tof
P c —————
P
T —* ?
\%
M
L

FANNO LINE FLOW

L B X AV EF VF: B .: a7 L . E B .V, 7




o Conserved quantities:
< Since adiabatic, no work: h, = constant
< Since A = const: mass flux = pv = constant

V?
h + — = constant = A,
2 h,= h + (pv)?/2p = constant

pV = constant




FANNGLINE ELOW.
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o On h-s diagram, we can draw Fanno Line - The line
connecting points with same h, and pv.

dp P du dp

Tds=dh——=du——=dp ) ds=-—— R—

P o’ P T p
o Assuming constant specific heats, with state 1 a reference
state in the flow, above Equation may be integrated to
produce

I p
s —s5=c¢,In—— Rln— T v
I 1 s =85 =cyIn-+ Rln
I 4!
pV = constant

— !




o From the energy equation, we have

V = V2h, — h) = V2, (T, - T)

So that
T 1%

5§ — 8§ = C, n?+Rln—]}—
1 1

- ln(z) + 1 lln(Tﬁr — T)
CL' Tl 2 TD_TI

2y

In(T, — T) + constant

Y




o The Fanno line represents the locus of states that can be
obtained under the assumptions of Fanno flow for a fixed

mass flow and total enthalpy.

o Consider the point of
tangency P, where dAs/dT = o.

§ = §1 T y—1 (TQ—T)
=In|l =} +
) l“(:n) > ™7, -7

Differentiating

1das 1 y—1 :
o dT T 2(TG-—T)_O at point P

P(dAs/dT = 0)

As

!




| 1das 1 vy — 1

o So that M =1 at point P.

VZ =% for
A

VZ=c)(y = )T = yRT

ds =0

P(dAs/dT = 0)
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FANNOUINEFIOW

ST A VARV )Y

o According to the energy equation, higher velocities are
associated with lower enthalpies or temperatures.

t Subsonic flow

o The section of the Fanno 7 —,

line on T-s coordinates
that lies above point P M=1
corresponds to subsonic flow.

o The section of the Fanno

line on T-s coordinates Apersnnic flow
that lies below point P
corresponds to supersonic flow.

Y

T high— Vlow — above P, M <1 =
Tlow — V high— below P, M >1 —

e ——— RERODYNAMICS U
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o Consider subsonic adiabatic flow in a constant-area tube.
The flow is irreversible because of friction, so for this
adiabatic case, ds > o. In other words, the entropy increases
in the flow direction.

o Returning to the T-s diagram, we
see that for a given mass flow,

the state of the fluid continually
moves to the right, corresponding
to an entropy rise. Thus,

% For subsonic flow with friction, ~
the Mach number increases to unity. Vinax

/&ERODYNRMICS T 2
rressible Flow With Fricti

...........
,,,,,
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o Consider subsonic adiabatic flow in a constant-area tube.
The flow is irreversible because of friction, so for this
adiabatic case, ds > o. In other words, the entropy increases
in the flow direction. h, V2

o Returning to the T-s diagram, we  h,
see that for a given mass flow,

the state of the fluid continually

moves to the right, corresponding

to an entropy rise. Thus,

< For supersonic flow, the entropy
must again increase, so the flow

Mach number here decreases to unity.
Friction alone can not allow flow to transition between sub/supersoni
flows.
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FANNG UINE CHOCKED FlOW ({5@3@@&7&@) — @
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o Suppose now that the duct is long enough for a flow initially
subsonic to reach Mach 1 and that an additional length is

added.

o The flow Mach number for —,— . _#
the given mass flow cannot
exceed unity without decreasing |-
the entropy. However, from the
second law of thermodynamics, this is impossible for an
adiabatic flow.

o The additional length brings about a reduction in mass flow;
the flow jumps to another Fanno line. Essentially, the duct is

choked due to friction.
/&ERODYNAMICSII v

,'me{»ﬁkﬁ‘"“f’w e

......
L]
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o Suppose the inlet flow is supersonic and the duct length is
made greater than the L ___required to produce Mach 1.

M, —» M

o With the supersonic flow unable to
"sense” changes in duct length
occurring ahead of it, the flow
adjusts to the additional length by
means of a normal shock rather than
a flow reduction.

o The location of the shock in the
duct is determined by the back
pressure imposed on the duct.




o From practical considerations, it is necessary to determine
the change in properties with actual duct length. This
requires the use of the momentum equation, with a term
accounting for the frictional forces acting on the control

volume.

o Select a control volume as shown in Figure
Vv V+dVv




o Applying the momentum
equation for steady flow,
we get

D F = /f Vi(pV-dA)

pA—(p 4 dp)A — 1A, = (pAV)(V + dV) — (pAV)V
—Adp . ’i"!';‘ilI = pAVdV

Cross-Sectional Area 4A

Define the hydraulic diameter as D, = 4 e

4(wD%4) ~

o

4 2
For a square duct D, = -fs—~ =8 S = the width of each side —

AERODYNAMICS i

For a circular duct p, =




o Since the area over which friction acts, A, is equal to the
perimeter of the duct times the incremental length dx, it may
be replaced using the hydraulic diameter to obtain

—Adp — 'l'f(a'x)—*"{:i = pAVdV
Dy,

o define a friction coefficient f = 4r;/(';pV?)

fis dependent on the flow Reynolds number and the relative
wall roughness €/D,. However, since Re = pVDip = 4m/(wDp)
for Fanno flow, the flow rate and the diameter are constant,
and assuming constant dynamic viscosity, we see that the

Reynolds number is also constant and therefore does not
affect the friction coefficient.




WORKING RELATIONS FORIFANNO/FLOW

Some texts define a friction coefficient:

°f = itV = ¢

That is, they use the skin friction coefficient as the friction coefficient.

The friction coefficient in those texts is referred to as the Fanning friction factor.

The friction coefficient used here is sometimes referred to as the Darcy friction factor:
The relation between the two friction coefficients is f= 4"f".
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WORKINGRELATIONS FOR FANNOIFLOW

—
4
—Adp — 'rf(dx)—gi = pAVdV
h

1 dx
— — 2oV = sV 4V
dp = 5pVf—5 = pVd

f= 47f"(1;’f2PV2)

o It is desirable to integrate above Equation to obtain, for
example, an expression for Mach number and pressure
change over a given duct length. First we divide the foregoing
equation by p:

dp 1 dVv

dx
— + —yMf =+ yM?— =
p FYMITy M =0

o To obtain an expression for M in terms of x, dV/V and dp/p
must be replaced in this Equation.

— g




o From continuity, pV = constant

oV = L \/YRT

- 2(72) < consam
\/'yRT R\N/T

o Taking the logarithm of this expression and then
differentiating produces

d
_.E _ﬂ+_]...£i_T 0
p M 2T

o Moreover, from the definition of the Mach number, we have

dv _dM  1dT

Vv M 2T




dp 1 dx M2 dV

— + —yM*f—— + — =
p TYMUT M= 0
d
dp _ _dM 14T
P M 2T

dv. dM 1dT

\y

M
=4 (fff_x)h 2 (_dM+1£)_ (d_M_+1£)
D yMI\ M 2T M 2T

2dM  dM* dT

y M> M?




W@E@&?ZW@T@EMW@M&? EORIFANNO! 65’@,@ =

YA &Y

_dj)=_ 2 ( dM ldT) E(JM 1@)
yM? M 2T

fﬂ
_2dM M
Y M3 MI ?M T

But, for this adiabatic flow, To = constant, so

v — 1
y =1 Logarithm and :T d(l i 7 MI)
T(l B M’z) = constant > + =0
g differentiating r 14+ Y= 1 M2
2
T) )
dl 1+ M dl 1+ M
dx _2dM dM? n ( 2 N ( 1 ) 2 /
] 3 2 —1 2 —1
D vM M ]_1_1*2 M2 yM 1+'r2 M2




i
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1 - Cy +
. a 2 -1
{TME}(l + Y 2__1M2) (yM*) (1 Y : M?)
Expanding the right-hand side and comparing the numerator of both sides reveals that
¢ =1 & = =(y - 1)/(2y)
Y — 1 7 y—1 g)
(I)d(1+ M)_—yald{M?] T_]d(1+ 5 M
2 — - z !
TM 1 ¥ lml 2? M 2? 1 + Y IMI
2 2
PRIV b
ﬁ_{,(?+1)d(i 2 M) , 2dM (T+1)d(M‘*}
- —1 3 2
D 2y |+ Y . e Y M 2y M

This equation may be integrated term by term to determine M as a function of duct
Length. It is convenient for Fanno flow (frictional, constant-area, adiabatic flow) to

choose, as a reference point, M =1 and L = L. For the lower limit of integration,
select x=0at M =M.




fLys /D

—

) versus the Mach Nu

mber

for

(f LmaD) = [(v + 1)/(27)]

0.8215




“WORKING RELATIONS EOR FANNOIFLOW/

If it is required to find p versus M or (fdx/D), dV/ V can be eliminated from

dp 1 o
_-_-+_.-MI_'_+ M =[}
> TMI Tty

vy — 1
d(l + MI)
dv dM dT dT s >
T

V M T ‘l’“‘le

=0

1+

= M*(y = 1)M?
‘£+*?M3+TM1£’I__1T (y = 1) dM:.:.

P 2 M E]_-l—T_leM

2

(1 - M?) )
dx ™7 7 "
f_l}h_[l+ TZ MJ](TMI) N




fptif_g_d f 2 M /1 2 dM
p P M y — 1 M M T_IME M
2

In[z + th Il)M’] B ]n{(;f!) 2 + ?Ttll)Mz]lﬂ}

5
—_
'c:*|
S
i
=1
—
|-
S’
_|_
P | =




The above equation can be found by an alternative approach that has the advantage
of not requiring integration.

Since we are dealing with adiabatic flow of a perfect gas,

y—1

2
rl_(rﬂ)(n)_” > M (- M3
L _(L\(5h) _ Z - ——= 3
T, \LJ\T, 1+T:1 v 2F (- M
pVi = pV, p = pl/(RT) V = Ma = MV/yRT

Py Mg\/f ﬂzﬂz[l’f{?—l}fﬁ%}m
rn M NT pr M2+ (y - 1)M}

The density ratio follows immediately from the perfect-gas relation:
p_ P RL _ph M 2+ (y - )MIT?_ ¥,
P2 R pp Ty M2 + (y - BM3 -
AERODYNAMICS I

— - — ==




ORKINGIRELATIONS FORIFANNO, FLOW

$AY AW

Because of the irreversibilities involved with Fanno flow, the total pressure will always
decrease in the direction of flow, which is not the case for isentropic flow.

Poi _ Pol P1 P2 _ (1 LYz le)ﬁMz[z + (y - 1]M§]1f2(1 = IME)-;E_‘
Poz 1 P2 P2 2 ! Ml ? + {-}. — 1}M% 2 2

Pa _ M;

Po2 - M,

2+ (y — 1}M%r—‘f—’ﬁ
2 + (y = 1)M3

Because the flow is also one dimensional and adiabatic, the equations for the
conservation of mass and energy, but not momentum, for flow through a normal
shockwave are the same as that for Fanno flow.

—_— !

/AERODYNAMKCS u
Compressibie Flow WIth Friction. ...




“WORKING'RELATIONS EOR EANNOIELOW/

For computational purposes, the reference state where the Mach number

reaches unity is used, and, as mentioned previously, the symbol for this state

1s *.

T 2+ (y-1P (y+1)
i 2+ (y— )M? z+(T-1}M?

E-(l)l )
pt A\M/L2 4 (y - 1)M?

P 2+ (y -~ I}MTE
p* V M[ "_|.'+]]

P, _ F+w—nMTM}
M (v + 1)

Po
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p— ) Y 4

* Look at signs of previous equations to see how properties
changed by friction as we move along flow
— (1-M?) term makes M« different than M>1

M<1 M>1
S T T » Friction increases s =p, drop
Po | |
M T l * Friction drives M—1
h, T | | * h,, T, = const: h, T opposite to M
P | 1 .
* p, psame as T (like isen. flow)
p } I
\ T 1 * pv=const: v opposite of p




/D (like using A/A%)

o To get change in M, use change in fL

max

fL [ 2 ]dM
D M1(1+7_ sz 7’M2 M Lmax,z

L
fL fL.., L.,
D D j D j
o If you know fL/D and M,
1. Look uprmax/D at M1 Find values in Appendix F in
5. Calculate fLmax/D at ]\42 “Gas Dynamics’, James E. John

3. Look up corresponding M, o e —

/“snonYN“m‘cs X
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TABLE .1 Fanno Line Flow (y = 1.4)

Appendix F  Fanno Line Flow '

M TiT* pip* Po'po* plp* fLae! D
0.00 1.2000 o0 o0 00 o0
0.02 1.1909 54.7701 28.9421 45 6454 1778.4499
(.04 1.1996 27.3817 14.4815 22 8254 440.3522
0.06 1.1991 e rang 0 ARSI 15 20 12T N1t &
0.08 l.lﬁg
0.10 1.1 -
012 i i ggg TABLE F1 (Continued)
0.14
0.16 1.1939 M TiT* plp* PolPo* plp* S Lmax/ D
0.18 1.1923
0.20 1.1905 2.10 06376 03802 18360  0.5963 0.3339
0.22 1.1885 212 06320 03750 1.8690  0.5934 0.3394
0.24 1.1863 2.14 06263 0.3698 1.0018  0.5905 (.3449
gﬁ Hgi“g 2.16 0.6208 03648 1.9354  0.5876 0.3503
030 11788 2.18 06152  0.3598 19698  0.5848 0.3556
n 2 V1750 2.20 06098  0.3549 20050 0.5821 0.3609
2.22 0.6043  0.3502 20400  0.5794 0.3661
2.24 05989  0.3455 20777 0.5768 0.3712
2.26 0.5936  0.3409 2.1153  0.5743 0.3763
2.28 0.5883  0.3364 21538  0.5718 0.3813
2.30 05831 03320 21931 0.5694 0.3862
2.32 0.5779  0.3277 22333 0.5670 0.3911 .
234 05728 03234 22744 0.5647 0.3959
(57T & [ S 2
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Flow enters a constant-area, insulated duct with Mach number of 0.60,
static pressure of 150 kPa, and static temperature of 300 K. Assume a
duct length of 45 cm, a duct diameter of 3 cm, and a friction coefficient
of 0.02.

