Advanced Pressure Transient Analysis

A Quick Review on Well Testing

By: Shahab Gerami

Outline

- Introduction
- Basic definitions and concepts
- Components of well test models
- Inverse and direct solutions
- Input data required for well test analysis

Introduction

What is a test?

Measurement of <u>rate</u>, <u>time</u> and <u>pressure</u> under controlled conditions.

Why test?

- Reservoir pressure
- Permeability
- Wellbore damage
- Deliverability

- Reservoir management
- Reservoir description
- · Fluid samples
- Regulations

+ Well testing theory is based on constant rate Drawdown tests. Drawdown tests are not very practical (due to poor data quality). Buildup tests are more common.

Formation Evaluation

APPROX	DEPTH O	F INVES	<u>TIGATION</u>
	4.0		

1. CORING	10 cm
2. LOGGING	50 cm
3. DST / RFT	1 - 10 metres
4. WELL TESTING	50 - 500 metres
5. PRODUCTION	whole reservoir

The Well Test Concept

Standard Well Test Set-up

Transient & Stabilized Tests

Transient Tests	Reservoir Characterization		
RFT [®] , WFT [®] , MDT [®]	p_i , k , fluid samples		
DST	p_i , k , fluid samples		
Drawdown ⁺ / Injection	k, s (often un-interpretable)		
Buildup ⁺ / Falloff	k, s, \overline{p}_R		
Interference/Pulse	k, ϕc_t , lateral/vertical continuity		
PITA, PID, Minifrac, CCT	p_i, k		
Stabilized Tests	Deliverability Forecasting		
IPR	q_{stab}		
AOF	q_{stab}		

Primary Reservoir Characteristics

- Types of fluids in the reservoir
 - Incompressible fluids
 - Slightly compressible fluids
 - Compressible fluids
- Flow regimes
 - Steady-state flow
 - Unsteady-state flow
 - Pseudosteady-state flow
- Reservoir geometry
 - Radial flow
 - Linear flow
 - Spherical and hemispherical flow
- Number of flowing fluids in the reservoir.
 - Single-phase flow (oil, water, or gas)
 - Two-phase flow (oil-water, oil-gas, or gas-water)
 - Three-phase flow (oil, water, and gas)

Flow Regimes

Reservoir Flow Geometry

Components of Well Test Models

Well Models

Wellbore Storage and Skin
 Uniform Flux Vertical Fracture
 Infinite Conductivity Vertical Fracture
 Finite Conductivity Vertical Fracture
 Horizontal Well
 Limited Entry

b. <u>Vertically Fractured Well</u>: Uniform flux; infinite or finite fracture conductivity.

 <u>Vertical Well</u>: Full or partial penetration, note that this model must also include permeability anistropy.

 c. <u>Horizontal Well</u>: Full or partial penetra-tion this model includes permeability anistropy and vertical position.

Reservoir Models

- >Homogeneous
- ≻Two-Layer
- ➢Radial Composite
- Linear Composite
- Dual Porosity/Naturally Fractured
 - Pseudosteady-state Interporosity Flow
 - Transient Interporosity Flow (Slab/Sphere)

porosity reservoir system.

b. <u>Vertical Well</u>: Two-layer reservoir, with crossflow in the reservoir.

c. <u>Vertical Well</u>: Radial composite reservoir system.

d. <u>Vertical Well</u>: "Wedge" or pinch-out reservoir system.

Boundary Models

- ➢Infinite-Acting
- ≻Circle
- ≻Rectangle
- ≻Faults:
 - Single Fault
 - Parallel Faults
 - Multiple Intersecting Faults

Mathematical Model-Governing Equation

Initial And Boundary Conditions Radial Flow In a Circular Reservoir

Initial Condition: $p = p_i$, t = 0, $r \ge r_w$

Well production	Flow regime	Inner Boundary Condition	Outer Boundary conditions	
Constant rate	Infinite acting	$\left(\frac{\partial p}{\partial r}\right)_{r_w} = -\frac{\mu q B_o}{2\pi r_w h k}$	$(p)_{r \to \infty} = p_i$	
Constant rate	Finite acting (Bounded)	$\left(\frac{\partial p}{\partial r}\right)_{r_w} = -\frac{\mu q B_o}{2\pi r_w h k}$	$\left(\frac{\partial p}{\partial r}\right)_{r \to re} = 0$	
Constant pressure	Infinite acting	$(p)_{r_w} = p_{wf}$	$(p)_{r \to \infty} = p_i$	
Constant pressure	Finite acting (Bounded)	$(p)_{r_w} = p_{wf}$	$\left(\frac{\partial p}{\partial r}\right)_{r \to re} = 0$	

Direct and Inverse Processes

Inverse Solution Compared to Actual System

Inverse solution can be used for the identification of system characteristics.

Inverse solution can result in grossly erroneous answers.

 \geq Whereas the mathematics is correct, the utility of the results derived from this mathematically process is questionable.

Characteristic of Inverse Solution

•Non-unique solution (the inverse solution has its limitation)

•A good looking history match is not a good enough answer

Input-System-Response

"Average" permeability in a region Not Permeability at a "fixed radius"

Drainage area: The reservoir area or volume drained by the well .

Input Data Required for Well Test Analysis

Test data:

- ☐ flow rate and bottom hole pressure as a function of time.
- □ the test sequence of events must be detailed, including any operational problems that may affect the well response.

Well data:

- wellbore radius r_w
- □ well geometry (such as inclined or horizontal well)
- □ depths (formation, gauges)

>Reservoir and fluid parameters:

- □ formation thickness h (net),
- \Box porosity Φ ,
- \Box compressibility of oil c_{o_i} water c_w , and formation c_f
- \Box water saturation S_w ,
- Doil viscosity µ
- □ formation volume factor B

28

Wellbore Storage

Wellbore is a tank

 ΔP = constant x time

 $\mathsf{Log} \ \Delta \mathsf{P} \ \mathsf{vs} \ \mathsf{log} \ t \quad \text{-} \ \mathsf{Data} \ \mathsf{UNIT} \ \mathsf{SLOPE}$

- Derivative is UNIT SLOPE

•Due to wellbore storage at early times a deviation from constant rate solution to the diffusivity equation is observed. After a certain period of time, t_{ws} , this deviation becomes negligible.

