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2 “A branch of dynamics that deals with the motion of air and
other gaseous fluids, and with the forces acting on bodies in
motion relative to such fluids.”

... Webster’s Dictionary
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% What does “Aerodynamics” mean to you?

2 In what other areas or products besides airplanes does
aerodynamics matter?
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2 “Theoretical and experimental aerodynamicists labor to
calculate and measure flow fields of many types”

.. Because “ the aerodynamic forces exerted by the airflow
on the surface of an airplane, missile, etc., stems from only
two simple natural sources:

» Pressure distribution over the surface (normal to surface)
» Shear stress (friction) over the surface (tangential to surface)

p Tw
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AERODYNAICS...

» Deals with calculations of Forces and Moments due to
body-air relative movement for all range of speeds. From very
low speed to several times more than speed of sound




AERODYNANVIICS CLASSIFICATION:L.
o Low speed (Incompressible)
2 Subsonic
2 Transonic
2 Supersonic

@ Hypersonic

s N
Classification is based on:

Flow Compressibility
N Y,
e —————
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DEINITION OF CONIPRESSIBLE FL

— =) 5

2 Compressible flow is routinely defined as variable density
flow.

‘ (

1(8v)
(A —— | —
:|.6V4 v ap'r

rT=—"—
v op 1(8vj
T, =——| —
L viop )
r. =5x10"° m?/N, for water at1atm
r. =1x10°  m?/N, for air at 1atm _—
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P = = r=—— — dp = pzdp

-
%

2 For the flow of gases with their attendant large values of
Compressibility, moderate to strong pressure gradients lead
to substantial changes in the density.

2 At the same time, such pressure gradients create large
velocity changes in the gas.

2 Such flows are defined as compressible flows, where
density is a variable.

A
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2 Consider the low-speed flow of air over an airplane wing at
standard conditions:

L,ji “

& 150 nul/hr

100 mul/hr ———

p,—p, = % oV -V 7)= % (0.002377)(220° —147*)=31.8 lo/ft*

Pi=P, _ 318 _ 015

P, 2116

2 the percentage change in pressure is 1.5% —

‘______/AERODYNAMICS Lay
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® Mach number is defined as the ratio of the local flow
velocity to the speed of sound: Vv

L.L I | I | |

—— . . . . . .
0.5 m
D& .
o7 .

D6 -
C‘p ::u::mpr-essil::le—

ns  Cpincompressible———— |

D.";I- | ] ] | ]
0 0l 02 03 04 05 06 e
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M_<0.3 Incompressible Flow
0.3<M_<0.8 Subsonic Flow
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Subsonic flow evet
@) M, = 8

Sonic point (M = 1,0)

Subsonic

(Critical AN Supersonic
Mach
number) (b) M, = 85 Shock

Subsonic

lBM.o §l ;2;8} lc \\gf 8 [> Subsonic " Suxﬂ;{i:,f%ic‘
Supersonic \\\ \\\\ & g \
\
7 A o M= 85
N b
A / ) \

Shock

Subsonic

flow

/

s&personfc

v

1%}
C \ region #
z
~ Bow shock 0\ Subsonic \\// / /
wraps around \ N /
pose/

Subsonic

&

Shoc
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=TRANSONIC FLOW,

WY R eV

08 <Mu. <10

Bow shock

Trailing-
~ edge shock

-
\
p) M>1
M1 )/
— W
1.0 Mo, < 1.2 ,
| ) \

—’F‘“" ;-

»
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Orbiter Thermal Protection System
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10

20

30

1 Light air Butterflies
2 Light breeze Gnats, ﬁlidg&s, damselflies
3 Gentle breeze . Hurrtan-puwared aircratt, flies, dragonflies
4 Moderate breeze Bees, wasps, ﬁeeﬂes, hummingbirds, swallows
5 Fresh breeze Sparrows, thrushes, finches, owls, buzzards
6 Strong breeze Blackbirds, crows
7 Near gale Gulls, falcons
] Gale Ducks, geese
9 Strong gale Swans, coots
10 Storm Saiiplanes
1 Violent storm Light aircraft

12 Hurricane ﬁn

¥YNAMICS |




FLOW/CUASSIFICATION, - 2

P
]

o Inviscid flow:

2 Viscous flow:

2 Rotational
2 Irrotational

2 Laminar
@ Turbulent
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~ » The motion of the fluid is controlled by:

» Governing Equations
2 Boundary Conditions

%

,—/lnznonvuaulcs ng
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2 The governing equations are given by conservation laws:
» Conservation of mass Continuity
» Conservation of momentum Newton’s 2" Law, F=ma

» Conservation of Energy 1%t law of thermodynamics




EORNIS'OF GOVERNING EQUATIONS

(Point by point detail) (Overall Features)

Differential Integral |
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2 Cartesian coordinates: Are normally used to describe
vehicle geometry.

Vi sina

V_cosa

2 Cylindrical coordinates
2 Spherical coordinates

2 General non-orthogonal curvilinear coordinates —

AERODYNAMICS I
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2 In general Cartesian coordinates, the independent variables
are: Xx,Yy,zandt.

» We want to know the velocity components (u, v, w) and the
fluid properties (p, p, T).

2 These six unknowns require six equations:

2 Continuity Equation: 1 Equation
2 Momentum Equations: 3 Equations
2 Energy Equation: 1 Equation

» Equation of State: 1 Equation




» We want to find the flow field velocity (u, v, w), pressure
(p) and temperature (T) distribution.

2 We need to develop a mathematical model of the fluid
motion suitable for use in numerical calculations.

2 The mathematical model is based on the conservations
laws and the fluid properties.

— ————
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@E§@m ELUIDIVIOTION.
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» Lagrangian:
2 Each fluid particle is traced as it moves around the body.

» This method corresponds to the conventional concept of Newton’s 2d
law

2 Eulerian:

2 We look at the entire space around the body as a field, and determine
flow properties at various points in the field while the fluid stream past.

2 We consider the distribution of velocity and pressure throughout the
field, and ignore the motion of individual fluid particles.

\h
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2 The statement of Conservation of Mass is in the words

simply:

- I - I
Net outflow of mass

through the surface
surrounding the volume

o ) o )

[Mass can be neither created or destroyed |

Time rate of decrease of
mass within the volume

[X —out]|—[X —in]+[Y —out]—[Y —in]

| axX | = change of mass (decrease)

| | = Z—p,ﬂmr




THECONTINUITY EQUATION.

2 The differential form:
cp Cpu Cpv
- + + =()
2D ot ¢&x Oy

3-D 6p+6ﬁ4+&;w+6;m==0
ot &o&x oy o=

Vector form %ﬂ? (pV)=0

2 The integral form:

ggjpdwggﬁds*:o
— _

Lo REVIC W . >




o Newton’s 2™ law: The time rate of change of momentum of
a body, equals the net force exerted on it.

@ For a fixed mass, this is the famous equation:

—

F—ma=—m—"
Dt

[Force = Time rate of change of momentum]

_________-—__-nnnonwnamxcs l
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2 Substantial Derivative:

2 We need to apply Newton’s law to a moving fluid element
from our fixed coordinate system.
2 Consider any fluid property, Q(r,t)

@ The change in position of the particle between' at t, and
r+Ar at t + At is:

AQ =Q(r+As,t +At)-Q(r,t)
—Q(F +V At,t +At)—Q(F,t)
2 The rate of change of Q is:
DQ AQ Q(F VALt +At)=Q(Fit)

—~ — |lim—==lim
Dt At—0 At At—0 Al p— —

—

e —————



SE—

CONSERATION OF MOMENTUM

. AQ o0 o0
111’11 —_— = — + =T
Ar—0 Af ot Os
Local time Variation with change
derivative, of position,
local derivative convective derivative
— vy
Y

Substantial derivative

® The second term has the unknown velocity V multiplying a
term containing the unknown Q. This is important!

2 The convective derivative introduces a fundamental
nonlinearity into the system.

— !

L ———— R E R O DY NAM1CS I =
- '*""“' ~ ~-‘ - —— | ; 'Y




CONSERATION OF MOMENTUNM

» In coordinates, V ={u,v,w}, and the substantial derivative
becomes:

DV _ cv ov ’
—= ar+u VW
Dt -
Dw _ow ow ow  ow




—CONSERATION OF MOMENTUIV-

= @AWY

Sources of the force exerted on the fluid element:

2 Body forces

@ Gravitational forces
2 Electromagnetic force

2 ...

@ Surface forces
2 Pressure
@ Shear stress

Y
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ONSERATION OF MOMENTUM

m— e ()

2 The net force in the x-direction is found to be:

0 %,
PAX AYf + ~ (7, )JAX Ay + 5 (7,0 )AX Ay

@ Using the Substantial Derivative and the definition of the
mass, m = pAX Ay Az, and considering the x component, F, =ma,
in three dimensional case, we have:

Du 9, 0
AXAY Az — = pAXAY Azf . + — (7. JAXAY Az + — (7., )JAX Ay Az
VT = pAX Ay Azt ax(xx) y ay(yx) y

+ i (7,, JAX Ay Az
0Z

o g




2 General conservation of momentum relations:

@ Differential form:

or, Ot
p 2l pf 48 Do OO
Dt ox oy 0z
ot or ot
P&=ﬁ;+ » oW Y
Dt ox oy z
or

pﬂ=pf,+ar"-’+ =, 0%z
Dt - Ox Oy z

2 Integral Form:

§ m AV + jj (& dSN =— J j pds’ + j J [ AV + Ry
— ——
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CONSERATION OF MOMENTUNM

(%)

2 Relations between stress and u based on the assumptions

r.. =_p-§;;v-v+2;fﬁ

Ox

r}!‘lr’ :—p—gjf? 1‘\"’"|‘2J,1t'4!"E

3 ov

T.. :—p—%ﬂ?*\’+2ﬁ%

and

[ cu Cv J
Ty =T =1 -+

o o
( &Il &u}
Ty =T =H T
oz Ox

cv  ow
+

¥z 2y

I

Il
f’l"‘x
2
QJ
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THE-CLASSIC NAVIER-STOKESIEQUATIONS

o S e -

2 Written in the standard aerodynamics form neglecting the
body force.

2 These equations are:
2 Non-linear (recall that superposition of solutions is not allowed).

2 Highly coupled.
2 Long! —— —————

FLL ,..‘_uc*a1 VIEW £




EULER-EQUATIONS

2 When the viscous terms are small and thus ignored, the
flow is termed inviscid.

® The resulting equations are known as the Euler
Equations.

v v v v dp
— +U—+V—+W—+
ot ox &y &z poy

0

Cw
+ W
oz

+f?10:
007




2 Euler Equations in cylindrical coordinate system:

( 2
oV ov. V, dV V. Vj op
d — r+‘/r r+_ r+V r_ = I'__
s p\ar or r 90 © 9z r] Ps or
(V. oV, V., oV v, V.V, 19
6 0 6 9Vp 0 rYe P
g =p|l—+V,—+——+ V. — + = ===
Pl =P\ " r T 90 T ez P8~ 30

oV "9 aV dV ap
a =pl == 4y 224 0% Ly 2| _ i
pz p\af rar . 89 ZBZ) pgz

w—.
- - Fl \ 1A .vvﬂ,-'r-?.-. ~VIiEW A




EVVTONSISECOND, LAW: FLUID.DYNAMICS @

Y% SEANAY - \—/
 ———_'
2 We describe the motion of each particle with a velocity
vector: V
2 Particles follow specific paths base on the velocity of the
particle.
2 Location of particle is based on its initial position at an
initial time, and its velocity along the path.

o If the flow is a steady flow. each successive particle will

follow the same path.

1-FIuid particle
L] g,

= !

L — R ERODYNAMICS i
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NEWTONSISECONDILAW STEADYELOW @

A S AN AN
2 For Steady Flow, each particle slides along its path, and the

velocity vector is every tangent to the path.

2 The lines that the velocity vectors are tangent to are called
streamlines.

®» We can introduce streamline coordinate, s(t) along the
streamline and n, normal to the streamline.

» Then *R(s) is the radius of curvature of the streamline.

