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Consider a thin airfoil with a simple parabolic-arc camber line, with a maximum camber
height =l

Z(xr) = dex (1 - f)
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FOURIER COERFICIENT CALCULATION
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The integral in the An expression can be evaluated by using the orthogonality property
of the cosine functions.
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In many applications, obtaining just the c€ and cm of the entire airfoil is sufficient. But
in some cases, we may also want to know the force and moment on only a portion of
the airfoil. For example, the force and moment on a flap are of considerable interest,
since the flap hinge and flap control linkage must be designed to withstand these
loads. We therefore need to know how the loading Ap(x) is distributed over the chord,
and over the flap in particular.

dL’ i

1 W

ds

total lift/span L~

-]

lift/span on flap only L }:

dL'= Ap(x) ds=pV_yds

1
Ap(z) = pVury(z) = 3pVIAGC()
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AC,(z) = day/=—1 + 32 \/I (f)
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Define x,, as theliocatlon of the flap hlnge so the flap extends from x = X}, to the

trailing edge at x = c.
The corresponding ¢ locations # = arccos(1—2zy/c) = 8, and 8 = 7
respectively. The load/span and moment/span coefficients on the flap hinge can now be
computed by integrating the pressure loading.

Ly 1y L _
ce, = i Ef:h AC,(z)dr = 3 ) AC,() siné db
Mj 1 fe L g _
Cmy, = hﬂ_f::?c? = Eth AC,(z) (zp — x) dx = 1), AC,(#) (cosf — cosfly) sind db
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o We have shown that in a two-dimensional, incompressible,
irrotational flow, both velocity potential (¢) and stream
function (), satisfy Laplace’s equation.

V=0 Vi =0

o This fact gives rise to a particularly powerful method of
analysing such flows, based on the properties of functions of
a Complex Variable.
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A complex number can be written in polar form using Euler's equation:

y, imaginary
z =X +iy =re'’ =r(cos@+i sin ) 7 e iy
r
Where: i°=-1 -
:|Z|:,"X2-|—y2:.\/ZZ_ x,reial
—argz =tan" 1Y
X

Complex multiplication:

£, :(X1+iY1)(X2+iy2):(X1X2_Y1y2)+i (X1y2+Y1X2)

+re'” =rre

i i (6,+6,)

=TIg




o Consider the function f{z) of the complex variable:

Z=X+1y

o f(x+iy) has real and imaginary parts given by:
F(x+y)=alx,y)+16(X,y)

Where o (real part) and B (imaginary part) are called
conjugate functions.
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o Partial differentiation of fwith respect to x and y yields:
of oo 9p _dfoz _df

8x_8x+ ax_dzax_dz
of da 0p dfoz .df

gy 8y 8y dzoy dz

o Hence:

o Thus
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o Partial differentiation of Cauchy-Riemann equations with
respect to x and y gives:

o P 9% 3B 9%«

dxdy - 3y2 T a2 dxdy B C9y2

\ Y J
a9« 3B 9P




@@m—m@’ I

L @AWY

o We can substitude a=¢, B=1) and we can replace f(z) by w:
w=¢+iy

o w is known as the complex potential of the motion and is a
function of the single complex variable z.

o Both components of the velocity can be obtained directly by
differentiation of the complex potential w:

dw =gﬂdx %dy =U—-iv)dx +( +iu)dy =(Uu —iv)(dx +idy)
X

— ?j—"zv=(u—iv)




CONMPUEXANALYSIS = ELEVENTARY FLow Q

o The basic flows used in potential flow theory such as
uniform flow, source, sink, doublet and vortex, can all be
represented using complex numbers.
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o Uniform flow

CONIPLEXANALYSIS = ELEMENTARY F

W =Uze‘i“ =7 (U cosa —1U sin a) v = onstar /,,_\ ----- R
Pl \\
o Source flow >@ x
m m i m o m \\ jl
W=—Inz=—In(re'y=—Inr-i —0 ~_
27 27 27 27T —
o Vortex
I I I
W=1—INzZ=——80+1—Inr
27 27 27T )
o Doublet :
K K K .
W = = (X —1y)

Z X+iy X°+y
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o In the study of airfoils, we are interested in finding the flow
pattern and pressure distribution.

o Direct solution of the Laplace equation for the
prescribed boundary shape of the airfoil is quite
straightforward using a computer, but analytically
difficult. In general, analytical solutions are possible only
when the airfoil is assumed thin (thin airfoil theory).
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o In the study of airfoils, we are interested in finding the flow
pattern and pressure distribution.

o An Indirect way of solving the problem involves the
method of conformal transformation. Many years ago,
the Russian mathematician Joukowski developed a
mapping function that converts a circular cylinder into a
family of airfoil shapes.

[}
L=pVT Lift = ?

=

\
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o Conformal mapping is a mathematical technique used to
convert (or map) one mathematical problem and solution
into another. It involves the study of complex variables.

oA conformal mapping is performed through the
transformation of a complex function from one coordinate
system to another. A transformation function is applied to
the original function to perform the mapping.
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o We deal with a case in which a given transformation maps a
circle into an airfoil-like shape and determine the properties
of the airfoil generated thereby.

o This is the Joukowski transformation and is the most
commonly used function for aerodynamic applications.

b2
W=2Z+—
/

Here, b is a constant
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z plane
w plane
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Consider a circle, centered at the origin in the z-plane, whose
radius b is same as the constant in the Joukowski transformation.

z = bel?

_z+— o w=bhe’+ b _be'9+be"9 2b cos(@) +i0

The Joukowski transform maps the circle of radius b in z-plane,
into a flat plate of length 4b in the w-plane.

4 6

z plane ke

A Y
b
0
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TRANSEORNVATION OF A CIRCLEINTO AN ELLIPSE

AWMV A

~ If the circle originally had a radius slightly larger than the

transform constant b:
z = ae'’, with a > b,

b? : b? b® b?
wW=z+—=ae"’+ — :(a+jcos(¢9)+i(a—jsin(0) =n+Ii1¢
Z ae a a
2 2
n g
N2 2\2
( : j ( : j
a+— a———
a a -2b
|
|
the circle would have formed an \\

ellipse instead of the flat plate.
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From and aerodynamics point of view, the most interesting application of the
Joukowski transform is to an offset circle. If we consider a circle slightly offset

from the origin along the negative real axis, one obtains a symmetric

Joukowski airfoil.

The equation of the offset circle is: z = ae'?-eb, where the constant e is a small

number.

4 G

z plane 5 ke

<
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If the circle is displaced slightly along the complex axis as well,
one obtains a cambered airfoil shape.

“TRANSEORNIATION OF A CIRCLE zzm@ o @

Here, the points A and B are the intercepts of the displaced circle
on the real axis and their corresponding points in the
transformed plane. The angle fis the angle formed by the line
joining the point A (or B) and the origin with the real axis.

A Y 4 €

z plane w plane
b 2
B
X -2 2
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If lifting flow about the original circle had been imposed, the
Joukowski transformation would have generated a lifting flow
about the Joukowski airfoil;

N
o
\

|

Although such a flow is mathematically possible, in reality it may
not be realistic. The stagnation points on the cylinder map to
stagnation points that are not always realistic.
4-/ RERODYNAMICS i
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The only means of making a realistic flow is to impose the Kutta condition

where the stagnation point is forced to exist at the trailing edge thus making
the streamlines flow smoothly from this point.

This is done by adjusting the value of vorticity strength I, such that the
stagnation points on the cylinder reside at the cylinder’s 1ntercepts of the real
axis. In this case, when the cylinder is transformed, one stagnation point will
be forced to the trailing edge.

A Y A G w plane
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The lift force generated by the lifting flow over the cylinder is proportional to
the circulation about the cylinder imposed by the added vortex flow according
to the Kutta-Joukowski relation, L'= pV I’

The lifting force on the resulting Joukowski airfoil is not clear.

If the lifting flow about the cylinder is defined as function Q where Q = Q(z)
in the z plane and Q = Q(w) in the w plane, the velocities in each plane are:

v, -0 v, - R
0Z oW
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Clearly, the velocity field very close to the cylinder and its transformed
counterpart are dissimilar as one would expect.

Farther away from these objects the velocity fields become identical as the
magnitude of z becomes larger than the constant value of b.

Since the circulation can be calculated about any closed path, including paths
very far from the object surface, the circulations must be the same in both
planes.

oV I

cylinder

=P VooFJ

oukowski
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The appropriate vortex strength to impose the Kutta condition must be
determined.

Consider the lifting flow about a cylinder. The velocity in the @direction is
A y

v (2\/ ] (9) r j z plane
= sin(@) + —

p g B / \

stagnation points: A

Ozwwsin(ﬁ)—%

—t
/

=

—
['=4zV_Rsin( f)

If the field is rotated by o to simulate an angle of attack,

I'=42V_Rsin(f + @)
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Since the chord length of the Joukowski airfoil is 4b

C = L"  pVl I 472\/ Rsin(a + f)
2
% V.2 %pV m N 2V.2b

Making the assumption that b = R,

C, =2zsin(a + ) = 2z(a + p)




A Joukowski airfoil is formed by displacing a circle of radius 1 by Ax = -0.08
(real axis) and Ay = 0.05 (imaginary axis).

Find:
a) Vortex strength I' if @ = 0% and V=10 m/s
b) C; at = 0°and a=10°

S cylinder
,B:sinl(%j: 2.87° |
tan(2.87o) —= 0.05 stagr;ation
0.08+Db point
b = 0.9187
—_———




A Joukowski airfoil is formed by displacing a circle of radius 1 by Ax = -0.08
(real axis) and Ay = 0.05 (imaginary axis).

-

Find:
a) Vortex strength I' if @ = 0% and V=10 m/s
b) C; at = 0°and a=10°

=4V Rsin(a+B) = 4x(10)(1)sin(2.87) = 6. 26’311 cylinder

a=0°: C, =2rsin(2.87) = 0.31415 o

a=10°: C, = 2xsin(10 + 2.87) = 1.40 !

stagnation
point
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“THE VORTEX PANEL NUMERICAL METHOD @/

The thin airfoil theory applies only to thin airfoils at small angles
of attack.

The advantage of thin airfoil theory is that closed-form
expressions are obtained for the aerodynamic coefficients.
Moreover, the results compare favorably with experimental data
for airfoils of about 12 percent thickness or less.

We need a method that allows us to calculate the aerodynamic
characteristics of bodies of arbitrary shape, thickness, and
orientation.
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1. Approximate the surface of a given body by a series of panels.
2. Place distributions of singularities (such as sources, vortices
or doublets) on each panel.
3. The problem is to find the values of the unknown strengths

of the singularities for the given geometry. Find the unknown
strengths by solving a linear set of algebraic equations.

— - -

With the aid of panel methods, the requirement to find the
solution over the entire flowfield (a 3D problem) is replaced
with the problem of finding the solution for the singularity
distribution over a surface (a 2D problem).
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Possible differences in panel methods are in:

1. Using various types of singularities (sources, doublets
and vortices or any combination of them)

2. Using various distributions of singularity strength over
each panel (zero-, first-, second-order, etc.).

3. Using various panel geometries.

o #
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We treat the vortex panel method, which is a numerical technique that
has come into widespread use since the early 1970s.

The vortex panel method is directly analogous to the source panel method.
However, because a source has zero circulation, source panels are useful only
for nonlifting cases. In contrast, vortices have circulation, and hence vortex
panels can be used for lifting cases.

The philosophy of covering a body surface with a vortex sheet of such a
strength to make the surface a streamline of the flow was discussed




@® Control Points

@® Boundary points
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VORTEXPANEL METHOD

Vian=Vo-n=V,cos(B—a)

" . a .
ﬁ id.fj
jﬂ'ﬂ;

Vo, +V,=0

e,
Vo= é;i [&(x;, ¥:)]

. 90: .
V. cos (B, a)—z-}-’zni-_[j-ajdsj,-:() "

o
l
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Vocosi-a) ~3 2y =0

The above equation is a linear algebraic equation with n unknowns, y, ,y,,
..» Y., It represents the flow boundary condition evaluated at the control
point of the ith panel.

If the equation is applied to the control points of all the panels, we obtain

a system of n linear equations with n unknowns.

To this point, we have been deliberately paralleling the discussion of the
source panel method; however, the similarity stops here.




