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CHAPTER 1

Linear and multilinear algebra

In this chapter we will study the linear algebra required in representation theory. Some of
this will be familiar but there will also be new material, especially that on ‘multilinear’ algebra.

1.1. Basic linear algebra

Throughout the remainder of these notes k will denote a field, i.e., a commutative ring with
unity 1 in which every non-zero element has an inverse. Most of the time in representation
theory we will work with the field of complex numbers C and occasionally the field of real
numbers R. However, a lot of what we discuss will work over more general fields, including
those of finite characteristic such as Fp = Z/p for a prime p. Here, the characteristic of the
field k is defined to be the smallest natural number p ∈ N such that

p1 = 1 + · · ·+ 1︸ ︷︷ ︸
p summands

= 0,

provided such a number exists, in which case k is said to have finite or positive characteristic,
otherwise k is said to have characteristic 0. When the characteristic of k is finite it is actually
a prime number.

1.1.1. Bases, linear transformations and matrices. Let V be a finite dimensional
vector space over k, i.e., a k-vector space. Recall that a basis for V is a linearly independent
spanning set for V . The dimension of V (over k) is the number of elements in any basis, and
is denoted dimk V . We will often view k itself as a 1-dimensional k-vector space with basis {1}
or indeed any set {x} with x 6= 0.

Given two k-vector spaces V, W , a linear transformation (or linear mapping) from V to W

is a function ϕ : V −→ W such that

ϕ(v1 + v2) = ϕ(v1) + ϕ(v2) (v1, v2, v ∈ V ),

ϕ(tv) = tϕ(v) (t ∈ k).

The set of all linear transformations V −→ W will be denoted Homk(V, W ). This is a k-vector
space with the operations of addition and scalar multiplication given by

(ϕ + θ)(u) = ϕ(u) + θ(u) (ϕ, θ ∈ Homk(V, W )),

(tϕ)(u) = t(ϕ(u)) = ϕ(tu) (t ∈ k).

An important property of a basis is the following extension property.

Proposition 1.1. Let V, W be k-vector spaces with V finite dimensional, and {v1, . . . , vm}
a basis for V where m = dimk V . Given a function ϕ : {v1, . . . , vm} −→ W , there is a unique
linear transformation ϕ̃ : V −→ W such that

ϕ̃(vj) = ϕ(vj) (1 6 j 6 m).

1



2 1. LINEAR AND MULTILINEAR ALGEBRA

We can express this with the aid of the commutative diagram

{v1, . . . , vm}

ϕ
%%LLLLLLLLLL

inclusion // V

∃! ϕ̃ÄÄ
W

in which the dotted arrow is supposed to indicate a (unique) solution to the problem of filling
in the diagram

{v1, . . . , vm}

ϕ
%%LLLLLLLLLL

inclusion // V

W

with a linear transformation so that composing the functions corresponding to the horizontal
and right hand sides agrees with the functions corresponding to left hand side.

Proof. The formula for ϕ̃ is

ϕ̃




m∑

j=1

λjvj


 =

m∑

j=1

λjϕ(vj). ¤

The linear transformation ϕ̃ is known as the linear extension of ϕ and is often just denoted
by ϕ.

Let V, W be finite dimensional k-vector spaces with bases {v1, . . . , vm} and {w1, . . . , wn},
where m = dimk V and n = dimkW . By Proposition 1.1, for 1 6 i 6 m and 1 6 j 6 n, the
function

ϕij : {v1, . . . , vm} −→ W ; ϕij(vk) = δikwj (1 6 k 6 m)

has a unique extension to a linear transformation ϕij : V −→ W .

Proposition 1.2. The collection of functions ϕij : V −→ W (1 6 i 6 m, 1 6 j 6 n) forms
a basis for Homk(V, W ). Hence

dimkHomk(V,W ) = dimk V dimkW = mn.

A particular and important case of this is the dual space of V ,

V ∗ = Hom(V, k).

Notice that dimk V ∗ = dimk V . Given any basis {v1, . . . , vm} of V , define elements v∗i ∈ V ∗

(i = 1, . . . , m) by
v∗i (vk) = δik,

where δij is the Kronecker δ-function for which

δij =

{
1 if i = j,

0 otherwise.

Then the set of functions {v∗1, . . . , v∗m} forms a basis of V ∗. There is an associated isomorphism
V −→ V ∗ under which

vj ←→ v∗j .

If we set V ∗∗ = (V ∗)∗, the double dual of V , then there is an isomorphism V ∗ −→ V ∗∗ under
which

v∗j ←→ (v∗j )
∗.
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Here we use the fact that the v∗j form a basis for V ∗. Composing these two isomorphisms we
obtain a third V −→ V ∗∗ given by

vj ←→ (v∗j )
∗.

In fact, this does not depend on the basis of V used, although the factors do! This is sometimes
called the canonical isomorphism V −→ V ∗∗.

The set of all (k-)endomorphisms of V is

Endk(V ) = Homk(V, V ).

This is a ring (actually a k-algebra, and also non-commutative if dimk V > 1) with addition as
above, and composition of functions as its multiplication. There is a ring monomorphism

k −→ Endk(V ); t 7−→ t IdV ,

which embeds k into Endk(V ) as the subring of scalars. We also have

dimk Endk(V ) = (dimk V )2.

Let GLk(V ) denote the group of all invertible k-linear transformations V −→ V , i.e., the
group of units in Endk(V ). This is usually called the general linear group of V or the group of
linear automorphisms of V and denoted GLk(V ) or Autk(V ).

Now let v = {v1, . . . , vm} and w = {w1, . . . , wn} be bases for V and W . Then given a linear
transformation ϕ : V −→ W we may define the matrix of ϕ with respect to the bases v and w
to be the n×m matrix with coefficients in k,

w[ϕ]v = [aij ],

where

ϕ(vj) =
n∑

k=1

akjwk.

Now suppose we have a second pair of bases for V and W , say v′ = {v′1, . . . , v′m} and w′ =
{w′1, . . . , w′n}. Then we can write

v′j =
m∑

r=1

prjvr, w′j =
n∑

s=1

qsjws,

for some pij , qij ∈ k. If we form the m×m and n× n matrices P = [pij ] and Q = [qij ], then we
have the following standard result.

Proposition 1.3. The matrices w[ϕ]v and w′ [ϕ]v′ are related by the formulæ

w′ [ϕ]v′ = Qw[ϕ]vP−1 = Q[aij ]P−1.

In particular, if W = V , w = v and w′ = v′, then

v′ [ϕ]v′ = Pv[ϕ]vP−1 = P [aij ]P−1.

1.1.2. Quotients and complements. Let W ⊆ V be a vector subspace. Then we define
the quotient space V/W to be the set of equivalence classes under the equivalence relation ∼ on
V defined by

u ∼ v if and only if v − u ∈ W.

We denote the class of v by v + W . This set V/W becomes a vector space with operations

(u + W ) + (v + W ) = (u + v) + W,

λ(v + W ) = (λv) + W

and zero element 0 + W . There is a linear transformation, usually called the quotient map
q : V −→ V/W , defined by

q(v) = v + W.
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Then q is surjective, has kernel ker q = W and has the following universal property.

Theorem 1.4. Let f : V −→ U be a linear transformation with W ⊆ ker f . Then there is a
unique linear transformation f : V/W −→ U for which f = f ◦ q. This can be expressed in the
diagram

V

f ÂÂ?
??

??
??

?
q // V/W

∃! f||
U

in which all the sides represent linear transformations.

Proof. We define f by
f(v + W ) = f(v),

which makes sense since if v′ ∼ v, then v′ − v ∈ W , hence

f(v′) = f((v′ − v) + v) = f(v′ − v) + f(v) = f(v).

The uniqueness follows from the fact that q is surjective. ¤

Notice also that

(1.1) dimk V/W = dimk V − dimkW.

A linear complement (in V ) of a subspace W ⊆ V is a subspace W ′ ⊆ V such that the
restriction q|W ′ : W ′ −→ V/W is a linear isomorphism. The next result sums up properties of
linear complements and we leave the proofs as exercises.

Theorem 1.5. Let W ⊆ V and W ′ ⊆ V be vector subspaces of the k-vector space V with
dimk V = n. Then the following conditions are equivalent.

(a) W ′ is a linear complement of W in V .
(b) Let {w1, . . . , wr} be a basis for W , and {wr+1, . . . , wn} a basis for W ′. Then

{w1, . . . , wn} = {w1, . . . , wr} ∪ {wr+1, . . . , wn}
is a basis for V .

(c) Every v ∈ V has a unique expression of the form

v = v1 + v2

for some elements v1 ∈ W , v2 ∈ W ′. In particular, W ∩W ′ = {0}.
(d) Every linear transformation h : W ′ −→ U has a unique extension to a linear transfor-

mation H : V −→ U with W ⊆ kerH.
(e) W is a linear complement of W ′ in V .
(f) There is a linear isomorphism J : V

∼=−→ W × W ′ for which imJ|W = W × {0} and
imJ|W ′ = {0} ×W ′.

(g) There are unique linear transformations p : V −→ V and p′ : V −→ V having images
im p = W , im p′ = W ′ and which satisfy

p2 = p ◦ p = p, p′2 = p′ ◦ p′ = p′, IdV = p + p′.

We often write V = W ⊕W ′ whenever W ′ is a linear complement of W . The maps p, p′ of
Theorem 1.5(g) are often called the (linear) projections onto W and W ′. This can be extended
to the situation where there are r subspaces V1, . . . , Vr ⊆ V for which

V = V1 + · · ·+ Vr = {
r∑

j=1

vj : vj ∈ Vj},

and we inductively have that Vk is a linear complement of (V1 ⊕ · · · ⊕ Vk−1) in (V1 + · · ·+ Vk).
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A linear complement for a subspace W ⊆ V always exists since we can extend a basis
{w1, . . . , wr} of W to a basis {w1, . . . , wr, wr+1, . . . , wn} for V and then take W ′ to be the
subspace spanned by {wr+1, . . . , wn}. Theorem 1.5(b) implies that W ′ is a linear complement.

1.2. Class functions and the Cayley-Hamilton Theorem

In this section k can be any field. Let A = [aij ] be an n× n matrix over k.

Definition 1.6. The characteristic polynomial of A is the polynomial (in the variable X)

charA(X) = det(XIn − [aij ]) =
n∑

k=0

ck(A)Xk ∈ k[X],

where In is the n× n identity matrix.

Notice that cn(A) = 1, so this polynomial in X is monic and has degree n. The coefficients
ck(A) ∈ k are polynomial functions of the entries aij . The following is an important result
about the characteristic polynomial.

Theorem 1.7 (Cayley-Hamilton Theorem: matrix version). The matrix A satisfies
the polynomial identity

charA(A) =
n∑

k=0

ck(A)Ak = 0.

Example 1.8. Let

A =
[
0 −1
1 0

]
∈ R[X].

Then

charA(X) = det
[

X 1
−1 X

]
= X2 + 1.

By calculation we find that A2 + I2 = O2 as claimed.

Lemma 1.9. Let A = [aij ] and P be an n × n matrix with coefficients in k. Then if P is
invertible,

charPAP−1(X) = charA(X).

Thus each of the coefficients ck(A) (0 6 k 6 n) satisfies

ck(PAP−1) = ck(A).

Proof. We have

charPAP−1(X) = det(XIn − PAP−1)

= det(P (XIn)P−1 − PAP−1)

= det(P (XIn −A)P−1)

= det P det(XIn −A) detP−1

= det P charA(X)(detP )−1

= charA(X).

Comparing coefficients we obtain the result. ¤

This result shows that as functions of A (and hence of the aij), the coefficients ck(A) are
invariant or class functions in the sense that they are invariant under conjugation,

cr(PAP−1) = cr(A).
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Recall that for an n× n matrix A = [aij ], the trace of A, tr A ∈ k, is defined by

trA =
n∑

j=1

ajj .

Proposition 1.10. For any n× n matrix over k we have

cn−1(A) = − trA and cn(A) = (−1)n det A.

Proof. The coefficient of Xn−1 in det(XIn − [aij ]) is

−
n∑

r=1

arr = − tr[aij ] = − trA,

giving the formula for cn−1(A). Putting X = 0 in det(XIn − [aij ]) gives

cn(A) = det([−aij ]) = (−1)n det[aij ] = (−1)n det A. ¤

Now let ϕ : V −→ V be a linear transformation on a finite dimensional k-vector space with
a basis v = {v1, . . . , vn}. Consider the matrix of ϕ relative to v,

[ϕ]v = [aij ],

where

ϕ(vj) =
n∑

r=1

arjvr.

Then the trace of ϕ with respect to the basis v is

trv ϕ = tr[ϕ]v.

If we change to a second basis w say, there is an invertible n× n matrix P = [pij ] such that

wj =
n∑

r=1

prjvr,

and then

[ϕ]w = P [ϕ]vP−1.

Hence,

trw ϕ = tr
(
P [ϕ]vP−1

)
= trv ϕ.

Thus we see that the quantity

trϕ = trv ϕ

only depends on ϕ, not the basis v. We call this the trace of ϕ. Similarly, we can define
detϕ = det A.

More generally, we can consider the polynomial

charϕ(X) = char[ϕ]v(X)

which by Lemma 1.9 is independent of the basis v. Thus all of the coefficients ck(A) are
functions of ϕ and do not depend on the basis used, so we may write ck(ϕ) in place of ck(A).
In particular, an alternative way to define trϕ and detϕ is by setting

trϕ = −cn−1(ϕ) = trA, detϕ = (−1)nc0(ϕ) = detA.

We also call charϕ(X) the characteristic polynomial of ϕ. The following is a formulation of the
Cayley-Hamilton Theorem for a linear transformation.
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Theorem 1.11 (Cayley-Hamilton Theorem: linear transformation version).
If ϕ : V −→ V is a k-linear transformation on the finite dimensional k-vector space V , then ϕ

satisfies the polynomial identity
charϕ(ϕ) = 0.

More explicitly, if

charϕ(X) =
n∑

r=0

cr(ϕ)Xr,

then writing ϕ0 = IdV , we have
n∑

r=0

cr(ϕ)ϕr = 0.

There is an important connection between class functions of matrices (such as the trace
and determinant) and eigenvalues. Recall that if k is an algebraically closed field then any
non-constant monic polynomial with coefficients in k factors into d linear factors over k, where
d is the degree of the polynomial.

Proposition 1.12. Let k be an algebraically closed field and let A be an n× n matrix with
entries in k. Then the eigenvalues of A in k are the roots of the characteristic polynomial
charA(X) in k. In particular, A has at most n distinct eigenvalues in k.

On factoring charA(X) into linear factors over k we may find some repeated linear factors
corresponding to ‘repeated’ or ‘multiple’ roots. If a linear factor (X − λ) appears to degree m

say, we say that λ is an eigenvalue of multiplicity m. If every eigenvalue of A has multiplicity 1,
then A is diagonalisable in the sense that there is an invertible matrix P satisfying

PAP−1 = diag(λ1, . . . , λn),

the diagonal matrix with the n distinct diagonal entries λk down the leading diagonal. More
generally, let

(1.2) charA(X) = (X − λ1) · · · (X − λn),

where now we allow some of the λj to be repeated. Then we can describe trA and detA in
terms of the eigenvalues λj .

Proposition 1.13. The following identities hold:

trA =
n∑

j=1

λj = λ1 + · · ·+ λn, detA = λ1 · · ·λn.

Proof. These can be verified by considering the degree (n − 1) and constant terms in
Equation (1.2) and using Proposition 1.10. ¤

Remark 1.14. More generally, the coefficient (−1)n−kck(A) can be expressed as the k-th
elementary symmetric function in λ1, . . . , λn.

We can also apply the above discussion to a linear transformation ϕ : V −→ V , where an
eigenvector for the eigenvalue λ ∈ C is a non-zero vector v ∈ V satisfying ϕ(v) = λv.

The characteristic polynomial may not be the polynomial of smallest degree satisfied by a
matrix or a linear transformation. By definition, a minimal polynomial of an n×n matrix A or
linear transformation ϕ : V −→ V is a (non-zero) monic polynomial f(X) of smallest possible
degree for which f(A) = 0 or f(ϕ) = 0.

Lemma 1.15. For an n× n matrix A or a linear transformation ϕ : V −→ V , let f(X) be a
minimal polynomial and g(X) be any other polynomial for which g(A) = 0 or g(ϕ) = 0. Then
f(X) | g(X). Hence f(X) is unique.
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Proof. We only give the proof for matrices, the proof for a linear transformation is similar.
Suppose that f(X) - g(X). Then we have

g(X) = q(X)f(X) + r(X)

where deg r(X) < deg f(X). Since r(A) = 0 and r(X) has degree less than f(X), we have a
contradiction. Hence f(X) | g(X). In particular, if g(X) has the same degree as f(X), the
minimality of g(X) also gives g(X) | f(X). As these are both monic polynomials, this implies
f(X) = g(X). ¤

We write minA(X) or minϕ(X) for the minimal polynomial of A or ϕ. Note also that
minA(X) | charA(X) and minϕ(X) | charϕ(X).

1.3. Separability

Lemma 1.16. Let V be a finite dimensional vector space over C and let ϕ : V −→ V be a
linear transformation. Suppose that

0 6= f(X) =
m∑

r=0

crX
r ∈ C[X]

is a polynomial with no repeated linear factors over C and that ϕ satisfies the relation
m∑

r=0

crϕ
r = 0,

i.e., for every v ∈ V ,

m∑

r=0

crϕ
r(v) = 0.

Then V has a basis v = {v1, . . . , vn} consisting of eigenvectors of ϕ.

Proof. By multiplying by the inverse of the leading coefficient of f(X) we can replace
f(X) by a monic polynomial with the same properties, so we will assume that f(X) is monic,
i.e., cm = 1. Factoring over C, we obtain

f(X) = fm(X) = (X − λ1) · · · (X − λm),

where the λj ∈ C are distinct. Put

fm−1(X) = (X − λ1) · · · (X − λm−1).

Notice that fm(X) = fm−1(X)(X − λm), hence (X − λm) cannot divide fm−1(X), since this
would lead to a contradiction to the assumption that fm(X) has no repeated linear factors.

Using long division of (X − λm) into fm−1(X), we see that

fm−1(X) = qm(X)(X − λm) + rm,

where the remainder rm ∈ C cannot be 0 since if it were then (X − λm) would divide fm−1(X).
Dividing by rm if necessary, we see that for some non-zero sm ∈ C,

smfm−1(X)− qm(X)(X − λm) = 1.

Substituting X = ϕ, we have for any v ∈ V ,

smfm−1(ϕ)(v)− qm(ϕ)(ϕ− λm IdV )(v) = v.

Notice that we have

(ϕ− λm IdV ) (smfm−1(ϕ)(v)) = smfm(ϕ)(v) = 0
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and
fm−1(ϕ) (qm(ϕ)(ϕ− λm IdV )(v)) = qm(ϕ)fm(ϕ)(v) = 0.

Thus we can decompose v into a sum v = vm + v′m, where

(ϕ− λm IdV )(vm) = 0 = fm−1(ϕ)(v′m).

Consider the following two subspaces of V :

Vm = {v ∈ V : (ϕ− λm IdV )(v) = 0}, V ′
m = {v ∈ V : fm−1(ϕ)(v) = 0}.

Thus we have shown that V = Vm + V ′
m. If v ∈ Vm ∩ V ′

m, then from above we would have

v = smfm−1(ϕ)(v)− qm(ϕ)(ϕ− λm IdV )(v) = 0.

So Vm ∩ V ′
m = {0}, hence V = Vm ⊕ V ′

m. We can now consider V ′
m in place of V , noticing that

for v ∈ V ′
m, ϕ(v) ∈ V ′

m, since

fm−1(ϕ)(ϕ(v)) = ϕ (fm−1(ϕ)(v)) = 0.

Continuing in this fashion, we eventually see that

V = V1 ⊕ · · · ⊕ Vm

where for v ∈ Vk,
(ϕ− λk)(v) = 0.

If we choose a basis v(k) of Vk, then the (disjoint) union

v = v(1) ∪ · · · ∪ v(m)

is a basis for V , consisting of eigenvectors of ϕ. ¤

The condition on ϕ in this result is sometimes referred to as the separability or semisimplicity
of ϕ. We will make use of this when discussing characters of representations.

1.4. Basic notions of multilinear algebra

In this section we will describe the tensor product of r vector spaces. We will most often
consider the case where r = 2, but give the general case for completeness. Multilinear algebra
is important in differential geometry, relativity, electromagnetism, fluid mechanics and indeed
much of advanced applied mathematics where tensors play a rôle.

Let V1, . . . , Vr and W be k-vector spaces. A function

F : V1 × · · · × Vr −→ W

is k-multilinear if it satisfies

F (v1, . . . , vk−1, vk + v′k, vk+1, . . . , vr) = F (v1, . . . , vk, . . . , vr) + F (v1, . . . , vk−1, v
′
k, vk+1, . . . , vr),

(ML-1)

F (v1, . . . , vk−1, tvk, vk+1, . . . , vr) = tF (v1, . . . , vk−1, vk, vk+1, . . . , vr)
(ML-2)

for vj , v
′
j ∈ V and t ∈ k. It is symmetric if for any permutation σ ∈ Sr (the permutation group

on r objects),

F (vσ(1), . . . , vσ(k), . . . , vσ(r)) = F (v1, . . . , vk, . . . , vr),(ML-S)

and is alternating or skew-symmetric if

F (vσ(1), . . . , vσ(k), . . . , vσ(r)) = sign(σ)F (v1, . . . , vk, . . . , vr),(ML-A)

where sign(σ) ∈ {±1} is the sign of σ.
The tensor product of V1, . . . , Vr is a k-vector space V1⊗V2⊗· · ·⊗Vr together with a function

τ : V1 × · · · × Vr −→ V1 ⊗ V2 ⊗ · · · ⊗ Vr satisfying the following universal property.
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UP-TP: For any k-vector space W and multilinear map F : V1 × · · · × Vr −→ W , there is a
unique linear transformation F ′ : V1 ⊗ · · · ⊗ Vr −→ W for which F ′ ◦ τ = F .