Determine the Mach number, static pressure, and static temperature
at the duct outlet. Assume that y=1.4.

— !




(fLmax/D)y = 0.4908,
tabulated in Appendix

fLir.D = 0.30. [Lmax}l = [Lmﬂz]i - L
(Jam) _ (o) 1L _ 5 00 - o100
2 1

tabulated in Appendix HI = 0.7093

i

f &
pr _ (palp’) 14722 0.8349  p, = (0.8349)150 = 125.2350 kPa

——T

p (plp) 17634

L _ (LT _ L0903 _ o0, T, = (0.9740)300 = 2922012 K
T\ (L/T') 11194 —
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o Very often, a situation occurs
where a duct is fed by a nozzle,

with the duct back pressure and
nozzle stagnation pressure the
known quantities. Consider a

duct supplied by a converging ...
nozzle, with flow provided by

a reservoir at pressure p.,.

-
-

Pr

o Assuming isentropic nozzle flow,
with Fanno flow in the duct, the
system static pressure distribution
p versus the distance x can be
determined for various back pressures.
(p, is maintained constant.)
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o As p, is lowered below p, curves (a) and (b) in are obtained, with
pressure decreasing in both nozzle and duct.

o Eventually, when the back pressure is decreased to that of curve (c),
Mach number 1 occurs at the duct exit. Further decreases in back
pressure cannot be "sensed" by the reservoir; for all back pressures
below that of curve (c) [e.g., the underexpanded flow at curve (d)],
the mass flow rate remains the same as that of curve (c).

e

pressure 4

=

(c) pe=pp. M, =1
N\ (d) pe>po- M = 1 —
m—

AERODYNAMICS i

[ I
| I
| 1
| I
| |
| I
| |
:
|
: (a) po = pp. M. < 1
; (b)pe=pp. M, < 1
I
|
|
|

CLO| ""J
com
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pressure 4 : ' i

I I I
: | i
; | i
I 4 4

br ! | !
i : !
: i (3}P3=Pb'Me{ 1
: i ; (b) pe = pp, M, < 1
1 1| ' (':).przpb:-Mrz 1
i : | (d) pe > pp M, = 1
| i .

\ distance
) (d)p, = pp. M, = 1
m _ (€) pe = P M, = 1

(b)pe= pp. M, < 1

(a)p.= pp. M. =1




=EXANMIPLE
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A constant-area duct that is 20 cm in length by 2 cm in diameter
is connected to a reservoir through a converging nozzle, as
shown in Figure. For a reservoir pressure and temperature of 1
MPa and 500 K, determine the maximum air flow rate in
kilograms per second through the system and the range of back
pressures over which this flow is realized.

Repeat these calculations for a converging nozzle with no duct.
Assume that f is equal to 0.032 and thaty =1.4. /=002

D=2cm

Isentropic flow /
] = %y .I.
g




EXANIPLEN(CONIT.)

v
e O

- For maximum mass flow through the nozzle-duct system, M, is equal to
unity. For this condition, the actual fL/D of the duct becomes equal to

(fL. /D), = 032.

—> M, = 0.6517. —> (p/p,); = 0.7518 and (TIT,), = 0.9217.

py = (0.7518)1.000 = 751.8 kPaand T, = (0.9217)500 = 460.85 K.
mma: - (_E_) ..-"1|M| W TRTI
1

RT

- l (751.8)
~ L(0.287)(460.85)

”g{a X lﬂ“'}}[{ﬂ-ﬁﬁl?}ﬁ(1-4}[137}{45“-35}]

= (5.6841 kg/m’)(0.00031416 m?){280.4352 m/s)
= (.5008 kg/s




EXAVIPLE(CONT)

¥ 4
Y A

paipy = pllpy = 1116138, or p* = 751.8/1.6138 = 4658570 kPa,

so the system is choked over the range of back pressures from o to
465.8570 kPa.

If the duct were to be removed, choking would occur with Mach 1 at the

nozzle exit. For this condition p, = (0.5283)(1,000) = 5283 kPa
T, = 0.8333(500 K) = 416.65 K,

So the maximum mass flow rate is:
(4.4180)(0.00031416)(409.1576) = 0.5679 kg/s.

For this case, the system is choked over the back-pressure range from o

to 528.3 kPa.
—————

- ]
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EXAIVIPLE(CONIT:)

a Y
- ¢

m (kg/s) 4
0.5679 No Duct —_
D
0.5008 -

| > py (kPa)

465.857 5283
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When a duct is connected to a reservoir through a converging-diverging nozzle, the
situation becomes somewhat more complex.

M<1 M<1
. ! |
= A
gy o,
E TR

|

e : I M=1
i | II
Jw-x%...:\. : |
iy !
I 1
P, ! 1
| |
: [
i l
pressure \L :
—— ,
l ——
v ] I -1
Subsonic flow in both nozzle and duct !

1 —. -

distance
If the duct is long enough (see the dashed curve in the figure), the system reaches
Mach 1 first at the duct exit; in this case, the nozzle is not choked. Once Mach 1 is

reached, no further increase in mass flow rate can occur by reduction of the system
g
_=

back pressure. —
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o With supersonic flow at the nozzle exit, there is the possibility of
shocks in the duct. Note, however, that once the back pressure is just
low enough to produce Mach 1 at the nozzle throat, the system is
choked, with no further increase in mass flow possible.

o Unlike the case previously discussed, here, once the throat velocity
reaches the velocity of sound, the mass flow rate is unaffected by duct
length; that is, the conditions at the throat remain fixed, and
therefore m = p,A,V,. Now the system is choked by the nozzle, not the
duct.

o Let us consider the flow pattern obtained with supersonic flow at

the duct inlet in the following two cases:
. L<L_.

2. L>L_.. —
==
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- e Y /5 M W

SUPERSONIC-DUCT INLET /' L < Lyyax

O pp< P.s: Expansion outside — L
duct (underexpanded). the
exit Mach number must be
either supersonic or unity.

O Pef<Pp<Pes: Oblique
shocks outside duct
(overexpanded)

M =M M=M

test 2 ¢

shock . ShOCk
inside at exit

pe,sh

O Pesh < Pp: Shock waves inside
duct. For a high-enough
back pressure, the shock , | :
moves into the nozzle, thus X
eliminating supersonic flow
in the duct.

———————————————————————
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“ SUPERSONIGDUGTINLET / L S Ly

— (d) normal shock in exit plane

pressure

, — () oblique shockwaves
4 — mttsid duc:l

|
I
I
I
t
I
I
|
|
|
|

O S

Y

distance
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1

A converging-diverging nozzle with area ratio of 2 to 1 is supplied
by a reservoir containing air at 500 kPa. The nozzle exhausts into
a constant-area duct of length-to-diameter ratio of 10 and
friction coefficient f of o.02.

Determine the range of system back pressures over which a
normal shock appears in the duct. Assume isentropic flow in the
nozzle and Fanno flow in the duct. Assume that y =1.4.




-

EXANVIPLE(CONIT:)

A ¥
.‘_.\/

- (AIA), =20, ——> M, =21972.  (fLma/D} =0.3602.

fLID =020, —> L < (L

max}'l

Shock at the duct inlet i

M, = 21972, =——> M, = 05474, =——> (fL,.../D); = 0.7429.

(fi;;r}nai) . (fLEr}nm) _ E = (.7429 — 0.20 = 0.5427 —— ME = .5874.
3 2

me = (RSB )5
= (1 Eﬂﬂ}(—l-—)[5.4&55}{:3.:}9393]{1)5[!} = 238.5961 kPa




-

EXAIIPLE(CONIT:)

v
L= ¢

M, = 21972, ——> (fLoufD); = 0.3602.

JLM) __(anm) fL _
(D 1— D ), D 0.3602 — 0.20 = 0.1602

Mz = 1.5663. ———5 From the normal-shock relations: Pa/ps = 2.6955,

== ()G

0.5728
= (2. 5955}( 0355 ﬁ){ﬂmm}u }500 = 203.9177 kPa

203.918 kPa < g, < 238.596 kPa
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SUPERSONIC-DUCT INLET /' L > Ly

y N
B~
v

 Supersonic flow + (L> L, )

=> a normal shock occurs in the duct v
01

o p,<p,: Expansion waves must M=M M,=M,
occur at the duct exit (with the A Pe
exit-plane Mach number equal
to unity).

P/Po,

1 |

O pp> P.: The normal shock
moves upstream toward the
duct inlet, with the exit
Mach number subsonic and
the back pressure equal to (Shock location is determined by back pressure)
the exitplane pressure.

For a high-enough back pressure, the shock moves into the nozzle, thus eliminating
supersonic flow in the duct. — e —
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M=
/ o,
T T <
= I I
' er
1
Sre i | — {d)p, = Fb M = ]
I ———a A alatata
i | | AR
pressure | 1 i
| T ] ,f_;“_,i-‘ .
1 f e i i o o et
| ] [
! - - () p.=pp- M, =1
' I |__'_—l—|.-_|_l1 ° - — B
] I [
I At
I ! I
1 : | i | I —_._...Iw ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ S T T
[ I | |
: L | : L (@b} pe> pr M, = 1
distance g !. P




* Given: Exit of supersonic nozzle connected to straight walled
test section. Test section flows N, at M, = 3.0, T, = 290. K,

P.,=500. kPa,

* L=1m, D =10 cm, f=0.005
< L

A 4

Find:
-M, T, p at end of test section

- po, exit/Po, inlet

Miest
es

- L., for test section

- Assume: N, is tpg/cpg, 7= 1.4, steady, adiabatic, no work

i g




* Analysis:
M,

fL_fgmj _fgmj
D D 3.0 D M

0 005(1) _0.4792

fLman =0.5222 —

another solution is M=0.605, but since
L. M, = 2.70 >

started M>1, can’t be subsonic

(Appendix)




_ Subi T, _1+((r-1)/2)m;

=13.6kPa -2 = ~1.14
2.8 T 1+((r-1)/2)M;
p, =13. 6—\/1 14 =16.1kPa
\/
“*p o, e/P o,test
y+1
2(1-y) 0 : .
P _ My [T, 7 _ 2(1.14)_3 _0.75 25% loss in stagnation
Py, M, T, pressure due to friction




L fLman D M,=Meqt M,=M.
L .
_0.5222 0 1M
0.005
=10.4m

10.4 m long section
would have M=1 at exit

L




Compressible flows

Differential Approach



Velocity Potential Equation

IRROTATIONAL FLOW

Vorticity is twice the angular velocity of a fluid element VxV=2w

Aflow where V¥V X ¥ £ () throughout is called a Rotational flow

Examples of rotational flows.

Viscous flow inside a
boundary layer

Inviscid flow behind a
curved shock wave



Examples of irrotational flows.

Mo > 1

Flowfield over a sharp W

wedge or cone TxV =0 o [Wo-dimensional or axisymmetric
nozzle flows

Flowfield behind the shock wave
on a slender, sharpnosed body is
almost irrotational. For analysis,
we usually assume VxV = 0 for
this case.




Consider an irrotational flow in more detail

VxV

dv

ax

i i k
4 0 J _i(ﬂ_w_ﬂ_u)__ H_w_ﬂ_u)_l_k(
ax 8y o0z| \dy oz ‘I(ﬂ;c 87
i v w
dw  dv dw  du dv  du
dy 9z ax 9z dx Oy

irrotationality conditions

dut
dy

) =0



Consider Euler's equation without body forces.

DV
p— ==V
Dr P
du du du ap
ﬂuﬂ TE Elj.r ol dz  ox
‘ Hp du diut ou
dx = pu— dx + pv— dx + pw— dx
ax 3 dx & dy = iz
ou _ du
dy  dx
‘ ap du v dw
H_“_if —Ed.t puh—dx+pua—dx+ﬂwax dx
dz  dx
ap 1 ou? 1 v’ 1 dw?

L A Vo BN MR . L O Al
B P O P e My



ap 1 au? 1 av? 1 duw?
——dx=-p—dx+-p—dx+-p—d
Elxdx Epﬂx I+2pﬂx I+2'ﬂﬂx .
Similarly
ap 1 8u? 1 9v? 1 ow?
——dy=-p—dy+-p—dy+-p—d
3y y 2p8y y 2p8y y+5p 3y y
dp 1 ou? 1 9v? 1 dw?
— L di==-p—dz+-p—dz+-p—d
w
(apd+apd+apd 1av2d+1av2d+1av2d
— — X g s e R ) |— X I | — —_ ) —
9% ay 0 T8z “°) T 2P %x 3y ATl g =

-?
where V* = u* + v* + w*



o . S el " e = —p——dx + —p— dy+ =p——dz

ap ap ap 1 aV? 1 9V? 1 9V?
_(ax Dy 32 dz) 2P 0% 5" By " 8z

—dp = 3pd(V?)



The velocity potential equation

Consider a vector A. If V x A = 0 everywhere, then A can always be expressed
as V¢, where ¢ is a scalar function. This stems directly from the vector identity,
curl (grad) = 0. Hence,

VXVC:O

where ( is any scalar function.

For irrotational flow, VxV=0

Hence, we can define a scalar function @ = ®(x, v, z)

V=Vob

where @, is called the velocity potential.



V=ui+vj+ wk
dd dp ad i s
i = = ) = — i =
\Y ——i —k :
P a},.I+ > dx iy
d(pu) d(pv) n dpw)
dx dy dz
g A i
Eﬁ¢’;+a}?ﬂ¢ +£ﬂﬂ’ =0
p(®,, +®P,, +D. ]—l—‘l?'—-i—(li}—-l-'ll—:[l
iy dz

we eliminate p




dp = —gV iV = —g d(V?) = —g d(? + 12 + w?)

-

N
D’ + D’ + D
dp=—pd 5 -

Recalling that the @= E . » a::f,l'.'}=
flow is isentropic, dp ap .

= ——4d
dp >

a?

