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Chapter 1

Primary Decomposition

1.1 Ring Theory Background

In this talks, by a ring we always understand a commutative ring with unit; ring
homomorphisms ¢ : R — S are assumed to take the unit element of R into
the unit element of S. When we say that R is a subring of S it is understood

that the unit element of R and S coincide.

Recall. Let I, J be ideals of a ring R, and let {I,}nca be a family of ideals of
R. Then

W I+J:={a+blacl,beJ},

(2) Daenda == {D aca TalA is a finite subset of A},

(3) IJ :={a1by + asba + ...+ apbpla; € 1,b; € J},
(4) Spec(R):= the set of all prime ideals of R,

(5) V(I) := {p € Spec(R)|I C p},

(6) Min(I) := MinV(I) = Min{p € Spec(R)|I C p},
(7) Min(R) := Min(0) = Min(Spec(R)),

(8) Max(R):= the set of all maximal ideals of R= Max(Spec(R)),
(9) VI :={a € R|a" € I for some n € N} = Mpevin P = Npemin(n) Ps
(10) I:rJJ)=({I :J)=:{a € Rl|aJ C I}.

2
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Definition 1.1.1. (Extension and Contraction). Let f : R — S be a ring
homomorphism. If I is an ideal in R, the set f(I) is not necessarily an ideal of

S. The extension I¢ (or I.S) of I is the ideal
IF=1S =< f(I) >=< f(x)|lx e I >.

If J is an ideal in S, then f~1(J) is always an ideal of R. The contraction J¢
of J is the ideal

J¢ = f71(J) ={z € R|f(x) € J}.

Exercise 1. Let I, J, K be ideals of a ring R, and let {I,},ean be a family of
ideals of R. Show that:

(1) (L : J) is an ideal of R,

@) I1c(:J),

@) U:J):K)=(:JK)=(I:K):J),
@) (Na 1o :J) =Noa 2 J),

®) (J ZaEA o) =N La).

Exercise 2. Let f : R — S be a ring homomorphism and I, I, I are ideals
of R and J, Jy, Jy are ideals of S. Show that:

(1) I CI°¢ and J°© C J,

(2) I = I¢ and Je¢¢ = J©,

(3) (h+ L) =1If + IS and (J1 + J2)¢ 2 J{ + JS,

(4) (Iin)e CIfnI§and (JyNJg)e=JfNJs,

(5) (I112)° = IfI§ and (J1J2)¢ D JiJS,

(6) (Iy: 12)° € (If : I5) and (Jy : Jo)° C (JF = J5),

Exercise 3. Let f: R — S be a homomorphism and I, I, I> are ideals of R
and J is an ideal of S. Show that:

(1) I € VI,

2) VVI =1,

B) Vhih=vhnL=VvhnVk,



4 CHAPTER 1. PRIMARY DECOMPOSITION

@) VI ¥ L= VI + VI,

(5) VI=R<+=1=R,

6) VI +VL=R=—1,+1,=R,

(7) VI = /I, for all n € N,

(8) if V/T is finitely generated, then there exists n € N such that (vI)" C I,
(9) if p is a prime ideal of R, 1/p™ = p, for all n € N,

(10) (VI)* C VT¢ and (VJ)° = VJe.

Theorem 1.1.2. Let I be an ideal of a ring R. Then the following are equiva-
lent:

(1) The set Min(1) is finite,

(2) For any p € Min(I) there exists a finitely generated ideal p* /I of R/I such
that p* C p and Min(p*) is finite.

Proof. Without loss of generality we may assume that I = 0.

(1) =(2): Let p* =0.

(2) =(1): Let S denote the collection of finitely generated ideals I of R such
that Min(7) is finite. Set

T = {J|J is an ideal of R such thatI Z Jfor any I € S}.

If 0 ¢ T, then 0 € S and hence Min(R) is finite. Thus we may assume
that 0 € T. Since the collection T is nonempty and elements of S is finitely
generated, T' is inductive and hence by Zorn’s Lemma has a maximal element .
We show that q is a prime ideal of R. If ¢ is not prime then there exist a,b € R\q
such that ab € q. Therefore there exist I, Is € S such that I; C g+ Ra and
I, C q+ Rb. So, we have

T, C (q+ Ra)(q+ Rb) € q* + qRb + qRa + Rab C q.

On the other hand, Min(I;15) C Min(Z;) U Min(l3). Therefore I; I € S, which
is a contradiction. Thus ¢ is a prime ideal of R. Let p be a minimal prime ideal
of R such that p C q. There exists p* € S such that p* C p. Thus q € T and

this is also a contradiction. O
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The following result is the main result of [1].

Theorem 1.1.3. (Anderson’s Theorem). Let I be an ideal of a ring R. If
each p € Min(I) is finitely generated ideal, then Min(I) is finite.

Proof. This follows immediately from the above theorem. O

Theorem 1.1.4. Let R be a ring. Then the following are equivalent:
(1) R is Artinian.
(2) R is Noetherian and Spec(R) = Max(R).

Proof. See Chapter 2 of [10] or Corollary 8.45 of [12]. O

1.2 Primary Ideals

Definition 1.2.1. A proper ideal g of a ring R is said to be a primary ideal

if, for a,b € R, we have
ab€q=a€qorbec /.

Lemma and Definition. Let q be a primary ideal of R. Then p := /g is a

prime ideal of R, and we say that q is p—primary.

Proof. Let ab € /4. Then there is an element n € N such that a"b" = (ab)" € qg.
Since q is primary, we have that o™ € q or b" € /4. It follows that a € \/q or
b€ /4= /4. Therefore, /q is a prime ideal and the proof is complete. [

Theorem 1.2.2. Let q1,42,...,q, be p—primary ideals of R. Then ﬂ?:l q; 18

also a p—primary ideal of R.

Proof. By Exercise 3(3), we have /[\_; 9 = ()i—; /@ = p. Now let ab €
Ni_;9; and @ & (), 9;- Then there exists 1 < j < n such that a ¢ q;. Since

ab € q; and q; is p—primary, we have b € ,/q; = p. This proves the theorem. [

Theorem 1.2.3. Let q be an ideal of a ring R, and \/q = m € MaxR. Then q

18 M—Dprimary.
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Proof. q is a proper ideal, since ¢ € /g = m & R. Now, let ab € q and
b¢./q=m. Then bR+ ,/qd = R and so VbR + v/q4 = R. From the Exercise
3(6), we have bR 4+ q = R. It follows that br + ¢ = 1 for some r € R and ¢ € q.
Therefore a = abr + aq € q. This proves the theorem. O

Notation. Let I be an ideal of R and x € R. Then (I : Rz) may be denoted
simply by (I : z).
Theorem 1.2.4. Let q be a p—primary ideal of R. Then
(1) if x € q, then (q: z) = R,
(2) if x & q, then (q : x) is p—primary,
(3) if v & p, then (q: 2) = g.
Proof. (1): Trivial.
(2): First we show that \/(q: ) = p. We have
AC(0:2) CVI—=VaCV(@:2) S Va= V(a:2)=Va=p.

Now let ab € (q: z) and a & (q : ). Then abx € q and azx ¢ q. By definition
we have b € \/§=p =+/(q: ) and so (q : ) is p—primary.

(3): Clearly (q: ) C g. Now let @ € (q: ), then axz € q and hence a € g, by
definition. O

Theorem 1.2.5. Let ¢ : R — S be a ring homomorphism, let q be a p—primary
ideal of S. Then q° is p°—primary ideal of R.

Proof. q° is proper, since
a#S=1ls=¢(lr)¢a=1r¢q" =q"# R

Now let ab € q° and a ¢ q°. Then ¢(a)p(b) € q and p(a) & ¢. Therefore
¢(b) € /q and so b € \/q°. Hence the assertion follows from the fact that

VI = V= =

Exercise 4. Let ¢ : R — S be an epimorphism and let q be a p—primary

ideal of R such that kerp C q. Show that q¢ is p®—primary ideal of S.
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1.3 Associated prime ideals

Definition 1.3.1. Let IV, K be two submodules of an R-module M. We denote
the ideal
{a € RlaK C N}

by (N : K) (or (N :g K) if it is desired to emphasize the underlying ring
concerned). In special case in which N = 0, the ideal (0 :g K) is called the
annihilator of K and denoted by Anng K or Annk.

If x € M, then Anng(Rx) may be denoted simply by Anngz or Annz.

Exercise 5. Let N be a submodule of an R-module M, and let {N,}eq be a
family of submodules of M. Show that:

(1) (Mg Na = N) =Ny (Na : N),
(2) (N 2aea Na) = (N = Na).

Definition 1.3.2. Let M be an R-module. Then the set of associated prime
ideals of M is defined as follows:

AsspM = AssM := {p € SpecR|30 # x € M : p = Annz}.
It is clear that if M and M’ are isomorphic R-modules, then AssM = AssM’.
Theorem 1.3.3. Let M be a module over a Noetherian ring R. Then
M # (0) <= AssM # 0.

Proof. (<) : Trivial.
(=) : Set
Y = {Annz|0 # xz € M}.

Let Annzy be a maximal element of ¥. It is enough to show that Annzg is a
prime ideal of R. Let ab € Annzg and a € Annzg. Since Annzg C Annaxg, by
the maximality of Annxg, we have Annzg = Annazg. Thus b € Annzy. This

proves the theorem. O
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Proposition 1.3.4. Let N be a submodule of an R-module M. Then:

(1) AssN C AssM,

(2) If M = R/p for some p € Spec(R), then AssM = {p} (in fact, p = Anngz
forany 0 £ 2 € M),

(3) p € AssM < 3M; < M such that My = R/p.

Proof. (1): Trivial.
(2): Let ¢ : M — R/p be an isomorphism. If 0 # x € M, then 0 # ¢(x) €
R/p and hence Anngx = Anngp(z) = p.
(3)(=): Let p € AssM. Then there exits x € M such that p = Annz. Define
p:R — Rz

r = TT.

Then ¢ is an epimorphism and Kerep = Annz = p. Therefore Rz =2 R/p. Now
the assertion follows if we take M := Rux.

(«<): Let My =2 R/p. If 0 # x € My, then Annx = p by part (1). It follows
that p € AssM. O

This proposition will be used several times in the sequel.

Recall. Let M be an R-module. The set of all zero divisors on M is:
Z(M)={ae€ R|F0#xz € M :ax =0}.

Theorem 1.3.5. Let M be a module over a Noetherian ring R. Then

zMm)y= |J »

peAssM
Proof. D: Trivial.
C: Let a € Z(M). Then there exists 0 # € M such that ax = 0. Let N = Ruz.
By Theorem 1.3.3, AssN # (). So, there exits r € R such that p := Annrz €
AssN. It follows from Proposition 1.3.4(1) that a € p C U, cagens P O

Exercise 6. Let M be a non zero R-module and let p € SpecR. Show that:

p € Min(AnnM) = p C Z(M).
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Theorem 1.3.6. Let M be a non zero finitely generated module over a Noethe-

rian ring R. Then there exists a chain
0)=MyCMC---CM,=M

of submodules of M such that for each i we have M;/M;_1 = R/p; with p; €
Spec(R).

Proof. Since M # (0), then there exists a submodule My of M such that M; =
R/py with p; € Spec(R). If M/M; # (0), then there exists a submodule
My /My of M/M; such that My/M; = R/ps with ps € Spec(R). Since M is
Noetherian the above process must terminate, and hence there is n € N such

that M/M,, = (0). This concludes the proof. O

Theorem 1.3.7. Let 0 — N — M — K — 0 be an exact sequence of
R-modules. Then
AssN C AssM C AssN U AssK.

Proof. Without loss of generality, we may assume N C M and K = M/N. By
Proposition 1.3.4(1), AssN C AssM. Now let p € AssM. Then there exists
a submodule M7 of M such that M; = R/p with p € Spec(R). We have two
cases:

Case 1: My NN = (0). In this case we have (M7 + N)/N = M; and so
p € Ass(M1 + N)/N C Ass(M/N).

