# Enhanced Oil Recovery (EOR)

## *R. Kharrat* Professor of Petroleum University of Technology

Spring 2014

# Course content

#### **Chapter 1:** Introduction to EOR

- Introduction
- Definitions
- EOR Classification
- Screening Criteria

#### Chapter 2: Oil Recovery Efficiency

- Introduction
- Microscopic efficiency
- Macroscopic efficiency

#### **Chapter 3:** Water & Chemical Flooding

- Frontal theory
- Water flooding performance
- Chemical flooding performance
- Surfactant flooding performance
- Dispersion during miscible displacement

#### **CHAPTER 4:** Gas Injection

- Principle of phase behavior
- Immiscible process
- Miscible process

### References

- Modern Chemical Enhanced Oil Recovery: Theory & Practice, Elsevier, 2011.
- Enhanced Oil Recovery: Field development & strategies, V. Alvarado & E. Manrique, G.P. Elsevier, 2010.
- Enhanced Oil Recovery, Kharrat R., Namaei M., & Assadullahi M., Nahradaniesh Publ. 2009.
- Enhanced Oil Recovery, Green D. and P. Willhite, SPE Pub., 1998.
- Basic Concepts in EOR Processes, Bavier M., Elsevier Applied Science, 1991.
- Thermal Recovery of Oil & Bitumen, Butler R. M., Prentice Hall, 1991.
- Enhanced Oil Recovery, Lake L. W., Prentice Hall, 1989.
- Water Flooding, Willhite P., SPE Pub., 1986.
- Fundamental of Enhanced Oil Recovery, Poollen H.K., Penn Well, Books, 1981.
- Enhanced Oil Recovery, Lateil, Gulf Pub. Co., 1980.
- SPE Papers & Journals

Chapter 1 Introduction

## Distribution of Identified Petroleum Resources



# Future of Conventional Oil

- Currently, 90% of production is from conventional oil
- Heavy oil and bitumen are growing rapidly
- About 70% of world reserves are heavy and extra heavy oil



### The Concept of Peak Oil



# EOR methods by lithology (Based on a total of 1507 projects)



Why EOR



Recovery Efficiency RE =  $D_e x A_s x V_s$ 

A typical EOR project might have RE = .9 x .7 x .8 = .5, or 50% of the remaining in place.

# Definition

- Primary
- Secondary
- Tertiary
- IOR
- EOR

Primary Recovery ( around 20%) Natural flow of energy of reservoir

- The primary recovery depends on the conditions encountered in the fields.
- Water Drive (70 to 80%)
- Solution gas drive (10 to 30%)
- Gas Cap Drive
- Gravity Drainage
- Fluid and Rock Expansion

# Primary Oil Recovery: Point to be considered

- Optimum Production Rate
- Maximum Recovery Factor
- Pressure decline under control
- Gas Injection
- Water Injection
- Production under stabilized conditions
- Monitoring WOR & GOR
- Reservoir Management

### Secondary Recovery 15 TO 60%

- To produce more oil, the pressure in the reservoir must be maintained by injecting another fluid.
  - Water injection
  - Gas injection
- Small oil field:
  - Water into the aquifer
  - Gas into the gas cap
- Large field: Fluid injection must be distributed through the reservoir

### Gas injection into the gas cap



# **Tertiary Recovery**

- Producing the oil that remain in the part of the reservoir already swept by the displacing.
  - Increasing the displacement efficiency

(Part of the reservoir that was already swept in secondary recovery)

- Increasing the sweep efficiency

(producing oil that remains in the part of the reservoir not swept by displacing fluid)

- Increasing both displacement and sweep efficiencies



# **Definition of EOR/IOR**

**EOR** refers to any method used to recover more oil from a reservoir than would be produced by primary recovery

**IOR** refers to any process which enhances the production or recovers more oil from a reservoir during the life of the reservoir

# Improved & Enhanced Oil Recovery

**IOR**: methods supplementing reservoir forces & energy

- to increase ultimate recovery from a reservoir
  - pressure support
  - cycling
  - infill drilling in by-passed areas
  - artificial lift methods (gas-lift vs ESP)
- includes EOR and/or tertiary methods
  - targeting oil remaining after conventional project



#### 

# Improved & Enhanced Oil Recovery

EOR: "injecting anything that will increase the recovery attained by previous methods"

- Improvement of displacement efficiency
  - decreasing Sorw and/or Sorg
    - miscible or near miscible gas injection
    - chemical flood-surfactants
    - taking advantage of gravity forces
    - oil vaporization

### Improvement of volumetric sweep efficiency

- lowering mobility ratio by increasing m<sub>w</sub> or m<sub>q</sub>
  - polymers or foams
- reducing viscosity
  - thermal flood

# TERMINOLOGY

IOR (Improved oil recovery)

EOR - (Enhanced Oil Recovery) Mobility control: polymer, foam...

Chemicals: surfactants...

Gas injection: Miscible or near miscible

Thermal: steam, in situ combustion

<u>Others</u>: microbial, non miscible CO2...

#### **Technologies**

Smart wells Reservoir management Reservoir characterization Down hole separation, .. etc....

EOR will basically refer to the same methods/mechanisms

IOR technologies will change versus time with different standards across the world and among the various companies

# The two scales of EOR

#### Microscopic scale

- what happens in the porous network
- interaction between injected and in place fluids
- requires calibration by lab experiments

#### • Field scale: extrapolation of microscopic behavior seriously impacted by

- structural set-up
  - formation dip, existing updip...
- geological heterogeneities
  - vertical barriers to flow, contrast in permeabilities
- mechanistic upscaling may be required
- pilot required to validate extrapolation of microscopic scale results

### World Wide Experience in EOR



# Definition of terms

TAGD



# Enhanced Oil Recovery (EOR) Processes

Enhanced oil recovery (EOR) processes include all methods that use external sources of energy and/or materials to recover oil that cannot be produced, economically by conventional means.

### EOR methods include:

- Water flooding
- Thermal methods: steam stimulation, steam flooding, hot water drive, and in-situ combustion
- Chemical methods:polymer,surfactant,caustic,and miscellar /polymer flooding.
- Miscible methods: hydrocarbon gas,CO2,and nitrogen (flue gas and partial miscible/immiscible gas injection may also be considered)

| Waterflood                                                                                                                                           | Thermal                                                                  | Chemical                                                                                                                                                                     | Miscible gas                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Maintains<br>reservoir<br>pressure<br>&physically<br>displaces oil<br>with water<br>moving through<br>the reservoir<br>from injector to<br>producer. | Reduce Sorw<br>by steam<br>distillation and<br>reduces oil<br>viscosity. | Reduces Sorw<br>by lowering<br>water-oil<br>interfacial<br>tension, and<br>increases<br>volumetric<br>sweep<br>efficiency by<br>reducing the<br>water-oil<br>mobility ratio. | Reduces Sorw<br>by developing<br>miscibility with<br>the oil through<br>a vaporizing or<br>condensing gas<br>drive process. |

### Water flooding





### Water Flooding In 5-Spot Pattern



### Description

Waterflooding consist of injecting water into the reservoir. It is the most post-primary recovery method. Water is injected in patterns or along the periphery of the reservoir.