0 ((I)ﬁ +<I>§+<I>§)



0p P Ip
o (D, + (I)yy + ®,;;) + q)x&—'_ d))’g_lh (I)Za_z

2

a?

ax  alax

P’ + @’ 4 @’
dp“—£d< —

2

H=
Elp_

dy

dz

4

_dﬂz (d]xtbﬂ + ‘I"}-q‘-'y: + mzmﬂ]

_{% [ﬂlﬂﬁx; + {l‘}‘@}'}’ + sz{b;}-)

9
oL @0, +0,0, +0.0,)

a2
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20, P, 20, D, 20, D,

- @ D, - sz - ~@—(I)yZ =10

velocity potential equation.

From the energy equation h, = const
V2 2 2 'p"i
ﬂpT+—=EPTﬂ I-EE_!_F_:FRTH a +
2 y-1 2 y-1 y-1 2
-1
a* =1:I‘-“:—]F’—1«"'E a’ [u1+u2-|-w1]




Note that the velocity potential equation is a nonl/inear partial differential
equation. It applies to any irrotational, isentropic flow: subsonic, transonic,
supersonic, or hypersonic

It also applies to incompressible flow, where a —> oO
, henceyielding the familiar Laplace's equation,

D, +P, +D, =

There is no general closed-form solution to the velocity
potential equation,



Linearized Flow

£ e T N

E. e M/////////////////////m
L Y PNV Mo e
o N L) /
Uniform flow ~ Perturbed flow

V = Vii+ V,j+ Vik,

u', v', and w’ are the perturbation velocities in the x, y, and z directions

Vi = Voo + 0t/

v , In terms of the velocity potential,
, ==
¥

V:=w' Vb =V = (Vo +u)i+vj+ wk



() a i’
Vx:Vm+u’—a—~_v +—¢i -:I:IH:—qb

dx * 7 Bx dx?
. ad dgh alqt.
Vi=tt = — = — - = B
¥ v El}r HJ} ‘I}.'I"J" 3}12
dad  dg
= =—=— 9*
Vz u e HE {Dnz — _f
dz

Inserting in velocity potential equation:

ap\* | 3%¢ o\ | %0 96\’ | 8¢
- (s 2Y | 28 - (32) ] 52+ - () |

ap\ 3¢ 8°¢ —2(V + 3¢) dp 3°¢ 3¢ dp 3%¢
ox ) dy dx dy ©Tox) az 9x0z ay dz dy az

-2 (Vo +

The above equation is called the perturbation-velocity potential equation



Since the total enthalpy Is constant
throughout the flow,

VI 'L.?E [Vm+ur]2+uiﬂ+wa2
ho + —=h+—=h
W 2 4 2 + 2
2 2 2 N2 4 a2 2
o +'r’_,¢_ a +{Vm+u} +ve4w
y—1 2  y-1 2

_] ' ¢ ¢
:‘IE=::.'._;‘£:J—FT{2H V.x+Hz+U!1+w1}



o0

u' v+ 1\ u”
= M? =
“{W+”wx+(2 )W

i u' +1\ v?
+ M2 (y—l)—+(y )

o] 2 12 du’
() (5]
VZ dx

2

y =1\ [w?+u?\] 0

) (55

) (5%
2 ¥z 0z

w’ (] " u' ) (Bu' 2 Bw')

Voo Ve 0z ax

We now specialize to the case of small perturbations, i.e., we assume the u', v',

and w’ are small compared to V:



’ ’ Fy 2 by 2 F oyl
u v w u v w
¥ 4 d oy 1 1 1 T 1
Vo' Voo T Ve & (vm) (vm) ﬂ"d(vm) «
1. For0 < My < 0.8 and for M, = 1.2, the magnitude of

ou'

u/
M? 1)— o eoe | —
oo[(y+ )V + ]Bx

o0

1s small in comparison to the magnitude of

ou'

pa— 2 —_—

Thus, ignore the former term.



2. For M, <5 (approximately),
f ﬂu.l'
M2 2
o0 [(}* 1) ot ] %
is small in comparison to duv'/dy,

dw’

2 [y, |3
Mm[(r l}v + ]ﬂ:—:

oc

is small in comparison to dw’/dz, and




¢ 3¢ %9
(1-M)

il Y
HJ:E_I_H:.J T dz*

The perturbations must be small.

From item 1 in the list above, we see that transonic flow (0.8 = M, < 1.2)
1s excluded.

From item 2 in that same list we see that hypersonic flow (M, = 5) 18
excluded.



LINEARIZED PRESSURE COEFFICIENT

P— Px
C,=
f %ﬂmvé;
1 ¥pac y Vi vy
| s 2 2
3P0 Ve = 3 o e ¥ as Epmé = EP:::ME.;,
P—Px _ Px(P/Px—1)

T /DPME  (¥/2)peoM,

| 2 p )
E_; — e ]-
Py ML (Fn:n:




Ve Vjﬂ
V2 V2
2¢p 2¢p
V2_v2 V2_v2
T =T =—= = 0
2% 2yR/(y = 1)
L_1=y—lV°20-V2=y—1V°20—V2
T 2 v R T 2 a2,

V2=

(Vo + &) + 0% + w™

i y —1

Ly .

s 2.

'V, -+ u® 0% -+ 0)



. ]
T, 2a?

L

p/Poc = (T/Tog)?/ ="

Qu'Vy + u” 4+ v° + w™)

p i =1 3 . - yi(y—1)
—=11- 2u'V ’
5 [ Zai_]{” o Fu-+v +w]:|

WiV & 1: u? Voo, v3/VZE, and w?/V2 < |

L _ 4 =gyrtr-D

Where &/s small.
Pac

From the binomial expansion, neglecting higher-order terms,

p Y

A

Px y —1

8+



i 1= ZM2 (2“’ u'2+v’2+w’2>
Poo 2 AV Vozo
2
Cp=—— (p -1)
_ y ) 2u’ u/2+v/2+w/2
o0 o0 00
o u? 4+ v? + w?
- v Vozo

Since u?/VZ, v?/V2, and w?/V2 % 1,

e

Ve linearized pressure coefficient,

Cp =




LINEARIZED SUBSONIC FLOW

Consider the compressible subsonic flow over a thin airfoil at small angle of

attack (hence small perturbations),

The usual inviscid flow boundary condition must
hold at the surface, i.e., the flow velocity must be

tangent to the surface.

For small perturbations, ' < V4, and tané ~ #

df v’

dr Ve g Since v’ = d¢/dy

L ST 4

dy  Tdx

Shape of airfoil, ¥y = f(x)

Ve +u'’

g LY

—_—

" |



The subsonic compressible flow over the airfoil is governed by the
linearized perturbation-velocity potential equation .
For two-dimensional flow, this becomes

ﬁzlf’n + tf-':,.lv = () where 8 = m

It can be transformed to a familiar incompressible form by considering a
transformed coordinate system (&,1m)

£=x .

n=pgy
Shape of airfoil, n = ()

B, n) = Po(x, y) (f“ﬁéhaE31
¥ _, an

3
il — i iy
dx | ay d.x dy b

oec |



ap  liap | 3¢
o 3 3x = o dx

_d¢ 193¢ _ 1 ﬂ@ﬁ_l_ﬁéﬁjl_la&_&;
'__Er,n:_ﬁﬂx_ﬁ

Bag B

| -
‘;i}.x_x — Eﬁt’ﬁf

YT 8y By

— —

9 dy ' O dy

' p b 3 0 ]
p _E_lﬂar_é[aweJr ¢__n} &

0
an

Yy = 'f’miﬂ
B psr + Py =0

l = =
B* (Efﬁ's;) + By =0

Gee + by =0




y=f(x) mmp n=4q¢

Boundary condition in{x, ¥) Vmﬁ - @ - l@ o %
dx dy fdy dn

dg 3¢
Boundary condition in (&, n) FWEE . an
df dgq
dx  dé

It demonstrates that the shape of the airfolil in
(X, y) and (¢,n) space Is the same



Pressure coefficient

g zu;__—z_ﬁ__Zla@:_Zlﬂqa
G =~V = TVidx  VwBOx Vo B OE

Denoting the incompressible perturbation velocity in the & direction by i, where i = d¢h/dé&

1 2u =
C,= E (_a) Since (£, n) space corresponds to incompressible flow _V_m — 'CF#

where C,, 1sthe incompressible pressure coefficient.

CF"E-

J1—MZ

This is called the Prandtl-Glauert rule; it is a similarity rule which relates incompressible
flow over a given two-dimensional profile to subsonic compressible flow over the same
profile

Cp =




L C
CL — C s L,
3%V S T /I-ML
C M
M =
2PV SI o C
YT M

These are also called the Prandtl-Glauert rule

They are exceptionally practical aerodynamic formulas for the approximate
compressibility correction to low-speed lift and moments on slender two-
dimensional aerodynamic shapes.

An important effect of compressibility on subsonic flowfields can be seen by
noting that

,_0¢ _13¢ 193¢ a _
T ox  Box B B J1-ML

Uu




IMPROVED COMPRESSIBILITY
CORRECTIONS

The importance of accurate compressibility corrections reached new highs
during the rapid increase in airplane speeds spurred by World War II.
Efforts were made to improve upon the Prandtl-Glauert rule discussed
prevously the more popular formulas are given below.

In an effort to obtain an improved compressibility correction, Laitone
applied locally in the flow, i.e.,

__ Gy,
/1= M?

where M is the local Mach number. In turn, M can be related to M, and the
pressure coefficient through the isentropic flow relations.
The resulting compressibility correction is:

Cp,

— 1
JT=MZ + Mgo(uy—z—M; 2 JT-MZ | C,

Gy

e =




Another compressibility correction that has been adopted
widely is that due to von Karman and Tsien

C

C, = :
ST [ B Y S
o\l +/1-M2 ) 2




18 -

Comparison of several
compressibility corrections
with experiment for an
NACA 4412 airfoll at an
angle of attack a = 1°53'.

—0.8 |- Note that the Prandtl-Glauert rule, although
b the simplest to apply, under predicts the
061 S Fxporiment experimental values, whereas the mproved

- compressibility corrections are clearly more
—0.4 |- accurate.

ib This is because both the Laitone and
= Karman-Tsien rules bring in the nonlinear

aspects of the flow.




CRITICAL MACH NUMBER

We have now finished our discussion of linearized flow and the associated
compressibility corrections. such linearized theory does not apply to the

transonic flow regime
08 = M, < 1.2

Local M, =0.772
Local M, =0.435 A
M.=035
M.=03 p e A

(&)

(a)
**** ~— aonic line where M= |

[Mlﬂfd:l.ﬂ f‘-# H}I “

M.=M,, =06 M, =0.65> M, =
(c) (d)

Linearized flow will fail even for M« lower than 0.8



Let p.. and p,. represent the static pressures in the freestream and at point A

For isentropic flow,

Pa _ PalpPo _ (l+[{r - t);z]Mﬁﬂ)”ﬁ* -1

2 Pa
Coa= }"Mgg (Pm - 1)

c B y) (1 + [{}’, _ 1}";2]”&: yi(y—1) |
PET M2, [\ T+ - I]XE]M,%) -




Cp

2
Lr = '}"M&g

(

L+ [(y — 1)/21M_,

1+ —-1)/2

vty —1)
)"



For high-speed
airplanes, it is desirable
to have M, as high as

C, =M

possible. Hence, modern ——
high-speed subsonic Thin airfuil
airplanes are usually
designed with relatively i
thin airfoils. | Thick airfoil
Thick €y ~a= :
_ Thin aiefoil
Thin 5 —= ! |
0 i ! M,
I (M b
|
[Hﬂlll'l_'t

Effect of airfoil thickness on critical Mach number.



Tl

Example
In this, we illustrate the estimation of the critical Mach number for an
airfoil using
(a) the graphical solution discussed in this section, and
(b) an analytical solution using
a closed-form equation
Consider the NACA 0012 airfoil at zero angle of attack
The pressure coefficient distribution over this airfoil, measured in a wind
tunnel at low speed, is given. From this information, estimate the critical
Mach number of the NACA 0012 airfoil at zero angle of attack.

0.4 Minimum CP =-0.43

o b




(a) Graphical Solution. First, let us accurately plot the curve of Cp.,versus
M., from Equation

o 2 {1+l —nameNTeTh
oy M2 L+ (y —1)/2

M 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cpoe —306 -2.13 -129 -0.779 0435 -0.188 0

From the pressure coefficient distribution given in the figure.
The minimum value of Cp on the surface is -0.43.

Cp.0)min —0.43
(Cp.0)min = —0.43. (Cohmin = —op0min _
p.0)min ) (Cpmin T o
Mo 0 0.2 0.4 0.6 0.8

(Colmn —043 0439 -0469 -0538 -0.717
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(b) Analytical Solution.

043 043 2 [[141p - DMty
{Cp)mm_\/_:‘m » m_’yﬂ’f&[( I[+(y—-1/2 ) -

» M = 0.7371

Question: How accurate is the estimate of the critical Mach number in this
example?

Wind tunnel measurements of the surface pressure distributions for this
airfoil at zero angle of attack
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Locally supersonic flow

Locally subsonic flow

R,=4.68 X 100
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A Comment on the Location of Minimum

Pressure (Maximum Velocity)

The point of minimum
pressure (hence
maximum velocity) does
not correspond to the
location of maximum
thickness of the airfoll.

Nature places the maximum
velocity at a point which satisfies
the physics of the whole flow field,
not just what is happening in a local
region of the flow.

The point of maximum velocity is
dictated by the complete shape of
the airfoil, not just by the shapein a
local region.

0.4
x <.—-—'
[ _..-—-""':
0
0 0.2 0.4 0.6 0.8 1.0
X
-1.0
Minimum Cp =-043
DS e e —
-L---‘-_
c, 0
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0 0.2 0.4 0.6 0.8
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DRAG-DIVERGENCE MACH NUMBER:

THE SOUND BARRIER

The value of M yat
which this sudden
increase in drag starts
Is defined as the drag-
divergence Mach
number. Beyond the
drag-divergence Mach
number, the drag
coefficient can become
very large, typically
increasing by a

factor of 10 or more.

