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Radial Hydraulic Diffusivity Equation
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Equation 1-26 is valid when oilfield units (ft, hr, STB!D cp, md, psi) are
used. Setting § = ¢Cih, and T = kh/u and changing to Darc}r units (cm, sec,
cc/sec, cp, darcy, atm) we obtain:
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Let us define the following dimensionless parameters in Darcy units:
Ip = I'."II'W,,_,r (11“2}
to = kt/(¢uCird) (11-3)
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Then, Also,
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Now, by substituting in Equation 11-1 we get:
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subject to the following conditions:

-1, Pn =0, for tp = 0 at all 1

9. oFp = —], forall tp >0
al'[. 'ﬁI‘D"i
3 3&) - 0 for all 4
arD Br]ye=te/ty
Let,

Pp(z) = Pp(rp,z) = L[Pp(rp,tp)]
and, |

Pp(0) = Pp(rp,tp = 0)

(11-5)

The Laplace transform of a continuous time function, f(t), is given by:

L] = j: e fit) dt

where z = Laplace parameter

(11-8)



then by Equation 11-11 the boundary value problem in the Laplace domain

is stated as:
dPD(E}

d*P 1
D

subject to the following conditions:
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Applying condition 1 to Equation 11-20 we obtain:
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Solution

Equation 11-24 is a form of Bessel’s equation. Its general solution is given
by:

PD{E} = Al {I';j ‘\.E:] + B K, (mp ’\'Ejl (11—25:]

where Iy(rp \/z) and K¢(rp ~/z), respectively, are zero order modified Bes-
sel functions of the first and second kind; and A and B are constants to be
determined by applying boundary conditions 2 and 3.
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Naturally Farctured Reservoirs
Porosity and Permeability

e Whereas the matrix permeability is much smaller than the fracture
permeability, the fracture porosity of a particular class of naturally fractured
reservoirs seldom exceeds 1.5% or 2%, and usually falls below 1%.

e The high permeability of a fracture results in a high diffusivity of the pressure
propagation pulse along the fracture.

A fracture of 0.1 mm will have a permeability of 833 darcys, whereas the

permeability of the limestone proper will usually be of the order of 0.01 darcy.
(Muskat (1937),pp.425)



Double Porosity Formulation

*The fractures which cut the reservoir rock in various directions, delineate a bulk unit
referred to as the matrix block unit or simply the matrix block.

*The shape of the matrix block is irregular, but for practical work the block units are
reduced to simplified geometrical volumes, such as cubes or as elongated or flat
parallelepipeds.




e Based on the theory of fluid flow in fractured porous media developed in the
1960's by Barrenblatt et a/, Warren and Root introduced the concept of
dual-porosity models into petroleum reservoir engineering. Their idealized
model of a highly interconnected set of fractures which is supplied by fluids
from numerous small matrix blocks, is shown below:

ACTUAL RESERVOIR MODEL RESERVIR

¢2 < 2% matrix block
\ fracture

fracture

matrix

vugs

e A naturally fractured formation is generally represented by a tight matrix rock
broken up by fractures of secondary origin.

e The fractures are assumed continuous throughout the formation and to
represent the paths of principal permeability.



ldealized Fracture Geometries
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Fluid Exchange

eAvery important characteristic of the double porosity system is the nature of
the fluid exchange between the two distinct porous systems.

source of
fluid to
fractures

% l l l transport of fluid
1 T T T along fractures

source of
fluid to
fractures

\V/

*The matrix system does not produce directly to the well but acts as a source of

fluid to the fissure system.
*The high diffusivity of a fracture results in a rapid response along the fracture

to any pressure change such as that caused by well production.



Radial Well in a Naturally Fractured Reservoir

In general, the matrix releases the fluid into the fractures upon pressure
decline (inter-porosity flow). Subsequently the fractures transport the fluid
to the wellbore.

Early-time: Fissure System Flow Late-time: Matrix contribution
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Due to significant contrast between matrix and fracture permeabilities, the
matrix has a “delayed” response to pressure changes that occur in the
surrounding fractures. Such a non-concurrent response induces matrix-to-
fracture cross-flow.



