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Chapter 1

HOMOLOGY

1.1 Homology Functors

Definition 1.1.1. Let R be a ring. By a (chain) complex (X, dX) of R-

modules we mean a sequence

X i dy
X, d*)=... — Xp4y1 — X,, — Xj_1 — ...

of R-modules {X,,} and R-module homomorphisms {dX : X,, — X,,_1} such
that dXdX,, =0 for all n € Z. X,, and dX are called the module in degree

n and the n-th differential of (X, dX), respectively.

We usually simplify the notation and write X instead of (X, d*).

Remark 1.1.2. An R-module M is considered as the complex
.—0—0—M —0—0—...
where the module M is sitting in degree 0.

Definition 1.1.3. Suppose X and Y are two complexes. Then we can define

a morphism between them, f : X — Y, as a family of homomorphisms

3



4 CHAPTER 1. HOMOLOGY

fn + X5y — Y}, such that for all n € Z, the following diagram commutes:

dX
Xn - anl
fn fn—l
dY
Yn “ Ynfl

It is easy to see that the collection of complexes and their morphisms (with
the obvious composition) forms a category. We denote this category by rComp

(or Comp).

Definition 1.1.4. If (X, d*) is a complex, define

n-cycle = Z,(X) = kerdX,
n-boundaries = B, (X) = imdx,,

n-homology = H,(X) Zn(X)/Bp(X).

Since the equation dXdX,; = 0 in the complex X is equivalent to the condi-
tion imdX,; C kerdX, we have B, (X) C Z,(X), and so the quotient module
Z,(X) /B (X) does make sense. An element of H,,(X) is a coset z, + B, (X);

we call this element a homology class, and often denote it by [z,].

Lemma 1.1.5. Let f: X — Y be a morphism of complexes. Then
(1) fn(Zn(X)) € Zn(Y),
(2) fn(Bn(X)) € Bn(Y).

Proof. Consider the commutative diagram

dx ax
+1
Xn+1 - X, ~ n—1—"> ...
fn-{—l fn fn—l
dy dY
+1
Yn+1 - Y, o n—1 "> ...

(1): Let # € Z,(X). Then dX(z) = 0. By commutativity of the above dia-
gram, dY fo(r) = fo_1dX(z) = fu_1(0) = 0, so that f,(x) € Z,(Y). Thus
fn(Zn(X)) € Zn(Y).
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(2): Let y € B,(X). Then there exists z € X,,11 such that dX ,(z) = y. By
commutativity of the above diagram, f,,(y) = fndX ((z) = d¥ 1 fas1(z), so

that f,.(y) € Ba(Y). Thus f,(Bn(X)) € Bn(Y). u

Theorem 1.1.6. Let f: X — Y be a morphism of complexes and let n € Z.
Define

Hy(f): Ho(X) — Hp(Y)

Then H,, : rComp — rMod is an additive functor.

Proof. First of all, we show that H,(f) is well defined. Let [z] = [y]. Then
z—1y € Bp(X) and so there exists x € X, 11 such that z —y = df_ﬂ(x). By the

part (2) of the above lemma we have

fnz - fny = fn(z - y) € Bn(Y)

Therefore [f,z] = [fny], and hence H, (f) is well defined.
Now, we show that H, is a functor. It is clear that H, (1x) is the identity.

If f and g are morphisms whose composite gf is defined, then

Finally, we show that H, is additive. If f,g: X — Y are two morphisms

of complexes, then
Hu(f+9)[2] = [(f + 9)nz] = [(fa+9n)2] = [fnz]+[gn2] = Hn(f)[2] + Hn(g)[2].
O
Definition 1.1.7. We say that the sequence
0—X-1Lv-Lw-—0
is an exact sequence of complexes if the sequences

O—>Xn£>Yni>Wn—>O
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are exact for every n € Z.

Theorem 1.1.8. (Connecting Homomorphism). If0 — X Ty <
W — 0 is an exact sequence of complexes, then, for each n € Z, there is a

homomorphism

On: Hy(W) — n—1(X)

[wn] — [l‘n—l] (-Tn—l € fn__lldzz/grjl(wn))

Proof. Consider the commutative diagram with exact rows:

X Y w

0
dn+1 d?L(Jrl dn+1

0 cx, Iy - 0
X dY dW

0 X, Iy Iy

We only show that 0,, is well defined; the other verifications are also routine and
are left to the reader. For this, we first show that f, ' d¥ g (w,) # 0, where
wy, € kerdY. Let y, € g, (wy,). Then g,(yn) = w,. By commutativity of the

above diagram,

gn—ldz(yn) = d:fvgn(yn) = dnw(wn) =0.



1.1. HOMOLOGY FUNCTORS 7

It follows that dY (y,) € kerg, 1 = imf,_1. Thus d¥ g, (w,) C imf,_; and
hence f,*,dY g, ' (wy) # 0. Let w, € kerd” and z,,_1 € f, *dY g, ' (w,). We
must show that [z, 1] € H,_1(X). Suppose that f, i(z,_1) = dY (y,) for

some ¥, € g, ' (w,). By commutativity of the above diagram,

fn72d§71(xn71) = dzflfnfl(xnfl) = dzfld?{yn =0.

Since f,,_o is injective, we have dX ;(x,_1) = 0 and hence [z,_1] € H,_1(X).

Now let @, 1,Tn_1 € f,1,dYX g7 (wy). Then there exist yn,7, € g, (w,)
such that z,,_1 = f;_lld?f(yn) and T,_1 = f,;_lle(yn). Since gn(Yn) = gn(Un)s
we have y, — 7, € kerg, = imf,, and hence there exists x,, € X,, such that

Yn — T, = fn(xn). Therefore

[tn-1] = [fhdY ()] = [Filady (n + fulzn))]

= [@Tna]+ [fn_—llfn—ldf(xn)] = [Tna1] + [di((xn)]

= [Tp-1]-

This proves that 0, is well defined. O

Definition 1.1.9. The homomorphisms 0,, : H, (W) — H,_1(X) are called

connecting homomorphisms.

Theorem 1.1.10. (Long Exact Sequence). If0 — X Ty w0

s a sequence of complexes, then there is an exact sequence of modules

1, (X) Y 7)Y oWy 2l (x) ) B ()
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Proof. Consider the commutative diagram with exact rows:

X Y W
" farl o Gntn
0 Xpp1 — Yy —— Wy —— 0
X dy i1 Ay
0 cx, Iy ey . 0
X Y dW
Jn—1 In—1 '

There are six inclusions to verify.

(1) imH,(f) C kerH,(g): Because H,(g9)H,(f) = Hn(gf) = 0, we have
imH, (f) C kerH,(g).

(2) kerH,(g) C imH, (f): Let [y,] € kerH,(g). Then g,y, € B,(W) and
hence there is wy,+1 € Wy41 such that g,y, = dyvi(wny1). Since gniq is
surjective, there exists y,4+1 € Y,+1 such that ¢g,11yn+1 = wp41. Therefore, by

commutativity of the above diagram,

gn(yn - dEJrl(ynJrl)) = GnYn — gndr\;rl (ynJrl)
= GnlYn — dXYHgnJrlynJrl

= 9nlYn — dml(wnJrl) =0.

It follows that there exists x,, € X,, such that y,, — d¥+1(yn+1) = fn(zn). Hence

Hn(f)[xn] = [fn(xn)] = [yn - d?{-&-l@n-&-l)] = [yn]
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(3) imH.,(g) € kerdy: Let Hn(9)[yn] = [gnyn] € imHn(g). Then 9, [gnyn] =
[€n—1], where z,_1 = ;fleyn IS f;_lld?fgglgnyn. Therefore f,_ 12,1 =
dzyn = 0, and hence z,_1 = 0, because f,_1 is injective. It follows that
H,(9)yn] € kerd,.

(4) kerd,, C imH,(g): Let d,[w,] = 0. Since g, is surjective, there exists
yn €Y, such that w,, = g,(yn). Let x,,—1 = f;}ldgyn € fn:lleggl(wn). By
definition of 9,,, we have 9, [w,] = [£,—1] = 0. Hence there exists z,, € X,, such

that x,,_; = dXz,. We have
dy (Yn = fa(@n)) = dif (yn) = furd@, = 0.
Therefore y, — fn(z,) € kerdY and
Ho(9)[yn — fa(@n)] = [9nYn — gnfal(@n)] = [gnyn] = [wn).

(5) imd,, C kerH,,_1(f): Let d,[w,] € imd,,. Then there exists y,, € g, (wy)
such that 9, [w,] = [£n,_1], where 2,1 = f;, ' d¥yn € £ 1,dY g7 (wy). There-

fore

anl(f)[xnfl] = [fnflxnfl] = [fnflf;,lldzyn] = [d?{yn] = 0.

(6) kerHy,—1(f) C im0y: Let Hy—1(f)[xn-1] = [fa—12Zn—1] = 0. Then there

1

exists y, € Y, such that f, 1z, 1 = dZyn. Therefore x,,_1 = fn__ld?{yn S

fr:—lld?{gr:l(gnyn) and hence 0, [gnyn] = [Tr-1]- O

Theorem 1.1.11. (Naturality of 9,). Consider the commutative diagram

with exact rows:

0 x_ oy 9w )
a B o
! !
0 cx Ay 8w - 0

Then there is a commutative diagram of modules with eract rows:
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H(X) H,(f) H,(Y) Hn(9) Hn(W)ﬂ’»Hn,l(X) H,_1(f)
Hy(e) Hy(B) Hy(v) H, (o)
i, (x) 22U gy, o5y Bo0) gy vy P,y Bt

Proof. Exactness of the rows is Theorem 1.0.12 (Long Exact Sequence). The
first two squares commute because H, is a functor. Now we show that the
commutativity of the square involving the connecting homomorphism. Consider

the commutative three-dimensional diagram:

Xn f" _ Yn 9n N Wn
B g .
7 Yo "o
fn-1 gn-1
Qp anl i > In—1 z > anl
Qp_1 ﬂn—l
Y / Y ’ Y
X,;L fn g Y,,i g?’L o W,,/L ’ynfl
Z o> LN
\ ! v g/ Y
X’;Lfl = > Yriq = > WTIL71

Let [wy] € H,(W). We show that H,,_1(a)0,[wy,] = 0, Hu(y)[wy]. Let y, €

97t (wy) and 2,1 = f,,'1dY y,. Then
Hy—1()On[wn] = Hy—1(a)[zn-1] = [an-12n-1].
Let 2], _; = f;;lldz/ﬁnyn. Since Yy (wn) = Yn(gn¥n) = ghBnyn, we have
0 Hy (7)[wn] = 0}, [ynwn] = [, 4]
On the other hand,

fr/L—l(Oén—lxn—l) = 6n—1fn—lxn—1 = ﬁn—ldzyn = dz ﬁnyn = fv/z—lm;l—l
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Since f],_, is injective, it follows that a,_12,—1 = a},_;, which completes the

proof. O

Theorem 1.1.12. (Snake Lemma). Consider the commutative diagram of

modules with exact rows:

Y A VR R V7 . 0
o B Y
0 N S S

Then there is the following exact sequence

kera kerf N ker-y 2, cokera L cokerf3 <, cokery
Proof. Tt is easy to see that f = flkera : kera — kerf3, § = glier g : ker —

ker,

f:cokera — coker(
n' +ima ——  f'(n') +img
and
g’ : coker —— cokery
n+imfB —— ¢'(n)+imy

are well defined. There are eight inclusions to verify.