Case 2: My NN # (0). If 0 # z € My N N, then by Proposition 1.3.4(3),
p = Annz and so p € AssN. O

Theorem 1.3.8. Let M be an R-module and let (0) = My C M; C--- C M, =
M be a chain of submodules of M such that for each i we have M;/M;_1 = R/p;
with p; € Spec(R). Then

AssM C {p1,...,pn}.

Proof. We use induction on n. If n = 1, there is nothing to prove. Assume

inductively that n > 1 and the result settled for all ¢ < n. From the above
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theorem and induction hypothesis, we have
AssM C AssM,,—1 U Ass(M/M,,—1) = AssMp,—1 U {pn} C{p1,...,pn}
O

Corollary 1.3.9. Let M be a finitely generated module over a Noetherian ring
R. Then |AssM| < co.

Proof. The assertion follows from Theorem 1.3.6 and Theorem 1.3.8. O
Theorem 1.3.10. Let {M;}, be a family of R-modules. Then
Ass(®] M;) = U, AssM;.

Proof. The right-hand side is clearly included in the left-hand side; we prove
the converse by induction on n. If n = 1, there is nothing to prove. Assume
inductively that n > 1 and the result settled for all ¢ < n. From the exact
sequence

0 — M — @ M, — ®}_yM; — 0

and the induction hypothesis, we have
Ass(®_ 1 M;) C AssM1UAss(Di_oM;) C (AssM;)U(UiqAssM;) = Ui, AssM;.
O
Exercise 7. Let {M;};c; be a family of R-modules. Then
Ass(®ierM;) = Ujer AssM;.

Corollary 1.3.11. Let {N;}_; be a family of submodules of an R-module M.
If N =N N;, then

Ass(M/N) C U, Ass(M/N;).

Proof. 1t is clear that the map
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p:M/N — &L, M/N,

(x4+N) — (x+ Ny,-- 2+ Ny).
is a monomorphism. Hence the Theorem 1.3.11 implies

Ass(M/N) = Assp(M/N) C Ass @], (M/N;) = Uj_; Ass(M/N;).

1=

O

Theorem 1.3.12. (Bourbaki’s Theorem [3]). Let M be a Noetherian R-
module and B C AssM. Then there exists a submodule N of M such that

Ass(M/N) = B,
AssN = AssM — B.

Proof. Set
Y ={K < M|AssK C AssM — B}.

Let N be a maximal element of Y. First we show that Ass(M/N) C B. If
p € Ass(M/N), then there exists a submodule F' of M such that F'//N = R/p
with p € SpecR. By maximality of IV and the fact that

AssF C AssN U Ass(F'/N) C (AssM — B) U {p},

we have p € AssF and p & AssM — B. Therefore p € B.

Now we show that AssM — B C AssN. Let p € AssM — B. Then p € AssM
and p & Ass(M/N). So p € AssN.

Finally, we show that B C Ass(M/N). Let p € B. Then p & AssM — B and
so p &€ AssN. Thus p € Ass(M/N). O

Exercise 8. Show that the Bourbaki’s Theorem holds even without the assump-

tion that M is Noetherian.
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1.4 Primary Decomposition

Definition 1.4.1. A proper submodule @ of an R-module M is said to be a

primary submodule if for any r € R and x € M, we have

re € QQ = x € Qorr€/AnnM/Q.

Exercise 9. Let @ be a proper submodule of an R-module M. Then @ is
primary submodule if and only if Z(M/Q) = /AnnM/Q.

Lemma and Definition. If @ is a primary submodule of M, then p :=
v/AnnM/Q is a prime ideal of R. We say that @ is a p-primary submodule
of M.

Proof. Tt is enough to show that AnnM /@ is a primary ideal of R. Let ab €
AnnM/Q and a ¢ AnnM/Q. Then there is an element € M such that az € Q.
Since abz € @, by definition we have b € \/AnnM/Q and so we are done. [

Exercise 10. Let M be an R-module. Show that if Q4,...,Q,, are p-primary
submodules of M, then so too is N} Q;.
Exercise 11. Let M be a module over the Noetherian ring R and y € M and

p € SpecR. Then the maximal element of
Y = {Annz|Anny C Annz C p}
is a prime ideal of R.

Proof. Let Annz be the maximal element of 3. We show that Annx is a prime
ideal. Suppose that ab € Annz and a ¢ Annz. We claim that Annaz C p
Suppose on the contrary that Annax € p. Let r € Annaz \ p. Then Annz C
Annraz C p. Therefore Annz = Annrz and hence a € Annz, which is a contra-
diction. Thus we must have Annax C p. Then Annz C Annax C p and hence

Annz = Annax. Therefore b € Annz. O

Theorem 1.4.2. Let R be a Noetherian ring and M be a finitely generated
R-module. Then
Q is p-primary <= AssM/Q = {p}.
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Proof. (=) : q € AssM/Q implies that ¢ C Z(M/Q) = p. On the other
hand there exists © € M such that AnnM/Q C Ann(z + Q) = gq. Hence
VAnnM/Q C /g and so p C q. Therefore p = q and hence AssM/Q = {p}.

(=) : First we show that p = \/AnnM/Q. Let q € Min(AnnM/Q). As-
sume that M = Rx1 + ---+ Rz,. Then

AnnM/Q = Ann(Rxy + -+ Rep, + Q) = N Ann(z; + Q) C q.
Since q is prime, there exists 1 < j < n such that Ann(z; + Q) C q. Set
Y = {Amn(z + Q)|Ann(z; + Q) € Ann(z + Q) C q}.

Let Ann(zg + Q) be a maximal element of 3. Then Ann(zg + Q) € Spec(R),

by Exercise 11. Since
AnnM/Q C Ann(zo + Q) C q,

and g € Min(AnnM/Q), we have that ¢ = Ann(zo + Q) € AssM/Q and hence
q = p. Therefore

VAnM/Q = ﬂ =p.

qEMin(AnnM/Q)

Now we have

zmM/Q) = |J rp=p»
pEAssM/Q
Therefore, by Exercise 9 we have @ is p-primary, which completes the proof. [

Definition 1.4.3. A submodule N of M is said to be irreducible if N =
Ny N Ny where N1, Ny are submodules of M implies N = N1 or N = Ns.

Theorem 1.4.4. Let R be a Noetherian ring. Then every irreducible proper

submodule of a finitely generated R-module is primary.

Proof. Let N be an irreducible proper submodule of M. Suppose to the con-
trary, p1,p2 € AssM/N. Then M/N has distinct submodules Ny /N and Ny/N
such that N1 /N = R/p; and No/N = R/ps. It is easy to see that N = Ny N Ns.
So it follows from the above definition that N = Ny or N = N», a contradiction.

O
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Theorem 1.4.5. Let M be a Noetherian R-module. Then every proper sub-
module N of M 1is an intersection of finitely many irreducible submodules of

M.

Proof. Let
¥ ={K < M|K is not a finite intersection of irreducible submodules of M }.

We claim that ¥ = (. For if not, ¥ has a maximal element N. But N is not
irreducible and so N = N; N Ny where N7 and Ny are submodules of M and
N # Nj and N # Ns. Therefore N7 and N are finite intersection of irreducible

submodules and so is N, a contradiction. O

Definition 1.4.6. A primary decomposition of a submodule N of M is the
finite intersection N = @1 N ... N @, where each @; is primary submodule of
M. A primary decomposition N = @1 N...N Q, in which Q; is p;-primary is
said to be minimal if

(1) p1,...,pn are different prime ideals of R,

(2) no @; can be omitted from the intersection N = Q1 N...N Q.

Exercise 12. (1): (Existence of Primary Decomposition). Let M be a
Noetherian R-module. Show that every proper submodule N of M has minimal
primary decomposition.

(2): (Uniqueness of Primary Decomposition I). Let

N = @QiN...NQ,, where Q; is p, — primary,

N QiN...NQ,,, where Q; is p; — primary

be two minimal primary decompositions of N. Show that
{p1,- - pn} = Ass(M/N) = {p1, .-, P }-
(3): (Uniqueness of Primary Decomposition II) Let

N

@Q1N...NQ,, where Q; is p; — primary,

N

Q1 N...NQ.,, where Q) is p; — primary
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be two minimal primary decompositions of N. If p; € Min{ps,...,p,}, show

We now give an application of primary decomposition which is the starting

of the theory of completeness.

Theorem 1.4.7. (Krull’s Intersection Theorem). Let M be a Noetherian
R-module and let a be an ideal of R. If N =(;—, a'M, then aN = N.

Proof. If aN = M, then the claim is clear, and so we assume that aN is a proper

submodule of M. Then aN has a primary decomposition
aN =Q1N--- NGy,

where each @); is a p;-primary submodule of M for some p; € SpecR. It suffices
to show that N C Q; for every 1 <i <mn. Let i (1 <7 <n) be fixed. We show
that N C @;. Consider two following cases:

Case 1: a C p;. Then there is an integer m such that p/*M C Q; (why?).

Therefore

N={()a'MCa™MCp]"MC Q.

i=1
Case 2: a € p;. Then there exists 7 € a such that » € p,. If N ¢ Q;, then there
exists n € N \ Q;. Since rn € aN C @Q;, n € Q; and Q; is primary, "M C Q;
for some m > 0. It follows that r € p;, which is a contradiction. Therefore

N CQ;. O

The following important result follows easily from the above theorem and

Nakayama’s Lemma.

Corollary 1.4.8. Let M be a Noetherian R-module and let a be an ideal of R
such that a C J(R). Then

(oo}
ﬂ alM =0.
i=1
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1.5 Rings of Fractions

Definition 1.5.1. A multiplicatively closed subset of a ring R is a subset
S of R such that

(1)1es8,

(2) 51,50 € S => 5182 € S.

Ezample 1.5.2. (1): If p is a prime ideal of a ring R, then R\ p is a multiplica-
tively closed subset of R. More generally, if {p; : ¢ € I} is a family of prime
ideals of a ring R, then R\ U;crp; is a multiplicatively closed subset of R.

(2): Let R be a ring. Then the set S = R\ Z(R) is a multiplicatively closed
subset of R.

(3): Given any element a of a ring R, the set S = {a™ : n € Ny} of powers

of a is a multiplicatively closed subset of R.

Definition 1.5.3. Let S be a multiplicatively closed subset of R. Define a

relation ~ on R x S as follows. Given any (a,s), (b,t) € R X S.
(a,s) ~ (b,t) <= u(at — bs) = 0 for some u € S.

It is easy to see that the relation ~ is an equivalence relation. Let us denote
the equivalence class of (a,s) € R x S by a/s, and let S'R denote the set of

equivalence classes of elements of R x S. That is,
ST'R={a/s|a€ R,s€ S}

Theorem 1.5.4. ST'R is a commutative ring under the usual rules for calcu-

lating with fractions:

(a/s) + (b/t) = (ta + sb)/st, (a/s)(b/t) = (ab)/(st).

Proof. Left to the reader as an exercise. O

Ezample 1.5.5. Let R be an integral domain and S = R — {0}. Let a/s be
a non zero element of ST'R. Then a # 0. It follows that s/a € S™'R and
(a/s)(s/a) = 1. Hence ST'R is a field. S7!'R is called the quotient field or
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the field of fractions of R. Note that in this case the equivalence relation ~

on R x S takes the simpler form. In fact, we have:
a/s =b/t < (a,s) ~ (b,t) <= at = bs

More generally, if R is a ring and S = R — Z(R), then S~ R is called the total
quotient ring of R.

Definition 1.5.6. The ring S~ R is called the ring of fractions or the lo-
calization of R with respect to multiplicatively closed subset S. If p is a prime
ideal of R, then S = R\ p is a multiplicatively closed subset of R. In this case,
we write Ry for ST'R, and call it the localization of R at p.

The next example explains why S™!R is called localization.

Example 1.5.7. Let S = R\ p, where p is a prime ideal of R. The set pS~!R :=
{a/s:a €p,s € S}isan ideal of ST'R and an element of S™!R that is not in
pSTIR is a unit in ST'R. It follows that pS~!R is the only maximal ideal of
the ring S~'R. In other words, S~ R is a local ring.

Exercise 13. Let X be any subset of R. Define S™'X = {x/s|z € X,s € S}.
Let I, J be two ideals of R. Show that:

(1) S=17 is an ideal of S—'R.

