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This chapter serves as a self-contained reference on:

- The kinematics & dynamics

- Some basic vector operations

- Rotation and concepts which will be used in the 

following lectures.

1.1 INTRODUCTION
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This chapter serves as a self-contained reference on:

- The kinematics & dynamics

- Some basic vector operations

- Rotation and concepts which will be used in the 

following lectures.



We will review

- The curvilinear motion of particles in three 

dimensions

- The concepts of force and mass

- The Newton's law of gravitation (Newton's second 

law of motion)

- The formulas for calculating the time  derivatives of 

moving vectors. (the computation of relative velocity 

and acceleration).
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To track the motion of particle P through  space we 

need a frame of reference consisting of a clock and a 

cartesian coordinate system.

Clock 

xyz axes 

In non-relativistic mechanics, a single 

“universal” clock serves for all coordinate systems.

Unit of time 

Unit of length
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track of time t

location of the particle

To track the motion of particle P through  space we 

need a frame of reference consisting of a clock and a 

cartesian coordinate system.

Clock 

xyz axes 

In non-relativistic mechanics, a single 

“universal” clock serves for all coordinate systems.

Unit of time 

Unit of length

location of the particle

[s]

[m] or [km  ]



The position of the particle 

P at a time t is defined by 

the position vector r(t )
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:ˆ,ˆ,ˆ kji the unit vectors

 The distance of P from the 

origin

:rr  magnitude or length of r

We know



The velocity v and acceleration a of the particle:

1-DYNAMIC OF POINT MASSES1-DYNAMIC OF POINT MASSES
KINEMATICSKINEMATICS

 The locus of point that a particle occupies as it moves 

through space is called its path, or trajectory.

The path is a straight line

The path is curved

motion is rectilinear

motion is curvilinear



The velocity vector v is tangent to the path:
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unit vector tangent to the trajectory:ˆ
tU

: the magnitude of the velocity v.: the magnitude of the velocity v.

The distance that P travels along its path in the time 

interval ds:

 In other words

 Note that 

(the magnitude of the derivative of r the derivative of the magnitude of r)



The position vector as a  function of time is:

EXAMPLE 1.1

1-DYNAMIC OF POINT MASSES1-DYNAMIC OF POINT MASSES

At  t =10s, calculate v and   , r

t=10 v=1953.3 s
m

t =10  =1935.5 r
s

m



If v is given, then we can find the components of the 

unit tangent     in the cartesian coordinate frame of 

reference 
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tÛ

The acceleration may be written

Where 



the radius of curvature
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:

:ˆ
tU the unit tangent

:ˆ
nU

:/ pcr

:ˆ
bU unit normal to the osculating plane

the position of C

relative to P npc Upr ˆ

the unit principal

ntb uuU ˆˆˆ 



The center of curvature 

lies in the osculating 

plane

When the particle P

moves a distance ds the 

vector r sweep out angle 
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The center of curvature 

lies in the osculating 

plane

When the particle P

moves a distance ds the 

vector r sweep out angle 

d



Relative to a Cartesian coordinate system, the position, 

velocity and acceleration of a particle relative at a given 

instant are: 

EXAMPLE 1.2
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Find the coordinate of the center of curvature at that 

instant.
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229.4
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The coordinate of C are:
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Two men, Tycho Brache and Johan Kepler, laid the 

groundwork for Newton’s greatest discoveries, 50 

years later than his birth. (1592)

 Tycho, was recording accurate data on the position of 

the planets.

Kepler by using the Tycho’s data found and published 

his three law of planetary motion (1601- 1619)
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 Tycho, was recording accurate data on the position of 

the planets.

Kepler by using the Tycho’s data found and published 

his three law of planetary motion (1601- 1619)

KEPLER’S LAWS



 Still, Kepler’s laws were only a description not an 

explanation of planetary motion.

 The 23- year-old Newton conceived the law of gravitation, 

the laws of motion and developed the fundamental 

concepts of differential calculus. (1665- 1666)

 Newton publish his discoveries some 20 years later!, in 

book “The Mathematical Principles of Natural 

Philosophy” or more simply “ The Principia” (1687)

 In book I of the principle Newton introduces his three laws 

of motion:
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 The second law 

can be expressed 

mathematically as 

follows:
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 The second law 

can be expressed 

mathematically as 

follows:

The vector sum of all forces acting on the mass

The vector acceleration of the mass measured relative to an inertial 

reference from 

:F

:rm 

(1)



Newton formulated the 

law of gravity by stating 

that  any two bodies attract 

one another with a force 

proportional to the product 

of their masses and 

inversely proportional to 

the square of the distance 

between them:
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Newton formulated the 

law of gravity by stating 

that  any two bodies attract 

one another with a force 

proportional to the product 

of their masses and 

inversely proportional to 

the square of the distance 

between them:

The force on mass m due to mass M

` The vector from M to m

The universal gravitational constant

:gF

:r

2

3
11

.
106742.6:

skg
mG 

(2)



 Mass, like length and time is a primitive physical 

concept

 It can’t be defined in terms of any other physical 

concept.

 Mass is simply the quantity of matter.

 More practically, mass is a measure of the inertia of a 

body.

 Inertia in an object’s resistance to changing its state 

of motion.
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 Mass, like length and time is a primitive physical 

concept

 It can’t be defined in terms of any other physical 

concept.

 Mass is simply the quantity of matter.

 More practically, mass is a measure of the inertia of a 

body.

 Inertia in an object’s resistance to changing its state 

of motion.

 The unit of mass is “Kg”

inertia

inertia

mass

mass



 Force is the action of one physical body on another, 

either through direct contact or through a distance

 Gravity is an example of force acting through a 

distance.

 The gravitational force between two masses      and      

having a distance r between their centers is: 

(Newton’s law of gravity)

1m
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2m

 Force is the action of one physical body on another, 

either through direct contact or through a distance

 Gravity is an example of force acting through a 

distance.

2

21

r

mm
GFg 

G: universal gravitational constant

 The force of gravity is too small unless at least one of 

the masses is extremely big.

 The gravitational force between two masses      and      

having a distance r between their centers is: 

(Newton’s law of gravity)

1m

(3)

2m



 The force of a large mass (such as the earth) on a 

mass many orders of magnitude smaller (such as a 

person) is called weight.

 The weight of the small body is:
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 The force of a large mass (such as the earth) on a 

mass many orders of magnitude smaller (such as a 

person) is called weight.

 The weight of the small body is:

22

)
(
r

GM
m

r

Mm
GW 

mgW 

2r

GM
g 

)/(: 2smg acceleration of gravity

(4)

(5)



 If planetary gravity is the only force acting on a body 

the body is said to be in free fall.

 In free fall, the are no contact forces, so there can be 

no sense of weight.

 Even though the weight is not zero, a person in free 

fall experiences weightlessness, or absence of 

gravity.
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 If planetary gravity is the only force acting on a body 

the body is said to be in free fall.

 In free fall, the are no contact forces, so there can be 

no sense of weight.

 Even though the weight is not zero, a person in free 

fall experiences weightlessness, or absence of 

gravity.

kmRE 6378
20

ER

GM
g 

20

ER

GM
g 

2

0 807.9 smg 

(6)



 Measurement's show that a altitudes on the order of 10 

kilometers g is only three-tenths of a percent (%0.3) less 

than its sea-level value.

 Thus under ordinary conditions, we ignore the variation 

of g with altitude.

)5(),6( (8)

2-NEWTON’S LAW OF GRAVITATION2-NEWTON’S LAW OF GRAVITATION

 Measurement's show that a altitudes on the order of 10 

kilometers g is only three-tenths of a percent (%0.3) less 

than its sea-level value.

 Thus under ordinary conditions, we ignore the variation 

of g with altitude.

 At space station altitude (300km), weight is only about 

10 percent less than it is on the earth’s surface



 Show that in the absence of an atmosphere, the shape 

of a low altitude ballistic trajectory is a parabola. 

Assume the acceleration of gravity g is constant and 

neglect the earth’s curvature

EXAMPLE 2.1

2-NEWTON’S LAW OF GRAVITATION2-NEWTON’S LAW OF GRAVITATION

 Show that in the absence of an atmosphere, the shape 

of a low altitude ballistic trajectory is a parabola. 

Assume the acceleration of gravity g is constant and 

neglect the earth’s curvature



EXAMPLE 2.1EXAMPLE 2.1

Time of launched

speed

Flight path angle

:0t

:0v
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Solution:

Since the projectile is in free fall after launch, its only 

acceleration is that of gravity in the negative y-direction

Flight path angle:0



 Integrating with respect to time and applying the 

initial conditions leads to:

(a)

(b)

2-NEWTON’S LAW OF GRAVITATION2-NEWTON’S LAW OF GRAVITATION
EXAMPLE 2.1EXAMPLE 2.1

 Solving (a) for t and substituting the result into (b) 

yields.

(b)



An airplane flies a 

parabolic trajectory so 

that the passengers will 

experience free fall 

(weightlessness)

EXAMPLE 2.2
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An airplane flies a 

parabolic trajectory so 

that the passengers will 

experience free fall 

(weightlessness)

What is the required 

variation of the flight 

path angle    with speed   ?



Solution:
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 For “flat” earth 

We have had:

 dd    

 The normal acceleration     is just the component of 

the gravitational acceleration g then:

na

(g)

(a)

v 



 Substituting             into (a) and solving for the radius 

of curvature yields: 

(b)
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

2v
an 

 Combining equations (g) and (b) we find:

(b)



 Force is not primitive concept like mass because it is 

connected with the concepts of motion and inertia

 The only way to alter the motion of a body is to * 

exert a force on it.

 If the resultant or net force on a body of mass m is, 

then
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 Force is not primitive concept like mass because it is 

connected with the concepts of motion and inertia

 The only way to alter the motion of a body is to * 

exert a force on it.

 If the resultant or net force on a body of mass m is, 

then maFnet  (10)



 The integral of a force F over a time interval is called 

the impulse I of the force.

(11)

(10) , (11) (12)
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 That is the net impulse on a body yields a change

in its liner momentum so that:vm

(13)

 If       is constant, then  netF tFI netnet 

 So, equation (13) becomes:

(14)



 The moment of the net 

force about O is
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 If  the mass m is 

constant:



 Since , so

Where      is the angular momentum about O

(15)

oH

(16)

(17)
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(17)

 Thus, just as the net force on a particle changes its 

linear momentum mv, the moment of that force about 

a fixed point changes the moment of its linear 

momentum about that point.

 The integral on the left is the net angular impulse 

(18)



 A particle of mass m is attached to point O by an 

inextensible string of length l. initially the string is slack 

when m is moving to the left with a speed     in the 

position shown. Calculate the speed of m just after the 

string becomes taut. Also, compute the average force in 

the string over the small time interval   

required to change the direction of the particle’s motion.

EXAMPLE 2.3

0v
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 A particle of mass m is attached to point O by an 

inextensible string of length l. initially the string is slack 

when m is moving to the left with a speed     in the 

position shown. Calculate the speed of m just after the 

string becomes taut. Also, compute the average force in 

the string over the small time interval   

required to change the direction of the particle’s motion.t



EXAMPLE 2.3EXAMPLE 2.3

 Initially, the position  and velocity of the particle are

 The angular momentum is
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(a)

 Just  after the string becomes taut

Initially the force exerted on m by the slack string is zero.  When the string 

becomes taut, the force exerted on m passes through O, therefore , the 

moment of the net force on m about O remains zero. 

 And the angular momentum is

(b)

(c)



 Substituting (a) and (c) yields

 The string is inextensible, so the component of the velocity of m 

along the string must be zero

2-NEWTON’S LAW OF GRAVITATION2-NEWTON’S LAW OF GRAVITATION
EXAMPLE 2.3EXAMPLE 2.3

(d)

 Substituting       and      from (b) and  solving for        we get

thus, the speed, ,after the string becomes taut is

 Solving (d) and (e) for     and     leads to

2v 2r y

x y

(e)

(f)



 From equation 12, the impulse on m during the time it takes 

the string  become taut is
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 The magnitude of this impulse, which is directed along the 

string, is

 Hence, the average force in the string during the small time 

interval     required to change the direction of the velocity vector 

turns out to be 

t
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Now that we have a general expression for the 

relative motion of two bodies perturbed by other 

bodies it would be a simple matter to reduce it to an 

equation for only two bodies.

 There are two assumptions we will make with regard 

to our model:

1- The bodies are spherically symmetric (Note 3-page11-{2})

2- There are no external non internal forces acting on the 

system other than the gravitational forces (Note 4-page12-{2})
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Now that we have a general expression for the 

relative motion of two bodies perturbed by other 

bodies it would be a simple matter to reduce it to an 

equation for only two bodies.

 There are two assumptions we will make with regard 

to our model:

1- The bodies are spherically symmetric (Note 3-page11-{2})

2- There are no external non internal forces acting on the 

system other than the gravitational forces (Note 4-page12-{2})



 (Note 5 Page12 {2})

 Consider the system of two 

bodies of mass M and m

 Let    be an 

internal set of rectangular 

cartesian coordinates.

4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM

),,( zyx 

 Let be a set of nonrotating coordinates parallel to

and having an origin coincident with the body 

of mass M. 

 The position vectors of the bodies M and m are    and      .

 (Note 5 Page12 {2})

 Consider the system of two 

bodies of mass M and m

 Let    be an 

internal set of rectangular 

cartesian coordinates.