// V
=0
“ Streamlines
) / n= nl
R =R(s)
X

=

g
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V = V(S) ==V = ds/dt

a=dV/dt

@ For 2-D Flows, there are two acceleration components:
2 s-direction by chain rule:
a, = dV/dt = (9V/ds)(ds/dt) = (3V/ds)V
» Normal direction (n) is the centrifugal acceleration:
VZ
a, — a
2 In general there is acceleration along the streamline:
aV/as # 0
2 There is also acceleration normal to the streamline: R # o

2 However, to produce an acceleration there must be a force!

A
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2 Remove, the fluid particle from its surroundings.

2 Draw the F.B.D. of the flow.

2 Assume pressure forces and gravity forces are important.
2 Neglect surface tension and viscous forces.
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2 Use Streamline coordinates, our element is ds x dn x dy, and
the unit vectors are n and s, and apply Newton’s Second Law
in the Streamline Direction.

@ Streamline, F = ma: D 8F, = dma, = dm Vi—v = p &¥ Al

ds
2 Gravity Forces:

\ \ SW, = —8W sinf = —y S¥ sin 6
oy ® Pressure Forces (Taylor Series):

/ 8F,, = (p — 8p,)dn 8y — (p + 8p,) 6n 8y = —28p, n 8y
(p+ Op,) 6n 5y

: 5
= Losonsy = Loy
o5 o5

= &5 on Oy

)Il ol ,.
wthlckness 6\

/ = 3.~ L% arises since pressures vary in a
W\ oo " fluid. P is th h
sy \ i ui 1s the pressure at the
o o-dowey L\ center of the element.
Shear Forces: Neglected, Inv1sgd'£_

ABRODYNBMICS i
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2 Then p 6¥ Vﬂ = Y OF, = 8W, + 6F,, (—ysinﬁ—a—p)ﬁV
as s
Divide out volume, recall «, = VZ—‘:
op oV - The change of fluid particle speed
—7ysinf — a5 = PVE pa is accomplished by the appropriate
. combination of pressure gradient
*\_ﬁ \ and particle weight along the
= 55 5n 8y sy streamline.
Pl hicne 6\ / - Inastatic fluid the R.H.S is zero,
\c/ S and pressure and gravity balance.

Mo In a dynamic fluid, the pressure
A - and gravity are unbalanced

(
o 7856y=0 . .
\ - causing fluid flow.
oz : . .
T A S - In a dynamic fluid, the pressure

Along streamline
) and graV1t¥_ are ugbalanceg—




ap A%

—ysinf — — = pV—=
Y 0s — P 0s pes
2 Note, we can rewrite terms in the above equation:
sin @ = dz/ds

VdV/ds = 5d(V?)/ds
dp = (9p/ds) ds +(9p/on) g/f’l = (ap/as) ds

0 = constant along a streamline

2 Then
dz dp 1 dV?)

_yds— ds =§p ds

2 Simplifying,

1
dp + > pd(V*) + ydz =0 (along a streamline)
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2 Integrate,

d |

J Fp + EVE +gz=0C (along a streamline)

2 In general, we can not integrate the pressure term because
density can vary with temperature and pressure; however, for

now we assume constant density.

‘ p + 3pV? + yz = constant along streamline

Celebrated Bernoulli’s Equation
2 Assumptions:
.  Viscous effects are assumed negligible (inviscid).
[I. The flow is assumed steady.
. The flow is assume incompressible.
IV. The equation is applicable along a streamline

* We can apply along a streamline in planar and non- planar flows!
#




s
dp V?
j | - 27 = constant
p 2

Incompressible flow

+ gz = constant
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BERNOULLI’S EQUATION,

4 )
p vV
— + — + gz = constant
. P 2 y
Steady Flow

No Friction
Flow Along a Streamline

W oMo

Incompressible Flow
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STATIC, STAGNATION/ AND DYNAMIC PRESSURES Q
— _ 4( A

|
po=p+=pV-

VAR RN

gSEnation Static Pressure LG
Pressure Pressure
VY.

4=3 ol




2 Motion of a rigid body:

» Translation: all points in the body, move in parallel straight lines.

» Rotation: all points in the body move in circular paths about the axis of
rotation.

2 General motion

"’ - U RN .~: —
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2 We can decompose the motion of an infinitesimal fluid
particle, into four components:

2 Translation i
2 Rotation i
» Linear deformation (Linear strain) %

» Angular deformation (Shear strain)

" = | NICS REVIEW @
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Linear Rotation Angular

Translation

Deformation Deformatioen

o #
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TRANSIATION,

.

| No Shear Stress




X
|
1 Vplt) = V(z,y,z ‘ V (t+dt) = V(r+d1:,y-|—dy,z+dz,t+dt)
| - 8V aV oV oV
|

_ = 5 —; di
P BI P ay yp-|— 5 zp+ &




TRANSUATION,

—_—

dV, 8V dr, 8V dy,

. oV dz, v
ot  Or dt dy dt

5. & T o

+

Acceleration of fluid

\\elerner‘t/

N DV av 5\7 o oV
a -V FW——
"~ Dt ot ax oy 0z

‘ - FI 41ANICS REVIEW -




A_V :AXAy(aU + aV]
At

vV = | LR
OX oYy

Incompressible

\flow/
u au >
OX ~

AV =0

I
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TINEARDEFORNVIATION

ou oV oW
Evx = Ew = & =
OX oy 0z
Eg TEy T &4 _ A +8V +6W =VV =0
ox oy oz




ANGULAR DEEORMATION, —

-

Yk
dii
oy var C
I .‘__..-‘:.5;
K E]I —— P
:._'__... !#’ Er't
¥ .-i'" ;‘
dut dv iy [ L
e =Ldydt)dy +—dxdt/dx| [} 2 L.
xy ! - == A T3y
Ay ox ' B T Iﬁm
(0 dx A .rh
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In three-dimensional space: @=o,1 +o,] + o,k

@zlﬁﬂf

| 2
o = 1 curlV’

2

| Vorticity = Curl of velocity |

|




ROTATIOAL AND IRROTATIONAL FLOWS

Rotational flow:

V xV =0 at every point. The fluid elements have a
finite angular velocity:.

Irrotationalqﬂovg:

V xV =0 at every point. The fluid elements have no
angular velocity (pure translation).

— !

!_____/AERODYNAMIGS T 2B
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Irrotational outer flow region
Velocity profile

Rotational boundary layer region

F==== --»@---»—@---->/' ---»/@----»/' -----

X
Wall Fluid particles rotating

\%
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Flow A is rotational
Flow B is irrotational
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ROTATIONAL AND [RROTATIONAL FLOWS
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Imx =0, =0, = (0
v du
L du v dw__1Ip
dv  dy o T Vox Tk T pox T/
dw  dv 9 0 o d
T —0 o ,ov_  ow_ 19
Jy % oy Tty TPy
) —>
du _dw _ 0 g ou oV dw _La_.UJrf
dz  ox Yo s Mo Pz s
Euler Equations:

o) ou ol ou
—t Y—tFV—tW— =

ox dy 0z

v v v Iy
—+U—+V—FtW—=

ow ow ow ow
At U— +V— +W— =
ax ay 0z
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ua—”dr + vﬁdr + w aif."l: = —iidr+ f.dx
dx dx dx 0 ox
;th + v a—ld\r +3 1dir:’h = —ith + f,dy
dy dy dy P dy
H%fﬂ? + v o dz +w o dz = —la—pdz + f.dz
dz 0z dz P oz )
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Integrating

@; V“
2

Efﬁj‘

For p =const. (Incompressible flow):
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2 The most frequent used terms in aerodynamics are:

2 Pressure
2 Density
2 Temperature
2 Velocity

2 Viscosity
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2 Pressure:
2 Pressure can be defined at any point in a fluid, whether liquid or

gas.
2 Pressure is the normal force per unit area exerted on a surface
due to the time rate of change of momentum of the gas molecules

impacting on that surface.

. (dFj
p=Ilim| —
dA—0\ dA dFE

» Pressure is defined at a point in the fluid (or solid). Pressure is a

point property.
2 Dimension: [M/T>L], [FL/T] (T: Time)

A

A

AERODYNAMICS I
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2 Density:
2 Density is defined as the “mass per unit volume”. It’s the mass of
the fluid contained in an incremental volume surrounding the

point.
P= dv—-0{ dv

2 In a fluid, density may vary from point to point. Density is a

point property.
2 Dimension: [M/L3], [FT?/L4] (T: Time)

dm,dv

— !
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AERODYNAIIIC VARIABLES.

2 Temperature:
2 Temperature is directly proportional to the average kinetic
energy of the molecules of the fluid.

KE :§kT
2

- KE: mean molecular kinetic energy
- k: Boltzmann constant




2 Velocity:
2 Flow velocity is a vector quantity; it has both magnitude and

direction.

e

2 The velocity of a flowing fluid at any fixed point B, is the
velocity of an infinitesimally small fluid element as it sweeps
through B.

B

w‘@\
_.__—r—'f(—\

h“"-...__

— !
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2 Viscosity:
2 Viscosity of a fluid is regarded as its tendency to resist sliding
between layers.
2 In a Newtonian fluid, the shearing stress is proportional to the
rate of shearing deformation. The constant of proportionality is
called the coefficient of viscosity p. /o

-
4y

2 Viscosity of a fluid relates to the transport of momentum in the
direction of the velocity gradient (but opposite in sense. Viscosity
is a transport property.

\%
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2 Viscosity:
2 The coefficient of viscosity depends on the composition of the

fluid, its temperature and its pressure.
@ Sutherland’'s formula can be used to derive the dynamic

viscosity of an ideal gas as a function of the temperature:

B Tﬂ_I_C(T)'},-"?
H ’uﬂT-I-C

where:

1 = dynamic viscosity in (Pa-s) at input temperature T

I, = reference viscosity in (Pa-s) at reference temperature T,

T = input temperature in kelvin

T, = reference temperature in kelvin

C = Sutherland's constant for the gaseous material in question

Valid for temperatures between o < T < 555 K with an error due to pressure less

than 10% below 3.45 MPa
A________——vnznonvuamxcs i

A
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2 Viscosity:
2 The coefficient of viscosity depends on the composition of the
fluid, its temperature and its pressure.
2 Sutherland's formula can be used to derive the dynamic
viscosity of an ideal gas as a function of the temperature:

Ty + C T \*? i Clxl T,[Kl | p,[10% Pas]
JU- — J“'ﬂ ( ) air 120 291.15 18.27
T+C nitrogen 111 300.55 17.81
oxygen 127 292.25 20.18
carbon dioxide 240 293.15 14.8
carbon monoxide 118 288.15 17.2
hydrogen 72 293.85 8.76
ammonia 370 293.15 9.82
sulfur dioxide 416 293.65 12.54
helium 79.4 273 19




AERODYNAIIC FORCES ANDIVIOMENTS -

2 Sources of aerodynamic forces and moments:

@ Pressure distribution (Normal to the surface)

@ Shear stress distribution (Tangential to the surface)

P




-

AERODYNAWIIC FORCES AND.MQIENTS @

2 The net effect of pressure and shear stress distribution,
integrated over the body surface is:

- Aerodynamic force: R

- Aerodynamic moment: M

R
M
Voo
e ———
p— 7!

SRR O DYNANMLC S =

VAL FIRTING




AERODYNANIIC FORCES ANDIVIOVIENTS

Lo B

» Components of aerodynamic force (R):

1. L: Lift (perpendicular to freestream velocity)
D: Drag (parallel to freestram velocity)

2. N:Normal force (perpendicular to chord)

A: Axial force (parallel to chord) L =N cosa—Asina
N D =N sina+Acosa
V.
—
—
—

— ————
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SIGIV CONVENTION FOR AERORYNAMIC

2 By convention:

2 Positive moments tend to increase the angle of attack:

C&

2 Negative moments tend to decrease the angle of attack:

Q




Lift coefficient

c - D

Drag coefficient D= @
N

Normal force coefficient C, = q—S
A

Axial force coefficient C,= q—S

Moment coefficient C, = MS|
.

