
1. Application of engineering 
principles to biological systems. 

A bioengineer seeks 
1. to understand basic 

physiological process, 
2.To improve human health,  

Applied 
problem 
solving. 



 
Biomechanics: 
Study of how physical forces interact with 
living systems. 
Examples: 

1. How do your bones “know” how big and strong to be  

 

they can support your weight. 

Evidence show: 

Growth of bones is driven by mechanical stimuli. 



3. Locomotion of our body in everyday life 
 Walking, running, jumping. 
4. Locomotion happens on many scales:  

 
from Unicellular  to  whole  organisms. 

5. Cells can generate forces and sense and 
respond forces.               

                                            Hair cells in the ear. 
-outer hair cells do not send neural signals to the brain, but 

that they mechanically amplify low-level sound. 
- The inner hair cells transform the sound vibrations in the fluids then 

into electrical signals that are then relayed via the nerve to the 
auditory brain stem.  

Examples: 



Examples: 
2. How do our arteries “know” how big to be: 

 

They can deliver just the right amount of 
blood. 

 

Evidence shows: 

This is determined by mechanical stress 
exerted on the artery wall by flowing blood. 

 



Hemodynamics and Hemorheology 

References: 

1- Applied Biofluid Mechanics (Waite-2007) 

2- Biofluid Dynamics, Principles and selected 
applications (Clement Klieinstreuer-2006) 

3- Biofluid Mechanics, The human circulation 
(Chandran & Yoganathan & Rittgers-2007) 

4- Biofluid Mechanics (Mazumdar-1993) 

5- Introductory Biomechanics, From Cells to 
Organisms(Ethier and Simmons, 2007) 



Types of Flow in Cardiovascular Systems 
 Unidirectional flows (Poiseuille) 
 Pulsatile flow 
 Non-Newtonian fluid flow 
 Bend flows and time-varying curvature 
 Bifurcations (symmetrical and asymmetrical) 
 Wavy wall 
 Entry flow 
 Flow stability 
 Flow separation 
 Vessel deformability 
 Wave propagation 
 Particle flow 
 Cardiac flow 
 Flow in cardiac valves 
 Microcirculation  

 
 



Physical Properties of Blood 



Poiseuille Flow 
Assumptions 
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Wall Shear Stress Based on Poiseuille Flow 

Shear rate:  
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Friction Factor 

For laminar flow in a pipe 



Circular Ducts-Flow Through Non Poiseuille 





Flow Through an Ellipse 



Compliance 
  Because blood vessels are elastic, there is a relationship 

between pressure and volume (V). 

 The blood vessel wall is stretched as a result of the 
pressure difference between the interior and 
exterior of the vessel.  

 Based on the Laplace’s law, 

 Sh is the hoop stress in the wall, P is the transmural   pressure, 
 r is the vessel radius and h is the wall thickness.  
Transmural pressure is the difference in pressure between two sides of a 
wall 
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Laplace equation 
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 The simplest assumption one can make is that V is 
linearly related to P, and thus 

 

C, the compliance of the vessel, and V0 is the volume of the vessel at 
zero pressure. 

C (venous vessel) = 24 times as great as C(arterial 
system), because the veins are both larger and weaker 
than the arteries. 
Then, large amounts of blood can be stored in the veins 
with only slight changes in venous pressure. 



Also, it can be written, 
c is the compliance per unit length,  
in a cylindrical vessel of length L and uniform internal 
pressure,  V = AL, so that C = cL. 
 However, both C and c are referred as compliance. 
From Poiseuillie flow, 

 
 
  

 
For a compliance vessel,  

 
 
where A(P) is the relationship between cross-sectional area 
and pressure. 
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And by integrating, 
 
 
 
And we have 

 
 
 
 
 
where R = 8πμL/Ao

2 and γ = c/A0. P0 input pressure and 
P1 output pressure. 

 
 



The higher the compliance, the smaller the pressure drop.  
 
The pressure drop in the veins can be much less than in 
the arteries, since the compliance of the veins is much greater 
than that of the arteries. 

Mathematical Physiology, Keener, Sneyd, 2nd ed., Springer, 2009. 

γ = c/A0 



Observed flow of blood through the Veins 

When pressure difference becomes large, the flux 

gradually attains a maximum value, no longer increases. 