#### **Mechanisms That Improve Recovery Efficiency**

Water Drive Increased Pressure

#### Limitations

High oil viscosities result in higher mobility ratios. Some heterogeneity is acceptable, but avoid extensive fractures **Flooding Patterns:** A number of different injection/production well patterns have been used in reservoir displacement process













FIVE-SPOT

SEVEN - SPOT



INVERTED SEVEN-SPOT

## Flooding Patterns



### Challenges

Compatibility between the injected water and the reservoir may cause formation damage.

#### Screening Parameters

Gravity >25 API Composition not critical Formation type sandstone/carbonate Average permeability not critical Depth not critical Viscosity <30cp Oil saturation >10% mobile oil Net thickness not critical Transmissibility not critical Temperature not critical

**Note:** *Most EOR screening values are approximations based on successful north American project.* 

### **Chemical Flooding: Polymer Flooding**



### **Polymer Flooding In 5-Spot Pattern**


### Description

Waterflooding consists of adding water soluble polymers to the water before it is injected into the reservoir.

#### Mechanisms That Improve Polymer augment Recovery Efficiency

Mobility control( improves volumetric sweep efficiency)

#### Limitations

- •High oil viscosities require a higher polymer concentration.
- •Results are normally better if the polymer flood is started before the water-oil ratio becomes excessively high.
- •Clays increase polymer adsorption.
- •Some heterogeneity is acceptable ,but avoid extensive fractures. if fractures are present, the crosslinked or gelled polymer techniques may be applicable.

# Challenges

Lower injectivity than with water can adversely affect oil production rates in the early stages of the polymer flood. Acrylamide-type polymers loose viscosity due to shear degradation, or it increases in salinity and divalent ions.

#### **Screening Parameters**

Gravity>18 APIViscosity<200cp</th>Composition<br/>oilNot CriticalOil saturation>10% PV mobileFormation typesandstone /carbonateNet thicknessnot criticalAverage permeability>20mdTransmissibilitynot criticalDepth<9000ft</td>Temperature<225°F</td>

Polymers Commonly used are Polyacrylamides & Polysaccharides

### **General Properties**

PA:

Shear thinning Shear sensitive (degradable) High adsorption/retention Brine Sensitive Cheap

PS:

Shear thinning Less shear Sensitive Less retention/adsorption Less sensitive to brine Sensitive to bacteria More expensive

# **Surfactant/Polymer Flooding**



### Surfactant Flooding in a Linear System

- The main EOR mechanism in a low-tension flood is the reduction in residual oil saturation (R.O.S.).
- The large reduction in IFT changes the fractional flow curve by changing the relative permeability curves.
  - Several changes occur in the relative permeability:
  - The R.O.S. decreases significantly.
  - The curvature of the relative permeability curves decreases.
  - The end-point water relative permeability increases.
- The change in relative permeability can only be determined experimentally.
- In the absence of experimental data, an approximate analysis is possible by simply shifting the residual oil saturation.
- Surfactant adsorption is an important consideration and must be determined experimentally.



### **Schematic of Surfactant Structures**



Schematic of the critical micelle concentration of a surfactant molecule drugs at three concentrations



a) the critical concentrationb) the critical concentration range,c) above the critical concentration.

# Properties of some surfactants (all properties at 20°C).

| Surfactant                        | Molar mass (g/m) | Solubility in water<br>(g/mol) | Bulk Density<br>(kg/m <sup>3</sup> ) | PH value | CMC<br>(ppm) |
|-----------------------------------|------------------|--------------------------------|--------------------------------------|----------|--------------|
| Cetyl trimethyl ammoni<br>Bromide | um 364.45        | 0.192                          | 390                                  | 5 – 7    | 328          |
| Sodium Dodecyl Sulfate            | 288.37           | 150                            | 490-560                              | 6-9      | 2307         |
| Triton X-100                      |                  | soluble                        | 1070                                 | 5-8      | 1500         |





SDS Concentration , (PPM)

### Typical adsorption isotherm of Polymer



# Description

Surfactant/polymer flooding consists of injecting a slug that contains water surfactant, electrolyte (salt), usually a co-solvent (alcohol), and possibly a hydrocarbon (oil), followed by polymer-thickened water.

#### **Mechanisms That Improve Recovery**

Interfacial tension reduction (improves displacement sweep efficiency) Mobility control

#### Limitations

An areal sweep of more than 50% for waterflood is desired.

Relatively homogeneous formation.

High amounts of anhydrite, gypsum, or clays are undesirable.

Available systems provide optimum behavior within a narrow set of conditions.

Water chlorides should be <20000 ppm and divalent ions<500ppm



- Complex and expensive system.
- High adsorption of surfactant
- Interactions between surfactant and polymer.

#### **Screening Parameters**

Gravity >25 API Viscosity <20cp Composition No critical **Oil saturation** >10% pv **Net thickness** >10 ft **Formation type** sandstone Average permeability >20md Transmissibility not critical **Temperature**  $< 225^{\circ} F$ Depth <8000ft **Salinity of formation brine** <150000 ppm TDS

# Gas Injection



# Gas Injection

#### Huff-'n'-puff

- Single Well Cyclic CO2-EOR Method
- Utilizes intermittent injections of gas to mobilize the oil.
- When gas is not being injected, the injector wells are used for production of oil.



### Description

 $CO_2$  flooding consists of injecting large quantities of  $CO_2(15\% \text{ or more hydrocarbon pore volume})$  in the reservoir to form a miscible flood.

#### Mechanisms That Improve Recovery

CO<sub>2</sub> extracts the light -to-intermediate components from the oil ,and if the pressure is high enough, develops miscibility to displace oil from the reservoir( vaporizing gas drive) Viscosity reduction/oil swelling.

#### Limitations

Very low viscosity of CO<sub>2</sub> results in poor mobility control Availability of CO<sub>2</sub>

# Gas Injection: Continues Gas Injection (CGI)

**Natural Gravity Segregation** 







# **Drainage or Displacement**

Gas Injection High-front velocity displacement Residual oil disconnected



#### **Gravity drainage** Stabilized gravity drainage Residual oil connected by thin films



# **Application of CO<sub>2</sub> for EOR**

- Reservoir characteristics determine appropriate stimulation method such as CO<sub>2</sub> flooding
- Residual oil saturation, depth, crude and rock properties, availability of pure CO<sub>2</sub> are some factors affect.

Advantages of CO<sub>2</sub> injection

- Swell Oil
- Reduce oil viscosity
- Extract hydrocarbon from crude oil
- Function as a solution gas drive
- May be available as waste gas
- Non hazardous and Non explosive
- Soluble in water, become acidic and may react with rock to improve permeability

# Immiscible Displacement by CO<sub>2</sub>

- CO<sub>2</sub> injection affects relative permeabilities by changing the fluid viscosities and interfacial tensions.
- The residual oil saturation obtained by CO<sub>2</sub> injection is lower than that obtained by using natural gas.
- This is in addition to the already mentioned oil swelling that occurs, and provide an even greater improvement in the recovery factor.

# Miscible Displacement by CO<sub>2</sub>

- In the case of light oils thermodynamic miscibility may be achieved at pressure of the order of 140 to 210 bar (2000-3000 psi)
- With very viscous oils the miscibility pressure can never be reached.
- However, the CO<sub>2</sub> dissolved in the oil has a direct effect on the properties of the mixture, and the viscosity reduction thus obtained is obviously beneficial.

