Biodegradation

- Why study?
 - One of few fate processes where material is gone from the environment
 - Change concentrations that are present to have effect
 - We can play with microbial communities to get them to do some things we want

Biodegradation

- Three big categories- no one told bugs
 - Rapid breakdown- days to weeks
 - Slow breakdown- months to years
 - Almost no breakdown- many years
- Chemical structure important
- Biodegradation requires the presence of the appropriate organism, the chemical in an available form, and the right environmental conditions for organisms to function

Molecular Recalcitrance and Microbial Fallibility

- 100 yrs of everything breaking down-
- In 50's and 60's synthetic organics appear that do not break down
- No prior exposure of microbes to chemicals
- Could not find bugs to grow on them
- Therefore, there are recalcitrant compounds
- Began a variety of studies on breakdown in the environment
- Can find degraders for many of these compounds now- evolution?

Chemical Structure

- Structure has to relate to degradability since it dictates what kind of enzyme is needed
- There have been few systematic studies
- Most with TOC in screening tests
- Many of the chemicals you need are not available.
- Generally the larger the molecule, the more substituents it has and less water soluble- the slower it degrades

First substituent on ring

For others number, type and position all have large influence

Table II. Decomposition of Monosubstituted Benzenes by a Soil Microflora

Substituent	from Period, Days
COOH	1
OH	1
NO ₂	>64
NH.	4
OCH	8
SOLH	16
	Substituent COOH OH NO: NH: OCH;

Table III.	Decomposition	ef	Disubstituted	Benzenes	by	a :	lio2	Microflora
	Commission of the law includes a law late.	1		MALL MALLEY	W 7	-	2011	PAUCAOHIONS

Second In	Settlement				First S	ubstituent ^e			
Type.	Position	COON	OW	NO:	NH,	OCM,	SOLH		
HOO		2	2						CN
	604	8	2	>44	- 4		>64	>64	16
Service.		2		>64	>64	16	>64	32	/2
4		*			8	2	>64	64	
			1	>64	4	4		>64	1
	7			4	>64	16	***	>64	1
),			10.000	16	* * * *	8	32	16	1
-1	•			>64 >64	>64	>64	>64	>64	>64
	200			>64	>64	>64	>64	>64	>64
	P			>64	>64	>64	>64	>64	>64
RR.					>64	>64	>64	>64	64
					>64	>64	>64	>64	
	P					64	>64	>64	
2884									
	NO.					>32	2.00	***	• • • •
200									11.00
ald:	40						544		
							>64		• • • •
drawn _	anara iki Tila mara						0.00000000	16	>64

Values reflect days for total loss of ultraviolet absorbancy at the designated wavelength.

Kinetics = How fast does it go

- If something degrades the next question is how fast
- To predict how long it will persist need some idea of kinetics
- In most environments first order works for most chemicals
- More later on concentration effects

Michaelis-Menton Kinetics

Substrate concentration

Rapid Biodegradation

- Compounds that are identical or very similar to naturally occurring materials
- Use same or similar metabolic pathways as natural materials
- Usually support growth of some group of organisms
- Many examples- petroleum, pesticides, industrial chemicals

PROPOSED MICROORGANISM METABOLISM OF 2,4-D

Most Common herbicide

Persists 2 mo

Isolate bact that grow on it

understoood

Slowly Degraded

- Tends to be compounds with more than one substituent, or halogens
- Usually not present in high concentrations
- Generally do not support growth of degraders
- Partial degradation products common
- COMETABOLISM

Cometabolism

148 HORVATH BACTERIOL REV.

Table 2. Organic substances subject to co-metabolism and occumulated products

Substrate	Product	Reference	
Ethane	Acetic acid	37	
Propene	Propionic acid, acetone	37	
Butane	Butanoic acid, methyl ethyl ketone	37	
m-Chlorobenzonte	4-chlorocatechol, 3 chlorocatechol	27, 33, 56	
o-Fluorobenzoste '	3-Fluorocatechol, fluoroscteate	15 150, 154	
2-Fluoro-4-nitrobenzoate	2-Fluoroprotocatechuic acid		54
4-Chlorocatechol	2-Hydroxy-4-chloro-muconic semialde	23, 29	
3,5-Dichlorocatechol	2-Hydroxy-3,5-dichloro-muconic semi	23, 29	
3-Methylcatechol	2-Hydroxy-3-methyl-muconic semiald	23, 29	
o-Xylane	o-Toluic acid	44	
p-Xylene	p-Toluic acid, 2,3-dibydroxy-p-toluic	44	
Pyrrolidone	Glutamic acid	35	
Cinerose	Cinerolone	53	
n-Butylbensene	Phenylacetic acid	Thorror	.a. ama a 11
Ethylbenzone	Phenylacetic acid	e small	
n-Phopylbenzene	Cynnamic acid	s- one or two	
p-laopropyltoluene	p-lsopropylbenzoate		
n-Butyl-cyclohexane	Cyclohexanescetic acid	then stops	
2, 3, 6-Trichlorobenzonte	3,5-Dichlorocatechol	1	P
2, 4, 5-Trichlorophenoxy-acetic acid	3,5-Dichlorocatechol	24	
p.p. Dichlorodiphenyl methane	p-Chlorophenylacetate	17	
1.1 Diphenyl-2.2.2-trichloroethane	2-Phenyl-3, 3, 3-trichloropropionic aci	17	

TABLE 1. Metabolism of substituted benzoates by 20 bacterial isolate.

