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Chapter 1 : Rings and Ideals

1.1. Show that the sum of a nilpotent element and a unit is a unit.

If x is nilpotent, then 1 − x is a unit with inverse
∑∞

i=0 xi. So if u is a unit and x is nilpotent, then
v = 1− (−u−1x) is a unit since −u−1x is nilpotent. Hence, u + x = uv is a unit as well.

1.2. Let A be a ring with f = a0 + a1x + · · ·+ anxn in A[x].

a. Show that f is a unit iff a0 is a unit and a1, . . . , an are nilpotent.

If a1, . . . , an are nilpotent in A, then a1x, . . . , anxn are nilpotent in A[x]. Since the sum of nilpotent
elements is nilpotent, a1x + · · ·+ anxn is nilpotent. So f = a0 + (a1x + · · ·+ anxn) is a unit when a0 is
a unit by exercise 1.1.

Now suppose that f is a unit in A[x] and let g = b0 + b1x + · · ·+ bmxm satisfy fg = 1. Then a0b0 = 1,
and so a0 is a unit in A[x]. Notice that anbm = 0, and suppose that 0 ≤ r ≤ m− 1 satisfies

ar+1
n bm−r = ar

nbm−r−1 = · · · = anbm = 0

Notice that

0 = fg =
m+n∑

i=0




i∑

j=0

ajbi−j


 xi =

m+n∑

i=0

cix
i

where we define aj = 0 for j > n and bj = 0 for j > m. This means that each ci = 0, and so

0 = ar+1
n cm+n−r−1 =

n∑

j=0

aja
r+1
n bm+n−r−1−j = ar+2

n bm−r−1

since m + n − r − 1 − j ≥ m − r for j ≤ n − 1. So by induction am+1
n b0 = 0. Since b0 is a unit, we

conclude that an is nilpotent. This means that f − anxn is a unit since anxn is nilpotent and f is a
unit. By induction, a1, . . . , an are all nilpotent.

b. Show that f is nilpotent iff a0, . . . , an are nilpotent.

Clearly f = a0 + a1x + . . . + anxn is nilpotent if a0, . . . , an are nilpotent. Assume f is nilpotent and
that fm = 0 for m ∈ N. Then in particular (anxn)m = 0, and so anxn is nilpotent. Thus, f − anxn is
nilpotent. By induction, akxk is nilpotent for all k. This means that a0, . . . , an are nilpotent.

c. Show that f is zero-divisor iff bf = 0 for some b 6= 0.

If there is b 6= 0 for which bf = 0, then f is clearly a zero-divisor. So suppose f is a zero-divisor and
choose a nonzero g = b0 + b1x + · · · + bmxm of minimal degree for which fg = 0. Then in particular,
anbm = 0. Since ang · f = 0 and ang = anb0 + · · · + anbm−1x

m−1, we conclude that ang = 0 by
minimality. Hence, anbk = 0 for all k. Suppose that

an−rbk = an−r+1bk = · · · = anbk = 0 for all k

Then as in part a we obtain the equation

0 =
m+n−r−1∑

j=0

am+n−r−1−jbj = an−r−1bm
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Again we conclude that an−r−1g = 0. Hence, by induction ajbk = 0 for all j, k. Choose k so that
b = bk 6= 0. Then bf = 0 with b 6= 0.

d. Prove that f, g are primitive iff fg is primitive.

Let h be any polynomial in A[x]. If h is not primitive then there is a maximal m in A containing the
coefficients of h. Let k be the residue field of m and consider the natural map π : A[x] → k[x]. Then
π(h) = 0. This condition is also sufficient for showing that h is not a primitive polynomial.

So if fg is not primitive, then π(fg) = 0 as above for some maximal m. But π(fg) = π(f)π(g) and k[x]
is an integral domain so that π(f) = 0 or π(g) = 0. In other words, either f is not primitive or g is not
primitive. The converse follows similarly.

1.3. Generalize the results of exercise 2 to A[x1, . . . , xr] where r ≥ 2.

Let f ∈ A[x1, . . . , xr]. Use multi-index notation to write

f =
∑

I∈Nr

αIx
I where xI = xI1

1 · · ·xIr
r

We can also write

f =
n∑

i=0

gxi
r where g ∈ A[x1, . . . , xr−1]

b. Show that f is nilpotent iff each αI is nilpotent.

Suppose that f is nilpotent. Then g0, . . . , gn are nilpotent polynomials in A[x1, . . . , xr−1] by exercise
1.2. So by induction each aα is nilpotent. If each αI is nilpotent then each αIx

I is nilpotent, so that f
is nilpotent.

a. Show that f is a unit iff the constant coefficient is a unit and each αI is nilpotent for |I| > 0.

Suppose that f is a unit. Then in A[x1, . . . , xr−1] we know that g0 is a unit and g1, . . . , gn are nilpotent.
So by part b we see that αI is nilpotent whenever I(r) > 0. By symmetry αI is nilpotent whenever
|I| > 0. The constant coefficient is clearly a unit. On the other hand, if the constant coefficient is a unit
and all other coefficients are nilpotent, then f is clearly a unit.

c. Show that f is a zero-divisor iff bf = 0 for some b 6= 0.

Let a be any ideal in A[x1, . . . , xn] and suppose ga = 0 for some non-zero g ∈ A[x1, . . . , xn]. Since
A[x1, . . . , xn] = A[x1, . . . , xn−1][xn], exercise 1.2 allows us to assume that g ∈ A[x1, . . . , xn−1]. Now given
f ∈ a we can write f =

∑
fix

i
n where each fi ∈ A[x1, . . . , xn−1]. Let b be the subset of A[x1, . . . , xn−1]

consisting of all such fi, as f ranges across a. Then b is an ideal since a is an ideal, and gb = 0 since
g ∈ A[x1, . . . , xn−1] by hypothesis. So by induction, there is b 6= 0 satisfying bb = 0, and hence ba = 0.
Now we apply this result to a = (f) to get the desired conclusion.

d. Show that f and g are primitive iff fg is primitive.

Let h be any polynomial in A[x1, . . . , xr]. If h is not primitive then there is a maximal m in A containing
the coefficients of h. Let k be the residue field of m and consider the natural map π : A[x1, . . . , xr] →
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k[x1, . . . , xr]. Then π(h) = 0 in k[x1, . . . , xr]. This condition is also sufficient for showing that h is not
a primitive polynomial.

So if fg is not primitive, then π(fg) = 0 as above for some maximal m. But π(fg) = π(f)π(g) and
k[x1, . . . , xr] is an integral domain so that π(f) = 0 or π(g) = 0. In other words, either f is not primitive
or g is not primitive. The converse is obvious.

1.4. Show that R(A[x]) = N(A[x]) for every ring A.

As with any ring N(A[x]) ⊆ R(A[x]). So suppose that f ∈ R(A[x]). Then 1−fx is a unit. If f = a0+. . .+anxn

this means that 1− a0x− . . .− anxn+1 is a unit, so that a0, . . . , an are nilpotent by exercise 1.2. By exercise
1.2 this means that f is nilpotent, and so f ∈ N(A[x]). Hence R(A[x]) ⊆ N(A[x]), giving the desired result.

1.5. Let A be a ring with f =
∑∞

0 anxn in A[[x]].

a. Show thatf is a unit iff a0 is a unit.

Suppose f is a unit. Then there is g(x) =
∑∞

0 bnxn satisfying fg = 1. In particular, a0b0 = 1, implying
that a0 is a unit. Conversely, suppose that a0 is a unit. We wish to find bn for which fg = 1. This is
equivalent to finding bn satisfying a0b0 = 1 and

a0bn +
n−1∑

i=0

an−ibi = 0 for n > 0

So we define b0 = a−1
0 and

bn = −a−1
0

n−1∑

i=0

an−ibi for n > 0

This constructively shows that f is a unit.

b. Show that each ai is nilpotent if f is nilpotent, and that the converse is false.

Suppose that f is nilpotent and choose n > 0 for which fn = 0. Then an
0 = 0. Hence a0 is nilpotent, as

is f − a0. Now by induction we see that every an is nilpotent. The converse need not be true though.
We can define

A = Z4×Z8×Z16× · · ·
and then let

a0 = (2, 0, 0, . . .) a1 = (0, 2, 0, . . .) . . .

Observe that ajak = 0 for j 6= k, and so

fn = an
0 + an

1xn + an
2x2n + · · · for all n > 0

Obviously each ak is nilpotent, and yet f is not nilpotent. The problem here is that there is no N for
which aN

k = 0 for all k. This issue does not occur when N(A) is a nilpotent ideal, as for instance when
A is Noetherian.



4

c. Show that f ∈ R(A[[x]]) iff a0 ∈ R(A).

Assume a0 ∈ R(A) and suppose g ∈ A[[x]] with constant coefficient b0. Then there is h ∈ A[[x]] satisfy-
ing 1− fg = 1− a0b0 + hx. Since 1− a0b0 is a unit in A, we see by part a that 1− fg is a unit in A[[x]],
so that f ∈ R(A[[x]]). On the other hand, if f ∈ R(A[[x]]) and b ∈ A, then 1 − fb is a unit in A[[x]].
Again by part a this means that 1− a0b is a unit in A, so that a0 ∈ R(A).

d. Show that the contraction of a maximal ideal m of A[[x]] is a maximal ideal of A, and that
m is generated by mc and x.

By part c we have (x) ⊆ R(A[x]) ⊆ m since 0 ∈ R(A). Now if f = a + gx is in m then a = f − gx ∈ m
since x ∈ m, so that a ∈ m ∩A. In other words, m is generated by mc and x.

Notice that mc = m∩A, and that A/mc naturally embeds into A[[x]]/m via the map a + mc 7→ a + m. I
claim that A/mc is a subfield of the field A[[x]]/m. So suppose that a + mc 6= mc and choose f ∈ A[[x]]
for which (a+m)(f +m) = 1+m, so that af −1 ∈ m. Write f = a0 +gx for some g ∈ A[[x]] and observe
that af − 1 = aa0 − 1 + agx ∈ m, implying that aa0 − 1 ∈ m since x ∈ m. So we see that aa0 − 1 ∈ mc,
and hence a + mc has the inverse a0 + mc. This means that A/mc is a subfield of A[[x]]/m, and hence
mc is a maximal ideal in A.

e. Show that every prime ideal p of A is the contraction of a prime ideal q of A[[x]].

Let q be the ideal in A[[x]] consisting of all
∑

akxk for which a0 ∈ p. If fg ∈ q with f =
∑

akxk and
g =

∑
bkxk, then a0b0 ∈ pzz. Hence, a0 ∈ p or b0 ∈ p, implying that f ∈ q or g ∈ q. So q is a prime

ideal in A[[x]] and p = A ∩ q, so that p is the contraction of q.

1.6. Let A be a ring such that every ideal not contained in N(A) contains a nonzero nilpotent. Show
that N(A) = R(A).

As always N(A) ⊆ R(A). Now suppose that N(A) ( R(A). By hypothesis, there is an idempotent e 6= 0 in
R(A). Now (1− e)e = e− e2 = 0. Since e ∈ R(A) we know that 1− e is a unit in A, so that e = 0. But this
contradicts our choice of e, showing that N(A) = R(A).

1.7. Let A be a ring such that every x ∈ A satisfies xn = x for some n > 1. Show that every prime
ideal p in A is maximal.

For x ∈ A choose n > 1 satisfying xn = x. Then x̄(x̄n−1− 1̄) = 0̄ in A/p. Since A/p is an integral domain we
have x̄ = 0̄ or x̄n−1 = 1̄. In the second case x̄ is a unit in A/p since n > 1. This shows that A/p is a field, so
that p is in fact a maximal ideal.

1.8. Let A 6= 0 be a ring. Show that the set of prime ideals of A has minimal elements with respect
to inclusion.

Suppose that pα are prime ideals for α ∈ I. Suppose further that I has a linear ordering ≺ for which pα ⊃ pβ

whenever α ≺ β. Define p =
⋂

α∈I pα, and suppose that p is not prime. Then there are x, y for which xy ∈ p,
and yet x, y 6∈ p. Hence, there are α, β for which x 6∈ pα and y 6∈ pβ . But either α ≺ β or β ≺ α, implying
that x 6∈ pβ or y 6∈ pα. Either case leads to a contradiction as pα and pβ are prime ideals containing xy. So p
is a prime ideal, contained in every pα. This means, by Zorn’s Lemma, that the set of prime ideals in A has
minimal elements.

1.9. Let a 6= (1) be an ideal in A. Show that a = r(a) if and only if a is the intersection of a collection
of prime ideals.
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Suppose a =
⋂

I pα is the intersection of prime ideals. Notice that we always have a ⊆ r(a). Now if x ∈ r(a),
then xn ∈ a for some n, and so xn ∈ pα for all α. Therefore, x ∈ pα by the definition of prime ideals, implying
that x ∈ a. Hence a = r(a). The converse is trivial.

1.10. Show that the following are equivalent for any ring A.

a. A has exactly one prime ideal.

b. Every element of A is either a unit or nilpotent.

c. A/N(A) is a field.

(a ⇒ b) Suppose that x ∈ A is neither nilpotent nor invertible. Let m be a maximal ideal in A containing x.
Then N(A) ( m. But m is a prime ideal, so that A has more than one prime ideal.

(b ⇒ c) By hypothesis x is a unit in A whenever x 6∈ N(A). This shows that A/N(A) is a field.

(c ⇒ a) If A/N(A) is a field, then N(A) is a maximal ideal. But N(A) is contained in every prime ideal in
A, and prime ideals are proper by definition. So N(A) is the only prime ideal in A.

1.11. Prove the following about a Boolean ring A.

a. 2x = 0 for every x ∈ A.

Notice that 2x = (2x)2 = 4x2 = 4x = 2x + 2x, so that 2x = 0 for every x ∈ A.

b. For every prime ideal p, A/p is a field with two elements.

If x 6∈ p then from the equation (x + p)2 = x + p we conclude that x + p = 1 + p. Hence, A/p is the field
with two elements. This means in particular that every prime ideal in A is maximal.

c. Every finitely generated ideal in A is principal.

Suppose x1, x2 ∈ A and define y = x1 + x2 + x1x2. Notice that

x1y = x1 + x1x2 + x1x2 = x1 + 2x1x2 = x1

Similarly x2y = x2. This shows that

(y) = (x1, x2) = (x1) + (x2)

The result now follows by induction.

1.12. Show that a local ring contains no idempotents 6= 0 or 1.

Suppose e ∈ A is idempotent, so that e(1− e) = 0. If e 6= 0 or 1, then e and 1− e are nonunits. Since A is a
local ring, the nonunits form an ideal. But this means that e + (1− e) = 1 is a nonunit, a contradiction.

1.13. Given a field K construct an algebraic closure of K.

Suppose that K is a field so that K[x] is factorial. Let Σ consist of all irreducible polynomials in K[x]. Define
A to be the polynomial ring generated by indeterminates xf over K, one for each f ∈ Σ. Also define a to
be the ideal in A generated by f(xf ) for f ∈ Σ. Suppose that a = A. Then there are f1, . . . , fn ∈ Σ and
g1, . . . , gn ∈ A for which



6

g1f1(xf1) + · · ·+ gnfn(xfn
) = 1

Let K ′ be a field containing K and roots αi of fi, noting that each fi is a non-constant polynomial. Letting
xfi = αi yields 0 = 1 in K ′, an impossibility. Therefore, a is a proper ideal of A. Let m be a maximal ideal
in A containing a. Define K1 = A/m. Then K1 is an extension field of K. For g ∈ K[x] let f ∈ Σ be an
irreducible factor of g. Then f(xf + m) = f(xf ) + m = m, implying that f , and hence g, has a root in K1.
Hence, every polynomial over K has a root in K1.

Now given the field Kn, choose an extension field Kn+1 of Kn so that every polynomial over Kn has a root
in Kn+1. Proceed in this way to obtain Kn for all n ∈ N+, and let L =

⋃∞
n=1 Kn. Then L is an extension

field of K and every polynomial over Σ of degree m splits completely over Km, and hence splits completely
over L. Finally, let L̄ be the set of all elements in L that are algebraic over K. Then L̄ is algebraic over K

and every monic polynomial over K can be written as g =
∏deg(g)

k=1 (x − αi), where αi are the roots of g in
L. But then each αi is algebraic over K and hence lies in L̄. So g has roots in L̄. This means that L̄ is an
algebraic closure of K.

1.14. In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show that Σ
has maximal elements and that every maximal element of Σ is a prime ideal. Hence, the set D
of zero-divisors in A is a union of prime ideals.

It is clear by Σ is chain complete. Hence, Zorn’s Lemma tells us that Σ has maximal elements. Suppose
that a ∈ Σ is not a prime ideal. Let x, y ∈ A − a satisfy xy ∈ a so that a ( (a : x). If (a : x) 6∈ Σ then
there is z ∈ (a : x) so that z is not a zero-divisor. I now claim that (a : z) ∈ Σ. If w ∈ (a : z) then wz ∈ a,
so that vwz = 0 for some v 6= 0. Since z is not a zero-divisor vz 6= 0, and hence w is a zero-divisor. Thus
a ( (a : z) ∈ Σ since x ∈ (a : z)− a. This means that a is not a maximal element in Σ. So maximal elements
in Σ are indeed prime ideals.

Now if D is the set of zero-divisors in A and x ∈ D then (x) ⊆ D, and hence (x) ∈ Σ. It is clear from Zorn’s
Lemma that there is a maximal a ∈ Σ containing (x), so that x ∈ a ⊆ D. This means that D is the union of
some of the prime ideals of A.

1.15. Suppose A is a ring and let Spec(A) be the set of all prime ideals of A. For each E ⊆ A, let
V (E) ⊆ Spec(A) consist of all prime ideals containing E. Prove the following.

a. If a = 〈E〉 then V (E) = V (a) = V (r(a)).

Since E ⊆ a ⊆ r(a) we have

V (r(a)) ⊆ V (a) ⊆ V (E)

Suppose p ∈ V (E) so that E ⊆ p. Then a = AE ⊆ Ap = p and r(a) ⊆ r(p) = p. So we have
V (r(a)) ⊆ V (E). We are finished.

b. V (0) = Spec(A) and V (1) = ∅.

Every prime ideal contains 0, and so V (0) = Spec(A). Also, no prime ideal equals all of A, by definition,
and so V (1) = ∅.

c. If (Ei)i∈I is a family of subsets of A then V (
⋃

Ei) =
⋃

V (Ei).

Any ideal contains
⋃

Ei iff it contains each Ei.
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d. For ideals a, b we have V (a ∩ b) = V (ab) = V (a) ∪ V (b).

By part a we have

V (a ∩ b) = V (r(a ∩ b)) = V (r(ab)) = V (ab)

Clearly a ∩ b ⊆ p whenever a ⊆ p or b ⊆ p. The converse holds since p is a prime ideal. So V (a ∩ b) =
V (a) ∪ V (b).

1.16? Describe the following

a. Spec(Z)

It is not hard to see that Spec(Z) = {(0)} ∪ {(p) : p > 1 prime}.

b. Spec(R)

Since R is a field, it has precisely one prime ideal, namely (0).

c. Spec(C[x])

Since C is a field, C[x] is a PID, and so its nonzero prime ideals are of the form (p) for some monic irre-
ducible polynomial p. The only monic polynomials that are irreducible over C are of the form p = x− c
for some c ∈ C. Of course, the zero ideal is prime as well.

d. Spec(R[x])

Since R is a field, R[x] is a PID, and so its nonzero prime ideals are of the form (p) for some monic
irreducible polynomial p. Since every odd polynomial has a root, no polynomial of odd degree at least
three is irreducible. Suppose p is a monic irreducible polynomial of even degree 2d > 2. In C[x] write
p(z) =

∏2d
i=1(z − αi). Letting α∗i be the complex conjugate of αi, we see that p(α∗i ) = p(αi)∗ = 0 since

p ∈ R[x]. This means that p =
∏2d

i=1(z − α∗i ). So there is σ ∈ Σ2d so that α∗i = ασ(i) for every i. Since
p has no real roots, we cannot have σ(i) = i for any i. Also, α∗σ(i) = αi so that σ2 = id, and hence σ is
a product of 2-cycles. Thus

p(z) =
d∏

i=1

(z − αi)(z − ασ(i)) =
d∏

i=1

(z − αi)(z − α∗i ) =
d∏

i=1

(z2 − 2Re(αi)z + |αi|2)

Since each of these quadratics is in R[x], we see that p is reducible in R[x], a contradiction. Consequently,
the irreducible elements in R[x] are of the form x− a and x2 + bx + c where b2− 4c < 0. These elements
correspond bijectively with the non-zero prime ideals in R[x].

e. Spec(Z[X])

Notice that Z[x] is factorial. If p is an irreducible polynomial over Z then (p) is a prime ideal in Z[x].
Since Z[x] is an integral domain we see that (0) is a prime ideal in Z[x] as well. Suppose p is a non-zero
prime ideal in Z[x] that is not principal. Suppose p has the property that, given f, g ∈ p, either (f) ⊆ (g)
or (g) ⊆ (f). From this I will derive a contradiction. Let f1 ∈ p and choose f2 ∈ p − (f1), making use
of the fact that p is not principal. Then (f1) ( (f2). We can choose f3 ∈ p − (f2). Then (f2) ( (f3).
We proceed in this way to get a properly ascending sequence of ideals in p. This is impossible since
Hilbert’s Theorem tells us that Z[x] is Noetherian. Therefore, there are nonzero f, g ∈ p with (f) 6⊆ (g)
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and (g) 6⊆ (f).

We can consider f and g as elements of Q[x]. Suppose, for the sake of contradiction, that f = f ′h and
g = g′h for some f ′, g′, h ∈ Q[x] with deg(h) ≥ 1. We can write f ′ = af ′′ with a ∈ Q and f ′′ ∈ Z[x] so
that the coefficients of f ′′ have no prime number in common. Similarly write g′ = bg′′ and h = ch′. We
see that f ′′, g′′, and h′ are all primitive elements of Z[x]. Exercise 1.2 tells us that f ′′h′ and g′′h′ are
primitive elements of Z[x]. But f = (ac)(f ′′h′) so that ac ∈ Z. Similarly, g = (bc)(g′′h′) so that bc ∈ Z.
This means that h′ is a common factor of f and g in Z[x]; our sought after contradiction. Therefore, f
and g have no common factor in Q[x].

Now Q[x] is a PID since Q is a field. So there are j, k ∈ Q[x] satisfying jf + kg = 1. Clearing the
denominators in this equation we get a 0 6= c ∈ Z such that (cj)f + (ck)g = c, with cj, ck ∈ Z[x]. This
means that (f, g) ∩ Z 6= (0), and hence p ∩ Z = (p) is a non-zero prime ideal in Z. But every nonzero
prime ideal of Z is a maximal ideal. Choose d ∈ p− pZ[x].

1.17. For f ∈ A let Xf = Spec(A)− V (f). Show that {Xf : f ∈ A} forms a basis of X = Spec(A).

Each Xf is clearly open. Now if X − V (E) is a general open set then

X − V (E) = X − V
( ⋃

f∈E

{f}
)

= X −
⋂

f∈E

V (f) =
⋃

f∈E

Xf

We conclude that {Xf : f ∈ X} is a basis for Spec(X).

a. Show that Xf ∩Xg = Xfg for all f, g.

The equalities

X − V (fg) = X − V ((f) ∩ (g)) = X − V ((f)) ∪ V ((g)) = (X − V (f)) ∩ (X − V (g))

give us the result immediately.

b. Show that Xf = ∅ iff f is nilpotent.

Xf = ∅ precisely when f is contained in every prime ideal in A. This occurs precisely when f is in the
nilradical of A, and hence precisely when f is nilpotent.

c. Show that Xf = X iff f is a unit in A.

If f is a unit, then f is not contained in any prime ideal, and so Xf = X. If f is a nonunit, then f is
contained in some maximal ideal, and hence Xf 6= X.

d. Show that Xf = Xg iff r(f) = r(g).

If r(f) = r(g) then V (f) = V (r(f)) = V (r(g)) = V (g) so that Xf = Xg. Suppose that Xf = Xg. Then
every prime ideal containing f contains g, and vice versa. But r(f) is the intersection of all prime ideals
containing f , and similarly for g. So r(f) = r(g).

e. Show that Spec(A) is compact.



9

Suppose X =
⋃

Uα with each Uα open, and write Uα =
⋃

β∈Jα
Xfα,β

. Then X =
⋃

Xfα,β
so that

∅ =
⋂

V (fα,β) = V (
⋃

fα,β). This means that {fα,β} generates A. So we can write 1 =
∑

aα,βfα,β with
cofinitely many of the aα,β non-zero. Working backwards, we see that X is the union of the Xfα,β

for
which aα,β 6= 0. So in turn, X is the union of finitely many Uα. Thus, X is compact.

f. Show that each Xf is compact.

Suppose that Xf ⊆
⋃

Uα and write Uα =
⋃

β∈Jα
Xgα,β

. Then Xf ⊆
⋃

Xgα,β
. This gives us V (

⋃
gα,β) ⊆

V (f). Suppose a is the ideal generated by the gα,β . Then f ∈ r(a), so that there is an equation
fn =

∑
aα,βgα,β with cofinitely many of the aα,β non-zero. Let g1, . . . , gn be the gα,β with aα,β 6= 0.

Then V (
⋃n

1 gi) ⊆ V (fn) = V (f) so that Xf ⊆
⋃n

1 Xgi
. It follows that Xf is the union of finitely many

Uα. Thus, Xf is compact.

g. Show that an open subspace of X is compact if and only if it is the union of finitely many
of the basic open sets Xf .

Clearly, the union of finitely many Xf is open and compact. So suppose U is compact and open. Then
since U is the union of some Xf , it is the union of finitely many Xf .

1.18. Show the following about X = Spec(A).

a. The set {p} is closed iff p is a maximal ideal.

If p is a maximal ideal, then V (p) = {p}, and so {p} is closed. If {p} is closed then {p} = V (E) for some
E ( A. Let m be a maximal ideal containing p so that m ∈ V (E). Then m = p, so that p is a maximal
ideal.

b. Cl({p}) = V (p)

Notice that Cl(p) ⊆ V (p) since V (p) is a closed set containing p and Cl(p) is the intersection of all closed
sets containing p. Conversely, suppose that q is a prime ideal not in Cl(p), and choose a neighborhood U
of q that does not intersect {p}. Then there is E ⊂ A for which X−U = V (E). Consequently, p ∈ V (E)
and q 6∈ V (E). Since p contains E and q does not, we conclude in particular that q does not contain p.
This means that q 6∈ V (p). So Cl(p) = V (p).

c. q ∈ Cl({p}) if and only if p ⊆ q.

Obvious from part b.

d. X is a T0 space.

Suppose that p 6= q. If p ( q then X − V (q) is an open set containing p but not containing q; otherwise
p 6⊆ q and hence X − V (p) is an open set containing q but not containing p.

1.19. Show that Spec(A) is an irreducible topological space iff N(A) is a prime ideal in A.

Suppose that N(A) is not a prime ideal. Then there are f, g ∈ A for which fg ∈ N(A) and yet f, g 6∈ N(A).
Since f and g are not nilpotent, we see that Xf and Xg are nonempty open sets. But Xf ∩Xg = Xfg = ∅
since fg is nilpotent. Hence, Spec(A) is not irreducible.

Suppose that Spec(A) is not irreducible. Choose nonempty open U, V for which U ∩ V = ∅. Then there are
f, g for which ∅ 6= Xf ⊆ U and ∅ 6= Xg ⊆ V . So fg is nilpotent since Xfg = Xf ∩Xg = ∅. But neither f nor
g is nilpotent. This means that N(A) is not a prime ideal.
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1.20. Let X be a general topological space. Prove the following.

a. If Y is an irreducible subspace of X, then the closure Ȳ of Y in X is irreducible.

Suppose U and V are open in X, and that U ∩ Ȳ and V ∩ Ȳ are nonempty. Choose x ∈ U ∩ Ȳ . Since U
is a neighborhood of x, and since x ∈ Ȳ , we see that U intersects Y nontrivially. So U ∩Y , and similarly
V ∩ Y , are nonempty. Since Y is irreducible, U ∩ Y intersects V ∩ Y nontrivially, and therefore U ∩ Ȳ
intersects V ∩ Ȳ nontrivially. Hence, Ȳ is irreducible as well.

b. Every irreducible subspace of X is contained in a maximal irreducible subspace.

Suppose that Σ consists of all irreducible subspaces of X and that Σ is partially ordered by inclusion.
Let C = {Yα : α ∈ I} be an ascending chain in Σ. Define Y =

⋃
α∈I Yα, and suppose that U, V open

in X are such that U ∩ Y and V ∩ Y are nonempty. There are α, β for which U ∩ Yα and V ∩ Yβ are
nonempty. We may assume that α ≤ β. Notice then that U ∩ Yβ ⊇ U ∩ Yα is nonempty. Since Yβ

is irreducible, we conclude that U ∩ Yβ and V ∩ Yβ intersect nontrivially. But then U ∩ Y and V ∩ Y
intersect nontrivially. That is, Y is irreducible. So by Zorn’s Lemma, Σ has maximal elements. Thus,
every irreducible subspace of X is contained in a maximal irreducible subspace of X.

c. The maximal irreducible subspaces of X are closed and cover X. What are the irreducible
components of a Hausdorff space?

If Y is a maximal irreducible subspace of X, then Y = Ȳ since Ȳ is irreducible. In other words, Y is
closed. If x ∈ X, then {x} is irreducible, and so x is contained in some maximal irreducible subspace of
X. This means that X is covered by the irreducible components.

If X is a Hausdorff space and Y ⊆ X contains two distinct points x and y, then we can choose disjoint
open U and V for which x ∈ U and y ∈ V . Then U ∩ Y and V ∩ Y are nonempty disjoint open sets in
Y , implying that Y is not irreducible. So the irreducible components of a Hausdorff space are precisely
the one point sets.

d. The irreducible components of Spec(A) are of the form V (p) for some minimal prime ideal p.

Let p be a prime ideal and suppose f ∈ A. Then Xf ∩V (p) 6= ∅ if and only if f 6∈ q for some prime ideal
q ⊇ p, and this occurs if and only if f 6∈ p. Now assume that Xf ∩ V (p) and Xg ∩ V (p) are nonempty
open subsets of V (p). Then f, g 6∈ p so that fg 6∈ p, and hence

p ∈ Xfg ∩ V (p) = (Xf ∩ V (p)) ∩ (Xg ∩ V (p))

This means that V (p) is an irreducible subspace of Spec(A). Now any irreducible subspace of Spec(A)
is of the form V (r(a)) for some ideal a. Suppose r(a) is not prime. Then there are f, g 6∈ r(a) for which
fg ∈ r(a). So there is p ∈ V (a) not containing f and there is q ∈ V (a) not containing g. This means
that Xf ∩ V (r(a)) and Xg ∩ V (r(a)) are nonempty. But Xfg ∩ V (r(a)) = ∅ since every prime ideal
containing r(a) contains fg. Hence, V (r(a)) is not irreducible. So the irreducible subspaces of X are
precisely of the form V (p) for some prime ideal p. Further, V (p) is maximal among all sets of the form
V (q), where q is prime, if and only if p is a minimal prime ideal. So we are done.

1.21. Let φ : A → B be a ring homomorphism, with X = Spec(A) and Y = Spec(B). Define φ∗ : Y → X
by φ∗(q) = φ−1(q). Prove the following.

a. If f ∈ A then φ∗−1(Xf ) = Yφ(f) and so φ∗ is continuous.
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Notice that φ∗−1(Xf ) consists of all q ∈ Y for which f 6∈ φ−1(q). Also, Yφ(f) consists of all q ∈ Y for
which φ(f) 6∈ q. But φ(f) ∈ q if and only if f ∈ φ−1(q), and so φ∗−1(Xf ) = Yφ(f). In turn, this implies
that φ∗ is continuous since {Xf |f ∈ A} is a basis of X and φ∗−1(Xf ) is open for every f ∈ A.

b. If a is an ideal in A and then φ∗−1(V (a)) = V (ae).

The following long chain of equalities

φ∗−1(V (a)) = φ∗−1(V (∪x∈a{x}))
= φ∗−1(∩x∈aV (x))

= ∩x∈aφ
∗−1(V (x))

= ∩x∈aφ
∗−1(X −Xx)

= ∩x∈a[Y − φ∗−1(Xx)]
= ∩x∈a[Y − Yφ(x)]
= ∩x∈aV (φ(x))
= V (φ(a))
= V (ae)

gives us the desired result.

c. If b is an ideal in B then Cl(φ∗(V (b))) = V (bc).

Any p ∈ φ∗(V (b)) is of the form qc for some q ⊇ b. Then p ⊇ bc, so that φ∗(V (b)) ⊆ V (bc), and hence

Cl(φ∗(V (b))) ⊆ Cl(V (bc)) = V (bc)

On the other hand, suppose p ∈ V (bc) and that Xf is a basic open set in X containing p. Then bc ⊆ p
and f 6∈ p so that f 6∈ r(bc) = r(b)c. Hence, φ(f) 6∈ r(b), implying the existence of a prime ideal
q ∈ V (b) for which φ(f) 6∈ q. Then f 6∈ φ∗(q) and so φ∗(q) ∈ Xf . This means that φ∗(V (b)) ∩Xf 6= ∅,
so that p ∈ Cl(φ∗(V (b))). Thus Cl(φ∗(V (b))) = V (bc).

d. If φ is surjective then φ∗ is a homeomorphism of Y onto the closed subset V (Ker(φ)) of X.
In particular, Spec(A) and Spec(A/N(A)) are naturally isomorphic.

If q ∈ Y , then φ∗(q) contains Ker(φ). If p ∈ V (Ker(φ)) then p/ Ker(φ) is isomorphic with a prime ideal
q of Y , under the isomorphism φ̄ : A/ Ker(φ) → B. Thus, p = φ∗(q) so that φ∗ maps Y onto V (Ker(φ)).
Now if φ∗(p) = φ∗(q), then φ−1(p) = φ−1(q), and so p = q since φ is surjective. So φ∗ is injective. We
already know by part a that φ∗ is continuous. To show that φ∗ is a homeomorphism it suffices to show
that φ−1 is continuous. To do this, it suffices to show that φ∗ is a closed map. By part c we know that
φ∗(V (b)) ⊆ V (bc) for any ideal b in Y . If p ∈ V (bc) then φ(p) ⊇ φ(bc) = b by surjectivity of φ, and
φ(p) ∈ Y . But then p = φ∗(φ(p)) ∈ φ∗(V (b)). So φ∗(V (b)) = V (bc) = Cl(φ∗(V (b))) by part c. Hence,
φ∗ is indeed a closed map. So φ∗ is a homeomorphism between Y and V (Ker(φ)).

Finally, the natural homomorphism A → A/N(A) is surjective with kernel N(A). Therefore, Spec(A/N(A)
is homeomorphic with V (N(A)) = Spec(A).

e. The image φ∗(Y ) of Y is dense in X if and only if Ker(φ) ⊆ N(A).



12

Notice that Cl(φ∗(Y )) = Cl(φ∗(V (0))) = V (0c) = V (Ker(φ)). Consequently, φ∗(Y ) is dense in X if and
only if V (Ker φ) = X, and this occurs precisely when Ker(φ) ⊆ N(A), and in particular when φ is 1-1.

f. Let ψ : B → C be another ring homomorphism. Show that (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

We have (ψ ◦ φ)∗(r) = (ψ ◦ φ)−1(r) = φ−1(ψ−1(r)) = φ∗(ψ∗(r)) for every r ∈ Spec(C).

g. Let A be an integral domain with only one nonzero prime ideal p, and suppose that K is
the field of fractions of A. Define B = (A/p) ×K and let φ : A → B by φ(x) = (x̄, x). Show
that φ∗ is bijective but not a homeomorphism.

