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1-DYNAMIC OF POINT MASSES

1.1 INTRODUCTION

« T'his chapter serves as a self-contained reference on:

The kinematics & dynamics
Some basic vector operations

Rotation and concepts which will be used in the

following lectures.
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INTROUDUCTION

* We will review
- The curvilinear motion of particles 1n three
dimensions

- The concepts of force and mass

- The Newton's law of gravitation (Newton's second

law of motion)

- The formulas for calculating the time derivatives of
moving vectors. (the computation of relative velocity

and acceleration).
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1.2 KINEMATICS

X To track the motion of particle P through space we
need a frame of reference consisting of a clock and a
cartesian coordinate system.

Clock » track of time ¢
Xyz axes » location of the particle
XIn non-relativistic mechanics, a single

“universal” clock serves for all coordinate systems.

Unit of time > [s]

Unit of length > [m] or [km]
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KINEMATICS

X The position of the particle
P at a time ¢ is defined by
the position vector r(z )

A

r(t) = x(1)i+ y(1)j + z(H)k
[ ,JA',lg:the unit vectors

X The distance of P from the
origin

el = r = /a2 + 2 + 22

HI’H =r magnitude or length of r
* We know
F = 4/1I"T
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KINEMATICS

X The velocity v and acceleration a of the particle:

dl‘(t);\ n (1}’(f)g n d:(t) A ~

v(t) = 1 k = v,-(t)i + v ,.(t)c + v, (t)k
dt TR : yiH)
. ({l'x':_f‘)? dl":(_f,): dl‘:(_f‘) ~ LA LA PN
alt) = i — | + k=a.(t)i4+a,(t))+ a-(t)k
at at dt : '

* The locus of point that a particle occupies as it moves
through space 1s called its path, or trajectory.

The path is a straight line = motion is rectilinear

The path is curved —— motion is curvilinear
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KINEMATICS

X The velocity vector v is tangent to the path:
V = Uﬁf

A

U, unit vector tangent to the trajectory

Vv .the magnitude of the velocity v.

X The distance that P travels along its path in the time
interval ds:

ds = v dt
X In other words
V= §
* Note that .
v # I

(the magnitude of the derivative of r £the derivative of the magnitude of r)
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EXAMPLE 1.1

The position vector as a function of time 1s:

~
.

£ = (8t2 4+ 7t + 6)i + (562 +4)j + (0.3t* + 262 + Dk (m)

At ¢t =10s, calculate v and r,

dr ‘ - _ ha X R
V= 5 = (16t 4+ 7)i 4+ 157+ (1.2t7 + 41)k
dt
1

V|| = (1.44¢° 4 234.6t* + 272% + 224t + 49)2
=10 >v=1953.3 ’%

e[ = (0.09¢% 4 26.2¢° + 68.6¢* + 152> + 149t + 841 + 53)1

dr 0.36t" + 78.61° + 137.2t> + 228t + 149t + 42

f = — =

dt  (0.09¢% + 26.2t5 + 68.6t4 + 152¢3 + 149¢2 + 84f + 53)2

t=10> 1 =1935.5 m/
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EXAMPLE 1.1

XxIf v is given, then we can find the components of the

unit tangent ¢, 1n the cartesian coordinate frame of

reference
A v Uxy  Uys Uz - - -
= — = —i+ —)] + —k (v = \/lf + v5 + Uf)
N4l v v v )

* The acceleration may be written

X Where

)

. .o l”‘-

a, =v(=5) a, = —
©
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EXAMPLE 1.1

Osculating plane

- @ ‘the radius of curvature

~U, : the unit tangent
~U, ‘the unit principal

-1, the position of C :
relative to P r,,, = pU, /

X

A

~U, : unit normal to the osculating plane U =1, X1
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EXAMPLE 1.1

Osculating plane

*The center of curvature
lies 1n the osculating
plane

*When the particle P

moves a distance ds the

vector r sweep out angle

d¢

ds =od¢
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EXAMPLE 1.2

Relative to a Cartesian coordinate system, the position,
velocity and acceleration of a particle relative at a given

Instant are:

r = 250i + 630j + 430k (m)
v = 901 + 125) + 170k (m/s)
a = 16i + 125} + 30k (m/sz)

Find the coordinate of the center of curvature at that

instant.
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EXAMPLE 1.2

v =|v|| = V902 + 1252 + 1702 = 229.4m /s

. v 90i+ 125) + 170k
uT = — =

v 2294

= 0.39231 + 0.5449j + 0.7411k

a; = a0 = (161 + 125) + 30k) - (0.39231 + 0.5449j + 0.7411k) = 96.62 m /s’

a =162 4+ 1252 + 302 = 129.5m/s’

\
a=a,u; +a,u,

2 2 P
» —> a“=a;+a,
u; and a, are perpendicular

o
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EXAMPLE 1.2

4, = /a2 — a? = v/129.52 — 96.622 = 86.29 m /s’
o

u, = —(a—a,0)
Ay

[(161 4 125] + 30k) — 96.62(0.3923i + 0.5449j + 0.7411k)]

86.29
= —0.25391 + 0.8385) — 0.4821k

V2 229.42
0= — = = 609.9m

a, 86.29

rc =r+rcsp

=1 + ol = 250i + 630j + 430k 4 609.9(—0.2539i + 0.8385) — 0.4821k)
= 95.161 + 1141j + 136.0k (m)

The coordinate of C are:

x=95.16 m y=1141m z=136.0m
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2-NEWTON'’S LAW OF GRAVITATION

* Two men, Tycho Brache and Johan Kepler, laid the

groundwork for Newton’s greatest discoveries, 50
years later than his birth. (1592)

% Tycho, was recording accurate data on the position of
the planets.

¥ Kepler by using the Tycho’s data found and published
his three law of planetary motion (1601- 1619)

KEPLER’S LAWS

First Law—The orbit of each planet is an ellipse, with the
sun at a focus.

Second Law—The line joining the planet to the sun sweeps
out equal areas in equal times.

Third Law—The square of the period of a planet is propor-
tional to the cube of its mean distance from the sun.
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x Still, Kepler’s laws were only a description not an
explanation of planetary motion.

* The 23- year-old Newton conceived the law of gravitation,
the laws of motion and developed the fundamental

concepts of differential calculus. (1665- 1666)

* Newton publish his discoveries some 20 years later!, in
book “The Mathematical Principles of Natural
Philosophy” or more simply “ The Principia” (1687)

X In book I of the principle Newton introduces his three laws

of motion: NEWTON’S LAWS

First Law—Every body continues in its state of rest or of
uniform motion in a straight line unless it is compelled to
change that state by forces impressed upon it.

Second Law—The rate of change of momentum is propor-
tional to the force impressed and is in the same direction as
that force.

Third Law—To every action there is always opposed an
equal reaction.
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X The second law +Z
can be expressed Cz F=mr )
mathematically as
follows:

XEF=mf¥ (1)

2 F : The vector sum of all forces acting on the mass

mi :The vector acceleration of the mass measured relative to an inertial
reference from '
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*Newton formulated the }Z
law of gravity by stating SV
that any two bodies attract < "

one another with a force m
proportional to the product |
of their masses and
inversely proportional to
the square of the distance
between them:

_ M r
Fg=— NPT 2)
F, :The force on mass m due to mass M
*7 . The vector from M to m

3 . . .
G:6.6742x10" m %g‘sz The universal gravitational constant
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X Mass, like length and time i1s a primitive physical
concept

X It can’t be defined in terms of any other physical
concept.

X Mass is simply the quantity of matter.

¥ More practically, mass is a measure of the inertia of a
body.

X Inertia in an object’s resistance to changing its state
of motion.

inertia T — maSST
Inertia i — massi

X The unit of mass is “Kg”
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X Force 1s the action of one physical body on another,
either through direct contact or through a distance

X Gravity 1s an example of force acting through a
distance.

X The gravitational force between two masses m, and m,
having a distance r between their centers i1s:

(Newton’s law of gravity)

F M 3)
r

G: universal gravitational constant

X The force of gravity is too small unless at least one
the masses 1s extremely big.
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X The force of a large mass (such as the earth) on a
mass many orders of magnitude smaller (such as a

person) 1s called weight.

* The weight of the small body is:

W:GMT :m(GAf
s s
v =mg (4)
_GM
5= (5)

g:(m/s*) acceleration of gravity
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X If planetary gravity is the only force acting on a body
the body 1s said to be in free fall.

X In free fall, the are no contact forces, so there can be
no sense of weight.

%X Even though the weight is not zero, a person in free
fall experiences weightlessness, or absence of
gravity.

GM
R;

R, =6378km —> g,= (6)

_GM
8o Ré

—> g =9.807m/s’




2-NEWTON'’S LAW OF GRAVITATION

R% _ &0
Re+2?  (1+2z/Rp? (8
X Measurement's show that a altitudes on the order of 10

kilometers g is only three-tenths of a percent (%0.3) less

than its sea-level value.

* Thus under ordinary conditions, we ignore the variation

of g with altitude.
1.0
~—
0.9 \\\
e

£7 \'\
= 0.8 ~——_

0.7

0
0 200 400 600 800 1000

z, km

* At space station altitude (300km), weight is only abol‘*_é
10 percent less than it 1s on the earth’s surface
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EXAMPLE 2.1

* Show that in the absence of an atmosphere, the shape
of a low altitude ballistic trajectory 1s a parabola.
Assume the acceleration of gravity g is constant and

neglect the earth’s curvature
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EXAMPLE 2.1

¢+ —0-T1ime of launched
v, : speed

7, * Flight path angle

Solution:

Since the projectile 1s in free fall after launch, its only. =~ =

acceleration is that of gravity in the negative y-direction

£=0
V==
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EXAMPLE 2.1

X Integrating with respect to time and applying the
initial conditions leads to:

X = xo + (v cos yp)t (@)

. 1,
y =y + (vg sin yp)t — Egt“ (b)

X Solving (a) for t and substituting the result into (b)
yields.

] y
y=yo+ (x —xp) tanyy — — S (X—xo)z
2 Vg COS Y0
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EXAMPLE 2.2

An airplane flies a
parabolic trajectory so
that the passengers will
experience  free  fall
(weightlessness)

What 1s the required
variation of the  flight

path angle  with speed v?
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EXAMPLE 2.2

Solution:

}/

X For “flat” earth dy=-dp —> y=—¢
* We have had: py=v (9)

* The normal acceleration «, is just the component @ -

the gravitational acceleration g then:
a, = gcosy (a)
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EXAMPLE 2.2

2
v

* Substituting “» = 5

of curvature yields:

into (a) and solving for the radius

V2

' _gcosy (b)

* Combining equations (g) and (b) we find:

g cosy
v

Yy =
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X Force is not primitive concept like mass because it is

connected with the concepts of motion and inertia

* The only way to alter the motion of a body is to *
exert a force on it.

X If the resultant or net force on a body of mass m is,

then F,,, =ma (10)

z leys

Z 7 b4 )
Inertial frame
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* The integral of a force F over a time interval is called
the impulse I of the force.

5)
I=/ F dt (11)
t

dv

5]
(10) , (1 1) — Inet = f m;dt = mvy — mvj (12)
f 1t

X That is the net impulse on a body yields a change
mAv 1n 1ts liner momentum so that:

I
Av — net (13)

m

x If F,, 1s constant, then 1, = F,, At

X So, equation (13) becomes:
Fnet

m

Av =

At (14)
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* The moment of the net

e v
force about O 1s P Foer 7
k ’
Z m
Monet = IrX Fllet
dv
Mo, =rxma=rxm—
. ” ) |
D0, )
: Inertial fr:
x If the mass m 1s /"f1 fal frame

-

1

constant;

dv d dr d
rxm—=—(rxmv)—|—xmv|=—(rxmv)—(vxmv)
dt  dt dt dt
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* Sincevx mv=m(vxv)=0, SO

dHp

dt (16)

(15) =—> Mo, =
¥ Where H, is the angular momentum about O
Ho =r x mv (17)
X Thus, just as the net force on a particle changes its
linear momentum mv, the moment of that force about

a fixed point changes the moment of its linear

momentum about that point.
5}
/ Monetdt = Ho2 — I‘Iol (18)
f

X The integral on the left is the net angular impulse
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EXAMPLE 2.3

X A particle of mass m is attached to point O by an
inextensible string of length /. initially the string is slack
when m 1s moving to the left with a speed v, in the
position shown. Calculate the speed of m just after the
string becomes taut. Also, compute the average force in
the string over the small time  interval
Atrequired to change the direction of the particle’s motion.
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EXAMPLE 2.3

X Initially, the position and velocity of the particle are

r = Ci -+ d; V) = —‘U()i
% The angular momentum is
i j k )
Hi =r x mv; = c d 0| = muyk ()
—mvg 0 0

X Just after the string becomes taut

rn=—VE—di+di vi=uvi+uv) (b)

* And the angular momentum is

i i k A
Ho=nrxmmh=|_JV2_-4d 4 ol|= (—mvxd — muyV/ 12 — (.12) Kk (c)
vx U,V O y "’_"',"j = \

X Initially the force exerted on m by the slack string is zero. When the stri
becomes taut, the force exerted on m passes through O, therefore , the ]
moment of the net force on m about O remains zero. H , = Hj
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EXAMPLE 2.3

X Substituting (a) and (¢) yields

ved + 12 — d? vy, = —vod (d)

X The string is inextensible, so the component of the velocity of m
along the string must be zero

V2°l‘2=0

% Substituting V,and 7, from (b)and solving for V, we get

12
7

* Solving (d) and (e) for v and vyleads to

d? / d? d
Ux = —I_ZUO U}, —_ 1 - 1_271’0 (f)

* thus, the speed,V = / 'v,zc -+ 'v)% ,after the string becomes taut is
d

U= —1

/
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EXAMPLE 2.3

X From equation 12, the impulse on m during the time it takes

the string become taut is

d> . d>d - A

[=m(vy; —vy)=m —l—zvoi — /1= 1—271)0j — (—wvpl)
. 1 (12 » ~ 1 d2 d. N a
= 7 muoi — 4/ P lmLO]

¥ The magnitude of this impulse, which is directed along the

d? |
[=,/1-— B muy

* Hence, the average force in the string during the small time .
interval Afrequired to change the direction of the velocity vect@uii

string, 1s

turns out to be
I d? muyg

Foi—=—=./1— ——
V&AL 2 At
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4-THE TWO-BODY PROBLEM

*Now that we have a general expression for the

relative motion of two bodies perturbed by other
bodies it would be a simple matter to reduce it to an

equation for only two bodies.

X There are two assumptions we will make with regard
to our model:
1- The bodies are spherically symmetric (Note 3-pagel1-{2})

2- There are no external non internal forces acting on the

system other than the gravitational forces mote 4-page12-12})
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* (Note 5 Pagel2 {2}) I

X Consider the system of two .
bodies of mass M and m V- v
*x Let (x,)',z") Dbe an xS

internal set of rectangular

cartesian coordinates. v
y
* Let (x',)',2) be a set of nonrotating coordinates parallel to
(x,»,z) and having an origin coincident with the body
of mass M.

* The position vectors of the bodies M and m arer, and 7, .
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* We have defined

X By applying Newton’s laws

in the inertial frame(x’, ', z")

we will obtain:
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%X The above equations may be written:

= Gm (2)

;
M r

% Subtracting equation (2) from (1) we have

F=i, -7,
. +
i=— G(MrT) r (3)

* Equation (3) is the vector differential equation of the

relative motion for the two-body problem. (Not 2N = 3

Pagel3 {2})
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X Since our efforts will be devoted to studying the
motion of satellites . Ballistic missiles or space probes
orbiting about some planet or the sun, Hence we see
that:

G(M+m) = GM.

* [t 1s convenient to define a parameter [/ ,called the
gravitational parameter as:

u= GM.

X Then the equation 3 becomes:

f+ —r‘%r =0. ®
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f+¢%r=a @)

X Equation(4) is the two-body equation of motion

* Remember the results obtained from equation(4) will be
only as accurate as the assumptions (1),(2) and the
assumption that M > m

X [f m is not much less than M.

then G(M + m) must be used in place of U
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*x M will have a different value for each major

attracting body
PHYSICAL CHARACTERISTICS OF THE SUN AND PLANETS*
Orbital Mean Orbital Equatorial | Inclination
Planet Period distance | speed Mass radius of equator
years 10 km | km/sec Earth =1 | km3/sec2 km to orbit
Sun - - - 333432 | 1.327x10'! | 696000 7918’
Mercury 241 579 | 47.87 056 | 2.232x10* 2487 ?
. Venus 615 | 108.1 | 35.04 817 |[3.257x10° | 6187 320
% Earth 1.000 | 149.5 | 29.79 1.000 | 3.986x10° 6378 23927
§ Mars 1.881 | 2278 | 24.14 108 | 4.305x10* 3380 239 59°
Jupiter 11.86 778 13.06 318.0 1.268x108 | 71370 3% 04’
Saturn 29.46 | 1426 9.65 95.2 3.795x107 60400 26° 44
Uranus 84.01 | 2868 6.80 14.6 5.820x10° 23530
Neptune | 164.8 4494 5.49 17.3 6.896x10° 22320
Pluto 247.7 5896 4.74 97 | 3.587x10%? 7016?

