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“A branch of dynamics that deals with the motion of air and
other gaseous fluids, and with the forces acting on bodies in
motion relative to such fluids.”

… Webster’s Dictionary
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What does “Aerodynamics” mean to you?

In what other areas or products besides airplanes does
aerodynamics matter?
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“Theoretical and experimental aerodynamicists labor to
calculate and measure flow fields of many types”

… Because “ the aerodynamic forces exerted by the airflow
on the surface of an airplane, missile, etc., stems from only
two simple natural sources:

Pressure distribution over the surface (normal to surface)
Shear stress (friction) over the surface (tangential to surface)
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Deals with calculations of Forces and Moments due to
body-air relative movement for all range of speeds. From very
low speed to several times more than speed of sound
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Low speed (Incompressible)

Subsonic

Transonic

Supersonic

Hypersonic

Classification is based on:
Flow Compressibility
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Compressible flow is routinely defined as variable density
flow.
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For the flow of gases with their attendant large values of
Compressibility, moderate to strong pressure gradients lead
to substantial changes in the density.

At the same time, such pressure gradients create large
velocity changes in the gas.

Such flows are defined as compressible flows, where
density is a variable.
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Consider the low-speed flow of air over an airplane wing at
standard conditions:

the percentage change in pressure is 1.5%
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Mach number is defined as the ratio of the local flow
velocity to the speed of sound: V

M
a


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1.2M  



17

5M  
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Inviscid flow:
Rotational
Irrotational

Viscous flow:
Laminar
Turbulent
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The motion of the fluid is controlled by:
Governing Equations
Boundary Conditions
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The governing equations are given by conservation laws:

Conservation of mass Continuity

Conservation of momentum Newton’s 2nd Law, F=ma

Conservation of Energy 1st law of thermodynamics
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Equations

Differential

(Point by point detail)

Integral

(Overall Features)
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Cartesian coordinates: Are normally used to describe
vehicle geometry.

Cylindrical coordinates

Spherical coordinates

General non-orthogonal curvilinear coordinates

V 

cosV 

sinV 
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In general Cartesian coordinates, the independent variables
are: x, y, z and t.

We want to know the velocity components (u, v, w) and the
fluid properties (p, ρ, T).

These six unknowns require six equations:
Continuity Equation: 1 Equation
Momentum Equations: 3 Equations
Energy Equation: 1 Equation
Equation of State: 1 Equation
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We want to find the flow field velocity (u, v, w), pressure
(p) and temperature (T) distribution.

We need to develop a mathematical model of the fluid
motion suitable for use in numerical calculations.

The mathematical model is based on the conservations
laws and the fluid properties.
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Lagrangian:

Each fluid particle is traced as it moves around the body.

This method corresponds to the conventional concept of Newton’s 2nd

law

Eulerian:

We look at the entire space around the body as a field, and determine
flow properties at various points in the field while the fluid stream past.

We consider the distribution of velocity and pressure throughout the
field, and ignore the motion of individual fluid particles.
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The statement of Conservation of Mass is in the words
simply:

Net outflow of mass 

through the surface 

surrounding the volume

Time rate of decrease of 

mass within the volume
=

[Mass can be neither created or destroyed ]
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The differential form:

The integral form:

. 0
CV CS

d V ds
t
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Newton’s 2nd law: The time rate of change of momentum of
a body, equals the net force exerted on it.

For a fixed mass, this is the famous equation:

DV
F ma m

Dt
 

[Force = Time rate of change of momentum]
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Substantial Derivative:
We need to apply Newton’s law to a moving fluid element

from our fixed coordinate system.
Consider any fluid property,

The change in position of the particle between at t, and
at is:

The rate of change of Q is:
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The second term has the unknown velocity V multiplying a
term containing the unknown Q. This is important!

The convective derivative introduces a fundamental
nonlinearity into the system.
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In coordinates, , and the substantial derivative
becomes:

{ , , }V u v w
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Sources of the force exerted on the fluid element:

Body forces
Gravitational forces
Electromagnetic force
…

Surface forces
Pressure
Shear stress
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The net force in the x-direction is found to be:

Using the Substantial Derivative and the definition of the
mass, , and considering the x component,
in three dimensional case, we have:
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General conservation of momentum relations:
Differential form:

Integral Form:

( . ) Viscous

CV CS CS CV

Vd V ds V pds fd F
t
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Relations between stress and μ based on the assumptions
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Written in the standard aerodynamics form neglecting the
body force.

These equations are:
Non-linear (recall that superposition of solutions is not allowed).

Highly coupled.
Long!
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When the viscous terms are small and thus ignored, the
flow is termed inviscid.

The resulting equations are known as the Euler
Equations.
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Euler Equations in cylindrical coordinate system:
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We describe the motion of each particle with a velocity
vector: V

Particles follow specific paths base on the velocity of the
particle.

Location of particle is based on its initial position at an
initial time, and its velocity along the path.

If the flow is a steady flow, each successive particle will
follow the same path.
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For Steady Flow, each particle slides along its path, and the
velocity vector is every tangent to the path.

The lines that the velocity vectors are tangent to are called
streamlines.

We can introduce streamline coordinate, s(t) along the
streamline and n, normal to the streamline.

Then (s) is the radius of curvature of the streamline.
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For 2-D Flows, there are two acceleration components:
s-direction by chain rule:

Normal direction (n) is the centrifugal acceleration:

In general there is acceleration along the streamline:

There is also acceleration normal to the streamline:
However, to produce an acceleration there must be a force!
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Remove, the fluid particle from its surroundings.
Draw the F.B.D. of the flow.
Assume pressure forces and gravity forces are important.
Neglect surface tension and viscous forces.



25

Use Streamline coordinates, our element is ds x dn x dy, and
the unit vectors are n and s, and apply Newton’s Second Law
in the Streamline Direction.

Streamline, F = ma:

Gravity Forces:

Pressure Forces (Taylor Series):

arises since pressures vary in a
fluid. P is the pressure at the
center of the element.

Shear Forces: Neglected, Inviscid!
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Then

Divide out volume, recall
- The change of fluid particle speed

is accomplished by the appropriate
combination of pressure gradient
and particle weight along the
streamline.