In diagram form this becomes

V1 × · · · × Vr

F &&LLLLLLLLLLL
τ // V1 ⊗ · · · ⊗ Vr

∃! F ′xx
W

where the dotted arrow represents a unique linear transformation making the diagram commute.

When V1 = V2 = · · · = Vr = V , we call V ⊗ · · · ⊗ V the rth tensor power and write Tr V .
Our next result provides an explicit description of a tensor product.

Proposition 1.17. If the finite dimensional k-vector space Vk (1 6 k 6 r) has a basis

vk = {vk,1, . . . , vk,nk
}

where dimk Vk = nk, then V1 ⊗ · · · ⊗ Vr has a basis consisting of the vectors

v1,i1 ⊗ · · · ⊗ vr,ir = τ(v1,i1 , . . . , vr,ir),

where 1 6 ik 6 nk. Hence we have

dimk V1 ⊗ · · · ⊗ Vr = n1 · · ·nr.

More generally, for any sequence w1 ∈ V1, . . . wr ∈ Vr, we set

w1 ⊗ · · · ⊗ wr = τ(w1, . . . , wr).

These satisfy the multilinearity formulæ

(MLF-1) w1 ⊗ · · · ⊗ wk−1 ⊗ (wk + w′k)⊗ wk+1 ⊗ · · · ⊗ wr =

w1 ⊗ · · · ⊗ wk ⊗ · · · ⊗ wr + w1 ⊗ · · · ⊗ wk−1 ⊗ w′k ⊗ wk+1 ⊗ · · · ⊗ wr,

(MLF-2)
w1 ⊗ · · · ⊗ wk−1 ⊗ twk ⊗ wk+1 ⊗ · · · ⊗ wr = t(w1 ⊗ · · · ⊗ wk−1 ⊗ wk ⊗ wk+1 ⊗ · · · ⊗ wr).

We will see later that the tensor power Tr V can be decomposed as a direct sum Tr V =
Symr V ⊕Altr V consisting of the symmetric and antisymmetric or alternating tensors Symr V

and Altr V .
We end with some useful results.

Proposition 1.18. Let V1, . . . , Vr be finite dimensional k-vector spaces. Then there is a
linear isomorphism

V ∗
1 ⊗ · · · ⊗ V ∗

r
∼= (V1 ⊗ · · · ⊗ Vr)∗.

In particular,
Tr(V ∗) ∼= (Tr V )∗.

Proof. Use the universal property to construct a linear transformation with suitable prop-
erties. ¤

Proposition 1.19. Let V, W be finite dimensional k-vector spaces. Then there is a k-linear
isomorphism

W ⊗ V ∗ ∼= Homk(V, W )

under which for α ∈ V ∗ and w ∈ W ,

w ⊗ α ←→ wα

where by definition, wα : V −→ W is the function determined by wα(v) = α(v)w for v ∈ V .
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Proof. The function W × V ∗ −→ Homk(V, W ) given by (w, α) 7→ wα is bilinear, and
hence factors uniquely through a linear transformation W ⊗V ∗ −→ Homk(V, W ). But for bases
v = {v1, . . . , vm} and w = {w1, . . . , wn} of V and W , then the vectors wj ⊗ v∗i form a basis of
W ⊗ V ∗. Under the above linear mapping, wj ⊗ v∗i gets sent to the function wjv

∗
i which maps

vk to wj if k = i and 0 otherwise. Using Propositions 1.2 and 1.17, it is now straightforward to
verify that these functions are linearly independent and span Homk(V, W ). ¤

Proposition 1.20. Let V1, . . . , Vr,W1, . . . , Wr be finite dimensional k-vector spaces, and
for each 1 6 k 6 r, let ϕk : Vk −→ Wk be a linear transformation. Then there is a unique linear
transformation

ϕ1 ⊗ · · · ⊗ ϕr : V1 ⊗ · · · ⊗ Vr −→ W1 ⊗ · · · ⊗Wr

given on each tensor v1 ⊗ · · · ⊗ vr by the formula

ϕ1 ⊗ · · · ⊗ ϕr(v1 ⊗ · · · ⊗ vr) = ϕ1(v1)⊗ · · · ⊗ ϕ1(vr).

Proof. This follows from the universal property UP-TP. ¤

Exercises on Chapter 1

1-1. Consider the 2-dimensional C-vector space V = C2. Viewing V as a 4-dimensional R-vector
space, show that

W = {(z, w) ∈ C2 : z = −w}
is an R-vector subspace of V . Is it a C-vector subspace?

Show that the function θ : W −→ C given by

θ(z, w) = Re z + Im w

is an R-linear transformation. Choose R-bases for W and C and determine the matrix of θ

with respect to these. Use these bases to extend θ to an R-linear transformation Θ: V −→ C
agreeing with θ on W . Is there an extension which is C-linear?

1-2. Let V = C4 as a C-vector space. Suppose that σ : V −→ V is the function defined by

σ(z1, z2, z3, z4) = (z3, z4, z1, z2).

Show that σ is a C-linear transformation. Choose a basis for V and determine the matrix of σ

relative to it. Hence determine the characteristic and minimal polynomials of σ and show that
there is basis for V consisting of eigenvectors of σ.

1-3. For the matrix

A =




18 5 15
−6 5 −9
−2 −1 5




show that the characteristic polynomial is charA(X) = (X − 12)(X − 8)2 and find a basis for
C3 consisting of eigenvectors of A. Determine the minimal polynomial of A.

1-4. For each of the k-vector spaces V and subspaces W , find a linear complement W ′.

(i) k = R, V = R3, W = {(x1, x2, x3) : x2 − 2x3 = 0};
(ii) k = R, V = R4, W = {(x1, x2, x3, x4) : x2 − 2x3 = 0 = x1 + x4};
(iii) k = C, V = C3, W = {(z1, z2, z3, z4) : z2 − iz3 = 0 = z1 + 4iz4}.
(iv) k = R, V = (R3)∗, W = {α : α(e3) = 0}.
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1-5. Let V be a 2-dimensional C-vector space with basis {v1, v2}. Describe a basis for the tensor
square T2 V = V⊗V and state the universal property for the natural function τ : V×V −→ T2 V .

Let F : V × V −→ C be a non-constant C-bilinear function for which

F (v, u) = −F (u, v) (u, v ∈ V )

(Such a function is called alternating or odd.) Show that F factors through a linear transfor-
mation F ′ : T2 V −→ C and find kerF ′.

If G : V ×V −→ C is a second such function, show that there is a t ∈ C for which G(u, v) =
tF (u, v) for all u, v ∈ V .

1-6. Let V be a finite dimensional k-vector space where chark = 0 (e.g., k = Q,R,C) and
dimk V = n where n is even.

Let F : V × V −→ k be an alternating k-bilinear function which is non-degenerate in the
sense that for each v ∈ V , there is a w ∈ V such that F (v, w) 6= 0.

Show that there is a basis {v1, . . . , vn} for V for which

F (v2r−1, v2r) = −F (v2r, v2r−1) = 1, (r = 1, . . . , n/2),

F (vi, vj) = 0, whenever |i− j| 6= 1.

[Hint:Try using induction on m = n/2, starting with m = 1.]



CHAPTER 2

Representations of finite groups

2.1. Linear representations

In discussing representations, we will be mainly interested in the situations where k = R or
k = C. However, other cases are important and unless we specifically state otherwise we will
usually assume that k is an arbitrary field of characteristic 0. For fields of finite characteristic
dividing the order of the group, Representation Theory becomes more subtle and the resulting
theory is called Modular Representation Theory. Another important property of the field k
required in many situations is that it is algebraically closed in the sense that every polynomial
over k has a root in k; this is true for C but not for R, however, the latter case is important in
many applications of the theory. Throughout this section, G will denote a finite group.

A homomorphism of groups ρ : G −→ GLk(V ) defines a k-linear action of G on V by

g · v = ρgv = ρ(g)(v),

which we call a k-representation or k-linear representation of G in (or on) V . Sometimes V

together with ρ is called a G-module, although we will not use that terminology. The case where
ρ(g) = IdV is called the trivial representation in V . Notice that we have the following identities:

(hg) · v = ρhgv = ρh ◦ ρgv = h · (g · v) (h, g ∈ G, v ∈ V ),(Rep-1)

g · (v1 + v2) = ρg(v1 + v2) = ρgv1 + ρgv2 = g · v1 + g · v2 (g ∈ G, vi ∈ V ),(Rep-2)

g · (tv) = ρg(tv) = tρg(v) = t(g · v) (g ∈ G, v ∈ V, t ∈ k).(Rep-3)

A vector subspace W of V which is closed under the action of elements of G is called a G-
submodule or G-subspace; we sometimes say that W is stable under the action of G. It is usual
to view W as being a representation in its own right, using the ‘restriction’ ρ|W : G −→ GLk(W )
defined by

ρ|W (g)(w) = ρg(w).

The pair consisting of W and ρ|W is called a subrepresentation of the original representation.
Given a basis v = {v1, . . . , vn} for V with dimk V = n, for each g ∈ G we have the associated

matrix of ρ(g) relative to v, [rij(g)] which is defined by

(Rep-Mat) ρgvj =
n∑

k=1

rkj(g)vk.

Example 2.1. Let ρ : G −→ GLk(V ) where dimk V = 1. Given any non-zero element v ∈ V

(which forms a basis for V ) we have for each g ∈ G a λg ∈ k satisfying g · v = λgv. By
Equation (Rep-1), for g, h ∈ G we have

λhgv = λhλgv,

and hence

λhg = λhλg.

From this it is easy to see that λg 6= 0. Thus there is a homomorphism Λ: G −→ k× given by

Λ(g) = λg.

13
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Although this appears to depend on the choice of v, in fact it is independent of it (we leave this
as an exercise). As G is finite, every element g ∈ G has a finite order |g|, and it easily follows
that

λ|g|g = 1,

so λg is a |g|-th root of unity. Hence, given a 1-dimensional representation of a group, we can
regard it as equivalent to such a homomorphism G −→ k×.

Here are two illustrations of Example 2.1.

Example 2.2. Take k = R. Then the only roots of unity in R are ±1, hence we can assume
that for a 1-dimensional representation over R, Λ: G −→ {1,−1}, where the codomain is a
group under multiplication. The sign function sign: Sn −→ {1,−1} provides an interesting and
important example of this.

Example 2.3. Now take k = C. Then for each n ∈ N we have n distinct n-th roots of unity
in C×. We will denote the set of all n-th roots of unity by µn, and the set of all roots of unity
by

µ∞ =
⋃

n∈N
µn,

where we use the inclusions µm ⊆ µn whenever m | n. These are abelian groups under multi-
plication.

Given a 1-dimensional representation over C, the function Λ can be viewed as a homomor-
phism Λ: G −→ µ∞, or even Λ: G −→ µ|G| by Lagrange’s Theorem.

For example, if G = C is cyclic of order N say, then we must have for any 1-dimensional
representation of C that Λ: C −→ µN . Note that there are exactly N of such homomorphisms.

Example 2.4. Let G be a simple group which is not abelian. Then given a 1-dimensional
representation ρ : G −→ GLk(V ) of G, the associated homomorphism Λ: G −→ µ|G| has abelian
image, hence kerΛ has to be bigger than {eG}. Since G has no proper normal subgroups, we
must have kerΛ = G. Hence, ρ(g) = IdV .

Indeed, for any representation ρ : G −→ GLk(V ) we have ker ρ = G or ker ρ = {eG}. Hence,
either the representation is trivial or ρ is an injective homomorphism, which therefore embeds
G into GLk(V ). This severely restricts the smallest dimension of non-trivial representations of
non-abelian simple groups.

Example 2.5. Let G = {e, τ} ∼= Z/2 and let V be any representation over any field not of
characteristic 2. Then there are k-vector subspaces V+, V− of V for which V = V+ ⊕ V− and
the action of G is given by

τ · v =

{
v if v ∈ V+,

−v if v ∈ V−.

Proof. Define linear transformations ε+, ε− : V −→ V by

ε+(v) =
1
2

(v + τ · v) , ε−(v) =
1
2

(v − τ · v) .

It is easily verified that

ε+(τ · v) = ε+(v), ε−(τ · v) = −ε−(v).

We take V+ = im ε+ and V− = im ε− and the direct sum decomposition follows from the identity

v = ε+(v) + ε−(v). ¤
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The decomposition in this example corresponds to the two distinct irreducible representa-
tions of Z/2. Later we will see (at least over the complex numbers C) that there is always such a
decomposition of a representation of a finite group G with factors corresponding to the distinct
irreducible representations of G.

Example 2.6. Let D2n be the dihedral group of order 2n described in Section A.7.2. This
group is generated by elements α of order n and β of order 2, subject to the relation

βαβ = α−1.

We can realise D2n as the symmetry group of the regular n-gon centred at the origin and with
vertices on the unit circle (we take the first vertex to be (1, 0)). It is easily checked that relative
the standard basis {e1, e2} of R2, we get

αr =
[
cos 2rπ/n − sin 2rπ/n

sin 2rπ/n cos 2rπ/n

]
βαr =

[
cos 2rπ/n − sin 2rπ/n

− sin 2rπ/n − cos 2rπ/n

]

for r = 0, . . . , (n− 1).
Thus we have a 2-dimensional representation ρR of D2n over R, where the matrices of ρR(αr)

and ρR(βαr) are given by the above. We can also view R2 as a subset of C2 and interpret these
matrices as having coefficients in C. Thus we obtain a 2-dimensional complex representation
ρC of D2n with the above matrices relative to the C-basis {e1, e2}.

2.2. G-homomorphisms and irreducible representations

Suppose that we have two representations ρ : G −→ GLk(V ) and σ : G −→ GLk(W ). Then
a linear transformation f : V −→ W is called G-equivariant, G-linear or a G-homomorphism
with respect to ρ and σ, if for each g ∈ G the diagram

V
f−−−−→ W

ρg

y
yσg

V
f−−−−→ W

commutes, i.e., σg ◦ f = f ◦ ρg or equivalently, σg ◦ f ◦ ρg−1 = f . A G-homomorphism which
is a linear isomorphism is called a G-isomorphism or G-equivalence and we say that the repre-
sentations are G-isomorphic or G-equivalent.

We define an action of G on Homk(V, W ), the vector space of k-linear transformations
V −→ W , by

(g · f)(v) = σgf(ρg−1v) (f ∈ Homk(V, W )).

This is another G-representation. The G-invariant subspace HomG(V, W ) = Homk(V,W )G is
then equal to the set of all G-homomorphisms.

If the only G-subspaces of V are {0} and V , ρ is called irreducible or simple.
Given a subrepresentation W ⊆ V , the quotient vector space V/W also admits a linear

action of G, ρW : G −→ GLk(V/W ), the quotient representation, where

ρW (g)(v + W ) = ρ(g)(v) + W,

which is well defined since whenever v′ − v ∈ W ,

ρ(g)(v′) + W = ρ(g)(v + (v′ − v)) + W =
(
ρ(g)(v) + ρ(g)(v′ − v))

)
+ W = ρ(g)(v) + W.

Proposition 2.7. If f : V −→ W is a G-homomorphism, then

(a) ker f is a G-subspace of V ;
(b) im f is a G-subspace of W .
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Proof. (a) Let v ∈ ker f . Then for g ∈ G,

f(ρgv) = σgf(v) = 0,

so ρgv ∈ ker f . Hence ker f is a G-subspace of V

(b) Let w ∈ im f with w = f(u) for some u ∈ V . Now

σgw = σgf(u) = f(ρgu) ∈ im f,

hence im f is a G-subspace of W . ¤

Theorem 2.8 (Schur’s Lemma). Let ρ : G −→ GLC(V ) and σ : G −→ GLC(W ) be irred-
ucible representations of G over the field C, and let f : V −→ W be a G-linear map.

(a) If f is not the zero map, then f is an isomorphism.
(b) If V = W and ρ = σ, then for some λ ∈ C, f is given by

f(v) = λv (v ∈ V ).

Remark 2.9. Part (a) is true for any field k in place of C.

Proof. (a) Proposition 2.7 implies that ker f ⊆ V and im f ⊆ W are G-subspaces. By the
irreducibility of V , either ker f = V (in which case f is the zero map) or ker f = {0} in which
case f is injective. Similarly, irreducibility of W implies that im f = {0} (in which case f is the
zero map) or im f = W in which case f is surjective. Thus if f is not the zero map it must be
an isomorphism.
(b) Let λ ∈ C be an eigenvalue of f , with eigenvector v0 6= 0. Let fλ : V −→ V be the linear
transformation for which

fλ(v) = f(v)− λv (v ∈ V ).

For each g ∈ G,

ρgfλ(v) = ρgf(v)− ρgλv

= f(ρgv)− λρgv,

= fλ(ρgv),

showing that fλ is G-linear. Since fλ(v0) = 0, Proposition 2.7 shows that ker fλ = V . As

dimC V = dimC ker fλ + dimC im fλ,

we see that im fλ = {0} and so
fλ(v) = 0 (v ∈ V ). ¤

A linear transformation f : V −→ V is sometimes called a homothety if it has the form

f(v) = λv (v ∈ V ).

In this proof, it is essential that we take k = C rather than k = R for example, since we
need the fact that every polynomial over C has a root to guarantee that linear transformations
V −→ V always have eigenvalues. This theorem can fail to hold for representations over R as
the next example shows.

Example 2.10. Let k = R and V = C considered as a 2-dimensional R-vector space. Let

G = µ4 = {1,−1, i,−i}
be the group of all 4th roots of unity with ρ : µ4 −→ GLk(V ) given by

ραz = αz.

Then this defines a 2-dimensional representation of G over R. If we use the basis {u = 1, v = i},
then

ρiu = v, ρiv = −u.
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From this we see that any G-subspace of V containing a non-zero element w = au + bv also
contains −bu + av, and hence it must be all of V (exercise). So V is irreducible.

But the linear transformation ϕ : V −→ V given by

ϕ(au + bv) = −bu + av = ρi(au + bv)

is G-linear, but not the same as multiplication by a real number (this is left as an exercise).

Theorem 2.11 (Maschke’s Theorem). Let V be a k-vector space and ρ : G −→ GLk(V ) a
k-representation. Let W ⊆ V be a G-subspace of V . Then there is a projection onto W which is
G-equivariant. Equivalently, there is a linear complement W ′ of W which is also a G-subspace.

Proof. Let p : V −→ V be a projection onto W . Define a linear transformation p0 : V −→
V by

p0(v) =
1
|G|

∑

g∈G

ρg ◦ p ◦ ρ−1
g (v).

Then for v ∈ V ,
ρg ◦ p ◦ ρ−1

g (v) ∈ W

since im p = W and W is a G-subspace; hence p0(v) ∈ W . We also have

p0(ρgv) =
1
|G|

∑

h∈G

ρhp(ρ−1
h ρgv)

=
1
|G|

∑

h∈G

ρgρg−1hp(ρ−1
g−1h

v)

= ρg

(
1
|G|

∑

h∈G

ρg−1hp(ρ−1
g−1h

v)

)

= ρg

(
1
|G|

∑

h∈G

ρhp(ρh−1v)

)

= ρgp0(v),

which shows that p0 is G-equivariant. If w ∈ W ,

p0(w) =
1
|G|

∑

g∈G

ρgp(ρg−1w)

=
1
|G|

∑

g∈G

ρgρg−1w

=
1
|G|

∑

g∈G

w

=
1
|G|(|G|w) = w.

Hence p0|W = IdW , showing that p0 has image W .
Now consider W ′ = ker p0, which is a G-subspace by part (a) of Proposition 2.7. This

is a linear complement for W since given the quotient map q : V −→ V/W , if v ∈ W ′ then
q(v) = 0 + W implies v ∈ W ∩W ′ and hence 0 = p0(v) = v. ¤

Theorem 2.12. Let ρ : G −→ GLk(V ) be a linear representation of a finite group with V

non-trivial. Then there are G-spaces U1, . . . , Ur ⊆ V , each of which is a non-trivial irreducible
subrepresentation and

V = U1 ⊕ · · · ⊕ Ur.
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Proof. We proceed by Induction on n = dimk V . If n = 1, the result is true with U1 = V .
So assume that the result holds whenever dimk V < n. Now either V is irreducible or

there is a proper G-subspace U1 ⊆ V . By Theorem 2.11, there is a G-complement U ′
1 of

U1 in V with dimk U ′
1 < n. By the Inductive Hypothesis there are irreducible G-subspaces

U2, . . . , Ur ⊆ U ′
1 ⊆ V for which

U ′
1 = U2 ⊕ · · · ⊕ Ur,

and so we find

V = U1 ⊕ U2 ⊕ · · · ⊕ Ur. ¤

We will see later that given any two such collections of non-trivial irreducible subrepresent-
ations U1, . . . , Ur and W1, . . . , Ws, we have s = r and for each k, the number of Wj G-isomorphic
to Uk is equal to the number of Uj G-isomorphic to Uk. The proof of this will use characters,
which give further information such as the multiplicity of each irreducible which occurs as a sum-
mand in V . The irreducible representations Uk are called the irreducible factors or summands
of the representation V .