*From reference 3
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Equations of motion in an inertial frame:

Z m

X Inertial frame of reference X
(fixed with respect to the fixed stars)
(a) (b)

* Above figure shows two point masses acted upon only by the

force of gravity between them. (Note 7. P 34.{1})

* The position vector R,of the center of mass ¢ of the system is

defined by the formula: r. — MRi+mR ’
©= ny + no ( )
* Therefore the absolute velocity and the absolute acceleration

of ¢ are: (Note 8. P 35.{1}) Prig=

m R + mRy

ny + nn

mR; + nm Ry

my + nmy

aG= G =
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* Let r be the position vector m, relative tom, , then:
r = Rz — R1 (4)

* Furthermore, let #,be the unit vector pointing from m,

towards m, ,sothat 5 _ T (5)

r

* Where r=|r| the magnitude of r

* The gravitational attraction force exerted onm, bym, is

Gmymy Gmym,
Fy = r—7(—ur) =———u

(6)

Note 9. P 36.{1}
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* Newton’s second law of motion as applied to body m, is
Fy; =mR, . where R, 1s the absolute acceleration of m,

thus:

Gmynny

—r—zur = MRy (7)

* By Newton’s third law Fi» = —F», so that for m, we have

Gmymy ..
— U, = ﬂl]R] (8)
)

* Equations (7) and (8) are the equations of motion of the two

bodies in inertial space
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* By adding each side of these equations together we find:
mlﬁl + mzﬁz =0

¥ According to Equ.(3), that means the acceleration of the

center of mass G of the system of two bodies 7, and m, is zero.

* G moves with a constant velocity ¥;; in a straight lines, so that

its position vector relative to XYZ given by
Rc = Rg, + vt 9)
X Where R;, is the position of G at time¢=0

* The center of mass of a two-body system may therefore seryg

as the origin of an inertial frame.
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Example

Use the equations of motion to show why orbiting astronauts

experience weightlessness.

Solution:

X We sense weight by feeling the contact forces that developed
wherever our body is supported.

* Consider an astronaut of mass ., strapped into the space
shuttle of mass "’s in orbit about the earth.

* The distance between the center of the earth and spacecraft is

r, and the mass of the earth ism,

gravity Fs)g the equation of motion of the shuttle is:
Fs), = mgsag
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EXAMPLE

* According to equation (6)

Gl\/IEmS R

i, * is the unit vector pointing outward from the earth to space shuttle.

* Thus (a) and (b) imply:

8, (c)

* The equation of motion of the astronaut is:

Fa)g + Ca = maan (d)

F,, :the weight of the astronaut

C,: the net contact force on the astronaut from restraints (seat, seat belt..»;j?

a , : the astronaut’s acceleration.
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EX/-}MIPLE
X According to Equ.(6)
GMgmy |
FA)g - 7‘1‘52 Aur (e)

% Since the astronaut is moving with the shuttle we have:

GME

S, (H)

ay = ag =

X Substituting (e) and (f) into (d) yields:

GMEgmy | GME ..
— u, +Cq = myl —u,
r r?

* From which it 1s clear that C,=0
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3-THE N-BODY PROBLEM

* In this section we shall explain the motion of a body
which 1s being acted upon by several gravitational
masses and may even be experiencing other forces
such as drag, thrust and solar radiation pressure.

X For this we shall assume a “system’ of n-bodies

(m,,m,,ms,....m,)

*One of these bodies is the body whose motion we

wish to study-call it the i"body,
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* The vector sum of all
gravitational forces and

other external forces acting

on m, will be wused to M-

determine the equation of
motion

* To determine the
gravitational forces we
shall apply Newton’s law

of universal gravitation.
(Notel,page5,{2})
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X The first step in our analysis will be to choose a
“suitable” coordinate system. This system is

1llustrated below:

VA FoTHER

* In (X,Y,Z) coordinate
system, the position of

the n masses are known

Y (arery)
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*The forceF,, exerted onm, bym,is: (Newton’s law of
universal gravitation)

Gmi mn
Fgn = — e} (rni) (1)
i =T = I'n (2)

* The vector sum, F, , of all gravitational forces acting
on the i"body may be written:

Gm:m Gm:m Gm.m
Fg=— L (rj) = — =2 () = =3 ) (3)
1 21 ni

* Since the body cannot exert a force on itself
obviously, equation (3) does not contain the term: '

Gm:m:; |
- ri-||3| (rij) (4)
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* We may simplify the ,

) . FOTHER
equation No3 by using \
: . .
the summation notation LI
so that Meg- T l
n I i F
: / Fg \ d
Fg=—Gm M) (ri:) (5 / o
| r; 3 L ( ) - Y
=1 , |
j#i i AR I S
* The other external | ,
force, F, OTHER , 1S

composed of drag,
thrust, solar radiation
pressure, perturbations
due to nonspherical

F other = F orag * F tHRUST *
shapes, etc.

F soLar Pressure * F PERTURB T etc.
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* The combined force acting on thei 4 body we will call
Frorar
FrotaL = Fg + FOTHER - ©

* By applying the Newton’s second law of motion, we

will have
-(%—- (mivi) = FTOTAL. )
X The time derivative may be expanded to:
dv; dm:

dt L dt TOTAL




3-THE N-BODY PROBLEM

X If the body 1s expelling some mass, (for example to
produce thrust) the second term of equation(8) would

not be zero.

% Certain relativistic effects would also give rise to

changes in the mass 77, as a function of time.

X In other words, in space dynamics, it is not true that
F=ma.

%X Dividing through by the mass m;, gives the most
general equation of motion for the ;* body

. FrotaL .M
R -—r.
1‘I mi I ml

)




3-THE N-BODY PROBLEM

7 : The vector acceleration of the ;* body relative to the

X,y,z coordinate system.
m,; ‘The mass of ;" body

F,or ‘The vector sum of all gravitational forces and all

other external forces.

. : The velocity vector of the i body relative to the x,y,z

coordinate system.

m, :The time rate of change of mass of the i body (due to

expelling mass or relativistic effects)




3-THE N-BODY PROBLEM

. FroTAL

r.

m;
| _ri mi

m;

X Equation (9) is a second order, nonlinear vector,
differential equation of motion which has defied
solution 1in its present form.

* So we make some simplifying assumptions:

1- The mass of the " body remains constant (i.e.,
unpowered flight m, =0)

2- The all other external forces are not present F,, . =0

3-m, is an earth satellite and mjs the earth. The

remaining masses m,,m,,...,m

n

may be the moo
sun and planets.



3-THE N-BODY PROBLEM

¥ From the first 2 assumptions we will write equation 9

in the following form:

y Mj
= — G | —r—“—:r (1) . (10)
) F

X By using the 3 assumption for i=1 we will have

f,=—0G 2 —3 ;) . (11)

* And for 1=2 equation 10 becomes

, = —G 2 (ri,) . 12
] =1 J23 2 (12)
j #F 2




3-THE N-BODY PROBLEM

X From equation 2 we see that:

Iy ~ T 71, (13)
* So that:
fp = — T (14)

X Substituting equations (11) and (12) into equation

(14) gives:
n n
m
a6 2 e Y ) (1)
J=1 J2 j= 2 J1
I #F 2




3-THE N-BODY PROBLEM

X Since I';, = - T,; we may combine the first terms in

each bracket. Hence:

n
G(n’l1 + m2) / I r .
o b S T T
T2 - 3 I 1) z GmJ\ 3 3> (17)
12 J = 3 rj2 rjl




3-THE N-BODY PROBLEM

X If we are going to study the motion of a near earth
satellite, so we could assume that, m, 1s the mass of
the satellite and m, 1s the mass of the earth. In
equation (17).

* Then from equation (17) #, is the acceleration of the

satellite relative to earth.

X The effect of the last term of equation (17) is to

account for the perturbing effects of the moon; sufi .

and planets on a near earth satellite.



3-THE N-BODY PROBLEM

X To further simplify this equation it i1s necessary to
determine the magnitude of the perturbing effects
compared to the force between earth and satellite.
(note no2 , pagell {2})

COMPARISON OF RELATIVE ACCELERATION (IN G’s)
FOR A 200 NM EARTH SATELLITE

Acceleration in G’s on
200 nm Earth Sa’tellite

Earth .89
Sun 6x10™*
Mercury 2.6x10°1°
Venus 1.9x10°8
Mars 7.1x10719
Jupiter 3.2x10°®
Saturn 2.3x107°
Uranus 8x107!!
Neptune 3.6x10°!!
Pluto 10712
Moon ' 3.3x10°°

Earth Oblateness 1073
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7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

* The angular momentum ofm, relative tom, is:
Hy/1 =1 x myr (1)
r The velocity of "% relative to ™

X Let us divide this equation through by, and let , so
h=H2/1/mz that

h=rxr (2)

h: the relative momentum of 7%, per unit mass (the specific relatlve 3
angular momentum), { ’ }
A



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

* Taking the time derivative of h yields:

dh .
— =rXr+rxr (3)
dt

rxr=»0
g

According to previous lecture = —(p/r)r

X So that:

rxi‘=rx(——r)=—%(rxr)=0

X Therefore:
. @)

—— — (0 =—> r XTr=constant

dt




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

h —

h
i

o ————
- -———
- ——
-

mi

-
-

o)

X At any given *me, the position vector r and the
velocity vector r lie in the same plane

X Their cross product r x r=h is perpendicular to that

plane |
h=— (5)
h
h: The unit vector normal to the plane
dh ~

" — o —> h = constant —> The path of 7, around % lies 1
dt single plane o



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

X Let us resolve the relative velocity vector i into
components v, and v, along the outward radial from
m, and perpendicular to it:

* We can write equation (2) as:
h=r0 x(v,u, +v,0]) = 7“l)_1_fl
X That is:

h=rv| (6)
* The angular momentum depends only on the azimut
component of the relative velocity.




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

* During the differential time interval dt the position vector r
sweeps out area dA

* From the figure it is clear that triangular area dA is given by:

1 1 1 1
dA = 5 x base x altitude = 5 X vdt X rsin¢g = Er(v sin ¢)dt = Erv Ldt

X Theretore, using equation (6) we have:

dA B h ,

—:areal velocity
dt

* According to (7) areal velocity is constant kepler’s second la
(equal area) are swept out in equal times (1571-1630)




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

* Now, we are going to integrate the equation of
motion of m, relative to  m;

" I

* Before that, recall several useful vector identities :

Ax(BxC)=B(A-C)—C(A-B) (9

i r-r=1v (10)

r-r=rr (11)
dllr

rov = e (12)




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

* Now let us take the cross product of both sides of
equation (8) with the specific angular momentum h:

fxh=—Lrxh (13)
,.-

Since: 4(ixh)=¢xh+ixh
so the left hand side of equation (13) can be written:

j .
fxh=—(xh) —fxh
dt

* But we have had h=0 (Equ.4), so finally the left
hand side of equation (13) can be written as:

i
#x h= (i x h) (14)
dt




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

¥ The right- hand side of equation (13) can be
transformed by the following sequence of substitutions:

1 1

r—3rxh=ﬁ[rx(rxi‘)]

= %[r(r ) —r1(r-r)]
x

1
= —[r(rr) — ir?]
X
I’ — rr
= 2
X But
d/r It — rr I — rr
E(r_) -2 2
X Therefore
1 d/r
_ —_ — | — 15
r3r x h dt( r> (15)




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

X Substituting equation (15) , (14) into Equation (13)

we get:
d (i x h) — d( r)
dt = dt 'ur
or ,
d . r
E(rxh—u;)_o
that 1s:

i'xh—,u£=C (16)
.

X Where the vector C 1s an arbitrary constant of
integration having the dimensions of .

motion .f=—(u/r)r.




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

% Taking the dot product of both sides of equation (16)
with the vector h yields:

. h
(th)-h—u%=c.h
ixh - & h —> (i xh)-h=0.

h=rx1t - r&f%l‘-h=0. C-h=0

—>C 4+ h—

Since h 1s normal to the orbital plane so C must lie in
the orbital plane.




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

X Let us rearrange equation (16) and write it as:

r rxh
_+e=
r i

(17)

e = C//4 : The dimensionless vector “eccentricity”

X The line defined by the vector e commonly called the
apse line.

X In order to obtain a scalar equation, let us take the dot
product of both sides of equation (17) with r
r-r r-(r xh)

— 4+ r-e= (18)
r 2

A-BxC)=(AxB)-C —> r.(ixh=(rxi) h=h-h=hE

ror=r (20)




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

X Substituting expressions (19), (20) in (18) yields:

h?
r+r-e= — (21)
L

(Note7, P46, {1})

X r-e=recosb

X substituting this expression into equation (21), we get

h?
r—+recost = — (22)
L

or
h? 1

r= (23)
14 ecosb




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

Frio

114

e: The magnitude of the eccentricity vector e

6 : 1s the true anomaly (the angle between the fixed vector e and the

variable position vector r. (other symbols used to represent trues =

anomaly include v, f, ¢....)



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

h? 1
r= (23)
14+ ecost

X This is the orbit equation, and it defines the path of the
body 2 around m, relative to m,

*Remember p,h,e=constants & e>0

*xSince the orbit equation describes conic sections
including ellipses, 1t 1s a mathematical statement of
Kepler’s first law, namely, that the planets follow
elliptical around the sun. >

* Two- body orbits are often referred to as Keplerii
orbits.



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

X Integration of the equation of relative motion, leads to
six constants of integration.

.. M
r=——r
3
X In this section it would seem that we have arrived at
those constants, namely the three components of the
angular momentum h and the three components of the

eccentricity vector e.

* However we showed that h is perpendicular to e. this
places a condition, namely h.e=o0, on the components of
h and e, so that we really have just five independent..
constants of integration. (Note8,P47,{1}) ¥




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

X The angular velocity of
the position vector r is 4, r

the rate of change the true
anomaly.

*The component  of
velocity normal to the
position vector is found in
terms of the angular

velocity by the formula \/ :
v =160 (24)

% Substituting this into equation 7=rvy
specific angular momentum 1n terms of the angulal
velocity.

h =10 (25)




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

X [t is convenient to have formulas
for computing the radial and
azimuth components of velocity.

XFor azimuth components we

e
-
/v\\ Periapsis

have: ; s
h=rv] —» v] = — N—"
hg 1 UJ_=%(1+€COSQ)
=
14 ecost

(26)

X For radial components we will have
. . dr h? e(—6sin6) _ W esinf p 0
Ur=r=—>"="0= pl (I+ecosd)? | pu(1+ecosh)?rlpme

6="h/r?
h? 1 (*) —> v, = TLe sinf | (27)
)

=
14 ecost



7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

X From equation:

h? 1
r =
14+ ecost

X we see that 1, comes closest to
my (r 1s smallest) when g =0

(unless e=0, in which case the

distance between 71 and 72 1s

constant)

X The point of closest approach lies on the apse line and is

called periapsis.

%X The distance 7’pto periapsis is: § =0
. o1
P = /_L l+e

(28)

X v, =0 at periapsis




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

Y : Flight path angle

*xVis the angle that the
velocity vector v makes
with the normal to the
position vector.

* the normal to the
position vector points in the
direction of VL , and it is
called the local horizon.

X [t is clear that:;

v,
tany = — (29)
Ul




7-ANGULAR MOMENTUM AND THE ORBIT FORMULAS

esinf

X Substituting vrand Vliwe will have: tany = (30)
1+ ecosb

X the trajectory described by the orbit equation is symmetric
about the apse line. Why?

* because cos(—6)= cosb.

* Chord: the straight line
connecting any two points Apse line
on the orbit m

X The latus rectum: the
chord through the center of
attraction perpendicular to
the apse line.

% parameter P: two equal parts divided by the center ' == -
attraction on the latus rectum. |

Periapsis

Latus rectum

h 2 1 h - E ~
- = —_— = — 31 Note:9,P50,{1})"
7 i1+ ecost P M D L)




8- THE ENERGY LAW

* (Note:10,P50,{1})
X Let us see what result from taking the dot product of
equation: } y

= ——r ()

r

* We will do it with the relative linear momentum per
unit mass.

X The relative linear momentum per unit mass is just
the relative velocity:

myr
—_— = l‘
Uy

* Thus, carrying out the dot product in the aboves
mention equation (*) yields: o

LR . r.f
r-r=—/[— (1)
T~




8- THE ENERGY LAW

X For the left hand side we observe that:

1 d 1 d 1d , d[v
=) =c—(v-V)= —— (¥ = — [ — (2)
ol Zdt(r £) Zdt(v v) Zdt(b) dt(Z)

X For the right- hand side of equation (1) we have:

d(1/r)/dt = (—1/r*)(dr/dt), r-r i 7 dgp
, U =HRE=HE = dt(r)
r-r=r

(2)
X Substituting Equations (3) , (2) into equation (1)
yields:

or

— — — = ¢ (constant) (4)




8- THE ENERGY LAW

v

PR ®

v? /2 : the relative kinetic energy per unit mass.

—i/r: the potential energy per unit mass of the body 1, in the
gravitational field of 1171

€ : constant (the total mechanical energy per unit mass)

%X Equation (5) is a statement of conservation of energy,
namely, that the specific mechanical energy 1s the same
at all points of the trajectory.

X Let us evaluate equ.(5) at periapsis (6 =0)

UIz) )
p
rp and vj, : the position and speed at periapsis

at periapsis —»  —() —> vp=v1 =h/r, (7)




8- THE ENERGY LAW

X By substituting (7) in equation (6) we have:

1h? p
E= —— — —
2 ’}32 Ip (8)

* Substituting Equ. for r, into (8) yields a formula for
the orbital specific energy in terms of the orbital
constants h and e,

e=—>"5(1—¢) ©)

X (Clearly, the orbital energy is not an independent
orbital parameter.

* The mechanical energy £ of a satellite of mass 71 i8
obtained from the specific energy ¢ by the formula =

E = mye (10)
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9- CIRCULAR ORBITS (E=0)

«Setting e=0 in the orbital equation yields:

J 2
e=0 —> r=(/pn)/(14+ecosf)—> r = T (1)
/J,-
x That 1s r=constant, which means the orbit”2 of

around ;18 a circle.

(1) =t} —= () =——p U=V w=p> h=rv| —>h=rv—>(1)

m
= VUcircular = 1_ (2)




9- CIRCULAR ORBITS (E=0)

* The time T required for one orbit is known as the period.
X Because the speed is constant, the period of a circular
orbit is easy to compute:

circumference 27Tr

B speed B \F
* So that vor

Tcirc ular — !
N

* The specific energy of a circular orbit 1s found by setting
e = 0 1n the equation of orbital specific energy:

(3)

1 ,uz

£E=———
]_12 2 ]12
¥ Employing 7 = m yields:

e o= _ MK (4)
(NOTE11.P52.{1}) “circular = T




9- CIRCULAR ORBITS (¢=0)

EXAMPLE 9.1

% Plot the speed v and period T of a satellite in circular LEO
as a function of altitude z.

