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Consider a thin airfoil with a simple parabolic-arc camber line, with a maximum camber  
height
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The integral in the An expression  can be evaluated by using the orthogonality property 
of the cosine functions.
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In many applications, obtaining just the cℓ and cm of the entire airfoil is sufficient. But 
in some cases, we may also want to know the force and moment on only a portion of 
the airfoil. For example, the force and moment on a flap are of considerable interest, 
since the flap hinge and flap control linkage must be designed to withstand these 
loads. We therefore need to know how the loading  ∆p(x) is distributed over the chord, 
and over the flap in particular.

dL’

ds

dL’= ∆p(x) ds=ρV∞γds
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Define xh as the location of the flap hinge, so the flap extends from x = xh, to the 
trailing  edge at x = c.

The corresponding       locations  
respectively. The load/span and moment/span coefficients on the flap hinge can now be
computed by integrating the pressure loading.
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o We have shown that in a two-dimensional, incompressible,
irrotational flow, both velocity potential (ϕ) and stream
function (ψ), satisfy Laplace’s equation.

o This fact gives rise to a particularly powerful method of
analysing such flows, based on the properties of functions of
a Complex Variable.

2 20 0    
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A complex number can be written in polar form using Euler's equation:

Where:

y, imaginary

x, real
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o Consider the function f(z) of the complex variable:

z=x+iy

o f(x+iy) has real and imaginary parts given by:

Where α (real part) and β (imaginary part) are called
conjugate functions.

( ) ( , ) ( , )f x iy x y i x y   
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o Partial differentiation of f with respect to x and y yields:

o Hence:

o Thus

Cauchy-Riemann Equations
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o Partial differentiation of Cauchy-Riemann equations with
respect to x and y gives:

α and β both satisfy Laplace’s Equation
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o We can substitude α=ϕ, β=ψ and we can replace f(z) by w:

o w is known as the complex potential of the motion and is a
function of the single complex variable z.

o Both components of the velocity can be obtained directly by
differentiation of the complex potential w:

( ) ( ) ( )( )
w w

dw dx dy u iv dx v iu dy u iv dx idy
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o The basic flows used in potential flow theory such as
uniform flow, source, sink, doublet and vortex, can all be
represented using complex numbers.
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o Uniform flow

o Source flow

o Vortex

o Doublet
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o In the study of airfoils, we are interested in finding the flow
pattern and pressure distribution.

o Direct solution of the Laplace equation for the
prescribed boundary shape of the airfoil is quite
straightforward using a computer, but analytically
difficult. In general, analytical solutions are possible only
when the airfoil is assumed thin (thin airfoil theory).
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o In the study of airfoils, we are interested in finding the flow
pattern and pressure distribution.

o An Indirect way of solving the problem involves the
method of conformal transformation. Many years ago,
the Russian mathematician Joukowski developed a
mapping function that converts a circular cylinder into a
family of airfoil shapes.

L =  V  Lift = ?



o Conformal mapping is a mathematical technique used to
convert (or map) one mathematical problem and solution
into another. It involves the study of complex variables.

o A conformal mapping is performed through the
transformation of a complex function from one coordinate
system to another. A transformation function is applied to
the original function to perform the mapping.
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z

b
zw
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Here, b is a constant

o We deal with a case in which a given transformation maps a
circle into an airfoil-like shape and determine the properties
of the airfoil generated thereby.

o This is the Joukowski transformation and is the most
commonly used function for aerodynamic applications.
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Consider a circle, centered at the origin in the z-plane, whose 
radius b is same as the constant in the Joukowski transformation.
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The Joukowski transform maps the circle of radius b in z-plane, 
into a flat plate of length 4b in the w-plane.
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If the circle originally had a radius slightly larger than the 
transform constant b:

z = aei, with a > b,
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From and aerodynamics point of view, the most interesting application of the 
Joukowski transform is to an offset circle. If we consider a circle slightly offset 
from the origin along the negative real axis, one obtains a symmetric 
Joukowski airfoil.
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The equation of the offset circle is: z = aei-eb, where the constant e is a small 
number.
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If the circle is displaced slightly along the complex axis as well, 
one obtains a cambered airfoil shape.

Here, the points A and B are the intercepts of the displaced circle 
on the real axis and their corresponding points in the 
transformed plane. The angle  is the angle formed by the line 
joining the point A (or B) and the origin with the real axis. 

b

a

eb -2b 2bx

y





z plane w plane

z

b
zw

2


A  B BA



25

If lifting flow about the original circle had been imposed, the 
Joukowski transformation would have generated a lifting flow 
about the Joukowski airfoil;
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Although such a flow is mathematically possible, in reality it may 
not be realistic. The stagnation points on the cylinder map to 
stagnation points that are not always realistic. 



26

The only means of making a realistic flow is to impose the Kutta condition 
where the stagnation point is forced to exist at the trailing edge thus making 
the streamlines flow smoothly from this point.

This is done by adjusting the value of vorticity strength , such that the 
stagnation points on the cylinder reside at the cylinder’s intercepts of the real 
axis. In this case, when the cylinder is transformed, one stagnation point will 
be forced to the trailing edge.
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The lift force generated by the lifting flow over the cylinder is proportional to 
the circulation about the cylinder imposed by the added vortex flow according 
to the Kutta-Joukowski relation, L’ = V .

The lifting force on the resulting Joukowski airfoil is not clear.

If the lifting flow about the cylinder is defined as function Q where Q = Q(z) 
in the z plane and Q = Q(w) in the w plane, the velocities in each plane are:
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Since the circulation can be calculated about any closed path, including paths 
very far from the object surface, the circulations must be the same in both 
planes. 
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Clearly, the velocity field very close to the cylinder and its transformed 
counterpart are dissimilar as one would expect.
Farther away from these objects the velocity fields become identical as the 
magnitude of z becomes larger than the constant value of b. 
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The appropriate vortex strength to impose the Kutta condition must be 
determined.