An important example of a G-subspace of any representation ρ on V is the G-invariant
subspace

V G = {v ∈ V : ρgv = v ∀g ∈ G}.
We can construct a projection map V −→ V G which is G-linear, provided that the characteristic
of k does not divide |G|. In practice, we will be mainly interested in the case where k = C, so
in this section from now on, we will assume that k has characteristic 0.

Proposition 2.13. Let ε : V −→ V be the k-linear transformation defined by

ε(v) =
1
|G|

∑

g∈G

ρgv.

Then

(a) For g ∈ G and v ∈ V , ρgε(v) = ε(v);
(b) ε is G-linear;
(c) for v ∈ V G, ε(v) = v and so im ε = V G.

Proof. (a) Let g ∈ G and v ∈ V . Then

ρgε(v) = ρg

(
1
|G|

∑

h∈G

ρhv

)
=

1
|G|

∑

h∈G

ρgρhv =
1
|G|

∑

h∈G

ρghv =
1
|G|

∑

h∈G

ρhv = ε(v).

(b) Similarly, for g ∈ G and v ∈ V ,

ε(ρgv) =
1
|G|

∑

h∈G

ρh(ρgv) =
1
|G|

∑

h∈G

ρhgv =
1
|G|

∑

k∈G

ρkv = ε(v).

By (a), this agrees with ρgε(v). Hence, ε is G-linear.
(c) For v ∈ V G,

ε(v) =
1
|G|

∑

g∈G

ρgv =
1
|G|

∑

g∈G

v =
1
|G| |G|v = v.

Notice that this also shows that im ε = V G. ¤
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2.3. New representations from old

Let G be a finite group and k a field. In this section we will see how new representations
can be manufactured from existing ones. As well as allowing interesting new examples to be
constructed, this sometimes gives ways of understanding representations in terms of familiar
ones. This will be important when we have learnt how to decompose representations in terms
of irreducibles and indeed is sometimes used to construct the latter.

Let V1, . . . , Vr be k-vector spaces admitting representations ρ1, . . . , ρr of G. Then for each
g ∈ G and each j, we have the corresponding linear transformation ρjg : Vj −→ Vj . By Propo-
sition 1.20 there is a unique linear transformation

ρ1g ⊗ · · · ⊗ ρrg : V1 ⊗ · · · ⊗ Vr −→ V1 ⊗ · · · ⊗ Vr.

It is easy to verify that this gives a representation of G on the tensor product V1⊗· · ·⊗Vr, called
the tensor product of the original representations. By Proposition 1.20 we have the formula

(2.1) ρ1g ⊗ · · · ⊗ ρrg(v1 ⊗ · · · ⊗ vr) = ρ1gv1 ⊗ · · · ⊗ ρrgvr

for vj ∈ Vj (j = 1, . . . , r).
Let V, W be k-vector spaces supporting representations ρ : G −→ GLk(V ) and σ : G −→

GLk(W ). Recall that Homk(V,W ) is the set of all linear transformations V −→ W which
is a k-vector space whose addition and multiplication are given by the following formulæ for
ϕ, θ ∈ Homk(V, W ) and t ∈ k:

(ϕ + θ)(u) = ϕ(u) + θ(u),

(tϕ)(u) = t(ϕ(u)) = ϕ(tu).

There is an action of G on Homk(V, W ) defined by

(τgϕ)(u) = σgϕ(ρg−1u).

This turns out to be a linear representation of G on Homk(V,W ).
As a particular example of this, taking W = k with the trivial action of G (i.e., σg = Idk),

we obtain an action of G on the dual of V ,

V ∗ = Homk(V, k).

This action determines the contragredient representation ρ∗. Explicitly, this satisfies

ρ∗gϕ = ϕ ◦ ρg−1 .

Proposition 2.14. Let ρ : G −→ GLk(V ) be a representation, and v = {v1, . . . , vn} be a
basis of V . Suppose that relative to v,

[ρg]v = [rij(g)] (g ∈ G).

Then relative to the dual basis v∗ = {v∗1, . . . , v∗n}, we have

[ρ∗g]v∗ = [rji(g−1)] (g ∈ G),

or equivalently,
[ρ∗g]v∗ = [ρg−1 ]T .

Proof. If we write
[ρ∗g]v∗ = [tij(g)],

then by definition,

ρ∗gv
∗
s =

n∑

r=1

trs(g)v∗r .
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Now for each i = 1, . . . , n,

(ρ∗gv
∗
j )(vi) =

n∑

r=1

trj(g)v∗r (vi),

which gives
v∗j (ρg−1vi) = tij(g),

and hence

tij(g) = v∗j (
n∑

k=1

rki(g−1)vi) = rji(g−1). ¤

Another perspective on the above is provided by the next result, whose proof is left as an
exercise.

Proposition 2.15. The k-linear isomorphism

Homk(V,W ) ∼= W ⊗
k

V ∗

is a G-isomorphism where the right hand side carries the tensor product representation σ ⊗ ρ∗.

Using these ideas together with Proposition 2.13 we obtain the following useful result

Proposition 2.16. For k of characteristic 0, the G-homomorphism

ε : Homk(V,W ) −→ Homk(V,W )

of Proposition 2.13 has image equal to the set of G-homomorphisms V −→ W , Homk(V, W )G

which is also G-isomorphic to (W ⊗k V ∗)G.

Now let ρ : G −→ GLk(V ) be a representation of G and let H 6 G. We can restrict ρ to
H and obtain a representation ρ|H : H −→ GLk(V ) of H, usually denoted ρ ↓G

H or ResG
H ρ; the

H-module V is also denoted V ↓G
H or ResG

H V .
Similarly, if G 6 K, then we can form the induced representation ρ ↑K

G : K −→ GLk(V ↑K
G )

as follows. Take KR to be the G-set consisting of the underlying set of K with the G-action

g · x = xg−1.

Define

V ↑K
G = IndK

G V = Map(KR, V )G = {f : K −→ V : f(x) = ρgf(xg) ∀x ∈ K}.
Then K acts linearly on V ↑K

G by
(k · f)(x) = f(kx),

and so we obtain a linear representation of K. The induced representation is often denoted
ρ ↑K

G or IndK
G ρ. The dimension of V ↑K

G is dimk V ↑K
G = |K/G| dimk V . Later we will meet

Reciprocity Laws relating these induction and restriction operations.

2.4. Permutation representations

Let G be a finite group and X a finite G-set, i.e., a finite set X equipped with an action
of G on X, written gx. A finite dimensional G-representation ρ : G −→ GLC(V ) over k is a
permutation representation on X if there is an injective G-map j : X −→ V and im j = j(X) ⊆ V

is a k-basis for V . Notice that a permutation representation really depends on the injection
j. We frequently have situations where X ⊆ V and j is the inclusion of the subset X. The
condition that j be a G-map amounts to the requirement that

ρg(j(x)) = j(gx) (g ∈ G, x ∈ X).
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Definition 2.17. A homomorphism from a permutation representation j1 : X1 −→ V1 to a
second j2 : X2 −→ V2 is a G-linear transformation Φ: V1 −→ V2 such that

Φ(j1(x)) ∈ im j2 (x ∈ X1).

A G-homomorphism of permutation representations which is a G-isomorphism is called a G-
isomorphism of permutation representations.

Notice that by the injectivity of j2, this implies the existence of a unique G-map ϕ : X1 −→
X2 for which

j2(ϕ(x)) = Φ(j1(x)) (x ∈ X1).

Equivalently, we could specify the G-map ϕ : X1 −→ X2 and then Φ: V1 −→ V2 would be the
unique linear extension of ϕ restricted to im j2 (see Proposition 1.1). In the case where Φ is a
G-isomorphism, it is easily verified that ϕ : X1 −→ X2 is a G-equivalence.

To show that such permutations representations exist in abundance, we proceed as follows.
Let X be a finite set equipped with a G-action. Let k[X] = Map(X, k), the set of all functions
X −→ k. This is a finite dimensional k-vector space with addition and scalar multiplication
defined by

(f1 + f2)(x) = f1(x) + f2(x), (tf)(x) = t(f(x)),

for f1, f2, f ∈ Map(X, k), t ∈ k and x ∈ X. There is an action of G on Map(X, k) given by

(g · f)(x) = f(g−1x).

If Y is a second finite G-set, and ϕ : X −→ Y a G-map, then we define the induced function
ϕ∗ : k[X] −→ k[Y ] by

(ϕ∗f)(y) =
∑

x∈ϕ−1{y}
f(x) =

∑

ϕ(x)=y

f(x).

Theorem 2.18. Let G be a finite group.

(a) For a finite G-set X, k[X] is a finite dimensional permutation representation of di-
mension dimk k[X] = |X|.

(b) For a G-map ϕ : X −→ Y , the induced function ϕ∗ : k[X] −→ k[Y ] is a G-linear
transformation.

Proof.

a) For each x ∈ X we have a function δx : X −→ k given by

δx(y) =

{
1 if y = x,

0 otherwise.

The map j : X −→ k[X] given by
j(x) = δx

is easily seen to be an injection. It is also a G-map, since

δgx(y) = 1 ⇐⇒ δx(g−1y) = 1,

and hence
j(gx)(y) = δgx(y) = δx(g−1y) = (g · δx)(y).

Given a function f : X −→ k, consider

f −
∑

x∈X

f(x)δx ∈ k[X].

Then for y ∈ X,
f(y)−

∑

x∈X

f(x)δx(y) = f(y)− f(y) = 0,
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hence f −∑
x∈X f(x)δx is the constant function taking the value 0 on X. So the functions δx

(x ∈ X) span k[X]. They are also linearly independent, since if the 0 valued constant function
is expressed in the form ∑

x∈X

txδx

for some tx ∈ k, then for each y ∈ X,

0 =
∑

x∈X

txδx(y) = ty,

hence all the coefficients tx must be 0.
b) The k-linearity of ϕ∗ is easily checked. To show it is a G-map, for g ∈ G,

(g · ϕ∗f)(y) = (ϕ∗f)(g−1y)

=
∑

x∈ϕ−1{g−1y}
f(x)

=
∑

x∈ϕ−1{y}
f(g−1x),

since

ϕ−1{g−1y} = {x ∈ X : gϕ(x) = y}
= {x ∈ X : ϕ(gx) = y}
= {g−1x : x ∈ X, x ∈ ϕ−1{y}}.

Since by definition

(g · f)(x) = f(g−1x),

we have

(g · ϕ∗f) = ϕ∗(g · f). ¤

Given a permutation representation k[X], we will often use the injection j to identify X

with a subset of k[X]. If ϕ : X −→ Y is a G-map, notice that

ϕ∗(
∑

x∈X

txδx) =
∑

x∈X

txδϕ(x).

We will sometimes write x instead of δx, and a typical element of k[X] as
∑

x∈X txx, where
each tx ∈ k, rather than

∑
x∈X txδx. Another convenient notational device is to list the elements

of X as x1, x2, . . . , xn and then identify n = {1, 2, . . . , n} with X via the correspondence k ←→
xk. Then we can identify k[n] ∼= kn with k[X] using the correspondence

(t1, t2, . . . , tn) ←→
n∑

k=1

tkxk.

2.5. Properties of permutation representations

Let X be a finite G-set. The result shows how to reduce an arbitrary permutation repre-
sentation to a direct sum of those induced from transitive G-sets.

Proposition 2.19. Let X = X1
∐

X2 where X1, X2 ⊆ X are closed under the action of G.
Then there is a G-isomorphism

k[X] ∼= k[X1]⊕ k[X2].
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Proof. Let j1 : X1 −→ X and j2 : X2 −→ X be the inclusion maps, which are G-maps. By
Theorem 2.18(b), there are G-linear transformations j1∗ : k[X1] −→ k[X] and j2∗ : k[X2] −→
k[X]. For

f =
∑

x∈X

txx ∈ k[X],

we have the ‘restrictions’
f1 =

∑

x∈X1

txx, f2 =
∑

x∈X2

txx.

We define our linear map k[X] ∼= k[X1]⊕ k[X2] by

f 7−→ (f1, f2).

It is easily seen that this is a linear transformation, and moreover has an inverse given by

(h1, h2) 7−→ j1∗h1 + j2∗h2.

Finally, this is a G-map since the latter is the sum of two G-maps, so its inverse is a G-map. ¤

Let X1 and X2 be G-sets. Then X = X1 ×X2 can be made into a G-set with action given
by

g · (x1, x2) = (gx1, gx2).

Proposition 2.20. Let X1 and X2 be G-sets. Then there is a G-isomorphism

k[X1]⊗ k[X2] ∼= k[X1 ×X2].

Proof. The function F : k[X1]× k[X2] −→ k[X1 ×X2] defined by

F (
∑

x∈X1

sxx,
∑

y∈X2

tyy) =
∑

x∈X1

∑

y∈X2

sxty(x, y)

is k-bilinear. Hence by the universal property of the tensor product (Section 1.4, UP-TP), there
is a unique linear transformation F ′ : k[X1]⊗ k[X2] −→ k[X1 ×X2] for which

F ′(x⊗ y) = (x, y) (x ∈ X1, y ∈ X2).

This is easily seen to to be a G-linear isomorphism. ¤

Definition 2.21. Let G be a finite group. The regular representation over k is the G-
representation k[G]. This has dimension dimk k[G] = |G|.

Proposition 2.22. The regular representation of a finite group G over a field k is a ring
(in fact a k-algebra). Moreover, this ring is commutative if and only if G is abelian.

Proof. Let a =
∑

g∈G agg and b =
∑

g∈G bgg where ag, bg ∈ G. Then we define the product
of a and b by

ab =
∑

g∈G

(∑

h∈G

ahbh−1g

)
g.

Note that for g, h ∈ G in k[G] we have

(1g)(1h) = gh.

For commutativity, each such product (1g)(1h) must agree with (1h)(1g), which happens if and
only if G is abelian. The rest of the details are left as an exercise. ¤

The ring k[G] is called the group algebra or group ring of G over k. The next result is
left as an exercise for those who know about modules. It provides a link between the study
of modules over k[G] and G-representations, and so the group ring construction provides an
important source of non-commutative rings and their modules.
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Proposition 2.23. Let V be a k vector space. Then if V carries a G-representation, it
admits the structure of a k[G] module defined by

(
∑

g∈G

agg)v =
∑

g∈G

aggv.

Conversely, if V is a k[G]-module, then it admits a G-representation with action defined by

g · v = (1g)v.

2.6. Calculating in permutation representations

In this section, we determine how the permutation representation k[X] looks in terms of the
basis consisting of elements x (x ∈ X). We know that g ∈ G acts by sending x to gx. Hence, if
we label the rows and columns of a matrix by the elements of X, the |X| × |X| matrix [g] of g

with respect to this basis has xy entry

(2.2) [g]xy = δx,gy =

{
1 if x = gy,

0 otherwise,

where δa,b denotes the Kronecker δ function which is 0 except for when a = b and it then takes
the value 1. Thus there is exactly one 1 in each row and column, and 0’s everywhere else. The
following is an important example.

Let X = n = {1, 2, . . . , n} and G = Sn, the symmetric group of degree n, acting on n in the
usual way. We may take as a basis for k[n], the functions δj (1 6 j 6 n) given by

δj(k) =

{
1 if k = j,

0 otherwise.

Relative to this basis, the action of σ ∈ Sn is given by the n× n matrix [σ] whose ij-th entry is

(2.3) [σ]ij =

{
1 if i = σ(j),

0 otherwise.

Taking n = 3, we get

[(1 3 2)] =




0 1 0
0 0 1
1 0 0


 , [(1 3)] =




0 0 1
0 1 0
1 0 0


 , [(1 3 2)(1 3)] = [(1 2)] =




0 1 0
1 0 0
0 0 1


 .

As expected, we also have

[(1 3 2)][(1 3)] =




0 1 0
0 0 1
1 0 0







0 0 1
0 1 0
1 0 0


 =




0 1 0
1 0 0
0 0 1


 = [(1 3 2)(1 3)].

An important fact about permutation representations is the following, which makes their char-
acters easy to calculate.

Proposition 2.24. Let X be a finite G-set, and k[X] the associated permutation represen-
tation. Let g ∈ G and ρg : k[X] −→ k[X] be the linear transformation induced by g. Then

tr ρg = |Xg| = |{x ∈ X : gx = x}| = number of elements of X fixed by g.

Proof. Take the elements of X to be a basis for k[X]. Then tr ρg is the sum of the diagonal
terms in the matrix [ρg] relative to this basis. Now making use of Equation (2.2) we see that

tr ρg = number of non-zero diagonal terms in [ρg] = number of elements of X fixed by g. ¤

Our next result shows that permutation representations are self-dual.
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Proposition 2.25. Let X be a finite G-set, and k[X] the associated permutation represen-
tation. Then there is a G-isomorphism k[X] ∼= k[X]∗.

Proof. Take as a basis of k[X] the elements x ∈ X. Then a basis for the dual space k[X]∗

consists of the elements x∗. By definition of the action of G on k[X]∗ = Homk(k[X], k), we have

(g · x∗)(y) = x∗(g−1x) (g ∈ G, y ∈ X).

A familiar calculation shows that g · x∗ = (gx)∗, and so this basis is also permuted by G. Now
define a function ϕ : k[X] −→ k[X]∗ by

ϕ(
∑

x∈X

axx) =
∑

x∈X

axx∗.

This is a k-linear isomorphism also satisfying

ϕ

(
g

∑

x∈X

axx

)
= ϕ

(∑

x∈X

ax(gx)

)
=

∑

x∈X

ax(gx)∗ = g · ϕ
(∑

x∈X

axx

)
.

Hence ϕ is a G-isomorphism. ¤

2.7. Generalized permutation representations

It is useful to generalize the notion of permutation representation somewhat. Let V be a
finite dimensional k-vector space with a representation of G, ρ : G −→ GLk(V ); we will usually
write gv = ρgv. We can consider the set of all functions X −→ V , Map(X,V ), and this is also
a finite dimensional k-vector space with addition and scalar multiplication defined by

(f1 + f2)(x) = f1(x) + f2(x), (tf)(x) = t(f(x)),

for f1, f2, f ∈ Map(X, V ), t ∈ k and x ∈ X. There is a representation of G on Map(X,V ) given
by

(g · f)(x) = gf(g−1x).

We call this a generalized permutation representation of G.

Proposition 2.26. Let Map(X, V ) be a permutation representation of G, where V has basis
v = {v1, . . . , vn}. Then the functions δx,j : X −→ V (x ∈ X, 1 6 j 6 n) given by

δx,j(y) =

{
vj if y = x,

0 otherwise,

for y ∈ X, form a basis for Map(X, V ). Hence,

dimkMap(X, V ) = |X|dimk V.

Proof. Let f : X −→ V . Then for any y ∈ X,

f(y) =
n∑

j=1

fj(y)vj ,

where fj : X −→ k is a function. It suffices now to show that any function h : X −→ k has a
unique expression as

h =
∑

x∈X

hxδx

where hx ∈ k and δx : X −→ k is given by

δx(y) =

{
1 if y = x,

0 otherwise.
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But for y ∈ X,

h(y) =
∑

x∈X

hxδx(y) ⇐⇒ h(y) = hy.

Hence h =
∑

x∈X h(x)δx is the unique expansion of this form. Combining this with the above
we have

f(y) =
n∑

j=1

fj(y)vj =
n∑

j=1

∑

x∈X

fj(x)δx(y)vj ,

and so

f =
n∑

j=1

∑

x∈X

fj(x)δxj ,

is the unique such expression, since δxj(y) = δx(y)vj . ¤

Proposition 2.27. If V = V1⊕ V2 is a direct sum of representations V1, V2, then there is a
G-isomorphism

Map(X,V ) ∼= Map(X,V1)⊕Map(X, V2).

Proof. Recall that every v ∈ V has a unique expression of the form v = v1 + v2. Define a
function

Map(X,V ) −→ Map(X,V1)⊕Map(X, V2); f −→ f1 + f2,

where f1 : X −→ V1 and f2 : X −→ V2 satisfy

f(x) = f1(x) + f2(x) (x ∈ X).

This is easily seen to be both a linear isomorphism and a G-homomorphism, hence a G-
isomorphism. ¤

Proposition 2.28. Let X = X1
∐

X2 where X1, X2 ⊆ X are closed under the action of G.
Then there is a G-isomorphism

Map(X, V ) ∼= Map(X1, V )⊕Map(X2, V ).

Proof. Let j1 : X1 −→ X and j2 : X2 −→ X be the inclusion maps, which are G-maps.
Then given f : X −→ V , we have two functions fk : X −→ V (k = 1, 2) given by

fk(x) =

{
f(x) if x ∈ Xk,

0 otherwise.

Define a function

Map(X, V ) ∼= Map(X1, V ) −→ Map(X2, V ); f 7−→ f1 + f2.

This is easily seen to be a linear isomorphism. Using the fact that Xk is closed under the action
of G, we see that

(g · f)k = g · fk,

so

g · (f1 + f2) = g · f1 + g · f2.

Therefore this map is a G-isomorphism. ¤

These results tell us how to reduce an arbitrary generalized permutation representation to
a direct sum of those induced from a transitive G-set X and an irreducible representation V .
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Exercises on Chapter 2

2-1. Consider the function σ : D2n −→ GLC(C2) given by

σαr(xe1 + ye2) = ζrxe1 + ζ−rye2, σαrβ(xe1 + ye2) = ζrye1 + ζ−rxe2,

where σg = σ(g) and ζ = e2πi/n. Show that this defines a 2-dimensional representation of D2n

over C. Show that this representation is irreducible and determine kerσ.

