- "A branch of dynamics that deals with the motion of air and other gaseous fluids, and with the forces acting on bodies in motion relative to such fluids."
... Webster's Dictionary
- What does "Aerodynamics" mean to you?
- In what other areas or products besides airplanes does aerodynamics matter?

AERODYNAMICS MATTERS...

SOURCE OF AERODYNAMIC FORCES...

- "Theoretical and experimental aerodynamicists labor to calculate and measure flow fields of many types"
-... Because " the aerodynamic forces exerted by the airflow on the surface of an airplane, missile, etc., stems from only two simple natural sources:
- Pressure distribution over the surface (normal to surface)
- Shear stress (friction) over the surface (tangential to surface)

SOURCE OF AERODYNAMIC FORCES..

"LIFT" AND "DRAG" COMPONENTS OF

AERODYNAMIC FORCE

AERODYNANICSI

- Deals with calculations of Forces and Moments due to body-air relative movement for all range of speeds. From very low speed to several times more than speed of sound
- Low speed (Incompressible)
- Subsonic
- Transonic
- Supersonic
- Hypersonic

Classification is based on: Flow Compressibility

DEFINITION OF COMPRESSIBLE FLOW...

- Compressible flow is routinely defined as variable density flow.

$$
\tau=-\frac{1}{v} \frac{\partial v}{\partial p}\left\{\begin{array}{l}
\tau_{T}=-\frac{1}{v}\left(\frac{\partial v}{\partial p}\right)_{T} \\
\tau_{s}=-\frac{1}{v}\left(\frac{\partial v}{\partial p}\right)_{s}
\end{array}\right.
$$

$$
\begin{array}{ll}
\tau_{T}=5 \times 10^{-10} & m^{2} / N, \\
\tau_{T}=1 \times 10^{-5} & m^{2} / N,
\end{array}
$$

for water at 1 atm for air at 1 atm

DEFINITION OF COMPRESSIBLE FLOW..

$$
\rho=\frac{1}{v} \quad \Longleftrightarrow \quad \tau=\frac{1}{\rho} \frac{d \rho}{d p} \quad \Longleftrightarrow \quad d \rho=\rho \tau d p
$$

- For the flow of gases with their attendant large values of Compressibility, moderate to strong pressure gradients lead to substantial changes in the density.
- At the same time, such pressure gradients create large velocity changes in the gas.
- Such flows are defined as compressible flows, where density is a variable.
- Consider the low-speed flow of air over an airplane wing at standard conditions:

- the percentage change in pressure is $\mathbf{1 . 5} \%$
- Mach number is defined as the ratio of the local flow velocity to the speed of sound:

$$
M=\frac{V}{a}
$$

INCOMPRESSIBLE - SUBSONIC FLOWS

$$
\begin{array}{ll}
M_{\infty}<0.3 & \text { Incompressible Flow } \\
0.3<M_{\infty}<0.8 & \text { Subsonic Flow }
\end{array}
$$

TRANSONIC FLOW

$M_{\infty}<0.8$

Subsonic flow eve:

(a)

(Critical Mach number)

(b)
 Subsonic

TRANSONIC FLOW

$$
M_{\infty}>1.2
$$

HYPERSONIC FLOW

$$
M_{\infty}>5
$$

SUPERCAVITATION

Supercavitating vehicle
speeds ibove $180 \mathrm{~km} / \mathrm{h}$

Supercavily

EERODYNANICSI

- Inviscid flow:
- Rotational
- Irrotational
- Viscous flow:
- Laminar
- Turbulent
- The motion of the fluid is controlled by:
- Governing Equations
- Boundary Conditions
- The governing equations are given by conservation laws:
- Conservation of mass
- Conservation of momentum
- Conservation of Energy

Continuity
Newton's $2^{\text {nd }}$ Law, $\mathrm{F}=\mathrm{ma}$
$1^{\text {st }}$ law of thermodynamics

- Cartesian coordinates: Are normally used to describe vehicle geometry.

- Cylindrical coordinates
- Spherical coordinates
- General non-orthogonal curvilinear coordinates

VARIABLES AND UNKNOWN QUANTITIES

- In general Cartesian coordinates, the independent variables are: $\quad x, y, z$ and t.
- We want to know the velocity components (u, v, w) and the fluid properties (p, ρ, T).
- These six unknowns require six equations:
- Continuity Equation:
- Momentum Equations:
- Energy Equation:
- Equation of State:

1 Equation
3 Equations
1 Equation
1 Equation

- We want to find the flow field velocity (u, v, w), pressure (p) and temperature (T) distribution.
- We need to develop a mathematical model of the fluid motion suitable for use in numerical calculations.
- The mathematical model is based on the conservations laws and the fluid properties.

DESCRIPTION OF FLUID MOTION

- Lagrangian:
- Each fluid particle is traced as it moves around the body.
- This method corresponds to the conventional concept of Newton's $2^{\text {nd }}$ law
- Eulerian:
- We look at the entire space around the body as a field, and determine flow properties at various points in the field while the fluid stream past.
- We consider the distribution of velocity and pressure throughout the field, and ignore the motion of individual fluid particles.
- The statement of Conservation of Mass is in the words simply:

Net outflow of mass through the surface surrounding the volume

Time rate of decrease of mass within the volume
[Mass can be neither created or destroyed]

$$
\begin{aligned}
& {[X-\text { out }]-[X-i n]+[Y-\text { out }]-[Y-i n]} \\
& =\text { change of mass }(\text { decrease }) \\
& =\frac{\partial \rho}{\partial t} \Delta X \Delta Y
\end{aligned}
$$

THE CONTINUITY EQUATION

- The differential form:

$$
\begin{array}{ll}
\text { 2-D } & \frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}=0 \\
\text { 3-D } & \frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho w}{\partial z}=0
\end{array}
$$

Vector form $\quad \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{V})=0$

- The integral form:

$$
\frac{\partial}{\partial t} \iiint_{C V} \rho d \forall+\iint_{C S} \rho \vec{V} d \vec{s}=0
$$

- Newton's $2^{\text {nd }}$ law: The time rate of change of momentum of a body, equals the net force exerted on it.
- For a fixed mass, this is the famous equation:

$$
\begin{gathered}
\vec{F}=m \vec{a}=m \frac{D \vec{V}}{D t} \\
{[\text { Force }=\text { Time rate of change of momentum] }}
\end{gathered}
$$

CONSERATION OF MOMENTUM

- Substantial Derivative:
- We need to apply Newton's law to a moving fluid element from our fixed coordinate system.
- Consider any fluid property, $Q(\vec{r}, t)$
- The change in position of the particle between \vec{r} at t , and $\vec{r}+\Delta \vec{r}$ at $t+\Delta t$ is:

$$
\begin{aligned}
\Delta Q & =Q(\vec{r}+\Delta s, t+\Delta t)-Q(\vec{r}, t) \\
& =Q(\vec{r}+\vec{V} \Delta t, t+\Delta t)-Q(\vec{r}, t)
\end{aligned}
$$

- The rate of change of Q is:

$$
\frac{D Q}{D t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta Q}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{Q(\vec{r}+\vec{V} \Delta t, t+\Delta t)-Q(\vec{r}, t)}{\Delta t}
$$

CONSERATION OF MOMENTUM

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta Q}{\Delta t}=\underbrace{\begin{array}{l}
\text { Variation with change } \\
\text { of position, } \\
\text { convective derivative }
\end{array}}_{\begin{array}{l}
\text { Local time } \\
\text { derivative, } \\
\text { local derivative }
\end{array}}+\frac{\partial Q}{\partial t} V
$$

- The second term has the unknown velocity V multiplying a term containing the unknown Q. This is important!
- The convective derivative introduces a fundamental nonlinearity into the system.
- In coordinates, $\vec{V}=\{u, v, w\}$, and the substantial derivative becomes:

$$
\begin{aligned}
& \frac{D u}{D t}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} \\
& \frac{D v}{D t}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z} \\
& \frac{D w}{D t}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}
\end{aligned}
$$

CONSERATION OF MOMENTUM

Sources of the force exerted on the fluid element:

- Body forces
- Gravitational forces
- Electromagnetic force
- ...
- Surface forces
- Pressure
- Shear stress

- The net force in the x -direction is found to be:

$$
\rho \Delta x \Delta y f_{x}+\frac{\partial}{\partial x}\left(\tau_{x x}\right) \Delta x \Delta y+\frac{\partial}{\partial y}\left(\tau_{y x}\right) \Delta x \Delta y
$$

- Using the Substantial Derivative and the definition of the mass, $m=\rho \Delta x \Delta y \Delta z$, and considering the x component, $F_{x}=m a_{x}$ in three dimensional case, we have:

$$
\begin{aligned}
\rho \Delta x \Delta y \Delta z \frac{D u}{D t}= & \rho \Delta x \Delta y \Delta z f_{x}+\frac{\partial}{\partial x}\left(\tau_{x x}\right) \Delta x \Delta y \Delta z+\frac{\partial}{\partial y}\left(\tau_{y x}\right) \Delta x \Delta y \Delta z \\
& +\frac{\partial}{\partial z}\left(\tau_{z x}\right) \Delta x \Delta y \Delta z
\end{aligned}
$$

CONSERATION OF MOMENTUM

- General conservation of momentum relations:
- Differential form:

$$
\begin{aligned}
& \rho \frac{D u}{D t}=\rho f_{x}+\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{y x}}{\partial z} \\
& \rho \frac{D v}{D t}=\rho f_{y}+\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{z y}}{\partial z} \\
& \rho \frac{D w}{D t}=\rho f_{z}+\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \tau_{z z}}{\partial z}
\end{aligned}
$$

- Integral Form:

$$
\frac{\partial}{\partial t} \iiint_{C V} \rho \overrightarrow{V d} \forall+\iint_{C S}(\rho \vec{V} \cdot d \vec{s}) \vec{V}=-\iint_{C S} p d \vec{s}+\iiint_{C V} \rho \overrightarrow{f d} \forall+\vec{F}_{V i s c o u s}
$$

- Relations between stress and μ based on the assumptions

$$
\begin{aligned}
& \tau_{x x}=-p-\frac{2}{3} \mu \nabla \cdot \mathbf{V}+2 \mu \frac{\partial u}{\partial x} \\
& \tau_{y y}=-p-\frac{2}{3} \mu \nabla \cdot \mathbf{V}+2 \mu \frac{\partial v}{\partial y} \\
& \tau_{z z}=-p-\frac{2}{3} \mu \nabla \cdot \mathbf{V}+2 \mu \frac{\partial w}{\partial x}
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{x y}=\tau_{y x}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \\
& \tau_{x z}=\tau_{z x}=\mu\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right) \\
& \tau_{y z}=\tau_{z y}=\mu\left(\frac{\partial v}{\partial y}+\frac{\partial w}{\partial y}\right)
\end{aligned}
$$

THE CLASSIC NAVIER-STOKES EQUATIONS

- Written in the standard aerodynamics form neglecting the body force.

$$
\begin{aligned}
& \rho \frac{D u}{D t}=-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}\left(2 \mu \frac{\partial u}{\partial x}-\frac{2}{3} \mu \nabla \cdot \mathbf{v}\right)+\frac{\partial}{\partial y}\left[\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right]+\frac{\partial}{\partial z}\left[\mu\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right)\right] \\
& \rho \frac{D v}{D t}=-\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}\left[\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right]+\frac{\partial}{\partial y}\left(2 \mu \frac{\partial v}{\partial y}-\frac{2}{3} \mu \nabla \cdot \mathbf{V}\right)+\frac{\partial}{\partial z}\left[\mu\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right)\right] \\
& \rho \frac{D w}{D t}=-\frac{\partial p}{\partial w}+\frac{\partial}{\partial x}\left[\mu\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right)\right]+\frac{\partial}{\partial y}\left[\mu\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)\right]+\frac{\partial}{\partial z}\left(2 \mu \frac{\partial w}{\partial z}-\frac{2}{3} \mu \nabla \cdot \mathbf{V}\right)
\end{aligned}
$$

- These equations are:
- Non-linear (recall that superposition of solutions is not allowed).
- Highly coupled.
- Long!
- When the viscous terms are small and thus ignored, the flow is termed inviscid.
- The resulting equations are known as the Euler Equations.

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}+\frac{\partial p}{\rho \partial x}=0 \\
& \frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+\frac{\partial p}{\rho \partial y}=0 \\
& \frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}+\frac{\partial p}{\rho \partial z}=0
\end{aligned}
$$

EULER EQUATIONS

- Euler Equations in cylindrical coordinate system:

$$
\begin{aligned}
& \rho a_{r}=\rho\left(\frac{\partial V_{r}}{\partial t}+V_{r} \frac{\partial V_{r}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{r}}{\partial \theta}+V_{z} \frac{\partial V_{r}}{\partial z}-\frac{V_{\theta}^{2}}{r}\right)=\rho g_{r}-\frac{\partial p}{\partial r} \\
& \rho a_{\theta}=\rho\left(\frac{\partial V_{\theta}}{\partial t}+V_{r} \frac{\partial V_{\theta}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta}+V_{z} \frac{\partial V_{\theta}}{\partial z}+\frac{V_{r} V_{\theta}}{r}\right)=\rho g_{\theta}-\frac{1}{r} \frac{\partial p}{\partial \theta} \\
& \rho a_{z}=\rho\left(\frac{\partial V_{z}}{\partial t}+V_{r} \frac{\partial V_{z}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{z}}{\partial \theta}+V_{z} \frac{\partial V_{z}}{\partial z}\right)=\rho g_{z}-\frac{\partial p}{\partial z}
\end{aligned}
$$

NEWTON'S SECOND LAW: FLUID DYNAMICS

- We describe the motion of each particle with a velocity vector: V
- Particles follow specific paths base on the velocity of the particle.
- Location of particle is based on its initial position at an initial time, and its velocity along the path.
- If the flow is a steady flow, each successive particle will follow the same path.

NEWTON'S SECOND LAW: STEADY FLOW

- For Steady Flow, each particle slides along its path, and the velocity vector is every tangent to the path.
- The lines that the velocity vectors are tangent to are called streamlines.
- We can introduce streamline coordinate, $\mathrm{s}(\mathrm{t})$ along the streamline and n, normal to the streamline.
- Then $\mathfrak{R}(s)$ is the radius of curvature of the streamline.

NEWTON'S SECOND LAW: STEADY FLOW

$$
\begin{aligned}
V= & V(s) \Longrightarrow V=d s / d t . \\
& \mathbf{a}=d \mathbf{V} / d t
\end{aligned}
$$

- For 2-D Flows, there are two acceleration components:
- s-direction by chain rule:

$$
a_{s}=d V / d t=(\partial V / \partial s)(d s / d t)=(\partial V / \partial s) V
$$

- Normal direction (n) is the centrifugal acceleration:

$$
a_{n}=\frac{V^{2}}{\mathscr{R}}
$$

- In general there is acceleration along the streamline:

$$
\partial V / \partial s \neq 0
$$

- There is also acceleration normal to the streamline: $\mathscr{R} \neq \infty$
- However, to produce an acceleration there must be a force!

NEWTONS SECOND LAW: STEADY FLOW F.B.D.

- Remove, the fluid particle from its surroundings.
- Draw the F.B.D. of the flow.
- Assume pressure forces and gravity forces are important.
- Neglect surface tension and viscous forces.

NEWTON'S SECOND LAW: ALONG A STREAMLINE

- Use Streamline coordinates, our element is ds x dn x dy, and the unit vectors are \mathbf{n} and \mathbf{s}, and apply Newton's Second Law in the Streamline Direction.
- Streamline, F = ma:

$$
\sum \delta F_{s}=\delta m a_{s}=\delta m V \frac{\partial V}{\partial s}=\rho \delta \forall V \frac{\partial V}{\partial s}
$$

- Gravity Forces:

$$
\delta W_{s}=-\delta W \sin \theta=-\gamma \delta \forall \sin \theta
$$

- Pressure Forces (Taylor Series):

$$
\delta F_{p s}=\left(p-\delta p_{s}\right) \delta n \delta y-\left(p+\delta p_{s}\right) \delta n \delta y=-2 \delta p_{s} \delta n \delta y
$$

$$
=-\frac{\partial p}{\partial s} \delta s \delta n \delta y=-\frac{\partial p}{\partial s} \delta \forall
$$

$\delta p_{s} \approx \frac{\partial p}{\partial s} \frac{\delta s}{2}$ arises since pressures vary in a fluid. P is the pressure at the center of the element.
Shear Forces: Neglected, Inviscid!