Consider the lifting flow about a cylinder. The velocity in the  direction is
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Since the chord length of the Joukowski airfoil is 4b
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A Joukowski airfoil is formed by displacing a circle of radius 1 by x = -0.08 
(real axis) and y = 0.05 (imaginary axis).

Find:
a) Vortex strength  if  = 0o, and V = 10 m/s
b) CL at  = 0o and  = 10o
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A Joukowski airfoil is formed by displacing a circle of radius 1 by x = -0.08 
(real axis) and y = 0.05 (imaginary axis).

Find:
a) Vortex strength  if  = 0o, and V = 10 m/s
b) CL at  = 0o and  = 10o

x

y


0.05

-0.08

cylinder

stagnation
point

b

 = 4VRsin(+) = 4(10)(1)sin(2.87) = 6.2831

= 0o : CL = 2sin(2.87) = 0.31415

= 10o : CL = 2sin(10 + 2.87) = 1.40
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The thin airfoil theory applies only to thin airfoils at small angles 
of attack.

The advantage of thin airfoil theory is that closed-form 
expressions are obtained for the aerodynamic coefficients. 
Moreover, the results compare favorably with experimental data 
for airfoils of about 12 percent thickness or less.

We need a method that allows us to calculate the aerodynamic 
characteristics of bodies of arbitrary shape, thickness, and 
orientation.

1
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1. Approximate the surface of a given body by a series of panels.
2. Place distributions of singularities (such as sources, vortices 

or doublets) on each panel.
3. The problem is to find the values of the unknown strengths 

of the singularities for the given geometry. Find the unknown 
strengths by solving a linear set of algebraic equations. 

With the aid of panel methods, the requirement to find the 
solution over the entire flowfield (a 3D problem) is replaced 
with the problem of finding the solution for the singularity 
distribution over a surface (a 2D problem).
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Possible differences in panel methods are in:

1. Using various types of singularities (sources, doublets 
and vortices or any combination of them)

2. Using various distributions of singularity strength over 
each panel (zero-, first-, second-order, etc.).

3. Using various panel geometries.

3
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We treat the vortex panel method, which is a numerical technique that 

has come into widespread use since the early 1970s.

The vortex panel method is directly analogous to the source panel method. 
However, because a source has zero circulation, source panels are useful only 
for  nonlifting cases. In contrast, vortices have circulation, and hence vortex 
panels can be used for lifting cases.

The philosophy of covering a body surface with a vortex sheet of such a
strength to make the surface a streamline of the flow was discussed

4
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The above  equation is a linear  algebraic equation  with n unknowns, γ1   , γ2 , 
…, γn  It represents the flow boundary condition evaluated at the control 
point of the ith panel.
If  the equation is applied to the control points of all the panels, we obtain 
a system of n linear equations with n unknowns.

To this point, we have been deliberately paralleling the discussion of the
source panel method; however, the similarity stops here.

9 9
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Replace the derivatives with their values:

11 11
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For the source panel method, the n equations for the n unknown source 
strengths are routinely solved, giving the flow over a nonlifting body. In 
contrast, for the lifting case with vortex panels, in addition to the n equations  
applied at all the panels, we must also satisfy the Kutta condition.

To approximate this numerically, if points i and i - 1 are
close enough to the trailing edge, we can write: 

Such that the strengths of the two vortex panels i and i - 1 exactly 
cancel at the point where they touch at the trailing edge. Thus, in 
order to impose the Kutta condition on the solution of the flow

12 12
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An overdetermined system of  n unknowns with n + 1 equations.

We choose to ignore  one of the control points, and we  have n-1  equation 
the other n - 1 control points. This, in combination with Kutta condition, 
now gives a system of  n linear algebraic equations with n unknowns, which 
can be solved by standard techniques.

The total circulation and the resulting lift are obtained as follows:
Let sj be the length of the jth panel. Then the circulation due to the jth panel 

is         . In turn, the total circulation due to all the panels is

13 13
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Although the method may appear to be straightforward, its numerical
implementation can sometimes be frustrating.

For example,
1- The results for a given body are sensitive to the number of panels used,
their various sizes, and the way they are distributed over the body surface (i.e., it
is usually advantageous to place a large number of small panels near the leading
and trailing edges of an airfoil and a smaller number of larger panels in the
middle).
2-The need to ignore one of the control points in order to have a determined
system in n equations for n unknowns also introduces some arbitrariness in the
numerical solution. Which control point do you ignore? Different choices
sometimes yield different numerical answers for the distribution of y over the
surface.
3- Moreover, the resulting numerical distributions for γ are not always smooth,
but rather, they have oscillations from one panel to the next as a result of
numerical inaccuracies.

14 14
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To overcome the problems: 

The mentioned problems  are usually overcome in different ways.
For example,

1- What is more common today is to use a combination of both source and 
vortex panels (source panels to basically simulate the airfoil thickness and 
vortex panels to introduce circulation) in a panel solution.

2-Higher–order panel method, we have used  first order panel method  in 
which the distribution of  γ is constant along each panel. Other 
distributions for γ may be used. For example  linear distribution of  γ
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Replace the derivatives with their values:
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1. Write down the velocities in terms of contributions from 
all the singularities.

