

	مقايسه بين چشم انسان با سيستم دور سنجي		
پارامتر مورد مقایسه	سيستم دور سنجي	چشم انسان	
گستر ه طيفي	بسیار زیاد	بین 400 تا 700 نانومتر	
قدرت تفكيك طيفي	در حد نانومتر		
تفكيك ر اديومتري	در حد هزاران سطح خاکستر <i>ي</i>	30سطح سایه روشن بین سفید و سیاه	
قدر ت تفکیك مکاني	قدرت تفکیك در حدود نیم متر مي باشد.	در فاصله 900 كيلومتري قدرت تفكيك 270 متر مي باشد.	

ار تباط درجه حر ارت با تشعشعات الکتر و مغناطیس

- در حالي كه خورشيد به عنوان يك منبع تشعشعات الكترومغناطيس شناخته شده است ، اما هر جسمي كه داراي درجه حرارت بالاتر از صفر مطلق باشد از خود تشعشع الكترومغناطيس ساطع مي كند.
 - مقدار انرژي كه اين جسم منتشر مي كند تابعي است از درجه جرارت سطح آن.
 - اين ويژگي به نام قانون Stefan-Boltzman معروف است.
- $M = \sigma T^4$

- M = Total radiant excitance from the surface of material (Watts/ mE2)
- σ = Stefen-Boltzman constant, 5.6697 × 10 ⁻⁸(Wm⁻² K⁻⁴)
- T = absolute temperature (K) of emitting material

Black body

 جسمي است فرضي كه تمام انرژي كه به آن مي رسد جذب مي كند و سپس دوباره تمام انرژي جذب شده را منتشر مي كند.

انرژي منتشر شده از يك جسم تابعي است از درجه حرارت آن جسم

• $\lambda_m = A/T$

- + $\lambda_{m=}^{-}$ wavelngth of mximum spectral radiant exitance, μm
- A = 2698 μm K
- T= Temperature, K

0

 $Q = h c / \lambda$

با توجه به رابطه بالا در صورتې که بغواهیم در طول موجهاي بلندتر تصویر برداري کنیم بایستي اندازه المانهاي تصویر را بزرگتر کنیم .

inergy Frequency (J) (Hz) Wavelengtl	Type of Absorption radiation by atmosphere	The Energy of
(1) (12) vaccenge (p^{o}) p^{o} 100 m- (p^{o}) p^{o} 100 m- (p^{o}) p^{o} (p^{o}) (p^{o}) <td>Endo under Province Endo under Province Endo under Province Endo under Province Endo Unoversite Unoversit</td> <td>The energy of Quanta (Photons) ranging from gamma rays to radio waves in the electromagnetic spectrum.</td>	Endo under Province Endo under Province Endo under Province Endo under Province Endo Unoversite Unoversit	The energy of Quanta (Photons) ranging from gamma rays to radio waves in the electromagnetic spectrum.

• $L_{\text{out}}^{\Box} = (\rho ET/\pi) + L_p$

- $L_{out=}$ Total spectral radiance measured by sensor
- ρ = reflectance of the object
- E=Incoming energy on the object
- T= transmision of the atmosphere
- L_p= path radiance

تصاویر چند طیفی در طول موجهای متعدد تصویر برداری می کنند. قابلیت کچی شدن بدون افت کیفیت عملیات ریاضی بر روی این تصاویر به راحتی امکان پذیر است پذیر است		
	عکس • در محدوده خاصی از طیف الکترو مغناطیس تصویر برداری می کند. • افت کیفیت چاپ به مرور زه • آنالیز تصویر به صورت آنالوگ • دارای قدرت تفکیک مکانی خوب	تصاویر چند طیفی در طول موجهای متعدد تصویر برداری می کنند. قابلیت کپی شدن بدون افت کیفیت عملیات ریاضی بر روی این تصاویر به راحتی امکان پذیر است

Band	IFOV= 30 *30
1 0.45-0.52	Quantization level= 8
2 0.52-0.62	bit
3 0.63-0.69	Earth coverage= 16
4 0.76-0.90	days
5 1.55-1.75	Altitude= 705
6 10.40-12.5	Swath width= 185
7 2.08-2.35	kms
	Inclination=98.2

- $\overline{E_1(\lambda)} = E_R(\lambda) + E_A(\lambda) + E_T(\lambda)$
- E_I = Incident energy
- E_R =reflected energy
- E_A = absorbed energy
- E_T = transmitted
- $E_{R}(\lambda) = E_{I}(\lambda) [E_{A}(\lambda) + E_{T}(\lambda)]$
- Spectral reflectance(ρ_{λ})= [E_R(λ)/ E_I(λ)]×100

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.