Where:

= q is called the freestream dynamic pressure: (
= |: reference length
= S: reference area

o0



S = planform area
I = ¢ = chord length

nd?
_.... § = cross-sectional area = 7=
I = d = diameter




AERODYNANIC COEFFICIENTS

- Two additional dimensionless quantities:

A

Pressure coefficient C )=
d,
T

Skin friction coefficient G = q—
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Trailing Edge (T.E.)

Leading Edge (L.E.)
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2 Center of pressure is a point about which the aerodynamic

moment 1S zero.

[ Center of Pressure 1 — [ M =0 }

§ L




= CENTER:OF PRESSURE

= S V=

2 Center of pressure is a point about which the aerodynamic
moment 1S zero.

{ Center of Pressure J — [ M =0 }

§ L




In low-speed, incompressible flow, the following experimental
data are obtained for an airfoil section at an angle of attack of

o

g

¢;.0.85 and ¢, ., =-0.09.
Calculate the location of the center of pressure.
c_M.,

X
o4 L

Ko 1 (Myu/0.69) 1 Cpoe
c 4 (L'/q.c) 4 ¢

1 (-0.09)

=0.356

4 0.85 —

AERODYNAMICS I




—-'_"_-i

RN RYA

@ﬁmgmmmﬁ@ — —_— {}
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Question:
What physical quantities determine the variation of
Aerodynamic forces and moments?

The answer can be found from the powerful

method of
dimensional analysis

AERODYNAMICS 18
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On a physical, intuitive basis, we expect the aerodynamic

force to depend on: R
) M

Freestream velocity, V_,
Freestream density, p_, .
Viscosity of the fluid, p.. .
The size of the body, represented by some chosen
reference length. Reference length is the chord length c.

5. The compressibility of the fluid. Compressibility is related
to the speed of sound, a. Therefore, let us represent the
influence of compressibility on aerodynamic forces and
moments by the free stream speed of sound, a....

AW N
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DIVIENSIONAL ANALYSIS: — i f\{},

=1 BUCKINGHANM PI THEOREM

2 The object of dimensional analysis is to group several
variables together to form a new variable that is
nondimensional.

2 Dimensional analysis is based on the obvious fact that an
equation dealing the real physical world, each term must have
the same dimensions:

y+tn+i=¢
The above equation can be made dimensionless by dividing

by any one of the terms, say,
y any g ¥ m L

b o o
e S ——g
Aznonvnnxc o

FUNL)/



RN R VAN

W@.naﬂ@mw@mm"pﬁ THEOREIVI

Let K equal the number of fundamental dimensions required to

describe the physical variables. (In mechanics, all physical variables can be
expressed in terms of the dimensions of mass, length, and time; hence, K = 3.)

@UM ENSIONAL ANALYSIS: S—— S— @

Let P, P ,,..., Pyrepresent N physical variables in the
physical relation

f.(P,P,...P.)=0

Then, the physical relation may be reexpressed as a relation
of (N - K) dimensionless products (called IT products),

f(I1,T1,,....T1, ) =0

\%

“_/AERODYNAMICS i
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@UM ENSIONAL ANALYSIS: S—— S— @

W@.naﬂ@mw@mm"pﬁ THEOREIVI

Each IT product is a dimensionless product of a set of K physical
variables plus one other physical variable. Let P, P, ..., P, be the
selected set of K physical variables. Then

Hl:f;(PISP25'*'aPK5PK+l)
:j:i(‘PlpP:lﬂ'-*yPKaPK+2)

--------------------------

) PN :fs(Pan,---,PK,PN)

The choice of repeating variable, should be such that:
- They include all the K dimensions used in problem.
- The dependent variable should appear in only one of
the Il products. —

M W
g - v
TrUNDUAIVILC]
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| THE'BUCKINGHAMPI THEORENM —a/

:f (IOoo’Voo’C’lLloo’aoo)

U

g (R’IOoo’Voo’C’lLloo’aoo) :O

m = dimensions of mass

1 = dimension of length  ———) K =3

t = dimension of time

w
‘ - Fl »‘»‘”~j'.11:‘.k""' £ S »
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: @HMEm ANALYSIS:

TE%]E’J@@MM@MAM Pl THEOREM

2 Physical variables and their dimensions:

[R]= mit

[p]=ml""

[V.]=1It" Ezg
[c]=1

() =ml""t"

la, ]=1t""
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g(R,po . V_,c, 1 ,a )=0 can be reexpressed in terms of N - K =3
dimensionless I'T products

fZ(H11H21H3) :O

The IT products are:

1, =f,(p,V..C,R)
1, =f,(p.V...C,u)

I,=f.(p,V,.cC.a,)




@mgm ANALYSIS:

TWE’J@@KZZM@MAM Pl F’WE@[R}E’M

I, =f,(p,V,.C,R)

I, = pV [C°R

[TL]=(mI ) (1t)° (1)° (mlt ™)

!

d=-1,b=-2,and e =-2

w
— - F AL PRINCIPLES S
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@HME&WS[Z@MA@ ANALYSIS:

'ZTZ%?E’:I@@KZW@MAM Pl WME@E}E’M

M,=Rp,V, ™
R
A

Force
Coefficient




@HMEm ANALYS]S:

?ME’J@@KZZM@MAM Pl FME@@EM?

Hg = Px V,::gﬂiﬂj
[TL] = (ml (™)' (D) (ml "¢ 'Y

PV
H

Reynolds Number

Re =

Form: 1+j=0
Forl: -3+h+i—j=0

Fort: —h—j=0

) 4

—1, h=1,and i=1
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k
H3 ) Vmpm Crﬂ;:

(ML) = (1™ )i (1 (') Ty

For m: k=0
For!l: 1-3k+r+s5s=90

For t: —-1—5=0
VOO k=0,s=-1,and r=0
M=-=
A,
Mach Number
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DIVIENSIONAL ANALYSIS:

PRV

f( R pg.:.V:rC V:(
NpVaS™ u. a.

¥

fE(CR! Rea M'I) — 0

F’E%?E:l@ﬂ@@ﬂ[ﬂﬁ@ﬁﬂm Pl TE@[K?EM

)

Cr = fe(Re , M)

(&)

CL — f7(Re;Moo)

CD — f8(Re;Moo)

CM — f9(Re;Moo)

|
3
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————————————————e

DIVENSIONAL ANALYSIS: @

“THE BUCKINGHAN P THEOREV] =/

——) \ﬁ\\ \\V

If o is allowed to vary, then:
C,, Cp, and C,,will in general depend on the value of «.

CL — f7(Re,Moo,a)

CD — fg(Re,Moo,a)

CM - fg(Re,Moo,a)




By definition, different flows are dynamically similar if:

1. The bodies and any other solid boundaries are
geometrically similar for both flows.

2. The similarity parameters are the same for both flows.




ELO.

B @A

An aircraft and some scale models of it are tested under various conditions: given
below. Which cases are dynamically similar to the aircraft in flight, given as case (A)?

— — — —

Case (A) Case(B) Case (C) -Casc (D) Case(E) Case(F)

Span (m) 15 3 3 1.5 1.5 3
Relative density 0.533 1 3 1 10 10
Temperature (°C) —24.6 +15 +15 +15 +15 +15
Speed (TAS) (ms~') 100 100 100 75 54 54

Case (A) represents the full-size aircraft at 6000 m. The other cases represent
models under test in various types of wind-tunnel
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>

The Reynolds number pVD/ 4 may be calculated for each case

T+ C (3)3*"“
Ty

(Viscosity from Sutherland’s formula 1 — no——

These are found to be:

Case (A) Re =5.52 x 107 Case (D) Re=17.75 x 108
Case (B) Re = 1.84 x 107 Case (E) Re = 5.55 x 107
Case (C) Re = 5.56 x 107 Case (F) Re=1.11 x 108

Cases (A), (C) and (E) are dynamically similar.
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2 The Bernoulli’s equation is a powerful and useful equation
that relates pressure changes to velocity and elevation
changes along a streamline.

2
B+V—+gz =C
o 2

2 The Bernoulli’s equation gives correct results when applied
to flow situations where the following four restrictions are

reasonable:
2 Steady flow
2 Incompressible flow
2 Inviscid flow

2 Flow along a streamline (In general, the Bernoulli’s constant [C] has different
values along different stramlines) — ————

ST MNEIRCARADI
- ASC.I1J) 1 o9
NV Ll oAJ

u!\b\ AV W
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N =

2 Bernoulli’s equation is applicable to the following two
devices:

» Venturi: Flowmeter, low-speed wind tunnel, Airspeed measurement

» Pitot-tube: Airspeed measurement

AERODYNAMICS 18




BERNOULLIS EQUATION, @@P@ﬁﬁ' — {}
=——VENTURI ‘ . &

2 Venturi is a convergent-divergent duct. It's a device that
finds many applications in engineering.

Convergent duct Divergent duct
‘r“\-\\____ ____--y;lxﬁ
| wim i
— : |- ‘ —

| i
\

L1

Throat
4

AERODYNAMICS 18




BERNOULLI'S EQUATION. ARRLICATIONS: —
= VENTURI &

K __’_’__,f’_‘n
o \
2 [In general, venturi is a three-dimensional duct with

elliptical or rectangular cross section which vary from one
location to another.

A=A(X)
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IE[K’? JOULLISt E@@MT[Z@M AP[PM@AW@MS - @
=

VENTURI

ug\

# For moderate variation of area, it is reasonable to assume

that the flowfield properties (velocity, pressure,...) are
uniform across any cross section, and vary only in direction of

flow.

A=AK) V=V({X) p=pKx)

Quasi-one-dimensional flow




@E}M@@@M{S E@@M}T[]@M @@MW -

VENTURI |
FPETHHE““'— m —'“ﬂﬁﬁﬁﬁ?ﬂﬁ
+ e

2 For steady flow through the venturi, continuity equation
gives:

,d/ A =CONSt. — - the mass flow through the duct is constant.

2 For incompressible flow:
VA =Q =const.

o !
AERODYNAMICS 18
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IE@M@ME@@AW@M A[@PM@A’W@M@
| VENTURI

» For a given variation of area A(x):

_0Q
B Yey
2 Using Bernoulli’s equation:
2
p(x)+'0[v (X)] =const.

AERODYNAMICS I
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BERNOULLI'S EQUATION ARBLICATIONS:

el S = 4

Flow _ Flow
Velocity decreases (Continuity) Velocity increases (Continuity)
Pressure increases (Bernoulli) Pressure decreases (Bernoulli)

e I =NV —
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VENTURI

Venturi applications: Speed measurement

2 Venturi can be used to
measure airspeed.

2 For a venturi (with a given inlet [station 1] to throat [station 2] area ratio)
and known pressure difference p,-p,, the inlet velocity can be
obtained from the combination of continuity and Bernoulli’s

equation:
! v \/ 2(P, = Po)
CAA A -
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Venturi applications: Wind tunnel

2 Another application of venturi is the low-speed wind
tunnel.

2 A low-speed wind tunnel is a large venturi, where the
airflow is driven by a fan connected to some type of motor
drive.
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VENTURI

Venturi applications: Wind tunnel

2 There are two general types of low-speed wind tunnels:

1. Open-circuit tunnel

Airpiane model

, \ . &l
] V. ,
I —b- — L‘:’? (@
| Pz A '
Test section __i

rSettlmg Nozzle Diffuser -

chamber
(reservoir)
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VENTURI

Venturi applications: Wind tunnel

2 There are two general types of low-speed wind tunnels:

2. Closed-circuit tunnel

L~

Motor <

Fan

Nozzle

Diffuser

Test section

\ 4,1~

Settling M v, A
chamber <y —_— —
(reservoir) P11 Py A; :

\

=
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Venturi applications: Wind tunnel

2 The air velocity in the test section of a low-speed wind
tunnel (with fixed area ratio A,/A), is obtained from the
combination of continuity and Bernoulli’s equation:

\V :\/ 2(p1_ pz)
2 pl1-(A, /Al)z]

2 In low-speed wind tunnels, a method of measuring the
pressure difference P1-P2, is by means of manometers.
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= PITOT TUBE 2

2 Pitot tube is one of the most common and frequently used
instruments in any modern aerodynamic laboratory.

2 Pitot tube is the most common device for measuring flight
velocities of airplanes.

2 Can connect a differential pressure transducer to directly

measure V?/2g.
2 Can be used to measure the flow of water in pipelines.