•Ramey(1965) has shown that for various values of C_{sD} , the time for which wellbore storage effects are significant, is given by:

$$t_{wsD} = \frac{60C_{sD}}{t_{wsD}} = \frac{0.000264kt}{\phi\mu c_{t}r_{w}^{2}}$$

$$t_{wsD} = \frac{0.000264kt}{\phi\mu c_{t}r_{w}^{2}}$$

•Two important trends:

•Wellbore storage effects increase directly with well depth (V_{ws}) and inversly with formation flow capacity (kh).

•Wellbore storage effects decrease with increasing pressure level (c_{ws}).

Radius of Investigation

How far into the reservoir have we investigated

Transient approximate solution

$$P_{t} = \frac{1}{2} (\ln t_{D} + 0.809) \quad \text{for} \quad t_{D} > 25 \quad (2-75)$$
P.S.S approximate solution

$$P_{t} = \frac{2t_{D}}{r_{eD}^{2}} + \ln r_{eD} - \frac{3}{4} \quad \text{for} \frac{t_{D}}{r_{eD}^{2}} > 0.25 \quad (2-82)$$

For a closed outer boundary reservoir, Katz and Coats (1968) defined the time to stabilization as that time at which the slope of the P_t curves for the infinite-acting and finite-acting reservoirs are equal.

$$\frac{\partial}{\partial t_{D}} (P_{t})_{\text{Equation (2-75)}} = \frac{\partial}{\partial t_{D}} (P_{t})_{\text{Equation (2-82)}}$$
$$\frac{\partial}{\partial t_{D}} \left[\frac{1}{2} (\ln t_{D} + 0.809) \right] = \frac{\partial}{\partial t_{D}} \left[\frac{2 t_{D}}{r_{eD}^{2}} + \ln r_{eD} - \frac{3}{4} \right]$$
$$\frac{1}{2 t_{D}} = \frac{2}{r_{eD}^{2}}$$

from which

$$t_{\rm D} = \frac{1}{4} r_{\rm eD}^2$$

which corresponds to Equation (2-106) above. This results in a time to stabilization t_s , given by

$$t_{s} = \frac{1}{4} \frac{\phi \mu c r_{e}^{2}}{\lambda k}$$
(2-107)

Transition Time-Drawdown Analysis

A "rule of thumb, " developed from the fundamental solutions of the diffusivity equation including wellbore storage and skin effect (Agarwal et al., 1970), suggests that the "transition" period lasts 1.5 log cycles from the cessation of predominant wellbore storage effects (unit slope line). Points beyond that time fall on a semi-log straight line.

Accounting for Non-circular Drainage Area

Equation 1.2.123 can be slightly rearranged as:

$$p_{\rm wf} = \left[p_{\rm i} - \frac{162.6QB\mu}{kh} \log \left(\frac{2.2458A}{C_A r_{\rm w}^2} \right) \right] - \left(\frac{0.23396QB}{Ah\phi c_{\rm t}} \right) t$$

The above expression indicates that under semisteadystate flow and constant flow rate, it can be expressed as an equation of a straight line:

$$p_{wf} = a_{pss} + m_{pss}t$$

with a_{pss} and m_{pss} as defined by:

$$a_{\rm pss} = \left[p_{\rm i} - \frac{162.6QB\mu}{kh} \log\left(\frac{2.2458A}{C_A r_{\rm w}^2}\right) \right]$$
$$m_{\rm pss} = -\left(\frac{0.23396QB}{c_{\rm t}(Ah\phi)}\right) = -\left(\frac{0.23396QB}{c_{\rm t}({\rm pore \ volume})}\right)$$

It is obvious that during the pseudosteady (semisteady)-state flow condition, a plot of the bottom-hole flowing pressure p_{wf} versus time *t* would produce a straight line with a negative slope of m_{pss} and intercept of a_{pss} .

In bounded reservoirs	C_A	$\ln C_A$	$\tfrac{1}{2}\ln\left(\tfrac{2.2458}{C_A}\right)$	Exact for $t_{DA} >$	Less than 1% error for t _{DA} >	Use infinite system solution with less than 1% error for t _{DA} >
$\overline{\bullet}$	31.62	3.4538	-1.3224	0.1	0.06	0.10
\bigcirc	31.6	3.4532	-1.3220	0.1	0.06	0.10
\triangle	27.6	3.3178	-1.2544	0.2	0.07	0.09
60*	27.1	3.2995	-1.2452	0.2	0.07	0.09
1/3	21.9	3.0865	-1.1387	0.4	0.12	0.08
3	0.098	-2.3227	+1.5659	0.9	0.60	0.015
•	30.8828	3.4302	-1.3106	0.1	0.05	0.09
	12.9851	2.5638	-0.8774	0.7	0.25	0.03
	10132	1.5070	-0.3490	0.6	0.30	0.025
	3.3351	1.2045	-0.1977	0.7	0.25	0.01
• 1 2	21.8369	3.0836	-1.1373	0.3	0.15	0.025
	10.8374	2.3830	-0.7870	0.4	0.15	0.025
1	10141	1.5072	-0.3491	1.5	0.50	0.06
1 2	2.0769	0.7309	-0.0391	1.7	0.50	0.02
	3.1573	1.1497	-0.1703	0.4	0.15	0.005
	0.5813	-0.5425	+0.6758	2.0	0.60	0.02
	0.1109	-2.1991	+1.5041	3.0	0.60	0.005

 Table 1.4
 Shape factors for various single-well drainage areas (After Earlougher, R, Advances in Well Test Anal permission to publish by the SPE, copyright SPE, 1977)

36

_
Skin

• The skin effect, first introduced by van Everdingen and Hurst (1949) defines a steady-state pressure difference around the wellbore.