First, A/p is a field since p is a maximal ideal in A. Now let q1 consist of all (x̄, 0) ∈ B and let q2 consist
of all (0, x) ∈ B. Then q1 and q2 are maximal ideals in B since B/q1

∼= K and B/q2
∼= A/p. If q is

another prime ideal of B, then q1q2 = 0 is contained in q, and so q1 ⊆ q or q2 ⊆ q. So q1 and q2 are
the only prime ideals of B. Hence, Spec(A) = {0, p} and Spec(B) = {q1, q2} are two-point spaces. It is
easy to see that φ∗(q1) = 0 and φ∗(q2) = p, so that φ∗ is a bijection. But φ∗ is not a homeomorphism.
After all, Spec(B) is Hausdorff since all prime ideals are maximal, but Spec(A) is not Hausdorff since 0
is a non-maximal prime ideal.

1.22. Suppose that A1, . . . , An are rings and A =
∏n

j=1 Aj. Show that Spec(A) is the disjoint union of
open (and closed) subspaces Xj, where Xj is canonically homeomorphic with Spec(Aj).

Let πj : A → Aj and ij : Aj → A be the canonical maps. If q is a prime ideal in Aj , then π−1
j (q) is a prime

ideal in A. Conversely, suppose p is a prime ideal in A. Define ej = ij(1Aj ) so that
∑n

1 ej = 1A and ejek = 0
if j 6= k. Some ej∗ 6∈ p since p 6= A. For j 6= j∗ we have ejej∗ = 0 ∈ p so that ej ∈ p. From this we see that
p = π−1

j∗ (q) for some ideal q in Aj∗ , and it is easy to see that q is a prime ideal in Aj∗ .

Therefore, Spec(A) is the disjoint union of the subsets Xj , where Xj is the set of all π−1
j (q), where q is a

prime ideal in Aj . Notice that each Xj is closed since Xj = V (π−1
j (0)). This also shows that each Xj is

open since Xj =
⋂

k 6=j Xc
k. Since πj is surjective, exercise 1.22 tells us that π∗j : Spec(Aj) → Spec(A) is

a homeomorphism of Spec(Ai) onto V (Ker(πj)) = V (π−1
j (0)) = Xj . In particular, Xj and Spec(Aj) are

canonically homeomorphic.

Conversely, prove that the following are equivalent for any ring A. Deduce that the spectrum
of a local ring is always connected.

a. X = Spec(A) is disconnected.

b. A ∼= A1 ×A2 where A1 and A2 are nonzero rings.

c. A has an idempotent e 6= 0, 1.

(a ⇒ c) We can write X = V (a)
∐

V (b) where a and b are ideals in A. Then V (a ∩ b) = V (a) ∪ V (b) = X
implying that a ∩ b ⊆ N(A). Also, ∅ = V (a) ∩ V (b) = V (a ∪ b), implying that A = 〈a ∪ b〉, and hence
A = a + b. Now write 1 = a + b with a ∈ a and b ∈ b. Notice that ab ∈ a ∩ b ⊆ N(A) so that
(ab)n = 0 for some n > 0. Now 1 = (a + b)n = an + bn + abx for some x ∈ A. Since abx ∈ N(A)
we conclude that an + bn is a unit in A. Let u be the inverse of an + bn and notice that uanbn = 0
so that uan = uan(u(an + bn)) = (uan)2 and similarly ubn = (ubn)2. If uan = 0 then an = 0 and
1 = b(b−1 + ax) ∈ b, which is not possible since V (b) 6= ∅. So uan and ubn are nonzero. On the other
hand, if 1 = uan = ubn then 1 = u(an + bn) = 2 so that 1 = 0. Hence, one of uan, ubn is a nontrivial
idempotent.

(b ⇒ a) We already know that X = X1

∐
X2 where Xi = Spec(Ai) is a non-empty open subset of X, since

Ai 6= 0. So X is disconnected.
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(b ⇒ c) Take e = (0, 1) or e = (1, 0).

(c ⇒ b) Define non-zero subrings of A by A1 = (e) and A2 = (1−e). Then A = A1+A2 since a = ae+a(1−e) for
any a ∈ A. If x ∈ A1∩A2, then x = ae and x = b(1−e) for some a and b. But ae = aee = b(1−e)e = 0,
and so x = 0. Therefore, A ∼= A1 ×A2.

Exercise 1.12 shows that a local ring A has no idempotent e 6= 0 or 1, so that Spec(A) is always connected
by the above.

1.23. Let A be a Boolean ring. Prove the following.

a. For each f ∈ A, the set Xf is open and closed in Spec(A).

By definition, Xf = V (f)c is open. If p is a prime ideal, then f ∈ p or 1− f ∈ p since f(1− f) = 0. It
follows from this that Xf = V (1− f), so that Xf is closed in Spec(A).

b. If f1, . . . , fn ∈ A then Xf1 ∪ · · · ∪Xfn
= Xf for some f ∈ A.

Choose f , as in exercise 1.11, so that (f1, . . . , fn) = (f). Then V (f) = V (
⋃n

1 (fj)) =
⋂n

1 V (fj), implying
that Xf =

⋃n
1 Xfj .

c. If Y is both open and closed, then Y = Xf for some f ∈ A.

Since Y is closed in the compact space Spec(A), we see that Y itself is compact. Exercise 1.17 now says
that Y is the union of finitely many sets of the form Xf . We now apply part b.

d. Spec(A) is a compact Hausdorff space.

Suppose that p, q are distinct prime ideals in X. We may suppose that there is f ∈ p − q. Then
1− f ∈ q− p since f(1− f) = 0. So X1−f and Xf are open sets containing p and q, respectively. These
sets are disjoint since X1−f ∩Xf = X(1−f)f = X0 = ∅. Therefore, X is compact Hausdorff.

1.24. Show that every Boolean lattice becomes a Boolean ring, and that every Boolean ring becomes
a Boolean lattice. Deduce that Boolean lattices and Boolean rings are equivalent.

A lattice L is a partially ordered set such that, if a and b are in L, then there is an element a ∧ b that is the
largest element in the non-empty set {c ∈ L : c ≤ a and c ≤ b}, and there is an element a ∨ b that is the
smallest element in the non-empty set {c ∈ L : c ≥ a and c ≥ b}. We say that L is Boolean provided that
the following hold.

a. There is a smallest element 0 in L, and a largest element 1.

b. For a, b, c ∈ L we have a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and also a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). In other
words, we have distribution.

c. For each a there is a unique a′ such that a ∧ a′ = 1 and a ∨ a′ = 0.

Lets make a few observations about ∧ and ∨. We first have

a ∧ 0 = 0 a ∨ 0 = a a ∧ 1 = a a ∨ 1 = 1

This implies that 0′ = 1 and 1′ = 0. Clearly a′′ = a. We also have

a ∧ b = b ∧ a a ∨ b = b ∨ a a ∧ a = a a ∨ a = a

We have the associativity relations
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(a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∨ b) ∨ c = a ∨ (b ∨ c)

We also have DeMorgan’s Laws

(a ∧ b)′ = a′ ∨ b′ (a ∨ b)′ = a′ ∧ b′

To prove the first of DeMorgan’s Laws we note that

(a ∧ b) ∧ (a′ ∨ b′) = (a ∧ b ∧ a′) ∨ (a ∧ b ∧ b′) = 0 ∨ 0 = 0

and also

(a ∧ b) ∨ (a′ ∨ b′) = (a ∨ a′ ∨ b′) ∧ (b ∨ a′ ∨ b′) = 1 ∧ 1 = 1

The first of Demorgan’s Laws now follows from the uniqueness in b. The second of DeMorgan’s Laws follows
very similarly. Now for a, b ∈ L we define operations of addition and multiplication by

a + b = (a ∧ b′) ∨ (a′ ∧ b) and a · b = a ∧ b

Notice that a+0 = (a∧1)∨(a′∧0) = a∨0 = a so that 0 is the additive identity in L. Addition is commutative
since

b + a = (b ∧ a′) ∨ (b′ ∧ a)
= (b′ ∧ a) ∨ (b ∧ a′)
= (a ∧ b′) ∨ (a′ ∧ b) = a + b

Every a ∈ L has an additive inverse since a + a′ = (a ∧ a′) ∨ (a′ ∧ a) = a ∧ a′ = 0 by definition of a′.
Lastly, addition is associative. This is tedious to check, so I will not include that calculation. Notice that
a ·1 = a∧1 = a so that 1 is the multiplicative identity. Clearly, multiplication is commutative and associative.
Lastly, multiplication distributes over addition since

a · c + b · c = (a ∧ c) + (b ∧ c)
= ((a ∧ c) ∧ (b ∧ c)′) ∨ ((a ∧ c)′ ∧ (b ∧ c))

Summarizing, we see that L has a ring structure. L is a boolean ring since a · a = a ∧ a = a. Now suppose
that A is a Boolean ring. Define an ordering on A by a ≤ b if and only if a = ab. Then ≤ is reflexive since
a = a2. If a ≤ b and b ≤ a then a = ab = ba = b, so that ≤ is anti-symmetric. If a ≤ b and b ≤ c then
a = ab = abc = ac so that a ≤ c, and hence ≤ is transitive. So A is partially ordered.

Now let a and b be arbitrary elements of A, and notice that a, b ≤ a+b+ab since a(a+b+ab) = a+ab+ab = a
and b(a+b+ab) = ab+b+ab = b. If a ≤ c and b ≤ c, then a = ac and b = bc, so that (a+b+ab)c = a+b+ab
and hence a+ b+ ab ≤ c. This means that {c ∈ A : a, b ≤ c} is a non-empty set with a+ b+ ab as its smallest
element. So define a ∨ b = a + b + ab.

Again let a and b be arbitrary elements of A, and notice that ab ≤ a and ab ≤ b. If c ≤ a and c ≤ b,
then c = ac and c = bc, so that (ab)c = ac = c and hence c ≤ ab. This means that {c ∈ A : c ≤ a, b} is a
non-empty set with ab as its largest element. So define a∨ b = a + b + ab. Now that A is seen to be a lattice,
I claim that A is a Boolean lattice. Notice that 0 ≤ a ≤ 1 for every a ∈ L since 0 = a0 and a = a1. We see
that ∨ and ∧ distribute over one another since
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a ∨ (b ∧ c) = a + (b ∧ c) + a(b ∧ c)
= a + bc + abc

= (a + 2ac) + (ab + bc + abc) + (ab + 2abc)
= a(a + c + ac) + b(a + c + ac) + ab(a + c + ac)
= (a + b + ab)(a + c + ac)
= (a ∨ b)(a ∨ c)
= (a ∨ b) ∧ (a ∨ c)

and similarly a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). Now define a′ = 1 − a so that a ∧ a′ = a(1 − a) = 0 and
a ∨ a′ = a + (1 − a) + a(1 − a) = 1. If b ∈ A satisfies 0 = a ∧ b and 1 = a ∨ b = a + b + ab = a + b, then
b = 1− a = a′. So a′ is unique. Thus, A is indeed a Boolean lattice.

Now suppose that we started with a Boolean lattice (L,≤) and made it into a Boolean ring (L,+, ·), then
made this ring into a new Boolean lattice (L, 4). If a ≤ b then ab = a ∧ b = a, so that a 4 b. If a 4 b then
a = ab = a ∧ b, so that a ≤ b. Hence, (L,≤) and (L,4) are isomorphic Boolean lattices under the identity
map id : L → L.

On the other hand, suppose we started with a ring (A, +, ·) and made it into a Boolean lattice (A,≤),
then made this Boolean lattice into a new Boolean ring (A, u,×). Then a× b = a ∧ b = a · b and

a u b = (a ∧ b′) ∨ (a′ ∧ b)
= (a ∧ (1− b)) ∨ ((1− a) ∧ b)
= a(1− b) ∨ (1− a)b
= a(1− b) + (1− a)b + a(1− b)(1− a)b
= a + b

Therefore, (A, +, ·) and (A, u,×) are isomorphic rings Boolean rings under the identity map id : A → A.
Suppose f : A → B is a ring isomorphism of Boolean rings. Let (A,≤) and (B, 4) be the resulting Boolean
lattices. The bijection f is order-preserving since a ≤ b implies that a = ab, and hence f(a) = f(a)f(b),
implying that f(a) 4 f(b). This means that the two resulting lattices are isomorphic.

On the other hand, if (L,≤) and (L̄, 4) are two Boolean lattices, isomorphic under f : L → L̄, then let
(L, +, ·) and (L̄, +, ·) be the resulting Boolean rings. Notice that f−1 : L̄ → L is order-preserving as well.
It follows easily that f(a ∧ b) = f(a) Z f(b) and f(a ∨ b) = f(a) Y f(b). So f(a + b) = f(a) + f(b) and
f(ab) = f(a)f(b). In other words, (L, +, ·) and (L̄, +, ·) are isomorphic Boolean rings. Summarizing, there
is a bijective correspondence between (isomorphism classes of) Boolean rings and (isomorphism classes of)
Boolean lattices.

1.25. Deduce Stone’s Theorem, that every Boolean lattice is isomorphic to the lattice of open-and-
closed subsets of some compact Hausdorff topological space.

Suppose L is a Boolean lattice and make L into a Boolean ring A as in exercise 1.24. Then X = Spec(A) is a
compact Hausdorff space. Let L consist of all subsets of X that are both open and closed. We order L by
set-theoretic inclusion. L is clearly a partially ordered set. If Y, Y ′ ∈ L then Y ∪Y ′, Y ∩Y ′ ∈ L so that L
is a lattice. The emptyset ∅ is the smallest element in L and full space X is the largest element of L . Also,
if Y ∈ L then Y c is an open and closed subset of X, with Y ∩ Y c = ∅ and Y ∪ Y c = X, with Y c uniquely
determined by these equations. This means that L is in fact a Boolean lattice. Exercise 1.23 tells us that
Y ∈ L if and only if Y = Xf for some f ∈ L. So we have a surjective map ψ : L → L given by ψ(f) = Xf .
If f ≤ g then f = fg so that Xf = Xf ∩Xg and hence Xf ⊆ Xg. This means that ψ is an order-preserving
map. On the other hand, if Xf = Xg then



16

∅ = X1−f ∩Xf = X1−f ∩Xg = X(1−f)g

so that (1 − f)g ∈ N(A). But then 0 = [(1 − f)g]n for some n > 0 so that (1 − f)g = 0, and hence g = fg.
Similarly, f = fg and hence f = g. This shows that ψ is an isomorphism of lattices.

1.26. Let X be a compact Hausdorff space, let C(X) consists of all continuous real-valued functions
defined on X, and define X̃ as the set of all maximal ideals in C(X). We have a map µ : X → X̃
given by x 7→ mx, where mx consists of all f ∈ C(X) that vanish at the point x. Prove the
following.

a. The map µ is surjective.

Suppose that m is a maximal ideal in C(X). Let V consist of all x ∈ X such that f(x) = 0 when-
ever f ∈ m. If V is nonempty and x ∈ V , then m ⊆ mx, and so m = mx = µ(x) by maximality.
So assume that V is empty. Then given x ∈ X there is f ∈ m for which f(x) 6= 0. By continuity,
there is a neighborhood Ux of x on which fx is nonzero. These neighborhoods cover X since V = ∅,
and so by compactness there are {xi}n

1 so that X =
⋃n

1 Uxi
. Let f =

∑n
1 f2

xi
and notice that f is a

continuous function that is everywhere positive. But then f is a unit in C(X), having multiplicative
inverse 1/f , and so m = C(X); a contradiction. Therefore, V is nonempty and m = µ(x) for some x ∈ V .

b. The map µ is injective.

Recall that every compact Hausdorff space is normal. Let x, y be distinct points of X. Since {x} and
{y} are disjoint closed sets, we can apply Urysohn’s Lemma to deduce the existence of an f ∈ C(X) for
which f(x) = 0 and f(y) = 1. Then f ∈ mx and f 6∈ my. So mx 6= my. This shows that µ is injective.

c. The bijection µ is a homeomorphism when X̃ is given the subspace topology of Spec(C(X)).

Suppose f ∈ C(X) and define Uf = f−1(R∗) and Ũf = {m ∈ X̃ : f 6∈ m}. Every m ∈ X̃ is of the form
mx for a unique x ∈ X. So f ∈ m if and only if f(x) = 0. It follows that µ(Uf ) = Ũf .

Now Uf is open in X since f is continuous. So suppose that U ⊆ X is open and that x ∈ U . By
normality there is a neighborhood V of x such that Cl(V ) ⊆ U . By Urysohn’s Lemma there is f ∈ C(X)
such that f(Cl(V )) = {1} and f(X \U) = {0}. But then Uf ⊆ Cl(V ) ⊆ U . This shows that {Uf}f∈C(X)

is a basis for the topology on X.

Notice that Ũf = X̃ ∩Xf is open in subspace topology. This also shows that {Ũf}f∈C(X) is a basis for
the topology of X̃ since {Xf}f∈C(X) is a basis for the topology of Spec(X) by exercise 1.17.

Now the fact that µ takes basis elements to basis elements shows that µ is a homeomorphism. Conse-
quently, X and X̃ are homeomorphic topological spaces.

1.27. Let k be an algebraically closed field and X an affine variety in kn. Show that there is a
natural bijection between the elements of X and the maximal ideals of P (X), where P (X) =
k[t1, . . . , tn]/I(X) is the coordinate ring of X.

Let x ∈ X and consider the map k[t1, . . . , tn] → k given by f 7→ f(x). That is, consider the map given by
evaluation at x. This map is surjective since k[t1, . . . , tn] contains all of the constant functions. If f−g ∈ I(X)
then f(x) = g(x) since x ∈ X, and so the map k[t1, . . . , tn] → k induces a surjective map P (X) → k. The
kernel of this map is a maximal ideal, denoted by mx. We now have a map µ : X → Max(P (X)) given
by µ(x) = mx. If mx = my and x = (x1, . . . , xn) while y = (y1, . . . , yn), then ti − xi ∈ my for every i as
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ti − xi ∈ mx for every i. But this means that yi − xi = 0 and so yi = xi for all i, so that x = y. In
other words, µ is injective. The less trivial part of this exercise is showing that µ is surjective. So let m be
a maximal ideal in P (X). Then m = n/I(X) where n is a maximal ideal in k[t1, . . . , tn] containing I(X).
Since k is algebraically closed, the Weak Nullstellensatz implies that n = (x1 − a1, . . . , xn − an) for some
ai ∈ k. Suppose (a1, . . . , an) 6∈ X. Since X is an affine variety, we can easily verify that x ∈ X if and
only if f(x) = 0 for every f ∈ I(X). So there is some f ∈ I(X) for which f(a1, . . . , an) 6= 0. Since every
g ∈ n satisfies g(a1, . . . , an) = 0, we see that f 6∈ n; a contradiction. Therefore, (a1, . . . , aN ) ∈ X and thus
m = µ(a1, . . . , an), showing that µ is surjective. Hence, µ is a bijection between X and Max(P (X)).

1.28? Let X and Y be affine varieties in kn and km. Show that there is a bijective correspondence Ψ
between the regular mappings X → Y and the k-algebra homomorphisms P (Y ) → P (X).

By definition, P (X) consists of all polynomial maps X → k. There is a natural multiplication on P (X) that
makes P (X) into a k-algebra. Suppose that φ : X → Y is a regular mapping and that η ∈ P (Y ) so that
η ◦ φ ∈ P (X). Then η 7→ η ◦ φ is a k-linear map P (Y ) → P (X). If η, θ ∈ P (Y ) then

((η ◦ φ) · (θ ◦ φ))(x) = η(φ(x))θ(φ(x)) = (η · θ)(φ(x)) = ((η · θ) ◦ φ)(x)

This means that the map P (Y ) → P (X) induced by φ is a k-algebra homomorphism. Now suppose that
φ′ induces the same k-algebra homomorphism P (Y ) → P (X) as φ. Let ηi : Y → k be the ith coordinate
function on Y , so that ηi ◦ (φ− φ′) = 0 for all i. Then φ(x) = φ′(x) for all x ∈ X. So Ψ is an injective map.
Now suppose that f : P (Y ) → P (X) is a k-algebra homomorphism. Define fi : X → k by fi = f(ηi) where
ηi is ith coordinate function on Y , and let φ : X → km by φ = (f1, . . . , fm).
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Chapter 2 : Modules

2.1. Show that Zm⊗Z Zn is the zero ring if gcd(m,n) = 1.

Choose integers s and t for which sm + tn = 1. Then the identity element of Zm⊗Z Zn satisfies

[1]m ⊗ [1]n = [sm + tn]m ⊗ [1]n = [tn]m ⊗ [1]n = tn · [1]m ⊗ [1]n = [1]m ⊗ tn · [1]n = 0

Therefore our whole ring Zm⊗Z Zn = 0.

2.2. Let A be a ring with ideal a and A-module M . Show that A/a⊗A M ∼= M/aM .

Tensoring the short exact sequence of A-modules

0 // a
j

// A
π // A/a // 0

with M yields the exact sequence of A-modules

a⊗A M
j⊗1

// A⊗A M
π⊗1

// A/a⊗A M // 0

Since the map f : A ⊗ M → M given by f(a ⊗ m) = am is an isomorphism of A-modules, we can define
g = (π ⊗ 1) ◦ f−1 : M → A/a ⊗M . Then Im(g) = Im(π ⊗ 1) = A/a ⊗M and Ker(g) = f(Ker(π ⊗ 1)) =
f(Im(j ⊗ 1)) = aM . So we have an isomorphism ḡ : M/aM → A/a⊗M of A-modules.

2.3. Let (A, m, k) be a local ring. Show that, if M and N are finitely generated A-modules satisfying
M ⊗A N = 0, then M = 0 or N = 0.

For every A-module P define a k-vector space Pk = k ⊗A P . Then Pk and P/mP are isomorphic by exercise
2.2. Now suppose that M and N are finitely generated A-modules for which M⊗N = 0, so that (M⊗N)k = 0.
Then

Mk ⊗k Nk = (M ⊗A k)⊗k (N ⊗A k)
∼= M ⊗A (k ⊗k (N ⊗A k))
∼= M ⊗A (k ⊗k (k ⊗A N))
∼= M ⊗A ((k ⊗k k)⊗A N) ∼= (M ⊗A N)k

Therefore Mk ⊗k Nk = 0. Since Mk and Nk are k-vector spaces, we see that Mk = 0 or Nk = 0. So either
mM = M or mN = N . By Nakayama’s lemma, either M = 0 or N = 0.

2.4. Suppose Mi are A-modules and let M =
⊕

i Mi. Prove that M is flat iff each Mi is flat.

I claim that, for every A-module N , the A-modules N ⊗ ⊕
Mi and

⊕
(N ⊗ Mi) are isomorphic. Define

φ : N ×M → ⊕
(N ⊗Mi) by φ(n, (xi)) = (n ⊗ xi). Then φ is A-bilinear and so induces a homomorphism

Φ : N ⊗M → ⊕
(N ⊗Mi) for which Φ(n⊗ (xi)) = (n⊗ xi). Suppose now that ji : Mi → M corresponds to

canonical injection. The map n⊗ xi 7→ n⊗ ji(xi) is a homomorphism of N ⊗Mi into N ⊗M . Consequently,
Ψ :

⊕
(N ⊗Mi) → N ⊗M by Ψ((ni ⊗ xi)) =

∑
ni ⊗ ji(xi) is a homomorphism. It is easy to show that Φ

and Ψ are inverse to one another, and so are isomorphisms.

Suppose now that f : N ′ → N is injective and consider the mapping f ⊗ 1 : N ′ ⊗M → N ⊗M . As above,
N ′ ⊗ M is isomorphic with

⊕
(N ′ ⊗ Mi) under Ψ′, and

⊕
(N ⊗ Mi) is isomorphic with N ⊗ M under Φ.
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Therefore, f ⊗ 1 is injective if and only if the induced map g = Φ ◦ (f ⊗ 1M ) ◦ Ψ′ from
⊕

(N ′ ⊗ Mi) to⊕
(N ⊗Mi) is injective.

N ′ ⊗⊕
α Mα

f⊗1M−−−−→ N ⊗⊕
α MαxΨ′

yΦ

⊕
α(N ′ ⊗Mα)

g−−−−→ ⊕
α(N ⊗Mα)

Notice that g((nα⊗xα)) = (f(nα)⊗xα). Put differently g = (f ⊗1α) where 1α is identity on Mα. Therefore,
g is injective if and only if each of its coordinate functions f ⊗ 1α is injective. Hence, M is flat if and only if
each Mα is flat.

2.5. Prove that A[x] is a flat A-module for every ring A.

Let Mi be the A-submodule of A[x] generated by xk. Then Mi = Axi ∼= A so that Mi is flat. Consequently,
A[x] is a flat A-module since A[x] =

⊕∞
0 Mi.

2.6. For any A-module M , let M [x] denote the set of all polynomials in x with coefficients in M .
Then M [x] is an A[x]-module. Show that M [x] ∼= A[x]⊗A M as A[x]-modules.

It is clear that as A-modules A[x] ∼= ⊕∞
i=0 Axi. Therefore, we have the isomorphism of A-modules

A[x]⊗A M ∼=
∞⊕

i=0

(Axi ⊗A M) ∼=
∞⊕

i=0

Mxi = M [x]

Here the isomorphism θ is given by θ(
∑

aix
i ⊗m) =

∑
(aim)xi. All we have to do now is verify that θ is

A[x]-linear. Omitting indices we compute

θ
( ∑

a′ixi ·
( ∑

aix
i ⊗m

))
= θ

(( ∑
a′ixi ·

∑
aix

i
)
⊗m

)

= θ
( ∑

xn
∑

aia
′
n−i ⊗m

)

=
∑ (∑

aia
′
n−im

)
xn

=
∑

a′ix
i ·

∑
(aim)xi

=
∑

a′ix
i · θ

( ∑
aix

i ⊗m
)

Hence, θ is an isomorphism of A[x]-modules.

2.7. Let p be a prime ideal in A and show that p[x] is a prime ideal in A[x]. If m is a maximal ideal
in A, must m[x] be a maximal ideal in A[x]?

Is π : A → A/p denotes the natural map, then π induces a map A[x] → (A/p)[x] given by
∑

akxk 7→∑
π(ak)xk. This map is surjective and has kernel p[x]. So A[x]/p[x] ∼= (A/p)[x]. But (A/p)[x] is an integral

domain since A/p is an integral domain. So p[x] is a prime ideal in A[x]. If m is a maximal ideal in A, then
A[x]/m[x] ∼= (A/m)[x] with A/m a non-zero field. So (A/m)[x] is not a field, implying that m[x] is not a
maximal ideal in A[x].

2.8. Suppose that M and N are flat A-modules. Show that M ⊗A N is a flat A-module.

Let S0 be an exact sequence. We may tensor S0 with M to get an exact sequence S1, and we may tensor
S1 with N to get an exact sequence S2. But the tensor product is associative, and so the sequence S2 is
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the same one as would have been obtained had we tensored S0 with M⊗A N . This shows that M⊗A N is flat.

Let B be a flat A-algebra and N a flat B-module. Show that N is a flat A-module.

Let S0 be an exact sequence of A-modules. We may tensor S0 with B to get an exact sequence S1 of A-
modules. This is an exact sequence of B-modules, since B is an (A,B)-bimodule. Tensoring this sequence
with N yields an exact sequence S2 of B-modules. Also, S2 is an exact sequence of A-modules. So N is a
flat A-module.

2.9. Suppose we have the short exact sequence of A-modules

0 // M ′ f
// M

g
// M ′′ // 0

with M ′ and M ′′ finitely generated. Show that M is finitely generated as well.

Suppose that M ′ is generated by {xi} and M ′′ is generated by {zi}. Clearly Im(f) is generated by {f(xi)}.
Since g is surjective, there are yi ∈ M for which g(yi) = zi. Let N be the submodule of M generated by
{yi}, so that g(N) = M ′′. So for y ∈ M there is y′ ∈ N with g(y) = g(y′), and hence y = y′ + (y − y′) where
y − y′ ∈ Ker(g) = Im(f). We conclude that M is generated by {f(xi)} ∪ {yi}.

2.10. Let A be a ring with the ideal a ⊆ R(A). Suppose M is an A-module and N is a finitely generated
A-module, with u : M → N a homomorphism. Show that u is surjective provided the induced
homomorphism ū : M/aM → N/aN is surjective.

We define ū by ū(m̄) = u(m). We have the commutative diagram

A/a⊗M
ā⊗m 7→ā⊗u(m)

//

ā⊗m7→am

²²

A/a⊗N

ā⊗n7→an

²²

M/aM
m̄ 7→u(m)

// N/aN

Define L = N/Im(u). We have an exact sequence M → N → L → 0. We can tensor this with A/a to get an
exact sequence. Using the canonical isomorphism above we get the exact sequence

M/aM
ū // N/aN

π̄ // L/aL // 0

But ū is surjective so that π̄ is the zero map, and hence L/aL = 0. Nakayama’s lemma yields L = 0. In other
words, u is surjective, as claimed.

2.11. Suppose A is a nonzero ring. Show that m = n if Am and An are isomorphic A-modules. Show
that m ≥ n if An is a homomorphic image of Am. Must m ≤ n if there is an injective homomor-
phism Am → An of A-modules?

Let m be a maximal ideal in A with residue field k = A/m. If φ : Am → An is an isomorphism of A-modules,
then 1 ⊗ φ : k ⊗A Am → k ⊗A An is an isomorphism of A-modules, and so is an isomorphism of k-vector
spaces. These vector spaces have dimension m and n, respectively. We conclude that m = n. We prove
similarly that m ≥ n if there is a surjection Am → An, and that m ≤ n if there is an injection Am → An.

2.12. Let M be a finitely generated A-module and φ : M → An a surjective A-module homomorphism.
Show that Ker(φ) is finitely generated.
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Let An be free on {e1, . . . , en}, and choose ui ∈ M so that φ(ui) = ei. Then for x ∈ M there are ai ∈ A
satisfying φ(x) = φ(

∑n
1 aiui), and hence x − ∑n

1 aiui ∈ Ker(φ). So if we let N be the submodule of M
generated by {ui}, then M = N +Ker(φ). Obviously N ∩Ker(φ) = 0 since 0 = φ(

∑n
1 aiui) =

∑n
1 aiei implies

that each ai = 0, and hence
∑n

1 aiui = 0. Therefore, M = N ⊕ Ker(φ). Now Ker(φ) is isomorphic with
M/N , so that Ker(φ) is finitely generated.

2.13. Let f : A → B be a ring homomorphism, and let N be a B-module. Regarding N as an A-module
by restriction of scalars, form the B-module NB = B ⊗A N . Define g : N → NB by g(n) = 1 ⊗ n.
Show that g is an injective homomorphism and that g(N) is a direct summand of NB.

In general, the map M → MB need not be injective. So we are proving that it is injective in the special case
where A acts on M by restriction of scalars. Now (presumably) the action of B on NB is given by

b′ · (b⊗ n) = b′b⊗ n

Of course the action of A on N is given by a.n = f(a) ·n. Define p′ : B×N → N by p′(b, n) = b ·n. Obviously
p′ is additive in both variables. Also, p′ is A-bilinear since

p′(a.b, n) = p′(f(a)b, n) = f(a)b · n = f(a) · (b · n) = a.(b · n) = a.p′(b, n)
p′(b, a.n) = b · (a.n) = b · (f(a) · n) = f(a) · (b · n) = a.(b · n) = a.p′(b, n)

So there is a unique A-linear map p : B ⊗A N → N satisfying p(b ⊗ n) = b · n. Since p is A-linear we see
that p is a A-submodule of NB , and since g is A-linear, we see that Im(g) is an A-submodule of NB . Now g
is injective since p ◦ g = 1N . If y ∈ Im(g) ∩Ker(p) with y = g(x) then x = p(g(x)) = p(y) = 0, so that y = 0.
In other words, Im(g) ∩Ker(p) = 0. On the other hand, for x ∈ NB

x = g(p(x)) + (x− g(p(x)))

where g(p(x)) ∈ Im(g) and x− g(p(x)) ∈ Ker(p) since

p(x− g(p(x))) = p(x)− p(g(p(x))) = 0

Therefore, NB = Im(g)⊕Ker(p) as an A-module. On the other hand, if we define the action of B on NB by
b′ · (b⊗ n) = b⊗ b′ · n then p and g are both B-linear so that NB = Im(g)⊕Ker(p) as a B-module.

2.15. Use the notation of exercise 14 to show the following.

a. Every element in M is of the form µj(xj) for some j ∈ I.

The general element of M is of the form
∑

i∈F xi + C, where xi ∈ Mi and F is a finite subset of I.
Choose j ∈ I so that i ≤ j whenever i ∈ F . By definition of C we have

∑
i∈F xi +C =

∑
i∈F µij(xi)+C.

But
∑

i∈F µij(xi) ∈ Mj since each µij : Mi → Mj . So elements in M are of the form xj + C = µj(xj)
for some j ∈ I and xj ∈ Mj .

b. If µi(xi) = 0 then µil(xi) = 0 for some l ≥ i.

Notice that xi ∈ C since µi(xi) = 0. So write

xi =
∑

j∈I

∑

k≥j

(xjk − µjk(xjk))

Where xjk ∈ Mj equals 0 for all but finitely many j, k. We can choose l ≥ i so that xjk = 0 if j > l or
k > l. I claim that µil(xi) = 0. Now we play with indices to get
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µil(xi) = ((−xi)− µil(−xi)) + xi

= ((−xi)− µil(−xi)) +
∑

j≤l

∑

j≤k≤l

(xjk − µjk(xjk))

=
∑

j≤l

∑

j≤k≤l

(x′jk − µjk(x′jk))

=
∑

j≤l

∑

j≤k≤l

[
(x′jk − µjl(x′jk)) + (µjl(x′jk)− µjk(x′jk))

]

=
∑

j≤l

∑

j≤k≤l

[
(x′jk − µjl(x′jk)) + (µkl(µjk(x′jk))− µjk(x′jk))

]

=
∑

j≤l

∑

j≤k≤l

(x′′jk − µjl(x′′jk))

=
∑

j≤l

[( ∑

j≤k≤l

x′′jk

)
− µjl

( ∑

j≤k≤l

x′′jk

)]

=
∑

j≤l

(x′′′j − µjl(x′′′j ))

=
∑

j<l

(x′′′j − µjl(x′′′j )) + (x′′′j − µll(x′′′j ))

=
∑

j<l

(x′′′j − µjl(x′′′j ))

since µll is the identity. Since this identity holds in
⊕

j Mj , we see that x′′′j = 0 for all j < l. This
implies that µil(xi) = 0, as desired.

2.16. Suppose that N is an A-module paired with A-module homomorphisms αi : Mi → N , indexed by I, with
the property that αi = αj ◦ µij whenever i ≤ j. Define a A-module homomorphism φ :

⊕
i∈I Mi → N by

φ(
∑

xi) =
∑

αi(xi). Notice that φ(xi − µij(xi)) = αi(xi) − αj(µij(xi)) = 0 for every j > i, and of course
φ(xi − µii(xi)) = φ(0) = 0. So φ is identically zero on the submodule generated by {xi − µij(xi) : j ≥ i}.
This means that φ induces an A-module homomorphism Φ on lim

−→
Mi for which Φ(

∑
xi + C) =

∑
αi(xi).

Obviously Φ ◦ µi = αi for all i ∈ I. If Φ′ were a homomorphism on M for which Φ′ ◦ µi = αi, then we would
have Φ′(

∑
xi +C) =

∑
Φ′(µi(xi)) =

∑
αi(xi) = Φ(

∑
xi = C), so that Φ′ = Φ. Therefore, M has the desired

universal mapping property.

Suppose that M is an A-module and νi : Mi → M are A-module homomorphisms for which νi = νj ◦
µij whenever j ≥ i. Suppose also that whenever N is an A-module and αi : Mi → N are A-module
homomorphisms for which αi = αj ◦ µij for every j ≥ i, then there is a unique A-module homomorphism
Ψ : M → N such that Ψ ◦ νi = αi holds for every i ∈ I. It is easy to show that M and lim

−→
Mi are isomorphic

as A-modules. After all, choose Ψ : M → lim
−→

Mi so that Ψ◦νi = µi for every i. Also, choose Φ : lim
−→

Mi → M

so that Φ◦µi = νi for every i. Then Φ◦Ψ : M → M is an A-module homomorphism for which (Φ◦Ψ)◦νi = νi.
But iM is another map from M to M with this property. So by uniqueness Φ ◦ Ψ = iM . Similarly Ψ ◦ Φ is
identity on lim

−→
Mi. Therefore, Φ and Ψ are inverse isomorphisms.