Mathematical Model (Warren and Root)

Elemental volume in naturally fractured reservoir (Warren and Root model)



Continuity Equation
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Elemental volume in naturally fractured gas reservoir

15



Warren & Root Equations
Pseudo-steady state Model

B

Warren and Root (1963) derived the following radial flow equation in
Darcy units:
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Equation 11-60 is based on the'assumptinn that semi-steady state condi-

tions develop instantaneously in the matrix, This assumption is stated as fol-
lows:

8P, ok,

¢nChy 3t . (Pe—P.) ' (11-65)

where « is a geometric factor which depends on number and orientation of
fractures.

Warren and Root defined « as follows:

_4n(n+2)

* L

(11-66)

where n = number of orthogonal sets of fractures
L. = geometrical factor characteristic of matrix

Forslabs: n = 1; and L = h2, (h,, = thickness of matrix). For spheres: n = 3;
and L = 4 12, (r, = radius of sphere which approximates a matrix block).
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Equation 11-65 can be written as follows:
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where AP, = P; — Py,
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Thus, Equation 11-65 can be written as:
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Since,
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where A = dimensionless matrix-fracture flow coefficient

= (o ki 1)kt (11-68)
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Assuming that at tp = 0, Pp, = 0, the Laplace transform of Equation
11-67 is given by:

(1 = ©) 2 Pp,(z) = N (Pps(z) — Ppm(2))

Thus,
- A PDE{E) h \
P = -
sy oA

Again, assuming that at tp = 0, Pp¢ = 0, the Laplace transform of Equa-
tion 11-60 is given by: b -
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Substituting Equation 11-69 in the above equation, we get:

Porz) , 1 o) _ 1, ] Poyia) | (11-70)

dr;, deID/

e

-~

(11-71)



It should be evident that Equation 11-70 is the same as Equation 11-24
except that z on the right-hand side of Equation 11-24 is replaced by z {(z)
on the right-hand side of Equation 11-70. Therefore, all the solutions pre-
sented for Equation 11-24 are also solutions of Equation 11-70 providing
that z is replaced by z f(z). Thus, the general solution of Equation 11-70 is
obtained from Equation 11-25 by substituting z f(z) for z, and the result is as
follows: -

d*Ppy(z) L1 dPoi(z)

? = dm = [z £(z)] Ppy(z) - (11-70)
d*Pp(z) , 1 dPp(z) _ ” . (11-24)
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Ki(rpevzi(z)) Lo(rpvz(z)) + I (rpevzE(z)) Ko(rpvzi(z))
E\d zf(z) [Ky(Vzi(z)) Li(rpevzi(z)) — Ki(rpevzi(z)) 11Vzi(z) ]
(11-73)
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For the case of an infinite, naturally fractured reservoir with the well pro-

ducing at a constant rate, and damage and skin included in the solution, we
can obtain the solution from Equation 11-53. The result is as follows:

Pup(z) =

- Kplv=t(z)) + 5 «/zbz) Kj(vzHz))
zf(z) {Nzh(z) Ky (Vef(z)) + (af (2)) Ol Kow'zflz) +8vef(z) K2 {2) |}
”“‘““”’ {11-74]

S:?ce Rate

— AV JAP -

V., bbl/psi v > Rate (4-2)

Cp, = dimensionless wellbore storage coefficient defined by Equa-
tion 4-5

Rate

C = 144 V,Jp, bblipsi | (4-3)



In Darey units, C is expressed in res cofatm, O, is the total sysbem compress-
ibility at prevailing reservoir conditions in L/atm, and hy and ry are ex-
pressed in em. Note, however, that the expreszion, C/(2réhCrd), is both di-
mensionless and unitless. If C is given in reservoir cu. ft/psi, and both h and
ry are given in ft, and C, is in 1/psi, the expression Cf(2edhCyrs) will re-
main unchanged. Therefore, we can define the dimensionless wellbore stor-
age, Cp, as follows:

5.615 C
2rghCors

Cp = (4-3)

where  C = res bbl/psi
h,r, =1t



Double Porosity
Pseudo-steady State Formulation

Deruyek et al. (1982) presented derivations and solutions for both the
semi-steady state and transient flow models. Tt would be instructive to re-
view their derivations here even though the serni-steady state case has al-

ready been presented.