Solution:
* Equation (2) and (3) give the speed and period,

m m \/ 398 600
V= | — = —
r VY Rg+z 6378 + z
27 27

T

] (%)

(6378 + 2)3

~JE /398600
X These relation are graphed in the below figures:
8.0 110+

L 78 ool
g 7.64
< 904

t } t i i 80 i i
200 400 600 800 1000

T, min

L L L

L] 1 L] | 1
200 400 600 800 1000
z, km z, km

(a) (b)




9- CIRCULAR ORBITS (E=0)

EXAMPLE 9.2

X Calculate the altitude 4ceo and speed VGEO of a
geostationary earth satellite: (NOTE12.P53.{1})

- GEO (Geostationary Equatorial Orbit)

- Sidereal day: the time 1t takes the earth to complete or
rotation relative to inertial space. (the fixed stars)

- Synodic day: ( the ordinary 24-hour day), the time it
takes the sun to apparently rotate once around the
earth, from high noon one day to high noon the next.

- Earth inertial angular velocity @k 1s:

wp = 72.9217 x 10™° rad/s (7)




9- CIRCULAR ORBITS (E=0)

EXAMPLE 9.2
X Solution:
* The speed of the satellite in its circular GEO of radius GEOs:
n
UGEO = ,/ — (a)
'GEO

X On other hand:  vgpo = werceo

X Solving for "Geo yields: roro = 35
N,
(L)E

% Substituting Equ.(7) we get:
y 598 600 42164k (8)
. — - = m
s (72.9217 x 10-6)2

X Therefore, the distance of the satellite above the earth’s
surface iSZ ZGEO = I'GEO — RE = 42164 — 6378 = 35786 km

% Substituting Equ.(8) into (a) yields the speed:

/398 600
vGEO =/ 51y = 2:075km/s ()




9- CIRCULAR ORBITS (E=0)

EXAMPLE 9.3

% Calculate the maximum latitude and the percentage of
the earth’s surface visible from GEO.

Solution:

To find the maximum viewable latitude ¢
figure, from which it is apparent that:

¢ =cos™! — (a)




9- CIRCULAR ORBITS (E=0)

¢

EXAMPLE 9.3

Where Rg = 6378 km, r — 42 164 km, therefore:

6378
— cos™! 1A = 81.30° Maximum visible north or south latitude. (b)

* The surface area S visible from
GEO 1is the shaded region
illustrated in figure

X [t can be shown that the area S is Equator
given by:

S = ZJTR,?;(I — cos @)

X Therefore, the percentage of the hemisphereI: visible from
GEO is: S Kt
2mRZ

* Which of course means that 42.4 of the total surface of t
earth can be seen from GEO.

x 100 = (1 — c0s81.30°) x 100 = 84.9%
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8- ELLIPTICAL ORBITS (0<e<1)

* (NOTE13,P55,{1})

a a
"B
b
b
AJ./I, \ \ s Apse
= in

 r=——(r,=——— (1)

* The curve defined by orbit equation is an ellipse:

r=(h*/1t)/(1+ ecosb)



8- ELLIPTICAL ORBITS (0<e<1)

a a
r
/br' )
b

A P l \ \ P Apse
F’ C F line

ae

r(l

X Let 2a be the distance measured along the apse line from
periapsis P to apoapsis A, as illustrated in figure, then

2a=r1p+714 (2)
* Substituting ’» and’a values into (2), we get:

W1
a = P | _ 22 (3)

X a is the semimajor axis of the ellipse.




8- ELLIPTICAL ORBITS (0<e<1)

* Solving equation (3) for h*/;t  and putting the result
into orbit equation yields an alternative form of the orbit

equation: | — o2

1
: 1 4+ ecosH (4)

r=

B

a a
r
/Er )
b
Al o l \ \ P Apse
F’ (& F line
ae

T T, —

P

X Let Fdenote the location of the body 71, which is the
origin of the r,6 polar coordinate system.

* The center C of the ellipse is the point lying midwayi
between the apoapsis and periapsis. :
CF=a—FP=a—r




8- ELLIPTICAL ORBITS (0<e<1)

a a
r
/I( )
b

A P l \ \ P Apse
F’ C F line

ae

r(l

* From equation (4) we have:

rp =a(l —e) (5)
* So CF=ae. as indicated in the previous figure.

X [f the true anomaly of point B 1s 8 , then according to Z.

equation (4), the radial coordinate of B 1s: By -

1 —e¢?

a
1+ ecosp

'B = (6)



8- ELLIPTICAL ORBITS (0<e<1)

B

Z
b
Al - 1 N\p  Apse

F’ (& F line
ade

Ta rP —

X The projection of 7B onto the apse line is ae:

1 — e?
ae = rg cos(180 — = — os B = — oS
5 cos(180 — ) = —r5 cos (al—i—ecosﬂ)c p

X Solving this expression for e, we obtain
e = —cosf (7)
X Substituting this result into equation (6) we get
rp=a
% According to the Pythagorean theorem,
b* = rj — (ae)* = a®> — a*e* —> b=ay1—¢?




8- ELLIPTICAL ORBITS (0<e<1)

* Let an xy cartesian coordinate system be centered at C,

X |n terms of r and 6.. we see that:;

— ac+ 0 = ae + ] — ¢? 09— e + cosb
X =ae+rcosf = ae al+ecos€ Cos _a1+ec059

X From, this we have:

x_ ¢ + cos 6 9)
a l+4+ecosf
X For the y coordinate we have (by using equation (8)):
2 a—
y =rsinf = (a L= ) sinf = b# sin 6
1+ ecosb 1+ ecosb
Vi—e |
* Therefore: > =—r —sin6 (10)

b - 1 +ecosh



8- ELLIPTICAL ORBITS (0<e<1)

% Using equations (10) and (9), we find:

x* y? 1 2 2\ .2
- +b_2 = T ecoso? [(e 4+ cos6)” + (1 — e”) sin” 6]
1
— 0T ¥ [e2 + 2e cos O + cos® O + sin” O — e? sin® 9]
€ Cos
1 _
— 0T B ez+2ec059+1—e25in29]
e CoS -
1 - 2 . 2
= 0T 5 e“(1 —sin“ @) + 2ecosb + 1]
€ CoS -
1
— (1T 2c0s0)’ [ezc0529+2e<:059+ 1}
— (1+ec089)2(1+ec059)2
X That is:
2 2
£+%= (11)

(NOTE14,P59,{1})



8- ELLIPTICAL ORBITS (0<e<1)

* The specific energy of an elliptical orbit is negative, and
it 1s found by substituting the specific angular
momentum and eccentricity into equation:

_ 2
E —Eh—z(l—e )
* We have had:
2
a=h L —>h2=ua(1—ez)
n1l—e?
% So that;
p(_,
= —— 12
¢ 2a (12)

* This shows that the specific energy is independent 07 .-
the eccentricity and depends only on the a:



8- ELLIPTICAL ORBITS (0<e<1)

* For an elliptical orbit, the conservation of energy may
therefore be written:

* To find the period T of the elliptical orbit, we employ
Kepler’s second law,

h
dAjdt=h/2, —> AA=_At ()

X For a complete revolution

AA=mab
Ta ) T — 2mab (**)
At=T h
b—a\/l—e2

(**) =—> T = —az\/l—e2

/,Ll—e2




8- ELLIPTICAL ORBITS (0<e<1)

* So that the formula for the period of an elliptical orbit,
in terms of the orbital parameters /# and e, becomes:

(13)

T_Z]T( h )3
pi\JV1- e

* We can substitute h=,/ua(1 —e2?) into this equation,
thereby obtaining an alternative expression for the
period:

3
az (14)

of an elliptical orbit 1s independent of the e.




8- ELLIPTICAL ORBITS (0<e<1)

T = a (14)

N
%X Equation (14) embodies Kepler’s third law, the period
of a planet 1s proportional to the three-halves power
of 1its semimajor axis.




8- ELLIPTICAL ORBITS (0<e<1)

* Dividing eaquations 7, by 74 yields:
o1
®14e l1—e

" _ _
r, l1+e
o1

;l—e

* Solving this for e result in , = =
a useful formula for
calculating the eccentricity I

of an elliptical orbit, _/

namely: Fa — T, ;
' e= £ 15) “
Ta+1p

* From figure it is apparent that r, —r, = F'F, the distance, ...

between the foci. As previously noted r, +r, =2a . Thu R
equation (15) has the geometrical interpretation: |

distance between the foci

eccentricity = - ,
Y length of the major axis




8- ELLIPTICAL ORBITS (0<e<1)

* What is the average distance of #; from m; in the
course of one complete orbit?

X To answer this question, we divide the range of the
true anomaly(277) 1nto n equal segment:A6 | so that:

27
N
* We then use 7= (h*/11)/(1+ ecosf)to evaluate r(6)
at n equally spaced values of true anomaly starting at
periapsis:
01 =0, 6, =A0, 63=2A0,...,0,=(n—1)A0

X The average of this set of n values r 1s given by:

Zr(@ Zr(@)_ ,,Z"(Qi)‘w (16)
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* Now let n— o equation (16) becomes:

1 27
rg = — r(0)do
271' 0
. 1 —ip?
* We kIlOW that r—=a
14+ ecosb

X So, substituting into the integrand yields:

2w
;‘9 — i61(1 = ez)/ 4
0

2 1 4+ ecosé
* The integral can be found in integral tabels, which yields.

1 27T
?=—a1—e2( ):cz\/l—e2
b 27[( ) \/]—22

* Since r,=a(l —e)and r,=a(l+e) , equation (17) implie s
that "-,9 — m (18) :

* (NOTE15,P61,{1})
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EXAMPLE 8.1

An earth satellite is in an orbit with perigee altitude 2, =400 km

and an eccentricity ¢e=0.6. Find (a) the perigee velocity, vp;
(b) the apogee, ;5 (c) the semimajor axis, a; (d) the true-
anomaly —averaged radius 7,; (e) the apogee velocity; (f) the
period of the orbit; (g) the true anomaly when r =ryp;(h) the
satellite speed when r=rp; (1) the flight path angle
y  when r = rp; (j) the maximum flight path angle ¥max

and the true anomaly at which it occurs.

the strategy i1s always to go after the primary orbital
parameters, eccentricity and angular momentum, first. In this
problem we are given the eccentricity, so we will first seek h.
recall that also that Ry = 6378 km.

(a) the perigee radius is

rp = Rp + 2, = 6378 + 400 = 6778 km
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EXAMPLE 8.1
Evaluating the orbit formula, equation r= A at
(perigee) 0=0 we get et
W o1
2= wl4+e
We use this to evaluate the angular momentum
h? 1

6778

~ 3986001+ 0.6
h = 65750km? /s

Now we can find the perigee velocity using the angular , .
momentum formula, equation h =rv =

h 65750
Up = V1 )perigee = . = 9.700 km/s
P
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EXAMPLE 8.1

(b) the apogee radius 1s found by evaluating the orbit
equation ¢ = 180° (apogee):
L 65750° 1

= : = 27110km
mwl—e 3986001 —0.6

"'(I —

(c) the semimajor axis 1s the average of the perigee and
apogee radii:

_rptra 6778 +27110
oz 2
(d) the azimuth- averaged radius 1s given by equation .

(18):
Fo = frota = /6778 - 27110 = 13560 km

= 16940 km

a
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EXAMPLE 8.1

(e) the apogee velocity, like that at perigee, 1s obtained
from the angular momentum formula,

h 65750
V; = V1) = —=_——=2425km/s
a _L)apogee r 27110 Vi
(f) to find the orbit period, use equation (14)

e (. o sk 3—21950 — 6.098h
- Mz(«/—l _ez) - 3986002(./—1 _0_62) - M -
(g) to find the true anomaly when  r=7,, we again use

the orbit formula R 1

W= z 1+ ecosb
65 7507 1
13560 =

3986001 4+ 0.6 cosf
cosf = —0.3333
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EXAMPLE 8.1

This means:

0 = 109.5°, where the satellite passes through 7p on its
way from perigee

and :

0 = 250.5°, where the satellite passes through on g its
way towards perigee

(h) To find the speed of the satellite r=r, we first calculate
the radial and transverse components of velocity:

h _ 65750

= — =4.850km/s
rg 13560

V] =




8- ELLIPTICAL ORBITS (0<e<1)

EXAMPLE 8.1

For the radial velocity component, use equation v. =% +ecoso)

moo 398 600 _
Vv, = —esinf = . 0.6 - sin(109.5°) = 3.430km/s
h 65750
or
_ 398 600 _
vV, = —esinfg = 0.6 - sin(250.5°) = —3.430km/s
h 65750

The magnitude of the velocity can now be found as

v= /124 v} =/3.430% + 4.8502 = 5.940 km/s

We could have obtained the speed v more directly by using
conservation of energy ( "; -2 -2 ), since the semi majors = =

r

axis 1s available from part (¢) above.

however we would still need to compute, v, and v, in order to
solve next part of this problem. :
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EXAMPLE 8.1

i) use equation ,, — #.sing to calculate the flight path
q r h g p
anr = ro.t

v, | 3.430 ) "
T —tan' T =35.26°at @ = 109.5

= fan
¥ i 4.850

Y 1s positive, meaning the velocity vector i1s above the

local horizon, indicating the spacecraft is flying away from

the attracting force. At6=250.5°, Where the spacecraft is

flying towards perigee, y=—35.26°. since the satellite 1s

approaching the attracting body, the velocity vector lies
below the local horizon, as indicated by the minus sign. = =
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EXAMPLE 8.1
(j) equation  tany = 1 iSi’lfSe gives the flight path angle in
e
, esiné

terms of the true anomaly, y = tan™ (a)

1 +ecosf

To find where 7 1s a maximum, we must take the derivative of
this expression with respect to ¢ and set the result equal to zero.
Using the rules of calculus,

dy 1 d esin@ e(e 4 cosf)
do esin @ 2%(1—}—“039)

bt (1 + ecose)
For e<1, the denominator is positive for all values of ¢ therefore,
dy/d6=0 only if the numerator vanishes, that is, if cosé=—e recall
from equation (7) that this true anomaly locates the end-point of th
minor axis of the ellipse. The maximum positive flight path anglel &8
therefore occurs at the true anomaly *'

"~ (14 ecosB)? + e2sin’ @

6 = cos 1(—0.6) = 126.9°
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EXAMPLE 8.1

Substituting this into (a), we find the value of the flight path
angle to be

1 0.6sin126.9°
1 +0.6cos126.9°

= 36.87°

Ymax = tan

After attaining this greatest magnitude, the flight path angle starts
to decrease steadily towards its value at apogee (zero).
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EXAMPLE 8.2

At two point on a geocentric orbit the altitude and true anomaly
z; =1545km, 6; = 126° and z; = 852 km, 6, = 58°, respectively.
Find (a) the eccentricity; (b) the altitude of perigee; (c¢) the semi
major; and (d) the period.
(a) The radii of the two points are

rnn = R+ z1 = 6378 + 1545 = 7923 km

r» = RE + zp = 6378 + 852 = 7230 km

h? 1

Applying the orbit formula, equation =" 7 , to both of
these points yields two equations for the primary orbital
parameters, angular momentum / and eccentricity e

h?2 1
r =

; 1 + ecosé
h? 1
398 600 1 + e cos 126°
h? = 3.158 x 10° — 1.856 x 10°%¢ (a)

7923 =




8- ELLIPTICAL ORBITS (0<e<1)

EXAMPLE 8.2
h? 1
rn=—
nl+ecost
h? 1
7230 =
398600 1 + e cos 58°
W = 2.882 x 10° + 1.527 x 10% (b)

Equation (a) and (b), the two expressions for ;2 yields single
equation for the eccentricity e,

3.158 x 10° — 1.856 x 10%¢ = 2.882 x 10° +1.527 x 10°¢ = 3.384 x 10%
= 276.2 x 10°

Therefore,

e = 0.08164 (an ellipse) (c)

(b) By substituting the eccentricity back into (a) [or (b)] we  find
the angular momentum,

—

h* =3.158 x 10° — 1.856 x 10°-0.08164 = h=54830km?/s (d)
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EXAMPLE 8.2

Now we can use the orbit equation to obtain the perigee radius

P 1 54 830° 1

rp = — - = 6974km
i 1+ecos(0) — 398600 1+ 0.08164

and perigee altitude

zp =rp — Rp = 6974 — 6378 = 595.5km

(c) the semimajor axis can be found after we calcute the apogee radius
by means of the orbit equation, just we did for perigee radius:

h? 1 54 83072 1

= — = = 8213 km
w14 ecos(180°) 3986001 — 0.08164

Ta

Hence
T +r, . 8213 + 6974
- > -

(d) Since the semi major axis is available, it is convenient to use
equation (15) to find the period

a = 7593 km

3 2 3 |
a2 = ———75932 = 6585s = 1.829 hr

Jr /398 600
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«If the eccentricity equals 1. then the orbit equation
becomes:

ol
= (1)
u 14 cosé

*If@ — 18(0° =——>» F'—» 00

*x For a parabolic trajectory the conservation of energy
s

v
2 r p)

- ﬁ

v M
2 7—_=

r

0

* It means that the speed anywhere on a parabolic patk

1S;
V= \/2—“ (2)
r
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X If the body 11, is launched on a parabolic trajectory; it
will coast to infinity, arriving there with zero velocity
relative to #17. It will not return

X Parabolic paths are therefore called escape trajectories.