NEWTON'S SECOND LAW: ALONG A STREAMLINE

- Then

$$
\rho \delta \forall V \frac{\partial V}{\partial s}=\sum \delta F_{s}=\delta W_{s}+\delta F_{p s}=\left(-\gamma \sin \theta-\frac{\partial p}{\partial s}\right) \delta \forall
$$

Divide out volume, recall $a_{s}=V \frac{\partial V}{\partial s}$
$-\gamma \sin \theta-\frac{\partial p}{\partial s}=\rho V \frac{\partial V}{\partial s}=\rho a_{s}$

- The change of fluid particle speed is accomplished by the appropriate combination of pressure gradient and particle weight along the streamline.
- In a static fluid the R.H.S is zero, and pressure and gravity balance. In a dynamic fluid, the pressure and gravity are unbalanced causing fluid flow.
- In a dynamic fluid, the pressure and gravity are unbalanced causing fluid ffow. DYNAMICS : FLUID MECHANICS REVIEW

NEWTON'S SECOND LAW: ALONG A STREAMLINE

$$
-\gamma \sin \theta-\frac{\partial p}{\partial s}=\rho V \frac{\partial V}{\partial s}=\rho a_{s}
$$

- Note, we can rewrite terms in the above equation:

$$
\begin{gathered}
\sin \theta=d z / d s \\
V d V / d s=\frac{1}{2} d\left(V^{2}\right) / d s \\
d p=(\partial p / \partial s) d s+(\partial p / \partial n) \underset{\substack{d=\text { constant along a streamine }}}{d(\partial p / \partial s) d s} .
\end{gathered}
$$

- Then

$$
-\gamma \frac{d z}{d s}-\frac{d p}{d s}=\frac{1}{2} \rho \frac{d\left(V^{2}\right)}{d s}
$$

- Simplifying,

$$
d p+\frac{1}{2} \rho d\left(V^{2}\right)+\gamma d z=0 \quad \text { (along a streamline) }
$$

NEWTON'S SECOND LAW: ALONG A STREAMLINE

- Integrate,

$$
\int \frac{d p}{\rho}+\frac{1}{2} V^{2}+g z=C \quad \text { (along a streamline) }
$$

- In general, we can not integrate the pressure term because density can vary with temperature and pressure; however, for now we assume constant density.

$$
p+\frac{1}{2} \rho V^{2}+\gamma z=\text { constant along streamline }
$$

Celebrated Bernoulli's Equation

- Assumptions:
I. Viscous effects are assumed negligible (inviscid).
II. The flow is assumed steady.
III. The flow is assume incompressible.
IV. The equation is applicable along a streamline
* We can apply along a streamline in planar and non-planar flows!
$-\frac{1}{\rho} \frac{\partial p}{\partial s}-g \frac{\partial z}{\partial s}=V \frac{\partial V}{\partial s}$

$$
\int \frac{d p}{\rho}+\frac{V^{2}}{2}+g z=\text { constant }
$$

Incompressible flow
$\frac{p}{\rho}+\frac{V^{2}}{2}+g z=$ constant

BERNOULLI'S EQUATION

$\frac{p}{\rho}+\frac{V^{2}}{2}+g z=$ constant

1. Steady Flow
2. No Friction
3. Flow Along a Streamline
4. Incompressible Flow

Stagnation Pressure

Static Pressure

Dynamic
Pressure

$$
q=\frac{1}{2} \rho V^{2}
$$

- Motion of a rigid body:
- Translation: all points in the body, move in parallel straight lines.

- Rotation: all points in the body move in circular paths about the axis of rotation.

- General motion
- We can decompose the motion of an infinitesimal fluid particle, into four components:
- Translation
- Rotation
- Linear deformation (Linear strain)
- Angular deformation (Shear strain)

No Shear Stress

$$
\begin{gathered}
\vec{V}_{p}(t)=\vec{V}(x, y, z, t) \quad \vec{V}_{p}(t+d t)=\vec{V}(x+d x, y+d y, z+d z, t+d t) \\
d \vec{V}_{p}=\frac{\partial \vec{V}}{\partial x} d x_{p}+\frac{\partial \vec{V}}{\partial y} d y_{p}+\frac{\partial \vec{V}}{\partial z} d z_{p}+\frac{\partial \vec{V}}{\partial t} d t
\end{gathered}
$$

$$
\frac{d \vec{V}_{p}}{\partial t}=\frac{\partial \vec{V}}{\partial x} \frac{d x_{p}}{d t}+\frac{\partial \vec{V}}{\partial y} \frac{d y_{p}}{d t}+\frac{\partial \vec{V}}{\partial z} \frac{d z_{p}}{d t}+\frac{\partial \vec{V}}{\partial t}
$$

$$
\vec{a}_{p}=\frac{D \vec{V}}{D t}=\frac{\partial \vec{V}}{\partial t}+u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}
$$

$$
\begin{aligned}
& \frac{\Delta \forall}{\Delta t}=\Delta x \Delta y\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \\
& \nabla \vec{V}=\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
\end{aligned}
$$

LINEAR DEFORMATION

$$
\begin{gathered}
\varepsilon_{x x}=\frac{\partial u}{\partial x} \quad \varepsilon_{y y}=\frac{\partial v}{\partial y} \quad \varepsilon_{z z}=\frac{\partial w}{\partial z} \\
\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=\vec{\nabla} \cdot \vec{V}=0
\end{gathered}
$$

ANGULAR DEFORMATION

$$
\varepsilon_{x y}=\frac{\partial u}{\partial y} d y d t / d y+\frac{\partial v}{\partial x} d x d t / d x
$$

Similarly

$$
\varepsilon_{y z}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}
$$

$$
\varepsilon_{x z}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}
$$

$$
\varepsilon_{i j}=\left(\begin{array}{ccc}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{y x} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{z x} & \varepsilon_{z y} & \varepsilon_{z z}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\partial u}{\partial x} & \frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) & \frac{\partial v}{\partial y} & \frac{1}{2}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right) & \frac{\partial w}{\partial z}
\end{array}\right)
$$

$$
\begin{aligned}
\omega_{o a} & =\lim _{\Delta t \rightarrow 0} \frac{\Delta \alpha}{\Delta t}=\ldots \\
& =\frac{\partial v}{\partial x} \\
\omega_{o b} & =\lim _{\Delta t \rightarrow 0} \frac{\Delta \beta}{\Delta t}=\ldots \\
& =-\frac{\partial u}{\partial y}
\end{aligned}
$$

$$
\omega_{z}=\frac{1}{2}\left(\omega_{o a}+\omega_{o b}\right) \longrightarrow \omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
$$

In three-dimensional space: $\quad \vec{\omega}=\omega_{x} \hat{i}+\omega_{y} \hat{j}+\omega_{z} \hat{k}$

$$
\begin{aligned}
\vec{\omega} & =\frac{1}{2} \vec{\nabla} \times \vec{V} \\
\vec{\omega} & =\frac{1}{2} \operatorname{curl} \vec{V}
\end{aligned}
$$

[Vorticity = Curl of velocity]

ROTATIONAL AND IRROTATIONAL FLOWS

Rotational flow:
$\vec{\nabla} \times \vec{V} \neq 0$ at every point. The fluid elements have a finite angular velocity.

Irrotational flow:
$\vec{\nabla} \times \vec{V}=0$ at every point. The fluid elements have no angular velocity (pure translation).

ROTATIONAL AND IRROTATIONAL FLOWS

Fluid particles not rotating

ROTATIONAL AND IRROTATIONAL ELOWS

$u_{r}=0, u_{d}=\omega r$
$\vec{\zeta}=\frac{1}{r}\left(\frac{\partial\left(r u_{0}\right)}{\partial r}-\frac{\partial u_{r}}{\partial \theta}\right) \vec{e}_{t}=\frac{1}{r}\left(\frac{\partial\left(\omega r^{2}\right)}{\partial r}-0\right) \vec{e}_{t}=2 \omega \vec{e}_{\mathrm{e}}$

$u_{r}=0, u_{d}=\frac{K}{r}$
(b)

$$
\vec{\zeta}=\frac{1}{r}\left(\frac{\partial\left(r u_{\theta}\right)}{\partial r}-\frac{\partial u_{r}}{\partial \theta}\right) \Xi_{\mathrm{t}}=\frac{1}{r}\left(\frac{\partial(K)}{\partial r}-0\right) \widetilde{e}_{\mathrm{t}}=0 \Xi_{\mathrm{t}}
$$

Flow \mathbf{A} is rotational
Flow B is irrotational

ROTATIONAL AND IRROTATIONAL FLOWS

BERNOULLI'S EQUATION FOR IRROTATIONAL

ELOWS

$$
\begin{array}{|l}
\begin{array}{l}
\omega_{x}=\omega_{y}=\omega_{z}=0 \\
\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0 \\
\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}=0 \\
\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}=0
\end{array} \\
\hline
\end{array} \left\lvert\, \begin{aligned}
& u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}+w \frac{\partial w}{\partial x}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+f_{x} \\
& u \frac{\partial u}{\partial y}+v \frac{\partial v}{\partial y}+w \frac{\partial w}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial y}+f_{y} \\
& u \frac{\partial u}{\partial z}+v \frac{\partial v}{\partial z}+w \frac{\partial w}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+f_{z}
\end{aligned}\right.
$$

Euler Equations:
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+f_{x}$
$\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial y}+f_{y}$
$\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+f$

BERNOULLI'S EQUATION FOR IRROTATIONAL

ELOWS

$$
\begin{array}{r}
u \frac{\partial u}{\partial x} d x+v \frac{\partial v}{\partial x} d x+w \frac{\partial w}{\partial x} d x=-\frac{1}{\rho} \frac{\partial p}{\partial x} d x+f_{x} d x \\
u \frac{\partial u}{\partial y} d y+v \frac{\partial v}{\partial y} d y+w \frac{\partial w}{\partial y} d y=-\frac{1}{\rho} \frac{\partial p}{\partial y} d y+f_{y} d y \\
u \frac{\partial u}{\partial z} d z+v \frac{\partial v}{\partial z} d z+w \frac{\partial w}{\partial z} d z=-\frac{1}{\rho} \frac{\partial p}{\partial z} d z+f_{z} d z \\
\frac{f_{z}=-g}{\partial x}\left(\frac{u^{2}+v^{2}+w^{2}}{2}\right)=\frac{\partial}{\partial x}\left(\frac{V^{2}}{2}\right)
\end{array}
$$

Adding above equations:

$$
\frac{\partial}{\partial x}\left(\frac{V^{2}}{2}\right) d x+\frac{\partial}{\partial y}\left(\frac{V^{2}}{2}\right) d y+\frac{\partial}{\partial z}\left(\frac{V^{2}}{2}\right) d z=d\left(\frac{V^{2}}{2}\right)
$$

$$
d\left(\frac{V^{2}}{2}\right)=-\frac{1}{\rho} d p-g d z
$$

Integrating

$$
g z+\int \frac{d p}{\rho}+\frac{V^{2}}{2}=C
$$

For $\rho=$ const. (Incompressible flow):

$$
z+\frac{p}{\rho g}+\frac{V^{2}}{2 g}=C
$$

- The most frequent used terms in aerodynamics are:
- Pressure
- Density
- Temperature
- Velocity
- Viscosity

AERODYNAMIC VARIABLES

- Pressure:
- Pressure can be defined at any point in a fluid, whether liquid or gas.
- Pressure is the normal force per unit area exerted on a surface due to the time rate of change of momentum of the gas molecules impacting on that surface.

$$
p=\lim _{d A \rightarrow 0}\left(\frac{d F}{d A}\right)
$$

- Pressure is defined at a point in the fluid (or solid). Pressure is a point property.
- Dimension: [M/T²L], [FL/T] (T: Time)

AERODYNAMIC VARIABLES

- Density:
- Density is defined as the "mass per unit volume". It's the mass of the fluid contained in an incremental volume surrounding the point.

$$
\rho=\lim _{d v \rightarrow 0}\left(\frac{d m}{d v}\right)
$$

- In a fluid, density may vary from point to point. Density is a point property.
- Dimension: [M/L3], [$\left.\mathrm{FT}^{2} / \mathrm{L}^{4}\right]$
(T: Time)

AERODYNAMIC VARIABLES

- Temperature:
- Temperature is directly proportional to the average kinetic energy of the molecules of the fluid.

$$
K E=\frac{3}{2} k T
$$

- KE: mean molecular kinetic energy
- k: Boltzmann constant

AERODYNAMIC VARIABLES

- Velocity:

- Flow velocity is a vector quantity; it has both magnitude and direction.

- The velocity of a flowing fluid at any fixed point B, is the velocity of an infinitesimally small fluid element as it sweeps through B.

AERODYNAMIC VARIABLES

- Viscosity:
- Viscosity of a fluid is regarded as its tendency to resist sliding between layers.
- In a Newtonian fluid, the shearing stress is proportional to the rate of shearing deformation. The constant of proportionality is called the coefficient of viscosity μ.

$$
\tau=\mu \frac{d V}{d y}
$$

- Viscosity of a fluid relates to the transport of momentum in the direction of the velocity gradient (but opposite in sense. Viscosity is a transport property.

AERODYNAMIC VARIABLES

- Viscosity:

- The coefficient of viscosity depends on the composition of the fluid, its temperature and its pressure.
- Sutherland's formula can be used to derive the dynamic viscosity of an ideal gas as a function of the temperature:

$$
\mu=\mu_{0} \frac{T_{0}+C}{T+C}\left(\frac{T}{T_{0}}\right)^{3 / 2}
$$

where:
$\mu=$ dynamic viscosity in (Pa•s) at input temperature T
$\mu_{o}=$ reference viscosity in (Pa.s) at reference temperature T_{o}
$T=$ input temperature in kelvin
$T_{\mathrm{o}}=$ reference temperature in kelvin
$C=$ Sutherland's constant for the gaseous material in question
Valid for temperatures between $\mathrm{o}<T<555 \mathrm{~K}$ with an error due to pressure less than 10% below 3.45 MPa

- Viscosity:
- The coefficient of viscosity depends on the composition of the fluid, its temperature and its pressure.
- Sutherland's formula can be used to derive the dynamic viscosity of an ideal gas as a function of the temperature:
- Sources of aerodynamic forces and moments:
- Pressure distribution (Normal to the surface)
- Shear stress distribution (Tangential to the surface)

- The net effect of pressure and shear stress distribution, integrated over the body surface is:
- Aerodynamic force: R
- Aerodynamic moment: M

AERODYNAMIC FORCES AND MOMENTS

- Components of aerodynamic force (R) :

1. L: Lift (perpendicular to freestream velocity)

D: Drag (parallel to freestram velocity)
2. $\quad N$: Normal force (perpendicular to chord)

A: Axial force (parallel to chord)
$L=N \cos \alpha-A \sin \alpha$
$D=N \sin \alpha+A \cos \alpha$

SIGN CONVENTIOM FOR AERODYNAMIC MOMENT

- By convention:
- Positive moments tend to increase the angle of attack:

- Negative moments tend to decrease the angle of attack:

AERODYNAMIC COEFFICIENTS

- The dimensionless force and moment coefficients:

Lift coefficient

Drag coefficient
Normal force coefficient
Axial force coefficient

Moment coefficient

$$
\begin{aligned}
& C_{L}=\frac{L}{q_{\infty} S} \\
& C_{D}=\frac{D}{q_{\infty} S}
\end{aligned}
$$

$$
C_{N}=\frac{N}{q_{\infty} S}
$$

$$
C_{A}=\frac{A}{q_{\infty} S}
$$

$$
C_{M}=\frac{M}{q_{\infty} S l}
$$

Where:

- q is called the freestream dynamic pressure: $q_{\infty}=\frac{1}{2} \rho_{\infty} v_{\infty}^{2}$
- l: reference length
- S: reference area

AERODYNAMIC COEFFICIENTS

AERODYNAMIC COEFFICIENTS

- Two additional dimensionless quantities:

Pressure coefficient

Skin friction coefficient

$$
\begin{gathered}
C_{p}=\frac{p-p_{\infty}}{q_{\infty}} \\
C_{f}=\frac{\tau}{q_{\infty}}
\end{gathered}
$$

WING PARAMETERS

TWO-DIMENSIONAL BODIES

$$
S=c \times 1 \quad \longleftrightarrow c_{l} \equiv \frac{L^{\prime}}{q_{\infty} c} \quad c_{d} \equiv \frac{D^{\prime}}{q_{\infty} c} \quad c_{m} \equiv \frac{M^{\prime}}{q_{\infty} c^{2}}
$$

- Center of pressure is a point about which the aerodynamic moment is zero.

- For small angles of attack: $L^{\prime} \approx N^{\prime} \Longrightarrow x_{c p}=-\frac{M_{L E}^{\prime}}{L^{\prime}}$
- Center of pressure is a point about which the aerodynamic moment is zero.