- In a static fluid the R.H.S is zero,

and pressure and gravity balance.
In a dynamic fluid, the pressure
and gravity are unbalanced
causing fluid flow.

- In a dynamic fluid, the pressure

and gravity are unbalanced
causing fluid flow.

=
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Note, we can rewrite terms in the above equation:

Then

Simplifying,

0 = constant along a streamline
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Integrate,

In general, we can not integrate the pressure term because
density can vary with temperature and pressure; however, for
now we assume constant density.

Assumptions:
I. Viscous effects are assumed negligible (inviscid).

II. The flow is assumed steady.
III. The flow is assume incompressible.
IV. The equation is applicable along a streamline

Celebrated Bernoulli’s Equation

* We can apply along a streamline in planar and non-planar flows!
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Integrating along S

Incompressible flow
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1. Steady Flow

2. No Friction

3. Flow Along a Streamline

4. Incompressible Flow
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Dynamic 
PressureStatic Pressure

Stagnation 
Pressure

21

2
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Motion of a rigid body:

Translation: all points in the body, move in parallel straight lines.

Rotation: all points in the body move in circular paths about the axis of
rotation.

General motion
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We can decompose the motion of an infinitesimal fluid
particle, into four components:

Translation

Rotation

Linear deformation (Linear strain)

Angular deformation (Shear strain)
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No Shear Stress

V  t

U  t
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Similarly
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Rotational flow: 
at every point. The fluid elements have a 

finite angular velocity. 

Irrotational flow: 
at every point. The fluid elements have no 

angular velocity (pure translation).

0V 

0V 
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Flow A is rotational
Flow B is irrotational
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Euler Equations:
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Adding above equations:
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Integrating

For (Incompressible flow):.const 
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The most frequent used terms in aerodynamics are:

Pressure

Density

Temperature

Velocity

Viscosity
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Pressure:
Pressure can be defined at any point in a fluid, whether liquid or

gas.
Pressure is the normal force per unit area exerted on a surface

due to the time rate of change of momentum of the gas molecules
impacting on that surface.

Pressure is defined at a point in the fluid (or solid). Pressure is a
point property.

Dimension: [M/T2L], [FL/T] (T: Time)

0
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Density:
Density is defined as the “mass per unit volume”. It’s the mass of

the fluid contained in an incremental volume surrounding the
point.

In a fluid, density may vary from point to point. Density is a
point property.

Dimension: [M/L3], [FT2/L4] (T: Time)

0
lim
dv

dm

dv
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Temperature:
Temperature is directly proportional to the average kinetic

energy of the molecules of the fluid.

- KE: mean molecular kinetic energy
- k: Boltzmann constant

3

2
KE kT
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Velocity:
Flow velocity is a vector quantity; it has both magnitude and

direction.

The velocity of a flowing fluid at any fixed point B, is the
velocity of an infinitesimally small fluid element as it sweeps
through B.

V
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Viscosity:
Viscosity of a fluid is regarded as its tendency to resist sliding

between layers.
In a Newtonian fluid, the shearing stress is proportional to the

rate of shearing deformation. The constant of proportionality is
called the coefficient of viscosity μ.

Viscosity of a fluid relates to the transport of momentum in the
direction of the velocity gradient (but opposite in sense. Viscosity
is a transport property.

dV

dy
 
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Viscosity:
The coefficient of viscosity depends on the composition of the

fluid, its temperature and its pressure.
Sutherland's formula can be used to derive the dynamic

viscosity of an ideal gas as a function of the temperature:

where:
μ = dynamic viscosity in (Pa·s) at input temperature T
μ0 = reference viscosity in (Pa·s) at reference temperature T0

T = input temperature in kelvin
T0 = reference temperature in kelvin
C = Sutherland's constant for the gaseous material in question 
Valid for temperatures between 0 < T < 555 K with an error due to pressure less 
than 10% below 3.45 MPa
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Viscosity:
The coefficient of viscosity depends on the composition of the

fluid, its temperature and its pressure.
Sutherland's formula can be used to derive the dynamic

viscosity of an ideal gas as a function of the temperature:

Gas C [K] T0 [K] μ0 [10-6 Pa s]

air 120 291.15 18.27

nitrogen 111 300.55 17.81

oxygen 127 292.25 20.18

carbon dioxide 240 293.15 14.8

carbon monoxide 118 288.15 17.2

hydrogen 72 293.85 8.76

ammonia 370 293.15 9.82

sulfur dioxide 416 293.65 12.54

helium 79.4 273 19
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Sources of aerodynamic forces and moments:

Pressure distribution (Normal to the surface)

Shear stress distribution (Tangential to the surface)

V 

p


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The net effect of pressure and shear stress distribution,
integrated over the body surface is:

• Aerodynamic force: R

• Aerodynamic moment: M
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Components of aerodynamic force (R):

1. L: Lift (perpendicular to freestream velocity)

D: Drag (parallel to freestram velocity)

2. N: Normal force (perpendicular to chord)

A: Axial force (parallel to chord)

V 

R

D

L

A

N

cos sin

sin cos

L N A

D N A

 

 

 

 
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By convention:

Positive moments tend to increase the angle of attack:

Negative moments tend to decrease the angle of attack:
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The dimensionless force and moment coefficients:

Lift coefficient

Drag coefficient

Normal force coefficient

Axial force coefficient

Moment coefficient

Where:

 q is called the freestream dynamic pressure:
 l: reference length
 S: reference area

L

L
C

q S


D

D
C

q S


N

N
C

q S


A

A
C

q S


M

M
C

q Sl


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Two additional dimensionless quantities:

Pressure coefficient

Skin friction coefficient

p

p p
C

q








fC
q






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Leading  Edge (L.E.)
Trailing Edge (T.E.)

Chord

α
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A

Unit span

2l d m

L D M
c c c

q c q c q c  

  
  1S c 
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Center of pressure is a point about which the aerodynamic
moment is zero.

For small angles of attack:

Center of Pressure 0M 

L N 

LE
cp

M
x

N


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



19

Center of pressure is a point about which the aerodynamic
moment is zero.