——

Cgp =

Sound barrier

0

Local M, =0.435

M.=03
S

|

I

| [
| 1.0 M.
I

Mdrag divergence

~====+— Sonic line where M= |

/” M>1

M, =0.65>M, C>
—————

(d)



Design for higher speed aircraft

The question as to whether one may delay the dra
divergence Mach number to a value closerto 1 is a
fascinating subject of novel aerodynamic designs:

— Use of thin airfoils

— Low-aspect-ratio wing

— Use of sweep of the wing forward or back

— Removal of boundary layer and vortex generators
— Supercritical technology

— Area-rule technology



Bell-x1
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Use of thin airfoils

Chord

/.:[ @- P-51 (1940's)
\‘L@— F-36 (1950's)
sy F-104 (1980'y)

(a) Changes in airfoil sections.

Very thin W‘\

(b) F-104G airplane.



F-104: thin airfoils and Low-aspect-ratio wing

* The F-104 was designed to
achieve the minimum
possible wave drag but was
penalized with low subsonic
lift.

* As a result, the landing
speed of this airplane was
particularly high and landing
mishaps were common
among untrained pilots.




Swept-Back Wings

sweep angle v

A




Sweep reduces effective thickness-chord ratio

(2) Unswept (b) Swept
wing wing
Chord
Old
A chord
vﬂ
—




Use of sweep of the wing

Effects of sweep on wing transonic drag coefficien

Q.10p
P ,: :) 0" Sweep

i
o ﬁ_ 10 1/2° Sweep
= —
L
-
E 0,05 | 0
& N 40° Sweep
g i
g ; r 48 1/4° 5w

0 -

[ i i B | —
) 8 .0 1.0 1.1
Mach number
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Removal of boundary layer and
vortex generators

e A major disadvantage of swept wings is that there is
a spanwise flow along the wing, and the boundary
layer will thicken toward the tips for sweepback and
toward the roots for sweep forward.

e The spanwise flow may be reduced by the use of stall
fences and vortex generators.

e Wing twist is another possible solution to this
spanwise flow condition.



Stall fences and vortex generators

Boeing 707 wing

(bl



Supercritical Airfolls

Developed by Dr. Whitcomb of the NASA

The airfoil has a flattened upper surface which delays
the formation and strength of the shocks to a point

closer to the trailing edge.

— The flattened upper surface exhibits a reduction of lift, to

S
T
T

counteract this, the supercritical airfoil has increased camber
at the trailing edge

Nock- induced separation is greatly decreased.

ne critical Mach number is delayed even up to 0.99.

nis delay represents a major increase in commercial

airplane performance.



The classical airfoil and the supercritical airfoll

operating near the Mach 1 region

Strong
shock

Separaled boundary layer
T —— — . —

(a) Classical airfoil.

Weak
shock Smnaller separated boundary layer

(b) Supercritical airfoil.



4 Relatively
/ " strong shock

(a)

(b)

NACA 64,-A215 airfoil
M, =0.69

tl M>1 ] Relatively

+)

weak shock

\

. (| M>1

s

(c)
_//,—'

_/ ————— ::——‘ -_-‘__-Cpscl'

! \

! N\

)

Supercritical airfoil (13.5% thick)
M,=079



Supercritical Airfoils: Benefits

« The airfoil permits high subsonic cruise near Mach 1 before the
transonic drag rise

« At lower drag divergence Mach numbers, the supercritical airfoll
permits a thicker wing section to be used without a drag penalty
This airfoil reduces structural weight and permits higher lift at

lower speeds. [
L—

Y

AM 15%

eraise ©

Cruise Mach rumbsr

l.':_;"'— Atfe = 8% _,:-]
s — ___—~

]



0.016

0.012

0.008

0.004

NACA 64,-A215

J

Supercritical airfoil
(13.5% thick)

| | | i k| _

.60 064 068 072 0.76 0.80
M.,



THE AREA RULE

For almost a century, it was well known by ballisticians that the speed of a
supersonic bullet or artillery shell with a cross-sectional area was higher than
projectiles with abrupt or smooth var/ation of discontinuous area distributions.
In the mid-1950s, an aeronautical engineer at the NACA Langley Aeronautical
Laboratory, Richard T. Whitcomb, put this knowledge to work on the problem of

transonic flight of airplanes.

N
4

Planview

Alx)
B-—1 Cross section BB,

with cross-sectional
area A = fix)

Alx)

Areq distnbution e

(schematic only)

(schematic only)




Area Rule

Indent fuselage
at wing

Bulges at rear

Cross-secliona]l area

=z Cross-sectional area

Nose Body station Tail ose Body station Tall

(a) YF-102A before area ruling. (b) F-102A after area ruling.



With area
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» Recently, the area-rule a_ ‘%
concept has been applied E%

to design a near-sonic

transport capable of

cruising at Mach numbers iﬁé

around 0.99.
b Completely smooth surve
7N

%

= |n addition to area ruling,
a supercritical wing is used.

* The shocks and drag
divergence are delayed to a
near-sonic Mach number.

j :
/ \“\

Body station

Cross=sectional area
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So far, We have dealt almost exclusively with one-dimensional flow.

Exceptions were the treatment of oblique shocks and Prandtl-Meyer
flow in yet even these cases could be handled componentwise as
equivalent one dimensional flows.

One-dimensional analysis has been shown to be useful for obtaining good
engineering approximations to a wide variety of flow problems. However, such
an analysis is necessarily an approximation; no real flow exists that is truly
one dimensional. Furthermore, many problems cannot even be approached
with a one dimensional analysis

For example, the one-dimensional equations are inadequate for the design
of the contour of such a nozzle (A versus x). Likewise, the flow over a
cambered supersonic wing cannot be predicted on the basis of a simple
one-dimensional theory

For these, and a great many other, practical cases, we must develop the
equations of motion for multidimensional gas dynamics and find means
for solving these equations subject to prescribed boundary conditions.



A Review of the Governing Equations

* The Continuity Equation  + The N-S equations
(Conservation of Momentum )

c cou cov  cpw

p+p3_|_p1+,0120 Du & &(.éu 2 __ 8| (eu &\ 8] [éw au)
- - - - p—=——+ —[2;;———;4?-1 l+— H—t— | |+—| i —+—
ct Ccx cy CZ Dt & &\ éx 3 Vel ey a)| & e &)
Yoal (A My
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* The Energy Equation

Dh P _v.avr) + @
Dt Dt
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- .—}+ - +tq—
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Summary on Governing Equations
The connection between various flow field models

General Governing Equations

Navier-Stokes Equations
Newtonian fluid, compressible, viscous, unsteady, heat-conducting

inviscid flow
assurpption

Euler Equations

note: asrog 1. drop body force fsrms
2. use divergence form

« anget flog uniform
« shocks age weak (Mn=1.25)

Irrotatignal Flow
vVaVd

Potential or FULL Potential Eqn.
(Gas Dynamics Equation)

ncompressible flow  small distu rla NCe approx

Laplace's Eqn. sub/super & trans, incl.
P-G & TSDE Eqns.

treat turbulence via
Reynolds averaging and
turbulence model
|
Reynolds Equations
(sometimes called N-5)

restrict viscous effects
to gradients
normal to bodies, directional bias

|
Thin Layer N-5 Eqns.
|

introduce Prandtl BL assumption
= pressure is const. across layer
+ leading viscous term only

I
Boundary Layer Egns.

(includes integral san.
representation)



IRROTATIONAL FLOW

Vorticity is twice the angular velocity of a fluid element ¥ X V=2w

Aflow where ¥V % ¥ £ 0 throughout is called a Rotational flow

Examples of rotational flows.

Viscous flow inside a
boundary layer

Inviscid flow behind a
curved shock wave



Examples of irrotational flows.

Mo > 1

Flowfield over a sharp W

wedge or cone TxV =0 o [Wo-dimensional or axisymmetric
nozzle flows

Flowfield behind the shock wave
on a slender, sharpnosed body is
almost irrotational. For analysis,
we usually assume VxV = 0 for
this case.




Consider an irrotational flow in more detail

VxV

dv

ax

i i k
4 0 J _i(ﬂ_w_ﬂ_u)__ H_w_ﬂ_u)_l_k(
ax 8y o0z| \dy oz ‘I(ﬂ;c 87
i v w
dw  dv dw  du dv  du
dy 9z ax 9z dx Oy

irrotationality conditions

dut
dy

) =0



Consider Euler's equation without body forces.

DV
p— ==V
Dr P
du du du ap
ﬂuﬂ TE Elj.r ol dz  ox
‘ Hp du diut ou
dx = pu— dx + pv— dx + pw— dx
ax 3 dx & dy = iz
ou _ du
dy  dx
‘ ap du v dw
H_“_if —Ed.t puh—dx+pua—dx+ﬂwax dx
dz  dx
ap 1 ou? 1 v’ 1 dw?
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ap 1 au? 1 av? 1 duw?
——dx=-p—dx+-p—dx+-p—d
Elxdx Epﬂx I+2pﬂx I+2'ﬂﬂx .
Similarly
ap 1 8u? 1 9v? 1 ow?
——dy=-p—dy+-p—dy+-p—d
3y y 2p8y y 2p8y y+5p 3y y
dp 1 ou? 1 9v? 1 dw?
— L di==-p—dz+-p—dz+-p—d
w
(apd+apd+apd 1av2d+1av2d+1av2d
— — X g s e R ) |— X I | — —_ ) —
9% ay 0 T8z “°) T 2P %x 3y ATl g =

-?
where V* = u* + v* + w*



o . S el " e = —p——dx + —p— dy+ =p——dz

ap ap ap 1 aV? 1 9V? 1 9V?
_(ax Dy 32 dz) 2P 0% 5" By " 8z

—dp = 3pd(V?)



The velocity potential equation

Consider a vector A. If V x A = 0 everywhere, then A can always be expressed
as V¢, where ¢ is a scalar function. This stems directly from the vector identity,
curl (grad) = 0. Hence,

VXVC:O

where ( is any scalar function.

For irrotational flow, VxV=0

Hence, we can define a scalar function @ = ®(x, v, z)

V=Vob

where @, is called the velocity potential.



V=ui+vj+ wk
dd dp ad i s
i = = ) = — i =
\Y ——i —k :
P a},.I+ > dx iy
d(pu) d(pv) n dpw)
dx dy dz
g A i
Eﬁ¢’;+a}?ﬂ¢ +£ﬂﬂ’ =0
p(®,, +®P,, +D. ]—l—‘l?'—-i—(li}—-l-'ll—:[l
iy dz

we eliminate p




dp = —gV iV = —g d(V?) = —g d(? + 12 + w?)

-

N
D’ + D’ + D
dp=—pd 5 -

Recalling that the @= E . » a::f,l'.'}=
flow is isentropic, dp ap .

= ——4d
dp >

a?

0 ((I)ﬁ +<I>§+<I>§)
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velocity potential equation.

From the energy equation h, = const
V2 2 2 'p"i
ﬂpT+—=EPTﬂ I-EE_!_F_:FRTH a +
2 y-1 2 y-1 y-1 2
-1
a* =1:I‘-“:—]F’—1«"'E a’ [u1+u2-|-w1]




Note that the velocity potential equation is a nonl/inear partial differential
equation. It applies to any irrotational, isentropic flow: subsonic, transonic,
supersonic, or hypersonic

It also applies to incompressible flow, where a —> oO
, henceyielding the familiar Laplace's equation,

D, +P, +D, =

There is no general closed-form solution to the velocity
potential equation,



Linearized Flow

£ e T N

E. e M/////////////////////m
L Y PNV Mo e
o N L) /
Uniform flow ~ Perturbed flow

V = Vii+ V,j+ Vik,

u', v', and w’ are the perturbation velocities in the x, y, and z directions

Vi = Voo + 0t/

v , In terms of the velocity potential,
, ==
¥

V:=w' Vb =V = (Vo +u)i+vj+ wk



() a i’
Vx:Vm+u’—a—~_v +—¢i -:I:IH:—qb

dx * 7 Bx dx?
. ad dgh alqt.
Vi=tt = — = — - = B
¥ v El}r HJ} ‘I}.'I"J" 3}12
dad  dg
= =—=— 9*
Vz u e HE {Dnz — _f
dz

Inserting in velocity potential equation:

ap\* | 3%¢ o\ | %0 96\’ | 8¢
- (s 2Y | 28 - (32) ] 52+ - () |

ap\ 3¢ 8°¢ —2(V + 3¢) dp 3°¢ 3¢ dp 3%¢
ox ) dy dx dy ©Tox) az 9x0z ay dz dy az

-2 (Vo +

The above equation is called the perturbation-velocity potential equation



Since the total enthalpy Is constant
throughout the flow,

VI 'L.?E [Vm+ur]2+uiﬂ+wa2
ho + —=h+—=h
W 2 4 2 + 2
2 2 2 N2 4 a2 2
o +'r’_,¢_ a +{Vm+u} +ve4w
y—1 2  y-1 2

_] ' ¢ ¢
:‘IE=::.'._;‘£:J—FT{2H V.x+Hz+U!1+w1}



o0

u' v+ 1\ u”
= M? =
“{W+”wx+(2 )W

i u' +1\ v?
+ M2 (y—l)—+(y )

o] 2 12 du’
() (5]
VZ dx

2

y =1\ [w?+u?\] 0

) (55

) (5%
2 ¥z 0z

w’ (] " u' ) (Bu' 2 Bw')

Voo Ve 0z ax

We now specialize to the case of small perturbations, i.e., we assume the u', v',

and w’ are small compared to V:



’ ’ Fy 2 by 2 F oyl
u v w u v w
¥ 4 d oy 1 1 1 T 1
Vo' Voo T Ve & (vm) (vm) ﬂ"d(vm) «
1. For0 < My < 0.8 and for M, = 1.2, the magnitude of

ou'

u/
M? 1)— o eoe | —
oo[(y+ )V + ]Bx

o0

1s small in comparison to the magnitude of

ou'

pa— 2 —_—

Thus, ignore the former term.



2. For M, <5 (approximately),
f ﬂu.l'
M2 2
o0 [(}* 1) ot ] %
is small in comparison to duv'/dy,

dw’

2 [y, |3
Mm[(r l}v + ]ﬂ:—:

oc

is small in comparison to dw’/dz, and




¢ 3¢ %9
(1-M)

il Y
HJ:E_I_H:.J T dz*

The perturbations must be small.

From item 1 in the list above, we see that transonic flow (0.8 = M, < 1.2)
1s excluded.

From item 2 in that same list we see that hypersonic flow (M, = 5) 18
excluded.