We begin with the semi-steady state interporosity flow model. In this case
the diffusivity equation for the fractures is given by:

ar*  r dr o dt ke

Fracture Flow Equation (11-75)

ks

where 5= ——
o Gy p

q" = interporosity flow rate per unit bulk volume



In the matrix, the pressure is assumed to vary only in the vertical direc-
tion, v. Thus, the diffusivity equation is given by:

f‘_ﬂl:'m _ 1 ab, + (q" i
avi g a8t k..

The above equation can be written as follows:

" ,
k;ln ﬂﬂf; = o, Co % +q° Matrix Flow Equation _ (11-76)

When k. is very small and {8°P_/av®) is negligible, Equation 11-76 takes
the following form:

Q" = = ¢y Cyy % (11-77)



The semi-steady state interporosity flow assumption is stated as follows:

qQF = % (P, = Py) (11-78)

Thus, by equating Equations 11-77 and 11-78 we obtain Equation 11-65.

b Cpy T '# ' (Ps ~ P,) (11-65)




In dimensionless form, Equation 11-75 becomes:
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Thus, the above equation is written as follows:

Y
TP, 1 Por_ o kv (11-79)
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By assuming that at t = 0, Pp; = 0, the Laplace transform of Equation
11-79 is given by:

d*Pp(z) + 1 dPpy(z)
dl'E: I'my J-'.'.lll']j

=@ z Ppi(z) - % q'(z) (11-80)




By writing Equation 11-78 in dimensionless form and then taking the La-
place transform, we obtain:

q+{z) = o % (Pom(z) — Ppi(z)) (11-81)

By Equation 11-69, Equation 11-81 becomes:

ke (1-@)2 b (11-82)

@@= e

Noting that A = {erlk,)/k:. then substituting Equation 11-82 in Equation
11-80, we obtain:

d*Ppilz) | 1 dPpez) _ _
ar, + E ar, - = 7 {{z) Ppelz) (11-83)

Equation 11-83 is identical to Equation 11-70, and f{z) is the same as that
defined by Equation 11-71.




Dual Porosity Models
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Double Porosity

Transient Formulation

In the case of the transient interporosity flow model, Equation 11-80 is
still valid except that q®(z) is now defined as follows:

ein 2 ky dPy(z)
4 EE}_ hm K d"if v=1

(11-84)

For the matrix, it is necessary to know whether the matrix can be approx-
imated by slabs or by spheres. In the case of slabs, the following equation
applies:

EEP,T,= 1 4P,
vt my Ot

(11-85)

Subject to the following conditions: “l :

l. Fm _ Pj at t = ﬂ g || w—_
2. dPyfdv =0atv="h_/2, at all t
3. Ppo=Fratv =0, at all




Before we take the Laplace transform of Equation 11-85, we need to dis-

tinguish between the Laplace parameters when the transform is taken with
respect to t and when it is taken with respect to tp.

Let,
flz') = | £t) exp (~2'1) dt to = I t
’ (@G + &Cy) p 3
and

f(z) = | F{to) exp (~ 7tp) dtn

Since tp is defined by Equation 11-62, z° and z are related as follows:

|
= — | . -
[6m Co+ b Cl s ! (11-86)



Laplace Space Solution

In terms of z’, the Laplace transform of Equation 11-85 is given by:

d*P(z'y 1 )
dv’""jn_mz Poiz") (11-87)

The solution of Equation 11-87 is given by:

h,,

ﬂﬂﬁh [ (‘:"2'- - uz’."r;m]
Pm{.'{."} = Pf{Z":I )

h (11-88)
cosh (== -..-"z“fnm-]
By Equation 11-84, Equation 11-88 is written as: | 4°®) = 32— % dP;jz)
m v=0

‘i 2k, — —
q-(2") = — i'TkJI VZ 'y Ppe tanh [% 's"'E_"."'r]m] (11-89)



In terms of the Laplace param&tef, z, Equation 11-89 becomes:
1 1

ﬂ tanh :kz”' ::E a _r;} z}ﬂ } (11-90)

= 2 km’h (1-e)z

hy po ke T

Substituting the above value of g-(z) in Equation 11-80 we obtain Equa-
tion 11-70 except that now f(z) is given by:
1

1
kw (1- (1-w) k 5 .
fz)=w+ E r,%,r - 1 tanhl ’ = H (11-91)
dPp(z) . 1 dPpilz) _ et
d:é +E a ¢ z Ppilz) T q:(z) (11-80)

'I:].E'PD-_F{E} 1 -IﬂPEH'[
dl‘% r].']. 'dl']_'_;.