.[EZX’BM@@@M”@ EQUATION. AXP[@[M@AW@M

PITOTTUBE

Point measurement!



http://www.airflow.co.uk/instr/stat-pit.htm
http://www.airflow.co.uk/instr/stat-pit.htm
Clips/V3_4.mov
Clips/V3_4.mov

T ————— e

=BERNOUILISEQUATION ARRLICATIONS:

= 8-k

PITOT TUBE

Stagnation pressure tap

— Y ég Y 29

_ BN . Ve G

Va1 // T V= \/ 2 p-p

— s z,=2, 0 1 2

L

- Connect two ports to differential pressure transducer. Make sure Pitot
tube is completely filled with the fluid that is being measured.

Solve for velocity as function of pressure difference
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INCOMPRESSIBLE

Irrotational




VELOEITYPOTENTIAL

op . _0f

Velocity Potential isdefinedas: U=—— V=—-
OX oy
1- ¢ automatically satisfies the Irrotationality condition.

2- If it has to meet the continuity requirement it has to obey,

AERODYNAMICS 18
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Boundary Condition
On the boundary

\ ¢=C0r%:d

on




Circulation, I' is defined as the line integral of tangential
velocity component around a closed curve in the flow.

Vv

— —
F=3£ F-r:is=j£ IV cos xxds
c

c




v+@Ax
OX

Kelvin-Stokes theorem:

r=j€?v-ds=f[5(vmf)-ds

Thus for an irrotational flow circulation around any closed contour is zero.




Flow is
NOT
irotational

here

Flow is irrotational here

=
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Stream Function, v is defined such that

oy OX

v = constant, denotes a streamline.










PROPERTIES OF STREAILINES/

Difference dy between successive streamlines is
proportional to volumetric flow rate.

—vdx +udy = dQ

a—lljdx+a—lljdy =dQ

A

dy=dQ




PROPERTIESIOF STREAMLINES,.

Streamlines and velocity potential lines are normal to each
other.

ol /

¢:d1 d,







CAUCHY-REIVIANN EQUATIONS

- G

oXx oy oy  OX

0p _oy. 0p_ oy

op_loy. 109 __ oy
or r o0 r oo or




———

ELEMENTARY PLANE FLOWS

Elemantary plane flows:
v" Uniform flow

v" Source / Sink flow

v Doublet Flow

v" Vortex flow




w=U_cosa)y —(U_sinax)x | <|>=d
p=U_cosa)x +[U_sina)y




ELEIVIENTARY PLANE ELOWS

CITETA

Source




SUPERPOSITION OF ELEMENTARY PLANE FLOWS

v' Doublet

Source and Sink approach each other ie., a—o0, But qa/= is constant or

¢=Acose

AERODYNAMICS I
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ERPOSITION OF ELEMENTARY.PLANE FLOWS @

Laplace Equation is linear. So if ¢, and ¢, are two solutions,
¢; = ¢,7¢,is also a solution.

Simple flows are superposed to calculate more complex flows.

NOTE: A solid wall is also a streamline. This helps us locate
solid boundaries.

— !

AERODYNAMICS I
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Laplace’s equation is a second-order linear Partial Differential Equation. The fact that
the Laplace’s equation is linear is particularly important, because linear superposition
of solutions is allowed:

b3 = ¢, + ¢, where ¢(x,y,2) and ba(x. ¥, 2)

are solutions of Laplace’s equation

&

For simplicity, we consider 2D (planar) flows:

CarteSian: U = @ D= %
0x dy
e 0 O % vV, = l%
Cylindrical: " o o= o0
We note that the stream functions also exist for 2D planar flows:
. oW o
Cartesian: u=— D= —
dy ox
Cylindrical: ¢ = Loy Y = _

!




. . ou v
For irrotational, planar flow: — = —

dy  0x
d 0
Now substitute the stream function: i (,’b) = i (—l‘b)
dy \ dy ox \  ox
o o°
Then, —')b + —')b = () ====P» Laplace’s Equation
x> ay*

For plane, irrotational flow, we use either the potential or the stream function, which
both must satisfy Laplace’s equations in two dimensions.

dy
dx

, v
Lines of constant W are streamlines: =

along ir = constant

Now, the change of ¢ from one point (x, y) to a nearby point (x + dx, y + dy) is:

d¢——¢dx+—¢dy—udx+vdy
0x ay
Along lines of constant ¢ we have d¢ =o,
?é: —d)dr-l-—qbdy—udx-i-vdy‘dy =
0x ady dx v

o

along ¢ = constant
———



—

Lines of constant ¢ are called Equipotential lines.

The Equipotential lines are orthogonal to lines of constant ¥ (streamlines) where they
intersect.

The flow net consists of a family of streamlines and equipotential lines.

The combination of streamlines and equipotential lines are used to visualize a
graphical flow situation.

Equipotential line
( ¢= constant)

B . Velocity decreases
The velocity is inversely proportional
to the spacing between streamlines.

ong this streamline.

Velocity increases MZ' -

. . Streamline |
along this streamline. [ edotisEnt —1

QA g— | g N =
Y
1

— !
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The simplest plane potential flow is a uniform flow in which the streamlines are all
parallel to each other.

Consider a uniform flow in the x-direction:

y

—Up—l——l-lbﬂﬁl
—_— =,

—l Y=13
—l Y=y
p=¢1 ¢=¢

Integrate the two equations:

i—f=U > = Ux + f(y) + C
%=0 s 6= £(x) + C

Matching the solution ¢ = Ux + C

C is an arbitrary constant, can be set to zero: |¢. = U xl

Now for the stream function solution:

o _
&y_
2 _

ox

U Integrating the two equations similar =) | Y= Uyl

to above.
0

— !

!________/annonvunwucs i
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POTENTIAL FLOW: UNIEQRMELOW

—

- For Uniform Flow in an Arbitrary direction, « :

U//vr/)///};/\ b ¢ = U(xcos a + y sin a)

2 N eee = U(y cos @ — xsin «)
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o-constant Fluid is flowing radially from a line through the origin

Source Flow: Source/Sink Flow is a purely radial flow.
perpendicular to the x-y plane.

y = constant

Let m be the volume rate emanating from the line (per unit
«  length).

Then, to satisfy mass conservation:

m
(2mr)v, = me==p p, = —
2mr
Since the flow is purely radial: v, = 0
Now, the velocity potential can be obtained:
_ 9 _19¢ o _m 196 _
7‘” ar ©rae o 2arr r o6

o) il ) m is the strength of the source or sink!

r

2mr m
Integrate m=)> ¢ =—Inr If m is positive, the flow is radially outward, source flow.
27t If m is negative, the flow is radially inward, sink flow.

This potential flow does not exist at r = o, the origin, because it is not a “real” flow, but can approximate
flows.

# AERODYNAMICS I




Then, integrate to obtain the solution: | y = —— 0

The streamlines are radial lines and the equipotential
lines are concentric circles centered about the origin:

v = constant

N, 7
\>/
N

—_ T ¢ = constant

/
/
/
g
/\
~
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n vortex flow, the streamlines are concentric circles, and the equipotential lines are

radial lines.

y

Solution: p=K6@ w=—KlInr

y = constant

where K is a constant.

The sign of K determines whether the flow rotates
clockwise or counterclockwise.

e
¢ = constant

Inthiscase: V,=0 , V,=——=——"-=—

The tangential velocity varies inversely with the distance from the origin. At the origin
it encounters a singularity becoming infinite.

g
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How can a vortex flow be irrotational?
Rotation refers to the orientation of a fluid element and not the path followed by the
element.

Irrotational Flow: Free Vortex Rotational Flow: Forced Vortex

1
=

Velocity
increases
inward.

Velocity
increases
outward.

i.e.,'w.ater i.e., arotating
draining from tank filled with
a bathtub fluid
Traveling from A to B, consider two sticks
Irrotational Flow: Rotational Flow: Rigid Body Rotation
Initially, sticks aligned, one in the flow direction, and the Initially, sticks aligned, one in the flow
other perpendicular to the flow. direction, and the other perpendicular to the

As they move from A to B the perpendicular-aligned flow.
stick rotates clockwise, while the flow-aligned stick

As they move from A to B they sticks move in
rotates counter clockwise.

a rigid body motion, and thus the flow is
The average angular velocities cancel each other, thus, rotational.
the flow is irrotational.
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A combined vortex flow is one in which there is a forced vortex at the core, and a free
vortex outside the core.

A Hurricane is
approximately a
combined vortex

=
S
|

wr r=ry

Circulation is a quantity associated with vortex flow. It is defined as the line integral
of the tangential component of the velocity taken around a closed curve in the flow

field. FZ—IV ds
C

V=V ==V -:ds=V¢-ds=dp
{Jg For irrotational flow the
C

Arbitrary
curve C

d¢p = 0 == circulation is generally
zZero.

\%
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However, if there are singularities in the flow, the circulation is not zero if the closed
curve includes the singularity.

For the free vortex: V,=—

27 K
= [-=(rd0)=-22K
0 r

The circulation is non-zero and constant for the free vortex: K =-T / 2
The velocity potential and the stream function can be rewritten in terms of the
circulation: I I
p=——""-206 w=—-=Inr
27 27

An example in which the closed surface circulation will be zero:

g




Combination of a Equal Source and Sink Pair:

g P

m
=——(0,—0
b= =26, - 6)
27 Rearrange and take tangent,

27 tan 6, — tan 6,

C W
o | Ao dg V' tan(—T = tan(f, — 6,) =

A 1 + tan 6, tan 6
Source /T\ Sink ! 1 ’

rsin 6

tan 61 = rsin 6 and tan 62 =

rcos @ — a rcost + a

Note, the following:

Substituting the above expressions, ap (__27""0) _ 2arsin6

. m = a
Then, ¢ = — " tan! (Zar h 6)
2 r—a
If a is small, then tangent of angle is approximated by the angle:
__m 2arsin@ _ marsin 6
- 2w P —d w(r’ — a°)

— !

!________/annonvunwucs i

'Ly
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and letting the strength increase.

a—0
m— o

ma/ar is then constant.

r/(rr — a*)—1/r

The corresponding velocity potential then is the following: |

ROTENTIAL FIQW: DOUBLET EIOW

S—— e

ar sin 0

a(r’ — a°)

Now, we obtain the doublet flow by letting the source and sink approach one another,

—)>

Y= —

K sin 0

r

K is the strength of the doublet, and is
equal to ma/~.

Streamlines of a Doublet:

y

_ Kcos ¥
B r

!

 ————
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Description of Velocity

Flow Field Velocity Potential Stream Function Components
Uniform flow at b= Ulxcosa + ysina) o = Ulycosa — ysina) u= Ucosa
angle a with the x v=Usna
axis
Source or sink , m m m
¢ =——Inr = -— Ve =5
im T 2mr
m = () source =10
m << () sink i
F it -T r
e e ¢ =—0 b= —Inr 0, =0
2 2
>0 T
counterclockwise Uy =
. 2mr
moticn
<0
clockwisz motion
Doublet Kcosd Ksinf Kcosd
¢. — {I[ i 1}! . 3




Because Potential Flows are governed by linear partial differential equations, the
solutions can be combined in superposition.

Any streamline in an inviscid flow acts as solid boundary, such that there is no flow
through the boundary or streamline.

Thus, some of the basic velocity potentials or stream functions can be combined to
yield a streamline that represents a particular body shape.

The superposition representing a body can lead to describing the flow around the
body in detail.
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The Rankine Half-Body is a combination of a source and a uniform flow.