Substituted beamste	No. of inactive cultures	Moles of Or consumed per male of substrate metabolized'						
		0.5 ± 0.1	1.0 ± 0.1	1.5 ± 0.1	20 ± 01	2.5 ± 0.1	3.9 = 0.1	
o-Chloro	15	3	0	0	2	0	0	
m-Chloro	9	6	0	2	3	0	0	
p-Chloro	14	2	2	1	1	0	0	
,4-Dichloro	17	0	1	1	1	0	0	
2,5-Dichloro	17	1	2	0	0	0	0	
2,6-Dichloro	15	4	0	0	1	0	. 0	
3,4-Dichloro	16	0	2	2	0	0	0	
2,3,4-Trichloro	9	2	4	1	3	1	0	
2 1 CTrichloro	16	3	1	0	0	0	0	
2,3,5-Trichloro 2,3,6-Trichloro	16	0	4	0	0	0	0	
2,4,5-Trichloro		4	2	3	0	0	0	
2,3,4,5-Tetrachloro	10	1	6	1	2	0	0	
2,3,5,6-Tetrachioro	9	0	3	3	2	1	2	
Pentachloro	4.4	0	1	0	0	0	0	
m-Amino	44-	1	1	0	0	0	0	
p-Amino	1000	1	i	0	0	0	0	
3,5-Diamino	1000	î	0	0	2	0	0	
2-Chloro-4-amino	150.00	0	0	1	1	0	0	
	222	0	2	0	2	0	0	
2-Chloro-5-amino	9	2	- 5	2	2	0	0	
4-Chloro-2-amino	10.00	1	í	ő	0	0	0	
5-Chloro-2-amino 2, 5-Dichloro-3-amino		1	0	Õ	2	0	0	

^{*} Figures in the columns represent the number of cultures metabolizing the compound with the

Why partial metabolism?

- Very common way for xenobiotic to degrade
- Either from unusual structure or very low concentration
- The enzymes early in a pathway are not very specific- so attack more than one thing
- As pathways proceed the enzymes become more specific- so it stops at some point
- Function of non-specific enzymes

. 1. Growth on or aerobic cometabolism of diphenylmethanes and related com-

TABLE 2. SUBSTRATES AND PRODUCTS OF METHANE MONOOXYGENASE

substrate	product(s)	substrate	product(s)
methane ethane chloromethane methanol dimethyl ether carbon monoxide	methanol, formaldehyde ethanol, acetaldehyde formaldehyde formaldehyde methanol, formaldehyde carbon dioxide	ethene propene benzene toluene pyridine ammonia	epoxyethane epoxypropane phenol, hydroquinone benzyl alcohol, p-cresol pyridine-N-oxide hydroxylamine, nitrite

AEROBIC METABOLISM OF TRICHLOROETHYLENE (TCE)

Almost Non-Degradable

- Mostly polymers monomers often degradable
- Even natural polymers slowly degradable
- Large molecules cannot enter cellsneed extracellular enzymes
- Surfaces often not wetable so water and enzyme does not see molecule
- Many examples

Simple Molecules linked

Environmental Factors

- Presence of electron acceptors
- Concentration of the chemical
- Availability of nutrients
- Bioavailability of the chemical to the organisms
- Almost anything else you can think of can sometimes have an effect

Characteristic of Anaerobic Processes

- Slower than aerobic processes- 19X less energy
- Less oxidized processes
- Methane a common mineralization product
- Consortia of organisms almost always involved
- Use a variety of electron acceptors not O₂
- Do many reactions not possible by aerobes

Anaerobic Consortia

ANAEROBIC DEHALOGENATIONS

For at least some microbes the halogenated are electron acceptors

ANAEROBIC DEGRADATION OF CHLORINATED SOLVENTS

$$CI = C = C$$

$$CI = C$$

Concentration

- Microbes have sophisticated ways to control enzyme production
- Thresholds do occur- some concentrations are too low to turn on enzyme synthesis
- Most Cpds do not have thresholds
- Toxicity often seen at high concentrations
- What may be too high or too low in one environment may be degraded in another

Bioavailability of chemicals

- Early observation that high organic contaminated sediments did not show toxicity to aquatic critters
- Toxicity related to pore water concentration
- Material sorbed to sediment was not biologically available to have a toxic effect
- At same time saw that microbes did not degrade material sorbed to soil or sediment

Effect of nutrient availability

- Most of the time there are adequate supplies of inorganic nutrients in most environments
- Where there are large amounts of organic materials need to add N and P
- Most often seen in oil spills where lots of carbon has been added
- Important consideration in remediation efforts

2000

Even though
the compounds
are degradable
they do not
unless N and P
are added

Fig. 4. Gas chromolograms of Sweden crude oil, incubated for 18 days under a following conditions: in filter-sterilized sea water (A), in patural sea water (b, in ma water supplemented with 7×10^{-4} M Na, IIPO, (C), 1×10^{-6} M NO, (D), and both (E). For identity of the numbered peaks see Table I in ref. 3.

What can we use this for?

- Bioremediation= lets use microbes to clean up our mess
- In US right now
 - 100,000 petroleum leaks
 - 15,000 VOC spills
 - 8,000 wood treating sites
 - Many others
- Most can be bio-cleaned cheaper than other methods

Bedtime Reading

Books

- Microbial Transformations and Degradation of Toxic Organic Chemicals- Young and Cerniglia- Wiley
- Biology of Anaerobic Microorgansism- Zehnder-Wiley
- Biodegradation and Bioremediation- Alexander-Wiley

Journals

- Applied and Environmental Microbiology
- Environmental Science and Technology
- Biodegradation
- Environmental Toxicology and Chemistry

Websites

- ASMUSA.org- lots of good stuff
- EPA.gov- search under biodegradation