1w SRS
:" LR e

X At a given distance r from /771 the escape velocity is:

2u
Veocr = —
esc . (4)
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X Let Vo be the speed of a satellite in a circular orbit of
radius 7. then :

Vesc =— \/EUO (4)
*(NOTE 16, P66, {1})

X For the parabola, the flight path angle takes the form:
sin 6
1 + coso

fany =

% Using the trigonometric identities

. ., @ 0
31n9=231n—cos§
2] o) o)
cosO = cos® — — sin® — = 2cos® — — 1
2 2
* We can write
) O _ g
2sin — COS — sin — 0 0
tan v — 2 2 2 v _v
}/— — = tan — )/—
0 0 2 2
2 cos? — cos —

2
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% That is, on parabolic trajectories the flight path angle 1 Boes

one-half the true anomaly
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* Recall that the parameter p of an orbit:

h2
p=—
7

% Substitute this expression (5

into equation(l) and then

pl2

2a

plot r= In a cartesian

1+cos@

coordinate system centered

at the focus, we will get:

P
X From the figure it is clear that: /
9 cosf
X = T COS _pl—I—COSQ (6)
sin 6

(7)

N = p1+c030
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X Therefore

X +(y 2_ cos 6 i sin” 6
p/2 p)  T14cosf (14 cosh)?

*x Working to simplify the right-hand side, we get:

X (y)2 _ 2cos6(1 + cos6) + sin% @ B 2c0s8 + 2 cos? @ + (1 — cos )

p/2 p (1 4 cosB)? (1 4 cosB)?
_ 1+ 2cos8 + cos® 6 B (1 + cosB)? B
- (1 4 cosB)? (14 cosf)?

X [t follows that:

X= (10)

(S Rias)

¥
2p

X This is the equation of a parabola in a cartesian coordinat
system whose origin serves as the focus.
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EXAMPLE 2.1

* The perigee of a satellite in parabolic geocentric trajectory is
7000km. Find the distance d between point Prand P, n the

orbit which are 8000km and 16000km, respectively, from the
center of the earth.

first, let us calculate the angular momentum of the satellite by
evaluating the orbit equation at perigee,
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EXAIVIIPII.E ?.1
X From which
h= /2ur, = /2398600 - 7000 = 74 700 km?/s (a)

* To find the length of the chord P, P,, we must use the law of
cosines from trigonometry,

d* = 8000 + 16 000% — 2 - 8000 - 16 000 cos AB (b)

* The true anomalies of pointsp, and p, are found using the orbit
equation:

747002 1

398600 1 + cos 6

8000 = c0sf =075 = 6, =41.41°

G0 [0, = cos@ = —0.125 = @, =97.18°
~ 398600 1 + cos 6, S S

* Therefore,; A6 =97.18° — 41.41° = 55.78°, so that (b) yields

d =13270km




CHAPTER In

HypreErBOLIC

TRAJECTORIES

(e>1)

CHAPTER CONTENT



10- HYPERBOLICTRAJECTORIES (€ >1)

«Ifc- 1, the orbit formula describes the geometry of
the hyperbola
|

e (1)
u 14 ecosd

< -7 -7 Vacant

Bl %@;’ 3 orbit
TM = /
b ) S
,3// c\\vﬁ
P
’,x’ i Empty focus
a' = \
——|ral = |
\\\ \\
. \‘\‘II

* The system consist of two symmetric curves

* One of the occupied by the orbiting body, the other on_
1s 1its empty, mathematical image )
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iy A E’
[z \ Empty focus
o S

~
~
~
~ ~
s ~
~ ~
~o 53

~
~
~
~
~
~
~

* Clearly: limr — &

cos@—)—%

*x We denote this value of true anomaly since the radial distance
approaches infinity as the true anomaly approaches 6.

O = cOs 1 (—1/e) (2)

* 01s known as the true of the asymptote.

* Observe that g, lies between9o® andgge

* From trigonometry it follow that . ez — 1
sSin

000 =
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~
~
~
® H
~
~
~
~
~

¥ For —fx <0 <0x, the physical trajectory is the occupied
hyperbola I (on the left)

* Forbfeo <8< (360° —6), hyperbola II- the vacant orbit around
the empty focus F' - is traced out. (NOTE17,P69,{1})

# '1:2:—

%X Periapsis P lies on the apse line on the physical hyperbola I
whereas apoapsis A lies on the apse line on the vacant orbit. |

\.

¥ The point halfway between periapsis and apoapsis’ is th
center C of the hyperbola.
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;
/
/
E E
i\“ Empty focus
\\
\

~

< ~

~ ~
~ ~
~o S

SN IT

* The asymptotes intersect at C, making angle g with the apse
line.

B=180° =6 — 5 OSf=—C08000. — 5 B=cos'(1/e) (2)

* The angle 8§ between the asymptotes is called the turn angle

* The turn angle is the angle through which the velocity vectors = —am
of the orbiting body is rotated as it rounds the attracting bodjdiie =
at F and heads back towards infinity.

o Eq.2.89 :
. 5 . (180° —2 _ - o i—ly .
§=180"—-28, —> sinzzsm(—ﬂ)=sm(90°—ﬂ)=cosﬂ = - 7> §=2sin" (1/e

p: ( - ! :El/
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== - 2
g o /”Vacant
<" . - orbit
,/

- F"
‘\\ Empty focus

S
~
~

~
~

>3 ~

~ ~

\‘\‘!I

* The distance r, from the focus F to the periapsis is given by

equation: 21

6
fa = /_1,1—{—(? ()

* The radial coordinate r, of apoapsis is found by setting 4 _ g0

n equation: ) )
=
n1l4+ecosé (7) \
X SO h2 1
g =
nl—ce

* QObserve that r; is negative, sincee> 1 for the hyperbola. Th":'
means the apoapse lies to the right of the focus F
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AL - F
. Empty focus

~ ~
~ ~
~. %
~ ~
~o ~
~ ~

* We see that the distance 2a from periapse P to apoapse A is:

2a=|rg|l —rp=—ra—1p

X Substituting equation (6) , (7) yields

5 W o1 " 1 o1
a = ——— —
ﬂ l g 1 + o > d I.L e2 _ 1 (8) y Zo . 7 ; , . 7‘5‘.. \

% So the orbit formula may be written for the hyperbola

et —1
a
1 +ecosé

(9)
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* From equation (g) it follows that: ~ 7»p = ale —1) (10)
r, = —a(e+ 1) (11)
i B
T

. Empty focus

S~ ~
S~ ~
~o "

\‘~\II

* The distance b, from periapsis to an asymptote measured
perpendicular to the apse line; is the semiminor axis of the

hyperbola
* The length b is

sin B sin (180 — 6) sin B
= =a——
cos 8 cos (180 — B) — COS B0

b=atanB =a
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A - F"
. Empty focus

~ ~
~ ~
~ ~
S~ ~
~o "

\‘~\‘II

X The distance’A between the asymptote and a parallel line
through the focus is called the aiming radius

* We see that .
A = (rp+a)sinp
(10) —> A = aesinp
ez —1

e

(4) —> A=ac

3) —> A = aesin 0= LI@\/I — cos2 O

(2) _>A=ae 1 —

&

G)Nl -
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* Finally: A= ade? — 1 (13)

¥ Comparing this result with equation 12, it is clear that the
aiming radius equals the length of the semiminor axis of
the hyperbola.

Y

* As with the ellipse and
the parabola, we can
express the polar form of
the equation of the
hyperbola 1n a cartesian L,/
coordinate system whose

origin 1s 1n this case

midway between the two

foci.
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X From the figure it 1is y
apparent that:
X=—a—r1p+rcosd (14) f x
< y T ;
= rsinf 1
Y (19) lF za 0 T'»—oF' %
, . Al |
X Using equation (9),(10), /
(14) we obtain: |
e — 1 e + cosé
x=—a—ale—1)+a cosf = —a
1+ ecos@ 1+ ecos@

X substituting equation (9) and (12) in (15) we obtain:
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* [t follows that:

y
2
oy ( e + cosf )2 (\/ez— 1sin 6
a2 b \l+ecosd) \ 1+ecoso .
e
e? 4 2ecosB + cos? 8 — (e — 1)(1 — cos? 6) lm :
— F-¢ —x
(1 + ecos )2 }‘} 0 I_'
Tp a {0 |\‘\
_ 14+2ecosf+e*cos’6 (14 ecosh)? \‘
- (1 4+ ecosB)? " (14 ecosh)2
X That 1s,
2 2
X Yy
S -5=1 (16)

symmetric about x and y exes, with intercept on the x axis.
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* The specific energy of the hyperbolic trajectory is:

1 2
= - (1-¢
2 h? 7
E = — (17)
o1 2a
a =
net—1

* The specific energy of a hyperbolic orbit is clearly positive
and independent of the eccentricity.

* The conservation of energy for a hyperbolic trajectory is:
2

il s (18)
2

r 2a

* Letvs denote the speed at which a body on a hyperbolic pat
arrives at infinity so:

(18) —> Uoo=\/g (19)



10- HYPERBOLICTRAJECTORIES (€ >1)

X Interms of voo we may write equation (18) as:

% Ve jg called the hyperbolic excess speed.

* Substituting the expression for escape speed, we obtain
for a hyperbolic trajectory

2 .2 2
v —vesc+voo

* This equation clearly shows that the hyperbolic excess, ... ..
speed Voo represent the excess kinetic energy over thafidme =
which 1s required to simply escape from the center of
attraction. 3




10- HYPERBOLICTRAJECTORIES (€ >1)

* The square of v is denoted C3 , and is known as the
characteristic energy

2

O )

C3=v

* C3is a measure of the energy required for an
interplanetary mission and C3 is also a measure of
maximum energy a launch vehicle can import to a
spacecraft of a given mass

Cs Jimimichivehicle = C3 ) mission

% Voo can be find also:

Voo = e Sin Bpg = ﬁ\/ e — 1 (21)

h h
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X The figure shows a range of trajectories, from a circle
through hyperbolas, all having common focus and
periapsis

1.1

e=1.0 L3 15
2.5

0.9 0.85 0.8 0.7 0.5 03/ 0 P
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EXAMPLE 2.1

*x At given point of a spacecraft’s geocentric trajectory, the
radius is 14600km, the speed is 8.6km/s, and the flight path
angle 1s 50° . Show that the path is a hyperbola and calculate
the following: (a) 5,  (b) angular momentum, © true
anomaly, (d) eccentricity, (e) radius of perigee, (f) turn angle,
(g) semimajor axis, and (h) aiming radius.

to determine the type of the trajectory, calculate the escape
speed at the given radius.

_\/ﬁ_\/z-wssoo_”m
e e T T TS

Since the escape speed is less than the spacecraft’s speed of %
8.6km/s, the path is a hyperbola.
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EXAMPLE ?.1

(a) the hyperbolic excess velocity v, is found from equation

(19),
v = v? —v2_ = 8.6% — 7.389% = 19.36 km? /s>

esc

From equation (20) it follows that

C3 = 19.36 km?/s?

(b) Knowing the speed and the flight path angle, we can obtain

both v, and vi:

v, = vsiny = 8.6sin 50° = 6.588 km/s (a)
v] =vcosy = 8.6-cos50° = 5.528km/s (b)

Then equation * provides us with the angular momentum,
h=rv, =14600-5.528 = 80710km?/s (c)
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EXAMPLE ?.1

(c) Evaluating the orbit equation at the given location on the
trajectory, we get

80 7102 1
14600 =
3986001 4 ecosé
From which
ecosf = 0.1193 (d)

. L : ®o
The radial component of velocity is given by equation vr = J-esin 6

, Ur = pesin@/h, so that with (a) and (c), we obtain

398 600 .
6.588 = esiné
80170
or
esinf® = 1.334 (e)

Computing the ratio of (e) to (d) yields
1.334
0.1193

tanf@ = =11.18 = 6 = 84.89°
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EXAMPLE ?.1

(d) We substitute the true anomaly back into either (d) or (e) to

find the eccentricity,
e =1.339

(e) The radius of perigee can now be found from the orbit
equation,
_ 1 _ 80710 1

rp= — = — 6986 km
11+ ecos(0) 398600 1+ 1.339

(f) The formula for turn angle is equation § = 2sin~'(1/¢), from

which 1 1
8§=2sin" ! =) =2sin"{ —— | = 96.60°
1.339

(4

(g) The semimajor axis of the hyperbola is found in equation
B 1

Cope?—1

(h) According to equation b = av/e? — 1 , the aiming radius is

a

A=aye:—1= 20590\/1.3392 —1=18340km
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11- ORBITAL POSITION AS A FUNCTION OF TIME

xIn preview chapter we found the relationship

between position and true anomaly for the two-
body problem.

x The only place time appeared explicitly was in the
expression for the period of an ellipse.

* (Obtaining position as a function of time is a simple
matter for circular orbits.

x For elliptical, parabolic and hyperbolic paths we
are led to the various forms of Kepler’s equation
relating position to time.

x These transcendental equations must be solve
iteratively using a procedure like Newton’s methody s
which is presented in this chapter.
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11.1 Time Since Periaps

* The orbit formula, gives the position of body 7772 in its orbit
around 1717 as a function of the true anomaly

r=(h?/u)/(1+ecosb)

* For many practical reasons we need to be able to determine
the position of 772 as a function of time.

% For elliptical orbits we have formula for the period T:

= 237( h )’
2 \J1=¢

*x But we cannot yet calculate the time required to fly betweefisss
any two anomalies. The purpose of this section is to come up
with formulas that allow us to do that calculation :
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* *

The one equation which relates true anomaly directly to time

is:
h=r%6 > 49 = ﬁ
dt r2

Substituting r from orbit formula, after separating variables
we find:
1’ do

—dt =
h3 (1 4 ecosh)?

Integrating both sides of this equation yields:

/_Lz(t 3 /9 di
= — 1
h3 P o (14 ecos)? )

Iy : time at periapse passage (60 =0 )

previous chapter.

The origin of time is arbitrary. It is convenient to measufi
time from periapse passage so we will usually sett, =0
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* If t,=0, in that case we have

1’ /9 di
L= (2)
h’ o (14 ecosd)?

X The integral on the right maybe found in any standard
mathematical handbook.

X the specific form of the integral depends on whether
the value of the eccentricity e corresponds to a circle,
ellipse, parabola or hyperbola
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%X For a circle, ¢ = () so the integral in Equation (3) is simply:
'[06 dv. —_—> = h_
1
% Recall that for a circle: .
) 33 rz
r=nh /,(L —_> h3:rflu§ —_— = \/79
0

* Substituting the formula for the period T of a circular orbit
yields: (NOTE 18 P(109),{1})

2‘7-[ t=0  Apse

A
9 = Tt Up line
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11.3 Elliotical Orbi

%X For 0<e<l, we find in integral tables that

/9 do 1 o [1—e. 68\ eJ1—e*sing
= - | 2tan tan — ) —
o (1 +ecos?)? (1 —e2)z 1 4e 2 1+ ecosé

X Therefore, Equation (2) in this case becomes:

w? 1 f [1—e, 6 en/1 — e2siné
—I=————|2tan 1_i—)tan— —

h- (1 _eZ)% € 2 1 +ecosh
X Or
1—e &, /1 — e2siné
M, = 2tan”! T = (3)
1 +e 2 1 +ecosf
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X In equation (3), M, is: called the mean anomaly:

2
(L

M, =2 (1-e)i: (4)
h3

%X Equation (3) in plotted in the below figure:

2T T

Mean anomaly, M,
5

ﬁ \e= 0.9

1
b 1 2t
True anomaly, #

* (NOTE 19 PAGE 110, {1})

0
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X From the formula for the period T of an elliptical
orbit we have:

T = 27:( h ) > /.12(1—82)%/}13=2T[/T._
ne\ V1 — e? ‘

%X So that the mean anomaly can be written much more
simply as:

M(_, — z—nt ()
/4

X The angular velocity of the position vector of an
elliptical orbit 1s not constant, but since 27 radians
are swept out per period T, the ratio 27 /T 1sthe
averagee angular velocity which is given the symbol 4 s
n and called the mean motion. :

27 ©
= —
T
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X In terms of the mean motion, Equation (5) can be
written simpler still:

M, = nt
* (NOTE 20 P 111, {1})

X It is convenient to simplify Equation (3), by
introducing an auxiliary angle E called the eccentric
anomaly. (NOTE 21, P 111, {1})
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* To find E as a function of # , we first observe from
previous figure that:

OV =acosE
OV =ae+rcosb

X Thus:
aAcosE = ae + rcosé

% Using Equation:
r=a(l —e?)/(1+ecosb)
* We can write this as:

a(l — e?) cos @

acosE = ae +

1 4+ ecosé¥
* Simplifying the right-hand side, we get
e + cos¥ e — CoSE
cos E = (7a) —> CcosH =

1 +ecoséb ecosE — 1
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X Substituting Equation(7a) into the trigonometric
identity( sin® E + cos? E=1) and solving for sin E
X yields: i — 2 sind)

sin E = (8)
1 +ecosé

%X Equation (7a) would be find for obtaining E from ¢

except that, given a value of cos E between -1 and 1,
there are two values of E between  (° and 360°

l_..
cos E .\ - _ - - - - _ -
i
|
|
!
0 + '

— 1)

¥ The same comments hold for Equation(8)
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To resolve this quadrant ambiguity, we use the following

trigonometric identitiy:
s 8 l1—=vcosE
fan” — =
2 14 cosE
By the use of Equation’s (9) and (7a), we obtain:

E [1—e 6
an— = fan. — (10a)

2 Vi4e 72

1-—ie 6
Or E=2tan"" ( " tan 5) (10b)

(9)

142
2T T : . ‘ i 5//::’_ A.‘-
Observe from the above | s -
figure that for any value of _ > & -

tan(E/2) | there is only one 7 -
value of E between 0° and 360°%

there is no quadrant |
ambiguity. =
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X Substituting Equation(8) and (10b) into Equation (3) yield’s
Kepler’s equation:
M, =E —esinE (1)

X This monotonically increasing relationship between mean
anomaly and eccentric anomaly is plotted for several values

of eccentricity.