),,( zyx

),,( zyx 

Mr mr



 We have defined 
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 By applying Newton’s laws 

in the inertial frame 

we will obtain:

),,( zyx 

 By applying Newton’s laws 

in the inertial frame 

we will obtain:

),,( zyx 



 The above equations may be written:

4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM

 Subtracting equation (2) from (1) we have

(1)

(2)

 The above equations may be written:

 Subtracting equation (2) from (1) we have

Mm rrr  

(3)

 Equation (3) is the vector differential equation of the 

relative motion for the two-body problem. (Note 6 

Page13 {2})



 Since our efforts will be devoted to studying the 

motion of satellites . Ballistic missiles or space probes 

orbiting about some planet or the sun, Hence we see 

that:
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 It is convenient to define a parameter     ,called the 

gravitational parameter as:

 Then the equation 3 becomes:

(4)





 Equation(4) is the  two-body equation of motion 

 Remember the results obtained from equation(4) will be 

only as accurate as the assumptions (1),(2) and the 

assumption that 

 If m is not much less than M.

then must be used in place of 

4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM

(4)

 Equation(4) is the  two-body equation of motion 

 Remember the results obtained from equation(4) will be 

only as accurate as the assumptions (1),(2) and the 

assumption that 

 If m is not much less than M.

then must be used in place of 



 will have a different value for each major 

attracting body

4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM





4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM

 Above figure shows two point masses acted upon only by the 

force of gravity between them. (Note 7. P 34.{1})

 The position vector    of the center of mass   of the system is 

defined by the formula:

 Therefore the absolute velocity and the absolute acceleration 

of      are: (Note 8. P 35.{1})

Equations of motion in an inertial frame:

 Above figure shows two point masses acted upon only by the 

force of gravity between them. (Note 7. P 34.{1})

 The position vector    of the center of mass   of the system is 

defined by the formula:

 Therefore the absolute velocity and the absolute acceleration 

of      are: (Note 8. P 35.{1})

GR G

(1)

G

(2)

(3)
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 Let r be the position vector      relative to    , then:2m 1m

(4)

 Furthermore, let    be the unit vector pointing from

towards      , so that

rû 1m

2m (5)

 Furthermore, let    be the unit vector pointing from

towards      , so that (5)

 Where              the magnitude of rrr 

 The gravitational attraction force exerted on    by    is 2m 1m

(6)

Note 9. P 36.{1}



4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM

 Newton’s second law of motion as applied to body      is 

, where     is the absolute acceleration of 

thus: 

(7)

 By Newton’s third law                   , so that for      we have

2m

2m

 By Newton’s third law                   , so that for      we have

 Equations (7) and (8) are the equations of motion of the two 

bodies in inertial space

(8)

1m



 According to Equ.(3), that means the acceleration of the 

center of mass G of the system of two bodies     and     is zero.

 G moves with a constant velocity      in a straight lines, so that 

its position vector relative to XYZ given by

4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM

 By adding each side of these equations together we find:

1m 2m

GV

 According to Equ.(3), that means the acceleration of the 

center of mass G of the system of two bodies     and     is zero.

 G moves with a constant velocity      in a straight lines, so that 

its position vector relative to XYZ given by

(9)

GV

 Where      is the position of G at time        

 The center of mass of a two-body system may therefore serve 

as the origin of an inertial frame.

0G
R 0t



4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM

Use the equations of motion to show why orbiting astronauts 

experience weightlessness.

Example

Solution:

 We sense weight by feeling the contact forces that developed 

wherever our body is supported.

 Consider an astronaut of mass       strapped into the space 

shuttle of mass       in orbit about the earth.

 The distance between the center of the earth and spacecraft is 

r, and the mass of the earth is  

 Sense the only external force on the space shuttle is that of 

gravity        the equation of motion of the shuttle is:

Solution:

 We sense weight by feeling the contact forces that developed 

wherever our body is supported.

 Consider an astronaut of mass       strapped into the space 

shuttle of mass       in orbit about the earth.

 The distance between the center of the earth and spacecraft is 

r, and the mass of the earth is  

 Sense the only external force on the space shuttle is that of 

gravity        the equation of motion of the shuttle is:

Am

Sm

Em

(a)



4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM

 According to equation (6) 

EXAMPLEEXAMPLE

(b)

:ˆ
ru is the unit vector pointing outward from the earth to space shuttle. 

 Thus (a) and (b) imply: Thus (a) and (b) imply:

(c)

 The equation of motion of the astronaut is:

(d)

:)gAF the weight of the astronaut

:AC the net contact force on the astronaut from restraints (seat, seat belt…)

:Aa the astronaut’s acceleration.



4-THE TWO-BODY PROBLEM4-THE TWO-BODY PROBLEM

 According to Equ.(6) 

EXAMPLEEXAMPLE

(e)

 Since the astronaut is moving with the shuttle we have:

(f)

 Substituting (e) and (f) into (d) yields:

 From which it is clear that 0AC
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In this section we shall explain the motion of a body 

which is being acted upon by several gravitational 

masses and may even be experiencing other forces 

such as drag, thrust and solar radiation pressure.

 For this we shall assume a “system” of n-bodies

One of these bodies is the body whose motion we 

wish to study-call it the      body, 

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

In this section we shall explain the motion of a body 

which is being acted upon by several gravitational 

masses and may even be experiencing other forces 

such as drag, thrust and solar radiation pressure.

 For this we shall assume a “system” of n-bodies

One of these bodies is the body whose motion we 

wish to study-call it the      body, 

),...,,,( 321 nmmmm
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 The vector sum of all 

gravitational forces and 

other external forces acting 

on  will be used to 

determine the equation of 

motion

 To determine the 

gravitational forces we 

shall apply Newton’s law 

of universal gravitation. 

(Note1,page5,{2})

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

im

 The vector sum of all 

gravitational forces and 

other external forces acting 

on  will be used to 

determine the equation of 

motion

 To determine the 

gravitational forces we 

shall apply Newton’s law 

of universal gravitation. 

(Note1,page5,{2})



 The first step in our analysis will be to choose a 

“suitable” coordinate system. This system is 

illustrated below:

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

 In (X,Y,Z) coordinate 

system, the position of 

the n masses are known 

 The first step in our analysis will be to choose a 

“suitable” coordinate system. This system is 

illustrated below:

 In (X,Y,Z) coordinate 

system, the position of 

the n masses are known 

),...,,( 21 nrrr



The  force     exerted on    by   is: (Newton’s law of 

universal gravitation)

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

gnF im nm

(1)

(2)

 The vector sum,     , of all gravitational forces acting 

on the     body may be written:
gF

thi

(3)

 Since the body cannot exert a force on itself 

obviously, equation (3) does not contain the term:

(4)



We may simplify the 

equation No3 by using 

the summation notation 

so that

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

(5)(5)

 The other external 

force,        , is 

composed of drag, 

thrust, solar radiation 

pressure, perturbations 

due to nonspherical

shapes, etc.

OTHERF



 The combined force acting on the     body we will call 

 By applying the Newton’s second law of motion, we 

will have

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

thi

TOTALF

(6)

 The time derivative may be expanded to:

 By applying the Newton’s second law of motion, we 

will have

(7)

(8)



 If the body is expelling some mass, (for example to 

produce thrust) the second term of equation(8) would 

not be zero.

 Certain relativistic effects would also give rise to 

changes in the mass       as a function of time.

 In other words, in space dynamics, it is not true that 

F=ma.

 Dividing through by the mass      gives the most 

general equation of motion for the      body

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

im

 If the body is expelling some mass, (for example to 

produce thrust) the second term of equation(8) would 

not be zero.

 Certain relativistic effects would also give rise to 

changes in the mass       as a function of time.

 In other words, in space dynamics, it is not true that 

F=ma.

 Dividing through by the mass      gives the most 

general equation of motion for the      body

im

im

thi

(9)



The vector acceleration of the     body relative to the 

x,y,z coordinate system.

The mass of     body

The vector sum of all gravitational forces and all 

other external forces.

The velocity vector of the     body relative to the x,y,z

coordinate system.

The time rate of change of mass of the      body (due to 

expelling mass or relativistic effects) 

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

thi

thi

:ir

:im

:TOTALF

The vector acceleration of the     body relative to the 

x,y,z coordinate system.

The mass of     body

The vector sum of all gravitational forces and all 

other external forces.

The velocity vector of the     body relative to the x,y,z

coordinate system.

The time rate of change of mass of the      body (due to 

expelling mass or relativistic effects) 

thi

thi

:ir

:im



 Equation (9) is a second order, nonlinear vector, 

differential equation of motion which has defied 

solution in its present form.

 So we make some simplifying assumptions:

1- The mass of the     body remains constant (i.e., 

unpowered flight           )

2- The all other external forces are not present 

3- is an earth satellite and is the earth. The 

remaining masses may be  the moon, 

sun and planets. 

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

 Equation (9) is a second order, nonlinear vector, 

differential equation of motion which has defied 

solution in its present form.

 So we make some simplifying assumptions:

1- The mass of the     body remains constant (i.e., 

unpowered flight           )

2- The all other external forces are not present 

3- is an earth satellite and is the earth. The 

remaining masses may be  the moon, 

sun and planets. 

thi

0im

0OTHERF
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 From the first 2 assumptions we will write equation 9 

in the following form:

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

(10)

 By using the 3 assumption for i=1 we will have  By using the 3 assumption for i=1 we will have 

(11)

 And for i=2 equation 10 becomes 

(12)



 From equation 2 we see that:

(13)

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

 So that:

(14)

 Substituting equations (11) and (12) into equation 

(14) gives:

 Substituting equations (11) and (12) into equation 

(14) gives:

(15)

 Or expanding 

(16)



 Since                       we may combine the first terms in 

each bracket. Hence:

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

(17)(17)



 If we are going to study the motion of a near earth 

satellite, so we could assume that,      is the mass of 

the satellite and     is the mass of the earth. In 

equation (17).

 Then from equation (17)    is the acceleration of the 

satellite relative to earth.

 The effect of the last term of equation (17) is to 

account for the perturbing effects of the moon, sun 

and planets on a near earth satellite.

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM

2m

1m

 If we are going to study the motion of a near earth 

satellite, so we could assume that,      is the mass of 

the satellite and     is the mass of the earth. In 

equation (17).

 Then from equation (17)    is the acceleration of the 

satellite relative to earth.

 The effect of the last term of equation (17) is to 

account for the perturbing effects of the moon, sun 

and planets on a near earth satellite.

12r



 To further simplify this equation it is necessary to 

determine the magnitude of the perturbing effects 

compared to the force between earth and satellite. 

(note no2 , page11 {2})

3-THE N-BODY PROBLEM3-THE N-BODY PROBLEM
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The angular momentum of      relative to     is:

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

2m 1mThe angular momentum of      relative to     is:1m

The velocity of        relative to 2m 1m

 Let us divide this equation through by    and let , so   

that

h: the relative momentum of          per unit mass  (the specific relative 

angular momentum), 

2m










s

km 2

2m

(1)

(2)



 Taking the time derivative of h yields:

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

According to previous lecture 

(3)

According to previous lecture 

 So that: 

 Therefore:

(4)



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

The unit vector normal to the plane

The path of       around      lies in a 

single plane

 At any given time, the position vector r and the 

velocity vector     lie in the same plane

 Their cross product            is perpendicular to that 

plane

:ĥ

1m2m

(5)



 Let us resolve the relative velocity vector    into 

components    and    along the outward radial from                                                        

and perpendicular to it:

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

We can write equation (2) as:

 That is:

 The angular momentum depends only on the azimuth 

component of the relative velocity.

(6)



 During the differential time interval dt the position vector r 

sweeps out area dA

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

 From the figure it is clear that triangular area dA is given by:

 Therefore, using equation (6) we have:

 According to (7) areal velocity is constant kepler’s second law 

(equal area) are swept out in equal times (1571-1630)

:areal velocity

(7)



 Now, we are going to integrate the equation of 

motion of      relative to     :

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

 Before that, recall several useful vector identities :

(8)

 Before that, recall several useful vector identities :

(9)

(10)

(11)

(12)



 Now let us take the cross product of both sides of 

equation (8) with the specific angular momentum h:

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

Since: 

so the left hand side of equation (13) can be written:

(13)

Since: 

so the left hand side of equation (13) can be written:

 But we have had            (Equ.4), so finally the left 

hand side of equation (13) can be written as: 

(14)



 The right- hand side of equation (13) can be 

transformed by the following sequence of substitutions: 

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

 But

 Therefore 

(15)



 Substituting equation (15) , (14) into Equation (13) 

we get:

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

or

Where the vector C is an arbitrary constant of 

integration having the dimensions of 

Equation (16) is the first integral of the equation of 

motion 

or

that is:

(16)



 Taking the dot product of both sides of equation (16) 

with the vector h yields: 

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

&

&

Since  h is normal to the orbital plane so C must lie in 

the orbital plane.

&

&



 Let us rearrange equation (16) and write it as: 

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

: The dimensionless vector “eccentricity” 

The line defined by the vector e commonly called the 

apse line.

 In order to obtain a scalar equation, let us take the dot 

product of both sides of equation (17) with r

(17)

The line defined by the vector e commonly called the 

apse line.

 In order to obtain a scalar equation, let us take the dot 

product of both sides of equation (17) with r

(19)

(18)

(20)



 Substituting expressions (19), (20) in (18) yields:

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

(Note7, P46, {1})

 In

 substituting this expression into equation (21), we get

(21)

 In

 substituting this expression into equation (21), we get

or

(22)

(23)



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

e: The magnitude of the eccentricity vector e 

: is the true anomaly (the angle between the fixed vector e and the 

variable position vector r. (other symbols used to represent true 

anomaly include            , …. ) 



This is the orbit equation, and it defines the path of the 

body       around     , relative to    .

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

(23)

This is the orbit equation, and it defines the path of the 

body       around     , relative to    .

Since the orbit equation describes conic sections 

including ellipses, it is a mathematical statement of 

Kepler’s first law, namely, that the planets follow 

elliptical around the sun.

 Two- body orbits are often referred to as Keplerian

orbits.

0&tan,,Re*  etsconsehmember 



 Integration of the equation of relative motion, leads to 

six constants of integration.

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

In this section it would seem that we have arrived at 

those constants, namely the three components of the  

angular momentum h and the three components of the 

eccentricity vector e.

 However  we showed that h is perpendicular to e. this 

places a condition, namely h.e=o, on the components of 

h and e, so that we really have just five independent 

constants of integration. (Note8,P47,{1})

In this section it would seem that we have arrived at 

those constants, namely the three components of the  

angular momentum h and the three components of the 

eccentricity vector e.