(2) S~U(I+J) = 511 + 517,

(3) STHIJ) = (STH)(S71),

(4) S7YINnJ)=(S7)n(S7t)),

(5) S~'I is a proper ideal of S™!'R if and only if SN T = 0.

Definition 1.5.8. The ring homomorphism ¢ : R — SR given by ¢(a) =

a/1 is called the natural ring homomorphism.

Lemma 1.5.9. Let ¢ : R — S™'R be the natural ring homomorphism, and

let I be an ideal of R. Then

I°={\e€ S'RIA=a/s for someacI,se S}
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Proof. D: 1t is clear that, for alla € I and s € S, we have a/s = (1/s)p(a) € I°.
C: Let A € I°. There exist n € N, hy,...,h, € I and aq,...,a, € R such that

n

A= Z(ai/si)(hi/l) = (aihi)/si = as.

i=1

Remark. (1): A=a/se€I*==a€l,
(2): A=a/s € I®* = X\ =b/t such that b € I.

Lemma 1.5.10. Let ¢ : R — S™1R be the natural ring homomorphism, and
let q be a primary ideal of R such that qN S =0. If A\ =a/s € q°, then a € q.

Furthermore q°¢ = q.

Proof. Let A =a/s € q°. Then there exist b € q and ¢ € S such that b/t = a/s.
Therefore there exits u € S such that u(sb — ta) = 0. Hence (ut)a = usb € q.
Now ut € S, and since N .S = 0, it follows that ut ¢ \/q. But q is a primary
ideal, and so a € q, as required. Now we show that q°¢ = q. Clearly q C q°°.
For the reverse inclusion, let a € q°°. Thus a/1 € q° , and so, by what we have

just proved, a € q. O

Exercise 14. Let ¢ : R — S~ 'R be the natural ring homomorphism, and let
I, J be ideals of R. Show that:

(L) (InJ)e=1I°nJe,

2) V' = VT,

(3) I¢ = ST1R if and only if I NS # ().

Exercise 15. Let ¢ : R — S™!R be the natural ring homomorphism. Show
that:

(1) if p € SpecR and pN S = (), then p¢ € SpecS™!R,

(2) if p € SpecS™!R, then p¢ € SpecR and pcN S = . Also p*® = p,

(3) SpecST!R = {p°|p € SpecR,pN S = 0}.

Theorem 1.5.11. Let ¢ : R — S™'R be the natural ring homomorphism.
Then
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(1) if q is a p—primary ideal of R such that NS = (), then q° is a p¢—primary
ideal of ST'R,

(2) if q is a p—primary ideal of ST*R, then q¢ is a p¢—primary ideal of R such
that ¢ NS = 0. Also q° = q.

(3) the set of all primary ideals of S™'R is

{q°|q is primary ideal of R,qN S = 0}.

Proof. (1): By Exercise 14, we have q° # S™!'R and /q° = /q° = p°. Now let
(a/s)(b/t) € q° and (b/t) & p°. Then ab € q and b & p. Since q is p—primary,
we must have a € q, so that a/s € q°. Hence q° is a p°—primary ideal of ST1R.
(2): By Theorem 1.2.5, q° is a p°—primary ideal of R. Now we show that

q°¢ = q. Clearly q°© C q. For the reverse inclusion, let a/s € q. Then

a/l=(s/1)(a/s) €eq=a€q’

= a/1 € ¢°° = (a/s) = (1/s)(a/1) € q*°.

If g°N S # 0, then g = q°® = S~ R, which is a contradiction. Thus q¢N S = ()
and the proof of part (2) is complete.
(3): Let Q be the set of all primary ideals of ST R. By part (1), we have

Q D {q°|q is primary ideal of R,qN S = 0}.

Now, let Q € Q. Suppose that g := Q°. Then by part (2), we have Q = Q°¢ = ¢°
and q is primary ideal of R and q NS = (). Tt follows that

Q C {q°|q is primary ideal of R,qN .S = 0},

and the proof of part (3) is complete.
O

Exercise 16. Let R be an integral domain with field of fractions K. Consider

any ring of fractions of R as a subring of K. Show that:

R= ﬂ Ru.

meMaxR
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Exercise 17. Let R be a Noetherian ring, and let p € SpecR and ¢ : R — R,

be the natural ring homomorphism. Show that

Kerp = ﬂ q.
qisp—primary

Exercise 18. Let R be a ring and let p a prime ideal of R. Let ¢ : R — R,

be the natural ring homomorphism. The nth symbolic power is defined to be
o) = (p7)°

Show that
(1) p(™ is p-primary ideal of R,
(2) p(™) = p™ <= p™ is p-primary.

1.6 Modules of Fractions

The construction of S™!R can be carried through with an R-module M in place

of the ring R.

Definition 1.6.1. Let M be an R-module and let S be a multiplicatively closed
subset of R. Define a relation ~ on M x S as follows. Given any (z, s), (y,t) €
M xS.

(z,8) ~ (y,t) < u(tx — sy) = 0 for some u € S.

It is easy to see that the relation ~ is an equivalence relation. Let us denote
the equivalence class of (z,5) € M x S by z/s, and let S~!M denote the set of

equivalence classes of elements of M x S. That is,

S™'M = {z/s|x € M,s € S}.

Theorem 1.6.2. If we define addition in S™*M and scalar multiplication by
elements of ST'R by

(x/5) + (y/t) = (tw + sy)/st, (a/t)(x/s) = (ax)/(ts),
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then S™1M becomes an S~ R-module.
Exercise 19. Prove the above theorem.

Definition 1.6.3. The module S~ 'M is called the module of fractions or

the localization of M with respect to multiplicatively closed subset S.

Proposition 1.6.4. Let S be multiplicatively closed subset of R and ¢ : M —

N be an R—module homomorphism. Then the induced map
S7lp:87'M — STIN
x/s ()]s
is an S™'R-module homomorphism.

Proof. Assume that x/s = y/t. Then there exists u € S such that u(tz—su) = 0.
Therefore u(to(x) — sp(y)) = 0 and hence p(z/s) = ¢(y/t). Hence ¢ is well-
define. Now it is easy to check that S~'y is an S~! R—homomorphism O

Exercise 20. Let L, M, N be R—modules, and let S be multiplicatively closed
subset of R. Let ¢, : M — N and ¢ : N — L be R—homomorphism.
Show that:

1) STHe+¢) =5"1o+ 871

(2) S7H (W) = S7IPS Ty,

(3) S~'(1m) = Ls-1m,
(4)

4) if ¢ is an R—isomorphism, then S~!¢ is an S~!R—isomorphism.

Theorem 1.6.5. Let L, M, N be modules. Then

-1
(1) If L Yy M %5 N is an exact sequence of R-modules, then S~ 'L gy
S™IM gl 4 STIN is an ezact sequence of S™'R-modules,

(2) if N is a submodule of M, then S™Y(M/N) g1z S™1(M)/S~(N).

Proof. (1): Since 1 = 0, we have S~1pS~ 14 = 0 by part (2) of the above Ex-
ercise. Therefore ImS—1vy C kerS‘lap. Now we show that kerS’_lgo C ImS—19.
Let /s € kerS™1p. Then ¢(z/s) = ¢(z)/s = 0. Thus there exists u € S such
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that up(z) = 0, whence ¢(uz) = 0. It follows that there exists y € L such that

Y (y) = uz. Now we have

Ply/su) = ¢(y)/su = (ux)/(su) = /s

(2): Follows from (1) by considering the exact sequence 0 — N — M —

M/N — 0. O

Exercise 21. Let M, N be R-modules.
()S™IM =415 ST'R®R M,

(2) ST1R is a flat R-module,

(3) ST M @rN) =g 15 STIM ®g-15 S™IN.

Exercise 22. Let ¢ : R — S™!R be the natural ring homomorphism, and
let N1, No be submodules of the R-module M. Let I be an ideal of R, and let
a € R. Show that:

(1) S7HIM) = I°S7' M,

(2) S7H(aM) = (a/1)S™' M,

(3) STY(Ny + No) = S7IN; + S7IN,,

(4) STHNT N Ng) =S7IN; N S™IN,,

(5) if M is a finitely generated R-module, then S~'M is a finitely generated

S~ R-module,

(6) if M is a Noetherian R-module, then S~1M is a Noetherian S~! R-module,
(7) if M is an Artinian R-module, then S™!M is an Artinian S~!R-module,
(8) if M is a free R-module, then S~1M is a free S~!R-module,

(9) if M is a projective R-module, then S™'M is a projective S~ R-module,
(10) if M is a flat R-module, then S~'M is a flat S~!R-module.

Theorem 1.6.6. Let L, N be submodules of the module M over the ring R, and
let S be multiplicatively closed subset of R. Then

(1) If N s finitely generated, then S™Y(L :g N) = (S71L:g-15 STIN).

(2) If M is finitely generated, then S™*Anng M = Anng-1zS~1M.
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Proof. (1) C: Let A € S7Y(L :g N), and consider a representation A = a/s,
where a € (L :g N) and s € S. Then aN C L and hence (a/s)S™'!N C S71L.
Therefore a/s € (S™'L:5-15 STIN).

D:Let N=Rrand A =a/s € (S~'L:g-15 ST'Rx). Then (a/s)(z/1) € S~'L.
It follows that there exists v € S such that wax € L. Therefore (a/s) =
(au/su) € SY(L :r Rx). Now, let N = Rx; + -+ + Rx, and A = a/s €
(S7'L :g-15 STIN). Then

n

ST (L :r Rxy)

i=1

ST L :p N)

n

ﬂ (SilL ‘S-1R SilRl’i)

=1

(S_IL S-1R ST Rz + -+ S_lR.%'n)

(S7'L:g1p STIN).

This proves the part (1).
(2): Follows from part (1). O

Theorem 1.6.7. Let M be a module over a Noetherian ring R, and let S be a

multiplicatively closed subset of R. Then
Assg1rSTIM = {pS~'Rlp € AsspM andpn S = (}.

Proof. O: Let p € AssgM be such that p NS = @. Then pS~'R € SpecS™'R,
and there there exists x € M such that p = Anngx. It follows that pS~'R =
Anng-1z2/1 € SpecS™!'R, and so pS'R € Assg-1zS 1M, as desired.

C: Let q € Assg-1zS 'M. Since q € SpecS™'R, it follows that there is a
p € SpecR such that g = pS™'R and pN S = 0. Also there exist x € M and
s € S such that ¢ = Anng-1z2/s. We have

S~'p = Anng 1zx/s = Anng-1zx/1.

Letp =< as,...,a, >. Thusa;x/1 = 0g-1,, foralli =1,...,n. Hence, for each
i=1,...,n there exists s; € S such that s;a;x = 0. Set s = s1...5,. We claim

that p = Anngsz. Since sa;xz = 0 for all 4 = 1,...,n, we have p C Anngszx.
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Now, let 7 € Anngsz. Thus rsz = 0, so that (rs/1)(z/1) = 0g-1p,. Hence
(rs/1) € Anng-1zx/1 = S~1p. Therefore rs € p; since p is prime and s & p, we

have r € p. Thus p = Anngsz and the proof is complete. O

Definition 1.6.8. Let M be an R-module and let p be a prime ideal of R.
Suppose that S = R —p. In this case S™'M and S~'¢ are denoted by M, and

©p respectively. We say that M, is the localization of M at p.

A property P of a ring R (or of an R-module M) is said to be a local
property if the following holds.

R (or M) has P if and only if R, (or M,) has P for all p € SpecR.

The following theorem gives an example of a local property.

Theorem 1.6.9. Let M be an R-module. Then the following are equivalent:
(1) M =0,

(2) M, =0 for all p € SpecR,

(8) My =0 for all m € MaxR.

Proof. (1) = (2) = (3) are clear.

(3) = (1): Let x € M and m € MaxR. Then z/1 € M,, = 0. Hence there
exists u € R\ m such that uz = 0. If follows that Annz ¢ m. Therefore
Annz = R and hence z = 0. O

Corollary 1.6.10. Let ¢ : M — N be an R-module homomorphism. Then
the following are equivalent:

(1) ¢ is injective,

(2) vy is injective for all p € SpecR,

(8) pm is injective for all m € MaxR.