Schematic of the Skin Effect

Skin

Hawkins (1956) suggested that the permeability in the skin zone, i.e., skin, is uniform and the pressure drop across the zone can be approximated by Darcy's equation. Hawkins proposed the following approach: where s is called the skin factor and defined as:

$$\Delta p_{\text{skin}} = \begin{bmatrix} \Delta p \text{ in skin zone} \\ \text{due to } k_{\text{skin}} \end{bmatrix} - \begin{bmatrix} \Delta p \text{ in the skin zone} \\ \text{due to } k \end{bmatrix} \qquad s = \begin{bmatrix} \frac{k}{k_{\text{skin}}} - 1 \end{bmatrix} \ln \left(\frac{r_{\text{skin}}}{r_{\text{w}}} \right) \qquad [1.2.131]$$
Applying Darcy's equation gives:
$$(\Delta p)_{\text{skin}} = \left(\frac{Q_0 B_0 \mu_0}{0.00708 h k_{\text{skin}}} \right) \ln \left(\frac{r_{\text{skin}}}{r_{\text{w}}} \right) \qquad - \left(\frac{Q_0 B_0 \mu_0}{0.00708 h k_{\text{skin}}} \right) \ln \left(\frac{r_{\text{skin}}}{r_{\text{w}}} \right) \qquad \text{frequence}$$
or:
$$\Delta p_{\text{skin}} = \left(\frac{Q_0 B_0 \mu_0}{0.00708 h k_{\text{h}}} \right) \left[\frac{k}{k_{\text{skin}}} - 1 \right] \ln \left(\frac{r_{\text{skin}}}{r_{\text{w}}} \right) \qquad \Delta p < 0$$
where:
$$k = \text{ permeability of the formation, md}$$

$$k = \text{ permeability of the skin zone, md}$$

The above expression for determining the additional pressure drop in the skin zone is commonly expressed in the following form:

$$\Delta p_{\text{skin}} = \left(\frac{Q_0 B_0 \mu_0}{0.00708 kh}\right) s = 141.2 \left(\frac{Q_0 B_0 \mu_0}{kh}\right) s \qquad [1.2.130]$$

$$(\Delta p)_{\text{actual}} = (\Delta p)_{\text{ideal}} + (\Delta p)_{\text{skin}}$$

or:

$$(p_{\rm i} - p_{\rm wf})_{\rm actual} = (p_{\rm i} - p_{\rm wf})_{\rm ideal} + \Delta p_{\rm skin}$$

Steady state radial flow (accounting for the skin factor) Substituting Equations 1.2.15 and 1.2.130 into Equation 1.2.132, gives:

$$(\Delta p)_{\text{actual}} = (\Delta p)_{\text{ideal}} + (\Delta p)_{\text{skin}}$$
$$(p_{\text{i}} - p_{\text{wf}})_{\text{actual}} = \left(\frac{Q_{\text{o}}B_{\text{o}}\mu_{\text{o}}}{0.00708kh}\right) \ln\left(\frac{r_{\text{e}}}{r_{\text{w}}}\right) + \left(\frac{Q_{\text{o}}B_{\text{o}}\mu_{\text{o}}}{0.00708kh}\right)s$$

Solving for the flow rate gives:

$$Q_{\rm o} = \frac{0.00708kh\left(p_{\rm i} - p_{\rm wf}\right)}{\mu_{\rm o}B_{\rm o}\left[\ln\frac{r_{\rm e}}{r_{\rm w}} + s\right]}$$

where:

 $Q_{o} = oil flow rate, STB/day$ k = permeability, md h = thickness, ft s = skin factor $B_{o} = oil formation volume factor, bbl/STB$ $\mu_{o} = oil viscosity, cp$ h = initial reservoir pressure, psi

 $p_{\rm i} = {\rm initial \ reservoir \ pressure, \ psi}$

$$p_{\rm wf}$$
 = bottom-hole flowing pressure, ps

Unsteady-state radial flow (accounting for the skin factor) For slightly compressible fluids Combining Equations 1.2.71 and 1.2.130 with that of 1.2.132 yields:

$$(\Delta p)_{\text{actual}} = (\Delta p)_{\text{ideal}} + (\Delta p)_{\text{skin}}$$

$$p_{\text{i}} - p_{\text{wf}} = 162.6 \left(\frac{Q_{\text{o}}B_{\text{o}}\mu_{\text{o}}}{kh}\right) \left[\log\frac{kt}{\phi\mu c_{\text{t}}r_{\text{w}}^2} - 3.23\right]$$

$$+ 141.2 \left(\frac{Q_{\text{o}}B_{\text{o}}\mu_{\text{o}}}{kh}\right) s$$

or:

[1.2.133]

$$p_{\rm i} - p_{\rm wf} = 162.6 \left(\frac{Q_{\rm o}B_{\rm o}\mu_{\rm o}}{kh}\right) \left[\log\frac{kt}{\phi\mu c_{\rm t}r_{\rm w}^2} - 3.23 + 0.87s\right]$$
[1.2.134]

Pseudosteady-state flow (accounting for the skin factor) For slightly compressible fluids Introducing the skin factor into Equation 1.2.123 gives:

$$Q_{\rm o} = \frac{0.00708kk \left(\bar{p}_{\rm r} - p_{\rm wf}\right)}{\mu_{\rm o} B_{\rm o} \left[\ln\left(\frac{r_{\rm e}}{r_{\rm w}}\right) - 0.75 + s\right]}$$
[1.2.137]

Effective Wellbore Radius

- •If the permeability in the altered zone k_a is much larger than the formation permeability k, then the wellbore will act like a well having an apparent wellbore radius r_{wa} .
- •The apparent wellbore radius may be calculated from the actual wellbore radius and the skin factor.