= [z £(z)] Ppy(z) (11-70)



THE INVERSE LAPLACE TRANSFORM

The inverse Laplace transform can be found by different ways. For exam-
ple, we could prepare a table of transforms in which we list the transforms
of many functions and refer to this table to find the inverse transform. We
can use the table of transform in conjunction with Equation 11-17 and other
known properties of the transform. Another technique relies on integration
in the complex plane. However, in most problems related to well testing,
this latter technigue could lead to expressions that are very difficult to evalu-
ate. For this reason, the present trend is to find the inverse transform numer-
ically and present the results in the form of a type-curve.

The algorithm presented by Stehfest (1970) has gained wide acceptance
by researchers in the field of well testing. We will discuss Stehfest’s algo-
rithm and with the exception of referring to a table of transforms, we will
not discuss any of the other methods of finding the imverse Laplace trans-
borm. '

Stehfest’s algorithm is based on the following formulae:

mdndi,BeE) ; -
= [ e JyERE ol . k== {2]:[}' N 1.
vimte b h-;i.:.h.g AECRTH G- G @ e

n | |
iy = n2 Y VP JIE i (11-19)
- | 1

|
tf t |

The number, n, in these expressions should be optimized by trial and error,
Increasing n increases the accuracy of the results up to a point, and then the
accuracy declines because of roundoff errors, since the word length on the
computer is finite. Note that £(t) = L~'P(z), and z is replaced by i In2/t,
where t is the time at which the inverse transform is required. Also note that
for & given n the Stehfest algorithm requires caleulation of V| only once.



FProgram 11-1 iz written in FORTRAN, It is written to find the inverse
transform of Plz) = U4z, at t= 1, 2, 3,. . .. .. 10. The program is suit-
- able for finding the inverse transform of any given continuous function by

making the necessary changes where indicated in the program, With
n = 18, the program gave exact results up to 5 decimals. This was possible to

check beecause we lenow that:

1o

1
e
For a given f(z) for which we do not know the inverse transform, n can be
optimized by referring to a table of transforms and choosing a lunction that
is close to the function on hand. Also, if n is not properly selected, a plot of
the inverse transform will tend to oscillate, whereas an appropriately chosen
value of n will vield a smooth inverse transform.




Program 11-1

Inverse Laplace Transform by the Stehlest Algorithm

10

50
100

IMPLICIT REAL*S (A-H,0-2)

DEMENSION Va0, GHa0), H{30)

N SHOULD BE OPTIMIZED
MN=18

DLNZ = 06931471 805555453

G{1) = 1.0

MH = b2

DO 101 = 2,M

G} = G{-1)"1
H(1} = 2.0/G{NH-1)
DO 100 | = 2,NH
Fl=1

IF(LEQLNH) GO TO 50

Hl) = FI* " MH G2 GENH-1)* G Gil-1)

GO TO 100

Hil) = FI* " MH" G2 WGl = Gil-1))

CONTINUE
SN = 2*(NH-NH2*2)-1
DO 200 F = 1,N

il = 0.0

K=l + 1§2

WK =1

IF(KK.GT.NH) KK = MH
DO 150 J = KKK
IF{2*J.EQ.0) GO TO 120
IFLEQLS) GO TO 130

e e LT e

R ]

(progrom continued or sext page)



3

o0 0O

00

280

300

Vi) = Wil) + HEWGE) " Gi2* JH))

GO TO 150

V(I = Vi) + HEIVG{-J)

GO TO 150

Wil = VIO + HIGE"J-)