1) imf C kerg: Let m’ € M, then
g

Hence imf C kerg.
(2) kerg C imf: Let m € kerg. Then m € ker 3 and g(m) = 0. Therefore
there exists m’ € M’ such that m = f(m’). Since f'a(m') = f(m') = B(m) =

0, we have m’ € ker a and hence m = f(m') = f(m’) € imf.
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Define

0:kery — cokera

m" — n'+ima (' € f'7 Bg H(m")).

We show that 8 is well defined. Let n/y,n’y € f/~'Bg~1(m”). Then there are
my,mg € g~t(m") such that f’(n'y) = B(m1) and f’(n’s) = B(ms). Therefore
g(m1) = g(ms2) = m” and hence m; — my € kerg = imf. Hence there exists

m’ € M’ such that f(m’) = my — my. By commutativity of the above diagram,
fl(n'y =n'y) = B(my —mg) = Bf(m') = f'a(m).

Hence n’y — n’s = a(m’) and so n'y + ima = n’y + ima.

(3) kerd C img: Let A € kerd. Then A € kery C M”. Therefore there
exists m € M such that m € g='()). Since 0 = d(\) = f'~'3(m) + ima, there
exists m’ € M’ such that f'~'#(m) = a(m’). By commutativity of the above
diagram,

Bf(m') = f'a(m’) = B(m).

Hence m— f(m') € kerf3. Now we have g(m—f(m/)) = g(m—f(m')) = g(m) = A
and hence kerd C img.

(4) img C kerd: Let g(m) € img, where m € ker3. Then 9(g(m)) = n/+ima,
where n' = f'~'f(m) € £~ 89~ (g(m)). Therefore d(g(m)) = f'~"(m) +
ima = ima. and hence img C kerd.

(5) imd C kerf”: Let d(\) = f'~'B(m) + ima € imd, where m € g~1(\).
Then

Fo() = F(f7 B(m) +ima) = f'f~f(m) + imf = imf3.

It follows that imd C ker f.
(6) kerf’ C imd: Let f’(n’+ima) = 0. Then f'(n’) +imA3 = im@3. Therefore
there exists m € M such that f'(n') = §(m). By commutativity of the above

diagram,
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Therefore g(m) € kery. Since n' = f/~'B(m) € f''Bg~'(g(m)), we have
d(g(m)) = n' + ima. Thus kerf’ C imd.
(7) imf’ C kerg’: Let n’ € N’. Then

g f'(n' +ima) = g'(f'(n') +imp) = ¢'f'(n’) + imy = 0.
Hence imf’ C kerg’.

(8) kerg’ C imf’: Let n +imf € kerg’. Then ¢’(n) € imy. Therefore there
exists m” € M" such that ¢’(n) = y(m”). Since g in surjective, there exists

m € M such that g(m) =m”. By commutativity of the above diagram,

g'(n) =y(m") = vg(m) = g'B(m).

Hence n—3(m) € kerg’ = imf’ and so there exists n’ € N’ such that n—3(m) =
f'(n). It follows that n+imA3 = f’(n')+imgB € imf’ and hence kerg’ C imf’. [

Remark 1.1.13. The snake is

kero / » ker3 kery

T

M f - M 4{]» M”—»O/
«Q B J - T
/

4

e /

A,

////64’]\7/ SN g N

A cokerq— coker3—— cokery

Definition 1.1.14. Two morphisms f,g : X — Y are homotopic, denoted

by f ~ g, if for all n € Z, there are homomorphism s,, : X;, — ¥, 41 so that
fo—Ggn= dZ_Hsn + Sn—ldﬁa

as illustrated in the diagram below:
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ax,, X
n
X’rH—l > Xn Xn—l -
0n+1 N gn A gnfl
- Sn Sn—1
» 7Y »
d A
n+1 n
Yn+1 > Yn > Yn—l -

where 0, = f,, — gn-

Theorem 1.1.15. (Homotopic Morphisms Theorem). If f,g: X — Y

are homotopic morphisms, then
H,(f)=Hu(g) forall n€Z.
Proof. Let z, € kerdX. Then
Hn(f)[zn] = [fnzn] = [(gn + d§+15n + Snfldf)zn}
= [gnza] + [dns18nza] + [sn—1d5 2]
= Hn(g)[zn]
This completes the proof. O
Definition 1.1.16. A Free resolution of a module M is an exact sequence
F: o — B2 %R S M—0
in which each F; is free. Also then the sequence (no longer exact at Fyp)
Favio— B 25 25 Ry 200
is called the deleted free resolution of the resolution F.
Projective resolution and flat resolution are defined similarly.
Definition 1.1.17. An injective resolution of a module M is an exact sequence
E:0—M-p gt g
in which each E' is injective. Also then the sequence (no longer exact at E°)
EM:O—>E0£>E1LE2*>...

is called the deleted injective resolution of the resolution E.
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We may, in fact, define the deleted complex of any complex:
Definition 1.1.18. Let X be a complex of the form
X — X 2 x I X, S M — 0.
Then the complex
X — Xa 2 X7 -5 X, 22 0

is called the deleted complex of the complex X. Similarly, if Y is a complex

of the form
Y:0—N-Sy0 Doyt Doy
then the complex
Yn:0—y0 oyt iy

is called the deleted complex of the complex Y.

Theorem 1.1.19. Every module M has a free resolution (which is necessarily

a projective resolution and a flat resolution).

Proof. There is a free module Fjy and an exact sequence
0— Ky -5 Fy =5 M — 0.

Similarly, there is a free module Fi, and an exact sequence
0— Ko 2 F L K, — 0,

and, by induction, a free module F,,, and an exact sequence

7: n
O—»Kn+1L“>FnL>Kn*>O

Assemble all these sequences into the diagram
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where d,, : F,, — F,,_1 is the composite i,e,. Because kere = K; = imdy,

and for every n, kerd,, = K, 1 and imd,, = K,, we have that the top row is

exact.

Theorem 1.1.20. Every module M has an injective resolution.

O

Proof. Every module can be imbedded as a submodule of an injective module.

Thus, there is an injective module E°, an injection € : M — E° and an exact

sequence

0
0— M- E" "% —o.
Similarly, there is an injective module E', and an exact sequence
0o 1o
0—C"—FE —(C" —0,
and, by induction, an injective module E™, and an exact sequence

e™ 7"

0—C" !t s pr T 0" — 0,

Assemble all these sequences into the diagram

0o P o d g
N e
oL, Ccl——0

where d" : E® — E"*1 is the composite e" 17", Because ime = M = kerd’,

and for every n, kerd® = C™~! and imd™® = C™, we have that the top row is

exact. ]
Theorem 1.1.21. (Comparison Theorem). Consider the diagram
Y - d1:+1~Pn - -~ Py av - M —0
ian+1 ioén 3040 f
-4’Qr:+1 dSH‘Qvn - ‘CSO iy N —0

where the rows are complexes. If each P, in the top row is projective, and if

the bottom row is exact, then there exists a morphism o : Py — Qn (the
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dashed arrows) making the completed diagram commute. Moreover, any two

such morphisms are homotopic.

Proof. (1) The existence of or. We prove the existence of @ = {«a,, } by induction

on n > 0. For the base step n = 0, consider the diagram

Py
I
»"' Q
d
Qo O . N >0

Since Py is projective and d(? is surjective, there exists an R-module homomor-
phism «ag : Py — ) such that d(?ozo = fd¥. Suppose that n > 0 and that
we have already constructed R-homomorphisms «; : P, — @;, 0 < i < n such

that

dg_loz1;+1 = aidﬁ_l for 0<i<n-—1.

We have dQa,d%, , = a,_1dpdh,, = 0. Therefore ima,d% ; C kerdQ =

imdf;?Jrl and hence we have the following diagram.

Pn+1

O‘n+_1.'. OéndEJrl

»"' Q

n+1 .
Qn+1 —_— 1H1dg+1 0

Since P,11 is projective, there exists an R-module homomorphism ay, 11
Po,+1 — Qn41 such that d%_lanﬂ = andsﬂ. This completes induction and
therefore, the existence of a morphism a = {«,,} is achieved.

(2) Uniqueness of a to homotopy. Assume § = {6,} : Pm — Qn is
another morphism satisfying dg’zﬁo = fd¥ and

dr?+1ﬁn+1 = Bpdy,, for n>0.

We construct a homotopy s by induction. Let P_; = @_; = 0. Take s_; :
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P_1 — Qg to be the zero map. Now consider the following diagram.

dP dP
P —* . p, . ) - P, % P ,=0
sn so..". 571,5'-
» dg > S.dQ
S Qi — T Q, - Q1 - Qo —2%> Q1 =0

Since Fp is projective, there exists an R-module homomorphism s : Py —

(01 such that ag — Gy = d?so and hence ag — Gy = d?so + s_ld(l)j. We have

Q P _ P
dn+l(a7l+1 = Bnt1 — 5ndn+1) = and n+1 611 n+l n+15ndn+1 =

(on — Bu)dhyy — d2yysndh g = (dE 50 — Sn_1dl )by — dd spdhq =0

Therefore im (a1 — Bp+1 — Sndpy 1) C irnal:?_i_2 and hence we have the following

diagram.

F%+1
St Q1 — Bust — sndE
n+1 n+1 nWn41
»Q
d
n+2 .
Qn2 1md7?+2 — 0

Since P, 41 is projective, there exists an R-module homomorphism s,,41 : Ppy1 —

Qny2 such that a, — B, — sudb ;) = d¥ ysn41 OF Qnit — Bpr = dioSni1 +

sndp 1. This completes induction and hence a >~ §. O

Theorem 1.1.22. (Horseshoe Lemma). Let0 — M’ oML —0

be a short ezact sequence and let P', P be projective resolutions for M' and
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M" respectively, as shown in the diagram:

Y Y

P, Py

Y Y

P p
E/ 6//

Y Y

0 o 9 . 0

Y Y

0 0

Then there exists a projective resolution P of M and morphisms o : Ppy —
Py and 3 : Py — Pagr such that 0 — Py —— Py A, Py — 0 is an

exact sequence of complezes.

Proof. We show first that there is a projective Py and a commutative 3 x 3



20 CHAPTER 1. HOMOLOGY

diagram with exact columns and rows:

0 0 0
Y 4 Y

0 - K, - Ko - Kl - 0
Y 4 Y

0 cp 0 p P pe 0

e/ c e

¢ > v

0 o — 9y . 0
Y Y Y
0 0 0

Take Py = P, @ Py and define oy : P, — Py by 2’ — (2/,0), and

Bo: Po — P} by (¢/,2") — z”. Tt is clear that P, is projective and that
0— P 2% p 2 py —o0

is exact. Since PJ is projective and g is surjective, there exists an R-module

homomorphism h : Py — M such that gh = ¢”. Now define

€ZPO — M

(l‘/,ﬂ;‘”) — ff':/x/ + h.'I;//.

Surjectivity of € follows from the Five Lemma. It is an easy verification that, if
Ky = kere, K{) = kere’, and K{J = kere”, the resulting 3 x 3 diagram commutes.
Exactness of the top row is the 3 x 3 Lemma.

We now prove, by induction on n > 0, that the bottom n rows of the desired

diagram can be constructed. Consider the following commutative diagrams with
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exact rows and columns:

0 0 0
0 - K, - K, - K] » 0
0 cp O p P - 0
0 > K, - K - K] ~ 0
n—1 n—1 n—1
Y Y Y
0 0 0
and
0 0 0
4 Y
0 K’;L+1 Knp K’;L/+1 -0
0 Py Ot p, O -0
0 - K, - K, - K/ »0
Y Y Y
0 0 0

Combining the above diagrams, we get the following commutative diagram with
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exact rows and columns:

0 - P, > Ppi1 - P/, - 0
Y 4 Y

0 - K/ - K, - K - 0
v v Y

0 - P! - P, > P/ - 0

By defining dE_H : P41 — P, as the as the composite P, — K, — P,,

we get the following commutative diagram with exact rows:

0 > P7I1+1 > Pot1 - 1/1/+1 >0
di 1
0 - P - P, - P/ >0
It is easy to see that imd%, ; = kerd}, and hence the proof is completed. O

We finally make some remarks about the dual notion.