2-2. Show that there is a 3-dimensional real representation θ : Q8 −→ GLR(R3) of the quater-
nion group Q8 for which

θi(xe1 + ye2 + ze3) = xe1 − ye2 − ze3, θj(xe1 + ye2 + ze3) = −xe1 + ye2 − ze3.

Show that this representation is not irreducible and determine ker θ.

2-3. Consider the 2-dimensional complex vector space

V = {(x1, x2, x3) ∈ C3 : x1 + x2 + x3 = 0}.
Show that the symmetric group S3 has a representation ρ on V defined by

ρσ(x1, x2, x3) = (xσ−1(1), xσ−1(2), xσ−1(3))

for σ ∈ S3. Show that this representation is irreducible.

2-4. If p is a prime and G is a non-trivial finite p-group, show that there is a non-trivial
1-dimensional representation of G. More generally show this holds for a finite solvable group.

2-5. Let X = {1, 2, 3} = 3 with the usual action of the symmetric group S3. Consider
the complex permutation representation of S3 associated to this with underlying vector space
V = C[3].

(i) Show that the invariant subspace

V S3 = {v ∈ V : σ · v = v ∀σ ∈ S3}
is 1-dimensional.

(ii) Find a 2-dimensional S3-subspace W ⊆ V such that V = V S3 ⊕W .
(iii) Show that W of (ii) is irreducible.
(iv) Show that the restriction W ↓S3

H of the representation of S3 on W to the subgroup
H = {e, (1 2)} is not irreducible.

(v) Show that the restriction of the representation W ↓S3
K of S3 on W to the subgroup

K = {e, (1 2 3), (1 3 2)} is not irreducible.

2-6. Let the finite group G act on the finite set X and let C[X] be the associated complex
permutation representation.

(i) If the action of G on X is transitive (i.e., there is exactly one orbit), show that there is a
1-dimensional G-subspace C{vX} with basis vector vX =

∑
x∈X x. Find a G-subspace

WX ⊆ C[X] for which C[X] = C{vX} ⊕WX .
(ii) For a general G-action on X, for each G-orbit Y in X use (a) to find a 1-dimensional

G-subspace VY and another WY of dimension (|Y | − 1) such that

C[X] = VY1 ⊕WY1 ⊕ · · · ⊕ VYr ⊕WYr

where Y1, . . . , Yr are the distinct G-orbits of X.
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2-7. If ρ : G −→ GLk(V ) is an irreducible representation, prove that the contragredient repre-
sentation ρ∗ : G −→ GLk(V ∗) is also irreducible.

2-8. Let k be a field of characteristic different from 2. Let G be a finite group of even order
and let C 6 G be a subgroup of order 2 with generator γ. Consider the regular representation
of G, which comes from the natural left action of G on k[G].

Now consider the action of the generator γ by multiplication of basis vectors on the right.
Denote the +1,−1 eigenspaces for this action by k[G]+, k[G]− respectively.

Show that the subspaces k[G]± are G-subspaces and that

dimk k[G]+ = dimk k[G]− =
|G|
2

.

Deduce that k[G] = k[G]+ ⊕ k[G]− as G-representations.



CHAPTER 3

Character theory

3.1. Characters and class functions on a finite group

Let G be a finite group and let ρ : G −→ GLC(V ) be a finite dimensional C-representation
of dimension dimC V = n. For g ∈ G, the linear transformation ρg : V −→ V will sometimes be
written g· or g. The character of g in the representation ρ is the trace of g on V , i.e.,

χρ(g) = tr ρg = tr g.

We can view χρ as a function χρ : G −→ C, the character of the representation ρ.

Definition 3.1. A function θ : G −→ C is a class function if for all g, h ∈ G,

θ(hgh−1) = θ(g),

i.e., θ is constant on each conjugacy class of G.

Proposition 3.2. For all g, h ∈ G,

χρ(hgh−1) = χρ(g).

Hence χρ : G −→ C is a class function on G.

Proof. We have
ρhgh−1 = ρh ◦ ρg ◦ ρh−1 = ρh ◦ ρg ◦ ρ−1

h

and so
χρ(hgh−1) = tr ρh ◦ ρg ◦ ρ−1

h = tr ρg = χρ(g). ¤

Example 3.3. Let G = S3 act on the set 3 = {1, 2, 3} in the usual way. Let V = C[3] be
the associated permutation representation over C, where we take as a basis e = {e1, e2, e3} with
action

σ · ej = eσ(j).

Let us determine the character of this representation ρ : S3 −→ GLC(V ).
The elements of S3 written using cycle notation are the following:

1, (1 2), (2 3), (1 3), (1 2 3), (1 3 2).

The matrices of these elements with respect to e are

I3,




0 1 0
1 0 0
0 0 1


 ,




1 0 0
0 0 1
0 1 0


 ,




0 0 1
0 1 0
1 0 0


 ,




0 0 1
1 0 0
0 1 0


 ,




0 1 0
0 0 1
1 0 0


 .

Taking traces we obtain

χρ(1) = 3, χρ(1 2) = χρ(2 3) = χρ(1 3) = 1, χρ(1 2 3) = χρ(1 3 2) = 0.

Notice that we have χρ(g) ∈ Z. Indeed, by Proposition 2.24 we have

Proposition 3.4. Let X be a G-set and ρ the associated permutation representation on
C[X]. Then

χρ(g) = |Xg| = |{x ∈ X : g · x = x}| = the number of elements of X fixed by g.

29
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The next result sheds further light on the significance of the character of a G-representation
over the complex number field C and makes use of linear algebra developed in Section 1.3 of
Chapter 1.

Theorem 3.5. For g ∈ G, there is a basis v = {v1, . . . , vn} of V consisting of eigenvectors
of the linear transformation g.

Proof. Let d = |g|, the order of g. For v ∈ V ,

(gd − IdV )(v) = 0.

Now we can apply Lemma 1.16 with the polynomial f(X) = Xd− 1, which has d distinct roots
in C. ¤

There may well be a smaller degree polynomial identity satisfied by the linear transformation
g on V . However, if a polynomial f(X) satisfied by g has deg f(X) 6 d and no repeated linear
factors, then f(X)|(Xd − 1).

Corollary 3.6. The distinct eigenvalues of the linear transformation g on V are dth roots
of unity. More precisely, if d0 is the smallest natural number such that for all v ∈ V ,

(gd0 − IdV )(v) = 0,

then the distinct eigenvalues of g are d0th roots of unity.

Proof. An eigenvalue λ (with eigenvector vλ 6= 0) of g satisfies

(gd − IdV )(vλ) = 0,

hence
(λd − 1)vλ = 0. ¤

Corollary 3.7. For any g ∈ G we have

χρ(g) =
n∑

j=1

λj

where λ1, . . . , λn are the n eigenvalues of ρg on V , including repetitions.

Corollary 3.8. For g ∈ G we have

χρ(g−1) = χρ(g) = χρ∗(g).

Proof. If the eigenvalues of ρg including repetitions are λ1, . . . , λn, then the eigenvalues of
ρg−1 including repetitions are easily seen to be λ−1

1 , . . . , λ−1
n . But if ζ is a root of unity, then

ζ−1 = ζ, and so χρ(g−1) = χρ(g). The second equality follows from Proposition 2.14. ¤

Now let us return to the idea of functions on a group which are invariant under conjugation.
Denote by Gc the set G and let G act on it by conjugation,

g · x = gxg−1.

The set of all functions Gc −→ C, Map(Gc,C) has an action of G given by

(g · α)(x) = α(gxg−1)

for α ∈ Map(Gc,C), g ∈ G and x ∈ Gc. Then the class functions are those which are invari-
ant under conjugation and hence form the set Map(Gc,C)G which is a C-vector subspace of
Map(Gc,C).
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Proposition 3.9. The C-vector space Map(Gc,C)G has as a basis the set of all functions
∆C : Gc −→ C for C a conjugacy class in G, defined by

∆C(x) =

{
1 if x ∈ C,

0 if x /∈ C.

Thus dimCMap(Gc,C)G is the number of conjugacy classes in G.

Proof. From the proof of Theorem 2.18, we know that a class function α : Gc −→ C has a
uniquely expression of the form

α =
∑

x∈Gc

axδx

for suitable ax ∈ Gc. But

g · α =
∑

x∈Gc

ax(g · δx) =
∑

x∈Gc

axδgxg−1 =
∑

x∈Gc

agxg−1δx.

Hence by uniqueness and the definition of class function, we must have

agxg−1 = ax (g ∈ G, x ∈ Gc).

Hence,

α =
∑

C

aC

∑

x∈C

δx,

where for each conjugacy class C we choose any element c0 ∈ C and put aC = ac0 . Here the
outer sum is over all the conjugacy classes C of G. We now find that

∆C =
∑

x∈C

δx

and the rest of the proof is straightforward. ¤

We will see that the characters of non-isomorphic irreducible representations of G also form
a basis of Map(Gc,C)G. We set C(G) = Map(Gc,C)G.

3.2. Properties of characters

In this section we will see some other important properties of characters.

Theorem 3.10. Let G be a finite group with finite dimensional complex representations
ρ : G −→ GLC(V ) and σ : G −→ GLC(W ). Then

(a) χρ(e) = dimC V and for g ∈ G, |χρ(g)| 6 χρ(e).
(b) The tensor product representation ρ⊗ σ has character

χρ⊗σ = χρχσ,

i.e., for each g ∈ G,

χρ⊗σ(g) = χρ(g)χσ(g).

(c) Let τ : G −→ GLC(U) be a representation which is G-isomorphic to the direct sum of
ρ and σ, so U ∼= V ⊕W . Then

χτ = χρ + χσ,

i.e., for each g ∈ G,

χτ (g) = χρ(g) + χσ(g).
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Proof. (a) The first statement is immediate from the definition. For the second, using
Theorem 3.5, we may choose a basis v = {v1, . . . , vr} of V for which ρgvk = λkvk, where λk is
a root of unity (hence satisfies |λk| = 1). Then

|χρ(g)| = |
r∑

k=1

λk| 6
r∑

k=1

|λk| = r = χρ(e).

(b) Let g ∈ G. By Theorem 3.5, there are bases v = {v1, . . . , vr} and w = {w1, . . . , ws} for V

and W consisting of eigenvectors for ρg and σg with corresponding eigenvalues λ1, . . . , λr and
µ1, . . . , µs. The elements vi ⊗wj form a basis for V ⊗W and by the formula of Equation (2.1),
the action of g on these vectors is given by

(ρ⊗ σ)g · (vi ⊗ wj) = λiµjvi ⊗ wj .

Finally Corollary 3.7 implies

tr(ρ⊗ σ)g =
∑

i,j

λiµj = χρ(g)χσ(g).

(c) For g ∈ G, choose bases v = {v1, . . . , vr} and w = {w1, . . . , ws} for V and W consisting
of eigenvectors for ρg and σg with corresponding eigenvalues λ1, . . . , λr and µ1, . . . , µs. Then
v∪w = {v1, . . . , vr, w1, . . . , ws} is a basis for U consisting of eigenvectors for τg with the above
eigenvalues. Then

χτ (g) = tr τg = λ1 + · · ·+ λr + µ1 + · · ·+ µs = χρ(g) + χσ(g). ¤

3.3. Inner products of characters

In this section we will discuss a way to ‘compare’ characters, using a scalar or inner product
on the vector space of class functions C(G). In particular, we will see that the character of
a representation determines it up to a G-isomorphism. We will again work over the field of
complex numbers C.

We begin with the notion of scalar or inner product on a finite dimensional C-vector space
V . A function ( | ) : V × V −→ C is called a hermitian inner or scalar product on V if for
v, v1, v2, w ∈ V and z1, z2 ∈ C,

(z1v1 + z2v2|w) = z1(v1|w) + z2(v2|w),(LLin)

(w|z1v1 + z2v2) = z1(w|v1) + z2(w|v2),(RLin)

(v|w) = (w|v),(Symm)

0 6 (v|v) ∈ R with equality if and only if v = 0.(PoDe)

A set of vectors {v1, . . . , vk} is said to be orthonormal if

(vi|vj) = δij =

{
1 if i = j,

0 else.

We will define an inner product ( | )G on C(G) = Map(Gc,C)G, often writing ( | ) when the
group G is clear from the context.

Definition 3.11. For α, β ∈ C(G), let

(α|β)G =
1
|G|

∑

g∈G

α(g)β(g).

Proposition 3.12. ( | ) = ( | )G is an hermitian inner product on C(G).
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Proof. The properties LLin, RLin and Symm are easily checked. We will show that PoDe
holds. We have

(α|α) =
1
|G|

∑

g∈G

α(g)α(g) =
1
|G|

∑

g∈G

|α(g)|2 > 0

with equality if and only if α(g) = 0 for all g ∈ G. Hence (α|α) satisfies PoDe. ¤

Now let ρ : G −→ GLC(V ) and θ : G −→ GLC(W ) be finite dimensional representations
over C. We know how to determine (χρ|χθ)G from the definition. Here is another interpreta-
tion of this quantity. Recall from Proposition 2.15 the representations of G on W ⊗ V ∗ and
HomC(V, W ); in fact these are G-isomorphic, W ⊗V ∗ ∼= HomC(V, W ). By Proposition 2.16, the
G-invariant subspaces (W ⊗ V ∗)G and HomC(V, W )G are subrepresentations and are images of
G-homomorphisms ε1 : W ⊗ V ∗ −→ W ⊗ V ∗ and ε2 : HomC(V, W ) −→ HomC(V, W ).

Proposition 3.13. We have

(χθ|χρ)G = tr ε1 = tr ε2.

Proof. Let g ∈ G. By Theorem 3.5 and Corollary 3.7 we can find bases v = {v1, . . . , vr}
for V and w = {w1, . . . , ws} for W consisting of eigenvectors with corresponding eigenvalues
λ1, . . . , λr and µ1, . . . , µs. The elements wj ⊗ v∗i form a basis for W ⊗ V ∗ and moreover g acts
on these by

(θ ⊗ ρ∗)g(wj ⊗ v∗i ) = µjλiwj ⊗ v∗i ,

using Proposition 2.14. By Corollary 3.7 we have

tr(θ ⊗ ρ∗)g =
∑

i,j

µjλi = (
∑

j

µj)(
∑

i

λi) = χθ(g)χρ(g).

By definition of ε1, we have

tr ε1 =
1
|G|

∑

g∈G

tr(θ ⊗ ρ∗)g =
1
|G|

∑

g∈G

χθ(g)χρ(g) = (χθ|χρ).

Since ε2 corresponds to ε1 under the G-isomorphism

W ⊗ V ∗ ∼= HomC(V, W ),

we obtain tr ε1 = tr ε2. ¤

Corollary 3.14. For irreducible representations ρ and θ,

(χθ|χρ) =

{
1 if ρ and θ are G-equivalent,

0 otherwise.

Proof. By Schur’s Lemma, Theorem 2.8,

dimkHomk(V,W )G =

{
1 if ρ and θ are G-equivalent,

0 otherwise.

Since ε2 is the identity on Homk(V, W )G, the result follows. ¤

Thus if we take a collection of non-equivalent irreducible representations {ρ1, . . . , ρr}, their
characters form an orthonormal set {χρ1 , . . . , χρr} in C(G), i.e.,

(χρi |χρj ) = δij .

By Proposition 3.9 we know that dimC C(G) is equal to the number of conjugacy classes in G.
We will show that the characters of the distinct inequivalent irreducible representations form a
basis for C(G), thus there must be dimC C(G) such distinct inequivalent irreducibles.
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Theorem 3.15. The characters of all the distinct inequivalent irreducible representations of
G form an orthonormal basis for C(G).

Proof. Suppose α ∈ C(G) and for every irreducible ρ we have (α|χρ) = 0. We will show
that α = 0.

Suppose that ρ : G −→ GLC(V ) is any representation of G. Then define ρα : V −→ V by

ρα(v) =
∑

g∈G

α(g)ρgv.

For any h ∈ G and v ∈ V we have

ρα(ρhv) =
∑

g∈G

α(g)ρg(ρhv)

= ρh


∑

g∈G

α(g)ρh−1ghv




= ρh


∑

g∈G

α(h−1gh)ρh−1ghv




= ρh


∑

g∈G

α(g)ρgv




= ρhρα(v).

Hence ρα ∈ HomC(V, V )G, i.e., ρα is G-linear.
Now applying this to an irreducible ρ with dim ρ = n, by Schur’s Lemma, Theorem 2.8, we

see that there must be a λ ∈ C for which ρα = λ IdV .
Taking traces, we have tr ρα = nλ. Also

tr ρα =
∑

g∈G

α(g) tr ρg =
∑

g∈G

α(g)χρ(g) = |G|(α|χρ∗).

Hence we obtain

λ =
|G|

dimC V
(α|χρ∗).

If (α|χρ) = 0 for all irreducible ρ, then as ρ∗ is irreducible whenever ρ is, we must have ρα = 0
for every such irreducible ρ.

Since every representation ρ decomposes into a sum of irreducible subrepresentations, it is
easily verified that for every ρ we also have ρα = 0 for such an α.

Now apply this to the regular representation ρ = ρreg on V = C[G]. Taking the basis vector
e ∈ C[G] we have

ρα(e) =
∑

g∈G

α(g)ρge =
∑

g∈G

α(g)ge =
∑

g∈G

α(g)g.

But this must be 0, hence we have ∑

g∈G

α(g)g = 0

in C[G] which can only happen if α(g) = 0 for every g ∈ G, since the g ∈ G form a basis of
C[G]. Thus α = 0 as desired.

Now for any α ∈ C(G), we can form the function

α′ = α−
r∑

i=1

(α|χρi)χρi ,
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where ρ1, ρ2, . . . , ρr is a complete set of non-isomorphic irreducible representation of G. For
each k we have

(α′|χρk
) = (α|χρk

)−
r∑

i=1

(α|χρi)(χρi |χρk
)

= (α|χρk
)−

r∑

i=1

(α|χρi)δi k

= (α|χρk
)− (α|χρk

) = 0,

hence α′ = 0. So the characters χρi span C(G), and orthogonality shows that they are linearly
independent, hence they form a basis. ¤

Recall Theorem 2.12 which says that any representation V can be decomposed into irred-
ucible G-subspaces,

V = V1 ⊕ · · · ⊕ Vm.

Theorem 3.16. Let V = V1 ⊕ · · · ⊕ Vm be a decomposition into irreducible subspaces. If
ρk : G −→ GLC(Vk) is the representation on Vk and ρ : G −→ GLC(V ) is the representation on
V , then (χρ|χρk

) = (χρk
|χρ) is equal to the number of the factors Vj G-equivalent to Vk.

More generally, if also W = W1⊕· · ·⊕Wn is a decomposition into irreducible subspaces with
σk : G −→ GLC(Wk) the representation on Wk and σ : G −→ GLC(W ) is the representation on
W , then

(χσ|χρk
) = (χρk

|χσ)

is equal to the number of the factors Wj G-equivalent to Vk, and

(χρ|χσ) = (χσ|χρ)

=
∑

k

(χσ|χρk
)

=
∑

`

(χσ`
|χρ).

3.4. Character tables

The character table of a finite group G is the array formed as follows. Its columns correspond
to the conjugacy classes of G while its rows correspond to the characters χi of the inequiva-
lent irreducible representations of G. The jth conjugacy class Cj is indicated by displaying a
representative cj ∈ Cj . In the (i, j)th entry we put χi(cj).

c1 c2 · · · cn

χ1 χ1(c1) χ1(c2) · · · χ1(cn)
χ2 χ2(c1) χ2(c2) · · · χ2(cn)
...

. . .
χn χn(c1) χn(c2) · · · χn(cn)

Conventionally we take c1 = e and χ1 to be the trivial character corresponding to the trivial
1-dimensional representation. Since χ1(g) = 1 for g ∈ G, the top of the table will always have
the form

e c2 · · · cn

χ1 1 1 · · · 1

Also, the first column will consist of the dimensions of the irreducibles ρi, χi(e).
For the symmetric group S3 we have
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e (1 2) (1 2 3)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

The representations corresponding to the χj will be discussed later. Once we have the character
table of a group G we can decompose an arbitrary representation into its irreducible constituents,
since if the distinct irreducibles have characters χj (1 6 j 6 r) then a representation ρ on V

has a decomposition
V ∼= n1V1 ⊕ · · · ⊕ nrVr,

where njVj
∼= Vj ⊕ · · · ⊕ Vj means a G-subspace isomorphic to the sum of nj copies of the

irreducible representation corresponding to χj . Theorem 3.16 now gives nj = (χρ|χj). The
non-negative integer nj is called the multiplicity of the irreducible Vj in V . The following
irreducibility criterion is very useful.

Proposition 3.17. If ρ : G −→ GLC(V ) is a non-zero representation, then V is irreducible
if and only if (χρ|χρ) = 1.

Proof. If V = n1V1 ⊕ · · · ⊕ nrVr, then by orthonormality of the χj ,

(χρ|χρ) = (
∑

i

niχi|
∑

j

njχj) =
∑

i

∑

j

ninj(χi|χj) =
∑

j

n2
j .