 However  we showed that h is perpendicular to e. this 

places a condition, namely h.e=o, on the components of 

h and e, so that we really have just five independent 

constants of integration. (Note8,P47,{1})



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

 The angular velocity of 

the position vector r is  ,  

the rate of change the true 

anomaly. 

The component of 

velocity normal to the 

position vector is found in 

terms of the angular 

velocity by the formula

 The angular velocity of 

the position vector r is  ,  

the rate of change the true 

anomaly. 

The component of 

velocity normal to the 

position vector is found in 

terms of the angular 

velocity by the formula

 Substituting this into equation             yields the 

specific angular momentum in terms of the angular 

velocity.

(24)

(25)



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

 It is convenient to have formulas 

for computing the radial and 

azimuth components of  velocity.

For azimuth components we 

have:

 It is convenient to have formulas 

for computing the radial and 

azimuth components of  velocity.

For azimuth components we 

have:

 For radial components we will have
(*)

(*)

(26)

(27)



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

 From  equation:

 we see that       comes closest to    

(r is smallest) when           

(unless           , in which case the 

distance between       and      is 

constant) 

The point of closest approach lies on the apse line and is 

called periapsis.

 The distance      to periapsis is: 

 we see that       comes closest to    

(r is smallest) when           

(unless           , in which case the 

distance between       and      is 

constant) 

 at periapsis

(28)



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

: Flight path angle

 is the angle that the 

velocity vector v makes 

with the normal to the 

position vector.

 the normal to the 

position vector points in the 

direction of     , and it is 

called the local horizon.

 It is clear that:

 is the angle that the 

velocity vector v makes 

with the normal to the 

position vector.

 the normal to the 

position vector points in the 

direction of     , and it is 

called the local horizon.

(29)



 Substituting       and      we will have:

7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

 the trajectory described by the orbit equation is symmetric 

about the apse line. Why? 

 because 

 Chord: the straight line 

connecting any two points 

on the orbit

 The latus rectum: the 

chord through the center of 

attraction perpendicular to 

the apse line.

(30)

 Chord: the straight line 

connecting any two points 

on the orbit

 The latus rectum: the 

chord through the center of 

attraction perpendicular to 

the apse line.

 parameter P: two equal parts divided by the center of 

attraction on the latus rectum.

Note:9,P50,{1})(31)



(Note:10,P50,{1})

 Let us see what result from taking the dot product of 

equation: 

8- THE ENERGY LAW8- THE ENERGY LAW

We will do it with the relative linear momentum per 

unit mass. 

 The relative linear momentum per unit mass is just 

the relative velocity:

(*)

We will do it with the relative linear momentum per 

unit mass. 

 The relative linear momentum per unit mass is just 

the relative velocity:

 Thus, carrying out the dot product in the above 

mention equation (*) yields:

(1)



For the left hand side we observe that:

8- THE ENERGY LAW8- THE ENERGY LAW

 For the right- hand side of equation (1) we have:

(2)

 Substituting Equations (3) , (2) into equation (1) 

yields:

(2)

(4)



8- THE ENERGY LAW8- THE ENERGY LAW

 Equation (5) is a statement of conservation of energy, 

namely, that the specific mechanical energy is the same 

at all points of the trajectory.

 Let us evaluate equ.(5) at periapsis

: the relative kinetic energy per unit mass.

: the potential energy per unit mass of the body    in the 

gravitational field of      .

: constant (the total mechanical energy per unit mass)

(5)

 Equation (5) is a statement of conservation of energy, 

namely, that the specific mechanical energy is the same 

at all points of the trajectory.

 Let us evaluate equ.(5) at periapsis

: the position and speed at periapsis

at periapsis

(6)

(7)



8- THE ENERGY LAW8- THE ENERGY LAW
 By substituting (7) in equation (6) we have:

 Substituting Equ. for     into (8) yields a formula for 

the orbital specific energy in terms of the orbital 

constants h and e,  

(8)

 Substituting Equ. for     into (8) yields a formula for 

the orbital specific energy in terms of the orbital 

constants h and e,  

 Clearly, the orbital energy is not an independent 

orbital parameter.

 The mechanical energy    of a satellite of mass     is 

obtained from the specific energy     by the formula

(9)

(10)
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Setting          in the orbital equation yields:

9- CIRCULAR ORBITS (E=0)9- CIRCULAR ORBITS (E=0)

 That is , which means the orbit  of      

around     is a circle.

(1)

 That is , which means the orbit  of      

around     is a circle.

(1) (1)

(2)



 The time T required for one orbit is known as the period.

 Because the speed is constant, the period of a circular 

orbit is easy to compute:

9- CIRCULAR ORBITS (E=0)9- CIRCULAR ORBITS (E=0)

 So that

(3)

 So that

 The specific energy of a circular orbit is found by setting         

in the equation of orbital specific energy: 

 Employing                yields:

(4)
(NOTE11.P52.{1})



 Plot the speed v and period T of  a satellite in circular LEO 
as a function of altitude z.

Solution:

 Equation (2) and (3) give the speed and period,

9- CIRCULAR ORBITS (e=0)9- CIRCULAR ORBITS (e=0)
EXAMPLE 9.1

 These relation are graphed in the below figures:



 Calculate the altitude         and speed       of a 

geostationary earth satellite: (NOTE12.P53.{1}) 

- GEO (Geostationary Equatorial Orbit)

- Sidereal day: the time it takes the earth to complete or 

rotation relative to inertial space. (the fixed stars)

- Synodic day: ( the ordinary 24-hour day), the time it 

takes the sun to apparently rotate once around the 

earth, from high noon one day to high noon the next.

- Earth inertial angular velocity      is:

9- CIRCULAR ORBITS (E=0)9- CIRCULAR ORBITS (E=0)

EXAMPLE 9.2
 Calculate the altitude         and speed       of a 

geostationary earth satellite: (NOTE12.P53.{1}) 

- GEO (Geostationary Equatorial Orbit)

- Sidereal day: the time it takes the earth to complete or 

rotation relative to inertial space. (the fixed stars)

- Synodic day: ( the ordinary 24-hour day), the time it 

takes the sun to apparently rotate once around the 

earth, from high noon one day to high noon the next.

- Earth inertial angular velocity      is:

(7)



 Solution:

 The speed of the satellite in its circular GEO of radius        is:

9- CIRCULAR ORBITS (E=0)9- CIRCULAR ORBITS (E=0)

(a)

EXAMPLE 9.2EXAMPLE 9.2

 On other hand:

 Solving for          yields: Solving for          yields:

 Substituting Equ.(7) we get:

(8)

 Therefore, the distance of the satellite above the earth’s 

surface is:

 Substituting Equ.(8) into (a) yields the speed:

(9)



 Calculate the maximum latitude and the percentage of 

the earth’s surface visible from GEO.

Solution:

9- CIRCULAR ORBITS (E=0)9- CIRCULAR ORBITS (E=0)

EXAMPLE 9.3

(a)

To find the maximum viewable latitude      use above 

figure, from which it is apparent that: 



Where km, km, therefore: 

9- CIRCULAR ORBITS (E=0)9- CIRCULAR ORBITS (E=0)

(b)

EXAMPLE 9.3EXAMPLE 9.3

 The surface area S visible from 

GEO is the shaded region 

illustrated in figure

 It can be shown that the area S is 

given by:

 The surface area S visible from 

GEO is the shaded region 

illustrated in figure

 It can be shown that the area S is 

given by:

 Therefore, the percentage of the hemisphere visible from 

GEO is:

 Which of course means that 42.4 of the total surface of the 

earth can be seen from GEO.
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8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)
 (NOTE13,P55,{1})

If 

 (1)
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The curve defined by orbit equation is an ellipse:



8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 Let 2a be the distance measured along the apse line from 

periapsis P to apoapsis A, as illustrated in figure, then

(2)

 Substituting       and    values into (2), we get:

(3)

 a is the semimajor axis of the ellipse.



8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 Solving equation (3) for             and putting the result 

into orbit equation yields an alternative form of the orbit 

equation:

(4)

 Let F denote the location of the body , which is the 

origin of the         polar coordinate system.

 The center C of the ellipse is the point lying midway 

between the apoapsis and periapsis.



8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 From equation (4) we have:

(5)

 So              as indicated in the previous figure.

 If the true anomaly of  point B is    , then according to 

equation (4), the radial coordinate of B is:

(6)



8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 The projection of       onto the apse line is ae:  The projection of       onto the apse line is ae: 

 Solving this expression for e, we obtain 

(7)

 Substituting this result into equation (6) we get

 According to the Pythagorean theorem, 

(8)



 Let an xy cartesian coordinate system be centered at C,

 In terms of                , we see that: 

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 Let an xy cartesian coordinate system be centered at C,

 In terms of                , we see that: 

 From, this we have:

 For the y coordinate we have (by using equation (8)):

(10)

(9)

 Therefore:



Using equations (10) and (9), we find: 

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 That is: 

(11)

(NOTE14,P59,{1})



 The specific energy of an elliptical orbit is negative, and 

it is found by substituting the specific angular 

momentum and eccentricity into equation: 

 We have had:

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 We have had:

(12)

 So that:

 This shows that the specific energy is independent of 

the eccentricity and depends only on the a:



 For an elliptical orbit, the conservation of energy may 

therefore be written:

 To find the period T of the elliptical orbit, we employ 

Kepler’s second law, 

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 To find the period T of the elliptical orbit, we employ 

Kepler’s second law, 

(*)

 For a complete revolution

(*) (**)

(**)



 So that the formula for the period of an elliptical orbit, 

in terms of the orbital parameters h and e, becomes:

 We can substitute into this equation, 

thereby obtaining an alternative expression for the 

period:

(13)

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 We can substitute into this equation, 

thereby obtaining an alternative expression for the 

period:

(14)

 This expression, reveals that, like the energy, the period 

of an elliptical orbit is independent of the e.



 Equation (14) embodies Kepler’s third law, the period 

of a planet is proportional to the three-halves power 

of its semimajor axis.

(14)

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)



 Dividing equations  by         yields:

 Solving  this for e result in 

a useful formula for 

calculating the eccentricity 

of an elliptical orbit, 

namely:

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 Solving  this for e result in 

a useful formula for 

calculating the eccentricity 

of an elliptical orbit, 

namely:

 From figure it is apparent that                   , the distance 

between the foci. As previously noted                   . Thus, 

equation (15) has the geometrical interpretation: 

(15)



What is the average distance of       from      in the 

course of one complete orbit?

 To answer this question, we divide the range of the 

true anomaly         into n equal segments       , so that:

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

We then use to evaluate

at n equally spaced values of true anomaly starting at 

periapsis:

 The average of this set of n values r is given by:

(16)



 Now let equation (16) becomes:n

)17(

 We know that:

 So, substituting into the integrand yields:

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

 The integral can be found in integral tabels, which yields.

 So, substituting into the integrand yields:

 Since and , equation (17) implies 

that  

)17(

(18)

 (NOTE15,P61,{1})



An earth satellite is in an orbit with perigee altitude

and an eccentricity . Find (a) the perigee velocity,

(b) the apogee, (c) the semimajor axis, a; (d) the true-

anomaly –averaged radius (e) the apogee velocity; (f) the

period of the orbit; (g) the true anomaly when (h) the

satellite speed when (i) the flight path angle

when (j) the maximum flight path angle

and the true anomaly at which it occurs.

the strategy is always to go after the primary orbital

parameters, eccentricity and angular momentum, first. In this

problem we are given the eccentricity, so we will first seek h.

recall that also that

(a) the perigee radius is

EXAMPLE 8.1

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

An earth satellite is in an orbit with perigee altitude

and an eccentricity . Find (a) the perigee velocity,

(b) the apogee, (c) the semimajor axis, a; (d) the true-

anomaly –averaged radius (e) the apogee velocity; (f) the

period of the orbit; (g) the true anomaly when (h) the

satellite speed when (i) the flight path angle

when (j) the maximum flight path angle

and the true anomaly at which it occurs.

the strategy is always to go after the primary orbital

parameters, eccentricity and angular momentum, first. In this

problem we are given the eccentricity, so we will first seek h.

recall that also that

(a) the perigee radius is



Evaluating the orbit formula, equation , at

(perigee) we get

EXAMPLE 8.1EXAMPLE 8.1

We use this to evaluate the angular momentum

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

We use this to evaluate the angular momentum

Now we can find the perigee velocity using the angular

momentum formula, equation :



(b) the apogee radius is found by evaluating the orbit

equation (apogee):

EXAMPLE 8.1EXAMPLE 8.1

(c) the semimajor axis is the average of the perigee and

apogee radii:

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

(c) the semimajor axis is the average of the perigee and

apogee radii:

(d) the azimuth- averaged radius is given by equation

(18):



(e) the apogee velocity, like that at perigee, is obtained

from the angular momentum formula,

EXAMPLE 8.1EXAMPLE 8.1

(f) to find the orbit period, use equation (14)

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

(f) to find the orbit period, use equation (14)

(g) to find the true anomaly when we again use

the orbit formula



This means:

where the satellite passes through on its

way from perigee

and :

where the satellite passes through on its

way towards perigee

(h) To find the speed of the satellite we first calculate

the radial and transverse components of velocity:

EXAMPLE 8.1EXAMPLE 8.1

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

This means:

where the satellite passes through on its

way from perigee

and :

where the satellite passes through on its

way towards perigee

(h) To find the speed of the satellite we first calculate

the radial and transverse components of velocity:



For the radial velocity component, use equation

EXAMPLE 8.1EXAMPLE 8.1

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

The magnitude of the velocity can now be found as

We could have obtained the speed v more directly by using

conservation of energy ( ), since the semi major

axis is available from part (c) above.

however we would still need to compute, and in order to

solve next part of this problem.



(i) use equation to calculate the flight path

angle at

EXAMPLE 8.1EXAMPLE 8.1

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

is positive, meaning the velocity vector is above the

local horizon, indicating the spacecraft is flying away from

the attracting force. Where the spacecraft is

flying towards perigee, since the satellite is

approaching the attracting body, the velocity vector lies

below the local horizon, as indicated by the minus sign.