# Formation of the Miscible Bank

- During displacement of the CO2 within the porous medium there is a large contact area between gas and oil.
- A rapid mass transfer between the oil and CO2 takes place by fractionation of the oil.

| Injected<br>gas   | Injected gas<br>+<br>heavy fractions<br>of residual oil | gas enriched by<br>evaporation<br>of the oil                                               | oil enriched by<br>intermediates | virgin<br>oil |  |  |
|-------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|---------------|--|--|
|                   | CO <sub>2</sub><br>heavy residual oil                   | CO <sub>2</sub><br>+<br>gaseous<br>hydrocarbons<br>+<br>oil in equilibrium<br>with the gas | enriched oil                     |               |  |  |
| irreducible water |                                                         |                                                                                            |                                  |               |  |  |

# **Sources of CO<sub>2</sub>**

- The gas must be available up to 20 years
- The gas must be relative pure
- A natural gas source is the best
- Most known CO<sub>2</sub> sources discovered while exploring for oil and gas
- Stack gases from industrial plants must be purified

# **Cost Feasibility**

- Based on 20 \$/bbl of oil; CO<sub>2</sub> EOR projects is economical with CO<sub>2</sub> delivered price up to 0.82 \$/MCF
- CO<sub>2</sub> Recycling cost is 0.35 \$/MCF
- Total Cost for CO<sub>2</sub> injection : 6\$/bbl

### Challenges

Early breakthrough of CO<sub>2</sub> causes problems. Corrosion in producing wells The necessity of separating CO<sub>2</sub> from saleable hydrocarbons. Repressuring of CO<sub>2</sub> for recycling. A large requirement of CO<sub>2</sub> per incremental barrel produced.

#### **Screening Parameters**

Gravity >27 API Composition C2-C20(C2-C12) Formation type sandstone/carbonate Average permeability not critical Depth>2300 ft Viscosity <10cp Oil saturation >30% PV Net thickness relatively thin Transmissibility not critical Temperature <250°F

# Water-Alternating-Gas Injection (WAG)

- Alternates slugs of miscible gas and water injection to mobilize the target oil.
- Try to: Kr(co2) ↓ so that Mco2 ↓
- Gas rises and water falls
- Advantage: less co2 is needed
- Problem: density differences between co2 and water/oil may cause gas to go up in the formation



# **Thermal Recovery Processes**

- Heat generated at the surface.
- Heat generated in-situ.



Mechanisms responsible for enhanced recovery Viscosity change Drop in viscosity with T is exponential i.e. = A exp (B/T)



### Viscosity Vs. Temperature & API Gravity





The effect of T on  $S_{or}$  and  $S_{wr}$  is the result of both the reduction in the viscosity ratio  $\mu_0/\mu_w$  as T increases



An increase of temperature thus tends to encourage the explosion of oil from the pore space.

### Mechanisms responsible for enhanced recovery

- Vaporization / condensation
- Steam distillation
- Catalytic and thermal cracking
- Light hydrocarbon and / or CO2 dissolution
- Swelling

### Contributions of the different mechanisms to the EOR by thermal recovery methods ( hot fluid injection )


# Steam and Hot Water flooding

Same as water flooding

Steam is injected continuously into one or more wells and oil is driven to separate production wells.



# **Steam Injection Process**

Steam is injected continuously into one or more wells and oil is driven to separate production wells.



#### Description

Steamflooding consists of injecting %quality steam to displace oil. Normal practice is to precede and accompany the steam drive by a cyclic steam stimulation of the producing wells (called huff and puff).

#### **Mechanisms That Improve Recovery Efficiency**

Viscosity reduction/steam distillation Supplies pressure to drive oil to the producing well.

#### Limitations

Applicable to viscous oils in massive, high permeability sandstones or unconsolidated sands.

Oil saturations must be high, and pay zones should be>20 ft thick to minimize heat losses to adjacent formations.

Less viscous crude oils can be steam flooded if they don't respond to water. A low percentage of water –sensitive clays is desired for good injectivity

#### Challenges

Adverse mobility ratio and channeling of steam.

#### **Screening Parameters**

Gravity>35 API(10-35) Composition not critical Formation type sandstone Average permeability >200md Depth 200-5000 ft Viscosity <20cp(10-5000) Oil saturation >40-50%PV Net thickness >20 ft Transmissibility >100 md ft/cp Temperature not critical

# A comparison of Displacement by Cold water, Hot water and Steam



#### **Cyclic Steam Stimulation**

- This method is sometimes applied to heavy-oil reservoirs to boost recovery during the primary production phase.
- During this time it assists natural reservoir energy by thinning the oil so it will more easily move through the formation to the injection/production wells.

# Cyclic Steam Stimulation(CSS)

#### **CSS or Huff & Puff**

Divided into three stages

- Steam injection
- Steam soaking
- Heated oil production



#### **Cyclic Steam Stimulation**

- Shell discovered the process of steam stimulation by accident in Venezuela when it was producing heavy crude oil by steam flooding.
- In the steam stimulation process, steam is injected into the reservoir at rates of the order of 1000 B/d for a period of weeks; the well is then allowed to flow back and is later pumped.
- In suitable applications, the production of oil is rapid and the process is efficient, at least in the early cycles.

 Stimulation before flooding is almost essential in order to achieve flow communication between the injection and production wells.

Communication can be established between pairs of wells by creating a fracture between them. This can be done by injecting steam at a sufficiently high pressure. Matthews lists the following factors that are unfavorable for steam flooding

- Oil saturation less than 40%
- Porosity less than 20%
- Oil-zone thickness less than 30 ft
- Permeability less than 100 mD
- Ratio of net to gross pay less than 50Vo
- Layers of very low oil saturation and high permeability in the oil zone that act as thief zones

Matthews lists the following factors that are unfavorable for steam flooding

- Extremely high viscosity
- Fractures
- Large permeability variations in the oil zone
- Poor reservoir continuity between injectors and producers
- Deep high-pressure reservoirs and shallow reservoirs with insufficient overburden.

#### **Displacement by Saturated Steam**

#### Three principal zones can be observed:

- I. Steam plateau, upstream of the condensation zone
- II. Condensation zone, the steam comes into contact with a cooler matrix
- III. Hot water bank, displacement is by hot water in this zone



#### **Major Problems**

#### 1. Heat losses

Heat losses encountered at the surface lines. Heat losses while in the injection well strings Heat losses to overburden and under burden layers Heat losses to the swept zone

2. Steam Override



#### Effect of variables

- Rock matrix properties
- a) 🥖 🕈 More oil is produced
- b) h 🕈 More oil is produced

this effect decreases as reservoir thickness increases

- c) Pattern shape of spacing: no effect
- d) K 1 better performance
- e) Depth  $\downarrow$  better performance

### Steam Assisted Gravity Drainage(SAGD)

- Using two parallel horizontal well
- Steam injected into upper and form a steam chamber
- Reduce Oil viscosity
- Steam condenses at interface
- Oil and condensed drain by gravity









Bottom of Oil Sands Reservoir

## **SAGD** Physics



From M. Dusseault, U. of Waterloo, Ontario

### SAGD Experience

- The use of the SAGD process can provide an increase in the recovery of about 50% or more which is significantly better than the recovery of 15 % which is achieved using steam stimulation process.
- Successful demonstration of the SAGD process has been carried out by AOSTRA in its Underground Test Facility in Athabasca. This pilot facility employs horizontal steam injectors located parallel to and closely above the horizontal producers.