. Stream Function (cylindrical coordlnates)

= dlumfc-rm flow ')bmurce

o \ \

6

; — Ursin + —6
‘J , LSource 2

Stagnation
point

Phdb v s

T
Potential Function (cylindrical coordinates):
m
¢ = Urcosf +—Inr
29T

There will be a stagnation point, somewhere along the negative x-axis where the
source and uniform flow cancel (0 = n):

Evaluate the radial velocity: ¢ = 199
- raf
For the source: v, = ——  For the uniform flow: V, =U C0S ¢

2
For6=m, Vv, =U

Then for a stagnation point, at somer=-b, 0 =1 :




r-i T —

S@PEm QF ROTENTIALFLOWS: RANKINE {}

m@zﬁal@@v

Now, the stagnation streamline can be defined by evaluating y atr = b, and 6 = 7.
m

')bstagnatinn T 7

Now, we note that m/2 = bU, so following this constant streamline gives the outline of
the body:
llb = libuniform flow + ')bsour-:e === 7bhU = Ursin6 + bU6
b(m — 0
Then, r = (W 7 ) describes the half-body outline.
sin

So, the source and uniform flows can be used to describe an aerodynamic body.

The other streamlines can be obtained by setting y constant and plottlng

v =nbU
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The width of the half-body: y = b(m — 6)
8 —>0orf—27 =) *hr

Total width then, 27b

The magnitude of the velocity a pojpt in the flow:
o BRGNS

. ;E—UCOSG-F% and v, =

()

Vi=vi+ ;=0

Noting, b = m/2n T
V2=U2<1+26+ l
. nb

Knowing, the velocity we can now=setermine the pressure fi jld using the Bernoulli

Equation:
k ’<— b—p, + 3pU° = p + 7pV?

p, and U are at a point far away from the body and are known.

A
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HALF-BODY
Notes on this type of flow:

* Provides useful information about the flow in the front part of streamlined body.
* A practical example is a bridge pier or a strut placed in a uniform stream

* In a potential flow the tangent velocity is not zero at a boundary, it “slips”

» The flow slips due to a lack of viscosity (an approximation result).

« At the boundary, the flow is not properly represented for a “real” flow.

» Outside the boundary layer, the flow is a reasonable representation.

» The pressure at the boundary is reasonably approximated with potential flow.

» The boundary layer is to thin to cause much pressure variation.
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SUPERPOSITION.OF POTENTIAL ELOWS: RANKINE
=QVAL Ws:R

Rankine Ovals are the combination a source, a sink and a uniform flow, producing a

closed bOdY Stagnation Stagnation
. % point y=0 point
U
—
rz r rl
—

M= = |

— /i o o F |
i e S
4 . \_—/—'

— Source Sink

N B
Be | |

—= = ¢ } 4 |

Some equations describing the flow: The body half-length
Potential and Stream Function ma 1/2
, m _,(2arsin 6 (=|—+d
¢ = Ursin @ — — tan : 5 U
2ar r-—a
- 2ay The body half-width
Y =Uy — — tanl( )
2ar 12 + yz — az j — h2 - (IZ tan 27U “Iterative”
m
¢ =Urcos ——(Inr, — Inr,) 2a L
2T
— !
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a\a S v (&

SQVAL- =

0.9

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e ~ e ——————
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SURERPOSITION/QF POTENTIAL FLOWS:RANKINE

=OVAL
Notes on this type of flow:
» Provides useful information about the flow about a streamlined body.
At the boundary, the flow is not properly represented for a “real” flow.
» Qutside the boundary layer, the flow is a reasonable representation.
» The pressure at the boundary is reasonably approximated with potential flow.
* Only the pressure on the front of the body is accurate though.

» Pressure outside the boundary is reasonably approximated.

— !

AERODYNAMICS I
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Combines a uniform flow and a doublet flow:

i K cos 6
b= Ursing - 2% and ¢ = Urcosd + =
r
Then require that the stream function is constant for r = a, where a is the radius of the
circular cylinder:
K K >
¢=(U—2)rsin6 y=0forr=cgmmplU — — =0 m) K=Ua
r a

2

2
Then, i = Ur(l—a—)smﬁ and ¢ = Ur(l + )COSQ

r

Then the velocity components are:




Joh g o ke M A Av

E&@W:A@@@M@%@U@@@M@ CYLINDER

AERODYNAMICS
"P - TIAL FLOWY . A




I—

§@pgmw QF POTENTIAL FLOWS:-

TN

FLOW.AROUND-A-CIRCULAR @YM@E@

At the surface of the cylinder (r = a): Vo, = —2U sin 0

The maximum velocity occurs at the top and bottom of the cylinder, of magnitude
2U.

S (6=0,n)

\\)//, Stagnation Point,
e T (0mn2,307) 3
[ e Point of Max. Velocity
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Pressure distribution on a circular cylinder found with the Bernoulli’s equation

Po t %PUZ =p, T

Then substituting for the surface velocity:

ps = Po T %Puz(l — 4 sin’ 0)

Vy

Theoretical and experimental results
agree well on the front of the cylinder.

Flow separation on the back-half in the
real flow due to viscous effects causes
differences between the theory and

experiment.

- e ———————

1 2
2 P vﬂs

= —2Usin 6

(inviscid)

0 30 60 90 120

B (deg)

150 180
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Cp distribution for flow past a circular cylinder plotted around the cylinder.
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E@OW:ARO@M@%’@H GCULAR CYLINDER

The resultant force per unit force acting on the cylinder can be determined by
integrating the pressure over the surface (equate to lift and drag).

2m
F.= — J p,cosBadfd  (Drag)
(

)

21
F,=— J p.sinfadh  (Lift)
(

)

_ 1 2 .2 |
Substituting, Ps = Po T 2pU (1 — 4sin” 6) {1e’anle Rond
'Alembert
Evaluating the integrals: F.=0and F, =0 (1717-1783)

Both drag and lift are predicted to be zero on fixed cylinder in a uniform flow?

Mathematically, this makes sense since the pressure distribution is
symmetric about cylinder, ahowever, in practice/experiment we see
substantial drag on a circular cylinder (d’Alembert’s Paradox, 1717-1783).

Viscosity in real flows is the Culprit Again!
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ALIETING CYLINDER
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Uniform Flow + Doublet + Vortex

\—Y—I

Circular Cylinder
e —
- :

I
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y.
r
) = Umr(l — “)sma ¥ —Inr

r2 2

2 r
6 = Uor (1 + — ) cos8 - —8
ré 27

Consequently the velocity components will be,

2
v = Um(l — ‘iz)msﬂ
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. Atr=a, theradial velocity is still zero allowing us to consider the
same circular cylinder as the "body".

_ I
Vg, = — 2 Ugsing - 2—
ma
e * 1 B F
The stagnation points: v0;, =0 ‘ sinf = 4AxlU- a
S (e = B:_n_ﬁ) .
Stagnation Points,
U
—_—

‘______-———_‘—nm
’} - > AL ..":v.‘.‘::'."r.-._.:l .
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ALIETING CYLINDER

Surface Pressure Distribution and Lift

Ps = Poo + EpUi—ZUi(smﬂ — sing)’°

1 v )’ 1
- (& 1

1 — 4 (snd — sing)” .~

2
|

& 1 1 1 I I |
0 &0 120 124] 240 300 3680

Cp distribution for a lifting cylinder, !3=—15D.

__________—”
" - VITAL FLOWS =
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1
Ps = Poo + 5PUs (1 —4(sind — sin )’

1
P: = Poo + 5pU% (1—4sin?0— 45in’ § + 8 sin fsin )

e 1
L = —[ usinﬂ'[pm + §pUi, (1—4@23—45iﬂzﬁ+85in95in,8)]d0
0

ot 1
= _f a[pm + EpUju(sin&—4sin3ﬂ—4sin3ﬁsinﬂ+83inzﬂsinﬂ)}d0
0

w
— - .,«~~.'_,..V""-‘I.':; —




§@6@EE@L@@§[7W@M OF P@?EMWA@ ﬁ@@W§ = {}
E@@WA@@@M@%’ME? Z7M@ @WMM@EZK’B S/
i A./éinﬁde + EpUia/.u/éQ do
+ %pU;a/;dé? Bsin8 dO — %pUia f:w 8sin’@sin3 dO

i -T
1 2x e 47Uy, a
L =—-pUla f 8 sin® @sin 3
2 0
o sin’0]™"
=—4pUZ sin 3 [—_ ]
= 2 4 0 L — FUmF

=— 47 pUlasing
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ALIETING CYLINDER
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http://upload.wikimedia.org/wikipedia/commons/3/3f/Buckau_Flettner_Rotor_Ship_LOC_37764u.jpg
http://upload.wikimedia.org/wikipedia/commons/3/3f/Buckau_Flettner_Rotor_Ship_LOC_37764u.jpg
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Bend it like Beckham
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MAGINUSTEFEECTS JE— @
eckham, Applled Physncnst
Distance 25 m ~om

nitial v= 25 m/s % (%) goalkeeper
—Ilght time 1s actual path of the ball

Spin at 10 rev/s

Lift force ~4 N GO&' ! !

Ball mass ~ 400 g
a=10 m/s?
A swing of 5 m!

initial Velomty
25ms




~ Flettner’s Ship with the following conditions

Propulsive Trust? l l l l l l l l 30 km/h

N O ©* >
c 4 km/h T |
LO
—i
VU Q

> y

2.75m

<
E vrel
o

F F @

AERODY
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“MAGNUS'EFFECTS - EXAVIBLE;

(R Ao SERIRRIEER

Viet = 30j — 4i

km
V,.; = /302 + 42 = 30. 27—~ =8.41m/s
= (wr)(2mr) = [(750) —] (1.375)?2m = 933 m?/s
F=pVl' =(1.229)(8.41)(933) = 9643 N/m

Fr =2(9643)(15) = 289 kN

(FT)Prop = Fy cosa = 289 -
(302 + 42)2
= 287 kN =
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WH]@M@MERU@M'S@@R@E PANEL METHOD =%

We added our elementary flows in certain ways and discovered that the

dividing streamlines turned out to fit the shapes of special bodies (semi-infinite
body, Rankine oval and both the nonlifting and the lifting flows over a circular cylinder)

This indirect method of starting with a given combination of elementary
flows and seeing what body shape comes out of it can hardly be used in a
practical sense for bodies of arbitrary shape.

Do we know in advance the correct combination of elementary flows to
synthesize the flow over an airfoil?

The answer is NO. S
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In order to determine the flow over a specified body, we want a

direct method.

In direct methods, we specify the shape of an arbitrary body and
solve for the distribution of singularities which, in combination
with a uniform stream, produce the flow over the given body.

We consider a numerical method appropriate for solution on a
computer. The technique is called the Source Panel Method and
is limited to nonlifting flows over arbitrary bodies.

——— - = ——g
“_/BERODYNAMICS i
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Let us extend the concept of a source or sink.

Imagine that we have an infinite number of line sources side by
side, where the strength of each line source is infinitesimally
small.

These side-by-side line sources form a source sheet.

/ B
Source sheet
in perspective

Looking
along the

“z axis” I
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WH]@M@MERU@M'S@@R@E PANEL METHOD =%

=NONLIETING FLOWS @WEZB ARBITRARY B l@@ﬂE§ » @

Define A = A(s) to be the source strength per unit length along s.
Therefore, the strength of an infinitesimal portion ds of the
sheet is Ads.

The small section of the source sheet of strength Ads, induces an
infinitesimally small potential d¢at point P:

Velocity potential
A ds at point P, induced A ds

d¢ =——In r p——— ) ¢(x,y}=J —~—Inr

w by the entire source a 27

(x, )

dp = 2 1,
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FME.M@MERH@A@'@@@R@E PANEL IME THOD

— A= As) /N
L5 w

Source sheet on surface

Uniform flow + o, 0 verthe body

= Flow over the body

Our problem is one of finding the appropriate A(s).

The solution of this problem is carried out numerically.

A

AERODYNAMICS 1
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Let us approximate the source
sheet by a series of straight panels.

@ Control Points

@® Boundary gomti !_

ABRODYNBMICS i
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¢ (x, y}—f Elnr

The velocity potential induced at P due
to the jth panel is: ;

J
A
Ag; = ™ /lnrw ds;

Where: r,; = \/(x —x;)2+ (y — y;)?