VORTEXPANEL METHOD

AN ()

cos ff; = sin ¢;

m
Bi = ¢; + E“zwq sin 3; = cos ¢;

X+ X

WS 9
0x;
i o B Yi+Y;

= T

Hij = arctan i ¥
Ty — Ty
. ~y; [ 39, N T 7 2
Vo sin(a — ¢;) — ds; =0 S5 = \/(X:m X2+ (Y51 — Y5)
; 2n Jj on;
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Vesin(a — ¢;) = i Z i f L On; ds.

' N 3

Replace the derivatives with their values:
Ve i T R
o8 CO8 Sin ¢ Y; — ;8¢
sinfa — o) =tr7 Z [”f ﬁd (21 = X; = 5005 ¢5) + g:fﬁ ke )clsj-
c0 j—1 — 50080 )2 + (y; = Y; — 5800, )

4
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For the source panel method, the n equations for the n unknown source
strengths are routinely solved, giving the flow over a nonlifting body. In
contrast, for the lifting case with vortex panels, in addition to the n equations
applied at all the panels, we must also satisty the Kutta condition.

To approximate this numerically, if points i andi - 1 are
close enough to the trailing edge, we can write:

Yi = —Vi-i

Such that the strengths of the two vortex panels i and i - 1 exactly
cancel at the point where they touch at the trailing edge. Thus, in
order to impose the Kutta condition on the solution of the flow

g

E— R
/ﬂnnonvﬂﬂlﬁlcs i
Lo e R e b\ A | vk
A CA TTalitclh v - JU

-
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An overdetermined system of n unknowns with n + 1 equations.

We choose to ignore one of the control points, and we have n-1 equation
the other n - 1 control points. This, in combination with Kutta condition,
now gives a system of n linear algebraic equations with n unknowns, which
can be solved by standard techniques.

The total circulation and the resulting lift are obtained as follows:
Let s; be the length of the jth panel. Then the circulation due to the jth panel
is ¥j5; . In turn, the total circulation due to all the panels is

' = ZPJIJ

j=1

\

L' = pooVio Z Vi¥j
j=l1 —
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Although the method may appear to be straightforward, its numerical
implementation can sometimes be frustrating.

For example,

1- The results for a given body are sensitive to the number of panels used,

their various sizes, and the way they are distributed over the body surface (i.e., it
is usually advantageous to place a large number of small panels near the leading
and trailing edges of an airfoil and a smaller number of larger panels in the
middle).

2-The need to ignore one of the control points in order to have a determined
system in n equations for n unknowns also introduces some arbitrariness in the
numerical solution. Which control point do you ignore? Different choices
sometimes yield different numerical answers for the distribution of y over the
surface.

3- Moreover, the resulting numerical distributions for y are not always smooth,
but rather, they have oscillations from one panel to the next as a result of
numerical inaccuracies.

______————’nznonvnamncs l
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To overcome the problems:

The mentioned problems are usually overcome in different ways.
For example,

1- What is more common today is to use a combination of both source and
vortex panels (source panels to basically simulate the airfoil thickness and
vortex panels to introduce circulation) in a panel solution.

2-Higher-order panel method, we have used first order panel method in
which the distribution of y is constant along each panel. Other
distributions for y may be used. For example linear distribution of y
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HIGHER'ORDER PANEL IMETHOD,
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Linear strength
panels

Constant
strength panels

5t 4o
GGttt
e e e e e

SRRy

. ot
-

Influence of ¥,
depends on panel
ab and panel bc
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Vortex of strength
ﬂ,r{sj}ds
¥(S;)
dsj
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fo =it E-—Zw‘ sin f; = cos ¢;

il X+ X
R
oz Y+ Y
— =cos B 1y =
2 b v 2
- d6;; 5!& | Ty = Xj + &4 m5¢3
- - LN s )—ds;: =0 —— =sin f; .
Vm‘:USIﬁ. o) jtlzﬂ_[j}’( _r) an; J aﬂ‘g '81- yj=};+3131ﬂ¢';
- 5, 106 _ 2 ERY
Vo cos(Bi—a ) - f,;fj[h+(?,-+1—}’,)§"- 5.0 ds; =0 riy = /(@ — 23)2 + (4 — v3)
jtl- J. i o
9£j=arctan A=,
Ty — Ty
. : S, 06
Veosin(a — ¢:) _Zz:h:?-[j[?"_‘_(?’*‘_y’}? -gfds,-:(} Si = /(Xjs1 — X;)2 + (Vi1 — 172
j=l J :




1 B8 T T T
1%5111(0 = (L’t 3 Zf ['}J (Vi1 — %) ] 3 L (J — 1_‘)2 de
i j

1+ (Q‘i _yj)
L — @y

Replace the derivatives with their values:

BIN v — ;) = / Vit 4 — ds;
( ) 21V ;2 0 5+ (i ”}Sj (s — z;)% + (3 — y5)2 ’

Factor out ~; and ~;4q:
sin(o — qf}-] =

E f ( )msm( — X; — sjc08¢;) +siney(y; — Y; — 55 8in ;)

2?1'1” (x; — Xj — sjco8 ;)% + (y; — Y; — s;8in ¢, )

o0 =1

ds;+

Si s; cosgy(xy — X; — sy co8¢;) + singy(y; — Y; — s;8in¢;)
- 1 ': g
Canl S (xy — X —sjeos0;)2 4+ (y; — Y, — s;8in0; )2 I

“________/nnnon\mamxcs_l
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Define
5 s; \ cos;(x; — X; — sjc08 ;) +singdy(y; — Y; — s;8in ¢
0 Sj (IE—XJ—EJC{:TS@J:] [:yi_Y 84 Elﬂﬁfﬁ :]

and

K. /’: 55 cmsw — X; — sjcos;) +sing;(y; — Y; — s;sing;)

i €Iy — XJ — &5 COs ﬂﬁj) (yt Y — 8§y sin .;l",l ::IE &
1
- Z Higyi + Kijyier = sinfa — ¢)
27V =
4
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E = (z; — X;)sin ¢; — (y; — Y;) cos ;

S; +2AS;
+ 2 280)

N [ ES,
Rt (B +A3j)

P =(z— X;)sin(¢; — 2¢;) + (y; — ;) cos(¢; — 2¢;)

F;ln(l




CINEARSSTRENGTE| PANELS

. 1QF G
P Kj=D+-—7 - o
j=D+ 5~ (40+ D)
Ki=1
1 a
Hij=—2-ﬂF+GG-*K¢j _
Hji = -1
1

M
> Hijvi + Kijyi+1 = sin(a — ¢;)

Vo 5
e =1.2,..., M control points.

| Kutta condition Y(T'E) = 0 requires 7; = —Yprt1.
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R

- Then the +; values must satisfy the linear system

iy | [LH~} = {N}

Y Lyvi=N, i=12..M+1
=1

where, fori =1,2..., M,

and, fori =M + 1,
Ly = H;

Lij=H;+Ki;1 7=2,3,...M Ly =L=’M+l =1

Lires1 = Kipg
N; = 2nV, sin(or — ¢;)
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21V sin(a: — @) |

| 77

/3

_?’1

2mVeo sin(a — ¢

2V sin(a — ¢s)
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EAR'STRENGTH! PANELS

Y

| =
L= EFF-::Z(}? "‘}’fH]Sf

i=l
— C . LF :i :Vj _I_;Vi'+l i
Y1 L. =l Ve
EPF-::-C =l P o

a |
the control points using Vj; = E-E?*
i
Ve
P 4

ag; |
25 2 j s,

- R Vo
Vi = Vm,.r +V; IVmSin(ﬁg—ﬂ) +Z 1 [’f} '1*1)

j=1
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: - 1PF . ip_cp&
' T..,-C+2S + (AD CE)Sj

R{j-_—‘-%CF—DG—nj

™
-.=T..=—
Rl'l " 2
| M+1 | |
Vi = cns(ar ;) +ZW,,2 1=1,2,...,M
j=1
where
Wa=~R; :
1 1 _ (VH)E
| C;.,',E].— —
| Wij=Rij+Tyy1 §7=2,3,...,. M Vm
| Wiresr = Tin . -
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Write down the velocities in terms of contributions from
all the singularities.

Find the algebraic equations defining the influence
coefficients.

Write down flow tangency conditions in terms of the
velocities (N equations, N+1 unknowns)

Write down the Kutta condition equation to get the N+1
equation.

Solve the resulting linear algebraic system of equations
Write down the equations for tangential velocity at each
control point.

Determine the pressure distribution from Bernoulli’s
equation using the tangential velocity on each panel.




NACA 0012 airfoil

L ©Q Upper surface } 2 order

panel

O Lower surface method

= (lassical solution
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o Most of our previous discussions have dealt with inviscid
flows. A large number of practical aerodynamic applications
are appropriately treated by assuming inviscid flow, as we
have already seen.

o Inviscid flows do not truly exist in nature; however, there
are many practical aerodynamic flows (more than you would
think) where the influence of transport phenomena is small,
and we can model the flow as being inviscid.

o Theoretically, inviscid flow is approached in the limit as the
Reynolds number goes to infinity.
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o Some aspects of aerodynamics are inherently viscous in
nature, such as skin-friction drag, aerodynamic heating and
flow separation.

o To deal with these important aspects, we have to undertake
the study of Viscous Flow.
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o For practical problems, many flows with high but finite Re
can be assumed to be inviscid. For such flows, the influence
of friction, is limited to a very thin region adjacent to the
body surface called the boundary layer.

Flow outside the boundary

laver is inviscid Thin boundary layer ¢
viscous flow adjacent
to surface

o The boundary layer is the thin region
of flow adjacent to a surface, where
the flow is retarded by the influence of friction between a

solid surface and the fluid.

A v, Body surface .

o Although the influence of friction is present every point
throughout flow, it is usually of no consequence except in a

thin region adjacent to the surface of a body immersed i3 t -

flow.




o Consider the viscous flow over a flat plate. The viscous
effects are contained within a thin layer adjacent to the

surface.

o The influence of friction is to
create V=o right at the plate

surface. This is called the no-slip

condition which dominates
viscous flow.

¥ ¥ ¥ ¥ 0 L L

'

[

—

i
=

wix, v

=X

-

R o o o o A

0

x=L

o Above the surface, the flow velocity increases in y direction
until, for all practical purposes, it equals the freestream

velocity.
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o Consider the viscous flow over a flat plate. The viscous
effects are contained within a thin layer adjacent to the
surface.

'

U

o d (boundary layer thickness) == —)

- [

=

is defined as that distance above [—| -~~~ = <& Lo
the wall where u=0.99U; Here,

X B e o o e ol -
U is the velocity at the outer edge
of the boundary layer.

o At any x station, the variation of u between y=0 and y= g,
that is, u=u(y) is defined as the velocity profile.

\%
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o Consider the viscous flow over a flat plate. The viscous
effects are contained within a thin layer adjacent to the

surface.

o The consequence of the

Y r v 0

velocity gradient at the wall is

— i —

T,

—— —— —— ——

wix, vl
= X

the generation of shear stress

at the wall:
= (5;)
=R\,
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ERFECT-OF PRESSURE GRADIENT QN VELOCITY

U
u -
PI

Favorable Ler 0
gradient: gradient:

dU
ﬂ = () — =0
dx dx
d d
_p < () —p = 0’
dx dx
No separation, No separation,
PI inside wall PI at wall
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EE—
Backflow
Pl ___/
Weak adverse Critical adverse Excessive adverse
gradient: gradient: eradient:
dau <0 Zero slope Backflow
dx at the wall: at the wall:
Rr - () Separation Separated
dx flow region
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EEFECTOFPRESSURE GRADIENT-ON VELOGITY

PROFILE (SEPARATION)—

Separated flow —
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Mote: Lengih of the amows denoting
pressure is proportional (o p - pg.
where p.. 18 an arbitrary reference
pressure slightly less than the minimom
pressure on the airfoil 4_——_—
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NASA LS(1) - 0417 airfoil
Angle of attack = 18.4°
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Pressure distribution
with separation

Fressure distribution if there
were o separation; dpidr




7——

R —

EEEECGTS OF VISCOUSITY @M @RA@ —

533\3‘\_\ =iz ‘ _’___.__..m—- b—-‘b—‘H s W et W 4

E—

o With the assumption of an inviscid flow, the integrated
pressure distribution over body would give zero drag!
(d’ Alembert’s paradox)

o The effects of viscosity are to produce two types of drag:

1. Skin-friction drag (Dy): The component in the drag
direction of the integral of the shear stress over body.

2. Pressure drag (D,) due to separation, that is, the
component in the drag direction of the integral of the
pressure distribution over body. Pressure drag is
sometimes called form drag.