L =10 — =
| N ]

e=0.8 //c

l
ex O Pt e=0.4

W/t !

// A e=0.2

e=0

Mean anomaly, M,
9

7
17
7

AN

NN

7
Eccentric anomaly, E
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* Given the true anomaly 6, we calculate the eccentric anomaly
E using Equations(10)

* Substituting E into Kepler’s formula “Equ.(11)” yields the
mean anomaly directly.

* From the mean anomaly and the period T we find the time
(since periapsis) from Equ:

M,
=T (12)
2T

* On the other hand, if we are given the time, then Equation 12
yields the mean anomaly g,

* Substituting M. into Kepler’s equation we get the followmg
expression for the eccentric anomaly.

E —esinE = M,
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* We cannot solve this transcendental equation directly for E.
(A rough value of E might be read of previous figure)

¥ However, an accurate solution requires an iterative, “trial and
error’ procedure.

* Newton’s method, or one of its variants, is one of the more
common and efficient ways of finding the root of a well-
behaved function.

(NOTE21,P114,{1})

* To apply Newton’s method to the solution of Kepler’s
equation, we form the function,

f(E) =E —esinE — M,
And seek the value of eccentric anomaly that makes
f(E)=0.Since f'(E)=1—ecosE

% For this problem we have:

E. =E._E,-—esinE,-—Me (13)
e ' 1 — ecosE;
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xFor the parabola (e=1) Equation:

,uzt_/g d
B )y (14 ecos)?

xbecomes:
w? L /9 di (1)
h3 o (14 cosv))?
*In 1ntegral tables we find that:
v d L. 8  q, 58
/O (Itcoso) 203 Tg™ 3

* Therefore equation (1) may be written as:

(Barker’s Equation) 1 6 1 6
M, = —tan— 4~ tan® — (2)
2 2 B 2
* Where i
v N 3)

P I3
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Mean anomaly, M,,

_ 1 (3)
=7
* M, Is dimensionless, and it may be thought of as
the “mean anomaly” for the parabola.

’ /
/
/

e
\

/|

e

\

Jq b 4

True anomaly, ¢
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* Given the anomaly ¢, we find the time directly from
Equations (3) , (2).

1 6 1 , 0
M, = —tan — + — tan” —
2 2 6 2
M _/_th
P — h3

* [f time 1s the given variable, then we must solve the
cubic equation:

1 : 6 3+1t 0 M — o
= ALY == =@l = —= —
6 2 2 2 P

* Which has but one real root, namely:

—
3

o 3 -1
tan o= [3Mp -k \/(SMP)2 - 1] - [(SMP - \/(SMP)Z + 1)}
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EXAMPLE 12.1

X A geocentric parabola has a perigee velocity of

10 km/s . How far 1s the satellite from the center of

the earth six hours after perigee passage?
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* Solution: EXAMPLE 12.1
* We will find the perigee radius from equation:
20 2-398600
Ip = B 5 = 7972 km
vp ].O"'

% So that the angular momentum is
h = rpvp = 7972 - 10 = 79 720 km* /s

* Now we can calculate the parabolic mean anomaly:

1t 398600% - (6-3600)
My="— = - = 6.7737 rad
I 79 720-

% So that 3M, =20.321 rad. Equation(4) yields the true anomaly:

3

“ 3
tan = = [20.321 +203212 + 1]’ = [(20.321 +203212 + 1)]

—

=3.1481 = 6 = 144.75°

* Finally, we substitute the true anomaly into the orbit equatiol
to find the radius: 797202 1 )

r = _ — = 86899 km
398600 1 4 cos(144.75°)
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* For the hyperbola (e>1) the Equation:

2 - dd
=g\t =ilp) = ;
h- o (14 ecosi))*
X A fter some substitutions becomes:
e el — lsinH Je+ 1+ 1tan(6/2)
(1)
1 4+ ecosé Je+1 1tan(6/2)

* Where, M}, is the hyperbolic mean anomaly:

Mh —

2
-
h?
X Equation (1) is plotted in the below figure

My, = ( = 1)% (2)

10 000 |—

3

Mean anomaly, M,

0.01 —
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Apse

line Focus

*(NOTE 22,P126,{1})
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* We define F to be such that: sinh F = ;— (3)
)

* [t is consistent with the definition of  sinh F to define the

hyperbolic cosine as: coshF = =~ (4)

* We can prove that: ¢
sinh F — Ve — 1siné (5)
1 4+ ecosé@
F = sinh™! ( Call sinH) (6)
1 4+ ecosé@
. I:./ 1 + /e t1n(8/7)]
R o \/7 tan(6/2) (7)

X Substituting equation(7),(5) into equation(1), yields Kepler’s
equation for the hyperbola, @ M; =esinhF—F (8)

X this equation is plotted for several different eccentricities in
below figure: oo j ' ' T

g

Mean anomaly, M,

e
o

Eccentric anomaly, F
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x If time 1s the given quantity, then equation(8), must
be solved for F by an iterative procedure, as was
the case for the ellipse

x To apply Newton’s procedure to the solution of
Kepler’s equation for the hyperbola, we from the
function:

f(F) =esinhF — F — M;,
* And seek the value of F that makes f(F)=0 since

f'(F) =ecoshF — 1

* Equation becomes
esinh F; — F; — M, 9)

ecosh F; — 1 >
* All quantities in this formula are d1men810nless, —
(radians, not degrees).

Fiy1 =F; —
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* When determining orbital position as a function of
time with the aid of Kepler’s equation, 1t 1s
convenient to have position r as a function of
eccentric anomaly.

* This 1s obtained by substituting equation:

coshF —e
CosH =
1 —ecosh F
* Into equation ,
e’ —1
r=a
l—ecosh FF

x This reduces to:

r =a(ecosh F—1) (10)
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13- ORBITAL MANEUVERS

* Orbital maneuvers transfer a spacecraft from one orbit to another.

*Orbital changes can be:

The transfer from law-earth parking orbit to an interplanetary trajectory. (Big
maneuver)

The rendezvous of one spacecraft with another. (Small maneuver)
* Changing orbits required the firing of onboard spacecrafts engines.

*  We will use impulsive maneuvers, in which the rockets fire in
relatively short bursts to produce the required velocity change Av

* In this chapter we will consider:
* (NOTE23,P255,{1})

Classical, energy-efficient Hohmann transfer maneuvers.
The bi-elliptic Hohmann transfer

The phasing maneuver. (a from of Hohmann transfer)

The non-Hohmann transfer maneuvers with and without rotation of the aps
line

Chase maneuvers

Plane charge maneuvers (introduction)
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*impulsive maneuvers are those in which brief firings
of onboard rocket motors change the magnitude
and direction of the velocity vector instantaneously.

* During an impulsive maneuver, the position of the
spacecraft 1s considered to be fixed; only the
velocity changes.

+ (NOTE24,P256,{1})

* Each impulsive maneuver result in a change n
the velocity (magnitude Ay pumping maneuver;
direction “cranking maneuver”, or both of them) of
spacecraft. T
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* The magnitude avof the velocity increment 1s related
to Am, the mass of propellant consumed by the
formula

Am _Av
e 1 — B Ispgo

1 M

11 : is the mass of the spacecraft before the burn
L0 : 1s the sea-level acceleration of gravity

Isp : 1s the specific impulse of the propellants.
*x Specific impulse 1s defined as follows:
thrust

sea-level weight rate of fuel consumption

I, =

Lo [S]
*(NOTE25,P256,{1})
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* Isp for some common propellant combinations are
shown 1n below table:

+ (NOTE25,P256,{1})

Propellant I, (seconds)
Cold gas 50
Monopropellant hydrazine 230
Solid propellant 290
Nitric acid/monomethylhydrazine 310
Liquid oxygen/liquid hydrogen 455

| TTTTT T ===
0.1+ il JV.___, i ’ %H w—"=f‘%?%%ﬁ*_ﬂ_ﬁm“ |
A ' I P %%L;;Eé | 1] I
0.001 | ‘ - \ {1‘4‘—‘4~‘~~~~ ‘ - -

10 20 50 100 200 500 1000 2000 5000 10000
Av, m/s
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* The Hohmann transfer is the most efficient two-
impulse maneuver for transferring between two
coplanar circular orbits sharing a common focus.

+ (NOTE26,P257,{1})

Hohmann
transfer
ellipse

£
Apoapse

Periapse
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*x Recall that for an ellipse the specific energy 1is
negative:
7

2a

o

* Increasing the energy iihmam
. . . ‘ fi

requires  reducing  its e

magnitude, 1n order to .

make ¢ less negative. Apoape T~ =

*x Therefore, the larger the
semimajor axis 1s, the
more the energy the orbit
has, the energies increase
as we more from the inner
to the outer circle.
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* Starting at A on the inner
circle, a velocity increment , -

Hohmann

Avas in the direction of " \

ellipse

flight 1s required to boost . j /» E |
the vehicle onto the Apowse T E ?Pe"mbse'T

higher-energy elliptical
trajectory.

-_ ,,

* After coasting from A to B, another forward
velocity increment Avp places the vehicle on the
outer circular orbit.

* The total energy expenditure is: AvViotal = Ava + Avp. 8

* The same Avtotlis required if the transfer begins al
B. in this case Awvs must be accomplished by
retrofires.
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EXAMPLE 13.1

* A spacecraft in a 480km by 800km earth orbit. Find
(a) the Av required at perigee A to place the
spacecraft in 480km by 16000km transfer orbit
(orbit2); and (b) the Av (apogee kick) required at B
of the transfer orbit to establish a circular orbit of
16000km altitude (orbit3)

Hohmann transfer
ellipse

Perigee of orbit 1
(z=480km)
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EXAMPLE 13.1

* (a) first, let us establish the primary orbital parameters of the
original orbit 1. the perigee and apogee radii are

ra = Rp + 24 = 6378 + 480 = 6858 km
rc = Rg+ zc = 6378 + 800 = 7178 km

* Therefore, the eccentricity of orbit 1 is
oy =-C 4 _ 029709
rc +ra
* Applying the orbit equation at perigee of orbit 1, we calculate
the angular momentum,
h? 1
- i 14 ey cos(0)
*  With the angular momentum, we can calculate the speed at
on orbit 1.

h
B = ]—1 — 7.7102km/s (a)
A

= hj = 52876 kmz/s

rA
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EXAMPLE 13.1

*  Moving to the transfer orbit 2, we proceed in a similar fashion

togel  rp = Rp 4z = 6378 4+ 16000 = 22 378 km
B — T'A
g + 1z
h3 1 |
ra = — _ = hy = 64690 km
14 excos(0)

* Thus, the speed at A on orbit 2 is

= 0.53085

62 =

) hy 64690 0.4327 km/

Vg = — = = I, m/s (b

AT T 6858 ®)

* The required forward velocity increment at A is now obtained .~ = =
from (a) and (b) as : 3

AUA - UA)Z — UA)I = 1.7225 km/s
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EXAMPLE 13.1

* (b) we use angular momentum formula to find the speed at B

on orbit 2,
hy 64690
vg)) = — = ———— = 2.8908 km/s
rg 22378
* Orbit3 is circular, so its constant orbital speed is obtained
from equation ? ,

398 600
22378 (d)

* Thus, the delta-v requirement at B to climb from orbit 2 to
orbit 3 is

Avp = vp)3 — vp)y = 4.2204 — 2.8908 = 1.3297 km/s

* Observe that the total delta-v requirement for this Hohmant
transfer is 3

Avigul = |Aval 4 |Avg| = 1.7225 + 1.3297 = 3.0522km /s

()

V)3 = = 4.2204km/s

# X

Ty ———
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EXAMPLE 13.2

* A spacecraft returning from a lunar mission approaches earth on
a hyperbolic trajectory. At its closest approach A it is an altitude
of 5000km, traveling at 10km/s. at A retrorockets are fired to
lower the spacecraft into a 500km altitude circular orbit, where it
is to rendezvous with a space station. Find the location of the
space station at retrofire so that rendezvous will occur at B.

* The time of flight from A to B is one-half the period 1> of the
elliptical transfer orbit 2. while the spacecraft coasts from A to B,
the space station coasts through the angle ¢cp from C to B.
Hence, this mission has to be carefully planned and executed,
going all the way back to lunar departure, so that the two
vehicles meet at B.

* To calculate the period T>, , we must first obtain the primary, 7
orbital parameters, eccentricity and angular momentum. Thedse
apogee and perigee of orbit2, the transfer ellipse, are

ra = 5000 + 6378 = 11378 km
rg = 500 + 6378 = 6878 km
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EXAMPLE 13.2

* Therefore, the eccentricity is

11378 — 6878
11378 46878

* Bvaluating the orbit equation at perigee yields the angular
momentum,

h% 1 , h? 1
= B8IS = .
wl+e 398600 1 4+ 0.24649

= 0.24649

€2

= i, = 58458 km?/s

500 km circular orbit
C

\ Position of space station Eezrenl =54

when spacecraft is at A
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EXAMPLE 13.2

* Now we can use equation ? To find the period of the transfer
ellipse,
3
| hy 27 58 458 i
pr|\ 2] T 3986002 (J ] = 0.246492)

= 8679.1s (a)

* The period of circular orbit3 is, according to equation ?

25 2 2r
= —7In _—
JE BT /398600

* The time of flight from C to B on orbit3 must equal the time
of flight from A to B on orbit2.

(] %

68787 = 5676.8 s (b)

I3

1 1
Atcp = =T = - 8679.1 = 4339.55
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EXAMPLE 13.2

* Since orbit3 is a circle, its angular velocity, unlike an ellipse,
1s constant. Therefore, we can write
dcB 360° 339.5

_ 360 = 275.2°
= $CB = gozeg 0

A ICB T3

* (the student should verify that the total delta-v required to
lower the spacecraft from the hyperbola into the parking orbit
is 6.415km/s. A glance at figure ? Reveals the tremendous
amount of propellant this would require.)
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x (NOTE26,P264,{1})

* A Hohmann transfer is the
dotted ellips.

* The bi-elliptical Hohmann
transfer uses two coaxial
semi-ellipses, 2 and 3 (A,B,C)

*x The 1dea is to places B
sufficiently far from the focus
that the Avswill be very small.

rp w—) o5 ——» Avg =) ()

* For the bi-elliptical scheme to be more energy efficient than the
Hohmann transfer, it must be true that e

AUtotal)bi-elliptica«ll < AUVtotal )Hohmann
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x AUV analyses of the Hohmann and bi-elliptical transfers lead

to the following results:

1 V21 -w) ’
AV)Hohmann = \/a - ol ) —dill . a
2@+ B) 1+ Ja 2
AU)bi-elliptical = \/ «f - ﬁ - B(1 +,8)(1 - B
*  Where
I 'B
O — —= —_—
A .\

as a function of a and S reveals the regions in which thi

difference is positive, negative and zero
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Avpielliptical = AVHohmann
100

Avbielliptical < AVHohmann

Ap_elliptical ~ AVHohmann

— — ——————————————————— ——— —

5 10 1194 15 r¢ 20 25

x (NOTE27,P265,{1})
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EXAMPLE 13.3

* Find the total delta-v requirement for a bi-ellptical Hohmann
transfer from a geocentric circular orbit of 7000km radius to one
of 105000km radius. Let the apogee of the first ellipse be
210000km. Compare the delta-v schedule and total flight time
with that for an ordinary single Hohmann transfer ellipse.

Since 14 = 7000 km rg = 210000 km rc = rp = 105000 km

We have rg/rp =30 and r¢/rp = 15,50 that from figure ? It 1s apparent
right away that the bi-elliptic transfer will be the more energy
efficient.

To do the delta-v analysis requires analyzing each of the five orbits.

Orbit 1;

Since this 1s a circular orbit, we have, simply,

) £ 598 600 7.546 km/s
v = — = /.
ATV TV 7000 @
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EXAMPLE 13.3

Circular target orbit

7000 km radius
initial orbit

Bi-elliptic
trajectories

~Hohmann
transfer
ellipse

105 000 km

*x  Orbit 2: ~———— 210000km

For this transfer ellipse, equation ? yields

‘ 7000 - 210 000
hy =2 | —22 . — \f2-398 (»oo\/ — 73487 km?/s

ra 4+ rp 7000 + 210000
x Therefore,
hy 73487
v = — = —— =10.498 km/s
A)2 rA P / (b)
h 73 487
T — 0.34994 km /s (c)

rg 210000
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EXAMPLE 13.3

*  Orbit 3:

For the second transfer ellipse, we have

105000 - 210000
hs = +/2-398 600\/ = 236230km?/s

105000 4 210000
* From this we obtain
; hy _ 236230 _ ..o -
v —_—— —30
BE= ey 210000 (d)
h 236230
ve)i= = — 2.2498 km/s (e)
rc 105000
*  Orbit 4:

The target orbit, like orbitl, is a circle, which means

398 600
105000

VC)4 = VD)4 = = 1.9484km/s (f)
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EXAMPLE 13.3

x For the bi-elliptical maneuver, the total delta-v is, therefore,
AViotal )bi-elliptical = AvA + Avp + Avc

= |va)2 — vail + |vB)3 — vB)2| + |vc)s — v )3l

— |10.498 — 7.546| + |1.1249 — 0.34994] 4 [1.9484 — 2.2498|

= 2.9521 4+ 0.77496 4 0.30142
* O1,  Avioal)bi-elliptical = 4.0285km/s (9)

* The semimajor axes of transfer orbits 2 and 3 are
1
a = > (7000 4+ 210 000) = 108 500 km

1
as = 3 (105 000 + 210000) = 157 500 km

* With this information and the period formula, equation ?, thg &

time of flight for the two semi-ellipses of the bi—elliptic_

transfer 1s found to be

1/ 2x 3 2w 3
Ibi-elliptical = = | —=4a; + (132 = 488 870 s = 5.66 days (

2\VE * ' B




13- HOHMANN TRANSFER

EXAMPLE 13.3

* For the Hohmann transfer ellipse 3,

7000 - 105 000
hs = /2398 600\/ = 72330 km?/s
7000 + 105 000
* Hence,
) by 12330 _ o5 km/s
v = — = —_— . & H
AS = T 7000 (1)
hs 72330 |
) — 0.68886 km /s (i)
D)s = = = 105000 /

* [t follows that

AViotal )Hohmann = |vA)s — va)1| + |vp)s — vp)i]
= (10.333 — 7.546) + (1.9484 — 0.68886)

= 2.7868 4+ 1.2595
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EXAMPLE 13.3

AVtotal )Hohmann = 4.0463 km/s (k)

* This 1s only slightly (0.44 percent) larger than that of the bi-
elliptical transfer.

since the semimajor axis of the Hohmann semi-ellipse is

1
as = 5 (7000 + 105000) = 56 000 km

* The time of flight from A to D is

1 (2 2
tHohmann = —| —=a2 | = 65942s = 0.763 days ()

2\ Vi

* The time of flight of the bi-elliptical maneuver is over seve
times longer than that of the Hohmann transfer.