CENTER OF PRESSURE - EXAMPLE

In low-speed, incompressible flow, the following experimental data are obtained for an airfoil section at an angle of attack of 4° :

$$
\mathrm{c}_{l=} \mathbf{0 . 8 5} \text { and } \mathrm{c}_{\mathrm{m}, \mathrm{c} / 4}=-\mathbf{0 . 0 9} .
$$

Calculate the location of the center of pressure.

$$
\begin{gathered}
x_{c p}=\frac{c}{4}-\frac{M_{c / 4}^{\prime}}{L^{\prime}} \\
\frac{x_{c p}}{c}=\frac{1}{4}-\frac{\left(M_{c / 4} / q_{\infty} c^{2}\right)}{\left(L^{\prime} / q_{\infty} c\right)}=\frac{1}{4}-\frac{c_{m, c / 4}}{c_{l}} \\
= \\
=\frac{1}{4}-\frac{(-0.09)}{0.85}=0.356
\end{gathered}
$$

Question:

What physical quantities determine the variation of
Aerodynamic forces and moments?

The answer can be found from the powerful method of

dimensional analysis

DIMENSIONAL ANALYSIS:

THE BUCKINGHAM PI THEOREM

On a physical, intuitive basis, we expect the aerodynamic force to depend on:

1. Freestream velocity, V_{∞}
2. Freestream density, ρ_{∞}.

3. Viscosity of the fluid, μ_{∞}.
4. The size of the body, represented by some chosen reference length. Reference length is the chord length c.
5. The compressibility of the fluid. Compressibility is related to the speed of sound, a. Therefore, let us represent the influence of compressibility on aerodynamic forces and moments by the free stream speed of sound, a_{∞}.

$$
R=f\left(\rho_{\infty}, V_{\infty}, c, \mu_{\infty}, a_{\infty}\right)
$$

DIMENSIONAL ANALYSIS:

THE BUCKINGHAM PI THEOREM

- The object of dimensional analysis is to group several variables together to form a new variable that is nondimensional.
- Dimensional analysis is based on the obvious fact that an equation dealing the real physical world, each term must have the same dimensions:

$$
\psi+\eta+\zeta=\phi
$$

The above equation can be made dimensionless by dividing by any one of the terms, say, ϕ

$$
\frac{\psi}{\phi}+\frac{\eta}{\phi}+\frac{\zeta}{\phi}=1
$$

DIMENSIONAL ANALYSIS:

THE BUCKINGHAM PI THEOREM

Let \boldsymbol{K} equal the number of fundamental dimensions required to describe the physical variables. (In mechanics, all physical variables can be expressed in terms of the dimensions of mass, length, and time; hence, $K=3$.)

Let $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{\mathrm{N}}$ represent N physical variables in the physical relation

$$
f_{1}\left(P_{1}, P_{2}, \ldots, P_{N}\right)=0
$$

Then, the physical relation may be reexpressed as a relation of ($N-K$) dimensionless products (called Π products),

$$
f_{2}\left(\Pi_{1}, \Pi_{2}, \ldots, \Pi_{N}\right)=0
$$

DIMENSIONAL ANALYSIS:

THE BUCKINGHAM PI THEOREM

Each Π product is a dimensionless product of a set of K physical variables plus one other physical variable. Let $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{K}}$ be the selected set of K physical variables. Then

$$
\begin{aligned}
& \Pi_{1}=f_{3}\left(P_{1}, P_{2}, \ldots, P_{K}, P_{K+1}\right) \\
& \Pi_{2}=f_{4}\left(P_{1}, P_{2}, \ldots, P_{K}, P_{K+2}\right) \\
& \cdots \cdots \cdots \ldots \ldots \ldots \ldots \ldots \\
& \Pi_{N-K}=f_{5}\left(P_{1}, P_{2}, \ldots, P_{K}, P_{N}\right)
\end{aligned}
$$

The choice of repeating variable, should be such that:

- They include all the K dimensions used in problem.
- The dependent variable should appear in only one of the Π products.

THE BUCKINGHAM PI THEOREM

$$
\begin{aligned}
& R=f\left(\rho_{\infty}, V_{\infty}, c, \mu_{\infty}, a_{\infty}\right) \\
& g\left(R, \rho_{\infty}, V_{\infty}, c, \mu_{\infty}, a_{\infty}\right)=0 \\
& \begin{array}{c}
\mathrm{m}=\text { dimensions of mass } \\
1=\text { dimension of length } \\
\mathrm{t}=\text { dimension of time }
\end{array} \\
&
\end{aligned}
$$

- Physical variables and their dimensions:

$$
\begin{aligned}
{[R] } & =m l t^{-2} \\
{\left[\rho_{\infty}\right] } & =m l^{-3} \\
{\left[V_{\infty}\right] } & =l t^{-1} \\
{[c] } & =l \\
{\left[\mu_{\infty}\right] } & =m l^{-1} t^{-1} \\
{\left[a_{\infty}\right] } & =l t^{-1}
\end{aligned}
$$

$g\left(R, \rho_{\infty}, V_{\infty}, c, \mu_{\infty}, a_{\infty}\right)=0$ can be reexpressed in terms of $\mathrm{N}-\mathrm{K}=3$ dimensionless Π products

$$
f_{2}\left(\Pi_{1}, \Pi_{2}, \Pi_{3}\right)=0
$$

The Π products are:

$$
\begin{aligned}
& \Pi_{1}=f_{3}\left(\rho_{\infty}, V_{\infty}, c, R\right) \\
& \Pi_{2}=f_{4}\left(\rho_{\infty}, V_{\infty}, c, \mu_{\infty}\right) \\
& \Pi_{3}=f_{5}\left(\rho_{\infty}, V_{\infty}, c, a_{\infty}\right)
\end{aligned}
$$

$$
\begin{gathered}
\Pi_{1}=f_{3}\left(\rho_{\infty}, V_{\infty}, c, R\right) \\
\Pi_{1}=\rho_{\infty}^{d} V_{\infty}^{b} c^{e} R \\
{\left[\Pi_{1}\right]=\left(m l^{-3}\right)^{d}\left(l t^{-1}\right)^{b}(l)^{e}\left(m l t^{-2}\right)} \\
d+1=0 \\
-3 d+b+e+1=0 \\
-b-2=0 \\
\downarrow \\
d=-1, b=-2, \text { and } e=-2
\end{gathered}
$$

$$
\begin{aligned}
\Pi_{1} & =R \rho_{\infty}^{-1} V_{\infty}^{-2} c^{-2} \\
& =\frac{R}{\rho_{\infty} V_{\infty}^{2} c^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Force } \\
& \text { Coefficient }
\end{aligned}
$$

$$
\begin{array}{cl}
\begin{array}{ll}
\Pi_{2}=\rho_{\infty} V_{\infty}^{h} c^{i} \mu^{j} \\
{\left[\Pi_{2}\right]=\left(m l^{-3}\right)\left(l t^{-1}\right)^{h}(l)^{i}\left(m l^{-1} t^{-1}\right)^{j}} & \begin{array}{l}
\text { For } m: 1+j=0 \\
\text { For } l:-3+h+i-j=0
\end{array} \\
\text { For } t:-h-j=0
\end{array} \\
\boldsymbol{R e}=\frac{\rho_{\infty} V_{\infty} \boldsymbol{C}}{\mu} & \begin{array}{l}
j=-1, h=1, \text { and } i=1
\end{array} \\
\text { Reynolds Number } & \\
\Pi_{2}=\frac{\rho_{\infty} V_{\infty} c}{\mu_{\infty}}
\end{array}
$$

$$
\begin{gathered}
\Pi_{3}=V_{\infty} \rho_{\infty}^{k} c^{r} a_{\infty}^{s} \\
\left.\left[\Pi_{3}\right]=\left(l t^{-1}\right)\left(m l^{-3}\right)^{k}(l)^{r}\left(l t^{-1}\right)^{s}\right\rangle \Rightarrow \begin{array}{l}
\text { For } m: \quad k=0 \\
\text { For } l: \quad 1-3 k+r+s=0 \\
\text { For } t: \quad-1-s=0
\end{array}
\end{gathered}
$$

Mach Number

$$
\Pi_{3}=\frac{V_{\infty}}{a_{\infty}}
$$

DIMENSIONAL ANALYSIS:

THE BUCKINGHAM PI THEOREM

$$
f_{2}\left(\frac{R}{\frac{1}{2} \rho_{x} V_{\infty}^{2} S}, \frac{\rho_{x} V_{x} c}{\mu_{x}}, \frac{V_{x}}{a_{x}}\right)=0
$$

$$
f_{2}\left(C_{R}, \operatorname{Re}, M_{\propto}\right)=0
$$

$$
C_{L}=f_{7}\left(\operatorname{Re}, M_{\infty}\right)
$$

$$
C_{D}=f_{8}\left(\operatorname{Re}, M_{\infty}\right)
$$

$$
C_{R}=f_{6}\left(R e, M_{\infty}\right)
$$

$$
C_{M}=f_{9}\left(\operatorname{Re}, M_{\infty}\right)
$$

If α is allowed to vary, then:
C_{L}, C_{D}, and C_{M} will in general depend on the value of α.

$$
C_{L}=f_{7}\left(R e, M_{\infty}, \alpha\right)
$$

$$
C_{D}=f_{8}\left(R e, M_{\infty}, \alpha\right)
$$

$$
C_{M}=f_{9}\left(R e, M_{\infty}, \alpha\right)
$$

By definition, different flows are dynamically similar if:

1. The bodies and any other solid boundaries are geometrically similar for both flows.
2. The similarity parameters are the same for both flows.

FLOW SIMILARITY - EXAMPLE

An aircraft and some scale models of it are tested under various conditions: given below. Which cases are dynamically similar to the aircraft in flight, given as case (A)?

	Case (A)	Case (B)	Case (C)	Case (D)	Case (E)	Case (F)
Span (m)	15	3	3	1.5	1.5	3
Relative density	0.533	1	3	1	10	10
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	-24.6	+15	+15	+15	+15	+15
Speed (TAS) $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	100	100	100	75	54	54

Case (A) represents the full-size aircraft at 6000 m . The other cases represent models under test in various types of wind-tunnel

FLOW SIMILARITY - EXAMPLE (CONT.)

The Reynolds number $\rho V D / \mu$ may be calculated for each case
(Viscosity from Sutherland's formula $\left.\mu=\mu_{0} \frac{T_{0}+C}{T+C}\left(\frac{T}{T_{0}}\right)^{3 / 2}\right)^{2}$
These are found to be:

Case (A)	$R e=5.52 \times 10^{7}$	Case (D)	$R e=7.75 \times 10^{6}$
Case (B)	$R e=1.84 \times 10^{7}$	Case (E)	$R e=5.55 \times 10^{7}$
Case (C)	$R e=5.56 \times 10^{7}$	Case (F)	$R e=1.11 \times 10^{8}$

Cases (A), (C) and (E) are dynamically similar.

BERNOULLINS EQUATION

- The Bernoulli's equation is a powerful and useful equation that relates pressure changes to velocity and elevation changes along a streamline.

$$
\frac{p}{\rho}+\frac{V^{2}}{2}+g z=C
$$

- The Bernoulli's equation gives correct results when applied to flow situations where the following four restrictions are reasonable:
- Steady flow
- Incompressible flow
- Inviscid flow
- Flow along a streamline (In general, the Bernoulli's constant [C] has different values along different stramlines)
- Bernoulli's equation is applicable to the following two devices:
- Venturi: Flowmeter, low-speed wind tunnel, Airspeed measurement
- Pitot-tube: Airspeed measurement
- Venturi is a convergent-divergent duct. It's a device that finds many applications in engineering.

VENTURI

- In general, venturi is a three-dimensional duct with elliptical or rectangular cross section which vary from one location to another.

$$
A=A(x)
$$

- For moderate variation of area, it is reasonable to assume that the flowfield properties (velocity, pressure,...) are uniform across any cross section, and vary only in direction of flow.

$$
\frac{A=A(x) \quad V=V(x) \quad p=p(x)}{\text { Quasi-one-dimensional flow }}
$$

BERNOULLI'S EQUATION APPLICATIONS:

VENTURI

- For steady flow through the venturi, continuity equation gives:
$\rho V A=$ const.\longrightarrow the mass flow through the duct is constant.
- For incompressible flow:

$$
V A=Q=\text { const } .
$$

- For a given variation of area $\mathrm{A}(\mathrm{x})$:

$$
V(x)=\frac{Q}{A(x)}
$$

- Using Bernoulli's equation:

$$
p(x)+\frac{\rho[V(x)]^{2}}{2}=\text { const } .
$$

 VENTURI

Velocity decreases (Continuity)
Pressure increases (Bernoulli)

Velocity increases (Continuity)
Pressure decreases (Bernoulli)

BERNOULLI'S EQUATION APPLICATIONS:

VENTURI

Venturi applications: Speed measurement

- Venturi can be used to measure airspeed.

- For a venturi (with a given inlet [station 1] to throat [station 2] area ratio) and known pressure difference $\mathrm{p}_{1}-\mathrm{p}_{2}$, the inlet velocity can be obtained from the combination of continuity and Bernoulli's equation:

$$
V_{1}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[\left(A_{1} / A_{2}\right)^{2}-1\right]}}
$$

VENTURI

Venturi applications: Wind tunnel

- Another application of venturi is the low-speed wind tunnel.
- A low-speed wind tunnel is a large venturi, where the airflow is driven by a fan connected to some type of motor drive.

BERNOULLI'S EQUATION APPLICATIONS:

VENTURI

Venturi applications: Wind tunnel

- There are two general types of low-speed wind tunnels:

1. Open-circuit tunnel
 chamber (reservoir)

BERNOULLINS EQUATION APPLICATIONS:

VENTURI

Venturi applications: Wind tunnel

- There are two general types of low-speed wind tunnels:

2. Closed-circuit tunnel

BERNOULLI'S EQUATION APPLICATIONS:

VENTURI

Venturi applications: Wind tunnel

- The air velocity in the test section of a low-speed wind tunnel (with fixed area ratio A_{2} / A_{1}), is obtained from the combination of continuity and Bernoulli's equation:

$$
V_{2}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[1-\left(A_{2} / A_{1}\right)^{2}\right]}}
$$

- In low-speed wind tunnels, a method of measuring the pressure difference $\mathrm{P}_{1}-\mathrm{P}_{2}$, is by means of manometers.
- Pitot tube is one of the most common and frequently used instruments in any modern aerodynamic laboratory.
- Pitot tube is the most common device for measuring flight velocities of airplanes.

- Can connect a differential pressure transducer to directly measure $\mathrm{V}^{2} / 2 \mathrm{~g}$.
- Can be used to measure the flow of water in pipelines.

BERNOULLI'S EQUATION APPLICATIONS: PITOT TUBE

Stagnation pressure tap

Connect two ports to differential pressure transducer. Make sure Pitot tube is completely filled with the fluid that is being measured. Solve for velocity as function of pressure difference

FUNDUMENTALS OF INVISCID, INCOMPRESSIBLE

FLOW

Irrotational

$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad \frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}=0$
Velocity Potential is defined as: $u=\frac{\partial \phi}{\partial x}, v=\frac{\partial \phi}{\partial y}$
1- ϕ automatically satisfies the Irrotationality condition.
2-If it has to meet the continuity requirement it has to obey,

$$
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

Thus the problem is reduced to that of finding ϕ.

Circulation, Γ is defined as the line integral of tangential velocity component around a closed curve in the flow.

$$
u+\frac{\partial u}{\partial y} \Delta y
$$

Kelvin-Stokes theorem:

$$
\Gamma=\oint_{C} \mathbf{V} \cdot \mathbf{d s}=\iint_{S}(\nabla \times \mathbf{V}) \cdot \mathbf{d S}
$$

Thus for an irrotational flow circulation around any closed contour is zero.

Stream Function, ψ is defined such that

$$
u=\frac{\partial \psi}{\partial y}, v=-\frac{\partial \psi}{\partial x}
$$

$\psi=$ constant, denotes a streamline.

For irrotationality, we have

$$
\nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0
$$

$$
d \psi=\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y
$$

$d \psi=0$

Difference $\mathrm{d} \psi$ between successive streamlines is proportional to volumetric flow rate.