2. Find the algebraic equations defining the influence 
coefficients.

3. Write down flow tangency conditions in terms of the 
velocities (N equations, N+1 unknowns)

4. Write down the Kutta condition equation to get the N+1 
equation.

5. Solve the resulting linear algebraic system of equations
6. Write down the equations for tangential velocity at each 

control point.
7. Determine the pressure distribution from Bernoulli’s 

equation using the tangential velocity on each panel.
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o Most of our previous discussions have dealt with inviscid
flows. A large number of practical aerodynamic applications
are appropriately treated by assuming inviscid flow, as we
have already seen.

o Inviscid flows do not truly exist in nature; however, there
are many practical aerodynamic flows (more than you would
think) where the influence of transport phenomena is small,
and we can model the flow as being inviscid.

o Theoretically, inviscid flow is approached in the limit as the
Reynolds number goes to infinity.
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o Some aspects of aerodynamics are inherently viscous in
nature, such as skin-friction drag, aerodynamic heating and
flow separation.

o To deal with these important aspects, we have to undertake
the study of Viscous Flow.
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o For practical problems, many flows with high but finite Re
can be assumed to be inviscid. For such flows, the influence
of friction, is limited to a very thin region adjacent to the
body surface called the boundary layer.

o The boundary layer is the thin region
of flow adjacent to a surface, where
the flow is retarded by the influence of friction between a
solid surface and the fluid.

o Although the influence of friction is present every point
throughout flow, it is usually of no consequence except in a
thin region adjacent to the surface of a body immersed in the
flow.
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o Consider the viscous flow over a flat plate. The viscous
effects are contained within a thin layer adjacent to the
surface.

o The influence of friction is to
create V=0 right at the plate
surface. This is called the no-slip
condition which dominates
viscous flow.

o Above the surface, the flow velocity increases in y direction
until, for all practical purposes, it equals the freestream
velocity.
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o Consider the viscous flow over a flat plate. The viscous
effects are contained within a thin layer adjacent to the
surface.

o δ (boundary layer thickness)
is defined as that distance above
the wall where u=0.99U; Here,
U is the velocity at the outer edge
of the boundary layer.

o At any x station, the variation of u between y=0 and y= δ,
that is, u=u(y) is defined as the velocity profile.
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o Consider the viscous flow over a flat plate. The viscous
effects are contained within a thin layer adjacent to the
surface.

o The consequence of the
velocity gradient at the wall is
the generation of shear stress
at the wall:
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o With the assumption of an inviscid flow, the integrated
pressure distribution over body would give zero drag!
(d’ Alembert’s paradox)

o The effects of viscosity are to produce two types of drag:
1. Skin-friction drag (Df): The component in the drag

direction of the integral of the shear stress over body.
2. Pressure drag (Dp) due to separation, that is, the

component in the drag direction of the integral of the
pressure distribution over body. Pressure drag is
sometimes called form drag.

3. The sum Df + Dp is called the profile drag of a two-
dimensional body. This is frequently called parasite
drag.
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o Consider the viscous flow over a surface.

• Laminar flow: The path lines of various fluid elements
are smooth and regular.
• Turbulent flow: The motion of a fluid element is very
irregular and tortuous.
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o For the laminar boundary layer over a flat plate, after a
certain distance from the leading edge, instabilities will
appear in the laminar flow.

o The instabilities rapidly grow, causing transition to
turbulent flow.

o For purposes of
analysis, we
frequently model the
Transition region as a
single point, called the
transition point.



17

o Some characteristics which encourage transition from
laminar to turbulent flow, are:

1. Increased surface roughness
2. Increased turbulence in the freestream
3. Adverse pressure gradient
4. Heating of the fluid by the surface



18

Laminar Separation Turbulent Separation
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o Drag coefficient of
laminar and turbulent
boundary layers on
smooth and rough
flat plates:
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o Drag of a streamlined
two-dimensional
cylinder at Rec = 106
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o The importance of streamlining in reducing drag of a body
(CD based on frontal area)
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o Drag of two-dimensional bodies Re>104
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o Drag of two-dimensional bodies Re>104
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o Drag of two-dimensional bodies Re>104
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o Drag of three-dimensional bodies Re>104
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o Drag of three-dimensional bodies Re>104
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o Aerodynamic force on road vehicles
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o Aerodynamics of automobiles
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o Drag reduction of a tractor-trailer truck
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o A great deal of engineering effort goes into designing
immersed bodies to reduce their drag. Most such effort
concentrates on rigid-body shapes.

o A different process occurs in nature, as organisms adapt to
survive high winds or currents. Flexible structure of a tree
allows it to reconfigure in high winds and thus reduce drag
and damage.

o as wind velocity increases, the shape of the tree changes to
offer less
Resistance.



33

o The individual branches and leaves of a tree also curl and
cluster to reduce drag.
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o We assume that skin-friction drag on an airfoil is essentially
the same as the skin-friction drag on a flat plate at zero angle
of attack.

o This approximation becomes more accurate the thinner the
airfoil and the smaller the angle of attack.
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o We first deal with the case of completely laminar flow over
the airfoil (and hence the flat plate)

o There is an exact analytical solution for the laminar
boundary-layer flow over a flat plate.
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o The boundary-layer thickness for incompressible laminar
flow over a flat plate at zero angle of attack is given by

Where

o The local shear stress, integrated over both the top and
bottom surfaces of the flat plate, yields the net friction drag,
Df, on the plate
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o Define the skin-friction drag coefficient for the flow over
one surface as

o The laminar skin-friction drag coefficient is a function of
the Reynolds number

Where Rec is the Reynolds number based on the chord length
c.
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Consider the NACA 2412 airfoil, data for which is given in Figure. The  data are 
given for two values of the Reynolds number based on chord length. For the case  
where Rec = 3.1 x 106 , estimate: 
(a) the laminar boundary layer thickness
at the trailing  edge for a chord 
length of 1.5 m
(b) the net laminar skin-friction drag 
coefficient for the airfoil.

