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Introduction

What is a test?

Measurement of rate, time and pressure under
controlled conditions.

Why test?

« Reservoir pressure
« Permeability
» Wellbore damage
 Deliverability

Reservoir management
Reservoir description
Fluid samples
Regulations

+ Well testing theory is based on constant rate Drawdown tests.
Drawdown tests are not very practical (due to poor data quality).
Buildup tests are more common.



Formation Evaluation

. CORING

. LOGGING

. DST/RFT

. WELL TESTING

. PRODUCTION

APPROXIMATE DEPTH OF INVESTIGATION
10 cm

50 cm
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50 - 500 metres

whole reservoir



The Well Test Concept

During a well test,
we send a signal
to the reservoir...

...and we receive its response

we receive the response
from the formation

From its decline we get the permeability

we receive the
response
at the wellbore

From its behaviour we evaluate the
near Wellbore properties

we receive the
response
from a boundary

From the time delay we get the distance




Standard Well Test Set-up
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Transient & Stabilized Tests

Transient Tests q Reservoir Characterization

RFT®, WFT®, MDT® ... P, k, fluid samples

DST pi, k., fluid samples
Drawdown” / Injection k, s (often un-interpretable)
Buildup™ / Falloff k.S, Dy

Interference/Pulse k, ¢c,, lateral/vertical continuity
PITA, PID, Minifrac, CCT | p;, k

Stabilized Tests mmmsd Deliverability Forecasting

IPR Y stab

AOF Y stab
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Primary Reservoir Characteristics

e Types of fluids in the reservoir
— Incompressible fluids
— Slightly compressible fluids
— Compressible fluids
* Flow regimes
— Steady-state flow
— Unsteady-state flow
— Pseudosteady-state flow
* Reservoir geometry
— Radial flow
— Linear flow
— Spherical and hemispherical flow
 Number of flowing fluids in the reservaoir.
— Single-phase flow (oil, water, or gas)
— Two-phase flow (oil-water, oil-gas, or gas—water)
— Three-phase flow (oil, water, and gas)
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Flow Regimes
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Reservoir Flow Geometry

Well
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Components of Well Test Models

Direction (Vertical, Horizontal)

Well Storage (Constant, Changing)

Completion (Damaged, Fractured and Acidized)

Homogeneous
Heterogeneous
-« Reservoir -4 Composite

Multilayer

Dual porosity

Flow boundaries (No flow, Constant pressure, infinite)
Boundaries -

Geometrical boundaries (Circular, Rectangular)
13 — -



Well Models

»Wellbore Storage and Skin
»Uniform Flux Vertical Fracture

» Infinite Conductivity Vertical Fracture
» Finite Conductivity Vertical Fracture
»Horizontal Well SErerr r
»Limited Entry > orfinie fracture conductivity, |

c. Horizontal Well: Full or partial penetra-tion —

that this model must also include permeability this model includes permeability anistropy and
anistropy. vertical position.

a. Nertical Well: Full or partial penetration, note
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Reservoir Models

»Homogeneous
» Two-Layer
»Radial Composite
»Linear Composite
»Dual Porosity/Naturally Fractured
— Pseudosteady-state Interporosity Flow
— Transient Interporosity Flow (Slab/Sphere)

WAZEMI ACTUAL
MOOEL RESERAVOIR
—FRACTLURE .
- --r,_:-f METRIX ’ Q ] — ,ﬁ.”_,_,][;_]
:' | _FHHHTF!H!@EI ‘a
H'"H-H_ -"F--r R —= —- —— == =

[
1

FHEhLu_ﬁFLE\l&_ 11 a. Vertical Well: Naturally fractured/ dual
. = 1 porosity reservoir system.
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b. Vertical Well: Two-layer reservoir, with c. Vertical Well: Radial composite
crossflow in the reservoir. reservoir system.

d. Vertical Well: "Wedge" or pinch-out
reservoir system.
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Boundary Models

» Infinite-Acting
»Circle
»Rectangle
» Faults:
— Single Fault
— Parallel Faults
— Multiple Intersecting Faults

17



Mathematical Model-Governing Equation

K2

1 1/psia

0P| ___euc,  op
0.000264 K ot

c,=C, +CS, +C,S,




Initial And Boundary Conditions
Radial Flow In a Circular Reservoir

Initial Condition: p=

Well production Flow regime Inner Boundary Outer Boundary
Condition conditions

Constant rate

Constant rate

Constant pressure

Constant pressure
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Infinite acting 1B,

(arj ~ 2zr,hk
Finite acting op 1B,
(Bounded) ar! 271 hk
Infinite acting

(p)rw = P

Finite acting
(Bounded) (p)rw = Pus
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Direct and Inverse Processes
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Inverse Solution Compared to Actual System

»Inverse solution can be used for the identification of system
characteristics.

»Inverse solution can result in grossly erroneous answers.

»Whereas the mathematics is correct, the utility of the results derived
from this mathematically process is questionable.

@® Actual Measurements

Actual System

1 1 L L 1 1 1 Al | 1
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Characteristic of Inverse Solution

*Non-unique solution (the inverse solution has its limitation)

*A good looking history match is not a good enough answer
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Input-System-Response

Input Perturbation ) JESEels ) OUtPUt ReSponse
Mechanism
P
input _| reservoir | reservoir response
k5, C -
q 4 =
f
match
'Iil'
input N model model response
ko5, C

Y

Model Input ¥ Mathematical Model [ J\ele[IN@IT 1e]l]i
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“Average” permeability in a region
Not
Permeability at a “fixed radius”

Homogeneous

3.2

Drainage area: The reservoir area or volume drained by the well .



Input Data Required for Well Test Analysis

> Test data:

O flow rate and bottom hole pressure as a function of time.
0 the test sequence of events must be detailed, including any
operational problems that may affect the well response.