Minimum Skin Factor

The minimum skin factor possible (most negative skin factor) would occur when the apparent wellbore radius r_{wa} is equal to the drainage radius r_e of the well.

$$\mathbf{s}_{\min} = -\ln\left(rac{\mathbf{r}_{e}}{\mathbf{r}_{w}}
ight)$$

For a circular drainage area of 40 acres ($r_e = 745$ feet) and a wellbore radius of 0.5 feet, this gives a minimum skin factor (maximum stimulation) of -7.3.

$$s_{min} = -ln\left(rac{r_e}{r_w}
ight) = -ln\left(rac{745}{0.5}
ight) = -7.3$$

Well Test Analyses with Straight-line Methods

0.000

$$y = b + mx$$

$$y \equiv p_{wf}$$

$$x \equiv \log t$$

$$m \equiv \left| \frac{162.6qB\mu}{kh} \right|$$

$$b \equiv p_i - \frac{162.6qB\mu}{kh} \left[\log \frac{k}{\phi \mu c_i r_w^2} - 3.23 + 0.8691s \right]$$

$$p_{wf} = p_i - \frac{162.6qB\mu}{kh} \left[\log t + \log \frac{k}{\phi \mu c_i r_w^2} - 3.23 + 0.8691s \right]$$

$$s = 1.151 \left[\frac{p_i - p_{wf}}{m} - \log \frac{kt}{\phi \mu c_i r_w^2} + 3.23 \right]$$

$$k = \frac{162.6qB\mu}{mh} \qquad s = 1.151 \left[\frac{p_i - p_{1hr}}{m} - \log \frac{k}{\phi \mu c_i r_w^2} + 3.23 \right]$$

Superposition Principle

Linear diffusivity equation

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} = \frac{\phi \mu c_t}{k} \frac{\partial p}{\partial t}$$

- Mathematically the superposition theorem states that <u>any sum of</u> <u>individual solutions</u> to the diffusivity equation is also a solution to <u>that equation</u>. This concept can be applied to account for the following effects on the transient flow solution:
- Superposition in time
 - Effects of rate change
- Super position in space
 - Effects of multiple wells
 - Effects of the boundary

Multi-Rate Drawdown Tests

$$p_i - p_{wf} = m_m q_1 [\log(t) + b_m] + m_m (q_2 - q_1) [\log(t - t_1) + b_m] + m_m (q_3 - q_2) [\log(t - t_2) + b_m] + \cdots \cdots + m_m (q_n - q_{n-1}) [\log(t - t_{n-1}) + b_m]$$

$$\frac{p_i - p_{wf}}{q_n} = m_m \sum_{j=1}^n \left[\frac{(q_j - q_{j-1})}{q_n} \log(t_n - t_{j-1}) \right] + m_m b_m \quad \text{for} \quad q_n \neq 0$$

Multi-Rate Drawdown Tests

$$Y_{intercept} = b_I = m_m \left[\log \left(\frac{k}{\phi \mu c_I r_w^2} \right) - 3.23 + 0.8691s \right]$$

$$s = 1.151 \left[\frac{b_I}{m_m} - \log\left(\frac{k}{\phi \mu c_I r_w^2}\right) + 3.23 \right]$$

46

Example

A multi-rate test was conducted on an oil well at production rates and flowing bottom-hole pressures shown in Table .2.1. Other reservoir properties and well data are listed as follows:

Initial reservoir pressure, p_i Formation thickness, hFormation porosity, ϕ Total compressibility, c_i Oil viscosity, μ_o Oil FVF, B_o Wellbore radius, r_w

2906 psia 40 ft 0.24 5 × 10⁻⁵ psi⁻¹ 0.60 cp 1.27 RB/STB 0.5 ft

n	t (hrs.)	q _n (STB/D)	P _{wf} (psi)
1	0	0	2906
1	1.00	1580	2023
1	1.50	1580	1968
1	1.89	1580	1941
1	2.40	1580	
2	3.00	1490	1892
2	3.45	1490	1882
2	3.98	1490	1873
2	4.50	1490	1867
2	4.80	1490	2
3	5.50	1440	1853
3	6.05	1440	1843
3	6.55	1440	1834
3	7.00	1440	1830
3	7.20	1440	
4	7.50	1370	1827
4	8.95	1370	1821
4	9.60	1370	10 -1 0
5	10.00	1300	1815
5	12.00	1300	1797
6	14.40	1260	0.000
7	15.00	1190	1775
7	18.00	1190	1771
7	19.20	1190	(<u> </u>
8	20.00	1160	1772
8	21.60	1160	
9	24.00	1137	1756
10	28.80	1106	_
11	30.00	1080	1751
11	33.60	1080	_
12	36.00	1000	
13	36.20	983	1756
13	48.00	983	1743

Step 1: Calculate the Y_F function.

$$Y_F = \frac{p_i - p_{wf}}{q_n}$$

As example, at t = 1.89 hrs, $p_i = 2906$ psi; $p_{wf} = 1941$ psi; $q_n = 1580$ STB/D

$$Y_F = \frac{2906 - 1941}{1580} = 0.6108 \text{ psi/STB-D}$$

Similarly, at t = 20 hrs, $p_{wf} = 1772$ psi; $q_n = 1160$ STB/D

$$Y_F = \frac{2906 - 1772}{1160} = 0.9776 \text{ psi/STB-D}$$

Step 2: Calculate the X_F function.

$$X_F = \sum_{j=1}^{n} \left[\frac{(q_j - q_{j-1})}{q_n} \log(t_n - t_{j-1}) \right]$$