Definition 1.1.23. Let R be a ring. By a cochain complez (X,dx) of R-

modules we mean a sequence
n—1 d?;l n d?( n+1
X,dx)=:... — X —— X" = X —_— ...

of R-modules {X"} and R-module homomorphisms {d% : X" — X"*1} such
that diydy ' = 0 for alln € Z. X™ and d} are called the module in degree n and
the n-th differential of (X, dx), respectively. We usually simplify the notation
and write X instead of (X, dx). Morphisms of cochain complexes are defined
analogously to chain complexes. Given a cochain complex (X, dx) we define its

cohomology H™(X) by



1.1. HOMOLOGY FUNCTORS 23

H"(X) = kerd" /imd"~! forall n€Z

With the obvious definition of induced maps, H™(—) then becomes a functor,
the cohomology functor. In case of a cochain complex we will speak of co-
cycles, coboundaries, cohomology classes. All the theorems we have established
for homology therefore work for cohomology without requiring separate proofs.
Indeed, given a chain complex (X, dX) we obtain a cochain complex (Y, y) by
setting Y" = X_,,, 6" = d_,,. Conversely given a cochain complex we obtain a

chain complex by this procedure.

Exercises

1. (i) Let T': RpMod — rMod be an exact covariant functor. For each n € Z

and every complex X of R-modules, prove that H,(TX) =2 TH,(X).

(ii) Let T : RpMod — grMod be an exact contravariant functor. For
each n € Z and every complex X of R-modules, prove that H,(TX) =
TH_,(X).

2. State and prove the dual of Comparison Theorem.

3. State and prove the dual of Horseshoe Lemma.
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DERIVED FUNCTORS

2.1 Covariant Left Derived Functors

Suppose for the time being that for every R-module M we have chosen exactly

one deleted projective resolution Pys.

Definition 2.1.1. Let S be another ring and T : gkMod — gMod be a covari-

ant functor. For n € Z, define
(L,T)M = H,(TPwm) = kerTd,,/imTd,, .

To complete the definition of L,T, we must describe its action on homomor-
phism f : M — N. By the Comparison Theorem, there is a morhism
a: Py — Pyn over fo. Then Ta : TPy — TPy is also a morphism,

and we define (L, 7)f : (L,T)M — (L, T)N by
(L,T)f = Hy(Ta).
In more detail,

(L.T)f : (L,T)M — (L,T)N

2] — [(Tan)2]

24
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In pictures, look at the chosen projective resolutions:

. &

> Py P, . > Py O v M ——>0
| | |
I | I
| | |
On41 O et f
I | |
v ’ v \ ’
/ 54»1 / / dOP
Py - P, - - Py » N ——0

Fill in the dashed arrows, delete M and N, apply T to this diagram, and then

take the map induced by T« in homology.

Theorem 2.1.2. Let S be another ring and T : pMod — g Mod be an additive

covariant functor. Then
L,T : pMod — gsMod
s an additive covariant functor for every n € 7Z.

Proof. We will prove that (L, T)f is well defined on homorphism f. If 5 :
Pyt — Py is another morphism over f, then the Comparison Theorem says
that a ~ (3, so that Ta ~ T3 (Exercise 1). It follows from Homotopic Morphism
Theorem that H,(T«) = H,(T(). Thus (L,T)f is independent of the choice
of the morphim «a.

By taking 1p, : P, — P,, the identity map for every n € Z, we get a

morphism 1p,, = {1p,} : Pm — P and we have

(LnT)(Aar) = Ho(T(1py ) = Ho(ltpy) = 1a, (rPm) = Lnnmym-

Let g : N — L be an R-homomorphism and {3, } : Py — Ppr be a morphism
over g. Then {8,a,} : PMm — Pyr is a morphism over gf : M — L. By

definition, we have

[T(Bn)(T (o)) ()] = (LaT)g[T () ()]
= (LaT)g((LnT) fl2]) = (LnT)g(LnT) f)[]

This implies that (L,T)(gf) = (L,T)g(L,T)f. Therefore L, T is a covariant

functor. Finally, we show that L, T is an additive covariant functor. Let h :
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M — N be another R-homomorphism and {7, } : Ppy — P be a morphism

over h. Then {ay, +7v,} : P — P is a morphism over f + h. By definition,

we have
L T(f+h)a] = [T(om +yn)@)] = [(T(om) + T(7n))(2)]
= [T(em) (@) + T(yn)(2)] = [T(an)(@)] + [T (n)()]
= (LT fla] + (LnT)h[z] = (LaT) f + (LnT)h)[x]
which implies that L,T(f + h) = L,T(f) + L,T(h). O

Definition 2.1.3. L, T is called the nth left derived functor of T'.

Definition 2.1.4. Let C and D be two categories and T,U : C — D be two
covariant functors. We say that 7 : T — U is a natural transformation (of
functors) if for every object M € C there is a morphism 75 : T(M) — U(M)
in D such that for every morphism f: M — N in C, the diagram

T(M) —— U(M)

70 | [vw

T(N) —— U(N)
is commutative. There is a similar definition if both 7" and U are contravariant.
If for each M € C, tpy : T(M) — U(M) is an equivalence, then 7 is called
naturallly equivalence. Also then T and U are called naturally equivalent

functors and we write T~ U.
Assume that new choices
.— Py — P, — Pyg— M —0
of projective resolutions (one for each module M) have been made, and denote

the left derived functors arising from these new choices by L,,T". our next project

is to show that L, T and L, T are essentially the same.

Theorem 2.1.5. Given an additive covariant functor T : pMod — gMod,
where R and S are rings, then the functors L, T and L, T are naturally equiv-

alent. In particular, for each M,

(L.T)M = (L, T)M.
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i.e., there modules are independent of the choice of projective resolution of M.

Proof. Consider the diagram

> I'n4+1 ‘P” > ... ‘PO - M —— 0
Vipl Vin Lo 1y
¥ y y

» Po1 ~ P, - » Py - M ——0

where the top row is the chosen projective resolution of M used to define L, T
and the bottom is that used to define L,T. By the Comparison Theorem,
there is a morphism i : Py — Py over 1. Similarly, there is a morphism
J: Py — Py over 1. Therefore ji : Pm — Py oand 45 Py — Pum
are morphisms over 1p;. Since 1p,, : Pmy — Py and 1§M : Pm — Pum
are also morphisms over 1ps, we have ji ~ 1p,, and 4j =~ Is,,- It follows
that T'(j)T'(i) = T(ji) ~ lrpy and T())T(j) = T(ij) ~ lip,,. Since Hy :

rComp — rMod is an additive functor for every n > 0;

lp,romy = lu,rpy) = Ho(lrpy) = Ho(T(57) = Ho(T(5))Ha(T'(7)),
1Z,LT(M) = 1H7L(TFM) = Hn(lTFM) = Hn(T(Z])) = Hn(T(Z))Hn(T(J))
If we define

v = Ho(T(i)) + (LaT)M — (Lo T)M,

then 7)s is an isomorphism with H,,(7(j)) as its inverse.
We now prove that the isomorphisms 75, constitute a natural isomorphism:

if f: M — N, we must show commutativity of
(L,T)M 2% (T, 17)M
(L T)f (LaT)f

(L,T)N X (L, T)N

Consider the diagrams
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> n4+1 ‘Pn > ‘PO *M4>0
| Qg e e f
A\ A\ A\ \

> Qns1 - Qn o - Qo - N -0
:knJrl :kn+1 :kO 1N
\ \ \ Y

‘Qn-i-l ‘Qn > ‘QO ‘N%Oa

and

> I'p41 ‘Pn > ... ‘PO - M —— 0
‘in—i-l :Zn :ZO 1M
" v v ,

v Ppis . P, - Py e M —— 0
:an+1 :an :ao f
v v ¥ 1

'4>Qn+l - Q, . - Q - N -0

Applying the Comparison Theorem yields morphisms a : Py — Pn and

@ : Py — Py over the homomorphism f. Let k : Py — P be a morphism
over 1y. Then we have morphism ko : Py — Py over Inyf = f and @i :

Pyt — Py over fly, = f. Therefore ka ~ @i and so T'(ka) ~ T(@i). Hence
H,T(k)H,T(a) = H,T(ka) = H,T(ai) = H,T(a)H,T(1).
It follows that 7n(L,T)f = (L,T) frar. This completes the proof. O

Theorem 2.1.6. Let 0 — K — P —— M — 0 be an exact sequence of

R-modules, where P is projective. Then if T is covariant
(L1 T)YM = (L,T)K (n>0)

Proof. Let

P:oo.— P 2p =P M — 0
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be a projective resolution for M. By exactness of P, we have K = kere = imd;,
and so

—>P3£>P2£>P1LK—>O

is a projective resolution of K. Since the indices are no longer correct, relabel
the indices, and define Q,, = P11 (n > 0), A, = dp41 (n > 1). Therefore we

have the following projective resolution for K.
'—>Q2£>Q1i>Qoi>K—>0-
By definition, we have
(Lpt1T)M 2 kerTdy, 1 /imTdy, o = kerTA,, /imTA,, 11 = (L,T)K.
This completes the proof. O
Corollary 2.1.7. Let
P p N p S0

be a projective resolution of M, and define Ko = kere and K,, = kerd,, for all

n > 1. Then if T is covariant,
(Lp1T)M =2 (L, T)Ko = (L1 T)K;) & ... 2 (L1 T)Kp—1.
Proof. Let K_1 = M. Consider the following short exact sequences
0—K,— P —K_1—0 (i>0)
In view of the above theorem, we have
(Lpt1T)K;—1 =2 (L, T)K; (n>0,i>0)
This completes the proof. O

Theorem 2.1.8. Let 0 — M’ —+ M —% M" — 0 be an ezact sequence of
modules. If T : gMod — gMod is an additive covariant functor, then there is

a long exact sequence:

oo (LMD oy R (M s
(LoT)f (LoT)g

— (LoT)M" "2 (LoT)M " 22 (LeT)M"” — 0
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Proof. Let Py and Py be the chosen deleted projective resolutions of M’ and
of M", respectively. By the Horseshoe Lemma, there is a projective resolution
?M of M with

O—)PM/ &FMLPM//—)O

Applying T gives another exact sequence of complexes (because, additive func-

tors preserve split short exact sequences)
0— TPM/ E TFM T—6> TPM// — 0.

Thus there is a long exact sequence

Hn(Ta) H, (Tﬁ)
— —

- — H,(TP\) H,(TPn) (Ho(TPppr) 225 -

that is, there is an exact sequence

oo (LM D Ty T (L P
Notice that we have (L, T)M instead of (L,,T)M for the projective resolution of
M constructed with the Horseshoe Lemma need not be the projective resolution
originally chosen.
There are morphisms i : Pyy — P and j : Py — Py, where both 4, §
are morphisms over 1, in opposite directions. In fact, H, (T%) : H,(TPnm) —
H, (TPy) is the inverse of H,(Tj) : H,(TPn) — H,(TPn). Therefore, by

Exercise 3, we have the following exact sequence

. , Hn(TPM’) H,(Tj)Hn(T) Hn(TPM> Hn(TB)H,(T7) (Hn(TPM”) On .