2.17. Let (Mi)i∈I be a family of submodules of an A-module, such that for every i, j there is k for which
Mi + Mj ⊆ Mk. Define i ≤ j if Mi ⊆ Mj , and in this case let µij correspond to inclusion. Notice that
I is a directed set under this ordering. So we may speak of lim

−→
Mi.

Consider the submodule
⋃

Mi. Let N be an A-module and αi : Mi → N an A-module homomorphism for
which αi = αj ◦ µij whenever i ≤ j. Define α :

⋃
Mi → N by α(x) = αi(x), where x ∈ Mi. If x ∈ Mi and
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x ∈ Mj then choose k for which i ≤ k and j ≤ k. Then αk(x) = αi(x) and αk(x) = αj(x) since µik and
µij correspond to inclusion. Therefore, α is a well-defined map. It is an A-module homomorphism for which
α◦µi = αi. It is also the unique A-module homomorphism with this property. Therefore,

⋃
Mi is isomorphic

with lim
−→

Mi. It is easy to see that
⋃

Mi =
∑

Mi.

Suppose M is an arbitrary A-module. Let F consist of all finitely generated submodules of M . If M1 and M2

are finitely generated then so is M1 + M2. So we can consider the direct limit of the elements of F . Also, if
x ∈ M then Ax ∈ F . Consequently M equals the union of all the finitely generated submodules of M . The
previous paragraph shows that M is isomorphic with the direct limit of its finitely generated submodules.

2.18. Let M = (Mi, µij) and N = (Ni, νij) be direct systems of A-modules over the same directed set I. Suppose
that φi : Mi → Ni are A-module homomorphisms such that φj ◦ µij = νij ◦ φi whenever i ≤ j. Let M and
N be the direct limits of M and N, with associated homomorphisms µi and νi. Define αi : Mi → N by
αi = νi ◦ φi. Notice that αj ◦ µij = νj ◦ νij ◦ φi = νi ◦ φi = αi whenever i ≤ j. By exercise 17 there is
an A-module homomorphism φ : M → N for which φ ◦ µi = αi = νi ◦ φi for every i. So φ is the desired
homomorphism. By exercise 16 we see that Φ is the unique A-module homomorphism with this property.

2.19. The sequence M → N → P of direct systems over the same directed set I is said to be exact provided that
the corresponding sequence of modules and module homomorphisms is exact for every i ∈ I. Let M, N, P
be the direct limits of these directed systems and let φ : M → N and ψ : N → P be the homomorphisms
induced by the homomorphisms of the directed systems. For all i ≤ j we have the commutative diagram

M
φ−−−−→ N

ψ−−−−→ P
xµj

xνj

xξj

Mj
φj−−−−→ Nj

ψj−−−−→ Pjxµij

xνij

xξij

Mi
φi−−−−→ Ni

ψi−−−−→ Pi

Suppose that x ∈ M . Choose j and xj ∈ Mj for which x = µj(xj). Then ψ(φ(x)) = ψ(φ(µj(xj))) =
ξj(ψj(φj(xj))) = ξj(0) = 0 since Im(φj) = Ker(ψj). Thus Im(φ) ⊆ Ker(ψ).

Suppose that ψ(y) = 0 where y ∈ N . Choose i and yi ∈ Ni for which y = νi(yi). Then 0 = ψ(νi(xi)) =
ξi(ψi(yi)). But then there is j ≥ i for which ξij(ψi(yi)) = 0. Then ψj(νij(yi)) = 0, implying the existence
of xj ∈ Mj for which νij(yi) = φj(xj). Now notice that y = νi(yi) = νj(νij(yi)) = νj(φj(xj)) = φ(µj(xj)).
Thus Ker(ψ) ⊆ Im(ψ) and hence Ker(ψ) = Im(ψ). We conclude that M → N → P is an exact sequence.

2.20. Let M be a directed system of A-modules and N an A-module. {(Mi ⊗ N, µij ⊗ 1) : i ∈ I} is a
directed system of A-modules; let P be its direct limit with associated homomorphisms νi. For
each i ∈ I we have a homomorphism µi ⊗ 1 : Mi ⊗N → M ⊗N . Clearly µi ⊗ 1 = (µj ⊗ 1) ◦ (µij ⊗ 1).
So there is a unique homomorphism ψ : P → M ⊗ N satisfying ψ ◦ νi = µi ⊗ 1. Show ψ is an
isomorphism.

Assume (m,n) ∈ M × N and write m = µi(mi). Define g(m,n) = νi(mi ⊗ n). I claim that g is well-
defined. So suppose that µi(mi) = µj(mj) with j ≥ i. Then µi(mi) = µj(µij(mi)) so that

2.21. Let (Ai, αij) be a directed system of Z-modules so that each Ai is a ring and each αij is a ring
homomorphism. Show that A = lim

−→
Ai inherits a ring structure so that each associated homo-

morphism αi is a ring homomorphism. In case A = 0, show that some Ai = 0.

Let ξ and η be elements of A. We can write ξ = µi(x) and η = µj(y). Choose k ≥ i, j and notice that
ξ = µk(µik(x)) and η = µk(µjk(y)). Define ξ ∗η = µk(µik(x)µjk(y)). I claim that this defines a multiplication
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of A that makes A into a ring and each µi into a ring homomorphism. The hardest part of this is to show
that ξ ∗ η is actually well-defined. Suppose first that l ≥ i, j and m ≥ l, k. Then

µk(µjk(x)µik(y)) = µm(µkm(µjk(x)µjk(y)))
= µm(µkm(µik(x))µkm(µjk(y)))
= µm(µim(x)µjm(y))
= µm(µlm(µil(x))µlm(µjl(y)))
= µm(µlm(µjl(x)µjl(y)))
= µl(µjl(x)µil(y))

This shows that ξ ∗η is independent of k. Now suppose that ξ = µi′(x′) and η = µj′(y′). Choose k ≥ i, i′, j, j′

and observe that

µk(µik(x)− µi′k(x′)) = 0 and µk(µjk(y)− µj′k(y′)) = 0

By exercise 15 part b we can choose l ≥ k for which

µkl(µik(x)− µi′k(x′)) = 0 and µkl(µjk(y)− µj′k(y′)) = 0

But this means that µil(x) = µi′l(x′) and µjl(y) = µj′l(y′). Hence

µl(µil(x)µjl(y)) = µl(µi′l(x′)µj′l(y′))

This shows that ξ∗η is well-defined. It is clear that the multiplication is associative, commutative, and unital.
Lastly, multiplication distributes over addition : suppose i, j, k ≤ m and notice that

(µi(x) + µj(y)) ∗ µk(z) = (µm(µim(x)) + µm(µjm(y))) ∗ µk(z)
= µm(µim(x) + µjk(y)) ∗ µk(z)
= µm((µim(x) + µjk(y))µkm(z))
= µm(µim(x)µkm(z)) + µm(µjm(y)µkm(z))
= µi(x) ∗ µk(z) + µj(y) ∗ µk(z)

Further, each µi is a ring homomorphism since

µi(x) ∗ µi(y) = µi(µii(x)µii(y)) = µi(xy)

So A is indeed a ring and each µi is a map of rings. Now suppose that A = 0. Let the zero and identity
elements in Ai be represented by 0i and 1i respectively. Since αi(1i) = 0A, exercise 15 part b tells us that
there is j ≥ i for which 0j = αij(1i) = 1j . This forces Aj = 0.

2.22. Suppose (Ai, αij) is a directed system of rings and let Ni be the nilradical of Ai. Show that
lim
−→

Ni is the nilradical of lim
−→

Ai.

Lets work in the general setting for the moment. Assume that (Mi, µij) is a direct system of A-modules, with
direct limit M and maps µi : Mi → M . Suppose that for each i ∈ I there is a submodule Ni of Mi, and that
µij(Ni) ⊆ Nj . Then (Ni, µij |Ni) is a direct system as well. Let N be the direct limit with maps νi : Ni → N .
Now we have a commutative diagram
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Nj //

νj

ÃÃ
AA

AA
AA

A
Mj

µj

²²

N
? // M

Ni

µij |Ni

OO

νi

>>}}}}}}}}
// Mi

µi

OO

By exercise 16 there is a unique α : N → M that makes the diagram commute with ? = α. Notice that
α(x + C ′) = x + C if we construct N =

⊕
Ni/C ′ and M =

⊕
Ni/C as in exercise 14. This means that there

is a natural way of considering N as a submodule of M . Now lets return to the specific case given in the
problem statement. It is clear that N(Mi) is a Z-submodule of Ai and that µij(N(Ai)) ⊆ N(Aj) for i ≤ j
since µij is a ring homomorphism. Write

N = lim
−→

N(Ai) =
⊕

N(Ai)/C ′ and A = lim
−→

Ai =
⊕

Ai/C

as in exercise 14. Let νi : N(Ai) → N and µi : Ai → A be the natural maps and let α : N → A as above.
Giving N the obvious ring structure I claim that α is a ring homomorphism and that N(A) = α(N). So
suppose that νi(x), νj(y) ∈ N and that k ≥ i, j. Then

α(νi(x)) ∗ α(νj(y)) = µi(x) ∗ µj(y)
= µk(µik(x)µjk(y))
= α(νk(µik(x)µjk(y)))
= α(νk(νik(x)νjk(y)))
= α(νi(x) ∗ νj(y))

Consequently, α is a ring homomorphism. Now every element of N is of the form νi(x) for some x ∈ Ni.
So every element of N is nilpotent (since every element of Ni is nilpotent by definition). Since α is a ring
homomorphism we conclude that α(N) ⊆ A. On the other hand suppose that µi(x) ∈ N(A). Then µi(x)n = 0
for some n > 0, so that µi(xn) = 0. There is some j ≥ i satisfying µij(xn) = 0; implying that µij(x) ∈ Nj .
This means that µi(x) = µj(µij(x)) = α(νj(µij(x))) ∈ α(N). Thus, α(N) = N(A) as claimed. This has can
be written more suggestively as

lim
−→

Ni = N(lim
−→

Ai)

2.23. Let Bλ be a collection of A-algebras for λ ∈ Λ. When J is a finite subset of Λ, let BJ denote the
tensor product of the Bλ for λ ∈ J . Then BJ is an A-algebra and if J ⊂ J ′ are finite sets, then
there is a canonical map BJ → BJ′ . Let B denote the direct limit of the BJ as J ranges over
the finite subsets of Λ. Show that B has an A-algebra structure for which the maps BJ → B are
A-algebra homomorphisms.

Suppose J is a finite subset with n elements λ1, . . . , λn. Then the A-algebra structure of A on BJ =
⊗

A Bλi

is given by

a · (b1 ⊗ · · · ⊗ bn) = a.b1 ⊗ b2 ⊗ · · · ⊗ bn

If J ⊂ J ′ are finite, then let µJJ′ : BJ → BJ′ be the obvious inclusion map. Notice that {J ⊂ Λ : J is finite}
is a directed set under inclusion, and that µJJ ′′ = µJ′J′′ ◦ µJJ ′ whenever J ⊂ J ′ ⊂ J ′′. Clearly µJJ = id.
This means that we can define the direct limit B and the maps µJ : BJ → B. Moreover, B has a natural
ring structure so that each µJ is a ring homomorphism. Now suppose that fλ : A → Bλ gives the A-algebra
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structure of Bλ. Define f : A → B by f = µλ◦fλ for any λ ∈ Λ. This is well-defined: let J1 = {λ1}, J2 = {λ2},
and J = {λ1, λ2}. Then

µJ1(fλ1(a)) = µJ (µJ1J )(fλ1(a))
= µJ (fλ1(a)⊗ 1)
= µJ (1⊗ fλ2(a))
= µJ (µJ2J (fλ2(a)))
= µJ2(fλ2(a))

So B has a natural A-algebra structure. Lastly, each µi is a map of A-algebras since we have (for each λ) the
commutative diagram

A
f

//

fλ

²²

B

Bλ

µλ

>>}}}}}}}}

2.24. Let M an A-module and show that TFAE

a. M is flat.

b. TorA
n (M, N) = 0 for every A-module N and every n > 0.

c. TorA
1 (M, N) = 0 for every A-module N .

(a ⇒ b) Take a projective resolution P
ε // N of N . Since M is flat, P ⊗A M is exact in degree n, for n > 0.

But TorA
n (M,N) is defined as the nth homology group of P ⊗A M , so that TorA

n (M, N) = 0 for n > 0.

(b ⇒ c) O.K.

(c ⇒ a) Assume that we have an exact sequence

0 // N ′ // N // N ′′ // 0

Then we have the exact sequence

TorA
1 (M, N ′′) // M ⊗N ′ // M ⊗N // M ⊗N ′′ // 0

But TorA
1 (M,N ′′) = 0 so that we have the exact sequence

0 // M ⊗N ′ // M ⊗N // M ⊗N ′′ // 0

This shows that M is a flat A-module.

2.25. Suppose we have an exact sequence of A-modules

0 // N ′ // N // N ′′ // 0

with N ′′ flat. Show that N ′ is flat iff N is flat.

Let M be an A-module. Since N ′′ is flat, we can take a projective resolution of M , and argue as above to get
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TorA
2 (M,N ′′) = TorA

1 (M, N ′′) = 0

So we have the short exact sequence

0 // TorA
1 (M, N ′) // TorA

1 (M, N) // 0

Now TorA
1 (M, N ′) = 0 if and only if TorA

1 (M,N) = 0. Since this holds for every A-module M , we are done.
I have used here the fact that in computing Tor we can take a projective resolution in either variable. This
seemed like a reasonably elementary fact to assume.

2.26. Let N be an A-module. Show that N is flat if and only if TorA
1 (A/a, N) = 0 whenever a is a

finitely generated ideal in A.

We already know that Tor1(A/a, N) = 0 when N is flat. We prove the converse through a series of reductions.
So suppose that Tor1(M, N) = 0 whenever M is a finitely generated A-module. Let f : M ′ → M be injective
with M and M ′ finitely generated A-modules. Then we have the short exact sequence

0 // M ′ f
// M

π // M/f(M ′) // 0

So we have the exact sequence

Tor1(M/f(M ′), N) // M ′ ⊗A N
f⊗id

// M ⊗A N

But M/f(M ′) is finitely generated so that Tor1(M/f(M ′), N) = 0. This means that f ⊗ id is injective.
Proposition 2.19 now tells us that N is flat. Now suppose that Tor1(M, N) = 0 whenever M is generated by
a single element, and let M be an arbitrary finitely generated A-module. Assume x1, . . . , xn generate M and
let M ′ be the submodule of M generated by x1, . . . , xn−1. We have the short exact sequence

0 // M ′ // M // M/M ′ // 0

This yields the exact sequence

Tor1(M ′, N) // Tor1(M, N) // Tor1(M/M ′, N)

But M/M ′ is generated by a single element so that Tor1(M/M ′, N) = 0. By induction on n we see that
Tor1(M ′, N) = 0. Hence Tor1(M, N) = 0. Now assume that Tor1(A/a, N) = 0 whenever a is any ideal
in A. If M is an A-module generated by the element x, then M and A/ Ann(x) are isomorphic, so that
Tor1(M, N) = Tor1(A/ Ann(x), N) = 0. Now suppose that Tor1(A/a, N) = 0 whenever a is a finitely
generated ideal in A. Let b be an arbitrary ideal in A. If a is a finitely generated ideal of A contained in b,
then we have the short exact sequence

0 // a // A // A/a // 0

From this we get the long exact sequence

Tor1(A/a, N) // a⊗A N // A⊗A N // A/a⊗A N // 0

Since Tor1(A/a, N) = 0, we conclude that the map a ⊗A N → A ⊗A N is injective. Analysing the proof to
Proposition 2.19, we see that more is proved than is stated. In particular, it is demonstrated that b⊗A N →
A ⊗A N is injective since a ⊗A N → A ⊗A N is injective for every finitely generated ideal a contained in b.
So from the short exact sequence
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0 // b // A // A/b // 0

we get the long exact sequence

Tor1(A,N) // Tor1(A/b, N) // b⊗A N // A⊗A N // A/b⊗A N // 0

with Tor1(A,N) = 0 since A = A/0 with 0 a finitely generated ideal, and the map b ⊗A N → A ⊗A N
injective. These two observations imply that Tor1(A/b, N) = 0. Summarizing, we have shown that N is flat
provided Tor1(A/a, N) = 0 whenever a is a finitely generated ideal in A.

2.27. Show that the following conditions are equivalent for a ring A

a. A is absolutely flat (i.e. every A-module is flat).

b. Every principal ideal in A is idempotent.

c. Every finitely generated ideal in A is a direct summand of A.

(a ⇒ b) Let (x) be a principal ideal in A so that A/(x) is a flat A-module. Then from the inclusion (x) → A we get
an inclusion (x)⊗AA/(x) → A⊗AA/(x). But this map is the zero map since x⊗ 1̄ 7→ x⊗ 1̄ = 1⊗x· 1̄ = 0.
Hence (x) ⊗A A/(x) = 0, so that (x)/(x2) ∼= A/(x) ⊗A (x) = 0 by exercise 2.2. This shows that
(x) = (x2) = (x)2, as desired.

(b ⇒ c) Let a be a finitely generated ideal in A and write a = (x1, . . . , xn). For each i there is ai ∈ A for which
xi = aix

2
i . But then ei = aixi satisfies e2

i = ai(aix
2
i ) = aixi = ei. That is, each ei is idempotent and

(ei) = (xi). Now (x1, . . . , xn) = (x1)+ · · ·+(xn) = (e1)+ · · ·+(en) = (e1, . . . , en). In general, if e and f
are idempotent elements then (e+ f − ef) ⊆ (e, f), and also (e, f) ⊆ (e+ f − ef) since e = e(e+ f − ef)
and f = f(e + f − ef). Hence, (e, f) = (e + f − ef). By induction on n there is an idempotent element
e∗ for which (e1, . . . , en) = (e∗). Finally, A = (e∗) + (1 − e∗) for every idempotent element e∗, as was
shown in exercise 1.22, or as can be seen directly.

(c ⇒ a) Let M be an A-module and suppose a is a finitely generated ideal of A. Choose an ideal b of A so that
A = a ⊕ b. Then in particular b is a projective A-module. Thus TorA

1 (A/a,M) = TorA
1 (b,M) = 0. So

M is flat by exercise 1.26. Hence, A is an absolutely flat ring.

2.28. Establish the following.

Every Boolean ring A is absolutely flat.

If (x) is a principal ideal in A, then (x)2 = (x2) = (x) since x2 = x. So A is absolutely flat by exercise 1.27.

The ring A is absolutely flat if, for every x ∈ A, there is n > 1 for which xn = x.

Let (x) be an arbitrary principal ideal in A. Write xn = x for some n > 1. Then (xn) = (x). But
(xn) ⊆ (x2) ⊆ (x) since n ≥ 2. We conclude that (x) = (x2) = (x)2 so that A is absolutely flat.

If A is absolutely flat and f : A → B is surjective, then B is absolutely flat.

A principal ideal of B has the form (f(a)) for some a ∈ A. Clearly (f(a))2 ⊆ (f(a)). On the other hand,
if bf(a) is an arbitrary element of (f(a)) and choose ã ∈ A satisfying a = ãa2. Such an ã exists since
(a2) = (a). Then bf(a) = bf(ã)f(a)2 ∈ (f(a))2. Hence, (f(a)) = (f(a))2 so that B is absolutely flat.
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If a local ring A is absolutely flat, then A is a field.

Since A is absolutely flat, every principal ideal is generated by an idempotent element, as demonstrated
in the course of establishing exercise 2.27. But in a nonzero local ring, there are precisely two idempo-
tents, namely 0 and 1. So the only principal ideals in A are 0 and A, implying that A is a field.

If A is an absolutely flat ring and x ∈ A, then x is a zero-divisor or x is a unit.

Choose a ∈ A for which x = ax2. Then x(ax − 1) = 0. If ax − 1 = 0, then x is a unit. Otherwise,
ax− 1 6= 0, and hence x is a zero-divisor.
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Chapter 3 : Rings and Modules of Fractions

3.1. Let M be a finitely generated A-module and S a multiplicatively closed subset of A. Show that
S−1M = 0 iff sM = 0 for some s.

Suppose x1, . . . , xn generate M . If S−1M = 0 then sixi = 0 for some si ∈ S. Defining s = s1 · · · sn yields an
element s ∈ S such that sxi = 0 for each i, and hence sM = 0. The converse is obvious.

3.2. Let a be an ideal in A and let S = 1 + a. Show that S−1a ⊆ R(S−1A).

Clearly S is a multiplicatively closed subset of A since

(1 + a)(1 + a′) = 1 + (a + a′ + aa′) ∈ 1 + a

We also have S−1a ⊆ R(S−1A) since

1− a1

1 + a2
· x

1 + a3
=

1 + a2 + a3 + a2a3 − a1x

(1 + a2)(1 + a3)
=

1 + a4

(1 + a2)(1 + a3)

is a unit in S−1A for all a1, a2, a3 ∈ a and x ∈ A.

Use this result and Nakayama’s Lemma to give a different proof of Proposition 2.5

Now suppose that M is a finitely generated A-module for which aM = M with a ⊆ R(A). Then (S−1a)(S−1M) =
S−1M where again S = 1 + a. After all, given m/s ∈ S−1M there is a ∈ a and m′ ∈ M for which am′ = m,
implying that (a/1)(m′/s) = m/s, and hence showing that S−1M ⊆ (S−1a)(S−1M). Since S−1a ⊆ R(S−1A)
and since S−1M is a finitely generated S−1A-module, Nakayama’s Lemma yields S−1M = 0. By exercise 3.1
there is a ∈ a satisfying (1 + a)M = 0.

3.3. Let A be a ring with multiplicatively closed subsets S and T . Define U to be the image of T in
S−1A. Show that (ST )−1A and U−1(S−1A) are isomorphic rings.

Notice that ST is a multiplicatively closed subset of A. Now we apply the universal mapping property for
the ring of fractions three times.

Define a map from A to (ST )−1A by a 7→ a/1. Since this is a homomorphism and since the image s/1 of
s in S has the inverse 1/s, we conclude that there is a homomorphism from S−1A to (ST )−1A sending a/s
to a/s. But this map sends t/s to t/s, which has inverse s/t in (ST )−1A. So there is a homomorphism
F : U−1(S−1A) → (ST )−1A satisfying F ((a/s)/(t/s′)) = as′/st.

Similarly, the map from A into U−1(S−1A) given by a 7→ (a/1)/(1/1) is such that the image (st/1)/(1/1) of
st has inverse (1/s)/(t/1). So there is a homomorphism G : (ST )−1A → U−1(S−1A) satisfying G(a/st) =
(a/s)/(t/1).

It is straightforward to check that F ◦G is the identity map for (ST )−1A and that G ◦F is the identity map
for U−1(S−1A). So F and G are isomorphisms, and hence U−1(S−1A) and (ST )−1A are isomorphic rings.

3.4. Let f : A → B be a ring homomorphism, suppose that S is a multiplicatively closed subset of A,
and define T = f(S). Show that S−1B and T−1B are isomorphic as S−1A-modules.

First, it is clear that T is a multiplicatively closed subset of B since 1 = f(1) and f(s)f(s′) = f(ss′). We
make T−1B into an S−1A-module by defining a/s ·b/f(s′) = f(a)b/f(s)f(s′). Now define Φ : S−1B → T−1B
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by Φ(b/s) = b/f(s). I claim that Φ is an isomorphism. First, suppose that b/s = b′/s′ in S−1B. Then for
some s′′ ∈ S we have

0 = s′′ · (s′ · b− s · b′) = f(s′′)(f(s′)b− f(s)b′)

so that b/f(s) = b′/f(s′) in T−1B. Hence, Φ is well-defined. Notice that

Φ(b/s + b′/s′) = Φ((s′ · b + s · b′)/ss′)
= Φ((f(s′)b + f(s)b′)/ss′)
= (f(s′)b + f(s)b′)/f(ss′)
= (f(s′)b + f(s)b′)/f(s)f(s′)
= b/f(s) + b′/f(s′)
= Φ(b/s) + Φ(b′/s′)

We also have the relation

Φ(a/s · b/s′) = Φ(f(a)b/ss′) = f(a)b/f(ss′) = f(a)b/f(s)f(s′) = a/s · b/f(s′) = a/s · Φ(b/s′)

So Φ is a homomorphism of S−1A-modules. Clearly Φ is surjective. Now if Φ(b/s) = Φ(b′/s′) then for some
t ∈ T we have

t(f(s′)b− f(s)b′) = 0

Choose s′′ ∈ S satisfying t = f(s′′). Then

s′′ · (s′ · b− s · b′) = 0

This means that b/s = b′/s′ in S−1A. So Φ is injective as well. Thus, Φ is an isomorphism of S−1A-modules,
as claimed.

3.5. Suppose that for each prime ideal p, the ring Ap has no nilpotent element 6= 0. Show that A
has no nilpotent element 6= 0.

For every prime ideal p we have N(A)p = N(Ap) = 0, so that N(A) = 0.

Must A be an integral domain if Ap is an integral domain for every prime ideal p?

Let A = k × k where k is an field. Obviously A is not an integral domain. From exercise 1.23 we know that
p = 0 × k and q = k × 0 are the prime ideals of A. Since (1, 0) ∈ A − p and (1, 0)p = 0 we see that pp = 0.
But pp is a prime ideal in Ap, so that Ap is an integral domain. Similarly, Aq is an integral domain as well.
Thus, the property of being an integral domain is not a local property.

3.6. Let A be a nonzero ring and let Σ be the set of all multiplicatively closed subsets S of A for
which 0 6∈ S. Show that Σ has maximal elements and that S ∈ Σ is maximal if and only if A− S
is a minimal prime ideal of A.

That Σ has maximal elements follows from a straightforward application of Zorn’s Lemma since Σ is chain
complete. Now suppose that S ∈ Σ is maximal. Since 0 6∈ S we know that 1/1 6= 0/1 in S−1A. So S−1A
is a nonzero ring, and hence has a maximal ideal, which is of course a prime ideal. But this prime ideal
corresponds to a prime ideal p in A that does not meet S. In other words, there is p for which S ⊆ A−p. But
A−p is in Σ, so that S = A−p by maximality. Further, if q ⊆ p is a prime ideal, then A−p ⊆ A−q and A−q
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is in Σ, so that S = A−q again by maximality. This means that p = q, so that p is a minimal prime ideal in A.

On the other hand, if p is a minimal prime ideal in A, then S = A− p is an element of Σ. Choose a maximal
S′ ∈ Σ for which S ⊆ S′. By the above A− S′ is a minimal prime ideal in A. But A− S′ ⊆ p, implying that
A − S′ = p, since p is minimal. So S = S′, showing that A − p is a maximal element of Σ whenever p is a
minimal prime ideal in A.

3.7. A multiplicatively closed subset S in A is called saturated if x and y are in S whenever xy is in
S. Prove the following.

a. S is saturated iff A− S is a union of prime ideals of A.

Suppose that A−S =
⋃

p is a union of prime ideals of A. If xy 6∈ S then xy is in some p, implying that
x ∈ p or y ∈ p, so that x 6∈ S or y 6∈ S. If x 6∈ S or y 6∈ S, then xy 6∈ S since A− S is a union of ideals.
So S is a saturated multiplicatively closed subset of A.

Now suppose S is a saturated multiplicatively closed subset of A. It suffices to show that every x ∈ A−S
is contained in a prime ideal that does not intersect S. If x ∈ A−S, then (x)∩S = ∅ since S is saturated.
But then (x)e 6= (1) in S−1A, so that x/1 is not a unit in S−1A and S−1A 6= 0. So there is a maximal
ideal m in S−1A containing x/1. We can choose a prime ideal p that does not meet S and is such that
pe = m. Then x ∈ p since p = mc. So A− S is indeed a union of prime ideals.

b. If S is any multiplicatively closed subset of A then there is a unique smallest saturated
multiplicatively closed subset S∗ of A containing S. S∗ is the complement in A of the union
of the prime ideals in A that do not intersect S.

Let Σ consist of all saturated multiplicatively closed subsets of A containing S. Then Σ 6= ∅ since
A ∈ Σ. Let S∗ =

⋂
S′∈Σ S′, and notice that S∗ is the desired set. We can choose prime ideals pα,S′

so that A − S′ =
⋃

pα,S′ for each S′ ∈ Σ. Then S∗ = A − ⋃
S′∈Σ

⋃
pα,S′ . So clearly each pα,S′ has

empty intersection with S. Further, if p is a prime ideal that does not meet S, then A− p ∈ Σ, so that
p ⊆ A− S∗. Hence, S∗ is the complement in A of the prime ideals that do not intersect S.

c. Find S∗ if S = 1 + a for some ideal a.

If p meets S then 1 + a ∈ p for some a ∈ a, and hence 1 ∈ p + a. Conversely, if 1 ∈ p + a then p meets S.
Therefore S∗ = A−⋃

p:16∈p+a p. If m is a maximal ideal containing a, then m is a prime ideal satisfying
1 6∈ m + a. Conversely, if p is a prime ideal satisfying 1 6∈ p + a, then there is a maximal (and hence
prime) ideal m containing p + a, so that 1 6∈ m + a. These two observations give us S∗ = A−⋃

m⊇a m.

3.8. Let S and T be multiplicatively closed subsets of A such that S ⊆ T . Let φ : S−1A → T−1A be
the obvious inclusion. Show that the following conditions are equivalent.

a. φ is bijective

b. For each t ∈ T the element t/1 is a unit in S−1A.

c. For each t ∈ T there is x ∈ A for which xt ∈ S.

d. T is contained in the saturation of S.

e. Every prime ideal which meets T also meets S.

Notice that the map a 7→ a/1 from A to T−1A is a homomorphism such that the image s/1 of s ∈ S has
inverse 1/s (since s ∈ T ). Thus, there is a unique homomorphism φ : S−1A → T−1A for which φ(a/s) = a/s
whenever a ∈ A and s ∈ S.
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(a ⇒ b) As always, t/1 is a unit in T−1A. So if φ is bijective, then φ is a ring isomorphism, so that
t/1 = φ−1(t/1) is a unit in S−1A.

(b ⇒ c) Choose a ∈ A and s ∈ S so that t/1 · a/s = 1/1. Then s′(at − s) = 0 for some s′ ∈ S. But then
(as′)t = ss′ ∈ S.

(c ⇒ d) For t ∈ T choose x ∈ A so that xt ∈ S ⊆ S∗. Then x ∈ S∗ and t ∈ S∗, and hence T ⊆ S∗.

(d ⇒ e) If p is a prime ideal in A that does not meet S, then p does not meet S∗ by exercise 3.7. Therefore,
p does not meet T . So every prime ideal in A that meets T also meets S.

(e ⇒ c) If b does not hold then (t) ∩ S = ∅ for some t ∈ T . But then there is a prime ideal p containing (t)
such that p ∩ S = ∅. Since t ∈ p ∩ T we see that e does not hold.

(c ⇒ b) Let t ∈ T and choose x ∈ A satisfying xt ∈ S. Then t/1 has inverse x/xt in S−1A.

(b ⇒ a) Suppose that φ(a/s) = φ(a′/s′) in T−1A so that t(as′ − a′s) = 0 for some t ∈ T . Choose x ∈ A for
which xt ∈ S. Then (xt)(as′ − a′s) = 0, so that a/s = a′/s′ in S−1A. In other words, φ is injective. Now let
t ∈ T and choose a ∈ A and s ∈ S for which t/1 · a/s = 1/1 in S−1A. Then s′(at − s) = 0 for some s′ ∈ S.
But S ⊆ T so that 1/t = a/s in T−1A. In other words, 1/t = φ(a/s) ∈ Im(φ), so that φ is surjective. Thus,
φ is a bijection.

3.9. For A 6= 0 let S0 consist of all regular elements of A. Show that S0 is a saturated mutliplicatively
closed subset of A and that every minimal prime ideal of A is contained in D = A−S0. The ring
S−1

0 A is called the total ring of fractions of A. Prove assertions a,b, and c below.

Suppose x 6∈ S0 or y 6∈ S0. Then there is z 6= 0 such that xz = 0 or yz = 0. But then xyz = 0 so that
xy 6∈ S0. On the other hand, if xy 6∈ S0 then there is z 6= 0 satisfying xyz = 0. If yz = 0 then y 6∈ S0, and if
yz 6= 0 then x 6∈ S0. Thus, S0 is a saturated multiplicatively closed subset of A.

Now let p be a prime ideal in A and suppose that x ∈ p is regular. We see that {xiy : y ∈ A− p and i ∈ N}
is a multiplicatively closed subset of A properly containing A− p. This subset of A does not contain 0 since
x is not a zero-divisor. Therefore, A − p is not maximal in Σ, and hence p is not a minimal prime ideal. In
other words, every minimal prime ideal in A consists entirely of zero-divisors and so is contained in D. From
this it follows easily that D is the union of the minimal prime ideals in A.

a. S0 is the largest multiplicatively closed subset S of A so that the map A → S−1A is 1-1.

Suppose that a/1 = 0/1 in S−1
0 A. Then ax = 0 for some x ∈ S0. But x is not a zero-divisor, and so

a = 0. So the natural map is 1-1. Now assume that S is a multiplicatively closed subset of A with this
property. Suppose that x ∈ S and a ∈ A satisfy ax = 0. Then a/1 = 0/1 in S−1A so that a = 0. In
other words x is a regular element, and so S ⊆ S0.

b. Every element in S−1
0 A is a unit or a zero-divisor.

Suppose that x/y ∈ S−1
0 A. If x ∈ S0 then x/y is a unit in S−1

0 A with inverse y/x. If x 6∈ S0, then
there is z 6= 0 satisfying xz = 0, implying that (x/y)(z/1) = 0/1. Since z/1 6= 0/1 we see that x/y is a
zero-divisor in S−1

0 A. So we are done.
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c. If every element in A is a unit or a zero-divisor then the natural map f : A → S−1
0 A is an

isomorphism.

We already know that f is injective. Now if x ∈ S0 then x is a unit. So f is surjective since a/x =
ax−1/(xx−1) = ax−1/1 = f(ax−1) for a ∈ A and x ∈ S0. Thus, f is bijective, and hence an isomorphism.

3.10. Show that S−1A is an absolutely flat ring if A is an absolutely flat ring.

Suppose that M is an S−1A-module. Let N = M , where we consider N as an A-module with a.m = a/1 ·m.
Then S−1N is an S−1A-module. I claim that S−1N and M are isomorphic as S−1A-modules. Assuming
this, we see that N is a flat A-module since A is absolutely flat, and so S−1N is a flat S−1A-module. This
means that M is a flat S−1A-module, and so S−1A is absolutely flat. Now we finish the stickier part of this
exercise by defining f : S−1N → M by f(m/s) = 1/s ·m. Notice first that f is additive since

f(m/s + m′/s′) = f((s′.m + s.m′)/ss′) = 1/ss′ · (s′/1 ·m + s/1 ·m′) = f(m/s) + f(m′/s′)

Further, f preserves the action of S−1A since

f(a/s ·m/t) = f(a.m/st) = 1/st · a.m = 1/st · a/1 ·m = a/s · 1/t ·m = a/s · f(m/t)

So f will be a homomorphism provided that f is well-defined. Suppose m/s = 0/1 in S−1N . Then t.m = 0
for some t ∈ S, so that t/1 ·m = 0. But now m = 0 since t/1 is a unit in S−1A. Hence, f is well-defined and
thus is a homomorphism. Clearly f is surjective with f(m/1) = m. Lastly, suppose that f(m/s) = f(m′/s′).
Then 1/s · m = 1/s′ · m′ so that s′/1 · m = s/1 · m′, implying that 1.(s′.m − s.m′) = 0. In other words,
m/s = m′/s′ in S−1N . Consequently, f is an isomorphism of S−1A-modules.