> Well data;

O wellbore radius r,,
0 well geometry (such as inclined or horizontal well)
O depths (formation, gauges)

»Reservoir and fluid parameters:
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O formation thickness h (net),

Q porosity O,

Qdcompressibility of oil ¢, water c,,, and formation c;
O water saturation S,

Qoil viscosity p

dformation volume factor B



Drawdown Analysis

I . (Middle time)
ET. . TRANSIENT % " LATE TIME

TRANSITION

S.S
P.S.S.
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Drawdown Analysis

P.S.S.

EARLY TIME . e’ S8

E.T1.

TRANSIENT
AP
log Der

log t
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Drawdown Analysis

Deviation from straight
line caused by skin and
+ g welloore storage effects

o —162.6Q0Bosio

5
End of =¥
transient flow -
Wallbora Storage Ragion Transiant Flow Ragion Psaudosteady-State Region
! k 4 . h 4 .
1.0 10 laia 100
Time, hrs
o — Pui —Prbe  _ fei — P |,t-,,,.r =mlog () + P W |
log(f) — log(1)  log(f) — 0
S — k
b 162, 66) B, i, 5= 1.151 Bi— Py b — log ( _?) + G20
— TE ko PLe ¥y

28 28 | Apopin = 0. 87 (1) 5 |




Drawdown Analysis

Wellbore Storage

Wellbore is a tank
e
! AP = constant x time
Log AP vslogt -Data UNIT SLOPE
O - Derivative is UNIT SLOPE
¢ A wellhead flow rate
« 0 *” * % 4
I
' bottombole flow rate
I
I
|
= I o

I s
wellbore storage effect period
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Due to wellbore storage at early times a deviation from constant rate
solution to the diffusivity equation is observed. After a certain period of time,

t,s. this deviation becomes negligible.

‘Ramey(1965) has shown that for various values of C,, the time for which
wellbore storage effects are significant, is given by:

't,, =60C_
_ t = 60x0.894.V,.C, _ 203182VWSCW5,U
0.000264kt 0.000264k h
\WSD ¢ILEt rW2

*Two important trends:

*Wellbore storage effects increase directly with well depth (V,,) and
inversly with formation flow capacity (kh).

*Wellbore storage effects decrease with increasing pressure level (c,,).



Radius of Investigation

How far into the reservoir have we investigated

T
rr 00325 (3% ) r 3
t=t, attime=t r,< r,<r, | o
i A AP T
T, -
- —t .
; t/{ (>t,) log t t" t
rw r:irw‘!
t=t, (>t)
P
/"'\_
r:w r:invz




Drawdown Analysis
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Transient approximate solution

P, =5 (In t, + 0.809) for t > 25 (2-75)
P.S.S approximate solution
2t C
D 3 D _
Pt = IEE + 1n *op "% for ?;E- > 0.25 (2-82)

For a closed outer boundary reservoir, Katz and Coats (1968)
defined the time to stabilization as that time at which the slope of
the Ft curves for the infinite-acting and finite~acting reservoirs are

equal.

]

3
-— (P ) = — (P-)
3y T piuacion (2-75) °°D  © Equation (2-82)
2t
i‘-—-[£ (In t._ + 0 sngﬂ S TN e RV R |
atD 2 D atD 2 el 4
el
12
2t z
D rED
from which
1 2
5 7% Tep

which corresponds to Equation (2-106) above. This results in a time to
stabilization ts, given by
2
dp e r,

_1 _€ -
e "2 7 2 k (2-107)



Transition Time-Drawdown Analysis

A ‘“rule of thumb, ” developed from the fundamental solutions of the
diffusivity equation including wellbore storage and skin effect (Agarwal et
al., 1970), suggests that the “transition” period lasts 1.5 log cycles from the
cessation of predominant wellbore storage effects (unit slope line). Points
beyond that time fall on a semi-log straight line.

Ap 1.5 cycles
100 £+ =+ + + #
10

34 | At



Accounting for Non-circular Drainage Area
Equation 1.2.123 can be slightly rearranged as:
162.6QB, (2.245&4)} (D.E’:ﬁ%@ﬂ) f
B o\ Car? Ahge,

Jﬁw‘f=|;ﬂ'l_

The above expression indicates that under semisteady-
state flow and constant flow rate, it can be expressed as an
equation of a straight line:

Pt = Qpes + Mpest
with @y and mipe as defined by:
162. 665 1 2. 24584
o= = P g (F2 2 ) |

_ ('l:l'. 23395@3) _ ( 0.23396Q8 )
M = T\ T, (Ah¢) J  \ e (pore volume)

It 1s obvious that during the pseudosteady (semisteady)-state

flow condition, a plot of the bottom-hole flowing pressure py;

versus time f would produce a straight line with a negative
35 slope of mpes and intercept of @pes.




Table 1.4 Shape factors for various single-well drainage areas (After Earlougher, R, Advances in Well Test Anai
permission to publish by the SPE, copyright SPE, 1977)

In bounded Cy In Cy 1ln { 9 2458 | Eract Less than Use infinite systen
FESErUOIKS 2 Cq Jor tha = 1% error solution witk less
Jor tpg = than 1% error
Jortpg =
(+) 31.62 3.4538 —1.3224 0.1 0.06 0.10
@ 31.6 3.4532 —1.3220 0.1 0.06 0.10
AN 27.6 33178 12544 0.2 0.07 0.09
27.1 3.2995 —1.2452 0.2 0.07 0.09
N 219 30865  —11387 0.4 0.12 0.08
.
3.: é}d 0.098 —2.3227 +1.5659 0.9 0.60 0.015
(-] 30.8828  3.4302 ~1.3106 0.1 0.05 0.09
N 129851  2.5638 —0.877 0.7 0.25 0.03
EE| 10132 1.5070 —0.3490 0.6 0.30 0.025
0.25 0.01
E 3.3351 1.2045 —0.1977 0.7
[+ 91.8369  3.0836 ~1.1373 0.3 0.15 0.025
= 108374 23830  —0.7870 0.4 0.15 0.025
H 10141 15072 —0.3491 15 0.50 0.06
£ 2.0769 0.7309 —0.0391 1.7 0.50 0.02
- 31573 11497 —~0.1703 0.4 0.15 0.005
REEE) 0.5813  —0.5425 +0.6758 2.0 0.60 0.02
HEEE' 01109  —21991 415041 3.0 0.60 0.005

w
(0))



« The skin effect, first introduced by van Everdingen and Hurst (1949)
defines a steady-state pressure difference around the wellbore.