LINEARIZED PRESSURE COEFFICIENT

P— Px
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Ve Vjﬂ
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2¢p 2¢p
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L
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5 [ Zai_]{” o Fu-+v +w]:|
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Where &/s small.
Pac

From the binomial expansion, neglecting higher-order terms,
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i 1= ZM2 (2“’ u'2+v’2+w’2>
Poo 2 AV Vozo
2
Cp=—— (p -1)
_ y ) 2u’ u/2+v/2+w/2
o0 o0 00
o u? 4+ v? + w?
- v Vozo

Since u?/VZ, v?/V2, and w?/V2 % 1,

e

Ve linearized pressure coefficient,

Cp =




LINEARIZED SUBSONIC FLOW

Consider the compressible subsonic flow over a thin airfoil at small angle of

attack (hence small perturbations),

The usual inviscid flow boundary condition must
hold at the surface, i.e., the flow velocity must be

tangent to the surface.

For small perturbations, ' < V4, and tané ~ #

df v’

dr Ve g Since v’ = d¢/dy

L ST 4

dy  Tdx

Shape of airfoil, ¥y = f(x)

Ve +u'’

g LY

—_—

" |



SIMILARITY LAWS FOR SUBSONIC FLOW

iy
For small-perturbation, (1 — ME.D}--% - —tz = ()
linearized, compressible flow dx dy
For incompressible, two- P P,
dimensional, steady potential flow, ax2 T 3y? =0
i i

Solutions to Laplace's equation are available for a wide variety of boundary
conditions. Thus, it would seem logical to try to transform the linearized,
compressible potential equation into the incompressible potential equation,

so as to utilize available incompressible flow solutions for problems in

compressible flow.



Consider a thin body in the (x, y) plane immersed in a uniform cnn{prﬂaaih]e flow
U of Mach number M... We shall transform this flow to the incompressible plane

(x;, ). Let

X, = Kpx

¥i = kay

¢ = kad
U = kyUx

[}

where k., k,, ks, and k4 are scale factors of the transformation,

(1 -

M2)

F’d
IR
dy

(1 — M%) ¢, N k_%ﬂzﬁbi

= {)
ky  ax? ks ay}

=0 k3

ax




J 1

In order to transform — =
ky o V1 - ML

For example, consider compressible flow over a thin airfoil of chord ¢ and

thickness ¢. r o E
, ) e
L ==L <oVl - ML
¢ kic ¢

Compressible

Incompressible

(a)

Incompressible

(b)




for small perturbation flow:

(ﬂ) _ %
dx h_ U ;‘:l (_ﬂi;ﬁ-’;) B K4 kz a"i"p,

v, = 3¢ ,/dy. ko\dxi/y  Usx ks 9y,

To satisfy the boundary conditions at the body surface in the incompressible
plane, it is necessary that:

ki kgks

1 - .
since ks = m k-; V1 — J.I-‘fi




It is important also to compare the pressure coefficients in the two planes.

For compressible flow, EF — _ZIJFJ'IU.M
1 2 _
For incompressible flow p + 5pV*" = constant
By definition C - (P = Peo)i
b T
EﬁUmi
L L 2 I 2, .2
P + ‘2 oo, = Py + 'iﬂv:' = p; T EF' (Hp, + UW.} + Vp,



1o [, U ( Up, ) ( Vp, ﬂ
— —_ - £ 2_ + —_ + -
{p F::I}L 2 ler'I‘r! Um.g U-;:-;.;, U'S'C'u

Dropping smaller terms, we obtain

For the compressible plane, V1 - MZ,

C - _-_ZE _ ax B ks dx; 3 _Z_I_Iﬂ'
4 UIII U“-: {-'rmi 3 '[-'r{;.:;j

{:P_——'-"——;"
| — M:a




The same relationship holds for other airfoil characteristics
involving a ratio of the Y dimension to the x dimension.

@ = a\V1 - M2 (Ldmbﬂrh:] Vo

{cam bera‘c}

- === Mean line {equidistant between upper and lower surfaces)



I = /p;d,t- fpurix
0 ()

L L fdx [
CL_l _1 _‘L‘Cmf lﬂﬂuc

_ 2 - 2

Thus, the lift coefficients for the airfoils in the compressible and incompressible
planes are in the same ratio as the pressure coefficient:

Cri = Cr(1 — M%)

The similarity relations are called the Goethert rules.

It must be emphasized that these rules are valid only for thin airfoils with small
angles of attack, small camber ratios, and so on.



Application of Goethert similarity
Example rules for subsonic flow past a
two-dimensional airfoil

A two-dimensional airfoil has a thickness ratio (maximum thickness to
chord) of 0.04 and a camber ratio of 0.015. When tested in a low-speed

wind tunnel (incompressible flow, M = 0) at an angle of attack of 3°, the
lift coefficient C; is measured to be 0.6. It is desired to determine the

performance of a similar airfoil at M ,, = 0.5. Using the Goethert rules,
determine the geometrical characteristics of the related airfoil in
compressible flow at the given M ,, and determine the lift coefficient.

Solution:

V1= M% = V1 = (0.5) = 0.8660

! d 1 ! 1
- =\ =\ = (0.04)(1.1547) = 0.0462
(f)M-:-e='|:|'.5 (ﬂ); V11— ML (f)fﬂ.gﬁﬁlﬂ ( ) )



(c_a_mbﬂf) _ (‘?“mb‘é'_) ! = (0.015)(1.1547) = 0.0173
Mx=05 i

¢ C V1 — ML

= (3)(1.1547) = 3.4641°



Although the Goethert rules have been shown to possess some
application, it would seem far more useful to have a comparison between

performance of the same airfoil in compressible and incompressible
flows

Let us consider two airfoils in the incompressible plane, related to a third foil
in the compressible plane. The first incompressible airfoil.

Compressible —

[
Incompressible [L] = [_:f] W1 — ML LT e iy € g
(i) -

Incompressible [L] = [ F ]
(iB) T




we need a relation between the pressure
coefficients for the incompressible airfoils.

It can be shown that for thin bodies in incompressible, two-dimensional
potential flow, related by (yfc); = Kf(x/c);

With 7 being the same function for all bodies,

(2)
¢/ip  Kip 1

Q. =
iA

N

which means that: C.
Ceia _Kia _ AT
Cﬁ.ﬂ Kel _ . ﬂil'llu')’ — 3
CP,-E =, V1 = M5
Cri Cris = Co(1 = M
Cp=73 > | Cria = Gl <)




Chia = Cp(1 = M%)

Cpip = C,V'1 = M
C,
‘Cp P uh—
V1 - M%

This expression relates the pressure coefficient on a body immersed in two-

dimensional compressible flow of Mach number My, to the pressure coefficient on
the same body immersed in an incompressible flow.

Let us now attempt to determine the shape of a third incompressible airfoil call

it C-that has the same pressure coefficient at corresponding points as the
compressible foil

Y !
l::,l'.l'l-f = {:..F' — ﬁ = ; — CPEL_ . (E)."L'_' (c)if

e ), O
C/iB CJin




Therefore, for Cpie = C

t B 1 (i) - 1 t
[f)-'c V1-ML\c/s V1 - MLC
1

i = ——
V1 - ML
( camher) B 1 camber
¢ c V1-ML ¢
C Co
N1 - M

The similarity laws for subsonic compressible flow, as given by Egs. are
called the Prandtl-Glauert rules.



Application of the Prandtl-Glauert
Example similarity rule for subsonic Dowpast a
two-dimensional airfoil

The two-dimensional airfoil of the previous example, when tested in a low-speed
wind tunnel at an angle of attack of 3°, is found to have a lift coefficient CL of
0.6. Determine the lift coefficient of the same airfoil at M~ = 0.50.

Solution
From the Prandtl-Glauert similarity rule,

— 0.6 (.6
L =Ci= C V1 - Mi — > Cp = o [U-Sji =~ 08660 0.6928

Cy

M

we compared the lift coefficients of two different airfoils, one in
incompressible flow and the other, of different dimensions, in compressible
flow



IMPROVED COMPRESSIBILITY
CORRECTIONS

The importance of accurate compressibility corrections reached new highs
during the rapid increase in airplane speeds spurred by World War II.
Efforts were made to improve upon the Prandtl-Glauert rule discussed
prevously the more popular formulas are given below.

In an effort to obtain an improved compressibility correction, Laitone
applied locally in the flow, i.e.,

__ Gy,
/1= M?

where M is the local Mach number. In turn, M can be related to M, and the
pressure coefficient through the isentropic flow relations.
The resulting compressibility correction is:

Cp,

— 1
JT=MZ + Mgo(uy—z—M; 2 JT-MZ | C,

Gy

e =




Another compressibility correction that has been adopted
widely is that due to von Karman and Tsien

C

C, = :
ST [ B Y S
o\l +/1-M2 ) 2
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Comparison of several
compressibility corrections
with experiment for an
NACA 4412 airfoll at an
angle of attack a = 1°53'.

—0.8 |- Note that the Prandtl-Glauert rule, although
b the simplest to apply, under predicts the
061 S Fxporiment experimental values, whereas the mproved

- compressibility corrections are clearly more
—0.4 |- accurate.

ib This is because both the Laitone and
= Karman-Tsien rules bring in the nonlinear

aspects of the flow.




CRITICAL MACH NUMBER

We have now finished our discussion of linearized flow and the associated
compressibility corrections. such linearized theory does not apply to the

transonic flow regime
08 = M, < 1.2

Local M, =0.772
Local M, =0.435 A
M.=035
M.=03 p e A

(&)

(a)
**** ~— aonic line where M= |

[Mlﬂfd:l.ﬂ f‘-# H}I “

M.=M,, =06 M, =0.65> M, =
(c) (d)

Linearized flow will fail even for M« lower than 0.8



Let p.. and p,. represent the static pressures in the freestream and at point A

For isentropic flow,

Pa _ PalpPo _ (l+[{r - t);z]Mﬁﬂ)”ﬁ* -1

2 Pa
Coa= }"Mgg (Pm - 1)

c B y) (1 + [{}’, _ 1}";2]”&: yi(y—1) |
PET M2, [\ T+ - I]XE]M,%) -




Cp

2
Lr = '}"M&g

(

L+ [(y — 1)/21M_,

1+ —-1)/2

vty —1)
)"



For high-speed
airplanes, it is desirable
to have M, as high as

C, =M

possible. Hence, modern ——
high-speed subsonic Thin airfuil
airplanes are usually
designed with relatively i
thin airfoils. | Thick airfoil
Thick €y ~a= :
_ Thin aiefoil
Thin 5 —= ! |
0 i ! M,
I (M b
|
[Hﬂlll'l_'t

Effect of airfoil thickness on critical Mach number.



Tl

Example
In this, we illustrate the estimation of the critical Mach number for an
airfoil using
(a) the graphical solution discussed in this section, and
(b) an analytical solution using
a closed-form equation
Consider the NACA 0012 airfoil at zero angle of attack
The pressure coefficient distribution over this airfoil, measured in a wind
tunnel at low speed, is given. From this information, estimate the critical
Mach number of the NACA 0012 airfoil at zero angle of attack.

0.4 Minimum CP =-0.43

o b




(a) Graphical Solution. First, let us accurately plot the curve of Cp.,versus
M., from Equation

o 2 {1+l —nameNTeTh
oy M2 L+ (y —1)/2

M 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cpoe —306 -2.13 -129 -0.779 0435 -0.188 0

From the pressure coefficient distribution given in the figure.
The minimum value of Cp on the surface is -0.43.

Cp.0)min —0.43
(Cp.0)min = —0.43. (Cohmin = —op0min _
p.0)min ) (Cpmin T o
Mo 0 0.2 0.4 0.6 0.8

(Colmn —043 0439 -0469 -0538 -0.717



2.0
18
-1.6
-1.4
-1.2
-1.0
08
06
0.4
02

Mg = 0.74




(b) Analytical Solution.

043 043 2 [[141p - DMty
{Cp)mm_\/_:‘m » m_’yﬂ’f&[( I[+(y—-1/2 ) -

» M = 0.7371

Question: How accurate is the estimate of the critical Mach number in this
example?

Wind tunnel measurements of the surface pressure distributions for this
airfoil at zero angle of attack



=1.5

-1.0

0.5

1.0

T T T

Locally supersonic flow

'_____I‘"_Cﬂ.crz_l*‘“f‘j

Locally subsonic flow

M, =0.575
R,=4.68 X 100

0 0.2 0.4 0.6

)

(0.8 1.0



Linearized perturbation-velocity potential equation

ﬁqun T ff»‘_w..r_v =0  where (il = \fl e Mgzu. For subsonic flow

For supersonic flow,
32d.. — —0 where A= M3 —1 -
f,fl” ¢'}'_v -

¢=flx—=2ry)+g(x+Ay)

Examining the particular

solution where ¢ = 0, and hence ¢ = f(x — Ay), we see that lines of constant ¢ cor-
respond to x — Ay = const, or

dy 1 1

H'—'A:,/Mgﬂ_l




Consider the supersonic flow over a body or surface which introduces small changes in
the flowfield, i.e., flow over a thin airfoil, over a mildly wavy wall, or over a small hump
in a surface.

Left-running
Mach waves
M, > 1
A g= 0 A i
+ TN M2 —1







&S
|
i
I

e =0 N
M,>1
Right-running
Mach waves
¢ = fx —2y) +g(x +1y) ¢ = gx +1y)

—29
Cp=—=
JMZ =1




My, >1

pr ZHA
C,ﬂ'ﬂ — =
M: —1
)
20p
Cop = :
MZ — 1

(+) Pressure coefficient

There is no real need to worry about the formal sign

. For any practical application, it is suggested the use of the Eq. along the body
with common sense to single out the compression and expansion surfaces on a
body.

If the surface is a compression surface, Cp must be positive, no matter

whether the surface is on the top or bottom of the body.

Similarly, if the surface is an expansion surface, Cp must be negative.