Entrance Region of a pipe 



Entrance Region of a pipe 



Entrance lengths of arteries 
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Unsteadiness-Pulsatile Flows Number Womersley 

1-variation of heart rate among the 
species. 

2-Womersly no. is within one order of 
magnitude. 

Womersly Number 

)1930, SexlPulsatile Flows ( 

Its solution is a Bessel function. 

White, Viscous Fluid 
Flow, 2006 

)1930Pulsatile Flows(Sexl,  
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Averaging over one cycle for large kinetic Reynolds    

)1930, SexlPulsatile Flows ( 

Richardson 
annular  effect 

Pulsatile Flows 

Louden, Tordesillas, The Use of the Dimensionless Womersley Number to Characterize the 

Unsteady Nature of Internal Flow, J. Theor. Biol., 191, 1998. 

Fourier Series Representation 
 Was published in 1822 

 A periodic function f(t) with a period T can be represented 
by the sum of a constant term, a fundamental of period T, 
and its harmonics. 

 Fourier series can be used to:  

Expand any periodic function into an infinite sum of sines 
and cosines. 
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Fourier Series 
Periodic functions can be written in the form  

Waite, Applied Biofluid 
Mechanics, 2007 Fourier Series 

 It is also possible to  use complex numbers: 

 

n is the number of the harmonic, 
    is the fundamental frequency (rad/s),  
Ao is the mean pressure gradient. 

Fourier Series 
An example: 

In the first 0.4 s 

The function is zero in the final 0.6 s. 

Fourier Series 
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Pulsatile Flow -Womersley Solution(1955) 

For each harmonic  

Simplifies the N-S  eq. 

 one possible  solution 

Ordinary Diff. eq. 

Velocity for each 
harmonic 

Womersley Solution 

A typical pressure  gradient 

Solution Womersley 
Fourier Series of pressure gradient (3 
harmonic) 

Solution Womersley 

1-Velocity lags the pressure gradient 
2- Velocity peaks at the mid-radius position slightly 
before the centerline. 
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Womersley Solution 

The peak velocity = 0.62 m/s.  

.a  3 5



MBW:Womersley Arterial Flow 

Author: Tracey Morland 

This article summarizes the results and approach introduced by Womersley in his famous paper on pulsatile 

flow in arteries [1]. His approach uses concepts from fluid mechanics, including Poiseuille Flow, to model the 

pressure gradient and flow velocity in an arterial pulse. The model considers the flow of blood in a rigid tube. 

Womersley's number is also defined, and the usefulness of Womersley flow is discussed. 
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Overview 

This is a model of blood flow as a Newtonian fluid through a rigid tube propagated only by a pressure 

gradient. The Newtonian fluid is described by the Navier-Stokes second-order PDE's, and simplified by 

assuming a Poiseuille flow. A Fourier series accounts for the periodicity of the pressure gradient, and the 

coefficients are determined by the Fast Fourier Transform (FFT). Simplifications and substitutions allow for 

the system of PDE's to be approximated by Ordinary Differential Equations with solutions in the form of 

Bessel functions. 

Biological Context 
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The human heart beats over 2.5 billion times in an average lifetime and about 100,000 times per day, and 

in one day your blood travels 12,000 miles, [2] or roughly the distance of traveling from Denver to Tokyo and 

back again. The heart is composed of four chambers. The sinoatrial nodes (SA) nodes in the right atrium 

(RA) initiate the electric pulse and cause the right ventricle (RV) to fill with blood. The action potential is 

propagated through the atria via the atrial cells [3]. The RV then contracts, sending blood to the pulmonary 

artery where it is then sent to the lungs. The blood, now fully oxygenated, now returns to the heart and fills 

the left atrium (LA). The LA contracts sending blood into the left ventricle (LV). Blood is then pumped from 

the LV into the aortic artery which sends the blood to the rest of the body. For an animation of the 

contraction of the heart valves, see NOVA: Map of the Human Heart. 