0.0068
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o There are no exact analytical solutions for turbulent flow.

o The analysis of any turbulent flow requires some amount of
empirical data.

o All analyses of turbulent flow are approximate



40

o For incompressible flow over a flat plate, the boundary-
layer thickness is given approximately by

o With regard to skin friction drag, for incompressible
turbulent flow over a flat plate, we have

o Note that, in contrast to the inverse square root variation
with Reynolds number for laminar flow, the turbulent flow
results show an inverse fifth root variation with Reynolds
number
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Consider the NACA 2412 airfoil, data for which is given in Figure. The  data are given 
for two values of the Reynolds number based on chord length. For the case  where 
Rec = 3.1 x 106 , estimate: 
(a) the Turbulent boundary layer thickness
at the trailing edge for a chord 
length of 1.5 m
(b) the net Turbulent skin-friction drag 
coefficient for the airfoil.

0.0068

This result is a factor of five larger than for the laminar 
boundary layer
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o The result for the skin friction drag coefficient in the
previous example is larger than the measured drag
coefficient of the airfoil of 0.0068, which is the sum of both
skin friction drag and pressure drag due to flow separation.
So our result in this example clearly overestimates the skin
friction drag coefficient for the airfoil.
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o In actuality, the boundary layer over a body always starts
out as a laminar boundary for some distance from the leading
edge, and then transits to a turbulent boundary layer at some
point downstream of the leading edge.

o The skin-friction drag is a combination of laminar skin
friction over the forward part of the airfoil, and turbulent
skin friction over the remaining part.
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o The value of x where transition is said to take place is the
critical value xcr . In turn, xcr allows the definition of a critical
Reynolds number for transition as
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o For the NACA 2412 airfoil and the conditions in previous
example, calculate the net skin friction drag coefficient
assuming that the critical Reynolds number is 500,000.
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o Assuming all turbulent flow over the entire length of the
plate, the drag (on one side of the plate) is (Df,c)turbulent where

o The turbulent drag on just region 1 is

o And the turbulent drag just on region 2 is:
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o The laminar drag on region 1 is:

o The total skin-friction drag on the plate, Df, is then

o The total skin-friction drag coefficient is
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o the measured airfoil drag coefficient is 0.0068, which 
includes both skin friction drag and pressure drag due to flow 
separation. The result from Example, therefore, is qualitatively 
reasonable,. giving a skin friction drag coefficient slightly less 
than the measure total drag coefficient.

o We do not know what the critical Reynolds number is for the 
experiments.
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o Repeat  the  example but assuming the critical Reynolds 
number is 1 x 106.
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o Comparing the results from the recent two Examples, we
see that an increase in Recr from 500,000 to 1,000,000 resulted
in a skin friction drag coefficient that is eight percent smaller.
This difference underscores the importance of knowing where
transition takes place on a surface for the calculation of skin
friction drag.

o The result from the last example CF = 0.00582 would
imply that the pressure drag due to flow separation is about 15
percent of the total drag.

o The drag on a streamlined two-dimensional shape is mostly
skin friction drag, and by comparison the pressure drag is
small.
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o The properties of airfoils are the same as the properties of a
wing of infinite span.

o All real airplanes have wings of finite span, and our purpose
is to apply our knowledge of airfoil properties to the analysis
of finite wings.
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o Question: Why are the aerodynamic characteristics of a
finite wing any different from the properties of its airfoil
sections?

 The flow over an airfoil is two-dimensional.

 A finite wing is a three-dimensional body, and
consequently the flow over the finite wing is three-
dimensional; that is, there is a component of flow in the
spanwise direction.
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o The physical mechanism for generating lift on the wing is
the existence of a high pressure on the bottom surface and a
low pressure on the top surface.

o The net imbalance of the pressure distribution creates the
lift.
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o As a by-product of this pressure imbalance, the flow near
the wing tips tends to curl around the tips, being forced from
the high-pressure region just underneath the tips to the low-
pressure region on top.

Low Pressure Low Pressure

High Pressure
High Pressure
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o As a result, on the top surface of the wing, there is generally
a spanwise component of flow from the tip toward the wing
root, causing the streamlines over the top surface to bend
toward the root.

o On the bottom surface of
the wing, there is generally
a spanwise component of
flow from the root toward
the tip, causing the
streamlines over the bottom
surface to bend toward the
tip.
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o The tendency for the flow to "leak" around the wing tips
establishes a circulatory motion that trails downstream of the
wing; that is, a trailing vortex is created at each wing tip.
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o The tip vortices are essentially weak "tornadoes“ that trail
downstream of the finite wing.

o For large airplanes such as
a Boeing 747, these tip vortices
can be powerful enough to
cause light airplanes
following too closely to go
out of control.

o This is one reason for large spacings between aircraft
landing or taking off consecutively at airports.
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o The two vortices tend to drag the surrounding air around
with them, and this secondary movement induces a small
velocity component in the downward direction at the wing.

o This downward component is called downwash, denoted by
the symbol w.
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o The downwash combines with the freestream velocity V∞ to
produce a local relative wind which is canted downward in
the vicinity of each airfoil section of the wing.
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o Defining the profile drag coefficient as

and the induced drag coefficient as

the total drag coefficient for the finite wing CD is given by
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A  general 3-D vortex can take any arbitrary shape. It is subject to 
the Helmholtz’s Vortex Theorems:

1) The strength Г of a vortex filament is constant all along its 
length.
2) The vortex filament cannot end inside the fluid. It must either

a) extend to ±∞, or
b) end at a solid boundary, or
c) form a closed loop.
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The velocity field of a vortex of general shape is given by the Biot-
Savart Law.

The magnetic field strength dB induced at point P by a segment of the wire dl
with the current moving in the direction of dl is

where μ is the permeability
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Consider the semi-infinite vortex filament shown in Figure. The 
filament extends from point A to ∞.
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Wing vortex model

Horseshoe  vortex
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o A vortex filament of strength Γ that is somehow bound to a
fixed location in a flow (bound vortex) will experience a force
L’=ρ∞V∞Γ from the Kutta-Joukowski theorem.

o The bound vortex is in contrast to a free vortex, which
moves with the same fluid elements throughout a flow.
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o Let us replace a finite wing of span b with a bound vortex,
extending from y = -b/2 to y = b/2. Assume the vortex filament
continues as two free vortices trailing downstream from the wing
tips to infinity.
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o Consider the downwash w induced along the bound vortex from -b/2 to b/2
by the horseshoe vortex.