#### Series of Adjacent SAGD Pattern

- the use of horizontal wells is required for the economic application of the SAGD principle to the production of heavy oil and bitumen.
- this potential application that encouraged Imperial Oil to build the first Canadian horizontal well in the Cold Lake oil sands in 1978.
- When the process is used to produce conventional heavy oils as distinct from bitumen, there is more flexibility in locating the injector.

#### Series of Adjacent SAGD Pattern

As the steam chamber grows upwards, it usually encounters the top of the reservoir waiting a year or two and then the chamber spreads sideways.

#### Vertical Section Through Series of Adjacent Steam-Assisted Gravity Drainage Patterns

Dotted lines indicate approximate positions of steam interface



after Butler and Stephens 1981

### Key Design Issues

- Improvising the recovery process to obtain benefits from drive/ geo-mechanics;
- Achieving high rates;
- Ensuring large reserves;
- Increasing success of the project;
- Identifying optimal implementation (well configuration, injection/ production conditions and well completions).

#### **Potential Problems and Limitations**

hot effluent/ high water-cut production,

- frequent changes in operating regime
- deterioration of production at late stages, and
- high operating costs as some of the limitations to the current technology.

# **Non-Thermal Method**

# **VAPEX Process**

## **VAPEX** process

- VAPEX Stands for Vapour Extraction or Vapour Assisted Petroleum Extraction
- A new emerging technology for extraction of heavy oil
- Founded in 1989 by Butler and Mokrys
- Non-Thermal and Immiscible
- Just one field Pilot in Northwest Alberta, DOVAP
- No reports have been officially released

## **VAPEX Main Mechanisms**



#### VAPEX Mechanism



CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>, C<sub>2</sub>H<sub>6</sub> etc can be added to maximize spreading and drainage.

## **VAPEX Process**

- In this new concept (Vapex), light hydrocarbon (low molecular weight) vapors at a pressure close to their dew points are injected into the reservoir using a injection well.
- Hydrocarbon vapor diffuses and dissolves in the bitumen or heavy oil and reduces the viscosity.
- The diluted and upgraded oil drains by its gravity to a production well.



## In situ Processes and Energy Efficiency



Energy/bbl

# Advantages Of VAPEX

- Low energy requirement
- About 3% of total cost of SAGD
- Solvent occurs in a closed system
- De asphalting causes reduction in sulfur and heavy metal content of oil
- Suitable in thin reservoirs
- Vertical Fractures enhanced recovery
- No water production and disposal treatment
- No CO2 production
- Aquifer enhanced the process

#### Analogies between SAGD & VAPEX



VAPEX



SAGD

## VAPEX vs. SAGD

#### SAGD

- Not suitable in thin reservoirs
- Severe permeability damage due to clay swelling
- High capital need for steam generation
- Need to water treatment before disposal to environment

#### VAPEX

- Suitable in thin reservoirs
- No clay swelling
- No water production
- No need to steam generation

## VAPEX vs. SAGD

#### SAGD

- Impractical in offshore fields due to limited area on the platform
- Higher cost of well completion, pump, cement, tubing, and casing at high temperature
- Too much heat loss into reservoirs containing an aquifer

#### VAPEX

- Low-temperature operation
- Little or no heat loss to the overburden and underburden
- High sweep efficiency
- Simpler recycle compared with SAGD



# In-Situ Combustion Process

# In Situ Combustion

- In theory this is great!
- minimal fuel requirement
- high recoveries
- no reservoir loss of pricier substance
## Why Should In Situ Combustion Be Considered?

- Availability of air.
- Reduced water requirement compared to steam.
- Applicable to a wide range of reservoirs and fluid characteristics.
- No theoretical pressure limitation.
- Can be applied to deep reservoirs where lifting costs make water flood unattractive.
- Can be applied as a follow-up to steam-based processes.
- Lack of obvious alternatives.

## **Process Variations**

- Dry
- Wet
- Reverse
- Enriched Air

#### **Important Parameters**

- Air Requirement
- Air Injection Rate
- Enrichment
- Carbon Dioxide Produced
- Carbon Monoxide Produced
- Mass of Carbon Consumed
- Oil Recovered
- Total fuel Consumed
- Overall H/C Ratio

## In Situ Combustion Process





Burned Zone Combustion Zone

Cracking/Vaporization Zone



Steam Zone Altered Saturation Zone Native Reservoir

#### **In-situ Combustion Process**





#### Dry forward combustion



- Zone 1: burned zone
  - 2: combustion zone
  - 3: coke formation zone
  - 4: vaporization/ condensation oil / water bank (high back pressure)

#### Wet Combustion



- Zone 1: swept zone- T below TB of water
  - 2: gas / vapor zone
  - 3: combustion zone
  - 4: vaporization/ condensation
  - 5: high back pressure

#### **Reverse Combustion**





## **Toe-to Heel Air Injection**

#### Toe-to Heel Air Injection (THAI)

Toe-to-Heel Air Injection, or THAI, is a proposed method of recovery that combines a vertical air injection well with a horizontal production well.

#### **Toe-to Heel Air Injection**



## **Toe-to Heel Air Injection**



#### Combustion Vertical Air Coke Zone -Injector Zone -Mobile Oil Zone -Produced TOE Oil Cold Heavy Oil HEEL Horizontal Production Well

Start up:



## Steady State:





#### **Reaction Mechanisms - Classical**

#### • Thermal Cracking:

- Modification of the original crude oil properties by thermal energy in the absence of oxygen. Final products are maltenes, gas, and coke.
- High Temperature Combustion:
- Destructive oxidation of either the whole or fractions of the original crude oil by bond scission reactions.
- The reaction products are carbon oxides and water.

Hydrocarbon +  $O2 \rightarrow CO2 + CO + H2O$ 

#### **Chemical Reaction**

Cracking :



Dehydrogenation



#### **Chemical Reaction**

#### Condensation

Alkanes + Alkenes ----- Aromatics

#### Oxidation

- 1. Combustion
- 2. Low Temperature Oxidation (LTO)

## Combustion

Complete Combustion

$$\begin{array}{cccc} H \\ R - \overset{H}{\overset{I}{\underset{l}{C}}} - \overset{H}{\overset{I}{\underset{l}{C}}} & + 3/2 \text{ O}_{2} & \longrightarrow & R \overset{H}{\overset{H}{\underset{l}{C}}} + C \text{ O}_{2} + \overset{H}{\overset{H}{\underset{2}{C}}} \\ H \end{array}$$

# Incomplete Combustion $\begin{array}{c} R - \stackrel{H}{\stackrel{}{\overset{}{_{c}}}} - \stackrel{}{_{R}} + o_2 \longrightarrow \stackrel{R}{\stackrel{}{_{R}} + co} + \stackrel{H}{_{2}} \\ H \end{array}$

#### Low Temperature Oxidation

• Oxidation to carboxylic acid  $R - C + H + 3/2 O_2 \longrightarrow R - C + H O_{OH} + H O_2 + H O_2$ 

• Oxidation to aldehyde  $R - \stackrel{H}{\stackrel{I}{c}} - H + O_2 \longrightarrow R - C \stackrel{\neq O}{\underset{H}{\overset{}}} + H O_2 + H O_2$ 