3. The sum D,+ D, is called the profile drag of a two-

dimensional body This is frequently called paraszte -
drag. ‘
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(a) shear stress acting on /
(b) pressure drag due to flow separatlon




o Consider the viscous flow over a surface.

- Laminar flow: The path lines of various fluid elements

are smooth and regular.
« Turbulent flow: The motion of a fluid element is very

irregular and tortuous.
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=BOUNDARY LAYERS-

o For the laminar boundary layer over a flat plate, after a
certain distance from the leading edge, instabilities will
appear in the laminar flow.

o The instabilities rapidly grow, causing transition to
turbulent flow.

Transition

region
-~ ———— - —— -

o For purposes of Laminar /_-jrurhulenl
analysis, we —

frequently model the |'
Transition region as a
single point, called the  paVier

o o . R o = oo ¥ oo Cr
transition point. e — — -

Transition point




I@MM@A@%MWE[%? -

o Some characteristics which encourage transition from
laminar to turbulent flow, are:

Increased surface roughness

Increased turbulence in the freestream
Adverse pressure gradient

Heating of the fluid by the surface

> W oN o




Laminar Separation Turbulent Separation
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o Drag coefficient of “ o -
. 0012 5 A
laminar and turbulent _—"
A
boundary layers on oy \ 500
N
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. 1000
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0.006 / \\ S000
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X ﬂ"‘}: 2% 104
TN R
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Data scatter

o Drag of a streamlined

Percentage of

;
E,
two-dimensional 1%“ 50 s
cylinder at Re_ = 10° E
0 | :
0 0.2 04 08 08 1.0
C Circular eylinder
0.3

Cp, based upon frontal area (1 5)

0.2 Cp based upon planform area (ch)

01— Width b
S 16-=39
Vo4 <5 >
e
0 | | |
0 0.2 04 0.6 08 10

. . I
Thickness ratio —
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o The importance of streamlining in reducing drag of a body
(Cp based on frontal area)

A . TN
V—s 9 Cp=20 V—n \-QCD_LI
e

o

0
Ve ( >D JCD=O.15 V—° 5 _° o




o Drag of two-dimensional bodies Re>104

Square cylinder:

B —

—

Half tube:

2.1

Halt-cylinder:

Plate:

—_— |:| 2.0

Thin plate

normal to
a wall:
— 1.4

Hexagon:

—_— <:> e | () '0.7
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o Drag of two-dimensional bodies Re>104

Rounded nose section: ¢
B ( .

il E -
I-n -

Flat nose section

2.7 2.1 1.8 1.4 1.3 0.9

pH: | o1 | oa | o7 ) 12| 20 | 25 | 30 | 60
| |
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o Drag of two-dimensional bodies Re>104

Elliptical cylinder: Laminar Turbulent

l:] ——— O 1.2 0.3
2] — > @ 0.6 0.2

41— > 0.35 0.15

§:1 —— > < —— 0.25 0.1




Cube:
e

FParachute

{Low porosity): i

o Drag of three-dimen

1.07

0.81

1.17

sional bodies Re>104

Cone:
—_—
4'

Short cylinder,
laminar flow:

—_— L

D

Porous parabolic
dish [23]:

—_—

Average person:
' 2 2

Pine and spruce
trees [24]:

—_—

0: |10° | 200 |30 a0c |eo | 75° | o0°

Cp: | 030 | 040 | 0.55 | 0.65 | 0.80 | 1.05] 1.15

Lip:| 1

|2 |3

| 5

lio J20 J4o |

Cp: | 064 0.68 | 072 | 0.74 | 0.82 [ 0.91 | 0.98 | 1.20

Porosity: [0 Jo.1 Jo2 Jo3 o4 |os
-—Cp J 142133 ] 120 1.05 | 0.95 | 0.82
—=Cp | 095§092]090] 0.86 | 0.83 ] 0.80
Unvs: |10 20 30 | 40
Cp: | 12x02 10202 Jo7x02 Jos+t




o Drag of three-dimensional bodies Re>104

Rectangular plate: Flat-faced cylinder:
—» ||/ b/l 1 1.18 e 0:] L/d 0.5 1.15
b 5 1.2 1 0.90
10 1.3 2 0.85
h 20 L5 4 0.87
o0 2.0 8 0.99
L Laminar Turbulent
Ellipsoid: i
d Lid 0.75 0.5 0.2
1 0.47 0.2
| 7 |_ 2 0.27 0.13
4 0.25 0.1
8 0.2 0.08
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1.0 / \ Downward force
/ \ccu:t‘ ficient
0.8 —
.--—""-_-
0.4 Drag coefficient \
0.2 7
0.0
0 10 15 20 25 30 35 40

Upsweep angle 6, deg
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500 —
450 — Gross engine horsepower required
400 —
350 —
300 —
250 —
200 —
150 —
100 —

50 —

Air
resistance

Horsepower required

# -
Rolling
resistance, hp

| | |
0O 10 20 30 40 50 60 70 80

Vehicle speed, mi/h
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oA great deal of engineering effort goes into designing
immersed bodies to reduce their drag. Most such effort
concentrates on rigid-body shapes.

o A different process occurs in nature, as organisms adapt to
survive high winds or currents. Flexible structure of a tree
allows it to reconfigure in high winds and thus reduce drag
and damage.

o as wind velocity increases, the shape of the tree changes to
offer less
Resistance.




BIGLOGICAL DFAG REDUCTION

o The individual branches and leaves of a tree also curl and

cluster to reduce drag.
5 m/s
3 mfs

IDmfs

2[] m/s

20 m/s

4
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o We assume that skin-friction drag on an airfoil is essentially
the same as the skin-friction drag on a flat plate at zero angle
of attack.

o This approximation becomes more accurate the thinner the
airfoil and the smaller the angle of attack.
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o We first deal with the case of completely laminar flow over
the airfoil (and hence the flat plate)

o There is an exact analytical solution for the laminar
boundary-layer flow over a flat plate.

\%
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o The boundary-layer thickness for incompressible laminar
flow over a flat plate at zero angle of attack is given by

5 — 5.0x
i v Re,
Where
Re, = Pe Voo X
Moo

o The local shear stress, integrated over both the top and
bottom surfaces of the flat plate, yields the net friction drag,
D, on the plate

Dy =2Diop = 2D fpottom
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o Define the skin-friction drag coefficient for the flow over
one surface as

Cr = Df,lop . Df.botmm

o The laminar skin-friction drag coefficient is a function of
the Reynolds number

1.328
v Re,

Cr=

Where Re, is the Reynolds number based on the chord length

C. Re, = Poo Voo
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Consider the NACA 2412 airfoil, data for which is given in Figure. The data are
given for two values of the Reynolds number based on chord length. For the case

where Re_ = 3.1x10°, estimate:
(a) the laminar boundary layer thickness

€4
at the trailing edge for a chord 0.024 |- .
length of 1.5 m 0.020 |- g
(b) the net laminar skin-friction drag 0016 ° %@5
coefficient for the airfoil. 0012 - . é‘%‘
0.008 — Be g ™~ Drag
coefficient
b >
5= 20 _ COA _ 600426 m *™I" 0.0068 ;>‘ call
M"ﬁec f 3.1 x lﬁa 0 _@%o 0
% gm@8 ] 005
P bamen N
1.328  1.328 4 C S Eeet it R
C =754 x 107 ‘0$ eo ® Re=31x10® —-0.15
\JE V31 x 106 @égd 47}0 o Re=8.9)(:05
" Ao
R
& @Q —l|2 A-IS —-:l 0 *Ii_ ; II2 |16

Net Cr = 2(7.54 x 1074 = 0.0015 S
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o There are no exact analytical solutions for turbulent flow.

o The analysis of any turbulent flow requires some amount of
empirical data.

o All analyses of turbulent flow are approximate
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o For incompressible flow over a flat plate, the boundary-
layer thickness is given approximately by

0.37x

Re!”*

o With regard to skin friction drag, for incompressible
turbulent flow over a flat plate, we have

0.074

Re!”

o Note that, in contrast to the inverse square root variation
with Reynolds number for laminar flow, the turbulent flow
results show an inverse fifth root variation with Reynolds
number

d =

Cr=

1 ™ . =
A ®
= = o
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Consider the NACA 2412 airfoil, data for which is given in Figure. The data are given
for two values of the Reynolds number based on chord length. For the case where
Re.=3.1x10°, estimate:

(a) the Turbulent boundary layer thickness “ som L
at the trailing edge for a chord | ®
length of 1.5 m 00201 ,
(b) the net Turbulent skin-friction drag o016 1= B
coefficient for the airfoil. 0012 = . o
0.008 | O e e °® B bn
3l 0.37x 0.37(1.5) P— ome 89 " coefficient
Rc”s (3.1x1061/5 ~ [ = j 0.0068 0 cn
0.074 0.074 peEEpEaEEBaBEl . 005
C = 0.0037 Stmee L
f RE!-IS (3+1 % 10.6}1}"5 2 coefficient 0.1
@ Re=31x108 — -0.15
B Re=89 X 108
Net C; = 2(0.00372) =| 0.00744 . & s o

12 -8 4 0 4 8 12 16
This result is a factor of five larger than for the laminar o, degrees

boundary layer
_________—-—.A!:RODYNAMICS i
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o The result for the skin friction drag coefficient in the
previous example is larger than the measured drag
coefficient of the airfoil of 0.0068, which is the sum of both
skin friction drag and pressure drag due to flow separation.
So our result in this example clearly overestimates the skin
friction drag coefticient for the airfoil.
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o In actuality, the boundary layer over a body always starts
out as a laminar boundary for some distance from the leading
edge, and then transits to a turbulent boundary layer at some
point downstream of the leading edge.

o The skin-friction drag is a combination of laminar skin
friction over the forward part of the airfoil, and turbulent
skin friction over the remaining part.

Transition
Turbulent
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o The value of x where transition is said to take place is the

critical value x_, . In turn, x_, allows the definition of a critical

Reynolds number for transition as
Poo VooXer

R‘excr -
Koo

Transition
Turbulent
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o For the NACA 2412 airfoil and the conditions in previous
example, calculate the net skin friction drag coefficient

assuming that the critical Reynolds number is 500,000.
- @ -l 0 -]
chc' - pDDVOOII - 5 % 105 ,;’#’#
I—LDO "f
,,’ Turbulent
V -
Re. = 2272 _ 31 x 106 v. _ =~ Laminas
Hoo > ' - ' '
-— X -:I—: Iz -
- [
R 5% 10° V.
exﬂ n X —0.1613 = (ﬂm mxl/#m} — .I_[ |:> ﬂ =0‘1613

Re, 3.1 x 10° (Poo Vool / thoo) C C
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o Assuming all turbulent flow over the entire length of the
plate, the drag (on one side of the plate) is (D¢ )y pulene Where

‘-\/ L EL WY AN

MMHMAZR/ZT’ @[EBI@@EMT ELOW ((E)XAX PLE)

(Df.c)tu:bulent = QmS(Cf,c)lumulent

S =c(l) ‘ (D f,c)urbulent = Goo€(C f,c)turbulent

o The turbulent drag on just region 1 is
(D £,1 Jurbutent = GooX1(C £,1)turbulent

o And the turbulent drag just on region 2 is:

{Df,z)mrbulem = (Df.c}lurbulem - (Df, | Jwurbulent
(Dfll)turbulﬂnt = qu(cﬁc hwrbulent — 4o X1(C £, 1 wrbulent

A

L — R ERO DY NAMICS i
— Viscous Fl N Airfoil D g
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o The laminar drag on region 1 is:

(Df.l}lanﬁnar = ‘?mS(Cf,lllaminar = f}'ocxl(cﬁl )laminar

o The total skin-friction drag on the plate, D, is then

Dy = (Dj', I Maminar + (Df,i)lurhulcm

D¢ = qoox1(C £, 1t haminar + §ooC(C f.c hurbulent — GooX1(C f,1 Jurbuient

o The total skin-friction drag coefticient is

c, = Pr _ Dy
/ GocS qacC

Xy X
Cs = = (Cg Maminar + (Churtmlem = —(C 1, Duuebulen

e—
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X1 X
C = = (C g aminar + (Crhurbulent = ;‘(cmmmem
x1/c =0.1613 == Cr = 0.1613(C ¢, 1 htaminar + (€ f.churbutent — 0.1613(C 1.1 ) wrbulent

1.328 1.328

C -
(€. taminas VRex, /5 x10°

(C f.¢)turbulent = 0.00372  (for one side)

0.074 0.074
Rey)

(5 x 10°)0-2

Cy =0.1613(0.00188) +0.00372 — 0.1613(0.00536) = 0.003158

Net Cy = 2(0.003158) =| 0.0063

;_______/AERODYNAMICS -
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o the measured airfoil drag coefficient is 0.0068, which
includes both skin friction drag and pressure drag due to flow
separation. The result from Example, therefore, is qualitatively
reasonable,. giving a skin friction drag coefficient slightly less
than the measure total drag coefficient.