Let 6 : Ppyr — Py and € : Py — Py be morphisms over f: M — M
and g : M — M", respectively. Now T'jTa ~ T'§ , because both are morphisms

over T'f. Similarly, T3T% ~ Te. Then we have exact sequence

H, (T
) (T9)

- — H,(TPw Ho(TPy) 128 (H, (TPpy) —2oe oo

We conclude there is an exact sequence

oo (LM D Ly P (e 2
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Finally, the sequence does terminate at 0, for L,,T = 0 for negative n. Indeed,

every P,,, hence every TP,, is 0 for negative n. O
Corollary 2.1.9. Let T : gMod — gMod be an additive covariant functor.
Then LoT is right exact.

Proof. We have just seen that exactness of M/ — M — M"” — 0 yields the
exactness of (LoT)M' — (LoT)M — (LoT)M" — 0. O
Theorem 2.1.10. Let T : gMod — gMod be an additive covariant functor.

Then LoT ~ T if and only if T is right exact.

Proof. The “only if” parts comes from the right exactness of LoT. For the
converse, let

P: - —P-2p % p S M—0

be the chosen projective resolution of M. But right exactness of T' gives an

exact sequence

P X rp, L& T — 0.

This exact sequences induce isomorphism
v TPy /kerTe — TM.
By definition
(LoT)M = kerTdy/imTdy = TPy /imTdy = TPy /kerTe = T M.
Let N be another R-module and f: M — N be a homomorphism. Let
Qi"'—’Q2—>Q1—>Q0€—/>N—>0

be a projective resolution of N. By the Comparison Theorem, there is a mor-
phism a : Py — PN over f. We then get commutative diagram with exact

TOWS.

T
TP, s TPy —— « TM —» 0

Toq Tao Tf

T/
TO, - TQy ——+ TN —— 0
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This commutative diagram induces commutative diagram

(LoT)M = TPy /kerTe M« TM — 0

(LoT)f rf

(LoT)N = TQo/kerTe' N+ TN — 0

This completes the proof that LyT is naturally equivalent to 7. U

Definition 2.1.11. Let M be an R-module and a € C(R). Thena.: M — M
defined by & — ax is an R-module homomorphism, called multiplication by
a (or homothety). We say that a functor T : gkMod — rMod preserves

multiplications if T'(a.) = a. for all a € C(R).

Theorem 2.1.12. If T : gMod — grMod is an additive covariant functor
which preserves multiplications, then L, T : rMod — grMod also preserves

multiplications.

Proof. Let

P:...— P —P,—P-—M-—0

be a projective resolution of M. Let a € C(R) and consider the commutative

diagram
€
- P - Py - M —— 0
a G a
€
- P ) - M —— 0
Applying T gives
Te
> TP1 > TPQ »TM — 0
a G a

‘TPl TPQ ™ — 0




2.2. RIGHT DERIVED FUNCTORS 33
Now we have

(LaT)(a2) : Ho(TPy) —  Hy(TPa)
[Zn] [ [(IZ"] = CL[Zn].

That is (L,T)(as) = a.. O

As you would expect, the case for contravariant functors is done similarly

and the process produces contravariant left derived functors.

2.2 Right Derived Functors

We are now going to define right derived functors R™T, where T : pRMod —

sMod is an additive covariant (contravariant) functor.

Definition 2.2.1. Let S be another ring and T : pkMod — gMod be a covari-

ant functor. For n € Z, define
(R"T)M = H"(TEp) = kerTd™ /imTd" ",

To complete the definition of R™T, we must describe its action on homomor-
phism f : M — N. By the dual of the Comparison Theorem, there is a
morphism « : Eny — En over f. Then Ta : TEy — TEN is also a mor-

phism, and we define

(R"T)f: (R"T)M — (R"T)N

[2] — [(Tan)z].

Definition 2.2.2. Let S be another ring and T : gkMod — sMod be a con-

travariant functor. For n € Z, define
(R"T)M = H"(TPwz) = kerTd,, 41 /imTd,,.

To complete the definition of R™T, we must describe its action on homomor-

phism f : M — N. By the Comparison Theorem, there is a morphism
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a: Py — Pn over f. Then Ta : TPy — TPy is also a morphism,

and we define

(R"T)f : (R"T)N — (R"T)M

[2] — [(Tam)z].

Let T : gRMod — gMod be an additive covariant (contravariant) functor.
Then the proof of the following results are dual (similar) to the proof of results

in previous section.

Theorem 2.2.3. Let T : RMod — sMod be an additive covariant (contravari-

ant) functor, where R and S are rings, then
R"T : pMod — sMod
is an additive covariant (contravariant) functor for every n € Z.

Definition 2.2.4. Let T : gkMod — gMod be an additive covariant (con-
travariant) functor, where R and S are rings. Then R"T is called the nth right

derived functor of T'.

Theorem 2.2.5. If T : pMod — gMod is an additive covariant (contravari-
ant) functor which preserves multiplications, then R"T : pMod — gMod also

preserves multiplications.

Theorem 2.2.6. Let 0 — M’ L5 M —%5 M" — 0 be an ezact sequence of
modules.
(1) If T : RMod — gMod is an additive covariant functor, then there is a

long exact sequence:

(R°T)g
—

0
0 — (R'T)M' 0 (ROTYM (ROT)M" — ...

o — (rrm) M D (grry v B (RrTY M

(2) If T : RMod — sMod is an additive contravariant functor, then there
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s a long exact sequence:

0 0
0 — (RT)M" 0 (RO M Y (ROTY M

Corollary 2.2.7. If T : RMod — sMod is an additive covariant (contravari-

ant) functor, then the functor ROT is left exact.

Theorem 2.2.8. Let T : RMod — sMod be an additive covariant (contravari-

ant) functor. Then ROT =~ T if and only if T is left exact.

Theorem 2.2.9. (1) Let
0—M - FE—~V—0
be an exact sequence of R-modules, where E is injective. Then if T is covariant,
(R™M'T)M = (R"T)V  (n >0)

(2) Let
0—K-—P-——M-—0
be an exact sequence of R-modules, where P is projective. Then if T is con-

travariant,

(R"™'T)M = (R"T)K.
Corollary 2.2.10. (1) Let

dl

0— M- g0 g g2

be an injective resolution of M, and define Vo = ime and V,, = imd™~' for all

n > 1. Then if T is covariant,
(R"M'T)M = (R"T) Vo = (R*'TY)Vi = ... =2 (R'T)V,,_1.

(2) Let

P g S
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be a projective resolution of M, and define Ky = kere and K,, = kerd,, for all

n > 1. Then if T is contravariant,

(R™™'TYM = (R"T)Ky = (R 'T)K;, 2 ... 2 (R'T)K, ;.

Exercises

1. Let f,g : X — Y be morphisms, and let T : pkComp — gComp be an
additive functor. If f ~ g, prove that Tf ~ Tg.

2. Let T : gRMod — gMod be a covariant functor. Show that the following
are equivalent:
(1) T is additive,
2)T(M®N)2T(M)®T(N) for all M, N € gpMod,

B)TMaeM)=T(M)®dT(M) for all M € gMod.
3. Consider the exact sequence
Al 2

If i : B — B’ is an isomorphism with inverse j : B’ — B, prove
exactness of
AL p 9

4. Let T : RpMod — gMod be an additive functor and n > 1.
(1) If T is covariant, prove that (L, T)P = 0 for all projective P € gpMod,
(2) If T is covariant, prove that (R"T)E = 0 for all injective E € gpMod,
(3) If T is contravariant, prove that (R"T)P = 0 for all projective P €
rMod.

5. Let T : RpMod — gMod be a covariant functor.
(1) Show that L, (L,,T) =0if m > 0,

(2) Show that L, (LoT)M = (L,T)M for all M € gpMod.
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6. Set R=74, S =7 and

T:RMOd — SMOd

M +— Hom(Zy, M).

Write down a projective resolution of Zs and compute (L, T)Zs.

37
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Tor AND Ext

3.1 Elementary Properties

Definition 3.1.1. Let M be a right R-module and N be a left R-module. Then

(1) If T(=) = M ®p —, then Tor*(M, —) := L, T(-).
(2) If T(-) = — ®g N, then tor®(—, N) := L,T(-).

(3) If T(—) = Hom(N, —), then Ext} (N, —) := R"T(-).
(4) If T(—) = Hom(—, N), then ext}(—, N) := R"T(—).

Proposition 3.1.2. Let M be a right R-module and N be a left R-module.

Then the following hold.
(1) Torg(M, =) = M &g —.
(2) torfi(—,N) ~ — ®@g N.

(8) Exth(N,—) ~ Hom(N, —).
(4) eaty(—, N) =~ Hom(—,N).

Proof. Follows from Theorem 2.1.10 and Theorem 2.2.8.

O

Proposition 3.1.3. (1) Let M and P are right R-modules with P projective,

and let N and @ are left R-modules with Q) projective. Then
Torf (M, Q) = torf(P,N) = 0.

38
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(2) Let N, P and E are left R-modules with P projective and E injective.
Then
Eztf(N,E) = exth(P,N) = 0.

Proof. Follows from Exercise 4 of Chapter 2. O

Proposition 3.1.4. The following hold.

(1) Let -+ — Py L, P A, Py =5 N — 0 be a projective resolution of
a left R-module N, and define Ko = kere and K,, = kerd,, for alln > 1. If M
s a right R-module, then

Torft, | (M, N) = Torf(M, K) = ... = Torf{(M, K,_1).

(2) Let --- — Py Lo, P A, Py === M — 0 be a projective resolution of a
right R-module M, and define Ky = kere and K,, = kerd,, for alln > 1. If N
s a left R-module, then

torf, | (M, N) = torf (Ko, N) = ... = torf(K,_1, N).

(8) Let 0 — M —— E° LB bean injective resolution of a
left R-module N, and define Vo = ime and V,, = imd" ! for alln > 1. If M is
a left R-module, then

Bty (M, N) = Ext}y(M,Vy) & ... = Eoth(M, V).

(4) Let -+ — Py bop P S M 0bea projective resolution of a
left R-module M, and define Ky = kere and K,, = kerd,, for alln > 1. If N is
a left R-module, then

exti T (M, N) = exth (Ko, N) = ... = exth(K,—1, N).
Proof. Follows from Corollary 2.1.7 and Corollary 2.2.10. O

Proposition 3.1.5. Let 0 — K' — K — K" — 0 be an ezact sequence

of modules. Then there are the long exact sequences

(1) - — Tor®(M,K'") — Torf (M, K) — Torf(M,K") — ---

—>M®RK/—>M®RK—>M®RKH—>O
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(2) - — tor(K',N) — tor®(K,N) — torf (K" ,N) — - --

HK/®RN—>K®RN—>KH®RN—>O

(3) 0 — Hom(N,K') — Hom(N,K) — Hom(N,K") — - --

C— E:Et%(N,K/) — E:Ct%(N,K) — E;ct%(]\f’[{”) - ...

(4) 0 — Hom(K" ,N) — Hom(K,N) — Hom(K',N) — - --

- — exth(K"' N) — exth(K,N) — exth(K',N) — - --
Proof. Follows from Theorem 2.1.8 and Theorem 2.2.6. O

Theorem 3.1.6. (1) Let M be a right R-module, let N be a left R-module.
Then Tor®(M, N) = torf (M, N) for all n > 0.

(2) Let M and N be left R-modules. Then Extp(M,N) = exth(M,N) for
allm > 0.