(j) equation gives the flight path angle in

terms of the true anomaly,

EXAMPLE 8.1EXAMPLE 8.1

To find where is a maximum, we must take the derivative of

this expression with respect to and set the result equal to zero.

Using the rules of calculus,

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

To find where is a maximum, we must take the derivative of

this expression with respect to and set the result equal to zero.

Using the rules of calculus,

For the denominator is positive for all values of therefore,

only if the numerator vanishes, that is, if recall

from equation (7) that this true anomaly locates the end-point of the

minor axis of the ellipse. The maximum positive flight path angle

therefore occurs at the true anomaly



Substituting this into (a), we find the value of the flight path

angle to be

EXAMPLE 8.1EXAMPLE 8.1

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

After attaining this greatest magnitude, the flight path angle starts

to decrease steadily towards its value at apogee (zero).



At two point on a geocentric orbit the altitude and true anomaly

respectively.

Find (a) the eccentricity; (b) the altitude of perigee; (c) the semi

major; and (d) the period.

(a) The radii of the two points are

EXAMPLE 8.2EXAMPLE 8.2

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

At two point on a geocentric orbit the altitude and true anomaly

respectively.

Find (a) the eccentricity; (b) the altitude of perigee; (c) the semi

major; and (d) the period.

(a) The radii of the two points are

Applying the orbit formula, equation , to both of

these points yields two equations for the primary orbital

parameters, angular momentum h and eccentricity e



EXAMPLE 8.2EXAMPLE 8.2

Equation (a) and (b), the two expressions for yields single

equation for the eccentricity e,

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

Equation (a) and (b), the two expressions for yields single

equation for the eccentricity e,

(b) By substituting the eccentricity back into (a) we find

the angular momentum,



EXAMPLE 8.2EXAMPLE 8.2

Now we can use the orbit equation to obtain the perigee radius

(c) the semimajor axis can be found after we calcute the apogee radius

by means of the orbit equation, just we did for perigee radius:

8- ELLIPTICAL ORBITS (0<e<1)8- ELLIPTICAL ORBITS (0<e<1)

(c) the semimajor axis can be found after we calcute the apogee radius

by means of the orbit equation, just we did for perigee radius:

(d) Since the semi major axis is available, it is convenient to use

equation (15) to find the period
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If 

If  the eccentricity equals 1. then the orbit equation 

becomes: 

(1)



9- PARABOLICTRAJECTORIES  (e =1)9- PARABOLICTRAJECTORIES  (e =1)

If 

 For a parabolic trajectory the conservation of energy 

is

 It means that the speed anywhere on a parabolic path 

is:



(2)



 If the body        is launched on a parabolic trajectory; it 

will coast to infinity, arriving there with zero velocity 

relative to . It will not return 

9- PARABOLICTRAJECTORIES  (e =1)9- PARABOLICTRAJECTORIES  (e =1)

 Parabolic paths are therefore called escape trajectories.

 At a given distance r from    , the escape velocity is: 

(4)



Let be the speed of a satellite in a circular orbit of 

radius      then :

( NOTE 16, P66, {1})

 For the parabola, the flight path angle takes the form:

(4)

9- PARABOLICTRAJECTORIES  (e =1)9- PARABOLICTRAJECTORIES  (e =1)

 Using the trigonometric identities

 We can write

(5)



9- PARABOLICTRAJECTORIES  (e =1)9- PARABOLICTRAJECTORIES  (e =1)

 That is, on parabolic trajectories the flight path angle is 

one-half the true anomaly



 Recall that the parameter        of an orbit:

. Substitute this expression 

into equation(1) and then 

plot in a cartesian 

coordinate system centered 

at the focus, we will get:

9- PARABOLICTRAJECTORIES  (e =1)9- PARABOLICTRAJECTORIES  (e =1)

 Substitute this expression 

into equation(1) and then 

plot in a cartesian 

coordinate system centered 

at the focus, we will get:

 From the figure it is clear that:

cos1

2




a
r

(6)

(7)



 Working to simplify the right-hand side, we get:

 Therefore 

9- PARABOLICTRAJECTORIES  (e =1)9- PARABOLICTRAJECTORIES  (e =1)

 It follows that:

 This is the equation of a parabola in a cartesian coordinate 

system whose origin serves as the focus.

(10)



 The perigee of a satellite in parabolic geocentric trajectory is

7000km. Find the distance d between point and n the

orbit which are 8000km and 16000km, respectively, from the

center of the earth.

first, let us calculate the angular momentum of the satellite by

evaluating the orbit equation at perigee,

EXAMPLE ?.1

9- PARABOLICTRAJECTORIES  (e =1)9- PARABOLICTRAJECTORIES  (e =1)

 The perigee of a satellite in parabolic geocentric trajectory is

7000km. Find the distance d between point and n the

orbit which are 8000km and 16000km, respectively, from the

center of the earth.

first, let us calculate the angular momentum of the satellite by

evaluating the orbit equation at perigee,



 From which

EXAMPLE ?.1EXAMPLE ?.1

 To find the length of the chord we must use the law of

cosines from trigonometry,

9- PARABOLICTRAJECTORIES  (e =1)9- PARABOLICTRAJECTORIES  (e =1)

 The true anomalies of points and are found using the orbit

equation:

 Therefore,:
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10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

If     , the orbit formula describes the geometry of 

the hyperbola

(1)

 The system consist of two symmetric curves

 One of the occupied by the orbiting body, the other one 

is its empty, mathematical image 



10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 Clearly:

e

r

1cos

&lim







 We denote this value of true anomaly since the radial distance 

approaches infinity as the true anomaly approaches

(2)

 is known as the true of the asymptote.

 Observe that       lies between       and      

 From trigonometry it follow that (3)



10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 For the physical trajectory is the occupied 

hyperbola I (on the left) 

 For hyperbola II- the vacant orbit around 

the empty focus      - is traced out. (NOTE17,P69,{1})  

 Periapsis P lies on the apse line on the physical hyperbola I, 

whereas apoapsis A lies on the apse line on the vacant orbit.

 The point halfway between periapsis and apoapsis is the 

center C of the hyperbola.



10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 The asymptotes intersect at C, making angle      with the apse 

line. 

(2)

 The angle     between the asymptotes is called the turn angle

 The turn angle is the angle through which the velocity vector 

of the orbiting body is rotated as it rounds the attracting body 

at F and heads back towards infinity.



 The distance    from the focus F to the periapsis is given by 

equation: 

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 The distance    from the focus F to the periapsis is given by 

equation: 

 The radial coordinate      of apoapsis is found by setting 

in equation:

(6)

 so

 Observe that     is negative, since         for the hyperbola. That 

means the apoapse lies to the right of the focus F 

(7)



 We see that the distance 2a from periapse P to apoapse A is:

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 We see that the distance 2a from periapse P to apoapse A is:

 Substituting equation (6) , (7) yields

 So the orbit formula may be written for the hyperbola

(8)

(9)



 From equation (g) it follows that: (10)

(11)

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 The distance b, from periapsis to an asymptote measured 

perpendicular to the apse line; is the semiminor axis of the 

hyperbola

 The length b is

(12)



 The distance between the asymptote and a parallel line 

through the focus is called the aiming radius

 We see that

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 The distance between the asymptote and a parallel line 

through the focus is called the aiming radius

 We see that

(10)

(4)

(3)

(2)



 Finally:

 Comparing this result with equation 12, it is clear that the 

aiming radius equals the length of the semiminor axis of 

the hyperbola.

(13)

As with the ellipse and 

the parabola, we can 

express the polar form of 

the equation of the 

hyperbola in a cartesian 

coordinate system whose 

origin is in this case 

midway between the two 

foci.

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

As with the ellipse and 

the parabola, we can 

express the polar form of 

the equation of the 

hyperbola in a cartesian 

coordinate system whose 

origin is in this case 

midway between the two 

foci.



 From the figure it is 

apparent that:

 Using equation (9),(10), 

(14) we obtain:

(14)

(15)

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 From the figure it is 

apparent that:

 Using equation (9),(10), 

(14) we obtain:

 substituting equation (9) and (12) in (15) we obtain:



 It follows that: 

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 That is,

 this is the familiar equation of hyperbola which is 

symmetric about x and y exes, with intercept on the x axis.

(16)



 The specific energy of the hyperbolic trajectory is:

 The specific energy of a hyperbolic orbit is clearly positive 

and independent of the eccentricity.

 The conservation of energy for a hyperbolic trajectory is:

(17)

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 The specific energy of a hyperbolic orbit is clearly positive 

and independent of the eccentricity.

 The conservation of energy for a hyperbolic trajectory is:

 Let     denote the speed at which a body on a hyperbolic path 

arrives at infinity so:

(18)

(18) (19)



 In terms of we may write equation (18) as:

 is called the hyperbolic excess speed. 

 Substituting the expression for escape speed, we obtain 

for a hyperbolic trajectory

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 is called the hyperbolic excess speed. 

 Substituting the expression for escape speed, we obtain 

for a hyperbolic trajectory

 This equation clearly shows that the hyperbolic excess 

speed        represent the excess kinetic energy over that 

which is required to simply escape from the center of 

attraction.

(19)



 The square of is denoted      , and is known as the 

characteristic energy

 is a measure of the energy required for an 

interplanetary mission and      is also a measure of

maximum energy a launch vehicle can import to a 

spacecraft of a given mass

(20)

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 is a measure of the energy required for an 

interplanetary mission and      is also a measure of

maximum energy a launch vehicle can import to a 

spacecraft of a given mass

 can be find also:

(21)



 The figure shows a range of trajectories, from a circle 

through hyperbolas, all having common focus and 

periapsis

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 The figure shows a range of trajectories, from a circle 

through hyperbolas, all having common focus and 

periapsis



 At given point of a spacecraft’s geocentric trajectory, the

radius is 14600km, the speed is 8.6km/s, and the flight path

angle is . Show that the path is a hyperbola and calculate

the following: (a) (b) angular momentum, © true

anomaly, (d) eccentricity, (e) radius of perigee, (f) turn angle,

(g) semimajor axis, and (h) aiming radius.

to determine the type of the trajectory, calculate the escape

speed at the given radius.

EXAMPLE ?.1

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

 At given point of a spacecraft’s geocentric trajectory, the

radius is 14600km, the speed is 8.6km/s, and the flight path

angle is . Show that the path is a hyperbola and calculate

the following: (a) (b) angular momentum, © true

anomaly, (d) eccentricity, (e) radius of perigee, (f) turn angle,

(g) semimajor axis, and (h) aiming radius.

to determine the type of the trajectory, calculate the escape

speed at the given radius.

Since the escape speed is less than the spacecraft’s speed of

8.6km/s, the path is a hyperbola.



(a) the hyperbolic excess velocity is found from equation

(19),

EXAMPLE ?.1EXAMPLE ?.1

From equation (20) it follows that

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

From equation (20) it follows that

(b) Knowing the speed and the flight path angle, we can obtain

both and

Then equation * provides us with the angular momentum,



(c) Evaluating the orbit equation at the given location on the

trajectory, we get

EXAMPLE ?.1EXAMPLE ?.1

From which

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

The radial component of velocity is given by equation

, so that with (a) and (c), we obtain

From which

or

Computing the ratio of (e) to (d) yields



(d) We substitute the true anomaly back into either (d) or (e) to

find the eccentricity,

EXAMPLE ?.1EXAMPLE ?.1

(e) The radius of perigee can now be found from the orbit

equation,

10- HYPERBOLICTRAJECTORIES  (e >1)10- HYPERBOLICTRAJECTORIES  (e >1)

(f) The formula for turn angle is equation , from

which

(g) The semimajor axis of the hyperbola is found in equation

(h) According to equation , the aiming radius is



11- ORBITAL POSITION AS A FUNCTION OF TIME 11- ORBITAL POSITION AS A FUNCTION OF TIME 



11- ORBITAL POSITION AS A FUNCTION OF TIME11- ORBITAL POSITION AS A FUNCTION OF TIME

In preview chapter we found the relationship 

between position and true anomaly for the two-

body problem.

 The only place time appeared explicitly was in the 

expression for the period of an ellipse.

 Obtaining position as a function of time is a simple 

matter for circular orbits.

 For elliptical, parabolic and hyperbolic paths we 

are led to the various forms of Kepler’s equation 

relating position to time.

 These transcendental equations must be solved 

iteratively using a procedure like Newton’s method, 

which is presented in this chapter.

In preview chapter we found the relationship 

between position and true anomaly for the two-

body problem.

 The only place time appeared explicitly was in the 

expression for the period of an ellipse.

 Obtaining position as a function of time is a simple 

matter for circular orbits.

 For elliptical, parabolic and hyperbolic paths we 

are led to the various forms of Kepler’s equation 

relating position to time.

 These transcendental equations must be solved 

iteratively using a procedure like Newton’s method, 

which is presented in this chapter.



11- ORBITAL POSITION AS A FUNCTION OF TIME11- ORBITAL POSITION AS A FUNCTION OF TIME

 The orbit formula, gives the position of body      in its orbit 

around       as a function of the true anomaly

11.1 Time Since Periapsis

 For many practical reasons we need to be able to determine 

the position of        as a function of time.

 For elliptical orbits we have formula for the period T:

 But we cannot yet calculate the time required to fly between 

any two anomalies. The purpose of this section is to come up 

with formulas that allow us to do that calculation

 For many practical reasons we need to be able to determine 

the position of        as a function of time.

 For elliptical orbits we have formula for the period T:



11- ORBITAL POSITION AS A FUNCTION OF TIME11- ORBITAL POSITION AS A FUNCTION OF TIME

 The one equation which relates true anomaly directly to time 

is:

 Substituting r from orbit formula, after separating variables 

we find:

 Integrating both sides of this equation yields:

 : time at periapse passage ( )    )

 is the sixth constant of the motion that was missing in 

previous chapter.