Proof. Use the above theorem on kerep. O
Exercise 23. Let ¢ : M — N be an R-module homomorphism. Show that

the following are equivalent:

(1) ¢ is surjective,
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(2) ¢p is surjective for all p € SpecR,

(3) ©m is surjective for all m € MaxR.

Exercise 24. Let M be an R-module homomorphism. Show that the following
are equivalent:

(1) M is flat,

(2) M, is flat for all p € SpecR,

(3) My, is flat for all m € MaxR.

Exercise 25. Let R be a Noetherian ring, and let ¢ : M — N be an R-
module homomorphism. Then ¢ is injective if and only if ¢, is injective for all

p € AssM.

Exercise 26. Let M and N be two modules over a local ring (R,m). If
My =R, Nm, prove that M =r N.

Exercise 27. Let M be an R-module, let .S be a multiplicatively closed subset
of R and let p € SpecR be such that p NS = 0. Prove that

(ST'R)ps-1r = Ry,

(571M>pS—IR = Mp.

Exercise 28. (Uniqueness of Primary Decomposition II). Let p €
Min(AssM/N). Then the p-primary component of minimal primary decom-
position of N is uniquely determined by M, N and p.

Proof. Suppose that N = @1 N...N @, is a minimal primary decomposition,
and that QQ = @ is the p—primary component with p = p;. We show that Q =
©p '(N,), where @, : M — M, is the natural homomorphism, and therefore it
is uniquely determined by M, N and p. Fori > 1, p; € p and p; = /AnnM/Q;.
It follows that there exist k € N and a; € p; \ p such that a¥(M/Q;) = 0. Hence
(M/Qi)p =0 and so M, = Q;, for all i > 1. We have

QC <Pp_1(Qp) =@, (Qp N My) = W;l(le NQ2p N...NQpy) = <Pp_1(Np)-
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It is enough to show that ¢, ' (Ny) € Q. Let z € ¢, '(Np) = ¢, '(Qp). Then
z/1 = g/t for some g € @ and ¢t € R\ p. It follows that (ut)z € @ for some
u € R\ p. Since ut € R\ p and @ is p-primary, we have z € Q. This completes
the proof. O

1.7 Support

Definition 1.7.1. Let M be an R-module. The support of M is
SupppM = SuppM := {p € SpecR|M, # 0}.
Theorem 1.7.2. Let M be an R-module. Then
SuppM = {p € SpecR|Annz C p for some x € M}.

Proof. C: Let p € SuppM. Then there is 0 # x/s € M,. It follows that
Annz C p.

D: Let Annz C p for some z € M. Then 0 # x/1 € M, and hence p €
SuppM. O

Exercise 29. Let M be a finitely generated R-module. Show that
SuppM = V(AnnM).

Theorem 1.7.3. Let M be an R-module. Then

(1) AssM C SuppM,

(2) M # 0 if and only if SuppM # 0,

(8) if R is Noetherian, then MinSuppM C AssM,

(4) if R is Noetherian, then MinSuppM = MinAssM .

Proof. (1) and (2): Trivial.
(3): Let p € MinSuppM. Then there exists y € M such that Anny C p. Set

Y = {Annz|Anny C Annz C p}.

Let Annzg be a maximal element of . By Exercise 11, Annzg is a prime ideal

of R and hence p = Annxy € AssM.
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(4)C: Let p € MinSuppM. Then by (3), we have p € AssM. Now let
q € AssM such that ¢ C p. By (1), g € SuppM and hence p = q. Therefore
p € MinAssM.

D: Let p € MinAssM. If q¢ € SuppM and q C p, then there exists y € M
such that Anny C q. Set

¥ = {Annz|Anny C Annzx C q}.

Let Annzy be a maximal element of ¥. By Exercise 11, Annzg is a prime
ideal of R and hence p = Annzy € AssM. Therefore ¢ = p and hence p €
MinSuppM. O

Theorem 1.7.4. Let 0 — M’ — M — M" — 0 be an exact sequence of
R-modules. Then
SuppM = SuppM’ U SuppM”.

Proof. Let p € SpecR. From the exact sequence 0 — M, — M, — M, —

0, we have
p € SuppM <= M, # 0 <= M, # 0 or M}/ # 0 <= p € SuppM’ U SuppM".
O
Theorem 1.7.5. Let M be an R-module and let
0)=MyC M, C---C M, =M

be a chain of submodules of M such that for each i we have M;/M;_1 = R/p;
with p; € Spec(R). Then

AssM C {p1,...,pn} C SuppM.
Proof. AssM C {p1,...,pn}, by Theorem 1.3.9. Since
(Mi)m/(Mi—l)pi = (Mi/Mi—l)m = (R/pl)pz = (qu'/piRPi) 7& 0,

we have (M;), # 0 and hence p; € SuppM. Therefore {pi,...,p,} C SuppM.
O
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Exercise 30. Let M be an R-module, and let S be a multiplicatively closed
subset of R. Show that

Suppg-1 S M = {pS~'R|p € SupppM and pN S = B}.
Exercise 31. Show that if M, N are finitely generated R-modules, then
Supp(M ® N) = SuppM N SuppN.

Exercise 32. Show that if R is a Noetherian ring, M is a finitely generated

R-module, and N is an R-module, then
AssHom(M, N) = SuppM N AssN.

Exercise 33. Let R be a Noetherian ring, and let N be a submodule of an

R-module M. Show that

AssM /N C AssM U SuppN.



Chapter 2

Integral Extensions

The theory of algebraic field extensions has a useful analogue to ring extensions,

which is discussed in this chapter.

2.1 Integral Extensions

Definition 2.1.1. (1): If R is a subring of a ring S we say that S is an exten-
sion ring of R.
(2): An element s of S is said to be integral over R if s is a root of a monic

polynomial with coefficients in R, that is if there is a relation of the form
s"+as" M+ a, =0

with a; € R. If every element of S is integral over R we say that S is integral
over R, or that S is an integral extension of R.
(3): We say that a homomorphism ¢ : R — S is integral if and only if S is

integral over its subring Imep.

Lemma 2.1.2. (Determinant Trick) Let R be a subring of S. Let M be an
S-module that is finitely generated as an R-module. Let s € S and let I be an
ideal of R such that sM C IM. Then there exits a; € I' fori=1,...,n such

29
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that
s"+a;s" 4+ +a, € AnngM.

Proof. Suppose that M = Rx; + Rxy + --- + Rx,. Then there exist a;; € 1

such that sz; = 37, a;;x;. Then

s—aj;  —aiz2 o+ —ai, T 0
—az1 S—ag '+ —da2, T 0
—Qanl —anp2 et S — Qpn T O

If A= [aijlnxn, B = s, — A and X = [2;]nx1, then by Theorem 4 of
Chapter 5 of [7], we have

(detB)X = (detB)I, X = (adjB)BX = 0.

Hence detB € AnngM. Finally, it follows from the definition of determinant
that
detB=s"+a;s" '+ +a,

with a; € I' fori=1...,n. O

Theorem 2.1.3. Let R be a subring of S, with s € S. The following conditions
are equivalent:

(1) s is integral over R,

(2) R[s] is a finitely generated R-module,

(8) R[s] is contained in a subring R’ of S that is a finitely generated R-module,
(4) There is a faithful R[s]-module M that is finitely generated as an R-module.

Proof. (1)==(2): From (1) we have s"*" = —(a18""" "1 + -+ + a,s") for all
r > 0, hence by induction, all positive powers of s lie in the R-module generated
by 1,s,...,s" 1. Hence R[s] is generated (as an R-module) by 1,s,...,s" "L
(2)=(3): Take R’ = R][s].

(3)==>(4): Take M = R', which is a faithful R[s]-module (since a € Anng R =
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a=al=0).

(4)==(1): Let M be a faithful R[s]-module which is finitely generated as R-
module. Since M is an R[s]-module, sM C RM. Now, we can apply the above
lemma with S = R[s] and I = R to see that there exist n € Nand ay ...,a, € R
such that

sS"Has" 4 4a, € AnnggM = 0.

Hence s is integral over R. [

Remark 2.1.4. Suppose that M is finitely generated as an S-module and that
S is finitely generated as an R-module. Then M is finitely generated as an
R-module. In fact:
M = zm:Sxi, S = zn:st — M = Em:zn:stxi.
i=1 j=1 i=1 j=1
Corollary 2.1.5. Let R be a subring of S, with s1,...,s, € S. If s1 is integral
over R, so is integral over R[s1], ..., and s, is integral over R[s1,...,Sn—1],

then R[s1,...,sy,] is a finitely generated R-module.

Proof. By induction on n. The case n = 1 is part of the above theorem. Assume
n > 1. Then R[s1,...,5,—1] is a finitely generated R-module. R[sq,...,s,] =
R[s1,...,8n—1][sn] is a finitely generated R|[sy,...,s,—1]-module (by the case
n = 1, since s,, is integral over R|[sy,...,s,—1]). Hence by the above remark

RJ[s1,...,sp] is finitely generated as an R-module. O

Corollary 2.1.6. (Transivity of Integral Extensions). Let R C S C T be
rings. If S is integral over R and T is integral over S, then T is integral over

R.
Proof. Assume that ¢t € T. Then there exist n € N and a1, ..., a, € S such that
t" +ait" ' 4 +a, =0.

The ring A = RJay, ..., a,] is a finitely generated R-module by the above corol-

lary, and A[t] is a finitely generated A-module (since ¢ is integral over A). Hence
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Alt] is a finitely generated R-module by the above corollary and therefore ¢ is
integral over R by the above theorem (Take R’ = S = A[t]). O

Remark 2.1.7. Let R be a subring of S and J be an ideal of S. Then it is easy

to see that the map
f:R/J¢ — S/J
a+J¢ — a+J
is a monomorphism. Thus we can regard R/J¢ as a subring of S/J.

Theorem 2.1.8. Let R C S be rings, S is integral over R.

(1) Let J be an ideal of S, and regard R/J¢ as a subring of S/J (see the above
remark). Then S/J is integral over R/J°.

(2) Let U be a multiplicatively closed subset of R. Then U~1S is integral over
U~'R.

Proof. (1): Let s+ J € S/J. We must show that s + J is integral over R/J°.

Since s € S and S is integral over R, we have
s"+a1s" T+ fa, =0,
where a; € R. Then
(s"+J)+ (ars" P+ J)+ -+ (an + J) = 0.

Thus
(s+ )" +(ar+ s+ " -+ (an+J)=0,

and hence
(s4+ D"+ (a1 + ) s+ "+ 4 (a, +J) =0.

Therefore s + J is integral over R/J¢.
(2): Let s/u € U1S (s € S,u € U). Then there is an equation of the form
s"+a1s" M+ +a, =0, with a; € R. Thus

(s/w)" + (a1 /uw)/(s/w)" "' + - + (an/u™) = 0,
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which shows that s/u is integral over U~!R.

O

Definition 2.1.9. If R is a subring of S, the integral closure of R in S is the
set R of elements of S that are integral over R. We say that R is integrally
closed in S if R = R. If we simply say that R is integrally closed without
reference to S, we assume that R is an integral domain with fraction field K,

and R is integrally closed in K.
Example. A UFD is an integrally closed domain.

Corollary 2.1.10. Let R be a subring of S.
(1) R is a subring of S which contains R,
(2) R is integrally closed in S.

Proof. (1): Note that R C R because each a € R is a root of z — a. If a,b € R,
then RJa, b] is a finitely generated R-module by Corollary 2.1.5. Hence a+b, ab €
R, by Theorem 2.1.3.