Schematic of the Skin Effect

=T T Altered
b | A Permeability
Pressure Region Pressure
S i _ Pl
S R
LT T % -
AR Y Stimulated
O N Flowing
& F
et ® Bottomhole
Undamaged a i Aps Pressure
. .-'i -~
&
Flowing o "
Bottomhole Lot = et
Fressure o AN
Aps o o K
Damaged ,'Cflfﬁ kg :
Flowing E':x:,\,: :,:u:,:?
Bottomhole 0T DRSS
Pressure ' }__|
=
M

Radius
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Hawkins (1956) suggested that the permeability in the skin zone, i.e., skin, is uniform and the
pressure drop across the zone can be approximated by Darcy’s equation. Hawkins proposed

the following approach:

due to Fegin due to &

Apskin = [ Ap in skin zone } B [ Ap in the skin zone }

Applving Darcy's equation gives:

_ o ! QnHm'in ' Fskin
{-'i"lp}skm = (WM ) In ( " )

. ( By pio ) In ( Fskin )
0. 00708~k Fw

or. Ap <0

j . " GhaBopie k ' Fakin
Abdin = (L‘r. 00708kh ) |:1Efskin - 1} " ( ?) 4p>0

where:

where s is called the skin factor and defined as:
- 1} In (
?

Pressure Profile

\

) (1.2.131]

=
- -
L -

_{ QoBopo ) K ’fskin)
APskin = (0. 00708 k) | kg '”( P

QoBojio ]

APskin = | 5700708 kh

k = permeability of the formation, md
kain = permeability of the skin zone, md

The above expression for determining the additional pres-
sure drop in the skin zone is commonly expressed in the
following form:

. o LT . 6By, i
Apgin = (m) s = 141. 3( T ) 5 [1.2.130]

v

P okin



(Afb ) actual = ( Ap ) ideal + (Af) ) skin

or:

(pi - pwf)anual — (pi — ﬁwf)idcal + APskin

Steady state radial flow (accounting for the skin factor)
Substituting Equations 1.2.15 and 1.2.130 into Equation

1.2.132, gives:
(Ap)aclual - (ﬂp)idcal + (Af)) skin
QB 110 ) (?’c ) (
_*ool0 Mp | £
0.00708kk ) "\ ) T
Solving for the flow rate gives:
0.00708kh (p; — pwi)

(Di — Pwidactual = (

Qc} = 7
[toBs [111 —= 3}
W
where:
@, = oil flow rate, STB/day
k = permeability, md
h = thickness, ft
s = skin factor
B, = oil formation volume factor, bbl/STB
1, = oil viscosity, cp
p; = 1nitial reservoir pressure, psi
pwi = bottom-hole flowing pressure, psi

39

Unsteady-state radial flow (accounting for the skin factor)
For slightly compressible fluids Combining Equations
1.2.71 and 1.2.130 with that of 1.2.132 yields:

(Ap)adual = (Ap)idcal + (Ap)skin

-6 o QOBOMO ) kt
i— \¥:1E—2‘f log — — 3.23
Pi = P ’ J( kh 08 puers
QOBOMO
141.2
+ ( o )s
or.
_ )Bn- 0 ) kt
bi — Dot = 162.6 ( o dop )[log _ _3.2340. 8’?3}
kh pucers

[1.2.134]

QOBO.I“O ) s
0. 00708kh

[1.2.133]

Pseudosteady-state flow (@accounting for the skin factor)
For slightly compressible fluids  Introducing the skin factor
into Equation 1.2.123 gives:

0. 00708%k (B — put)

ll'.-f;;.tl..',l-ln |:].ﬂ (i) — .75 + 5]
Py

o = [1.2.157]



Effective Wellbore Radius

*If the permeability in the altered zone k, is much larger than the
formation permeability k, then the wellbore will act like a well having
an apparent wellbore radius r,,.

*The apparent wellbore radius may be calculated from the actual
wellbore radius and the skin factor.

I
S=—=In| Y2 | m—)

M

(4]

C X
wnnn
+ O
3
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Minimum Skin Factor

The minimum skin factor possible (most negative skin factor) would occur
when the apparent wellbore radius r,, is equal to the drainage radius r,
of the well.

r
=—In| =
r

Smin

wW

For a circular drainage area of 40 acres (r, = 745 feet) and a wellbore radius of
0.5 feet, this gives a minimum skin factor (maximum stimulation) of -7.3.