Proof. We only prove (1); the proof of the dual (2) is similar.
(1): The proof is by induction on n > 0. By Theorem 2.1.10, Tor{ (M, —) ~
M ®p — and torf{(—, N) ~ — ®g N. Therefore
Torf(M,N) = M ®g N = torf(M,N).
We now suppose that n > 1. Let

PP P M—0

be a projective resolution of M and
Q5 Q1 Qo — N —0

be a projective resolution of N. Set

K_1 = M, Ko = kera, Ki = kerdi (Z > 1),

H_1 =N, Hy = kere’, H; =kerd, (i >1).
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Since tensor is a bifunctor the exact sequences

Og’Kig’Pii)Ki—lg’Ov

O—>Hj—>Qj—j>Hj_1—>0.

give a commutative diagram

0 0
| |
X 0 w
| | |
0 Y Ki®H —— K®Q —— K®H_, —— 0

! ! !

0 P®Hj —— P®Q; —— PRH_1 —— 0
0 Z Kii1®H —— Ki1®Q; —— Ki1®Hj 1 —— 0
0 0 0

where X = torf(K;_1,H;), Y = Torl (K, H;_ 1), W = torf(K;_1,Hj_1), and
Z = Torf(K;_1, H;_1). By Exercise 1, we conclude, for all 4, j > 0,

tOI‘{E(KZ',]_,Hj) = TOI{%(Ki,ijl),

tOf{%(KFh Hj,) = Torf%(Ki,l, H;_y).
Therefore the theorem has been proved for n = 1. By Theorem 2.1.6, we have

TorZ | (M, N) = Tor(M, Hy) = ... = Tor{"(M, H,—1) = Torf'(K_1, H,—1),

torﬁ+1(M, N) = torf (Ko, N) = ... = torf (K, 1, N) = torf(K,,_1, H_,).
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Then
Torf,;(M,N) = Torf(K_i,H, 1),
torf(K_1,H,_1) = Torl (Ko, H,_2),
torf*(K,_o, Hy) = Torf(K,_1,H_1),
torf (K,—1, H_1) = tor’ ,(M,N).
This completes the proof. O

Remark 3.1.7. In view of the above theorem, we have

(1)

Tor(M,N) = H,(Pm ®r N) = H,(M ®g Pn),

where Py is a deleted projective resolution of a right R-module M and Py

is a deleted projective resolution of a left R-module N.

(2)

| Ext};(M, N) = H" (Hom (P, N)) = H" (Hom(M, En)),

where Py is a deleted projective resolution of a left R-module M and En

is a deleted injective resolution of a left R-module N.

Theorem 3.1.8. Let R be a commutative ring and M, N be R-modules. Then
(1) Torf (M, N) is an R-module,
(2) Extyp(M, N) is an R-module.

Proof. We only prove (1); the proof of the dual (2) is similar.

(1): Since Torf(M,N) = M ®r N is an R-module, we may assume that
n>1 Let - — Py 2, P 4, Py = M — 0 be a projective resolution of
M. For any n > 1, P, ®g N is an R-module. Also forn > 1,z € P,, y € N

and a € R,

(dn@D(a(z@y)) = (dn@1)((az) ©y) = dn(ar) @y = adn(x) @y

a(dn(z) @ y) = a(d, @ 1)(z @ y)
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which proves that d, ® 1 is an R-homomorphism. Therefore ker(d, ® 1) and
im(d,41 ® 1) are R-submodule of P, ® g N and hence

Torf}(M, N) = ker(dy, ® 1) /im(dy 11 @ 1)
is an R-module. O

Theorem 3.1.9. (1) If R is a ring, M is a right R-module, and N is a left
R-module, then
Tor® (M, N) = Torf™ (N, M)

for all n > 0, where R°P is the opposite ring of R.
(2) If R is a commutative ring and M and N are R-modules, then for all
n >0,

Tor® (M, N) = Tor® (N, M).

Proof. (1): Choose a deleted projective resolution Ppg of the right R-module
M. Then Py is also a deleted projective resolution of the left R°P-module M.

Now the morphism a : Py @ g N — N ®@ger Py given by

OénZPn®RN I N®ROPPn

T, b — bRz,

is an isomorphism of compelexes, because each «,, is an isomorphism of abelian
groups (its inverse is b ® x,, — 2, ® b). Since isomorphic complexes have the
same homology,

H,(Pm®gr N) = H, (N Qprer Pym).

Hence Tor? (M, N) = Tor®” (N, M) for all n. > 0.
(2): This is obvious from part (1). O

Theorem 3.1.10. Let R be a commutative ring and N an R-module, and {M;}
a family of R-modules. Then

(1) Tory(I1; My, N) = [1; Tory (M;, N),

(2) EBatp(L1; Mi, N) = [1; Betp(Mi, N),

(3) Extp(N,[1; M) = ]1; Extrp(N, M),



44 CHAPTER 3. TOR AND EXT

Proof. We shall prove (1); the proofs of (2) and (3) are similar.
(1): We use induction on n. The case n = 0 is Corollary 3.1.2. For each 1,

construct an exact sequence
00— K, — P, — M; — 0,

where P; is projective. There is an exact sequence

0— J[&i — [P — J[M:i —0,

in which [, P; being direct sum of projective modules is projective. There is a

commutative diagram with exact rows:

0 = Torf HR,N — Tor¥ HM“N HK )ON — ( ]_[P

e

0 =[] Torf(P, N) — ] Torf'(M;, N) — [[(Ki @ N) — [[(Pi® N)

Where the vertical arrows are the isomorphisms and the maps in the bottom row
are the maps of Corollary 3.1.5 at each coordinate. Now Torf'(][; P;, N) =0 =
1L Torf(P;, N), because LI, P; and each P; are projective; and so by Exercise
4, there exists an isomorphism Tor{z(]_[i M;,N) — 1], Tor{%(Mi, N) making
the augmented diagram commute. Thus the theorem is true for n = 1. Suppose
that n > 1 and that Torf (][, Li, N) = ][, Torf(L;, N) for every family of
R-modules {L;}. Then by Corollary 3.1.4, we have

Torf'y (] Mi, N) = Torf (] | K, N) ]_[ Torf (K;, N) 2 [ [ Torf,, (M;, N).
This completes induction. O

Theorem 3.1.11. Let N be a left R-module, and (M, f;;) be a direct system
of right R-modules. Then

Tor®(limM;, N) = lim Tor’ (M;, N).
— —
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Proof. We use induction on n. The case n = 0 is Corollary 3.1.2. For each i,

construct an exact sequence
00— K, — P, — M; — 0,
where P; is projective. There is an exact sequence
0—>li_rr>1Kl-—>lii)nPi—>lii)nMi — 0,

Now limP; is flat, for every projective module is flat, and a direct limit of flat

modules is flat. Therefore Exercise 2 implies that
Tor{' (limP;, N) = 0 = limTor{'(P;, N).
So, there is a commutative diagram with exact rows

0 = Tor{'(limP;, N) — Tor{'(limM;, N) — (imK;) ® N — (imP;) ® N

h g !
v
0 = limTor{*(P;, N) — limTor{'(M;, N) — lim(K; ® N) — lim(P; ® N)

where the vertical arrows are the isomorphisms and the maps in the bottom row
are the maps of Corollary 3.1.5 at each coordinate. By Exercise 4, there exists
an isomorphism Torf(li_n)lMi,N ) N h_n}lTorf(Mi,N ) making the augmented
diagram commute. Thus the theorem is true for n = 1. Suppose that n > 1
and that Torf(li_n}lLi, N) = lii>nTorf(Li, N) for every family of R-modules {L;}.

Then by Corollary 3.1.4, we have
Torff“(li_n}lMi, N) Torff(li_n)lKi, N) = h_n)lT0r§(Kh N) li_n)lToer(Mi, N).

This completes induction. O

3.2 Natural Isomorphisms

Various natural isomorphisms involving tensor and Hom can be extended to

isomorphisms involving Tor and Ext.
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Theorem 3.2.1. Let R and S be commutative rings, and let p : R — S be
a homomorphism. Let M be a finitely generated free R-module. If N is an
R-module, then

Homp(M,N)®pr S = Homg(M ®r S, N ®g S).

Proof. Exercise. O

Theorem 3.2.2. Let R and S be commutative rings.
(1) (Adjoint Isomorphism) Consider the situation (Lr, gRMg, Ng). Then

there is a natural isomorphism
w: Homg(M ®pg L, N) — Homp(L, Homs(M,N)),

defined for each f: M @r L — N by (p(f)l)(m) = f(m®1).
(2) Consider the situation (rRL, rRMg, Ng). If L is a finitely generated free

R-module, then there is a natural isomorphism
¢ : Homg(M,N) ®r L — Homg(Homg(L, M), N),

defined by o(f @ 1)(g) = f(9(1))-
(3) (Associativity) Consider the situation (Lr, Mg, sN). Then there is

a natural isomorphism
L®p(M®sN)— (L&r M)®s N,

defined by l®@ (m®@n) — (l®@ m) @ n.
(4) Consider the situation (rRL, rRMg, Ng). If L is a finitely generated free

R-module, then there is a natural isomorphism
¢ : Homg(L,M) ®s N — Hompg(L,M ®g N),

defined by o(f @n)(1) = f(I) @n.

Proof. Exercise. U
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Theorem 3.2.3. Let R and S be commutative rings, and let ¢ : R — S be a

flat homomorphism. If M is an R-module and N is an S-module, then
Torf (M, N) = Tor? (M ®g S, N).

Proof. Since Py ®p S is a deleted projective resolution for M ® g S, Theorem

3.2.2(3), implies that

Tor®(M,N) = H,(Pm®rS)=H,(Pm®g (S®sN))

>~ H,(Pm®gS)®s N) = Tor (M ®g S, N).
This completes the proof. O

Theorem 3.2.4. Let R and S be commutative rings, and let ¢ : R — S be a
flat homomorphism. If M and N are R-modules, then

S ®@r Torf(M,N) = Tor? (M ®r S, N ®g S).
Proof. By the above theorem, we have

S®@p Tor?(M,N) = S®pH,(Py®rN)=H,(Pyv®rN)®gS)

1

H,(Py ®r (N @r S)) = Tor (M, N @r S)

1%

TorS (M ®r S, N @r S)
This completes the proof. O

Theorem 3.2.5. Let R be a Noetherian ring and S be commutative rings and let
let ¢ : R — S be a flat homomorphism. If M is a finitely generated R-module
and N is a R-module, then

S ®@pr Exty(M,N) = Exts(S @ M, S @ N).
Proof. By Theorem 3.2.2, we have

S®REXt%(M7N) = S@RHn(HOm(PM,N))gH"(S(X)R(HOmR(PM,N)))

1%

H"(Homg(S ®r Pm, S @r N))

1

Ethf(S QR M,S@R N)

This completes the proof. O
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Theorem 3.2.6. Let R and S be commutative rings.

(1): Consider the situation (Lr, RMg, Es). If E is injective, then
Exty (L, Homs(M, E)) 22 Homg(Tork (L, M), E).

(2): Let R be a Noetherian ring. Consider the situation (Lr, RMg, Es). If
L is finitely generated and E is injective, then

Homg (Exth(L, M), E) = Tor®(Homg(M, E), L).
(8): Consider the situation (Lg, RMs, Fs). If F is flat, then
Tor® (L, M ®g F) = Tor%(L, M) @5 F.

(4): Let R be a Noetherian ring. Consider the situation (Lr, pMg, Fs). If
L is finitely generated and F is flat, then

Exty(L, M) ®s F = Exty (L, M ®g F).
Proof. (1): Tt follows from Theorem 3.2.2(1) that

Exts (L, Homg(M, E))

1%

H”HomR(PL, HomS(M, E))

1%

H"HomS(PL ®Xr M, E)

1%

HomS(Hn(PL ®R M),E)

1%

Homg(Tor?(L, M), E).