 The origin of time is arbitrary. It is convenient to measure 

time from periapse passage so we will usually set 

(1)



11- ORBITAL POSITION AS A FUNCTION OF TIME11- ORBITAL POSITION AS A FUNCTION OF TIME

 If              , in that case we have

(2)

 The integral on the right maybe found in any standard 

mathematical handbook.

 the specific form of the integral depends on whether 

the value of the eccentricity e corresponds to a circle, 

ellipse, parabola or hyperbola



11- ORBITAL POSITION AS A FUNCTION OF TIME11- ORBITAL POSITION AS A FUNCTION OF TIME

 For a circle, so the integral in Equation (3) is simply:

11.2 Circular Orbits

 Recall that for a circle:

 Substituting the formula for the period T of a circular orbit 

yields: (NOTE 18 P(109),{1})



11- ORBITAL POSITION AS A FUNCTION OF TIME11- ORBITAL POSITION AS A FUNCTION OF TIME

 For 0<e<1, we find in integral tables that

11.3 Elliptical Orbits

 Therefore, Equation (2) in this case becomes:

 Or

 Therefore, Equation (2) in this case becomes:

(3)



11- ORBITAL POSITION AS A FUNCTION OF TIME11- ORBITAL POSITION AS A FUNCTION OF TIME

 In equation (3),        is: called the mean anomaly:

 Equation (3) in plotted in the below figure:

(4)

 (NOTE 19 PAGE 110, {1})



11- ORBITAL POSITION AS A FUNCTION OF TIME11- ORBITAL POSITION AS A FUNCTION OF TIME

 From the formula for the period T of an elliptical 

orbit we have: 

 So that the mean anomaly can be written much more 

simply as:

 So that the mean anomaly can be written much more 

simply as:

 The angular velocity of the position vector of an 

elliptical orbit is not constant, but since           radians 

are swept out per period T, the ratio                 is the 

averagee angular velocity which is given the symbol 

n and called the mean motion. 

(5)

(6)
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 In terms of the mean motion, Equation (5) can be 

written simpler still:

 (NOTE 20 P 111, {1})

 It is convenient to simplify Equation (3), by 

introducing an auxiliary angle E called the eccentric 

anomaly. (NOTE 21, P 111, {1})

 It is convenient to simplify Equation (3), by 

introducing an auxiliary angle E called the eccentric 

anomaly. (NOTE 21, P 111, {1})
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 To find E as a function of   , we first observe from 

previous figure that: 

 Thus:

 Using Equation:

We can write this as:

 Simplifying the right-hand side, we get

(7a) (7b)
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 Substituting Equation(7a) into the trigonometric 

identity( ) and solving for 

 yields:

 Equation (7a) would be find for obtaining  E from   

except that, given a value of             between -1 and 1, 

there are two values of E between 

(8)

 Equation (7a) would be find for obtaining  E from   

except that, given a value of             between -1 and 1, 

there are two values of E between 

 The same comments hold for Equation(8)
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 To resolve this quadrant ambiguity, we use the following 

trigonometric identitiy:

 By the use of Equation’s (9) and (7a), we obtain:

(9)

(10a)

 Or 

 Observe from the above 

figure that for any value of  

, there is only one 

value of E between 

there is no quadrant

ambiguity.

(10a)

(10b)
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 Substituting Equation(8) and (10b) into Equation (3) yield’s 

Kepler’s equation:

 This monotonically increasing relationship between mean 

anomaly and eccentric anomaly is plotted for several values 

of eccentricity.

(11)

 This monotonically increasing relationship between mean 

anomaly and eccentric anomaly is plotted for several values 

of eccentricity.
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 Given the true anomaly we calculate the eccentric anomaly 

E using Equations(10)

 Substituting E into Kepler’s formula “Equ.(11)” yields the 

mean anomaly directly.

 From the mean anomaly and the period T we find the time 

(since periapsis) from Equ:

 On the other hand, if we are given the time, then Equation 12 

yields the mean anomaly 

 Substituting into Kepler’s equation we get the following 

expression for the eccentric anomaly.

(12)
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 We cannot solve this transcendental equation directly for E. 

(A rough value of E might be read of previous figure)

 However, an accurate solution requires an iterative, “trial and 

error” procedure.

 Newton’s method, or one of its variants, is one of the more 

common and efficient ways of finding the root of a well-

behaved function.

(NOTE21,P114,{1})

 To apply Newton’s method to the solution of  Kepler’s

equation, we form the function,

 We cannot solve this transcendental equation directly for E. 

(A rough value of E might be read of previous figure)

 However, an accurate solution requires an iterative, “trial and 

error” procedure.

 Newton’s method, or one of its variants, is one of the more 

common and efficient ways of finding the root of a well-

behaved function.

(NOTE21,P114,{1})

 To apply Newton’s method to the solution of  Kepler’s

equation, we form the function,

And seek the value of eccentric anomaly that makes 

 For this problem we have:

(13)
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For the parabola (e=1) Equation:

becomes:

(1)

In integral tables we find that:

Therefore equation (1) may be written as: 
(Barker’s Equation)

Where

(1)

(2)

(3)
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 Is dimensionless, and it may be thought of as 

the “mean anomaly” for the parabola.

(3)
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 Given the anomaly     we find the time directly from 

Equations (3) , (2).

 If time is the given variable, then we must solve the 

cubic equation: 

 Which has but one real root, namely:

(4)



 A geocentric parabola has a perigee velocity of 

. How far is the satellite from the center of 

the earth six hours after perigee passage?

12- PARABOLIC TRAJECTORIES12- PARABOLIC TRAJECTORIES

EXAMPLE 12.1

 A geocentric parabola has a perigee velocity of 

. How far is the satellite from the center of 

the earth six hours after perigee passage?



 Solution:

 We will find the perigee radius from equation:

12- PARABOLIC TRAJECTORIES12- PARABOLIC TRAJECTORIES
EXAMPLE 12.1EXAMPLE 12.1

 So that the angular momentum is

 Now we can calculate the parabolic mean anomaly: Now we can calculate the parabolic mean anomaly:

 So that rad. Equation(4) yields the true anomaly:

 Finally, we substitute the true anomaly into the orbit equation 

to find the radius: 
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After some substitutions becomes:

For the hyperbola (e>1) the Equation:

Where, is the hyperbolic mean anomaly:

(1)

Where, is the hyperbolic mean anomaly:

Equation (1) is plotted in the below figure

(2)
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(NOTE 22,P126,{1})
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It is consistent with the definition of to define the 

hyperbolic cosine as:

We can prove that:

We define F to be such that: (3)

(4)

(5)

(6)

Substituting equation(7),(5) into equation(1), yields Kepler’s 

equation for the hyperbola,

(7)

(8)

this equation is plotted for several different eccentricities in 

below figure:
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 If time is the given quantity, then equation(8), must 

be solved for F by an iterative procedure, as was 

the case for the ellipse

 To apply Newton’s procedure to the solution of 

Kepler’s equation for the hyperbola, we from the 

function:

And seek the value of F that makes f(F)=0 since

(9)

 Equation becomes

 All quantities in this formula are dimensionless 

(radians, not degrees).
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 When determining orbital position as a function of 

time with the aid of Kepler’s equation, it is 

convenient to have position r as a function of 

eccentric anomaly.

 This is obtained by substituting equation:

 Into equation

(10)

Fe

e
ar

cosh1

12






 This reduces to:

)1cosh(  Fear
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Orbital maneuvers transfer a spacecraft from one orbit to another.

Orbital changes can be:

- The transfer from law-earth parking orbit to an interplanetary trajectory. (Big 

maneuver)

- The rendezvous of one spacecraft with another. (Small maneuver)

 Changing orbits required the firing of onboard spacecrafts engines.

 We will use impulsive maneuvers, in which the rockets fire in 

relatively short bursts to produce the required velocity change 

 In this chapter we will consider:

 (NOTE23,P255,{1})

- Classical, energy-efficient Hohmann transfer maneuvers.

- The bi-elliptic Hohmann transfer

- The phasing maneuver. (a from of Hohmann transfer)

- The non-Hohmann transfer maneuvers with and without rotation of the apse 

line

- Chase maneuvers

- Plane charge maneuvers (introduction)

Orbital maneuvers transfer a spacecraft from one orbit to another.

Orbital changes can be:

- The transfer from law-earth parking orbit to an interplanetary trajectory. (Big 

maneuver)

- The rendezvous of one spacecraft with another. (Small maneuver)

 Changing orbits required the firing of onboard spacecrafts engines.

 We will use impulsive maneuvers, in which the rockets fire in 

relatively short bursts to produce the required velocity change 

 In this chapter we will consider:

 (NOTE23,P255,{1})

- Classical, energy-efficient Hohmann transfer maneuvers.

- The bi-elliptic Hohmann transfer

- The phasing maneuver. (a from of Hohmann transfer)

- The non-Hohmann transfer maneuvers with and without rotation of the apse 

line

- Chase maneuvers

- Plane charge maneuvers (introduction)

v
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impulsive maneuvers are those in which brief firings 

of onboard rocket motors change the magnitude 

and direction of the velocity vector instantaneously.

 During an impulsive maneuver, the position of the 

spacecraft is considered to be fixed; only the 

velocity changes.

 (NOTE24,P256,{1})

 Each impulsive maneuver result in a change       in 

the velocity (magnitude , pumping maneuver; 

direction “cranking maneuver”, or both of them) of 

spacecraft.

impulsive maneuvers are those in which brief firings 

of onboard rocket motors change the magnitude 

and direction of the velocity vector instantaneously.

 During an impulsive maneuver, the position of the 

spacecraft is considered to be fixed; only the 

velocity changes.

 (NOTE24,P256,{1})

 Each impulsive maneuver result in a change       in 

the velocity (magnitude , pumping maneuver; 

direction “cranking maneuver”, or both of them) of 

spacecraft.

v
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The magnitude     of the velocity increment is related 

to     the mass of propellant consumed by the 

formula 

v

(1)

: is the mass of the spacecraft before the burn

: is the sea-level acceleration of gravity

: is the specific impulse of the propellants.

: is the mass of the spacecraft before the burn

: is the sea-level acceleration of gravity

: is the specific impulse of the propellants.

Specific impulse is defined as follows:

 sI SP :

(NOTE25,P256,{1})
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 for some common propellant combinations are 

shown in below table:

 (NOTE25,P256,{1})
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 The Hohmann transfer is the most efficient two-

impulse maneuver for transferring between two 

coplanar circular orbits sharing a common focus.

 (NOTE26,P257,{1})



13- HOHMANN TRANSFER13- HOHMANN TRANSFER
 Recall that for an ellipse the specific energy is 

negative:

 Increasing the energy 

requires reducing its 

magnitude, in order to 

make    less negative.

 Therefore, the larger the 

semimajor axis is, the 

more the energy the orbit 

has, the energies increase 

as we more from the inner 

to the outer circle.

 Increasing the energy 

requires reducing its 

magnitude, in order to 

make    less negative.

 Therefore, the larger the 

semimajor axis is, the 

more the energy the orbit 

has, the energies increase 

as we more from the inner 

to the outer circle.
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 Starting at A on the inner 

circle, a velocity increment 

in the direction of 

flight is required to boost 

the vehicle onto the 

higher-energy elliptical 

trajectory.

 Starting at A on the inner 

circle, a velocity increment 

in the direction of 

flight is required to boost 

the vehicle onto the 

higher-energy elliptical 

trajectory.

 After coasting from A to B, another forward 

velocity increment places the vehicle on the 

outer circular  orbit.

 The total energy expenditure is:

 The same is required if the transfer begins at 

B. in this case         must be accomplished by 

retrofires. 
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 A spacecraft in a 480km by 800km earth orbit. Find 

(a) the      required at perigee A to place the 

spacecraft in 480km by 16000km transfer orbit 

(orbit2); and (b) the       (apogee kick) required at B 

of the transfer orbit to establish a circular orbit of 

16000km altitude (orbit3)

EXAMPLE 13.1

 A spacecraft in a 480km by 800km earth orbit. Find 

(a) the      required at perigee A to place the 

spacecraft in 480km by 16000km transfer orbit 

(orbit2); and (b) the       (apogee kick) required at B 

of the transfer orbit to establish a circular orbit of 

16000km altitude (orbit3)
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 (a) first, let us establish the primary orbital parameters of the 

original orbit 1. the perigee and apogee radii are

EXAMPLE 13.1EXAMPLE 13.1

 Therefore, the eccentricity of orbit 1 is Therefore, the eccentricity of orbit 1 is

 Applying the orbit equation at perigee of orbit 1, we calculate 

the angular momentum,

 With the angular momentum, we can calculate the speed at A 

on orbit 1, 

(a)
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EXAMPLE 13.1EXAMPLE 13.1

 Moving to the transfer orbit 2, we proceed in a similar fashion 

to get

 Thus, the speed at A on orbit 2 is

(b)

 The required forward velocity increment at A is now obtained 

from (a) and (b) as
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EXAMPLE 13.1EXAMPLE 13.1

 (b) we use angular momentum formula to find the speed at B 

on orbit 2, 

 Orbit3 is circular, so its constant orbital speed is obtained 

from equation ? ,

(c)

 Orbit3 is circular, so its constant orbital speed is obtained 

from equation ? ,

 Thus, the delta-v requirement at B to climb from orbit 2 to 

orbit 3 is

(d)

 Observe that the total delta-v requirement for this Hohmann

transfer is



13- HOHMANN TRANSFER13- HOHMANN TRANSFER

 A spacecraft returning from a lunar mission approaches earth on 

a hyperbolic trajectory. At its closest approach A it is an altitude 

of 5000km, traveling at 10km/s. at A retrorockets are fired to 

lower the spacecraft into a 500km altitude circular orbit, where it 

is to rendezvous with a space station. Find the location of the 

space station at retrofire so that rendezvous will occur at B.

 The time of  flight from A to B is one-half the period       of the 

elliptical transfer orbit 2. while the spacecraft coasts from A to B, 

the space station coasts through the angle          from C to B. 

Hence, this mission has to be carefully planned and executed, 

going all the way back to lunar departure, so that the two 

vehicles meet at B.