Subsonic

Y

P~ Px
Hee

Pressure coefficient, G,

0.6+
Mo =2 ’
0.5F e W
0.4} L
”~
’f
Exact shock i
0.3 theory "
Fy
s
s
2
02r f PN Linearized
P theory ~ _ 2¢
Ad T YME -
0.1F (/
5% difference
0 | L I | 1
4 8 12 16 20

& (degrees)



4o

4o lf“
Cp = - dx =
vML —1cJy Mz — 1

The axial force coefficient

] [TE
Ca = E fLE {Cp,u - l'r-::t.'r,.l':' dy

the pressures act normal to the surface, and hence there is no component
of the pressure force in the x direction. ¢ — {J,

] = €y COSQ — Cp SINQ

Cy = Cp SINW + C, COS QX

The assumption that ais small cosa == | and sinw == .



Example

Consider a flat plate at angle of attack in a supersonic flow. Calculate lift
and drag coefficient

‘EL:; J*F“““ml |
Moo

Py

2a
Cpt = ——t . ___
VMZL — 1 P MZ — 1

. 1 [~
The normal force coefficient €, = _f (Cpi—Cpu)dx
C Jo



€ =y — Cal M2 —1

Cqd = Cpl¥ + 4 '

Within the approximation of linearized theory, cl depends only on a and is
independent of the airfoil shape and thickness. However, the same
linearized theory gives a wave-drag coefficient in the form of

-(a® 4+ g% + g}

ML -1

where g, and g, are functions of the airfoil camber and thickness.



R@éﬁ@ﬁl@@ ELOW WITH MEAT[’-TRAM§EE /£

o We have studied the effects of area change and friction on a
gas flow. For these cases, flows were assumed to be adiabatic.

o In this session, the effect of heat addition or loss on a one-
dimensional gas flow will be investigated. To isolate the
effects of heat transfer from the other major factors we
assume flow in a constant-area duct without friction.

o At first this may seem to be an unrealistic situation, but
actually it is a good first approximation to many real
problems, as most heat exchangers have constant-area flow
passages. It is also a simple and reasonably equivalent process
for a constant-area combustion chamber.




—CONMPRESSIBLE FLOW WITHHEATTRANSFER /.
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o In systems where high rates of heat transfer occur, the
entropy change caused by the heat transfer is much greater
than that caused by friction, or

dse, > ds;

Thus
ds ~ ds,

and the frictional effects may be neglected.

— !

AERODYNAMICS U
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o To isolate the effects of heat transfer we make the following
assumptions

“CONIPRESSIBLE FLOW WITHIHEAT TRANSFER @

< Perfect gas with constant specific heats
< Steady flow

< One-dimensional flow |
< Constant area JA = 0 P, i g

NN
P2

|
|
B
< Negligible friction ds; ~ 0 T * T
. | |
< No shaft work sw, = T T
Q

< Neglect potential 7z =0

heat transfer (in and out)

o We proceed by applying the basic concepts of continuity,
energy, and momentum. -

— —
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o Consider the control volume shown in Figure, in which a
small amount of heat dq, expressed in joules per kilogram

(J/kg), is added to the flow.

\COIVIPRESSIBIE' ELOW. WITHIHEAT TRANSFER m{}

[V + dV
p +dp

i PR ey P
2 L Eeb DD
= e M+ dM
PRmns
LU e s

3"':::'1::::




o The continuity equation is

pV = (p + dp){(V + dV)

so that

or

J MeSsSSID A MeEed)
— —— o NS R_SFRE Y -
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o The momentum equation is

dp + pVdV =0

Since the only forces acting
on the control volume are pressure
forces. With pV = constant, we can integrate the preceding

equation to obtain

p + pV? = constant

p = const
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o The energy equation is
6q = dh + VdV
For a perfect gas,

dh = Cp dT
So that

6q = ¢, dT + VdV

From the definition of stagnation enthalpy and stagnation
temperature 5 5

|4 Vv
hﬂ=cpTﬂ=h+—-é—=cpT+—2-——> c,dT, = ¢, dT + VdV
6q = cpdl,

This is the first major flow category for which the total enthalpy has not been constant.

—_—
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o It is now necessary to express the basic equations in terms
of Mach number and arrange the results into a form suitable
for application to engineering problems.

o Let’s discuss the Rayleigh line on a p-v diagram

o Historical Note: For a constant value of pV, momentum
equation on a p-v diagram, is a straight line with a negative
slope and was named the Rayleigh line by Aurel Stodola in
his classic book Steam and Gas Turbines, McGraw-Hill (1927),
p. 84. The corresponding flow is thus called Rayleigh line

flow.

— !
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const

G
o Rayleigh line: p + 3
o Lines of constant temperature: pv = const

Increasing temperature
o Point 3 is reached

where the temperature
1S @ maximum.

[s this a limiting p
point of some sort?
Have we reached

some kind of a

choked condition?

Point of maximum temperature

Rayleigh line
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To answer these questions, we must turn elsewhere. Recall that the addition of

heat causes the entropy of the fluid to increase since

)
d5€=—q
T

From our basic assumption of negligible friction, ds ~ ds,

Fora T = constant line, pv = RT = const

pdv+vdp =0 d_p=_£
dv v
Foran S = constant line, pv’ = const
d
U}’dp+p]/v]’_ldv=0 _P =—}/£
dv v

— — R —
AERODYNAMICS I
With | [/ N or rHeat Loss

the isentropic line
has the greater
negative slope
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We now see that dv v dv v
not only can we
reach the point of
. \‘ .
maximum \ \\ )/ Increasing entropy
temperature, but \ \
| \\U..
more heat can be N Q
o
added to take us N \\\ Point of maximum temperature
.. \
beyond this point. Point of maximum entropy
P .
Increasing
temperature
Gy
Dﬂ.‘.i‘ aﬂt
ey
s
"‘-.HH“‘
H"""-.__‘__
S,
""-.._H e
—
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From point 3 to 4, \ N

we add heat to the \ \ X
system and its N N
temperature |
decreases.

\ \ Point of maximum temperature

Point of maximum entropy
The effects of heat p

addition are normally
thought of as causing the
fluid density to

decrease. This requires
the velocity to increase
since pV = constant by
continuity. =

Increasing
temperature

This velocity increase automatically

Some of the heat that is added to the system is converted into this increase in kinetic
energy of the fluid. p— R
— ' " W L
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Noting that kinetic
energy is proportional to
the square of velocity, we
realize that as higher
velocities are reached,
the addition of more
heat is accompanied by
much greater increases
in kinetic energy.
Eventually, we reach a
point where all of the
heat energy added is
required for the kinetic
energy increase.

\ \ Point of maximum temperature

Point of maximum entropy

Increasing
temperature
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“RAYLEIGHINE FLOW, / \WORKINGIRELAT

_
P RT
V2 = M2%a* = M*y RT p(l + },Mz) — const
p+ pV* = const
Py _ I+yMy
p] ]—|—]/M22

L




RAYLEIGHIUINE FLOW. / WORKINGIRELATIONS

, i 1 1)/ 2 |\/|2 y/(y=1)
pozp(1+7/71 poz_pz( -I—[(;/ ) ] ZJ

Pos B Py 1+[(7/_1)/2]|\/|12

2 2 \7/(r-1)
P2 1+yM/? - D, 1+yM2(1+[(¥-1)/2]M,
P1 B 1 + ]’M22 p01 1+ ]/MZZ 1+[(7/_1)/2]M 12

AERODYNAMICS U




“RAYLEIGHUINE FLOW./ WORKING RELATIONS Q
- . Y ALE : | .

P
T = £
pR
e \/T = (constant)pM
i AV ( )P
V = MV/yRT

VT = (constant)pM =
T = (constant) i
p(l+]/M2)= const (l-l-‘yM)
L+ yMI)? T+ yM3)° T, M}(1+ yM3)

AERODYNAMIGCS I
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) 71, T T,[(1+[(r-D/2]M]
To=T (H 2 M j ‘ TOl_T1[1+[(7/—1)/2]M12J

T,  M3(1+yMi) »h_ 1+yM2Y M2(1+[(y 1)/ 2]M 2
T, M1+ yM3)? Ta (L+yMZ) M2 1+[(y-D/2]M;

— !




Qv

e ————

o To facilitate computation, as well as any tabulation of these
expressions, let state 2 be a reference state at which Mach
number 1 occurs, as was done for both isentropic and Fanno
flows. More physical significance will be attached to the
Mach 1 state later. Denoting the properties at Mach 1 by (*),

“RAVLEIGHLINE FLOW. /. @EEEREM@E @@M@HWMS @

we see that | R |
| I |
1 + ' | Additional hypothetical |
P* = Y 5 _I_p-: M<1 : heat trg.nsferyp I
p 1+M | | |
| /7’ /1‘ - u inl /i ___ﬂ._,’{___i
2 2 ‘ I / //
r (1+y)'M @ q q @ q q @
T (1 + yM?)? M, M, M =1

*

V_p_p*T:(l‘l'T)Mz
v p pT" 1+ yM?
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o To facilitate computation, as well as any tabulation of these
expressions, let state 2 be a reference state at which Mach
number 1 occurs, as was done for both isentropic and Fanno
flows. More physical significance will be attached to the
Mach 1 state later. Denoting the properties at Mach 1 by (*),
we see that

— 1
et (T e oo
T, (1+yM)? (1+7 1) i (1 + yM?y
2
Nl PP yi(y—1)
EE:(HTMZ) 2 1+ yMA\[2 + (y - MY
Po 1 +y y — 1 _(1+7) y + 1 ]
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—_1+7
P* 1+ yM?

T _ (1 +yMm?
T~ (T + M7y
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o To gain a better understanding of the effect of heat addition
on Mach number, let us determine the locus of states for a
given mass flow on a T-s diagram; the resultant plot is
termed the Rayleigh line.

®)

s—s*=¢,In— — Rin
P _ 14y SOF9 =0T
P* 2 5
.f—-.r"‘_ T — 1 [-!—”im
o lnﬁ_%ln[.}' ; ]

- ———
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1- M=1
Limiting Point
e Subsonic Flow
= 0.8 4
s
=
= heating
£ 061 e
" T
g cooling
2 Supersonic Flow
£ |
s 04
E
= heating
=
T .,.,-'"' /"‘
L2s cooling
U T T T T T T T
1.5 1.3 4.1 09 a7 05 0.3 -0.1 0.1

DeltaS {Change in Dimensionless Entropy)

For heat addition, the entropy must increase and the flow moves to the right.




_dp
=1

This equation is valid anyplace along the Rayleigh line. Now for a differential
movement at the limit point of maximum entropy, ds = o or s = const.

dp
V= (—;) (at the limit point)
P ) =

This is immediately recognized as sonic velocity. The upper branch of the Rayleigh
line, where property variations appear reasonable, is seen to be a region of subsonic
flow and the lower branch is for supersonic flow.




/ Nncrﬂasing pressure

Upper
branch

o™

4 P Limiting point
1

Heating -
/
Lower branch |
-

Rayleigh line




dh, =0

(at the limit point)

The stagnation enthalpy increases as long as heat can be added. At the point of
maximum entropy, no more heat can be added and thus h, must be a maximum at
this location.
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S’“‘pe ~d Maximum static enthalpy
7 d Maximum stagnation enthalpy
u‘nﬁoﬁm A Maximum entropy
SN RN’ Mach number = 1
/1 &
hsonic >
vV ’9
Rayleigh line
"-.‘::.I
{5'3 Heating .
5 ’
7 _ Cooling
5
dh,
ogq = o, +dh, dh, =Tds, =Tds =T
ds

n:nonvuamxcs u
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The procedure for solving Rayleigh flow problems is quite similar to the
approach used for Fanno flow except that the tie between the two locations in
Rayleigh flow is determined by heat transfer considerations rather than by
duct friction. The recommended steps are, therefore, as follows

1. Sketch the physical situation (including the hypothetical * reference
point).

2. Label sections where conditions are known or desired.
3. Listall given information with units.
4. Determine the unknown Mach number.

5. Calculate the additional properties desired.

— g
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EXAMPLE=—

For Figure, given M, = 1.5, p, =10 psia, and
M, = 3.0, find p, and the direction of heat

transfer. yal
o S ©,
p2 p* I :
= —"—p; =(0.1763) ——— |} (1)) = 3.005 psia
p2 i pr=( ) 05733 (10) p
/ Stagnation curves

; T

The flow is getting more Su_?f\c ':/ g Maximum static enthalpy

supersonic, or moving away

from the * reference point. Maximum stagnation enthalpy

Maximum entropy
Mach number = 1

Rayleigh line

Heating

Cooling

AERODYNAMICS 11
= J vwwwpk.wt,«—r-m—-vv\---wv




; Given M, = 0.93, T, =300°C, and T,, =100°C, find M, and p,/p,.

To determine conditions at section 1 we must establish the ratio

I, Ty Tn (173 + 100

T* TaT,* \273+300

) (0.9963) = 0.6486
T,/ T,* = 0.6486 » M, = 0472

pz _ p2p
' pr ot

1
= (1.0856) | ——— |} = 0.593
1.8204




A constant-area combustion chamber is supplied air at 400°R and 10.0 psia.
The air stream has a velocity of 402 ft/sec. Determine the exit conditions if 50
Btu/lbm is added in the combustion process and the chamber handles the
maximum amount of air possible.

|
!
|
Chamber :
I

1
[
|
l
l
|

-~

£ . A___

i
|
!
|
!
|
1
— A00° ' / /
il l ?EUG E‘Sia @ g = 50 Bu/lbm @ 1 ®
l P

V, = 402 ft/scc

=T =400°R p> = p; = 10.0 psia Vo = V| = 402 ft/sec

ay =/ ve.RT> = [(1.4)(32.2)(53.3)(400)]"* = 980 ft/sec

M; = —4[}2—1::4113
S g 980

————— g
AERODYNAMICS I
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i

T
T:.E:ETE (

) (400) =413°R

T, 0.9675
T, T
M> = 0.41 » 2 =05465 - =06345 2 =109428
T,* T* p*
AT, =9 = 2% _ooser ‘ Tis = T + AT, = 413 4 208 = 621°R
— e — — 3= 1p — —
T e, 0.24 . ’

Ts Ts T, 621
» B BB (0.5465) = 0.8217
T* TaT* 413

T
Rayleigh table M; = 0.603 T—i =09196 = =1.5004
p
;
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EXANIPLE(CONIT:)

ps: p* 1 :
= ——py = (1.5904) | ——— ) (10.0) = 8.19
p3 o p2=I )( _9413)( ) psia

T, T*
i = ——1> = (0.91906)

400) = 580°R
T T, )( )

(.6345




In previous example, how much more heat (fuel) could be added without

changing conditions at the entrance to the duct?

| —— | |
| | I
| , | |
— | /
@ T, =400°R ®T2=4OD°R = A
M, =041 and T;; = 413°R. p, = 10.0 psia py = 10.0 psia My = 1.0
Vi =402 ft/sec V, =402 ft/sec py="?
o _ It 1
Ipn=T"=—"Ta= (413) = 756°R
Tis 0.5465
— *_p* = : (10.0) = 5.15 psia
Ps=p = P2 = \Togg )V T 0P

g = cp AT, = (0.24)(756 — 413) = §2.3 Btu/lbm
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There are some similarities between Rayleigh flow and normal shocks:

1. The end points before and after a normal shock represent states with the
same mass flow per unit area, the same impulse function, and the same
stagnation enthalpy.