Center of Pressure 0M 

/ 4
4

LE c cp

c
M L M x L       
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In low-speed, incompressible flow, the following experimental
data are obtained for an airfoil section at an angle of attack of
4 ̊:

cl =0.85   and   cm, c/4 = -0.09. 

Calculate the location of the center of pressure.

/ 4

4

c
cp

c M
x

L


 



2
, /4/41 ( ) 1

4 ( / ) 4

cp m cc

l

x cM q c

c L q c c





   


1 ( 0.09)
0.356

4 0.85


  
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Question:
What physical quantities determine the variation of 
Aerodynamic forces and moments?

The answer can be found from the powerful 
method of 

dimensional analysis



α
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On a physical, intuitive basis, we expect the aerodynamic
force to depend on:

1. Freestream velocity, V∞

2. Freestream density, ρ∞ .
3. Viscosity of the fluid, μ∞ .
4. The size of the body, represented by some chosen 

reference length. Reference length is the chord length c.
5. The compressibility of the fluid. Compressibility is related 

to the speed of sound, a. Therefore, let us represent the 
influence of compressibility on aerodynamic forces and 
moments by the free stream speed of sound, a∞.
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( , , , , )R f V c a    
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The object of dimensional analysis is to group several
variables together to form a new variable that is
nondimensional.

Dimensional analysis is based on the obvious fact that an
equation dealing the real physical world, each term must have
the same dimensions:

The above equation can be made dimensionless by dividing
by any one of the terms, say, 
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Let K equal the number of fundamental dimensions required to
describe the physical variables. (In mechanics, all physical variables can be

expressed in terms of the dimensions of mass, length, and time; hence, K = 3.)

Let  PI, P 2,. . . ,  PN represent N physical variables in the 
physical relation

Then, the physical relation may be reexpressed as a relation 
of (N – K) dimensionless products (called Π products),

1 1 2( , ,..., ) 0Nf P P P 

2 1 2( , ,..., ) 0Nf    
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Each Π product is a dimensionless product of a set of K physical 
variables plus one other physical variable. Let P1, P2, …, PK be the 
selected set of K physical variables. Then

The choice of repeating variable, should be such that:
- They include all the K dimensions used in problem.
- The dependent variable should appear in only one of 
the Π products. 
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m = dimensions of mass
l = dimension of length

t = dimension of time

( , , , , )R f V c a    

( , , , , , ) 0g R V c a     

3K 
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N = 6

K = 3

Physical variables and their dimensions:
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2 1 2 3( , , ) 0f    

1 3

2 4

3 5

( , , , )

( , , , )

( , , , )

f V c R

f V c

f V c a



 



 

  

  

 

 

 

can be reexpressed in terms of N – K =3 
dimensionless Π products

The Π products are:

( , , , , , ) 0g R V c a     
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1 3( , , , )f V c R  

3 1 2

1[ ] ( ) ( ) ( ) ( )d b eml lt l mlt   

1

d b eV c R  
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𝑹𝒆 =
𝝆∞𝑽∞𝒄

𝝁
 

Reynolds Number
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𝑴 =
𝑽∞

𝒂∞
 

Mach Number
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𝑪𝑹 = 𝒇𝟔 𝑹𝒆 , 𝑴∞  

𝑪𝑳 = 𝒇𝟕 𝑹𝒆 , 𝑴∞  

𝑪𝑫 = 𝒇𝟖 𝑹𝒆 , 𝑴∞  

𝑪𝑴 =
𝑴

𝟏
𝟐
𝝆∞𝑽∞

𝟐 𝑺𝒄
 

𝑪𝑴 = 𝒇𝟗 𝑹𝒆 , 𝑴∞  
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𝑪𝑳 = 𝒇𝟕 𝑹𝒆 , 𝑴∞,𝜶  

𝑪𝑫 = 𝒇𝟖 𝑹𝒆 , 𝑴∞,𝜶  

𝑪𝑴 = 𝒇𝟗 𝑹𝒆 , 𝑴∞,𝜶  

If α is allowed to vary, then:
CL, CD, and CM will in general depend on the value of α.
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By definition, different flows are dynamically similar if:

1. The bodies and any other solid boundaries are 
geometrically similar for both flows.

2. The similarity parameters are the same for both flows.
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An aircraft and some scale models of it are tested under various conditions: given 
below. Which cases are dynamically similar to the aircraft in flight, given as case (A)?

Case (A) represents the full-size aircraft at 6000 m. The other cases represent 
models under test in various types of wind-tunnel
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The Reynolds number  ρVD/ μ may be calculated for each case 

(Viscosity from Sutherland’s formula )

These are found to be:

Cases (A), (C) and (E) are dynamically similar.
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The Bernoulli’s equation is a powerful and useful equation
that relates pressure changes to velocity and elevation
changes along a streamline.

The Bernoulli’s equation gives correct results when applied
to flow situations where the following four restrictions are
reasonable:

Steady flow
Incompressible flow
Inviscid flow
Flow along a streamline (In general, the Bernoulli’s constant [C] has different

values along different stramlines)

2

2

p V
gz C


  
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Bernoulli’s equation is applicable to the following two
devices:

Venturi: Flowmeter, low-speed wind tunnel, Airspeed measurement

Pitot-tube: Airspeed measurement
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Venturi is a convergent-divergent duct. It’s a device that
finds many applications in engineering.

Convergent duct Divergent duct

Throat
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In general, venturi is a three-dimensional duct with
elliptical or rectangular cross section which vary from one
location to another.

( )A A x
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For moderate variation of area, it is reasonable to assume
that the flowfield properties (velocity, pressure,...) are
uniform across any cross section, and vary only in direction of
flow.

( ) ( ) ( )A A x V V x p p x  

Quasi-one-dimensional flow
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For steady flow through the venturi, continuity equation
gives:

For incompressible flow:

.VA const 

.VA Q const 

the mass flow through the duct is constant.
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For a given variation of area A(x):

Using Bernoulli’s equation:

( )
( )

Q
V x

A x


 
2

( )
( ) .