Streamlines and velocity potential lines are normal to each other.

$$
\begin{aligned}
& v_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, v_{\theta}=-\frac{\partial \psi}{\partial r} \\
& v_{r}=\frac{\partial \phi}{\partial r}, v_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta} \\
& \nabla \phi=\frac{\partial \phi}{\partial r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \\
& \nabla^{2} \phi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} ; \quad \frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x} \\
& \frac{\partial \phi}{\partial r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} ; \quad \frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{\partial \psi}{\partial r}
\end{aligned}
$$

Elemantary plane flows:

\checkmark Uniform flow
\checkmark Source / Sink flow
\checkmark Doublet Flow
\checkmark Vortex flow

ELEMENTARY PLANE FLOWS

\checkmark Uniform flow

$$
\begin{aligned}
& \psi=U_{\infty} y \\
& \phi=U_{\infty} x
\end{aligned}
$$

$$
\begin{aligned}
& \psi=\left(U_{\infty} \cos \alpha\right) y-\left(U_{\infty} \sin \alpha\right) x \\
& \phi=\left(U_{\infty} \cos \alpha\right) x+\left(U_{\infty} \sin \alpha\right) y
\end{aligned}
$$

$$
\phi=\mathbf{d}
$$

\checkmark Source/Sink flow

$$
\phi=\frac{q}{2 \pi} \ln r
$$

$$
\psi=\frac{q}{2 \pi} \theta
$$

Source

Sink

SUPERPOSITION OF ELEMENTARY PLANE FLOWS

\checkmark Doublet

Source and Sink approach each other ie., $a \rightarrow o, B u t q a / \pi$ is constant or finite.

$$
\begin{aligned}
& \phi=\frac{\Lambda}{r} \cos \theta \\
& \psi=-\frac{\Lambda}{r} \sin \theta
\end{aligned}
$$

\checkmark Vortex flow

$$
\begin{aligned}
& \psi=\frac{k}{2 \pi} \ln r \\
& \phi=\frac{k}{2 \pi} \theta
\end{aligned}
$$

Laplace Equation is linear. So if ϕ_{1} and ϕ_{2} are two solutions, $\phi_{3}=\phi_{I} \pm \phi_{2}$ is also a solution.

Simple flows are superposed to calculate more complex flows.

NOTE: A solid wall is also a streamline. This helps us locate solid boundaries.

POTENTIAL FLOW: PLANE POTENTIAL FLOWS

Laplace's equation is a second-order linear Partial Differential Equation. The fact that the Laplace's equation is linear is particularly important, because linear superposition of solutions is allowed:

$$
\begin{aligned}
\phi_{3}=\phi_{1}+\phi_{2} & \text { where } \phi_{1}(x, y, z) \text { and } \phi_{2}(x, y, z) \\
& \text { are solutions of Laplace's equation }
\end{aligned}
$$

For simplicity, we consider 2D (planar) flows:
Cartesian: $\quad u=\frac{\partial \phi}{\partial x} \quad v=\frac{\partial \phi}{\partial y}$
Cylindrical: $\quad v_{r}=\frac{\partial \phi}{\partial r} \quad v_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}$
We note that the stream functions also exist for 2 D planar flows:
Cartesian:

$$
u=\frac{\partial \psi}{\partial y} \quad v=-\frac{\partial \psi}{\partial x}
$$

Cylindrical:

$$
v_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad v_{\theta}=-\frac{\partial \psi}{\partial r}
$$

POTENTIAL FLOW: PLANE POTENTIAL ELOWS

For irrotational, planar flow: $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$
Now substitute the stream function: $\frac{\partial}{\partial y}\left(\frac{\partial \psi}{\partial y}\right)=\frac{\partial}{\partial x}\left(-\frac{\partial \psi}{\partial x}\right)$
Then, $\quad \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0 \rightleftharpoons$ Laplace's Equation
For plane, irrotational flow, we use either the potential or the stream function, which both must satisfy Laplace's equations in two dimensions.
Lines of constant Ψ are streamlines: $\left.\quad \frac{d y}{d x}\right|_{\text {along } \psi=\text { constant }}=\frac{v}{u}$
Now, the change of ϕ from one point (x, y) to a nearby point $(x+d x, y+d y)$ is:

$$
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=u d x+v d y
$$

Along lines of constant ϕ we have $\mathrm{d} \phi=0$,

$$
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=u d x+\left.v d y \longmapsto \frac{d y}{d x}\right|_{\text {along } \phi=\text { constant }}=-\frac{u}{v}
$$

POTENTIAL FLOW: PLANE POTENTIAL FLOWS

Lines of constant ϕ are called Equipotential lines.
The Equipotential lines are orthogonal to lines of constant Ψ (streamlines) where they intersect.

The flow net consists of a family of streamlines and equipotential lines.
The combination of streamlines and equipotential lines are used to visualize a graphical flow situation.

POTENTIAL FLOW: UNIFORM FLOW

The simplest plane potential flow is a uniform flow in which the streamlines are all parallel to each other.

Consider a uniform flow in the x-direction:
Integrate the two equations:

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=U \quad \longleftrightarrow \phi=\mathrm{Ux}+\mathrm{f}(\mathrm{y})+\mathrm{C} \\
& \frac{\partial \phi}{\partial y}=0 \quad \longleftrightarrow \phi=\mathrm{f}(\mathrm{x})+\mathrm{C}
\end{aligned}
$$

Matching the solution $\quad \phi=U x+C$
C is an arbitrary constant, can be set to zero:

$$
\phi=U x
$$

Now for the stream function solution:

$$
\begin{array}{ll}
\frac{\partial \psi}{\partial y}=U & \begin{array}{l}
\text { Integrating the two equations similar } \\
\text { to above. }
\end{array} \\
\frac{\partial \psi}{\partial x}=0 &
\end{array}
$$

POTENTIAL FLOW: UNIFORM FLOW

For Uniform Flow in an Arbitrary direction, α :

POTENTIAL FLOW: SOURCE/SINK FLOW

Source Flow:

Source/Sink Flow is a purely radial flow.
Fluid is flowing radially from a line through the origin perpendicular to the $x-y$ plane.
Let m be the volume rate emanating from the line (per unit length).
Then, to satisfy mass conservation:

$$
(2 \pi r) v_{r}=m \Longleftrightarrow v_{r}=\frac{m}{2 \pi r}
$$

Since the flow is purely radial: $\quad v_{\theta}=0$
Now, the velocity potential can be obtained:

This potential flow does not exist at $\mathbf{r}=\mathbf{o}$, the origin, because it is not a "real" flow, but can approximate flows.

POTENTIAL ELOW: SOURCE/SINK FLOW

Now, obtain the stream function for the flow:

$$
\begin{align*}
& \qquad \psi_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad v p=-\frac{\partial \psi}{\partial r} \quad \square \frac{1}{r} \frac{\partial \psi}{\partial \theta}=\frac{m}{2 \pi r} \quad \frac{\partial \psi}{\partial r}=0 \\
& v_{r}=\frac{m}{2 \pi r} \quad \text { o } \tag{o}\\
& \text { Then, integrate to obtain the solution: } \psi=\frac{m}{2 \pi} \theta
\end{align*}
$$

The streamlines are radial lines and the equipotential lines are concentric circles centered about the origin:

POTENTIAL FLOW: VORTEX FLOW

In vortex flow, the streamlines are concentric circles, and the equipotential lines are radial lines.

Solution: $\quad \phi=K \theta$
$\psi=-K \ln r$
where K is a constant.
The sign of K determines whether the flow rotates clockwise or counterclockwise.

In this case: $\quad v_{r}=0, \quad v_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{\partial \psi}{\partial r}=\frac{K}{r}$
The tangential velocity varies inversely with the distance from the origin. At the origin it encounters a singularity becoming infinite.

POTENTIAL FLOW: VORTEX FLOW

How can a vortex flow be irrotational?

Rotation refers to the orientation of a fluid element and not the path followed by the element.

Irrotational Flow: Free Vortex

Traveling from A to B , consider two sticks

Irrotational Flow:

Initially, sticks aligned, one in the flow direction, and the other perpendicular to the flow.
As they move from A to B the perpendicular-aligned stick rotates clockwise, while the flow-aligned stick rotates counter clockwise.
The average angular velocities cancel each other, thus, the flow is irrotational.

Rotational Flow: Forced Vortex

Rotational Flow: Rigid Body Rotation Initially, sticks aligned, one in the flow direction, and the other perpendicular to the flow.

As they move from A to B they sticks move in a rigid body motion, and thus the flow is rotational.

POTENTIAL FLOW: VORTEX FLOW

A combined vortex flow is one in which there is a forced vortex at the core, and a free vortex outside the core.

$$
\begin{array}{ll}
v_{\theta}=\omega r & r \leq r_{0} \\
v_{\theta}=\frac{K}{r} & r>r_{0}
\end{array}
$$

A Hurricane is approximately a combined vortex

Circulation is a quantity associated with vortex flow. It is defined as the line integral of the tangential component of the velocity taken around a closed curve in the flow field.

$$
\begin{gathered}
\Gamma=-\int_{C} V \cdot d s \\
\mathbf{V}=\boldsymbol{\nabla} \phi \longrightarrow \mathbf{V} \cdot d \mathbf{s}=\boldsymbol{\nabla} \phi \cdot d \mathbf{s}=d \phi \\
\Gamma=\oint_{C} d \phi=0 \longrightarrow \begin{array}{l}
\text { For irrotational flow the } \\
\text { circulation is generally } \\
\text { zero. }
\end{array}
\end{gathered}
$$

POTENTIAL FLOW: VORTEX FLOW

However, if there are singularities in the flow, the circulation is not zero if the closed curve includes the singularity.
For the free vortex: $\quad v_{\theta}=\frac{K}{r}$

$$
\Gamma=\int_{0}^{2 \pi}-\frac{K}{r}(r d \theta)=-2 \pi K
$$

The circulation is non-zero and constant for the free vortex: $\quad K=-\Gamma / 2 \pi$ The velocity potential and the stream function can be rewritten in terms of the circulation:

$$
\phi=-\frac{\Gamma}{2 \pi} \theta \quad \psi=\frac{\Gamma}{2 \pi} \ln r
$$

An example in which the closed surface circulation will be zero:

POTENTIAL FLOW: DOUBLET FLOW

Combination of a Equal Source and Sink Pair:

$$
\psi=-\frac{m}{2 \pi}\left(\theta_{1}-\theta_{2}\right)
$$

Rearrange and take tangent,

$$
\tan \left(-\frac{2 \pi \psi}{m}\right)=\tan \left(\theta_{1}-\theta_{2}\right)=\frac{\tan \theta_{1}-\tan \theta_{2}}{1+\tan \theta_{1} \tan \theta_{2}}
$$

Note, the following: $\tan \theta_{1}=\frac{r \sin \theta}{r \cos \theta-a}$ and $\tan \theta_{2}=\frac{r \sin \theta}{r \cos \theta+a}$ Substituting the above expressions, $\quad \tan \left(-\frac{2 \pi \psi}{m}\right)=\frac{2 a r \sin \theta}{r^{2}-a^{2}}$
Then, $\psi=-\frac{m}{2 \pi} \tan ^{-1}\left(\frac{2 a r \sin \theta}{r^{2}-a^{2}}\right)$
If a is small, then tangent of angle is approximated by the angle:

$$
\psi=-\frac{m}{2 \pi} \frac{2 a r \sin \theta}{r^{2}-a^{2}}=-\frac{m a r \sin \theta}{\pi\left(r^{2}-a^{2}\right)}
$$

POTENTIAL FLOW: DOUBLET FLOW

POTENTIAL FLOW: DOUBLET FLOW

$$
\psi=-\frac{m a r \sin \theta}{\pi\left(r^{2}-a^{2}\right)}
$$

Now, we obtain the doublet flow by letting the source and sink approach one another, and letting the strength increase.

$a \rightarrow 0$
$m \rightarrow \infty$
$m a / \pi$ is then constant.
$r /\left(r^{2}-a^{2}\right) \rightarrow 1 / r$.

K is the strength of the doublet, and is equal to ma / π.

The corresponding velocity potential then is the following:

$$
\phi=\frac{K \cos \theta}{r}
$$

Streamlines of a Doublet:

POTENTIAL FLOW: SUMMARY OF BASIC ELOWS

Description of Flow Field	Velocity Potential	Stream Function	Velocity Components
Uniform flow at angle α with the x axis	$\phi=U(x \cos \alpha+y \sin \alpha)$	$\psi=U(y \cos \alpha-x \sin \alpha)$	$\begin{aligned} u & =U \cos \alpha \\ v & =U \sin \alpha \end{aligned}$
Source or sink $\begin{aligned} & m>0 \text { source } \\ & m<0 \text { sink } \end{aligned}$	$\phi=\frac{m}{2 \pi} \ln r$	$\psi=\frac{m}{2 \pi} \theta$	$\begin{aligned} & v_{r}=\frac{m}{2 \pi r} \\ & v_{\theta}=0 \end{aligned}$
Free vortex $\Gamma>0$ counterclockwise motion $\Gamma<0$ clockwise motion	$\phi=\frac{-\Gamma}{2 \pi} \theta$	$\psi=\frac{\Gamma}{2 \pi} \ln r$	$\begin{aligned} & v_{r}=0 \\ & v_{\theta}=\frac{-\Gamma}{2 \pi r} \end{aligned}$
Doublet	$\phi=\frac{K \cos \theta}{r}$	$\psi=-\frac{K \sin \theta}{r}$	$\begin{aligned} & v_{r}=-\frac{K \cos \theta}{r^{2}} \\ & v_{\theta}=-\frac{K \sin \theta}{r^{2}} \end{aligned}$

POTENTIAL FLOW: SUPERPOSITION OF BASIC

ELOWS

Because Potential Flows are governed by linear partial differential equations, the solutions can be combined in superposition.

Any streamline in an inviscid flow acts as solid boundary, such that there is no flow through the boundary or streamline.

Thus, some of the basic velocity potentials or stream functions can be combined to yield a streamline that represents a particular body shape.

The superposition representing a body can lead to describing the flow around the body in detail.

SUPERPOSITION OF POTENTIAL FLOWS: RANKINE

HALE-BODY

The Rankine Half-Body is a combination of a source and a uniform flow.

Stream Function (cylindrical coordinates):
$\psi=\psi_{\text {uniform flow }}+\psi_{\text {source }}$
$=U r \sin \theta+\frac{m}{2 \pi} \theta$
Potential Function (cylindrical coordinates):

$$
\phi=U r \cos \theta+\frac{m}{2 \pi} \ln r
$$

There will be a stagnation point, somewhere along the negative x -axis where the source and uniform flow cancel $(\theta=\pi)$:
Evaluate the radial velocity: $\quad v_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}$
For the source: $\quad v_{r}=\frac{m}{2 \pi r}$ For the uniform flow: $v_{r}=U \cos \theta$

$$
\text { For } \theta=\pi, \quad v_{r}=U
$$

Then for a stagnation point, at some $\mathrm{r}=-\mathrm{b}, \theta=\pi$:

$$
v_{r}=-\frac{m}{2 \pi} \text { and } U=\frac{m}{2 \pi b} \longmapsto b=\frac{m}{2 \pi U}
$$

SUPERPOSITION OF POTENTIAL FLOWS: RANKINE

HALE-BODY

Now, the stagnation streamline can be defined by evaluating ψ at $\mathrm{r}=\mathrm{b}$, and $\theta=\pi$.

$$
\psi_{\text {stagnation }}=\frac{m}{2}
$$

Now, we note that $\mathrm{m} / 2=\pi \mathrm{bU}$, so following this constant streamline gives the outline of the body:

$$
\psi=\psi_{\text {uniform flow }}+\psi_{\text {source }} \Longrightarrow \pi b U=U r \sin \theta+b U \theta
$$

Then, $r=\frac{b(\pi-\theta)}{\sin \theta}$ describes the half-body outline.
So, the source and uniform flows can be used to describe an aerodynamic body.
The other streamlines can be obtained by setting y constant and plotting:

SUPERPOSITION OF POTENTIAL FLOWS: RANKINE

HALE-BODY

The width of the half-body: $\quad y=b(\pi-\theta)$

$$
\theta \rightarrow 0 \text { or } \theta \rightarrow 2 \pi \quad \pm b \pi
$$

Total width then, $2 \pi b$
The magnitude of the velocity

$$
\begin{aligned}
& v_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=U \cos \theta+\frac{m}{2 \pi r} \text { and } v_{\theta}=-\frac{\partial \psi}{\partial r}=-I \sin \theta \\
& V^{2}=v_{r}^{2}+v_{\theta}^{2}=U^{2}-\frac{\partial m \cos \theta}{\pi r}+\left(\frac{m}{2 \pi r}\right)^{2} \\
& \text { Noting, } b=m / 2 \pi U \\
& V^{2}=U^{2}\left(1+2 \frac{b}{r} \cos \theta+\frac{b^{2}}{r^{2}}\right)
\end{aligned}
$$

Knowing, the velocity we can now determine the pressure fiqld using the Bernoulli Equation:

$$
\longleftarrow \mathbf{b} \rightarrow_{0}+\frac{1}{2} \rho U^{2}=p+\frac{1}{2} \rho V^{2}
$$

P_{o} and U are at a point far away from the body and are known.