Smin =—|n(:]=—| (2455) —-7.3
W
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Flowing wellbore pressure
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Well Test Analyses with Straight-line Methods

/’ .
y=b+ mx Y = Puf x=log! m= lé-f;m
h
162,698 k
b=p - : p[log = =323+ 0.869!5]
b | et
162.6¢4B k
Pwr = Pi —#[logr + log = o= 323 0.869Is]
kh dpcry,
Pi = Pwf kt
5= |.|5|['—'”- log——— +3.23]
e bpcriy

162.6¢4B = Dby k
= —F s= Li51|A—2E _ jog—— + 323

mh m pcyryy
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Superposition Principle

Linear diffusivity equation

Fp 1 dp _ _dne dp
or? r odr k ot

0 Mathematically the superposition theorem states that any sum of
Individual solutions to the diffusivity equation is also a solution to
that equation. This concept can be applied to account for the
following effects on the transient flow solution:

e Superposition in time
— Effects of rate change

e Super position in space
— Effects of multiple wells
— Effects of the boundary




Multi-Rate Drawdown Tests

Pi = Pwf = myg(log(t) + byl
&
x | 162.6BL
e F Gn m,, = ;
a5 kh
k
b, = log = | — 3.23 4+ 0.8691s
% bpc,ry,
0 ty t ta . th-1 th
—>t

Pi — Pwf = mmqlnog(’) + bm] + ’”m(q2 - ‘Il)nog(’ - ’I) + bm]
+ m,(q: — @)llog(t — 1) + b, |+ 0=
S & mm(qn = qn—l)nog(’ e ’n—l) + bm]

Pi = Puwf n[(g; = qj-1)
A mmz log(t, — tj—y)| + m,b,, for gq,#0
{n J=1 dn '
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Multi-Rate Drawdown Tests

q Q2 =5
T as — Gn
Q3
0 €.
0 ty b ty t th-1 b
—>t
Xp= 2 ! j log(r, — U—lJ} Ypm= AL BORE N kh
’=| (l" qfl

k
);Ilh'l]'g‘pf:b] S 'n”g[l()g( - ) STt 323 + ()869"]
bpc,rip
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A multi-rate test was conducted on an oil well at
production rates and flowing bottom-hole
pressures shown in Table .2.1. Other reservoir
properties and well data are listed as follows:

Initial reservoir pressure, p; 2906 psia
Formation thickness, / 40 ft
Formation porosity, ¢ 0.24

Total compressibility, ¢ 5% 107 psi”!

Oil viscosity. w, 0.60 ¢cp
Oil FVE, B, 1.27 RB/STB
Wellbore radius, r,, 0.5 ft

47

n t(hrs.) q,(STB/D) Pz (psi)
1 0 0 2906
1 1.00 1580 2023
1 1.50 1580 1968
1 1.89 1580 1941
| 240 1580 —
2 3.00 1490 1892
2 345 1490 1882
2 3.98 1490 1873
2 4.50 1490 1867
2 4.80 1490 —
3 5.50 1440 1853
3 6.05 1440 1843
3 6.55 1440 1834
3 7.00 1440 1830
3 7.20 1440 —
4 7.50 1370 1827
4 8.95 1370 1821
4 9.60 1370 —
5 10.00 1300 1815
5 12.00 1300 1797
6 14.40 1260 —
7 15.00 1190 1775
7 18.00 1190 1771
7 19.20 1190 —
8 20.00 1160 1772
8 21.60 1160 —
9 24.00 1137 1756
10 28.80 1106 —
11 30.00 1080 1751
11 33.60 1080 —
12 36.00 1000 —
13 36.20 983 1756
13 48.00 983 1743




Step 1: Calculate the Y- function.

Pi — Puwf
YF — _
{y
As example, at £=1.89 hrs, p,= 2906 psi; p,,= 1941 psi; g,= 1580 STB/D
2906 — 1941
n == = O. ‘ : 5
Y, s 6108 psi/STB-D

Similarly, at £= 20 hrs, p,,= 1772 psi; g,= 1160 STB/D

b 2906 — 1772
Z 1160

= 0.9776 psi/STB-D
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Step 2: Calculate the X-function.
. [(‘11 ~ qj-1)

Xr = 2 Un

J=

log(r, - 1, ,)]

As example, at £=1.89 hrs,

1580 — 0
Xp = ( TS50 )Iog(l.89 0)
= 0.2765
At 1= 20 hrs,
(1580 — 0) log(20 — 0) + (1490 — 1580) log(20 — 2.4) i
Xp = L v + (1440 = 1490) log(20 = 4.8) + (1370 = 1440) log(20 -~ 7.2)
1160 + (1300 — 1370) log(20 — 9.6) + (1260 — 1300) log(20 — 12)
4+ (1190 = 1260) log(20 = 14.4) + (1160 — 1190) log(20 — 19.2) |

22
" 1.4225
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n t(hrs.) g, (STB/D) Pz (psi) Ye (psi/STB-D) Xe

1 0 0 2906 — —

| 1.00 1580 2023 0.5589 0.0000
| 1.50 1580 1968 (0.5937 0.1761
| 1.89 1580 1941 0.6108 0.2765
| 2.40 1580 —_ — —_

2 3.00 1490 1892 0.6805 0.5193
2 345 1490 1882 0.6872 0.5690
2 3.98 1490 1873 (0.6933 0.6241
2 4.50 1490 1867 0.6973 0.6732
2 4.80 1490 — — —

3 5.50 1440 1853 0.7313 0.7870
3 6.05 1440 1843 0.7382 0.8193
3 6.55 1440 1834 0.7444 0.8485
3 7.00 1440 1830 0.7472 0.8739
3 7.20 1440 — —_ —_

4 7.50 1370 1827 (.7876 0.9737
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- 8.95 1370 1821 0.7920 1.0091
4 9.60 1370 - - -
5 10.00 1300 1815 (.8392 1.1242
5 12.00 1300 1797 0.8531 1.1535
6 14.40 1260 - — —
7 15.00 1190 1775 0.9504 1.3374
7 18.00 1190 1771 0.9538 1.3553
7 19.20 1190 — — =
8 20.00 1160 1772 0.9776 1.4225
8 21.60 1160 — — —
9 24.00 1137 1756 1.0114 1.4851
10 28.80 1106 — — —
11 30.00 1080 1751 1.0694 1.6067
1l 33.60 1080 — — —
12 36.00 1000 — — 2
13 36.20 983 1756 1.1699 1.7883
13 48.00 983 1743 1.1831 1.7995




Step 3: Plot X-vs. Y-on a Cartesian graph.