 

Figure 1: The Human Heart, Nucleus Medical Art, Inc./Getty Images [2] 

How fast does the blood flow through the arteries with each beat? Is there any phase-lag between the shock 

wave (the pulse you feel in your wrist or neck) and the flow of blood? These are questions addressed in 

Womersley's paper reviewed in this article. The more we can understand the nature of how the arterial pulse 

works and perform accurate calculations of arterial blood flow, the more we can detect heart disease and 

defects, such as in patients with diabetes and atherosclerosis [3]. 

History 

Most of the information on the nature of the arterial pulse has evolved from the study of fluid mechanics. 

Various aspects of the pulse can be included in a model, including the elasticity of the artery, fluid viscosity, 

pressure gradient, and the presence of arterial bifurcations (branches) to name a few. In 1808, Thomas 

Young, a British scientist and physician, connected the elastic nature of the arteries to pulse wave 

velocity [4]. Then, in 1878, Moens and Korteweg independently derived a mathematical model relating 
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arterial elasticity, or stiffness, to pulse wave velocity. Today it is called the Moens-Korteweg equation and it 

is dervied from Newton's second law of motion . 

The simplest model for pulsatile flow is the [Windkessel model], developed by Otto Frank in 1899 [5]. This 

approach is not accurate enough to be used for quantitative analysis, but it provides a simple foundation on 

which to build more complicated models. In the model, blood storage is simplified to a single chamber, 

called a Windkessel, and the pressure of this chamber varies periodically over time [6]. Inflow into the 

chamber is from the heart, and outflow is to the outer arteries, veins and capillaries and is represented as a 

simple resistance vessel [3]. There are two parts to this model: compliance (representing the elastic nature 

of arteries) and resistance. The resistance in the system causes blood to enter the arteries at a higher rate 

than it flows out. Thus, there is storage of blood in the arteries [7]. 

 

Figure 2: Windkessel Model [8] 

In 1970, a three-part Windkessel model was created by Westerhof [9]. Westerhof's model incorporates 

impedence which, combined with Frank's model, includes aspects of wave propagation. Westerhof's work 

was inspired by the previous work on pulsatile flow established by Womersley in his 1955 paper, as well as 

McDonald in his classic book [10] [11]. 
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Mathematical Background 

As mentioned above, Womersely's model makes use of Poiseuille flow, and is a simplification of the Navier-

Stokes equations. Therefore, it is important to have some background on these approaches. The Navier-

Stokes equations can be used to completely model the motion of incompressible, Newtonian fluids. However, 

these equations are very difficult to analyze since they are non-linear, second order partial differential 

equations, and only in a few special cases can their exact solutions be found [12]. The equations, simplified 

using the continuity equation, for the  directions are listed below [12]. In the right-hand side of 

Equation (1), and similarly for Equations (2) and (3), the term  represents the pressure force, the 

term  represents the weight of the fluid, and the second-order partials in parentheses represents the 

viscous forces. 

Navier-Stokes Equations: 

              

 

These equations are frequently written in cylindrical form. For example, Equation (1) can be written as: 

   

   

(4) 

 

A simplification of the Navier-Stokes equations can be made assuming a Poiseuille flow in which the velocity 

of the fluid is described by the following equation. 

                                                                   (5) 
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A Poiseuille flow assumes that the flow is steady, uniform (over a cross-section), laminar, and axially 

symmetric within a cylindrical tube. Under these assumptions, the term  (since there is no 

change in velocity over time). Furthermore, the terms  and  equal zero. 

 

Figure 3: Poiseuille Flow in a Rigid Tube [13] 

(For another project using Poiseuille flow, see MBW:Optimum Design of Blood Vessel Bifurcation) 

Notation 

Before examining Womersley's model, it is important to define some notation that will be used. 

 

 

liquid density 

 

viscosity 

 

kinematic viscosity 

 

pressures at ends of pipe 

 

radius of pipe 

 

distance from center of pipe 

 

length of pipe 

 

longitudinal velocity of liquid 

 

fundamental frequency (typically the heart rate in 
radians) 

 

period of the pressure gradient wave 

Womersley Flow Defined 

We now take an in-depth look at Womersly's paper and model for pulsatile flow. To provide the basis for 

Womersley's model, we begin with a more complete derivation of Poiseuille's formula for steady flow and 

also include the pressure gradient. A constant pressure gradient throughout a pipe of length  is defined 

as: 

http://en.wikipedia.org/wiki/Laminar_flow
https://mathbio.colorado.edu/index.php/MBW:Womersley_Arterial_Flow#cite_note-barck-13
https://mathbio.colorado.edu/index.php/MBW:Optimum_Design_of_Blood_Vessel_Bifurcation
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                                                                             (6) 

 

After accounting for the simplifications of the Navier-Stokes equations based on Poiseuille flow, the equation 

of motion is then: 

                                                         (7) 

 

This has Equation (5) as its solution. 