Show that A is an absolutely flat ring if and only if Am is a field for every maximal m.

If A is absolutely flat and m is a maximal ideal in A, then Am is absolutely flat by the above. But Am is a
local ring so that Am is a field by exercise 2.28. So suppose that Am is a field whenever m is a maximal ideal
in A. Let M be an A-module so that Mm is an Am-module. This means that Mm is an Am-vector space. But
now Mm is flat as an Am-module. Hence, M is flat as an A-module, implying that A is absolutely flat.

3.11. Let A be a ring. Show that the following are equivalent.

a. A/N(A) is absolutely flat.

b. Every prime ideal in A is a maximal ideal.

c. In Spec(A) every one point set is closed.

d. Spec(A) is Hausdorff.

(a ⇒ b) Let p be a prime ideal in A. Since N(A) ⊆ p we have a surjective homomorphism A/N(A) → A/p. In
other words, A/p is the homomorphic image of an absolutely flat ring, and so is an absolutely flat ring.
But then every non-unit in A/p is a zero-divisor by exercise 2.28. Since A/p is an integral domain, this
means that A/p is a field, and so p is a maximal ideal in A.

(b ⇒ a) A maximal ideal q in A/N(A) is of the form q = p/N(A) for some prime ideal p in A. Now A/N(A) is a
reduced ring. Since localization commutes with taking the nilradical, we see that (A/N(A))q is a reduced
ring as well. But Spec((A/N(A))q) ∼= V (q) and V (q) = {q} since prime ideals in A/N(A) are maxi-
mal. So qq = 0, and hence (A/N(A))q is a field. Exercise 3.10 now implies that A/N(A) is absolutely flat.
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(b ⇔ c) If p is maximal then {p} = V (p) so that {p} is a closed set. If {p} is closed then {p} = V (E) for some
E ⊆ A. Clearly p ⊇ E and no other prime ideal in A contains E. In particular, no prime ideal in A
strictly contains p. So p is a maximal ideal in A.

(d ⇒ c) This is elementary point-set topology.

(b ⇒ d) Suppose that p and q are distinct elements of Spec(A).

If these conditions hold, show that Spec(A) is compact Hausdorff and totally disconnected.

It is always true that Spec(A) is compact, and by hypothesis Spec(A) is Hausdorff.

3.12. Let M be an A-module and A an integral domain. Show that the set of all x ∈ M for which
Ann(x) 6= 0 forms an A-submodule of M , denoted T (M). An element x ∈ T (M) is called a torsion
element. Prove assertions a-d.

Suppose that x, y ∈ T (M) and a, a′ 6= 0 satisfy ax = a′y = 0. Then aa′(x − y) = 0 and aa′ 6= 0 since A has
no zero-divisors. Therefore, x− y ∈ T (M). Also, if a′′ 6= 0, then a′′x ∈ T (M) since a(a′′x) = 0 and aa′′ 6= 0.
Therefore T (M) is a submodule of M .

a. M/T (M) is torsion free.

Suppose that x̄ is a torsion element in M/T (M). Choose a 6= 0 for which 0 = ax̄ = ax, so that
ax ∈ T (M). Then there is a′ 6= 0 for which a′ax = 0. But a′a 6= 0, and hence x ∈ T (M), so that x̄ = 0.

b. f(T (M)) ⊆ T (N) if f : M → N is an A-module homomorphism.

If x ∈ T (M) and a 6= 0 satisfies ax = 0, then af(x) = f(ax) = 0, so that f(x) ∈ T (N).

c. Suppose we have an exact sequence

0 // M ′ f
// M

g
// M ′′ // 0

of A-modules. Then we get a new exact sequence obtained by restricting f and g

0 // T (M ′)
f

// T (M)
g

// T (M ′′)

This sequence is clearly exact at T (M ′). Suppose that m ∈ T (M) and g(m) = 0. Choose m′ ∈ M ′ for
which f(m′) = m, and suppose a 6= 0 satisfies am = 0. Then 0 = am = af(m′) = f(am′). By injectivity
of f we conclude that am′ = 0, and hence m′ ∈ T (M ′). This means that Ker(g|T (M)) ⊆ Im(f |T (M ′)).
The oppositive inclusion follows from g ◦ f = 0. Therefore, the resulting sequence is exact at T (M), and
hence is exact.

d. T (M) is the kernel of the A-module homomorphism x 7→ 1⊗ x of M into K ⊗A M , where K
is the field of fractions of A.

Let S = A − {0} so that K = S−1A. Recall that the mapping a/s ⊗m 7→ am/s of S−1A ⊗A M into
S−1M is an isomorphism. So the kernel of the map M → K⊗A M is precisely the kernel of the canonical
map M → S−1M given by x 7→ x/1. Now x/1 = 0/1 in S−1M precisely when there is s ∈ S for which
sx = 0. Since S = A− {0}, this occurs precisely when x ∈ T (M).
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3.13. Let A be an integral domain with a multiplicatively closed subset S, and let M be an A-module.
Show that T (S−1M) = S−1(TM).

We may assume that 0 6∈ S since otherwise S−1M = S−1(TM) = 0. If m/s ∈ T (S−1M), then there is
a/s′ 6= 0/1 in S−1A so that 0/1 = (a/s′)(m/s) = am/(ss′). But then there is s′′ ∈ S for which s′′am = 0. Now
s′′a 6= 0 since s′′, a 6= 0. So m ∈ T (M), and hence m/s ∈ S−1(TM). In other words, T (S−1M) ⊆ S−1(TM).

On the other hand, if m ∈ TM then there is a 6= 0 for which am = 0. Then a/1 6= 0/1 since 0 6∈ S. Since
(a/1)(m/s) = 0/1 for any s ∈ S, we see that m/s ∈ T (S−1M). In other words, S−1(TM) ⊆ T (S−1M).

Deduce that the following conditions are equivalent.

a. M is torsion free.

b. Mp is torsion free for all prime ideals p.

c. Mm is torsion free for all maximal ideals m.

(a ⇒ b) T (Mp) = (TM)p by the above, and (TM)p = 0 when TM = 0.

(b ⇒ c) O.K.

(c ⇒ a) (TM)m = T (Mm) by the above, and T (Mm) = 0 by hypothesis. Therefore TM = 0.

3.14. Let M be an A-module and a an ideal of A. Suppose that Mm = 0 for all maximal ideals m ⊇ a.
Prove that M = aM .

If M 6= aM , then there is x ∈ M −aM . Define an ideal b = (aM : x). Then a ⊆ b ( A since 1 6∈ b. So we can
choose a maximal m that contains b. By hypothesis Mm = 0, and so x/1 = 0/1 in Mm. So there is a ∈ A−m
for which ax = 0. But 0 ∈ aM so that a ∈ b ⊆ m. This contradiction shows that M = aM , as claimed.

3.15. Let A be a ring and let F = An. Show that every set of n generators of F is a basis of F . Deduce
that every set of generators of F has at least n elements.

Suppose {xi}n
1 generates F and let {ei}n

1 be the standard basis. Choose bij and cij in A for which

xi =
n∑

j=1

bijej ei =
n∑

j=1

cijxj

Define matrices B = (bij) and C = (cij). Notice that

ei =
n∑

j=1

n∑

k=1

cijbjkek =
n∑

k=1

ek ·
n∑

j=1

cijbjk

Since {e1, . . . , en} is linearly independent we conclude that

n∑

j=1

cijbjk = δik

This means that CB = I, so that det(C) det(B) = 1. But now det(B) is a unit in A, so that B (and hence
BT ) is an invertible matrix. So suppose that

∑n
i=1 λixi = 0 for some λi. Then

0 =
n∑

i=1

n∑

j=1

λibijej =
n∑

j=1

ej ·
n∑

i=1

bijλi
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We see that each
∑n

i=1 bijλi = 0, so that BT λ = 0. But now λ = 0 since BT is invertible. This means that
{xi}n

1 is linearly independent set, and hence is a basis. Further, if F is generated by m elements x1, . . . , xm

with m < n, then F is generated by the n elements {x1, . . . , xm, 0, . . . , 0} and this is a basis by the above; a
contradiction. So F is generated by no fewer than n elements.

3.16. Let f : A → B be a ring homomorphism and assume that B is flat as an A-algebra. Show that
the following are equivalent.

a. aec = a for all ideals a in A.

b. f∗ : Spec(B) → Spec(A) is surjective.

c. For every maximal ideal m in A we have me 6= (1).

d. If M is a nonzero A-module then MB is nonzero as well.

e. For every A-module M the natural map M → MB is injective.

(a ⇒ b) Assume that p ∈ Spec(A). Then p is the contraction of a prime ideal in B by Proposition 3.16. This
means that p is in the image of f∗. In particular p = f∗(pe).

(b ⇒ c) Since m is maximal and since f∗ is surjective we know that m = qc for some q ∈ Spec(B). But then
mec = qcec = qc = m. So me = (1) implies that m = mec = Bc = A, a contradiction.

(c ⇒ d) Let 0 6= x ∈ M so that M ′ = Ax is a nonzero submodule of M . Then the sequence

0 // M ′ // M // M/M ′ // 0

is exact. Since B is flat as an A-module we have the exact sequence

0 // M ′
B

// MB
// (M/M ′)B

// 0

Since the map M ′
B → MB is injective, MB 6= 0 provided that M ′

B 6= 0. Now M ′ ∼= A/ Ann(x) where
Ann(x) 6= A since 1 6∈ Ann(x). Choose a maximal ideal m containing Ann(x). Then Ann(x)e ⊆ me ( B.
Now M ′

B
∼= A/ Ann(x)⊗A B ∼= B/ Ann(x)e 6= 0, as claimed.

(d ⇒ e) Let M ′ be the kernel of the natural map M → MB given by x 7→ 1⊗ x. The sequence

0 // M ′ // M // MB
// 0

is exact. Since B is flat as an A-module we have an exact sequence

0 // M ′
B

// MB
// (MB)B

// 0

Now the map MB → (MB)B is injective by 2.13. So the image of the map M ′
B → MB is trivial. Since

this map is injective, we see that M ′
B = 0, so that M ′ = 0 by hypothesis. In other words, the natural

map M → MB is injective.

(e ⇒ a) Let a be an ideal in A. The natural map A/a → A/a⊗AB is injective by hypothesis. Suppose x ∈ aec ⊆ A
so that f(x) =

∑
f(ai)bi for some ai ∈ a. Then in A/a⊗A B we have

x̄⊗ 1 = x · 1̄⊗ 1 = 1̄⊗ x · 1 = 1̄⊗ f(x)

and from this we get

x̄⊗ 1 = 1̄⊗
∑

f(ai)bi =
∑

āi ⊗ bi = 0

since each ai ∈ a. By injectivity x̄ = 0̄, so that x ∈ a. Therefore aec ⊆ a, and hence a = aec.
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3.17. Let f : A → B and g : B → C be ring homomorphisms. Suppose that g◦f is flat and g is faithfully
flat. Show that f is flat.

Let M → N be an injection of A-modules. Then we have the commutative diagram

M ⊗A B //

x 7→x⊗1

²²

N ⊗A B

x 7→x⊗1

²²

(M ⊗A B)⊗A C //

²²

(N ⊗A B)⊗A C

²²

M ⊗A (B ⊗B C) //

²²

N ⊗A (B ⊗B C)

²²

M ⊗A C // N ⊗A C

where the last four vertical maps are natural isomorphisms, and the top two vertical maps are injections since
g is faithfully flat. Finally, horizontal map on the bottom row is injective since g ◦ f is flat. This shows that
the horizontal map on the top row is injective as well. This means that f is flat.

3.18. Suppose f : A → B is a flat ring homomorphism. If q is a prime ideal in B let p = qc. Show that
f∗ : Spec(Bq) → Spec(Ap) is onto.

Since B is a flat A-module, we know that Bp is a flat Ap-module. In fact, Bp is a flat Ap-algebra since Bp

has the obvious multiplicative structure. Since f(A− p) is a multiplicatively closed subset of B that does not
meet q, we see that Bq is a localization of Bp, so that Bq is a flat Bp-algebra. Now exercise 2.8 tells us that
Bq is a flat Ap-algebra. The only maximal ideal of Ap is pp whose contraction to Bq is qq 6= Bq. It follows
that the map f : Ap → Bq is faithfully flat, and so the induced map f∗ : Spec(Bq) → Spec(Ap) is onto.

3.19. Suppose M is an A-module and define Supp(M) = {p ∈ Spec(A) : Mp 6= 0}. Show the following.

a. Supp(M) 6= ∅ if M 6= 0

If Mp = 0 for all p ∈ Spec(A) then M = 0.

b. V (a) = Supp(A/a)

Notice that (A/a)p = 0 iff 1̄/1 = 0̄/1 in (A/a)p. This occurs precisely when there is x ∈ A− p satisfying
0̄ = x1̄ = x̄. But this occurs precisely when (A − p) ∩ a 6= ∅. This is equivalent to a * p. Hence,
(A/a)p 6= 0 if and only if a ⊆ p.

c. Suppose we have an exact sequence

0 // M ′ f
// M

g
// M ′′ // 0

and show that Supp(M) = Supp(M ′) ∪ Supp(M ′′).

We have the exact sequence

0 // M ′
p

fp
// Mp

gp
// M ′′

p
// 0
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If Mp = 0 then M ′
p = 0 since fp is injective, and M ′′

p = 0 since gp is surjective. If M ′
p = 0 and M ′′

p = 0
then 0 = Im(fp) and Ker(gp) = Mp = 0, implying that Mp = 0. Therefore Mp 6= 0 iff M ′

p 6= 0 or
M ′′

p 6= 0. This gives Supp(M) = Supp(M ′) ∪ Supp(M ′′).

d. If M =
∑

Mi then Supp(M) =
⋃

Supp(Mi).

Suppose that Mp = 0 and that mi/s ∈ (Mi)p. Since mi/s is zero in Mp, there is x 6∈ p for which
xmi = 0. But then mi/s is zero in (Mi)p. In other words each (Mi)p = 0. Now suppose that each
(Mi)p = 0. If (

∑
mi)/s ∈ Mp, then there are xi 6∈ p for which ximi = 0, so that (

∏
xi)

∑
mi = 0. In

other words Mp = 0. So Mp = 0 iff each (Mi)p = 0. This yields Supp(M) =
⋃

Supp(Mi).

e. If M is finitely generated then Supp(M) = V (Ann(M)).

Since M is finitely generated (A − p)−1M = 0 iff xM = 0 for some x ∈ A − p. This occurs iff
(A− p) ∩Ann(M) 6= ∅, or equivalently iff Ann(M) * p. So Mp 6= 0 iff Ann(M) ⊆ p.

f. If M and N are finitely generated then Supp(M ⊗A N) = Supp(M) ∩ Supp(N).

Recall that (M ⊗A N)p and Mp ⊗Ap Np are isomorphic as Ap-modules. Since M, N are finitely gen-
erated A-modules we see that Mp, Np are finitely generated Ap-modules. So exercise 2.3 tells us that
Mp ⊗Ap Np = 0 iff Mp = 0 or Np = 0.

g. If M is finitely generated and a is an ideal in A, then Supp(M/aM) = V (a + Ann(M)).

Since M is finitely generated, M/aM and A/a ⊗A M are isomorphic as A-modules by exercise 2.2.
Further, A/a is generated by the single element 1 + a as an A-module. So

Supp(M/aM) = Supp(A/a⊗A M)
= Supp(A/a) ∩ Supp(M)
= V (a) ∩ V (Ann(M))
= V (a + Ann(M))

h. If f : A → B is a ring homomorphism and if M is a finitely generated A-module, then
Supp(B ⊗A M) = f∗−1(Supp(M)).

Since M is a finitely generated A-module we have Supp(M) = V (Ann(M)), and since MB is a finitely
generated B-module we have Supp(MB) = V (Ann(MB)). So we need to prove that a prime ideal q in B
contains Ann(MB) if and only if f−1(q) contains Ann(M). Suppose q ⊇ Ann(MB) and a ∈ Ann(M) so
that a ·m = 0 for every m ∈ M . Then f(a) annihilates MB since f(a)(b⊗m) = f(a)b⊗m = a · b⊗m =
b ⊗ a ·m = 0 for all b ∈ B and m ∈ M . By hypothesis, f(a) ∈ q. This means that Ann(M) ⊆ f−1(q).
Now suppose that Ann(M) ⊆ f−1(q) and let b ∈ Ann(MB).

3.20. Let f : A → B be a ring homomorphism. Show the following.

a. Every prime ideal in A is a contracted ideal ⇔ f∗ is onto.

Suppose p is a prime ideal in A. Proposition 1.17 and 3.16 yield: p is a contracted ideal in A iff p
satisfies pec = p iff p is the contraction of a prime ideal in B iff p lies in the image of f∗.
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b. Every prime ideal in B is an extended ideal ⇒ f∗ is 1-1.

Assume that every prime ideal in B is an extended ideal. Suppose that f∗(p) = f∗(q), so that pc = qc.
Then p = pce = qce = q by Proposition 1.17. But this means that f∗ is 1-1.

c. Is the converse to part b true?

The converse to part b is false. Let j : Z → Z[i] be the natural inclusion map. If p is a prime
congruent to 3 modulo 4, then (p) is a prime ideal in Z[i]. If p is a prime congruent to 1 modulo 4, then
there are unique a, b > 0 such that a2 + b2 = p, and (a + bi) is a prime ideal in Z[i]. Also, (1 + i) is a
prime ideal in Z[i]. These are all of the prime ideals in Z[i]. Now the contraction of (p) equals (p), the
contraction of (a + bi) equals (a2 + b2), and the contraction of (1 + i) equals (2). This means that j∗ is
an injective map. However, the extension of (2) and (p) are not prime ideals, for p a prime congruent to
1 modulo 4. Also, the extension of (p) equals (p), for p a prime congruent to 3 modulo 4. This means
that (1 + i) and prime ideals of the form (a + bi) are not extended ideals in Z[i].

3.21. Throughout, f : A → B is a ring homomorphism, X = Spec(A), Y = Spec(B), S is a multiplicatively
closed subset of A, and φA : A → S−1A is the canonical homomorphism. Establish the following
facts.

a. φ∗ : Spec(S−1A) → X is a homeomorphism onto its image, which we denote by S−1X.

Notice that S−1X consists of all prime ideals in A that have empty intersection with S. Now every
ideal in S−1A is an extended ideal so that φ∗ is 1-1 by exercise 2.20. As always, φ∗ is continuous. I
claim that φ∗ is a closed map. Let a be an ideal in A and notice that

φ∗(V (S−1a)) = S−1X ∩ V (aec)

After all, if p ∈ φ∗(V (S−1a)) then p ∩ S = ∅ and S−1a ⊆ S−1p so that aec ⊂ pec = p. Conversely, if
p ∈ S−1X ∩ V (aec) then p ∩ S = ∅ and a = S−1aec ⊆ S−1p. So φ is a homeomorphism onto its image.

b. Identify Spec(S−1A) with its image S−1X, and identify Spec(S−1B) with its image S−1Y .
Then (S−1f)∗ is the restriction of f∗ to S−1Y , and S−1Y = f∗−1(S−1X).

Notice that S−1B = f(S)−1B as in exercise 3.4 and that S−1f(a/s) = f(a)/f(s). So we have the
commutative diagram

A
f

//

φA

²²

B

φB

²²

S−1A
S−1f

// S−1B

This yields the commutative diagram

Spec(S−1B)

φ∗B
²²

(S−1f)∗
// Spec(S−1A)

φ∗A
²²

Spec(B)
f∗

// Spec(A)

as desired. Now obviously S−1Y ⊆ f∗−1(S−1X). So suppose that q ∈ Y and f∗(q) ∈ S−1X. Then
f−1q is a prime ideal in A that has empty intersection with f(S). If x ∈ q ∩ f(S) with x = f(s)
then s ∈ f−1(q) ∩ S, which is not possible. So q ∩ f(S) = ∅, implying that q ∈ S−1Y . Hence
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S−1Y = f∗−1(S−1X).

c. Let a be an ideal in A and write b = Ba. Then f induces a map f̄ : A/a → B/b. If Spec(A/a)
is identified with its image V (a) in X and Spec(B/b) is identified with its image V (b) in Y ,
then f̄∗ is the restriction of f∗ to V (a).

We have the commutative diagram

A

πA

²²

f
// B

πB

²²

A/a
f̄

// B/b

This yields the commutative diagram

Spec(B/b)

π∗B
²²

f̄∗
// Spec(A/a)

π∗A
²²

Spec(B)
f∗

// Spec(A)

Now exercise 1.21 tells us that π∗B maps Spec(B/b) homeomorphically onto V (Ker(πB)) = V (b), and
π∗A maps Spec(A/a) homeomorphically onto V (Ker(πA)) = V (a). We are done.

d. Let p be a prime ideal in A and define S = A− p. Then the subspace f∗−1(p) of Y is home-
omorphic with Spec(Bp/ppBp) = Spec(k(p)⊗A B), where k(p) is the residue field of Ap.

We use part c with a = pp and b = pe
p = ppBp = (pB)p to get the commutative diagram

Spec(Bp/ppBp)

π∗B
²²

fp
∗

// Spec(Ap/pp)

π∗A
²²

Spec(Bp)
(fp)∗

//

φ∗B
²²

Spec(Ap)

φ∗A
²²

Spec(B)
f∗

// Spec(A)

Now Spec(Bp/ppBp) is homeomorphic with V ((pB)p), which is homeomorphic with φ∗B(V ((pB)p)). I
claim that φ∗B(V ((pB)p)) = f∗−1(p), establishing the first result. So suppose that q ∈ f∗−1(p). Since
p ∈ Im(φ∗A) we see that q ∈ Im(φ∗B). Also, p = f−1(q), so that f(p) ⊆ q, and hence pB ⊆ q. But now
qp is a prime ideal in Bp containing the ideal (pB)p. Conversely, assume that q ∈ φ∗B(V ((pB)p)). Then
(pB)p ⊆ qp so that pB ⊆ qc

p = q, and hence f(p) ⊆ q. So we see that p ⊆ f−1(q). On the other hand, it
is trivial to check that f−1(q) ⊆ p since q ∩ f(A − p) = ∅. So the claim is established. Now we have a
chain of isomorphisms between Ap-modules
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Bp/ppBp = Bp/(pB)p

∼= (B/pB)p

∼= Ap ⊗A B/pB
∼= Ap ⊗A (A/p⊗A B)
∼= (A/p⊗A Ap)⊗A B
∼= Ap/pAp ⊗A B

= Ap/pp ⊗A B

= k(p)⊗A B

Specifically, the map is given by

b/f(x) + ppBp 7→ (1/x + pp)⊗ b

It is easy to see that this preserves the product structure of our rings. Consequently, Spec(Bp/ppBp) =
Spec(k(p)⊗A B).

3.22. Let A be a ring and p a prime ideal in A. Show that the canonical image Xp of Spec(Ap) in
X = Spec(A) is equal to the intersection of all open neighborhoods of p in X.

As in 3.21, Xp consists of all prime ideals in A that have empty intersection with S = A − p, that is,
the prime ideals contained in p. Suppose q 6⊆ p, so that p 6∈ V (q). Then q 6∈ X −V (q), even though X −V (q)
is an open neighborhood of p in X. Conversely, if q ⊆ p, then p ∈ X − V (E) implies that E 6⊆ p, and
consequently E 6⊆ q, so that q ∈ X − V (E). So we are done.

3.23? Let A be a ring with X = Spec(A) and assume that U = Xf = A− V (f) for some f ∈ A. Show the
following.

a. The ring A(U) := Af is independent of f .

Suppose that Xf = Xg, so that f ∈ r((g)) and g ∈ r((f)), as according to exercise 1.17. Then
fm = ag and gn = bf for some a, b ∈ A and m,n > 0. Define

F : Af → Ag by F (x/fp) = xbp/gnp

and define

G : Ag → Af by G(x/gp) = xap/fmp

Notice that

G(F (x/fp)) = G(xbp/gnp)
= G(xbpanp/fmnp)
= xbpanp/anpgnp

= xbp/bpfp

= x/fp

Similarly, F (G(x/gp)) = x/gp. Thus, F and G are bijections and inverse to one another. Another
tedious calculation reveals that F is additive since
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F (x/fp + x′/fq) = F ((fqx + fpx′)/fp+q)

= (fqx + fpx′)bp+q/gn(p+q)

= (fqx + fpx′)bp+q/bp+qfp+q

= x/fp + x′/fq

Clearly F and G respect the multiplication. Lastly, F and G are well-defined: suppose x/fp = 0/1 in Af

so that fqx = 0 for some q. Then clearly bpbqfqx = 0, so that gnqxbp = 0, implying that xbp/gnp = 0/1
in Ag. Hence, Af and Ag are isomorphic, as desired.

b. Suppose U ′ = Xg satisfies U ′ ⊆ U . There is a natural homomorphism ρ : A(U) → A(U ′) that
is independent of f, g.

If U ′ ⊆ U then V (f) ⊆ V (g), so that any prime ideal containing f contains g. This means that
g ∈ r(f), so that gm = af for some m > 0 and some a ∈ A. As in part a, we define a map

ρ : Af → Ag by ρ(x/fr) = xar/gmr

This is a well-defined ring homomorphism. Now suppose Xf = Xf ′ and Xg = Xg′ . Then we have
equations

(f ′)n = bf (g′)p = cg (g′)q = df ′

Define maps

F : Xf → Xf ′ by F (x/fr) = xbr/f ′nr

and

G : Xg → Xg′ by G(x/gr) = xcr/g′pr

we also need

ρ′ : Xf ′ → Xg′ by ρ′(x/f ′r) = xdr/g′qr

To say that ρ is independent of f and g is to say that ρ′ ◦ F = G ◦ ρ. But ρ′(F (x/fr)) = xbrdnr/g′qnr

and G(ρfg(x/fr)) = xarcmr/g′mpr. Using the equations above we see that

(brdnr)g′mpr − (arcmr)g′qnr = 0

So equality follows, showing that ρ is independent of f, g.

c. If U ′ = U then ρ = id.

This follows from part b.

d. If U ′′ ⊆ U ′ ⊆ U then ρ acts ’functorially’.

Write U ′′ = Xh, U ′ = Xg, U = Xf . We can write gm = af and hn = bg.

e. If p ∈ X then lim
p∈U

A(U) ∼= Ap.
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3.24?

3.25. Let f : A → B and g : A → C be ring homomorphisms. Suppose h : A → B ⊗A C is defined by
h(a) = f(a)⊗ 1 = 1⊗ g(a). Define X, Y, Z, T to be the spectra of A, B,C, B⊗A C respectively. Show
that h∗(T ) = f∗(Y ) ∩ g∗(Z).

Let p ∈ X and define k = k(p). We have a natural homeomorphism between h∗−1(p) and Spec((B⊗AC)⊗Ak),
and also

(B ⊗A C)⊗A k ∼= B ⊗A k ⊗A C
∼= B ⊗A (k ⊗k k)⊗A C
∼= B ⊗A (k ⊗k (k ⊗A C))
∼= B ⊗A (k ⊗k (C ⊗A k))
∼= (B ⊗A k)⊗k (C ⊗A k)

Now p ∈ h∗(T ) precisely when h∗−1(p) 6= ∅. By the natural homeomorphism this occurs precisely when
Spec((B ⊗A C) ⊗A k) 6= ∅. Now the spectrum of any ring is nonempty if and only if that ring is nonzero.
Since B ⊗A k and C ⊗A k are vector spaces over k, we see that (B ⊗A k) ⊗k (C ⊗A k) 6= 0 if and only if
B ⊗A k 6= 0 and C ⊗A k 6= 0. Again, this occurs precisely when p ∈ f∗(Y ) and p ∈ g∗(Z). So we are done.

3.26. Let (Bα, gαβ) be a direct system of rings and B the direct limit. For each α let fα : A → Bα be
a ring homomorphism satisfying gαβ ◦ fα = fβ whenever α ≤ β. Then there is an induced map
f : A → B. Show that

f∗(Spec(B)) =
⋂
α

f∗α(Spec(Bα))

Let p ∈ Spec(A). Then p 6∈ f∗(Spec(B)) precisely when f∗(p) = ∅. This occurs precisely when Spec(B ⊗A

k(p)) = ∅. As in exercise 25, this happens if and only if B ⊗A k(p) = 0. But we have the isomorphism

B ⊗A k(p) ∼= lim
−→

(Bα ⊗A k(p))

since the direct limit commutes with tensor products. So B ⊗A k(p) = 0 if and only if some Bα ⊗A k(p) = 0.
Again, this occurs precisely when p 6∈ f∗α(Spec(Bα)) for some α. So we are done.

3.27? Prove the following.

a. Let fα : A → Bα be any family of A-algebras and let f : A → B be their tensor product over
A. Then

f∗(Spec(B)) =
⋂
α

f∗α(Spec(Bα))

b. Let fα : A →
c.

d. The space X endowed with the constructible topology (denoted hereafter as XC) is compact.

3.28? Prove the following results.

a. Xg is open and closed in the constructible topology.

b. Let C ′ denote the smallest topology on X for which the sets Xg are both open and closed,
and let XC′ denote the set X with this topology. Show that XC′ is Hausdorff.
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c. Deduce that the identity map XC → XC′ is a homeomorphism. Hence, a subset E of X is
of the form f∗(Spec(B)) for some f : A → B if and only if it is closed in C ′.

d. XC is compact Hausdorff and totally disconnected.

3.29? Show that, for f : A → B, the map f∗ : Spec(B) → Spec(A) is a continuous and closed mapping,
when Spec(A) and Spec(B) are given the constructible topology.

3.30? Show that the Zariski topology and the constructible topology on Spec(A) coincide iff A/N(A)
is absolutely flat.

If the two topologies coincide, then Spec(A) is Hausdorff in the Zariski topology, and so A/N(A) is absolutely
flat. Suppose then that A/N(A) is absolutely flat. Let f : A → B be a ring homomorphism so that
f∗(Spec(A)) is closed in the constructible topology.
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Chapter 4 : Primary Decomposition

4.1. If the ideal a has a primary decomposition in A, then Spec(A/a) has finitely many irreducible
components.

The minimal elements in the set of all prime ideals containing a is precisely the set of isolated primes belonging
to a in any primary decomposition of a. But the isolated primes belonging to a are uniquely determined, so
that there are finitely many minimal elements in the set of all prime ideals containing a. This means that
there are finitely many minimal prime ideals in A/a. Also, the irreducible components of Spec(A/a) are of the
form V (p), where p is a minimal prime ideal in A/a. So Spec(A/a) has finitely many irreducible components.

4.2. If a = r(a) then a has no embedded prime ideals.

Let Σ consist of all the prime ideals containing a, and let Σ′ ⊆ Σ consist of the minimal elements in Σ. Then

a = r(a) =
⋂

p∈Σ

p =
⋂

p∈Σ′
p

Since a is decomposable, Σ′ is finite. By using proposition 1.11 we see that a has the minimal primary
decomposition

a =
⋂

p∈Σ′
p

But the first uniqueness theorem tells us that {p : p ∈ Σ′} is uniquely determined by a. We conclude that a
has no embedded prime ideals.

4.3. Every primary ideal in A is maximal if A is absolutely flat.

Let q be a p-primary ideal in A. If A is absolutely flat then so is A/N(A), since it is a homomorphic image
of A. This tells us that every prime ideal in A is maximal. In particular Ap is a field. This means that (0) is
the only primary ideal in Ap. Now the correspondence in Prop 4.8 tells us that q = p.

After all, if p′ ∩ (A− p) = ∅ with p′ a prime ideal, then p′ ⊆ p, so that p′ = p. So the p-primary ideals are in
a bijective correspondence with the primary ideals in Ap. But there is only one primary ideal in Ap, and we
already know that p is a p-primary ideal since p is a maximal ideal. This forces us to conclude that q = p.

4.4. In the polynomial ring Z[t], the ideal m = (2, t) is maximal and the ideal q = (4, t) is m-primary,
but q is not a power of m.

m is a maximal ideal since Z[t]/m ∼= Z2 is a field. Clearly q ⊆ m ⊆ r(q). Since m is a prime ideal we have
m = r(q). Since m is maximal we conclude that q is m-primary. Now (4, 4t, t2) = m2 ⊆ q ⊆ m. The first
inclusion is strict since t ∈ q−m2, and the second inclusion is strict since 2 ∈ m− q. So q is not a power of m.

4.5. Let K be a field and A = K[x, y, z]. Write p1 = (x, y), p2 = (x, z), and m = (x, y, z), so that
p1 and p2 are prime ideals, while m is maximal. Let a = p1p2. Show that a = p1 ∩ p2 ∩ m2 is a
minimal primary decomposition of a. Which components are isolated and which are embedded?

Notice that a = (x2, xy, xz, yz) so that a ⊆ p1 ∩ p2 ∩m2 by inspection. Suppose that p ∈ p1 ∩ p2 ∩m2. Since
p ∈ m2 we can write

p = ax2 + by2 + cz2 + dxy + exz + fyz

where a, b, . . . ∈ A. But c = 0 since p ∈ p1 and b = 0 since p ∈ p2. Hence
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p = ax2 + dxy + exz + fyz ∈ a

so that a = p1 ∩ p2 ∩m2. Now we know by proposition 4.2 that m2 is a primary ideal, as are all prime ideals.
So a = p1 ∩ p2 ∩ m2 is a primary decomposition of a. It satisfies the first condition for minimality since
r(pi) = pi and r(m2) = m are all distinct. The second condition is satisfied since

z2 ∈ (p2 ∩m2)− p1 y2 ∈ (p1 ∩m2)− p2 x ∈ (p1 ∩ p2)−m2

Thus, the primary decomposition is indeed minimal. Lastly, p1 and p2 are the isolated components and m2

is the embedded component.

4.6. Let X be an infinite compact Hausdorff space and C(X) the ring of all real-valued continuous
functions on X. Is the zero ideal decomposable in this ring?

Let mx consist of all f ∈ C(X) for which f(x) = 0. Then mx is a maximal ideal in X since C(X)/mx is
isomorphic with R under the map f +mx 7→ f(x). If Σx is the set of all prime ideals in C(X) contained in mx,
then mx ∈ Σx, and so Σx is nonempty. Let px be a minimal element in Σx. This exists by a straightforward
application of Zorn’s Lemma. If 0 is decomposable, then there are finitely many minimal prime ideals in
C(X), by proposition 4.6. So to show that 0 is not decomposable it suffices to show that px 6= px′ whenever
x 6= x′. Here we use the fact that X is infinite.

So assume that x 6= x′. Choose a neighborhood U of x not containing x′. Notice that X is normal since it is
compact Hausdorff. Hence, there is a neighborhood V of x so that Cl(V ) ⊂ U . By Urysohn’s Lemma there
is f ∈ C(X) so that f = 0 on Cl(V ) and f(x′) = 1. Similarly, there is g ∈ C(X) so that g = 0 on X − V and
g(x) = 1. Then f ∈ px since fg = 0 ∈ px and g 6∈ px. Since f 6∈ px′ we see that px 6= px′ , as claimed.

4.7. If a is an ideal of the ring A, let a[x] consist of all polynomials in A[x] with coefficients in a.
Show the following.

a. The extension of a to A[x] equals a[x].

By definition ae = aA[x]. A moment’s worth of thought though shows that aA[x] = a[x].

b. If p is a prime ideal in A then p[x] is a prime ideal in A[x].

Define a ring homomorphism

A[x] → (A/p)[x] by
∑

akxk =
∑

(ak + p)xk

This is a surjective map with kernel p[x]. So A[x]/p[x] is isomorphic with (A/p)[x]. But (A/p)[x] is an
integral domain since A/p is an integral domain. Therefore, p[x] is a prime ideal in A[x].

c. If q is p-primary in A then q[x] is p[x]-primary in A[x].