So (χρ|χρ) = 1 if and only if n2
1 + · · · + n2

r = 1. Remembering that the nj are non-negative
integers we see that (χρ|χρ) = 1 if and only if all but one of the nj is zero and for some k,
nk = 1. Thus V ∼= Vk and so is irreducible. ¤

Notice that for the character table of S3 we can check that the characters satisfy this criterion
and are also orthonormal. Provided we believe that the rows really do represent characters we
have found an orthonormal basis for the class functions C(S3). We will return to this problem
later.

Example 3.18. Let us assume that the above character table for S3 is correct and let
ρ = ρreg be the regular representation of S3 on the vector space V = C[S3]. Let us take as a
basis for V the elements of S3. Then

ρστ = στ,

hence the matrix [ρσ] of ρσ relative to this basis has 0’s down its main diagonal, except when
σ = e for which it is the 6× 6 identity matrix. The character is χ given by

χ(σ) = tr[ρσ] =

{
6 if σ = e,

0 otherwise.

Thus we obtain

(χρ|χ1) =
1
6

∑

σ∈S3

χρ(σ)χ1(σ) =
1
6
× 6 = 1,

(χρ|χ2) =
1
6

∑

σ∈S3

χρ(σ)χ2(σ) =
1
6
× 6 = 1,

(χρ|χ3) =
1
6

∑

σ∈S3

χρ(σ)χ3(σ) =
1
6
(6× 2) = 2.

Hence we have
C[S3] ∼= V1 ⊕ V2 ⊕ V3 ⊕ V3 = V1 ⊕ V2 ⊕ 2V3.
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In fact we have seen the representation V3 already in Problem Sheet 2, Qu. 5(b). It is easily
verified that the character of that representation is χ3.

Of course, in order to use character tables, we first need to determine them! So far we do
not know much about this beyond the fact that the number of rows has to be the same as
the number of conjugacy classes of the group G and the existence of the 1-dimensional trivial
character which we will always denote by χ1 and whose value is χ1(g) = 1 for g ∈ G. The
characters of the distinct complex irreducible representations of G are the irreducible characters
of G.

Theorem 3.19. Let G be a finite group. Let χ1, . . . , χr be the distinct complex irreducible
characters and ρreg the regular representation of G on C[G].

(a) Every complex irreducible representation of G occurs in C[G]. Equivalently, for each
irreducible character χj, (χρreg |χj) 6= 0.

(b) The multiplicity nj of the irreducible Vj with character χj in C[G] is given by

nj = dimC Vj = χj(e).

So to find all the irreducible characters, we only have to decompose the regular representa-
tion!

Proof. Using the formualæ

χρreg(g) =

{
|G| if g = e,

0 if g 6= e,

we have

nj = (χρreg |χj) =
1
|G|

∑

g∈G

χρreg(g)χj(g) =
1
|G|χρreg(e)χj(e) = χj(e). ¤

Corollary 3.20. We have

|G| =
r∑

j=1

n2
j =

r∑

j=1

(χρreg |χj)2.

The following result also holds but the proof requires some Algebraic Number Theory.

Proposition 3.21. For each irreducible character χj, nj = (χρreg |χj) divides the order of
G, i.e., nj | |G|.

The following row and column orthogonality relations for the character table of a group G

are very important.

Theorem 3.22. Let χ1, . . . , χr be the distinct complex irreducible characters of G and e =
g1, . . . , gr be a collection of representatives for the conjugacy classes of G and for each k, let
CG(gk) be the centralizer of gk.

(a) Row orthogonality: For 1 6 i, j 6 r,
r∑

k=1

χi(gk)χj(gk)
|CG(gk)| = (χi|χj) = δij .

(b) Column orthogonality: For 1 6 i, j 6 r,
r∑

k=1

χk(gi)χk(gj)
|CG(gi)| = δij .
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Proof.

(a) We have

δij = (χi|χj) =
1
|G|

∑

g∈G

χi(g)χj(g)

=
1
|G|

r∑

k=1

|G|
|CG(gk)|χi(gk)χj(gk)

[since the conjugacy class of gk contains |G|/|CG(gk)| elements]

=
r∑

k=1

χi(gk)χj(gk)
|CG(gk)| .

(b) Let ψs : G −→ C be the function given by

ψs(g) =

{
1 if g is conjugate to gs,

0 if g is not conjugate to gs.

By Theorem 3.15, there are λk ∈ C such that

ψs =
r∑

k=1

λkχk.

But then λj = (ψs|χj). We also have

(ψs|χj) =
1
|G|

∑

g∈G

ψs(g)χj(g)

=
r∑

k=1

ψs(gk)χj(gk)
|CG(gk)|

=
χj(gs)
|CG(gs)| ,

hence

ψs =
r∑

j=1

χj(gs)
|CG(gs)|χj .

Thus we have the required formula

δst = ψs(gt) =
r∑

j=1

χj(gt)χj(gs)
|CG(gs)| . ¤

3.5. Examples of character tables

Equipped with the results of the last section, we can proceed to find some character tables.
For abelian groups we have the following result which follows from what we have seen already
together with the fact that in an abelian group every conjugacy class has exactly one element.

Proposition 3.23. Let G be a finite abelian group. Then there are |G| distinct complex
irreducible characters, each of which is 1-dimensional. Moreover, in the regular representation
each irreducible occurs with multiplicity 1, i.e.,

C[G] ∼= V1 ⊕ · · · ⊕ V|G|.
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Example 3.24. Let G = 〈g0〉 ∼= Z/n be cyclic of order n. Let ζn = e2πi/n, the ‘standard’
primitive n-th root of unity. Then for each k = 0, 1, . . . , (n− 1) we may define a 1-dimensional
representation ρk : G −→ C× by

ρk(gr
0) = ζrk

n .

The character of ρk is χk given by
χk(gr

0) = ζrk
n .

Clearly these are all irreducible and non-isomorphic.

Let us consider the orthogonality relations for these characters. We have

(χk|χk) =
1
n

n−1∑

r=0

χk(gr
0)χk(gr

0)

=
1
n

n−1∑

r=0

ζkr
n ζkr

n

=
1
n

n−1∑

r=0

1 =
n

n
= 1.

For 0 6 k < ` 6 (n− 1) we have

(χk|χ`) =
1
n

n−1∑

r=0

χk(gr
0)χ`(gr

0)

=
1
n

n−1∑

r=0

ζkr
n ζ`r

n

=
1
n

n−1∑

r=0

ζ(k−`)r
n .

By row orthogonality this sum is 0. This is a special case of the following identity which is often
used in many parts of Mathematics.

Lemma 3.25. Let d ∈ N, m ∈ Z and ζd = e2πi/d. Then
d−1∑

r=0

ζmr
d =

{
d if d | m,

0 otherwise.

Proof. We give a proof which does not use character theory!
If d - m, then ζm

d 6= 1. Then we have

ζm
d

d−1∑

r=0

ζmr
d =

d−1∑

r=0

ζ
m(r+1)
d

=
d∑

s=1

ζms
d

=
d−1∑

r=0

ζmr
d ,

hence

(ζm
d − 1)

d−1∑

r=0

ζmr
d = 0,
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and so
d−1∑

r=0

ζmr
d = 0.

If d | m then
d−1∑

r=0

ζmr
d =

d−1∑

r=0

1 = d. ¤

As a special case of Exercise 3.24, consider the case where n = 3 and G = 〈g0〉 ∼= Z/3. The
character table of G is

e g0 g2
0

χ1 1 1 1
χ2 1 ζ3 ζ2

3

χ3 1 ζ2
3 ζ3

Example 3.26. Let G = 〈a0, b0〉 be abelian of order 4, so G ∼= Z/2 × Z/2. The character
table of G is as follows.

e a0 b0 a0b0

χ1 = χ00 1 1 1 1
χ10 1 −1 1 −1
χ01 1 1 −1 −1
χ11 1 −1 −1 1

Example 3.27. The character table of the quaternion group of order 8, Q8, is as follows.
1 −1 i j k

χ1 1 1 1 1 1
χi 1 1 1 −1 −1
χj 1 1 −1 1 −1
χk 1 1 −1 −1 1
χ2 2 −2 0 0 0

Proof. There are 5 conjugacy classes:

{1}, {−1}, {i,−i}, {j,−j}, {k,−k}.
As always we have the trivial character χ1. There are 3 homomorphisms Q8 −→ C× given by

ρi(ir) = 1 and ρi(j) = ρi(k) = −1,

ρj(jr) = 1 and ρj(i) = ρi(k) = −1,

ρk(kr) = 1 and ρk(i) = ρk(j) = −1.

These provide three 1-dimensional representations with characters χi, χj, χk taking values

χi(ir) = 1 and χi(j) = χi(k) = −1,

χj(jr) = 1 and χj(i) = χi(k) = −1,

χk(kr) = 1 and χk(i) = χk(j) = −1.

Since |Q8| = 8, we might try looking for a 2-dimensional complex representation. But the defini-
tion of Q8 provides us with the inclusion homomorphism j : Q8 −→ GLC(C2), where we interpret
the matrices as taken in terms of the standard basis. The character of this representation is χ2

given by
χ2(1) = 2, χ2(−1) = −2, χ2(±i) = χ2(±j) = χ2(±k) = 0.

This completes the determination of the character table of Q8. ¤
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Example 3.28. The character table of the dihedral group of order 8, D8, is as follows.
e α2 α β αβ

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

Proof. The elements of D8 are

e, α, α2, α3, β, αβ, α2β, α3β

and these satisfy the relations

α4 = e = β2, βαβ = α−1.

The conjugacy classes are the sets

{e}, {α2}, {α, α3}, {β, α2β}, {αβ, α3β}.
There are two obvious 1-dimensional representations, namely the trivial one ρ1 and also ρ2,
where

ρ2(α) = 1, ρ2(β) = −1.

The character of ρ2 is determined by

χ2(αr) = 1, χ2(βαr) = −1.

A third 1-dimensional representation comes from the homomorphism ρ3 : D8 −→ C× given by

ρ3(α) = −1, ρ3(β) = 1.

The fourth 1-dimensional representation comes from the homomorphism ρ4 : D8 −→ C× for
which

ρ4(α) = −1, ρ4(β) = −1.

The characters χ1, χ2, χ3, χ4 are clearly distinct and thus orthonormal.
Before describing χ5 as the character of a 2-dimensional representation, we will determine

it up to a scalar factor. Suppose that

χ5(e) = a, χ5(α2) = b, χ5(α) = c, χ5(β) = d, χ5(βα) = e

for a, b, c, d, e ∈ C. The orthonormality conditions give (χ5|χj) = δj 5. For j = 1, 2, 3, 4, we
obtain the following linear system:




1 1 2 2 2
1 1 2 −2 −2
1 1 −2 2 −2
1 1 −2 −2 2







a

b

c

d

e




=




0
0
0
0


(3.1)

which has solutions
b = −a, c = d = e = 0.

If χ5 is an irreducible character we must also have (χ5|χ5) = 1, giving

1 =
1
8

(
a2 + a2

)
=

a2

4
,

and so a = ±2. So we must have the stated bottom row. The corresponding representation
appears in Example 2.6 where it is viewed as a complex representation which is easily seen to
have character χ5. ¤
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Remark 3.29. The groups Q8 and D8 have identical character tables even though they
are non-isomorphic! This shows that character tables do not always distinguish non-isomorphic
groups.

Example 3.30. The character table of the symmetric group S4, is as follows.
e (1 2) (1 2)(3 4) (1 2 3) (1 2 3 4)
[1] [6] [3] [8] [6]

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 3 1 −1 0 −1
χ4 3 −1 −1 0 1
χ5 2 0 2 −1 0

Proof. Recall that the conjugacy classes correspond to the different cycle types which are
represented by the elements in the following list, where the numbers in brackets [ ] give the sizes
of the conjugacy classes:

e [1], (1 2) [6], (1 2)(3 4) [3], (1 2 3) [8], (1 2 3 4) [6].

So there are 5 rows and columns in the character table. The sign representation sign: S4 −→ C×
is 1-dimensional and has character

χ2(e) = χ2((1 2)(3 4)) = χ2(1 2 3) = 1 and χ2(1 2) = χ2(1 2 3 4) = −1.

The 4-dimensional permutation representation ρ̃4 corresponding to the action on 4 = {1, 2, 3, 4}
has character χρ̃4 given by

χρ̃4(σ) = number of fixed points of σ.

So we have

χρ̃4(e) = 4, χρ̃4((1 2)(3 4)) = χρ̃4(1 2 3 4) = 0, χρ̃4(1 2 3) = 1, χρ̃4(1 2) = 2.

We know that this representation has the form

C[4] = C[4]S4 ⊕W

where W is a 3-dimensional S4-subspace whose character χ3 is determined by

χ1 + χ3 = χρ̃4 ,

hence
χ3 = χρ̃4 − χ1.

So we obtain the following values for χ3

χ3(e) = 3, χ3((1 2)(3 4)) = χ3(1 2 3 4) = −1, χ3(1 2 3) = 0, χ3(1 2) = 1.

Calculating the inner product of this with itself gives

(χ3|χ3) =
1
24

(9 + 6 + 3 + 0 + 6) = 1,

and so χ3 is the character of an irreducible representation.
From this information we can deduce that the two remaining irreducibles must have dimen-

sions n4, n5 for which
n2

4 + n2
5 = 24− 1− 1− 9 = 13,

and thus we can take n4 = 3 and n5 = 2, since these are the only possible values up to order.
If we form the tensor product ρ2 ⊗ ρ3 we get a character χ4 given by

χ4(g) = χ2(g)χ3(g),

hence the 4-th line in the table. Then (χ4|χ4) = 1 and so χ4 really is an irreducible character.
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For χ5, recall that the regular representation ρreg has character χρreg decomposing as

χρreg = χ1 + χ2 + 3χ3 + 3χ4 + 2χ5,

hence we have

χ5 =
1
2

(
χρreg − χ1 − χ2 − 3χ3 − 3χ4

)
,

which gives the last row of the table. ¤

Notice that in this example, the tensor product ρ3 ⊗ ρ5 which is a 6-dimensional represen-
tation that cannot be irreducible. Its character χρ3⊗ρ5 must be a linear combination of the
irreducibles,

χρ3⊗ρ5 =
5∑

j=1

(χρ3⊗ρ5 |χj)χj .

Recall that for g ∈ S4,
χρ3⊗ρ5(g) = χρ3(g)χρ5(g).

For the values of the coefficients we have

(χρ3⊗ρ5 |χ1) =
1
24

(6 + 0− 6 + 0 + 0) = 0,

(χρ3⊗ρ5 |χ2) =
1
24

(6 + 0− 6 + 0 + 0) = 0,

(χρ3⊗ρ5 |χ3) =
1
24

(18 + 0 + 6 + 0 + 0) = 1,

(χρ3⊗ρ5 |χ4) =
1
24

(18 + 0 + 6 + 0 + 0) = 1,

(χρ3⊗ρ5 |χ5) =
1
24

(12 + 0− 12 + 0 + 0) = 0.

Thus we have
χρ3⊗ρ5 = χ3 + χ4.

In general it is hard to predict how the tensor product of representations decomposes in terms
of irreducibles.

3.6. Reciprocity formulæ

Let H 6 G, let ρ : G −→ GLC(V ) be a representation of G and let σ : H −→ GLC(W ) be a
representation of H. Recall that the induced representation σ ↑G

H is of dimension |G/H| dimCW ,
while the restriction ρ ↓G

H has dimension dimC V . We will write χρ ↓G
H and χσ ↑G

H for the
characters of these representations. First we show how to calculate the character of an induced
representation.

Lemma 3.31. The character of the induced representation σ ↑G
H is given by

χσ ↑G
H (g) =

1
|H|

∑

x∈G
g∈xHx−1

χσ(x−1gx).

Proof. See [1, §16]. ¤

Example 3.32. Let H = {e, α, α2, α3} 6 D8 and let σ : H −→ C× be the 1-dimensional
representation of H for which

σ(αk) = ik.

Decompose the induced representation σ ↑D8
H into its irreducible summands over the group D8.
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Proof. We will use the character table of D8 given in Example 3.28. Notice that H / D8,
hence for x ∈ D8 we have xHx−1 = H. Let χ = χσ ↑D8

H be the character of this induced
representation. We have

χ(g) =
1
4

∑

x∈D8

g∈xHx−1

χσ(x−1gx)

=





1
4

∑

x∈D8

χσ(x−1gx) if g ∈ H,

0 if g /∈ H.

Thus if g ∈ H we find that

χ(g) =





1
4

(
4χσ(α) + 4χσ(α3)

)
if g = α, α3,

1
4

(
8χσ(α2)

)
if g = α2,

1
4

(8χσ(e)) if g = e.

Hence we have

χ(g) =





i + i3 = 0 if g = α, α3,

−2 if g = α2,

2 if g = e,

0 if g /∈ H.

Taking inner products with the irreducible characters χj we obtain the following.

(χ|χ1)D8 =
1
8

(2− 2 + 0 + 0 + 0) = 0,

(χ|χ2)D8 =
1
8

(2− 2 + 0 + 0 + 0) = 0,

(χ|χ3)D8 =
1
8

(2− 2 + 0 + 0 + 0) = 0,

(χ|χ4)D8 =
1
8

(2− 2 + 0 + 0 + 0) = 0,

(χ|χ5)D8 =
1
8

(4 + 4 + 0 + 0 + 0) = 1.

Hence we must have χ = χ5, giving another derivation of the representation ρ5. ¤

Theorem 3.33 (Frobenius Reciprocity). There is a linear isomorphism

HomG(W ↑G
H , V ) ∼= HomH(W,V ↓G

H).

Equivalently on characters we have

(χσ ↑G
H |χρ)G = (χσ|χρ ↓G

H)H .

Proof. See [1, §16]. ¤

Example 3.34. Let σ be the irreducible representation of S3 with character χ3 and un-
derlying vector space W . Decompose the induced representation W ↑S4

S3
into its irreducible

summands over the group S4.

Proof. Let
W ↑S4

S3

∼= n1V1 ⊕ n2V2 ⊕ n3V3 ⊕ n4V4 ⊕ n5V5.

Then
nj = (χj |χσ ↑S4

S3
)S4 = (χj ↓S4

S3
|χσ)S3 .
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To evaluate the restriction χj ↓S4
S3

we take only elements of S4 lying in S3. Hence we have

n1 = (χ1 ↓S4
S3
|χσ)S3 =

1
6

(2 + 0− 2) = 0,

n2 = (χ2 ↓S4
S3
|χσ)S3 =

1
6

(1 · 2 + 0 + 1 · (−2)) = 0,

n3 = (χ3 ↓S4
S3
|χσ)S3 =

1
6

(3 · 2 + 0 + 0 · (−2)) = 1,

n4 = (χ4 ↓S4
S3
|χσ)S3 =

1
6

(3 · 2 + 0 + 0 · (−2)) = 1,

n5 = (χ5 ↓S4
S3
|χσ)S3 =

1
6

(2 · 2 + 0 +−2 · (−1)) =
6
6

= 1.

Hence we have
W ↑S4

S3

∼= V3 ⊕ V4 ⊕ V5. ¤

3.7. Representations of semi-direct products

Recall the notion of a semi-direct product G = N oH; this has N /G, H 6 G, H ∩N = {e}
and HN = NH = G. We will describe a way to produce the irreducible characters of G from
those of the groups N / G and H 6 G.

Proposition 3.35. Let ϕ : Q −→ G be a homomorphism and let ρ : G −→ GLC(V ) be a
representation of G. Then the composite ϕ∗ρ = ρ ◦ϕ is a representation of Q on V . Moreover,
if ϕ∗ρ is irreducible over Q, then ρ is irreducible over G.

Proof. The first part is clear.
For the second, suppose that W ⊆ V is a G-subspace. Then for h ∈ Q and w ∈ W we have

(ϕ∗ρ)hw = ρϕ(h)w ∈ W.

Hence W is a Q-subspace. By irreducibility of ϕ∗ρ, W = {0} or W = V , hence V is irreducible
over G. ¤

The representation ϕ∗ρ is called the representation on V induced by ϕ and we often denote
the underlying Q-module by ϕ∗V . If j : Q −→ G is the inclusion of a subgroup, then j∗ρ = ρ ↓G

Q,
the restriction of ρ to Q.

In the case of G = N oH, there is a surjection π : G −→ H given by

π(nh) = h (n ∈ N, h ∈ H),

as well as the inclusions i : N −→ G and j : H −→ G. We can apply the above to each of these
homomorphisms.

Now let ρ : G −→ GLC(V ) be an irreducible representation of the semi-direct product G =
N oH. Then i∗V decomposes as

i∗V = W1 ⊕ · · · ⊕Wm

where Wk is a non-zero irreducible N -subspace. For each g ∈ G, notice that if x ∈ N and
w ∈ W1, then

ρx(ρgw) = ρxgw = ρgρg−1xgw = ρgw
′

for w′ = ρg−1xgw. Since g−1xg ∈ g−1Ng = N ,

gW1 = {ρgw : w ∈ W1}
is an N -subspace of i∗V . If we take

W̃1 =





∑

g∈G

ρgwg : wg ∈ W1



 ,
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then we can verify that W̃1 is a non-zero N -subspace of i∗V and in fact is also a G-subspace of
V . Since V is irreducible, this shows that V = W̃1.

Now let
H1 = {h ∈ H : hW1 = W1} ⊆ H.

Then we can verify that H1 6 H 6 G. The semidirect product

G1 = N oH1 = {nh ∈ G : n ∈ N, h ∈ H1} 6 G

also acts on W1 since for nh ∈ G1 and w ∈ W1,

ρnhw = ρnρhw = ρnw′′ ∈ W1

where w′′ = ρhw; hence W1 is a G1-subspace of V ↓G
G1

. Notice that by the second part of
Proposition 3.35, W1 is irreducible over G1.