#### Low Temperature Oxidation

Oxidation to ketane:

$$\begin{array}{c} H \\ R - \overset{H}{\overset{}_{C}} - \overset{H}{\overset{}_{R}} + & O_{2} & \longrightarrow R - C \\ H \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \\ \end{array} \xrightarrow{P}{} \begin{array}{c} \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \begin{array}{c} O \\ R \end{array} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{} \xrightarrow{P}{} \begin{array}{c} + & H & O \end{array} \xrightarrow{P}{$$

• Oxidation to alcohol:  $R - \overset{H}{\overset{I}{C}} - H + 1/2 O_2 \longrightarrow R - \overset{H}{\overset{I}{\overset{I}{C}}} - OH H$ 

#### Low Temperature Oxidation

Oxidation to hydroproxide

Study of In Situ Combustion Processes by Physical Simulation

- Combustion Tube Experiments
- Thermal Analysis
- Different Types of Physical Simulators (Models)

#### Prediction of process variables

- 1. Minimum front temperature
- 2. Minimum crude oil saturation
- 3. Average H / C atomic ratio
- 4. Minimum amount of fuel lay-down
- 5. Minimum heat requirement
- 6. Estimation of combustion zone thickness
- 7. Average carbon combustion rate
- 8. Combustion front velocity
- 9. Average fuel heat value
- 10. Heat available to sand
- 11. Average combustion peak temperature

Information From In Situ Combustion Tube Tests

- Economic
- Air and Fuel Requirements
- Operating Parameters
- CO2 fraction, H/C ratio, H2S Production, Oil Upgrading, Acidic Water, Emulsions, etc.
- Correlate well with field
- Operating Strategies
- Dry, Wet, Superwet, O2
- How Well It Burns
- Laboratory is best-case scenario

## **Key Concepts**

- Laboratory data often correlates well with field observations, particularly produced gas compositions, H2S and aqueous sulfates, and oil recovery vs. volume burned.
- Laboratory is the best-case scenario. "If we can't burn it in the lab, it probably won't work in the field!"

#### **Experimental Setup**





#### Microbial Enhanced Oil Recovery

- 1) Nutrients for field application
- 2) Lack of well documented field tests
- 3) Limited to reservoir temperature < 170
- 4) Limited to reservoir salinity < 10% NaCl
- 5) Insufficient basic understanding of the mechanisms of microbial technologies.



# In-Situ Permeability Modification



Different zones of different permeability in vertical direction is very common

#### Vertical Variation in Permeability



#### Vertical Variation in Permeability








## **Gelation Process**

Mostly cross linked polymerCross linker: Heavy Metal Ions

Reducing Agent +  $M^{+6} \rightarrow M^{+3}$ 

 $Polymer + M^{+3} \rightarrow M^{+3} - Polymer$ 

 $Polymer + Polymer - M^{+3} \rightarrow Polymer - M^{+3} - Polymer$ 

## **Important Characteristics**

- Gelation time
- Stability
- Non-toxic
- Salt tolerant

# Constraints for EOR technologies

The following list summarizes the constrains to some of the advanced recovery technologies identified in this study.

#### **Gas EOR**

- 1)Reservoir heterogeneity
- 2) Mobility control
- 3) Incomplete mixing
- 4) Lack of predictive capability
- 5) Poor injectivity
- 6) Corrosion problems with C02

# Surfactant/Polymer Flooding

- 1- Reservoir heterogeneity
- 2- Excessive chemical loss
- 3- Coherence, stability and cost-effectiveness of
- 4- Surfactant slugs
- 5- Limited to reservoir salinity <20% NaCI
- 6- Limited to reservoir temperature <200
- 7- Limited to permeability> 100 md
- 8- Polymer propagation

# **Alkaline Flooding**

(1) Limited range of applicable salinity

(2) High chemical consumption

(3) Brine incompatibility - precipitation

# Thermal EOR

1) Lower crude oil prices due to gravity, sulfur and heavy metal content

2) Large front end investments and delayed responses

3) Absence of cost-effective technology to upgrade low-quality, low-gravity crude into salable products

4) Absence of cost effective technology that permits the use of low-grade fuel such as coal, petroleum coke, high sulfur crude oil and brackish water to generate steam without violating the environmental regulations.



# Summery of Screening for Enhanced Oil Recover Methods

#### Preferred Oil Gravity Ranges for Enhanced Oil Recovery Methods



## Kind of processes to be applied

|                  |                                  | Oil Viscosity ( cp )                      |              |   |
|------------------|----------------------------------|-------------------------------------------|--------------|---|
|                  | 1 10<br>O                        | 100 1000                                  | 10000 10000  | ) |
|                  | 2000 Immiscible<br>Gas Injection | Ste                                       | am Injection |   |
|                  | 4000                             | Polymer<br>Injection                      |              |   |
| rvoir Depth (ft) | 6000 Miscible<br>CO2 or HC       | Pattern Water Inject<br>Chemical Flooding | tion         |   |
| 88<br>88         | 8000 Gas Injection               |                                           |              |   |
|                  | 10000                            | Miscible Nitrogen Inject                  | tion         |   |
|                  | 12000                            |                                           |              |   |



|            |                         |                                  | Oil P             | roperties                                    |                                  |                                                  | Reservo                   | ir Characte                     | ristics                                  |                   |
|------------|-------------------------|----------------------------------|-------------------|----------------------------------------------|----------------------------------|--------------------------------------------------|---------------------------|---------------------------------|------------------------------------------|-------------------|
|            |                         | Gravity<br>⁰API                  | Viscosity<br>(cp) | Composition                                  | Oil<br>Saturation                | Formation<br>Type                                | Net<br>Thickness<br>(ft)  | Average<br>Permeability<br>(md) | Depth<br>(ft)                            | Temp<br>(°F)      |
|            | Waterflood              | >25                              | <30               | N.C.                                         | >10%<br>mobile oil               | Sandstone<br>or<br>carbonate                     | N.C.                      | N.C.                            | N.C.                                     | N.C.              |
| hods       | Hydrocarbon             | >35                              | <10               | High % of<br>C <sub>2</sub> -C <sub>7</sub>  | >30% PV                          | Sandstone<br>or<br>carbonate                     | Thin<br>unless<br>dipping | N.C.                            | >2000<br>(LPG)<br>>5000<br>(H.P.<br>gas) | N.C.              |
| ection Met | Nitrogen &<br>Flue Gas  | >24<br>>35 for<br>N <sub>2</sub> | <10               | High % of<br>C <sub>1</sub> -C <sub>7</sub>  | >30% PV                          | Sandstone<br>or<br>carbonate                     | Thin<br>unless<br>dipping | N.C.                            | >4500                                    | N.C.              |
| Gas Inje   | Carbon<br>Dioxide       | >26                              | <15               | High % of<br>C <sub>5</sub> -C <sub>12</sub> | >30% PV                          | Sandstone<br>or<br>carbonate                     | Thin<br>unless<br>dipping | N.C.                            | >2000                                    | N.C.              |
|            | Surfactant /<br>Polymer | >25                              | <30               | Light<br>intermediate<br>desired             | >30% PV                          | Sandstone<br>preferred                           | >10                       | >20                             | <8000                                    | <175              |
| l Flooding | Polymer                 | >25                              | <150              | N.C.                                         | >10% PV                          | Sandstone<br>preferred;<br>carbonate<br>possible | N.C.                      | >10<br>(normally)               | <9000                                    | <200              |
| Chemica    | Alkaline                | 13-35                            | <200              | Some<br>organic<br>acids                     | Above<br>waterfloo<br>d residual | Sandstone<br>preferred                           | N.C.                      | >20                             | <9000                                    | <200              |
| mal        | Combustion              | <40 (10-<br>25<br>normally)      | <1000             | Some<br>asphaltic<br>components              | >40-50%<br>PV                    | Sand or<br>sandstone<br>with high<br>porosity    | >10                       | >10                             | >500                                     | >150<br>preferred |
| The        | Steamflooding           | <25                              | >20               | N.C.                                         | >40-50%<br>PV                    | Sand or<br>sandstone<br>with high<br>porosity    | >20                       | >200                            | 300-<br>5000                             | N.C.              |