First A[x]/q[x] 6= 0 since 1 6∈ q[x]. As above, A[x]/q[x] is isomorphic with (A/q)[x]. So if
∑

akxk + q[x]
is a zero-divisor in A[x]/q[x], then

∑
(ak + q)xk is a zero-divisor in (A/q)[x]. Hence, there is b ∈ A− q

satisfying b̄
∑

(ak + q)xk = 0. This means that bak ∈ q for all k. So for every k there is n > 0 satisfying
an

k ∈ q. This means that ak + q is nilpotent in A/q, and hence
∑

(ak + q)xk is nilpotent in (A/q)[x]
as well. Consequently,

∑
akxk + q[x] is nilpotent in A[x]/q[x]. So every zero-divisor in A[x]/q[x] is

nilpotent, implying that q[x] is primary.

Notice that
∑

(ak + q)xk ∈ (A/q)[x] is nilpotent iff each ak + q is nilpotent in A/q. This occurs precisely
when ak ∈ p. So N((A/q)[x]) = (p/q)[x], and hence N(A[x]/q[x]) = p[x]/q[x]. This means that
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r(q[x]) = π−1(N(A[x]/q[x])) = π−1(p[x]/q[x]) = p[x]

d. If a =
⋂n

i=1 qi is a minimal primary decomposition in A then a[x] =
⋂n

i=1 qi[x] is a minimal
primary decomposition in A[x].

Notice that a[x] = ae ⊆ ⋂n
1 qe

k =
⋂n

1 qk[x]. On the other hand, if
∑

akxk 6∈ a[x], then some ak 6∈ a, and
so ak 6∈ qj for some j. But then

∑
akxk 6∈ qj [x]. Therefore, a[x] =

⋂n
1 qk[x] is a primary decomposition

of a[x]. Notice that pk[x] 6= pj [x] whenever pk 6= pj . Also, qk[x] ⊇ ⋂
j 6=k qj [x] would imply that

qk = qk[x]c ⊇
( ⋂

j 6=k

qj [x]
)c

=
⋂

j 6=k

qj [x]c =
⋂

j 6=k

qj

Thus, the primary decomposition for a[x] is minimal.

e. If p is a minimal prime ideal of a, then p[x] is a minimal prime ideal of a[x].

Obviously p[x] is a prime ideal contained in a[x]. So suppose that q is a prime ideal for which q ⊆ p[x].
Then qc ⊆ p and qc is a prime ideal, so that qc = p. But now p[x] = pe = qce ⊆ q ⊆ p[x], and hence
q = p[x]. Thus, p[x] is a minimal prime ideal of a[x].

4.8? Let k be a field. Show that in k[x1, . . . , xn] the ideals pi = (x1, . . . , xi) are prime and that all their
powers are primary.

Write An = k[x1, . . . , xn]. Each pi is a prime ideal since An/pi
∼= An−i is an integral domain. Now since (x)

is maximal in k[x], every power of (x) is primary in k[x]. So the result holds for A1. We proceed by induction
by assuming the result holds for An. Every power of pn+1 is primary in An+1 since pn+1 is maximal in An+1.
If i < n + 1 then every power of pi is primary in An by induction.

4.9. In a ring A, let D(A) consist of all prime ideals p that satisfy the following condition: there is
a ∈ A so that p is minimal in the set of prime ideals containing Ann(a). Show the following.

Notice that Ann(a) is a proper ideal in A for a 6= 0 (and A 6= 0) since 1 6∈ Ann(a). So there is a maximal ideal
containing Ann(a), implying that the set of all prime ideals containing Ann(a) is non-empty. If we order this
set by reverse inclusion, then it is clearly chain complete. So Zorn’s Lemma yields minimal elements.

a. x is a zero-divisor iff x ∈ p for some p ∈ D(A).

Suppose xy = 0 with y 6= 0. Then x ∈ (0 : y) ⊆ p for some p ∈ D(A). Conversely, suppose p ∈ D(A).
We have to show that p consists of zero-divisors.

b. After identifications, D(S−1A) = D(A) ∩ Spec(S−1A).

Let p ∈ D(A) ∩ Spec(S−1A) so that p is a minimal element in the set of all prime ideals contain-
ing (0 : a) for some a ∈ A, and p ∩ S = ∅. Define a prime ideal q = S−1p in S−1A and notice
that (0 : a/1) ⊆ q. Suppose (0 : a/1) ⊆ S−1r ⊆ q, with r a prime ideal in A that does not meet
S. Then (0 : a) ⊆ (0 : a/1)c ⊆ r ⊆ p so that r = p, and hence S−1r = q. It follows that q is
minimal in the set of prime ideals in S−1A containing (0 : a/1), and hence q ∈ D(S−1A). Thus
D(A)∩Spec(S−1A) ⊆ D(S−1A). Conversely, suppose that q ∈ D(S−1A) so that q is a minimal element
in the set of prime ideals in S−1A containing (0 : a/s). Write q = S−1p with p a prime ideal in A that
does not meet S. Since (0 : a/1) = (0 : a/s) we have (0 : a) ⊆ (0 : a/1)c ⊆ p. Suppose (0 : a) ⊆ r ⊆ p
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with r a prime ideal in A. Then r does not meet S, and hence (0 : a/1) ⊆ S−1r ⊆ q. After all, if
a/1 · b/t = 0/1 so that abu = 0 for some u ∈ S, then bu ∈ (0 : a) ⊆ r, and hence b/t = bu/tu ∈ S−1r.
Thus, S−1r = q, implying that r = p; showing that p is minimal in the set of all prime ideals containing
(0 : a). Therefore, q ∈ D(A) ∩ Spec(S−1A). Hence, D(S−1A) = D(A) ∩ Spec(S−1A) after our identifi-
cations.

c. If the zero ideal has a primary decomposition, then D(A) is the set of all prime ideals
belonging to 0.

Suppose p is a prime ideal belonging to 0 so that p is a minimal element in the set of all prime ideals
containing 0 = (0 : 1). Then p is an element of D(A). Conversely, suppose p ∈ D(A) and p is minimal
in the set of all prime ideals containing (0 : a).

4.10. For any prime p, let Sp(0) = Ker(A → Ap). Prove the following.

a. We have the containment Sp(0) ⊆ p.

If a is in Sp(0), then a/1 = 0 in Ap. So there is s ∈ A − p for which as = 0 ∈ p. But then a ∈ p since
s 6∈ p. Thus, Sp(0) ⊆ p.

b. r(Sp(0)) = p if and only if p is a minimal prime ideal in A.

The prime ideals of Ap are in a bijective correspondence with the prime ideals that don’t meet S = A−p.
That is, they correspond bijectively with prime ideals contained in p. When p is minimal, we see that
Ap has precisely one prime ideal, namely pp. Hence, pp is the nilradical of Ap. So if a ∈ p then
(a/1)n = 0 in Ap for some n > 0, and therefore an ∈ Sp(0). Hence p ⊆ r(Sp(0)). On the other hand,
r(Sp(0)) ⊆ r(p) = p. Hence p = r(Sp(0)).

Suppose that p is not minimal. Then there is prime q ( p. So by the correspondence in the above
paragraph, N(Ap) ( pp. There is thus a ∈ p for which (a/1)n 6= 0 in Ap for any n > 0. This means that
a 6∈ r(Sp(0)), and so p 6= r(Sp(0)).

c. If p′ ⊆ p are prime ideals, then Sp(0) ⊆ Sp′(0).

If a ∈ Sp(0) then as = 0 for some s ∈ A− p ⊆ A− p′, and hence a ∈ Sp′(0). Therefore Sp(0) ⊆ Sp′(0).

d. The intersection
⋂

p∈D(a) Sp(0) equals 0.

Suppose that x 6= 0 and notice that (0 : x) 6= (1). So there is a minimal p in the set of prime ideals
containing (0 : x). If x ∈ Sp(0), then for some s ∈ A− p we have sx = 0. This contradicts the equation
(0 : x) ⊆ p. Therefore, x /∈ Sp(0); and hence

⋂
p∈D(A) Sp(0) = 0.

4.11. If p is a minimal prime ideal in A, show that Sp(0) is the smallest p-primary ideal. Let a be
the intersection of the ideals Sp(0) as p runs through the minimal prime ideals in A. Show that
a ⊆ N(A). Suppose that the zero ideal is decomposable. Prove that a = 0 iff every prime ideal
of 0 is isolated.

As above r(Sp(0)) = p whenever p is a minimal prime ideal in A. Now suppose that xy ∈ Sp(0) with
x 6∈ Sp(0). Choose s ∈ A− p with sxy = 0. Then sy ∈ p (for otherwise x ∈ Sp(0)), and so y ∈ p = r(Sp(0)).
This means that yn ∈ Sp(0) for some n > 0. Hence, Sp(0) is p-primary.
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Now let q be any p-primary ideal, with p a minimal prime ideal. If x ∈ Sp(0) then 0 = sx ∈ q for some
s ∈ A− p. If x 6∈ q then sn ∈ q for some n > 0. But this is impossible since A− p is multiplicatively closed.
Therefore Sp(0) ⊆ q.

It is clear that a ⊆ N(A) since we always have Sp(0) ⊆ p and since N(A) is the intersection of all the minimal
prime ideals in A.

Suppose that the zero ideal is decomposable and that a = 0. Then there are finitely many minimal prime
ideals p1, . . . , pn in A. Notice that 0 = a =

⋂n
i=1 Spi(0) is a primary decomposition since each Spi(0) is a

pi-primary ideal. From this we see that the prime ideals belonging to 0 are all isolated.

Suppose that the zero ideal is decomposable and that every prime ideal belonging to 0 is isolated. Write
0 =

⋂n
i=1 qi and let pi = r(qi). Then each pi is a minimal prime ideal in A. Therefore Spi

(0) ⊆ qi so that
a = 0.

4.12? Let S be a multiplicatively closed subset of A. For any ideal a, let S(a) denote the contraction
of S−1a in A. The ideal S(a) is called the saturation of a with respect to S. Prove the following.

a. S(a) ∩ S(b) = S(a ∩ b)

This follows directly from proposition 1.18.

b. S(r(a)) = r(S(a))

This follows directly from proposition 1.18.

c. S(a) = (1) iff a meets S.

This follows directly from proposition 3.11.

d. S1(S2(a)) = (S1S2)(a)

Notice that S1S2 is a multiplicatively closed subset of A. Suppose x ∈ S1(S2(a)) so that x/1 = y/s1 for
some y ∈ S2(a) and y/1 = a/s2 for some a ∈ A. Choose s′1, s

′
2 with s′1(xs1− y) = 0 and s′2(ys2− a) = 0.

Then s′1s
′
2(s1s2x− a) = s′1s2s

′
2y− s′1s

′
2a = 0 so that x/1 = a/s1s2 and hence x ∈ (S1S2)(a). Conversely,

if x/1 = a/s1s2 then ????

e. If a is decomposable then the set of S(a) is finite.

4.13. Let A be a ring and p a prime ideal in A. Define the nth symbolic power p(n) of p by p(n) = Sp(pn).
Prove the following.

a. p(n) is a p-primary ideal.

Notice first that r(Sp(pn)) = Sp(r(pn)) = Sp(p) = p. Now r((pn)p) = (r(pn))p = pp is the maximal ideal
in Ap so that (pn)p is primary in Ap. This means that its contraction (i.e. p(n)) is primary in A, and
hence is p-primary.

b. If pn has a primary decomposition, then p(n) is its p-component.
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Suppose pn =
⋂m

i=1 qi is a minimal primary decomposition of pn, and write pi = r(qi). Assume that pi

does not meet A − p for 1 ≤ i ≤ n and that pi meets S − p for n < i ≤ m. Then p(n) =
⋂n

i=1 qi is a
primary decomposition of p(n). Now p = r(p(n)) =

⋂n
i=1 pi. But pi ⊆ p for 1 ≤ i ≤ n, and pi 6= pj for

i 6= j. Therefore, n = 1 and p1 = p. This means that q1 = p(n). In other words, p(n) is the p-component
of a, as claimed.

c. If p(m)p(n) has a primary decomposition, then p(m+n) is its p-primary component.

Let p(m)p(n) =
⋂m

i=1 qi be a minimal primary decomposition, and write pi = r(qi). Assume that pi does
not meet A − p for 1 ≤ i ≤ n and that pi meets S − p for n < i ≤ m. Then Sp(p(m)p(n)) =

⋂n
i=1 qi

so that
⋂n

i=1 pi = r(Sp(p(m)p(n))) = Sp(r(p(m)p(n))) = Sp(p) = p. So again, n = 1 and p1 = p. Us-
ing Proposition 1.18 we see that Sp(p(m)p(n)) = p(m+n). So q1 = p(m+n), showing that p(m+n) is the
p-primary component of p(m)p(n).

d. p(n) = pn if and only if pn is p-primary.

If p(n) = pn then pn is p-primary by part a. Assume pn is p-primary so that pn = pn is a minimal
primary decomposition of pn, implying that pn = p(n) by part c.

4.14. Let a be a decomposable ideal in the ring A and let p be a maximal element in Σ = {(a : x) : x 6∈ a}.
Show that p is a prime ideal belonging to a.

Let p = (a : x) be a maximal element in Σ. Suppose ab ∈ p and b 6∈ p, so that abx ∈ a and bx 6∈ a. Then
(a : x) ⊆ (a : bx) ∈ Σ so that (a : x) = (a : bx) by maximality. Then a ∈ (a : bx) = (a : x) = p. Therefore,
p is a prime ideal in A. Also, p = r(p) = r(a : x) is a prime ideal in the set {r(a : x)|x ∈ A}. Since a is a
decomposable ideal, the first uniqueness theorem tells us that p belongs to a.

4.15? Let a be a decomposable ideal, Σ an isolated set of prime ideals belonging to a, and qΣ the
intersection of the corresponding primary components. Suppose f is an element of A such that,
if p belongs to a, then f ∈ p if and only if p 6∈ Σ. Show that qΣ = Sf (a) = (a : fn) for all large n.

If p belongs to A, then p meets Sf = {1, f, f2, . . .} if and only if p 6∈ Σ. Therefore, Sf (a) =
⋂

p∩Sf=∅ q = qΣ.
Now Sf (a) = aec =

⋃
0≤n(a : fn) so that (a : fn) ⊆ Sf (a) for all n.

4.16. Suppose A is a ring in which every proper ideal has a primary decomposition. Show that the
same holds for S−1A.

This follows from proposition 4.9 and the fact that every proper ideal in S−1A is of the form S−1a for some
proper ideal a in A.

4.17? Let A be a ring satisfying (L1) For every proper ideal a and every prime ideal p, there exists
x 6∈ p such that Sp(a) = (a : x). Show that every proper ideal a in A is an intersection of (perhaps
infinitely many) primary ideals.

Let p1 be a minimal element in the set of all prime ideals containing a. Then q1 = Sp1(a) is p1-primary. By
hypothesis, q1 = (a : x) for some x 6∈ p1.

4.18? Show that every proper ideal in A has a primary decomposition if and only if A satisfies the
following two conditions.

L1. If a is a proper ideal and p is a prime ideal, then there exists x 6∈ p such that Sp(a) = (a : x).

L2. If a is a proper ideal and S1 ⊇ S2 ⊇ . . . is a descending sequence of multiplicatively closed
subsets of A, then there exists an N such that Sn(a) = SN (a) for all n ≥ N .
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Suppose that every proper ideal in A has a primary decomposition. Let a be a proper ideal in A, so that
a has a primary decomposition, and hence the saturations of a in A form a finite set by exercise 4.12. This
shows that L2 holds for a. Let p a prime ideal.

4.19? Show that every p-primary ideal contains Sp(0). Suppose that A satisfies the following condition:
for every prime ideal p, the intersection of all p-primary ideals equals Sp(0). Let p1, . . . , pn be
distinct non-minimal prime ideals in A. Show that there is an ideal a whose associated prime
ideals are p1, . . . , pn.

Suppose that p is a prime ideal in A. Let q be a p-primary ideal and suppose a ∈ Sp(0). Then a/1 = 0/1 so
that ab = 0 for some b 6∈ p. Since bn 6∈ q for any n > 0, we see that a ∈ q. In other words, Sp(0) ⊆ q, as claimed.

Now let p1, . . . , pn be distinct prime ideals in A, where A satisfies the hypothesis as in the problem state-
ment. If n = 1 then we can take a = p1. Suppose then that n > 1, and assume pn is a maximal element in
{p1, . . . , pn}. By induction, there is an ideal b and a minimal primary decomposition b = q1 ∩ . . .∩ qn−1 with
each qi a pi-primary ideal. Suppose for the sake of contradiction that b ⊆ Spn(0). Let p be a minimal prime
ideal in A contained in pn so that Spn

(0) ⊆ Sp(0) by exercise 4.10. Then p1∩ . . .∩pn−1 = r(b) ⊆ r(Sp(0)) = p
so that pi ⊆ p for some i. By minimality, pi = p is a minimal prime ideal; a contradiction. Therefore,
b 6⊆ Spn(0). Since Spn(0) is the intersection of all pn-primary ideals in A, there is a pn-primary ideal qn such
that b 6⊆ qn. Now define a = b ∩ qn. Obviously a = q1 ∩ . . . ∩ qn is a primary decomposition of a. We know
that r(qi) = pi 6= pj = r(qj) for i 6= j, and that qn 6⊇ ⋂

i 6=n qi = b. Suppose then that qi ⊇
⋂

j 6=i qj for
1 ≤ i < n.

Taking radicals we see that
⋂

j 6=i,n pj ∩ pn ⊆ pi. Either
⋂

j 6=i,n pj ⊆ pi or pn ⊆ pi. In the latter case, pn = pi

since pn is a maximal element in {p1, . . . , pn}. But pn 6= pi, so that
⋂

j 6=i,n pj ⊆ pi.

4.20. Let M be a fixed A-module with submodules N and N ′. The radical rM (N) of N in M is defined
to be the set of all x ∈ A so that xqM ⊆ N for some q > 0. Establish the following.

a. rM (N) = r(N : M) = r(Ann(M/N))

It is clear that rM (N) = r(N : M) so that rM (N) is an ideal in A. We also know that (N : M) =
Ann((N + M)/N) = Ann(M/N) so that the last equality holds as well.

b. r(rM (N)) = rM (N)

We have r(rM (N)) = r(r(N : M)) = r(N : M) = rM (N).

c. rM (N ∩N ′) = rM (N) ∩ rM (N ′)

This follows from

rM (N ∩N ′) = r(N ∩N ′ : M)
= r((N : M) ∩ (N ′ : M))
= r(N : M) ∩ r(N ′ : M)
= rM (N) ∩ rM (N ′)

d. rM (N) = A if and only if N = M .

Since rM (N) is an ideal, rM (N) = A iff 1 ∈ rM (N) iff M = N .
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e. rM (N + N ′) ⊇ r(rM (N) + rM (N ′))

Suppose that xn ∈ rM (N) + rM (N ′). Write xn = y + y′ with yqM ⊆ N and y′rM ⊆ N ′. Then
xn(q+r)M ⊆ yqM + y′rM ⊆ N + N ′ so that x ∈ rM (N + N ′).

4.21. Each a ∈ A defines an endomorphism φa : M → M . a is called a zero-divisor if φa is not injective,
and a is called nilpotent if φa is nilpotent. A submodule Q 6= M is called primary if every
zero-divisor in M/Q is nilpotent. Prove the following.

a. If Q is primary in M then (Q : M) is a primary ideal.

Suppose that ab ∈ (Q : M) with a 6∈ (Q : M). Choose x ∈ M with ax 6∈ Q so that the image of ax in
M/Q is nonzero. Then b(ax) ∈ Q since abM ⊆ Q. Since Q is primary, we see that bqM ⊆ Q for some
q > 0. This means that bq ∈ (Q : M). Therefore, (Q : M) is a primary ideal in A.

b. If Q1, . . . , Qn are p-primary in M then so is Q =
⋂n

1 Qi.

We know that r(Q) =
⋂n

1 r(Qi) = p. Suppose a ∈ A satisfies ax ∈ Q for some x ∈ M . If aqQ 6= Q
for any q, then a 6∈ rM (Q) = p. Since Qi is p-primary and ax ∈ Qi, we conclude that x ∈ Qi. Thus,
x ∈ ⋂n

1 Qi = Q. This means that Q is a primary ideal in A.

c. If Q is p-primary and x 6∈ Q then (Q : x) is p-primary.

Suppose a ∈ (Q : x) so ax ∈ Q. Hence, aqM ⊆ Q for some q > 0. This means that a ∈ rM (Q) = p. So
(Q : M) ⊆ (Q : x) ⊆ p, and hence r(Q : x) = p, after taking radicals. Now let ab ∈ (Q : x). If a 6∈ p
then bx ∈ Q. After all, a(bx) ∈ Q and if bx 6∈ Q then a ∈ r(Q : M) = p since Q is a primary submodule.
Thus, either a ∈ p = r(Q : x) or b ∈ (Q : x). This means that (Q : x) is a p-primary ideal in A.

4.22. Let N be a submodule of M . We say that N is decomposable if N =
⋂n

i=1 Qi where each Qi is a
primary submodule of Q. This decomposition is said to be minimal if rM (Qi) 6= rM (Qj) for i 6= j
and if every i we have Qi 6⊇

⋂
j 6=i Qj. Supposing N is a decomposable submodule, show that the

primes belonging to N are uniquely determined, and that they are the primes belonging to 0
in M/N .

Let N =
⋂n

i=1 Qi be a minimal primary decomposition. For x ∈ M

(N : x) = (
⋂

Qi : x) =
⋂

(Qi : x)

Taking radicals yields

r(N : x) =
⋂

r(Qi : x) =
⋂

x 6∈Qi

r(Qi : x) =
⋂

x 6∈Qi

pi

where pi = rM (Qi). So if r(N : x) is a prime ideal, then r(N : x) = pi for some i. Conversely, choose
xi ∈

⋂
j 6=i Qj−Qi and notice that r(N : xi) = pi. Therefore, the pi are precisely the prime ideals in the set of

all r(N : x) as x ranges over M . This means that the primes belonging to N are unique, defined independently
of the particular primary decomposition of a. Notice that N ⊆ Qi for each i, and so 0 =

⋂n
1 Qi/N is a primary

decomposition of 0 in M/N . This is clearly a minimal primary decomposition with rM/N (Qi/N) = rM (Qi).
So the primes belonging to N are precisely the primes belonging to 0 in M/N , by the uniqueness theorem
proved above.
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4.23. Prove analogues of Propositions 4.6 to 4.11.

Let N be a decomposable submodule of M , with minimal primary decomposition N =
⋂

Qi. Write
pi = r(Qi : M) and notice that (N : M) =

⋂
(Qi : M) ⊆ (Qi : M) ⊆ pi for every i. Suppose p be a

prime ideal in A containing (N : M). Then p ⊇ r(N : M) =
⋂

r(Qi : M) =
⋂

pi so that pi ⊆ p for some
i. This means that the minimal elements in the set of all prime ideals containing (N : M) are precisely the
minimal elements in the set of prime ideals belonging to N .

Suppose that 0 is a decomposable submodule with minimal primary decomposition 0 =
⋂

Qi and pi = rM (Qi).
Notice that a ∈ A is a zero-divisor in M iff a ∈ ⋃

0 6=x∈M Ann(x). The set D(M) of a ∈ A that are zero-divisors
clearly satisfies r(D(M)) = D(M) so that D(M) =

⋃
0 6=x∈M r(0 : x). From the work done in exercise 4.22,

we know that r(0 : x) =
⋂

x 6∈Qi
pi, and hence r(0 : x) ⊆ pj for some j, since x is assumed to be nonzero.

Therefore, D(M) ⊆ ⋃n
1 pi. We have

⋃n
1 pi ⊆ D(M) since pi = r(0 : x) for some x 6= 0. Thus, we have the

equality
⋃n

1 pi = D(M).

Let S be a multiplicatively closed subset of A. Suppose Q is a p-primary submodule of M . Assume p meets
S at s, so that snM ⊆ Q for some n. Then S−1Q contains m/t = (snm)/(snt) for every m ∈ M and t ∈ S.
This means that S−1Q = S−1M . On the other hand, assume that p∩S = ∅. Then S−1Q is an S−1p-primary
submodule of S−1M . We have the canonical map f : M → S−1M that is a homomorphism of A-modules.
Then f−1(S−1Q) = Q.

Let N be a decomposable submodule of M , with minimal primary decomposition N =
⋂n

1 Qi. Suppose S is a
multiplicatively closed subset of A. Write pi = rM (Qi) and assume that pi∩S = ∅ for 1 ≤ i ≤ m, and that pi

meets S for m < i ≤ n. By the above paragraph, S−1N =
⋂n

1 S−1Qi =
⋂m

1 S−1Qi is a primary decomposition
of S−1N in S−1M . Since the pi are distinct, so are the S−1pi for 1 ≤ i ≤ m. If S−1Qm ⊇ ⋂

1≤i<m S−1Qi =
S−1(

⋂
1≤i<m Qi) then Qm = (S−1Qm)c ⊇ (S−1

⋂
1≤i<m Qi)c ⊇ ⋂

1≤i<m Qi. So S−1N =
⋂m

1 S−1Qi is a
minimal primary decomposition. Contracting this, we get S(N) = (S−1N)c =

⋂m
1 (S−1Qi)c =

⋂m
1 Qi. This

is a minimal primary decomposition of S(N) in M .

Let N be a decomposable submodule of M , with minimal primary decomposition N =
⋂n

1 Qi. Suppose Σ is
an isolated set of prime ideals belonging to N , where we write pi = rM (Qi) as usual. Define QΣ =

⋂
pi∈Σ Qi.

Clearly, S = A −⋃
pi∈Σ is a multiplicatively closed subset of A. Then QΣ = S(N) depends only on Σ, and

is independent of the minimal primary decomposition of N . In particular, the isolated components of N are
uniquely determined.
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Chapter 5 : Integral Dependence and Valuations

5.1. Let f : A → B be an integral homomorphism of rings. Show that f∗ is a closed map.

Let q be a prime ideal in B. I claim that f∗(V (q)) = V (f∗(q)). Clearly f∗(V (q)) ⊆ V (f∗(q)). Now if
p ∈ V (f∗(q)) then Ker(f) ⊆ f∗(q) ⊆ p so that f(f∗(q)) ⊆ f(p) is a chain of prime ideals in f(A). Observe
that q∩ f(A) = f(f−1(q)) = f(f∗(q)). Since B is integral over f(A), there is a prime ideal r in B containing
q with r ∩ f(A) = f(p). So p = f−1(f(p)) = f−1(r ∩ f(A)) = f−1(r) = f∗(r) with r ∈ V (q). This means that
f∗ is a surjective map, and hence f∗(V (q)) = V (f∗(q)), showing that f∗ is a closed map.

5.2. Let A be a subring of B so that B is integral over A, and let f : A → Ω be a homomorphism of
A into an algebraically closed field Ω. Show that f can be extended to a map B → Ω.

By a straightforward application of Zorn’s Lemma there is a subring C of B containing A so that f can
be extended to a map C → Ω but such that f cannot be extended to a map defined on a subring of B prop-
erly containing C. So assume that C 6= B so that we can derive a contradiction. If b 6∈ C then p(b) = 0 for
some monic p ∈ C[x], where x is an indeterminate. Assume that p is chosen to have minimal degree, so that
p is an irreducible polynomial. Since Ω is algebraically closed, p has a root ξ in Ω. Now define f̄ : C[x] → Ω
by f̄(

∑
cix

i) =
∑

f(ci)ξi. Then f̄ is a ring homomorphism whose kernel contains (p). Hence, f̄ induces a
ring homomorphism C[x]/(p) → Ω given by

∑
cix

i + (p) → ∑
f(ci)ξi. But C[b] and C[x]/(p) are isomorphic

rings, so that there is a ring homomorphism C[b] → Ω given by
∑

cib
i 7→ ∑

f(ci)ξi. This map extends f to
the subring C[b] of B that properly contains C; a contradiction. Hence, f can indeed be extended to a map
B → Ω.

5.3. Let f : B → B′ be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral,
prove that f ⊗ 1 : B ⊗A → B′ ⊗ C is integral.

Let b′ ⊗ c be a generator of B′ ⊗C. It suffices to show that b′ ⊗ c is integral over (f ⊗ 1)(B ⊗C). Suppose b′

is a root of the polynomial p(x) =
∑n

i=0 f(bi)xi. Define a polynomial q(x) =
∑n

i=0(f ⊗ 1)(bi⊗ cn−i)xi. Then
q(b′ ⊗ c) = p(b′)⊗ cn = 0. So we are done.

5.4. Suppose A ⊆ B are rings with B integral over A. Let n be a maximal ideal of B and let m = A∩n
be the corresponding maximal ideal of A. Must Bn be integral over Am?

Let k be a field and consider the subring k[x2 − 1] of k[x]. Since the polynomial x − 1 is irreducible
over k, and since k[x] is a principal ideal domain, the ideal n = (x − 1) is maximal in k[x]. Thus,
m = k[x2 − 1] ∩ n = (l.c.m.{x2 − 1, x− 1}) = (x2 − 1) is a maximal ideal in k[x2 − 1].

Notice that x ∈ k[x] is integral over k[x2 − 1] since x is a root of the polynomial p(ξ) = ξ2 − [(x2 − 1) + 1].
Since the set of all elements integral over k[x2−1] form a subring of k[x], and since x is integral over k[x2−1],
we see that k[x] is indeed integral over k[x2 − 1].

For the sake of deriving a contradiction, suppose k[x]n is integral over k[x2−1]m. Then in particular, 1/(x+1)
is integral over k[x2−1]m since x+1 ∈ k[x]−n. This means that there are polynomials p1, . . . , pn ∈ k[x2−1]
and polynomials q1, . . . , qn ∈ k[x2 − 1]−m for which

(x + 1)−n + (x + 1)−(n−1) pn−1

qn−1
+ · · ·+ (x + 1)−1 p1

q1
+

p0

q0
= 0

Define q̂i =
∏

j 6=i qj and q =
∏n

1 qi. Clearing the denominators in the above equation yields

(x + 1)np0q̂0 + (x + 1)n−1p1q̂1 + · · ·+ (x + 1)pn−1q̂n−1 + q = 0

This shows that x + 1 divides q. Since q ∈ k[x2 − 1], we can choose scalars r0, . . . , rm ∈ k satisfying

q = r0 + r1(x2 − 1) + · · ·+ rm(x2 − 1)2m
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Since x + 1 divides q and x2 − 1, we see that r0 = 0, and so q ∈ m. But q is the product of elements
q1, . . . , qn 6∈ m, and so we have a contradiction. This contradiction shows us that 1/(x + 1) is not integral
over k[x2 − 1]m. Hence, k[x]n is not integral over k[x2 − 1]m.

5.5. Let A ⊆ B be rings with B integral over A. Prove the following.

a. If x ∈ A is a unit in B then x is a unit in A.

Since x−1 ∈ B we have an equation of the form

x−n + an−1x
−n+1 + · · ·+ a1x

−1 + a0 =

with n > 0 and each ai ∈ A. Then

x−1 = −(a0x
n−1 + a1x

n−2 + · · ·+ an−1) ∈ A

since x ∈ A. That is, x is invertible in A.

b. R(A) = A ∩R(B).

If m is a maximal ideal in B then m ∩ A is a maximal ideal in A. If n is a maximal ideal in A,
then n is a prime ideal in A, so that n = A ∩ m for some prime ideal m in B. But now m is a maximal
ideal in B. So

R(A) =
⋂

m =
⋂

(m ∩A) =
⋂

m ∩A = R(B) ∩A

where the first intersection is taken over all maximal ideals in A and the last intersection is taken over
all maximal ideals in B.

5.6. Let B1, . . . , Bn be integral A-algebras. Show that B =
∏n

i=1 Bi is an integral A-algebra as well.

It suffices to assume n = 2. If Bi is given the A-algebra structure induced by fi : A → Bi, then B is
given the A-algebra structure induced by f : A → B with f(a) = (f1(a), f2(a)). Suppose (b1, b2) ∈ B so that
b1 is integral over f1(A). Choose a monic polynomial

p(x) = xm +
m−1∑

i=0

f1(ai)xi such that p(b1) = 0

Then define a new monic polynomial with coefficients in f(A) by

p′(x) = xm +
m−1∑

i=0

f(ai)xi

so that p′(b1, b2) = (0, b′2) for some b′2 ∈ B. Choose a monic polynomial

q(x) = xn +
n−1∑

i=0

f2(a′i)x
i such that q(b′2) = 0

Then define a new monic polynomial with coefficients in f(A) by
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q′(x) = xn +
n−1∑

i=0

f(a′i)x
i

so that q′(0, b′2) = (f(a′0), 0). Now define a monic polynomial r with coefficients in f(A) by the equation

r(x) = x2 + (−f(a′0),−f(a′0))x

so that r(f(a′0), 0) = (0, 0). To summarize, (b1, b2) is integral over f(A)[(0, b′2), (f(a′0), 0)], the element (0, b′2)
is integral over f(A)[(f(a′0), 0)], and lastly (f(a′0), 0) is integral over f(A). Working backwards reveals that
(b1, b2) is integral over f(A). Hence, B1 ×B2 is integral over A.

5.7. Let A ⊂ B be rings so that B−A is closed under multiplication. Show that A is integrally closed
in B.

Let C be the integral closure of A in B and suppose that A ( C. Define

n = min{d : the irreducible polynomial of some x ∈ C −A has degree d}

Clearly n > 1. Suppose x ∈ C −A has the irreducible polynomial

xn + a1x
n−1 + · · ·+ an = 0

Then by minimality xn−1 + a1x
n−2 + · · ·+ an−1 6∈ A. But

x(xn−1 + a1x
n−2 + · · ·+ an−1) = −an ∈ A

showing that B −A is not closed under multiplication.

5.8. Suppose A ⊆ B are rings and let C be the integral closure of A in B. Let f, g be monic
polynomials in B[x] so that fg ∈ C[x]. Show that f, g ∈ C[x].

Suppose for the moment that there is a ring D containing B over which f and g split completely into linear
factors. Then we can write f =

∏
(x− aj) and g =

∏
(x− bj) for appropriate aj , bj in D. Notice that aj , bj

are roots of fg in D. Since fg is a monic polynomial in C[x], this means that the aj , bj are integral over C.
Now the coefficients of f and g are polynomials in terms of the aj , bj . So these coefficients are themselves
integral over C, and are hence integral over A. Since the coefficients of f and g lie in B, they are in C by
definition of C. In other words, f and g are in C[x].

So now it suffices to prove that for every ring B and every f ∈ B[x], there is a ring D containing B over which
f splits completely into linear factors. Of course we proceed by induction on deg(f) > 0. Let D′ = B[x]/(f),
and consider the natural map B → B[x] → B[x]/(f) = D′. This map is injective since f is monic and has
degree greater than 0. Hence, we can consider B as being a subring of D′, and we can consider f as being an
element of D′[x]. As such, f has the root x + (f). Denote this root by a. Notice that we can choose a monic
q ∈ D′[x] satisfying f(x) = q(x)(x − a) and deg(q) = deg(f) − 1. By induction there is a ring D containing
D′ over which q splits completely into linear factors. Now B is a subring of D and f splits completely over
D into linear factors. So we are done.

5.9. Suppose A ⊆ B are rings with C the integral closure of A in B. Show that C[x] is the integral
closure of A[x] in B[x].