As example, at t = 1.89 hrs,

$$X_F = \left(\frac{1580 - 0}{1580}\right) \log(1.89 - 0)$$

= 0.2765

At t = 20 hrs,

$$X_F = \frac{1}{1160} \times \begin{bmatrix} (1580 - 0) \log(20 - 0) + (1490 - 1580) \log(20 - 2.4) \\ + (1440 - 1490) \log(20 - 4.8) + (1370 - 1440) \log(20 - 7.2) \\ + (1300 - 1370) \log(20 - 9.6) + (1260 - 1300) \log(20 - 12) \\ + (1190 - 1260) \log(20 - 14.4) + (1160 - 1190) \log(20 - 19.2) \end{bmatrix}$$

$$= 1.4225$$

n	<i>t</i> (hrs.)	<i>q_n</i> (STB/D)	P _{wf} (psi)	Y _F (psi/STB-D)	X _F
1	0	0	2906	_	_
1	1.00	1580	2023	0.5589	0,0000
1	1.50	1580	1968	0.5937	0.1761
1	1.89	1580	1941	0.6108	0.2765
1	2.40	1580	1) — e
2	3.00	1490	1892	0.6805	0.5193
2	3.45	1490	1882	0.6872	0.5690
2	3.98	1490	1873	0.6933	0.6241
2	4.50	1490	1867	0.6973	0.6732
2	4.80	1490	2	5 	
3	5.50	1440	1853	0.7313	0.7870
3	6.05	1440	1843	0.7382	0.8193
3	6.55	1440	1834	0.7444	0.8485
3	7.00	1440	1830	0.7472	0.8739
3	7.20	1440		10- 	
4	7.50	1370	1827	0.7876	0.9737

4	8.95	1370	1821	0.7920	1.0091
4	9.60	1370	1	() 3	(- 3)
5	10.00	1300	1815	0.8392	1.1242
5	12.00	1300	1797	0.8531	1.1535
6	14.40	1260		33 34	4 7
7	15.00	1190	1775	0.9504	1.3374
7	18.00	1190	1771	0.9538	1.3553
7	19.20	1190	6 <u>—</u>)	83 <u>—3</u> 8	<u> 1915–</u> 191
8	20.00	1160	1772	0.9776	1.4225
8	21.60	1160		<u></u> /	3 <u>—</u> 3
9	24.00	1137	1756	1.0114	1.4851
10	28.80	1106	(<u></u>)	_	
11	30.00	1080	1751	1.0694	1.6067
11	33.60	1080		<u>8-0</u>	
12	36.00	1000		<u>8-0</u>	1 1-1-2
13	36.20	983	1756	1.1699	1.7883
13	48.00	983	1743	1.1831	1.7995

Note that Figure has two straight lines. The slope of the first straight line is determined thus:

$$m_m = \frac{Y_{F2} - Y_{F1}}{X_{F2} - X_{F2}}$$

Using the values for Y_F and X_F at t = 6.55 hrs and t = 3.00 hrs give:

$$m_m = \frac{0.7444 - 0.6805}{0.8485 - 0.5193} = 0.194 \text{ psi/(STB/D-cycle)}$$

Similarly the slope of the <u>second line</u> is determined to be 0.526 psi/(STB/D-cycle). It is apparent that this <u>second straight line</u> represents late time region data that may have been affected by <u>boundary effects</u>. The slope of this line is **not used** in the calculations of permeability and skin factor since it is influenced by boundary effects.

Step 5: Calculate formation permeability.

$$k = \frac{162.6B\mu}{m_m h}$$

= $\frac{162.6 \times 1.27 \times 0.6}{0.194 \times 40} = 15.97 \text{ md.}$

Step 6: Calculate skin factor.

From Figure, the intercept on the *y*-axis is $b_1 = 0.5589$. Substituting gives:

$$s = 1.151 \left[\frac{0.5589}{0.194} - \log \left(\frac{15.97}{0.24 \times 0.6 \times 5 \times 10^{-5} \times (0.5)^2} \right) + 3.23 \right]$$

= -0.96

Partial Penetration Skin

$$s = \left(\frac{h}{h_{\rm P}}\right)s_{\rm d} + s_{\rm P}$$

Saidikowski estimated the skin factor due to partial penetration from the following expression:

$$s_{\rm P} = \left(\frac{h}{h_{\rm P}} - 1\right) \left[\ln\left(\frac{h}{r_{\rm w}}\sqrt{\frac{k_{\rm h}}{k_{\rm v}}}\right) - 2 \right]$$

where:

 r_w = wellbore radius, ft h_p = perforated interval, ft h = total thickness, ft k_h = horizontal permeability, md k_v = vertical permeability, md

Geometric Skin - Deviated Wellbore

When a well penetrates the formation at an angle other than 90 degrees, there is more surface area in contact with the formation. This results in a negative apparent skin factor. This effect decreases as the vertical permeability decreases, and increases as the angle from the vertical increases.

Derivative Analysis

In infinite acting radial flow, the derivative stabilizes at 0.5

Derivative Analysis

58

Behavior of Static Sandface Pressure Upon Shut-in of a Well

Buildup Test Analysis

Buildup as Example of Superposition

Horner plot relationship

$$p_{i} - p_{ws}(t) = \frac{162.6qB_{o}\mu}{kh} \log\left(\frac{t + \Delta t}{\Delta t}\right)$$
$$Horner time = \left(\frac{t + \Delta t}{\Delta t}\right)$$

Slope of semilog straight line same as drawdown – used to calculate permeability.

$$m = \frac{162.6qB_{o}\mu}{kh}$$

BUILD-UP SEMILOG PLOTS
INFINITE RESERVOIR
Pws

$$dt = \infty$$
 dt dt
 $dt = \infty$ $t + \Delta t$ dt
 $\Delta t = \infty$ dt
 $dt = \infty$

Buildup test does NOT allow for skin calculation. Skin is obtained from FLOWING pressure before shut-in.

$$p_{w}(t_{p} + \Delta t) - p_{w}(t_{p}) = \frac{162.6qB_{w}\mu}{kh} \left[\log(t_{p}) + \log\left(\frac{k}{\phi\mu c_{r}r_{w}^{2}}\right) - 3.23 + 0.87S \right] - \frac{162.6qB_{w}\mu}{kh} \log\left(\frac{t_{p} + \Delta t}{\Delta t}\right)$$

$$SKIN \text{ from BUILDUP DATA ?}$$

$$p_{w}(t_{p} + \Delta t) - p_{w}(t_{p}) = \frac{162.6qB_{w}\mu}{kh} \left[\log\left(\frac{t_{p}\Delta t}{t_{p} + \Delta t}\right) + \log\left(\frac{k}{\phi\mu c_{r}r_{w}^{2}}\right) - 3.23 + 0.87S \right]$$

$$\Delta t = 1 hr$$

$$M$$

$$S = 1.151 \left\{ \frac{p_{1hr} - p_{wf}}{m} - \log\left[\frac{k}{\phi\mu c_{r}r_{w}^{2}} \frac{t_{p}}{t_{p} + 1}\right] + 3.23 \right\}$$