The bound vortex induces no velocity along itself
The two trailing vortices both contribute to the induced velocity.
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The downwash distribution due to the single horseshoe vortex does
not realistically simulate that of a finite wing. A better flow field
model employs multiple distributed horseshoe vortices.
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The figure shows 3 horseshoe vortices on the wing, each with different
length of bound vortex, but with all bound vortices coincident along a
single line. This line is called the Lifting Line.
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The figure shows infinite number of horseshoe vortices superimposed
along lifting line, each with a vanishingly small strength dΓ.
It has a continuous distribution of Γ = Γ(y) along the lifting line.
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fundamental equation of Prandtl's lifting-line theory
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The solution Γ = Γ(y0), gives us the three main aerodynamic characteristics of 
a finite wing, as follows:

1. The lift distribution is obtained from the Kutta-Joukowski theorem:

2. The total lift is obtained by integrating L’(y0) over the span
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The solution Γ = Γ(y0), gives us the three main aerodynamic characteristics of 
a finite wing, as follows:

3. The induced drag per unit span is

Since αi is small, this relation becomes

The total induced drag is obtained by integrating D’i over the span:
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Consider an elliptical spanwise circulation distribution given by:
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As in thin airfoil theory, the mathematical problem is considerably
simplified by making the trigonometric substitution
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Induced angle of attack

Solving above Equation for Γ0, we have

Which allows eliminating Γ0 from the w result to give a somewhat more 
convenient expression
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Induced drag
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Atypical CD(CL) polar plot for one Reynolds number
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The aspect ratio of the 1903 Wright Flyer was 6 and that today the aspect
ratios of conventional subsonic aircraft range typically from 6 to 8.
(Exceptions are the Lockheed U-2 high-altitude reconnaissance aircraft with
AR = 14.3 and sailplanes with aspect ratios as high as 51.
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We have seen that αi, is constant along the span. Hence, αeff = α - αi is also 
constant along the span.

cl must be constant along the span.

The chord must vary elliptically along the span
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General circulation distribution and downwash

This hints that a Fourier sine series would be an appropriate
expression for the general circulation distribution along an
arbitrary finite wing.
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Let us choose N different spanwise stations, and let us evaluate Equation at
each of these N stations. We then obtain a system of N independent algebraic
equations with N unknowns, namely, A1, A2,… , AN.
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The orthogonality property
of the sine functions:
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The leading n = 1 term is the same as the elliptic loading case, with the 
expected uniform induced angle.
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span efficiency

The minimum drag corresponding to elliptic loading, for which  e = 1.
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Note also the strongly non-uniform downwash distribution resulting from this 
distorted loading.
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Induced drag factor δ as a function of taper ratio.
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If we consider two wings with different aspect ratios AR1 and AR2

Assume that the wings are at the same CL
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For historical interest, we reproduce
here Prandtl‘s actual graphs. 
Note that, in his nomenclature,
Ca = lift coefficient and 
Cw =drag coefficient
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The downwash behind any finite wing modifies the wing’s lift slope

Consider the cℓ-angle relation at a typical spanwise location

For a finite wing of general planform,  the equation is slightly modified, as 
given below:

τ is a function of the Fourier coefficients An. Values of  τ typically range 
between 0.05 and 0.25.
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2

First, let us calculate CL  for the wing with aspect ratio 6

The lift slope of this wing is therefore
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The lift slope for the airfoil (the infinite wing) can be obtained

Since the second wing (with AR = 10) has the same airfoil section, then:
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The lift coefficient for the second wing is therefore

The induced drag coefficient is
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Consider an airplane that with αL=0=-2°, the lift slope of the airfoil section is
0.1 per degree, the lift efficiency factor τ = 0.04, and the wing aspect ratio is
7.96. At the cruising condition, the lift coefficient equal to 0.21.
Calculate the angle of attack of the airplane.

The lift slope of the airfoil section in radians is:
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We considered the Beechcraft Baron 58 flying such that the wing is at a 4-degree
angle of attack. The wing of this airplane has an NACA 23015 airfoil at the root,
tapering to a 23010 airfoil at the tip. The data for the NACA 23015 airfoil is
available. The airfoil lift and drag coefficients at α = 4°, namely, cl = 0.54 and cd =
0.0068, Consider the wing of the airplane at a 4-degree angle of attack. The wing
has an aspect ratio of 7.61 and a taper ratio of 0.45. Calculate CL and CD for the
wing.
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Here, cd is the section drag coefficient given in data. Note that in data, cd is
plotted versus the section lift coefficient cl. To accurately read cd from data, we
need to know the value of cl actually sensed by the airfoil section on the finite
wing, that is, the value of the airfoil cl for the airfoil at its effective angle of
attack, αeff. To estimate αeff we will assume an elliptical lift distribution over the
wing. We know this is not quite correct, but with a value of δ = 0.01, it is not
very far off. for an elliptical lift distribution, the induced angle of attack is:
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taking the data at the highest Reynolds 
number shown:
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Consider the most general case of a finite wing of given planform and
geometric twist, with different airfoil sections at different spanwise stations.
Assume that we have experimental data for the lift curves of the airfoil
sections, including the nonlinear regime (i.e., assume we have the conditions
of the following Figure for all the given airfoil sections). A numerical iterative
solution for the finite-wing properties can be obtained as follows:
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1. Divide the wing into a number of spanwise stations, as shown in The 
following Figure. Here k + 1 stations are shown, with n designating any 
specific station.