E@T NATING: S’E@Mwﬁﬁ?ﬁ@? U@M @@ @ZF’ Aﬂﬂ@[ﬁ@ﬁ @

o We do not know what the critical Reynolds number is for the
experiments.

A/RERODYNAMICS
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o Repeat the example but assuming the critical Reynolds
number is 1 x 10°.

X1 1 x 10°
— = = 0.3226
c  3.1x 108
C s = 0.3226(C y,1 haminar + (Cf,¢drurbulent — 0.3226(C £, wrbulent
1.328 1.328
L ¢ 1 Naminar = — = (0.00042
( f.1laminar \/WII m
(C f,c)turbulcm = (0.00372
0.074 0.074
(C £, 1) rbulent = = 0.002946

Rex )5~ (1 x 106)1/3

Cr =0.3226(0.00042) + 0.00372 — 0.3226(0.002946) = 0.00291

Net C s = 2(0.00291) =| 0.00582

— g
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o Comparing the results from the recent two Examples, we
see that an increase in Re_, from 500,000 to 1,000,000 resulted
in a skin friction drag coefficient that is eight percent smaller.
This difference underscores the importance of knowing where
transition takes place on a surface for the calculation of skin
friction drag.

o The result from the last example CF = 0.00582 would
imply that the pressure drag due to flow separation is about 15
percent of the total drag.

o The drag on a streamlined two-dimensional shape is mostly
skin friction drag, and by comparison the pressure drag is__
small. |
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AIRFOILSAND WINGS

o The properties of airfoils are the same as the properties of a
wing of infinite span.

o All real airplanes have wings of finite span, and our purpose
is to apply our knowledge of airfoil properties to the analysis
of finite wings.
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o Question: Why are the aerodynamic characteristics of a
finite wing any different from the properties of its airfoil
sections?

> The flow over an airfoil is two-dimensional.

> A finite wing is a three-dimensional body, and
consequently the flow over the finite wing is three-
dimensional; that is, there is a component of flow in the
spanwise direction.




T

\ Y

Streamline over
the top surface
l )

!

|
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LIET-GENERATION.BY WINGS.
o The physical mechanism for generating lift on the wing is
the existence of a high pressure on the bottom surface and a

low pressure on the top surface.

o The net imbalance of the pressure distribution creates the

lift.
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o As a by-product of this pressure imbalance, the flow near
the wing tips tends to curl around the tips, being forced from
the high-pressure region just underneath the tips to the low-

pressure region on top.
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o As a result, on the top surface of the wing, there is generally
a spanwise component of flow from the tip toward the wing
root, causing the streamlines over the top surface to bend

toward the root.

Airflow Airflow
Above Wing Below Wing

o On the bottom surface of ¥ N
the wing, there is generally
a spanwise component of
flow from the root toward
the tip, causing the
streamlines over the bottom

surface to bend toward the
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Wi NGETIP"VORTEX

o The tendency for the flow to "leak” around the wing tips
establishes a circulatory motion that trails downstream of the
wing; that is, a trailing vortex is created at each wing tip.
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o The tip vortices are essentially weak "tornadoes” that trail
downstream of the finite wing.

o For large airplanes such as

a Boeing 747, these tip vortices
can be powerful enough to
cause light airplanes

following too closely to go

out of control.

o This is one reason for large spacings between aircraft
landing or taking off consecutively at airports. —




o The two vortices tend to drag the surrounding air around
with them, and this secondary movement induces a small
velocity component in the downward direction at the wing.

o This downward component is called downwash, denoted by

the symbol w. 7 L
% ﬁ




o The downwash combines with the freestream velocity V, to
produce a local relative wind which is canted downward in
the vicinity of each airfoil section of the wing.

D.
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L a — Geometric angle of attack
a; — Induced angle of attack
a.;— Effective angle of attack
o; Xoff =0 — O
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o Defining the profile drag coefficient as

GooS

Cd

and the induced drag coefficient as
D;
GooS
the total drag coefficient for the finite wing C is given by

Cp,i

Cp=cqg+Cp,;

’} “v(w‘ i A rinite wWings > =
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A general 3-D vortex can take any arbitrary shape. It is subject to
the Helmholtz's Vortex Theorems:

1) The strength I' of a vortex filament is constant all along its
length.

2) The vortex filament cannot end inside the fluid. It must either
a) extend to oo, or

b) end ata sohd boundary, or D
c¢) form a closed loop. / ‘(\

3-D Vortices

AERODYNAMICS 18




THEBIOTESAVART LAW,
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The velocity field of a vortex of general shape is given by the Biot-
Savart Law.

, I [tedi x 7 .
Vir,y, z) = — j; BE (general 3-D vortex)

X, vz -

7
o

S ladi

The magnetic field strength dB induced at point P by a segment of the wire dl
with the current moving in the direction of dl is

dB = pldixr where p is the permeability
Az el AERODYNAMICS
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Consider the semi-infinite vortex filament shown in Figure. The
filament extends from point A to oo. P
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| Horseshoe vortex
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o A vortex filament of strength I' that is somehow bound to a
fixed location in a flow (bound vortex) will experience a force
L=p.V_I from the Kutta-Joukowski theorem.

o The bound vortex is in contrast to a free vortex, which
moves with the same fluid elements throughout a flow.
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o Let us replace a finite wing of span b with a bound vortex,
extending from y = -b/2 to y = b/2. Assume the vortex filament
continues as two free vortices trailing downstream from the wing

tips to infinity.

~
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Free-trailing vortex

Replace fintte
wing with
bound vortex
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Free-trailing vortex

Finite wing Horseshoe vortex
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o Consider the downwash w induced along the bound vortex from -b/2 to b/2
by the horseshoe vortex.
The bound vortex induces no velocity along itself
The two trailing vortices both contribute to the induced velocity.
b

3 Trailing vortex
(¥) 4 d <
w(y) = — -
Y a2y An®/2—y) | s
Y =I— I b

4r (b/2)? — y?
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The downwash distribution due to the single horseshoe vortex does
not realistically simulate that of a finite wing. A better flow field
model employs multiple distributed horseshoe vortices.

Iv)
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The figure shows 3 horseshoe vortices on the wing, each with different
length of bound vortex, but with all bound vortices coincident along a
single line. This line is called the Lifting Line.
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The figure shows infinite number of horseshoe vortices superimposed
along lifting line, each with a vanishingly small strength dT".
It has a continuous distribution of I' = I'(y) along the lifting line.
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dw = _(dT/dy) dy » w(Yo) = __/ .

dm Jovs2 dy Yo — Y
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CIETINGEINE THEORY.

. w(Yo)
o; (yo) = tan™! ( 1330) » ai(yo) = — Vo

—w(y, b/2 dT"  d

0i(y,) = (y) _ Y

V., 4?71/' b2 dy Yo —
4
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¢; = aplctesr(Yo) — o] = 27 [etesr(yo) — @ =0]

2I°(yo)
L = %pmVéC(J’G)CI = Poo er(yﬂ) - ¢ = Vmc(y{})
(o)
Aeff = Vo (o) + QL=
Ueff = O —
(o) " (yo) + (o) + 1 b2 (AT jdy) dy
o = dyf— T
Yo 7T Vooc{¥o) L=01)0 A4nVo Jobj2 Yo — Y

fundamental equation of Prandtl’s lifting-line theory
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LIETING=LINE THEORY:

The solution I'=I'(y,), gives us the three main aerodynamic characteristics of
a finite wing, as follows:

1. The lift distribution is obtained from the Kutta-Joukowski theorem:
L'(¥0) = PooVooI"(30)
2. The total lift is obtained by integrating L'(y,) over the span

b/2 b/2

L= L'(y)dy ‘ L =pmvmf F'(y)dy

—b/2 ~b/2

L 2 e
C; = = I d
L VoS / (y)dy

GooS —b/2

— .




LIETINGZLINE THEORY

L

The solution I'=I'(y,), gives us the three main aerodynamic characteristics of
a finite wing, as follows:
3. The induced drag per unit span is
D, = L sing,
Since «; is small, this relation becomes
D! = L,
The total induced drag is obtained by integrating D’; over the span:

b/2

bj2
D,-=/ L'(yv)a;(y)dy ‘ D; = ps Voo ' (y) dy

—b/2 —h/2
D:' 2 bj2

Cpi = 4o = VeoS o2 F'(ya:(y)dy
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EUTIRTICAL LIET DISTRIBUTION)

dI" 4@, y
dy  b? (1 —4y?2/p)2
C, [br2 y
w(yg) = — dy

mbh? —b/2 (1-— 4}’2fb2)lﬁ(.}’{} —y)

'
Inc nit ‘c* N
- —_——e /00—




As in thin airfoil theory, the mathematical problem is considerably
simplified by making the trigonometric substitution

6,

B I
| y =
0=m | 6=0
: —pi E"'_ (ﬁ y - 1 y =
—-b/2 ¥ 0 3 b/2
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ELLIPTICALIFTRISTRIBUTION

g cos I'p 4™ cos
el dg = df!
2wh Jx cosfH, — cosH 27b Jo cosH, — cos#

™ cosnd T sin nd, Ty T siné, T
f dfl = . 1[!({99) = — ——-—-- ] = ——
0 cosf —cost, sin A, 27h sin A, 2b

bz 4yr\ M b (" b
= pooVooFO/ ( — —2—) dy == pmeI‘.;.E[ Sin*0dl = poo Voo o=
-b/2 b O 4

We have the somewhat surprising result that the downwash is uniform over the span of a
wing with an elliptical circulation distribution. There is a sharp upwash just outboard of
the tips which rapidly dies off with distance, but this doesn’t impact the flow angles seen by
the wing itself.
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L= po vmru-f sin’ 6 df = pmvmrﬂi—’n
2 Jo 4
Solving above Equation for I',, we have
ry — 4L
Poo Voo bTT

Which allows eliminating I', from the w result to give a somewhat more
convenient expression

o oL
ve I V. .Fr
Induced angle of attack
w I L

ky — — p— —

V.. 26V % pVib?m
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b2
B f_wﬂ

(L/b)*

_Pvﬂ

2

%p V22

Induced drag

b2

L'(y) oy dy = o
—b,2

m

oo

L(y)dy = oy L




TOTALWING DRAG

D = D, + D
Gﬂp +SD1

b2

Cr. — / d
-DF S' ﬁf? C(y} y

é‘}
|

Here ¢4 is the 2-D airfoil viscous airfoil drag, and is usually known in the form of a cg4(c; Re)
drag polar from wind tunnel data or from calculations. In general, eg(y) will vary across the
span, although a very common approximation is to simply assume that it's constant, and
determined using the overall wing Cp., and the Reynolds number based on the average chord.

-
I‘ -:DCEI-'II'E

Cqg = €4 (GL: R‘fﬁvg} ; Rfavg =

L/
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~ In this case Cpp = ¢4, and together with the induced drag result the total drag coefficient

can then be computed as follows.

0T =4V

=¥

cO —

Cp(CL; Reayg) = cq(CL; Reayg)

Atypical CD(CL) polar p]ot for one Reynolds numbelgr L
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EZ?!F’E@T OF ASPECT RATIO,
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The aspect ratio of the 1903 Wright Flyer was 6 and that today the aspect
ratios of conventional subsonic aircraft range typically from 6 to 8.
(Exceptions are the Lockheed U-2 high-altitude reconnaissance aircraft with
AR = 14.3 and sailplanes with aspect ratios as high as 51.