SUPERPOSITION OF POTENTIAL FLOWS: RANKINE

Notes on this type of flow:

- Provides useful information about the flow in the front part of streamlined body.
- A practical example is a bridge pier or a strut placed in a uniform stream
- In a potential flow the tangent velocity is not zero at a boundary, it "slips"
- The flow slips due to a lack of viscosity (an approximation result).
- At the boundary, the flow is not properly represented for a "real" flow.
- Outside the boundary layer, the flow is a reasonable representation.
- The pressure at the boundary is reasonably approximated with potential flow.
- The boundary layer is to thin to cause much pressure variation.

SUPERPOSITION OF POTENTIAL FLOWS: RANKINE

OVAL

Rankine Ovals are the combination a source, a sink and a uniform flow, producing a closed body.

The body half-length

$$
\ell=\left(\frac{m a}{\pi U}+a^{2}\right)^{1 / 2}
$$

The body half-width

$$
h=\frac{h^{2}-a^{2}}{2 a} \tan \frac{2 \pi U h}{m} \quad \text { "Iterative" }
$$

$\phi=U r \cos \theta-\frac{m}{2 \pi}\left(\ln r_{1}-\ln r_{2}\right)$

SUPERPOSITION OF POTENTIAL FLOWS: RANKINE

 OVAL

SUPERPOSITION OF POTENTIAL FLOWS: RANKINE

OVAL

Notes on this type of flow:

- Provides useful information about the flow about a streamlined body.
- At the boundary, the flow is not properly represented for a "real" flow.
- Outside the boundary layer, the flow is a reasonable representation.
- The pressure at the boundary is reasonably approximated with potential flow.
- Only the pressure on the front of the body is accurate though.
- Pressure outside the boundary is reasonably approximated.

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A CIRCULAR CYLINDER

Combines a uniform flow and a doublet flow:

$$
\psi=U r \sin \theta-\frac{K \sin \theta}{r} \quad \text { and } \quad \phi=U r \cos \theta+\frac{K \cos \theta}{r}
$$

Then require that the stream function is constant for $r=a$, where a is the radius of the circular cylinder:

$$
\psi=\left(U-\frac{K}{r^{2}}\right) r \sin \theta \quad \psi=0 \text { for } r=a \longmapsto U-\frac{K}{a^{2}}=0 \quad \Longrightarrow \quad \mathrm{~K}=\mathrm{Ua}^{2}
$$

Then, $\quad \psi=U r\left(1-\frac{a^{2}}{r^{2}}\right) \sin \theta \quad$ and $\quad \phi=U r\left(1+\frac{a^{2}}{r^{2}}\right) \cos \theta$
Then the velocity components are:

$$
\begin{aligned}
& v_{r}=\frac{\partial \phi}{\partial r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=U\left(1-\frac{a^{2}}{r^{2}}\right) \cos \theta \\
& v_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{\partial \psi}{\partial r}=-U\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta
\end{aligned}
$$

SUPERPOSITION OF POTENTIAL FLOWS:
FLOW AROUND A CIRCULAR CYLINDER

HERODYNANECSE

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A CIRCULAR CYLINDER

At the surface of the cylinder $(r=a)$:

$$
v_{\theta s}=-2 U \sin \theta
$$

The maximum velocity occurs at the top and bottom of the cylinder, of magnitude ${ }_{2} U$.

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A CIRCULAR CYLINDER

Pressure distribution on a circular cylinder found with the Bernoulli's equation

$$
p_{0}+\frac{1}{2} \rho U^{2}=p_{s}+\frac{1}{2} \rho v_{\theta s}^{2}
$$

Then substituting for the surface velocity: $\quad v_{\theta s}=-2 U \sin \theta$

$$
\begin{array}{r}
p_{s}=p_{0}+\frac{1}{2} \rho U^{2}(1-4 s \\
\boldsymbol{C p}=\frac{\boldsymbol{p}_{\boldsymbol{S}}-\boldsymbol{p}_{\mathbf{0}}}{\frac{1}{2} \rho U^{2}}
\end{array}
$$

Theoretical and experimental results agree well on the front of the cylinder.

Flow separation on the back-half in the real flow due to viscous effects causes differences between the theory and experiment.

Cp distribution for flow past a circular cylinder plotted around the cylinder.

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A CIRCULAR CYLINDER

The resultant force per unit force acting on the cylinder can be determined by integrating the pressure over the surface (equate to lift and drag).

$$
\begin{align*}
& F_{x}=-\int_{0}^{2 \pi} p_{s} \cos \theta a d \theta \tag{Drag}\\
& F_{y}=-\int_{0}^{2 \pi} p_{s} \sin \theta a d \theta
\end{align*}
$$

Substituting, $\quad p_{s}=p_{0}+\frac{1}{2} \rho U^{2}\left(1-4 \sin ^{2} \theta\right)$
Evaluating the integrals: $\quad F_{x}=0$ and $F_{y}=0$

$$
p_{s}=p_{0}+\frac{1}{2} \rho U^{2}\left(1-4 \sin ^{2} \theta\right)
$$

Jean le Rond d'Alembert (1717-1783)

Both drag and lift are predicted to be zero on fixed cylinder in a uniform flow?
Mathematically, this makes sense since the pressure distribution is symmetric about cylinder, ahowever, in practice/experiment we see substantial drag on a circular cylinder (d'Alembert's Paradox, 1717-1783).

Viscosity in real flows is the Culprit Again!

Uniform Flow + Doublet + Vortex

 Circular Cylinder

$$
\begin{aligned}
\psi & =U_{\infty} r\left(1-\frac{a^{2}}{r^{2}}\right) \sin \theta+\frac{\Gamma}{2 \pi} \ln r \\
\phi & =U_{\infty} r\left(1+\frac{a^{2}}{r^{2}}\right) \cos \theta-\frac{\Gamma}{2 \pi} \theta
\end{aligned}
$$

Consequently the velocity components will be,

$$
\begin{aligned}
& v_{r}=U_{\infty}\left(1-\frac{a^{2}}{r^{2}}\right) \cos \theta \\
& v_{\theta}=-U_{\infty}\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta-\frac{\Gamma}{2 \pi r}
\end{aligned}
$$

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A LIFTING CYLINDER

Flow past a Lifting Cylinder

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A LIFTING CYLINDER

At $\mathbf{r}=\mathbf{a}$, the radial velocity is still zero allowing us to consider the same circular cylinder as the "body".

$$
v_{\theta s}=-2 U_{\infty} \sin \theta-\frac{\Gamma}{2 \pi a}
$$

The stagnation points: $\quad v \boldsymbol{\theta}_{s}=\mathbf{0} \quad \square \quad \sin \beta=\frac{-\Gamma}{4 \pi U_{\infty} a}$

FLOW AROUND A LIFTING CYLINDER

d
$\Gamma>4 \pi U_{\infty} a$

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A LIFTING CYLINDER
Surface Pressure Distribution and Lift

$$
\begin{aligned}
p_{s} & =p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}-2 U_{\infty}^{2}(\sin \theta-\sin \beta)^{2} \\
C_{p} & =1-\left(\frac{v_{\theta}}{U_{\infty}}\right)^{2} \\
& =1-4(\sin \theta-\sin \beta)^{2}
\end{aligned}
$$

Cp distribution for a lifting cylinder, $\beta=-150$.

Cp distribution for a lifting cylinder plottd around the cylinder. $\beta=-15^{0}$

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A LIFTING CYLINDER

$$
p_{s}=p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}\left(1-4(\sin \theta-\sin \beta)^{2}\right)
$$

$$
p_{s}=p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}\left(1-4 \sin ^{2} \theta-4 \sin ^{2} \beta+8 \sin \theta \sin \beta\right)
$$

$$
L=-\int_{0}^{2 \pi} a \sin \theta\left[p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}\left(1-4 \sin ^{2} \theta-4 \sin ^{2} \beta+8 \sin \theta \sin \beta\right)\right] d \theta
$$

$$
L=-\int_{0}^{2 \pi} a\left[p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}\left(\sin \theta-4 \sin ^{3} \theta-4 \sin ^{2} \beta \sin \theta+8 \sin ^{2} \theta \sin \beta\right)\right] d \theta
$$

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A LIFTING CYLINDER

$$
\begin{aligned}
& L=-\int_{0}^{2 \pi} \rho \rho_{\infty} \sin \theta \mathrm{d} \theta+\frac{1}{2} \rho U_{\infty}^{2} a \int_{0}^{2 \pi} \rho \sin ^{3} \theta \mathrm{~d} \theta \\
&+\frac{1}{2} \rho U_{\infty}^{2} a \int_{0}^{2 \pi} \sin ^{2} \beta \sin \theta \mathrm{~d} \theta-\frac{1}{2} \rho U_{\infty}^{2} a \int_{0}^{2 \pi} 8 \sin ^{2} \theta \sin \beta \mathrm{~d} \theta \\
& L=-\frac{1}{2} \rho U_{\infty}^{2} a \int_{0}^{2 \pi} 8 \sin ^{2} \theta \sin \beta \\
&=-4 \rho U_{\infty}^{2} \sin \beta\left[\frac{\theta}{2}-\frac{\sin ^{2} \theta}{4}\right]_{0}^{2 \pi} \sin \beta=\frac{-\Gamma}{4 \pi U_{\infty} a} \\
&=-4 \pi \rho U_{\infty}^{2} a \sin \beta
\end{aligned} \quad L=\rho U_{\infty} \Gamma \mathrm{L}
$$

SUPERPOSITION OF POTENTIAL FLOWS:

FLOW AROUND A LIFTING CYLINDER

MAGNUS EFFECTS

Flettner's Ship

Bend it like Beckham

Dynamic lift

HERODYNAMECSI POTENTIAL FLOWS

MAGNUS EFFECTS

Beckham, Applied Physicist

Distance 25 m Initial $v=25 \mathrm{~m} / \mathrm{s}$
Flight time 1s
Spin at $10 \mathrm{rev} / \mathrm{s}$
Lift force ~ 4 N
Ball mass ~ 400 g

$$
a=10 \mathrm{~m} / \mathrm{s}^{2}
$$

A swing of 5 m !

actual path of the ball

Goal!!

Flettner's Ship with the following conditions
Propulsive Trust?

MAGNUS EFFECTS - EXAMPLE

$$
\begin{aligned}
& V_{\text {rel }}=30 j-4 i \\
& V_{r e l}=\sqrt{30^{2}+4^{2}}=30.27 \frac{\mathrm{~km}}{\mathrm{~h}}=8.41 \mathrm{~m} / \mathrm{s} \\
& \Gamma=(\omega r)(2 \pi r)=\left[(750) \frac{2 \pi}{60}\right](1.375)^{2} 2 \pi=933 \mathrm{~m}^{2} / \mathrm{s} \\
& \mathrm{~F}=\rho V_{\text {rel }} \Gamma=(1.229)(8.41)(933)=9643 \mathrm{~N} / \mathrm{m} \\
& F_{T}=2(9643)(15)=289 \mathrm{kN}
\end{aligned}
$$

$$
\left(F_{T}\right)_{\text {Prop }}=F_{T} \cos \alpha=289 \frac{30}{\left(30^{2}+4^{2}\right)^{\frac{1}{2}}}
$$

$$
=287 \mathrm{kN}
$$

NONLIETING FLOWS OVER ARBITRARY BODIES: THE NUMERICAL SOURCE PANEL METHOD

We added our elementary flows in certain ways and discovered that the dividing streamlines turned out to fit the shapes of special bodies (semi-infinite body, Rankine oval and both the nonlifting and the lifting flows over a circular cylinder)

This indirect method of starting with a given combination of elementary flows and seeing what body shape comes out of it can hardly be used in a practical sense for bodies of arbitrary shape.

Do we know in advance the correct combination of elementary flows to synthesize the flow over an airfoil?

The answer is NO.

NONLIETING FLOWS OVER ARBITRARY BODIES: THE NUMERICAL SOURCE PANEL METHOD

In order to determine the flow over a specified body, we want a direct method.

In direct methods, we specify the shape of an arbitrary body and solve for the distribution of singularities which, in combination with a uniform stream, produce the flow over the given body.

We consider a numerical method appropriate for solution on a computer. The technique is called the Source Panel Method and is limited to nonlifting flows over arbitrary bodies.

NONLIETING FLOWS OVER ARBITRARY BODIES:

THE NUMERICAL SOURCE PANEL METHOD

Let us extend the concept of a source or sink.
Imagine that we have an infinite number of line sources side by side, where the strength of each line source is infinitesimally small.

These side-by-side line sources form a source sheet.

NONLIETING FLOWS OVER ARBITRARY BODIES: THE NUMERICAL SOURCE PANEL METHOD

Define $\lambda=\lambda(s)$ to be the source strength per unit length along s. Therefore, the strength of an infinitesimal portion $d s$ of the sheet is $\lambda d s$.

The small section of the source sheet of strength $\lambda d s$, induces an infinitesimally small potential $d \phi$ at point P :

Uniform flow $+\begin{gathered}\text { Source sheet on surface } \\ \text { Flow over the body }\end{gathered}$

$=$ Flow over the body

Our problem is one of finding the appropriate $\lambda(s)$.

The solution of this problem is carried out numerically.

Let us approximate the source sheet by a series of straight panels.

- Control Points
- Boundary points

NONLIETING FLOWS OVER ARBITRARY BODIES:

THE NUMERICAL SOURCE PANEL METHOD

$$
\phi(x, y)=\int_{a}^{b} \frac{\lambda d s}{2 \pi} \ln r
$$

The velocity potential induced at P due to the j th panel is:

$$
\Delta \phi_{j}=\frac{\lambda_{j}}{2 \pi} \int_{j} \ln r_{p j} d s_{j}
$$

Where: $\quad r_{p j}=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}$

The velocity potential induced at P due to all the panels:

$$
\phi(P)=\sum_{j=1}^{n} \Delta \phi_{j}=\sum_{j=1}^{n} \frac{\lambda_{j}}{2 \pi} \int_{j} \ln r_{p j} d s_{j}
$$

$$
\begin{aligned}
& \phi\left(x_{i}, y_{i}\right)=\sum_{j=1}^{n} \frac{\lambda_{j}}{2 \pi} \int_{j} \ln r_{i j} d s_{j} \\
& r_{i j}=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}
\end{aligned}
$$

NONLIETING FLOWS OVER ARBITRARY BODIES:
 THE NUMERICAL SOURCE PANEL METHOD

The boundary condition at solid walls
states that:

$$
V_{\infty, n}+V_{n}=0
$$

Where:

$$
\phi\left(x_{i}, y_{i}\right)=\sum_{j=1}^{n} \frac{\lambda_{j}}{2 \pi} \int_{j} \ln r_{i j} d s_{j}
$$

NONLIETING FLOWS OVER ARBITRARY BODIES: THE NUMERICAL SOURCE PANEL METHOD

$$
\left.\frac{\lambda_{i}}{2}+\sum_{\substack{i=1 \\(j \neq 1}}^{n} \frac{\lambda_{j}}{2 \pi} \int_{i} \frac{\partial}{\partial n_{i}}\left(\ln r_{i j}\right)\right) d s_{j}+V_{\infty} \cos \beta_{i}=0 \square \frac{\lambda_{i}}{2}+\sum_{\substack{j=1 \\(\neq 1)}}^{n} \frac{\lambda_{j}}{2 \pi} I_{i, j}+V_{\infty} \cos \beta_{i}=0
$$

The integral $I_{i, j}$ is evaluated at the j th control point and the integral is taken over the complete j th panel:

$$
\begin{gathered}
I_{i, j}=\int_{j} \frac{\partial}{\partial n_{i}}\left(\ln r_{i j}\right) d s_{j} \quad r_{i j}=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}} \\
\frac{\partial}{\partial n_{i}}\left(\ln r_{i j}\right)=\frac{1}{r_{i j}} \frac{\partial r_{i j}}{\partial n_{i}}=\frac{1}{r_{i j}} \frac{1}{2}\left[\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right]^{-1 / 2}\left[2\left(x_{i}-x_{j}\right) \frac{d x_{i}}{d n_{i}}+2\left(y_{i}-y_{j}\right) \frac{d y_{i}}{d n_{i}}\right] \\
\frac{\partial}{\partial n_{i}}\left(\ln r_{i j}\right)=\frac{\left(x_{i}-x_{j}\right) \cos \beta_{i}+\left(y_{i}-y_{j}\right) \sin \beta_{i}}{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}
\end{gathered}
$$