2. For the given wing at a given a, assume the lift distribution along the span; 
that is, assume values for Γ at all the stations Γ1, Γ2,…, Γn ,… , Γk+1. An 
elliptical lift distribution is satisfactory for such an assumed distribution.
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3. With this assumed variation of  Γ, calculate the induced angle of attack αi at 
each of the stations:

The integral is evaluated numerically. If Simpson's rule is used

where Δy is the distance between stations.
when yn = yj-1, yj, or yj+1, a singularity occurs (a denominator goes to zero). 
When this singularity occurs, it can be avoided by replacing the given term by 
its average value based on the two adjacent sections.

74



75



76



77



Typical results
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An example of the use of the numerical method for the nonlinear regime is shown in 
this figure:

The numerical lifting-line solution at high angle of attack agrees with the experiment to 
within 20 percent, and much closer for many cases.
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Prandtl's classical lifting-line theory gives reasonable results for straight
wings at moderate to high aspect ratio.

For low-aspect-ratio straight wings, swept wings, and delta wings, classical
lifting-line theory is inappropriate.

For such planforms, a more sophisticated model must be used.
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o The VLM represents the wing as a planar surface on which a
grid of horseshoe vortices is superimposed.

o The velocities induced by each horseshoe vortex at a specified
control point are calculated using the law of Biot-Savart.

o A summation is performed for all control points on the wing
to produce a set of linear algebraic equations for the horseshoe
vortex strengths that satisfy the boundary condition of no flow
through the wing.

o The vortex strengths are related to the wing circulation and
the pressure differential between the upper and lower wing
surfaces.
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1. The wing surface is divided into several trapezoidal sub
regions (finite elements or lattices)
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 Place the bound vortex of the horseshoe vortex on the 1/4 chord element
line of each panel.

 Place the control point on the 3/4 chord point of each panel at the
midpoint in the spanwise direction.

2. A horseshoe vortex is placed on each lattice.
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o The velocity induced by a vortex filament of strength Γ and a
length of dl is given by the law of Biot and Savart.

o Since we are interested in the flow field induced by a
horseshoe vortex which consists of three straight segments, let
us use this equation to calculate the effect of each segment
separately.
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o Let AB be such a segment, with the vorticity vector directed
from A to B. Let C be a point in space whose normal distance
from the line AB is rp.

o We can integrate between A and B to
find the magnitude of the
induced velocity:
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The direction of the induced velocity is given by the unit vector:
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o This is the basic expression for the calculation of the induced
velocity by the horseshoe vortices in the VLM. It can be used
regardless of the assumed orientation of the vortices.

o We shall now use this equation to calculate the velocity that is
induced at a general point in space (x, y, z) by the horseshoe
vortex. This horseshoe vortex may be assumed to represent that
for a typical wing panel.
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For the bound vortex, segment AB:
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To calculate the velocity induced by the 
filament that extends from A to ∞:
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Similarly, the velocity induced by the vortex filament that extends from B to ∞
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The velocity  induced at the mth control point by the vortex representing the 
nth panel will be designated as

We have 2N of these equations, one for each of the control points

The strengths of the horseshoe vortices are not known
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φ is the 
dihedral angle

δ is the slope 
of the mean
camber line

The resultant flow is tangent to the wing at each and every control 
point (which is located at the midspan of the three-quarter-chord line 
of each elemental panel). If the flow is tangent to the wing, the 
component of the induced velocity normal to the wing at the control 
point balances the normal component of the free-stream velocity.
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For wings where the slope of the mean camber line is small and
are at small angles of attack, this equation can be replaced by the
approximation:

The tangency requirement yields the relation
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Let us apply these equations to a relatively simple geometry. A 
planar wing (i.e., one that lies in the xy plane),

For a planar wing, z1n = z2n = 0 for all the bound vortices. 
Furthermore, zm = 0 for all the control  points
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Let us apply these equations to a relatively simple geometry. A 
planar wing (i.e., one that lies in the xy plane),

For a planar wing, z1n = z2n = 0 for all the bound vortices. 
Furthermore, zm = 0 for all the control  points
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Note that, for the planar wing, all three components of the vortex 
representing the nth panel induce a velocity at the control point of the 
mth panel which is in 
the z direction 
(i.e., a downwash). 
Therefore, we can 
simplify equations by 
combining the components
into one expression:

Summing the contributions 
of all the vortices to the 
downwash at the control 
point of the mth panel:
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The component of the free-stream velocity perpendicular to the wing
is at any point on the wing. The resultant flow will be tangent
to the wing if the total vortex-induced downwash at the control point
of the mth panel, balances the normal component of the free-stream
velocity:

Since we are considering a planar wing:

For small angles of attack,
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Let us use the relations developed in this section to calculate the lift 
coefficient for a swept wing. So that the calculation procedures can be easily 
followed, let us consider a wing  with a relatively simple geometry. Plot CL-α of 
the wing.
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The wing has an aspect ratio of 5, a taper ratio of unity (i.e., ct = cr). and an 
uncambered section (i.e., it is a flat plate). Since the taper ratio is unity, the 
leading edge, the quarter-chord line, the three-quarter-chord line, and the 
trailing edge all have the same sweep, 45 deg.

For a swept, untapered wing

It is clear that b = 5c. Using this relation, it is possible to calculate all of the 
necessary coordinates in terms of the parameter b. Therefore, the solution 
does not require that we know the physical dimensions of the configuration.
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The flow field under consideration is symmetric with respect to the y=0 plane 
(xz plane); that is, there is no yaw. Thus, the lift force acting at a point on the 
starboard wing (+y) is equal to that at the corresponding point on the port 
wing (-y).

Because of symmetry, we need only to solve for the strengths of the vortices of 
the starboard wing.