1.4
| Slope of second line, My, = 0.526 |
1-2 7 '_’_4;
/ - ad -
! i
Slope of first line, m,,; = 0.194 - K -

é 0.8 / ’ﬁ:O' ,,,,,
S | asee-em®
F B ks
~ 06 b?"_‘ g

0.4 4

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
X-Function
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Note that Figure has two straight lines. The slope of the first straight
line is determined thus:

2 — Yri
Xr2 — Xp2

’n)?.' v

Using the values for Y-and X_-at = 6.55 hrs and #= 3.00 hrs give:

0.7444 — 0.6805
(0.8485 — 0.5193

Similarly the slope of the second line is determined to be 0.526
psi/(STB/D-cycle). It is apparent that this second straight line
represents late time region data that may have been affected by
boundary effects. The slope of this line is not used in the
calculations of permeability and skin factor since it is influenced by

boundary effects.
53
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= 0.194 psi/(STB/D-cycle)




Step 5: Calculate formation permeability.

- 162.6Bp

e M,
~ 1626 X 1.27 X 0.6
0194 X 40

= |5.97 md.

Step 6: Calculate skin factor.

From Figure, the intercept on the J~axis is b,= 0.5589. Substituting gives:

(0.558 15.97
5= l.lSI[ 2 log( : —— ,,) + 3.23]
0.194 0.24 X 0.6 X 5 X 107 X (0.5)°

—0.96
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Partial Penetration Skin

Saidikowski estimated the skin factor due to partial pene-

5= o 54+ §
_(h’)d P

tration from the following expression:

s —(h 1) In -;? E
S o \ Ty

where:
o = wellbore radius, ft
hy = perforated mterval, {t
/i = total thickness, ft
kn = horizontal permeability, md
ky = vertical permeability, md

-



Geometric Skin - Deviated Wellbore

When a well penetrates the formation at an angle other than 90 degrees,
there is more surface area in contact with the formation. This results in a
negative apparent skin factor. This effect decreases as the vertical

permeability decreases, and increases as the angle from the vertical
Increases.

Ch [

S=35y + 5y > =Tk,
i 0, =tan™ /& tand,,
h kh
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Derivative Analysis

vl
Semi-log approximation polts) _ = |Inty + 080907 + 25|

C ' d d| 1
Derivative Po = lii =1, f -2
n D

In infinite acting radial flow, the derivative stabilizes at 0.5

5 Semi-Log
. "--._. (Superposition) Plot)

Pressure
Derivative Plot

Horizontal straight line
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Derivative Analysis

S increases
orKdecreases | aeesssemsneres
......... uumnemererettt 5 decreases
T - or K increases
L
et -+
4""
.*".‘F.
-I-..'
¢"'. :
&~ C or S increases
1000
-.-' I..ﬂ.. - "'\o,
— Ly '.-. ey
= £ o ..., K decreases
X o L.
g -"::J‘f “"“""n
g o C or S decreases rerbae.
= &
& cq &
= eeleases /"' K increases
=
=
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100
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Elapsed time
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skin
increasing
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Behavior of Static Sandface Pressure Upon

EARLY TIME
L\ ]

Shut-in of a Well

Reflects “kh”

- — " —— o — i — i — i — T — - —— i — —

MIDDLE TIME

LATE TIME

Reflects the effects
of boundaries.

—

Ot

Reflects the wellbore storage
(afterflow)
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Buildup Test Analysis

Buildup as Superposition

(Rates)
q
2
P Flow Shut-in
0
- - -+ A
— t :
q ————————
3
o Continuous Flow
Q
o
o
0
Injection
-q

time

time

time

MATHEMATICAL MODELLING
of SHUT-IN

I RESERVOIR
M"‘-——-—"" o
FLOW - VALVEA OPEN
- VALVEE CLOSED
BUILDUP - VALVEA CLOSED

VALVEB OPEN

— NO production at surface
===« Continuous production and injection at reservoir
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Buildup as Example of Superposition




Horner plot relationship BUILD-UP SEMILOG PLOTS

() 162.6qB “, t 1 At INFINITE RESERVOIR
= t)= —I0
: t+ At
Horner time =
At P
Slope of semilog straight line same as
drawdown — used to calculate
permeability. 1 10 100 1000
At=00 t + At >
162.60B, 1 at
m =
kh
1P*
N ﬁt—pt P
P
1000 1

At= 0O
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Buildup test does NOT allow for skin calculation. Skin is obtained from
FLOWING pressure before shut-in.

P, (tp + At)— P, (tp)z mz'i#[log(tp% Iog[

t o+ AL
J—s.23+o.87s]—1626&@;(p+ j

puCr’ kh At

SKIN from BUILDUP DATA ?

_162.60B,p) [ LAY
pws(tp+At)—pM(tp)— kh [Iog[t j+|09(¢ﬂctrwz

J—3.23+0.87S]

o Buildup data
independent of skin

©oFlowing Pressure

- - - —»at
t
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o 3 Buildup
Equivalent Time -

Measurable Pressure Drawdown
. ‘ﬁlv pi_.ph.f
Difference N
G Buildup

[P, (At)— p, (¢, ) L

i, =q
=
g, =0

Correct Pressure t—s A
Difference

Equivalent Time

prs (At)— Pu (tp + At)J &= (A1)
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Distance to Fault - Image Well

Mathematically, the above boundary condition can be met by placing an
Image well, identical to that of the actual well, on the other side of the fault
at exactly distance L. Consequently, the effect of the boundary on the
pressure behavior of a well would be the same as the effect from an
Image well located a distance 2L from the actual well.

