
1

Advanced Pressure Transient Analysis
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A Quick Review on Well Testing

By: Shahab Gerami



Outline

• Introduction
• Basic definitions and concepts
• Components of well test models
• Inverse and direct solutions
• Input data required for well test analysis
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Introduction
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Formation Evaluation
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The Well Test Concept
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Standard Well Test Set-up
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Transient & Stabilized Tests
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Primary Reservoir Characteristics

• Types of fluids in the reservoir

– Incompressible fluids

– Slightly compressible fluids

– Compressible fluids

• Flow regimes

– Steady-state flow

– Unsteady-state flow

– Pseudosteady-state flow

• Reservoir geometry

– Radial flow

– Linear flow

– Spherical and hemispherical flow

• Number of flowing fluids in the reservoir. 

– Single-phase flow (oil, water, or gas)

– Two-phase flow (oil–water, oil–gas, or gas–water)

– Three-phase flow (oil, water, and gas)
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Flow Regimes
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Reservoir Flow Geometry

Hemispherical flow
Spherical flow

Radial flow

Linear flow
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Components of Well Test Models

Well

Reservoir

Boundaries

Direction (Vertical, Horizontal)

Storage (Constant, Changing)

Completion (Damaged, Fractured and Acidized)

Homogeneous 

Heterogeneous

Composite

Multilayer

Dual porosity

Flow boundaries (No flow, Constant pressure, infinite)

Geometrical boundaries (Circular, Rectangular)
13
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Well Models

Wellbore Storage and Skin

Uniform Flux Vertical Fracture

Infinite Conductivity Vertical Fracture

Finite Conductivity Vertical Fracture

Horizontal Well

Limited Entry
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Homogeneous

Two-Layer

Radial Composite

Linear Composite

Dual Porosity/Naturally Fractured

— Pseudosteady-state Interporosity Flow

— Transient Interporosity Flow (Slab/Sphere)

Reservoir Models
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Infinite-Acting

Circle

Rectangle

Faults:

— Single Fault

— Parallel Faults

— Multiple Intersecting Faults

Boundary Models



Mathematical Model-Governing Equation
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Initial And Boundary Conditions
Radial Flow In a Circular Reservoir 
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Well production Flow regime Inner Boundary 
Condition

Outer Boundary 
conditions

Constant rate Infinite acting

Constant rate Finite acting
(Bounded)

Constant pressure Infinite acting

Constant pressure Finite acting
(Bounded)
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Inverse Solution Compared to Actual System

Inverse solution can be used for the identification of system

characteristics.

Inverse solution can result in grossly erroneous answers.

Whereas the mathematics is correct, the utility of the results derived

from this mathematically process is questionable.
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Characteristic of Inverse Solution

•Non-unique solution (the inverse solution has its limitation)

•A good looking history match is not a good enough answer
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Input-System-Response

Reservoir 
Mechanism

Input Perturbation Output Response

Mathematical ModelModel Input Model Output



“Average” permeability in a region
Not

Permeability at a “fixed radius”

Drainage area: The reservoir area or volume drained by the well .
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Input Data Required for Well Test Analysis

 Test data:

 flow rate and bottom hole pressure as a function of time.

 the test sequence of events must be detailed, including any

operational problems that may affect the well response.

 Well data:

 wellbore radius rw

 well geometry (such as inclined or horizontal well)

 depths (formation, gauges)

Reservoir and fluid parameters:

 formation thickness h (net),

 porosity Φ,

compressibility of oil co, water cw, and formation cf

 water saturation Sw,

oil viscosity μ

formation volume factor B
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Drawdown Analysis
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Drawdown Analysis
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Drawdown Analysis
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Drawdown Analysis
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•Due to wellbore storage at early times a deviation from constant rate

solution to the diffusivity equation is observed. After a certain period of time,

tws, this deviation becomes negligible.

•Ramey(1965) has shown that for various values of CsD, the time for which

wellbore storage effects are significant, is given by:
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•Two important trends:

•Wellbore storage effects increase directly with well depth (Vws) and

inversly with formation flow capacity (kh).

•Wellbore storage effects decrease with increasing pressure level (cws).
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Radius of Investigation
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Drawdown Analysis
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Transient approximate solution 

P.S.S approximate solution
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A “rule of thumb, ” developed from the fundamental solutions of the

diffusivity equation including wellbore storage and skin effect (Agarwal et

al., 1970), suggests that the “transition” period lasts 1.5 log cycles from the

cessation of predominant wellbore storage effects (unit slope line). Points

beyond that time fall on a semi-log straight line.