2

V x
p x const


 
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Velocity decreases (Continuity)
Pressure increases (Bernoulli)

Velocity increases (Continuity)
Pressure decreases (Bernoulli)

Flow Flow
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Venturi applications: Speed measurement

Venturi can be used to
measure airspeed.

For a venturi (with a given inlet [station 1] to throat [station 2] area ratio)

and known pressure difference p1-p2, the inlet velocity can be
obtained from the combination of continuity and Bernoulli’s
equation:

1 2
1 2

1 2

2( )

[( / ) 1]

p p
V

A A





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Venturi applications: Wind tunnel

Another application of venturi is the low-speed wind
tunnel.

A low-speed wind tunnel is a large venturi, where the
airflow is driven by a fan connected to some type of motor
drive.
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Venturi applications: Wind tunnel

There are two general types of low-speed wind tunnels:

1. Open-circuit tunnel
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Venturi applications: Wind tunnel

There are two general types of low-speed wind tunnels:

2. Closed-circuit tunnel
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Venturi applications: Wind tunnel

The air velocity in the test section of a low-speed wind
tunnel (with fixed area ratio A2/A1), is obtained from the
combination of continuity and Bernoulli’s equation:

In low-speed wind tunnels, a method of measuring the
pressure difference P1-P2, is by means of manometers.

1 2
2 2

2 1

2( )

[1 ( / ) ]

p p
V

A A





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Pitot tube is one of the most common and frequently used
instruments in any modern aerodynamic laboratory.

Pitot tube is the most common device for measuring flight
velocities of airplanes.

Can connect a differential pressure transducer to directly
measure V2/2g.

Can be used to measure the flow of water in pipelines.
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Point measurement!

http://www.airflow.co.uk/instr/stat-pit.htm
http://www.airflow.co.uk/instr/stat-pit.htm
Clips/V3_4.mov
Clips/V3_4.mov
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V
V1 =

1

2

Connect two ports to differential pressure transducer. Make sure Pitot
tube is completely filled with the fluid that is being measured.
Solve for velocity as function of pressure difference

z1 = z2
1 2

2
V p p

Static pressure tap
Stagnation pressure tap

0

2 2

1 1 2 2
1 2

2 2

p V p V
z z

g g
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0
u v

x y

 
 

 

0
u v

y x

 
 

 

INCOMPRESSIBLE 2-D

Irrotational 
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0
u v

x y

 
 

 
0

u v

y x

 
 

 

Velocity Potential is defined as: ,u v
x y

  
 

 

1-  automatically satisfies the Irrotationality condition.

2- If it has to meet the continuity requirement it has to obey,

2 2
2

2 2
0

x y

 


 
   

 
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Thus the problem is reduced to that of finding .

2 0 

Boundary Condition 
On the boundary

or
n

c d





 

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Circulation,  is defined as the line integral of tangential
velocity component around a closed curve in the flow.

V

a

C
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u

v

v
v x

x


 



u
u y

y


 



Kelvin-Stokes theorem:

Thus for an irrotational flow circulation around any closed contour is zero.
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Stream Function, y is defined such that

y = constant, denotes a streamline.

,u v
y x

y y 
  

 
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For irrotationality, we have

2 2
2

2 2
0

x y

y y
y

 
   

 
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-v

u
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Difference dy between successive streamlines is 
proportional to volumetric flow rate.

dy

dx
y

dy

−𝑣𝑑𝑥 + 𝑢𝑑𝑦 = 𝑑𝑄     

𝝏𝝍

𝝏𝒙
𝒅𝒙 +

𝝏𝝍

𝝏𝒚
𝒅𝒚 = 𝒅𝑸 

 

dy=dQ
1

2 1

2

Q d

y

y

y y y   
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Streamlines and velocity potential lines are normal to each 
other.
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2
2

2 2

1
,

1
,

1

1 1

r

r

v v
r r

v v
r r

r r

r
r r r r





y y



 



 




 




 
  

 

 
 

 

 
  

 

   
   

   

r
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;

1 1
;

x y y x

r r r r

 y  y

 y  y

 

   
  

   

   
  

   
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Elemantary plane flows:

 Uniform flow

 Source / Sink flow

 Doublet Flow

 Vortex flow
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 Uniform flow

( cos ) ( sin )

( cos ) ( sin )

U y

U x

U y U x

U x U y

y



y a a

 a a





 

 





 

 
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 Source/Sink flow

ln
2 2

q q
r y 

 
 
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 Doublet

Source and Sink approach each other ie., a0, But qa/ is constant or 
finite.

cos

sin

r

r

 

y 





 
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 Vortex flow

ln
2

2

k
r

k

y


 





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Laplace Equation is linear. So if 1 and 2 are two solutions, 
3  12 is also a solution.

Simple flows are superposed to calculate more complex flows.

NOTE: A solid wall is also a streamline. This helps us locate 
solid boundaries. 
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Laplace’s equation is a second-order linear Partial Differential Equation. The fact that
the Laplace’s equation is linear is particularly important, because linear superposition
of solutions is allowed:

where and

are solutions of Laplace’s equation

For simplicity, we consider 2D (planar) flows:

Cartesian:

Cylindrical:

We note that the stream functions also exist for 2D planar flows:

Cartesian:

Cylindrical:
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For irrotational, planar flow:

Now substitute the stream function:

Then, Laplace’s Equation

For plane, irrotational flow, we use either the potential or the stream function, which 
both must satisfy Laplace’s equations in two dimensions.

Lines of constant Y are streamlines:

Now, the change of f from one point (x, y) to a nearby point (x + dx, y + dy) is:

Along lines of constant f we have df =0,

0
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Lines of constant f are called Equipotential lines.

The Equipotential lines are orthogonal to lines of constant Y (streamlines) where they 
intersect.

The flow net consists of a family of streamlines and equipotential lines.

The combination of streamlines and equipotential lines are used to visualize a 
graphical flow situation.

The velocity is inversely proportional 
to the spacing between streamlines.

Velocity increases 

along this streamline.

Velocity decreases 

along this streamline.
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The simplest plane potential flow is a uniform flow in which the streamlines are all 
parallel to each other.