NONLIETING FLOWS OVER ARBITRARY BODIES:
 THE NUMERICAL SOURCE PANEL METHOD

$\beta_{i}=\Phi_{i}+\frac{\pi}{2}$

$$
\cos \beta_{i}=-\sin \Phi_{i}
$$

$$
\sin \beta_{i}=\cos \Phi_{i}
$$

$x_{i}=\frac{X_{i}+X_{i+1}}{2} \quad y_{i}=\frac{Y_{i}+Y_{i+1}}{2}$
$x_{j}=X_{j}+s_{j} \cos \phi_{j} \quad y_{j}=Y_{j}+s_{j} \sin \phi_{j}$
$S_{j}=\sqrt{\left(X_{j+1}-X_{j}\right)^{2}+\left(Y_{j+1}-Y_{j}\right)^{2}}$

$I_{i j}=\int_{0}^{s_{i}} \frac{\left(x_{i}-X_{j}-s_{j} \cos \phi_{j}\right)\left(-\sin \phi_{i}\right)+\left(y_{i}-Y_{j}-s_{j} \sin \phi_{j}\right) \cos \phi_{i}}{\left(x_{i}-X_{j}-s_{j} \cos \phi_{j}\right)^{2}+\left(y_{i}-Y_{j}-s_{j} \sin \phi_{j}\right)^{2}}$
Now, considering that
s_{j} is a VARIABLE and
$x_{i}, y_{i}, X_{i}, Y_{i}, S_{j}, \phi_{i}, \phi_{j}$ are FIXED,
$\left(X_{i+1}, Y_{i+1}\right)$

NONLIETING FLOWS OVER ARBITRARY BODIES:

THE NUMERICAL SOURCE PANEL METHOD

So that $I_{i, j}$ becomes:

$$
I_{i j}=\int_{0}^{S_{j}} \frac{C s_{j}+D}{s_{j}^{2}+2 A s_{j}+B} \mathrm{~d} s_{j}
$$

Where

$$
\begin{aligned}
& A=-\left(x_{i}-X_{j}\right) \cos \phi_{j}-\left(y_{i}-Y_{j}\right) \sin \phi_{j} \\
& B=\left(x_{i}-X_{j}\right)^{2}+\left(y_{i}-Y_{j}\right)^{2} \\
& C=\sin \left(\phi_{i}-\phi_{j}\right)=\sin \phi_{i} \cos \phi_{j}-\cos \phi_{i} \sin \phi_{j} \\
& D=\left(y_{i}-Y_{j}\right) \cos \phi_{i}-\left(x_{i}-X_{j}\right) \sin \phi_{i} \\
& E=\sqrt{B-A^{2}}=\left(x_{i}-X_{j}\right) \sin \phi_{j}-\left(y_{i}-Y_{j}\right) \cos \phi_{j}
\end{aligned}
$$

We obtain an expression for $I_{i, j}$ from any table of integrals:

$$
I_{i j}=\frac{C}{2} \ln \left(\frac{S_{j}^{2}+2 A S_{j}+B}{B}\right)+\frac{D-A C}{E}\left(\arctan \frac{S_{j}+A}{E}-\arctan \frac{A}{E}\right)
$$

NONLIFTING FLOWS OVER ARBITRARY BODIES:

 THE NUMERICAL SOURCE PANEL METHOD$$
\frac{\lambda_{i}}{2}+\sum_{\substack{i=1 \\(i \neq 1)}}^{n} \frac{\lambda_{j}}{2 \pi} I_{i, j}+V_{\infty} \cos \beta_{i}=0
$$

With known values of $I_{i, j}$'s, this is a linear algebraic equation with n unknowns $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

This equation represents the flow boundary condition evaluated at the control point of the i th panel.

If we apply this equation to the control point of all the panels, the results will be a system of n linear algebraic equations with n unknowns $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
The values of λ_{j} 's should obey the relation: $\sum_{j=1}^{n} \lambda_{j} S_{j}=0$

NONLIFTING FLOWS OVER ARBITRARY BODIES:

THE NUMERICAL SOURCE PANEL METHOD

The total surface velocity at the i th control point is the sum of the contribution from the freestream and from the source panels:

$$
\begin{aligned}
V_{i}= & V_{\infty, s}+V_{s}=V_{\infty} \sin \beta_{i}+\sum_{j=1}^{n} \frac{\lambda_{j}}{2 \pi} \int_{j} \frac{\partial}{\partial s}\left(\ln r_{i j}\right) d s_{j} \\
& \frac{D-A C}{2 E} \ln \left(\frac{S_{j}^{2}+2 A S_{j}+B}{B}\right)-C\left(\arctan \frac{S_{j}+A}{E}-\arctan \frac{A}{E}\right)
\end{aligned}
$$

NONLIETING FLOWS OVER ARBITRARY BODIES:

THE NUMERICAL SOURCE PANEL METHOD

EXAMPLE: Calculate the pressure coefficient distribution around a circular cylinder using the source panel technique.

$$
I_{i, j}=\int_{j} \frac{\partial}{\partial n_{i}}\left(\ln r_{i j}\right) d s_{j}
$$

NONLIETING FLOWS OVER ARBITRARY BODIES:

THE NUMERICAL SOURCE PANEL METHOD

$$
\begin{aligned}
& I_{L, j}=\frac{C}{2} \ln \left(\frac{S_{i}^{2}+2 A S_{j}+B}{B}\right) \\
& +\frac{D-A C}{E}\left(\tan ^{-1} \frac{S_{f}+A}{E}-\tan ^{-1} \frac{A}{E}\right) \\
& I_{4,2} \text {. } \\
& X_{j}=-0.9239 \\
& X_{j+1}=-0.3827 \\
& Y_{j+1}=0.9239 \\
& \Phi_{i}=315^{\circ} \\
& \Phi_{j}=45^{\circ} \\
& x_{i}=0.6533 \\
& y_{i}=0.6533 \\
& A=-1.3065 \\
& B=2.5607 \\
& S_{j}=0.7654 \\
& E=0.9239 \\
& I_{4,2}=0.4018
\end{aligned}
$$

NONLIETING FLOWS OVER ARBITRARY BODIES:

THE NUMERICAL SOURCE PANEL METHOD

Similarly, $I_{4,3}=0.3528, I_{4,5}=0.3528, \dot{I}_{4,6}=0.4018, I_{4,7}=0.4074$, and $I_{4,8}=0.4084$.

$$
\begin{aligned}
& 0.4074 \lambda_{1}+0.4018 \lambda_{2}+0.3528 \lambda_{3}+\pi \lambda_{4}+0.3528 \lambda_{5} \\
&+0.4018 \lambda_{6}+0.4074 \lambda_{7}+0.4084 \lambda_{8}=-0.70712 \pi V_{\mathrm{o}}
\end{aligned}
$$

$$
\begin{array}{lll}
\hline \lambda_{1} / 2 \pi V_{\infty}=0.3765 & \lambda_{2} / 2 \pi V_{\infty}=0.2662 & \lambda_{3} / 2 \pi V_{\infty}=0 \\
\lambda_{4} / 2 \pi V_{\infty}=-0.2662 & \lambda_{5} / 2 \pi V_{\infty}=-0.3765 & \lambda_{6} / 2 \pi V_{\infty}=-0.2662 \\
\lambda_{7} / 2 \pi V_{\infty}=0 & \lambda_{8} / 2 \pi V_{\infty}=0.2662 &
\end{array}
$$

$$
\sum_{j=1}^{n} \lambda_{j}=0
$$

$$
\begin{gathered}
\left.V_{i}=V_{\infty, s}+V_{s}=V_{\infty} \sin \beta_{i}+\sum_{j=1}^{n} \frac{\lambda_{j}}{2 \pi} \int_{j} \frac{\partial}{\partial s}\left(\ln r_{i j}\right)\right) d s_{j} \\
\int_{j} \frac{\partial}{\partial s}\left(\ln r_{i j}\right) d s_{j}= \\
\frac{D-A C}{2 E} \ln \frac{S_{j}^{2}+2 A S_{j}+B}{B} \\
-C\left(\tan ^{-1} \frac{S_{j}+A}{E}-\tan ^{-1} \frac{A}{E}\right) \\
C_{p, i}=1-\left(\frac{V_{i}}{V_{\infty}}\right)^{2}
\end{gathered}
$$

INCOMPRESSIBLE FLOW OVER AIRFOILS

- Consider a wing as shown in the figure.
- The wing extends in the y direction
- The freestream velocity is parallel to $x z$ plane

- Any section of the wing cut by a plane parallel to the $x z$ plane is called an airfoil.

EVOLUTION OF AIRFOILS

Early Designs - Designers mistakenly believed that these airfoils with sharp leading edges will have low drag. In practice, they stalled quickly, and generated considerable drag.

AIRFOIL NOMENCLATURE

Airfoil geometry is often characterized by a few parameters such as:

- Maximum thickness
- Maximum camber
- Position of max thickness
- Position of max camber
- Nose radius.

One can generate a reasonable airfoil section given these parameters.

The NACA identified different airfoil shapes with a logical numbering system.

The primary reference volume for all the NACA subsonic airfoil studies remains:

Abbott, I.H., and Von Doenhoff, A.E., "Theory of Wing Sections", Dover, 1959.

- The first family of NACA airfoils, developed in the 1930s, was the "four-digit" series.
- The numbering system for these airfoils is defined by:

NACA MPXX

Where:

\mathbf{M} is the maximum camber in hundredths of chord.
\mathbf{P} is the location of the maximum camber in tenths of the chord. XX is the maximum thickness, t / c, in percent chord.

THE NACA FOUR-DIGIT AIRFOIL - EXAMPLE

NACA 2415

The maximum camber is o.02c
Maximum camber is located at o.4c from the leading edge.
The maximum thickness is 0.15 c

THE NACA FIVE-DIGIT AIRFOIL

- This airfoil is an extension of the 4 digit series. The numbering system for these airfoils is defined by:

NACA LMMXX

Where:

L: is the amount of camber; the design lift coefficient is $3 \mathrm{~L} / 2$, in tenths
MM: the location of maximum camber along the chord from the leading edge is $\mathrm{MM} / 2$, in hundredths of the chord XX: is the maximum thickness, t / c, in percent chord.

NACA 23012

12% thick airfoil,
The design lift coefficient is o.3,
The position of max camber is located at $\mathrm{x} / \mathrm{c}=0.15$,
The "standard" 5 digit foil camber line is used.

THE NACA 6-SERIES LAMINAR FLOW AIRFOIL

- One of the most widely used family of NACA airfoils is the " 6 -series" laminar flow airfoils, developed during World War II.

$\mathrm{AB}, \mathrm{C}-\mathrm{DEE}$

Where:
A: Is the series designation.
B: Location of minimum pressure in tenth of chord from the leading edge (for the basic symmetric thickness distribution at zero lift)
C: The range of lift coefficient in tenth above and below the design lift coefficient in which favourable pressure gradients exist on both surfaces
\mathbb{D} : The design lift coefficient in tenth
EE: the maximum thickness in hundredths of chord
After the six-series sections, airfoil design became much more specialized for the particular application.

THE NACA 6-SERIES LAMINAR FLOW AIRFOIL=

EXAMPLE

NACA 65,3-218

6 is the series designation.
The maximum pressure occurs at 0.5 c for the basic symmetric thickness distribution at zero lift.

The range of lift coefficient above and below the design lift coefficient in which favourable pressure gradients exist on both surfaces is 0.3
The design lift coefficient is o.2.
The airfoil is 18 percent thick.

- Generation of lift by an airfoil is due to the imbalance of pressure distribution over top and bottom surfaces.

LIET GENERATION

- If pressure on top is lower than pressure on bottom surface, lift is generated.

LIIETGENERATION

- Flow velocity over the top of airfoil is faster than over bottom surface.

VARIATION OF LIFT WITH ANGLE OF ATTACK

- The lift coefficient of an airfoil changes as the Angle-of-Attack changes.

VARIATION OF LIFT WITH ANGLE OF ATTACK LOW-TO-MODERATE ANGLES OF ATTACK

- At low-to-moderate angles of attack, c_{l} varies linearly with α.
- The slope of this straight line is called the lift slope.

- In this region, the flow moves smoothly over the airfoil and is attached over most of the surface.

VARIATION OF LIFT WITH ANGLE OF ATTACK HIGHT ANGLES OF ATTACK

- As α becomes large, the flow tends to separate from the top surface of the airfoil.
- The consequance of this

separated flow at high α is a precipitous decrease in lift and a large increase in drag.
- Under such conditions, the airfoil is said to be stalled.
- The maximum value of c_{l}, which occurs just prior to the stall, is denoted by $c_{l, \max }$.

VARIATION OF LIFT WITH ANGLE OF ATTACK

Stall due to

VARIATION OF LIFT WITH ANGLE OF ATTACK

VARIATION OF LIFT WITH ANGLE OF ATTACK $(\alpha=90 \mathrm{deg})$

VARIATION OF LIFT WITH ANGLE OF ATTACK ($\alpha=90$ deg)

VARIATION OF LIFT WITH ANGLE OF ATTACK ($\alpha=90$ deg)

VARIATION OF LIFT WITH ANGLE OF ATTACK

- $c_{l, \text { max }}$ determines the stalling speed of an airplane. The higher is $c_{l, \max }$ the lower is the stalling speed.
- The value of α when lift equals zero is called the "zero-lift angle of attack" ($\alpha_{\mathrm{L}=0}$).

Cambered airfoil

Stall due to
flow separation
$a_{0}=\frac{d c_{l}}{d \alpha}=$ lift slope

Symmetric airfoil

- The lift slope is not influenced by Re .
- $c_{l, \text { max }}$ is dependent upon Re.
- The moment coefficient is insensitive to $R e$ except At large α.

EFFECT OF REYNOLD NUMBER

- The sum of skin friction drag and pressure drag yields the profile drag.

Profile drag coefficient is sensitive to $R e$.

Consider an NACA 2412 airfoil with a chord of 0.64 m in an airstream at standard sea level conditions. The freestream velocity is $70 \mathrm{~m} / \mathrm{s}$. The lift per unit span is $1254 \mathrm{~N} / \mathrm{m}$. Calculate the angle of attack and the drag per unit span.

At standard sea level, $\rho=1.23 \mathrm{~kg} / \mathrm{m}^{3}$:

$$
\begin{aligned}
q_{\infty} & =\frac{1}{2} \rho_{\infty} V_{\infty}^{2}=\frac{1}{2}(1.23)(70)^{2}=3013.5 \mathrm{~N} / \mathrm{m}^{2} \\
c_{l} & =\frac{L^{\prime}}{q_{\infty} S}=\frac{L^{\prime}}{q_{\infty} c(1)}=\frac{1254}{3013.5(0.64)}=0.65
\end{aligned}
$$

EXAMPLE (CONT.)

To obtain the drag per unit span, we must use the data diagram.
Since $c_{d}=f(R e)$, let us calculate Re. At standard sea level, $\mu=1.789 \times 10^{-5} \mathrm{~kg} /(\mathrm{m} . \mathrm{s})$. Hence,
$\operatorname{Re}=\frac{\rho_{\infty} V_{\infty} c}{\mu_{\infty}}=\frac{1.23(70)(0.64)}{1.789 \times 10^{-5}}=3.08 \times 10^{6}$
Therefore, using the data for $\operatorname{Re}=3.1 \times 10^{6}$
we find $c_{d}=0,0068$. Thus,

$$
\begin{aligned}
D^{\prime} & =q_{\infty} S c_{d}=q_{\infty} c(1) c_{d} \\
& =3013.5(0.64)(0.0068)=13.1 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

THE VORTEX FILAMENT

- Let us expand the concept a point vortex.
- Imagine a straight line perpendicular to the page, going through point O , and extending to infinity both out and into the page. This line is a straight "vortex filament of strength Γ ".
- The flows in the planes perpendicular to the vortex filament at O and O ' are identical to each other and are identical to the flow induced by a point vortex of strength Γ.

THE VORTEX SHEET

- Imagine an infinite number of straight vortex filaments side by side, where the strength of each filament is infinitesimally small.
- These side by side vortex filaments form a vortex sheet.