# Major production methods in Pilot phase possibly ready for commercial use after

| Method                                                   | Description                                                | Comment                                                                      |
|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|
| VAPEX                                                    | Use solvent rather than<br>steam in SAGD-type wells        | Lower energy consumption,<br>low production rates. In situ<br>upgrading      |
| Hybrid                                                   | Solvent plus steam in<br>SAGD, CSS and steamflood<br>wells | Lower energy consumption,<br>increased production, in situ<br>upgrading      |
| In situ combustion with<br>vertical and horizontal wells | Uses heavy oil in reservoir<br>and injected air            | Eliminate need for natural<br>gas for steam generation, in<br>situ upgrading |
| TAGD                                                     | Uses elemental heating                                     | Environmentally friendly, in situ upgrading                                  |
| Downhole heating with electricity                        | Resistance, induction,<br>radio-frequency (RF)             | Offshore, deep and arctic regions, in situ upgrading                         |

## EOR Methods Screening for Oil & Gas fields

## **Developing Screening Methodology**

- Provides an efficient framework for the selection and ranking of candidate fields for a range of enhanced oil recovery processes.
  - Analytical and Numerical Tool/s
  - Systematic procedure
  - EOR expertise
  - Field knowledge and expertise

# **EOR Reservoir Database**

#### A data base of EOR pertinent parameters include:

- Production related: Cumulative Prod., OOIP, decline rates, water cut
- Petrophysical: Poro-perm, Field size, Net pay, Lithology, Depth, Temp., Fracture Pressure.
- Crude Chemistry: API, Viscosity, mwC5+, MMP, Sulfur content.
- Produced Water Chemistry: TDS, pH, Calcium, Chloride, Magnesium.
- Field information: locations, shape files, well counts.

#### > Data sources

- External datasets Various Associations & Organization through the world are providing in-house or international data base of EOR projects, such as USA Department of Energy/National Energy Technology Laboratory (DOE/NETL), Wyoming Geological Association (WGA), Wyoming Oil & Gas Conservation Commission (WOGCC),...
- Internal data acquisition decline curve analysis, lab studies.

# Methodology

 Many tools and methodologies have been developed that provide a systematic approach for evaluating technical and economic EOR potential within a risk management framework.



# Methodology

One of these methodologies is to use a <u>three stage approach</u> enables EOR projects to be compared directly with conventional exploration and development projects such as such as further development drilling or exploration and the subsequent appraisal and development of new fields.



# Three Stage Approach for EOR Screening

- 1<sup>th</sup> : Rapid initial assessment (screening) of EOR methods within a field portfolio.
- 2<sup>nd</sup> : Assessing using **"prospecting"** simulations (sector modeling).
- 3<sup>rd</sup> : **Detailed appraisal and project design**, which may include the **acquisition of additional field or laboratory data**.



### First Stage; Rapid (initial) Screening Methods

- This ensures that more detailed studies are focused on those methods with the best prospect of a successful outcome.
- During the first stage, an industrial software (such as the MAESTRO tool, SWORD, or SelEOR) is used to provide a rapid initial screening of IOR potential within a field portfolio to estimate:
- 1. The technical viability
- 2. The incremental recovery
- 3. The economics of each combination of reservoir and IOR technique
- <u>As result</u>: Possible EOR projects to be ranked so that clearly unviable processes can be eliminated and priorities will be set for the subsequent stages of evaluation.

## Rapid (initial) Screening Methods

#### Five major types:

- 1. **Database screening** filtering database using certain criteria, e.g. Reservoir crudes with API > 22°
- 2. **Process Screening** screen database for all reservoirs amenable to certain EOR method, e.g. Reservoirs amenable to CO2 miscible flooding
- 3. **Project Screening** Assess amenability of various EOR methods in a single reservoir based on criteria, e.g-1 What is the most appropriate EOR method for reservoir 'A', or e.g-2 Will CO2 flooding be technically (or economically) feasible in reservoir 'A'.
- 4. **Geospatial screening** screening on proximity to other resources. e.g. Reservoirs within 'x' miles of CO2 pipeline.
- 5. **Economic Screening (Scoping)** using some economic function determine economic viability of CO2 flood. e.g. Reservoirs profitable with 20% ROR.

## Rapid (initial) Screening Methods

Systematic screening has two requirements:

- A set of criteria built on empirical evidence or experience.
- A framework within which to compare parameters to the criteria set.
- 1. "Go/no-go" criteria
- 2. "Fuzzy" criteria (as Commercial Example SWORD)
- 3. Neural networks, machine learning, artificial intelligence
- Benchmark example: Taber et. al. 1997 Parts I & II. SPE 35385 & 39234

### Second Stage; Simulation Sector Models

- The remaining projects are assessed using "prospecting" simulations (or sector modeling):
- 1. to examine the recovery mechanisms in more detail,
- 2. to establish base case economics.



## **Second Stage's Notices**

- Some of the important reservoir specific parameters that control the EOR processes will not be known at this time.
- Experience is used to define credible sets of process parameters, taking into account typical distributions of values, the cost of subsequently determining them and the potential project rewards.
- At this level, good reservoir engineering is needed to ensure that EOR projects are not prematurely eliminated.
- <u>As result</u>: Only projects with economic base cases proceed to the final stage of evaluation.

### Second Stage "Economic" Screening

#### Requirements

- New cost and revenue based parameters
- Single criteria (ROR)
- Some method of estimating production
- Production analogues, Compositional model

#### Outputs

- Incremental Oil
- ✓ PV of Profits
- Cumulative CO2 use
- Average CO2 demand
- Operating Period

## **Economic Screening Scoping**

#### Requirements for example for a CO<sub>2</sub> project.

- $\checkmark$  P = Price of Oil
- $\sim$  Q<sub>t</sub> = the projected incremental amount of oil recovered in period t
- $\checkmark$  x<sup>R</sup> = Royalties
- $\checkmark$  x<sup>SP</sup> = severance and property taxes
- $pq_t^p = cost of purchasing CO2$
- $\sim$  c<sup>r</sup><sub>t</sub> q<sup>r</sup><sub>t</sub> = cost of recycling and re-injecting CO2
- $\sim$  c<sup>o</sup><sub>t</sub> = other incremental operating costs
- K = upfront investment costs

$$NPV = \sum_{t=1}^{T} \frac{PQ_t (1 - x^R)(1 - x^{SP}) - pq_t^P - c_t^r q_t^r - c_t^o}{(1 + r)^t} - K$$

# **Third Stage**

- During this stage, the prospecting simulations and detailed appraisal studies are conducted in a risk management framework to :
- 1. quantify project risk,
- 2. identify the Critical Project Parameters (CPPs)
- Proactive risk management techniques, including improved project design, key data acquisition and contingency planning must be used to improve the balance between project return and exposure.