13- PHASING MANEUVERS

* A phasing maneuver 1s a two-impulse Hohmann
transfer from and back to the same orbit, as 1llustrated
in figure:

a spacecraft in its orbit.
* (NOTE28,P268,{1}
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* Once the period T of the phasing orbit is established, then the
following equation should be wused to determine the
semimajor axis of the phasing ellipse:

(T_ﬁf

2
*  With the semimajor axis established, 74 opposite to P 1is
obtained from: 2a=1p+r1a
* Then we can calculate the eccentricity of phasing orbit from
equation: rg — A
€3 = ————
B+ TA

* Then the orbit equation may be applied at either P or A to obtain
the angular momentum

h? 1
 —
wl+ecosb

* The phasing orbit is characterized completely
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EXAMPLE 13.4

* Spacecraft at A and B are in the same orbit (1). At the instant
shown, the chaser vehicle at A executes a phasing maneuver so as
to catch the target spacecraft back at A after just one revolution
of the chaser’s phasing orbit (2). What is the required total delta-

v?

(Phasing orbit) __ -

13600 km I 6800 km



13- PHASING MANEUVERS

EXAMPLE 13.4

* From the figure, ra = 6800 km rc = 13600km
*  Orbit 1:

. . . . Ig—r
The eccentricity of orbit 1 is G5

rc+ra

=1.33333

Evaluating the orbit equation at A, we find
B h? 1 h? 1

=L 00 = h; = 60116 km?/s
1 1+ecos(0) 3986001403333 /

TA

The period 1s found using equation ?
3

27 hy 27 60116 -
T == - . = 102525
I 1— & 398600~ \ /1 — 0.333332

* Since A 1s perigee, there is no radial velocity component theres )
The speed, directed entirely in the transverse direction, is found &8s
from the angular momentum formula,
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EXAMPLE 13.4

The phasing orbit must have a period T, equal to the time it
takes the target vehicle at B to coast around to point A on orbit 1.
we can determine the flight time by calculating Ahg time
from A to B and subtracting that result from the period T; of
orbit 1. At B the true anomaly is 64 = 90°.therefore, according to
equation ?

tan — = tan — = tan
2 1+ e 2 1 4+ 0.33333 Z

Eg  [l—e  6p /1—0.33333 90°

= 0.70711 = Eg = 1.2310rad

*x Then, from Kepler’s equation (?), we get

T, , 10252 . R
Atap = - (Ep — ey sin Ep) = ———(1.231 — 0.33333 - sin 1.231) = 1495.7s | &
T T

* Thus, the time of flight of the target spacecraft from B to A'is
Atga = Ty — Atap = 10252 — 1495.7 = 8756.3 s
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EXAMPLE 13.4

*  Orbit 2:

The period of orbit 2 must equal ABA so that the chaser will
arrive at A when the target does. That 1s,

T, = 8756.35
This, together with the period formula, equation ?, yields the
semimajor axis of orbit 2,

27 27
Ty =—a, = 8756.2= ———a

Ji /398600

Since 2a; =r4 + rp, we find
rp=2a; —rpa=2-9182.1 — 6800 = 11564 km

BN rojw

= ap, = 9182.1km (a)

BN rojw

Therefore, point A 1s indeed the perigee of orbit 2, the =

eccentricity of which can now be determined:

'D —TA
D+ 1A

= 0.25943

€) =




13- PHASING MANEUVERS

EXAMPLE 13.4

Evaluating the orbit equation at point A orbit 2 yields its angular
momentum,
B 1 h3 1

=2 = 6800 = = h, = 58426 km?/s
u 1+ e cos(0) 398600 1 + 0.25943 2 /

TA

Finally, we can calculate the speed at perigee of orbit 2,

hy 58426
22 222 8.5921 km/s
6800

At the beginning of the phasing maneuver,

VA, =

Avyg = va, — v4, = 8.5921 — 8.8406 = —0.24851 km/s

At the end of the phasing maneuver,
Avag = va, —va, = 8.8406 — 8.5921 = 0.24851 km/s
The total delta-v, therefore, is

Aviora] = |—0.24851| + [0.24851| = 0.4970 km /s
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EXAMPLE 13.5

* [t 1s desired to shift the longitude of a GEO satellite 12°westward
in three revolutions of its phasing orbit. Calculate the delta-v
requirement.

this problem is illustrated in ? . It may be recalled from equation
?, 7 and ? That the angular velocity of the earth, the radius to
GEO and the speed in GEO are, respectively,

WE = wGEO = 72.922 x 10~ % rad/s
VUGEO = 3.0747 km/s

* Let AA be the change in longitude in radians. Then the period

T2 of the phasing orbit can be obtained from the following g
formula,

wE(3T2) =32+ AA (b)



13- PHASING MANEUVERS

EXAMPLE 13.5

which states that after three circuits of the phasing orbit, the
original position of the satellite will be AA  radians east of P. in
other words, the satellite will end up AA radians west of its
original position in GEQO, as desired. From (b) we obtain,

_TAA+6m 1120

n
s + 67T
T, = Ll =87121s

3 wg 3 72.922x 106

Original
P | position

BJ Target
position
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EXAMPLE 13.5

Note that the period of GEO is

= 86163 s

TGgeo =
(WGEO

The satellite in its slower phasing orbit appears to drift westward
at the rate

A AN -7 o

A = — =8.0133 x 10~ rad/s = 3.9669° /day
371>

Having the period, we can use equation ? To obtain the

semimajor axis of orbit 2,

(Tﬁ)% (87 121+/398 600
a = p—

27

2
3
) = 42476 km

From this we find the radial coordinate of C,

2ap =rp+rc = rc=2-42476 —42164 =42787km *
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EXAMPLE 13.5

Now we can find the eccentricity of orbit 2,

rc —ra 42787 — 42164
POV . . - = 0.0073395
rc +ra 42787 + 42 164

And the angular momentum follows from applying the orbit
equation at P (or C) of orbit 2:

_h : 42164 = h : hy = 130120 km?/s
= T+ ecos(0) = 398600 1 +0.0073395 2=
at P the speed in orbit 2 is
130120
vp, = — 3.0859 km/s
42 164

therefore, at the beginning of the phasing orbit,
Av = vp, — vgpo = 3.0859 — 3.0747 = 0.01126 km /s

at the end of the phasing maneuver,
Av = vgeo — vp, = 3.0747 — 3.08597 = —0.01126 km/s

Therefore, Awgg = [0.01126] 4+ |—0.01126| = 0.022525 km/s
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14- NON-HOHMANN TRANSFERS WITH A COMMON APSE LINE

Common\apse line

*Above figure illustrates a transfer between two coaxial eIIipticaI

orbits in which the transfer trajectory shares the apse line but is not
necessarily tangent to either the initial or target orbit. iy

* The problem is to determine whether there exists such a trajecto _ :
joining points A and B, and if so to find the total Av requirement.




14- NON-HOHMANN TRANSFERS WITH A COMMON APSE LINE

x 14 And B are given,
as are the true

anomalies @4 and 6.
*  Applying the orbit

Commonlapse line

equation to A and B on

orbit 3 yields:

hi 1

ra = —
1 4 e3costy
h% |

rg = —
1+ e3cosily

* Solving these two equations for  es and h3, we get:
'p — A

€3 =
ra cOSO4 — g cosOp

hy = \/1ura TB\/

(1)

cos B4 — cosbp
r4 COSHO4 — g COSOp




14- NON-HOHMANN TRANSFERS WITH A COMMON APSE LINE

x With these, the transfer orbit 1s determined and
velocity may be found at any true anomaly.

* For a Hohmann transfer, in which ¢4 =0 and
fp = 7, equation (1) become:

B —TA
€3 =
'B 1+ 1A
rAT
hy =/ Z,u\/ A0 (Hohmann transfer) (2
ra + 1B

* When a Av calculation is done at a point which Is not ..
on the apse line, care must be taken to include, .‘
change in direction as well as the magnitude of theder
velocity vector.
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* Figure shows a point where
an  impulsive Vi1 maneuver
changes the velocity vector
from

on orbit 1 to v, on orbit 2.

x|t Is Important to observe that
the Av we seek is the
magnitude of the change In
the velocity vector. Not the
change In its magnitude
(speed). That is:
Av = ||vy — vi| (3)

x Onlyif viandv, are
parallel, as in Hohmann
transfers, iIs it true that

AV = v =[vi|
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x From the figure and the law
of cosines, we find that,

Av = \/v;{ + v% — 2viv2 cos Ay (4)

* vy = |[[vi]l.
v2 = |[[v2 o
alp
Ay =ys—n eop

* the direction of Av shows the required
alignment of the thruster that produces the
Impulse.

= The orientation of Av relative to the local
horizon is found by equation:

Av,
(5) F

&UJ_
* ¢ the angle from the local horizon to
the Avvector

tan ¢ =
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* An Impulsive maneuver results in a change of orbit
and, therefore, a change in the specific energy e.

* |f the expenditure of propellant Am is negligible
compared to the initial mass; of the vehicle then:

Ae=¢gr — &

x Recall the formula for specific mechanical energy of
an orbit, for the situation illustrated in previous

figure:
2
1= R
V-V W B - ==
f=— -2 (VV=V-V)mm)- S
2 r (Vi +AV)-(vi + AV) o vE 4 2v AV AP |
822 _— = —
2 s 2

r3=-‘;i |



14- NON-HOHMANN TRANSFERS WITH A COMMON APSE LINE

Av?
*x Hence &g:vl-Av+T

x From figure, It Is apparent
that: vi- Av=v;Avcos Ay,
x SO that:

Av? 1 Av
Ae = viAvcos Ay + — = = viAv| cos Ay + S
U1

GCE!
hop
11

* (our assumption) Am<<m ===
Av<<v; == Ag X vjAvcos Ay (6)

* It shows that, for a given Ay, the change
is specific energy is larger the faster the
spacecraft 1s moving (unless, of course,
the change in flight path angle isgqg°)

* (NOTE 29,P276,{1})
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EXAMPLE 14.1

* A geocentric satellite in orbit 1 of below executes a delta-v
maneuver at A which places it on orbit 2, for re-entry at D.
calculate A p at A and its direction relative to the local horizon.
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EXAMPLE 14.1

* From the figure we see that

rg = 20000 km rc = 10000 km rp = 6378 km

x Orbit 1:
rB — 1C
. ] =
The eccentricity Is rg + rc

The angular momentum is obtained from the orbit equation,
noting that C is perigee:

= 0.33333

h? 1 hi 1
Cc=— = 10000 =

= h; = 72902km?/s
i 1+ e cos(0) 398 600 1 + 0.33333

*  With the anguiar momentum and the eccentricity, we can use tn.-"'
orbit equation to find the radial coordinate of point A, -
729022 1

rA = = 18 744 km
398600 1 4+ 0.33333-cos 150°
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EXAMPLE 14.1

* h=r. And lu=%il+fmsﬂ} Yields the transverse and radial
components of velocity at A on orbit 1,

/
vi, )1 = & = 3.8893 km/s ®)

TA

v, )1 = Eel sin 150° = 0.91127 km /s
1

* From these we find the speed at A

V)] = \/uu)’;’ + v, )5 = 3.9946km/s

* And the flight path angle,

= tan = 13.187°
Vi) 3.8893

yp = tan




14- NON-HOHMANN TRANSFERS WITH A COMMON APSE LINE

EXAMPLE 14.1

= Orbit 2:

the radius and true anomaly of points A and D on orbit 2 are
known. Applying the orbit equation at A, we get

h3 1
18744 =

398600 1 - o) o5 150° = h; =7.4715 x 10° — 6.4705 x 10°¢; (b)
€2

* Likewise, at point D, which is perigee of orbit 2,

6378 = by ! = h3 = 2.5423 x 10° 4 2.5423 x 10°e>
3986001 + e 2T ' (c)

* Equating the expressions for h2 In (b) and (c), and solving for ez,

ST e; = 0.54692
*  Whereupon either (b) or (c) may be used to find

hy = 62711 km? /s
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EXAMPLE 14.1

* Now we can calculate the radial and perpendicular components
of velocity on orbit 2 at point A:

h
vi,); = 72 = 3.3456 km/s
A

vy, )2 = :eg sin 150° = 1.7381 km/s (@)
2

x Hence, the speed and flight path angle at A on orbit 2 are

Va )y = \/m)g + v,,)5 = 3.7702km/s

1 1.7381
= tan

_ — 27.453°
vi,)2 3.3456

* The change in the flight path angle as a result of the impulsi _ .
maneuver is

Ay = yy) —y1 = 27.453° — 13.187° = 14.266° —
L e, RS
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EXAMPLE 14.1

* With this we can use equation ? To finally obtain ~ Ava,

Avy = \/UA)% + v4)5 — 2v4)1v4)2 COS Ay

= \/3.99462 + 3.77022 — 2-3.9946 - 3.7702 - cos 14.266
Avg = 0.9896 km/s (e)

= Note that Av,, is the magnitude of the change in velocity vector

Avga, at A. that Is not the same as the change in the magnitude of
the velocity (i.e., the change in speed), which is

v4)y — v4)1 = 3.9946 — 3.7702 = 0.2244 km /s.

x To find the orientation of Awva, ve use equation tang =

Av)a  vy)a—vy,)1 17381 —009113
Avi)a  vi,)2—vi,)1  3.3456 — 3.8893

tan¢ =
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EXAMPLE 14.1

motor coincides with the line of action of Av,, with the nozzlg
aimed in the opposite direction. B







14- PHASING MANEUVERS

* A phasing maneuver IS a two-impulse Hohmann
transfer from and back to the same orbit, as illustrated
In figure:

a spacecraft in its orbit.
*x (NOTEZ28,P268,{1}
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x Once the period T of the phasing orbit is established, then the
following equation should be used to determine the
semimajor axis of the phasing ellipse:

(T«/ﬁ)i

27
*  With the semimajor axis established, r40pposite to P is obtained
from: 20 = rP_I_ A

* Then we can calculate the eccentricity of phasing orbit from
equation: rg — ra
€3 =

rg +1a
x Then the orbit equation may be applied at either P or A to obtain

the angular momentum
h? 1
I =
w1+ ecosé

x The phasing orbit Is characterized completely ' ;
. e R |



14- PHASING MANEUVERS

EXAMPLE 14.2

* Spacecraft at A and B are in the same orbit (1). At the instant
shown, the chaser vehicle at A executes a phasing maneuver so as
to catch the target spacecraft back at A after just one revolution
of the chaser’s phasing orbit (2). What is the required total delta-

V?

0

(Phasing orbit)

ey

13600 km



14- PHASING MANEUVERS

EXAMPLE 14.2

* From the figure, ra = 6800 km rc = 13600km
*  Orbit 1:

The eccentricity of orbit 1is e = — =

rc+ra
Evaluating the orbit equation at A, we find
h? 1 h? 1

1 -
— 6800 =
A T ¥ecos0) 398600 1 + 0.3333

= 0.33333

= h; = 60116km?/s

The period is found using equation ?
3

| hy o ( 60116
S W 3986002 \ /1 —0.333332

Tl=

3
) = 102525

The speed, dlrected entirely in the transverse direction, is foun; :

from the angular momentum formula,
hy 60 116 _

CAL = T 6800
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EXAMPLE 14.2

The phasing orbit must have a period T, equal to the time it
takes the target vehicle at B to coast around to point A on orbit 1.
we can determine the flight time by calculating Atag time
from A to B and subtracting that result from the period T, of
orbit 1. At B the true anomaly ¢4, =90°. therefore, according to
equation ?