Now, Womersley expresses the pressure gradient as a periodic function of time with 

frequency  to represent the arterial pulse. The representation of this function is done using 

Fourier series. 

Using Fourier Series to Represent Pressure Gradient 

Since the change in pressure gradient is periodic, it can be expressed using the following function: 

                                                                 (8) 

 

where . 

Using Euler's formula, this can be expressed as a Fourier series with Fourier 

coefficients . 

                                          (9) 

 

The coefficients are calculated as follows: 



                                                 (10) 

 

                                                 (11) 

 

These coefficients can be easily calculated using Matlab or Mathematica. A Fast Fourier Transform (FFT) 

algorithm can also be used instead to calculate these coefficients. See [14] page 196 for more information 

and sample Matlab code. 

Solving for Flow Velocity (u) 

Since we are assuming a Poiseuille flow that changes over time, we have that  and . 

After some algebra we get that for a single harmonic, n: 

                                                 (12) 

 

Let's consider the following simple solution to Equation (12) since the velocity also changes periodically over 

time: 

                                                                         (13) 

 

Next we substitute this equation for  into Equation (12) and divide both sides by  to get the 

following ordinary differential equation that is not dependent on time: 

                                                         (14) 

 

This equation can be rewritten to be a Bessel zero-order differential equation using the fact that 

: 

https://mathbio.colorado.edu/index.php/MBW:Womersley_Arterial_Flow#cite_note-applied-14


 

                                                         (15) 

Solving the Bessel Differential Equation 

The general form for a zero-order Bessel differential equation is: 

 

                                                                   (16) 

In our case note that . So the homogeneous version of Equation (15) fits the above form and 

its solution is of the general form: 

                                                (17) 

The term The term  must be discarded since  has the requirement that it must be finite at the 

center (origin) of the pipe. Therefore, . Since Equation (15) is non-homogeneous, we use the 

technique described in [14] and try the simple solution . Then we have that the terms involving 

the derivative of  are zero, and thus we have that . Therefore, using the fact 

that , we have that: 

                                                                             (18) 

 

Then the solution looks like: 

http://en.wikipedia.org/wiki/Bessel_function
https://mathbio.colorado.edu/index.php/MBW:Womersley_Arterial_Flow#cite_note-applied-14


                                                        (19) 

We can now solve for  by using the no-slip condition that  at the boundary . Therefore 

we have: 

                                                   (20) 

 

                                                     (21) 

 

Then finally we get that: 

                                              (22) 

 

 

The last step is to add the steady flow velocity term  and thus we have: 

                                                                 (23) 

Womersley Number 

 

The quantity  in Equation (19) is called the Womersley Number, . It is a dimensionless parameter 

that represents the ratio of transient forces, originating from the pulse wave, to the viscous force, or shear 

force. To get a feel for the magnitude of , an example problem is presented. 

 

http://scienceworld.wolfram.com/physics/NoSlipCondition.html


Example 1: A 20 kg dog has an average heart rate of 90 beats per minute (bpm) and a 70 kg human has 

an average of 70 bpm [15].The density of blood is 1060 kg/ . Using the following calculation 

([15] Equation 3.7, p. 27) we calculate the diameter of the aorta to be 2.03 cm for humans, and 1.33 cm for 

dogs. 

                                                                     

 

where W is the weight of the animal. From [16] we get that the blood viscosity for a human is 0.006 Ns/

 and for a dog is 0.0056 Ns/ . 

Now we calculate Womersley's number: . Note that we need to convert bpm to rad/s 

so we multiply the bpm by . 

 

For a human, we have:  

 

For a dog, we have:  

 

This tells us that the oscillatory inertial forces become more important than the viscous force as the size of 

the animal increases, or particulary as the size of the blood vessels increases. (Note that this example is 

adapted from a similar example found in [14], p. 30). 