CONTINUE

Wil = SV

SN = 3N

CONTINUE

FT =00

t SHOULD BE CHANGED AS DESIRED

T= 1.0

HERE, WE EVALUATE THE INVERSE LAPLACE TRANSFORM AT
T=1,2 3.0

THIS SHOULD BE CHANGED IF OTHER T VALUES ARE NEEDED.
Do 3001 = 1,10

T = DLNAT

DO 270K = 1N

Z=AK

THE FUNCTION BEING EVALUATED HERE IS: Fiz) = 1/SQRAT(z). THIS
SHOULD BE CHANGED.,

FT = FT + {1.QDSQRTZ)"VIK}

FT = FT + (1.0/DSQRTZ)" V(K
CONTINUE

FT = AFT

WRITE (" 2B0)T,FT

FORMAT[Sx,T = F8.0.5X,FT = "F12.3)
T = T = 1

FT=0.0

COMNTINUE

END




Spherical Coordinate- PDE

When the matrix blocks are assumed to be spheres, Equation 11-8{ is still
valid except that q*(z) iz now defined by:

2 ky dPulz)

lll:l._,; -
q I::::I Im M dr [ T

(11-92)
and Equation 11-85, the matrix equation, is replaced by:

:
P + 2dPy, 1 9P, (11-£63)

'  r ar Ny L
with the following initial and boundary conditions:

1. P, =F,att=10
2. P, = Pyatr = r,, for all t and for each sphere

In the Laplace domain, Equation 11-93 is given by

d®F (2"} +E dP (=" _ 1
dr? r dr T

z'Pn(z') [11-94)



Spherical Coordinate-Solution

The solution to Equation 11-94 is given by:

Po(z') = ™ Pyiz'} sinh [r vZTnn] / sinh [n V2 na] (11-95)
r

From Equations 11-92 and 11-95, g:(z") is given by:

)= -5 ‘ff Poslz’) {VETm coth [tn vZ7T1n] - 1} (11-96)

By converting Equation 11-96 to the Laplace parameter, z, by Equation
11-86, and then by substituting in Equation 11-80 and noting that h = 1513/
i kn ks, we obtain Equation 11-70 with f{z) now given by

[ | :

ﬁz}-m+é}_‘“15‘“._;”}_.“rm&. ok i Er—l} e

z kA



Well Test Analysis on the Basis of
Warren & Root Model




Dual Porosity Parameters Storativity Ratio

$.C.
¢1CI ¢2C2 )

The storativity ratio is a measure of the pore space in the fracture system relative to
the total pore space.

For naturally fractured reservoirs, o will normally be in the range of 102 to 10°. For
layered reservoirs, ® may be as high as 0.1.

Values higher than 0.1 usually do not exhibit dual porosity behavior.

Nomenclature:

o - storativity ratio, dimensionless

¢, - matrix porosity, dimensionless

¢ - fracture porosity (=1.0), dimensionless

Cy, - total compressibility of matrix porosity and fluids, psi*

C - total compressibility of fracture porosity and fluids, psi-?

C

41



Dual Porosity Parameters Interporosity Flow Coefficient

_ak, r2 o 4n(n2+ 2)
ki .

A

The interporosity flow coefficient A is a measure of the ability of fluids to flow from the
matrix to the natural fracture system, relative to the ability of fluids to flow from the
fracture system to the wellbore.

The interporosity flow coefficient A is not a pure property of the reservoir rock, because it
includes the wellbore radius.

For naturally fractured reservoirs, A will usually be in the range of 103 to 108. Larger
values of A cause the effects of dual porosity behavior to end very quickly. In this case,
the dual porosity behavior is often obscured by wellbore storage. Smaller values of A
will cause the dual porosity behavior to occur much later in time, and may not be
apparent before the end of the test.
Nomenclature

A - interporosity flow coefficient, dimensionless

k., - matrix permeability, md

k; - bulk fracture permeability, md

r, - wellbore radius, ft

a - shape factor, ft2

n - number of sets of mutually orthogonal fractures
L., - characteristic size of matrix blocks

42



Interporosity Flow Coefficient

The “characteristic matrix dimension” in the definition of A is simply the width of a matrix
block, if the blocks are the same dimensions in each direction. If the blocks are
different sizes in different directions, then L is given by the expressions in the third
column of this table.