Consider a uniform flow in the x-direction:
Integrate the two equations:

f = Ux + f(y) + C

f = f(x) + C 

Matching the solution

C is an arbitrary constant, can be set to zero:

Now for the stream function solution:

Integrating the two equations similar 
to above.
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For Uniform Flow in an Arbitrary direction, a :
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Source/Sink Flow is a purely radial flow.

Fluid is flowing radially from a line through the origin 
perpendicular to the x-y plane.

Let m be the volume rate emanating from the line (per unit 
length).

Then, to satisfy mass conservation:

Since the flow is purely radial:

Now, the velocity potential can be obtained:

Integrate

0

If m is positive, the flow is radially outward, source flow.
If m is negative, the flow is radially inward, sink flow.

m is the strength of the source or sink!

This potential flow does not exist at r = 0, the origin, because it is not a “real” flow, but can approximate 
flows.

Source Flow:
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0

Now, obtain the stream function for the flow:

Then, integrate to obtain the solution:

The streamlines are radial lines and the equipotential
lines are concentric circles centered about the origin:

f lines

Y lines
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In vortex flow, the streamlines are concentric circles, and the equipotential lines are 
radial lines.

where K is a constant.

Solution:

The sign of K determines whether the flow rotates 
clockwise or counterclockwise.

In this case: 

The tangential velocity varies inversely with the distance from the origin.  At the origin 
it encounters a singularity becoming infinite.

f lines

Y lines

lnK K rf    

1
0 ,r

K
v v

r r r


f 



 
    

 
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How can a vortex flow be irrotational?

Rotation refers to the orientation of a fluid element and not the path followed by the 
element.

Irrotational Flow: Free Vortex Rotational Flow: Forced Vortex

Traveling from A to B, consider two sticks

Initially, sticks aligned, one in the flow direction, and the 
other perpendicular to the flow.

As they move from A to B the perpendicular-aligned 
stick rotates clockwise, while the flow-aligned stick 
rotates counter clockwise.

The average angular velocities cancel each other, thus, 
the flow is irrotational.

Irrotational Flow:

Velocity 
increases 
inward.

Velocity 
increases 
outward.

Rotational Flow: Rigid Body Rotation
Initially, sticks aligned, one in the flow 
direction, and the other perpendicular to the 
flow.

As they move from A to B they sticks move in 
a rigid body motion, and thus the flow is 
rotational.

i.e., water 
draining  from 
a bathtub

i.e., a rotating 
tank filled with 
fluid
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A combined vortex flow is one in which there is a forced vortex at the core, and a free 
vortex outside the core.

A Hurricane is 
approximately a 
combined vortex

Circulation is a quantity associated with vortex flow. It is defined as the line integral
of the tangential component of the velocity taken around a closed curve in the flow
field.

For irrotational flow the 
circulation is generally 
zero.

C
V ds   
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However, if there are singularities in the flow, the circulation is not zero if the closed 
curve includes the singularity.

For the free vortex:

The circulation is non-zero and constant for the free vortex:

The velocity potential and the stream function can be rewritten in terms of the 
circulation:

An example in which the closed surface circulation will be zero:

K
v

r
 

2

0

( ) 2
K

rd K
r



     

2K   

ln
2 2

rf  
 

 
  
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Combination of a Equal Source and Sink Pair:

Rearrange and take tangent,

Note, the following:

Substituting the above expressions,

and

Then,

If a is small, then tangent of angle is approximated by the angle:
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Now, we obtain the doublet flow by letting the source and sink approach one another, 
and letting the strength increase.

K is the strength of the doublet, and is 
equal to ma/.

is then constant.

The corresponding velocity potential then is the following:

Streamlines of a Doublet:
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-

-
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Because Potential Flows are governed by linear partial differential equations, the 
solutions can be combined in superposition.

Any streamline in an inviscid flow acts as solid boundary, such that there is no flow 
through the boundary or streamline.

Thus, some of the basic velocity potentials  or stream functions can be combined to 
yield a streamline that represents a particular body shape.

The superposition representing a body can lead to describing the flow around the 
body in detail.



17

The Rankine Half-Body is a combination of a source and a uniform flow.

Stream Function (cylindrical coordinates):

Potential Function (cylindrical coordinates):

There will be a stagnation point, somewhere along the negative x-axis where the 
source and uniform flow cancel ( = ):

For the source: For the uniform flow:

Evaluate the radial velocity:

cosUvr 

For   , Uvr 

Then for a stagnation point, at some r = -b,  =  :

2

m
vr  and
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Now, the stagnation streamline can be defined by evaluating  at r = b, and  = .

Now, we note that m/2 = bU, so following this constant streamline gives the outline of 
the body:

Then, describes the half-body outline.

So, the source and uniform flows can be used to describe an aerodynamic body.

The other streamlines can be obtained by setting y constant and plotting:
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The width of the half-body:

Total width then, 

The magnitude of the velocity at any point in the flow:

Noting,

and

Knowing, the velocity we can now determine the pressure field using the Bernoulli 
Equation:

po and U are at a point far away from the body and are known.
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Notes on this type of flow:

• Provides useful information about the flow in the front part of streamlined body.

• A practical example is a bridge pier or a strut placed in a uniform stream

• In a potential flow the tangent velocity is not zero at a boundary, it “slips”

• The flow slips due to a lack of viscosity (an approximation result).

• At the boundary, the flow is not properly represented for a “real” flow.

• Outside the boundary layer, the flow is a reasonable representation.

• The pressure at the boundary is reasonably approximated with potential flow.

• The boundary layer is to thin to cause much pressure variation.
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Rankine Ovals are the combination a source, a sink and a uniform flow, producing a 
closed body.

Some equations describing the flow: The body half-length

The body  half-width

“Iterative”

Potential and Stream Function
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Notes on this type of flow:

• Provides useful information about the flow about a streamlined body.

• At the boundary, the flow is not properly represented for a “real” flow.

• Outside the boundary layer, the flow is a reasonable representation.

• The pressure at the boundary is reasonably approximated with potential flow.