 To calculate the period     , we must first obtain the primary 

orbital parameters, eccentricity and angular momentum. The 

apogee and perigee of orbit2, the transfer ellipse, are

EXAMPLE 13.2
 A spacecraft returning from a lunar mission approaches earth on 

a hyperbolic trajectory. At its closest approach A it is an altitude 

of 5000km, traveling at 10km/s. at A retrorockets are fired to 

lower the spacecraft into a 500km altitude circular orbit, where it 

is to rendezvous with a space station. Find the location of the 

space station at retrofire so that rendezvous will occur at B.

 The time of  flight from A to B is one-half the period       of the 

elliptical transfer orbit 2. while the spacecraft coasts from A to B, 

the space station coasts through the angle          from C to B. 

Hence, this mission has to be carefully planned and executed, 

going all the way back to lunar departure, so that the two 

vehicles meet at B.

 To calculate the period     , we must first obtain the primary 

orbital parameters, eccentricity and angular momentum. The 

apogee and perigee of orbit2, the transfer ellipse, are
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EXAMPLE 13.2EXAMPLE 13.2

 Therefore, the eccentricity is

 Evaluating the orbit equation at perigee yields the angular 

momentum,

 Evaluating the orbit equation at perigee yields the angular 

momentum,
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EXAMPLE 13.2EXAMPLE 13.2

 Now we can use equation ? To find the period of the transfer 

ellipse,

 The period of circular orbit3 is, according to equation ?

(a)

 The period of circular orbit3 is, according to equation ?

(b)

 The time of flight from C to B on orbit3 must equal the time 

of flight from A to B on orbit2.



13- HOHMANN TRANSFER13- HOHMANN TRANSFER
EXAMPLE 13.2EXAMPLE 13.2

 Since orbit3 is a circle, its angular velocity, unlike an ellipse, 

is constant. Therefore, we can write 

 (the student should verify that the total delta-v required to 

lower the spacecraft from the hyperbola into the parking orbit 

is 6.415km/s. A glance at figure ? Reveals the tremendous 

amount of propellant this would require.)



13- BI-ELLIPTIC HOHMANN TRANSFER13- BI-ELLIPTIC HOHMANN TRANSFER



13- BI-ELLIPTIC HOHMANN TRANSFER13- BI-ELLIPTIC HOHMANN TRANSFER

 (NOTE26,P264,{1})

 A Hohmann transfer is the 

dotted ellips.

 The bi-elliptical Hohmann 

transfer uses two coaxial 

semi-ellipses, 2 and 3 (A,B,C)

 The idea is to places B 

sufficiently far from the focus 

that the       will be very small.

 (NOTE26,P264,{1})

 A Hohmann transfer is the 

dotted ellips.

 The bi-elliptical Hohmann 

transfer uses two coaxial 

semi-ellipses, 2 and 3 (A,B,C)

 The idea is to places B 

sufficiently far from the focus 

that the       will be very small.

 For the bi-elliptical scheme to be more energy efficient than the 

Hohmann transfer, it must be true that

 0
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 analyses of the Hohmann and bi-elliptical transfers lead 

to the following results:

 Where

 Plotting  the difference between Hohmann and bi-elliptical 

as a function of a and     reveals the regions in which the 

difference is positive, negative and zero 
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 (NOTE27,P265,{1})
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 Find the total delta-v requirement for a bi-ellptical Hohmann 

transfer from a geocentric circular orbit of 7000km radius to one 

of 105000km radius. Let the apogee of the first ellipse be 

210000km. Compare the delta-v schedule and total flight time 

with that for an ordinary single Hohmann transfer ellipse.

Since

We have  so that from figure ? It is apparent 

right away that the bi-elliptic transfer will be the more energy 

efficient.

To do the delta-v analysis requires analyzing each of the five orbits.

Orbit 1:

Since this is a circular orbit, we have, simply,

EXAMPLE 13.3
 Find the total delta-v requirement for a bi-ellptical Hohmann 

transfer from a geocentric circular orbit of 7000km radius to one 

of 105000km radius. Let the apogee of the first ellipse be 

210000km. Compare the delta-v schedule and total flight time 

with that for an ordinary single Hohmann transfer ellipse.

Since

We have  so that from figure ? It is apparent 

right away that the bi-elliptic transfer will be the more energy 

efficient.

To do the delta-v analysis requires analyzing each of the five orbits.

Orbit 1:

Since this is a circular orbit, we have, simply,

(a)



13- HOHMANN TRANSFER13- HOHMANN TRANSFER
EXAMPLE 13.3EXAMPLE 13.3

 Orbit 2:

For this transfer ellipse, equation ? yields

 Therefore,

(b)

(c)
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EXAMPLE 13.3EXAMPLE 13.3

 Orbit 3:

For the second transfer ellipse, we have

 From this we obtain From this we obtain

(d)

(e)

 Orbit 4:

The target orbit, like orbit1, is a circle, which means

(f)
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EXAMPLE 13.3EXAMPLE 13.3

 For the bi-elliptical maneuver, the total delta-v is, therefore,

 Or, (g) Or, (g)

 The semimajor axes of transfer orbits 2 and 3 are

 With this information and the period formula, equation ?, the 

time of flight for the two semi-ellipses of the bi-elliptical 

transfer is found to be

(h)
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EXAMPLE 13.3EXAMPLE 13.3

 For the Hohmann transfer ellipse 5,

 Hence,

 It follows that

(i)

(j)
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EXAMPLE 13.3EXAMPLE 13.3

 or

 This is only slightly (0.44 percent) larger than that of the bi-

elliptical transfer.

since the semimajor axis of the Hohmann semi-ellipse is

(k)

 This is only slightly (0.44 percent) larger than that of the bi-

elliptical transfer.

since the semimajor axis of the Hohmann semi-ellipse is

 The time of flight from A to D is

(l)

 The time of flight of the bi-elliptical maneuver is over seven 

times longer than that of the Hohmann transfer.
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 A phasing maneuver is a two-impulse Hohmann

transfer from and back to the same orbit, as illustrated 

in figure:

 Phasing maneuvers are used to change the position of 

a spacecraft in its orbit.

 (NOTE28,P268,{1}
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 Once the period T of the phasing orbit is established, then the 

following equation should be used to determine the 

semimajor axis of the phasing ellipse:

 With the semimajor axis established,      opposite to      is 

obtained from:

(5)

 With the semimajor axis established,      opposite to      is 

obtained from:

 Then we can calculate the eccentricity of phasing  orbit from 

equation:

 Then the orbit equation may be applied at either P or A to obtain 

the angular momentum

 The phasing orbit is characterized completely



13- PHASING MANEUVERS13- PHASING MANEUVERS

 Spacecraft at A and B are in the same orbit (1). At the instant 

shown, the chaser vehicle at A executes a phasing maneuver so as 

to catch the target spacecraft back at A after just one revolution 

of the chaser’s phasing orbit (2). What is the required total delta-

v?

EXAMPLE 13.4
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 From the figure,

 Orbit 1:

The eccentricity of orbit 1 is 

EXAMPLE 13.4EXAMPLE 13.4

Evaluating the orbit equation at A, we find

The period is found using equation ?

 Since A is perigee, there is no radial velocity component there. 

The speed, directed entirely in the transverse direction, is found 

from the angular momentum formula,
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EXAMPLE 13.4EXAMPLE 13.4

The phasing orbit must have a period       equal to the time it 

takes the target vehicle at B to coast around to point A on orbit 1. 

we can determine the flight time by calculating the time           

from A to B and subtracting that result from the period      of 

orbit 1. At B the true anomaly is               therefore, according to 

equation ?

The phasing orbit must have a period       equal to the time it 

takes the target vehicle at B to coast around to point A on orbit 1. 

we can determine the flight time by calculating the time           

from A to B and subtracting that result from the period      of 

orbit 1. At B the true anomaly is               therefore, according to 

equation ?

 Then, from Kepler’s equation (?), we get

 Thus, the time of flight of the target spacecraft from B to A is



13- PHASING MANEUVERS13- PHASING MANEUVERS

 Orbit 2:

The period of orbit 2 must equal          so that the chaser will 

arrive at A when the target does. That is, 

EXAMPLE 13.4EXAMPLE 13.4

This, together with the period formula, equation ?, yields the 

semimajor axis of orbit 2,

This, together with the period formula, equation ?, yields the 

semimajor axis of orbit 2,

Since  we find 

Therefore, point A is indeed the perigee of orbit 2, the 

eccentricity of which can now be determined:
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Evaluating the orbit equation at point A orbit  2 yields its angular 

momentum,

EXAMPLE 13.4EXAMPLE 13.4

Finally, we can calculate the speed at perigee of orbit 2,Finally, we can calculate the speed at perigee of orbit 2,

At the beginning of the phasing maneuver, 

At the end of the phasing maneuver,

The total delta-v, therefore, is
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 It is desired to shift the longitude of a GEO satellite       westward 

in three revolutions of its phasing orbit. Calculate the delta-v 

requirement.

this problem is illustrated in ? . It may be recalled from equation 

?, ? and ? That the angular velocity of the earth, the radius to 

GEO and the speed in GEO are, respectively,

EXAMPLE 13.5
 It is desired to shift the longitude of a GEO satellite       westward 

in three revolutions of its phasing orbit. Calculate the delta-v 

requirement.

this problem is illustrated in ? . It may be recalled from equation 

?, ? and ? That the angular velocity of the earth, the radius to 

GEO and the speed in GEO are, respectively,

(a)

 Let         be the change in longitude in radians. Then the period  

of the phasing orbit can be obtained from the following 

formula,

(b)
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which states that after three circuits of the phasing orbit, the 

original position of the satellite will be        radians east of P. in 

other words, the satellite will end up        radians west of its 

original position in GEO, as desired. From (b) we obtain, 

EXAMPLE 13.5EXAMPLE 13.5
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Note that the period of GEO is

EXAMPLE 13.5EXAMPLE 13.5

The satellite  in its slower phasing orbit appears to drift westward 

at the rate

Having the period, we can use equation ? To obtain the 

semimajor axis of orbit 2,

From this we find the radial coordinate of C,
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Now we can find the eccentricity of orbit 2,

EXAMPLE 13.5EXAMPLE 13.5

And the angular momentum follows from applying the orbit 

equation at P (or C) of orbit 2:

at P the speed in orbit 2 is

therefore, at the beginning of the phasing orbit,

at the end of the phasing maneuver,

Therefore,



CHAPTER 14E

Non-Hohmann

  transfers with 

a common apse 

line

CHAPTER CONTENT



14 NON HOHMANN TRANSFERS WITH A COMMON APSE LINE14- NON-HOHMANN TRANSFERS WITH A COMMON APSE LINE

Above figure illustrates a transfer between two coaxial elliptical 
orbits in which the transfer trajectory shares the apse line but is not j y p
necessarily tangent to either the initial or target orbit.

 The problem is to determine whether there exists such a trajectory  
j i i i t A d B d if t fi d th t t l i tjoining points A and B, and if so to find the total           requirement.v
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 And      are given, 
as are the true 
anomalies 

 Applying the orbit Applying the orbit 
equation to A and B on 
orbit 3 yields:orbit 3 yields:

 S l i h i f Solving these two equations for we get:

(1)
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Wi h h h f bi i d i d d With these, the transfer orbit is determined and 
velocity may be found at any true anomaly.
F H h f i hi h d For a Hohmann transfer, in which                 and

equation (1) become: 

(2)

 When a       calculation is done at a point which is not v

on the apse line, care must be taken to include the 
change in direction as well as the magnitude of the 

l it tvelocity vector.
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 Figure shows a point where g p
an impulsive maneuver 
changes the velocity vector 
ffrom 
on orbit 1 to     on orbit 2.
It i i t t t b th t It is important to observe that 
the   we seek is the 
magnitude of the change in 

v
g g

the velocity vector. Not the 
change in its magnitude 
( d) Th t i

(3)
(speed). That is:

 Only if are Only if are 
parallel, as in Hohmann 
transfers is it true thattransfers, is it true that

12 vvv 
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 From the figure and the law o t e gu e a d t e aw
of cosines, we find that,

(4)



(4)

 the direction of       shows the required 
alignment of the thruster that produces the

v
alignment of the thruster that produces the 
impulse.

 The orientation of      relative to the local v

(5)

horizon is found by equation: 

 : the angle from the local horizon to 
the     vectorv
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A i l i l i h f bi An impulsive maneuver results in a change of orbit 
and, therefore, a change in the specific energy
If h di f ll i li ibl If the expenditure of propellant        is negligible 
compared to the initial mass      of the vehicle then:

 Recall the formula for specific mechanical energy of Recall the formula for specific mechanical energy of 
an orbit, for the situation illustrated in previous 
figure:figure:
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H Hence 

 From figure, it is apparent g pp
that:

 So that: So that:

 (our assumption)
(6)(6)

 It shows that, for a given      , the change 
is specific energy is larger the faster theis specific energy is larger the faster  the 
spacecraft is moving (unless, of course, 
the change in flight path angle is )the change in flight path angle is      )

 (NOTE 29,P276,{1})
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EXAMPLE 14.1
 A geocentric satellite in orbit 1 of below executes a delta-v 

maneuver at A which places it on orbit 2, for re-entry at D. 
calculate at A and its direction relative to the local horizoncalculate        at A and its direction relative to the local horizon.
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EXAMPLE 14.1EXAMPLE 14.1

 From the figure we see that

 Orbit 1:
The eccentricity is
The angular momentum is obtained from the orbit equation, 
noting that C is perigee:

With th l t d th t i it th With the angular momentum and the eccentricity, we can use the 
orbit equation to find the radial coordinate of point A,
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EXAMPLE 14.1EXAMPLE 14.1

 And               Yields the transverse and radial 
components of velocity at A on orbit 1components of velocity at A on orbit 1,

(a)

 From these we find the speed at A

 And the flight path angle,
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EXAMPLE 14.1EXAMPLE 14.1

 Orbit 2:
th di d t l f i t A d D bit 2the radius and true anomaly of points A and D on orbit 2 are 
known. Applying the orbit equation at A, we get

 Likewise at point D which is perigee of orbit 2

(b)

 Likewise, at point D, which is perigee of orbit 2,

(c)

 Equating the expressions for       in (b) and (c), and solving for     
yields

(c)

yields

 Whereupon either (b) or (c) may be used to find
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EXAMPLE 14.1EXAMPLE 14.1

 Now we can calculate the radial and perpendicular components 
of velocity on orbit 2 at point A:of velocity on orbit 2 at point A:

(d)

 Hence, the speed and flight path angle at A on orbit 2 are

 The change in the flight path angle as a result of the impulsive 
imaneuver is 
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EXAMPLE 14.1EXAMPLE 14.1

 With this we can use equation ? To finally obtain 

(e)

 Note that          is the magnitude of the change in velocity vector  
at A. that is not the same as the change in the magnitude of 

the velocity (i.e., the change in speed), which is 

 To find the orientation of          we use equation 
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EXAMPLE 14.1EXAMPLE 14.1

 So that

 This angle is illustrated in above. Prior to firing, the spacecraft 
would have to be rotated so that the centerline of the rocketwould have to be rotated so that the centerline of the rocket 
motor coincides with the line of action of        with the nozzle 
aimed in the opposite direction.
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 A phasing maneuver is a two-impulse Hohmann A phasing maneuver is a two impulse Hohmann

transfer from and back to the same orbit, as illustrated 
in figure:g

 Phasing maneuvers are used to change the position of 
a spacecraft in its orbit.sp cec s o b .