# Third Stage ; Project Results

- 1. Ranking of possible EOR projects for a specific field.
- 2. The incremental recovery of each EOR method.
- 3. The economics of each combination of reservoir and EOR method.
- 4. Detailed plan for acquisition of additional field or experimental data.



# Software for EOR methods screening

Worldwide Petroleum Industry's Experience on EOR Methods Screening

- 1. SelectEOR
- 2. EORgui
- 3. SWORD
- 4. MAESTRO

#### **EOR SCREENING SOFTWARE**



#### **Graphical User Interface for the USA DOE**

# Introduction

- Quickly screen and rank appropriate EOR methods for a given set of summary reservoir and fluid properties.
- Prepares the input files required for the technical analysis portions of the publicly available fortran applications.
   Namely, the GUI does not prepare the input required to calculate the economic analysis that is also available within these publicly available software.
- The GUI runs the fortran applications and imports the results back into the application.
- The results are input into convenient data tables for export into other applications (eg. Microsoft Excel), and also plotted in high output quality charts for use with other applications (eg. Microsoft Powerpoint).

This routine is based on the 1996 Society of Petroleum Engineers Paper entitled "EOR Screening Criteria Revisited" by Taber, Martin, and Seright. Contained within this paper are concise screening guidelines for various EOR techniques, all of which are listed in the table provided in the Detail tab, as shown in the third figure on the next slide.

|                              | 9                                 |                   |                                         |            |
|------------------------------|-----------------------------------|-------------------|-----------------------------------------|------------|
| Title Slaughte               | er DOE Example                    |                   |                                         |            |
| API Gravity 32               | Formation                         | Sandstone         | <ul> <li>Depth [feet]</li> </ul>        | 5000       |
| Oil viscosity [cP] 2         | Thickness                         | < 20 ft           | <ul> <li>Temperature [deg F]</li> </ul> | 105        |
| Oil Saturation, fraction 0.5 | Composition                       | High % C1-C7      | <ul> <li>Permeability [mD]</li> </ul>   | 6          |
| Summary Screening Detail     |                                   |                   |                                         |            |
|                              |                                   |                   | Gas Injectio                            | n Methods  |
|                              | Nitrogen                          |                   |                                         | Criter     |
|                              |                                   |                   | Nitrogen                                |            |
| Combustion                   |                                   | Hydrocarbon       | Hydrocarbon                             |            |
|                              |                                   | $\langle \rangle$ | Carbon Dioxide                          |            |
|                              |                                   |                   | Immiscible                              |            |
|                              |                                   |                   | Enhanced Waterfly                       | oodina Me  |
| Steam                        |                                   | Carbon Dio        | xide                                    | Crite      |
|                              |                                   | /                 | Polymer                                 |            |
|                              |                                   | /                 | SP / ASP                                | _          |
|                              |                                   | /                 |                                         |            |
|                              |                                   | $\checkmark$      | Thermal - Mecha                         | anical Met |
| Polymer                      |                                   | Immiscible        |                                         | Crite      |
|                              |                                   |                   | Steam                                   |            |
| Ν                            | Micellar / polymer, ASP, alkaline |                   | Combustion                              |            |
|                              |                                   |                   |                                         |            |

| 🛛 Recent Files 👻 🗁 🔚 📄 🥥     |                          |                             |
|------------------------------|--------------------------|-----------------------------|
| Title Slaughter DOE Exam     | ple                      |                             |
| API Gravity 32               | Formation Sandstone      | Depth [feet] 5000           |
| Oil viscosity [cP] 2         | Thickness < 20 ft 💌      | Temperature [deg F] 105     |
| Oil Saturation, fraction 0.5 | Composition High % C1-C7 | Permeability [mD] 6         |
| Summary Screening Detail     |                          |                             |
|                              |                          | Gas Injection Methods       |
|                              | Nitrogen                 | Criteria                    |
|                              |                          | Nitrogen 40% [8]            |
| Combustion                   | Hydrocarbon              | Hydrocarbon 60% [2]         |
|                              | 50-                      | Carbon Dioxide 44% [5]      |
|                              | 10-                      | Immiscible 83% [1]          |
|                              | 20-                      | Enhanced Waterflooding Meth |
| Steam                        | Carbon Dioxie            | de Criteria                 |
|                              |                          | Polymer 50% [4]             |
|                              |                          | SP/ASP 57% [3]              |
|                              |                          |                             |
|                              |                          | Thermal - Mechanical Metho  |
| Polymer                      | Immiscible               | Criteria                    |
|                              |                          | Steam 42% [7]               |
| Micellar / pol               | ymer, ASP, alkaline      | Combustion 43% [6]          |
|                              |                          |                             |
|                              |                          |                             |

|              |                      | -               | C              |                           |                           |                            |                                                                   |                           |                              | _                   |
|--------------|----------------------|-----------------|----------------|---------------------------|---------------------------|----------------------------|-------------------------------------------------------------------|---------------------------|------------------------------|---------------------|
|              |                      | Little          | Slaugr         | ter DOE Example           | Formation                 | Candalana                  |                                                                   | Death II                  | E000                         | 4                   |
|              | 01                   | API Gravity     | 2              |                           | Formation                 | < 20.8                     |                                                                   | Deptn (1                  | eetj 5000                    | -                   |
|              | Oil Saturati         | scosity [cr]    | 0.5            | _                         | Composition               | 4 20 11<br>High % C1-C7    |                                                                   | Permeability (            |                              | 4                   |
| Summary      | Screening            | Detail          | 0.0            |                           | Composition               | ngr s crez                 |                                                                   | remeability (             |                              |                     |
| Pro          | perties 🔺            | Nitroge<br>flue | n and<br>gas   | Hydrocarbon               | Carbon<br>Dioxide         | Immiscible<br>Gases        | Miscellar/polymer,<br>ASP, and alkaline<br>flooding               | Polymer<br>flooding       | Combustion                   | Stear               |
| APL          | Dil<br>Gravity       | > 3<br>Averac   | 5<br>be 48     | >23<br>Average 41         | > 22<br>Average 36        | > 12                       | > 20<br>Average 35                                                | > 15, < 40                | > 10<br>Average 16           | > 8 to 1<br>Average |
| Visco        | Dil<br>sity (cn)     | < 0<br>Averac   | .4<br>v= 0.2   | < 3<br>Average 0.5        | < 10<br>Average 1.5       | < 600                      | < 35<br>Average 13                                                | >10, <150                 | < 5,000<br>Average 1200      | < 200,0             |
| Com          | position             | High %          | C1-C7          | High % C2-C7              | High % C5-C12             | Not critical               | Light, intermediate.<br>Some organic acids<br>for alkaline floods | Not critical              | Some asphaltic<br>components | Not crit            |
| Saturat      | Dil                  | > 4<br>Avera    | 0<br>ve 75     | > 30<br>Average 80        | > 20<br>Average 55        | > 35<br>Average 70         | > 35<br>Average 53                                                | > 70<br>Average 80        | > 50<br>Average 72           | > 40<br>Average     |
| For          | nation<br>ype        | Sandst          | one or<br>nate | Sandstone or<br>Carbonate | Sandstone or<br>Carbonate | Not critical               | Sandstone<br>preferred                                            | Sandstone<br>preferred    | High porosity sandstone      | High por<br>sandsto |
| Thick        | vet<br>ness (ft)     | Thin u<br>dipp  | nless<br>ing   | Thin unless<br>dipping    | Wide range                | Not critical<br>if dipping | Not critical                                                      | Not critical              | > 10 feet                    | > 20 fe             |
| Av<br>Permea | srage<br>bility (md) | Not cr          | itical         | Not critical              | Not critical              | Not critical               | > 10 md<br>Average 450 md                                         | > 10 md<br>Average 800 md | > 50 md                      | > 200 r             |
| Dep          | oth (ft)             | > 60            | 00             | > 4000                    | > 2500                    | > 1800                     | < 9000<br>Average 3250                                            | < 9000                    | < 11500<br>Average 3500      | < 450               |
| Tempera      | ure (deg F)          | Not cr          | itical         | Not critical              | Not critical              | Not critical               | < 200                                                             | < 200                     | > 100                        | Not crit            |