(2): By definition, R R. By Transivity of Integral Extensions, R is

CRC
integral over R, and so RCR. Consequently, R = R. O

Theorem 2.1.11. Let R be a subring of S, and R the integral closure of R in
S, and U be a multiplicatively closed subset of R. If U=LR is the integral closure
of U"'R in U™'S, then

U-'R=U'R.
Proof. Since R is integral over R, it follows from the above theorem that U 'R
is integral over U~'R and hence U"'R C U-1R. Now, let s/u € U-1R. We

must show that s/u € U~1R. There is an equation of the form
(s/w)" + (a1 /u1)(s/w)" ™" + -+ (an /un) = 0,

where a; € R and u; € U. Let ug = uy ---uy,, and multiply the equation by

(uug)™ to conclude that

(ugs™ /1) + (b /1) (ug's" /1) + -+ + (ba /1) = 0,
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where b; € R. Therefore there exists v € U such that v™(u§s™ + byuf~'s" 1 +
<+« + by) = 0, so vugs is integral over R. Hence vugs € R and therefore

s/u = vugs/vuug € UTR. O

Integral closure is a local property:

Theorem 2.1.12. Let R be an integral domain. Then the following are equiv-
alent:

(1) R is integrally closed,

(2) R, is integrally closed for all p € SpecR,

(8) Ry is integrally closed for all m € MaxR,

Proof. Let f: R — R be the inclusion homomorphism, so that R is integrally
closed if and only if f is surjective. By the above theorem, Ep = Ri,, for all

p € SpecR. It follows from Exercise 23 of Chapter 1 that:

R is integrally closed <= f:R — R is surjective
< fp,: Ry — R, is surjective for all p € SpecR
<= R, is integrally closed for all p € SpecR
< fu:Rm — R is surjective for all m € MaxR
<= R, is integrally closed for all m € MaxR.

This concludes the proof. O

Exercise 1. (1) Let R be a subring of an integral domain S. Let R be the
integral closure of R in S. Let f and g be monic polynomials in S[z]. If
fg € R[z], then both f and g are in R[x].

(2) Prove the same result without assuming that S is an integral domain.

Exercise 2. Let R be a subring of a ring S and let R be the integral closure of

R in S. Prove that R[z] is the integral closure of R[z] in S[z].
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2.2 The Going Up Theorem

Theorem 2.2.1. Let R C S be integral domains, S is integral over R. Then
R is a field<= S is a field.

Proof. =>: If 0 # s € S, then there is a relation of the form s +a;s" ' +---+
an = 0 with a; € R, and since S is an integral domain, we can assume a,, # 0.

Then

st =—a ' (s" P +as" P4+ Fa,1) €S

<= If 0 # a € R, then a=! € S, so that there is a relation of the form
a " +bia " + ... 4+ b, =0 with b; € R. Multiply both sides of this relation
by a”~! to get

at=—(by +bya+---+ba" ') €R.

O

Corollary 2.2.2. Let R be a subring of the ring S, and suppose that the inclu-
sion homomorphism ¢ : R — S is integral. Let q € SpecS. Then

q € Max$ <= ¢° € MaxR.

Proof. By Theorem 2.1.8, S/q is integral over R/q¢, and both these rings are

integral domains. Now by the above theorem we have
q € MaxS <= S/q is a field <= R/q° is a field <= q° € MaxR.
This completes the proof. O

Theorem 2.2.3. (The Incomparability Theorem.) Let R be a subring
of the ring S, and suppose that the inclusion homomorphism ¢ : R — S is

integral. Suppose that q,q" € SpecS such that  C q' and q° = q'°. Thenq=4¢’.

Proof. Let p:=q°=q'°, U = R\ p. Consider the following diagram

R _%
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We have
e BT UTIS) =T ) =p =9 (@) =7 BT UTS).
From the commutativity of the above diagram, we have
a lr i quTIS) = p=a T (qUTES).

Hence 7=1(qU~1S) = pR, = 7~ 1(q’U~19). Since 7 is an integral ring homomor-
phism and pR, € MaxR,, it follows from the above corollary qU~15,q'U~1S €
MaxU~1S. But qU 'S C qU~'S, and so qU 1S = qU~'S. Therefore, by the
fact that qNU = ¢ NU = 0, and Lemma 1.5.10, we deduce that q = ¢'. O

Remark 2.2.4. The name of the above theorem comes from the following rephras-
ing of its statement: let R be a subring of the ring S, and suppose that the
inclusion homomorphism ¢ : R — S is integral. Two distinct prime ideals of
S having the same contraction in R are ‘incomparable’ in the sense that neither

is contained in the other.

Definition 2.2.5. Let ¢ : R — S be the inclusion homomorphism. When
q € SpecS and p = q° = q N R, we say that q lies over p.

Theorem 2.2.6. (The Lying Over Theorem.) Let R be a subring of the
ring S, and suppose that the inclusion homomorphism ¢ : R — S is integral.
Let p € SpecR. Then there exists q € SpecS such that q¢ = p, that is, such that

q lies over p.

Proof. We use similar notation to that use in the proof of the above theorem.
Let n be a maximal ideal of U~1S. Since 7 is an integral ring homomorphism,

it follows that 77 'n = pR,. If ¢ = 3~ 'n, then q is prime and we have
INR=q°=¢p B n=ar7"In=a"(pR,) = p.
O

Theorem 2.2.7. (Going Up Theorem). Let ¢ : R — S be the inclusion

homomorphism, and suppose that ¢ is integral. Let m € Ny and n € N with
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m <n. Let
PoCEP1C---Chp,

be a chain of prime ideals of R, and let
oS dq1 € - Cam

be a chain of prime ideals of S such that q5 = p; (0 < i < m). Then the chain
go € q1 € --- C gy, can be extended to a chain qo0 C q1 C --- C g, such that

q; = pi (0 <i<n).

Proof. By induction we can reduce immediately to the case m = 0 and n = 1.
Consider the following commutative diagram

R —

L= g

R/po —— S/q0

where 7 : R/pg — S/qo be the induced homomorphism related to ¢ : R — S.
Since p1/po € SpecR/pp and 7 is integral ring homomorphism, it follows from
the Lying Over Theorem that there exists a prime ideal q; € SpecS with g1 2 qo
such that 771(q1/q0) = p1/po- Now, we have

aNR=4qf=¢ "B (q1/q0) = o "7 (q1/d0) = o~ (p1/po) = p1-

This completes the proof. O

2.3 The Going Down Theorem

Lemma 2.3.1. Let R be a subring of the ring S, and suppose that the inclusion
homomorphism ¢ : R — S is integral. Let I be an ideal of R. Then

VIe =VIS = {sc S|s"+a1s" '+ 4a,_15+a, =0, for somen € N,a; € I}.

Proof. (2):Let s€ S and s" +ays" '+ -+ a,_15+a, = 0 for some a; € I.

Then s" = —(a18" '+ +a,_18+a,) € I°. Hence s € VI°.
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C: Let s € v/Ie. Then there exists ai,...,ayn € I and s1,...,8, € S such
that s™ = a1s1 + -+ + aps,. Since each s; is integral over R it follows that
M := R]si,...,Sy] is a finitely generated R-module, and we have s"M C IM ,
Annpgpsn)M = 0. Hence there exist by, ..., by, € I such that

(s")™ + b1 (s™)™ " -+ b1 (8™) + b = 0.
O

Proposition 2.3.2. Let R be a subring of the ring S, and suppose that the
inclusion homomorphism ¢ : R — S is integral, and that R is integrally closed.
Let K be the field of fractions of R. Let I be an ideal of R and let s € I¢. Then

s is algebraic over K and its minimal polynomial over K has the form
2+ a2 4+ an1x + an
where a; € V1.
Proof. Clearly s is algebraic over K. Let
f=a"+az" '+ 4 a, € Klz]

be the minimal polynomial of s over K. We aim to show that ai,...,a, € VI.
Let F' be the splitting field of f over the field of fractions of S. Then there

exists s = s1, S9,...,8, € F such that

f=@—s1)(z—52) (- 8n).

From the expressions for ay, . .., a, in terms of the sq,...,s,, we have ay,...,a, €
R[s1,...,8n)

By the above lemma, there exist by, ...,b,, € I such that
s" 4+ bys" 4+ by, = 0.

Each s; is algebraic over K with minimal polynomial f, and so it follows from
Algebra II that for each ¢ = 1,...,n there is an isomorphism of fields «a; :

K(s) — K(s;) such that a;(s) = s; and a;(a) = a for all @ € K. Hence

S byst T by, =0
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foralli=1,...,n. In particular, R[sq,...,s,] is a finitely generated R-module.
Since aq,...,a, € R[s1,...,Sy], Lemma 2.1.3 implies that ay, . .., a, are all inte-
gral over R. But aq,...,a, € K and R is integrally closed, hence a1, ..., a, € R.

Let T := R[sy,...,s,]. By the above lemma, s1,...,s, € VIT. From the
expressions for aq,...,a, in terms of the sq,...,s,, it follows from the above
lemma again that each a; is a root of a monic polynomial in R[x] all of whose
coefficients (except leading coefficient) belong to I. Hence, by the above lemma

again, and the fact that ai,...,a, € R, we deduce that a,...,a, € VI. O

Theorem 2.3.3. (Going Down Theorem). Let ¢ : R — S be the inclu-
sion homomorphism, and suppose that p is integral. Assume that S is integral

domain and R is integrally closed. Let m € Ny and n € N with m < n. Let

Po2pP12- 2P,

be a chain of prime ideals of R, and let

Go29q1 2 2 qm

be a chain of prime ideals of S such that q5 = p; (0 < i < m). Then the chain
o 2 q1 2 -+ 2 qm can be extended to a chain qop 2 q1 2 -+ 2 g, Such that

a5 =pi(0<i<n)

Proof. By induction, it suffices to consider the case m = 0 and n = 1. Consider

the multiplicatively closed subset

U:=(R\p2)(S\q1) ={abla€ R\ pz2,b€ S\ a1}

of S. First we prove the theorem under the assumption that U Np§ = (. Then
there exists a prime ideal gy of S such that go NU = 0 and p§ C gqo. Hence
pa C ps¢ C g5, and since U Np§ = 0 and R\ po C U, we must have py = q5.
Likewise, since S\ q; C U, we must have q2 C q;.

Finally, we show that U Np§ = 0. Let s € U Np$, and let K be the field
of fractions of R. By Proposition 2.3.2; s is algebraic over K and its minimal

polynomial over K has the form

1

" +arx" T F - ap,
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where aj,...,a, € /p2 = po. Since s € U, we can write s = ab for some

a € R\psand be S\ q;. Clearly
o + (a1 /a)a" ™ 4+ (an/a"),

is the minimal polynomial of b over K. It now follows from (with I = R)
that a; = d;a* for some di,...,d, € R. Since a; € po and a & po, we have

di,...,d, € ps. Hence b € /p2.S C /p1.5 C q1, which is a contradiction. O



Chapter 3

Dimension Theory

3.1 Dimension Theory
Definition 3.1.1. Let R be a ring.
(1) The dimension of R, denoted by dimR, is defined by
dimR = sup{n|3 po, p1,...,Pn € SpecR such that po Cp1 C - C pn}.
(2) Let p be a prime ideal of R. The height of p, denoted by htp, is defined by
htp = sup{n|3 po, p1,-..,Pn € SpecR such that po Cp; C -+ C p, =p}.
(3) Let a be an ideal of R. The height of a, denoted by hta, is defined by
hta = min{htp|p € SpecR, a C p} = min{htp|p € V(a)}.

Exercise 1. Let a be an ideal of R and p € SpecR. Show that:

(1) dimR = sup{htp|p € SpecR} = sup{htm|m € MaxR},

(2) htp = dimR,,

(3) hta = min{htp|p € Min(a)},

(4) htp + dimR/p < dimR.

Definition 3.1.2. Let M be an R-module. The dimension of M, denoted by
dimM, is defined by

dimM = sup{n|3 po,p1,...,pn € SuppM such that po Cp1 C -+ C pn}.

41



42 CHAPTER 3. DIMENSION THEORY

Exercise 2. Let M be an R-module. Show that:
(1) if R is Noetherian, then dimM = sup{dimR/p | p € Ass(M)},
(2) if M is finitely generated, then dimM = dimR/Ann(M).

Theorem 3.1.3. Let S be an integral extension over R. Then dimR = dimS.