(2): Since L is finitely generated and R is Noetherian, there exists a free

resolution
¥: ...—F, —F,1—...—Fp—L—0

in which every Fj, is a finitely generated free R-module. It follows from Theorem

3.2.2(2) that

1%

Homg(Extk(L, M), E)) Homg(H"Hompg(Fr, M), E)

1

H,(Homg(Homg(F1, M), E))

1%

Hn(HOms(M, E) XRRr FL)

1%

Tor®(Homg (M, E), L).
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(3): It follows from Theorem 3.2.2(3) that

I

Torf (L, M ®s F) H,(Py ® (M ®5 F))

Il

H,(PL®r M) ®s F)

Il

Hn(PL Xr M) ®g F

1

Tor®(L, M) ®s F.

(4): Since L is finitely generated and R is Noetherian, there exists a free

resolution
¥F: ...—F,—F, 1 —...—Fp—L—0

in which every F,, is a finitely generated free R-module. It follows from Theorem

3.2.2(4) that

1

Ext}(L, M) ®g F H"(Hom(Fyr, M)) ®g F

1%

H"(Hom(FL, M) Xg F)

1%

H"(Hom(Fr, M ®g F))

1

Exty(L, M ®@g F).

3.3 Tor and Torsion

In this section, R denotes an integral domain, @ denotes its quotient field,

denotes the module K = Q/R.

Definition 3.3.1. The torsion submodule T'(M) of an R-module M is de-
fined by
T(M) = {x € M|rx =0 for some nonzero r € R}.

M is called torsion if T (M) = M and M is called torsion-free if T(M) = 0.

It is easy to check that M /T (M) is torsion-free and T'(M) is torsion.
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Remark 3.3.2. Were R not an integral domain, then T'(M) might not be a

submodule.

The torsion submodule actually defines a functor: if f : M — N, define

T(f) = flrn-

Proposition 3.3.3. If R is an integral domain with quotient field Q, then every
torsion-free R-module M can be embedded in a vector space over Q. If M is a
finitely generated torsion-free R-module, then M can be embedded in a finitely

generated free R-module.
Proof. Left to the reader as an exercise, or can be found in Rotman’s book. [

Lemma 3.3.4. (1) For every R-module M, we have Torl(K,T(M)) = T(M).
(2) For every R-module M, we have Tor® (K, M) =0 for alln > 2.
(8) If M is a torsion-free R-module, then Torf'(K, M) = 0.

Proof. (1) Exactness of 0 — R — @ — K — 0 gives exactness of

Torf(Q, T(M)) — Torl(K, T(M)) — R®r T(M) — Q ®g T(M).

Torf(Q, T(M)) = 0 since Q is a flat R-module, and Q ®p T(M) = 0 because
T(M) is torsion. It follows that Tor’(K,T(M)) = R@r T(M) = T(M).

(2) The sequence
Tor®(Q, M) — Tor®(K, M) — Tor® (R, M)

is exact. Since n > 2, we have n — 1 > 1 and so the outside terms are, because
Q and R are flat. Thus, exactness gives Tor (K, M) = 0.

(3) By Proposition 3.3.3 there is a vector space V over @) containing M as a
submodule. Since every vector space has a basis, V' is a direct sum of copies of
Q. We conclude that V is a flat R-module. Exactness of 0 — M — V —

V/M — 0 gives exactness of

Tory (K, V/M) — Tor{(K, M) — Tor{'(K,V).
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Now Tor¥(K,V/M) = 0, by part (2), and Torf'(K,V) = 0, because V is flat.
We conclude from exactness that Tor (K, M) = 0. O

The reason for the name Tor is:

Theorem 3.3.5. Tor{ (K, M) = T (M) for all R-modules M.

Proof. Exactness of 0 — T'(M) — M — M/T(M) — 0 gives exactness of

Torf (K, M/T(M)) — Torf(K,T(M)) — Tor®(K, M) — Torf'(K, M/T(M)).

The first term is 0 by Lemma 3.3.4 (2); the last term is 0 by Lemma 3.3.4 (3).
It follows that Tori' (K, M) = Torf (K, T(M)) = T(M). O

As an immediate consequence of Theorem 3.3.5, we have the following

Corollary 3.3.6. (1) For every module A, there is an exact sequence

0—TM)— M —Q®rM — K®rM — 0.

(2) A module M s torsion if and only if Q @r M = 0.
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Exercises

1. Consider the commutative diagram with exact rows and columns

0 0
l l
X 0 w
I l
0 Y r M’ N’ 0

2

0 L M 0
O Z L// M// N// 0
0 0 0

Prove that X &2Y and W = Z.

2. If a right R-module F is flat, prove that Tor®(F,N) = 0 for all n > 1
and every left R-module N. Conversely, if Tor{% (F,N) = 0 for every left
R-module N, prove that F' is flat.

The following exercise shows that we may use flat resolutions, not merely

projective resolutions, to compute Tor.

3. Let Fpp be a deleted flat resolution of a right R-module M and Fn a
deleted flat resolution of a left R-module N. If n > 0, prove that

H,(Fy ®g N) 2 Tor®(M,N) = H,(M @ FN).

4. Given a commutative diagram with exact rows,

0 . L . M - N
h g f
\

0 . L . M . N
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there exists a unique map h : L — L’ making the augmented diagram

commute. Moreover, h is an isomorphism if f and g are isomorphisms.

. Compute Tor’s(Z,, Zy).

. If I is a right ideal in a ring R and J a left ideal, then

(1) Torf¥(R/I,R/J) = (INJ)/1J,
(2) Tor®(R/I, R/J) = Torf ,(I,J) for all n > 2,

(3) Torf(R/I,R/J) 2 ker(I ® J +— I.J).

. Let M be an R-module and a € R. Show that

Tory' (R/(a), M) =g ;) {z € M|ax = 0}.

. Let R be an integral domain with quotient field @, and let K = Q/R.

Show that
Torf(K, —) =~ T(-).

. (Axioms for Tor). Let {T;, : RMod — zMod}, >0 be a sequence of

additive covariant functors. If,
(1) for every short exact sequence 0 — A — B — C — 0 of left
R-modules, there is a long exact sequence with natural connecting homo-

morphisms

— Tpa(€) 5 T(A) — T(B) — T(€) 2 Ty s (4) —,
(2) To(—) is naturally isomorphic to M ®p (—) for some right R-module
M, (3) T,,(P) = 0 for all projective left R-modules P and all n > 1,
show that 7},(—) is naturally isomorphic to TorZ(M, —) for all n > 0.

(Axioms for Covariant Ext). Let {F" : pMod — zMod},>¢ be a
sequence of additive covariant functors. If,

(1) for every short exact sequence 0 — A — B — C — 0 of left



54

11.

CHAPTER 3. TOR AND EXT

R-modules, there is a long exact sequence with natural connecting homo-

morphisms

On—1
—

— F"H(C) 25 F(A) — F™(B) — F7'(C) 2 P (4) —,

(2) there is a left R-module M such that F°(—) is naturally isomorphic
to Homp (M, —),
(3) F™(E) = 0 for all injective left R-modules E and all n > 1,

show that F™(—) is naturally isomorphic to Ext’s (M, —) for all n > 0.

(Axioms for Contravariant Ext). Let {G" : pMod — zMod},,>o be
a sequence of additive covariant functors. If,

(1) for every short exact sequence 0 — A — B — C — 0 of left
R-modules, there is a long exact sequence with natural connecting homo-

morphisms
— GMH(0) R GN(A) — FN(B) — F(C) P G (4) —,

(2) there is a left R-module M such that G°(—) is naturally isomorphic
to Hompg(—, M),

(3) G™(P) = 0 for all projective left R-modules P and all n > 1,

show that G™(—) is naturally isomorphic to Ext'y(—, M) for all n > 0.
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DIMENSIONS

4.1 Homological Dimensions
Definition 4.1.1. A projective resolution
O—P,—P, 41— —FPp—M-—70

of the R-module M is said to be of length n. The projective dimension of

R-module M is denoted by pdz M and is defined by

pdp M = min{n|M has a projective resolusion of length n}.

If M has no finite projective resolution, we set pdz M = oo.
Definition 4.1.2. An injective resolution

0— M —E"— ... —-E"' S E" -0

of the R-module M is said to be of length n. The injective dimension of

R-module M is denoted by idgM and is defined by
idgM = min{n|M has an injective resolusion of length n}.

If M has no finite injective resolution, we set idgM = oco.

95
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Definition 4.1.3. A flat resolution
0—F, —F, 41— - —F—M-—70

of the R-module M is said to be of length n. The flat dimension of R-module
M is denoted by fdgM and is defined by

fdgM = min{n|M has a flat resolusion of length n}.

If M has no finite flat resolution, we set fdgM = oo.

Ezample 4.1.4. (1) pd(M) = 0 if and only if M is projective,
(2) id(M) = 0 if and only if M is injective,
(3) fd(M) = 0 if and only if M is flat.

Theorem 4.1.5. The following are equivalent for a left R-module P:
(1) P is projective,
(2) Extyp(P,N) =0 for all modules N and alln > 1,
(8) Extn(P,N) =0 for all modules N.

Proof. (1) = (2) : Follows from Corollary 3.1.3(2).

(2) = (3) : Trivial.

3) = (1) : Let 0 — L — M — N — 0 be a short exact sequence
of R-modules. Then by Corollary 3.1.5(3), we have the following long exact
sequence

0 — Hom(P, L) — Hom(P, M) — Hom(P, N) — Exth(P,L) — -

—_——
0

Therefore P is projective. O

Lemma 4.1.6. A left R-module E is injective if and only if Ext}%(R/I, E)=0
for all left ideals I.

Proof. Use Baer criterion. O

As an immediate consequence of the above lemma, we have the following
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Theorem 4.1.7. The following are equivalent for a left R-module E:
(1) E is injective,
(2) Extp (M, E) =0 for all modules M and alln > 1,
(8) Exty(M, E) = 0 for all modules M,
(4) Exth(R/I,E) =0 for all left ideals I.

Lemma 4.1.8. A left R-module F is flat if and only if Tor®(R/I,F) =0 for
every finitely generated right ideal I.

Proof. Exercise. O
As an immediate consequence of the above lemma, we have the following

Theorem 4.1.9. The following are equivalent for a left R-module P:
(1) F is flat,
(2) Tor (M, F) =0 for all modules M and all n > 1,
(8) Tort'(M, F) =0 for all modules M,
(4) Torf(R/I,F) =0 for all finitely generated right ideals I.

The next theorems generalize the above theorems.

Theorem 4.1.10. (Projective Dimension Theorem) For a left R-module
M, the following conditions are equivalent:

(1) pdgM < mn,

(2) Exthy(M,N) =0 for all modules N and all k >n + 1,

(3) Exti™ (M, N) =0 for all modules N,

(4)If0 — K, 1 — P,y — -+ — P, — Py — M — 0 is an exact

sequence of R-modules, where P; is projective, then K, _1 is projective.

Proof. (1) == (2) : There is a projective resolution of M with P, = 0 for all
k > n+1. Therefore Hom(Py, N) = 0 for all k > n+ 1, and so Ext’ (M, N) = 0
for all k > n + 1.

(2) = (3) : Trivial.

(3) = (4) : We have 0 = Exts"™" (M, N) = Extp(K,_1, N) for all modules
N. Then K, _1 is projective by Theorem 4.1.5.
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(4) = (1) : Let
— PP, " P, e P — By — M — 0
be a projective resolution for M. If K,,_; = kerd, _1, then by hypothesis the

sequence
0—K, 1 —PFP,1——P—F—M-—0
is a projective resolution of M and hence pdpM < n. O

We next state without proof results for injective and flat dimensions of mod-

ules corresponding to the results obtained for projective dimensions.