-

A high aspect ratio wing is efficient
because it reduces the formation of the
— vortex and associated drag,

i .
In contrast, a low aspect ratio wing PQJ- £ A
allows the high pressure on the bottom
of the wing to escape more easily,

resulting in a larger vortex and greater ~
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We have seen that ¢;, is constant along the span. Hence, o ¢ = a - «; is also
constant along the span.

Cy ﬁ@?‘tﬁ — ¥ —q) mmmmm) ) must be constant along the span.
2n

; L'(y)
L'(y) = quoccy ‘ c(y) = P

The chord must vary elliptically along the span

Elliptic wing




GENERALWINGS

\ ‘ [(#) = ysiné

This hints that a Fourier sine series would be an appropriate
expression for the general circulation distribution along an
arbitrary finite wing.
.In,'r
L(g) = 26V Y A sinnf

n=1
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GENERALWINGS

A. % sinB A, % sin 20 Ay X sin 30

= — L > & w+ﬁLﬂ+___

V V YV 7
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GENERALWINGS

dlr’
dy

a(yo) =

dr do
——— = 2bV.,
do dy 4

I"(yo0)
7 Vc(yo)

+ap—o(yo) +

Z nA, cos m?

1
4dn V.

d,v
f*’” (dU/dy)dy
b2 Yo— ¥

N

2b
T Z A, sinnby + a;_o(6) +

" 5V nA,cosnf

do
cos @ — cos 8y

a(bp) =

T Jo

Let us choose N different spanwise stations, and let us evaluate Equation at
each of these N stations. We then obtain a system of N independent algebraic
equations with N unknowns, namely, A1, A2,..., Ay,

AERODYNAMICS
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GENERALWINGS

L i Vo D(y)d
= | P V=TW)dy
b N h rm
y = gcosb L=pV. QmeZARE/ sinnf sinf do
0
b n=1
dy = —=sInf df
2
The orthogonality property 4 w/2 (iff n=m)

of the sine functions:

sinn#f sinm# df = {
0

0 (if n £ m)

; L = %pVibzﬂl ‘ Cr, = = 1A — = A;mAR
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GENERALWINGS

b/2 dI’ dy 1 X cos né
N 41¢V b2 dY Yo — T nz=1 " cos @ — cos b, )

sin A,

The leading n =1 term is the same as the elliptic loading case, with the
expected uniform induced angle.

sin 20 sin 30
% AIXI 4, % sin © Ay X sin 0
Yy

o
i
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— NDUCED DRAG

b2
D =L, D= [ Lmwidy
bf2

bf2
D; = poo Vo fﬁ : M'(y)ai(y)dy
—b/

Zbl ~
Cp,i= (Z A, sin nﬁ') (Z nA, sin n9) do
|

[ sinmé sin k@ = {0 form # k
0

/2 form =k

Inc nit ‘c* N
- —_——e /00—
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(ZHAI) — = JI'ARZ nA’
!
= m AR (A% ot Znﬂi)
2

1
‘= 1y -

span efficiency

e <1

The minimum drag corresponding to elliptic loading, for which e =1.
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e = 0.840

L deflected flap

Note also the strongly non-uniform downwash distribution resulting from this
distorted loading.
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EEEECT'OF ASPECT RATIO
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Assume that the wings are at the same C;

C: (| 1
Cpr=Cpat me (ARI B ARI)
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For historical interest, we reproduce La
here Prandtl’s actual graphs. /20
Note that, in his nomenclature,

C, = lift coefficient and 100}

C,, =drag coefficient
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The downwash behind any finite wing modifies the wing’s lift slope

Consider the c,-angle relation at a typical spanwise location

dC
— = ap C; = agler — a;) + const
d(o — ;)
N G dc, ag
C“”“(“ m) oonst da T 1¥a/7AR

For a nearly-elliptic loading, we have ¢, = ('

For a finite wing of general planform, the equation is slightly modified, as

iven below:
g o

1+ (a/7AR)(1 + 1)

r is a function of the Fourier coefficients A_. Values of t typically range
between 0.05 and o.25.




LIET-SLOPE REDUCTION
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Consider a finite wing with an aspect ratio of 8 and a taper ratio of (0.8. The airfoil section
is thin and symmetric. Calculate the lift and induced drag coefficients for the wing when

it 1s at an angle of attack of 5°. Assume that § = t.

,assuming ap = 2n

an

2w

T YT ap/mAR( + 1) 1+ 27(1.055)/8x

= (.0867 degree ™!

Since the airfoil is symmetric, ap g = 0°. Thus,

Cr = aa = (0.0867 degree ' (5°) =

Cpi= CE’ (14 48)
ﬂ“‘_nﬁR

_ (0:4335)%(1 + 0.055) _

0.4335

= 4.97 rad™!

)

0.16

0.12

0.08

0.04

B

0.2 0.4 0.6 0.8 1.0

Taper ratio, c, /e,



EXANIPIEZ

Consider a rectangular wing with an aspect ratio of 6, an induced drag factor § = 0.055,
and a zero-lift angle of attack of —2°. At an angle of attack of 3.4, the induced drag
coefficient for this wing is 0.01. Calculate the induced drag coefficient for a similar wing
(a rectangular wing with the same airfoil section) at the same angle of attack, but with an
aspect ratio of 10. Assume that the induced factors for drag and the lift slope, & and 1,

respectively, are equal to each other (i.e., § = 1). Also, for AR = 10, § = 0.105.
First, let us calculate C, for the wing with aspect ratio 6
TARCp;  m(6){0.01
C?=": i OO _ 1787
1+ 6 1 +0.055
) Cp =0.423
The lift slope of this wing is therefore

dcy, 0423
o = E ) = 0078/degree = 4435;'rad

/BERODYNAMIC




The lift slope for the airfoil (the infinite wing) can be obtained
dCL ag

da ~ © 7 1+ (ao/TAR)(1 + 1)

-4 L — SO
I+ [(1.055)ap/m(6)] 1+ 0.056ap

Solving forag  mmmm) ap = 5.989/rad.

4.485

Since the second wing (with AR = 10) has the same airfoil section, then:

ag 5.989 4.95/rad
a = e = AL ra
1 + (ag/mAR)(1 + 1) 1 4+ [(5.989)(1.105) /= (10)]
= 0.086/degree

— ,
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EXAINVIPLEZ (CONT)
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The lift coefficient for the second wing is therefore

Cr = ala — ap_g) = 0.086[3.4° — (=2°)] = 0.464

The induced drag coefficient is

C? _ (0.464)%(1.105)

= — L
Cpi= JTAR“ + 4) 2(10) 0.0076

AERODYNAMICS n
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Consider an airplane that with o _ =-2° the lift slope of the airfoil section is
0.1 per degree, the lift efficiency factor t = 0.04, and the wing aspect ratio is
7.96. At the cruising condition, the lift coefficient equal to o.21.

Calculate the angle of attack of the airplane.

The lift slope of the airfoil section in radians is:

apg = 0.1 per degree = 0.1(57.3) = 5.73 rad

- ag a = 3 ?5'?3 = 4,627 per rad
I + (ao/7 ARY(I + 7) L (22) (4 +0.09)
7.96r
4.627
“=7353 per degree
CL = a(a - Osz())
we have”

0.21




We considered the Beechcraft Baron 58 flying such that the wing is at a 4-degree
angle of attack. The wing of this airplane has an NACA 23015 airfoil at the root,
tapering to a 23010 airfoil at the tip. The data for the NACA 23015 airfoil is
available. The airfoil lift and drag coefficients at a = 4°, namely, ¢; = 0.54 and ¢, =
0.0068, Consider the wing of the airplane at a 4-degree angle of attack. The wing
has an aspect ratio of 7.61 and a taper ratio of 0.45. Calculate C; and Cj for the
wing.




ap = 0.113(57.3) = 6.47 per rad

4 =0.01

1 l

=138 14001

0.99

for AR = 7.61 and taper ratio = (.45

0.16

0.12

0.08

0.04

0.2 0.4 0.6 0.8 1.0

Taper ratio, c, /c,

Section 1t cocfficient, ¢

1.6

09-0 0.9

= .—_—=['I',
70D 3 113 per degree

T ARRL Y

-24 ~-16 -8 0 5 6
Section angle of sk, a, deg.
NACA 23015 Wing Section
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: . = =
~ assuming T =4, ‘ d_1+(%){t+r)

ap 647
rAR  w(7.61)

Cp =ala —op=q)

For o = 47, we have

=0.271

6.47
‘ = T¥27)(.01) pert

5.08
a= 573 = 0.0887 per degree

Cr = 0.0887[4 — (—1)] = 0.0887(5)

Cp =] 0.443

AERODYNAMICS l
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ere, ¢, is the section drag coefficient given in data. Note that in data, c; is

plotted versus the section lift coefficient c;. To accurately read c; from data, we
need to know the value of ¢; actually sensed by the airfoil section on the finite
wing, that is, the value of the airfoil ¢; for the airfoil at its effective angle of
attack, o, To estimate a,; we will assume an elliptical lift distribution over the
wing. We know this is not quite correct, but with a value of § = 0.0y, it is not
very far off. for an elliptical lift distribution, the induced angle of attack is:

Cr (0 443)
JrAR m(7.61)

= (0.0185)(57.3) = 1.06° BI) aeff = & — o = 4° — 1.06° = 2.94° ~ 3°

= 0.0185 rad

o =

c = agl(Qefr — Cr=0)
=0.113[3 = (=1)] =0.113(4) = 0.452




EXANVIRLIEZ (CONT)
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¢y = 0.452,

taking the data at the highest Reynolds
number shown:

cqd = 0.0065

Cp=c —L_
= 3 meAR
(0.443)?

=Ly 7(0.99)(7.61)

= 0.0065 + 0.0083 =| (.0148 -|
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Consider the most general case of a finite wing of given planform and
geometric twist, with different airfoil sections at different spanwise stations.
Assume that we have experimental data for the lift curves of the airfoil
sections, including the nonlinear regime (i.e., assume we have the conditions
of the following Figure for all the given airfoil sections). A numerical iterative
solution for the finite-wing properties can be obtained as follows:

Stall due to
flow separation

mwm UNEAR | ’

“_/BERODYNAMICS

i
. “‘HJ _lwg‘mﬂ‘ q - , = =
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LIFT, HM@:MME METHOD S/

1. Divide the wing into a number of spanwise stations, as shown in The
following Figure. Here k + 1 stations are shown, with n designating any
specific station.

|
|
I
I
I
(
.
|
|

2. For the given wing at a given a, assume the lift distribution along the span;
that is, assume values for I' at all the stations I, I,,..., T, ,..., [},,- An
elliptical lift distribution is satisfactory for such an assumed distribution.

A
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3. With this assumed variation of [ calculate the induced angle of attack o at
each of the stations:

1 [P? @T/dy)dy
4T Vo Joby2  Yn—y

a;i(yn) =

The integral is evaluated numerically. If Simpson's rule is used

1 &y Z dT'/dy) ;- N 4(df‘fdy} il dI'/dy) 41

Voo 3 . 5760n—Yi-1) Yn = ¥j Yn = Yj+1

where Ay is the distance between stations.

wheny, =y, y, ory,,, asingularity occurs (a denominator goes to zero).
When this singularity occurs, it can be avoided by replacing the given term by
its average value based on the two adjacent sections.

ﬁ:(}‘n} — 4o
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ANUNIERICALNONUINEAR, i {}
= LIETINGELINE; IVIET 0%7@@ =
4, Using o from step 3, obtain t]}: cifective angle of attack cr.g at each station

from

el ¥u) = @ — @i (¥,)

5. With the distribution of . calculated from step 4, obtain the section lift

coefficient (c;), at each station. These values are read from the known lift
curve for the airfoil.

6. From (¢;), obtained in step 5, a new circulation distribution is calculated
from the Kutta-Joukowski theorem and the definition of lift coefficient:
L'(¥n) = poa Vool (¥n) = 300 VEcnlcr)
Hence, [y.) = %meu (e )

where ¢, 15 the local section chord. Keep in mind that in all the above steps,
n ranges from 1 to k + 1.
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LIFT, HM@:MME ‘MET HOD S/

The new distribution of I' obtained in step 6 is compared with the values
that were initially fed into step 3. If the results from step 6 do not agree with
the input to step 3, then a new input is generated. If the previous input to
step 3 15 designated as ['ys and the result of step 6 15 designated as [Mpey,

then the new input to step 3 is determined from
1-“:':'u;'u.u = o + D(Cgewe — Coia)

where [ is a damping factor for the iterations. Experience has found that

the iterative procedure requires heavy damping, with typical values of I on
the order of (.05.