 (NOTE28,P268,{1}
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 Once the period T of the phasing orbit is established, then the p p g ,

following equation should be used to determine the 
semimajor axis of the phasing ellipse:

(5)

 With the semimajor axis established,     opposite to     is obtained 
from:

 Then we can calculate the eccentricity of phasing  orbit from 
equation:

 Then the orbit equation may be applied at either P or A to obtain 
the angular momentumthe angular momentum

 The phasing orbit is characterized completely
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EXAMPLE 14.2
 Spacecraft at A and B are in the same orbit (1). At the instant 

shown, the chaser vehicle at A executes a phasing maneuver so as 

EXAMPLE 14.2

, p g
to catch the target spacecraft back at A after just one revolution 
of the chaser’s phasing orbit (2). What is the required total delta-
v?v?
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EXAMPLE 14.2EXAMPLE 14.2

 From the figure,
 Orbit 1: Orbit 1:
The eccentricity of orbit 1 is 

E l ti th bit ti t A fi dEvaluating the orbit equation at A, we find

The period is found using equation ?

 Since A is perigee, there is no radial velocity component there. 
The speed, directed entirely in the transverse direction, is found 
from the angular momentum formula,
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EXAMPLE 14.2EXAMPLE 14.2

The phasing orbit must have a period       equal to the time it 
takes the target vehicle at B to coast around to point A on orbit 1. g p
we can determine the flight time by calculating the time           
from A to B and subtracting that result from the period      of 
orbit 1 At B the true anomaly is therefore according toorbit 1. At B the true anomaly is               therefore, according to 
equation ?

 Then, from Kepler’s equation (?), we get

 Thus, the time of flight of the target spacecraft from B to A is, g g p
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EXAMPLE 14.2EXAMPLE 14.2

 Orbit 2:
The period of orbit 2 must equal so that the chaser willThe period of orbit 2 must equal          so that the chaser will 
arrive at A when the target does. That is, 

This, together with the period formula, equation ?, yields the 
semimajor axis of orbit 2,

Si fi dSince  we find 

Th f i t A i i d d th i f bit 2 thTherefore, point A is indeed the perigee of orbit 2, the 
eccentricity of which can now be determined:
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EXAMPLE 14.2EXAMPLE 14.2

Evaluating the orbit equation at point A orbit  2 yields its angular 
momentum,,

Finally, we can calculate the speed at perigee of orbit 2,

At the beginning of the phasing maneuver, 

At th d f th h iAt the end of the phasing maneuver,

Th t t l d lt th f iThe total delta-v, therefore, is
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EXAMPLE 14.3
 It is desired to shift the longitude of a GEO satellite       westward 

in three revolutions of its phasing orbit. Calculate the delta-v 

EXAMPLE 14.3

p g
requirement.
this problem is illustrated in ? . It may be recalled from equation 
? ? d ? Th h l l i f h h h di?, ? and ? That the angular velocity of the earth, the radius to 
GEO and the speed in GEO are, respectively,

(a)

 Let         be the change in longitude in radians. Then the period  g g p
of the phasing orbit can be obtained from the following 

formula,

(b)
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EXAMPLE 14.3EXAMPLE 14.3

which states that after three circuits of the phasing orbit, the 
original position of the satellite will be        radians east of P. in g p
other words, the satellite will end up        radians west of its 
original position in GEO, as desired. From (b) we obtain, 
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EXAMPLE 14.3EXAMPLE 14.3

Note that the period of GEO is

The satellite  in its slower phasing orbit appears to drift westward p g pp
at the rate

Having the period, we can use equation ? To obtain the 
semimajor axis of orbit 2,j ,

From this we find the radial coordinate of C,
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EXAMPLE 14.3EXAMPLE 14.3

Now we can find the eccentricity of orbit 2,

And the angular momentum follows from applying the orbit 
ti t P ( C) f bit 2equation at P (or C) of orbit 2:

at P the speed in orbit 2 is

therefore, at the beginning of the phasing orbit,

at the end of the phasing maneuver,

Therefore,
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15- APSE LINE ROTATION

¬The above figure shows 
two intersecting orbits 
which have a common 
focus, but their apse 
lines are not collinear.

¬ A Hohmann transfer 
between them is clearly between them is clearly 
impossible

¬ The opportunity for 
transfer from one orbit 
to the other by a single 
impulsive maneuver 
occurs at points I  and j

¬As can be seen from the figure, the rotation     of the apse line is,

(1)



15- APSE LINE ROTATION
¬we will consider two 

cases of apse line 
rotation.

1- the first case is that in 
which the apse line 
rotation     is given as 
well as e and h for both 
orbits.orbits.

2- the second case is that in 
which the impulsive 
maneuver takes place at 
a given true anomaly    
on orbit 1. 

¬ In the first case the problem is to find the true anomaly of I and J to 
both orbits, and in the second case the problem is to determine the 
angle of rotation    and the eccentricity of the new orbit.
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¬ Now we will consider the first case.
¬ The radius of the point I is given by either of the 

following:

(2a)

¬ where:

(2b)



15- APSE LINE ROTATION
¬ Equation (2a) has two roots, corresponding to two 

points I and J:

(3a)

where:¬ where:

(3b)

¬ Having found       we obtain       from equation (1):
¬ Now we can also compute      for impulsive 

maneuver.
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¬ An earth satellite is in an 8000km radius orbit (orbit 1 of  below 
figure) calculate the delta-v and the true anomaly       required to 
obtain a 7000km by 21000km radius orbit (orbit 2) whose apse 
line is rotated        counterclockwise. Indicate the orientation 

to the local horizon.

EXAMPLE 15.1
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EXAMPLE 15.1EXAMPLE 15.1

¬ The eccentricities of the two orbits are

¬ The orbit equation yields the angular momenta

(a)

¬ The orbit equation yields the angular momenta

¬ Using these orbital parameters and the fact that ,we 
calculate the terms in equation (2b)



15- APSE LINE ROTATION
EXAMPLE 15.1EXAMPLE 15.1

¬ Then equation (3) yields

¬ Thus, the true anomaly of point I, the point of interest, is

¬ With the true anomaly available, we can evaluate the radial 
coordinate of the maneuver point,

(c)



15- APSE LINE ROTATION
EXAMPLE 15.1EXAMPLE 15.1

¬ The velocity components and flight path angle for orbit 1 at point 
I are

¬ The speed of the satellite in orbit 1 is, therefore

¬ Likewise, for orbit 2,
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EXAMPLE 15.1EXAMPLE 15.1

¬ Equation ? Is used to find 

¬ The angle     which the vector males with the local horizon is 

given by following equation
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¬ The second case of apse line rotation is that in which 

the impulsive maneuver takes place at a given true 
anomaly      on orbit 1. 

¬ The problem is to determine the angle of rotation 
and the eccentricity     of the new orbit. 

¬ The impulsive maneuver creates a change in the 

(4)

¬ The impulsive maneuver creates a change in the 
radial and transverse velocity components at point I 
of orbit 1.

¬ From the angular momentum formula, we obtain the 
angular momentum of orbit 2.
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¬ The formula for radial velocity 

applied to orbit 2 at point I, where:

(5)

¬ Substituting equation (4) into this expression and 

solving for            leads to:
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¬ From the orbit equation, we have at point I

(6)

¬ Equating these two expressions for r, substituting 

equation (4) and solving for           , yields:
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¬ Finally we obtain:

(6)

¬ Equation (7a) can be simplified a bit by the next 
replacements:

(5)

(7a)

replacements:

¬ So that:

(7b)

¬ Equations (7) show how the apse line rotation,
is completely determined by the 

components of       imparted at the true anomaly
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¬ After solving equation 7 (a or b), we will:

Rotate orbit 2 is 
completely specified

(7) (6) , (5)

(4)

¬ If the impulsive maneuver takes place at the periapse
of orbit 1, so that  and if it is also true 
that     , then equation (7c) yields.

¬ (NOTE30,P283,{1})
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¬ An earth satellite in orbit 1 of bellow figure undergoes the 
indicated delta-v maneuver at its perigee. Determine the rotation    
of its apse line.

EXAMPLE 15.2



15- APSE LINE ROTATION
EXAMPLE 15.2EXAMPLE 15.2

¬ From the figure

¬ The eccentricity of orbit 1 is

(a)

¬ At the maneuver point      the angular momentum formula and 
the fact that      is perigee of orbit 1              imply that

¬ As usual, we use the orbit equation to find the angular 
momentum,

(b)



15- APSE LINE ROTATION
EXAMPLE 15.2EXAMPLE 15.2

¬ From the above figure It is clear that

¬ The compute we use equation (7b) Together with (a), (b) and 
(c):

(c)

¬ The follows that , so that equation (1) yields 

(c):

¬ Which means the rotation of the apse line is clockwise, as 
indicated in the presented figure.
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17-GEOSENTRIC RIGHT ASCENSION- DECLINATION FRAME17-GEOSENTRIC RIGHT ASCENSION- DECLINATION FRAME

The discussion of orbital mechanics up to now has 

been confined to two dimensions, i.e., to the plane of 

the orbits themselves.

In this chapter we will see orbits in three-dimensional 

(real missions and orbital maneuvers)

Our focus will be on the orbits of earth satellites, but 

the applications are to any two-body trajectories

The coordinate system used to describe earth orbits in 

three dimensions is defined in terms of:

 Earth’s equatorial plane, 

 The ecliptic plane, 

 The earth’s axis of rotation.

The discussion of orbital mechanics up to now has 

been confined to two dimensions, i.e., to the plane of 

the orbits themselves.

In this chapter we will see orbits in three-dimensional 

(real missions and orbital maneuvers)

Our focus will be on the orbits of earth satellites, but 

the applications are to any two-body trajectories

The coordinate system used to describe earth orbits in 

three dimensions is defined in terms of:

 Earth’s equatorial plane, 

 The ecliptic plane, 

 The earth’s axis of rotation.
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ε is approximately 23.4◦.

ε = obliquity of the ecliptic

The earth’s equatorial plane and the ecliptic intersect along a line, 

which is known  as the vernal equinox line.
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‘vernal equinox’ is the first day of spring in the

northern hemisphere, when the noontime sun crosses

the equator from south to north

symbol γ ‘vernal equinox’ : The position of the sun

at that instant defines the location of a point in the

sky called the vernal equinox

symbol γ ‘vernal equinox’ : The position of the sun

at that instant defines the location of a point in the

sky called the vernal equinox

The vernal equinox lies today in the constellation

Pisces

The direction of the vernal equinox line is from the

earth towards γ,
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To the human eye, objects in the night sky appear as points on a celestial 

sphere surrounding the earth



17-GEOSENTRIC RIGHT ASCENSION- DECLINATION FRAME17-GEOSENTRIC RIGHT ASCENSION- DECLINATION FRAME

The vernal equinox γ, which lies on the celestial 

equator, is the origin for measurement of longitude, 

which in astronomical parlance is called right 

ascension. Right ascension (RA or α)

(RA or α) is measured along the celestial equator in 

degrees east from the vernal equinox.

(RA or α) is measured along the celestial equator in 

degrees east from the vernal equinox.

Latitude on the celestial sphere is called declination. 

Declination (Dec or δ)

(Dec or δ) is measured along a meridian in degrees, 

positive to the north of the equator and negative to 

the south
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The coordinates of celestial bodies as a function of time is 

called an ephemeris
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At any given time, the state vector of a satellite

comprises its velocity v and acceleration a.

Orbital mechanics is concerned with specifying or

predicting state vectors over intervals of time

the equation governing the state vector of a satellite

traveling around the earth is,

the equation governing the state vector of a satellite

traveling around the earth is,

r is the position vector of the satellite relative to the

center of the earth.

˙r =v and ¨r =a, must be measured in a non-rotating

frame attached to the earth.
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A commonly used nonrotating right-handed cartesian

coordinate system is the geocentric equatorial frame
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In the geocentric equatorial frame the state vector is 

given in component form by

For the magnitude of the position vector we have:For the magnitude of the position vector we have:

we see that the components of ˆur (the direction 

cosines of r) are found in terms of the right 

ascension α and declination δ as follows :
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EXAMPLE 18.1
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EXAMPLE 18.1EXAMPLE 18.1
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TO define an orbit in the plane requires two 

parameters:

- The semimajor axis (a)
- The specific energy (ε)

Note G P158 {1}

To locate a point on the orbit requires a third 

parameter:

- The true anomaly (o)
Describing the orientation of an orbit in three 

dimensions requires three additional parameters

- The Eulers angels, (i), (O), (w)

TO define an orbit in the plane requires two 

parameters:

- The semimajor axis (a)
- The specific energy (ε)

Note G P158 {1}

To locate a point on the orbit requires a third 

parameter:

- The true anomaly (o)
Describing the orientation of an orbit in three 

dimensions requires three additional parameters

- The Eulers angels, (i), (O), (w)
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 Note E P158 {1}

 Node line

 Ascending node

 Node line vector N

 Descending node

 Note E P158 {1}

 Node line

 Ascending node

 Node line vector N

 Descending node
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 (the second Euler angle)

inclination (i), measured

according to the right-

hand rule, i is also the

angle between the

positive z axis and the

normal to the plane of

the orbit.