Theorem 4.1.11. (Injective Dimension Theorem) For a left R-module N,
the following conditions are equivalent:

(1) idgN < n,

(2) Exthy(M,N) =0 for all modules M and all k >n +1,

(3) Extpt (M, N) = 0 for all modules M,

(4) Exty™ (R/I,N) =0 for all left ideals I,

(5) If0 — N — E° — ... — B! — V=l 5 0 is an exact

sequence of R-modules, where E' is injective, then V"~ is injective.

Theorem 4.1.12. (Flat Dimension Theorem) For a left R-module N, the
following conditions are equivalent:

(1) fdgN < n,

(2) Torf(M,N) =0 for all modules M and all k >n +1,

(3) Torf, ((M,N) =0 for all modules M,

(4) Torft,{(R/I,N) =0 for all finitely generated right ideals I,

(5) If0—Y,y —F,_1 — - — F — Fy — N — 0 is an ezact

sequence of R-modules, where F; is flat, then Y,_1 is flat.

Theorem 4.1.13. (1) Let M be an (R, S)-bimodule and E be an injective S-
module. Then

idRHOms(M, E) S deM
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In particular, if M is a flat R-module, then Homg(M, E) is an injective R-
module.
(2) Let R be a Noetherian ring. Let M be an (R, S)-bimodule and E be an

injective S-module. Then
de]¥OTTL5(]\47 E) S idRM.

In particular, if M is an injective R-module, then Homg(M, E) is a flat R-
module.

(8) Let M be an (R, S)-bimodule and F be a flat S-module. Then
fdp(M @5 F) < fdpM.

In particular, if M is a flat R-module, then M ®g F is a flat R-module.
(4) Let R be a Noetherian ring. Let M be an (R, S)-bimodule and F' be a
flat S-module. Then
idr(M ®s F) <idrM.

In particular, if M is an injective R-module, then M ®g F is an injective R-

module.

Proof. (1): Let n € N. If n < idgHomg(M, E), then there exists an R-module
L such that Ext’y(L, Homg (M, E)) # 0. Therefore Homg(Tor*(L, M), E) # 0,
by Theorem 3.2.6 (1) and hence Tor (L, M) # 0. It follows that n < fdzM.

(2): Let n € N. If n < fdgHomg (M, E), then there exists a finitely generated
R-module L such that Tor” (L, Homg (M, E)) # 0. Therefore Homg (Ext(L, M), E) #
0, by Theorem 3.2.6(2) and hence Exty (L, M) # 0. It follows that n <idpM.

(3): Let n € N. If n < fdgr(M ®g F'), then there exists an R-module L such
that Tor®(L, M ®g F) # 0. Therefore Tor’(L, M) # 0, by Theorem 3.2.6(3).
It follows that n < fdrM.

(4): Let n € N. If n <idgr(M ®g F), then there exists a finitely generated
R-module L such that Ext's(L, M) ®s F # 0. Therefore Ext; (L, M) # 0, by
Theorem 3.2.6(4). It follows that n <idrM. O
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Corollary 4.1.14. (1) Let M be an (R, S)-bimodule and E be a faithfully in-

jective S-module. Then
idgr Homg (M, E) = fdg M.

(2) Let R be a Noetherian ring. Let M be an (R, S)-bimodule and E be a
faithfully injective S-module. Then

deHomS(M, E) = idRM.
(8) Let M be an (R, S)-bimodule and F be a faithfully flat S-module. Then
de(M ®S F) = deM

(4) Let R be a Noetherian ring. Let M be an (R, S)-bimodule and F' be a
faithfully flat S-module. Then

idp(M ®g F) = idg M.

Proof. (1): Let n € N. If n < fdgM, then there exists an R-module L such that
Tor®(L, M) # 0. Since E is a faithfully injective R-module, Homg (Tor’ (L, M), E) #
0 and hence Ext's (L, Homg(M, E)) # 0, by Theorem 3.2.6(1). It follows that

n < idgHomg (M, E).

(2): Let n € N. If n < idgM, then, by Theorem 4.1.11, there exists
a finitely generated (cyclic) R-module L such that Extk(L, M) # 0. Since
E is a faithfully injective S-module, Homg(Extk(L, M), E) # 0 and hence
Tor® (L, Homg (M, E)) # 0, by Theorem 3.2.6(2). It follows that n < fdzgHomg (M, E).

(3): Let n € N. If n < fdgM, then there exists an R-module L such that
Torf(L, M) # 0. Since F is a faithfully flat S-module, Tor’ (L, M) @5 F # 0
and hence Tor?(L, M ®5 F) # 0, by Theorem 3.2.6(3). It follows that n <
fdp(M @3 F).

(4): Let n € N. If n < idgM, then, by Theorem 4.1.11, there exists a
finitely generated (cyclic) R-module L such that Extk (L, M) # 0. Since F is a
faithfully flat S-module, Extz (L, M)®g F # 0 and hence Ext (L, M ®s F) # 0,
by Theorem 3.2.6(4). It follows that n <idr(M ®g F). O
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Proposition 4.1.15. Let ¢ : R — S be a homomorphism of rings. Then

(1) If E is an injective S-module, then idrE < fdgS. Moreover if E is a
faithfully injective S-module, then the inequality is equality.

(2) If R is a Noetherian ring and E is an injective S-module, then fdrE <
idrS. Moreover if E is a faithfully injective S-module, then the inequality is
equality.

(8) If F is a flat S-module, then fdrF < fdrS. Moreover if F is a faithfully
flat S-module, then the inequality is equality.

(4) If R is a Noetherian ring and F is a flat S-module, then idgF < idgS.
Moreover if F is a faithfully flat S-module, then the inequality is equality

Proof. Take M = S in Theorem 4.1.13. O

Proposition 4.1.16. Let ¢ : R — S be a homomorphism of rings. Then

(1) If E is an injective R-module, then Homp(S, E) is an injective S-module.

(2) If S is a Noetherian ring and E is an injective R-module, then fdg Hompg(S, E) <
idrS. Moreover if E is a faithfully injective S-module, then the inequality is
equality.

(8) If F is a flat R-module, then S ®g F is a flat S-module.

(4) If S is a Noetherian ring and F is a flat R-module, then S ®g F is an

injective S-module.

Proof. Take R=S5, S =R and M = S in Theorem 4.1.13. O
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Theorem 4.1.17. Let R be a Noetherian ring and ¢ : R — S be a homomor-
phism, and let M be an S-module. Then

(1) If ids M < oo, then fdgM < idgS.

(2) If fdsM < oo, then idpM < idgS.

Proof. We shall prove (1); the proof of (2) is similar.
(1): We use induction on n = idgM. If n = 0, then M is an injective S-
module and the assertion follows from Proposition 4.1.13(2). Now let n > 1.

Consider the exact sequence of S-modules
00— M —F—L—0,

where E is an injective S-module. Since M is not an injective S-module, we
have idgL = idgM — 1. Therefore fdgL < idgrS, by induction hypothesis. It
suffices to show that if idgS < m for some m € N, then fdgr < m. Consider the

following long exact sequence

. — Torf (L, N) — Tor? (M, N) — Torf (E,N) — Tor}(L,N) — ....

Since fdrL < idrS < m and fdrF < idrS < m (by Proposition 4.1.5(2)), we

have

Torf ., (L,N) =0 = Torl (E,N).

Therefore Torﬁ(M, N) =0 and hence fdgM < m. Thus fdgM < idgS and the

proof is complete. O

Corollary 4.1.18. Let R be a Noetherian ring and ¢ : R — S be a homomor-
phism of rings. Then the following are equivalent.

(1) idpS < oo,

(2) if M is an S-module, then ids M < oo implies that fdrM < oo,

(8) if M is an S-module, then fdgM < oo implies that idpM < oo,

(4) there is a faithfully injective S-module E such that fdrE < oo,

(5) there is a faithfully flat S-module F such that idgF' < co.
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Proof. (1) = (2) : Follows from Theorem 4.1.17(1).

(1) = (3) : Follows from Theorem 4.1.17(2).

(4) = (1) : Follows from Proposition 4.1.15(2).

(5) = (1) : Follows from Proposition 4.1.15(4).

(2) = (4) and (3) = (5) are trivial. O

Definition 4.1.19. Let R be a ring. R is Gorenstein if idgR < oc.

Corollary 4.1.20. Let M be module over a Noetherian Gorenstein ring R.
Then idpM < oo if and only if fdgM < oco.

Proof. Follows easily from the above theorem. O

4.2 Change of Rings Theorems

Theorem 4.2.1. (General Change of Rings Theorem). Let ¢ : R — S

be a ring homomorphism, and let M be an S-module. Then
pdpM < pdgM + pdypS.
Proof. If pdgM = oo, there is nothing to prove, so we assume pdgM =n < c©
and proceed by induction on n. If n = 0, then M is a projective S-module; thus
there exists an S-module N such that M & N =[] S. Exercise 1(i) applies to
give
pdpM < sup{pdpM,pdpN} = pdp(M & N) = PdR(H S) = pdgS.
Suppose n > 0. There is an exact sequence of S-modules
0—K—F—M—0,
where F is a free S-module. By Exercise 5(iii)
pdpM < max{l + pdrK,pdrF} = max{l + pdz K,pdpS}.

Since M is not a projective S-module, Exercise 2(i) gives pdg KK = n—1, so that
induction gives
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Combining these inequalities:

pdpM < max{l+pdgK +pdpS,pdpS}t < max{n+pdpS,pdrS} = n+pdysS.
O

Proposition 4.2.2. Let R be a commutative ring and a € R a non-zero divisor

element which is not a unit. Then

pdgpR/(a) = 1.

Proof. From the exact sequence 0 — R -*» R — R/(a) — 0 an Exercise
3(iii), we deduce that pdrR/(a) < 1. If pdpR/(a) = 0, then there exists an
R-module N such that R/(a) ® N = [[ R. Then since a is not a unit,

a€Z(R/(a)®N)=Z([[R) = Z(R),

which is a contradiction. Thus pdzR/(a) = 1 and the proof is complete.

Lemma 4.2.3. Let I be an ideal of a commutative ring R.
(1) If F is a free R-module, then F/IF is a free R/I-module,
(2) If P is a projective R-module, then P/IP is a projective R/I-module.

Proof. The proof is left to the reader. O
The converse of Lemma 4.2.3(1) is:

Lemma 4.2.4. Let R be a commutative Noetherian ring with mazimal ideal m,
and let M be a finitely generated R-module. Let a € m be a non-zero divisor
element on both R and M. If M/aM is a free R/(a)-module, then M is a free
R-module.

Proof. If M/aM = 0 then M = 0 by Nakayama’s lemma. So, suppose M/aM #
0. Let {x1 + aM,z9 + abM,...,z, + aM} be a basis for free R/(a)-module
M/aM. We claim that {x1,z9,...,2,} is a basis for R-module M. Since
Rzi + Rxo + ...+ Rz, + aM = M, it follows from Nakayama’s lemma that
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Rz 4+ Rxo+ ...+ Rz, = M. To show that x; are linearly independent, suppose
that Y0 riz; = 0. Then > 1, (r; + (a))(x; + aM) = 0. Since x; + aM are
linearly independent over R/(a), we have r; € aR for all i. As a is non-zero
divisor on R and M we can divide to get a well-defined quotient r;/a € R
such that >°"" ,(r;/a)xz; = 0 in M. Continuing this process, we get a sequence
of elements r;,7;/a,7;/a?,.... Now consider the following ascending chain of
ideals of R.

(rifa) C (ri/a®) C ....

Since R is Noetherian there exists k € N such that (r;/a*) = (r;/a**!). There-
fore, there exists r € R such that r; = r;ra. Therefore r; = 0, which completes

the proof of this lemma. O

Theorem 4.2.5. (First Change of Rings Theorem). Let a be a central
non-zero divisor in a ring R. If M # 0 is a R/(a)-module with pdg M finite,
then

pdpM =1+ pdg, M.