Vortex sheet in perspective

Edge view of sheet

THE VORTEX SHEET

$2 \times \frac{\Gamma}{2}$

- The analysis of the vortex sheet closely follows that of the source sheets.

$$
\phi(x, y)=-\int_{0}^{\ell} \frac{\gamma}{2 \pi} \theta d s \quad \Gamma=\int_{0}^{1} \gamma d s
$$

PROPERTIES OF VORTEX SHEETS

- For a straight vortex sheet extending from ($-1 / 2,0$) to ($1 / 2,0$), with a constant strength γ, the potential and the velocity components at point P are given by:
$\phi(x, y)=-\int_{0}^{\ell} \frac{\gamma}{2 \pi} \theta d s$
$\phi(x, y)=\frac{\gamma}{2 \pi} \int_{-\ell / 2}^{\ell / 2}-\arctan \frac{y}{x-s} d s$

$u(x, y)=\frac{\partial \phi}{\partial x}=\frac{\gamma}{2 \pi} \int_{-\ell / 2}^{\ell / 2} \frac{\partial}{\partial x}\left[-\arctan \frac{y}{x-s}\right] d s=\frac{\gamma}{2 \pi} \int_{-\ell / 2}^{\ell / 2} \frac{y}{(x-s)^{2}+y^{2}} d s$
$v(x, y)=\frac{\partial \phi}{\partial y}=\frac{\gamma}{2 \pi} \int_{-\ell / 2}^{\ell / 2} \frac{\partial}{\partial y}\left[-\arctan \frac{y}{x-s}\right] d s=\frac{\gamma}{2 \pi} \int_{-\ell / 2}^{\ell / 2} \frac{-x}{(x-s)^{2}+y^{2}} d s$

THE VORTEX SHEET

- Consider a rectangular path enclosing a section of a vortex sheet of length ds. The circulation around the path is:
$\Gamma=-\left(v_{2} d n-u_{1} d s-v_{1} d n+u_{2} d s\right)$
$\Gamma=\left(u_{1}-u_{2}\right) d s+\left(v_{1}-v_{2}\right) d n$
- The strenght of the vortex sheet contained inside the path is: $\quad \Gamma=\gamma d s$

$$
\gamma d s=\left(u_{1}-u_{2}\right) d s+\left(v_{1}-v_{2}\right) d n
$$

Let $\mathrm{dn} \rightarrow 0$

$$
\gamma d s=\left(u_{1}-u_{2}\right) d s
$$

$$
\gamma=u_{1}-u_{2}
$$

THE KUTTA CONDITION

Potential flow with lift is not unique! (Circulation Γ may have any value)

(a) $\Gamma<4 \pi V_{\infty} R$

The same happens for the flow around an airfoil

(b) $\Gamma=4 \pi V_{\infty} R$
Γ_{2}

Which flow occurs in reality?
The flow that leaves smoothly at the trailing edge (The "Kutta condition")

IMPLEMENTATION OF THE KUTTA CONDITION

Finite angle

Cusp

At point $a: V_{1}=V_{2} \neq 0$

$$
p_{a}+\frac{1}{2} \rho V_{\mathrm{l}}^{2}=p_{a}+\frac{\mathrm{t}}{2} \rho V_{2}^{2}
$$

$$
V_{1}=V_{2}
$$

the Kutta condition expressed in terms of the strength of the vortex sheet is:

$$
\gamma(\mathrm{TE})=\gamma(a)=V_{1}-V_{2} \quad \longrightarrow \quad \gamma(\mathrm{TE})=0
$$

KELVIN'S CIRCULATION THEOREM
 AND THE STARTING VORTEX

Question: How does nature generate this circulation?

$D \Gamma$
 $=0$

$$
\Gamma_{1}=\int_{C_{1}}^{\text {time tı }} V . d s
$$

time $t 2$
$\Gamma_{2}=\int_{C_{2}} V d s$

STARTIING VORTEX

AERODYNANICSI Incompressible Flow over Airfoils

AIRFOIL APPROXIMATION

- Consider an airfoil of arbitrary shape and thickness in a free stream with velocity $\mathrm{V} \infty$
- Replace the airfoil surface with a vortex sheet of variable strength $\gamma(\mathrm{i})$.

- Calculate the variation of γ as a function of s such that the induced velocity field from the vortex sheet when added to the uniform velocity of magnitude will make the vortex sheet (hence the airfoil surface) a streamline of the flow.

$$
\Gamma=\int \gamma d s \quad \square \quad L^{\prime}=\rho_{\infty} V_{\infty} \Gamma
$$

- No general analytical solution for $\gamma=\gamma$ (s) exists for an airfoil of arbitrary shape and thickness. Rather, the strength of the vortex sheet must be found numerically

foundation of the vortex panel method

Analytical solution?

Thin airfoil approximation

THIN AIRFOIL APPROXIMATION

1) The airfoil is assumed to be thin, with small maximum camber and thickness relative to the chord, and is assumed to operate at a small angle of attack, $\alpha \ll 1$.
2) The upper and lower vortex sheets are superimposed together into a single vortex sheet $\gamma=\gamma u+\gamma \ell$, which is placed on the x axis rather than on the curved mean camber line $\mathrm{Z}=(\mathrm{Zu}+\mathrm{Z}) / 2$.
3) The flow-tangency condition $V \cdot n=o$ is applied on the x-axis at $z=0$, rather than on the camber line at $\mathrm{z}=\mathrm{Z}$. But the normal vector n is normal to the actual camber line shape, as shown in the figure.

CLASSICAL THIN AIRFOIL THEORY

Thin airfoils can be simulated by a vortex sheet placed along the camber line.

Our purpose is to calculate the variation of $\gamma(s)$ such that:

1) The camber line becomes a streamline of the flow
2) The Kutta condition is satisfied ($\gamma(T E)=o$).

Once we have found the particular $\gamma(\mathrm{s})$ that satisfies above conditions, then the total circulation Γ around the airfoil is found by integrating $\gamma(\mathrm{s})$ from the leading edge to the trailing edge.

$$
L=\rho V_{\omega} \Gamma
$$

CLASSICAL THIN AIRFOIL THEORY

For the camber line to be a streamline:

$$
V_{\infty, n}+w^{\prime}(s)=0
$$

CLASSICAL THIN AIRFOIL THEORY

$$
\begin{array}{r}
V_{\infty, n}=V_{\infty} \sin \left[\alpha+\tan ^{-1}\left(-\frac{d z}{d x}\right)\right] \\
\tan ^{-1}\left(-\frac{d z}{d x}\right) \simeq-\frac{d z}{d x}
\end{array} \begin{aligned}
& V_{\infty, n}=V_{\infty} \sin \left[\alpha-\frac{d z}{d x}\right] \\
& \sin \left[\alpha-\frac{d z}{d x}\right] \simeq\left[\alpha-\frac{d z}{d x}\right] \\
& V_{\infty, n}=V_{\infty}\left(\alpha-\frac{d z}{d x}\right)
\end{aligned}
$$

CLASSICAL THIN AIRFOIL THEORY

$$
V_{\infty, n}+w^{\prime}(s)=0
$$

Let $\mathrm{w}(\mathrm{x})$ denote the component of velocity normal to the chord line induced by the vortex sheet,

If the airfoil is thin, the camber line is close to the chord line, and it is consistent with thin airfoil theory to make the approximation that
$w^{\prime}(s) \approx w(x)$

CLASSICAL THIN AIRFOIL THEORY

$V_{\infty, n}+w^{\prime}(s)=0 \quad \longrightarrow \quad V_{\infty}\left(\alpha-\frac{d z}{d x}\right)-\int_{0}^{c} \frac{\gamma(\xi) d \xi}{2 \pi(x-\xi)}=0$

$$
\frac{1}{2 \pi} \int_{0}^{c} \frac{\gamma(\xi) d \xi}{x-\xi}=V_{\infty}\left(\alpha-\frac{d z}{d x}\right)
$$

Fundamental equation of thin airfoil theory

$$
\frac{1}{2 \pi} \int_{0}^{c} \frac{\gamma(\xi) d \xi}{x-\xi}=V_{\infty}\left(\alpha-\frac{d z}{d x}\right)
$$

The central problem of thin airfoil theory is to solve the above equation for $\gamma(\xi)$, subject to the Kutta condition, namely, $\gamma(c)=0$.

Special Case: A symmetric airfoil has no camber; the camber line is coincident with the chord line. For this case:

$$
\begin{gathered}
d z / d x=0 \\
\frac{1}{2 \pi} \int_{0}^{c} \frac{\gamma(\xi) d \xi}{x-\xi}=V_{\infty} \alpha
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{c} \frac{\gamma(\xi) d \xi}{x-\xi}=V_{\infty} \alpha \\
& \xi=\frac{c}{2}(1-\cos \theta) \\
& x=\frac{c}{2}\left(1-\cos \theta_{0}\right) \\
& d \xi=\frac{c}{2} \sin \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{\pi} \frac{\gamma(\theta) \sin \theta d \theta}{\cos \theta-\cos \theta_{0}}=V_{\infty} \alpha \\
& \gamma(\theta)=2 \alpha V_{\infty} \frac{(1+\cos \theta)}{\sin \theta}
\end{aligned}
$$

VERIEICATION OF THE SOLUTION

Is $\gamma(\theta)=2 \alpha V_{\infty} \frac{(1+\cos \theta)}{\sin \theta}$ the solution of $\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\gamma(\theta) \sin \theta d \theta}{\cos \theta-\cos \theta_{0}}=V_{\infty} \alpha$?

$$
\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\gamma(\theta) \sin \theta}{\left(\cos \theta-\cos \theta_{0}\right)} d \theta=\frac{1}{2 \pi} \int_{0}^{\pi} 2 \alpha V_{\infty} \frac{1+\cos \theta}{\sin \theta} \frac{\sin \theta}{\left(\cos \theta-\cos \theta_{0}\right)} d \theta
$$

$$
=V_{\infty} \alpha \frac{1}{\pi} \int_{0}^{\pi} \frac{1+\cos \theta}{\left(\cos \theta-\cos \theta_{0}\right)} d \theta
$$

$$
=V_{\infty} \alpha \frac{1}{\pi}[\pi(0+1)]
$$

Standard integrals:
$=V_{\infty} \alpha$

VERIEICATION OF THE SOLUTION

$$
\gamma(\theta)=2 \alpha V_{\infty} \frac{(1+\cos \theta)}{\sin \theta}
$$

Note that at the trailing edge, where $\theta=\pi$, the above equation yields:

$$
\gamma(\pi)=2 \alpha V_{\infty} \frac{0}{0}
$$

However, using L'Hospital's rule on Equation $\gamma(\theta)$

$$
\gamma(\pi)=2 \alpha V_{\infty} \frac{-\sin \pi}{\cos \pi}=0
$$

Thus, the equation also satisfies the Kutta condition.

$$
\begin{gathered}
\Gamma=\int_{0}^{c} \gamma(\xi) d \xi \\
\Gamma=\frac{c}{2} \int_{0}^{\pi} \gamma(\theta) \sin \theta d \theta \\
\Gamma=\alpha c V_{\infty} \int_{0}^{\pi}(1+\cos \theta) d \theta=\pi \alpha c V_{\infty} \\
L^{\prime}=\rho_{\infty} V_{\infty} \Gamma=\pi \alpha c \rho_{\infty} V_{\infty}^{2} \\
c_{l}=\frac{L^{\prime}}{q_{\infty} s} \quad \square c_{l}=2 \pi \alpha \quad \square \text { Lift slope }=\frac{d c_{l}}{d \alpha}=2 \pi \\
S=c(1)
\end{gathered}
$$

MOMENT ABOUT THE LEADING EDGE

The moment about the leading edge can be calculated as follows:

MOMENT ABOUT THE LEADING EDGE

$$
\begin{aligned}
M_{L E}^{\prime} & =-\int_{0}^{c} \xi(d L)=-\rho_{\infty} V_{\infty} \int_{0}^{c} \xi \gamma(\xi) d \xi \\
& =-\rho_{\infty} V_{\infty} \int_{0}^{\pi}\left(\frac{c}{2}(1-\cos \theta)\right)\left(2 \alpha V_{\infty} \frac{1+\cos \theta}{\sin \theta}\right)\left(\frac{c}{2} \sin \theta d \theta\right) \\
& =-\frac{\rho_{\infty} V_{\infty}^{2} \alpha c^{2}}{2} \int_{0}^{\pi}(1-\cos \theta)(1+\cos \theta) d \theta=-\frac{1}{2} \rho_{\infty} V_{\infty}^{2} \alpha c^{2} \frac{\pi}{2} \\
& c_{m, L E}=\frac{M_{L E}^{\prime}}{\frac{1}{2} \rho_{\infty} V_{\infty}^{2} c^{2} .(1)}=-\frac{\pi \alpha}{2}
\end{aligned}
$$

THIN SYMMETRICAL AIRFOILS - THE CENTER OF

 PRESSURE AND THE AERODYNAMIC CENTERLift coefficient:

$$
c_{l}=\frac{L^{\prime}}{\frac{1}{2} \rho V_{\infty}{ }^{2} c .(1)}=2 \pi \alpha
$$

Moment coefficient about leading edge:

$$
c_{m, L E}=\frac{M_{L E}^{\prime}}{\frac{1}{2} \rho V_{\infty}^{2} c^{2} \cdot(1)}=-\frac{\pi \alpha}{2}
$$

Moment coefficient about quarter-chord point:

$$
c_{m, c / 4}=\mathbf{O}
$$

quarter-chord point is also the aerodynamic center:
$C_{m, c / 4}$ is independent of α !

THE SYMMETRICAL AIRFOIL: SUMMARY

Vorticity distribution (=lift distribution)

Lift coefficient:

$$
\gamma(\theta)=2 \alpha V_{\infty} \frac{1+\cos \theta}{\sin \theta}=2 \alpha V_{\infty} \sqrt{\frac{c-x}{x}}
$$

$$
c_{l}=\frac{L^{\prime}}{\frac{1}{2} \rho V_{\infty}{ }^{2} c .(1)}=2 \pi \alpha
$$

$$
\frac{d c_{l}}{d \alpha}=2 \pi
$$

Moment coefficient about quarter-chord point:

$$
c_{m, c / 4}=c_{m, L E}+\frac{c_{l}}{4}=0
$$

quarter-chord point is both the center of pressure: $\left(c_{m, c / 4}=\mathrm{O}\right)$ and the aerodynamic center: $\left(\boldsymbol{c}_{m, c / 4}\right.$ is independent of α)

THIN AIRFOILS - EXAMPLE

Consider a thin flat plate at 5 deg. angle of attack.
Calculate the:
(a) Lift coefficient,
(b) Moment coefficient about the leading edge,
(c) Moment coefficient about the quarter chord point,
(d) Moment coefficient about the trailing edge.

THIN AIRFOILS - EXAMPLE (CONT.)

$$
\begin{aligned}
& c_{\ell}=2 \pi \alpha \quad \alpha=\frac{5}{57.3}=0.0873 \mathrm{rad} \quad c_{\ell}=2 \pi(0.0873)=0.5485 \\
& c_{m, \ell e}=-\frac{c_{\ell}}{4}=-\frac{0.5485}{4}=-0.137 \\
& c_{m, c / 4}=0 \\
& a=\left(\frac{3}{4} c\right) \cos \alpha=\left(\frac{3}{4} c\right) \cos 5^{\circ} \quad \cos \alpha \approx 1 . \\
& M_{\mathrm{te}}^{\prime}=\left(\frac{3}{4} c\right) L^{\prime}+M_{c / 4}^{\prime} \\
& c_{m, t e}=\frac{M_{\mathrm{te}}^{\prime}}{q_{\infty} c^{2}}=\left(\frac{3}{4} c\right) \frac{L^{\prime}}{q_{\infty} c^{2}}+\frac{M_{c / 4}^{\prime}}{q_{\infty} c^{2}} \\
& c_{m, \mathrm{te}}=\frac{3}{4} c_{\ell}+c_{m, c / 4} \quad \square=\left(\frac{3}{4} c\right) \\
& c_{m, \mathrm{te}}=\frac{3}{4} c_{\ell} \quad \square \quad c_{m, \mathrm{te}}=\frac{3}{4}(0.5485)=0.411
\end{aligned}
$$

THE CAMBERED AIRFOIL

For a cambered airfoil, $d z / d x$ is finite.

$$
\frac{1}{2 \pi} \int_{0}^{c} \frac{\gamma(\xi) d \xi}{x-\xi}=V_{\infty}\left(\alpha-\frac{d z}{d x}\right) \square \frac{1}{2 \pi} \int_{0}^{\pi} \frac{\gamma(\theta) \sin \theta d \theta}{\cos \theta-\cos \theta_{0}}=V_{\infty}\left(\alpha-\frac{d z}{d x}\right)
$$

The solution for this more general problem can be written as a Fourier series:

$$
\gamma(\theta)=2 V_{\infty}(\underbrace{A_{0} \frac{1+\cos \theta}{\sin \theta}}_{\begin{array}{c}
\text { "Basic solution" } \\
\text { for the symmetrical }_{\text {airfoil: } \mathbf{A}_{\mathbf{o}}=\boldsymbol{\alpha}}
\end{array}}+\underbrace{\sum_{n=1}^{\infty} A_{n} \sin n \theta}_{n=1})
$$

The coefficients $A_{n}(n=0,1,2, \ldots)$ depend on the shape of the camber line $z(x)$.
The coefficient A_{o} depends also on α.