 Recall from previous

chapters, that the

angular momentum

vector h is normal to

the plane of the orbit.

 (the second Euler angle)

inclination (i), measured

according to the right-

hand rule, i is also the

angle between the

positive z axis and the

normal to the plane of

the orbit.

 Recall from previous

chapters, that the

angular momentum

vector h is normal to

the plane of the orbit.

Therefore the inclination i is the angle between the positive 

z axis and h.

 The inclination is a positive number between 0ْ and 180ْ
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- O right ascension (RA) of the ascending node 

- e eccentricity

- W argument of perigee

- o true anomaly (or mean anomaly M)
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Given the position r and velocity v of a satellite in 

the geocentric equatorial frame, how do we obtain 

the orbital elements? In other words how do we 

obtain orbital elements from the state vector?

 The step-by-step procedure is outlined bellow: (we 

can also use this procedure for other planets and 

sun, buy defining the frame of reference and 

substituting the appropriate gravitational 

parameterμ) 

Given the position r and velocity v of a satellite in 

the geocentric equatorial frame, how do we obtain 

the orbital elements? In other words how do we 

obtain orbital elements from the state vector?

 The step-by-step procedure is outlined bellow: (we 

can also use this procedure for other planets and 

sun, buy defining the frame of reference and 

substituting the appropriate gravitational 

parameterμ) 
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 Obtain orbital elements from the state vector.

1- Calculate the distance,

2- Calculate the speed,

3- Calculate the radial velocity,  

ALGORITHM 4.1
 Obtain orbital elements from the state vector.

1- Calculate the distance,

2- Calculate the speed,

3- Calculate the radial velocity,  

 Note that if             , the satellite is flying away from peigee. 

 If              , it is flying towards perigee.
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4- Calculate the specific angular momentum,

5- Calculate the magnitude of the specific angular momentum,

the first orbital element.

6- Calculate the inclination,

This is the second orbital element. Recall that I must lie between 
0ْand 180ْ, so there is no quadrant ambiguity. If 90ْ<i≤180ْ, the 

orbit is retrograde.

4- Calculate the specific angular momentum,

5- Calculate the magnitude of the specific angular momentum,

the first orbital element.

6- Calculate the inclination,

This is the second orbital element. Recall that I must lie between 
0ْand 180ْ, so there is no quadrant ambiguity. If 90ْ<i≤180ْ, the 

orbit is retrograde.
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7- Calculate

This vector defines the node line.

8- Calculate the magnitude of N, 

9- Calculate the RA of the ascending node,

7- Calculate

This vector defines the node line.

8- Calculate the magnitude of N, 

9- Calculate the RA of the ascending node,

the third  orbital element. If                , then O lies in either the 

first of fourth quadrant. If then O lies in either the 

second or third quadrant. To place O in the proper quadrant, 

observe that  the ascending node lies on the positive side of the 
vertical XZ plane (0≤ O <180°) if On the other hand, 

the ascending node lies on the negative side of the XZ plane 
(180°≤ O <360°) if Therefore, implies that 

0< O <180°, whereas implies that 180°<O <360°. In 

summary,
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10. Calculate the eccentricity vector, starting with equation 2.30,

So that

11- Calculate the eccentricity
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The fourth orbital element. Substituting equation 4.10 leads to a 

form depending only on the scalars obtained thus far.

12- Calculate the argument of perigee,

the fifth orbital element. If N. e>0, then w lies in either the first 

of fourth quadrant. If N. e<0, then w lies in either the second or 

third quadrant. To place w in the proper quadrant, observe that 

perigee lies above the equatorial plane (0≤w<180°)if e points up 

(in the positive Z direction), and perigee lies below the plane 
(180° ≤w<360°) if e points down. Therefore, implies that

0 <w<180°, whereas implies that 180° <w<360°. To 

summarize,  

The fourth orbital element. Substituting equation 4.10 leads to a 

form depending only on the scalars obtained thus far.

12- Calculate the argument of perigee,

the fifth orbital element. If N. e>0, then w lies in either the first 

of fourth quadrant. If N. e<0, then w lies in either the second or 

third quadrant. To place w in the proper quadrant, observe that 

perigee lies above the equatorial plane (0≤w<180°)if e points up 

(in the positive Z direction), and perigee lies below the plane 
(180° ≤w<360°) if e points down. Therefore, implies that

0 <w<180°, whereas implies that 180° <w<360°. To 

summarize,  
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13- Calculate the true anomaly,

the sixth orbital element. If e.r>0, then o lies in the first of fourth 

quadrant. If e.r<0, then o lies in the second or third quadrant. To 

place o in the proper quadrant, note that if flying away from 

perigee (r.v>0), then 0≤o<180°, whereas if the satellite is flying 

towards perigee (r.v<0), then 180° ≤o<360°. Therefore, using 

the result of step 3 above

Substituting equation 4.10 yields an alternative form of this 

expression,

The procedure described above for calculating the orbital 

elements is not unique.

13- Calculate the true anomaly,

the sixth orbital element. If e.r>0, then o lies in the first of fourth 

quadrant. If e.r<0, then o lies in the second or third quadrant. To 

place o in the proper quadrant, note that if flying away from 

perigee (r.v>0), then 0≤o<180°, whereas if the satellite is flying 

towards perigee (r.v<0), then 180° ≤o<360°. Therefore, using 

the result of step 3 above

Substituting equation 4.10 yields an alternative form of this 

expression,

The procedure described above for calculating the orbital 

elements is not unique.
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 Given the state vector,

 Find the orbital elements h,i,O,e,w and o using algorithm 4.1.

STEP 1:

STEP 2:

STEP 3:

Since the satellite is flying away from perigee

EXAMPLE 19.1
 Given the state vector,

 Find the orbital elements h,i,O,e,w and o using algorithm 4.1.

STEP 1:

STEP 2:

STEP 3:

Since the satellite is flying away from perigee
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STEP 4:

STEP 5:

STEP 6:

STEP 7:

EXAMPLE 19.1EXAMPLE 19.1

STEP 4:

STEP 5:

STEP 6:

STEP 7:
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STEP 8:

Using (g) and (h), we compute the right ascension of the node.

STEP 9:

From (g) we know that therefore, O must lie in the third

quadrant,

STEP 10:

EXAMPLE 19.1EXAMPLE 19.1

STEP 8:

Using (g) and (h), we compute the right ascension of the node.

STEP 9:

From (g) we know that therefore, O must lie in the third

quadrant,

STEP 10:
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STEP 11:

Clearly, the orbit is an ellipse.

STEP 12:

w lies in the first quadrant if which is true in this case, as

we see from (j). Therefore,

EXAMPLE 19.1EXAMPLE 19.1

STEP 11:

Clearly, the orbit is an ellipse.

STEP 12:

w lies in the first quadrant if which is true in this case, as

we see from (j). Therefore,
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STEP 13:

From (c) we know that which means 0≤o<180°. Therefore,

Having found orbital elements, we can go on to compute other

parameters. The perigee and apogee radii are

EXAMPLE 19.1EXAMPLE 19.1

STEP 13:

From (c) we know that which means 0≤o<180°. Therefore,

Having found orbital elements, we can go on to compute other

parameters. The perigee and apogee radii are
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From these it follows

that the semimajor

axis of the ellipse is

This leads to the

period,

EXAMPLE 19.1EXAMPLE 19.1

From these it follows

that the semimajor

axis of the ellipse is

This leads to the

period,

The orbit is illustrated in figure 4.8

We have seen how to obtain the orbital elements from the state

vector. To arrive at the state vector, given the orbital elements,

requires performing coordinate transformations, which are

discussed in the next section
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OrbitsOrbits
having a 
common focuscommon focus 
F generally do 
not lie in anot  lie in a 
common plane.
Si th f li i bit l l it t liSince the common focus lies in every orbital plane it must lie on 
the line of intersection of any two orbits.
For a spacecraft in orbit 1 to change its plane to that of orbit 2For a spacecraft in orbit 1 to change its plane to that of orbit 2 
by means of a single ∆V maneuver (cranking maneuver), it must 
do so when it is on the line of intersection of the orbital planes
(points B and D)
d – dihedral angle

- transverse component of velocity
- radial component of velocity

V

rV
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 Changing the Changing the 
plane of orbit 1 
requires simplyrequires simply 
rotating     
around the 

V

intersection 
line through g
the d angle .
 If      &   = constant, then the orbit remains rVV & co s a , e e o b e a s
unchanged except for its new orientation in space. 

If h i d f & h i h

rV

 If the magnitudes of       &      change in the 
process, then the rotated orbit acquires a new size and 

V rV

shape.    
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 To find ∆V associated with a plane change, let     be the 
velocity before and     the velocity after the impulsive 
maneuver.

di l it t di t d l th li f i t ti f th: radial unit vector directed along the line of intersection of the 
two orbital planes.

: unit vector is perpendicular to      and lies in the orbital plane. 
(         ,         )
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 The change ∆V in the velocity vector is 

 ∆V is found by taking the dot product of ∆V with itself

 The general formula for ∆V with plane change is:g p g

(1)
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 From the definition of the flight path angle:

 Substituting these relations into equation1 expanding and Substituting these relations into equation1 expanding and 
collecting terms, and using the trig identities, leads to another 
version of the same equationversion of the same equation.

(2)

 If d=0  cos d=1  (2) 

Whi h i h i l h b i i Which is the cosine law we have been using to compute ∆V in 
coplanar maneuvers
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 To keep ∆V at a minimum the radial velocity should To keep ∆V at a minimum, the radial velocity should 
remain unchanged during a plane change maneuver.
 It is clear from equation(1) It is clear from equation(1)

 For the same reason it is apparent that the maneuver 
should occur where is smallest which is at apoapseshould occur where      is smallest, which is at apoapse. 
(figure) 
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 In this case: In this case:

equ(1) 

(3)

 Equation (3) is for a speed change accompanied by a 
plane change 
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 As we mentioned equation(3) is for a speed change 
accompanied by a plane change. 
So using the trig identity:
We can rewrite equation(3) as follows for a plane change 
together with a speed change at apoapse or periapse:

(4)

 If there is no change in  the speed (           )    equation 
(4) yields (5)
d: pure rotation of the velocity vector
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 Another plane change strategy is to rotate the velocity Another plane-change strategy is to rotate the velocity 
vector and then change its magnitude. (figure (b))

 In that case, the ∆V is:

Another possibility is to change the speed first and thenAnother possibility is to change the speed first and then 
rotate the velocity vector (figure(c)), then:
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 It is easy to show that

It follows that plane change accompanied by speedIt follows that plane change accompanied by speed 
change is the most efficient of the above three maneuvers.
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 The ∆V for pure rotation of the velocity vector The ∆V for pure rotation of the velocity vector, 
according to equ(5)

(5)

Is ploted in the bellow figure:

(5)

Note 32 P293 (1)



20- PLANE CHANGE MANEUVERS20- PLANE CHANGE MANEUVERS

Note 33 P293 (1)Note 33 P293 (1)
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Note 34 P294 (1)Note 34 P294 (1)
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Note 35 P296 (1)Note 35 P296 (1)
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EXAMPLE 19 1
 Find the ∆V required to transfer a satellite from a circular,

300km altitude law earth orbit of 28° inclination to a

EXAMPLE 19.1

geostationary equatorial orbit. Circularize and change the
inclination at altitude. Compare that ∆V requirement with the

i hi h th l h i d i th l th bitone in which the plane change is done in the low-earth orbit.
 figure bellow shows the 28° inclined low-earth parking orbit

(1) the coplanar Hohmann transfer ellipse (2) and the(1), the coplanar Hohmann transfer ellipse (2), and the
coplanar GEO orbit(3)
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EXAMPLE 19.1EXAMPLE 19.1

* From the figure we see that:

* Orbit 1:
For this circular orbit the speed at B is

* O bit 2* Orbit 2:
The eccentricity of the transfer orbit is
L t l t th bit ti t B t fi d th lLet us evaluate the orbit equation at B to find the angular
momentum of the Hohmann transfer orbit 2,
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EXAMPLE 19.1EXAMPLE 19.1

The velocities at perigee and apogee of orbit 2 are, from the
angular momentum formula,

At this point we can calculate



19- PALNE CHANGE MANEUVERS19- PALNE CHANGE MANEUVERS
EXAMPLE 19.1EXAMPLE 19.1

* Orbit 3:
For this orbit which is circularFor this orbit, which is circular,
the speed at C is

So that

We can now calculate the total ∆V for the Hohmann transfer:

* This places the satellite in a circular orbit of the correct radius
b t th i li tibut the wrong inclination
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EXAMPLE 19.1EXAMPLE 19.1

* The velocity vector at C must be rotated into the plane of the
equator, as illustrated in the above figure.

* The ∆V requires to rotate that velocity through the change in
i li ti f 28° iinclination of 28° is:

* Th f th t t l V i t i* Therefore, the total ∆V requirement is.
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EXAMPLE 19.1EXAMPLE 19.1

* Suppose we make the change at LEO instead of at GEO, to
rotate the velocity vector through 28° requiresrotate the velocity vector through 28 requires

* This, together with (a) and (b), yields the total ∆V schedule for
insertion into GEO:

* This is a 42 percent increase over the total ∆V with plane
change at GEO. Clearly it is best to do plane change maneuvers
at the largest possible distance (apoapse) from the primary
attractor, where the velocities are smallest.