Proof. Let

Qo Cq1 C - Cdn

be a chain of prime ideals of S. Then it follows from Incomparability Theorem
that
4o C g1 C - Cq,
is a chain of prime ideals of R. Hence dimS < dimR.
Now assume that

PoCpP1C--ChPa

be a chain of prime ideals of R. By Lying Over Theorem, there exists qo € SpecS
such that q§ = po. It now follows from the Going Up Theorem that there exists
a chain

qGo Cq1 C - Cn

of prime ideals of S. Hence dimR < dim.S. O

Theorem 3.1.4. (Krull’s Principal Ideal Theorem (PIT)). Let R be a
Noetherian ring and p be a minimal prime of the principal ideal (a) of R. Then

htp < 1.

Proof. We first note that htp = dimR, and pR, is a minimal prime ideal of the
principal ideal (a)R,. Thus we may assume that R is a local ring with maximal
ideal p such that p is minimal over a principal ideal (a) of R. Let q be any prime

ideal of R such that q & p. It suffices to show that htq = 0. Consider
(@+92 (@) +4® 2 () +4® 2 -,

where q(™ denotes the nth symbolic power of q. But p/(a) is the only prime
ideal of R/(a) since p is minimal over (a). Hence dimR/(a) = 0 and so R/(a)
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is Artinian by Theorem 1.1.3. Hence there is n > 1 such that (a) + q™ =
(a) 4+ q" 1. We claim that q(™) = aq(™) + g+, Clearly aq™ 4 q"+1) C (™.
Now let # € q™. Then x € (a) +q™ = (a) + qY, and so we can write
x = ab+y for some b € R and y € q*Y. Now ab € q(™ and since a ¢ q
and q(™) is g-primary, we see that b € q"). Thus, ™) = aq™ + q(**D. Hence
by by applying Nakayama’s Lemma (to the module q(™ /q("+1), we obtain
g™ = g+ Tt follows from Exercise 2 that q"Ry = q"*'Rq = q(q"R,). By
applying Nakayama’s Lemma once again (this time to the R,-module q"Ry),
we obtain q" R, = 0. This implies that qR4 is the only prime ideal of R, and
dimRq = 0. Hence htq = 0. O

Exercise 3. Let R be a Noetherian ring, and let p,q € SpecR. Let X = {p’ €
SpecRlp & p’ & q}. Prove that

X #0)=|X]| = 0.
The Principal Ideal Theorem lead straightaway to a far-reaching generalization.

Theorem 3.1.5. (Krull’s Generalized Principal Ideal Theorem (GPIT)).
Let R be a Noetherian ring and p be a minimal prime of an ideal (a1,...,an)

of R. Then htp <n.

Proof. By localization at p, we may again assume R is local with maximal ideal
p which is minimal over the ideal (a1, ...,a,) of R. We shall now proceed by
induction on n. The case n = 1 is the above theorem. Suppose n > 1 and
the result holds for n — 1. Let q be any prime ideal of R such that q & p and
that there is no prime ideal p’ of R with ¢ & p’ & p. By minimality of p, we
may assume, without loss of generality, that a; € q. We note that p is minimal
prime of q + (a1) and so y/q+ (a;) = p. Hence there is an m > 1 such that
p™ C q+ (a1). In particular, for ¢ = 2,...,n we can write a]* = y; + a1a;
for some y; € q and x; € R. Set J := (ya....,yn). It is easy to see that p is
minimal prime of J + (a1). Therefore p/J is minimal prime over the principal

ideal J + (a1)/J of R/J. Hence htp/J < 1, and therefore, htq/J < 0. If follows
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that q is a minimal prime of J, and so by induction hypothesis htq < n — 1.
This proves that htp < n. O

Exercise 4. Let R be a Noetherian ring, and let p, q € SpecR.
(1) Show that htp < co. In particular, a local ring has finite dimension.

(2) Let p C g. Show that htp < htq, and
htp =htq <= p =4.
(3) Let a be an ideal of R with a C p. Show that
hta = htp = p € Min(a).

There is a useful converse to the Krull’s Generalized Principal Ideal Theorem,

as follows.

Theorem 3.1.6. (Converse of the GPIT). Let R be a Noetherian ring and
let p € SpecR; suppose that htp = n. Then there exist aq,...,a, € R such that

p is a minimal prime of (a1,...,a,).

Proof. We use induction on n. If n = 0, there is nothing to prove. So suppose,
inductively, that n > 1 and the claim has been proved for smaller values of
n. Now let MinR = {p1,...,pm} (see Theorem 1.1.2). But htp > 1. So p is
not contained in any p; and hence p ¢ (J;~, p;. Therefore, there exists a; €
p\U;~, p;. Then htp/(a;) < n—1 and so by the induction hypothesis there exists
as,...,a, € p such that p/(a;) is a minimal prime of (as + (a1),...,a, + (a1)).

It clearly follows that p is a minimal prime of (aq,...,a,). O

Theorem 3.1.7. Let R be a Noetherian ring, and let a be a proper ideal of R
which can be generated by n elements. Let p € SpecR be such that a C p. Then

htpp —n < htR/ap/Cl < htgp.

Proof. It is easy to see that htg/.p/a < htrp. Let a = (ai,...,a,) and
htr/qap/a = m. By the converse of the GPIT, there exist by,...,b, € R such
that p/a € Min(by+a, ..., by+a). It follows that p € Min(ay,...,an,b1,...,bm).
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We can deduce from the GPIT that htgp < m + n, and hence htgp — n <
htR/ap/Cl. O

Corollary 3.1.8. Let R be a Noetherian ring, and let a € R be a non zero
divisor. Let p € SpecR be such that a € p. Then

htr/@)p/(a) = htgp — 1.

Proof. 1t is enough to show that htgp,,)p/(a) # htgp. If to the contrary
htr/)p/(a) = htgp = n, then there exists the following chain of prime ide-
als of R/(a)

po/(a) Cp1/(a) C -+ Cpn/(a) =p/(a).
Since htgp = n, we must have pg € MinR C AssR. Therefore a € Z(R), which

is a contradiction. O

Lemma 3.1.9. Let (R,m) be a local Noetherian ring and let a be a proper ideal
of R. Then the following are equivalent:

(1) £r(R/a) < o0,

(2) V(a) = {m},

(3) Min(a) = {m},

(4) Va=m,

(5) there is n € N such that m" C a,

Proof. (1) = (2): Since ¢r(R/a) < oo, R/a is an Artinian R-module and
hence it is also an Artinian ring. It follows that SpecR/a = MaxR/a and thus

V(a) = {m}.

(2) = (3): is trivial.

(3) = (4)' \/a = anMin(u) q=m

(4) = (5): Tt follows from the fact that R is Noetherian.

(5) = (1): Since m™"(R/a) = 0, it follows that the R-module R/a is both
Artinian and Noetherian, and hence {r(R/a) < cc. O

Theorem 3.1.10. Let (R, m) be a local Noetherian ring. Then

dimR = Min{n € No|3a1,...,a, € R such that \/(as,...,a,) = m}.
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Proof. Let

s = Min{n € Ny|Jay,...,a, € Rsuch that \/(ai,...,a,) =m}.

There there exist aj,...,as € R such that \/(ai,...,as) = m. Then by the
above lemma m is a minimal prime of (a1, ..., as), and so by the GPIT, dimR =

htm < s. On the other hand, if dimR = htm = d, then by the converse of the

GPIT, there exist aq,...,aq € R such that m is a minimal prime of (a1, ..., aq).
By the above lemma again, we deduce that v/ (a1, ..., aq) = m. This shows that
s < dimR. O

3.2 Systems of Parameters

We prepare for the study of regular local rings, which play an important role in
algebraic geometry.

Theorem 3.1.10 leads us to make the following definition.

Definition 3.2.1. Let (R, m) be a local ring of dimension d. By a system of
parameters for R we means elements ay, ...,aq € R such that v/(ay,...,aq) =

m.
Theorem 3.2.2. Let (R,m) be a local Noetherian ring, and let ay, ..., a, € m.
Then
dimR — n < dimR/(aq,...,a,) < dimR.
Moreover, dimR/(ay,...,a,) = AimR — n if and only if ay,...,a, can be ex-

tended to a system of parameters for R.
Proof. Tt follows from theorem 3.1.7 that
dimR — n < dimR/(as,...,a,) < dimR.

Now let a = (aq,...,a,) and d = dimR.
=—: Suppose that dimR/a = d —n. Then d > n, and by the converse of GPIT,

there exist an41,...,aq € m such that m/a € Min(ap+1 + a,...,aq +a). By
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Lemma 3.1.9, we have \/(ant1 +a,...,aq +a) = m/a. Hence \/(a1,...,aq) =
m, and therefore a1, ..., a4 is a system of parameters for R.
<=: Now suppose that n < d and there exist an41,...,a4 € m such that

Q1y...yQpyGpyl --.,0q form a system of parameters for R. This means that

\/(al,...7an7an+1 ...,aq) =m, so that \/(anH +a,...,aq +a) =m/a. Hence
by the GPIT, we have dimR/a < d — n. But the result follows from the first
part that d —n < dimR/a. O

The following exercises generalize the concept of system of parameters for
modules.
Exercise 5. Let M be a finitely generated module over a local Noetherian ring

(R,m). Show that
dimM = Min{n € Ng|3ay,...,a, € msuch that {r(M/(a1,...,a,)M) < co}.

Definition 3.2.3. Let (R, m) be a Noetherian local ring, and let M be a finitely
generated R-module with dimM = d. A system of parameters for M is a set

{a1,...,aq} of elements of m such that
ER(M/(al,...,ad)M) < 00.

The above exercise guarantees the existence of such a system.
Exercise 6. Let M be a finitely generated module over a local Noetherian ring

(R,m), and let ay,...,a, € m. Show that

dimM —n < dimM/(ay,...,a,)M < dimM.
Moreover, dimM/(aq,...,a,)M = dimM — n if and only if a4,...,a, can be
extended to a system of parameters for M.

Exercise 7. Let R be a Noetherian local ring with dimR = d, and let a4, ..., aq
be a system of parameters for R. Let ni,...,nqg € N. Prove that ai*,..., a}"

is a system of parameters for R

We end this section by the Monomial Conjecture of Hochster [6].
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Monomial Conjecture. Let R be a Noetherian local ring with dimR = d.

Then for any given system of parameters aq,...,aq of R
ab...al & (altt . alth) forallt € N.

Monomial Conjecture has also been proved when dimR < 2 (cf. [6]). Sharp-
Zakeri [13], by using the theory of modules of generalized fractions, proved
some results related to Monomial Conjecture for rings of dimension d under the

assumption that Monomial Conjecture is valid for rings of dimension d — 1.

3.3 Regular Rings

Notation. Let M be a finitely generated R-module. The minimum number of

generators of M is denoted by pr(M) (or simply by p(M)).

Theorem 3.3.1. Let (R,m) be a local Noetherian ring. Then
dimR < p(m).
Proof. Immediate from the GPIT. O

Theorem 3.3.2. If (R, m) is a local Noetherian ring, then the following condi-
tions are equivalent.
(1) dimR = u(m),

(2) m is generated by a system of parameters.

Proof. (1) = (2): Is trivial.

(2) = (1): Suppose that d = dimR and m = (ay,...,aq), where ay,...,aq is a
system of parameters for R. Clearly u(m) < d. By the the above theorem, we
have d < p(m). Hence d = pu(m). O

Definition 3.3.3. A local Noetherian ring (R, m) is said to be regular if it
satisfies the equivalent conditions of the above theorem. A system of parameters

of R which generates m is called a regular system of parameters.
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Definition 3.3.4. Let M be an R-module and let X be a subset of M. We say
that X is a minimal generating set for M if X generates M but no proper

subset of X generates M.

Theorem 3.3.5. Let M be a module over local ring (R, m). Let k = R/m and
Z1,...,Tyn € M. Then the following are equivalent:
(1) {x1,...,x,} is a minimal generating set for M,

(2) {x1 +mM,...,x, + mM} is a basis for k-vector space M /mM.

Proof. (1) = (2): We have (z14+mM, ..., z,+mM) = Rx1+...+ Rz, +mM =
M/mM. Now let ¢; € R and

(ci +m)(x1 +mM)+ -+ (¢ +m)(zy, + mM) =121 + ... + Cpxy + mM = 0.