/ reservoir virtual "
reservoir

well ® L :

/ I

/ /
/ /

virtual image well ‘

|
N linear producer (sealing fault)

~ injector (constant P B /
T boundary 4 ( ) /

L T — s >

— iy g~



Estimating Distance to a Fault from
Horner Plot

p 1/2
ws L [0.000148 kAL, ]
PLLC,

2m

. Intersection

At

X

tID + At
At

Log of Horner Time Ratio



Time to Doubling the Slope

increasing t

t + At 1

At
Doubling of slope only seen clearly
whent>>161t_,




Horner Plot

It should be pointed out that Equation 1.3.6 assumes the reservoir to be
infinite in_size, i.e., r, = «~, which implies that at some point in the

reservoir the pressure would be always equal to the initial reservoir
pressure p; and the Horner straight-line plot will always extrapolate to p; .

Time, Af, hr
900 1 5 10 50 100 500
| | | | | |
L.
162. 6Q, 110 B, t, + At P ’pi
kh At -
-
where: _ -
z
. . . @ 800 — —
pi = initial reservoir pressure, psi g
- . - @
pws = sand face pressure during pressure buildup, psi 2 , Slope = -m
. . . 1hr
t, = flowing time before shut-in, hours £ y
P - . © ~ o
o = stabilized well flow rate before shut-in, STB/day g - .
At = shut-in time, hours 5
S 700 — —
w (o]
o
O e DEVIATION FROM STRAIGHT LINE
) CAUSED BY WELLBORE STORAGE
o ° AND SKIN
600 LL 1 1 I L 11 1 L1 I [ I
6 4 2 6 4 2 6 4 2 6 4 2
104 108 102 10 1

(tp +At) /At
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False Pressure (1)

However, reservoirs are finite and soon after production begins, fluid
removal will cause a pressure decline everywhere in the reservoir
system. Under these conditions, the straight line will not extrapolate to
the initial reservoir pressure p;but, instead, the pressure obtained will be

a false pressure as denoted by p*.

P+

1000




False Pressure (2)

The false pressure, as illustrated by Matthews and Russell (1967), has
no physical meaning but it is usually used to determine the average
reservoir pressure p. It is clear that p* will only equal the initial (original)

reservoir pressure p; when a new well in a newly discovered field is
tested.

Pus = P [1.3.10]

2 P*

1000
At

§




Miller-Dyes—Hutchinson Method (MDH)

M.D.H. Plot

m = 162.6 qfu
kh - =
m
P
Wa
/
/
&
P < Valid for Buildup following LONG flow period
0.1 1 10 100

log At



Miller-Dyes—Hutchinson Method (MDH)

The observed pressure behavior of the test well following the end of the
transient flow will depend on:

e shape and geometry of the test well drainage area,

e the position of the well relative to the drainage boundaries;

e length of the producing time t, before shut-in.

(1) Choose any convenient time on the semilog straight line
At and read the corresponding pressure pys.

(2) Calculate the dimensionless shut-in time based on the
drainage area A from:

0. 0002637k At
puca
(3) Enter Figure 1.41 with the dimensionless time AfpA and
determine an MDH dimensionless pressure ppyvpy from
the upper curve of Figure 1.41.

(4) Estimate the average reservoir pressure in the closed
drainage region from:

Afpa =

MPDMDH
1.1513
74 where m 1s the semilog straight line of the MDH plot.

Er = Pws +




MDH

pe il

BOUNDARY, poypn = 1-1513 (P, — P/

F‘DMDH =1.1513 |Iﬂ‘_ —pwg]f'm
———CONSTANT PRESSURE, p., AT DRAINAGE

— NO FLOWACROSS DRAINAGE BOUNDARY,

3 456789

3 4 56789

2

2 3 456789

HOWd

102

Dimensionless Shut—In Time, Al ,

104 1073

10°°

Miller-Dyes—Hutchinson dimensionless pressure for circular and square drainage areas (After Earlougher,

A. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).

Figure 1.41



Matthews ef a/ (MBH) Method

A methodology for estimating average pressure from buildup tests in
bounded drainage regions.

UThe MBH method is based on theoretical correlations between the
extrapolated semi-log straight line to the false pressure p* and current
average drainage area pressure p,-

UThe authors point out that the average pressure in the drainage area
of each well can be related to p* if the geometry, shape, and location of
the well relative to the drainage boundaries are known.

UThey developed a set of correction charts, as shown in Figures 1.42
through 1.45, for various drainage geometries.
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MBH Method

The y axis of these figures represents the MBH dimen-
sionless pressure ppyen that is defined by:

2.303(p* — P)

|

POMBH =

or.
|m|

p=7p"— (m) PoMEl [1.3.13]

where m is the absolute value of the slope obtained from the
Horner semilog straight-line plot. The MBH dimensionless
pressure is determined at the dimensionless producing time
tnpa that corresponds to the flowing time #;. That is:

0. 0002637k
Ippa = tp

[1.3.14]
e A

where:

t, = flowing time before shut-in, hours
A = drainage area, ft

k = permeability, md

¢y = total compressibility, psi—
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MBH Method

The following steps summarize the procedure for applying
the MBH method:

Step 1.
Step 2.

Step 3.
Step 4.

Step 5.

Step 6.

Step 7.

Make a Horner plot.

Extrapolate the semilog straight line to the value of
p*at (t, + At) /At = 1.0.

Evaluate the slope of the semilog straight line m.
Calculate the MBH dimensionless producing time
tppa from Equation 1.3.14:

B 0. 0002637k ;
pbA = A P

Find the closest approximation to the shape of the
well drainage area in Figures 1.41 through 1.44 and
identify the correction curve.