Transition Time-Drawdown Analysis
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Accounting for Non-circular Drainage Area
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• The skin effect, first introduced by van Everdingen and Hurst (1949) 

defines a steady-state pressure difference around the wellbore.

Skin
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Hawkins (1956) suggested that the permeability in the skin zone, i.e., skin, is uniform and the 

pressure drop across the zone can be approximated by Darcy’s equation. Hawkins proposed 

the following approach:

Skin
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• If the permeability in the altered zone ka is much larger than the

formation permeability k, then the wellbore will act like a well having

an apparent wellbore radius rwa.

•The apparent wellbore radius may be calculated from the actual

wellbore radius and the skin factor.

Effective Wellbore Radius
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Minimum Skin Factor
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The minimum skin factor possible (most negative skin factor) would occur

when the apparent wellbore radius rwa is equal to the drainage radius re

of the well.

For a circular drainage area of 40 acres (re = 745 feet) and a wellbore radius of
0.5 feet, this gives a minimum skin factor (maximum stimulation) of -7.3.
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y = b + mx

Well Test Analyses with Straight-line Methods



Linear diffusivity equation

 Mathematically the superposition theorem states that any sum of

individual solutions to the diffusivity equation is also a solution to

that equation. This concept can be applied to account for the

following effects on the transient flow solution:

• Superposition in time

– Effects of rate change

• Super position in space

– Effects of multiple wells

– Effects of the boundary

Superposition Principle
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Multi-Rate Drawdown Tests
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Multi-Rate Drawdown Tests
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A multi-rate test was conducted on an oil well at 

production rates and flowing bottom-hole 

pressures shown in Table .2.1. Other reservoir 

properties and well data are listed as follows:

Example
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Solution

Step 1: Calculate the YF function.

As example, at t = 1.89 hrs, pi = 2906 psi; pwf = 1941 psi; qn = 1580 STB/D

Similarly, at t = 20 hrs, pwf = 1772 psi; qn = 1160 STB/D
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Step 2: Calculate the XF function.

As example, at t = 1.89 hrs,

At t = 20 hrs,

Solution
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Solution
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Solution
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Step 3: Plot XF vs. YF on a Cartesian graph.

Solution
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Note that Figure has two straight lines. The slope of the first straight 

line is determined thus:

Using the values for YF and XF at t = 6.55 hrs and t = 3.00 hrs give:

Similarly the slope of the second line is determined to be 0.526

psi/(STB/D-cycle). It is apparent that this second straight line

represents late time region data that may have been affected by

boundary effects. The slope of this line is not used in the

calculations of permeability and skin factor since it is influenced by

boundary effects.

Solution
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Step 5: Calculate formation permeability.

Step 6: Calculate skin factor.

From Figure, the intercept on the y-axis is bI = 0.5589. Substituting gives:

Solution
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When a well penetrates the formation at an angle other than 90 degrees,

there is more surface area in contact with the formation. This results in a

negative apparent skin factor. This effect decreases as the vertical

permeability decreases, and increases as the angle from the vertical

increases.

Geometric Skin - Deviated Wellbore







































100
log

5641

865.1
'

06.2
'

Dww h
s

















 

w
h

v
w

k

k
 tantan 1'

v

h

w
D

k

k

r

h
h 

56



57

Derivative Analysis



58

Derivative Analysis
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Behavior of Static Sandface Pressure Upon  
Shut-in of a Well

Reflects “kh”

Reflects the wellbore storage 
(afterflow)

Reflects the effects 
of boundaries.



Buildup Test Analysis
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Buildup test does NOT allow for skin calculation. Skin is obtained from

FLOWING pressure before shut-in.
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Mathematically, the above boundary condition can be met by placing an

image well, identical to that of the actual well, on the other side of the fault

at exactly distance L. Consequently, the effect of the boundary on the

pressure behavior of a well would be the same as the effect from an

image well located a distance 2L from the actual well.

Distance to Fault - Image Well



Estimating Distance to a Fault from 

Horner Plot

Log of Horner Time Ratio
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Time to Doubling the Slope
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It should be pointed out that Equation 1.3.6 assumes the reservoir to be

infinite in size, i.e., re = ∞, which implies that at some point in the

reservoir the pressure would be always equal to the initial reservoir

pressure pi and the Horner straight-line plot will always extrapolate to pi .