Let cxm ∈ C[x] and suppose that c is a root of the polynomial
∑n

i=0 aiξ
i ∈ A[ξ]. Then cxm is a root

of the polynomial
∑n

i=0(aix
mn−im)ξi ∈ A[x][ξ] so that cxm is integral over A[x]. Consequently, C[x] is con-

tained in the integral closure of A[x] in B[x]. Now suppose that f ∈ B[x] is integral over A[x] and choose
g0, . . . , gm ∈ A[x] satisfying
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fm + gm−1f
m−1 + · · ·+ g1f + g0 = 0

Let r be an integer that is greater than m and every deg(gi). Define

f̃ = f − xr

Of course −f̃ is a monic polynomial in B[x] of degree r and

(f̃ + xr)m + gm−1(f̃ + xr)m−1 + · · ·+ g1(f̃ + xr) + g0 = 0

We can rewrite this as

f̃m + hm−1f̃
m−1 + · · ·+ h1f̃ + h0 = 0

for appropriate hi ∈ B[x]. Observe that

(−f̃)(f̃m−1 + hm−1f̃
m−2 + · · ·+ h1) = h0

But h0 = xrm +gm−1x
r(m−1) + · · ·+g1x

r +g0 ∈ A[x] ⊆ C[x] and deg(h0) = rm with leading coefficient equal
to 1. After all

deg(gix
ri) = deg(gi) + ri < r(i + 1) ≤ rm for 0 ≤ i ≤ m− 1

So h is a monic polynomial. This implies that

f̃m−1 + hm−1f̃
m−2 + · · ·+ h1

is monic as well. Now exercise 5.8 tells us that −f̃ ∈ C[x]. Since xr ∈ C[x] we see that f ∈ C[x]. So we are
done.

5.10. Consider the following conditions and show that a ⇒ b ⇔ c.

a. The map f∗ is closed.

b. The map f has the going-up property.

c. The map f∗ : Spec(B/q) → Spec(A/p) is onto whenever q is a prime ideal in B and p = f∗(q).

(a ⇒ b) Suppose that p1 ⊆ p2 is a chain of prime ideals in f(A) with p1 = f(A) ∩ q1, where q1 is a prime ideal
in B. Then f−1(p2) ∈ V (f∗(q1)) since f∗(q1) = f−1(p1) ⊆ f−1(p2). Since f∗(V (q1)) = V (f∗(q1)) there
is a prime ideal q2 in B containing q1 such that f−1(p2) = f∗(q2) = f−1(f(A) ∩ q2). This means that
p2 = f(A) ∩ q2. Therefore, B and f(A) satisfy the conclusions of the going-up theorem, showing that f
has the going-up property.

(b ⇒ c) Let q be a prime ideal in B and write p = qc. We have to show that the map f∗ : V (q) → V (p) is
surjective. If p′ ∈ V (p) then Ker(f) ⊆ p ⊆ p′ so that f(p) ⊆ f(p′) is a chain of prime ideals in f(A) with
q ∩ f(A) = f(p). Since f has the going-up property, there is a prime ideal q′ in B containing q so that
q′ ∩ f(A) = f(p′). Now f∗(q′) = f−1(f(p′)) = p′. This means that f∗ is surjective.

(c ⇒ b) Let p be a prime ideal in f(A) so that f−1(p) is a prime ideal in A.

5.10′. Consider the following conditions and show that a ⇒ b ⇔ c.
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a. The map f∗ is open.

b. The map f has the going-down property.

c. The map f∗ : Spec(Bq) → Spec(Ap) is onto whenever q is a prime ideal in B and p = f∗(q).

(a ⇒ b)

(b ⇒ c)

(c ⇒ b)

5.11. Let f : A → B be a flat homomorphism of rings. Then f has the going-down property.

By exercise 3.18 we know that f∗ : Spec(Bq) → Spec(Ap) is a closed map whenever q is a prime ideal of B
and p = qc. But now exercise 3.10 tells us that f has the going-down property.

5.12. Let G be a finite group of automorphisms of the ring A. Prove that A is integral over AG. Let S
be a multiplicatively closed subset of A such that σ(S) = S for every σ ∈ G. Define SG = S ∩AG.
Show that the action of G on A extends to an action on S−1A, and that (SG)−1AG ∼= (S−1A)G.

It is clear that AG is a subring of A. Let a ∈ A and consider

p(x) =
∏

σ∈G

(x− σ(a))

Notice that p(a) = 0 since 1G induces the identity autmorphism on A. Label the elements of G as σ1, . . . , σn

assuming that σ1 is the identity map of A, and observe that p(x) = xn−a1x
n−1+· · ·+(−1)n−1an−1x+(−1)nan

where

ak =
∑

i1<···<ik

σi1(a) · · ·σik
(a)

It follows that τ(ak) = ak for any τ ∈ G. In other words, the coefficients of p are elements of AG. Conse-
quently, A is integral over AG.

Clearly SG = {s ∈ S : σ(s) = s for every σ ∈ G} is a multiplicatively closed subset of A. Now given σ ∈ G
and a/s ∈ S−1A, define σ(a/s) = σ(a)/σ(s). Suppose that a/s = a′/s′ in S−1A so that s′′(as′ − a′s) = 0 for
some s′′ ∈ S. Then σ(s′′)(σ(a)σ(s′) − σ(a′)σ(s)) and σ(s′′) ∈ S so that σ(a)/σ(s) = σ(a′)/σ(s′) in S−1A.
This means that σ extends to a well-defined map S−1A → S−1A. Clearly this extension is a surjective
homomorphism of rings. Now suppose that 0/1 = σ(a/s) = σ(a)/σ(s) so that s′σ(a) = 0 for some s′ ∈ S.
Now σ(S) = S so that s′ = σ(s′′) for some s′′ ∈ S, implying that σ(s′′a) = 0 and hence s′′a = 0. This means
that a/s = 0/1 in S−1A. In other words, σ extends to an automorphism of S−1A. It is also clear that the
extension of the composition equals the composition of the extensions, so that G is a group of automorphisms
of S−1A.

Since the natural map AG → S−1A sends elements of SG to units of S−1A, there is a map (SG)−1AG → S−1A
given by a/s 7→ a/s. I claim that this map is injective. If a ∈ AG and s ∈ SG are such that a/s = 0/1 in
S−1A then ta = 0 for some t ∈ S. In particular, t

∏
σ∈G∗ σ(t)a = 0 where t

∏
σ∈G∗ σ(t) ∈ SG. So a/s = 0/1

in (SG)−1AG. This means that the map (SG)−1AG → S−1A is injective. Clearly σ(a/s) = a/s whenever
a ∈ AG and s ∈ SG, and hence the image of (SG)−1AG in S−1A is contained in (S−1A)G.

Now suppose that x = a/s ∈ (S−1A)G. Notice that a/s = as′/ss′ with s′ =
∏

σ 6=σ1
s, and that σ(ss′) = ss′

for every σ ∈ G. We still have x = as′/ss′. Since

as′/ss′ = x = σ(x) = σ(as′)/σ(ss′) = σ(as′)/ss′
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there is, for every σ ∈ G, an element uσ ∈ S satisfying

uσ(as′ss′ − σ(as′)ss′) = 0

Defining u =
∏

σ∈G uσ we see that

uss′(as′ − σ(as′)) = 0 for every σ ∈ G

Define v =
∏

σ 6=σ1
σ(u) so that

uvss′(as′ − σ(as′)) = 0 and uvss′ ∈ SG

Then σ(as′uvss′) = as′uvss′ for all σ ∈ G. This means that as′uvss′ ∈ AG. Since

x = as′uvss′/uvss′ss′

with as′uvss′ ∈ AG and uvss′ss′ ∈ SG we conclude that x is in the image of the map (SG)−1AG → S−1A.
So we have the desired isomorphism (SG)−1AG ∼= S−1A.

5.13. In the situation above, let p be a prime ideal in AG and define P as the set of prime ideals in
A whose contraction is p. Show that G acts transitively on P . In particular, P is finite.

Suppose q ∈ P and σ ∈ G so that σ(q) is a prime ideal in A. It is easy to check that σ(q) ∩ AG = p. After
all, if a ∈ σ(q) ∩ AG with a = σ(a′) and a′ ∈ q, then a′ = σ−1(a) = a so that a ∈ q ∩ AG = p. Similarly, if
a ∈ p = q ∩AG then a = σ(a) so that a ∈ σ(q) ∩AG. This means that G acts on P .

Now let q1 and q2 be elements in P . Suppose x ∈ q1 and consider y =
∏

σ∈G σ(x). Clearly y ∈ AG and
y ∈ q1 since 1G induces the identity automorphism of A. Therefore, y ∈ q1 ∩ AG = p ⊆ q2. Since q2 is a
prime ideal, we see that σ(x) ∈ q2 for some σ ∈ G. This means that q2 ⊆

⋃
σ∈G σ(q1). Now σ(q1) is a prime

ideal for each σ ∈ G, allowing us to conclude that q2 ⊆ σ(q1) for some σ ∈ G. Since A is integral over AG

and σ(q1) ∩ AG = p = q2 ∩ AG, we see by Corollary 5.9 that σ(q1) = q2. In other words, G acts transitively
on P . Finally, P is a finite set since G is finite and acts transitively on P .

5.14. Let A be an integrally closed domain, K its field of fractions, and L a finite normal separable
extension of K. Let G be the Galois group of L over K, and let B be the integral closure of A
in L. Show that σ(B) = B for every σ ∈ G, and that A = BG.

Suppose that b ∈ B, let b satisfy the integral dependence relation bn +
∑n−1

i=0 aib
i = 0 where each ai ∈ A,

and let σ ∈ G. Then σ(b) satisfies the integral dependence relation σ(b)n +
∑n−1

i=0 aiσ(b)i = 0 since σ fixes K
and A ⊆ K. This means that σ(B) ⊆ B. Similarly, σ−1(B) ⊆ B so that B ⊆ σ(B), and hence σ(B) = B for
every σ ∈ G. Now A is clearly contained in BG, and BG ⊆ LG = K. But elements in BG are integral over
A, and A is algebraically closed in K, implying that BG = A.

5.15. Let A be an integrally closed domain, K its field of fractions, L a finite extension field of K,
and B the integral closure of A in L. Show that, if p is any prime ideal in A, then the set of
prime ideals q in B that contract to p is finite.

Suppose for the moment that we can establish this result in the case that L/K is a separable extension or in
the case that L/K is a purely inseparable extension. We know from field theory that there is an intermediate
field K ⊂ J ⊂ L so that J/K is a finite separable extension and L/J is a finite purely inseparable extension.
Let C be the integral closure of A in J and notice that B is the integral closure of C in L. So by hypothesis,
if p is any prime ideal in A then there are finitely many prime ideals in C that contract to p, label these
q1, . . . , qn. Again by hypothesis, for each i there are finitely many prime ideals in B that contract to qi.
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These are precisely the prime ideals of B that contract to p, and so finitely many prime ideals in B contract
to p, establishing the claim. So it suffices to tackle the problem in the two special cases.

So suppose first that L is a finite separable extension of K. If x1, . . . , xn generate L over K, then let p1, . . . , pn

be the minimal polynomials of xi over K. Assuming L is embedded in its algebraic closure L̄, let L′ be the
subfield of L̄ generated by K and all of the roots of p1, . . . , pn. Then L′ is an extension of L, L′ is a finite
extension over K since each root of p1, . . . , pn is algebraic over K, and L′ is a normal extension of K since it
is generated over K by roots of irreducible polynomials. Further, since L is a separable extension of K, we
know that each pi is a separable polynomial, and so L′ is separable over K as well. Now define G to be the
Galois group of L′ over K so that L′G = K. Define B′ to be the integral closure of A in L′. Exercise 5.14
tells us that the set of prime ideals P of B′ lying over p is finite. By the Going Up Theorem, if there is a
prime ideal q in B that lies over p, then there is a prime ideal r in P that contracts to q. This means that
there are finitely many prime ideals in B that contract to p.

Now assume that L is a finite purely inseparable extension of A. Let q be a prime ideal of B that contracts
to A, where B is the integral closure of A in L. As we may assume that L 6= K we conclude that char(K) is
a prime p. If xpm ∈ p for some m ≥ 0, then xpm ∈ q so that x ∈ q. On the other hand, if x ∈ q then xpm ∈ K
for some m ≥ 0 since L/K is purely inseparable. But now xpm ∈ K ∩ q = p. This means that q consists of
all x ∈ L satisfying xpm ∈ p for some m ≥ 0. Hence, there is precisely one prime ideal of B lying over p. So
we are done.

5.16. Suppose k is an infinite field and A a finitely generated k-algebra. Show that there exist
y1, . . . , ys ∈ A algebraically independent over k such that A is integral over k[y1, . . . , yr].

Suppose A is generated by x1, . . . , xn as a k-algebra. Renumber the {xi} and choose r ≥ 0 so that x1, . . . , xr

are algebraically independent and each xi is algebraic over k[x1, . . . , xr] for r < i ≤ n. Proceed by induction
on n− r. If n− r = 0 then there is nothing to show. So suppose n− r > 0 and choose a non-trivial algebraic
dependence relation f(x1, . . . , xn) = 0. Let F be the homogeneous part of highest degree in f . Since k
is infinite, there exist λ1, . . . , λn−1 ∈ k such that µ := F (λ1, . . . , λn−1, 1) 6= 0. After all, F (·, . . . , ·, 1) is a
non-zero polynomial in n− 1 variables, and so it cannot induce the zero function on kn−1 when k is infinite.
Now define x′i = xi − λixn for 1 ≤ i < n, and let A′ = k[x′1, . . . , x

′
n−1]. I claim that xn is integral over A′.

Let d = deg(F ) and choose polynomials Gj in n− 1 variables so that

F (ξ1, . . . , ξn) =
d∑

j=0

ξj
nGj(ξ1, . . . , ξn−1)

Notice that each Gj is a homogeneous polynomial of degree d− j. Now let ξ′i = ξi − λiξn and compute

F (ξ1, . . . , ξn) =
d∑

j=0

ξj
nGj(ξ′1 + λ1ξn, . . . , ξ′n−1 + λn−1ξn)

=
d∑

j=0

ξj
n

[
ξd−j
n Gj(λ1, . . . , λn−1, 1) + Hj(ξ′1, . . . , ξ

′
n−1, ξn)

]

= ξd
nF (λ1, . . . , λn−1, 1) +

d∑

j=0

ξj
nHj(ξ′1, . . . , ξ

′
n−1, ξn)

where each Hj is a polynomial in the variables ξ′1, . . . , ξ
′
n−1, ξn with degree strictly less than d− j in ξn, and

with coefficients in k. Define a new polynomial F̃ by

F̃ (ξ) = ξd +
1
µ

d∑

j=0

ξjHj(x′1, . . . , x
′
n−1, ξn)
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Then F̃ is a monic polynomial in ξ with coefficients in A′ and such that F̃ (xn) = F (x1, . . . , xn−1, xn) = 0.
Therefore, xn is indeed integral over A′. This means that A = k[x1, . . . , xn] = k[x′1, . . . , x

′
n−1, xn] is integral

over A′. By the induction hypothesis, there are y1, . . . , ys ∈ A′ algebraically independent over k such that A′

is integral over A′[y1, . . . , ys]. Now y1, . . . , ys ∈ A are algebraically independent over k and A is integral over
A[y1, . . . , ys]. We are finished.

5.16.′ Suppose that k is an algebraically closed field and that X is an affine algebraic variety in kn

with coordinate ring A 6= 0. Show that there is a linear subspace L of dimension r in kn and a
linear mapping of kn onto L that maps X onto L.

5.17. Let k be algebraically closed. Show that, if a 6= (1) is an ideal in A = k[t1, . . . , tn], then V (a) 6= ∅.
Deduce that every maximal ideal in A is of the form (t1 − a1, . . . , tn − an) for some ai ∈ k.

Let m be a maximal ideal in A containing a. Then A/m 6= 0 is a finitely generated k-algebra, since it is
generated by t1+m, . . . , tn+m as a k-algebra. By Noether’s Normalization Lemma, there are y1, . . . , ys ∈ A/m
algebraically independent over k such that A/m is integral over k[y1, . . . , ys]. But A/m is a field, so that
k[y1, . . . , ys] is a field by Proposition 5.7. Since k[y1, . . . , ys] is a polynomial ring over k, we must have s = 0
and k[y1, . . . , ys] ∼= k. So A/m is a finite algebraic extension of k. Since k is algebraically closed, we conclude
that A/m = k. More precisely, A/m is generated by 1 + m as a k-vector space. Now let ai be the unique
element in k satisfying ai +m = ti +m, so that ti−ai ∈ m. Then n = (t1−a1, . . . , tn−an) ⊆ m. But A/n ∼= k
so that n is a maximal ideal, and hence n = m. Now (a1, . . . , an) ∈ V (m) ⊆ V (a). In particular, this means
that V (a) 6= ∅.

5.18. Let k be a field and B a finitely generated k-algebra. Suppose B is a field. Show that B is a
finite algebra extension of k.

Assume B is generated by x1, . . . , xn as a k-algebra. If n = 1 and x1 6= 0, then x−1
1 = p(x1) where p is

some polynomial with coefficients in k, so that x1p(x1) = 1. If d = deg(p) then we can write xd+1
1 as a

k-linear combination of {1, x1, . . . , x
d
1} so that B is finitely generated as a k-vetor space, and hence B is a

finite algebraic extension of k.

Therefore, assume that n > 1. Define an integral subdomain A = k[x1] of B, and K = k(x1) as the
field of fractions of A, contained in B since B is a field. Now B is a K-algebra generated by {x2, . . . , xn}.
By induction, B is a finite algebraic extension of K. In particular, x2, . . . , xn satisfy monic polynomial equa-
tions with coefficients in K. Coefficients in K are of the form a/b for a, b ∈ A. Let f be the product of
the denominators of all these coefficients. Then the coefficients a/b are elements of Af when we consider
A ⊂ Af ⊂ K ⊂ B. So x2, . . . , xn are integral over Af . Since B is an Af -algebra generated by {x2, . . . , xn},
we see that B is integral over Af , and hence that K is integral over Af .

For the sake of deriving a contradiction, suppose that x1 is trascendental over k. Then A is a Euclidean
domain since k is a field, and so A is a unique factorization domain. As such, A is integrally closed in K. By
5.12 this means that Af is integrally closed in Kf = K. By the above, integral closure of Af in K equals K,
implying that Af = K. In other words, k[x]f = k(x) for some f ∈ k[x]. This is impossible: let p ∈ k[x] be
irreducible, then 1/p = g/fn for some n ∈ N and some g ∈ k[x] having no factor in common with f , implying
that p is a factor of f , and in particular implying that k[x] has finitely many irreducible elements. But an
adaptation of Euclid’s proof shows that k[x] has infinitely many irreducible elements.

Therefore, x1 is algebraic over k. As a result, K = k(x1) is a finite algebraic extension of k. As B is a
finite algebraic extension of K, we conclude that B is a finite algebraic extension of k, as claimed.

5.19. Deduce the result of exercise 17 from exercise 18.

Choose a maximal ideal m in A containing a. Notice that A/m is a finitely generated k-algebra, which is itself
a field. So A/m is a finite algebraic extension of k by Corollary 5.24. But k is algebraically closed, so that
A/m is generated by 1 + m as a k-vector space. Let ai be the unique element in k satisfying ai + m = ti + m,
so that ti − ai ∈ m. Then n = (t1 − a1, . . . , tn − an) ⊆ m. But A/n ∼= k so that n is a maximal ideal, and
hence n = m. Now (a1, . . . , an) ∈ V (m) ⊆ V (a). In particular, this means that V (a) 6= ∅.
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5.20. Let A be a subring of an integral domain B so that B is finitely generated over A. Show that
there exists 0 6= s ∈ A and elements y1, . . . , yn ∈ B algebraically independent over A such that Bs

is integral over (B′)s, where B′ = A[y1, . . . , yn].

Let F be the field of fractions of B, let S = A − {0}, and define K ⊂ F by K = S−1A so that K is
the field of fractions of A. Supposing that B is generated by {z1, . . . , zm} as an A-algebra, we easily see that
S−1B is generated by {z1, . . . , zm} as a K-algebra. Hence, we can apply Noether’s Normalization Lemma
to deduce the existence of y1/s1, . . . , yn/sn ∈ S−1B algebraically independent over K and such that S−1B
is integral over K[y1/s1, . . . , yn/sn] = K[y1, . . . , yn]. If s is any element in S, then we have a commutative
diagram as below.

Now suppose p is some polyomial in n indeterminates with coefficients in A such that p(y1, . . . , yn) = 0.
We can write

p(ξ1, . . . , ξn) =
∑

α:{1,··· ,n}→A

aαξ
α(1)
1 · · · ξα(n)

n with aα ∈ A

Define a polynomial p̃ in n indeterminates with coefficients in K by

p̃(ξ1, . . . , ξn) =
∑

α:{1,··· ,n}→A

(aαs
α(1)
1 · · · sα(n)

n )ξα(1)
1 · · · ξα(n)

n

Then p̃(y1/s1, . . . , yn/sn) = p(y1, . . . , yn) = 0. Since y1/s1, . . . , yn/sn are algebraically independent over K,
we see that p̃ = 0 and so aαs

α(1)
1 · · · sα(n)

n = 0 for all α. But every si ∈ S = A − {0} so that each aα = 0.
This means that p = 0, and hence y1, . . . , yn are algebraically independent over A.

Now z1, . . . , zm satisfy integral dependence relations qi(zi) = 0 with coefficients from K[y1, . . . , yn]. De-
fine di = deg(qi). Clearing denominators in all of the qi simultaneously gives us an s ∈ S and polynomials ri

with coefficients from A[y1, . . . , yn] so that zdi
i + ri(zi)/s = 0 and deg(ri) < di for every i. In particular, each

zi is integral over (B′)s. Consequently, Bs is integral over (B′)s since Bs = (B′)s[z1, . . . , zm].

S−1B

K[y1, . . . , yn]

mmmmmmmmmmmm
Bs

QQQQQQQQQQQQQQ

K A[y1, . . . , yn]s

PPPPPPPPPPPP

nnnnnnnnnnnnnn
B

As

nnnnnnnnnnnnnn
A[y1, . . . , yn]

PPPPPPPPPPPP

A

QQQQQQQQQQQQQQQQ

mmmmmmmmmmmmmm

5.21. Let A and B be as in exercise 5.20. Show that there is 0 6= s ∈ A such that, if Ω is an algebraically
closed field and f : A → Ω is a homomorphism satisfying f(s) 6= 0, then f can be extended to a
homomorphisms B → Ω.

We use the same notation as in exercise 2. Since y1, . . . , yn are algebraically independent over A, we have
an extension f : A[y1, . . . , yn] → Ω induced by defining f(yi) = 0 for every i. Now f(s) is a unit in Ω since
f(s) 6= 0. By the Universal Mapping Property for A[y1, . . . , yn]s, we have an extension f : A[y1, . . . , yn] → Ω.
Since Bs is integral over A[y1, . . . , yn]s and since Ω is algebraically closed, exercise 5.2 tells us that we have
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an extension f : Bs → Ω. Now restriction yields a map f : B → Ω that is an extension of the original map
A → Ω.

5.22. Let A and B be as in exercise 5.20. Show that the Jacobson radical R(B) of B equals zero if
R(A) = 0.

Let 0 6= v ∈ B and notice that A is a subring of the integral domain Bv. By exercise 5.21 there is 0 6= s ∈ A
such that, if Ω is an algebraically closed field and f : A → Ω is a homomorphism satisfying f(s) 6= 0, then f
can be extended to a homomorphism B → Ω. Let m be a maximal ideal of A not containing s. This exists
since s 6∈ R(A) = 0. Write k = A/m and embed k in its algebraic closure Ω. Then the composition of the
maps A → k → Ω is a homomorphism not sending s to 0. So we can extend this to a map g : Bv → Ω.
Clearly g(v) 6= 0 since v = v/1 is a unit in Bv with inverse 1/v. Hence, v 6∈ Ker(g) ∩B.

5.23. Show that the following are equivalent for a ring A.

a. Each prime ideal in A is an intersection of maximal ideals.

b In each homomorphic image of A, the nilradical equals the Jacobson radical.

c. Each non-maximal prime ideal in A equals the intersection of the prime ideals that strictly
contain it.

(a ⇒ b) Let a be a proper ideal in A. Every prime ideal in A/a is of the form p/a where p is a prime ideal in A.
By hypothesis, p is an intersection of maximal ideals (containing p). These maximal ideals correspond
to maximal ideals in A/a. So every prime ideal in A/a is an intersection of maximal ideals. Hence, it
suffices to show that N(A) = R(A). As always N(A) ⊆ R(A). Now every prime ideal in A contains
R(A) so that N(A) ⊇ R(A), and therefore N(A) = R(A).

(a ⇒ c) Let p be a non-maximal prime ideal. By hypothesis, p is the intersection of all maximal ideals containing
p. But these ideals strictly contain p since p is not a maximal ideal. Therefore, p equals the intersection
of all prime ideals strictly containing p.

(b ⇒ c) Let p be a non-maximal prime ideal in A so that A/p is an integral domain that is not a field. Then
0 is not a maximal ideal in A/p. Since 0 = N(A/p) = R(A/p) we see that 0 is the intersection of all
maximal ideals in A/p. This means that p is the intersection of all maximal ideals in A containing p,
and hence is the intersection of all the prime ideals in A strictly containing p.

(c ⇒ b) If b does not hold, then a does not hold, so that there is a prime ideal p that is properly contained in the
intersection I of all maximal ideals in A containing p. Choose f ∈ I − p and notice that Af 6= 0, since
1/1 = 0/1 in Af implies that fn = 0 ∈ p for some n ≥ 0. Also, p does not meet {1, f, f2, . . .} so that
pf 6= Af . Let m be a maximal ideal in Af containing pf , so that mc is a prime ideal q in A containing
p. Observe that f ∈ q implies that f/1 ∈ m and hence m contains a unit in Af . Thus, f 6∈ q. If q
were a maximal ideal, then f ∈ q since f ∈ I, but this is not the case. Suppose that r ⊇ q is another
prime ideal in A not containing f , so that r does not meet {1, f, f2, . . .}, and hence Af 6= rf ⊇ qf = m.
Then rf = m, and hence r = q. So if r is a prime ideal strictly containing q, then f ∈ r. Hence, q is
not the intersection of the prime ideals in A strictly containing q, since this intersection contains f 6∈ q.
Therefore, c does not hold when b does not hold.

5.24. Let A be a Jacobson ring (as in exercise 5.23) and B an A-algebra. Show that if B is either
integral over A or finitely generated as an A-algebra, then B is a Jacobson ring as well.

Suppose that B is integral over A. Let p be a prime ideal in B so that A ∩ p is a prime ideal in A.
For every maximal ideal q in A containing A ∩ p, choose a maximal ideal r in B with A ∩ r = q. Then
A ∩ p =

⋂
A∩p⊆q q = A ∩⋂

A∩p⊆q r so that

Suppose that B is finitely generated as an A-algebra. Let p be a prime ideal in B so that q = A ∩ p is
a prime ideal in A, and A/q is a subring of the integral domain B/p. Then B/p is finitely generated over
A/q. Since A is a Jacobson ring, R(A/q) = N(A/q) = 0. By exercise 5.22, R(B/p) = 0 as well, implying
that q is the intersection of all the maximal ideals in B containing q. Therefore, B is Jacobson.
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5.25? Show that A is a Jacobson ring if and only if every finitely generated A-algebra B which is a
field is finite over A.

5.26? Show that the following are equivalent for a ring A.

a. A is a Jacobson ring.

b The maximal ideals are very dense in Spec(A).

c. A singleton set in Spec(A) is closed if it’s locally closed.

(a ⇒ b)

(b ⇒ c)

(c ⇒ a)

5.27. We say that the local ring (B, n) dominates the local ring (A,m) if A ⊆ B and m = A ∩ n. Let K
be a field and let Σ consist of all local rings (A,m) of K, partially ordered by the above relation.
Show that Σ has maximal elements and that (A,m) is a maximal element of Σ iff A is a valuation
ring of K.

Let C = {Aα : α ∈ I} be a chain in Σ. Define A =
⋃

α∈I Aα and m =
⋃

α∈I mα. As usual, A is a ring with
ideal m. If x ∈ A \ m, then x ∈ Aα \ mα for some α, and so x is a unit in Aα. But then x is a unit in A.
Thus, (A,m) is a local ring dominating each (Aα, mα). Therefore, Σ is chain complete, and so Σ has maximal
elements.

Suppose that (A, m) ∈ Σ is a maximal element. Let Ω be the algebraic closure of A/m and η : A → Ω
the canonical map. Denote Σ′ as the set of all (B, f) with B a subring of K and f a map B → Ω. We
order Σ′ in the obvious way. Choose (B, f) ∈ Σ′ as a maximal element dominating (A, η). Then B is a local
ring with maximal ideal n = Ker(f). Now m = Ker(η) = A ∩ Ker(f) = A ∩ n so that (B, n) ∈ Σ dominates
(A, m). Therefore, A = B by maximality. Consequently, Theorem 5.21 tells us that A is a valuation ring of K.

Suppose (A, m) is a valuation ring of K strictly dominated by (B, n). Choose x ∈ B \ A so that x−1 ∈ A.
Then x−1 ∈ m since x−1 is a non-unit in A. But x−1 6∈ n since x−1 is invertible in B. This contradicts m ⊆ n.
Thus, every valuation ring of K is maximal in Σ.

5.28. Let K be the field of fractions of the integral domain A. Show that A is a valuation ring of K
if and only if the ideals of A are totally ordered by inclusion. Deduce that, if A is a valuation
ring and if p is a prime ideal in A, then Ap and A/p are valuation rings in their field of fractions.

Assume A is a valuation ring of K. Let a and b be two ideals in A. Suppose there is x ∈ a − b and let
0 6= y ∈ b. Then x/y 6∈ A since b is an ideal. So we have y/x ∈ A, and hence y ∈ a. In other words b ⊆ a.

Now assume that a ⊆ b or b ⊆ a whenever a and b are ideals in A. Suppose that a, b ∈ A with b 6= 0
are such that a/b ∈ K − A. Then a 6= 0. Define ideals in A by a = (a) and b = (b). If a ⊆ b then there is
c ∈ A with bc = a so that a/b = c ∈ A; a contradiction. Thus, b ⊆ a, implying the existence of c ∈ A with
ac = b, so that b/a = c ∈ A. Hence, A is a valuation ring of K.

Now let p be a prime ideal in A. Any two ideals in Ap are of the form ap and bp, where a and b are
ideals in A. Either a ⊆ b or b ⊆ a so that ap ⊆ bp or bp ⊆ ap. This means that Ap is a valuation ring in
its field of fractions. Any two ideals in A/p are of the form a/p and b/p, where a and b are two ideals in A
containing p. Either a ⊆ b or b ⊆ a so that a/p ⊆ b/p or b/p ⊆ a/p. This means that A/p is a valuation ring
in its field of fractions.

5.29? Let A be a valuation ring of the field K. Show that every subring B of K containing A is local.

What is the problem asking?
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5.30. Let A be a valuation ring of the field K. Assign to (A,K) a valuation v : K → Γ of K with values
in Γ.

Notice that K∗ = K−{0} is an abelian group under multiplication, and that the set U of units in A is a sub-
group of K∗. Define an abelian group Γ = K∗/U . For xU, yU ∈ Γ, we say that xU ≥ yU provided xy−1 ∈ A.
If xU = x′U and yU = y′U so that xx′−1 ∈ U and y−1y′ ∈ U , then xy−1 = x′y′−1 · xx′−1y−1y′ ∈ A, and
hence xy−1 ∈ A if and only if x′y′−1 ∈ A. This means that our relation ≥ is well-defined. Clearly xU ≥ xU
since xx−1 ∈ A. So ≥ is a reflexive relation. If xU ≥ yU ≥ zU then xy−1 ∈ A and yz−1 ∈ A, so that
xz−1 ∈ A, and hence xU ≥ zU . So ≥ is a transitive relation. Suppose xU ≥ yU and yU ≥ xU , so that
xy−1 ∈ A and yx−1 ∈ A, implying that xy−1 ∈ U , and hence xU = yU . So ≥ is an antisymmetric relation.
If xU, yU ∈ Γ then xy−1 ∈ A or yx−1 ∈ A, so that xU ≥ yU or yU ≥ xU . So any two elements of Γ are
comparable. All of these observations imply that ≥ is a total order on Γ. If xU ≥ yU and zU ∈ Γ, then
(xz)(yz)−1 = xy−1 ∈ A so that xU + zU ≥ yU + zU . This means that Γ is a totally ordered abelian group.
Define v : K∗ → Γ and notice finally that v(x + y) ≥ min{v(x), v(y)} since. This means that v is a valuation
of K. Lastly, suppose x and y are non-zero elements such that x 6= −y. Either xy−1 ∈ A or yx−1 ∈ A, so
that either (x + y)y−1 = 1 + xy−1 ∈ A or (x + y)x−1 = 1 + yx−1 ∈ A, and hence either v(x + y) ≥ v(x) or
v(x + y) ≥ v(x). This means that v(x + y) ≥ min{v(x), v(y)} for x 6= y ∈ K∗.

5.31. Let v : K∗ → Γ be a valuation. Show that K has the valuation ring A = {x ∈ K∗ : v(x) ≥ 0} ∪ {0}.
Thus, the concepts of valuation ring and valuations are equivalent.

Lets make a few observations. Notice that v(1)+v(1) = v(1) so that v(1) = 0. Suppose that v(−1) < 0 = v(1)
so that v(−1) = v(1) + v(−1) > v(−1) + v(−1) = v(1), a contradiction. Thus, v(−1) ≥ v(1) = 0. Finally, if
x ∈ K∗ then 0 = v(1) = v(xx−1) = v(x) + v(x−1).

From the above 1,−1 ∈ A. If x, y ∈ A − {0} then v(xy) = v(x) + v(y) ≥ v(x) + v(1) ≥ v(1) + v(1) = 0
so that xy ∈ A. Hence, A is closed under multiplication. If x 6= y ∈ A then x + y ∈ A since v(x + y) ≥
min{v(x), v(y)} ≥ 0. So A is closed under addition. Finally, A is closed under additive inversion since −1 ∈ A
and A is closed under multiplication. These remarks show that A is a subring of K.

Now suppose that x, x−1 ∈ K − A for some x 6= 0. Then v(x), v(x−1) < 0 so that v(x), v(x−1) < v(1).
Thus 0 = v(x)+v(x−1) < v(1)+v(x−1) < v(1)+v(1) = 0. So all of these inequalities are equalities, implying
that v(x−1) = 0 = v(x), a contradiction. We conclude that A is a valuation ring in K.

Now to show how these two concepts are equivalent in a precise manner. If we start with a field K and
a valuation ring A, lets assign the valuation v : K∗ → Γ = K∗/U as in exercise 5.20. Then 0 6= x ∈ A if and
only if v(x) ≥ v(1). But v(1) = 0 since 1 ∈ A. Therefore, A equals the valuation ring of K assigned to v.

Conversely, suppose we start with a valuation v : K∗ → Γ of the field K. Let A be the valuation ring of K
consisting of 0 and all x ∈ K∗ such that v(x) ≥ 0. Define Γ′ = K∗/U where U is the group of units in A, and
let v′ : K∗ → Γ′ by v′(x) = xU . Suppose that v(x) = 0 so that 0 = v(x) + v(x−1) = v(x−1). Conversely, sup-
pose that x ∈ U so that x−1 ∈ U , and hence v(x), v(x−1) ≥ 0. Then 0 = v(x) + v(x−1) = min{v(x), v(x−1)},
implying that v(x) = 0 or v(x−1) = 0, and hence v(x) = v(x−1) = 0. Combining these two remarks
reveals that U = {x ∈ K∗ : v(x) = 0}. Obviously U = {x ∈ K∗ : v′(x) = 0}. Now define a map
f : Γ′ → Γ by f(v′(x)) = v(x). If v′(x) = v′(y) so that xy−1 ∈ U , then v(xy−1) = 0, and hence
0 = v(x) + v(y−1) = v(x) − v(y), implying that v(x) = v(y). Therefore, ψ is well-defined. Similarly, ψ
is injective. Obviously ψ ◦ v′ = v. Lastly, Im(v) is a totally order subgroup of Γ, and ψ : Γ → Im(v) is an
isomorphism of totally ordered groups.

5.32? Suppose A is a valuation ring of K with value group Γ. Show that, if p is a prime ideal in A,
then there is an isolated subgroup ∆ of Γ such that v(A − p) consists of all ξ ∈ Γ with v(ξ) ≥ 0.
Show that this defines a bijective correspondence between Spec(A) and the set of all isolated
subgroups of Γ. If p is prime, then describe the values groups of A/p and Ap.