Eg 1—e 6 ‘/1 — 033333 90°
— a1l
1 4+ 0.33333 2

= 0.70711 = Eg = 1.2310rad

* Then, from Kepler’s equation (?), we get

10252 '

* Thus, the time of flight of the target spacecraft from B to A'is
Atpg = Ty — Atap = 10252 — 1495.7 = 8756.3 s

Atyg = —- (Eg — ey sin Eg) = ———(1.231 — 0.33333 - sin 1.231) = 1495.7s Eic2
2 2w )
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EXAMPLE 14.2

x  Orbit 2:

The period of orbit 2 must equal 24 so that the chaser will
arrive at A when the target does. That is,

T, = 8756.3s

This, together with the period formula, equation ?, yields the
semimajor axis of orbit 2,

2w 32 27T 3
T, = ——a? = 8756.2= a? = ay=9182.1km (a)
JI /398600 °

Since 2a; =ra + rp, We find
rp=2a, —rag =2-9182.1 — 6800 = 11 564 km

Therefore, point A Is Indeed the perigee of orbit 2, th.-'“

eccentricity of which can now be determined:

DA 0.25943
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EXAMPLE 14.2

Evaluating the orbit equation at point A orbit 2 yields its angular
momentum,
1 1 h3 1

— 2 = 6800 = = h, = 58426 km?/s
i 1+ e cos(0) 398600 1 4+ 0.25943 2 /

TA

Finally, we can calculate the speed at perigee of orbit 2,

hy 58426
Vg, = — = —— = 8.5921 km/s
ra 6800

At the beginning of the phasing maneuver,

Avp = vy, — vy, = 8.5921 — 8.8406 = —0.24851 km /s

At the end of the phasing maneuver,
Avg = va, — v4, = 8.8406 — 8.5921 = 0.24851 km/s
The total delta-v, therefore, is

Avgota) = |—0.24851] 4 ]0.24851] = 0.4970km /s —E_ =
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EXAMPLE 14.3

* It is desired to shift the longitude of a GEO satellite 12°westward
In three revolutions of its phasing orbit. Calculate the delta-v
requirement.

this problem is illustrated in ? . It may be recalled from equation
?, ? and ? That the angular velocity of the earth, the radius to
GEO and the speed in GEO are, respectively,

wE = wGEo = 72.922 x 107 ° rad/s
YGEO = 42 164 km (a)
UGED = 3.0747 kmfs

* Let AA pe the change in longitude in radians. Then the period

T2 of the phasing orbit can be obtained from the following
formula,

wE(3Ty) =32 + AA
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EXAMPLE 14.3

which states that after three circuits of the phasing orbit, the
original position of the satellite will be AA radians east of P. in
other words, the satellite will end up AA radians west of its
original position in GEO, as desired. From (b) we obtain,

I AA 467 112025 +6m
2= 7 =

3 wp 3 72.922x 105

=87121s

North Pole
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EXAMPLE 14.3

Note that the period of GEO is

TGEO = = 86163 s
WGEO
The satellite in its slower phasing orbit appears to drift westward
at the rate
. AA _
A = —=28.0133 x 107 rad/s = 3.9669° /day

3T,
Having the period, we can use equation ? To obtain the
semimajor axis of orbit 2,

(Tﬁ) ; (87 1214/398 600
a = =

27

2
3
) = 42476 km

From this we find the radial coordinate of C,

Yy =rpdre = re=2-42476— 42164 = 42787km T

_—_..
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EXAMPLE 14.3

Now we can find the eccentricity of orbit 2,

rc — ra 42 787 — 42 164
ey — & 1A — 0.0073395
re + ra 42 787 + 42 164

And the angular momentum follows from applying the orbit
equation at P (or C) of orbit 2:
— h : = 42164 = h 1 = hy = 130120 km?/s
p 1+ ez cos (0) 398600 1 + 0.0073395
at P the speed in orbit 2 Is
130120

Up, = — 3.0859 km/s
B 10164 /

therefore, at the beginning of the phasing orbit,
Av = vp, — vgpo = 3.0859 — 3.0747 = 0.01126 km /s

rp

at the end of the phasing maneuver,
Av = vgeo — vp, = 3.0747 — 3.08597 = —0.01126 km/s
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15- APSE LINE ROTATION

—.T he above figure shows

two intersecting orbits
which have a common
focus, but ther apse
lines are not collinear.

- A Hohmann transfer
between them is clearly
Impossible

-~ The opportunity for
transfer from one orbit
to the other by a single
Impulsive maneuver ,
occurs at points| and | /A"

Apse line of
orbit 1

.|

Apse line of
orbit 2

— Ascan be seen from the figure, therotation cntheapselineis,) £ -

n=06 — 6 (1)




15- APSE LINE ROTATION

—-we will consider two
cases of apse line
rotation.

1- the first case is that in
which the apse line

rotation 7 is given as Apse bl““]’f of

well as e and h for both - i

orbits, Apse line of
2- the second case is that in orbit 2

which the impulsive
maneuver takes place at
agiven true anomaly 6,

on orbit 1.

— In the first case the problem is to find the true anomaly of | and J g%
both orbits, and in the second case the problem is to determine thes
angle of rotation mnd the eccentricity of the new orbit.




15- APSE LINE ROTATION

-~ Now we will consider the first case.
-~ The radius of the point | is given by ether of the

following:

h? 1
a w1+ e cosby
h3 1

i

i)z =
i i 14 e cosbs

M= 11)2

= acost +bsinf) =c (2a) ey

- where:

=S

="

—

a = ejh5 — eyhf cos)

—

2 7
e1hs cos @) — exht cosby = hi — I3
6, =61 —n _

cos (B; —n) = cos 6y cos n—+sin fy sin

. 2
b= —eyhising c="h
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- Equation (2a) has two roots, corresponding to two
points| and J.

C
6, = ¢ £ cos™! (— COS qb) (3a)
ol
— where:
5 8
g=tn " - (3b)

e

- Having found 6,nveobtain  &;from equation (1):

- Now we can also compute Av for impulsvess
maneuver. '




15- APSE LINE ROTATION

EXAMPLE 15.1

— An earth satellite is in an 8000km radius orbit (orbit 1 of below
figure) calculate the delta-v and the true anomalys,  required to
obtain a 7000km by 21000km radius orbit (orbit 2) whose apse
lineisrotated 25° counterclockwise. Indicate the orientation

¢ of Av to thelocal horizon.




15- APSE LINE ROTATION

EXAMPLE 15.1

- The eccentricities of the two orbits are

ra, —rp, 16000 — 8000

L T G = 0.33333

7 O 16 000 4 8000 (@)
ra, —rp, 21000 —7000

ra, +rp, 2100047000

- The orbit eguation yields the angular momenta

h‘f 1 B2 1

€] =

e

— — 8000 = —_! =y = 65205 km?/s

PL7 01 eq cos(0) 398600 1 + 0.33333 1 /
W 1 h? 1

rp, = —2 — = = i = 64694 (b)

T 1+ e, cos(0) ~ 3986001 4 0.5

- Using these orbital parameters and the fact that 5 =25° ,we

calculate the terms in equation (2b)

a= e h; — e;hi cosnp = 0.3333.64694% — 0.5-65205% . cos 25°
= —5.3159 x 10% km*/s?

b

¢ = hi — h5 = 65205% — 64694? = 6.6433 x 10" km*/s?

—exhising = —0.5-65205% sin 25° = —8.9843 x 10® km*/s?

|




15- APSE LINE ROTATION

EXAMPLE 15.1

- Then equation (3) yields

, —8.9843 x 108

—5.3159 x 108
6.6433 x 10/
—5.3159 x 108

¢ = tan™ = 5939°

6; = 59.39° + cos™! ( cos 59.39“) = 59397 =03.65"

- Thus, the true anomaly of point I, the point of interest, is
6, = 153.04° (c)

(For point ], 8 = 325.74°.)

-~ With the true anomaly available, we can evaluate the radial ..
coordinate of the maneuver point,

K 1
w14 e cos153.04°

r = 15175km




15- APSE LINE ROTATION

EXAMPLE 15.1

- The velocity components and flight path angle for orbit 1 at point

| are
h 65 205
v, = — = — 4.2968 km /s
r 15175
1L ) < 398 600 ) =
Uy, = e1 sin 153.04 = -0.33333 -5in 153.04° = 0.92393 km/s
Hiq 65 205
—1 VUn o
1 = tan — —=T12.135
By

—  The speed of the satellitein orbit 1 is, therefore

vi =,/v} +v], =4.3950km/s

—~ Likewise, for orbit 2,

h 64 694
M e P — 4.2631 km/s

vy

2T ¢ 15175
398 600
Ur, = €3 5in(153.04° — 25°) = —— > . 0.5 -sin 128.04° = 2.4264 km/s
ha 64 694

i, —1 Un . o
Y2 — tan — = 29.647
L5

vy = ,Kv,%z + vi, = 4.9053km/s




15- APSE LINE ROTATION

EXAMPLE 15.1

- Equation ?Isused to find Av,

Ayk— ‘/U% ~+ U% — 2vyv3 cos(y2 — 1)

— /4.39502 + 4.90532 — 2.4.3950 - 4.9053 c0s(29.647° — 12.135°)
Av = 1.503 km/s

—~ Theangle ¢ which the vector Av males with the local horizon is

given by following equation

. _y Vr,— U _, 2.4264 — 0.92393 —
¢ =tan —— =tan = tan = 91.28° &
Avy vy, — vy, 42631 — 4.2968
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-~ The second case of apse line rotation is that in which
the impulsive maneuver takes place a a given true
anomaly 6, onorbit 1.

— The problem isto determine the angle of rotation 7

and the eccentricity e2>f the new orbit.

- The impulsive maneuver creates a change in the
radial and transverse velocity components at point |
of orbit 1.

- From the angular momentum formula, we obtain the
angular momentum of orbit 2.

h=rvi=> hy=r(vy +Av))=h;+rAv] @
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~ Theformulafor radial velocity Vr=(#/h)esiné

applied to orbit 2 at point |, where:

Vp, = Uy + AUr- i ,
L = vV, + Av, = —e;51n6,;
92 = 91 — 1 ;12

—

- Substituting equation (4) into this expression and

solving for sin #,leadsto:

1 (hy + rAvy)(pe; sinf; + hyAv,)
€2 why

sin &) =




15- APSE LINE ROTATION

— From the orbit equation, we have at point |

h? 1

= — (orbit 1)
w1+ e cosb
h3 1

r—= —2 (orbit 2)

w1+ e cost

- Equating these two expressions for r, substituting

equation (4) and solving for cos 6, yidds:

1 (hy +rAv])%e; cosB; + (2h; +rAv))rAv; |
€ h‘%

costh =
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-~ Finally we obtain:
(6

) I:> tan 6, = E (m + r?”ﬂ(ﬁwl sin 61 + hi Avy) (723)
(5) i (h +rAvy)%ercosth + (2 +rAvy)rAvy

—~ Equation (7a) can be simplified a bit by the next
replacements:

ey sin oy I:> hivy, hy |::> Ful,

-~ S0 that:

(UJ_I . 0 /—\U_J_)(Ur[ +Am, ) Uil

(v, + Avy)2e;cos0; + (2uy, + Avy)Avy (/)

(70)

tan & =

-~ Equations (7) show how the apse line rotation,

n=~061—bhis completely determined by
componentsof Avmparted at the true anomaly
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— After solving equation 7 (aor b), we will:

e
D = 0 =06 = 2| Rotate orbit 2 is
4 —> h completely specified

- If the impulsive maneuver takes place at the periapse
of orbit1,sothat 6;,=v,=0 andifitisasotrue
that Av; =0, then equation (7c) yields.

rv1 . e | &
tanny = ———Av, (with radial impulse at periapse) S
el s

. (NOTE30,P283,{1})




15- APSE LINE ROTATION
EXAMPLE 15.2

- An earth satellite in orbit 1 of bellow figure undergoes the
Indicated delta-v maneuver at its perigee. Determine thy rotation
of itsapse line.

iét-‘ = 2 km/s

e 17000km —l—

7000 km
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EXAMPLE 15.2

— Fromthefigure
ra, = 17000 km rp, = 7000 km

- The eccentricity of orbit 1is

rﬂi T rpl
TA; -1 TP,

- As usual, we use the orbit equation to find the angular

momentum,

hf 1 2 1
p = L 7000 = . hy = 62871 km?/s
Py 1 1+ e cos(0) = 398600 1 4+ 0.41667 = /

— 0.41667 (a)

e =

— At the maneuver point P, the angular momentum formula and
the fact that P;.isperigee of orbit 1 (g, =0)imply that

I 62871 8.9816 km/
T e T 7000 (b)

U, =
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EXAMPLE 15.2

- Fromthe above figure It is clear that

Av] = Avcos60° = 1km/s ©
Av, = Avsin60° = 1.7321 km/s

- The compute #,, we use equation (7b) Together with (a), (b) and
():

tan 6, — (vi, + Avy)(vy, + Avy) vy,
(vi, + Avy)?eicosO + (2vy, + Avi)Avy (u/rp,)
_ (8.9816 4+ 1)(0 + 1.7321) 8.98167
(8.9816 + 1)2-0.41667- cos(0) + (2-8.9816 +1)-1 (398 600/7000)
= 0.4050
— Thefollowsthat 6,=22.047°, so that equation (1) yields
n = —22.05°

~ Which means the rotation of the apse line is clockwise, a
Indicated in the presented figure.
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17-GEOSENTRIC RIGHT ASCENSION- DECLINATION FRAME

* T'he discussion of orbital mechanics up to now has
been confined to two dimensions, 1.€., to the plane of
the orbits themselves.

In this chapter we will see orbits in three-dimensional
(real missions and orbital maneuvers)

Our focus will be on the orbits of earth satellites, but
the applications are to any two-body trajectories

The coordinate system used to describe earth orbits 1n
three dimensions 1s defined in terms of:
v" Earth’s equatorial plane,

v" The ecliptic plane,

v' The earth’s axis of rotation.
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Winter solstice

N First day of winter
=~ 21 December

-~
/’ ~\
- ~
’ ~

Vg AN

A Y
Vernal equinox Autumnal equinox

'
1 Y

4@ 4@ Vernal equinox
T A ' __-_—E]é___’}’

First day of spring First day of autumn
~ 21 March =21 §,eptember
‘\\ N ,//

Summer solstice
First day of summer

= 21 June

€ 1s approximately 23.4e.
& = obliquity of the ecliptic

The earth’s equatorial plane and the ecliptic intersect along ff
which 1s known as the vernal equinox line.
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‘vernal equinox’ 1s the first day of spring in the
northern hemisphere, when the noontime sun crosses
the equator from south to north

symbol y ‘vernal equinox’ : The position of the sun
at that instant defines the location of a point in the
sky called the vernal equinox

The vernal equinox lies today in the constellation
Pisces

The direction of the vernal equinox line is from the
earth towards y,
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To the human eye, objects in the night sky appear as points on a celestial
sphere surrounding the earth

Earth's equatorial plane

Celestial equator
05°

1 hour
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The vernal equinox vy, which lies on the celestial
equator, 1s the origin for measurement of longitude,
which 1n astronomical parlance is called right
ascension. Right ascension (RA or o)

(RA or a) 1s measured along the celestial equator in
degrees east from the vernal equinox.

Latitude on the celestial sphere is called declination.
Declination (Dec or 0)

the south
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> i

\
\\

40—"3

s
T

~302

™
T

—40%_|

T —
\

1 !
| 345° (23 hr) |
= omsiE ' 1 RS
/ :23.56 \
>N
: '/ O [oon
020" 0° —10°—_202__
: / N ?:/Vernal equinox
/ I § K :
C / *3: b/ :
0° (0 hr) meridian S
Mercurygy/ :
¥ 15° (1 hr)
; Eis
@) :ﬂ)
]
-\ ; 3‘00 (2 hr)
:
! |
Venus / -

=
i

A view of the sky above the eastern horizon from 0° longitude on the equator at 9 am local

time, 20 March, 2004. (Precession epoch ap 2000.)
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Venus and moon ephemeris for 0 hours universal time (Precession epoch: Ap 2000)

Venus Moon

Date RA Dec RA Dec

1 Jan 2004 21 hr 05.0 min —18°3¢’ 1 hr 44.9 min +-8°47’
1 Feb 2004 23 hr 28.0 min —04°30/ 4 hr 37.0 min +-24°11’
1 Mar 2004 01 hr 30.0 min +10°26’ 6 hr 04.0 min +08°32’
1 Apr 2004 03 hr 37.6 min 220517 9 hr 18.7 min +21°08’
1 May 2004 05 hr 20.3 min +27°44' 11 hr 28.8 min +07°53’
1 Jun 2004 05 hr 25.9 min +-24°43’ 14 hr 31.3 min —14°48’
1 Jul 2004 04 hr 34.5 min +17°48’ 17 hr 09.0 min —26°08’
1 Aug 2004 05 hr 37.4 min +19°04’ 21 hr 05.9 min —21°49’
1 Sep 2004 07 hr 40.9 min +19°16’ 00 hr 17.0 min —00°56’
1 Oct 2004 09 hr 56.5 min +-12°42/ 02 hr 20.9 min +-14°35’
1 Nov 2004 12 hr 15.8 min +00°01’ 05 hr 26.7 min 427918
1 Dec 2004 14 hr 34.3 min —1372" 07 hr 50.3 min +26°14’
1 Jan 2005 17 hr 12.9 min —22°15’ 10 hr 49.4 min +411°39/

The coordinates of celestial bodies as a function of time 1

called an ephemeris







18- STATE VECTOR AND GEOCENTRIC EQUATORIAL FRAME

At any given time, the state vector of a satellite
comprises its velocity v and acceleration a.

Orbital mechanics i1s concerned with specifying or
predicting state vectors over intervals of time

the equation governing the state vector of a satellite
traveling around the earthis, 4

I=——rI
r3

r 1s the position vector of the satellite relative to the
center of the earth.

'r =v and “r =a, must be measured 1n a non-rotating &
frame attached to the earth.
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A commonly used nonrotating right-handed cartesian
coordinate system is the geocentric equatorial frame

Celestial north pole

vl

Celestial sphere

Earth's equatorial plane

---------
“'
-
-

Intersection of equatorial
and ecliptic planes

Vernal equinox, y
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In the geocentric equatorial frame the state vector 1s
given in component form by

r=XI+ Y] +ZK
v =vxl + vy] + 2K
For the magnitude of the position vector we have:
r =ru,

we see that the components of "ur (the direction
cosines of r) are found in terms of the right
ascension o and declination o0 as follows :

U, = 0S8 Cos ol + cos 8 sin ai +sin 6K
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EXAMPLE 18.1

[f the position vector of the International Space Station is
r = —53681 — 1784f 4 3691K (km)

what are its right ascension and declination?