Horner Plot

pi
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False Pressure (1)

However, reservoirs are finite and soon after production begins, fluid

removal will cause a pressure decline everywhere in the reservoir

system. Under these conditions, the straight line will not extrapolate to

the initial reservoir pressure pi but, instead, the pressure obtained will be

a false pressure as denoted by p∗.
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False Pressure (2)

The false pressure, as illustrated by Matthews and Russell (1967), has

no physical meaning but it is usually used to determine the average

reservoir pressure p. It is clear that p∗ will only equal the initial (original)

reservoir pressure pi when a new well in a newly discovered field is

tested.
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Miller–Dyes–Hutchinson Method (MDH)
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Miller–Dyes–Hutchinson Method (MDH)
The observed pressure behavior of the test well following the end of the

transient flow will depend on:

● shape and geometry of the test well drainage area;

● the position of the well relative to the drainage boundaries;

● length of the producing time tp before shut-in.
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MDH



76

Matthews et al (MBH) Method

A methodology for estimating average pressure from buildup tests in

bounded drainage regions.

The MBH method is based on theoretical correlations between the

extrapolated semi-log straight line to the false pressure p∗ and current

average drainage area pressure pavg.

The authors point out that the average pressure in the drainage area

of each well can be related to p∗ if the geometry, shape, and location of

the well relative to the drainage boundaries are known.

They developed a set of correction charts, as shown in Figures 1.42

through 1.45, for various drainage geometries.
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MBH Method
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MBH Method



79



80



81



82

Summary
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Summary
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Type Curves
The type curve analysis approach was introduced in the petroleum

industry by Agarwal et al. (1970) as a valuable tool when used in

conjunction with conventional semilog plots.

A type curve is a graphical representation of the theoretical solutions to

flow equations.

The type curve analysis consists of finding the theoretical type curve

that “matches” the actual response from a test well and the reservoir

when subjected to changes in production rates or pressures.

The match can be found graphically by physically superposing a graph

of actual test data with a similar graph of type curve(s) and searching for

the type curve that provides the best match.

Since type curves are plots of theoretical solutions to transient and

pseudosteady-state flow equations, they are usually presented in terms of

dimensionless variables (e.g., pD, Td, rD, and CD) rather than real

variables (e.g., p, t, r, and C).

The reservoir and well parameters, such as permeability and skin, can

then be calculated from the dimensionless parameters defining that type

curve.



Dimensionless Variables
Radial Flow With WBS And Skin
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Gringarten Type Curve

The Gringarten type curve describes the pressure response under the

following assumptions:

1.Constant rate production

2.Vertical wellbore

3.Infinite-acting homogeneous reservoir

4.Single phase liquid of small and constant compressibility

5.Infinitesimal skin that may be modeled with an apparent wellbore

radius

6.Constant wellbore storage coefficient

The Gringarten type curve was specifically developed for drawdown tests

in oil wells. We will see that we may use it (with some limitations) to

analyze pressure buildup tests in addition to drawdown tests, and to

analyze gas well tests as well as oil well tests.
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tD vs tD/CD
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Pressure And Derivative Type Curves
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Time Regions On The Type Curve
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Estimating Skin Factor
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Calculation of Reservoir Parameters from Buildup Test 

Using the Gringarten-Bourdet Type Curves

A well in a reservoir above its bubble point pressure was producing oil at a

constant rate of 185 BOPD before it was shut-in for a buildup test. The buildup

test data are given in Table 1 showing elapsed shut-in time, Δt, and shut-in

pressure, pws. Other reservoir and well data are given below:

Calculate dimensionless wellbore storage, CD; wellbore storage coefficient, C;

formation permeability, k; and skin factor, s. Use the technique of type curve

matching with the combined Gringarten-Bourdet type curve. Compare the

results from type curves to the results obtained from using straightline methods

based on the Horner plot.
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Buildup Test Data
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Step 1: Prepare the test data for analysis.

Calculate Agarwal equivalent shut-in time, Δte, and pressure change, Δp = 

(pws − pwf@Δt=0). The calculated data are Table 1. Plot Δp vs. Δte on a log-

log scale as shown in Figure 1.

Step 2: Calculate pressure derivative with respect to natural logarithm 

of equivalent time.
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Plot of Δp & Δp′ vs. Δte
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Step 3: Calculate CD and C from the unit-slope line.

Select any point on the unit-slope line from Figure. One such point on the 

unit-slope line is (Δte/Δp)USL = (0.06374/41.13). 
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Step 4: Perform type-curve matching using the Figure and Gringarten-

Bourdet type curve.
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Step 5: Calculate CD from time match point (TMP).

Step 6: Calculate skin factor, s.
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Fraim and Wattenbarger (1987)- Pseudo-time Transformation
(1) Variable compressibility
(2) Variable viscosity

Al-Hussainy and Ramey (1966)- Pseudo-pressure Transformation
(1) Variable compressibility factor
(2) Variable viscosity
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• Darcy law

• At high velocities pressure drop is more than what is predicted by 
Darcy’s law
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