Read the value of ppygy from the correction curve

at froa _
Calculate the value of p from Equation 1.3.13:

— ||
p=p - (? '-iu:-l) foven
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pWS

Summary

Horner Plot

Pwio required for calculating skin pi)k
WS mi wio 3( Af k
s=1.15 il I —log —log j+3.231 PX
m [+ At puc,r, T
T @
____________________________ 162.6qBu
kh
Permeability
Reverse semilog plot is used for convenience
At = ©
(1+At)/At 1
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Summary

* Horner plot: graph of p,,; vs. log ((t +/\t )!N)
= Extrapolation to infinite shut-in time yields p*
" |nfinite reservoir: p*= p;
* Finite reservoir: p*. p; = p,

» |f p*> p,, the Horner semi-log line is wrong, p; is
wrong, or there is a constant pressure boundary

* MDH plot: graph of p,,, vs. log (/A1)
= Useful when producing time (7) is long
= Analysis only valid when Ar<10% of



Type Curves

dThe type curve analysis approach was introduced in the petroleum
industry by Agarwal et al. (1970) as a valuable tool when used In
conjunction with conventional semilog plots.

QA type curve is a graphical representation of the theoretical solutions to
flow equations.

dThe type curve analysis consists of finding the theoretical type curve
that “matches” the actual response from a test well and the reservoir
when subjected to changes in production rates or pressures.

dThe match can be found graphically by physically superposing a graph
of actual test data with a similar graph of type curve(s) and searching for
the type curve that provides the best match.

Since type curves are plots of theoretical solutions to transient and
pseudosteady-state flow equations, they are usually presented in terms of
dimensionless variables (e.g., pD, Td, rD, and CD) rather than real
variables (e.g., p, t, r, and C).

dThe reservoir and well parameters, such as permeability and skin, can
then be calculated from the dimensionless parameters defining that type
curve.



Dimensionless Variables
Radial Flow With WBS And Skin

o = khlpi—p) . _ 0.0002637kt
° " 141.29Bu DT ar
r
rD = —
r.W
o - KhAps c, = 08936C

141.2qBu Jehr



Gringarten Type Curve

The Gringarten type curve describes the pressure response under the
following assumptions:

1.Constant rate production

2.Vertical wellbore

3.Infinite-acting homogeneous reservoir

4.Single phase liquid of small and constant compressibility

5.Infinitesimal skin that may be modeled with an apparent wellbore

radius
6.Constant wellbore storage coefficient

The Gringarten type curve was specifically developed for drawdown tests
In oil wells. We will see that we may use it (with some limitations) to
analyze pressure buildup tests in addition to drawdown tests, and to
analyze gas well tests as well as oil well tests.
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Derivative Type Curve
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Pressure And Derivative Type Curves
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Time Regions On The Type Curve

Transition

Unit Slope Line
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Estimating Skin Factor
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High Skin
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Calculation of Reservoir Parameters from Buildup Test
Using the Gringarten-Bourdet Type Curves

A well in a reservoir above its bubble point pressure was producing oil at a
constant rate of 185 BOPD before it was shut-in for a buildup test. The buildup
test data are given in Table 1 showing elapsed shut-in time, A¢, and shut-in
pressure, p,.. Other reservoir and well data are given below:

Formation thickness, A 114 ft
Formation porosity, ¢ 0.28

Total compressibility, ¢; 4.1 x 107° psi~!
Oil viscosity, i, 22 cp

Oil FVE. B, 1.1 RB/STB
Wellbore radius. r,,, 0.50 ft

Flowing BHP, p,,,s atAs = () 282() psia
Producing time before shut-in, - 540 hrs

Calculate dimensionless wellbore storage, C,; wellbore storage coefficient, C,
formation permeability, k; and skin factor, s. Use the technique of type curve
matching with the combined Gringarten-Bourdet type curve. Compare the
results from type curves to the results obtained from using straightline methods
9Igased on the Horner plot.
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Buildup Test Data

At (hrs) Pws (PSia) At (hrs) Puws (Psia) At (hrs) Pws (psia) At (hrs) Puws (Psia)
0.0000 2820.00 (.3188 3006.01 2.5500 33400 12.9625 3398.19
0.0018 2822158 0.3542 3022.46 27625 3350.80 13.6000 339875
0.0035 282318 0.3896 036,49 29150 1355.10 142375 3399.31
0.0071 2825.61 04250 3051.08 31875 1362.38 14.5750 3399.86
0.0106 2827.67 04604 065,68 34000 3367.23 155125 3400.25
0.0142 283028 04958 80,63 3.6125 337040 16,1500 3400.80
0.077 283127 0.5313 9129 38250 nnn 16,7875 MOL10
0.0213 283533 0.5667 314,95 4.0375 137303 174250 3401.55
0.0248 2837.76 0.6021 311673 4.2500 3375.00 18.0625 3401.83
0.0283 2840.19 0.637% 312882 44625 3.8 18.9125 3402.39
00319 2842.62 0.69%06 314423 46750 337973 197628 4027
0,039 2844 86 07438 315826 48875 3381.28 206125 3403.21
0.0425 2847.11 0.7969 317042 51000 338315 214625 403,51
0.0496 2851.97 0.8500 318407 5.3125 3138446 22.3125 1403.96
00567 2857.19 0.9031 319493 5.7375 338480 23.1625 a4
0.0638 2861.13 0.9563 320747 6.1625 1387.00 24.2250 0478
0.0708 286598 10094 3218.31 6.5875 1387.51 25.5000 405.13
00815 2876.72 1.062% 3862 70128 338864 27.6250 3406.22
00921 2883.26 11156 3235.90 14375 3389.96 29.7500 3406.62
01027 2889.08 11688 324489 18625 339089 31.8750 1407.52
01133 2895.59 1.2219 3125349 8.2875 139164 34,0000 340790
0.1230 200093 1.2750 326061 8.7125 3392.76 38.2500 0971
0.1381 2909.72 1.3813 327446 9.1375 3393.32 42,5000 410.10
0.1523 2917.76 1 4875 3284.39 9.5625 339407 46.7500 MiLe2
0.1665 2926.17 1.5938 329470 99875 139463 51.0000 MI1.83
0.1806 2934.03 1.7000 3297.68 104125 3139539 352300 Mi1286
0.1948 2042.06 1.9128 3317.54 10,8378 339594 $59.5000 341325
0.2125 2951.60 20188 3323.15 11.2625 3396.56 — B
0.2479 2970.66 21250 3327.83 116875 139688 — —
02833 2987.87 2.3375 3336.24 12.3250 339763 - -_




Step 1: Prepare the test data for analysis.