The magnitude of r is

r=/(=5368)% + (—1784)% + 36912 = 6754 km
Hence,
— —0.79471 — 0.2642] + 0.5464K (a)
From this and Equation 4.5 we see that sin § = 0.5464 which means
§ = sin~! 0.5464 = 33.12°

There is no quadrant ambiguity since, by definition, the declination lies between —90°
and +90°, which is precisely the range of the principal values of the arcsin function.
[t also follows that cos § cannot be negative.
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EXAMPLE 18.1

From Equation 4.5 and Equation (a) just above we have

cosdcosa = —0.7947 (b)
cosdsing = —(.2642 (c)
Therefore
—0.7947
cosog = —— = —().9489
cos33.12¢

which implies

o = cos™ ! (—0.9489) = 161.6° (second quadrant) or 198.4° (third quadrant)

From (c) we observe that sin « is negative, which means « lies in the third quadrant,

o = 198.4°
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19- ORBITAL ELEMENTS AND THE STATE VECTOR

« 10 define an orbit in the plane requires two
parameters:
The semimajor axis (a]

The specific energy (¢)
*Note G P158 {1}
*To locate a point on the orbit requires a third
parameter:

The true anomaly (O]

xDescribing the orientation of an orbit in three
dimensions requires three additional parameters

- The Eulers angels, (1), (O), (W)
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*

%

%

*

*

Note E P158 {1}
Node line
Ascending node
Node line vector N

Descending node

vy

Earth’s north polar axis
€
Satellite

K
/
e Perigee
I Yaf [0

I

Earth's equatorial plane

: 7o)
Ascending node

X
- Nodeline N
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* (the second Euler angle) KEarth's north polar axis
inclination (1), measured Zl e
. . Satellite
according to the right- ] Perigee
hand rule, i is also the v 7 [0
angle  between  the h r
positive z axis and the 0
normal to the plane of Earth's equatorial plane
the orbit. ‘ : > ]
* Recall from previous Ascending node
chapters,  that the 0
angular momentum X Ny
! Node line

vector h 1s normal to ;
the plane of the orbit. vy

Therefore the inclination i is the angle between the positive — ;
z axis and h.

* The inclination is a positive number between 0" and 180°
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Earth's north polar axis

Farth's equatorial plane

A
> ]
>

Y
Ascending node

A Node line
v,/
- O right ascension (RA) of the ascending node
e eccentricity
W argument of perigee
0 true anomaly (or mean anomaly M)
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*(G1ven the position r and velocity v of a satellite 1n
the geocentric equatorial frame, how do we obtain
the orbital elements? In other words how do we

obtain orbital elements from the state vector?

x The step-by-step procedure 1s outlined bellow: (we
can also use this procedure for other planets and

sun, buy defining the frame of reference and

substituting ~ the  appropriate  gravitationalZ

parameteril)
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ALGORITHM 4.1

* (Obtain orbital elements from the state vector.

1- Calculate the distance,
r=Jr-r=+VX24+ Y24+ 72

2- Calculate the speed,

U= u/V-V =: UJZ\,—I—U‘%—I-UZZ
3- Calculate the radial velocity,

vy =r-v/r = (Xvy + Yvy 4+ Zvz)/r

* Note that if v, > Ohe satellite is flying away from peigee.
* If v, < 0, it is flying towards perigee.
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4- Calculate the specific angular momentum,

I ] K
h=rxv=| X Y Z
vy Uy Uz

5- Calculate the magnitude of the specific angular momentum,

the first orbital element.

h=+h-h
6- Calculate the inclination. ]
1 = COS

£

This is the second orbital element. Recall that I must lie betweenk i

0"and 180", so there is no quadrant ambiguity. If 90 <i=180’, the
orbit is retrograde.
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I
)
h X h Y h T

7- Calculate

O i)

A K
N =K xh— 1

This vector defines the node line.

8- Calculate the magnitude of N,
N =+N-N

9- Calculate the RA of the ascending node,
Q = cos! (Nx/N)
the third orbital element. If (Ny/N) > 0,, then O lies in either the

first of fourth quadrant. If (Nx/N) <0, then O lies in either the
second or third quadrant. To place O in the proper quadrant,

observe that the ascending node lies on the positive side of the

vertical XZ plane (0< O <180°) if Ny >0. On the other hand,
the ascending node lies on the negative side of the XZ plangsw
(180°< O <360°) if Ny <0, Therefore, n, - implies ' th
0< O <180°, whereas Ny <0 implies that 180°<O <360°. It

summary,
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N
N0 —1 NX
360° — cos N (Ny < 0)

10. Calculate the eccentricity vector, starting with equation 2.30,

cos™! (—) (Ny > 0)
Q=

r

r

M 1 p

bac — cab rule
1 r 1 r 1 |—S S
e=—[vxh—,u,—]=—[vx(rxv)—u—]=— v —v(r-v)—pu-—
-

So that

(7 =)
e=—||(v"——)r—rv,V
M r

11- Calculate the eccentricity

e=4e-e
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The fourth orbital element. Substituting equation 4.10 leads to a
form depending only on the scalars obtained thus far.

&= %\/(2/1 - ruz)rv% + (0 — rv2)2
12- Calculate the argument of perigee,
w = cos (N -e/Ne)
the fifth orbital element. If N. e>0, then w lies in either the first
of fourth quadrant. If N. e<0, then W lies in either the second or

third quadrant. To place W in the proper quadrant, observe that
perigee lies above the equatorial plane (0<w<180°)if e points up

(in the positive Z direction), and perigee lies below the plane
(180° <w<360°) if e points down. Therefore ez >0 implies that

0 <w<180°, whereasez <0 implies that 180° <w<360°. To

summarize, ,
srva—] N-e (6 ~: O)
co
w = { INe “ T
o —q i N8
360° — cos (ez < 0)
‘)




19- ORBITAL ELEMENTS AND THE STATE VECTOR

13- Calculate the true anomaly.
< = | c-r
=08 ( )

er
the sixth orbital element. If e.r>0, then O lies in the first of fourth

quadrant. If e.r<0, then o lies in the second or third quadrant. To
place 0 in the proper quadrant, note that if flying away from
perigee (r.v>0), then 0<0<180°, whereas if the satellite is flying
towards perigee (r.v<0), then 180° <0<360°. Therefore, using

the result of step 3 above

gl =X
{ coSs ( ) (e 2=10)
B s er

e-r
360° — Cos_l( ) (v < Q)

er

Substituting equation 4.10 yields an alternative form of this

expression 1 L2
p ’ cos™! |:— (z— 3 1>j| (v, > 0)
0 — € "\ JLT

1 [ K>
360° — cos™! [; (E = 1)] (v, < 0)

The procedure described above for calculating the  orbita
clements 1s not unique.
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EXAMPLE 19.1

X Given the state vector,

— —60451 — 3490] + 2500K (km)

v = —3.4571 + 6. 618] +2.533K (km/s)
%X Find the orbital elements h,i,0.6.w and 0 using algorithm 4.1.

STEP 1:
r= /1t = /(—6045)2 + (—3490)2 + 25002 = 7414 km (a)
STEP 2:
V=V -v=+(=3.457)2 + 6.6182 + 2.5332 = 7.884 km/s (b)
STEP 3:

v-r (—3.457) . (—6045) + 6.618 - (—3490) 4 2.533 - 2500

r 7414
= 0.5575 km/s

Since Vr > 0, the satellite is flying away from perigee
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EXAMPLE 19.1
STEP 4:
I J K A A A
h=rxv=| —6045 —3490 2500 |= —25380I+ 6670 — 52 070K (km?/s)
—3.457 6.618 2.533
(d)
STEP 5:

h=+h-h=./(—25380)2 + 66702 + (—52070)2 = 58 310km?/s  (e)
STEP 6:

} —52070
i = cos™! s cos ! ——— ) =153.2° (f)
h 58310

STEP 7: e e

J K
0 1
—25380 6670 —52070

— —66701 — 25380

O p—i>

N=KXh=|
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EXAMIPLIE 19.1
STEP 8:
= VNN = /(—6670)% 4 (—25380)% = 26 250 (h)
Using (g) and (h), we compute the right ascension of the node.
STEP 9: Ny — 6670
Q =cos™! —= = cos™! ( _ ) = 104.7° or 255.3°
N 26 250
From (g) we know that ;.. _ (; therefore, O must lie in the third
quadrant
Q) = 255.3° (i

r

M

STEP 10: 1 [( 5 'u)r—(r-v)v]

, 398600\ . . .
— 7.884% — (—60451 — 3490] + 2500K)
398 600 7414

—4133(—3.4571 + 6.618] + 2.533K)]

— —0.091601 — 0.1422] + 0.02644K
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EXAMPLE 19.1

STEP 11:

e =+/e-e=/(—0.09160)2 4+ (—0.1422)2 + (0.02644)2 = 0.1712 (k)

Clearly, the orbit 1s an ellipse.
STEP 12:
| N-e
Ne
P [(—6670)(—0.09160) + (—25380)(—0.1422) + (0)(0.02644)]
(26 250)(0.1712)

@ = COS

= 20.07° or 339.9°

w lies in the first quadrant if o, . o, which is true in this case, a

we see from (1). Therefore.
w = 20.07° (1)
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EXAMPLE 19.1

STEP 13:
6 = cos™ ! (:)

er

— cos™] [(—0.09160)(—6045) + (—0.1422) - (—3490) + (0.02644)(2500)]

(0.1712)(7414)
= 28.45° or 331.6°
From (c) we know that y, - 0, which means 0<0<180°. Therefore,
0 = 28.45°

Having found orbital elements, we can go on to compute other
parameters. The perigee and apogee radii are

h? 1 58 3102 ]
Iy = — = = 7284 km \
i 14ecos(0) 39860014 0.1712
h? 1 58 3102 1
= = = 10290 km

Vo= — —
“T 1+ ecos(180°) 3986001 — 0.1712
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EXAMPLE 19.1

From these it follows 72
that the semimajor p=28450 MO
axis of the ellipse is “m 0

1 Ascending

g = ;(rp + r;) = 8788 km node

P

Equatorial
plane —

This leads to the
period,

27
T =
Vi

Descending
node

[SS][[S%]

= 2.278 hr

a

(Retrograde orbit)

The orbit 1s illustrated in figure 4.8

P el

We have seen how to obtain the orbital elements from the statei

requires performing coordinate transformations, which are
discussed in the next section
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20- PLANE CHANGE MANEUVERS

*Orbits

having a
common focus

F generally do
not lieina
common plane.

(a) (b)
Since the common focus lies in every orbital plane it must lie on

the line of intersection of any two orbits.

xFor a spacecraft in orbit 1 to change its plane to that of orbit 2
by means of a single Av maneuver (cranking maneuver), it must

do so when it is on the line of intersection of the orbital planes PN

(points B and D)

d — dihedral angle
vV, - transverse component of velocity
v, - radial component of velocity
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* Changing the
plane of orbit 1
requires simply
rotating v,
around the
Intersection
line  through
the d angle .

* If v, & Vv, = constant, then the orbit remains
unchanged except for its new orientation in space.

(b)

* If the magnitudes of VvV, & V. change in_.th'l

S
- S, e
i .

process, then the rotated orbit acquires a new size andis . —
shape. ;
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(a) (b)

x To find AV associated with a plane change, let Vi be the
velocity before and v, the velocity after the impulsive

maneuver. V] = v, 0, + v 0y,

V;_). — Uil"g uil" + UJ_E uJ_g

u,. radial unit vector directed along the line of intersection of th

-

two orbital planes.

U : unit vector is perpendicular tou, and lies in the orbital plane

(UL,,05,) —
. e e |
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(b)

x The change AV In the velocity vector is

* AV 1S found by taking the dot product of AV with itself

* The general formula for Av with plane change is:

Av = \/(vrz — vrl)z — vil + viz —2vj,vp,cos6 (1)
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x From the definition of the flight path angle:

v, = VU1 SIN Yy V], = V1 COS Y

Vp, = U7 SIN Y V], = V) COS )
* Substituting these relations into equationl expanding and

collecting terms, and using the trig identities, leads to another
version of the same equation.

Av = \/u;]2 + v5 — 2ujva[cos Ay — cosy; cos y1 (1 — cos§)]  (2)
Ay=y2—
* Ifd=0—-cosd=1— (2) > Av= \/L% + v% — 2vjvy cos Ay
+ Which is the cosine law we have been using to compute AV ir
coplanar maneuvers
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x To keep AV at a minimum, the radial velocity should
remain unchanged during a plane change maneuver.

x |t 1S clear from equation(1)

2
Av = \/(ur2 — url)l + vil + v — 2v],v], €089

* For the same reason it Is apparent that the maneuver
should occur where v1 is smallest, which Is at apoapse.
(figure)




20- PLANE CHANGE MANEUVERS

* In this case:
Vr, =Vp, =0. = v) =viand v, =v,

e €QU(L) v LY

(2) d

O .
Av = \/L% + U% — 2viv2 €084 (3) W@oapsw

Plane change at apoapse (or periapse)

x Equation (3) is for a speed change accompanied by a
plane change

(R
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* As we mentioned equation(3) Is for a speed change
accompanied by a plane change. s

So using the trig identity: coso =1—2sin"
*\We can rewrite equation(3) as follows for a plane change
together with a speed change at apoapse or periapse:

Avp = \/{L‘g — 17)2 4+ 4v, v, sin? g (4) &
* If there is no change in the soe%d ( vu=v;) equationg S
(4) yields Avs = 2vsin 5 (5) :

d: pure rotation of the velocity vector
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* Another plane-change strategy is to rotate the velocity
vector and then change its magnitude. (figure (b))

., /\
Uz/\
v
Av 6 1 2v sin%
o d
U‘I ?.-‘1

(a) (b)

* |n that case, the AV Is:

Avy = 2vy sin — + vy — vy

t

. then:
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o, /\
- UE/)\
(28]
Av 6 2v, sin%
o) 0
U] 1.11

(a) (b)

* |t IS easy to show that

) )
Avii = | Av? +4vi]va —vp]sin= [ 1 —sin= | > Ay
! 2 2

0 0
Avip = | [Avi +4v|vy —vi]sin S (1 =sin = ) > Avr
I 2 2 S 32

x|t follows that plane change accompanied by speed
change is the most efficient of the above three maneuvers.

ey

-
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x The AV  for pure rotation of the velocity vector,
according to equ(5) 5
Avs = 2vsin > (5)
xIs ploted in the bellow figure:
150 ]
f’fﬁfﬁ
= 100 LT
< fﬁ.--’”’
> e
3 50 =
P
20 40 60 80
0, degrees
xNote 32 P293 (1)




20- PLANE CHANGE MANEUVERS

xNote 33 P293 (1)

N Insertion Insertion N
- ;l .
28.6°N B 28.6°N
= |
’ ' Equator f—=—% :
&»..‘]‘East L
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xNote 34 P294 (1)

Insertion Insertion

Equator ' Equator
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xNote 35 P296 (1)

180 1
150 —

120 —

1, degrees
0
S
|

Z— ¢ = 50°
@ = 40°

o)

o
|
I

@ = 309

@ = 20°

¢ = 10°

| | |

oy

=]
|
|

I
180 270 360
A, degrees
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EXAMPLE 19.1

* Find the AV required to transfer a satellite from a circular,
300km altitude law earth orbit of 28° inclination to a
geostationary equatorial orbit. Circularize and change the
Inclination at altitude. Compare that AV requirement with the
one in which the plane change is done in the low-earth orbit.

* figure bellow shows the 28° inclined low-earth parking orbit
(1), the coplanar Hohmann transfer ellipse (2), and the
coplanar GEO orbit(3)

| T — - — ——

42 164 km
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EXAMPLE 19.1

* From the figure we see that: \
rp=6678km r.=42164km

* Orbit 1: i oy T .
For this circular orbit the speed at |

|
A 398 600 6678 km 42 164 km
= [ =4/ = 7.7258 km/s
I'B 6678

* Orbit 2:
The eccentricity of the transfer orbitis =7~

Let us evaluate the orbit equation at B to find the angmar.f”
momentum of the Hohmann transfer orbit 2, ‘

rc—r
¢ B 4.72655

ha 1 h? 1 | —
rp = 2 = 6678 = 2 oy =67792km/s I
1 1+ ey cos(0) 398600 1 + 0.72655

B a8
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EXAMPLE 19.1

Orbits 1, 2 and 3 all have
28° inclination

1
6678 km ' 42 164 km /

The velocities at perigee and apogee of orbit 2 are, from the
angular momentum formula,

/ }
vp, = ;—; —10.152km/s  vg, = :—; — 1.6078 km/s

At this point we can calculate Ay,
Avg = vp, — v, = 10.152 — 7.7258 = 2.4258 km/s
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EXAMPLE 19.1

* Orbit 3: \
For this orbit, which is circular,
the speed at C is

ve, = | =3.0747km/s

rc

,7,7,7,7,7,7,7,7,7,7,f,7
Orbits 1, 2 and 3 all have
5 - |

287 inclination

| T — - — ——

SO that 6678 km ' 42 164 km

Ave = ve, — ve, = 3.0747 — 1.6078 = 1.4668 km/s (b)

We can now calculate the total Av for the Hohmann transfer:

* This places the satellite in a circular orbit of the correct radi _ :
but the wrong inclination
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EXAMPLE 19.1

Orbits 1, 2 and 3 all have

28° inclination

' T e
s
6678 km - 42 164km /

* The velocity vector at C must be rotated into the plane of the
equator, as illustrated in the above figure.

* The av requires to rotate that velocity through the change in ..
inclination of 28° is: o
_Ai . 28°

Avjc = 2vg, sin - = 2-3.0747 - sin

* Therefore, the total AV requirement is.
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EXAMPLE 19.1

* Suppose we make the change at LEO instead of at GEO, to
rotate the velocity vector Vs, through 28° requires
A o280
Avp. = 2vp, sin - = 2.7.7258 - sin

i i

= 3.7381 km/s

* This, together with (a) and (b), yields the total Av schedule for
Insertion into GEO:

Aviotal = Avg, + Avg + Ave = 3.7381 4 2.4258 + 1.4668 = 7.6307 km/s

* This Is a 42 percent increase over the total Av with plane

change at GEO. Clearly it is best to do plane change maneuvers _z @m,
at the largest possible distance (apoapse) from the primaryfe = =38
attractor, where the velocities are smallest. Sy V.