If ¢;+m # 0 for some 1 < ¢ < n, then there exists d; € R such that (¢; +m)(d; +

m) =1+ m. Hence
i —di(crry + -+ cim1mi—1 + Cir1Tipr + - F Cpy) € MM,
This implies that
Rx1+---+Rzi-1+Rx; +---+ Rxp +mM = Rzy +-- - + Rz, + mM = M.

By NAK, Rx1+---+ Rx;_1+ Rx;y1+- - -+ Rx, = M, which is a contradiction.
Thus {z1 + mM,...,z, + mM} is linearly independent and we have completed
the proof.

(2) = (1): Since (x14+mM, ..., z,+mM) = M/mM, we have Rx1+- - -+ Rx,+
mM = M, and therefore Rxq + - - + Rz, = M, by NAK. Now let {y1,...,y¢}
be a proper subset of {z1,...,2,} such that (y1,...,y¢) = M. Then

(y1 +mM,...,ye+ mM) =Ry, +---+ Ry + mM = M/mM,

which is a contradiction. O

We note an easy consequence of this result.
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Corollary 3.3.6. Let M be a finitely generated module over local ring (R, m).
Let k = R/m. Then

(1) M possesses a minimal generating set,

(2) any two minimal generating sets for M have the same cardinality,

(8) u(M) = dimp M /mM.
Lemma 3.3.7. Let (R,m) be a local Noetherian ring. Let x € m\ m?. Then
1R /(2)(m/(2)) = pr(m) — 1.

Proof. Let {a1 + (x),...,a, + ()} be a set of minimal generators of m/(z). By
Theorem 3.3.5, it suffices to show that {a;+m?, ..., a,+m? z+m?} is a basis for
R/m-vector space m/m?. It is easy to see that (a1 +m?,... a, + m? z+m?) =

m/m2. To show a; +m?2,..., a, +m? z + m? are linearly independent suppose
(er+m)(ar+m?) -+ (en +m)(an +w?) + (c+m)(z+m?) =0, (%)

for some cy,...,cn,c € R. This means that

(cr+(@)+m/(2))(ar+(2)+m?/(2))+ - +(en+ (@) +m/ (@) (an+(2) +m?/ (z)) = 0.

Since {aj + (2),...,an + (z)} is a set of minimal generators of m/(x), it follows
from Theorem 3.3.5 again that ¢; 4+ (z),...,c,+(x) € m/(x). Hencecy,...,c, €
m. It follows from () that cx € m? Since ¢ m?, we must have ¢ € m.

Therefore a; +m?,. .., a, +m?, z+m? are linearly independent, as desired. [

Corollary 3.3.8. Let (R,m) be a regular local ring, and let x € m\ m2. Then

R/(x) is a regular local ring and
dimR/(z) = dimR — 1.

Proof. In view of Theorem 3.1.7, Theorem 3.3.1, Lemma 3.3.7 and the fact that
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R is regular, we have

bR/ (m/(z)) = dimR/(z)
= htp/u)(m/(z))
> htpm—1
= dimR -1
= pr(m) -1
= fR/()(m/(2)),

from which it is immediate that R/(x) is a regular local ring with dimension

dimR — 1. O

The converse of the above corollary is:

Exercise 8. Let (R, m) be a local Noetherian ring, and = an element of m\ m?

that ¢ Z(R). Let R/(x) be a regular local ring. Show that R is regular.
Theorem 3.3.9. A regular local ring is an integral domain.

Proof. Let (R, m) be a regular local ring. We use induction on dimR. In case
dimR = 0, we must have m = 0, so R is a field, and the result is trivial. Thus

we may assume dimR > 1. Let MinR = {p1,...,p,}. By PAT,
QOQUp1U-~-Upn.

So there exists 2 € m such that 2 & m?Up;U- - -Up,,. By Corollary 3.3.8, the local
ring R/(z) is regular of dimension dimR — 1. Hence, by induction assumption
R/(z) is an integral domain, that is, (z) is a prime ideal and therefore contains
a minimal prime ideal of R, say p;. If y € p; is any element, then we may write
y = za for some a € R. Since = ¢ p;, we must have a € p;. This shows that

p1 = zp1, which by NAK implies p; = 0, as desired. O

Theorem 3.3.10. Let (R,m) be an Noetherian local ring. Then the following

are equivalent.
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(1) every non zero ideal of R is principal,

(2) the mazimal ideal m is principal.

Proof. (1) = (2): Is trivial.

(2) = (1): Let m = (x). If m = 0, then R is a field and there is nothing to
prove. Therefore we suppose that m # 0. Let a be non zero proper ideal of
R. By Corollary 1.4.8, we have N2, m’ = 0 and therefore, there exists n € N
such that a € m™, a ¢ m"™!. Hence, there exists y € a such that y = az",
y & (x"*1); consequently a ¢ m and a is a unit in R. Hence 2" = a~'y € a,
therefore m™ = (2™) C a and hence a = m™ = (z™). It follows that every non

zero ideal of R is a power of m. O

Exercise 9. Let (R, m) be a local Noetherian integral domain of dimension 1.
Show that the following are equivalent.

(1) R is regular,

(2) m is principal ideal,

(3) every non zero ideal of R is a power of m,

(4) there exists € R such that every non zero ideal of R has the form ",
n >0,

(5) R is a PID,

(6) R is integrally closed.

Exercise 10. Let R be a Noetherian ring and let S = R[xy,...,z,] or S =
R[[x1,...,2,]]. Show that R is regular if and only if S is regular.

At the end of this section, we state without proof results from Homological

Algebra. The interested reader may refer to Rotman’s book [11] for details.

Theorem 3.3.11. (Auslander-Buchsbaum-Nagata). A regular local ring
is UFD.

Proof. See Theorem 9.64 of [11]. O
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There is still no known proof of Theorem 3.3.11 using only classical commu-

tative algebra techniques.

Theorem 3.3.12. (Serre). Let R be a regular local ring and p a prime ideal

in R, then R, is again regular.

Proof. See Theorem 9.58 of [11]. O



Chapter 4

Regular Sequences

4.1 Regular Sequences

Definition 4.1.1. Let M be an R-module. An element a € R is said to be
M-regular if a ¢ Z(M). A sequence of elements aq,...,a, € R is called an
M-regular sequence if

(1) (a1,...,an)M # M, and

(2)fori=1....,n,a;, & Z(M/(a1,...,a;—1)M).

When all a; belong to an ideal a we say ai,...,a, € R is an M-regular se-
quence in a. If, moreover, there is no a,+1 € a such that ay,...,an,apy1 is
M-regular, then aq,...,a, is said to be a maximal M-regular sequence in

a.

Theorem 4.1.2. Let R be a Noetherian ring and M an R-module. Any M -
reqular sequence ay, . . ., a, in an ideal a can be extended to a maximal M -regular

sequence in a.

Proof. If aq,...,a, is not maximal in a, we can find a,+1; € a such that
Q1y...,0n,0npt1 is an M-regular sequence in a. Either this process terminates

at a maximal M-regular sequence in a, or it produces a strictly ascending chain

54
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of submodules

(a1)M G (a1,a2)M G -+ .

Hence the sequence of ideals

(a1) & (a1,a2) & -+

is also strictly ascending. Since R is Noetherian, we can exclude this latter

possibility. |

The above theorem shows that if R is Noetherian and M a non zero R-
module, then maximal M-regular sequence exist. We will prove that all maximal
M-regular sequence in an ideal a with aM # M have the same length if M is
finitely generated. This allows us to introduce the fundamental notion of grade
and depth.

The following simple fact will be repeatedly used throughout this section:

Proposition 4.1.3. Let M be an R-module and a,b be two ideals of R. Then

(M/alM) _, M

6(M/aM)  (at6)M

Proof. Left to the reader as an exercise. O

Theorem 4.1.4. Let M be an R-module and a1, . ..,a, € R. Then the following
are equivalent.

(1) a1, ...,a, is an M-regular sequence.

(2) ay,...,a; is an M-regular sequence and a;i1, ..., a, is an M/(a1, ... a;) M-

regular sequence.

Proof. (1) = (2) : Trivial.
(2) = (1) : Apply the above proposition with a = (as,...,q;) and b succes-

sively replaced by (a;41), (@i+1,@i42), .- . O

Theorem 4.1.5. Let M be an R-module and a1,as be an M -reqular sequence.

Then ay & Z(M/asM).
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Proof. Suppose that ai(x + asM) = 0 for some € M. Then there exists
y € M such that a;x = agy. Since ay & Z(M/a; M), this implies y € a; M, and
so y = ayy; for some y; € M. Since a1 & Z(M), it follows from the equation

a1x = ajasy; that x € as M, as required. O

Theorem 4.1.6. Let M be an R-module and a1, ...,a, be an M-reqular se-
quence. Then
A1y ey Qi1y Aig1, Qi Gig2, -« -, Ay 1S an M -regular sequence if and only if a;11 &

Z(M/(al, ey ai_l)M).
Proof. Follows immediately from Theorem 4.1.4 and 4.1.5. O

Remark 4.1.7. We note that the notion of M-regular sequence depends on the
order of the elements in the sequence. In other words, a permutation of a regular

sequence need not be regular.

Ezample 4.1.8. Let R = k[z,y, z], where k is a field. Then z,y(1 — x), 2(1 — )
is an R-regular sequence, but y(1 — ), 2(1 — x),x is not, because z(1 — z) €

Z(R[y(1 — ).

Theorem 4.1.9. Let M be a finitely generated module over a Noetherian ring
R and let ay,...,a, be an M-regular sequence in J(R). Then any permutation

of the a; is also an M -regular sequence.

Proof. We use induction on n. Let n = 2 and a1, as be an M-regular sequence.
We show that as, aq is also an M-regular sequence. By Theorem 4.1.5, it suffices
to show that ag & Z(M). Let N = (0 :ps as). We shall prove N = 0. Let z € N.
By definition of N, we have asxz = 0. Since as & Z(M /a1 M), we have x € a1 M,
say ¢ = ary with y € M. Then asx = ajasy = 0. But a; ¢ Z(M), hence
asy = 0 and therefore y € N. We have proved N = a;N. By NAK, N = 0,
as desired. Now Let n > 2 and aq,...,a, be an M-regular sequence. Every
permutation is a product of transpositions of adjacent elements. Therefore it is
enough to show that ay,...,a;-1,a;41,a;,a;49,...,a, is an M-regular sequence.

Let M = M/(a1,...,a;—1)M. By the case n = 2, a;41,0a; is an M-regular
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sequence. Hence By the above theorem ay,...,a;-1,6;41,0;,Qi+2,...,ay, iS an

M-regular sequence. O

Let M be a finitely generated module over a Noetherian ring R. In the
following theorem, we show that all maximal M-regular sequences in an ideal
a of R with aM # M have the same length. This allows us to introduce the

fundamental notions of grade and depth.

Theorem 4.1.10. (Rees). Let M be a finitely generated module over a Noethe-
rian Ting R and let a be an ideal of R. Assume that aM # M. Then any

mazximal M -regular sequences in a have the same length.

Proof. 1t suffices to prove the following: If aq,...,a, is a maximal M-regular
sequence in a and by, ..., b, is an M-regular sequence in a, then by,...,b, is a
maximal M-regular sequence in a. We prove this result by induction on n.
Case n = 1. We must show that: If a1 ¢ Z(M), by ¢ Z(M) and a C
Z(M/a1 M), then a C Z(M/byM). By PAT, there exist x € M \ a; M and
p € SpecR such that a C p = Ann(z + a3 M). Therefore az C a1 M, and so
bix = aix; for some z; € M. We claim that az; C by M and z; &€ by M. For
the first point, we have ajaz; = byax C a;by M, and since a; ¢ Z(M) we must
have axy C by M. For the second point, suppose to the contrary that z; € by M.
Then there exists o € M such that 21 = byzo. Therefore byx = a121 = biaixs.
Since by € Z (M), we must have & € a; M, which is a contradiction.