Lemma 3.36. There is a G-isomorphism

W1 ↑G
G1
∼= V.

Proof. See the books [3, 4]. ¤

Thus every irreducible of G = N oH arises from an irreducible representation of N which
extends to a representation (actually irreducible) of such a subgroup N oK 6 N oH = G for
K 6 H but to no larger subgroup.

Example 3.37. Let D2n be the dihedral group of order 2n. Then every irreducible repre-
sentation of D2n has dimension 1 or 2.

Proof. We have D2n = N o H where N = 〈α〉 ∼= Z/n and H = {e, β}. The n distinct
irreducibles ρk of N are all 1-dimensional by Example 3.24. Hence for each of these we have
a subgroup Hk 6 H such that the action of N extends to N o Hk and so the corresponding
induced representation Vk ↑D2n

Hk
is irreducible and has dimension |D2n/(N o Hk)| = 2/|Hk|.

Every irreducible of D2n occurs this way. ¤

For n = 4, it is a useful exercise to identify the irreducibles in the character table in this
way.

Exercises on Chapter 3

3-1. Determine the characters of the representations in Questions 1,2,3 of Chapter 2.

3-2. Let ρc : G −→ GLC(C[Gc]) denote the permutation representation associated to the
conjugation action of G on its own underlying set Gc, i.e., g · x = gxg−1. Let χc = χρc be the
character of ρc.

(i) For x ∈ G show that the vector subspace Vx spanned by all the conjugates of x is a
G-subspace. What is dimVx?

(ii) For g ∈ G show that χc(g) = |CG(g)| where CG(g) is the centralizer of g in G.
(iii) For any class function α ∈ C(G) determine (α|χc).
(iv) If χ1, . . . , χr are the distinct irreducible characters of G and ρ1, . . . , ρr are the corre-

sponding irreducible representations, determine the multiplicity of ρj in C[Gc].
(v) Carry out these calculations for the groups S3, S4, A4, D8, Q8.

3-3. Let G be a finite group and H 6 G a subgroup. Consider the set of cosets G/H as a G-set
with action given by g · xH = gxH and let ρ be the associated permutation representation on
C[G/H].
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(i) Show that for g ∈ G,

χρ(g) = |{xH ∈ G/H : g ∈ xHx−1}|.
(ii) If H / G (i.e., H is a normal subgroup), show that

χρ(g) =

{
0 if g /∈ H,

|G/H| if g ∈ H.

(iii) Determine the character χρ when G = S4 (the permutation group of the set {1, 2, 3, 4})
and H = S3 (viewed as the subgroup of all permutations fixing 4).

3-4. Let ρ : G −→ GLC(W ) be a representation and let ρj : G −→ GLC(Vj) (j = 1, . . . , r) be
the distinct irreducible representations of G with characters χj = χρj .

(i) For each i, show that εi : W −→ W is a G-linear transformation, where

εi(w) =
χi(e)
|G|

∑

g∈G

χi(g)ρgw.

(ii) Let Wj,k ⊆ W be non-zero G-subspaces such that

W = W1,1 ⊕ · · · ⊕W1,s1 ⊕W2,1 ⊕ · · · ⊕W2,s2 ⊕ · · · ⊕Wr,1 ⊕ · · · ⊕Wr,sr

and Wj,k is G-isomorphic to Vj . Show that if w ∈ Wj,k then εi(w) ∈ Wj,k.
(iii) By considering for each pair j, k the restriction of εi to a G-linear transformation

ε′i : Wj,k −→ Wj,k, show that if w ∈ Wj,k then

εi(w) =

{
w if i = j,

0 otherwise.

Deduce that im εi = Wi,1 ⊕ · · ·Wi,si .
[Remark: The subspace Wi = im εi is called the subspace associated to the irreducible
ρi and depends only on ρ and ρi. Consequently, the decomposition W = W1⊕ · · ·⊕Wr

is called the canonical decomposition of W . Given each Wj, there are many differ-
ent ways to decompose it into irreducible G-isomorphic to Vj, hence the original finer
decomposition is non-canonical.]

(iv) Show that

εi ◦ εj =

{
εi if i = j,

0 otherwise.

(v) For the group S3, use these ideas to find the canonical decomposition for the regular
representation C[S3]. Repeat this for some other groups and non-irreducible represen-
tations.

3-5. Let A4 be the alternating group and ζ = e2πi/3 ∈ C.
(i) Verify the orthogonality relations for the character table of A4 given below.

e (1 2)(3 4) (1 2 3) (1 3 2)
[1] [3] [4] [4]

χ1 1 1 1 1
χ2 1 1 ζ ζ−1

χ3 1 1 ζ−1 ζ

χ4 3 −1 0 0
(ii) Let ρ : A4 −→ GLC(V ) be the permutation representation of A4 associated to the

conjugation action of A4 on the set X = A4. Using the character table in (i), express V

as a direct sum n1V1⊕n2V2⊕n3V3⊕n4V4, where Vj denotes an irreducible representation
with character χj .
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(iii) For each of the representations Vi, determine its contragredient representation V ∗
i as a

direct sum n1V1 ⊕ n2V2 ⊕ n3V3 ⊕ n4V4.
(iv) For each of the representations Vi⊗Vj , determine its direct sum decomposition n1V1⊕

n2V2 ⊕ n3V3 ⊕ n4V4.

3-6. Let A 6 Sn be an abelian group which acts transitively on the set n.
(i) Show that for each k ∈ n the stabilizer of k is trivial. Deduce that |A| = n.
(ii) Show that the permutation representation C[n] of A decomposes as

C[n] = ρ1 ⊕ · · · ⊕ ρn,

where ρ1, . . . , ρn are the distinct irreducible representations of A.



CHAPTER 4

Some applications to group theory

In this chapter we will see some applications of representation theory to Group Theory.

4.1. Characters and the structure of groups

In this section we will give some results relating the character table of a finite group to its
subgroup structure.

Let ρ : G −→ GLC(V ) be a representation for which dimC V = n. Define the subset

kerχρ = {g ∈ G : χρ(g) = χρ(e)}
Proposition 4.1. kerχρ = ker ρ and hence kerχρ is a normal subgroup of G.

Proof. For g ∈ kerχρ, let v = {v1, . . . , vn} be a basis of V consisting of eigenvectors of ρg,
so ρgvk = λkvk for suitable λk ∈ C, and indeed each λk is a root of unity and so has the form
λk = etki for tk ∈ R. Then

χρ(g) =
n∑

k=1

λk.

Recall that for t ∈ R, eti = cos t + i sin t. Hence

χρ(g) =
n∑

k=1

cos tk + i
n∑

k=1

sin tk.

Since χρ(e) = n,
n∑

k=1

cos tk = n,

which can only happen if each cos tk = 1, but then sin tk = 0. So we have all λk = 1 which
implies that ρg = IdV . Thus kerχρ = ker ρ as claimed. ¤

Now let χ1, . . . , χr be the distinct irreducible characters of G and r = {1, . . . , r}.
Proposition 4.2.

⋂r
k=1 kerχk = {e}.

Proof. Set K =
⋂r

k=1 kerχk 6 G. By Proposition 4.1, for each k, kerχk = ker ρk, hence
N / G. Indeed, since N 6 ker ρk there is a factorisation of ρk : G −→ GLC(Vk),

G
p−→ G/K

ρ′k−→ GLC(Vk),

where p : G −→ G/K is the quotient homomorphism. As p is surjective, it is easy to check
that ρ′k is an irreducible representation of G/K, with character χ′k. Clearly the χ′k are distinct
irreducible characters of G/K and nk = χk(e) = χ′k(eK) are the dimensions of the corresponding
irreducible representations.

By Corollary 3.20, we have
n2

1 + · · ·+ n2
r = |G|

since the χk are the distinct irreducible characters of G. But we also have

n2
1 + · · ·+ n2

r 6 |G/K|
49
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since the χ′k are some of the distinct irreducible characters of G/K. Combining these we have
|G| 6 |G/K| which can only happen if |G/K| = |G|, i.e., if K = {e}. So in fact

r⋂

k=1

kerχk = {e}. ¤

Proposition 4.3. A subgroup N 6 G is normal if and only it has the form

N =
⋂

k∈S

kerχk

for some subset S ⊆ r.

Proof. Let N / G and suppose the quotient group G/N has s distinct irreducible repre-
sentations σk : G/N −→ GLC(Wk) (k = 1, . . . , s) with characters χ̃k. Each of these gives rise to
a composite representation of G

σ′k : G
q−→ G/N

σk−→ GLC(Wk)

and again this is irreducible because the quotient homomorphism q : G −→ G/N is surjective.
This gives s distinct irreducible characters of G, so each χσ′k

is actually one of the χj .
By Proposition 4.2 applied to the quotient group G/N ,

s⋂

k=1

kerσk =
s⋂

k=1

ker χ̃k = {eN},

hence since kerσ′k = q−1 kerσk, we have

s⋂

k=1

kerχσ′k
=

s⋂

k=1

kerσ′k = N.

Conversely, for any S ⊆ r,
⋂

k∈S kerχk / G since for each k, kerχk / G. ¤

Corollary 4.4. G is simple if and only if for every irreducible character χk 6= χ1 and
e 6= g ∈ G, χk(g) 6= χk(e). Hence the character table can be used to decide whether G is simple.

Corollary 4.5. The character table can be used to decide whether G is solvable.

Proof. G is solvable if and only if there is a sequence of subgroups

{e} = G` / G`−1 / · · · / G1 / G0 = G

for which the quotient groups Gs/Gs+1 are abelian. This can be seen from the character table.
For a solvable group we can take the subgroups to be the lower central series given by G(0) = G,
and in general G(s+1) = [G(s), G(s)]. It is easily verified that G(s) /G and G(s)/G(s+1) is abelian.
By Proposition 4.3 we can now check whether such a sequence of normal subgroups exists using
the character table. ¤

We can also define the subset

ker |χρ| = {g ∈ G : |χρ(g)| = χρ(e)}.

Proposition 4.6. ker |χρ| is a normal subgroup of G.
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Proof. If g ∈ ker |χρ|, then using the notation of the proof of Proposition 4.1, we find that

|χρ(g)|2 = |
n∑

k=1

cos tk + i

n∑

k=1

sin tk|2

=

(
n∑

k=1

cos tk

)2

+

(
n∑

k=1

sin tk

)2

=
n∑

k=1

cos2 tk +
n∑

k=1

sin2 tk + 2
∑

16k<`6n

(cos tk cos t` + sin tk sin t`)

= n + 2
∑

16k<`6n

cos(tk − t`)

6 n + 2
(

n

2

)
= n + n(n− 1) = n2.

with equality if and only if cos(tk− t`) = 1 whenever 1 6 k < ` 6 n. But if |χρ(g)| = χρ(e) = n,
then we must have n2 6 n2 with equality if and only if cos(tk − t`) = 1 for all k, `. Assuming
that tj ∈ [0, 2π) for each j, we must have t` = tk, since we do indeed have equality here. Hence
ρ(g) = λg IdV . In fact we have |λg| = 1 since eigenvalues of ρg are roots of unity.

If g1, g2 ∈ ker |χρ|, then
ρg1g2 = λg1λg2 IdV

and so g1g2 ∈ ker |χρ|, hence ker |χρ| is a subgroup of G. Normality is also easily verified. ¤

4.2. A result on representations of simple groups

Let G be a finite non-abelian simple group (hence of order |G| > 1). We already know that
G has no non-trivial 1-dimensional representations.

Theorem 4.7. An irreducible 2-dimensional representation of a finite non-abelian simple
group G is trivial.

Proof. Suppose we have a non-trivial 2-dimensional irreducible representation ρ of G. By
choosing a basis we can assume that we are considering a representation ρ : G −→ GLC(C2). We
can form the composite det ◦ρ : G −→ C× which is a homomorphism whose kernel is a proper
normal subgroup of G, hence must equal G. Hence ρ : G −→ SLC(C2), where

SLC(C2) = {A ∈ GLC(C2) : detA = 1}.
Now notice that since ρ is irreducible and 2-dimensional, Proposition 3.21 tells us that |G|

is even (this is the only time we have actually used this result!) Now by Cauchy’s Lemma,
Theorem A.13, there is an element t ∈ G of order 2. Hence ρt ∈ SLC(C2) also has order 2 since
ρ is injective. Since ρt satisfies the polynomial identity

ρ2
t − I2 = O2,

its eigenvalues must be ±1. By Theorem 3.5 we know that we can diagonalise ρt, hence at least
one eigenvalue must be −1. If one eigenvalue were 1 then for a suitable invertible matrix P we
would have

PρtP
−1 =

[
1 0
0 −1

]

implying det ρt = −1, which contradicts the fact that det ρt = 1. Hence we must have −1 as a
repeated eigenvalue and so for suitable invertible matrix P ,

PρtP
−1 =

[−1 0
0 −1

]
= −I2
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and hence

ρt = P−1(−I2)P = −I2.

For g ∈ G,

ρgtg−1 = ρgρtρ
−1
g = ρg(−I2)ρ−1

g = −I2 = ρt,

and since ρ is injective, gtg−1 = t. Thus e 6= t ∈ Z(G) = {e} since Z(G) / G. This provides a
contradiction. ¤

4.3. A Theorem of Frobenius

Let G be a finite group and H 6 G a subgroup which has the following property:

For all g ∈ G−H, gHg−1 ∩H = {e}.
Such a subgroup H is called a Frobenius complement.

Theorem 4.8 (Frobenius’s Theorem). Let H 6 G be a Frobenius complement and let

K = G−
⋃

g∈G

gHg−1 ⊆ G,

the subset of G consisting of all elements of G which are not conjugate to elements of H. Then
N = K ∪ {e} is a normal subgroup of G which is the semidirect product G = N oH.

Such a subgroup N is called a Frobenius kernel of G.
The remainder of this section will be devoted to giving a proof of this theorem using Char-

acter Theory. We begin by showing that

(4.1) |K| = |G|
|H| − 1.

First observe that if e 6= g ∈ xHx−1 ∩ yHy−1, then e 6= x−1gx ∈ H ∩ x−1yHy−1x; the latter
can only occur if x−1y ∈ H. Notice that the normalizer NG(H) is no bigger than H, hence
NG(H) = H. Thus there are exactly |G|/|NG(H)| = |G|/|H| distinct conjugates of H, with
only one element e in common to two or more of them. So the number elements of G which are
conjugate to elements of H is

|G|
|H|(|H| − 1) + 1.

Hence,

|K| = |G| − |G|
|H|(|H| − 1)− 1 =

|G|
|H| − 1.

Now let α ∈ C(H) be a class function on the group H. We can define a function α̃ : G −→ C
by

α̃(g) =

{
α(xgx−1) if xgx−1 ∈ H,

α(e) if g ∈ K.

This is well defined and also a class function on G. We also have

(4.2) α̃ = α ↑G
H −α(e)(χξ ↑G

H −χG
1 ),

where we use the notation of Qu. 4 in the Problems. In fact, χξ ↑G
H −χG

1 is the character of a
representation of G.
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Given two class functions α, β on H,

(α̃|β̃)G =
1
|G|


∑

g∈G

α̃(g)β̃(g)




=
1
|G|


(|K|+ 1)α(e)β(e) +

∑

g∈G−N

α̃(g)β̃(g)




=
1
|G|


 |G|
|H|α(e)β(e) +

|G|
|H|

∑

e 6=h∈H

α̃(h)β̃(h)




[by Equation (4.1)]

=
1
|H|

(∑

h∈H

α̃(h)β̃(h)

)

= (α̃|β̃)H .

For χ an irreducible character of H,

(χ̃|χ̃)G = (χ|χ)H = 1

by Proposition 3.17. Also, Equation (4.2) implies that

χ̃ =
∑

j

mjχ
G
j ,

where mj ∈ Z and the χG
j are the distinct irreducible characters of G. Using Frobenius Reci-

procity 3.33, these coefficients mj are given by

mj = (χ̃|χG
j )G = (χ|χG

j ↓G
H)H > 0

since χ, χG
j ↓G

H are characters of H. As χ̃(e) = χ(e) > 0, χ̃ is itself the character of some
representation ρ of G, i.e., χ̃ = χρ. Notice that

N = {g ∈ G : χρ(g) = χρ(e)} = ker ρ.

Hence, by Proposition 4.1, N is a normal subgroup of G.
Now H ∩N = {e} by construction. Moreover,

|NH| > |H|| |N | = |G|,
hence NH = NH = G. So G = N oH. This completes the proof of Theorem 4.8.

An equivalent formulation of this result is the following which can be found in [1, Chapter 6].

Theorem 4.9 (Frobenius’s Theorem: group action version). Let the finite group G

act transitively on the set X, and suppose that each element g 6= e fixes at most one element of
X, i.e., |Xg| 6 1. Then

N = {g ∈ G : |Xg| = 0} ∪ {e}
is a normal subgroup of G.

Proof. Let x ∈ X be fixed by some element of G not equal to the identity element e, and
let H = StabG(x). Then for k ∈ G−H, k · x 6= x has

StabG(k · x) = k StabG(x)k−1 = kHk−1.

If e 6= g ∈ H ∩ kHk−1, then g stabilizes x and k · x, but this contradicts the assumption on the
number of fixed points of elements in G. Hence H is a Frobenius complement. Now the result
follows from Theorem 4.8. ¤
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Example 4.10. The subgroup H = {e, (1 2)} 6 S3 satisfies the conditions of Theorem 4.8.
Then ⋃

g∈S3

gHg−1 = {e, (1 2), (1 3), (2 3)}

and N = {e, (1 2 3), (1 3 2)} is a Frobenius kernel.

Exercises on Chapter 4

4-1. Let ρ : G −→ GLC(V ) be a representation.

(i) Show that the sets

kerχρ = {g ∈ G : χρ(g) = χρ(e)} ⊆ G,

ker |χρ| = {g ∈ G : |χρ(g)| = χρ(e)} ⊆ G,

are normal subgroups of G for which kerχρ 6 ker |χρ| and kerχρ = ker ρ.
[Hint: Recall that for t ∈ R, eti = cos t + i sin t.]

(ii) Show that the commutator subgroup [ker |χρ|, ker |χρ|] of ker |χρ| is a subgroup of kerχρ.

4-2. Let G be a finite group and X = G/H the finite G-set on which G acts transitively with
action written g · kH = gkH for g, k ∈ G. Let ξ be the associated permutation representation
on C[X].

(i) Using the definition of induced representations, show that ξ is G-isomorphic to ξH
1 ↑G

H ,
where ξH

1 is the trivial 1-dimensional representation of H.
(ii) Let WX ⊆ C[X] be the G-subspace of Qu. 2.7(i) and θ the representation on WX . Show

that χθ = χξ−χG
1 , where χG

1 is the character of the trivial 1-dimensional representation
of G.

(iii) Use Frobenius Reciprocity to prove that (χθ|χG
1 )G = 0.

4-3. Continuing with the setup in Qu. 4.3 with the additional assumption that |X| > 2, let
Y = X ×X be given the associated diagonal action g · (x1, x2) = (g · x1, g · x2) and let σ be the
associated permutation representation on C[Y ]. The action on X is said to be doubly transitive
or 2-transitive if, whenever (x1, x2), (x′1, x

′
2) ∈ Y with x1 6= x2 and x′1 6= x′2, there is a g ∈ G for

which g · (x1, x2) = (x′1, x
′
2).

(i) Show that χσ = χξ
2, i.e., show that for every g ∈ G, χσ(g) = χξ(g)2.

(ii) Show that the action on X is 2-transitive if and only if the action on Y has exactly
two orbits.

(iii) Show that the action on X is 2-transitive if and only if (χσ|χG
1 )G = 2.

(iv) Show that the action on X is 2-transitive if and only if θ is irreducible.

4-4. The following is the character table of a certain group G of order 60, where the numbers in
brackets [ ] are the numbers in the conjugacy classes of G, χk is the character of an irreducible
representation ρk and α = (1 +

√
5)/2, β = (1−√5)/2.

g1 = eG g2 g3 g4 g5

[1] [20] [15] [12] [12]
χ1 1 1 1 1 1
χ2 5 −1 1 0 0
χ3 4 1 0 −1 −1
χ4 3 0 −1 α β

χ5 a b c d e
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(i) Determine the dimension of the representation ρ5.
(ii) Use row orthogonality to determine χ5.
(iii) Show that G is a simple group.
(iv) Decompose each of the contragredient representations ρ∗j as a direct sum of the irred-

ucible representations ρk.
(v) Decompose each of the tensor product representations ρs ⊗ ρt as a direct sum of the

irreducible representations ρk.
(vi) Identify this group G up to isomorphism.





APPENDIX A

Some group theory

A.1. The Isomorphism and Correspondence Theorems

The three Isomorphism Theorems and the Correspondence Theorem are fundamental results
of Group Theory. We will write H 6 G and N / G to indicate that H is a subgroup and N is a
normal subgroup of G.

Recall that given a normal subgroup N / G the quotient or factor group G/N has for its
elements the distinct cosets

gN = {gn ∈ G : n ∈ N} (g ∈ G).

Then the natural homomorphism

π : G −→ G/N ; π(g) = gN

is surjective with kernel kerπ = N .

Theorem A.1 (First Isomorphism Theorem). Let ϕ : G −→ H be a homomorphism with
N = kerϕ. Then there is a unique homomorphism ϕ : G/N −→ H such that ϕ ◦ π = ϕ.
Equivalently, there is a unique factorisation

ϕ : G
π−→ G/N

ϕ−→ H.