The velocity potential induced at P due
to all the panels

qb(P)_Zﬁqb, Z flw,g,jalr;r
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The boundary condition at solid walls
states that: Ve, +V,=0

Where: d{x;, y)= E A In r, ds,
i= |:1".|' i

Vm‘,;:‘rm‘ni = VmCDSﬁ;‘
V, = ) [¢( )
n—ani ¢xn}l

A A 0
2 ;Zﬂ' jaﬂ,

(fel)

Ven+ Vo =0 o) tha (Inry)ds; + Voo cos fi = 0

{Jr;éli
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FME.M@MEL@[?@A@'S@@@@E PANEL, METHOD

T.

i j

A; — A,
?-'-;231' ds; + Voo cOs B = 0‘24—2 [;ij + Vo cos f; = 0

j#0

(J-‘.ﬁ“

The integral I;; is evaluated at the jth control point and the integral is taken
over the complete jth panel:

d _
lij = [, a_mﬂ“"fj)d-"‘j rij = /(e — %)%+ (i — ¥;)?
l. 3?‘,‘* 11 _ i
a—l(lnr”) = ™ ﬂn: = r,_; E[(I: “x_;) + (v — }'J) ] 1/2 [2(1; ""'xj)-__ + 2(y; — ,“'}')%{

3 (i —xj)cos i + (yi — y,)sin B
n; (Inrij) = (x; —Ij)z + (yi — },J_)I

A
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B =, +E —> Cos ff; =—sIn @, sin f5 =Ccos D,
2 X; +2Xi+1 : y‘ _ Y; +2}’E+1
T; =X_f+sj¢os¢j yj=1’_¢+s_—,:sin¢j '_ (I)j
Sj=1f (Xt — X5)2 + (Yo — 15)?2 (X;)Y))
5 (xy = X; —s;c080;) (—sing;) + (i:h — } jsing;)cosg;
= fl:l (x; — X — s;cos¢; } + (i — Y; — 55800 }2 53 il

Now, considering that

s; 15 a VARIABLE and

Liy Uiy -‘}{i:l Y;r J'Sj'* 'qf"'i':l mj‘ are FIKED‘ M
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{:?Sj—FD

5;
So that I. . becomes: Ii; = f s,
g Yodo 5142454 B
Where A=—(r; —Xj)cosg; — (y; — Y;)sin g,
B=(r; — X;)* + (u: — ¥j)°
C' = sin(¢; — ¢;) = sin ¢ cos ¢ — cos @, sin ¢,

D = (y; — Yj) cos ¢y — (a; — Xj) singy
=B — A% = (z; — X;)sing; — (y; — Y;) cos ¢y

We obtain an expression for [;; from any table of integrals:

C (Sf-—l—?ASj—I—B)_l_B—AG

I.o= —1
=g B E

S+A_ ;:1)
— arctall —
E

(B_.I‘CEE.H
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A

(HE“

With known values of [; /s, this is a linear algebraic equation
with n unknowns A, 4,, ..., A

) n-:

This equation represents the flow boundary condition evaluated
at the control point of the ith panel.

If we apply this equation to the control point of all the panels,
the results will be a system of n linear algebraic equations with n
unknowns (4, 4,, ..., 1)

The values of A/’s should obey the relation: Zl 5; =0
gl ————
4________-——A£nonvnamxcs T M
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The total surface velocity at the ith control point is the sum of the
contribution from the freestream and from the source panels:

Vi = Vs + Vs = Vi sinB; +Z
J-l

d
—(Inr;;)ds;
/jas(nr;} S;

D-AC, S?+2AS;+ B ( o S FA ﬂ)
¥ 11 — Al Chall aacanE

B
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—THE NUIVIERICAL SOURCE PANEL METHOD &/

EXAMPLE: Calculate the pressure coefficient distribution
around a circular cylinder using the source panel technique.

Y4
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0
If I:I —(ln r ) dS.F
) an, |

(X:'+l' Y1'+1)

ith panel |
o =
IE VI | 1010 MY -
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e S§+zﬂﬁ+ﬂ)
L= In( =
D-AC{ _ §+A A)
E (Lan E tan E
L;

X;=-09239 X, =-03827 V¥,=03827_"% _
Yii1 =0.9239 ¢, =315° P, =45°

x; =0.6533 ¥, =0.6533

\ 4

A=—13065 B=25607 C=-1  D=13065 ‘ I,.=04018

S, =0.7654 F =0.9239

‘q_/BERODYNAMICS i
-, = - . .M S ~
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:S.imilarlj. li3= D.j 528, I o5 =0,3528, .-I’u, =0.4018, I, ,=04074, and 1,4 = 0.4084.

\ ¢

0.4074A, +0.4018A,+0.3528 A, + A, +0.35284;
+0.4018A, +0.4074A, +0.4084A, = —0.7071 2=V,

A 2wV, =0.3765 Ao 2 Vi = 0.2662 Ay 2wV =0
A/2wVe=—02662  Ag/2mVe=-03765 Ay 2wV, =—0.2662
Aaf2a V=0 Ao/ 27V =0.2662
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Vi= Vo, + V.=V, 5m,ﬂ,+£2 .:i‘s;-
i=1

g D-AC, S$3+2AS+B

+ A A
—E’(Lﬂt‘l'1 E;E_ tan lE)
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CF"
1.0

: /\ 7 /
0 | | ! |

—1.0 =

— Analytic result [1
20

A  Numerical result
{source panel)
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WHATISTANL AIREQIL?

A BACE RNl

2 Consider a wing as shown in the figure.
» The wing extends in the y direction
2 The freestream velocity is parallel to xz plane

Airfoil Section

2 Any section of the wing cut by a plane parallel to the xz
plane is called an airfoil.




J Airfoil

Leading

edgpe k\
Piane perpendicular
to wing |
/ =
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EVOUUTION/OF AIRFOILS,

= AN W

Bleriot 1909 g Clark Y 1922 & ==

RAELG 1912 o

M-6 1926 & P ——

RAFE15 1915 €&—————=—  RAFE 3¢ 1926 €& — e

ULS.A.27 1919 £ NACA 2412 1933 £ —  —-
Joukowsky 1912 ;’_"'____-__.,-_..‘f"“;_ NACA 23012 1935 4= T o=

Giittingen 398 1919 €= \aca 53021 1935 @
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—_— 1873 1903 1917 ———

Early Designs - Designers mistakenly believed that these airfoils
with sharp leading edges will have low drag. In practice, they
stalled quickly, and generated considerable drag.

— g
AERODYNAMICS 18
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Thickness Camber Mean camber line

Leading edge Trailing edge

Chord c




AIRFOI"GEQVIETRY

Airfoil geometry is often characterized by a few parameters
such as:

o Maximum thickness

o Maximum camber

o Position of max thickness
o Position of max camber

o Nose radius.

One can generate a reasonable airfoil section given these
parameters.




NACATAIRFOILS

The NACA identified different airfoil shapes with a logical
numbering system.

The primary reference volume for all the NACA subsonic airfoil
studies remains:

Abbott, I.H., and Von Doenhoff, A.E., “Theory of Wing Sections’, Dover, 1959.
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THE-NACA FOUR-DIGIT AIRFOIL.

-
L

o The first family of NACA airfoils, developed in the 1930s, was
the “four-digit” series.
o The numbering system for these airfoils is defined by:

NACA MPXX
Where:

M is the maximum camber in hundredths of chord.
P is the location of the maximum camber in tenths of the chord.

XX is the maximum thickness, t/c, in percent chord.

— !
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The maximum camber is 0.02¢
Maximum camber is located at 0.4c from the leading edge.
The maximum thickness is 0.15¢
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THENACA FIVE-DIGIT AIREQIL, €%
0

e

o This airfoil is an extension of the 4 digit series. The
numbering system for these airfoils is defined by:

NACA LMMXX

Where:

L: is the amount of camber; the design lift coefficient is 3L/2, in
tenths

MM: the location of maximum camber along the chord from the
leading edge is MM /2, in hundredths of the chord

XX: is the maximum thickness, t/c, in percent chord.

— !
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NACA 23012
< -

THE-NACATFIVE-DIGIT AIREOIL = EXAIPLE

12% thick airfoil,
The design lift coefficient is 0.3,

The position of max camber is located at x/c = 0.15,

The “standard” 5 digit foil camber line is used.

g
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o One of the most widely used family of NACA airfoils is the “6-series”
laminar flow airfoils, developed during World War II.

AB,C-DEE
Where:

A: Is the series designation.

B: Location of minimum pressure in tenth of chord from
the leading edge (for the basic symmetric thickness distribution at zero lift)

C: The range of lift coefficient in tenth above and below the
design lift coefficient in which favourable pressure gradients
exist on both surfaces

[): The design lift coefficient in tenth

EE: the maximum thickness in hundredths of chord
After the six-series sections, airfoil design became much more specialized for the

particular application. 4_______—--— AERODYNAMICS i
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)

NACA 65,3-218

=

6 is the series designation.

The maximum pressure occurs at 0.5c for the basic symmetric
thickness distribution at zero lift.

The range of lift coefficient above and below the design
lift coefficient in which favourable pressure gradients
exist on both surfaces is 0.3

The design lift coefficient is o.2.

The airfoil is 18 percent thlck-______;,; WU DY b & A A




LIET:GENERATION

o Generation of lift by
an airfoil is due to the
imbalance of pressure

distribution over top
and bottom surfaces.




= LIETXGENERATION,

o If pressure on top is
lower than pressure on
bottom surface, lift is
generated.

# AERODYNAMIGS I @
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i@ﬁ?ﬁ'@’f@ ERATION:

o Flow velocity over the
top of airfoil is faster
than over bottom
surface.

—_




VARIATION OF LIET WITH ANGUE QF ATTACK — O

o The lift coefticient of an airfoil changes as the Angle-
of-Attack changes.

AERODYNAMICS I
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mz@ﬁ ATIONOF LIFT WITH ANGLE OFATTACK @
“LOW-TO:MODERATE ANGLES OF ATTACK -~/

o At low-to-moderate angles ‘i

of attack, c, varies linearly

with o. /’f'c:""“.\l}i / ag = Sk =it stope

o The slope of this straight line _
is called the [ift slope. .

o In this region, the flow moves smoothly over the airfoil and is
attached over most of the surface.




QZ@ W@M OF LIET WHTM AM@QE @ZF Wﬂ)@&@ @

Wﬁ@&ﬁ?fﬂﬂﬂ@@@@ OF ATTACK —a/

Stall due to

o As o becomes large, the flow el i
tends to separate from the
top surface of the airfoil. == —=3

o The consequance of this /oo 2

separated flow at high « is a precipitous decrease in lift and a
large increase in drag.

o Under such conditions, the airfoil is said to be stalled.

o The maximum value of ¢;, which occurs just prior to the
———
stall, is denoted by Clmax: _________— AERODYNAMIGS 137
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WAL@MFH@M OF LIET WITH, LANGLE; OF. ﬂWA@K —_—

Va2
-—“'

Stall due to
: flow separation

‘—Separation points ¢
e R . MLt NS

Turbulent wake

1.
W= ga " lift slope

Separation point moves

as= 89 slightly forward
/ % =0 o
stall a},f;e) Separation point jumps
forward
Separated flow regi
a= 20°

arge turbulent wake

(Reduced htt and large pressure drag) ‘4
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VARIATION OF LIET WITH.ANGUEQEATTACK — O

Stall due to ,




F e
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Incompressible Flow over Airfoils____£_
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Wﬂﬂ@ﬁﬂm CIETWITH, ANGLE OF AWA@K ;
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((@2% 0.deg)

c

€t max

_______________ Stall due to
fow separation

ag = du . lift slope
dov

Low o

/0[1 -0 Angle for &
maxisum ¢,

stalling anple

of attack
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c

€t max

______________ Stall due to
fow separation

dey
ag = £ = |ift slope
i drx H

Moderate a

/0[1 -0 Angle for &
maxisum ¢,

stalling anple

of attack
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AT A Y4

O €] max determines the stalling speed
of an airplane. The higher is ¢; .,

B ——

VARIATION OF LIFT WITH ANGLEOF ATTACK

€y

ﬁ

the lower is the stalling speed. =%

/

Stall due to
flow separation

e = — — — —— —

@
=SS

dey
ag = E = lift slope

o The value of o when lift equals
zero is called the “zero-lift angle
of attack” (o _,).