Calculate Agarwal equivalent shut-in time, Az,, and pressure change, Ap =
(Pws ~ Puwmanso)- The calculated data are Table 1. Plot Apvs. Af, on a log-
log scale as shown in Figure 1.

Ap Ap Ap
At, (psi) At Ap’ At, (psi) At Ap’ At (psi) At Ap’
0.0018 2:15 1.7098 0.7427 338.26 182.7992 8.5742 37276 17.1367
0.0035 318 2.4958 0.7957 350.42 194.7352 8.9855 573.32 14,4583
0.0071 5.61 44916 (.8487 364.07 195.1176 9.3961 374.07 14,9275
0.0106 1.67 74107 0.9016 374.93 2001915 9.3061 5374.63 15.8172

0.0142 10.28 10.0963 0.9546 387.47 210.0963 10.2155 | 575.39 16.2879

0.0177 12.71 12.8207 1.0075 398.31 201.1232 10.6243 | 57594 15.2523

0.0212 15.33 15.1382 1.0604 | 408.62 1747776 11.0324 | 576.56 | 12.5318

0.0248 17.76 17.0691 1.1133 | 415.90 172.1645 11.4399 | 576.88 | 11.1707

0.0283 20.19 19.492] 1.1662 | 424.89 193.8354 12.0500 | 577.63 | 12.8853
0.0319 22.62 17.1346 1.2191 43349 180.5007 12.6586 | 578.19 | 11.6352
0.0390 24.86 21,4190 1.2720 | 440.61 169.6267 13.2659 | 57875 | 12.2291

0.0425 27.11 27.9062 1.3777 | 45446 153.1716 13.8718 | 579.31 12.8085

0.0496 31.97 35.5838 1.4834 | 464.39 142.3950 14.4762 | 579.86 | 11.1516
0.0567 37.19 36.0873 1.5891] 474,70 96.3010 15.0793 [ 580.25 | 11.8288

Step 2: Calculate pressure derivative with respect to natural logarithm
of equivalent time.

94
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Pressure Change & Pressure Derivative

Plot of Ap & Ap’vs. At

1000

100 % : SH——— i
RRRtti + Pressure Derivative [{
cF 11| = Pressure Change
.
10 s
L
-+ 11 1
-
1
0.001 0.01 0.1 1 10 100
Time Function

1000



Step 3: Calculate C,and C from the unit-slope line.

Select any point on the unit-slope line from Figure. One such point on the
unit-slope line is (AtJAp) s, = (0.06374/41.13).

0.03723¢B( At,
CI) = 3
dehry, \Ap/ust
B 0.03723 X 185 x 1.1 [0.06374]
028 X 4.1 X 107% x 114 X (0.5)°L 41.13
= 358.86

At,’
C = 0.04|()5(]B( )
Ap/ust

(0.06374 )

= 0.04165 X 185 X 1.1 X (
41.13 |

0.013 RB/psi

96



Step 4: Perform type-curve matching using the Figure and Gringarten-
Bourdet type curve.

100
— —— Dimensionless Pressure 00— “‘;‘0—
— Hressure Denvalive = 102
o ]
19 Match Point
100
1
10
d1 | '
0.1 1 10 100 1,000 \ 10,000
1 T r
0.001 0.01 0.1 1 10 100 1000

l4l£q8u[pu]
k =
h o LAplpwe

22 e~ i5)
— =|— 141.2 X 185 X 1.1 X 2.2/ 4.5
(5 b = (i) - (4

114 100

v = 24.95 md.



Step 5: Calculate C, from time match point (TMP).

o.oooze.m[ At, ]
dpcrs, Lin/Cplrmp

_At, ) - (0.03) = 0.0002637 X 24.95 0.03
( T™MP | ( )

Cp

n/Ch 0.28 X 2.2 X 4.1 X 107°® x (0.5)*\ 1
= 312.61
Step 6: Calculate skin factor, s.
Cpe™
Cp
0.51 ( 10~ ) here Cpe™ = 10*' from Fi 12.7
= 0.5In , Where Cpe” = 10°" from Figure 12.7,
312.61 e 2
= 22.46
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Treatment of Gas Flow Equations Iin
a Porous Medium

{ } ()= | —2

Y u()e ()

Al-Hussainy and Ramey (1966)- Pseudo-pressure Transformation
(1) Variable compressibility factor
(2) Variable viscosity

(1) Variable compressibility

Fraim and Wattenbarger (1987)- Pseudo-time Transformation
(2) Variable viscosity

99



Non-Darcy Flow

e Darcy law _ P -2y
ox k
* At high velocities pressure drop is more than what is predicted by
Darcy’s law oo u

—— ==V+ ,O,BV2 Forchheimer equation
ox K

f=1.88x1010k 4747052

Darcy Flcyv | . Non-Darcy Flow
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Slope = m

0 (py- p2)

L



22 5/0;;46'45. ), 5 340)

(Soptis rrigs ) Sy TN00 iy 20 _Vya 4 jitird oW ps i gos YOIk iy 15

S Sliiog ypsle od)) Glismills oy ki i (wg)d o gaS i ys V)
e Dliig g osle 0t Gliamalls 0y Sk i (s SIS 5 Ls sy el V)
Tol o e

Tel: 09138487112

Email : Eng.Maghsoudi@gmail.com

101