In diagram form this becomes

G

ϕ
ÂÂ?

??
??

??
?

q // G/N

∃! ϕ||
H

where all the arrows represent group homomorphisms.

Theorem A.2 (Second Isomorphism Theorem). Let H 6 G and N / G. Then there is an
isomorphism

HN/N ∼= H/(H ∩N); hn ←→ h(H ∩N).

Theorem A.3 (Third Isomorphism Theorem). Let K / G and N / G with N / K. Then
K/N 6 G/N is a normal subgroup, and there is an isomorphism

G/K ∼= (G/N)/(K/N); gK ←→ (gN)(K/N).

Theorem A.4 (Correspondence Theorem). There is a one-one correspondence between sub-
groups of G containing N and subgroups of G/N , given by

H ←→ π(H) = H/N,

π−1Q ←→ Q,

where
π−1Q = {g ∈ G : π(g) = gN ∈ Q}.

Moreover, under this correspondence, H / G if and only if π(H) / G/N .

57
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A.2. Some definitions and notation

Let G be a group.

Definition A.5. The centre of G is the subset

Z(G) = {c ∈ G : gc = cg ∀g ∈ G}.
This is a normal subgroup of G, i.e., Z(G) / G.

Definition A.6. Let g ∈ G, then the centralizer of g is

CG(g) = {c ∈ G : cg = gc}.
This is a subgroup of G, i.e., CG(g) 6 G.

Definition A.7. Let H 6 G. The normalizer of H in G is

NG(H) = {c ∈ G : cHc−1 = H}.
This is a subgroup of G containing H; moreover, H is a normal subgroup of NG(H), i.e.,
H / NG(H).

Definition A.8. G is simple if its only normal subgroups are G and {e}. Equivalently, it
has no non-trivial proper subgroups.

Definition A.9. The order of G, |G|, is the number of elements in G when G is finite, and
∞ otherwise. If g ∈ G, the order of g, |g|, is the smallest natural number n ∈ N such gn = e

provided such a number exists, otherwise it is ∞. Equivalently, |g| = | 〈g〉 |, the order of the
cyclic group generated by g. If G is finite, then every element has finite order.

Theorem A.10 (Lagrange’s Theorem). If G is a finite group, and H 6 G, then |H| divides
|G|. In particular, for any g ∈ G, |g| divides |G|.

Definition A.11. Two elements x, y ∈ G are conjugate in G if there exists g ∈ G such that

y = gxg−1.

The conjugacy class of x is the set of all elements of G conjugate to x,

xG = {y ∈ G : y = gxg−1 for some g ∈ G}.
Conjugacy is an equivalence relation on G and the distinct conjugacy classes are the distinct
equivalence classes.

A.3. Group actions

Let G be a group (with identity element e = eG) and X be a set. Recall that an action of
G on X is a rule assigning to each g ∈ G a bijection ϕg : X −→ X and satisfying the identities

ϕgh = ϕg ◦ ϕh,

ϕeG = IdX .

We will frequently make use of the notation

g · x = ϕg(x)

(or even just write gx) when the action is clear, but sometimes we may need to refer explicitly
to the action. It is often useful to view an action as corresponding to a function

Φ: G×X −→ X; ϕ(g, x) = ϕg(x).
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It is also frequently important to regard an action of G as corresponding to a group homomor-
phism

ϕ : G −→ Perm(X); g 7→ ϕg,

where Perm(X) denotes the group of all permutations (i.e., bijections X −→ X) of the set X.
If n = {1, 2, . . . , n}, then Sn = Perm(n) is the symmetric group on n objects; Sn has order n!,
i.e., |Sn| = n!.

Given such an action of G on X, we make the following definitions:

Stabϕ(x) = {g ∈ G : ϕg(x) = x},
Orbϕ(x) = {y ∈ X : for some g ∈ G, y = ϕg(x)},

XG = {x ∈ X : gx = x ∀g ∈ G}.
Then Stabϕ(x) is called the stabilizer of x and is often denoted StabG(x) when the action is
clear, while Orbϕ(x) is called the orbit of x and is often denoted OrbG(x). XG is called the
fixed point set of the action.

Theorem A.12. Let ϕ be an action of G on X, and x ∈ X.

(a) Stabϕ(x) is a subgroup of G. Hence if G is finite, then so is Stabϕ(x) and by Lagrange’s
Theorem, |Stabϕ(x)| | |G|.

(b) There is a bijection

G/ Stabϕ(x) ←→ Orbϕ(x); g Stabϕ(x) ←→ g · x = ϕg(x).

Furthermore, this bijection is G-equivariant in the sense that

hg Stabϕ(x) ↔ h · (g · x).

In particular, if G is finite, then so is Orbϕ(x) and we have

|Orbϕ(x)| = |G|/| Stabϕ(x)|.
(c) The distinct orbits partition X into a disjoint union of subsets,

X =
∐

distinct
orbits

Orbϕ(x).

Equivalently, there is an equivalence relation ∼
G

on X for which the distinct orbits are

the equivalence classes and given by

x∼
G

y ⇐⇒ for some g ∈ G, y = g · x.

Hence, when X is finite, then

|X| =
∑

distinct
orbits

|Orbϕ(x)|

This theorem is the basis of many arguments in Combinatorics and Number Theory as well
as Group Theory. Here is an important group theoretic example, often called Cauchy’s Lemma.

Theorem A.13 (Cauchy’s Lemma). Let G be a finite group and let p be a prime for which
p | |G|. Then there is an element g ∈ G of order p.

Proof. Let
X = Gp = {(g1, g2, . . . , gp) : gj ∈ G, g1g2 · · · gp = eG}.

Let H be the group of all cyclic permutations of the set {1, 2, . . . , p}; this is a cyclic group of
order p. Consider the following action of H on X:

γ · (g1, g2, . . . , gp) = (gγ−1(1), gγ−1(2), . . . , gγ−1(p)).
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It is easily seen that this is an action. By Theorem A.12, the size of each orbit must divide
|H| = p, hence it must be 1 or p since p is prime. On the other hand,

|X| = |G|p ≡ 0 (mod p),

since p | |G|. Again by Theorem A.12, we have

|X| =
∑

distinct
orbits

|OrbH(x)|,

and hence
∑

distinct
orbits

|OrbH(x)| ≡ 0 (mod p).

But there is at least one orbit of size 1, namely that containing e = (eG, . . . , eG), hence,
∑

distinct
orbits not

containing e

|OrbH(x)| ≡ −1 (mod p).

If all the left hand summands are p, then we obtain a contradiction, so at least one other orbit
contains exactly one element. But such an orbit must have the form

OrbH ((g, g, . . . , g)) , gp = eG.

Hence g is the desired element of order p. ¤

Later, we will meet the following type of action. Let k be a field and V a vector space over
k. Let GLk(V ) denote the group of all invertible k-linear transformations V −→ V . Then for
any group G, a group homomorphism ρ : G −→ GLk(V ) defines a k-linear action of G on V by

g · v = ρ(g)(v).

This is also called a k-representation of G in (or on) V . One extreme example is provided by
the case where G = GLk(V ) with ρ = IdGLk(V ). We will be mainly interested in the situation
where G is finite and k = R or k = C; however, other cases are important in Mathematics.

If we have actions of G on sets X and Y , a function ϕ : X −→ Y is called G-equivariant or
a G-map if

ϕ(gx) = gϕ(x) (g ∈ G, x ∈ X).

An invertible G-map is called a G-equivalence (it is easily seen that the inverse map is itself
a a G-map). We say that two G-sets are G-equivalent if there is a G-equivalence between
them. Another way to understand these ideas is as follows. If Map(X, Y ) denotes the set of all
functions X −→ Y , then we can define an action of G by

(g · ϕ)(x) = g(ϕ(g−1x)).

Then the fixed point set of this action is

Map(X, Y )G = {ϕ : gϕ(g−1x) = ϕ(x) ∀x, g} = {ϕ : ϕ(gx) = gϕ(x) ∀x, g}.

So MapG(X,Y ) = Map(X,Y )G is just the set of all G-equivariant maps.
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A.4. The Sylow theorems

The Sylow Theorems provide the beginnings of a systematic study of the structure of finite
groups. For a finite group G, they connect the factorisation of |G| into prime powers,

|G| = pr1
1 pr2

2 · · · prd
d ,

where 2 6 p1 < p2 < · · · < pd with pk prime, and rk > 0, to the existence of subgroups of
prime power order, often called p-subgroups. They also provide a sort of converse to Lagrange’s
Theorem.

Here are the three Sylow Theorems. Recall that a proper subgroup H < G is maximal if
it is contained in no larger proper subgroup; also a subgroup P 6 G is a p-Sylow subgroup if
|P | = pk where pk+1 - |G|.

Theorem A.14 (Sylow’s First Theorem). A p-subgroup P 6 G is maximal if and only
if it is a p-Sylow subgroup. Hence every p-subgroup is contained in a p-Sylow subgroup.

Theorem A.15 (Sylow’s Second Theorem). Any two p-Sylow subgroups P, P ′ 6 G are
conjugate in G.

Theorem A.16 (Sylow’s Third Theorem). Let P 6 G be a p-Sylow subgroup with |P | =
pk, so |G| = pkm where p - m. Also let np be the number of distinct p-Sylow subgroups of G.
Then

np ≡ 1 (mod p);(i)

m ≡ 0 (mod np).(ii)

Finally, we end with an important result on chains of subgroups in a finite p-group.

Theorem A.17. Let P be a finite p-group. Then there is a sequence of subgroups

{e} = P0 6 P1 6 · · · 6 Pn = P,

with |Pk| = pk and Pk−1 / Pk for 1 6 k 6 n.

We also have the following which can be proved directly by the method in the proof of
Theorem A.13. Recall that for any group G, its centre is the normal subgroup

Z(G) = {c ∈ G : ∀g ∈ G, cg = gc} / G.

Theorem A.18. Let P be a non-trivial finite p-group. Then the centre of P is non-trivial,
i.e., Z(P ) 6= {e}.

Sylow theory seemingly reduces the study of structure of a finite group to the interaction
between the different Sylow subgroups as well as their internal structure. In reality, this is just
the beginning of a difficult subject, but the idea seems simple enough!

A.5. Solvable groups

Definition A.19. A group G which has a sequence of subgroups

{e} = H0 6 H1 6 · · · 6 Hn = G,

with Hk−1 / Hk and Hk/Hk−1 cyclic of prime order, is called solvable (soluble or soluable).

Solvable groups are generalizations of p-groups in that every finite p-group is solvable. A
finite solvable group G can be thought of as built up from the abelian subquotients Hk/Hk−1.
Since finite abelian groups are easily understood, the complexity is then in the way these sub-
quotients are ‘glued’ together.
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More generally, for a group G, a series of subgroups

G = G0 > G1 > · · · > Gr = {e}
is called a composition series for G if Gj+1 / Gj for each j, and each successive quotient group
Gj/Gj+1 is simple. The quotient groups Gj/Gj+1 (and groups isomorphic to them) are called
the composition factors of the series, which is said to have length r. Every finite group has
a composition series, with solvable groups being the ones with abelian subquotients. Thus, to
study a general finite group requires that we analyse both finite simple groups and also the ways
that they can be glued together to appear as subquotients for composition series.

A.6. Product and semi-direct product groups

Given two groups H, K, their product G = H ×K is the set of ordered pairs

H ×K = {(h, k) : h ∈ H, k ∈ K}
with multiplication (h1, k1) · (h2, k2) = (h1h2, k1k2), identity eG = (eH , eK) and inverses given
by (h, k)−1 = (h−1, k−1).

A group G is the semi-direct product G = N oH of the subgroups N, H if N / G, H 6 G,
H ∩N = {e} and HN = NH = G. Thus, each element g ∈ G has a unique expression g = hn

where n ∈ N, h ∈ H. The multiplication is given in terms of such factorisations by

(h1n1)(h2n2) = (h1h2)(h−1
2 n1h2n2),

where h−1
2 n1h2 ∈ N by the normality of N .

An example of a semi-direct product is provided by the symmetric group on 3 letters, S3.
Here we can take

N = {e, (1 2 3), (1 3 2)}, H = {e, (1 2)}.
H can also be one of the subgroups {e, (1 3)}, {e, (2 3)}.

A.7. Some useful groups

In this section we define various groups that will prove useful as test examples in the theory
we will develop. Some of these will be familiar although the notation may vary from that in
previous encounters with these groups.

A.7.1. The quaternion group. The quaternion group of order 8, Q8, has as elements
the following 2× 2 complex matrices:

±1, ±i, ±j, ±k,

where

1 =
[
1 0
0 1

]
= I2, i =

[
i 0
0 −i

]
, j =

[
0 1

−1 0

]
, k =

[
0 i

i 0

]
.

A.7.2. Dihedral groups.

Definition A.20. The dihedral group of order 2n, D2n, is generated by two elements α, β

of orders |α| = n and |β| = 2 which satisfy the relation

βαβ = α−1.

The distinct elements of D2n are

αr, αrβ (r = 0, . . . , n− 1).

Notice that we also have αrβ = βα−r. A useful geometric interpretation of D2n is provided by
the following.
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Proposition A.21. The group D2n is isomorphic to the symmetry group of a regular n-
gon in the plane, with α corresponding to a rotation through 2π/n about the centre and β

corresponding to the reflection in a line through a vertex and the centre.

A.7.3. Symmetric and alternating groups. The symmetric group on n objects Sn is
best handled using cycle notation. Thus, if σ ∈ Sn, then we express σ in terms of its disjoint
cycles. Here the cycle (i1 i2 . . . ik) is the element which acts on the set n = {1, 2, . . . , n} by
sending ir to ir+1 (if r < k) and ik to i1, while fixing the remaining elements of n; the length
of this cycle is k and we say that it is a k-cycle. Every permutation σ has a unique expression
(apart from order) as a composition of its disjoint cycles, i.e., cycles with no common entries.
We usually supress the cycles of length 1, thus (1 2 3)(4 6)(5) = (1 2 3)(4 6).

It is also possible to express a permutation σ as a composition of 2-cycles; such a decompo-
sition is not unique, but the number of the 2-cycles taken modulo 2 (or equivalently, whether
this number is even or odd, i.e., its parity) is unique. The sign of σ is

signσ = (−1)number of 2-cycles = ±1.

Theorem A.22. The function sign: Sn −→ {1,−1} is a surjective group homomorphism.

The kernel of sign is called the alternating group An and its elements are called even per-
mutations, while elements of Sn not in An are called odd permutations. Notice that |An| =
|Sn|/2 = n!/2. Sn is the disjoint union of the two cosets eAn = An and τAn where τ ∈ Sn is
any odd permutation.

Here are the elements of A3 and S3 expressed in cycle notation.

A3 : e = (1)(2)(3), (1 2 3) = (1 3)(1 2), (1 3 2) = (1 2)(1 3).

S3 : e, (1 2 3), (1 3 2), (1 2)e = (1 2), (1 2)(1 2 3) = (1)(2 3), (1 2)(1 3 2) = (2)(1 3).

A.8. Some useful Number Theory

In the section we record some number theoretic results that are useful in studying finite
groups. These should be familiar and no proofs are given. Details can be found in [2] or any
other basic book on abstract algebra.

Definition A.23. Given two integers a, b, their highest common factor or greatest common
divisor is the highest positive common factor, and is written (a, b). It has the property that
any integer common divisor of a and b divides (a, b).

Definition A.24. Two integers a, b are coprime if (a, b) = 1.

Theorem A.25. Let a, b ∈ Z. Then there are integers r, s such that ra + sb = (a, b). In
particular, if a and b are coprime, then there are integers r, s such that ra + sb = 1.

More generally, if a1, . . . , an are pairwise coprime, then there are integers r1, . . . , rn such
that

r1a1 + · · ·+ rnan = 1.

These results are consequences of the Euclidean or Division Algorithm for Z.

EA: Let a, b ∈ Z. Then there are unique q, r ∈ Z for which 0 6 r < |b| and a = qb + r.

It can be shown that in this situation, (a, b) = (b, r). This allows a determination of the
highest common factor of a and b by repeatedly using EA until the remainder r becomes 0,
when the previous remainder will be (a, b).
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Solutions

Chapter 1

1-1. W is clearly closed under addition and multiplication by real scalars. It is not closed under
multiplication by arbitrary complex scalars since for example, (i, i) ∈ W but

i(i, i) = (−1,−1) 6∈ W.

Note that a typical element of W has the form (x + yi,−x + yi) for x, y ∈ R.
θ is clearly R-linear. Sample bases are A = {(1,−1), (i, i)} and B = {1, i}. Then

θ(1,−1) = 1, θ(i, i) = 1,

hence the matrix is

B[θ]A =
[
1 1
0 0

]
.

An R-basis for V is C = {(1,−1), (i, i), (i,−i), (−1,−1)} (note that (i,−i) = i(1,−1) and
(1, 1) = i(i, i)). We can take the linear extension of θ for which

Θ(i,−i) = iθ(1,−1), Θ(−1,−1) = iθ(i, i).

This agrees with the C-linear transformation

Θ(z, w) = z − iw (z, w ∈ C).

1-2. Linearity is easy. We have the standard basis e = {e1, e2, e3, e4} for which the matrix of
σ is

[σ]e =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




Then
charσ(X) = x4 − 2x2 + 1 = (x2 − 1)2 = (x− 1)2(x + 1)2.

The eigenvalues of this are 1,−1, each being a repeated root of the characteristic polynomial.
As eigenvectors we have

for eigenvalue 1:




1
0
1
0


 ,




0
1
0
1


 ; for eigenvalue −1:




1
0

−1
0


 ,




0
1
0

−1


 .

These form a basis for V . Moreover, the polynomial f(X) = X2− 1 satisfies f(σ)v = 0 for each
of these basis vectors, hence for all elements of V . Thus minσ(X) = X2 − 1.

1-3. We have

charA(X) = X3 − 28X2 + 256X − 768 = (X − 12)(X − 8)2,
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hence the eigenvalues of A are 12, 8 with 8 being a repeated root of the characteristic polynomial.
Eigenvectors for these are

(−5, 3, 1), (0,−3, 1), (1,−2, 0),

and these form a basis for C3. Hence the polynomial f(X) = (X−12)(X−8) satisfies f(A)v = 0
for every v ∈ C3 and so minA(X) = f(X).

1-4. (i) The quotient space V/W is spanned by the image under the quotient map q : V −→
V/W of the vector (0, 1, 0), i.e., q(0, 1, 0) = (0, 1, 0) + W . Hence a complement of W is the
subspace spanned by (0, 1, 0). More generally, any vector of the form u = (0, 1, 0) + w where
w ∈ W spans a linear complement of W .
(ii) The quotient space V/W is spanned by the images under the quotient map q : V −→ V/W

of the vectors (0, 0, 1, 0), (0, 0, 0, 1), hence a complement is the subspace spanned by these two
vectors which are also linearly independent.
(iii) The quotient space V/W is spanned by the images under the quotient map q : V −→ V/W

of the vectors (0, 0, 1, 0), (0, 0, 0, 1), hence a complement is the subspace spanned by these two
vectors which are also linearly independent.
(iv) k = R, V = (R3)∗, W = {α : α(e3) = 0}. W has the elements e∗1, e

∗
2 as a basis. The element

e∗3 spans a 1-dimensional subspace U and {e∗1, e∗2, e∗3} is a basis for V . Hence, U is a complement
of W .

1-5. For any C-bilinear function F : V × V −→ C, there is a unique linear transformation
F ′ : T2 V −→ C for which F = F ′ ◦ τ . In particular, if F is alternating, then

F ′(u⊗ v) = −F ′(v ⊗ u) (u, v ∈ V ),

and so F ′(v ⊗ v) = 0. Thus

v1 ⊗ v1, v2 ⊗ v2, (v1 ⊗ v2 + v2 ⊗ v1) ∈ kerF ′.

These three vectors are linearly independent in V⊗, hence dim kerF ′ > 3. But as F is not a
constant function, F ′ is a non-zero linear transformation into a 1-dimensional vector space so
has imF ′ = C. Thus

dim kerF ′ + 1 = dimT2 V = 4,

and so dim kerF ′ = 3. Thus {v1 ⊗ v1, v2 ⊗ v2, (v1 ⊗ v2 + v2 ⊗ v1)} is a basis for kerF ′.
Similarly, {v1 ⊗ v1, v2 ⊗ v2, (v1 ⊗ v2 + v2 ⊗ v1)} is a basis for kerG′. If

w ∈ T2 V − kerG′ = T2 V − kerF ′,

then
G′(w) = tF ′(w)

for some t ∈ C. Hence we have this identity for all w ∈ T2 V , giving G = tF as functions
V × V −→ C.

1-6. Notice that for any v ∈ V , F (v, v) = 0. Now do an Induction on m as follows.
For m = 1, choose v1 to be any non-zero element of V . Then there is an element u ∈ V for

which t = F (v1, u) 6= 0. Let v2 = t−1u. Then F (v1, v2) = 1. Thus the result is established for
m = 1.

Suppose that the result is true whenever m = k. Then if m = k + 1, we begin by choosing
any non-zero element v1 of V and a second element v2 for which F (v1, v2) = 1 (see the case
m = 1). The vectors v1, v2 are linearly independent since if av1 + bv2 = 0, then

b = F (v1, av1 + bv2) = 0 = F (v2, av1 + bv2) = a.

