CMOS Analog Integrated Circuit Design

Lecture 9: Bandgap Voltage References & SC Circuits

Reading: Razavi, Chs. 11, 12, Johns, Chs. 7, 14

Mohammad Yavari
Amirkabir University of Technology

E-mail: myavari@aut.ac.ir

Copyright @ 2013 by M. Yavari

M. Yavari

CMOS Analog IC Design

Lecture 9: Bandgap References & SC Circuits

1

Applications

- Bias currents and voltages in analog circuits: mirrors, diff pairs, common-mode levels, etc.
- Reference voltage or current in A/D and D/A converters.

M. Yavari

CMOS Analog IC Design

Basic Idea

- The main goal is to establish a dc voltage that is independent of the supply voltage, process parameters, and the temperature variations.
- Use a Zener diode breakdown voltage: it is beyond the supply voltage.
- Difference between threshold voltages of an enhancement and a depletion MOSFETs => depletion devices are not available.
- Combine two phenomena that vary with T in opposite directions, e.g., add two voltages with positive and negative TCs, such that the sum has zero TC.
- The dependence on temperature assumes one of two forms:
 - Proportioned to absolute temperature (PTAT)
 - Contrary to absolute temperature (CTAT)

$$V_{Ref} = \alpha_1 V_1 + \alpha_2 V_2$$

$$\longrightarrow \frac{\partial V_{Ref}}{\partial T} = \alpha_1 \frac{\partial V_1}{\partial T} + \alpha_2 \frac{\partial V_2}{\partial T} = 0$$

Zero temp coefficient

M. Yavari

CMOS Analog IC Design

Lecture 9: Bandgap References & SC Circuits

CTAT Voltage Generation

- The base-emitter voltage of a forward biased diode-connected BJT with a fixed collector current has a negative TC. => CTAT generator
- TC of V_{BE} is temperature dependent => needing a variable PTAT generator.

M. Yavari

CMOS Analog IC Design

- Two identical transistors biased with different currents.
- The difference between the base-emitter voltage of two BJT transistors with different collector currents has a positive TC. => PTAT generator
- Base currents are neglected => in practice, a beta correction circuit is needed.

M. Yavari

CMOS Analog IC Design

Lecture 9: Bandgap References & SC Circuits

- Add PTAT and CTAT voltages with proper weights to achieve a zero TC.
- A temperature independent voltage reference is only realized at T = 300 °K.

M. Yavari

CMOS Analog IC Design

- Suppose V_{O1} and V_{O2} are somehow made equal.
- How do we make the V_{O1} and V_{O2} equal?
- How do we avoid $\ln n = 17.2$?
- Use an op-amp in negative feedback and a passive voltage divider.

M. Yavari

CMOS Analog IC Design

Lecture 9: Bandgap References & SC Circuits

- PTAT
 But, the collector current of both transistors is not temperature independent
- => changing TC of V_{BE}.
 In practice, accurate simulations are needed to estimate the TC of V_{BE}.

M. Yavari

CMOS Analog IC Design

Compatibility with CMOS Technology

- Bipolar characteristics are essential here. Attempts at building purely CMOS precision references have not been very successful.
- How do we build this in CMOS?
- Called the lateral BJT has a small beta respected to the conventional vertical BJT transistors.
- Substrate is connected to the ground => collector is also connected to the GND.

Effect of Circuit Non-Idealities

- The op-amp non-idealities introduce various errors here. Let's consider the effect of offset.
- The op-amp offset voltage is multiplied by (1+R₂/R₃).
- V_{os} changes with temperature => increasing the overall TC.
- Note, the TC of resistors is not important!

Reducing the Effect of Op-Amp Offset Voltage

- Use of different currents and series connection of two diodes.
- But, the resulted reference voltage is about 2.5 V => its implementation is impossible in low supply voltages!
- This circuit cannot also be implemented in standard CMOS process.

- Op-amp adjusts the gate voltage of PMOS current source transistors so as to equalize V_X and V_Y.
- Op-amp is not loaded by the resistors.
- Mismatch between PMOS transistors makes an error in V_{Ref}.
- Channel length modulation in PMOS transistors increases the power supply sensitivity. => Use cascode current sources with long channel lengths.
- The limited beta of BJT transistors makes also an error in V_{Ref}. => needing a
 beta correction circuit.

M. Yavari

CMOS Analog IC Design

Feedback Polarity

- There are two feedback networks here: one positive and one negative feedbacks!
- In practice, $\beta_{\rm N} > 2\beta_{\rm P}$ is considered to have a well behavior transient response with large capacitive loads!

M. Yavari

CMOS Analog IC Design

Lecture 9: Bandgap References & SC Circuits

Why It Is Called Bandgap?

$$V_{Ref} = V_{BE} + V_T \ln n$$

General form of a bandgap voltage

$$\frac{\partial V_{Ref}}{\partial T} = \frac{\partial V_{BE}}{\partial T} + \frac{V_T}{T} \ln n = 0$$

$$\frac{\partial V_{BE}}{\partial T} = \frac{V_{BE} - (4+m)V_T - E_g/q}{T}$$

$$V_{BE} + V_T \ln n = (4 + m)V_T + E_g / q$$

$$V_{Ref} = (4+m)V_T + E_g / q$$

$$T \to 0 \implies V_{Ref} \to E_g / q \approx 1.12V$$

 $\, \blacksquare \,$ So, $V_{\rm Ref}$ is called the bandgap reference voltage.

M. Yavari

CMOS Analog IC Design

Supply Dependence and Start-Up

- A high dc gain amplifier is needed to achieve low sensitivity to V_{DD} variations => large PSRR.
- A start-up circuit is necessary to ensure non-zero current operating point during the circuit power on.

M. Yavari

CMOS Analog IC Design

Lecture 9: Bandgap References & SC Circuits

Curvature Correction

- TC of V_{Ref} is only zero at room temperature. In other temps, it is not zero due to second-order effects such as the amplifier offset voltage, V_{BE} TC changes, etc. => needs a curvature correction technique to achieve less than 20 ppm/°C TC.
- Samples of a bandgap reference displays substantially different zero-TC temperatures making it to correct the curvature reliably.
- A useful reference on curvature correction:
 - P. Malcovati et al., JSSC, July 2001.
 - This is the topic of ongoing active research.

- Assume identical PMOS transistors.
- It can also be used as a temperature sensor.
- We can use the constant-g_m biasing circuit to equalize V_X and V_Y without using an amplifier. => positive feedback
- In practice, the TC of resistor and mismatch between transistors changes the TC of I_P.

M. Yavari

CMOS Analog IC Design

Lecture 9: Bandgap References & SC Circuits

- Assume identical PMOS transistors.
- Low PSRR respected to when an op-amp is utilized.
- Use long channel length in current-mirror transistors or wide-swing cascode current mirrors to enhance the PSRR.

M. Yavari

CMOS Analog IC Design

Introduction

- Continuous-time circuits
 - High speed, low power, medium accuracy
 - Output signal is valid all the times.
- Switched-capacitor circuits
 - Medium speed, high accuracy
 - Output signal is valid only at the end of the charge transfer phase.

- Error in closed-loop gain due to large R_{out}.
- R₂ loads the amplifier and R₁ loads the previous stage amplifier => reducing A_v.

M. Yavari

CMOS Analog IC Design