Steps 3 to 7 are repeated a sufficient number of cycles until ., and Ty
agree at each spanwise station to within acceptable accuracy. If this
accuracy is stipulated to be within 0.01 percent for a stretch of five previous
iterations, then a minimum of 50 and sometimes as many as 150 iterations
may be required for convergence.

A
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INUIVERICAL NONLINEAR

= W\
A5 St W XY

9. From the converged I"(v), the lift and induced drag coefficients are obtained

It 2 b D, I it
e = (v dy Cpi=—— = —— C{v)o(v)d
- Gou S Vi § j:bf'l g - ":]'n-u:u-SI Vo —b2 {}1 U} 7

The integrations in these equations can again be carried out by Simpson’s rule.

o
-' '
Inc nit ‘c* N

- —_——e /00—




A’M@ME@H@AZL NONLINEAR:

pe " \/

LIETINGSLINE MET Fﬁ?@@

1.0C

0.9
0.8
0.7

Prandt] =———
0.6

5 |- Numerical lifting
0. hne results
0.4 — {present analysis)

Typical results

Circulation, I'j[y,

O3 AR=4 2 Inacaiai2
0.2 A airfoil

AR =120 o
0.1
[ N S N
02 04 06 08 10

. y
Distance along span, 572
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An example of the use of the numerical method for the nonlinear regime is shown in
this figure:

Cy
1.0
0.8 +—
0.6 —
B ' NACA 0015 rectangular wing
0.4 AR = 5.536
- o 0 Experimental data (increasing «)
0.2 & Numerical data (fixed initial distribution)
0 ] i | 1 i | | | | .

5 10 15 200 25 30 35 40 45 50 oa(degrees)

The numerical lifting-line solution at high angle of attack agrees with the experiment to
within 20 percent, and much closer for many cases.




Redutction of Induced Drag

Total Drag

AERODYNAMICS




Secondary Flow

Geometric Wing Span -
Effective Wing Span Tip Vortex

Sacondary FIow s
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Redugtion of Induced!Brag, —

+
HRaised Wing Tip
Effective Wing Span . e
Geomeinc Wing Span -
Crocped Wing Tip
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Redutction of Induced Drag

Effective Wing Span
Geometric Wing Span -

Horner Wing Tip
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Tip plates inhibit

Qﬁr about wing tips

Tip tanks inhibit
flow about wing tip
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= VORTEX.LATTICE NUMERICAL METHOD &y

Prandtl's classical lifting-line theory gives reasonable results for straight
wings at moderate to high aspect ratio.

For low-aspect-ratio straight wings, swept wings, and delta wings, classical
lifting-line theory is inappropriate.

| |- e
(/N

Low aspect ratio Swept wing Delta wing
straight wing

For such planforms, a more sophisticated model must be used.
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o The VLM represents the wing as a planar surface on which a
grid of horseshoe vortices is superimposed.

o The velocities induced by each horseshoe vortex at a specified
control point are calculated using the law of Biot-Savart.

o A summation is performed for all control points on the wing
to produce a set of linear algebraic equations for the horseshoe
vortex strengths that satisfy the boundary condition of no flow
through the wing.

o The vortex strengths are related to the wing circulation and
the pressure differential between the upper and lower wing
surfaces.
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VORTEXUATTICE METHOD. (VL) _— @

- 1. The wing surface is divided into several trapezoidal sub
regions (finite elements or lattices)

!
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VORTEXVATTICE METHODI(VLIVI)

A AN &

2. A horseshoe vortex is placed on each lattice.

* Place the bound vortex of the horseshoe vortex on the 1/4 chord element
line of each panel.

» Place the control point on the 3/4 chord point of each panel at the

midpoint in the spanwise direction.
| Lattice 1
_ T
. \
r B fﬁ“‘xﬁ_a?

. ~
AT HHH \

- — 1 o ]
[~ —_| -\-\-\-\-\-\_\_"‘-\_\_\_

et T
- | __----__ "‘—h____h




« Comments
— This is known as the “1/4 - 3/4 rule.”

— It's not a theoretical law, simply a placement that
works well and has become a rule of thumb.

— The 1/4 - 3/4 rule is widely used, and has proven
to be sufficiently accurate in practice.

;
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(el oy Y AN WA S L L
p-stream flow

4

Typical panel

Bound vortex

Trailing vortices
Controi point

l \
¢, The dihedral angle
B ——————

i
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o The velocity induced by a vortex filament of strength I' and a
length of dl is given by the law of Biot and Savart.

—- =
f} _ F d IKFW vortex
P — 3 filament
A

—

T pg

o Since we are interested in the flow field induced by a

horseshoe vortex which consists of three straight segments, let
us use this equation to calculate the effect of each segment

separately.
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o Let AB be such a segment, with the vorticity vector directed
from A to B. Let C be a point in space whose normal distance

from the line ABisr.. |
p Vorticity

:
r B vecto

y= —
sin ©

dl = r,(csc?6) do

o We can integrate between A and B to
find the magnitude of the
induced velocity:

r, (% I
V= — sin 8 d6 =
L 4

— (cos 8, — cos 6,)
r




THEHORSESHOE VORTEN INDUCEDVELOGITY

The semi-infinite vortex

V —L(1+0036’)

P Arh

The finite vortex

V ZL(COSQ — 08 0,)

Y/




s e

Vortlcnv
vector

_roxor)]
1 r, =
V,=——(cost —cosb,) Yo
47Ty o™ 7y
cos B, =
Fol'y
re° I
cos 0, =
Fol2
A — A
ry —3 -
r, X r,
The direction of the induced velocity is given by the unit vector: |—: - |
F s

<!

I, r,Xr |- r, r,
_ — — rni — mmmy ——
417"'1 X rzlz r r,




<!

I, ry X r; {- I Vs
i — — rnt — e —
41 |r, X 1*'2|2 r, ry

o This is the basic expression for the calculation of the induced
velocity by the horseshoe vortices in the VLM. It can be used
regardless of the assumed orientation of the vortices.

o We shall now use this equation to calculate the velocity that is
induced at a general point in space (x, y, z) by the horseshoe
vortex. This horseshoe vortex may be assumed to represent that
for a typical wing panel.




THE-HORSESHOE VORTEX INDUCED VELOCITY

R 3

Fa}

Bound vortex

Bix30. ¥ani Z20)

For the bound vortex, segment AB: Trailing vortex

from & to =

A{X1ﬂ,]"1n,21ﬂ]’ ’ ! ’

Trailing vortex

—

Ty = from A tp ==
_:‘1' 2 {parallel to the
Cix, v, 2) x-axis)

X

rO : AB — (‘xln . xln)i + (yZH o Ym)j oy (Zﬁn — Zln)]2

rl B (I b 'xln)i + (.y o ylri)j + (Z T Zln)lg

ra=(x— )i+ (v — v) + (2 — 2k =
: :
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— rn f'] X rz . rl rz
v Laxn [ (77
a |rl 8 rzlz ry r,

T

— =)

v = Lo Eacl WFac2,,)
4t
X T
tFacla} = Fl X 1yl
={[( = Y@ — 22) — OV — )z — 2
— [(x — X, )z — 22) — (x— X0z — 2,)]]
+ [ = )0 = Ya) = (= )0 — Yk
{[(y o ylﬂ)(z . ZEH) “— (y o yIn)(z o zlu)]z
+ [(x — x, )02 — z5,) — (x — x3,))(z — z,))
+ [(x = )0 — y2) — (x — 000 — y)I*
E -",,;_ /‘




“THE'HORSESHOE VORTEX INDUCED VELOEITY —  /
B AN ’//

= I, ry X r, {- r ra
V et — — rﬂ- — A —
4 |F”1 X 1*'2|2 r Y,

s I‘ﬂ
Vg = {Facl,,KFac2,;}
v
{F&CZM} — (?‘ﬂ ) ';I" - Iy ";23)

= {[(x3 — X)X — X)) + Q2o = YO — yi) + (22, — 20)(z — z))
Vi —x, 2+ — y)?+ (2~ z,)

= [ — x) — X)) + G2 — Y)O — Ya) + (22, — 2,0z — z,,)1/
VX — x,)0 + (y =y + (2 — 2,,)%
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To calculate the velocity induced by the
filament that extends from A to oo: Cix,y,2)

= I_); = (‘xln — xsn)f
?1 =(x — xﬁln)f i (y - }’m).; + (z — Zm)iE
=G —x)i+ G —y)+ @ 20k

D{":En' ¥in. IIn}

I
V.o = — {Facl,,H{Fac2,,}
497

(z — z,,,)_f + (i — }’)E
[z = 2,2 + 01 — Vx5, — X10)
X3, — X
VX —x,)P+ 6 -yt (z— 2,0

X — X,
\/(x — x4+ (L= plik(z=g

Lcttmg X, g0 to o, the first term of {Fac2,,} goes L to loznonwwuvus '

——— g W

{Facl,,} =

{Fac2,,} = (x5, — x,) {
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—_’: I‘n (z_zln)j-l_(yln_y)f:}l:lo
o= 4Tr{[(z — 2,2+ O — W)L

+ X = Xia ]
V& — x,)? + Oy = yu)i + (2 — z,)

Similarly, the velocity induced by the vortex filament that extends from B to oo

;;; o Fn{ (z — EZH).; + (Vo — yﬂz}[].@
4 | [(z — 22,0 + (2 — ¥V

. X — X, ]
\/(x — X3,) +(y — ¥, + (2 — 2,)°

— ————
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The velocity induced at the mth control point by the vortex representing the
nth panel will be designated as V,, .

2” —_—
= Z Cm.nrn
n=1

We have 2N of these equations, one for each of the control points

The strengths of the horseshoe vortices are not known
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The resultant flow is tangent to the wing at each and every control
point (which is located at the midspan of the three-quarter-chord line
of each elemental panel). If the flow is tangent to the wing, the
component of the induced velocity normal to the wing at the control

Normal to the
mean-camber
surface at
the control
point

Section AA
Line in xy
plane
(reference for
dihedrat angle)

Y

point balances the normal component of the free-stream velocity.

Z4 e Mean-camber
L - surface
cP )l_ section AA CID is the
dihedral angle
=y
(b)
b 0 = tan' (ﬁ)
24 } ~ Mean-camber dx/,,
o Surface 5 the slope
CcP f cection BB of the mean
e —




3-0 Wing configuration

2‘_ —

—
)

Wing z-coordinate

o
{

Wing y-coordinate

WWing K-coordinate

4
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The tangency requirement yields the relation

—U,sinocosd — v,cosdsind + w, cos ¢ cosod
+ U.sin(a — d)cosd =0

For wings where the slope of the mean camber line is small and
are at small angles of attack, this equation can be replaced by the
approximation:

+ U.|la - “) =0
w, — v, tan & .| @ &)

— !
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Let us apply these equations to a relatively simple geometry. A
planar wing (i.e., one that lies in the xy plane),

For a planar wing, z,, = z,, = o for all the bound vortices.
Furthermore, z_, = o for all the control points

S TS k
Vi = —
A 4Tr (Im - x]n)(_})m - }'En) B (‘xm _ xZH)(.ym i ylﬂ)

[(xz,, — ) — X)) + Gz — Vi) — Vi)
\/('xm — xln)z + (ym _ ylw)2

G ) — X)) o Vi)W — J’2n):|

VX, — %, + O — Y2)




Let us apply these equations to a relatively simple geometry. A
planar wing (i.e., one that lies in the xy plane),

For a planar wing, z,, = z,, = o for all the bound vortices.
Furthermore, z_, = o for all the control points

T_Fn [10+ xm_'xln ]
i 41T .},ln — ym . \/(xm i xlu)z + (ym = yln)z

\/t-xm - xlrt)2 + (ym - y!n)z

47 Y2 = Vm

] r 2 L —
Ve = — - k |:10+ : Azl :|
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Note that, for the planar wing, all three components of the vortex
representing the nth panel induce a velocity at the control point of the

mth panel which is in r i

t!—le < dlreCtlon i 4 (Im - xln)(ym y'}!ﬂ) _ ('x B x!u)(.ym ylﬂ

(i.e., a downwash).