Nomenclature: Yoy
a - width of matrix block

b - length of matrix block

c - height of matrix block

Cube
Slab

Geommatry Geometry
Geometry n Lm A Column
Geometry
12k, 1
Slabs 1 a Pz
fHm
2ab 32k, r”
Columns 2 (a+b) kaz
cub 3 3abc 60kmr,3
ubes (ab + bc + ca) kafn
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Figure 1.61 Pressure drawdown according to the model by Warren and Root {Copyright ©7969 SPE, KazemftSPEJ,
Dec. 1963),
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In theory, double-porosity behavior yields two parallel straight lines on a
semi-log plot, provided there is no wellbore nor outer boundary effects.

The semi-log plot consists of three sections:
— (i) the first straight line, which represents the homogeneous behavior of the

naturally fractured medium before the matrix medium starts to respond (transient
radial flow) — the slope of this line gives the fracture permeability;

— (ii) a transition section (between two straight lines), which corresponds to the

onset of inter-porosity flow;

— (iii) the second semi-log straight line, which represents the homogeneous

behavior of composite media (fracture permeability with the sum of matrix and
fracture storages) when recharge from the matrix medium is fully established.

eThe nature of matrix and fracture interaction
is manifested during the transitional period of
matrix-to-fracture fluid transfer.

Equivalent Homogeneous

‘\
~,
., .
= ‘:'/ Reservoir
~
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. The characteristics of the transitional segment are determined by the way
the matrix and fracture interact.

. Flow from matrix to fractures takes place according to the assumptions
used in the available double porosity models:

1. The flow rate is proportional to the pressure difference between matrix and
fracture (Warren and Root, 1963)

2.  The flow rate is proportional to the averaged pressure gradient through the
matrix (Streltsova, 1983)

3. The flow rate is an unsteady state function of pressure drop across the
matrix(Kazemi, 1969; deSwaan, 1976, and Najurrieta, 1980)
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For a well producing at a constant rate from an infinite, naturally frac-
tured reservoir with the assumption that matrix-to-fracture flow oceurs un-
- der instantaneously established pseudosteady state conditions, Warren and

Root derived drawdown and buildup equations. Useful forms of their equa-
tions were presented by Kazemi (1969):

For drawdown:

162.6 q B p k
P,-P.; = log t + lo — 3.23
Y e b+ b | B 0nCn + G g 2
+0.435 Ei [ - Mplw (1-w)]
— 0.435 Ei [ — Mp/(L - w)] + 0.87s (6-1a)
For buildup:
_p _16269Bul| t+At . ~
Pi=Pu = e [Iug B2 0.435 Ei [ — N Atp/oo(] — )]
+0.435 Ei [ — \ Atp/(1 — w]]} (6-1b)
-4
where  t - 264X1071 ket

(@C + 6,Cp) p 13

9.64 x 104 k; At

and, Atp =
P (3Ce + 9uCu) £ TS 48
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Fig. 2-5. Semi-log plot showing the dimensionless pressure solutions as a function of time for several
values of w and A (after Warren and Root, 1963). Drawdown case; infinite reservoir. Courtesy of

SPE-AIME.



The signature of dual porosity systems on a semi-log plot is two parallel lines as

shown below.

Dual Porosity Analysis
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Figure 1.62 shows the pressure buildup data for a nat-
urally fractured reservoir. As for the drawdown, wellbore
storage effects may obscure the first semilog straight line.
If both semilog straight lines develop, analysis of the total
permeability—-thickness product is estimated from the slope
m of either straight line and the use of Equation 1.3.8, or:

(k) = 1@3.1@3#

Bourdet and Gringarten (1980) indicated that by drawing
a horizontal line through the middle of the transition curve
to intersect with both semilog straight lines, as shown in
Figures 1.61 and 1.62, the interporosity flow coefficient A
can be determined by reading the corresponding time at the
intersection of either of the two straight lines, e.g. f; orts, and
applyving the following relationships:
In drawdown tests:

§_ [ ) j| [{qﬁrhf‘t}my?‘%} _ [ 1 } [{q‘mhq}m#r&,}
; 1 —ew 1. 781kt 1—w 1. 781ksts