Proof. We proceed by induction on n = pdg/)M. As a is a regular element
and aM = 0, it follows that M cannot be a projective R-module, so pdpM >
1. Let n = 0. Then by Theorem 4.2.1 and Proposition 4.2.2 we see that
pdpM =pdgR/(a) =1. If n =1, then pdz M < 2 and strict inequality means
pdpM < 1. We have already shown pdpM # 0; we claim that pdp M # 1.

Otherwise there is an exact sequence of R-modules
00— K-—F—M—0,

where F' is a free R-module and K is a projective R-module. We have an exact

sequence of R/(a)-modules
0 — Tor®(R/(a), M) — K/aK — F/aF — M/aM — 0.

Since pdg )M =1 < 2, Torf(R/(a), M) is a projective R/(a)-module.
But
TOT{%(R/(G),M)gR/(a){x € Mlax =0} = M,
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o pdp/qyM = 0, which is a contradiction. Now, let n > 2. Consider an

exact sequence of R/(a)-modules
00— Ky —F —M—0,

where [ is a free R2/(a)-module. Since pdg,,)M # 0, it follows from Lemma
4.2.3(2) and Exercise 2(i) that pdzyM =1+ pdz K7 and hence

pdpM =1+ pdpK; =1+ 1+ pdg/q) K1 =1+ pdg, M.

Theorem 4.2.6. (Second Change of Rings Theorem). Let a be a central
non-zero diwvisor in a ring R. If M is an R-module and a is a non-zero divisor

on M, then

pdrM = pdp)(M/aM).

Proof. If pdp M = 00, there is nothing to prove, so we assume n = pdpM < 00
and proceed by induction on n. If pdgM = 0, then M/aM is a projective
R/(a)-module, so the result is true in the case n = 0. Now suppose n > 1 and
consider the the exact sequence of R-modules 0 — K — F — M — 0,
where F is free. Since Tori'(R/(a), M) = {x € M|az = 0} = 0, we have the

following exact sequence of R/(a)-modules.
0— K/aK — F/aF — M/aM — 0.

pdpK = pdpM — 1, by Exercise 2(i). We have a ¢ Z(K), since Z(K) C
Z(F) = Z(R). So by the inductive hypothesis pdgK > pdg/(q)(K/aK).
If pdg/q)(M/aM) = 0, we are done. Otherwise, pdg () (M/aM) = 1 +
pdp/(q)(K/aK) and therefore,

de/(a)(M/aM) =1 +de/(a)(K/CI,K) <1 +deK = deM
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If R is a ring, not necessarily commutative, then R[z] denotes the polynomial
ring in which the indeterminate & commutes with every element in R (thus, x

lies in the center of R[z]). If M is a left R-module, write
Mlz] = R|z] ®r M.
Corollary 4.2.7. For every left R-module M,
pd g M(z] = pdpM.

Proof. Let pdpM < n, then there is a projective resolution of R-modules

0O—P,—P,1—...— FPh—M—0.

Since R[] is a flat (free) R-module, there is an exact sequence of R[z]-modules
0 — P,lz] — Py_1fz] — ... — By[z] — M[z] — 0,

where the module P;[z] is projective. Therefore pdg,;M[z] < n and hence
pd g M[z] < pdgM. On the other hand, the Second Change of Ring Theorem
implies that

Mz
pdpM = pd & ( 1z

— < .
~ED] J?M[J?} ) = de[z]M[x]

O

Lemma 4.2.8. Let R be a commutative Noetherian local Ting, and let M be a
finitely generated R-module. Then the following are equivalent.

(1) M is free,

(2) M is projective,

(8) M is flat.

Proof. The proof is left to the reader. O

Theorem 4.2.9. (Third Change of Rings Theorem). Let (R,m) be a
commutative Noetherian local ring, and let M be a finitely generated R-module.

If a € m is a non-zero divisor on both R and M, then

pdgrM = pdg, ) (M/aM).
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Proof. We know pdpM > pdp,,)(M/aM) by the second Change of Rings
Theorem, and we shall prove pdgM < pdg, o) (M/aM). If pdg,q)(M/aM) =
oo, there is nothing to prove, so we assume n = pdg ) (M/aM) < oo and
proceed by induction on n. If n = 0 then M/aM is projective, hence a free
R/(a)-module since R/(a) is local. It follows from the previous Lemma that M
is a free R-module, so pdpM = 0. Now suppose n > 1 and consider the the
exact sequence of R-modules 0 — K — F — M — 0, where F' is free.
Since Torf(R/(a), M) = {x € Ml|az = 0} = 0, we have the following exact

sequence of R/(a)-modules.
0 — K/aK — F/aF — M/aM — 0.

By the Second Change of Ring pdgM > pdg/,)(M/aM) > 1. Therefore, by

Exercise 2(i) and induction hypothesis we have
deM =1 + deK =1 + de/(a)K/aK = de/(a)M/aM,
Which completes the proof. O

Corollary 4.2.10. Let (R, m) be a commutative Noetherian local ring, and let
M be a finitely generated R-module with pdrpM < oco. If a € m is a non-zero
divisor on both R and M, then

1+ pdg/yM = pdg; (o) (M/aM).

Proof. Combine the first and third Change of Rings Theorems. O

4.3 Global and Weak Dimension

Theorem 4.3.1. (Global Dimension Theorem) The following numbers are
the same for any ring R.

(1) a = sup{idg M| M € grMod},

(2) b = sup{pdy M|M € pMod},

(8) ¢ = sup{pdzR/I|I is a left ideal of R},

(4) d = sup{d| Ext},(M,N) # 0 for some left modules M, N}.
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Proof. First of all, we show that b = d. Suppose

B {pdxM|M € rMod},

D

{d|Ext% (M, N) # 0 for some left modules M, N}.

If t € B, then there exists M € rpMod such that pdz M = t. By Theorem 4.1.10,
Ext’ (M, N) # 0 for some N € gkMod. Therefore t € D,a nd hence B C D.
Thus b < d. Now, let t € D. Then there exist M, N € gMod such that Hence
Ext% (M, N) # 0. Therefore pdzM > t. It follows that b > t. Since ¢ was an
arbitrary element of D, we have b > d. Thus b = d. A similar argument shows
that a = d. It is enough to show that a < ¢. Suppose N € pMod and consider

the following exact sequence

0—N-—EFE —wF'— . —E“!'—M-—0,

where E? is injective. Then Theorem 4.1.11 implies that
0= Ext% ™ (R/I,N) = Exty(R/I, M),

for any left ideal I of R. This implies M is injective, and hence idgN < c.

Therefore a < ¢ as required. O

Definition 4.3.2. The common numbers in the above theorem is called the

left global dimension of R and is denoted ¢.g.dimR.

We can also similarly define right global dimension r.g.dimR of R. The two

global dimensions of R are not always equal.

Theorem 4.3.3. (Weak Dimension Theorem) The following numbers are
the same for any ring R.

(1) a = sup{fdgM|M € rMod},

(2) b=sup{fdrR/I|I is a left ideal of R},

(8) ¢ = sup{fdg N|N € Modr},

(4) d =sup{fdgR/I|I is a right ideal of R},

(5) e = sup{d| Tor (M, N) # 0 for some right modules M,N}.
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Definition 4.3.4. The common numbers in the above theorem is called the

weak dimension of R and is denoted w.dimR.

Lemma 4.3.5. If M is an R[z]|-module, there is an exact sequence or R[z]-
modules

0 — Mlz] — M[z] — M — 0.
Theorem 4.3.6. If R is any ring, then
L.g.dimR[x] = {.g.dimR + 1.

Proof. Tf £.g.dimR = oo, then Corollary 4.2.7 implies that £.g.dimR[x] = oo.
Now suppose n = £.g.dimR < co. Let M be an R-module such that pdzM = n.
We can view M as an R-module by setting (ap+a1z+. .. +apz™)m = agm. It is
a consequence of the first Change of Rings Theorem that pd g, M = pdpM +1.
Hence (.g.dimR[z] > n + 1. Now let M be an R[z]-module and consider the

following exact sequence of R[z]-modules.
0 — R[z]®r M — R[z]@pg M — M — 0.
Then by Exercise 5 and Corollary 4.2.7
pdrM < sup{l + pdpp M[z], pdpM(z]} =1+ pdpgM <n+1.
Hence £.g.dimR[z] < n+ 1 as required. O
Corollary 4.3.7. (Hilbert’s Theorem on Syzygies). If k is a field, then
Lgdimk[zy, 2o ..., 2,] = n.

Proof. Follows immediately from the above theorem. O

Exercises

1. Let {M;};er be a family of R-modules. Show that
(i) pdg(I1,c; M;) = sup{pdxrM;|i € I},

(11) idR(HieI Mi) = sup{idRMi|i S I}
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22 ) 0 — L — M — N — 0 is an exact sequence with M is
projective, prove that either all three modules are projective or pdp N =

1+ pdgL.

(ii)) f0 — L — M — N — 0 is an exact sequence with M is
injective, prove that either all three modules are injective or idgL = 1 +

idgN.
3. Let 0 — L — M — N — 0 be an exact sequence of R-modules.
Show that
(i) if pdgL < pdp M, then pdzg N = pdp M,
(ii) if pdgL > pdp M, then pdzN =1+ pdypL,
(iii) if pdgL = pdg M, then pdzN <1+ pdiL.
4. Let 0 — L — M — N — 0 be an exact sequence of R-modules.
Show that
(i) pdgM < max{pdrL,pdxr N} with equality unless pdzN =1+ pdyL,
(i) idpM < max{idgL,idgN} with equality unless idgN =1+ idgL,
(iii) fdgM < max{fdrL,fdrN} with equality unless fdgN =1 + fdgL.
5 Let 0 — L — M — N — 0 be an exact sequence of R-modules. If

any two of these modules have finite projective dimension, show that the

third does also and

(i) pdgL < max{pdzM,pdrN},

(ii) pdpM < max{l + pdrL,pdrN},

(iii) pdg N < max{1 + pdzxL,pdzM}.

Furthermore, if pdy M =1 and pdg N > 2, prove that pdp N = 1+pdyL.
6. Let 0 — L — M — N — 0 be an exact sequence of R-modules. If

any two of these modules have finite injective dimension, show that the

third does also. Furthermore, prove that
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(i) idgrL < max{1 +idgM,1 +idg N},
(ll) idRM < max{idRL, 1+ idRN},

. Let R be a commutative Noetherian ring and let n be a non-negative

integer. Show that the following are equivalent.

i) pdpM < n for all R-modules M,

ii) idgM < n for all R-modules M,

ili) pdgM < n for all finitely generated R-modules M,
iv) pdgM < n for all cyclic R-modules M,

v) idgM < n for all finitely generated R-modules M,

(
(
(
(
(
(

vi) idgM < n for all cyclic R-modules M.

. (Change of Rings Theorems for Injective Dimension).

(i) (First Change of Rings Theorem). Let M # 0 be an R/(a)-module
with idg /()M finite. Then

idpM =1+ idR/(a)M.

(ii) (Second Change of Rings Theorem). Let M be an R-module. If
a is a non-zero divisor on M, then M is injective (in the case M/aM = 0)
or

idpM > 1+ idR/(a)(M/aM).

(iii) (Third Change of Rings Theorem). Let (R, m) be a commutative
Noetherian local ring, and let M be a finitely generated R-module. If

a € m is a non-zero divisor on M, then

idRM = 1dR(M/aM) =1 +idR/(a)(M/aM).
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