Therefore, we can [(x;u — X)X = X))t Yan — Vi) — Yin)

simplify equations by V&, = %) + O — Yin)?

Combining the Components (xln _ xln)(-xm — xZn) + (yZn . yln)(ym — yZn)

into one expression: - Vi - LY T G — P

Summing the contributions | 1.0 10 X — Xin

of all the vortices to the Yir = Ym | \/(x — X))t O — lif’l,.)2

downwash at the control 10 [ X, — X

point of the mth panel: - 1.0 Y A " =
- Yoo ™ Yu L (X, — X20) O = Yau) |

e = D = —
n=1 — —




ﬁ@mm A PLANARWING

Since we are considering a planar wing:

(dz/dx),, = 0 b =0

The component of the free-stream velocity perpendicular to the wing
is U, sin a at any point on the wing. The resultant flow will be tangent
to the wing if the total vortex-induced downwash at the control point
of the mth panel, balances the normal component of the free-stream
velocity:

o+ U.sma =0

For small angles of attack,




Let us use the relations developed in this section to calculate the lift
coefficient for a swept wing. So that the calculation procedures can be easily
followed, let us consider a wing with a relatively simple geometry. Plot C; -o of

the Wing. l Free-stream

flow




e

EXAIIPLE(CONT)

The wing has an aspect ratio of 5, a taper ratio of unity (i.e., ¢,= c¢,). and an
uncambered section (i.e., it is a flat plate). Since the taper ratio is unity, the
leading edge, the quarter-chord line, the three-quarter-chord line, and the
trailing edge all have the same sweep, 45 deg.

AR =5 =

For a swept, untapered wing

b’
5

It is clear that b = 5¢. Using this relation, it is possible to calculate all of the
necessary coordinates in terms of the parameter b. Therefore, the solution
does not require that we know the physical dimensions of the configuration.

— !
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The flow field under consideration is symmetric with respect to the y=o plane
(xz plane); that is, there is no yaw. Thus, the lift force acting at a point on the
starboard wing (+y) is equal to that at the corresponding point on the port

wing (-y).

Because of symmetry, we need only to solve for the strengths of the vortices of
the starboard wing.

We must remember to include the contributions of the horseshoe vortices of
the port wing to the velocities induced at these control points (of the

starboard wing). N N
Tangency condition: Wm — 2 WIH,HS 1 Z Wm,ﬂp
n-1 n-1

the symbols s and p represent the starboard and
port wings, respectively

o #

AERODYNAMICS 1
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EXAIIPLE(CONIT)

b, ¥

The planform of the starboard
wing is divided into four panels,
each panel extending from the
leading edge to the trailing edge.
By limiting ourselves to only four
spanwise panels.

; Free-stream
! flow

.5006

Quarter-chord
line and
bound vortex
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EXAINVIPLE(CONT,)

v A Y]
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The planform of the starboard
wing is divided into four panels,
each panel extending from the
leading edge to the trailing edge.
By limiting ourselves to only four
spanwise panels.

coordinates of the bound vortices and of the control points of the starboard wing

PanCi 'tm }Ln: "1—|H }.[” Ilu :""Zu
1 0.2125b 0.0625h 0.0500h 0.0000h 0.1750b 0.12505
2 (0.3375bh 0.1875b 0.1750h (0.1250h 0.3000b (.25006
3 ().4625H 0.3125b 0.30008 (0.2500h 0.4250b 0.3750h
4 0.58755H 0.4375h 0.42508 0.375046 0.550056 0.5000b




The downwash Wi =
velocity at the CP of

panel 1 induced by the
horseshoe vortex of

panel 1 of the starboard wing:

Wy, —

I, 1.0
4 {(0. 1625b)(—0.0625b) — (0.0375b)(0.0625b)
[(0. 12506)0.1625b) + (0.12500)(0.0625b)

V(0.1625b)* + (0.0625b)?

_ (0.12505)(0.0375b) + (0.1250b)( —0.0625b)
V/(0.0375b) + (—0.0625h)>

N 1.0 10+ 0.1625b
~0.0625b | V(0.1625b)* + (0.0625b)*

[ I P 0.0375b
0.06256 |~ \/(0.0375b) + (0.0625b)

I
— (—16.3533 — 30.9335 — 24.2319)
4bh

I,
7op (Z71.5187)
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The downwash velocity at r 1.0
the CP of panel 1 (of the w,,, = — { *

B Fving) induced by 47 | (0.0375b)(0.0625b) — (0.16255)(0.1875b)
[ the horseshoe vortex of (—0.12505)(0.0375b) + (0.125056)(0.1875b)
panel 1 of the port wing: V(0.0375b)" + (0.1875b)?

_(=0.12506)(0.1625b) + (0.12505)(0.0625b)
V(0.1625b) + (0.0625b)

1.0 10 0.0375b

+
—0.1875h | V(0.0375b)* + (0.1875b) |

1.0 | 0.1625k }

" To06256 | "t V0162567 + 0.06255% |

'S

(18.5150)

4mh

AERODYNAMICS 18
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pni 4
Similarly, the . W24 T b {(—0.0875b)(~0.3125b) ~(—0.2125b)( - 0.1875b)
e nvashivelocity at (0.12506)(~ 0.0875b) + (0.1250b)(—0.1875b)
the CP of panel 2 (0057507 SIS TSBE
induced by the (=0.08750) + (=0, )
horseshoe vortex of (0.12506)( —0.2125b) + (0.1250b)(—0.3125b)
panel 4 of the V(—0.2125b)* + (—0.3125b)?
starboard wing: Lo -1 - | - .
0.1875h |~  \/(—0.0875b)* + (—0.1875b)*_
o oo —0.2125b |
031256 |~  \/(—0.2125b) + (—0.3125b) |
_ L (—0.60167 + 3.07795 — 1.40061)
4mh
[,
= 17 (1.0757)

_— !
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- Evaluating all of the various components (or influence coefficients), we find that
at control point 1:

w, = % [(—71.51871", +11.29331', + 1.0757I'y + 0.3775I',),

+ (+18.51500", + 2.05041, + 0.5887T, + 0.2659T",),

At CP 2:
w, = — [(+20.21741, — 71.5187F, + 11.2933T, + 1.07571"),
Am b + (+3.6144T, + 1.1742T, + 0.4903, + 0.2503I',),
At CP 3:
W,y = —— [(+3.8792T, + 20.2174I, — 71.5187T, + 11.2933I,),
4m "4’ + (+1.5480, + 0.72270, + 0.37761, + 0.2179T%),]
At CP 4:
We = —— [(+1.6334T, + 3.8792T, + 20.2174T, — 71.5187T),
4mb + (4+0.8609T, + 0.48340, + 0.2895T, + 0.1836I%),]
;
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~ Since it is a planar wing with no dihedral, the no-flow condition of equation
requires that

w=w,=w,=w, = —U.,«x

$

—53.0037I', + 13.34371, + 1.66441; + 0.64341, = —4wblU. .«
+23.8318I°, — 70.34451, + 11.78361, + 1.3260I', = —4wblU. a
+ 5.4272I0, + 20.9401I°, — 71.1411T, + 11.5112, = —4wbU. .«

+2.49431°, + 4.36261°, + 20.50691°, — 71.33511, = —4wbU.«

I
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Solving for ', T',, I'; and I',, we find that

Y23

I = +0.027284wbU.)

I, = +0.02869(4mwbU o)
I'y = +0.02841(47bU..a)
I, = +0.02490(47wbU.)

the lift acting on the nth panel is Al =1=p.U.J,

Since the flow is symmetric, the total lift for the wing is

0.5b
L=2 L p.U.'(y) dy

= The Vort 1erical ivietnoa




EXAWVIPLEN(CONIT:)

a VY /4
L —_—" ¢

¥ |
L =2p.U.> T,Ay,
n=1

Since Ay, = 0.12505 for each panel,

L = 2p.U.47wbU..0(0.02728 + 0.02869 + 0.02841 + 0.02490)0.12506
= pUib*ma(0.10928)

To calculate the lift coefficient, recall that S = bc and b = 5c for this wing.

Therefore, L
C, = — = 1.09287«x
7
dC, :
C,, = T 3.43314 per radian = 0.05992 per degree

o
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XAVIPUE((CONT),

= ,,

where c_, is the average chord (and is
equal to S/b), c is the local chord, and j
is the index for an elemental panel in
the chordwise row.

Cc {2
C, = J it d(l)
0 ¢,y \ b

_— !
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e theoretical distribution is compared with the

SR AT AV AN K = p——

experimentally determined spanwise load
distribution for an angle of attack of 4.2 deg. The
increased loading of the outer wing sections
promotes premature boundary-layer separation
there. This unfavorable behavior is amplified by
the fact that the spanwise velocity component
causes the already decelerated fluid particles in
the boundary layer to move toward the wing tips.
This transverse flow results in a large increase in

the boundary-layer thickness near the wing tips. ¢
Thus, at large angles of attack, premature %

separation may occur on the suction side of the
wing near the tip. If significant tip stall occurs on
the swept wing, there is a loss of the effectiveness
of the control surfaces and a forward shift in the
wing center of pressure that creates an unstable,
nose-up increase in the pitching moment.
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Data for o = 4.2° from ref. 7.12.
Inviscid solution using VLM for 4 x 1 lattice
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BOUNDARYALAYER RENCE'

VA@UANYIH R

Boundary-layer fences are often used to break up the spanwise flow on swept
wings.

The essential effect of the boundary-layer fence does not so much consist in
the prevention of the transverse flow but, much more important, in that the
fence divides each wing into an inner and an outer portion.

Both transverse flow and boundary-layer separation may be present, but to a
reduced extent.




nwm“@%@m FENCE

"’)1(\”_1\\

]
—.:'-"_r-’
|
L beO4——T

0.0 1
1.0 0.0 y 1.0
s

0.0
0.0

hl*q

(a) (b)
Effect of a boundary-layer fence on the spanwise distribution of the

local lift coefﬁ%
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The induced drag coefficient may be calculated using the relation given

1 +0.5b6
Cp, = §f0.5b C,ca;dy

where o, which is the induced incidence, given by

1 +0.5b C;C
o = — — dm
dmw J-oss (y — )’

For a symmetrical loading

0.5b
o= — _!_ [(y C;C C:C :' d‘l’]

81 Jo
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WingletModeling —

i’

Tornado© VLM code for MATLAB

Winglet Geometry

A =57 deg
b/20, b/10

Taper => A =0.3
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Wing x-coordinate
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dihedral = 4.6°
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A=0.6
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WingletModelit
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Original Configuration
o = 8°

L/D =51
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“Winglet Modeling, (Cont:)
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mall Version

Delta cp distribution

11% drag reduction

(7% when compared to an
extended wing)

Delta cp distribution

8% drag reduction

(4% when compared to an
extended wing)



WingletModeling)(Cont:)
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arge Version

Delta cp distribution

22% drag reduction

(14% when compared to an
extended wing)

12% drag reduction

(4% when compared to an
extended wing)
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o To this point in our aerodynamic discussions, we have been
working mainly in a two-dimensional world; the flows over the
bodies treated so far, involved only two dimensions in a single
plane (planar flows).

o The relative simplicity of dealing with two dimensions is self-
evident and is the reason why a large bulk of aerodynamic
theory deals with two-dimensional flows.

o The two-dimensional analyses go a long way toward
understanding many practical flows, but they also have distinct
limitations.




INTRODUCTION TO TMREED@UMEM@@MA@
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o The real world of aerodynamic applications is three-
dimensional. However, because of the addition of one more
independent variable, the analyses generally become more
complex.

o Our purpose is to introduce some very basic considerations of
three-dimensional incompressible flow.
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=INCONIPRESSIBLE.FLOWS - %

o For an irrotational flow, there exists a scalar function ¢ such
that

V=V¢

o If the flow is also incompressible, the velocity potential is
given by Laplace's equation

Vi =0

o Solutions of this equation for flow over a body must satisfy the
flow-tangency boundary condition on the body

Ven=90

where n is a unit vector normal to the body surface.

‘___/AERODYNAMICS i
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o @ is, in general, a function of three-dimensional space.