5.33. Let Γ be a totally ordered abelian group. Construct a field K and a valuation v of K with Γ as
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the value group.

First let k be any field and A = k[Γ] the group algebra of Γ over k. I claim that A is an integral domain.
So suppose that x =

∑
α∈S aαα and y =

∑
β∈T bββ are nonzero elements in k[Γ], where S and T are finite

subsets of Γ. Let α1 < · · · < αm be the elements of S, and β1 < · · · < βn be the elements of T , where we can
assume that each aαi and bβi is nonzero. The smallest coefficient xy is aα1bβ1(α1 + β1), which is non-zero
since k is a field. Therefore, xy 6= 0, and hence A is an integral domain.

Now letting x and y be as before, define v0 : A − {0} → Γ by v0(x) = α1. Notice that v0(xy) = α1 + β1 =
v0(x) + v0(y) and v0(x + y) =.

5.34. Let A be a valuation ring in its field of fractions K. Suppose f : A → B is such that f∗ is a
closed map. Show that, if g : B → K is a map of A-algebras, then g(B) = A.

Since g is a map of A-algebras, g ◦ f = i where i : A → K is the inclusion map. Define C = g(B) so that
A = g(f(A)) ⊂ g(B) = C. Let n be a maximal ideal in C, and define q = g−1(n), so that q is maximal in
B. Since f∗ is a closed map, f∗ : Spec(B/q) → Spec(A/p) is surjective, where p = f−1(q). But 0 is the only
prime ideal in B/q, so that A/p is an integral domain with precisely one prime ideal. This means that A/p
is a field, and hence p is a maximal ideal in A. Now we have A ⊂ C ⊂ Cn ⊂ K with (Cn, n) a local ring.
We also have p = f−1(q) = f−1(g−1(n)) = i−1(n) = A ∩ n showing that (C, n) dominates (A, p). But A is a
valuation ring in K, so that A = C by exercise 5.27. In other words, g(B) = A, as claimed.

5.35? Let B be an integral domain and f a map A → B such that (f ⊗1)∗ : Spec(B⊗A C) → Spec(A⊗A C)
is a closed map for every A-algebra C. Show that f is an integral mapping.
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Chapter 6 : Chain Conditions

6.1. Let M be an A-module and u ∈ EndA(M). Show the following.

a. If M is Noetherian and u is surjective then u is injective.

Clearly Ker(u) ⊆ Ker(u2) ⊆ . . . is a chain of submodules in M . So there is n > 0 with Ker(un+1) =
Ker(un). Suppose that x ∈ Ker(u). Since u is surjective, we can choose x′ for which un(x′) = x. Then
un+1(x′) = u(x) = 0 so that un(x′) = 0. But now x = 0, and hence u is injective.

b. If M is Artinian and u is injective then u is surjective.

Clearly Im(u) ⊇ Im(u2) ⊇ . . . is a chain of submodules in M . So there is n > 0 with Im(un+1) = Im(un).
Suppose that x ∈ M and choose y for which un(x) = un+1(y) = un(u(y)). Since u is injective, we see
that u(y) = x. This means that u is surjective.

6.2. Let M be an A-module. If every non-empty set of finitely generated submodules of M has a
maximal element, then M is Noetherian.

Suppose that N is a submodule of M that is not finitely generated. Then given x1, . . . , xn ∈ N there is
xn+1 ∈ N not lying in the submodule Nn of N generated by x1, . . . , xn. But then N1 ⊂ N2 ⊂ . . . is a strictly
increasing sequence of finitely generated submodules of M , which has no maximal element. This contradiction
shows that every submodule of M is finitely generated, and so M is Noetherian.

6.3. Let M be an A-module, and let N1, N2 be submodules of M . If M/N1 and M/N2 are Noetherian,
then so is M/(N1 ∩N2). Similarly with Artinian in place of Noetherian.

Define ϕ : M/(N1 ∩N2) → M/N1 ⊕M/N2 by ϕ(x + N1 ∩N2) = (x + N1, x + N2). This yields a well-defined
A-module monomorphism. Now if M/N1,M/N2 are Noetherian (Artinian) then is M/N1⊕M/N2, and hence
so is every submodule of M/N1 ⊕M/N2. Since ϕ is injective, this means that M/(N1 ∩ N2) is Noetherian
(Artinian) as well.

6.4. Let M be a Noetherian A-module and let a be the annihilator of M in A. Prove that A/a is
Noetherian. Does a similar result hold with Artinian in place of Noetherian?

Let M be Noetherian and suppose M is generated as an A-module by {x1, . . . , xn}. Notice that Mn =
⊕n

1 M
is a Noetherian A-module and that the map A → Mn given by a 7→ (ax1, . . . , axn) is a homomorphism of
A-modules. Clearly a = Ann(M) is precisely the kernel of this map. So A/a is isomorphic with a submodule
of Mn. From this we conclude that A/a is a Noetherian A-module, and so is a Noetherian A/a-module, and
is therefore a Noetherian ring.

This result does not hold with Artinian in place of Noetherian. As a counterexample, let p be a fixed prime
number, take A = Z, and define G as the subgroup of Q /Z consisting of all [a/b] with b a power of p. Then
the subgroups of G are generated by [1/pn] for some n ∈ N. Hence, G is an Artinian Z-module. Now suppose
that n ∈ Z annihilates G. Then n/pm ∈ Z for every m ≥ 0. This means that n = 0, and thus Ann(G) = 0.
But Z / Ann(G) = Z is not Artinian. So we have a counterexample.

6.5. Show that every subspace Y of a Noetherian topological space X is Noetherian, and that X is
compact.

Let U1 ⊆ U2 ⊆ . . . be open sets in Y . Choose Vk open in X such that Uk = Vk ∩ Y . Define Wk =
⋃

1≤i≤k Vi,
and note that Wk ∩ Y =

⋃
1≤i≤k Ui = Uk. Since W1 ⊆ W2 ⊆ . . . we deduce the existence of an N for which

Wn = WN whenever n ≥ N . But then Un = UN whenever n ≥ N . Therefore, Y is itself Noetherian.



69

Let C be a collection of closed subsets of X such that any intersection of finitely many members of C is
non-empty. Let I denote the set of all intersections of finitely many members of C so that I is a collection
of closed subsets of X. Then I has minimal elements. Since I is closed under finite intersections, it must be
that I has a minimum element. Since this element is non-empty, we see that

⋂ C is non-empty. This implies
that X is compact.

6.6. Let X be a topological space. Show that X is Noetherian if and only if every open subspace is
compact, and that this occurs if and only if every subspace of X is compact.

Suppose that X is Noetherian. Then every subspace of X is Noetherian in the subspace topology, and so
every subspace of X is compact.

If every subspace of X is compact then so is every open subspace.

Suppose that every open subspace of X is compact. Let U1 ⊆ U2 ⊆ . . . be a sequence of open subsets of X.
Then {Ui}∞1 is an open cover of U =

⋃∞
1 Ui. Since U is compact, {Ui}∞1 has a finite subcover. This means

that our sequence of open sets becomes stationary. Therefore, X is a Noetherian topological space.

6.7. Show that a Noetherian topological space X is a union of finitely many irreducible closed sub-
spaces. Conclude that X has finitely many irreducible components.

Suppose that X is not the union of finitely many closed irreducible subspaces. Let Σ be the collection of all
closed subsets of X that cannot be written as the union of finitely many closed irreducible subspaces of X.
By hypothesis, X ∈ Σ and so Σ is non-empty. Since X is Noetherian, Σ has a minimal element Y . Now Y
is not irreducible, so Y is the union of two proper closed subsets, each of these being closed in X since Y is
closed in X. By minimality of Y , each of these closed subsets can be written as the union of finitely many
closed irreducible subspaces of X. This means that Y 6∈ Σ, a contradiction. Therefore, X is the union of
finitely many irreducible closed subspaces.

This means that X is the union of finitely many irreducible components, say Y1, . . . , Yn. If Y is an irreducible
component of X, then Y ⊆ ⋃n

1 Yi. I claim that Y ⊆ Yi for some i. Otherwise, there is a set S ⊆ {1, . . . , n}
minimal with respect to the property that Y ⊆ ⋃

i∈S Yi, with |S| ≥ 2. But then Y =
⋃

i∈S Y ∩ Yi with each
Y ∩Yi a proper closed subset of Y , contradicting the assumption that Y is irreducible. Therefore, Y ⊆ Yi for
some i, and hence Y = Yi for some i. This means that X has finitely many irreducible components.

6.8. Show that Spec(A) is a Noetherian topological space whenever A is a Noetherian ring. Is the
converse true?

Let A be a Noetherian ring. Suppose we have a descending sequence of closed subsets of Spec(A). This
sequence has the form V (a1) ⊇ V (a2) ⊇ . . . for some ideals ai in A. The relation V (ai) ⊇ V (ai+1) implies
that r(ai) ⊆ r(ai+1). This means that r(a1) ⊆ r(a2) ⊆ . . . is an increasing sequence of ideals in A. So we
can choose N satisfying r(an) = r(aN ) for all n ≥ N . Then V (an) = V (r(an)) = V (r(aN )) = V (an) for all
n ≥ N . Therefore, Spec(A) is Noetherian.

It is not true that A needs to be a Noetherian ring when Spec(A) is a Noetherian topological space. As a
counterexample, let B = k[x1, x2, . . .] be the polynomial ring in countably many variables, suppose we have
the ideal a = (x1, x

2
2, x

3
3, . . .) in B, and define A = B/a. Also define an ideal b = (x1, x2, x3, . . .) in B. Then

b is a maximal ideal in B containing a, so that b/a is a maximal ideal in A. But b/a ⊆ N(A) ⊂ A so that
N(A) = b/a. Therefore, A has exactly one prime ideal. This means that Spec(A) is a one-point space, and
hence is trivially Noetherian. But A is not Noetherian since there is no k ∈ N satisfying N(A)k = 0. After
all, such a k would yield bk ⊆ a, which cannot hold since xk

k+1 ∈ bk − a by inspection.

6.9. Deduce from exercise 6.8 that a Noetherian ring A has finitely many minimal prime ideals.
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Since A is Noetherian, Spec(A) is Noetherian, and so Spec(A) has finitely many irreducible components. But
the minimal prime ideals of A and the irreducible components of Spec(A) are in a bijective correspondence
under the map p 7→ V (p). So A has finitely many minimal prime ideals.

6.10. Let M be a Noetherian A-module. Show that Supp(M) is a closed Noetherian subspace of
Spec(A).

Since M is finitely generated, Supp(M) = V (Ann(M)). Therefore Supp(M) is closed in Spec(A). Also,
V (Ann(M)) is homeomorphic with Spec(A/ Ann(M)) as topological spaces. Exercise 6.4 shows that A/ Ann(M)
is a Noetherian ring, so that Supp(M) is a Noetherian space.

6.11. Let f : A → B be a ring homomorphism and suppose that Spec(B) is Noetherian. Prove that
f∗ : Spec(B) → Spec(A) is a closed mapping if and only if f has the going-up property.

Suppose that f∗ is a closed mapping. Let p1 ⊆ p2 be a chain of prime ideals in f(A) with p1 = f(A)∩q1, where
q1 is a prime ideal in B. Then f−1(p2) ∈ V (f∗(q1)) since f∗(q1) = f−1(p1) ⊆ f−1(p2). Since f∗(V (q1)) =
V (f∗(q1)) there is a prime ideal q2 in B containing q1 such that f−1(p2) = f∗(q2) = f−1(f(A) ∩ q2). This
means that p2 = f(A) ∩ q2. Therefore, B and f(A) satisfy the conclusions of the going-up theorem, showing
that f has the going-up property.

Now suppose that f has the going up-property. Notice that Spec(B/b) is homeomorphic with V (b). So V (b)
a Noetherian space, since it is a subspace of the Noetherian space Spec(B). Exercise 6.9 tells us that there are
finitely many prime ideals in B containing b minimal with respect to inclusion. Label these primes p1, . . . , pn

and write qi = pc
i . If r ∈ f∗(V (b)) then r = pc for some p containing b, so that r = pi for some i. In other

words, f∗(V (b)) ⊆ ⋃n
i=1 V (qi). Now suppose that r ∈ V (qi) for some i. Then f(qi) ⊆ f(r) is a chain of prime

ideals in f(A) with f(A)∩pi = f(qi). So we can choose a prime ideal p containing pi so that f(A)∩p = f(r).
But now r = f−1(p) with p ∈ V (b), so that r ∈ f∗(V (b)). Thus, f∗(V (b)) =

⋃n
i=1 V (qi) is a closed set, so

that f∗ is a closed mapping.

6.12. Let A be a ring such that Spec(A) is a Noetherian space. Show that the set of prime ideals of
A satisfies the ascending chain condition. Is the converse true?

Let p1 ⊆ p2 ⊆ . . . be an ascending sequence of prime ideals in A. Then V (p1) ⊇ V (p2) ⊇ . . . is a descending
sequence of closed subset in Spec(A). Choose N with V (pn) = V (pN ) for all n ≥ N . It follows immediately
that pn = pN for all n ≥ N .

The converse does not hold. As a counterexample, take A =
∏∞

i=0 Z2(ei). Suppose p ( q are prime ideals in
A, and let x ∈ q − p. Then x2 = x so that x(1 − x) = 0 ∈ p, and hence 1 − x ∈ p. But then 1 − x ∈ q so
that 1 ∈ q, a contradiction. This means that every prime ideal in A is maximal, so that the prime ideals in A
satisfy the ascending chain condition. Now define an ideal an in A by an =

∏n
i=1 Z2(ei) so that a1 ⊆ a2 ⊆ . . .

and hence V (a1) ⊇ V (a2) ⊇ . . . is a descending sequence of closed subsets of Spec(A). Now
∏

j 6=n+1 Z2(ei)
is a prime ideal in A containing an but not containing an+1 so that V (an) ) V (an+1) for all n. This shows
that Spec(A) is not a Noetherian space.
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Chapter 7 : Noetherian Rings

7.1. Suppose A is a non-Noetherian ring and let Σ consist of all ideals in A that are not finitely
generated, so that Σ 6= ∅. Show that Σ has maximal elements and that every maximal element
is a prime ideal. So if every prime ideal is finitely generated, then A is Noetherian.

A straightforward application of Zorn’s Lemma tells us that Σ has maximal elements since Σ is chain complete.
Let a be a maximal element in Σ and suppose that there are x, y 6∈ a for which xy ∈ a. Then a ( a + (x).
By maximality, a + (x) is finitely generated, by elements of the form ai + bix, where ai are elements of a and
bi are elements of A. Let a0 be the ideal of a generated by the ai. Clearly a0 + (x) = a + (x). Also clear is
that a0 + x(a : x) ⊆ a. So suppose that a ∈ a. Then a + x =

∑
ci(ai + bix) for appropriate ci ∈ A. Hence,

a =
∑

ciai +x(
∑

bici− 1) where
∑

bici− 1 is in (a : x). Consequently a = a0 +x(a : x). Observe that (a : x)
strictly contains a since y ∈ (a : x) − a. By maximality of a we see that (a : x) is finitely generated. But
then a = a0 + x(a : x) is itself finitely generated; a contradiction. So every maximal element in Σ is prime.
Therefore, a ring in which every prime ideal is finitely generated must be Noetherian.

7.2. Suppose A is a Noetherian ring and let f =
∑∞

i=0 aix
i ∈ A[[x]]. Show that f is nilpotent if and

only if each ai is nilpotent.

From exercise 1.5 each ai is nilpotent if f is nilpotent. So suppose that each ai is nilpotent. Then each
ai ∈ N(A). Since A is Noetherian there is n > 0 for which N(A)n = 0. By induction each coefficient of fn is
an element of N(A)n, so that fn = 0. Hence, f is nilpotent.

7.3. Let a be a proper irreducible ideal in a ring A. Prove that the following are equivalent.

a. The ideal a is p-primary for some prime ideal p.

b. For every S the saturation S(a) = (a : s) for some s ∈ S.

c. The sequence (a : xn) is stationary for every x ∈ A.

(a ⇒ b) If it occurs that r(a) ∩ S = ∅, then since r(a) is a prime ideal, we can deduce that S(a) = a with of
course a = (a : 1). So suppose then that s ∈ r(a) ∩ S. Choose n > 0 for which sn ∈ a. Then S(a) = (1)
and a = (a : sn) with sn ∈ S. So we are done.

(b ⇒ c) Let x ∈ A and define S = {1, x, x2, . . .}. Then
⋃∞

n=0(a : xn) = S(a) = (a : xN ) for some N . Thus
(a : xN ) = (a : xn) for n ≥ N .

(c ⇒ a) We can imitate the proof of Lemma 7.12, noting that the ascending chain of ideals becomes stationary
by hypothesis (instead of assuming that the ring A is Noetherian).

7.4. Which of the following rings A are Noetherian?

a. The ring A of rational functions having no pole on S1.

Let S be the set of all f ∈ C[z] so that f has no zero on S1. It is clear that S is a multiplicatively closed
subset of C[z], and that A = S−1 C[z]. Since C[z] is a Noetherian ring, we see that A is a Noetherian ring.

b. The ring A of powers series in z with a positive radius of convergence.

Notice that A is the ring of germs of functions defined at 0. Let a be an ideal in A. If 0 6= f ∈ a then
write f(z) =

∑∞
i=n aiz

i with n ≥ 0 and an 6= 0. Define g(z) =
∑∞

i=0 ai+nzi so that f(z) = zng(z)
and g(0) = an 6= 0. Complex analysis tells us that g ∈ A and 1/g ∈ A, so that g is invertible in
A. In particular, zn = f · 1/g ∈ a. Assume n is the smallest number satisfying zn ∈ a. From what
we have shown, a = (zn). So the ideals in A are A ⊃ (z) ⊃ (z2) ⊃ . . . ⊃ (0). We see that A is Noetherian.



72

c. The ring A of power series in z with an infinite radius of convergence.

Notice that A is the same as the ring of entire functions on C. More precisely, an element of A yields an
entire function on C via evaluation, and every entire function on C yields an element of A by taking the
Taylor expansion of the function at the origin. Now by Weierstrass’ Theorem for complex analysis, there
is, for every n ∈ N, an entire function fn defined on C having simple zeros precisely at n, n+1, n+2, . . .
and no zeros elsewhere. Suppose that g is an entire function with zeros at n, n+1, n+2, . . . . Then g/fn

is an entire function, so that g ∈ (fn) and hence (fn) is the set of all entire functions that vanish at
n, n + 1, n + 2, . . . . Defining an = (fn), we have a0 ( a1 ( a2 ( . . . is a properly ascending sequence of
ideals in A, showing that A is non-Noetherian.

d. The ring A of polynomials in z whose first k derivatives vanish at the origin, where k is a
fixed natural number.

It is easy to see that A is the set of all polynomials c + zk+1p(z) where c ∈ C and p ∈ C[z]. Therefore,
A is generated over C by {1, zk+1, zk+2, . . . , z2k+1}. In other words, A is finitely generated over the
Noetherian ring C, and therefore A is itself Noetherian.

e. The ring A of polynomials in z and w all of whose partial derivatives with respect to w
vanish at z = 0.

Define B = C[z, zw, zw2, zw3, . . .] so that B is a subring of C[z, w]. It is clear that zwi ∈ A for every
i ≥ 0. Since A is a ring containing C, we see that B ⊆ A. On the other hand, let p be a general element
of A. We can choose n ∈ N and p0, . . . , pn ∈ C[z] satisfying

p(z, w) = p0(z) + p1(z)w + p2(z)w2 + · · ·+ pn(z)wn

Notice that

∂p

∂w
(z, w) = p1(z) + 2p2(z)w + · · ·+ npn(z)wn−1

Our condition on p is that

p1(0) + 2p2(0)w + · · ·+ npn(0)wn−1 = 0

Since this holds for all w ∈ C we conclude that p1(0) = p2(0) = . . . = pn(0) = 0. In other words,
z | pi(z) for 1 ≤ i ≤ n. From this we see that p ∈ B, and hence B = A. Now let In be the ideal
generated by z, zw, zw2, . . . , zwn. Then I1 ⊆ I2 ⊆ . . . is a sequence of ideals in A. Suppose, for the sake
of contradiction, that zwn+1 ∈ In. Then we can write

zwn+1 =
n∑

j=0

λj(z, w)zwj for some λj(z, w) ∈ B

Now we can write

λj(z, w) = q0(z) + zr0(z)t0(w)

Combining these relations yields

zwn+1 =
n∑

j=0

q0(z)zwj + z2
n∑

j=0

r0(z)t0(w)wj

This equality is impossible by inspection. So I1 ( I2 ( I3 ( . . . is a properly ascending sequence of
ideals in A. This means that A is non-Noetherian.
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7.5. Let A be a Noetherian ring, B a finitely generated A-algebra, and G a finite group of A-
automorphisms of B. Show that BG is a finitely generated A-algebra as well.

Suppose f : A → B induces the A-algebra structure of B. Notice that BG is an A-subalgebra of B containing
f(A). By exercise 5.12 we know that B is integral over BG. So we have the sequence f(A) ⊆ BG ⊆ B with
f(A) a Noetherian ring, B a finitely generated f(A)-algebra, and B integral over BG. So proposition 7.8 tells
us that BG is finitely generated as an f(A)-algebra, and hence as an A-algebra, as desired.

7.6. Show that a finitely generated field K is finite.

Suppose that char(K) = 0 so that Z ⊂ Q ⊆ K. Then K is finitely generated over Q since K is finitely
generated over Z by hypothesis. So K is finitely generated as a Q-module by proposition 7.9. Since Z is
Noetherian, proposition 7.8 tells us that Q is finitely generated over Z, say by {a1/b1, . . . , an/bn}. But if p
is a prime number not dividing any bi, then 1/p is not in Z[a1/b1, . . . , an/bn] ⊆ Z[1/b1 · · · bn]. Hence, the
characteristic of K is a prime number p. Again, proposition 7.9 tells us that K is finitely generated as an
Fp-module, so that K is a finite field.

7.7. Suppose k is an algebraically closed field and I an ideal of k[x1, . . . , xn]. Let X ⊂ kn consist of all
x so that f(x) = 0 for every f ∈ I. Show that there is a finite subset I0 ⊂ I so that x ∈ X if and
only if f(x) = 0 for every x ∈ I0.

Obviously k is Noetherian, so that k[x1, . . . , xn] is Noetherian. Hence, I is a finitely generated ideal. Suppose
I is generated by f1, . . . , fn. If x ∈ X then fi(x) = 0 for every i. Conversely, let f ∈ I and write f =

∑n
1 gifi

with gi ∈ k[x1, . . . , xn]. Then f(x) = 0 provided that fi(x) = 0 for every i. Hence, I0 = {fi}n
1 is the desired

subset of I.

7.8. If A[x] is Noetherian, must A be Noetherian as well?

Define a ring homomorphism A[x] → A by
∑n

0 akxk 7→ a0. Since this map is surjective, A is Noetherian.

7.9. Show that the ring A is Noetherian if the following hold

a. For each maximal ideal m, the ring Am is Noetherian.

b. For each x 6= 0 in A, there are finitely many maximal ideals in A containing x.

Let a 6= 0 be any ideal in A and suppose m1, . . . , mr are the maximal ideals in A containing a. Suppose x0 ∈ a
is nonzero and let m1, . . . , mr, . . . , mr+s be the maximal ideals in A containing x. Since a 6⊆ mr+j for j > 0
there is xj ∈ a − mr+j . Now a = ac

mi
for 1 ≤ i ≤ r since a ∩ (A − mi) = ∅. But each ami is an ideal in Ami

and so is finitely generated, since Ami is Noetherian. If ami is generated by ξ
(i)
1 , . . . , ξ

(i)
q then we can choose

a
(i)
1 , . . . , a

(i)
q ∈ a with a

(i)
j /1 = ξ

(j)
i so that ami is generated by the images of a

(i)
1 , . . . , a

(i)
q in Ami . Now choose

some t > 0 and some xs+1, . . . , xt ∈ a so that

{xs+1, . . . , xt} = {ξ(i)
j |1 ≤ j ≤ q and 1 ≤ i ≤ r}

So the images of xs+1, . . . , xt in Ami generate ami for every 1 ≤ i ≤ r. Now define b = (x0, x1, . . . , xt). We
have the inclusion map φ : b → a. To show that b = a it is enough to show that φ is surjective. So it suffices
to show that φm : bm → am is surjective whenever m is a maximal ideal in A. That is, it suffices to show
that bm = am. We already know this to be true when m contains a. So suppose that a 6⊆ m. If x0 ∈ m then
m = mr+i for some i > 0 so that bm = Am (since xi/1 ∈ bm is a unit in Am) and hence bm = am. If x0 6∈ m
then bm = Am (since x0/1 ∈ bm is a unit in Am) so that bm = am. Therefore, a = b is finitely generated,
proving that A is a Noetherian ring.
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7.10. Let M be a Noetherian A-module. Show that M [x] is a Noetherian A[x]-module.

Suppose N is an A[x]-submodule of M [x]. For n ≥ 0, let Mn be the set of all m ∈ M so that mxn + p ∈ N
where p ∈ M [x] is some polynomial of degree at most n − 1. Then Mn is an A-submodule of M , so that
M0 ⊆ M1 ⊆ . . . is an ascending sequence of submodules. Since M is a Noetherian A-module, there is N∗ such
that Mn = MN∗ for all n ≥ N∗. Again since M is Noetherian, there are mi,j ∈ Mi such that {mi,1, . . . , mi,r}
generates Mi for 1 ≤ i ≤ N . Clearly, {mN∗,1, . . . , mN∗,r} generates Mn for n ≥ N∗. For each i, j choose pi,j

of degree at most i− 1 so that mi,jx
i + pi,j ∈ N and define qi,j = mi,jx

i + pi,j .

Assume 0 6= p ∈ N has degree d and let m be the leading coefficient of p. Suppose d > N∗, and let
m =

∑r
i=1 aimN∗,i with ai ∈ A. Then defining p′ = p − ∑r

i=1 aix
d−N∗

qN∗,i yields p′ ∈ N with p′ having
degree less than d. By induction, there is p′ ∈ N with deg(p−p′) ≤ N∗. Now we proceed analogously to write
p− p′ as an A-linear sum of the qi,j . So p is an A[x]-linear sum of the qi,j . This means that {qi,j} generates
N as an A[x]-module, and hence N is finitely generated. Consequently, M [x] is a Noetherian A[x]-module.

7.11. Let A be a ring such that each local ring Ap is Noetherian. Must A itself be Noetherian?

Define A to be the internal direct product A =
∏∞

k=1 Z2(ek). Let an be the ideal generated by e1, . . . , en ∈ A.
Then A is not Noetherian since we have a countable properly increasing sequence of ideals in A

a1 ( a2 ( a3 (

Let p be any prime ideal in A. Suppose x ∈ p so that 1− x 6∈ p, for otherwise 1 ∈ p. Then x/1 = 0/1 in Ap

since (1− x)x = x− x2 = 0. Therefore, Ap is a local ring whose maximal ideal pp = 0. This means that Ap

is a field, and is hence Noetherian. This shows that A need not be Noetherian even if each of its localizations
is Noetherian, so that being Noetherian is not a local property.

7.12. Let A be a ring and B a faithfully flat A-algebra. If B is Noetherian, show that A is Noetherian.

Suppose that a1 ⊆ a2 ⊆ . . . is an ascending chain of ideals in A. Since extension is order preserving,
ae
1 ⊆ ae

2 ⊆ . . . is an ascending chain of ideals in B. But then there is N for which ae
n = ae

N whenever n ≥ N .
Because B is faithfully flat we see that an = aec

n = aec
N = aN whenever n ≥ N . Hence, A is Noetherian as

well.

7.13. Let f : A → B be a ring homomorphism of finite type. Show that the fibers of f∗ are Noetherian
subspaces of B.

Let p be a prime ideal in B. By hypothesis, B is a finitely generated A-algebra. So B ⊗A k(p) is a finitely
generated k(p)-algebra. But this means that B ⊗A k(p) is a Noetherian ring since k(p) is a field. Hence,
Spec(B ⊗A k(p)) is a Noetherian topological space by exercise 6.8. So we are done.

7.14. Suppose k is an algebraically closed field and a is an ideal in the ring A = k[t1, . . . , tn]. Show that
I(V (a)) = r(a).

Suppose that f ∈ r(a) so that fn ∈ a for some n > 0. If x ∈ V (a) then 0 = fn(x) = f(x)n, so that f(x) = 0.
We see that f ∈ I(V (a)), and hence r(a) ⊆ I(V (a)).

Now suppose that f 6∈ r(a) and choose a prime ideal p containing a so that f 6∈ p. Let f̄ 6= 0 be the image
of f in B = A/p, and define C = Bf̄ . Notice that C 6= 0 since B is an integral domain and f̄ 6= 0. Let
m be a maximal ideal in C. Now A is generated as a k-algebra by {t1, . . . , tn} so that B is generated as a
k-algebra by {t̄1, . . . , t̄n}. We see that C is generated as a k-algebra by {1̄/f̄ , t̄1/1̄, . . . , t̄n/1̄}. In particular,
C is a finitely generated k-algebra. Since k is algebraically closed, we have C/m ∼= k. More precisely, 1 + m
generates C/m as a k-vector space. Now we have a series of maps
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A
πA // B

ϕ
// C

πC// C/m ∼= k

Let ψ denote the composition of these maps, and let xi = ψ(ti). Then we can consider x = (x1, . . . , xn) as
being a point in kn. More precisely, we choose xi to be the unique point in k satisfying xi + m = ψ(ti). Let g
be any element in A, so that ψ(g) can be considered as a point in kn as well. I claim that ψ(g) = g(x). This
holds for each of t1, . . . , tn ∈ A and so it holds for any g ∈ A since all maps involved are maps of k-algebras,
including valuation at the point x.

Now let g be any element of a. Then g ∈ p so that πA(g) = 0, and hence g(x) = ψ(g) = 0. This means that
x ∈ V (a). On the other hand, ϕ(πA(f)) = f̄/1̄ is a unit in C so that ϕ(πA(f)) 6∈ m, and hence ψ(f) 6= 0. This
means that f(x) 6= 0, and hence f 6∈ I(V (a)). Consequently, I(V (a)) ⊆ r(a), and therefore I(V (a)) = r(a).

7.15. Let (A,m, k) be a Noetherian local ring and M a finitely generated A-module. Show that the
following four conditions on M are equivalent

a. M is free.

b. M is flat.

c. The map m⊗A M → A⊗A M is injective.

d. TorA
1 (k,M) = 0.

(a ⇒ b) O.K.

(b ⇒ c) O.K.

(c ⇒ d) From the short exact sequence

0 // m
i // A // k // 0

we get the long exact sequence

TorA
1 (A,M) // TorA

1 (k, M) // m⊗A M
i⊗Id

// A⊗A M

But TorA
1 (A,M) = 0 and so TorA

1 (k, M) is isomorphic with Ker(i⊗ Id) = 0. Hence, d holds.

(d ⇒ a) Since M is finitely generated, M/mM is finitely generated as an A-module, and thus finite dimensional
as a k-vector space. Let {x1, . . . , xn} be a basis of M/mM . Then M is generated by {x1, . . . , xn} and
k ⊗A M ∼= M/mM is an n-dimensional vector space over k. Now let F be the free A-module of rank n
with basis {e1, . . . , en} and define a map φ : F → M by φ(ei) = xi. If E is the kernel of this map, then
we have a short exact sequence

0 // E // F
φ

// M // 0

Since TorA
1 (k, M) = 0, we have the short exact sequence

0 // k ⊗A E // k ⊗A F
id⊗φ

// k ⊗A M // 0

But k⊗A F ∼= ⊕n
1 k is an n-dimensional k-vector space. Since id⊗φ is surjective, we see that id⊗φ is an

isomorphism. Therefore, k ⊗A E = 0. Since A is a Noetherian ring, E is a finitely generated A-module.
Exercise 2.3 now tells us that E = 0. This means that F ∼= M and so M is a free A-module.
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7.16. Let A be a Noetherian ring and M a finitely generated A-module. Show that the following are
equivalent

a. M is flat.

b. Mp is a free Ap-module whenever p is a prime ideal.

c. Mm is a free Am-module whenever m is a maximal ideal.

Notice that S−1M is a finitely generated S−1A-module for every multiplicatively closed subset S of A, since
M is a finitely generated A-module. Also, Ap is a local Noethering ring for every prime ideal p in A. Finally,
Proposition 3.10 tells us that flatness is a local condition.

(a ⇒ b) Each Mp is a flat Ap-module and so is a free Ap-module by exercise 7.15.

(b ⇒ c) O.K.

(c ⇒ a) Each Mm is a flat Am-module by exercise 5.15, and so M is a flat A-module.

7.17. Let A be a ring and M a Noetherian A-module. Show that every submodule N 6= M of M has
a primary decomposition.

A submodule P of M is said to be irreducible if it cannot be expressed as the intersection of two submodules
of M properly containing P . Since M is Noetherian, every submodule of M is the intersection of finitely
many irreducible submodules (the proof of 7.11 easily carries over to modules). So it suffices to show that
every proper irreducible submodule of M is primary.

Let Q 6= M be an irreducible submodule. Then 0 is an irreducible submodule of M/Q. If 0 is primary in
M/Q, then Q is primary in M . So we may take Q = 0. Suppose ax = 0 with 0 6= x ∈ M . Let Mn consist
of all y ∈ M so that any = 0. Then M1 ⊆ M2 ⊆ . . . is a chain of submodules in M . Since M is Noetherian,
we can choose N such that Mn = MN for n ≥ N . Now suppose that y ∈ aNM ∩ Ax. Then ay = 0 since
y ∈ Ax, and y = aNx′ for some x′ ∈ M , so that 0 = ay = aN+1x′. Since x′ ∈ MN+1 = MN , we must have
0 = aNx′ = y. In other words, aNM ∩ Ax = 0. Since Ax 6= 0 and 0 is an irreducible submodule of M , we
conclude that aNM = 0, so that a is nilpotent. This shows that 0 is primary in M .

7.18. Let A be a Noetherian ring, p a prime ideal of A, and M a finitely generated A-module. Show
that the following are equivalent

a. The ideal p belongs to 0 in M .

b. There exists x ∈ M so that Ann(x) = p.

c. There exists a submodule N of M isomorphic with A/ p.

(a ⇒ b) Let
⋂n

i=1 Qi = 0 be a minimal primary decomposition of 0. We may assume that Q1 is p-primary, and
we can choose a nonzero x ∈ ⋂n

i=2 Qi. Then clearly Ann(x) = (Q1 : x). But (Q1 : M) is a p-primary
ideal in A, and so pn M ⊆ Q1 for some n > 0. This implies that pn x = 0. Take n ≥ 0 to be such that
pn+1 x = 0 and pn x 6= 0, and choose y ∈ pn x. Then p ⊆ Ann(y) and y 6∈ Q1 since y ∈ ⋂n

i=2 Qi. Now if
a ∈ Ann(y) then a annihilates 0 6= y + Q1 ∈ M/Q1 so that a ∈ p. This means that p = Ann(y).

(b ⇒ a)

(b ⇒ c) The submodule Ax of M is isomorphic with A/ Ann(x) ∼= A/ p.

(c ⇒ b) Let x ∈ N correspond with 1A/ p = 1 + p ∈ A/ p. Then Ann(x) = Ann(1A/ p) = p.

Deduce that there exists a chain of submodules 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M of M with each
Mi+1/Mi isomorphic with A/pi, for some prime ideal pi in A.
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7.19? Let a be an ideal in the Noetherian ring A. Let

a =
r⋂

i=1

bi =
s⋂

i=1

ci

be two minimal decompositions of a as intersections of irreducible ideals. Prove that r = s and
that r(bi) = r(ci) after reindexing. State and prove analogous results for modules.

7.20. Let X be a topological space and let F be the smallest collection of subsets of X which contains
all open subsets of X and is closed with respect to the formation of finite intersections and
complements. Show the following.

a. A subset E of X belongs to F iff E is a finite union of sets of the form U ∩ C, where U is
open and C is closed.