We must remember to include the contributions of the horseshoe vortices of 
the port wing to the velocities induced at these control points (of the 
starboard wing).

Tangency condition:

the symbols s and p represent the starboard and 
port wings, respectively
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The planform of the starboard 
wing is divided into four panels, 
each panel extending from the 
leading edge to the trailing edge. 
By limiting  ourselves to only four 
spanwise panels.
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The planform of the starboard 
wing is divided into four panels, 
each panel extending from the 
leading edge to the trailing edge. 
By limiting  ourselves to only four 
spanwise panels.

coordinates of the bound vortices and of the control points of the starboard wing
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The downwash
velocity at the CP of 
panel 1 induced by the 
horseshoe vortex of 
panel 1 of the starboard wing:
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The downwash velocity at 
the CP of panel 1 (of the 
starboard wing) induced by 
I the horseshoe vortex of 
panel 1 of the port wing:
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Similarly, the 
downwash velocity at 
the CP of panel 2 
induced by the 
horseshoe vortex of 
panel 4 of the 
starboard wing:
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Evaluating all of the various components (or influence coefficients), we find that
at control point 1:
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Since it is a planar wing with no dihedral, the no-flow condition of equation 
requires that
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Solving for Γ1, Γ2, Γ3 and Γ4, we find that

the lift acting on the nth panel is

Since the flow is symmetric, the total lift for the wing is
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To calculate the lift coefficient, recall that S = bc and b = 5c for this wing. 

Therefore, 
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where cav is the average chord (and is 
equal to S/b), c is the local chord, and j 
is the index for an elemental panel in 
the chordwise row.
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The theoretical distribution is compared with the
experimentally determined spanwise load
distribution for an angle of attack of 4.2 deg. The
increased loading of the outer wing sections
promotes premature boundary-layer separation
there. This unfavorable behavior is amplified by
the fact that the spanwise velocity component
causes the already decelerated fluid particles in
the boundary layer to move toward the wing tips.
This transverse flow results in a large increase in
the boundary-layer thickness near the wing tips.
Thus, at large angles of attack, premature
separation may occur on the suction side of the
wing near the tip. If significant tip stall occurs on
the swept wing, there is a loss of the effectiveness
of the control surfaces and a forward shift in the
wing center of pressure that creates an unstable,
nose-up increase in the pitching moment.
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Boundary-layer fences are often used to break up the spanwise flow on swept
wings.

The essential effect of the boundary-Iayer fence does not so much consist in
the prevention of the transverse flow but, much more important, in that the
fence divides each wing into an inner and an outer portion.

Both transverse flow and boundary-layer separation may be present, but to a
reduced extent.
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where αi   which is the induced incidence, given by

For a symmetrical loading
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The induced drag coefficient may be calculated using the relation given
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Tornado© VLM code for MATLAB

b/20, b/10

Taper =>  l = 0.3

L = 57 deg

Winglet Geometry
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Aircraft Configuration

dihedral = 4.6o

L1/4 = 20o

l = 0.6



Original Configuration

a = 8o  

L/D = 51



Small Version

11% drag reduction

(7% when compared to an 
extended wing)

8% drag reduction

(4% when compared to an 
extended wing)



Large Version

22% drag reduction

(14% when compared to an 
extended wing)

12% drag reduction

(4% when compared to an 
extended wing)
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o To this point in our aerodynamic discussions, we have been
working mainly in a two-dimensional world; the flows over the
bodies treated so far, involved only two dimensions in a single
plane (planar flows).

o The relative simplicity of dealing with two dimensions is self-
evident and is the reason why a large bulk of aerodynamic
theory deals with two-dimensional flows.

o The two-dimensional analyses go a long way toward
understanding many practical flows, but they also have distinct
limitations.
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o The real world of aerodynamic applications is three-
dimensional. However, because of the addition of one more
independent variable, the analyses generally become more
complex.

o Our purpose is to introduce some very basic considerations of
three-dimensional incompressible flow.
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o For an irrotational flow, there exists a scalar function ϕ such
that

o If the flow is also incompressible, the velocity potential is
given by Laplace's equation

o Solutions of this equation for flow over a body must satisfy the
flow-tangency boundary condition on the body

where n is a unit vector normal to the body surface.
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o ϕ is, in general, a function of three-dimensional space.

 Cartesian coordinates

 Cylindrical coordinates

 Spherical coordinates
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Consider the velocity potential given by

where C is a constant and r is the radial 
coordinate from the origin.

Return to Laplace's equation written in spherical coordinates,
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To evaluate the constant C, consider a sphere of radius r and 
surface S centered at the origin 

r

The volume flow:

λ is defined as the 
strength of the 
source.
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Consider  a  sink  and  source  of  equal  but opposite 
strength located at points O and A

The velocity potential at P is:
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Let the source approach the sink as their strengths become infinite; 
that is, let
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The velocity field depends only on r and θ. Such a flow is 
defined as axisymmetric flow. 
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Consider the flow induced by the three-dimensional doublet. 

Superimpose on this flow a uniform velocity field of magnitude V∞ in 
the negative z direction
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The spherical coordinates of the freestream are:

Combined flow:
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To find the stagnation points in the flow

Hence, there are two stagnation points, both on the z axis,
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The incompressible flow over a sphere of radius R is qualitatively
similar to the flow over the cylinder, but quantitatively different.

On the surface of the sphere, where r = R, the tangential velocity is

The pressure distribution on the surface of the sphere is
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The flow over a sphere is somewhat relieved in comparison with the
flow over a cylinder. The flow over a sphere has an extra dimension in
which to move out of the way of the solid body; the flow can move
sideways as well as up and down. In contrast, the flow over a cylinder is
more constrained; it can only move up and down.