» Cartesian coordinates ¢ = ¢(x, y. 2)

3%¢p 0% 0%
Vi = +—=0
¢ dx?2 + dy? = 9z?

> Cylindrical coordinates ¢ = ¢(r, 0, z)

13(a¢)+132¢> 3%

Vi = —— -
¢ ror \ or r2 902 = 9z2

=0

> Spherical coordinates ¢ = ¢(r, 8, P)

L [ 3¢ aqs) 9 ( 1 aqs)}
Vip = 6 — — g — =0
®= and [Br( e 8r)+86 (S" 56.) T 3@ \sing 30
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L= R Y

Return to Laplace's equation written in spherical coordinates,

(&)

V

2 |
V2¢:¢'ﬂ,—|~ — ¢, + — (rf)gg ~|~00t9¢9 +CSC2 9¢{I}d})
r

Z

Consider the velocity potential given by

C

¢) —_— e Point source

r

where C is a constant and r is the radial
coordinate from the origin.

(€




WMREED@HMEM@@MA@ SOURCE..
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V=Vo¢

V¢:%e +1% 1 a¢ e,
or rog ’ rsmH&d)

c
V, = =

C r?
V=Vp=—e [y g




—THREE-DIVIENSIONAL SOURCE
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~ To evaluate the constant C, consider a sphere of radius r and
surface S centered at the origin

Mass flow = #pv- dS

S
The volume flow: = # V.dS
S
Vr —_ C / Y 2
A—£4nr2—4nC :> C=—
B r2 . 4
3_ A is defined as the
Vr = strength of the
4I[ l'z source.
e —————
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Consider a sink and source of equal butopposite P
strength located at points O and A

The velocity potential at P is:

A [ 1
¢.=—4.TI' (J"l *;)




(#)

Let the source approach the sink as their strengths become infinite;
thatis, let [ — 0 as A —» OO0

In the limit,as — 0,r —ry = OB = lcosf,and rr; — r.

) Ar— ry - A lcos@
¢ = — lim = —
=0 4 rr 4 r?

Aee

— 3l . cos @
1 E— b=—1—

w cosé M siné

— e i ee +OE¢
27 r3 1 4m r3
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The velocity field depends only on r and 6. Such a flow is

defined as axisymmetric flow.
= !
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Consider the flow induced by the three-dimensional doublet.

Superimpose on this flow a uniform velocity field of magnitude V_, in
the negative z direction




- The spherical coordinates of the freestream are:

V, = —Vcosé
Vo = Vo siné
Ve =0
Combined flow:
jt cosf
V. = =V cosf + 3
2T r
+ posinf
Vo = Vsind + o

nnnonvunmxcs_l
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FLOW-OVER/A SPHEREI(STAGNATION-POINTS) @

To find the stagnation points in the flow

Vi=Vy, =0

1/3
withV, =0 [:::$> vhj_-ihfﬁ3 0 E::$>R== (EE%F_)

Ve =0givessingd = ( :> 6 =0and

Hence, there are two stagnation points, both on the z axis,

)| = |GR) "

— !
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The incompressible flow over a sphere of radius R is qualitatively
similar to the flow over the cylinder, but quantitatively different.

On the surface of the sphere, where r = R, the tangential velocity is

Vo = %VW sin@

The pressure distribution on the surface of the sphere is

Cp=l—§sin29




Location of maximum p=" T
velocity 2 2

Maximum velocity 2V

Maximum pressure
coefficient 1 1

Minimum pressure
coefficient -3 -5/4

The flow over a sphere is somewhat relieved in comparison with the
flow over a cylinder. The flow over a sphere has an extra dimension in
which to move out of the way of the solid body; the flow can move
sideways as well as up and down. In contrast, the flow over a cylinder is
more constrained; it can only move up and down.

\%

“_/AERODYNAMICS i
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The qualitative features of the real flow over a sphere are similar to
those discussed for a cylinder (the phenomenon of flow separation, the
variation of drag coefficient with a Reynolds number, the precipitous
drop in drag coefficient when the flow transits from laminar to
turbulent ahead of the separation point at the critical Reynolds number,
and the general structure of the wake).

These items are similar for both cases. However, because of the three-
dimensional relieving effect, the flow over a sphere is quantitatively
different from that for a cylinder.
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The flow over sphere — Re=25.5

Although it is not obvious, the ﬂow is just to have separated at the rear
at this Reynolds number.
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The flow over sphere — Re=26.8
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=——THE REAL.CASE—

The flow over sphere — Re=56.5
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The flow over sphere — Re=202
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= ="THE REAL,CASE

v

The flow over sphere — Re=15000
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REAL.CASE-— =

The flow over sphere - Re=30000 (Turbulent flow. Forced by a trip wire
hoop ahead of the equator, causing the laminar flow to become
turbulent suddenly)

Because the
flow is
turbulent,
separation
takes place
much farther
over the back
surface of
sphere.

- RERODYNAMICS 7‘
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THE REAL.CASE:

Variation of drag coefficient C, with the Reynolds number
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the C, variations are qualitatively 3
similar, both with a precipitous decrease ,
in Cp near a critical Reynolds number of
300,000, coinciding with natural
transition from laminar to turbulent ¢
flow. : m_llz 763

T T T177 T T 17T ™

T

b
I

However, quantitatively the two curves e = Rt
are quite different. In the Reynolds Eﬁx%

number range most appropriate to [
practical problems, that is, for Re>1000,
the values of C, for the sphere are _
considerably smaller than those for a’

Circular cylinder

T~ T T TTITT

cylinder-a classic example of the three- oL by e SRR
c c c c = o i
dimensional relieving effect. - 8, g‘
ot vt b oseneiidl b oveeel b ovesnl gl b oveal o vesuml 5o
10 10° 10t 10 10° 10t 10° 10°

R ——g
Re=
_____.———-nnnon‘irnnmxcs T 28
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The value of Cj, for Re slightly less than

the critical value is about 1 and drops to .,

0.3 for Re slightly above the critical
value. In contrast, for the sphere, Cpis
about 0.4 in the Reynolds number range
below the critical value and drops to
about o.1 for Reynolds numbers above
the critical value.
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Introduction to Three-Dimensional
Incompressible Flows

To this point in our aerodynamic discussions, we have been
working mainly in a two-dimensional world;

Fortunately, the two-dimensional analyses go a long way toward
understanding many practical flows, but they also have distinct
limitations.

The real world of aerodynamic applications is three- dimensional.
However, because of the addition of one more independent
variable, the analyses generally

become more complex.

12/23/2017 1



e
The real world of aerodynamic applications is three-dimensional.
However, because of the addition of one more independent
variable, the analyses generally become more complex.

Governing Equation
Vi =0

For flow over a body must satisfy the flow-tangency boundary
condition on the body, that is:

Ven=0
@ is, in general, a function of three-dimensional space

12/23/2017 2
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incompressible flows

THREE-DIMENSIONAL SOURCE
Return to Laplace's equation written in spherical coordinates,

2 1
V2é— ¢+ = + (qﬁeg + cot O ¢g + csc? 9%@)
7 7

Z

Consider the velocity potential given by

v Pcint source

-

where C is a constant and r is the
radial coordinate from the origin.

12/23/2017



op 1 dp 1 adp
Vp=—e +——¢€- .
P = et gt e
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~ To-evaluate the constant

Mass flow = #pv- dS

S
The volume flow: 3 = # V.ds
A

C, 2
}.._;;5431':' =4rC ‘ C_4.1r
A
V, = 5
dmr-

ey A IS defined as the strength of the source. ;



THREE-DIMENSIONAL DOUBLET

—
Consider a sink and source of equal but
opposite strength located at points O and A

The velocity potential at P is:

A /11
0= -—)
I \n r

12/23/2017 6



In the limit, as! — 0,r —ry — OB =lcos8, and rr; — r?.
Ar—ry - A lcosé@

¢ = — lim = — 5
=0 4w rr 4 r

12/23/2017 7
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The velocity field depends only on r and 6. Such a flow is
defined as axisymmetric flow.
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“FLOW OVER A SPHERE

The superposition of a uniform flow and a three-dimensional

doublet.

A
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The spherical coordinates of the freestream are:

V, = —Vcosb
Vo = V siné
V¢=0

combined flow:

L cosf u
V., = =V, 6 = — | Vo — cos
cost+ 2r 3 ( 21rr3)

+ posin@ noy .
V9=Vm5|n9+4n 5= (Vm+4nr3)5m9

Vq}:ﬂ

12/23/2017 10
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ith V, =0 = = (£

e ) Ve 211'R3 Dqﬂ (th)
Ve =0givessind =0 - @ =0andn

Hence, there are two stagnation points, both on the z axis,

)| = |GR)
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. u . mo(2nVy
V., = — (Vm— ZHRS)COSQ—— [V@—zn ( " )] cos @

= —(Voo — Vo) cos8 =0

Thus, V, = 0 when r = R for all values of 6 and ©.

This is precisely the flow-tangency condition for flow over a
sphere of radius R.

12/23/2017 12
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=R -V9= Vo + H sin &
4 R3

R
- (2 )W

1 2n RV, \ .
V,g,=(1/’{:,‘;,-1—4Ir 3 )smt?

Vy = %Vm sin @

12/23/2017 14



The maximum velocity occurs at the top and bottom points of|
the sphere, and its magnitude is( 3/2)V...

For the two-dimensional flow, the maximum
velocity is 2V...

SR

Three-dimensional relieving effect

12/23/2017 15



The pressure distribution on the surface of the —

sphere:

Vi 2 9 I
CP:I—(V_) =l—(%51nﬂ) » CP"'I 45“13

Ep
1.0 =
0
L Sphere
—-1.0 -
Circular
-0 cylinder
—30F —
1 | | | ] | | | | |

—80 —60 —40 -20 0 20 40 60 80
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GENERAL THREE-DIMENSIONA S:
~ PANEL TECHNIQUES

Three-dimensional, inviscid, incompressible flows are almost
always calculated by means of numerical panel techniques.

The general idea behind all 3 D panel methods Is to cover
the three-dimensional body with panels over which there is
an unknown distribution of singularities (such as point
sources, doublets, or vortices).

For a nonlifting body such as illustrated in the following figure,
a distribution of source panels is sufficient. However, for a
lifting body, both source and vortex panels (or their equivalent)
are necessary.

12/23/2017 17






Panel distribution for the analysis of the Boeing 747 carrying the

space shuttle orbiter.

L)
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APPLIED AERODYNAMICS: THE FLOW OVER =T
- ASPHERE—THE REAL CASE

no separation @
400~

200F N steady separation / /‘\_/a q
I . - /1\_, f
e —F 99—
40 —
unsteady vortex shedding
201 e - laminar BL
l(é - < wideturbulentwake
2 /\b
- i
0.8 AO:;‘L‘“‘:_
0-6 [ DO-0 ___-_‘_H-“\_‘_‘_‘___ﬁd.a-
04 -
0.2 turbulent BL
0.1} narrow
8-82"L1||l JINRE IO I 1 S SN N S 1 N TN N I AN N N T % A SN N 6 O U W Y N turbulent
’ 2 468 2 468 2 468 2 468 2 468 2 468 _2 468
10” 10° 10' 102 10° 10* 10° oo Wwake
Re = E“’_%‘;d

um 20



\\

Tripping the boundary layer

Here we see how the addition of
a trip wire to induce transition to
turbulence changes the
separation line further to the
rear of the sphere, reducing the
size of the wake and thus
drastically diminishing overall
drag.

This well-known fact can be
taken advantage of in a number
of applications, such as dimples
in golf balls and turbulence
generation devices on airfoils.

kY

Separation

21



Sports balls
/

—

Many games involve balls
designed to use drag reduction
brought about by surface
roughness.

Many sports balls have some
type of surface roughness,
such as the seams on
baseballs or cricket balls and
the fuzz on tennis balls.

It is the Reynolds number (not
the speed, per se) that
determines whether the
boundary layer is laminar or
turbulent. Thus, the larger the
ball, the lower the speed at
which a rough surface can be
of help in reducing the drag.

Rough B all

Smooth Ball

Where the game is played

Typically sports ball games that
use surface roughness to promote
an early transition of the boundary
layer from a laminar to a turbulent
flow are played over a Reynolds
number range that is near the
“trough” of the Cd versus Re curve,
where drag is lowest.