• Only the pressure on the front of the body is accurate though.

• Pressure outside the boundary is reasonably approximated.
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Combines a uniform flow and a doublet flow:

and

Then require that the stream function is constant for r = a, where a is the radius of the 
circular cylinder:

K = Ua2

Then, and

Then the velocity components are:
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At the surface of the cylinder (r = a):

The maximum velocity occurs at the top and bottom of the cylinder, of magnitude 
2U.
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Pressure distribution on a circular cylinder found with the Bernoulli’s equation

Then substituting for the surface velocity:

Theoretical and experimental results 

agree well on the front of the cylinder.

Flow separation on the back-half in the 

real flow due to viscous effects causes 

differences between the theory and 

experiment.

𝑪𝒑 =  
𝒑𝒔−𝒑𝟎
𝟏
𝟐
𝝆𝑼𝟐
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Cp distribution for flow past a circular cylinder plotted around the cylinder.
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The resultant force per unit force acting on the cylinder can be determined by 
integrating the pressure over the surface (equate to lift and drag).

(Drag)

(Lift)

Substituting, 

Evaluating the integrals:

Both drag and lift are predicted to be zero on fixed cylinder in a uniform flow?

Mathematically, this makes sense since the pressure distribution is 
symmetric about cylinder, ahowever, in practice/experiment we see 
substantial drag on a circular cylinder (d’Alembert’s Paradox, 1717-1783).

Viscosity in real flows is the Culprit Again!

Jean le Rond 
d’Alembert 
(1717-1783)
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Uniform Flow + Doublet + Vortex

Circular Cylinder
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Consequently the velocity components will be,

+

-

-
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Flow past a Lifting Cylinder
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At r = a, the radial velocity is still zero allowing us to consider the 
same circular cylinder as the "body".

The stagnation points: 𝒗𝜽𝒔 = 𝟎 

-

-
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Surface Pressure Distribution and Lift
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x

y
p


Rd

a

d

d
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-
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Flettner’s Ship

http://upload.wikimedia.org/wikipedia/commons/3/3f/Buckau_Flettner_Rotor_Ship_LOC_37764u.jpg
http://upload.wikimedia.org/wikipedia/commons/3/3f/Buckau_Flettner_Rotor_Ship_LOC_37764u.jpg
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Bend it like Beckham

Dynamic lift
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Beckham, Applied Physicist
~ 5mDistance 25 m

Initial v = 25 m/s

Flight time 1s

Spin at 10 rev/s

Lift force ~ 4 N

Ball mass ~ 400 g

a = 10 m/s2

A swing of 5 m!

Goal!!

45
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y

x

30 km/h

4 km/h

4 km/h

Vrel

3
0
 k

m
/h

F F

1
5
 m

.

2.75m

750 RPM

Vrel

Flettner’s Ship with the following conditions

Propulsive  Trust?
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𝑽𝒓𝒆𝒍 = 𝟑𝟎𝒋 − 𝟒𝒊 

𝑽𝒓𝒆𝒍 =  𝟑𝟎𝟐 + 𝟒𝟐 = 𝟑𝟎. 𝟐𝟕
𝒌𝒎

𝒉
= 𝟖. 𝟒𝟏 𝒎/𝒔 

 
𝜞 =  𝝎𝒓  𝟐𝝅𝒓 =  (𝟕𝟓𝟎)

𝟐𝝅

𝟔𝟎
  𝟏. 𝟑𝟕𝟓 𝟐𝟐𝝅 = 𝟗𝟑𝟑 𝒎𝟐/𝒔 

𝐅 = 𝛒𝐕𝐫𝐞𝐥𝚪 =  𝟏. 𝟐𝟐𝟗  𝟖. 𝟒𝟏  𝟗𝟑𝟑 = 𝟗𝟔𝟒𝟑 𝑵/𝒎 

 

 𝐅𝐓 𝐏𝐫𝐨𝐩 = 𝐅𝐓 𝐜𝐨𝐬𝛂 = 𝟐𝟖𝟗
𝟑𝟎

 𝟑𝟎𝟐 + 𝟒𝟐 
𝟏
𝟐

= 𝟐𝟖𝟕 𝐤𝐍 

𝑭𝑻 = 𝟐 𝟗𝟔𝟒𝟑  𝟏𝟓 = 𝟐𝟖𝟗 𝒌𝑵 



1

We added our elementary flows in certain ways and discovered that the 
dividing streamlines turned out to fit the shapes of special bodies (semi-infinite

body, Rankine oval and both the nonlifting and the lifting flows over a circular cylinder)

This indirect method of starting with a given combination of elementary
flows and seeing what body shape comes out of it can hardly be used in a
practical sense for bodies of arbitrary shape.

Do we know in advance the correct combination of elementary flows to 
synthesize the flow over an airfoil?

The answer is NO.
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In order to determine the flow over a specified body, we want a 
direct method.

In direct methods, we specify the shape of an arbitrary body and
solve for the distribution of singularities which, in combination
with a uniform stream, produce the flow over the given body.

We consider a numerical method appropriate for solution on a
computer. The technique is called the Source Panel Method and
is limited to nonlifting flows over arbitrary bodies.
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Let us extend the concept of a source or sink.

Imagine that we have an infinite number of line sources side by
side, where the strength of each line source is infinitesimally
small.

These side-by-side line sources form a source sheet.

Looking 
along the 
“z axis”
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Define λ = λ(s) to be the source strength per unit length along s.
Therefore, the strength of an infinitesimal portion ds of the
sheet is λds.

The small section of the source sheet of strength λds, induces an
infinitesimally small potential dϕ at point P:

Velocity potential 
at point P, induced

by the entire source 
sheet
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Uniform flow     + Source sheet on surface
Flow over the body =     Flow over the body

Our problem is one of finding the appropriate λ(s).