Cambered airfoil

At negative o “

airfoil will have

zero lift \
v

C——

/l‘-"!L:o

o
Symmetric airfoil
/‘-‘m_"—“‘--—-‘____\
R
et
ﬁ#
— —
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Eﬁﬁﬁ@mw@ NUVBER

- B ot R

\_________.__-n——
o The lift slope is not ol
influenced by Re. g Ea. (457)
€ 2.0
1.6
o ¢; .. is dependent upon 12
R ’ 08l L~ Lift coefficient
e. :
04—
0 0o Cmol4
o The moment coefficient -o4| S L
o« e o . Moment
1s Insensitive to Re except 08 coefficient - 02
-1.2 — 0.3
At large a. 2 © Re=3.1 X 10
Bl Re=89X10° — -0.4
| | | |
-8 0 8 6 24
«, degrees ' —




: Eﬁ?@mw@@@ NUNBER

o B St R B

. 0.024 —
o The sum of skin .
1in 0.020 |- o
friction drag and °
d . ld th 0.016 — " @
pressure drag yields the L @ =
rofile drag. 0.008 |- e 5o
p f g 2 E 8 T ] CE cn:fgﬁcient
0.004 —
Com, ac
Profile drag coefficient 0 L g
- ol = B8 - -005
is sensitive to Re. JUDILILLIO
oment
coefficient — 0.1
® Re=3.1X10° —-0.15
B Re=89 X108
I | | l | | |

-12 -8 -4 0 4 8§ 12 16
o, degrees e

ol | oW over Alrtolis . . -




- Consider an NACA 2412 airfoil with a chord of 0.64 m in an airstream at standard sea

level conditions. The freestream velocity is 70 m/s. The lift per unit span is 1254 N/m.
Calculate the angle of attack and the drag per unit span.

At standard sea level, p = 1.23 kg/m*:

oo = 3PV = 1(1.23)(70)* = 3013.5 N/m?

L' L’ 1254
€ = = = (.65

408 gmc(l)  3013.5(0.64)

nnnonvunmxcs_l
'-— Inc over Airfolls . .

m— = —
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EXAIIPLE (CONT,)

- VY

"R = ﬂ.ﬁﬁ, we obtain

o = 4°

¢ 2.0
1.6
1.2
0.8
04

~0.4

-0.8

-1.2

NACA 2411 airfoil

@ Re=3.1%10°
B Re=89X10°

1 1

6 24

0 Cm, cia

~0.1
-0.2
=0.3

~0.4
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EXAIMPLE(CONT.)

e VY 4
B T

To obtain the drag per unit span, we must use the data diagram.
Since ¢, = f{(Re), let us calculate Re. At standard sea level, u = 1.789 x 1 05 kg/(m.s). Hence,

cq

T Moo L1789 x 1073

Therefore, using the data for Re = 3.1 x 10°

Re —=3.08 x 10°

we find ¢y = 0.0068. Thus,

D' = gooScq = gooc(l)cy

= 3ﬂ13,5(ﬂ.64}('l.'_].ﬂ053] =| 13.1 N/m

0024
0.020
0016
0012

0.008

0004

e

B &
B o]
[-]
-El
— Lo
® o
ﬂ coelficient
ppEEpEgBEgEEE
Moment
cocfficient —
Re=31X 108 —
Re=R9 X 108
| | i ] 1 1
—-12 =8 —4 0 4 ] 12 16
o, degrees

AERODYNAMICS I



THE @LWE)X EMMEM?

— gu\\L_‘- AN @\ v

—

o Let us expand the concept a point vortex. e

o Imagine a straight line perpendicular to the

page, going through point O, and extending to 77
infinity both out and into the page. This line [/f

is a straight “vortex filament of strength I". y

o The flows in the planes perpendicular to the
vortex filament at O and O’ are identical f

. . 4
to each other and are identical to the w
flow induced by a point vortex of & 5
strength T.
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SR

=

o Imagine an infinite number of straight vortex filaments side
by side, where the strength of each filament is infinitesimally
small.

o These side by side vortex filaments form a vortex sheet.

/s

P(x, 2)

Vortex sheet in
perspective
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RRORERTIES OF VORTEX SHEETS

o The analysis of the vortex sheet closely follows that of the

source sheets. i ﬂ_ do
dT= 7y ds- (x.y)
| ds \
0 [
(z, y) Ly '
olr,y) = — | — 0 ds -
L,y 0 o I _([j/ds

__________/annonvnamncs i
‘ """"'V" ] ow over Airfolils =




o For a straight vortex sheet extending from (-1/2,0) to (1/2,0),
with a constant strength vy, the potential and the velocity
components at point P are given by:

d(z,y) = —/ = 4 ds -/P(X’Y)
| v 2 0
ola,y) = QWf Y s

= — arctan
iy T — s ‘ ds
S

o¢ 29 t/2 -
u(x,y) = S T — {— arctan —2 ] ds = i/ d - ds

Oz 2w J_ey2 Oz T — s 2w J_es2 (x — )2 + 32

% vz o [ 1y ] L —z
vlx, = — == | — 'L d. = ;/ - - d—
v(z,9) dy 27 J—ey2 Oy B 2m J—2 (x — 5)° + 1 .




THEAVORTEX SHEET

Bl B

o Consider a rectangular path enclosing a section of a vortex
sheet of length ds. The circulation around the path is:

I'=—(vdn —uyds —vydn + uy ds) -

I' = (uy —uz)ds + (vy — v2)dn

o The strenght of the vortex
sheet contained inside the
pathis: TI'=yds

ds N
yds = (U — ua)ds + (vy — v1)dn
Letdn— 0 _
yds = (U — uz)ds i ¥ = ) — U3
L e — -

AERODYNAMICS 18F
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HEKUTTA CONDITION,

20 =

Potential flow with lift is not unique! f
(Circulation I" may have any value)

(a) T <4nVeR

(b) T'=4dnVeoR

The same happens for the
flow around an airfoil &‘

Which flow occurs in reality?
The flow that leaves smoothly at the trailing edge

(The “Kutta condition”)




Cusp

Finite angle
Vi _
a_...p - a
1 il "h y,
Fep

At pointa: V) =¥, #0
+ %PVIZ = Pa + %Pvzz
Vi = %3

At pointa: ¥ =1, =0

(Point a is a stagnation point)

the Kutta condition expressed in terms of the strength of the vortex sheet is:

y(IE)=y@) =V, -V, > y(TE) =




KE@WMm@A‘W@M THEQRE - —
=AND'THE STARTING-VORTEX &

Question: How does nature generate this circulation?

_@:0 [1=12

C1
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-STARTING"VORTEX
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AIREQIL AL@P@@XMMH@M ——— @

AN YA S WY

o Consider an airfoil of arbitrary shape and thickness ina
free stream with velocity Veo

o Replace the airfoil surface with a vortex sheet of variable
strength y(i).

T ___.-"'-.---F- _____-_-__-_--___—h

= V.
— I —_—
e e—— T

- —_— -

o Calculate the variation of y as a function of s such that the
induced velocity field from the vortex sheet when added to the
uniform velocity of magnitude will make the vortex sheet (hence
the airfoil surface) a streamline of the flow.

I“:f}fds L’—pmur




AIREQI-APPROXIMIATION!

o No general analytical solution fory =y (s) exists for an airfoil
of arbitrary shape and thickness. Rather, the strength of the
vortex sheet must be found numerically

4

foundation of the vortex panel method

Analytical solution?

4

Thin airfoil approximation

__________/annonvnamncs i
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1) The airfoil is assumed to be thin, with small maximum camber and
thickness relative to the chord, and is assumed to operate at a small angle of
attack, o < 1.

2) The upper and lower vortex sheets are superimposed together into a single
vortex sheet y = yu + y¢, which is placed on the x axis rather than on the
curved mean camber line Z = (Zu + Z4) /2.

3) The flow-tangency condition V = n = o is applied on the x-axisat z = o
rather than on the camber line at z = Z. But the normal vector n is normal to
the actual camber line shape, as shown in the figure.




Thin airfoils can be simulated by a vortex sheet placed along the
camber line.

Our purpose is to calculate the variation of y(s) such that:
1) The camber line becomes a streamline of the flow
2) The Kutta condition is satisfied (y(TE)=o0).

Vortex sheet on
camber line

* Thin airfoil s

Once we have found the particular y(s) that satisfies above
conditions, then the total circulation I' around the airfoil is
found by integrating y(s) from the leading edge to the trailing

— g
edge° "’—_ll:_d_]:___—nznonvmamxcs T 28




For the camber line to be a streamline: V., + w'(s)=0

- Inece OW over AIrfolis —







CLASSICALTHIN AIRFOIL THEORY.

S

Vw,n + wlt(-g) =0

Let w(x) denote the component of velocity normal to the chord

line induced by the vortex sheet,
] zZh

Camber line, z = z(x)

/-'S / ;W’(S)

Voo

Chord line

If the airfoil is thin, the camber line is close to the chord line,
and it is consistent with thin airfoil theory to make the
approximation that w'(s) &~ w(x)

— !
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CUASSICALTHIN AIREOIL THEORY

d W(x)
~ -
et
Y " e e
__Y —_[ X
Lok 2n(x — &) ‘ wix) [} 2n(x —§)

, dz\ [ y@®)dt _
Vm.n+w(3)=0 - VW( _5)_{,211*(1:—5}_0

1 [“y@)d§ _ dz
E[:. x—£& “Vm(&




1o ry®ds (ﬂ_d_z)

231’1}1—5

The central problem of thin airfoil theory is to solve the above
equation for y(&), subject to the Kutta condition, namely, y(c) = o.

Special Case: A symmetric airfoil has no camber; the camber line
is coincident with the chord line. For this case:

dz/dx = o

L [y@)ds _
23[3 oy -.'Vmcr




@0@1\@ THINAIREO)L 777%7%@6@?7 e {}
THESAYIMIMET: l@ﬁ@ﬂ@%ﬁl@ﬁ@ﬁ@ S/

2”] V(E}d-‘; — Voa

§= -2-(1 — cos 0) 1 /" y(8)sinf do
o cosf —cosby

_..mﬂ'ﬂ

2m
x= g(l — cos )

c
= —3in0 dé l 6
dé zamﬂd v (6) = 2V, _(_ + cos )

sin @




WEEHEH@AW@M OF THE SOLUTION

AR S Y 4 W

(1 + cos @) T y(@)sin6do

= = ?
[s y(®) =2V~ the solution oferr | cos6 —cose, = 7% ¢
|
T _ wr N\ .
1 J y(0)sing dH:iIZan 1+_cos¢9 sin @
7 5 (cosd—cosb,) 27 singd (cos@—cosé,)

T
vy aij. 1+coséd
7y (cos@—cosd,)

N J
Y

=Vwai[7z(o +1)]
T

Standard integrals:

=V_ «

T
.[ cosné
, (cosd —cosb,)




VERIEICATION OF THE SOLUTION

AR S Y AN

(1 +cos8)
0) =2aV,
y(6) *  sin@
Note that at the trailing edge, where 6=m, the above equation
yields:

0
y(r) = Z“Vma

However, using L'Hospital's rule on Equation ¥ ()

—sinT
COS T

() =20V =0

Thus, the equation also satisfies the Kutta condition.
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THINVSYVVETRICAL AIREOILS

r=[ v@ade
c [T :
F:-f y(6)sin6 d6
2 Jo
[ ;achf (1 +cosf)dl = macVy
0

L' = pou Voo = macpa V2,

) = — dc

905 ) ¢ =2ma ) Liftslope = I«i = 2n




THIN'SYVIVIETRICAL AIREOILS — {}
= IVIOMENT ABOUT THE LEADING EDGE &

- The moment about the leading edge can be calculated as follows:

dL

M dr = x(¢) d
ab L.E _

> - -
o

i _[:EML} = — Poo Vo f;f?}’(-’;':l d§

- { OW over Alrrols > -
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VIOMENT. ABOUT THE @EA@H[M@ =7