Case n > 1. Let K; = M/(a1,...,a;—1)M and L; = M/(by,...,bi—1)M for
i=1...,n. It follows from PAT that there is ¢ € a such that

C¢Z(K1)U"'UZ(KH)UZ(Ll)U"'UZ(Ln)- (*)

Since ¢ ¢ Z(K,,), we have that a1, ...,a,—1,cis an M-regular sequence in a.
By (*) and repeated application of Theorem 4.1.6, we have that ¢, aq,...,a,_1 is
an M-regular sequence in a. In exactly the same way, we have that ¢, by,...,b,_1
is an M-regular sequence in a. By the case n = 1, ¢ is also a maximal K,,-regular
sequence, and hence ¢, aq,...,a,_1 is a maximal M-regular sequence in a. Let

N = M/cM. Then ay,...,a,—1 and by,...,b,_1 are two N-regular sequences
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in a. Since aq,...,a,_1 is a maximal N-regular sequence in a, it follows from
the induction hypothesis that by, ..., b,_1 is a maximal N-regular sequence in a.
Therefore by, ...,b,_1,c is a maximal M-regular sequence in a. By the another

application of the case n = 1, we obtain that b,, is a maximal L,,-regular, and

hence by,...,b,_1,b, is @ maximal M-regular sequence in a, as required. O

Remark 4.1.11. For an alternative homological proof, see for example [9].

Exercise 1. Let R be a Noetherian local ring and M a finitely generated

R-module. Let ay,...,a, be an M-regular sequence. Then

dimM/(aq,...,an)M = dimM — n.

4.2 Grade and Depth

Definition 4.2.1. Let M be a finitely generated module over a Noetherian ring
R, and let a be an ideal of R such that aM # M. Then the common length of
the maximal M-regular sequence in a is called the grade of a on M, denoted
by

grade(a, M).

If (R, m) is a local ring, then the grade of m on M is called the depth of M,
denoted by

depthM.

Exercise 2. Let a and b be ideals of a Noetherian ring R, M a finite R-module.
Show that

(1) grade(a, M) = inf{depthM, : p € V(a)},

(2) grade(a, M) = grade(y/a, M),

(3) grade(ab, M) = grade(a N b, M) = inf{grade(a, M), grade(b, M)},

(4)

4) if S is a multiplicatively closed subset of R, then

grade(a, M) < grade(S™ta, ST M),
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(5) if a1, ...,a, is an M-regular sequence in a, then
grade(a, M) —n = grade(a, M/(a1,...,an)M)
= grade(a/(a1,...,an), M/(a1,...,an)M).

We end this section by establishing an upper bound for depthM. We need

the following theorem.

Theorem 4.2.2. Let (R, m) be a Noetherian local ring and let M be a non zero
finitely generated R-module. Then

depthM < dimR/p for allp € Ass(M).

Proof. We use induction on n = depthM. If n = 0 there is nothing to prove. If
n > 0, then there an element a € m such that a ¢ Z(M). Let p € AssM and
set

Y ={Rz[0# 2z € M, pz=0}.

Y £ (), since p € AssM. Let Rzy be a maximal element of 3. We aim to show
that z9 € aM. If to the contrary that zy € aM, then zg = ay with y € M
and py = 0, since a € Z(M). It follows that Ry € ¥. By maximality of Rz,
we have Ry = Rzy and hence Ry = Ray. By NAK, we have y = 0, which is a
contradiction. Therefore zg € aM and hence p C Z(M/aM). By PAT, there
exists q € Ass(M/aM) such that p C q. Since a € q and a & p, we have p # q,
and therefore by induction hypothesis

depthM = 1 + depthM/aM <1+ dimR/q < dimR/p.
O

Corollary 4.2.3. Let M be a non zero finitely generated module over the
Noetherian local ring R. Then

depthM < dimM.
Proof. By the above theorem, we have

depthM < sup{dimR/p|p € AssM } = dimM.
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O
Corollary 4.2.4. Let R be a Noetherian ring and a an ideal of R. Then
grade(a, R) < hta.
Proof. Since
grade(a, R) = inf{depthR, :p € V(a)},
hta = inf{dimR, :p € V(a)},
the assertion follows from the above corollary. O

4.3 Cohen-Macaulay Rings and Modules

Over the past several decades Cohen-Macaulay rings have played a central role
in the solutions to many important problems in commutative algebra, algebraic
geometry, invariant theory and combinatorics. In the words of Hochster, “life

is really worth living” in a Cohen-Macaulay ring (see [4], p. 57).

Definition 4.3.1. Let (R, m) be a Noetherian local ring and M is a non zero
finitely generated R-module. We say that M is Cohen-Macaulay module
(abbreviated to C-M module) if depthM = dimM. If R is a Cohen-Macaulay
R-module then R is called a Cohen-Macaulay ring. We say M is maximal

Cohen-Macaulay if dimM = dimR.

Definition 4.3.2. Let R be Noetherian ring and M an R-module. We say that
M is a Cohen-Macaulay R-module if M, is a Cohen-Macaulay R.,-module for

each maximal ideal m € SuppM.

Theorem 4.3.3. Let (R, m) be a Noetherian local ring and M a non zero Cohen-
Macaulay module. Then

(1) depthM = dimR/p for all p € AssM,

(2) grade(a, M) = dimM — dimM/aM for all ideals a C m,

(3) ai,...,an is an M-regular sequence <= dimM/(aq, ..., a,)M = dimM —n,
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(4) ai,...,an is an M-reqular sequence if and only if it is part of a system of

parameters.

Proof. (1): In view of Theorem 4.2.2, depthM < dimR/p < dimM for all
p € AssM. Since M is Cohen-Macaulay, it follows that depthM = dimR/p for
all p € AssM.

(2) We use induction on n = grade(a, M). If n = 0, then there exists p € AssM
such that a C p. It follows from (1) that

dimR/p < dimM/aM < dimM < dimR/p.

Hence dimM/aM = dimM. If n > 0, we choose x € a such that x ¢ Z(M).
Then

grade(a, M/xM) = grade(a, M) —1,
depth(M/xM) = depth(M) -1,
dim(M/zM) = dim(M)—1.

The argument is complete by induction.

(3) It is enough to prove this when n = 1.

= Follows from Exercise 1.

<: Let a1 € R and dim(M /a1 M) = dimM — 1. Assume to the contrary that
ay € Z(M). Then there exists p € AssM such that a; € p. Therefore

dimM = dimR/p < dimM /a1 M,

which is a contradiction. Hence a; is M-regular.

(4) Follows from an Exercise 6 of Chapter 3 and part (3) above. O

Theorem 4.3.4. Let R be a Noetherian ring and M a finitely generated R-

module. Let ay,...,a, be an M -reqular sequence. Then
M is Cohen-Macaulay = M/(aq,...,a,)M is Cohen-Macaulay,

The converse holds if R is local.
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Proof. By the definition of Cohen-Macaulay module, we may assume that R is

local. Let aq,...,a, be an M-regular sequence. Then
depth(M/(ay,...,an)M) = depth(M) —n,
dim(M/(a,...,a,)M) = dim(M) —n.
Thus M is Cohen-Macaulay, if and only if M/(aq,...,a,)M is so. O

Theorem 4.3.5. Let M be a Cohen-Macaulay module over Noetherian local
ring (R,m). Then

(1) M, is Cohen-Macaulay R,-module for every p € SpecR,

(2) grade(p, M) = depthM,, for every p € SuppM.

Proof. (1): If M, = 0, there is nothing to prove. So let p € SuppM. We know
grade(p, M) < depthM, < dimM,.

So we will prove grade(p, M) = dimM, by induction on grade(p, M). If grade(p, M) =
0, then p C Z(M). By PAT there exists p’ € AssM such that AnnM Cp C p'.
Since M is Cohen-Macaulay, it follows from Theorems 1.7.3(4) and 4.3.3(1) that

AssM = Min(AssM) = Min(SuppM).

Hence p = p’ € Min(SuppM). Therefore pR, € Min(SuppM,) and hence
dimM, = 0. Now let grade(p, M) > 0. Let a € p be an M-regular element. The

element a/1 € R, is then M,-regular and therefore we have
dim(M/aM), = dimM,/aM, = dimM, — 1
grade(p, M/aM) = grade(p, M) — 1.
Since M /aM is Cohen-Macaulay, it follows by induction that grade(p, M/aM) =

dim(M/aM),, which completed the proof.
(2): follows from the proof of (1). O

Exercise 3. Let R be a Noetherian ring. Suppose M is is Cohen-Macaulay
R-module and S is a multiplicatively closed set in R. Show that S™'M is a
Cohen-Macaulay S~ R-module.
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Corollary 4.3.6. Let R be local Noetherian and M a Cohen-Macaulay R-
module. Then dimM = dimM, + dimM /pM for every p € SuppM.

Proof. Let p € SuppM. Then M, is Cohen-Macaulay R,-module and by The-
orems 4.3.5 and 4.3.3(2), we have,

dimM, = depthM, = grade(p, M) = dimM — dimM /pM.
This completes the proof. O

Corollary 4.3.7. Let R be a Cohen-Macaulay ring and a be a proper ideal of
R. Then grade(a, R) = hta. If R is Cohen-Macaulay local, then

hta + dimR/a = dimR.
Proof. We have

grade(a, R) = inf{depthR, :p € V(a)},

hta = inf{dimR, :p € V(a)}.

By Theorem 4.3.5, grade(a, R) = hta. By this and Theorem 4.3.3, hta +
dimR/a = dimR. O

Definition 4.3.8. Let R be a Noetherian ring and a a proper ideal, and let
Assp(R/a) = {p1,...,pn}. We say that a is unmixed if htp;, = hta for all i.

Exercise 4. Let R be a Noetherian ring. Then the following are equivalent.
(1) R is a Cohen-Macaulay ring,

(2) Ry is a Cohen-Macaulay ring for all p € Spec(R),

(3) every ideal a generated by hta elements is unmixed,

(4) grade(a, R) = hta for all ideals a of R,

(5) grade(p, R) = htp for all p € Spec(R),

(6) grade(m, R) = htm for all m € Max(R),

(7) all ideal a of R which satisfy the condition hta = p(a) are generated by an
R-regular sequence,

(8) every ideal a generated by an R-regular sequence is unmixed,



64 CHAPTER 4. REGULAR SEQUENCES

(9) for any prime ideal p of R of height> 1 there exists a set of parameters of

the ring R, which is an R-regular sequence.

Exercise 5. Let R be a Noetherian ring and let S = R[zq,...,z,] or S =
R[[x1,...,2,]]. Show that R is a Cohen-Macaulay ring if and only if S is a
Cohen-Macaulay ring.

Our next goal is to show that a regular local ring is Cohen-Macaulay.

Theorem 4.3.9. Let (R,m) be a regular local ring of dimension d, and let
a1,-..,a; €m, where 1 <t <d. Then the following are equivalent.
(1) a1, ...,a; can be extended to a regular system of parameters for R,

(2) R/(as,...,a) is a reqular local ring of dimension d — t.

Proof. (1) = (2): Let a = (ay,...,as). Let ay,...,as,a441,...,aq be a regular
system of parameters for R. By Theorem 3.2.2, dimR/a = d —¢t. But m/a =
(at41+a,...,aq+ a), hence R/a is regular.

(2) = (1): Let (ary1 + a,...,aq +a) = m/a. Then it is easy to see that
(a1,...,a¢,a441,...,aq) = m. Thus aq,...,a; extend to a regular system of

parameters for R. O

Theorem 4.3.10. Let (R, m) be a Noetherian local ring of dimension d. Then
the following are equivalent.
(1) R is regular,

(2) m can be generated by an R-regular sequence aq, ..., aq.

Proof. (1) = (2): Let m = (aq,...,aq) and 1 < i < d. By the above theorem

R/(a1,...,a;) is regular. Therefore R/(a1,...,a;) is domain and a;4; is not
zero divisor of R/(ay,...,a;). Thus ay,...,a; is an R-regular sequence.
(2) = (1): Trivial. O

Corollary 4.3.11. A regular local ring is Cohen-Macaulay.
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Proof. Let R be a regular local ring. Let d = dimR and m = (aq, ..., aq), where
ai,...,aq is an R-regular sequence. By definition of depth, d < depthR. It
follows from Corollary 4.2.3 that d = depthR, so R is Cohen-Macaulay. O

For more detailed texts on commutative algebra, we refer the interested

reader to [2], [5], [8] and [9].
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