2. A Rayleigh line represents states with the same mass flow per unit area
and the same impulse function. All points on a Rayleigh line do not have
the same stagnation enthalpy because of the heat transfer involved. To
move along a Rayleigh line requires this heat transfer.

— g
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Shock Wave Equations Rayleigh Flow Equations
4 N (g T\
o Vi = Vs pV = G = const
h1+2—12=h3+? het +q = he
P+ o1V = py+ ;Y] p+pV:= const

\= A —
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For every point on the supersonic branch of the Rayleigh line there is a corresponding
point on the subsonic branch with the same stagnation enthalpy. Thus these two
points satisfy all three conditions for the end points of a normal shock and could be

connected by such a shock.

Stagnation curves

Subsonic Rayleigh line

Supersonic

5 — !
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Shock Wave Equations Fanno Equations
Vi =pm;Vs o Vi = p2 Vs
2 V 2 2 V«:.E
A 2 h+—=h =
hy + 5 hy + 5 1+ 5 + 5
F
p]_|_p1V]2 =P2+PEV22 (I-?1+ﬂ1"f12)—?f—fh+ﬁ?v2
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FANNQ FLOW / RAYLEIGHFLOW. / NORMAL SHOCK

p+pV?

Fanno flow

M<1 M=1.0 M=>1

The Fanno continuity and energy equations and the Rayleigh continuity and
momentum equations collectively are the same as the continuity, momentum, and
energy equations developed for the normal shock. Thus, the locus of states before and

after a normal shock appears on a T-s diagram at the intersection of the Fanno and
Rayleigh lines.
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Air enters a constant-area duct with a Mach number of 1.6, a
temperature of 200 K, and a pressure of 0.56 bar . After some heat
transfer a normal shock occurs, whereupon the area is reduced as
shown. At the exit the Mach number is found to be 1.0 and the pressure
is 1.20 bar. Compute the amount and direction of heat transfer.

— e e

Air ———+—»
I
I
|
Ml = 1.60 1.0
T, =200 K = 1.20 bar




=EXANIPLE(CONT:)

v
L= ¢ i+

o : M, = 1.60
The flow from 3 to 4 is isentropic; thus: T, =200 K
p = (.56 bar

) (1.20) = 2.2714 bar

S W TR

From the Rayleigh table we find M, = 0.481 and from the shock table, M, = 2.906.

T I
T,lz_“:rl:( )(ZUU):3D1K

T, 0.6614
T, T.* |

To= 2L T, =(0.6629) [ —— | (302) = 226 K
T,* T, 0.8842

g = cp(Ti2 — T11) = (1000)(226 — 302) = =7.6 x 10* J/kg




In Subsonic Rayleigh flow,
once sufficient heat has

been added, we reach
Mach 1 at the end of the
duct.

The T -s diagram for this
is shown as path 1-2-3.
This is called thermal
choking.

Reduction of the receiver
pressure below p, would
not affect the flow
conditions inside the
system. However, the
addition of more heat will
change these conditions.

Supply air

I, = constant
P = constant
Vl = ()

|
|
4
|
I
e I
@ ®@ ™ O

New Rayleigh line
at lower flow rate

Rayleigh line for
original heat
transfer




Now suppose that we add
more heat to the system.

The only way that the
system can reflect the
required additional
entropy change is to move
to a new Rayleigh line at a
decreased flow rate. This
is shown as path 1-2’-3'- 4
on the T -s diagram.
Whether or not the exit
velocity remains sonic
depends on how much
extra heat is added and on
the receiver pressure
imposed on the system.

Supply air

I, = constant
P = constant
Vl = ()

|
|
4
|
I
e I
@ ®@ ™ O

New Rayleigh line
at lower flow rate

Rayleigh line for
original heat
transfer

_‘_________-i-—nnnonvuamxcs i




BY A g A VAN W =)

REE———

Let us add sufficient fuel to the combustion chamber to raise the outlet
stagnation temperature to 3000°R. Assume that the receiver pressure is very
low so that sonic velocity still exists at the exit. The additional entropy
generated by the extra fuel can only be accommodated by moving to a new
Rayleigh line at a decreased flow rate which lowers the inlet Mach number. If
the chamber is fed by the same air stream some spillage must occur at the
entrance. We would like to know the Mach number at the inlet and the pressure
at the exit.

External diffusion o
| —_— i I
—— X :
| T — !
: —_— T — :“L |
O, ©
T, =400°R M, =17 M, =
p, = 10.0 psia 7,3 = 3000°R
V, = 402 ft/sec py =

M, =0.41
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EXAIIPLE(CONIT:)

v
L= ¢

—_— — - —
| e — :
: e . | > —— T T
Since it is isentropic from the | — ST
. ' T
freestream to the inlet: @ '©)
T, = 400°R M,=? My =1
= 10.0 psia T;; = 3000°R
It =T; =413°R V! = 402 tsec py ="

M, =041

since M3 = 1, we know that T3 = T, ™.

Iy T T3 41:
— — 1y =0.1377
Tr* Ti3 Tr* (”lﬂﬂﬂ)( )

from the Rayleigh table, M> = 0.176 and p;/p* = 2.3002.

P2 P2 Pri l :
P2 = p1 = (L9786)(1) (—) (10.0) = 10.99 psia
’ Pr2 Pr1 Pi ] 0.8907
p3 p* I _
Py = p—gﬁ'z = (1) (m) (10.99) = 4.78 ps.la
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Suppose that in the previous example we were unable to lower the receiver
pressure to 4.78 psia. Assume that as fuel was added to raise the stagnation
temperature to 3000°R, the pressure in the receiver was maintained at its
previous value of 5.15 psia. This would lower the flow rate even further as we
move to another Rayleigh line with a lower mass velocity, and this time the
exit velocity would not be quite sonic.

Although both M, and M, are unknown, two pieces of information are given
at the exit. Two simultaneous equations could be written, but it is easier to
use tables and a trial and-error solution.

The important thing to remember is that once a subsonic flow is thermally
choked, the addition of more heat causes the flow rate to decrease. Just how
much it decreases and whether or not the exit remains sonic depends on the
pressure that exists after the exit.

/ﬂtn

onvunmxcs e 28
— : Compre Heat Addition or Heat Loss_

1



——

EMMP@E ((@@MF’ /=

.“\ /\v-

The parallel between choked Rayleigh and Fanno flow does not quite extend into the
supersonic regime. Recall that for choked Fanno flow the addition of more duct
introduced a shock in the duct which permitted considerably more friction length to
the sonic point. Figure shows a Mach 3.53 flow that has T,/T,* = 0.6139. For a given
total temperature at this section, |
the value of T,/T,* is a direct indication |
of the amount of heat that can be — i

I

]

added to the choke point. If a
normal shock were to occur at this
point, the Mach number after the
shock would be 0.450, which also has
T,/T; = 0.6139. Thus the heat added
after the shock is exactly the same as

it would be without the shock. i i
|
|

\

N

\

TR R |

=
0
o
L
el
]
=
.
=)

T (1" =0.6139

- Normal shock
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Air (y = 1.4, R = 0.287 KJ/kgK, and ¢, = 1.004 kJ/kg- K) enters a ramjet
combustion chamber with a velocity of 100 m/s and static temperature of 400
K.

* Determine the maximum amount of heat that can be added in the
combustion chamber without reducing the mass-flow rate.

* For this q,,,,, find the fuel-air ratio.

» If the fuel-air ratio were to be increased by 10 percent, determine the
reduction in m for the same inlet stagnation pressure and temperature.
Assume the heating value of the fuel to be 40 MJ/kg, neglect the fuel flow rate
in comparison with the air flow rate, and assume the air to behave as a perfect
gas with constant specific heats. Neglect friction.

First, the inlet Mach number is computed as follows:

V.
M] = —1 = lm = {]‘.2494

ay  \/(1.4)(287)(400)




T, = (Iﬂ)ﬂ = ( o ;Eﬂ)qm 404.9813 K

Applying the energy equation to the flow in the combustion chamber, we get
g = mgelp(Ton = Ty} = mya(HV)

Hmax = f}max‘ll m, Ty = T:*

From the Rayleigh flow relations, we have

T )
)TM - A049813 1,583.1950 K

To=T:= (72
E Tc-l

0.2558

L




L

Miet  Cp(Toz = Toy)  (1.004)(1,583.1950 — 404.9813)

. = 0.02957
Py HV 40,000 g

Gmax = (1.004)(1,583.1950 — 404.9813) = 1,182.9265 kl'kg
If the fuel-air ratio were to be increased by 10 percent,

Pty = (1.10)0.02957 = 0.03253.

from the energy equation, we have

0.03253(40,000)
Top = To = 1.004

Tp=T, —s T = 12958964 + 404.9813 = 1,700.8777 K.

= 1,295.8964 K




EXANIPLEN(CONIT.)

v
LS ¢

T, 404.9813
T, 1,700.8777

= 02381 — M, = 02392,

——>  Pilpe = 0.9610 and T)/T,,; = 0.9887. —— T, = 400.4050 K.

M, = 0.2494, —> p/py = 0.9577.

Thus, the 10-percent increase in fuel-air ratio results in a slight increase of inlet
static pressure.

M= pAV = %A{MVTR‘T]

the resultant effect of increasing fuel flow is a decrease in m, given by

0% increase, _ (uzm)(u.gﬁm)\j 400 oeto
" 0.2494 /A 0.9577 /Y 400.4050

corresponding to a 3,81 percent decrease of mass flow.
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The heat exchange at a fluid-solid interface can be described by Newton's law
of cooling,

= hA(T, — T¢)

When a fluid is made to flow over the surface, the heat exchange that occurs
is termed a forced convection.

When the heat exchange takes place as a result of fluid motion brought about
by density differences within the fluid, it is termed a natural convection.

The mean heat transfer coefficient depends upon the geometry, the flow
conditions, and the fluid properties. For convective flows involving air, h
ranges approximately from 10 to 500 W/m?2-K. This range is determined from
what are usually termed "low-speed correlations".

i ;
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Low speed is defined in terms of the Eckert number

VE

E =

CFI:':T

When this nondimensional number is small (low V or high AT), the situation is
regarded as "low speed." As may be easily verified, at speeds approaching sonic velocity

(300 m/s for air) and for a temperature difference of 100°C, the Eckert number is close
to unity.

For Eckert numbers on the order of unity ("high-speed flows"), viscous dissipation

terms within the energy equation become important and have a significant effect on
the temperature distribution.

In fact, for these "high-speed flows," the temperature of the surface can actually
exceed the freestream static temperature even if the surface is perfectly insulated.

— g
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This energy exchange is sometimes referred to as aerodynamic or frictional heating,
and the temperature is called the adiabatic wall temperature T,

For gases, T, is relatively close to the stagnation temperature T,.

) Taw

So, for high-speed gas flows, the convective heat transfer may be expressed by
g = hA(T, - T,)
and the low-speed mean heat transfer coefficient may still be employed.

In ducts, through which gases flow, there can be a heat exchange at the inside surface
as well as at the external surface.

Moreover, heat must be conducted through the duct wall. To account for all of these
heat exchanges, an overall heat transfer coefficient U is often used.

— g
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When the wall thickness is small and the thermal conductivity is high, the overall heat
transfer coefficient of the pipe is

Ur' —
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Nitrogen (y = 1.4. R = 0.2968 kJ/kg:K, and c, = 1.038 kJ/kg'K) enters an
uninsulated duct at Mach 2.0, with a stagnation temperature of 1000 K and
stagnation pressure of 1.4 MPa. Heat is lost from the nitrogen to the outside
ambient air at 20°C,with the mean overall heat transfer coefficient U equal to 60
W/m? K. The duct's diameter is 5 cm, and its length is 2 m. Determine the
outlet stagnation temperature, outlet Mach number, and percent of change of
stagnation pressure. Neglect friction.
@

_..:I_., =
wiy
-l

ot
o
i
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[ W
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~ Energy equation: O A o ©)

8q = —mcdl, = UdA(T, — 1,) no 1 nan
——  Nitrogen ; i —_—
dA, = 7D dx L
— e dx
B f’ a1, f*unn 4o UmD f " , . h
1 T{, - Td. 1 fi'!{'p .".i'TL‘p i

Tr:.ll o Tn' . U'JTB
T;:-E - ?:: -"ﬁ":'p

In L

Al M, = 2, from the isentropic relations, (T/T,), = 0.5556 and (p/p,); = 0.1278, so that
Ty = 5556 K and p; = (.1789 MPa. Then

V, = M,\/yRT, = 20V1.4(296.8)(555.6) = 960.9639 m/s

(178.9 khlfmz](%ﬂ.ﬂﬁz m?)(%ﬂ.%ﬂ m/s)

= —L AV, = — 20470k
. AV, (0.2968 kJ/kg - K)(555.6 K) 2040 ke =

L




i

: T,-T, UaD (60 W/m? - K)w(0.05 m)2 m

— = s = 1) &E 1
HTGI - T, mc, L (2.047 kg/s){(1.038 kl/kg - K} 1,000 J/kJT) e L
T
T = 10089
T, -7, = 2000~ 293 _ L0 ss7K = T,y = 293 + 7007557 = 9937557 K

1.0089

To find M, use the Rayleigh relations, starting from

Too _ T Ty _ 9937557
208 = COeTP T (007934 = (07884

From this value, we find that M, = 2.0251.
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EXAIVIPLE(CONIT:)

- Y

Accordingly, we may further write that

_pp 03560
P2 P T 03636

178.9 = 175.1606 kPa

P2 _ 1 _
Poz = . P = 01220 175.1606 = 1,425.2288 kPa

Po2 = Po1 _ 14252288 — 1,400

= 100 = 1.8021% increas
| Pat 1.400 g
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Linearized Supersonic Flow



Linearized perturbation-velocity potential equation

ﬁqun T ff»‘_w..r_v =0  where (il = \fl e Mgzu. For subsonic flow

For supersonic flow,
32d.. — —0 where A= M3 —1 -
f,fl” ¢'}'_v -

¢=flx—=2ry)+g(x+Ay)

Examining the particular

solution where ¢ = 0, and hence ¢ = f(x — Ay), we see that lines of constant ¢ cor-
respond to x — Ay = const, or

dy 1 1

H'—'A:,/Mgﬂ_l




Consider the supersonic flow over a body or surface which introduces small changes in
the flowfield, i.e., flow over a thin airfoil, over a mildly wavy wall, or over a small hump
in a surface.