L ——————— e — /
THIN SYMINIETRICAL AIRFOILS, @

LE——jé(dL)——p féy(é)dé

:—pwij(ﬁ(l—cose) j(ZaV 1+COS‘9)(— In Hd@j
"\ 2 sing )\ 2

——pwvwzac I(l cosé)(1+cosO)dl = - V. 2ac?t
2 g £ 2
L B M"* 12
T 1Vt @) 2
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Moment coefficient about leading edge:

M' _ x
1 pV_ %c%.(1) 2

X C 1

L M .LE _ L XCP Center of ce | i m,LE —

pressure: C CI 4

LEg

Xcp X X — Xcp X
Cm,x — CI C Cm,LE +CI E

Moment coefficient C —0
about quarter-chord point: m,c/4

quarter-chord point is also the aerodynamic center:
Cin.cs4 isindependent of o.!
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NESYIVIVIETIRICAL AIREQILS

THI

:
24
= e
20 - —
NACA 0012 airfoil o = 2ma
1.6+
1.2
0.8 —

0.4 Cmcis = 0| .
0 / .
04 1,
e — =02
—1.2F = Rezjﬂ.x]uﬁ__. 0.3

E Re=9.0x10°
1.6 L W
: I I | | | |

~24-16 -8 0 8 16 24 32
o, degrees

y o
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THE-SYVIVIETRICAL AIREOIL: ARl @
_ )

=

Vorticity distribution (=lift distribution) |y(6)=2aV,, 1+cosoul 20V, ‘/

sin &
ft coeff: C L =27
Lift coefficient: | = -
1pV,c.(U)

dc
Lift slope: =27

da
Moment coefficient :
about quarter-chord point: Cicria =Cme T Z =0

quarter-chord point is both the center of pressure: (C,, .,, = O)
and the aerodynamic center: (C is independent of o)

m,c/4
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THINAIREOILS = EXAIPLE

~ Consider a thin flat plate at 5 deg. angle of attack.
Calculate the:
(a) Lift coefficient,
(b) Moment coefficient about the leading edge,
(c) Moment coefficient about the quarter chord point,
(d) Moment coefficient about the trailing edge.

Plate

e e e e e TE

i—-" cld
Va




ce=2ma == =00873rad < =2m(0.0873) =| 05485 |

a = (3c)cosa = (3c) cos5° cosa ~ | a=(3c)

3

M! 3 L' M,
= e = (20) Ly Mo
q 4 ool

3 |
Crm,te = 3-!?: + Cmlc/4 - Cmle = %cg » Cmte = 1{05435] =‘ 0.411 ‘




~THE @m AIREOIL

A = W e

For a cambered airfoil, dz /dX is finite.

1 rey@dé ( _d_z) 1 y(8)sinf dé -V ( _E)
2 Jo x—& = Voo | @ dx ::> 2w Jo cosf — coséy e dx
The solution for this more general problem can be written as a Fourier series:

| +cosd &
y(0) = 2Va ( 8T 4S 4, smnﬁ‘)
\

sin @
IR
“Basic solution” Additional terms
for the symmetrical

airfoil: A, = a
The coefficients A (n=0,1,2,...) depend on the shape of the camber line z(x).

The coefficient A depends also on a.
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The coefficients A,and A,(n=1, 2, 3, ... ) in the above equation must be specific
values in order that the camber line be a streamline of the flow.

y(6)sin8 do ( dz ) [+cosf &
=V |a—— =
Z:rr 0 cosf — coséby °\* 7 dx 7 (©) =2V (Aﬂ sin ¢ +§_:A

1 ™ Ag(l +cos®)df 1 <= [™ A, sinn6siné dé dz
{[aemnn 1S s
cos — cos by

cosf — cos i dx
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A A, sinx A, sin(2 x) A, sin(3x)

z z Z
+h +L_\ +L . x.|....
X T A - —

n=|

‘ d d
; Au—zﬂncﬂsnﬂu—u—i ) dz (ﬂf—ﬂﬂ)+zﬂ CcOs ntly
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In general, the Fourier cosine series representation of a function
f(0) over an interval o< 0 <m is given by:

) = BO+ZB cos nf

n=1

1 Tl
By = ;ﬁ f(8)de B, = -f f(8)cosnd dé

= (@ — A,})+2A cos nfly

1 ™ d
I:I—A.[]=—f'—z'dgﬂ|:> Au—ﬂ!-"f —dﬂg
T Jo dx

A, = ?- Ecmnﬁodﬁ.}
T Jo dx
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The total circulation due to the entire vortex sheet from the
leading edge to the trailing edge is:

F:/Ey{g}dg‘:%fxy{ﬂ}sinﬂdﬂ y(8) =2V ( ltEESE ZA smnﬂ)

b o
I =cV [Auf {1+ms€]dﬂ+zd f sinuﬂsinﬂdﬂ]
0

m=]

\ J
\ Y J %
. /2 forn =1
T {0 forn # 1

[ =V, (mﬂ+ ;41)

' T
L = pmlf'mt" — ﬂmvliﬂ (JTA{}‘F -2'-:"{1
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COEFFICIENTS )

Li’
= =m(2A A
C Lo V2e(D) m(2A0 + Ay
df:
c;=2:r[ f ——{cﬂsﬂn“l}dﬂnl Lift slope = d—=2:r
o
dﬂg
o= — (o —ap-g) Cp = EJT(EI.' "'{IL='H'}
do

Qg = —-4] —{cnsﬂu — 1) dty

w
= Incomy ow over Airfoils____~
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dL

dl" = () d

X

- -
e

_ _f;,g(d[,) = — Poo Vo fEE}’(-’;') dg




c T
Xy = ——— = — Xen = — |1 —(A; — A
cp I a ep 4{+q{1 1}}

As the lift approaches zero, x, moves toward infinity; that is, it
leaves the airfoil. For this reason, the center of pressure is not

always a convenient point at which to draw the force system on
an airfoil.

the force-and-moment system on an airfoil is more
conveniently considered at the aerodynamic center.
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Consider an NACA 23012 airfoil. The mean camber line for this airfoil is
given by
A

g = 2.6595 [(—)3 — 0.6075 (E)1 +0.1147 (

c

p o

)] for0 < * <0.2025
c [

& | b

— 0.02208 (1 - f) for 0.2025 < = < 1.0
C [

Calculate:

a) theangle of attack at zero lift,

b) the lift coefficient when o = 4°,

c¢) the moment coefficient about c/4

d) the location of the center of pressure in terms of Xep/ €, when o = 4°.

— g
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“THE

B2 =

We will need dz/dx. From the given shape of the mean camber line, this is

&

dx

C

d_z = 2.6595 [3 (i)l —~ 1.215 (%) +ﬂ.ll4?] forQ < : = 0.2025

— = =0,02208 for0.2025 < - < 1.0

R

x = (c/2)(]1 —cos )

d 3 -
E& e [E“ —~ 2c0s 6 + cos’ §) — 0.6075(1 — cos 6) + 0.1 14?]

= 0.6840 — 2.3736cos 0 + 1.995c0s° @  for0 < @ < 0.9335 rad
= —0.02208 for09335<@<nm

Fr g
d
uL=ﬂ=—lf 2 (cos® — 1)d#

=
!__/AERODYNAMICS i
riow over AIrfouns
> : e —
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(=R

9335
| fo (—0.6840 + 3.0576 cos§ — 4.3686.cos? § + 1.995 cos’ 8) do
0

X
_% [ (0.02208 — 0.02208 cos §) d6
0,

9335

fﬂﬂs& df = sinf Wp—g = h%[-z.sﬁsm + 3.05765in8 — 2.18435in & cos

fmslﬂdﬂ = %sinﬂ cosf + %E +0.665 sinﬂ{cnszﬂ +1”3-9335

1 !
f cos’ 8 do = sm B(cos* 6 + 2) o ;—[ﬂ.ﬂ!?ﬂﬂﬂ — 0.02208 mnﬂlg.ﬁﬂﬁ

]
A= = —;{—H;MS + D.Mﬁ'ﬁ} = —0.0191 rad

I o =0 = —1.09° ‘

—
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(=R

o = 4° = 0.0698 rad

¢ =2n(a — ap—p) = 27(0.0698 + 0.0191) =| 0.559
(c)

o
Crm,cf4 = I(AI — Ay)
Ay = —f —cu-sﬂd&

9335
= fﬂ (0.6840 cos @ — 2.3736 cos” @ + 1.995 cos’ ) d@
0

2 o
4+ — f (—0.02208 cos @) db
T J0.9335

2
= —[0.6840sin6 — 1.1868sin 0 cos 6 — 1.18680 + 0.665 sin 8 (cos® 6 + 2)]73%

2
+ ~[~0.02208 5in 815 pg335

| = %{ﬂ11322+ﬂ,ﬂ177]
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w\_\__
A A R W ) LN

f—maze.:m-3f E(zcmla—nda
mJo dx

0.9335
= — j (—0.6840 + 2.3736 cos @ — 0.627 cos* @
T Jo

— 4.747 cos” 6 + 3.99 cos* 6) do

2 T
+ = f (0.02208 — 0.0446 cos* §) d@
T J0.9335

Ums fdo = -cm355m3+ g(sindcosf + 6)

2
A = = {—uﬁsama +2.3736sin0 — ﬂﬁzs( ) (sin B cos 6 + 6)

| | 0.9335
—4'?4‘.-'(3)51[19{4:05 E+2}+399[4m5 5mﬂ+-(smﬂmsﬂ +f3‘}]}

i

1
+ % [u.mznsa — 0.0446 (—

2) (sin8 cosf +B}]

0.9335
2
= =(0.11384 +0.01056) = 0.0792 = e

=
OUVW OVCT AINT0 > . y
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Cm.c/4 = %Hz — A = E(ﬂﬂ?ﬂz - 0.0954)

Lcm.f_:‘fd = —ﬂ.ﬂll?

(d)

¢ n
Xep=-—- {14+ —(A; - A
cp 4[ q{l z}]

1
fEE=-[1 0.0954 —0.0792)| = 0.273
c 4 0. 559{ )
Experiment Thin airfoil
1 F - -1.09° -1.1°
¢ (at ¢ = 47) 0.559 0.55
Cm.c/4 —=0.0127 —0.01

—
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The aerodynamic center is a point on a body about
which the aerodynamically generated moment is
independent of angle of attack.

For most conventional airfoils, the aerodynamic center
is close to, but not necessarily exactly at, the quarter-
chord point. o

o (beyy

N
BE—

— ————
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M, = L'(cTs — c/4) + M,

M. L - M
L= (T — 0.25) + —£
dooSC  gooS Goo SC

Crac = C1(Xae — 0.25) + Crm,c/4

dfm ac d{-‘; _ .d{:m c/4
% = — (Fpe — 0.25 ~

o dmc m,
0=.i:m—0.25)+ Cn.cid
do

%

—
____/BERODYNAMICS i
| mwver AIrtolls -
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0 = ap(Xac — 0.25) + my

Foo= —0 4 0.25
day

The equation proves that, for a body with linear lift and
moment curves, that is, where a, and m, are fixed values, the
aerodynamic center exists as a fixed point on the airfoil.
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Consider the NACA 23012 airfoil.
Where is it’s aerodynamic center? T
0 -0 =1.1° ;‘ =
¢ (ata = 4°) 0.55 ,E
Cm.c/4 (at @ = 4°) —0.005 s T
0.55—0 ot
ag = il = 0.1078 per degree .l
- —_ i — -n.|1- -
mg = {}.U{}S — {'[_:']'{”25} =9.375 x 107 per degyee
! 0= -a I—
my
.-":E_-=—--—+ﬂ'25 E _u;lr_ 124
ag l
9'375:{ I{}_4 +{}25 - =l =
- 0.1078 ' asl ag—y

0.241