Let F consist of all sets expressible as the finite union of sets of the form U ∩ C, where U is open and
C is closed. By DeMorgan’s Law F is closed under finite unions. As the complement of an open set is
closed, and as F contains all open sets, we see that F contains all closed sets. So F contains all sets
that are finite unions of sets of the form U ∩ C, where U is open and C is closed. Hence, F ⊆ F . Now
F contains all open sets since U ∩X = U and X. F is closed under complements since

[ n⋃

k=1

(Uk ∩ Ck)
]c

=
n⋂

k=1

(U c
k ∪ Cc

k) =
⋃

s+t=n

[ ⋂

i1,...,is

Cc
ik
∩

⋂

j1,...,jt

U c
jk

]

It is obvious that F is closed under finite unions, and so F is also closed under finite intersections. There-
fore F = F .

b. If X is irreducible and E ∈ F , then E is dense in X if and only if E contains a non-empty
open subset of X.

If E contains a non-empty open subset of X, then E is dense in X since X is irreducible. So suppose
that E =

⋃n
1 (Ui ∩Ci) satisfies Cl(E) = X. Then Cl(E) =

⋃n
1 Cl(Ui ∩Ci) = X so that Cl(Ui ∩Ci) = X

for some i, since X is irreducible. But then X = Cl(Ui∩Ci) ⊆ Cl(Ui)∩Cl(Ci) = Ci so that Ui∩Ci = Ui

is open in X. Thus, E contains a non-empty open subset of X.

7.21. Let X be a Noetherian space and E ⊆ X. Show that E ∈ F iff, for each irreducible closed
X0 ⊆ X, either Cl(E ∩X0) 6= X0 or E ∩X0 contains a non-empty open subset of X0.

Suppose that E ∈ F and let X0 be a closed irreducible subspace of X such that Cl(E∩X0) = X0. Notice that
E ∩X0 is a union of locally closed subspaces of X0. So by exercise 7.21, we conclude that E ∩X0 contains a
non-empty open subset of X0.

Now suppose that E 6∈ F . Define Σ as the set of all closed subsets X ′ of X such that E ∩X ′ 6∈ F . Then Σ
is non-empty since X ∈ Σ. Since X is a Noetherian space, there is a minimal element X0 of Σ. Suppose, for
the sake of contradiction, that X0 is reducible, with X0 = C1 ∪C2 and each Ci a proper closed subset of X0.
Then E ∩Ci ∈ F so that E ∩X0 = (E ∩C1)∪ (E ∩C2) is an element of F ; a contradiction. This means that
X0 is a closed irreducible subspace of X. Now suppose that Cl(E ∩X0) = X0.

7.22. Let X be a Noetherian space and E a subset of X. Show that E is open in X iff, for each
irreducible closed X0 in X, either E ∩X0 = ∅ or E ∩X0 contains a non-empty open subset of X0.

Suppose E is open in X and let X0 be an irreducible closed subset of X. Either E ∩X0 = ∅ or E ∩X0 is a
non-empty open subset of X0. Now suppose that E is not an open subspace of X. Then the collection Σ of
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all closed X ′ ⊆ X such that E ∩X ′ is not open in X ′ is non-empty, since X ∈ Σ. Since X is a Noetherian
space, we can choose a minimal X0 ∈ Σ. Suppose X0 = C1 ∪ C2 where each Ci is a proper closed subset of
X0. Then E ∩X0 = (E ∩ C1) ∪ (E ∩ C2) is open in X0 by minimality; a contradiction.

7.23? Let A be a Noetherian ring and f : A → B a homomorphism of finite type. Show that
f∗ : Spec(B) → Spec(A) maps constructible sets into constructible sets.

We can write E =
⋃n

1 (Ui ∩Ci) so that f∗(E) =
⋃n

1 f∗(Ui ∩Ci). If each f∗(Ui ∩Ci) is a constructible subset
of Spec(A), then f∗(E) is a constructible subset of Spec(A). So assume that E = U ∩ C.

7.24? Let A be a Noetherian ring and f : A → B be a homomorphism of finite type. Show that f∗ is
an open mapping if and only if f∗ has the going-down property.

7.25? Let A be a Noetherian ring and f : A → B a flat homomorphism of finite type. Show that
f∗ : Spec(B) → Spec(A) is an open mapping.

7.26. Suppose A is Noetherian and let F (A) denote the set of all isomorphism classes of finitely
generated A-modules. Let C be the free abelian group generated by F (A). With each short
exact sequence of finitely generated A-modules

0 // M ′ // M // M ′′ // 0

we associate the element [M ′]− [M ] + [M ′′] of C. Let D be the subgroup of C generated by these
elements. The quotient group C/D is called the Grothendieck group of A, and is denoted by
K(A). If M is a finitely generated A-module, let γA(M) or γ(M) denote the image of [M ] in K(A).
Prove the following concerning K(A).

a. For each additive function λ defined on F (A) with values in the abelian group G, there is
a unique homomorphism λ0 : K(A) → G satisfying λ0 ◦ γ = λ.

We can obviously extend λ : F (A) → G to a map λ : C → G of abelian groups in the obvious way.
Since λ is additive, we know that D ⊆ Ker(λ). So λ induces a map λ0 : C/D → G satisfying λ0 ◦ γ = λ.
Clearly this λ0 is unique since K(A) is generated by γ(F (A)) as an abelian group.

b. The elements γ(A/p) with p a prime ideal generate K(A).

Let M be a finitely generated A-module and choose a chain of submodules

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M

so that Mi+1/Mi is isomorphic with A/pi for some prime ideal pi. Then we have the short exact sequence

0 // Mr−1
// M // M/Mr−1

// 0

of finitely generated A-modules, so that [M ] = [Mr−1] + [A/pr]. By induction [M ] =
∑r

i=1[A/pi]. Ap-
plying γ yields γ(M) =

∑r
i=1 γ(A/pi). So we are done.

c. If A 6= 0 is a principal ideal domain, then K(A) ∼= Z.

Let p = (a) be a non-zero prime ideal in A. Define f : A → p by f(b) = ab. Then f is a surjective
homomorphism of A-modules. If f(b) = 0 then a = 0 or b = 0, so that b = 0 since p 6= 0. This means
that f is an isomorphism of A-modules. From the short exact sequence

0 // p // A // A/p // 0



79

we see that [A/p] = [A] − [p] = 0. The only other prime ideal of A is 0, with [A/0] = [A]. So C is the
abelian group generated by [A], and hence C ∼= Z. Since [A] has infinite order, we get K(A) ∼= Z.

d. Let f : A → B be a finite ring homomorphism. The restriction of scalars yields a homomor-
phism f! : K(B) → K(A) such that f!(γB(N)) = γA(N) for every finitely generated B-module
N . If g : B → C is another finite ring homomorphism, then (g ◦ f)! = f! ◦ g!.

Let N be a finitely generated B-module so that N is a finitely generated A-module. If N and N ′ are
isomorphic B-modules, then f!(N) and f!(N ′) are isomorphic as well. Also, a short exact sequence
of B-modules turns into a short exact sequence of A-modules under restriction. Therefore, there is a
map f! : K(B) → K(A) satisfying f!(γB(N)) = γA(N). Suppose g : B → C is another finite ring
homomorphism and let P be a finitely generated C-module. The pullback of P along g ◦f is the same as
the pullback of N along f , where N is the pullback of P along g. From this it follows that (g◦f)! = f!◦g!.

7.27? Let A be a Noetherian ring and let F1(A) denote the set of all isomorphism classes of finitely
generated flat A-modules. Repeating the construction of exercise 7.26, we obtain a group K1(A).
Let γ1(M) denote the image (M) in K1(A), when M is a finitely generated flat A-module. Prove
the following concerning K1(A).

a. The tensor product induces a commutative ring structure on K1(A) such that γ1(M)·γ1(N) =
γ1(M ⊗A N). The identity element is γ1(A).

The tensor product of two finitely generated flat A-modules is clearly a finitely generated flat A-module.
The tensor product is commutative, associative, respects direct sums, and has identity A. We get a
multiplicative structure on F1(A) since M ∼= M ′ and N ∼= N ′ implies that M ⊗A N ∼= M ′ ⊗A N ′. By
linearity we get a multiplicative structure on C1(A), where C1(A) is the free abelian group generated by
F1(A). Let D1(A) be the subgroup of C1(A) generated by all elements of the form (M)− (M ′)− (M ′′)
where M ′,M , and M ′′ fit into the obvious short exact sequence. To get a multiplicative structure on
K1(A), we need to verify that x·y = x′ ·y′ whenever x−x′, y−y′ ∈ D1(A). By linearity, we simply need to
check that (N) ·((M)−(M ′)−(M ′′)) ∈ D1(A) whenever (N) ∈ C1(A) and (M)−(M ′)−(M ′′) ∈ D1(A).
But this is immediate since N is a flat A-module. So K1(A) is a commutative ring, with identity γ1(A),
and γ1 satisfies the desired relation.

b. Show that the tensor product induces a K1(A)-module structure on K(A) such that γ1(M) ·
γ(N) = γ(M ⊗N).

We see that C(A) has a K1(A)-module structure induced from the tensor product. Also, K1(A) annihi-
lates D(A) since all modules in F1(A) are flat over A. So K1(A) induces the desired module structure
on K(A).

c. If (A, m) is a Noetherian local ring, then K1(A) ∼= Z.

d. Let f : A → B be a ring homomorphism with B Noetherian. Prove that extension of scalars
gives rise to a ring homomorphism f ! : K1(A) → K1(B) such that f !(γ1(M)) = γ1(M ⊗A B). If
g : B → C with C Noetherian, then (g ◦ f)! = g! ◦ f !.

If M is a finitely generated flat A-module, then MB = M⊗AB is a finitely generated flat B-module. Also,
if M ∼= N then MB

∼= NB . So there is a map F1(A) → F1(B) that extends to a group homomorphism
C1(A) → C1(B). In fact, this is a ring homomorphism since MB · NB = (M ⊗A B) ⊗B (N ⊗A B) ∼=
(M ⊗A N)⊗B B = (M ·N)B .

e. If f : A → B is a finite ring homomorphism then f!(f !(x)y) = xf!(y) for x ∈ K1(A) and y ∈ K(B).
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Chapter 8 : Artin Rings

8.1. Assume A is Noetherian and that 0 has the minimal primary decomposition 0 =
⋂n

i=1 qi, with
pi = r(qi). Show that for every i there is ri > 0 with p

(ri)
i ⊆ qi. Suppose qi is an isolated primary

component. Show that Api
is a local Artin ring, and that if mi is the maximal ideal of Api

, then
mr

i = 0 for some r. Also prove that qi = p
(r)
i for all large r.

Let q be any p-primary ideal. Since A is Noetherian, there is r > 0 with pr ⊆ q. Then (pr)p ⊆ qp so that
p(r) = (pr)c

p ⊆ qc
p = q (after all, p ∩ Sp = ∅). This holds in particular with q = qi for some i. Now suppose

that qi is one of the isolated primary components of 0. Clearly Api
is a Noetherian ring. Any prime ideal in

Api
is of the form ppi

where p is a prime ideal in A contained in pi. But pi is a minimal element in the set
of all prime ideals in A. This means that Api has precisely one prime ideal, namely mi = (pi)pi . Therefore,
Api is a local Artin ring. Since N(Api) = mi we see that mr

i = 0 for all sufficiently large r. Finally, p
(r)
i ⊆ qi

for all large r, so that 0 = p
(r)
i ∩ ⋂

j 6=i qj . Since isolated components are uniquely determined, we see that

p
(r)
i = qi for all large r.

8.2. Let A be Noetherian. Prove that the following are equivalent.

a. A is Artinian.
b. Spec(A) is discrete and finite.
c. Spec(A) is discrete.

(a ⇒ b) Notice that Spec(A) is Hausdorff since each prime ideal in A is maximal. Also, Spec(A) is finite since
there are finitely many maximal ideals in A. Hence, Spec(A) has the discrete topology.

(b ⇒ c) O.K.
(c ⇒ a) Each prime ideal in A is maximal since Spec(A) is discrete. Therefore, A has Krull dimension 0. Hence,

A is Artinian.

8.3. Let k be a field and A a finitely generated k-algebra. Prove that the following two conditions
are equivalent.

a. A is Artinian.
b. A is a finite k-algebra.

(a ⇒ b) Write A =
∏n

j=1 Aj , where each Aj is an Artin local ring, and let πj : A → Aj be the canonical pro-
jection. Notice that there is a unique way to make each Aj into a k-algebra in such that a way that πj

is a homomorphism of k-algebras. Also observe that if A is finitely generated as a k-algebra by {xi}m
i=1

then Aj is finitely generated as a k-algebra by {πj(xi)}m
i=1. So if we prove that the result holds for the

local Artin rings Aj , then the result holds for A since dimk(A) =
∑n

j=1 dimk(Aj).

So assume that (A, m) is an Artin local ring. Then A/m is a finite algebraic extension of k since A/m
is a finitely generated field extension of k. Since A is Noetherian, we see that m is a finitely generated
A-module, and since m is the only prime ideal in A, we know by exercise 7.18 that there is a chain of
ideals

0 = m0 ⊂ m1 ⊂ . . . ⊂ mr = m

in A with each mi+1/mi
∼= A/m. Since each mi+1/mi is a finite-dimensional k-vector space, the same is

true for m, and therefore the same can be said about A.

(b ⇒ a) If a is an ideal in A, then ka ⊆ a, where we identify k with its isomorphic image in A. So a is a k-vector
subspace of A. Since A is finite dimensional as a k-vector space, the vector subspaces of A satisfy the
d.c.c. This means that ideals in A satisfy the d.c.c. In other words, A is an Artin ring.
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8.4. Let f : A → B be a ring homomorphism of finite type. Consider the following conditions and
show that a ⇒ b ⇔ c ⇒ d. Also, if f : A → B is integral and the fibers of f∗ are finite, is f finite?

a. The map f is finite.

b. The fibers of f∗ are discrete subspaces of Spec(B).

c. For prime p in A, the ring B ⊗A k(p) is a finite k(p)-algebra.

d. The fibers of f∗ are finite.

By hypothesis, B is a finitely generated A-algebra, so that B ⊗A k(p) is a finitely generated k(p)-algebra.

(a ⇒ b) If B is generated as an A-module by {bi}n
1 , then B ⊗A k(p) is generated as a k(p)-vector space by

{bi ⊗ 1}n
1 , and hence B ⊗A k(p) is Artinian by exercise 8.3. So by exercise 8.2, Spec(B ⊗A k(p)) is

discrete. This shows that every fiber of f∗ is a discrete subspace of Spec(B).

(b ⇒ c) We know that B ⊗A k(p) is a finitely generated k(p)-algebra, so that B ⊗A k(p) is a Noetherian ring.
Now by hypothesis Spec(B⊗A k(p)) is discrete, and so exercise 8.2 tells us that B⊗A k(p) is an Artinian
ring. But exercise 8.3 nows tells us that B ⊗A k(p) is a finite k(p)-algebra.

(c ⇒ b) Whenever p is a prime ideal in A, the ring B⊗A k(p) is Artinian by exercise 8.3. So by exercise 8.2, the
fiber Spec(B ⊗A k(p)) of f∗ over p is discrete.

(c ⇒ d) Whenever p is a prime ideal in A, the ring B ⊗A k(p) is Artinian, again by exercise 8.3. So again by
exercise 2, the fiber Spec(B ⊗A k(p)) of f∗ over p is finite.

8.5? In exercise 5.16 show that X is a finite covering of L.

8.6? Let A be a Noetherian ring and q a p-primary ideal. Consider chains of primary ideals from q
to p. Show that all such chains are of finite bounded length, and that all maximal chains have
the same length.

If q ⊆ r ⊆ p then r(r) = p. So we can restrict attention to chains of p-primary ideals from q to p. Clearly all
such chains are of finite length since A is Noetherian.
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Chapter 9 : Discrete Valuation Rings and Dedekind Domains

9.1. Let A be a Dedekind domain, S a multiplicatively closed subset of A not containing 0. Show
that S−1A is either a Dedekind domain or the field of fractions K of A.

If p0 ⊂ p1 ⊂ . . . ⊂ pn is a chain of prime ideals in S−1A, then pc
0 ⊂ pc

1 ⊂ . . . ⊂ pc
n is a chain of prime ideals

in A. So in general, the Krull dimension of S−1A is less than or equal to the Krull dimension of A. Now A
has dimension 1 since A is a Dedekind domain. Hence, S−1A has dimension equal to 1 or 0. Since A is an
integral domain and 0 6∈ S, we can consider A ⊆ S−1A ⊆ K. If S−1A has dimension 0, then S−1A is a field,
and so S−1A = K.

Now assume that S−1A has dimension 1. Clearly S−1A is Noetherian, and K is the field of fractions of S−1A.
Since the integral closure of A in K equals A, the integral closure of S−1A in S−1(K) = K is S−1A. This
means that S−1A is integrally closed as well. Therefore, S−1A is a Dedekind domain.

Suppose again that 0 6∈ S, and let H,H ′ be the ideal class groups of A and S−1A respectively.
Show that extension of ideals induces a surjective homomorphism H → H ′.

Suppose that a is a non-zero fractional ideal of A. It is clear that S−1a is a non-zero ideal of S−1A since S
has no zero-divisors. If x ∈ A is such that xa ⊆ A, then xS−1a ⊆ S−1A. Hence S−1a is a fractional ideal
of S−1A. Therefore, if we let I be the group of non-zero fractional ideals of A, and I ′ the group of non-zero
fractional ideals of S−1A, then we have a map I → I ′ given by a 7→ S−1a. In other words, this map is given
by extension. This map is a group homomorphism since localization commutes with taking finite products.
Let P be the image of the canonical map K∗ → I, and P ′ the image of the canonical map K∗ → I ′. If x ∈ K∗

then S−1(x) = (x), and hence the map I → I ′ carries P into P ′. Consequently, the map I → I ′ induces a
map H → H ′. If bI ′ ∈ H ′ then there is 0 6= x ∈ A satisfying xb ⊆ S−1A. We can write (x)b = S−1a for some
non-zero ideal a in A. Since a is an integral ideal, it is clearly a fractional ideal of A, and so is an element of
I. This means that the map H → H ′ is surjective.

9.2. Let A be a Dedekind domain. If f = a0 + a1x + · · ·+ anxn then the content c(f) of f is defined by
c(f) = (a0, . . . , an). Prove Gauss’s Lemma that c(fg) = c(f)c(g) for all f, g.

Suppose that A is in fact a discrete valuation ring, with maximal ideal m, where m = (y). Each ai is of the
form uiy

v(ai) where ui is a unit in A and v is the appropriate discrete valuation. Let a ≥ 0 be the biggest a′

so that ya′ divides each ai. Similarly, let b ≥ 0 be the biggest b′ so that yb′ divides each coefficient of g. Then
f/ya and g/yb are primitive polynomials since some coefficient of f and g is a unit. Exercise 1.2 tells us that
fg/ya+b is primitive as well. Now c(fg) = (ya+b) = (ya)(yb) = c(f)c(g) so that Gauss’s Lemma holds for
discrete valuation rings.

Now suppose that A is a general Dedekind domain. Let m be a maximal ideal in A so that Am is a discrete
valuation ring. The canonical map A → Am extends naturally to a map A[x] → Am[x]. Denote this map by
f 7→ fm. It is clear that c(fm) = c(f)m. Now there is an inclusion map j : c(fg) → c(f)c(g). We see that
the map jm : c(fg)m → (c(f)c(g))m = c(f)mc(g)m = c(fm)c(gm) is the natural inclusion map. By the work
done above, we see that jm is the identity, and in particular is surjective. This means that j is surjective, and
hence c(fg) = c(f)c(g). This means that Gauss’s Lemma holds for Dedekind domains.

9.3. Suppose that (A, m,K) is a valuation ring, with A 6= K. Show that A is Noetherian if and only
if A is a discrete valuation ring.

If A is a DVR then A is clearly Noetherian. So suppose that A is Noetherian. If a is an ideal in A then we
can write a = (a1, . . . , an) for some ai. Since A is a valuation ring, the ideals in A are totally ordered. So
there is some i for which (aj) ⊆ (ai) for all 1 ≤ j ≤ n. This means that a = (aj), and so a is a principal ideal.
This means that A is a PID. Now write m = (x), where x 6= 0 since A is not a field. Let y be an arbitrary
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non-zero element of m.

I claim that y = uxk for some unit u and some k > 0. If not, then for every i there is ai ∈ m satisfying
y = aix

i. Notice that ai = ai+1x since x 6= 0, and so (ai) ⊆ (ai+1). But if (ai+1) = (ai) then there is
b for which ai+1 = bai, and hence y = ai+1x

i+1 = (xb)(aix
i) so that xb = 1, implying that x is a unit.

Consequently, we have a properly ascending sequence of ideals (a1) ⊂ (a2) ⊂ . . . in the Noetherian ring A, a
contradiction.

Now let a be any proper ideal in A. Choose y for which a = (y) and notice that y ∈ m since y is not a unit.
Write y = uxk as above, so that a = (xk). Now we argue as in (f ⇒ a) from Proposition 9.2 to conclude that
A is a discrete valuation ring (noting that this portion of Proposition 9.2 does not require the assumption
that A have dimension 1).

9.4. Let A be a local domain which is not a field. Suppose the non-zero maximal ideal m = (x) of A
is principal and satisfies

⋂∞
i=1 mi = 0. Prove that A is a DVR.

If 0 6= y ∈ m then I claim that y = uxk for some unit u and some k > 0. If not, then there are ai ∈ m
satisfying y = aix

i for all i. But then y ∈ ⋂∞
i=1 mi = 0 so that y = 0, contrary to our assumption on y. Now

let a be a proper non-zero ideal in A, so that a ⊆ m. For every nonzero y ∈ a write y = uxk as above. Let k∗

be the minimal k that arises in this fashion. Then clearly a ⊆ (xk∗) since every nonzero y ∈ a can be written
as y = uxk for some unit u and some k ≥ k∗. On the other hand, there is some unit u such that uxk∗ ∈ a,
and hence (xk∗) = a. Now we argue as in (f ⇒ a) from Proposition 9.2 to conclude that A is a discrete
valuation ring (noting that this portion of Proposition 9.2 only requires that mn 6= mn+1 for all n, and that
this holds true since x is a non-unit in A).

9.5. Let M be a finitely generated module over a Dedekind domain A. Prove that M is flat if and
only if M is torsion free.

Exercise 7.16 tells us that M is a flat A-module if and only if Mm is a free Am-module whenever m is a maximal
ideal in A. But Am is a principal ideal domain whenever m is a maximal ideal in A. So the structure theorem
of finitely generated modules over a PID tells us that Mm is a free Am-module if and only if Mm is torsion
free. Exercise 3.13 now tells us that each Mm is torsion free if and only if M is torsion free. Summarizing,
M is a flat A-module if and only if M is torsion free.

9.6? Let M be a finitely generated torsion module over the Dedekind domain A. Prove that M is
uniquely representable as a finite direct sum of modules A/pni

i where pi are non-zero prime
ideals in A.

9.7? Let A be a Dedekind domain and a 6= 0 an ideal in A. Show that every ideal in A/a is principal.
Deduce that every ideal in A can be generated by at most 2 elements.

Since A is a Dedekind domain we can write a = pe1
1 · · · pen

n where pi are distinct prime ideals in A and each
ei ≥ 0. Since each pi is maximal, we know that pi and pj are coprime for i 6= j. Hence, pei

i and p
ej

j are
coprime for i 6= j. This means that A/a ∼= ∏n

i=1 A/pei
i . I claim that every ideal in A/pei

i is principal. Suppose
that b is an ideal in A/a

9.8. Let a, b, and c be ideals in the Dedekind domain A. Prove that

a ∩ (b + c) = a ∩ b + a ∩ c and a + b ∩ c = (a + b) ∩ (a + c)

Suppose first that A is in fact a discrete valuation ring. Let m be the maximal ideal in A and write m = (x). If
any of the three ideals are zero, then we clearly have equality. So we may suppose that all three ideals are non-
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zero. Then we can choose a, b, c ≥ 0 for which a = (xa), b = (xb), and c = (xc). Now (xj)∩ (xk) = (xmax{j,k})
and (xj) + (xk) = (xmin{j,k}) for all j, k ≥ 0. So the equalities that we need to verify are as follows

max{a,min{b, c}} = min{max{a, b},max{a, c}}
min{a,max{b, c}} = max{min{a, b},min{a, c}}

To do this requires a straightforward case-by-case analysis, and so is omitted. Now assume that A is a general
Dedekind domain. We have an inclusion map j : a ∩ b + a ∩ c → a ∩ (b + c). In the field of fractions of A we
have the equality (a∩b+a∩c)p = ap∩bp +ap∩cp of sets, and similarly (a∩(b+c))p = ap∩(bp +cp). Further,
the induced map jp corresponds to inclusion. Since Ap is a PID, the work above shows that jp is surjective.
Therefore, j is surjective, and hence a ∩ (b + c) = a ∩ b + a ∩ c. The second equality follows analogously.

9.9. Let a1, . . . , an be ideals and let x1, . . . , xn be elements in the Dedekind domain A. Show that the
system of congruences x ≡ai

xi has a solution x iff xi ≡ai+aj
xj whenever i 6= j.

Consider the following sequence

A
φ

//
⊕n

i=1 A/ai
ψ

//
⊕

i<j A/(ai + aj)

where φ(x) = (x + a1, . . . , x + an) and ψ(x1 + a1, . . . , xn + an) has (i, j) component xi − xj + ai + aj . Notice
first that ψ is well-defined. Suppose that this sequence is exact, and let x1, . . . , xn ∈ A. If the system of
congruences x ≡ai xi has a solution x then (x1 + a1, . . . , xn + an) = φ(x) so that ψ(x1 + a1, . . . , xn + an) = 0.
This means that xi ≡ai+aj xj whenever i 6= j. Conversely, if this holds then ψ(x1 + a1, . . . , xn + an) = 0
so that (x1 + a1, . . . , xn + an) = φ(x) for some x ∈ A, and hence our system of congruences has a solution.
So it suffices to demonstrate that the sequence is exact. To do this it suffices to show that the sequence is
exact whenever it is localized at a maximal ideal m of A. Hence, we simply need to show that the sequence
is exact in the special case that A is a discrete valuation ring. We may assume that the ideals are ordered by
a1 ⊆ a2 ⊆ . . .. Clearly ψ ◦φ = 0, so suppose that ψ(x1 + a1, . . . , xn + an) = 0. Then x1−xi ∈ a1 + ai = ai for
1 < i, and hence xi + ai = x1 + ai for all i. But this means that (x1 + a1, . . . , xn + an) = φ(x1). Therefore,
the sequence is indeed exact when A is a discrete valuation ring. Thus, we are done.
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Chapter 10 : Completions

10.1. Let αn : Zp → Zpn be the obvious injection, and let α : A → B be the direct sum of all the αn,
where A =

⊕∞
n=1 Zp and B =

⊕∞
n=1 Zpn . Show that the p-adic completion of A is just A, but

that the completion of A for the topology induced from the p-adic topology on B is
∏∞

n=1 Zp.
Deduce that the p-adic completion is not a right-exact functor on the category of all Z-modules.

Let M be an arbitrary module with the filtration M = M0 ⊇ M1 ⊇ . . . . Suppose that N satisfies Mn = MN

for n ≥ N . Then the maps M/Mn+1 → M/Mn are the identity maps for n ≥ N . So an element
ξ ∈ M̂ ⊆ ∏∞

n=1 M/Mn is completely determined by ξN . This means that the canonical map M → M̂

given by x 7→ (x + M0, x + M1, . . .) is surjective. Clearly, the kernel of this map is MN . Therefore, M̂ and
M/MN are isomorphic.

Now if A =
⊕∞

n=1 Zp then pA = 0, and so the standard p-adic filtration of A is given by A ⊃ 0 = 0 = . . . . By
the general considerations from above, we see that the p-adic completion Â of A is isomorphic with A/0 = A.

On the other hand, we have an injection α : A → B and we have the p-adic filtration B ⊃ pB ⊃ p2B ⊃ . . . of B.
This gives a p-adic filtration A ⊃ α−1(pB) ⊃ α−1(p2B) ⊃ . . . of A. Now α(x1, x2, x3, . . .) = (x1, px2, p

2x3, . . .)
so that (x1, x2, x3, . . .) ∈ α−1(pnB) if and only if xi = 0 for 1 ≤ i ≤ n. We see that A/α−1(pnB) ∼= ⊕n

i=1 Zp

and that under these identifications the map A/α−1(pn+1B) → A/α−1(pnB) is given by (x1, . . . , xn+1) 7→
(x1, . . . , xn). Now the general element of

∏∞
n=1 A/α−1(pnB) under these identifications is of the form

((x11), (x12, x22), (x13, x23, x33), (x14, x24, x34, x44), . . .)

where xij are arbitrary elements of Zp. For this element to be in Â, it is necessary and sufficient that
xij = xik for any k ≥ j. So Â can be identified with

∏∞
n=1 Zp. Now p-adic completion is an exact functor

on the category of all finitely generated Z-modules, but A is not finitely generated. Now we have the short
exact sequence of Z-modules

0 // A
α // B // B/A // 0

10.2. In the notation of exercise 10.1 let An = α−1(pnB). Consider the short exact sequences

0 // An
// A // A/An

// 0

to show that lim
←−

is not right exact, and compute lim
←−

1An.

We see that {An}∞1 is an inverse system with inclusion as the map Am → An for m ≥ n. Clearly {A}∞1
is an inverse system with identity A → A. Finally, {A/An}∞1 is an inverse system with the induced maps
A/Am → A/An for m ≥ n. Now we have the commutative diagrams

0 // An+1
//

²²

A //

²²

A/An+1
//

²²

0

0 // An
// A // A/An

// 0

with exact rows. So Proposition 10.2 gives us the exact sequence

0 // lim
←−

An // lim
←−

A f
// lim
←−

A/An

I claim that f is not surjective. Using the identification from exercise 10.1 and the isomorphism lim
←−

A/An
∼=∏∞

n=1 Zp we see that f can be identified with the inclusion map
⊕∞

n=1 Zp →
∏∞

n=1 Zp. So f is not surjective.
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10.3. Let A be a Noetherian ring, a an ideal, and M a finitely generated A-module. Prove that

∞⋂
n=1

anM =
⋂

m⊇a

Ker(M → Mm)

By Krull’s Theorem, the elements of
⋂∞

n=1 anM are precisely the elements in M annihilated by some element
of 1 + a. So suppose first that x ∈ M satisfies (1 + a)x = 0 for some a ∈ a. If m is a maximal ideal in A
containing a, then a ∈ m so that 1+a 6∈ m. Since (1+a)x = 0 and 1+a ∈ A−m, we see that x/1 = 0/1 in Mm.
This means that

⋂∞
n=1 anM ⊆ ⋂

m⊇a Ker(M → Mm). Now let x ∈ ⋂
m⊇a Ker(M → Mm) so that (x)m = 0

whenever m is a maximal ideal containing a. Then exercise 3.14 tells us that (x) = a(x). So in particular
we can write x = −ax for some a ∈ a. This means that (1+a)x = 0, and hence x ∈ ⋂∞

n=1 anM . So we are done.

Deduce that M̂ = 0 if and only if Supp(M) ∩ V (a) = ∅.

10.4. Let A be a Noetherian ring, a an ideal, and Â the a-adic completion. For any x ∈ A let x̂ be the
image of x in Â. Show that x̂ is not a zero-divisor in Â if x is not a zero-divisor in A. Does this
imply that Â is an integral domain provided A is an integral domain?

If x is not a zero-divisor in A then we have a short exact sequence

0 // A
x // A // A/xA // 0

Proposition 10.12 tells us that we have a new short exact sequence

0 // Â
x̂ // Â // Â/x̂Â // 0

This means that x̂ is not a zero-divisor in Â. Now Z(6) is not an integral domain even though Z is an integral
domain.

10.5. Let A be Noetherian with ideals a and b. If M is an A-module, let Ma,Mb denote the a-adic
and b-adic completions of M . If M is finitely generated, prove that (Ma)b ∼= Ma+b.

For every n we have a short exact sequence

0 // bnM // M // M/bnM // 0

Since M is finitely generated and A is Noetherian, all modules in this sequence are finitely generated. So we
have a new short exact sequence

0 // (bnM)a // Ma // (M/bnM)a // 0

10.6. Let A be a Noetherian ring and a an ideal in A. Prove that a ⊆ R(A) if and only if every
maximal ideal m in A is closed when A is given the a-adic topology.

Suppose that a ⊆ R(A) and let m be a maximal ideal in A. Then the quotient topology of A/m is the same as
the a-adic topology of A/m. Since A/m is a finite A-module, Corollary 10.19 tells us that the a-adic topology
of A/m is Hausdorff. By the definition of the quotient topology, this means that m is closed in the a-adic
topology on A.

Suppose now that m is closed in the a-adic topology on A whenever m is a maximal ideal in A. Then
m = Cl(m) =

⋂∞
n=1(m + an).
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10.7?

10.8?

10.9?

10.10? a.

b.

c.

10.11. Find a non-Noetherian local ring A with an ideal a such that the a-adic completion Â of A is a
Noetherian ring that is finitely generated over A.

Let A be the ring of germs of C∞ functions of x at x = 0, and let a be the ideal of all germs that vanish at
x = 0. Then A is a local ring with maximal ideal a. Now A is not Noetherian since we have the properly
ascending sequence of ideals

(e−1/x2
) ⊂ (e−1/x2

/x) ⊂ (e−1/x2
/x2) ⊂ . . .

10.12? Assuming that A is Noetherian, show that A[[x1, . . . , xn]] is a faithfully flat A-algebra.

1. Let f ∈ k[x1, . . . , xn] be an irreducible polynomial over the algebraically closed field k. A point
P on the variety defined by (f) is said to be non-singular if not all derivatives ∂f/∂xi vanish at
P . Let A = k[x1, . . . , xn]/(f) and let m be the maximal ideal of A corresponding to the point P .
Prove that P is non-singular if and only if Am is a regular ring.

Write P = (a1, . . . , an) and define n = (x1−a1, . . . , xn−an) so that m = n /(f). Then Am
∼= k[x1, . . . , xn]n/(f)n =

k[x1, . . . , xn]n/(f/1) as rings. Now f vanishes at P so that f ∈ n, and hence f/1 is in the (unique) maximal
ideal nn of k[x1, . . . , xn]n. Also, f/1 is not a zero-divisor in k[x1, . . . , xn]n since

2.

3.

4. Give an example of a Noetherian ring A that has infinite Krull dimension.

5. Reformulate the Hilbert-Serre Theorem in terms of the Grothendieck group K(A0).

Let γ be the map that sends a finitely generated A0-module M to its image in K(A0). The Hilbert-Serre
Theorem states that if λ : K(A0) → Z is a homomorphism of groups then P (M, t) :=

∑∞
n=0 λ(Mn)tn is of

the form P (M, t) = f(t){∏s
i=1(1− tki)}−1 for some f(t) ∈ Z[t].

6. Let A be a ring and prove that 1 + dim(A) ≤ dim A[x] ≤ 1 + 2dim(A).

Let p0 ( · · · ( pn be a chain of prime ideals in A. Then pi[x] is a prime ideal in A[x] since A[x]/ pi[x] ∼=
(A/ pi)[x] is an integral domain. So we have a chain of prime ideals p0[x] ⊆ · · · ⊆ pn[x] in A. But pi[x] 6=
pi+1[x] since pi[x] ∩A = pi for all i. Now 1 6∈ pn since pn 6= A, and so pn[x] ( (pn[x], x). Also, (pn[x], x) is a
prime ideal in A[x] since A[x]/(pn[x], x) ∼= A/ pn. From this we see that dim A[x] ≥ dim A + 1.

7. Show that dim A[x] = dim(A) + 1 if A is Noetherian.

It suffices to show that dim A[x] ≤ dim(A) + 1.