Equivalent Time

Measurable Pressure Difference

$$\left[p_{ws}(\Delta t) - p_{wf}(t_p)\right]$$

Correct Pressure Difference

$$\left[p_{ws}(\Delta t) - p_{wf}(t_p + \Delta t)\right]$$

$$\Delta t_e \equiv \frac{t_p \Delta t}{t_p + \Delta t}$$

Distance to Fault - Image Well

Mathematically, the above boundary condition can be met by placing an image well, identical to that of the actual well, on the other side of the fault at exactly distance L. Consequently, the effect of the boundary on the pressure behavior of a well would be the same as the effect from an image well located a distance 2L from the actual well.

Estimating Distance to a Fault from Horner Plot

Time to Doubling the Slope

Horner Plot

It should be pointed out that Equation 1.3.6 assumes the reservoir to be <u>infinite in size</u>, i.e., $r_e = \infty$, which implies that at some point in the reservoir the pressure would be always equal to the initial reservoir pressure p_i and the Horner straight-line plot will <u>always extrapolate to p_i </u>.

$$p_{\rm ws} = p_{\rm i} - \frac{162.6Q_0\mu_0B_0}{kh} \left[\log\left(\frac{t_p + \Delta t}{\Delta t}\right) \right]$$
[1.3.

where:

 $p_i = initial reservoir pressure, psi$ $p_{ws} = sand face pressure during pressure buildup, psi$ $t_p = flowing time before shut-in, hours$ $Q_0 = stabilized well flow rate before shut-in, STB/day$ $\Delta t = shut-in time, hours$

False Pressure (1)

However, reservoirs are <u>finite</u> and soon after production begins, fluid removal will cause a pressure decline everywhere in the reservoir system. Under these conditions, the straight line will not extrapolate to the initial reservoir pressure p_i but, instead, the pressure obtained will be a false pressure as denoted by p^* .

False Pressure (2)

The <u>false pressure</u>, as illustrated by Matthews and Russell (1967), has <u>no physical meaning</u> but it is usually used to determine <u>the average</u> <u>reservoir pressure p</u>. It is clear that p^* will only equal the initial (original) reservoir pressure p_i when a new well in a newly discovered field is tested.

Miller–Dyes–Hutchinson Method (MDH)

M.D.H. Plot

Miller–Dyes–Hutchinson Method (MDH)

The observed pressure behavior of the test well following the end of the transient flow will depend on:

- shape and geometry of the test well drainage area;
- the position of the well relative to the drainage boundaries;
- length of the producing time t_p before shut-in.
 - (1) Choose any convenient time on the semilog straight line Δt and read the corresponding pressure p_{ws} .
 - (2) Calculate the dimensionless shut-in time based on the drainage area *A* from:

$$\Delta t_{\mathrm{D}A} = \frac{0.0002637k\Delta t}{\phi\mu c_{\mathrm{t}}a}$$

- (3) Enter Figure 1.41 with the dimensionless time $\Delta t_D A$ and determine an MDH dimensionless pressure p_{DMDH} from the upper curve of Figure 1.41.
- (4) Estimate the average reservoir pressure in the closed drainage region from:

$$\overline{p}_{\rm r} = p_{\rm ws} + \frac{mp_{\rm DMDH}}{1.1513}$$

where m is the semilog straight line of the MDH plot.

MDH

Figure 1.41 Miller–Dyes–Hutchinson dimensionless pressure for circular and square drainage areas (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).

Matthews et al (MBH) Method

□A methodology for estimating average pressure from buildup tests in bounded drainage regions.

The MBH method is based on theoretical correlations between the extrapolated semi-log straight line to the false pressure \mathbf{p}^* and current average drainage area pressure \mathbf{p}_{avg} .

The authors point out that the average pressure in the drainage area of each well can be related to \mathbf{p}^* if the geometry, shape, and location of the well relative to the drainage boundaries are known.

□They developed a set of correction charts, as shown in Figures 1.42 through 1.45, for various drainage geometries.

MBH Method

The y axis of these figures represents the MBH dimensionless pressure p_{DMBH} that is defined by:

$$p_{\text{DMBH}} = \frac{2.303(p^* - \overline{p})}{|m|}$$

or:

 $\overline{p} = p^* - \left(\frac{|m|}{2.303}\right) p_{\text{DMBH}}$ [1.3.13]

where *m* is the *absolute* value of the slope obtained from the Horner semilog straight-line plot. The MBH dimensionless pressure is determined at the dimensionless producing time t_{pDA} that corresponds to the flowing time t_p . That is:

$$t_{\rm pDA} = \left[\frac{0.0002637k}{\phi\mu c_{\rm t}A}\right] t_{\rm p}$$
[1.3.14]

where:

- $t_{\rm p}$ = flowing time before shut-in, hours
- $\dot{A} = drainage area, ft^2$
- k = permeability, md
- $c_t = \text{total compressibility, } psi^{-1}$

MBH Method

The following steps summarize the procedure for applying the MBH method:

- Step 1. Make a Horner plot.
- Step 2. Extrapolate the semilog straight line to the value of p^* at $(t_p + \Delta t)/\Delta t = 1.0$.
- Step 3. Evaluate the slope of the semilog straight line m.
- Step 4. Calculate the MBH dimensionless producing time t_{pDA} from Equation 1.3.14:

$$t_{\rm pDA} = \left[\frac{0.0002637k}{\phi\mu c_{\rm t}A}\right] t_{\rm p}$$

- Step 5. Find the closest approximation to the shape of the well drainage area in Figures 1.41 through 1.44 and identify the correction curve.
- Step 6. Read the value of p_{DMBH} from the correction curve at t_{PDA}

Step 7. Calculate the value of \overline{p} from Equation 1.3.13:

$$\overline{p} = p^* - \left(\frac{|m|}{2.303}\right) p_{\text{DMBH}}$$

Figure 1.42 Matthews–Brons–Hazebroek dimensionless pressure for a well in the center of equilateral drainage areas (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).