Now consider
W = {w ∈ V : F (v1, w) = 0 = F (v2, w)} ⊆ V.
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It is easy to check that W is a C-subspace of V . Notice that W is a linear complement to the
2-dimensional subspace spanned by v1, v2. Moreover, for each non-zero w ∈ W , there is a u ∈ V

satisfying F (w, u) 6= 0 and clearly u ∈ W . Hence, the 2k-dimensional vector space W satisfies
the assumptions and by the Induction Hypothesis there is a basis {v3, v4, . . . , v2k+1, v2k+2} with
the stated properties. Then {v1, v2, v3, v4, . . . , v2k+1, v2k+2} is a basis for V with the required
properties. This demonstrates the Inductive step and proves the result by Induction.

Chapter 2

2-1. Showing that σ is a homomorphism should be routine; it is probably easiest to work with
matrices with respect to the basis {e1, e2}.

Irreducibility is most easily shown by determining the character χσ and then verifying that
(χσ|χσ) = 1. However, the following ‘hands on’ approach works.

If W ⊆ C2 is a D2n-subspace then in particular it is closed under the action of α by σα. If W

is a non-trivial proper subspace then dimCW = 1, hence any non-zero w ∈ W is an eigenvector
of the linear transformation σα. But the eigenvalues of σα are ζ and ζ−1 with eigenvectors e1 and
e2. But σβe1 = e2 and σβe2 = e1, hence these vectors do not span 1-dimensional D2n-subspaces.
Hence no such W can exists and therefore σ is irreducible. By inspection, kerσ = {e}.
2-2. Relative to the basis {e1, e2, e3}, the corresponding matrices are easily seen to be

θ±i =




1 0 0
0 −1 0
0 0 −1


 , θ±j =



−1 0 0

0 1 0
0 0 −1


 .

Straightforward calculations using the homomorphism property of a representation together
with the basic identities amongst the elements of Q8 now gives

θ±k =



−1 0 0

0 −1 0
0 0 1


 , θ±1 =




1 0 0
0 1 0
0 0 1


 .

Each of the 1-dimensional subspaces Vi = {tei : t ∈ R} is closed under the action of all the
elements of Q8 and R3 = V1 ⊕ V2 ⊕ V3. Thus θ is not irreducible. The kernel is

ker θ = {1,−1}.

2-3. Linearity of each ρσ is trivial. Also, ρσ1σ2 = ρσ1ρσ2 (σ1, σ2 ∈ S3) since

ρσ1σ2(x1, x2, x3) = (x(σ1σ2)−1(1), x(σ1σ2)−1(2), x(σ1σ2)−1(3))

= (xσ−1
2 σ−1

1 (1), xσ−1
2 σ−1

1 (2), xσ−1
2 σ−1

1 (3))

= ρσ1ρσ2(x1, x2, x3).

To show irreducibility, first note that any proper S3-subspace has dimension 1 or 2, but in the
latter case we may find a complementary S3-subspace of dimension 1. We will show that there
are no 1-dimensional S3-subspaces.

Suppose that W is a 1-dimensional S3-subspace. Then for any non-zero w ∈ W , there is a
λ ∈ C such that

ρ(1 2)w = λw.

It is easy to check that ρ(1 2) has eigenvalues±1 with corresponding eigenvectors v+ = e1+e2−2e3

and v− = e1 − e2. Thus as candidates for W we have

U+ = {t(e1 + e2 − 2e3) : t ∈ C}, U− = {t(e1 − e2) : t ∈ C}.
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But we also have

ρ(1 3)(e1 + e2 − 2e3) = (e3 + e2 − 2e1) /∈ U+, ρ(1 3)(e1 − e2) = e3 − e2 /∈ U−.

So neither of these subspaces is closed under the action of (1 3), nor indeed under the action of
S3.

2-4. From the known structure of a non-trivial finite p-group, there is a normal subgroup N /G

of index p, hence G/N ∼= Z/p ∼= µp, the group of p-th roots of unity in C×. Hence there is a
homomorphism G −→ G/N −→ C× with image equal to µp. This is equivalent to a non-trivial
1-dimensional representation of G.

If G is solvable, then there is a non-trivial abelian quotient G/K for some K/G. If a prime p

divides |G/K|, then there is a normal subgroup L/G/K of index p and so an isomorphism G −→
µp obtained as the composition of the evident homomorphisms G −→ G/K −→ (G/K)/L

∼=−→ µp.
Thus there is a non-trivial 1-dimensional representation as in the case where G is a p-group.

2-5. (i) As a basis, take the S3-set X = {e1, e2, e3} with action given by

σ · ej = eσ(j).

If v ∈ V S3 , let v = x1e1 + x2e2 + x3e3. For each σ ∈ S3 we have

xσ−1(j) = xj .

Using the elements σ = (1 2), (1 3), (2 3) we deduce that

x1 = x2 = x3.

Clearly any vector of the form t(e1 + e2 + e3) (t ∈ C) lies in V S3 . Hence V S3 is as stated and
in particular is 1-dimensional.
(ii) Use the S3-subspace of Qu. 3,

W = {x1e1 + x2e2 + x3e3 : x1 + x2 + x3 = 0}.
(iii) This can be done by showing that the eigenspaces of an element such as (1 2) on W

are 1-dimensional but not closed under the action of S3. Alternatively, the character of the
representation ρ′ on W is given by

χρ′ = χρ − χ1.

Hence using the formula

χρ(σ) = number of elements in X fixed by σ

we have

χρ′(e) = 3− 1 = 2, χρ′((1 2)) = 1− 1 = 0, χρ′((1 2 3)) = 0− 1 = −1.

Then (χρ′ |χρ′) = 1, so by Proposition 3.17 ρ′ is irreducible.
(iv) The 1-dimensional subspace spanned by vector e1 − e2 is closed under the action of H.
(v) Either find an eigenspace of the linear transformation ρ(1 2 3) which will give a 1-dimensional
K-subspace or check that the character of W ↓S3

K is not equal to 1, hence it cannot be irreducible
by Proposition 4.17.

2-6. This question involves similar ideas to Qu. 5.
(i) It is easy to see that C{vX} is a G-subspace. The vector subspace

WX =

{∑

x∈X

txx :
∑

x∈X

tx = 0

}
.

is a complement of C{vX} and also a G-subspace of C[X].
(ii) View each C[Y ] as a G-subspace of C[X].



71

2-7. Let χ be the character of ρ. From Corollary 4.8, the character χρ∗ is given by

χρ∗(g) = χρ(g) = χρ(g−1),

hence

(χρ∗ |χρ∗) =
1
|G|

∑

g∈G

χρ∗(g)χρ∗(g)

=
1
|G|

∑

g∈G

χ(g)χρ∗(g)

=
1
|G|

∑

g∈G

χ(g)χ(g)

=
1
|G|

∑

g∈G

χ(g)χ(g) = (χ|χ).

Since ρ is irreducible,

(χρ∗ |χρ∗) = (χ|χ) = 1

by Proposition 4.17, hence ρ∗ is also irreducible. It is possible to demonstrate this without using
characters.

2-8. If
(∑

g∈G xg

)
γ = ±

(∑
g∈G xg

)
, then elementary linear algebra shows that

xgγ = ±xg (g ∈ G).

Hence k[G] = k[G]+ ⊕ k[G]− as k-vector spaces and as the summands are G-representations,
this is a splitting of G-representations.

Chapter 3

3-1. Qu. 2-1: Using the basis {e1, e2}, we obtain matrices

[σαr ] =
[
ζr 0
0 ζ−r

]
, [σαrβ] =

[
0 ζr

ζ−r 0

]
.

Then taking traces we have

χσ(αr) = tr[σαr ] = ζr + ζ−r = 2 cos 2πr/n, χσ(αrβ) = tr[σαrβ] = 0.

Qu. 2-2: Since that R ⊆ C, we can view this as giving a complex representation θ : Q8 −→
GLC(C3). Using the standard basis {e1, e2, e3} we obtain matrices

[±1] = I3, [θ±i] =




1 0 0
0 −1 0
0 0 −1


 , [θ±j] =



−1 0 0

0 1 0
0 0 1


 , [θ±k] =



−1 0 0

0 −1 0
0 0 1


 .

Taking traces we have

χθ(±1) = 3, χθ(±i) = χθ(±j) = χθ(±k) = −1.

Qu. 2-3: Take a basis of V , e.g., {v1, v2} where

v1 = (1,−1, 0), v2 = (1, 0,−1).
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The elements e, (12), (123) of S3 give representatives of all of the conjugacy classes and so it
suffices to calculate the character of ρ on these elements. Using the above basis, we have the
following matrices

[ρe] = I2, [ρ(1 2)] =
[−1 −1

0 1

]
, [ρ(1 2 3)] =

[−1 −1
1 0

]
,

which have traces
χρ(e) = 2, χρ(1 2) = 0, χρ(1 2 3) = −1.

3-2. (i) The conjugates of x form a basis and the number of them is also |G|/|CG(x)| where
CG(x) is the centralizer of x. Hence dimC Vx = |G|/|CG(x)|.
(ii) χc(g) is equal to the number of elements of Gc fixed by g, but such elements are precisely
those for which gxg−1 = x, i.e., those in CG(g). Thus χc(g) = |CG(g)|.
(iii) We have

(α|χc) =
1
|G|

∑

g∈G

α(g)χc(g)

=
1
|G|

∑

g∈G

α(g)|CG(g)|

=
1
|G|

r∑

j=1

|G|
|CG(gj)| · |CG(gj)|α(gj)

=
r∑

j=1

α(gj),

where g1, . . . , gr is a list of representatives of all the distinct conjugacy classes of G, with gj

having |G|/|CG(gj)| conjugates.
(iv) The multiplicity of ρj in C[Gc] is (χj |χc) and by part (iii) this is given by

(χj |χc) = (χc|χj) =
r∑

i=1

χj(gi).

(v) This is left as an exercise!

3-3. (i) We have

gxH = xH ⇐⇒ x−1gxH = eH ⇐⇒ g ∈ x−1Hx,

and so
χρ(g) = |{xH ∈ G/H : gxH = xH}| = |{xH ∈ G/H : g ∈ xHx−1}|.

(ii) If H / G, for each x ∈ G, xHx−1 = H, so part (i) gives the result.
(iii) Writing G = S4 and H = S3, this becomes a special case of part (i) (but not (ii)!). It
suffices to calculate the character on the elements e, (1 2), (1 2)(3 4), (1 2 3), (1 2 3 4) of S4 which
give representatives of all of the conjugacy classes of G. Here it is useful to recall the well-known
formula

σ(i1 i2 . . . ir)σ−1 = (σ(i1)σ(i2) . . . σ(ir)).

Also notice that the 4 distinct elements of G/H = S4/S3 are eH, (1 4)H, (2 4)H, (3 4)H. Then

χρ(e) = |S4/S3| = 4, χρ((1 2)) = |{eH, (3 4)H}| = 2,

χρ((1 2)(3 4)) = |∅| = 0, χρ((1 2 3 4)) = |∅| = 0,

χρ((1 2 3)) = |{eH}| = 1.
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3-4. (i) C-linearity is obvious. Let h ∈ G and w ∈ W . Then

εi(ρhw) =
χi(e)
|G|

∑

g∈G

χi(g)ρg(ρhw)

=
χi(e)
|G|

∑

g∈G

χi(g)ρghw

=
χi(e)
|G|

∑

g∈G

χi(g)ρhρh−1ghw

= ρh


χi(e)
|G|

∑

g∈G

χi(g)ρh−1ghw




= ρh


χi(e)
|G|

∑

g∈G

χi(h−1gh)ρh−1ghw




= ρh


χi(e)
|G|

∑

g∈G

χi(g)ρgw




= ρhεi(w).

Thus εi(ρhw) = ρhεi(w) which shows that εi is G-linear.
(ii) Since Wj,k is a G-subspace each ρg maps Wj,k into itself. Hence, so does εi.
(iii) The G-linear transformation ε′i : Wj,k −→ Wj,k satisfies the conditions of Schur’s Lemma,
hence there is a λ ∈ C such that

ε′i(w) = λw (w ∈ Wj,k).

We also have

ε′i =
χi(e)
|G|

∑

g∈G

χi(g)ρ′gw

where ρ′g : Wj,k −→ Wj,k is the restriction of ρg to Wj,k. Taking traces we have

λdimCWj,k = tr ε′i =
χi(e)
|G|

∑

g∈G

χi(g) tr ρ′g

=
χi(e)
|G|

∑

g∈G

χi(g)χρ′(g)

= χi(e)(χi|χρ′).

Since χi(e) = dimCWj,k, we have
λ = (χi|χρ′) = δi,j .

Thus for w ∈ Wj,k, ε′i(w) is as stated.
(iv) By (iii), for any w ∈ W , εj(w) ∈ Wj , hence

εiεj(w) =

{
εi(w) if i = j,

0 otherwise.

(v) This is a straightforward exercise.

3-5. (i) The character table shown below is deduced by calculations such as the following in
which the identities ζ2 = ζ−1 and 1 + ζ + ζ2 = 0 are used:

(χ2|χ3) =
1
12

[
1 + 3× 1 + 4ζζ−1 + 4ζ−1ζ

]
=

1
12

[
4 + 4ζ2 + 4ζ−2

]
=

1
3

[
1 + ζ2 + ζ

]
= 0.
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e (1 2)(3 4) (1 2 3) (1 3 2)
[1] [3] [4] [4]

χ1 1 1 1 1
χ2 1 1 ζ ζ−1

χ3 1 1 ζ−1 ζ

χ4 3 −1 0 0
(ii) The character of this permutation representation is found using the formula χρ(g) = |Z(g)|.
Hence

χρ(e) = 12, χρ ((1 2)(3 4)) = 4, χρ ((1 2 3)) = χρ ((1 3 2)) = 3.

Then nj = (χj |χρ), so we obtain

n1 =
1
12

[12 + 3× 4 + 4× 3 + 4× 3] =
4× 12

12
= 4,

n2 =
1
12

[
12 + 3× 4 + 4× 3ζ + 4× 3ζ−1

]
=

12
12

[
2 + ζ + ζ−1

]
= 1,

n3 =
1
12

[
12 + 3× 4 + 4× 3ζ−1 + 4× 3ζ

]
=

12
12

[
2 + ζ−1 + ζ

]
= 1,

n4 =
1
12

[3× 12 + 3(−1)× 4 + 0 + 0] =
12
12

[3− 1] = 2.

So we have V = 4V1 ⊕ V2 ⊕ V3 ⊕ 2V4.
(iii) We have χρ∗j = χj , hence χρ∗1 = χ1, χρ∗2 = χ3, χρ∗3 = χ2 and χρ∗4 = χ4. Thus ρ∗1 = ρ1,
ρ∗2 = ρ3, ρ∗3 = ρ2 and ρ∗4 = ρ4.
(iv) Use the formula χρi⊗ρj (g) = χi(g)χj(g) to find the character of the tensor product ρi ⊗ ρj .
Then express this as a linear combination χρi⊗ρj = n1χ1 + · · ·+ n4χ4 where nk = (χρi⊗ρj |χk).
For example, when i = j = 4, χρ4⊗ρ4(g) = χ4(g)2 and so

n1 =
1
12

[
32 + 3(−1)2 × 1 + 0 + 0

]
= 1, n2 =

1
12

[
32 + 3(−1)2 × 1 + 0 + 0

]
= 1,

n3 =
1
12

[
32 + 3(−1)2 × 1 + 0 + 0

]
= 1, n4 =

1
12

[
33 + 3(−1)3 + 0 + 0

]
= 2.

Hence V4 ⊗ V4 = V1 ⊕ V2 ⊕ V3 ⊕ 2V4.
There are some tricks that you may spot for reducing the amount of work, but doing all of

these is extremely tedious!

3-6. (i) Since the action of A is transitive, for each such k there is a σ ∈ A for which k = σ(1),
therefore

StabA(k) = σ StabA(1)σ−1 = StabA(1).

Therefore every element of StabA(1) acts trivially on the elements of n and so must be the
identity function. So StabA(k) is trivial.
(ii) As A-sets, there is an isomorphism A ∼= n, hence there is an isomorphism of representations
C[A] ∼= C[n], so C[n] agrees with the regular representation of A. By Theorem 3.19 together
with Proposition 3.23, we have

C[n] ∼= C[A] = ρ1 ⊕ · · · ⊕ ρn.

Chapter 4

4-1. (i) See Section 4.1 of Chapter 4 where it is shown that kerχρ = ker ρ. From the definitions
we also have kerχρ 6 ker |χρ|.
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(ii) From the proof of Proposition 5.5 we actually have

ker |χρ| = {g ∈ G : ∃λg ∈ C× s.t. ρg = λg Id}.
Indeed, λgh = λgλh, hence the function Λ: ker |χρ| −→ C× with Λ(g) = λg is a group homo-
morphism. Since C× is abelian, [ker |χρ|, ker |χρ|] 6 kerΛ. But

kerΛ = {g ∈ G : ρg = Id} = ker ρ = kerχρ,

hence [ker |χρ|, ker |χρ|] 6 kerχρ.

4-2. (i) The underlying vector space of ξH
1 is C with the trivial action of H and so the underlying

vector space of ξH
1 ↑G

H is

Map(GR,C)H = {f : G −→ C : f(xh) = f(x) ∀x ∈ G, h ∈ H}.
This is just the set of all functions G −→ C which are constant on right cosets of H, which is
in turn equivalent to the set of all functions G/H −→ C. Moreover, we have for the G-action,

g · f(xH) = f(gxH).

This shows that the induced representation ξH
1 ↑G

H is essentially the contragredient representa-
tion associated to C[G/H]. By Proposition 2.25, there is a G-isomorphism C[G/H]∗ ∼= C[G/H],
so ξH

1 ↑G
H is G-isomorphic to ξ.

(ii) By Ex. Sh. 2 Qu. 6(i), C[X] = VX ⊕ WX where VX is G-isomorphic to the trivial 1-
dimensional representation of G. Hence by Theorem 4.10(c), χξ = χG

1 + χθ.
(iii) We have

(χθ|χG
1 )G = (χξ − χG

1 |χG
1 )G

= (χξ|χG
1 )G − (χG

1 |χG
1 )G

= (χξH
1
↑G

H |χG
1 )G − 1 (by part (i) and orthonormality)

= (χξH
1
|χG

1 ↓G
H)H − 1 (by Frobenius Reciprocity)

= (χξH
1
|χξH

1
)H − 1 (since χG

1 ↓G
H= χξH

1
)

= 1− 1 = 0, (by orthonormality)

giving the result.

4-3. (i) This follows from Proposition 2.20 and Theorem 3.10(b).
(ii) Clearly Y has the orbit {(x, x) : x ∈ X} and also for every pair (x1, x2) ∈ Y with x1 6= x2,
the orbit

{g · (x1, x2) : g ∈ G} = {(gx1, gx2) : g ∈ G}.
By definition, X is 2-transitive if and only if these are the only orbits of Y .
(iii) By Qu. 4.3(iii) and Ex. Sh. 2 Qu. 6(ii), the trivial representation has multiplicity in σ equal
to the number of orbits in Y .
(iv) Recall that by Corollary 3.14, θ is irreducible if and only if (χθ|χθ) = 1. We have

(χρ|χρ) = (χθ + χ1|χθ + χ1)

= (χθ|χθ) + (χ1|χθ)− (χθ|χ1) + (χ1|χ1)

= (χθ|χθ) + 2(χθ|χ1) + 1

= (χθ|χθ) + 1,

by Ex. Sh. 2 Qu. 6(iii).
An easy calculation also shows that

(χρ|χρ) = (χρχρ|χ1) = (χσ|χ1).
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So by (iii), (χρ|χρ) = 2 if and only if X is 2-transitive.
Combining these we now see that X is 2-transitive if and only if (χθ|χθ) = 1, i.e., θ is

irreducible.

4-4. (i) We have
12 + 52 + 42 + 32 + a2 = |G| = 60,

giving a2 = 9, hence a = 3.
(ii) Row orthogonality gives (χj |χ5) = 0 if j = 1, 2, 3, 4. After clearing denominators of |G| and
bringing constants to the right hand sides we have the system of linear equations:

20b + 15c + 12d + 12e = −3

−20b + 15c = −15

20b − 12d− 12e = −12

− 15c + 12αd + 12βe = −9.

The first, second and third of these give

40b + 15c = −15, −20b + 15c = −15,

hence b = 0, c = −1. The remaining equations now give

d + e = 1, 2αd + 2βe = −4,

hence
√

5d−
√

5e = −5,

or

d− e = −
√

5.

Thus we have 2d = 1−√5, 2e = 1 +
√

5 and so d = β, e = α. This gives

b = 0, c = −1, d = β, e = α.

(iii) For each of the characters χj , kerχj = {e}. Hence since every normal subgroup of G is an
intersection of such normal subgroups, the only normal subgroups are {e} and G, implying that
G is simple.
(iv) χρ∗j = χj , hence since all character values are real we see that χρ∗j = χj , i.e., ρ∗j = ρj .
(v) Here is an example. Suppose that ρ2 ⊗ ρ3 = n1ρ1 + · · ·+ n5ρ5. Then nj = (χj |χ2χ3). Thus

n1 =
1
60

[20− 20 + 0] = 0, n2 =
1
60

[100 + 20 + 0] = 2,

n3 =
1
60

[80− 20 + 0] = 1, n4 =
1
60

[60 + 0] = 1,

n5 =
1
60

[60 + 0] = 1.

Hence ρ2 ⊗ ρ3 = 2ρ2 + ρ3 + ρ4 + ρ5.
(vi) Up to isomorphism, the alternating group A5 is the only simple group of order 60.