Cylinder Sphere

Location of maximum 
velocity

Maximum velocity 2V∞ 1.5V∞

Maximum pressure 
coefficient 1 1

Minimum pressure 
coefficient -3 -5/4

2


 

2


 
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The qualitative features of the real flow over a sphere are similar to
those discussed for a cylinder (the phenomenon of flow separation, the
variation of drag coefficient with a Reynolds number, the precipitous
drop in drag coefficient when the flow transits from laminar to
turbulent ahead of the separation point at the critical Reynolds number,
and the general structure of the wake).

These items are similar for both cases. However, because of the three-
dimensional relieving effect, the flow over a sphere is quantitatively
different from that for a cylinder.
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The flow over sphere – Re=17.9
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The flow over sphere – Re=25.5

Although it is not obvious, the flow is just to have separated at the rear
at this Reynolds number.
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The flow over sphere – Re=26.8

The flow is clearly separated over the rear of the sphere..
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The flow over sphere – Re=56.5
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The flow over sphere – Re=104
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The flow over sphere – Re=118

The flow is clearly separated over the rear of the sphere.
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The flow over sphere – Re=202
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The flow over sphere – Re=15000
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The flow over sphere – Re=30000 (Turbulent flow. Forced by a trip wire
hoop ahead of the equator, causing the laminar flow to become
turbulent suddenly)

Because the 
flow is 
turbulent, 
separation 
takes place 
much farther 
over the back 
surface of 
sphere.
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Variation of drag coefficient CD with the Reynolds number
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the CD variations are qualitatively
similar, both with a precipitous decrease
in CD near a critical Reynolds number of
300,000, coinciding with natural
transition from laminar to turbulent
flow.
However, quantitatively the two curves
are quite different. In the Reynolds
number range most appropriate to
practical problems, that is, for Re>1000,
the values of CD for the sphere are
considerably smaller than those for a
cylinder-a classic example of the three-
dimensional relieving effect.
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The value of CD for Re slightly less than
the critical value is about 1 and drops to
0.3 for Re slightly above the critical
value. In contrast, for the sphere, CD is
about 0.4 in the Reynolds number range
below the critical value and drops to
about 0.1 for Reynolds numbers above
the critical value.
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Introduction to Three-Dimensional 
Incompressible  Flows

To this point in our aerodynamic discussions, we have been 
working mainly in a two-dimensional world;

Fortunately, the two-dimensional analyses go a long way toward 
understanding many practical flows, but they also have distinct 
limitations.

The real world of aerodynamic applications is three- dimensional. 
However, because of the addition of one more independent 
variable, the analyses generally
become more complex.
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The real world of aerodynamic applications is three-dimensional. 
However, because of the addition of one more independent 
variable, the analyses generally become more complex.

Governing Equation

For flow over a body must satisfy the flow-tangency  boundary 
condition on the body, that is:

φ is, in general, a function of three-dimensional space
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Some  elementary three-dimensional 
incompressible flows

THREE-DIMENSIONAL SOURCE

Consider the velocity potential given by

where C is a constant and r is the 
radial coordinate from the origin.

Return to Laplace's equation written in spherical coordinates,
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To evaluate the constant C

r

The volume flow:

λ is defined as the strength of the source.
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THREE-DIMENSIONAL   DOUBLET

Consider  a  sink  and  source  of  equal  but 
opposite strength located at points O and A

The velocity potential at P is:
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The velocity field depends only on r and θ. Such a flow is 
defined as  axisymmetric flow. 
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FLOW OVER A SPHERE

The superposition of a uniform flow and a three-dimensional 
doublet.
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The spherical coordinates of the freestream are:

combined flow:
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To find the stagnation points in the flow

Hence, there are two stagnation points, both on the z axis,
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This is precisely the flow-tangency condition for flow over a 
sphere of radius R.
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r= R
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The maximum velocity occurs at the top and bottom points of 

the sphere, and its magnitude is( 3/2)V∞.

For the two-dimensional flow, the maximum

velocity is 2V∞.

Three-dimensional relieving effect
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The pressure distribution on the surface of the 
sphere:
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GENERAL THREE-DIMENSIONAL FLOWS:
PANEL TECHNIQUES

Three-dimensional, inviscid, incompressible flows are almost 
always calculated by means of numerical panel techniques.

The general idea behind all 3 D panel methods is to cover

the three-dimensional body with panels over which there is

an unknown distribution of singularities (such as point

sources, doublets, or vortices).

For a nonlifting body such as illustrated in  the following figure, 
a distribution of source panels is sufficient. However, for a 
lifting body, both source and vortex panels (or their equivalent) 
are necessary.
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Panel distribution for the analysis of the Boeing 747 carrying the 
space shuttle orbiter. 
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APPLIED AERODYNAMICS: THE FLOW OVER
A SPHERE—THE REAL CASE

turbulent BL

narrow 

turbulent 

wake
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Tripping the boundary layer

 Here we see how the addition of 
a trip wire to induce transition to 
turbulence changes the 
separation line further to the 
rear of the sphere, reducing the 
size of the wake and thus 
drastically diminishing overall 
drag.

 This well-known fact can be 
taken advantage of in a number 
of applications, such as dimples 
in golf balls and turbulence 
generation devices on airfoils.



Sports balls

 Many games involve balls 

designed to use drag reduction 

brought about by surface 

roughness. 

 Many sports balls have some 

type of surface roughness, 

such as the seams on 

baseballs or cricket balls and 

the fuzz on tennis balls. 

 It is the Reynolds number (not 

the speed, per se) that 

determines whether the 

boundary layer is laminar or 

turbulent. Thus, the larger the 

ball, the lower the speed at 

which a rough surface can be 

of help in reducing the drag. 

 Typically sports ball games that 
use surface roughness to promote 
an early transition of the boundary 
layer from a laminar to a turbulent 
flow are played over a Reynolds 
number range that is near the 
“trough” of the Cd versus Re curve, 
where drag is lowest. 