Figure 1.43 Matthews–Brons–Hazebroek dimensionless pressure for different well locations in a square drainage area. (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).

Figure 1.45 Matthews–Brons–Hazebroek dimensionless pressure for different well locations in 4:1 and 5:1 rectangular drainage areas (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).

Summary

Horner Plot

Summary

- Horner plot: graph of p_{ws} vs. $\log((t + \Lambda t) / \Lambda t)$
 - Extrapolation to infinite shut-in time yields p*
 - Infinite reservoir: $p^* = p_i$
 - Finite reservoir: $p^* \neq p_i \neq \overline{p}_R$
 - If p* > p_i, the Horner semi-log line is wrong, p_i is wrong, or there is a constant pressure boundary
- **MDH plot**: graph of p_{ws} vs. log (Λt)
 - Useful when producing time (t) is long
 - Analysis only valid when $\Lambda t < 10\%$ of t

Type Curves

The type curve analysis approach was introduced in the petroleum industry by Agarwal et al. (1970) as a valuable tool when used in conjunction with conventional semilog plots.

□A type curve is a graphical representation of the theoretical solutions to flow equations.

The type curve analysis consists of finding the theoretical type curve that "matches" the actual response from a test well and the reservoir when subjected to changes in production rates or pressures.

The match can be found graphically by physically superposing a graph of actual test data with a similar graph of type curve(s) and searching for the type curve that provides the best match.

□Since type curves are plots of theoretical solutions to transient and pseudosteady-state flow equations, they are usually presented in terms of dimensionless variables (e.g., pD, Td, rD, and CD) rather than real variables (e.g., p, t, r, and C).

The reservoir and well parameters, such as permeability and skin, can then be calculated from the dimensionless parameters defining that type curve.

Dimensionless Variables Radial Flow With WBS And Skin

$$p_D \equiv \frac{kh(p_i - p)}{141.2qB\mu} \qquad t_D \equiv \frac{0.0002637kt}{\phi\mu c_t r_w^2}$$

$$r_D \equiv \frac{r}{r_w} \qquad C_D \equiv \frac{0.8936C}{\phi c_t h r_w^2}$$

Gringarten Type Curve

The Gringarten type curve describes the pressure response under the following assumptions:

- 1. Constant rate production
- 2. Vertical wellbore
- 3. Infinite-acting homogeneous reservoir
- 4. Single phase liquid of small and constant compressibility
- 5. Infinitesimal skin that may be modeled with an apparent wellbore radius
- 6. Constant wellbore storage coefficient

The Gringarten type curve was specifically developed for drawdown tests in oil wells. We will see that we may use it (with some limitations) to analyze pressure buildup tests in addition to drawdown tests, and to analyze gas well tests as well as oil well tests.

 $t_D vs t_D/C_D$

Derivative Type Curve

Pressure And Derivative Type Curves

Time Regions On The Type Curve

Estimating Skin Factor

Calculation of Reservoir Parameters from Buildup Test Using the Gringarten-Bourdet Type Curves

A well in a reservoir above its bubble point pressure was producing oil at a constant rate of 185 BOPD before it was shut-in for a buildup test. The buildup test data are given in Table 1 showing elapsed shut-in time, Δt , and shut-in pressure, p_{ws} . Other reservoir and well data are given below:

Formation thickness, h	114 ft
Formation porosity, ϕ	0.28
Total compressibility, c _t	$4.1 imes 10^{-6} m psi^{-1}$
Oil viscosity, μ_o	2.2 cp
Oil FVF, Bo	1.1 RB/STB
Wellbore radius, rw	0.50 ft
Flowing BHP, p_{wf} at $\Delta t = 0$	2820 psia
Producing time before shut-in, t_p	540 hrs

Calculate dimensionless wellbore storage, C_D ; wellbore storage coefficient, C; formation permeability, k; and skin factor, s. Use the technique of type curve matching with the combined Gringarten-Bourdet type curve. Compare the results from type curves to the results obtained from using straightline methods based on the Horner plot.

Buildup Test Data

Δt (hrs)	p _{ws} (psia)						
0.0000	2820.00	0.3188	3006.01	2.5500	3344.09	12.9625	3398.19
0.0018	2822.15	0.3542	3022.46	2.7625	3350.80	13.6000	3398.75
0.0035	2823.18	0.3896	3036.49	2.9750	3355.10	14.2375	3399.31
0.0071	2825.61	0.4250	3051.08	3.1875	3362.38	14.8750	3399.86
0.0106	2827.67	0.4604	3065.68	3.4000	3367.23	15.5125	3400.25
0.0142	2830.28	0.4958	3080.63	3.6125	3370.40	16.1500	3400.80
0.0177	2832.71	0.5313	3091.29	3.8250	3371.72	16.7875	3401.10
0.0213	2835.33	0.5667	3104.95	4.0375	3373.03	17.4250	3401.55
0.0248	2837.76	0.6021	3116.73	4.2500	3375.09	18.0625	3401.83
0.0283	2840.19	0.6375	3125.52	4.4625	3377.52	18.9125	3402.39
0.0319	2842.62	0.6906	3144.23	4.6750	3379.73	19.7625	3402.71
0.0390	2844.86	0.7438	3158.26	4.8875	3381.28	20.6125	3403.21
0.0425	2847.11	0.7969	3170.42	5.1000	3383.15	21,4625	3403.51
0.0496	2851.97	0.8500	3184.07	5.3125	3384.46	22.3125	3403.96
0.0567	2857.19	0.9031	3194.93	5.7375	3384.80	23.1625	3404.24
0.0638	2861.13	0.9563	3207.47	6.1625	3387.00	24.2250	3404.78
0.0708	2865.98	1.0094	3218.31	6.5875	3387.51	25.5000	3405.13
0.0815	2876.72	1.0625	3228.62	7.0125	3388.64	27.6250	3406.22
0.0921	2883.26	1.1156	3235.90	7.4375	3389.96	29.7500	3406.62
0.1027	2889.05	1.1688	3244.89	7.8625	3390.89	31.8750	3407.52
0.1133	2895.59	1.2219	3253.49	8.2875	3391.64	34.0000	3407.90
0.1240	2900.93	1.2750	3260.61	8.7125	3392.76	38.2500	3409.71
0.1381	2909.72	1.3813	3274.46	9.1375	3393.32	42.5000	3410.10
0.1523	2917.76	1.4875	3284.39	9.5625	3394.07	46.7500	3411.42
0.1665	2926.17	1.5938	3294.70	9.9875	3394.63	51.0000	3411.83
0.1806	2934.03	1.7000	3297.68	10.4125	3395.39	55.2500	3412.86
0.1948	2942.06	1.9125	3317.54	10.8375	3395.94	59.5000	3413.25
0.2125	2951.60	2.0188	3323.15	11.2625	3396.56		<u></u>
0.2479	2970.66	2.1250	3327.83	11.6875	3396.88	_	<u></u>
0.2833	2987.87	2.3375	3336.24	12.3250	3397.63	100	· · · ·