The solution of this problem is carried out numerically.
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S

1

2
j

i
n

P
r



Control Points

Boundary points

Let us approximate the source 
sheet by a series of straight panels.
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P
rpj 

j
dsj

(x,y)

i

The velocity potential induced at P due 
to the jth panel is:

Where:

The velocity potential induced at P due 
to all the panels:
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rij

j
dsj

i
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S
j

i

ni

βi

The boundary condition at solid walls 
states that:

Where:

j

i
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The integral Ii,j is evaluated at the jth control point and the integral is taken 
over the complete jth panel:
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rij

j
dsj

i

ni

βi

фi

фj

(Xj,Yj)

(Xi,Yi)
(xi,yi)

(Xi+1,Yi+1)

(Xj+1,Yj+1)

(xj,yj)

2
i i


    cos sin sin cosi i i i     
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So that Ii,j becomes:

Where

We obtain an expression for Ii,j from any table of integrals:
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With known values of Ii,j‘s, this is a linear algebraic equation 
with n unknowns λ1, λ2, …, λn .

This equation represents the flow boundary condition evaluated 
at the control point of the ith panel.

If we apply this equation to the control point of all the panels, 
the results will be a system of n linear algebraic equations with n
unknowns (λ1, λ2, …, λn)

The values of λj’s should obey the relation:
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The total surface velocity at the ith control point is the sum of the 
contribution from the freestream and from the source panels:
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EXAMPLE: Calculate the pressure coefficient distribution 
around a circular cylinder using the source panel technique.
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2

Consider a wing as shown in the figure.
The wing extends in the y direction
The freestream velocity is parallel to xz plane

Any section of the wing cut by a plane parallel to the xz
plane is called an airfoil.

yz

x

V∞ Airfoil Section
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Early Designs - Designers mistakenly believed that these airfoils
with sharp leading edges will have low drag. In practice, they
stalled quickly, and generated considerable drag.
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Chord  c

Leading edge
Thickness Camber Mean camber line

Trailing edge
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Airfoil geometry is often characterized by a few parameters 
such as: 

o Maximum thickness
o Maximum camber
o Position of max thickness
o Position of max camber
o Nose radius. 

One can generate a reasonable airfoil section given these 
parameters. 
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The NACA identified different airfoil shapes with a logical
numbering system.

The primary reference volume for all the NACA subsonic airfoil 
studies remains:

Abbott, I.H., and Von Doenhoff, A.E., “Theory of Wing Sections”, Dover, 1959.
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o The first family of NACA airfoils, developed in the 1930s, was 

the “four-digit” series.

o The numbering system for these airfoils is defined by: 

NACA MPXX

Where:

M is the maximum camber in hundredths of chord.

P is the location of the maximum camber in tenths of the chord.

XX is the maximum thickness, t/c, in percent chord.
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NACA 2415

The maximum camber is 0.02c

Maximum camber is located at 0.4c from the leading edge.

The maximum thickness is 0.15c
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o This airfoil is an extension of the 4 digit series. The
numbering system for these airfoils is defined by:

NACA LMMXX

Where:
L: is the amount of camber; the design lift coefficient is 3L/2, in 
tenths
MM: the location of maximum camber along the chord from the 
leading edge is MM/2, in hundredths of the chord
XX: is the maximum thickness, t/c, in percent chord.
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NACA 23012

12% thick airfoil, 

The design lift coefficient is 0.3, 

The position of max camber is located at x/c = 0.15, 

The “standard” 5 digit foil camber line is used.
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o One of the most widely used family of NACA airfoils is the “6-series” 
laminar flow airfoils, developed during World War II.

AB,C-DEE
Where:

A: Is the series designation.
B: Location of minimum pressure in tenth of chord from 
the leading edge (for the basic symmetric thickness distribution at zero lift)

C: The range of lift coefficient in tenth above and below the 
design lift coefficient in which favourable pressure gradients 
exist on both surfaces
D: The design lift coefficient in tenth
EE:  the maximum thickness in hundredths of chord

After the six-series sections, airfoil design became much more specialized for the 
particular application.
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NACA 65,3-218

6 is the series designation.

The maximum pressure occurs at 0.5c for the basic symmetric 
thickness distribution at zero lift.

The range of lift coefficient above and below the design 
lift coefficient in which favourable pressure gradients 
exist on both surfaces is 0.3

The design lift coefficient is 0.2.

The airfoil is 18 percent thick.
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o Generation of lift by

an airfoil is due to the

imbalance of pressure

distribution over top

and bottom surfaces.
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o If pressure on top is 

lower than pressure on

bottom surface, lift is

generated.
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o Flow velocity over the

top of airfoil is faster

than over bottom 

surface.
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o The lift coefficient of an airfoil changes as the Angle-
of-Attack changes.



o At low-to-moderate angles

of attack, cl varies linearly

with α.

o The slope of this straight line

is called the lift slope.

o In this region, the flow moves smoothly over the airfoil and is 
attached over most of the surface.

19



o As α becomes large, the flow

tends to separate from the 

top surface of the airfoil.

o The consequance of this

separated flow at high α is a precipitous decrease in lift and a 
large increase in drag.

o Under such conditions, the airfoil is said to be stalled.

o The maximum value of cl, which occurs just prior to the 
stall, is denoted by cl,max. 20
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Low a
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Moderate a



33

High a



o cl,max determines the stalling speed

of an airplane. The higher is cl,max

the lower is the stalling speed.

o The value of α when lift equals 

zero is called the “zero-lift angle 

of attack” (αL=0).

34

At negative α 
airfoil will have 
zero lift
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o The lift slope is not 

influenced by Re.

o cl,max is dependent upon

Re.

o The moment coefficient

is insensitive to Re except

At large α.
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o The sum of skin 

friction drag and 

pressure drag yields the

profile drag.

Profile drag coefficient

is sensitive to Re.
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To obtain the drag per unit span, we must use the data diagram. 
Since cd = f(Re), let us calculate Re. At standard sea level, μ = 1.789 x 1 0-5 kg/(m.s). Hence,
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o Let us expand the concept a point vortex.

o Imagine a straight line perpendicular to the 
page, going through point O, and extending to
infinity both out and into the page. This line
is a straight “vortex filament of strength Γ”.

o The flows in the planes perpendicular to the
vortex filament at O and O’ are identical
to each other and are identical to the 
flow induced by a point vortex of 
strength Γ.
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o Imagine an infinite number of straight vortex filaments side
by side, where the strength of each filament is infinitesimally
small.

o These side by side vortex filaments form a vortex sheet.
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o The analysis of the vortex sheet closely follows that of the
source sheets.