Flow Rate (Q) 

In the next part of the paper, Womersley derives the flow rate (Q) of the fluid passing through a cross-

sectional area of the pipe, or artery in this case. This is accomplished by the integrating the velocity over a 

differential area: 

                                                                         (21)  
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For steady flow, recall that . After integrating, we get that: 

                                                                        (22) 

 

which is Poisueille's formula. Now, we can substitute in the formula we found for , and then use the 

fact that , then after some calculus and algebraic simplification we get that: 

                                   (23) 

Recall that the  need to be summed for each , and added to the average flow rate 

given by the constant term in the Fourier series  [14] to get: 

                                                                       (24) 

 

Womersley now derives a way to calculate Q without Bessel functions, perhaps because back in 1955 these 

functions were numerically more challenging to calculate. He uses modulus and phase functions [1] to 

accomplish this. The details of these functions are out of the scope of this review, but the following relations 

are used: 

                                                                     (25) 

 

                                                                     (26) 
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He also uses the fact that the real part 

of  is  where 

since  [14]. Then, after some simplifications Womersley gets the following, simplified 

formula for Q (not including the steady flow term ): 

                                               (27) 

 

where  and the values for , , , , and  are all given in a table in 

Womersley's paper. Let's look at an example problem presented in the paper to get more of an idea of the 

values for Q. 

 

Example 2: The radius of an artery is 0.15 cm, the viscosity is , and the pulse frequency is 

180 bpm. The value for , , , , and  are given in the following two tables: 

 

 

The expression for Q is then then sum of the six terms: 
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This result for Q is plotted against the pressure gradient below: 

 

Analysis and Conclusions 

Womersley's arterial flow model gives formulas to calculate the flow rate of a viscous fluid through a rigid 

tube under a periodic pressure gradient, described by a Fourier series. The solution is then extended to 

calculate the flow rate over a cross-sectional area of the tube. 

The graph in Example 2 depicts the pressure gradient (P) juxtaposed with the flow rate (Q), and clearly 

shows the phase-lag between the two curves. This implies that the pulse wave is first sent through the body 

(seen as an increase in the pressure gradient) and then the blood flow follows. Typically the phase-lag is 

about 90 degrees, except at the boundary layer where it is about 45 degrees [17]. Also noteworthy is that 

this phase-lag is only present in large arteries; in smaller arteries less than 4mm in diameter, the flow 

behavior closely follows Poiseuille's formula [17]. Interestingly, the pulse wave travels about 5 times the 

maximum blood velocity [17]. 

Also evident from the graph is that the direction of flow velocity is actually reversed as seen when the 

velocity becomes negative. However, this is the topic of another paper written by Womersley et. al in 

1955 [18]. 
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Womersley's number has provided both fluid mechanics and biological sciences with a means to measure the 

inertial forces versus the viscous forces. It is as significant in analyzing unsteady flow as the Reynolds 

number is in measuring steady flow [19]. 

Womersley's model has been foundational to many models of arterial blood flow, but itself is limited to 

modeling laminar flow through a rigid, cylindrical tube. In reality, there are elastic effects in the blood vessel 

and the pressure gradient may depend on other factors besides time. In addition, Womersley's model 

considers only longitudinal velocity, whereas there may also be a radial part. 

Recent Extension 

In 2011, the Womersley article was cited in a study on Effects of vessel wall elasticity and non-Newtonian 

rheology on blood flow regime and hemodynamic parameters distribution by Foad Kabinejadian and Dhanjoo 

N. Ghista. This paper is a follow up of an earlier study, wherein they computationally simulated blood flow 

using Womersley's model. They were focused on vessel intersections and junctions. The current paper 

revisits the computational simulation with compliant walls and non-Newtonian fluid. They compared the 

results of their two studies and found that the compliant and non-Newtonian model was consistent with the 

results of earlier studies and observational data. They conclude that the inclusion of wall compliance and 

non-Newtonian rheology in flow simulation of blood vessels can be essential in quantitative and comparative 

analyses [20]. For more information on human blood flow rheology, read Viscoelastic Versus Newtonian 

Behavior from the Physical Review Letters. 
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