THE CAMBERED AlRFOIL

The coefficients A_{0} and $A_{,(}(n=1,2,3, \ldots)$ in the above equation must be specific values in order that the camber line be a streamline of the flow.

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{\pi} \frac{\gamma(\theta) \sin \theta d \theta}{\cos \theta-\cos \theta_{0}}=V_{\infty}\left(\alpha-\frac{d z}{d x}\right) \quad \gamma(\theta)=2 V_{\infty}\left(A_{0} \frac{1+\cos \theta}{\sin \theta}+\sum_{n=1}^{\infty} A_{n} \sin n \theta\right) \\
& \frac{1}{\pi} \int_{0}^{\pi} \frac{A_{0}(1+\cos \theta) d \theta}{\cos \theta-\cos \theta_{0}}+\frac{1}{\pi} \sum_{n=1}^{\infty} \int_{0}^{\pi} \frac{A_{n} \sin n \theta \sin \theta d \theta}{\cos \theta-\cos \theta_{0}}=\alpha-\frac{d z}{d x}
\end{aligned}
$$

THE CAMBERED AIRFOIL

THE CAMBERED AlRFOIL

In general, the Fourier cosine series representation of a function $f(\theta)$ over an interval $\mathrm{o}<\theta<\pi$ is given by:

$$
\begin{gathered}
f(\theta)=B_{0}+\sum_{n=1}^{\infty} B_{n} \cos n \theta \\
B_{0}=\frac{1}{\pi} \int_{0}^{\pi} f(\theta) d \theta \quad B_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos n \theta d \theta \\
\frac{d z}{d x}=\left(\alpha-A_{0}\right)+\sum_{n=1}^{\infty} A_{n} \cos n \theta_{0} \\
\alpha-A_{0}=\frac{1}{\pi} \int_{0}^{\pi} \frac{d z}{d x} d \theta_{0} \Longleftrightarrow A_{0}=\alpha-\frac{1}{\pi} \int_{0}^{\pi} \frac{d z}{d x} d \theta_{0} \\
\\
A_{n}=\frac{2}{\pi} \int_{0}^{\pi} \frac{d z}{d x} \cos n \theta_{0} d \theta_{0}
\end{gathered}
$$

COEFFICIENTS

The total circulation due to the entire vortex sheet from the leading edge to the trailing edge is:

$$
\begin{gathered}
\Gamma=\int_{0}^{c} \gamma(\xi) d \xi=\frac{c}{2} \int_{0}^{\pi} \gamma(\theta) \sin \theta d \theta \quad \gamma(\theta)=2 V_{\infty}\left(A_{0} \frac{1+\cos \theta}{\sin \theta}+\sum_{n=1}^{\infty} A_{n} \sin n \theta\right) \\
\Gamma=c V_{\infty}[A_{0} \int_{0}^{\pi} \underbrace{(1+\cos \theta) d \theta}_{\pi}+\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{\pi} \sin n \theta \sin \theta d \theta}_{\substack{\pi / 2 \\
\text { for } n=1 \\
\text { for } n \neq 1}}] \\
\Gamma=c V_{\infty}\left(\pi A_{0}+\frac{\pi}{2} A_{1}\right)
\end{gathered}
$$

THE CAMBERED AIRFOIL - AERODYNAMIC

COEFFICIENTS

$$
c_{l}=\frac{L^{\prime}}{\frac{1}{2} \rho_{\infty} V_{\infty}^{2} c(1)}=\pi\left(2 A_{0}+A_{1}\right)
$$

$$
\begin{aligned}
c_{l}=2 \pi\left[\alpha+\frac{1}{\pi} \int_{0}^{\pi} \frac{d z}{d x}\left(\cos \theta_{0}-1\right) d \theta_{0}\right] & \text { Lift slope } \equiv \frac{d c_{l}}{d \alpha}=2 \pi \\
c_{l}=\frac{d c_{l}}{d \alpha}\left(\alpha-\alpha_{L=0}\right) & c_{l}
\end{aligned}
$$

$$
\alpha_{L=0}=-\frac{1}{\pi} \int_{0}^{\pi} \frac{d z}{d x}\left(\cos \theta_{0}-1\right) d \theta_{0}
$$

THE CAMBERED AIRFOIL - AERODYNAMIC

COEFEICIENTS

$$
\begin{gathered}
M_{\mathrm{LE}}^{\prime}=-\int_{0}^{c} \xi(d L)=-\rho_{\infty} V_{\infty} \int_{0}^{c} \xi \gamma(\xi) d \xi \\
c_{m, \mathrm{le}}=-\frac{\pi}{2}\left(A_{0}+A_{1}-\frac{A_{2}}{2}\right) \\
c_{m, \mathrm{le}}=-\left[\frac{c_{l}}{4}+\frac{\pi}{4}\left(A_{1}-A_{2}\right)\right] \quad c_{m, c / 4}=\frac{\pi}{4}\left(A_{2}-A_{1}\right)
\end{gathered}
$$

$$
x_{\mathrm{cp}}=-\frac{M_{\mathrm{LE}}^{\prime}}{L^{\prime}}=-\frac{c_{m, \mathrm{le}} c}{c_{l}} \quad x_{\mathrm{cp}}=\frac{c}{4}\left[1+\frac{\pi}{c_{l}}\left(A_{1}-A_{2}\right)\right]
$$

As the lift approaches zero, $x_{c p}$ moves toward infinity; that is, it leaves the airfoil. For this reason, the center of pressure is not always a convenient point at which to draw the force system on an airfoil.
the force-and-moment system on an airfoil is more conveniently considered at the aerodynamic center.

THE CAMBERED AIRFOIL - EXAMPLE

Consider an NACA 23012 airfoil. The mean camber line for this airfoil is given by

$$
\begin{array}{ll}
\frac{z}{c}=2.6595\left[\left(\frac{x}{c}\right)^{3}-0.6075\left(\frac{x}{c}\right)^{2}+0.1147\left(\frac{x}{c}\right)\right] \quad \text { for } 0 \leq \frac{x}{c} \leq 0.2025 \\
\frac{z}{c}=0.02208\left(1-\frac{x}{c}\right) \quad \text { for } 0.2025 \leq \frac{x}{c} \leq 1.0
\end{array}
$$

Calculate:
a) the angle of attack at zero lift,
b) the lift coefficient when $\alpha=4^{\circ}$,
c) the moment coefficient about c/4
d) the location of the center of pressure in terms of $\mathrm{x}_{\mathrm{cp}} / \mathrm{c}$, when $\alpha=4^{\circ}$.

THE CAMBERED AIRFOIL - EXAMPLE (CONT.)

We will need $d z / d x$. From the given shape of the mean camber line, this is
and

$$
\begin{gathered}
\frac{d z}{d x}=2.6595\left[3\left(\frac{x}{c}\right)^{2}-1.215\left(\frac{x}{c}\right)+0.1147\right] \quad \text { for } 0 \leq \frac{x}{c} \leq 0.2025 \\
\frac{d z}{d x}=-0.02208 \quad \text { for } 0.2025 \leq \frac{x}{c} \leq 1.0 \\
x=(c / 2)(1-\cos \theta)
\end{gathered}
$$

$$
\frac{d z}{d x}=2.6595\left[\frac{3}{4}\left(1-2 \cos \theta+\cos ^{2} \theta\right)-0.6075(1-\cos \theta)+0.1147\right]
$$

or
and

$$
=0.6840-2.3736 \cos \theta+1.995 \cos ^{2} \theta \quad \text { for } 0 \leq \theta \leq 0.9335 \mathrm{rad}
$$

$$
=-0.02208 \quad \text { for } 0.9335 \leq \theta \leq \pi
$$

$$
\alpha_{L=0}=-\frac{1}{\pi} \int_{0}^{\pi} \frac{d z}{d x}(\cos \theta-1) d \theta
$$

THE CAMBERED AIRFOIL - EXAMPLE (CONT.)

$$
\begin{aligned}
\alpha_{L=0}= & -\frac{1}{\pi} \int_{0}^{0.9335}\left(-0.6840+3.0576 \cos \theta-4.3686 \cos ^{2} \theta+1.995 \cos ^{3} \theta\right) d \theta \\
& -\frac{1}{\pi} \int_{0.9335}^{\pi}(0.02208-0.02208 \cos \theta) d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \int \cos \theta d \theta=\sin \theta \\
& \int \cos ^{2} \theta d \theta=\frac{1}{2} \sin \theta \cos \theta+\frac{1}{2} \theta \\
& \square \\
& \alpha_{L=0}=-\frac{1}{\pi}[-2.8683 \theta+3.0576 \sin \theta-2.1843 \sin \theta \cos \theta \\
& \left.+0.665 \sin \theta\left(\cos ^{2} \theta+2\right)\right]_{0}^{0.9335} \\
& \int \cos ^{3} \theta d \theta=\frac{1}{3} \sin \theta\left(\cos ^{2} \theta+2\right) \\
& -\frac{1}{\pi}[0.02208 \theta-0.02208 \sin \theta]_{0.9335}^{\pi}
\end{aligned}
$$

$$
\alpha_{L=0}=-\frac{1}{\pi}(-0.0065+0.0665)=-0.0191 \mathrm{rad}
$$

$$
\alpha_{L=0}=-1.09^{\circ}
$$

THE CAMBERED AIRFOIL - EXAMPLE (CONT.)

(b)
$\alpha=4^{\circ}=0.0698 \mathrm{rad}$

$$
c_{l}=2 \pi\left(\alpha-\alpha_{L=0}\right)=2 \pi(0.0698+0.0191)=0.559
$$

(c)

$$
\begin{aligned}
A_{1}= & \frac{2}{\pi} \int_{0}^{\pi} \frac{d z}{d x} \cos \theta d \theta \quad c_{m, c / 4}=\frac{\pi}{4}\left(A_{2}-A_{1}\right) \\
= & \frac{2}{\pi} \int_{0}^{0.9335}\left(0.6840 \cos \theta-2.3736 \cos ^{2} \theta+1.995 \cos ^{3} \theta\right) d \theta \\
& +\frac{2}{\pi} \int_{0.9335}^{\pi}(-0.02208 \cos \theta) d \theta \\
= & \frac{2}{\pi}\left[0.6840 \sin \theta-1.1868 \sin \theta \cos \theta-1.1868 \theta+0.665 \sin \theta\left(\cos ^{2} \theta+2\right)\right]_{0}^{0.9335} \\
& +\frac{2}{\pi}[-0.02208 \sin \theta]_{0.09335}^{\pi}
\end{aligned}
$$

$$
=\frac{2}{\pi}(0.1322+0.0177)=0.0954
$$

THE CAMBERED AIRFOIL - EXAMPLE (CONT.)

$$
\begin{aligned}
A_{2}= & \frac{2}{\pi} \int_{0}^{\pi} \frac{d z}{d x} \cos 2 \theta d \theta=\frac{2}{\pi} \int_{0}^{\pi} \frac{d z}{d x}\left(2 \cos ^{2} \theta-1\right) d \theta \\
= & \frac{2}{\pi} \int_{0}^{0.9335}\left(-0.6840+2.3736 \cos \theta-0.627 \cos ^{2} \theta\right. \\
& \left.-4.747 \cos ^{3} \theta+3.99 \cos ^{4} \theta\right) d \theta \\
& +\frac{2}{\pi} \int_{0.9335}^{\pi}\left(0.02208-0.0446 \cos ^{2} \theta\right) d \theta
\end{aligned}
$$

$$
A_{2}=\frac{2}{\pi}\left\{\begin{array}{r}
\int \cos ^{4} \theta d \theta=\frac{1}{4} \cos ^{3} \theta \sin \theta+\frac{3}{8}(\sin \theta \cos \theta+\theta) \\
-0.6840 \theta+2.3736 \sin \theta-0.628\left(\frac{1}{2}\right)(\sin \theta \cos \theta+\theta)
\end{array}\right.
$$

$$
\left.-4.747\left(\frac{1}{3}\right) \sin \theta\left(\cos ^{2} \theta+2\right)+3.99\left[\frac{1}{4} \cos ^{3} \sin \theta+\frac{3}{8}(\sin \theta \cos \theta+\theta)\right]\right\}_{0}^{0.9335}
$$

$$
+\frac{2}{\pi}\left[0.02208 \theta-0.0446\left(\frac{1}{2}\right)(\sin \theta \cos \theta+\theta)\right]_{0.9335}^{\pi}
$$

$$
=\frac{2}{\pi}(0.11384+0.01056)=0.0792
$$

THE CAMBERED AIRFOIL - EXAMPLE (CONT.)

$c_{m, c / 4}=\frac{\pi}{4}\left(A_{2}-A_{1}\right)=\frac{\pi}{4}(0.0792-0.0954)$

$$
c_{m, c / 4}=-0.0127
$$

(d)

$$
\begin{gathered}
x_{\mathrm{cp}}=\frac{c}{4}\left[1+\frac{\pi}{c_{l}}\left(A_{1}-A_{2}\right)\right] \\
\frac{x_{\mathrm{cp}}}{c}=\frac{1}{4}\left[1+\frac{\pi}{0.559}(0.0954-0.0792)\right]=0.273 \\
\begin{array}{lcc}
\\
\hline & \text { Experiment } & \text { Thin airfoil } \\
\begin{array}{lcc}
\alpha_{l=0} \\
c_{l}\left(\mathrm{at} \alpha=4^{\circ}\right) & -1.09^{\circ} & -1.1^{\circ} \\
c_{m, c / 4} & 0.559 & 0.55 \\
\hline
\end{array} & -0.0127 & -0.01 \\
\hline
\end{array}
\end{gathered}
$$

The aerodynamic center is a point on a body about which the aerodynamically generated moment is independent of angle of attack.

For most conventional airfoils, the aerodynamic center is close to, but not necessarily exactly at, the quarterchord point.

THE AERODYNAMIC CENTER

$$
M_{\mathrm{ac}}^{\prime}=L^{\prime}\left(c \bar{x}_{\mathrm{ac}}-c / 4\right)+M_{c / 4}^{\prime}
$$

$$
\frac{M_{\mathrm{ac}}^{\prime}}{q_{\infty} S c}=\frac{L^{\prime}}{q_{\infty} S}\left(\bar{x}_{\mathrm{ac}}-0.25\right)+\frac{M_{c / 4}^{\prime}}{q_{\infty} S c}
$$

$$
c_{m, \mathrm{ac}}=c_{l}\left(\bar{x}_{\mathrm{ac}}-0.25\right)+c_{m, c / 4}
$$

$$
\frac{d c_{m, \mathrm{ac}}}{d \alpha}=\frac{d c_{l}}{d \alpha}\left(\bar{x}_{\mathrm{ac}}-0.25\right)+\frac{d c_{m, c / 4}}{d \alpha}
$$

$$
\begin{equation*}
0=\frac{d c_{l}}{d \alpha}\left(\bar{x}_{\mathrm{ac}}-0.25\right)+\frac{d c_{m, c / 4}}{d \alpha} \tag{o}
\end{equation*}
$$

$$
0=a_{0}\left(\bar{x}_{\mathrm{ac}}-0.25\right)+m_{0}
$$

$$
\bar{x}_{\mathrm{ac}}=-\frac{m_{0}}{a_{0}}+0.25
$$

The equation proves that, for a body with linear lift and moment curves, that is, where a_{o} and m_{o} are fixed values, the aerodynamic center exists as a fixed point on the airfoil.

THE AERODYNAMIC CENTER - EXAMPLE

Consider the NACA 23012 airfoil. Where is it's aerodynamic center?

$\alpha_{L=0}$	-1.1°
$c_{l}\left(\right.$ at $\left.\alpha=4^{\circ}\right)$	0.55
$c_{m, c / 4}\left(\right.$ at $\left.\alpha=4^{\circ}\right)$	-0.005

$a_{0}=\frac{0.55-0}{4-(-1.1)}=0.1078$ per degree
$m_{0}=\frac{-0.005-(-0.0125)}{4-(-4)}=9.375 \times 10^{-4}$ per deggee
$\overline{\bar{x}}_{\mathrm{ac}}=-\frac{m_{0}}{a_{0}}+0.25$

$$
=-\frac{9.375 \times 10^{-4}}{0.1078}+0.25
$$

$$
=0.241
$$