[1.5.11]

In buildup tests:

L [ w {{,i'?hf-‘t)m#r&r (fli' +‘j'f)

T 1—w || 178k, Aty
or:

_ 2 ‘
W= |: 1 j| (ﬁf'hft)mﬂrw} (fp-l— &f) [1.5.12]
l—w]| 1781kt At /,

where:

ki = permeability of the fracture, md

f, = producing time before shutin, hours
¥y = wellbore radius, ft

= viscosity, cp
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The skin factor s and the false pressure p* are calculated as
described by using the second straight line. Warren and Root
indicated that the storativity ratio @ can be determined from
the vertical displacement between the two straight lines,
identified as Ap in Figures 1.61 and 1.62, by the following
expression:

w = 10\-2/m [1.5.10]
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Figure 1.62 Buildup curve from a fractured reservoir (After Warren and Root, 1963).



The subscripts 1and 2 (e.g., ;) refer to the first and second
line time intersection with the horizontal line drawn through
the middle of the transition region pressure response during
drawdown or buildup tests.

The above relationships indicate that the value of A is
dependent on the value of w. Since « is the ratio of fracture
to matrix storage, as defined in terms of the fofal isother-
mal compressibility coefficients of the matrix and fissures
by Equation 1.5.8, thus:

1
(Ql}h}m {ft}mj|
I [ (ph)s (er)s

it suggests that @ is also dependent on the PVT properties
of the fluid. It is quite possible for the oil contained in the
fracture to be below the bubble point while the oil contained
in the matrix is above the bubble point. Thus, @ is pressure
dependent and, therefore, A is greater than 10, so the level
of heterogeneity is insufficient for dual porosity effects to he
of importance and the reservoir can be treated with a single
porosity.

) =

Example 1.34 The pressure buildup data as presented
by Najurieta (1980) and Sabet (1991) for a double-porosity
system is tabulated below:

At (hr) s (psi) b
0.003 6617 31 000000
0.017 G632 516 668

0.033 44 358334

0.067 G650 129 168

0.133 G654 A4 544

0.267 Gh61 32293

(1.533 G666 16147

L.OAT 66RO BOT4

2.133 GETE 4038

4 267 G685 2019

B.633 G6OT 1010

17.067 G704 506
34.133 G712 253

The following additional reservoir and fluid properties are
available:

By = 6789, 5 psi, pur at areo = 6352 psi,

&), = 2554 STB/day, B, = 2.3 bbl/STB,

o = 1 cp, f, = 8611 hours

re = 0.375ft, e, = 8. 17 x 107° psi~!, ¢, = 0. 21
b =0.1md, by, = 17 ft

Estimate « and 5.
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Solution

Step 1.
Step 2.
Step 3.

ws PSi

%

Plot prs vs. (f; + Af) /At on a semilog scale as shown
in Figure 1.63.

Figure 1.63 shows two parallel semilog straight lines
with a slope of m = 32 psi/cycle.

Calculate (k¢h) from the slope m:

162.6Q,Bop,  162.6(2556)(2.3)(1.0)

(keh) m 32
= 20848 3md ft
6750.00 TTTTIT T TTTT0 T T T T T
] \ \ I I
6725.00 - " " Ap=25psi T~ I
1 \ J ||/1 1|
1 AR
6700.00 | L1
1 ]
] X Y \‘ 25
6675.00 - N AN L
] M*‘ ' ’0‘9“'@, |
— \\ \'\ .HH.I %
6650.00: F “\ ‘\J LI
] T,
- £ \
1 I m?f&:@“w %\.
6625.00 < \0 "-:
] v ||||| W"I\" \\\\"
s600.00 3 L LU T LT LU P E L
10° 104 05 106 107
(t+ Af/AL

Figure 1.63 Semilog plot of the buildup test data (After Sabet, M. A. Well Test Analysis 7991, Gulf Publishing

Company).

and:
20848.3
17

Determine the vertical distance Ap between the two
straight lines:

ki = = 1756 md

Step 4.