0

l

ds  
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ds

s

P(x,y)

θ

o For a straight vortex sheet extending from (-l/2,0) to (l/2,0),
with a constant strength γ, the potential and the velocity
components at point P are given by:
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o Consider a rectangular path enclosing a section of a vortex 
sheet of length ds. The circulation around the path is: 

o The strenght of the vortex
sheet contained inside the 
path is: ds

u1

u2

v2v1

Let dn 0
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Potential flow with lift is not unique!

(Circulation  may have any value)

Which flow occurs in reality?
The flow that leaves smoothly at the trailing edge

(The “Kutta condition”)

The same happens for the 
flow around an airfoil
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the Kutta condition expressed in terms of the strength of the vortex sheet is:

(Point a is a stagnation point)
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Question: How does nature generate this circulation?

C1

time t2time t1

C2

Г2Г1

Г1= Г2

1

1 .
C

V ds  
2

2 .
C

V ds  
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Г1=0

C1

C2

Г2=0
C4 C3

Г2=Г3+Г4=0 Г4=-Г3

Г3Г4
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o Consider  an  airfoil  of  arbitrary  shape and  thickness  in a 
free stream with velocity V∞
o Replace the airfoil surface with a vortex sheet of variable 
strength γ(i).

o Calculate the variation of γ as a function of s such that the 
induced velocity field from the vortex sheet when added to the 
uniform velocity of magnitude will make the vortex sheet (hence 
the airfoil surface) a streamline of the flow.

12
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foundation of the vortex panel method

Analytical solution? 

Thin airfoil approximation

o No general analytical solution for γ = γ (s) exists for an airfoil 
of arbitrary shape and thickness. Rather, the strength of the 
vortex sheet must be found numerically
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1) The airfoil is assumed to be thin, with small maximum camber and 
thickness relative to the chord, and is assumed to operate at a small angle of 
attack, α ≪ 1.
2) The upper and lower vortex sheets are superimposed together into a single 
vortex sheet γ = γu + γℓ, which is placed on the x axis rather than on the 
curved mean camber line Z = (Zu + Zℓ)/2.
3) The flow-tangency condition V ・ n = 0 is applied on the x-axis at z = 0, 
rather than on the camber line at z = Z. But the normal vector n is normal to 
the actual camber line shape, as shown in the figure.
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Thin airfoils can be simulated by a vortex sheet placed along the 
camber line.

Our purpose is to calculate the variation of γ(s) such that:
1) The camber line becomes a streamline of the flow
2) The Kutta condition is satisfied (γ(TE)=0).

Once we have found the particular γ(s) that satisfies above 
conditions, then the total circulation Γ around the airfoil is 
found by integrating γ(s) from the leading edge to the trailing 
edge. L V  
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P

α
V∞

𝒕𝒂𝒏−𝟏  −
𝒅𝒛

𝒅𝒙
  

 

α

V∞

z

x

For the camber line to be a streamline:
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Let w(x) denote the component of  velocity normal to the chord 
line induced by the vortex sheet,

If the airfoil is thin, the camber line is close to the chord line, 
and it is consistent with thin airfoil theory to make the 
approximation that
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W(x)

x

z

Fundamental equation of thin airfoil theory
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The central problem of thin airfoil theory is to solve the above 
equation for  γ(ξ), subject to the Kutta condition, namely, γ(c) = 0.

Special Case: A symmetric airfoil has no camber; the camber line 
is coincident with the chord line. For this case:

dz/dx = 0
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Is the solution of ?
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Note that at the trailing edge, where θ=π,  the above equation 
yields:

However, using L'Hospital's rule on Equation

Thus, the equation also satisfies the Kutta condition.
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The moment about the leading edge can be calculated as follows:

x

z

dL

L.E
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Consider a thin flat plate at 5 deg. angle of attack. 
Calculate the: 

(a) Lift coefficient,
(b) Moment coefficient about the leading edge,
(c) Moment coefficient about the quarter chord point,
(d) Moment coefficient about the trailing edge.
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The solution for this more general problem can be written as a Fourier series:

“Basic solution” 
for the symmetrical 

airfoil: A0 = 

Additional terms

The coefficients An (n=0,1,2,...) depend on the shape of the camber line z(x).

The coefficient A0 depends also on .

For a cambered airfoil, is finite.dz dx
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The coefficients A0 and A„(n = 1, 2, 3 , . . . ) in the above  equation must be specific 
values in order that the camber line be a streamline of the flow.

f (x)
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Z=f (x)

A0
A1 sin x A2 sin(2 x) A3 sin(3x)
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In general, the Fourier cosine series representation of a function 
f(θ) over an interval 0< θ <π is given by:
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The total circulation due to the entire vortex sheet from the 
leading edge to the trailing edge is:
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x

z
dL

L.E
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As the lift approaches zero, xcp moves toward infinity; that is, it
leaves the airfoil. For this reason, the center of pressure is not
always a convenient point at which to draw the force system on
an airfoil.

the force-and-moment system on an airfoil is more
conveniently considered at the aerodynamic center.
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Consider an NACA 23012 airfoil. The mean camber line for this airfoil is 
given by

Calculate:

a) the angle of attack at zero lift, 
b) the lift coefficient when α = 4°, 
c) the moment coefficient about c/4
d) the location of the center of pressure in terms of xcp/c, when α = 4°.
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(c)

(b)
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Experiment          Thin airfoil 

(d)
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The aerodynamic center is a point on a body about 
which the aerodynamically generated moment is 

independent of angle of attack. 

For most conventional airfoils, the aerodynamic center 
is close to, but not necessarily exactly at, the quarter-
chord point.
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m0

a0
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The equation proves that, for a body with linear lift and
moment curves, that is, where ao and mo are fixed values, the
aerodynamic center exists as a fixed point on the airfoil.
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Consider the NACA 23012 airfoil. 
Where is it’s aerodynamic center?