Step 1: Prepare the test data for analysis.

Calculate Agarwal equivalent shut-in time, Δt_e , and pressure change, $\Delta p = (\rho_{ws} - \rho_{wf@\Delta t=0})$. The calculated data are Table 1. Plot Δp vs. Δt_e on a log-log scale as shown in Figure 1.

Δt_{θ}	∆ <i>p</i> (psi)	$\Delta t_{\theta} \Delta p'$	Δt_{o}	∆ <i>p</i> (psi)	$\Delta t_{o} \Delta p'$	Δt_{e}	∆ <i>p</i> (psi)	$\Delta t_{e} \Delta p'$
0.0018	2.15	1.7098	0.7427	338.26	182.7992	8.5742	572.76	17.1367
0.0035	3.18	2.4958	0.7957	350.42	194.7352	8.9855	573.32	14.4583
0.0071	5.61	4.4916	0.8487	364.07	195.1176	9.3961	574.07	14.9275
0.0106	7.67	7.4107	0.9016	374.93	200.1915	9.8061	574.63	15.8172
0.0142	10.28	10.0963	0.9546	387.47	210.0963	10.2155	575.39	16.2879
0.0177	12.71	12.8207	1.0075	398.31	201.1232	10.6243	575.94	15.2523
0.0212	15.33	15.1382	1.0604	408.62	174.7776	11.0324	576.56	12.5318
0.0248	17.76	17.0691	1.1133	415.90	172.1645	11.4399	576.88	11.1707
0.0283	20.19	19.4921	1.1662	424.89	193.8354	12.0500	577.63	12.8853
0.0319	22.62	17.1346	1.2191	433.49	180.5007	12.6586	578.19	11.6352
0.0390	24.86	21.4190	1.2720	440.61	169,6267	13.2659	578.75	12.2291
0.0425	27.11	27.9062	1.3777	454.46	153.1716	13.8718	579.31	12.8085
0.0496	31.97	35.5838	1.4834	464.39	142.3950	14.4762	579.86	11.1516
0.0567	37.19	36.0873	1.5891	474.70	96.3010	15.0793	580.25	11.8288

Step 2: Calculate pressure derivative with respect to natural logarithm of equivalent time.

Plot of $\Delta p \& \Delta p' vs. \Delta t_e$

Step 3: Calculate C_D and C from the unit-slope line.

Select any point on the unit-slope line from Figure. One such point on the unit-slope line is $(\Delta t_e / \Delta p)_{USL} = (0.06374/41.13)$.

$$C_D = \frac{0.03723qB}{\phi c_t h r_w^2} \left(\frac{\Delta t_e}{\Delta p}\right)_{USL}$$

= $\frac{0.03723 \times 185 \times 1.1}{0.28 \times 4.1 \times 10^{-6} \times 114 \times (0.5)^2} \left[\frac{0.06374}{41.13}\right]$
= 358.86

$$C = 0.04165qB\left(\frac{\Delta t_e}{\Delta p}\right)_{USL}$$
$$= 0.04165 \times 185 \times 1.1 \times \left(\frac{0.06374}{41.13}\right)$$
$$= 0.013 \text{ RB/psi}$$

Step 4: Perform type-curve matching using the Figure and Gringarten-Bourdet type curve.

97

Step 5: Calculate C_D from time match point (TMP).

Step 6: Calculate skin factor, s.

$$s = 0.5 \ln \left(\frac{C_D e^{2s}}{C_D}\right)$$

= $0.5 \ln \left(\frac{10^{21}}{312.61}\right)$, where $C_D e^{2s} = 10^{21}$ from Figure 12.7.
= 22.46

Treatment of Gas Flow Equations in a Porous Medium

Al-Hussainy and Ramey (1966)- Pseudo-pressure Transformation(1) Variable compressibility factor(2) Variable viscosity

Fraim and Wattenbarger (1987)- Pseudo-time Transformation(1) Variable compressibility(2) Variable viscosity

Non-Darcy Flow

- Darcy law $-\frac{\partial p}{\partial x} = \frac{\mu}{k}v$
- At high velocities pressure drop is more than what is predicted by Darcy's law

$$-\frac{\partial \rho}{\partial x} = \frac{\mu}{k}v + \rho\beta v^2$$

Forchheimer equation

$$\beta = 1.88 \times 10^{10} k^{-1.47} \phi^{-0.53}$$

- تدریس خصوصی دروس مهندسی نفت ویژه دانشجویان ارشد علوم و تحقیقات تهران
 انجام پروژه ها و تکالیف دروس مهندسی نفت ویژه دانشجویان ارشد علوم و تحقیقات تهران
 - مهندس مقصودی

Tel: 09188487112

Email : Eng.Maghsoudi@gmail.com