Left-running
Mach waves
M, > 1
A g= 0 A i
+ TN M2 —1







&S
|
i
I

e =0 N
M,>1
Right-running
Mach waves
¢ = fx —2y) +g(x +1y) ¢ = gx +1y)

—29
Cp=—=
JMZ =1




My, >1

pr ZHA
C,ﬂ'ﬂ — =
M: —1
)
20p
Cop = :
MZ — 1

(+) Pressure coefficient

There is no real need to worry about the formal sign

. For any practical application, it is suggested the use of the Eq. along the body
with common sense to single out the compression and expansion surfaces on a
body.

If the surface is a compression surface, Cp must be positive, no matter

whether the surface is on the top or bottom of the body.

Similarly, if the surface is an expansion surface, Cp must be negative.



Subsonic

Y

P~ Px
Hee

Pressure coefficient, G,

0.6+
Mo =2 ’
0.5F e W
0.4} L
”~
’f
Exact shock i
0.3 theory "
Fy
s
s
2
02r f PN Linearized
P theory ~ _ 2¢
Ad T YME -
0.1F (/
5% difference
0 | L I | 1
4 8 12 16 20

& (degrees)
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4o lf“
Cp = - dx =
vML —1cJy Mz — 1

The axial force coefficient

] [TE
Ca = E fLE {Cp,u - l'r-::t.'r,.l':' dy

the pressures act normal to the surface, and hence there is no component
of the pressure force in the x direction. ¢ — {J,

] = €y COSQ — Cp SINQ

Cy = Cp SINW + C, COS QX

The assumption that ais small cosa == | and sinw == .



Example

Consider a flat plate at angle of attack in a supersonic flow. Calculate lift
and drag coefficient

‘EL:; J*F“““ml |
Moo

Py

2a
Cpt = ——t . ___
VMZL — 1 P MZ — 1

. 1 [~
The normal force coefficient €, = _f (Cpi—Cpu)dx
C Jo



€ =y — Cal M2 —1

Cqd = Cpl¥ + 4 '

Within the approximation of linearized theory, cl depends only on a and is
independent of the airfoil shape and thickness. However, the same
linearized theory gives a wave-drag coefficient in the form of

-(a® 4+ g% + g}

ML -1

where g, and g, are functions of the airfoil camber and thickness.



Elements of
Hypersonic Flow



Almost everyone has their own definition of the
term hypersonic.

If we were to conduct something like a public
opinion poll among those present, and asked
everyone to name a Mach number above which
the flow of a gas should properly be described
as hypersonic there would be a majority of
answers round about 5 or 6,

but it would be quite possible for someone to
advocate, and defend, numbers as small as 3, or
as high as 12.



QUALITATIVE ASPECTS OF HYPERSONIC FLOW

1-Thin shock layer
Consider a 15° half-angle wedge flying at M, = 36.

Shock wave

Tl'l.'ll!il viscous shock layer
Body surface




2- VIScous Interaction

P = Poo = const

— — —

Mo >> 1

pTl"- Mach wave ;

(a) No viscous interaction

- X

i
——————————————— Poo
e a x
Moo >> | Shock WET2
—_—
Poo

. :-"%"lw s ...npﬂ- ?’q*‘ 1,;-9
T boundary Ia]_ﬁ;r -

"ffffffffffffffffffffffffffffffffff!fffff .

(b) Viscous interaction



3- high temperatures in the shock layer

T,=65000 K

SiX times

hotter than
the surface
of the sun!

Moo = 36
——#-
Too = 258K

h=59 km

=2 Qc+Qr

T ~11000K |



Let us examine these high-temperature effects in more detail.
p=1latmand T = 288 K # 20 percent O, and 80 percent N, by volume.

increase T to 2000 K # 0, — 20 2000K < T < 4000 K

increaset04000K  mm) N, — 2N 4000K < T < 9000 K

— N — Nt +e
increase to 9000 K #
0_}0++€— TPQOQOK

The presence of these free electrons in the shock layer is responsible for the
"communications blackout" experienced over portions of the trajectory of a
reentry vehicle.



Associated with the high-temperature shock layers is a large amount of heat
transfer to the surface of a hypersonic vehicle

Indeed, for reentry velocities, aerodynamic heating dominates the design of
the vehicle,

The usual mode of aerodynamic heating is the transfer of energy from the hot
shock layer to the surface by means of thermal conduction at the surface;

The gas normal to the surface, then 4c = —k(9T/dn)
IS the heat transfer into the surface.

Because dT/dn is a flow-field property generated by the flow of the gas
over the body, g, is called convective heating.

For reentry velocities associated with ICBMs (about 28,000 ft/s), this is the
only meaningful mode of heat transfer to the body.

However, at higher velocities, the shock-layer temperature becomes
even hotter. From experience, we know that all bodies emit thermal radiation, and
from physics you know that blackbody radiation varies as T4;



q,
0l
= 10
E]
Qa q.
L o
10— Nose radius = 15 ft
Altitude = 200,000 ft
] | | |
0 20 40 60
¥, ft/s

Convective and radiative heating rates of a blunt reentry vehicle as a
function of flight velocity.



NEWTONIAN THEORY

note how close the shock wave lies to the body surface.

o>

-.kl

Asin8

Schematic for Newtonian impact theory.



Hence, the time rate of change of momentum is

A sin 8

Mass flow x change in normal component of velocity
(Poo Voo A SINO) (Voo 5in6) = pos V2 Asin® 6

from Newton's second law, N = poo V;A sin” 6
N )
» 7= Poo V2, sin @

Therefore, when the purely directed motion of the particles in
Newton's model results in the normal force per unit area, N/A

this normal force per unit area must be construed as the pressure
difference above P«, namely, p -p« on the surface.

P — Poo = PV, sin’ 6



Cp = 2sin® 6 } Newtonian

C’F =2 cost ¢ theory




The result that the maximum pressure coefficient approaches 2 at
Me —> o can be obtained independently from the one-dimensional

momentum equation,

Moo >> 1 M, <1
—e || ——
Poo V2 is large p, V2 is small by comparison

2 2
Poo + PV = P2+ ;2 V;
Recall that across a normal shock wave the flow velocity decreases, V, < V;

(P V) > (02V5)



— — V2
M':!E- — 00, ' PE :;x_ ppm [ 1]
oo

= 2
V2

Cp

Limitation: M= « & y=1.4

C,max fOr @ given Me can be readily calculated from normal shock-wave

theory.

P02/ P1L = Po2/ P » Cpmax = (2/¥MZ)(po2/pos — 1).]

C, = Cpmax Sin° @

Modified Newtonian law.



1.0
0.8 O Modified newtonian
' Finite-difference
> 0.6 — calculation
2
S~ 04
0.2 Q0
0 | ] ] } 11 1 J ] ]
0.4 0.8 1.2 I.6 2.0
b 4

Surface pressure distribution, paraboloid, M« =4, Comparison of
modified newtonian theory and time-dependent finite-difference
calculations.



THE LIFT AND DRAG OF WINGS AT HYPERSONIC SPEEDS:
Newtonian results for a flat plate at angle of attack

Question. At subsonic speeds, how do the lift coefficient C, and drag
coefficient Cy for a wing vary with angle of attack a?
1. The lift coefficient varies linearly with angle of attack, at least up to the stall;

2.The drag coefficient is given by

Ci

Cp=c
b d+HEAR

Since C, is proportional to a, then C varies as the square of a.



Question: At supersonic speeds, how do C, and C, for a wing vary with a?

1- Lift coefficient varies /inearly with a,

4
VML -

Cy

2. Drag coefficient varies as the square ofa,

4(12
T JMZ 1

Ca

The characteristics of a finite wing at supersonic speeds follow essentially
the same functional variation with the angle of attack,



Question: At hypersonic speeds, how do CL and CD for a wing vary with a ?

Cp = 2sinfa



C, = 2sin’ Cou=0

¢, = —(2sin’ a)c
c

l [
Cn=_ C '_C u dx
cfn (Cpu puu) = 2sin’ o

l ¢ = ¢, CoSa

Cq = Cp SIN Y -

L“‘ {
D—C{}ﬂ-’



d
;iﬂ = (2sin®2)(- sina) + 4 cos*a sina = 0
o

sinfa =2cosa = 2(1 - sin’ @)

rz “_g
8in 0—3

o =547

Cl.max = 2 5in*(54.7°) cos(54.7°) = 0.77

L

D

Nonlinear even at
small angle of attack

10

9.0

8.0

0.8

E

5

L Mo»l @
D —.

ffect of skin friction 4

Angle of attack o, degrees




cg = 2sin’a + C40
¢ = 2a?
o is small, EEE)
’ Cqg = 2053 + Cd.o

Let us examine the conditions associated with (L /D)., more closely.

The value of (L/D),,, and the angle of attack at which it occurs are
strictly a function of the zero-lift drag coefficient denoted by cd,,.

E‘;=2ﬂ!2

- 3
cio=2sIln"a +¢ At small angles of attack
d d.0 Cq = 20.'3 + Cd 0



Cy 2&'2

Cd B 2&!3 + Cd.0
dci/cs)  (20° + cqo)da — 20%(60%) 0
da (202 + ca ) B
8ot +4dacy o — 1204 =0
40!3 = 4.‘2“;‘[;

a = (ca0)'"

(C:) _ 2eq0)”? 273
Ca/max  2Ca0+cCao  (cgo)?




0.67/(cy0)'’

= 2cq0+ Cq0 = 3Cq0

Cdw= 2cd‘.;.




Accuracy Considerations

Consider an infinitely thin flat plate at an angle of attack of 15° in a Mach 8
flow. Calculate the pressure coefficients on the top and bottom surface, the lift
and drag coefficients, and the lift-to-drag ratio using

(a) exact shock-expansion theory,

(b) Newtonian theory. Compare the results.

(@) the upper surface, M; = 8 and v; = 95.62°,

v2 = v + 0 =95.62 + 15 = 110.62° » M, = 14.32

M, =8 mE) po/p1=09763 x 10%

My = 14.32 » po,/p2 = 0.4808 x 106

Poy = PO,

P2 po, /po, _ 09763 x 10°

= = (0.0203
Pl Pl P2 0.4808 x 100




Cp, = 2 (PE I)— 2 (0.0203 — 1) = 0.0219
27 M\ C(Le@®)?2 L

on the bottom surface from the oblique shock theory,

from the #-8-M for My =8 and 6 = 15°, B = 21°:

M, | = M;sinB = 8sin21° = 2.87 D3/ p1 = 9.443

2 Py ) 2
Cp, = —-1] = 9443 — 1) =] 0.1885
nEym (% @ P D

l C
¢ = - / (Cp.t = Cpu)dx = Cp, — Cp, = 0.1885 — (—0.0219) = 0.2104
0



The axial force on the plate is zero,

c¢ = cpcosa = 0.2104cos 15° = | 0.2032

4 = cp sina = 0.2104sin 157 = | 0.0545

(b)

Cp, = 2sin* @ = 2sin” 15° = | 0.134

C¢ = {Cm - sz}':ﬂﬂﬂ' = (.134cos 15° =

L _ce 0.2032 B
D c¢; 00545

0.1294

cg = (Cpy — Cpy)sine = 0.1345in 15° = | 0.03468

=—=——=1 373

3.73




Discussion: From the above worked example, we see that
newtonian theory underpredicts the pressure coefficient on the
bottom surface by 29 percent, and of course predicts a value of
zero for the pressure coefficient on the upper surface in
comparison to -0.0219 from exact theory—an error of 100 percent.
Also, newtonian theory underpredicts cl and cd by 36.6 percent.
However, the value of L/D from newtonian theory is exactly correct.
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— =cot15° = 3.73
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HYPERSONIC SHOCK-WAVE RELATIONS AND
ANOTHER LOOK AT NEWTONIAN THEORY

Consider the flow through a straight oblique shock wave.

P2 14 2 .2
— =14 ——(M;sin" f -1
P Y ( 1 )
Pz 2y 7 . 3
i = M

pr (v + DM}sin® B

pr (v — DMisin® B +2

M| — oc:

E_y+l

£1 y—1




I, _(p2/pV)

(from the equation of state: p = pRT)

T, (/P
M, — oo E=2}’(}"‘” 2 -2
T, o+ 1) M; sin” B
M?sin* 8 -1
8 =2 L
tanf = 2.cot§ [Mf(}f—kﬂﬂﬂZﬁ)-l—J
simp =~ p 2 [ Mip*-1
cos28 ~ 1 9=_[ 2 ]
pIMi(y+1)+2

tan@ ~ sinf@ ~ #



as M; — ooand®, hence B is small: B_v+1
g

Note that, for y = 1.4,

B =120

It is interesting to observe that, in the hypersonic limit for a slender wedge,
the wave angle is only 20 percent larger than the wedge angle—a graphic
demonstration of a thin shock layer in hypersonic flow.

2
P2 — P C. = P2 _
C. ) - (
p M
q1 v AP
an exact relation for Cp behind an oblique shock wave
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M, — oc:

'y —> 1.0

My — o0:

Cp

=

=

C, — 2sin’ B

__p;:__—] ‘ y = land M., — oc:

asy — | and M, — oo and 8 and B are small:

C, =2sin’0
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