Ap =25 psi

Step 5. Calculate the storativity ratio « from Equation 1.5.10:

w = 10~/ — 10-552 — (165

Draw a horizontal line through the middle of the

transition region to intersect with the two semilog

straight lines. Read the corresponding time at the
second intersection, to give:

t, + At

At

Calculate A from Equation 1.5.12:

[ 1 j| |i(<|ﬁ'hft)mﬂry2;i| (fp + fj-f)
L1 —w 1. 781ksty At 5

1
[ 1-10.165

[(0.21) (17)(8.17 x 107°)(1)(0.375)* ] .
“1 1. 781(1756) (8611) }mm)

Step 6.

)2=2mm

Step 7.

=3.64 x 1077

It should be noted that pressure behavior in a naturally
fractured reservoir is similar to that obtained in a layered
reservolr with no crossflow. In fact, in any reservoir system
with two predominant rock types, the pressure buildup
behavior is similar to that of Figure 1.62.
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Naturally Fractured Reservoirs Examples

Source: Bourdet, Ayoub, Whittle, Pirard and Kniazeff
— Flopetrol Johnston, Melun, France
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Fig. 1—Two families of curves are used to analyze pressure drawdown data for dual porosity

reservoirs. Curves labeled Cpe?® are used to establish a match during homogeneous flow peri-

ods while those labeled Ae 2% match the transition period. This is illustrated by example A in

which initial pressure response follows curve Cpe?s = 1 (fissure system) then flattens along

tCrang,;tion curve \e 2 = 3 x 10 “ until total system (homogeneous) flow begins again on curve
pe=> = 101,

Dimensionless time, tp/Cp)

Source. Bourdet, Ayoub, Whittle, Pirard and Kniazeff
— Flopetrol Johnston, Melun, France
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Fig. 2—A semi-log plot of pressure drawdown data may be used to magnify the double porosity
behavior that may have been masked by the log-log plot. Note the definite S shape of both ex-
amples.

Source. Bourdet, Ayoub, Whittle, Pirard and Kniazeff
— Flopetrol Johnston, Melun, France
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Fig. 3—The derivative of dimensionless pressure when plotted against dimensionless time re-
sults in a family of distinctly shaped curves that merge and flatten into a straight line that corre-
sponds to radial flow. This straight line is particularly useful since it can help provide a very accu-
rate pressure match (see WoRrLD OiL, May 1983, page 95).

Source. Bourdet, Ayoub, Whittle, Pirard and Kniazeff
— Flopetrol Johnston, Melun, France



tD."rCD
104 1 10 102 103 10* 10° 108

102

pg (to/Cp)

NWZAN NAX NN AN
T\ 174 R 10-5\

3x10-2 3x10-3 31074 3x10-°

Fig. 4—The derivative of pressure curves of Fig. 3 are combined with transition curves of deriva-
tive of pressure to show the behavior of a dual porosity reservoir. Note how the plot of example A
(see Figs. 1 and 2) falls below the straight line portion of the derivative curves during the transi-

tional flow period.

Source. Bourdet, Ayoub, Whittle, Pirard and Kniazeff
— Flopetrol Johnston, Melun, France
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Fig. 5—When all component curves are consolidated, the result is this set of type curves for
analyzing pressure drawdown from a dual porosity reservoir. Their usefulness is illustrated by
example B in which fissure flow was masked by well-bore storage in Fig. 1. But when the deriva-
tive of pressure is plotted, fissure flow is readily apparent.

Source. Bourdet, Ayoub, Whittle, Pirard and Kniazeff
— Flopetrol Johnston, Melun, France



Software Analysis
Draw-down Test in a Fractured Reservolir

Quantity Value Quantity | Value _

h 300 ft So 1.0 Time (hrs) Oil Rate
NTG 1.0 Sw 0.0 (STB/day)
[0} 10.0 % Sg 0.0 0 2500
Top depth 6000 ft 70 2500
RFT-pressure | 5000 psia at 6000 ft
uanti Value uanti Value
grientz?tlion \ertical ?op of tPXerf 6000 ft APl = 141.5 —-131.5
T, 0.3 ft Bottom of Perf | 6300 ft Y,
Quantity Value Quantity | Value
[T 0.8¢cp [ 54.64 Ib/ft3
C, 3.0E-6/psi | T 180° F
B, 1.2
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