#### **CO2 Miscible Flooding Predictive Model**

➤- The CO2 flooding process consists of injecting large quantities of CO2 into the reservoir.

➤- Although CO2, is not first-contact miscible with the crude oil, the CO2 extracts the light-to-intermediate components from the oil, and, if the pressure is high enough, develops miscibility to displace the crude oil from the reservoir.

>- Immiscible displacements are less effective, but they recover oil better than waterflooding.

➤- CO2 recovers oil by swelling the crude oil, lowering the viscosity of the oil and lowering the interfacial tension between the oil and the CO2 phase in the near miscible region.
>- Used model is three-dimensional (layered, five-spot), two-phase (aqueous and oleic), three component (oil, water, and CO2) model.

➤- It computes oil and CO2 breakthrough and recovery from fractional theory modified for the effects of viscous fingering, areal sweep, vertical heterogeneity and gravity segregation.

>One-dimensional fractional flow theory is applied to first-contact miscible displacements in the presence of a second immiscible phase.

>- The theory is based on a specialized version of the method of characteristics known as coherence or simple wave theory. The theory incorporates the Koval (1963) factor method to account for unstable miscible displacements (fingering).

|                    |                                                           |                     |                                                         |               | S About |
|--------------------|-----------------------------------------------------------|---------------------|---------------------------------------------------------|---------------|---------|
| lications          | <ul> <li>CO2 Miscible Flood Predictive Model [</li> </ul> | US DOE CO2 Ex       | ample SLAUGHTER.CO2]                                    |               |         |
| Quick Screen       | 🚺 Recent Files 🔹 🗁 🔙 📄 🛒                                  | Θ                   |                                                         |               |         |
| CO2 Miscible Flood | THE SLAUGHTER                                             |                     |                                                         |               |         |
| CO2 Miscible Flood | Type of Becovery Calculation 3-Det                        | alculations (2-D -  | aravity, recommended for screening)                     |               |         |
| Help Documentation | Reservoir Calculations Output 1-D s                       | ummary and 3-D/     | or 2-D) pattern production and injection schedule for t | otal layers   |         |
|                    | Solubility of CO2 in Water CO2                            | solubility in water | not accounted for                                       |               |         |
|                    | Reservoir and Fluid Data Injection and                    | Production Contr    | ols Results                                             |               |         |
|                    | (Required Data)                                           |                     | Ontional Data                                           |               |         |
|                    | Paratonic Data                                            | 000                 | Preserveis Preserves Incide 2000                        |               |         |
|                    | Pattern Area 40                                           | cres -              | Reservoir Temperature Idea El 105                       |               |         |
|                    | Porosity fraction                                         | 113                 | Number of Lavers 3                                      |               |         |
|                    | Permeability ImDI 6                                       |                     | Dykstra-Parsons Within Layers 0.48                      | -             |         |
|                    | Net Pay Thickness [tt]                                    | 7.5                 | Koval Factor within Layers 0                            | 7 111         |         |
|                    | kv/kh Ratio 0.                                            | 01                  | Gas Gravity 0.8                                         | 7             |         |
|                    | Dykstra-Parsons Coefficient 0.                            | 48                  | Solution GOR (scflstb) 600                              |               |         |
|                    | Oil API Gravity 3                                         | 2                   | Oil FVF, Bo [rb/stb] 1.22                               |               |         |
|                    | Endpoint kro at Swc 1                                     |                     | CO2 FVF [rb/Mscf] 0                                     |               |         |
|                    | Endpoint krw at Sor                                       | 34                  | Water FVF, Bw [rb/stb]                                  |               |         |
|                    | Corey Exponent for Dil 2                                  | 55                  | Water Salinity [ppm] 50000                              |               |         |
|                    | Corey Exponent for Water 1.                               | 78                  | Oil viscosity [cP] 2                                    | Clear All     |         |
|                    | Swc, fraction 0.                                          | 80.                 | CO2 viscosity [cP] 0.074                                | Calculate     |         |
|                    | Sor, fraction                                             | 31                  | Water viscosity [cP] 0.8                                | Optional Data |         |
| No. 1              |                                                           |                     | Calcul                                                  | ate Close     |         |
| Polymer            |                                                           |                     |                                                         |               |         |
| Chemical Flood     |                                                           |                     |                                                         | 200-          |         |
| Steamflood         |                                                           |                     |                                                         | EURG          |         |
| Infill Drilling    |                                                           |                     |                                                         |               |         |

| Title SLAUGHTER                  |                             |                               |                               |                     |
|----------------------------------|-----------------------------|-------------------------------|-------------------------------|---------------------|
| Type of Recovery Calculation     | 3-D calculations (2-D +     | gravity, recommended for s    | creening)                     |                     |
| Reservoir Calculations Output    | 1-D summary and 3-D(o       | or 2-D) pattern production a  | nd injection schedu           | le for total layers |
| Solubility of CO2 in Water       | CO2 solubility in water r   | not accounted for             |                               |                     |
| Reservoir and Fluid Data Injecti | on and Production Contro    | ls Results                    |                               |                     |
|                                  |                             | Prediction Timeframe          |                               |                     |
| Start Date Ja                    | in 2008 🗦 🗸                 | Reporting Freque              | ency Monthly                  |                     |
|                                  |                             |                               | Monthly<br>Semi-Annual        | y S                 |
|                                  | Initial oil cut at the star | t of CO2 flooding [fraction]  | 0.13 Annually<br>Raw Calculat | ted Data            |
|                                  | Time increment for re       | ecovery calculations [year]   | 0.5                           |                     |
| Concentration inc                | rement used for fractional  | flow calculations [fraction]  | 0.001                         |                     |
|                                  | Total                       | fluid injection rate [rb/day] | 390                           | Calculate Default   |
|                                  | lv.                         | /AG ratio for CO2 injection   | 1.00 🜩                        |                     |
| Total hydrocarbon p              | pre volumes of CO2 and v    | water injected during WAG     | 1.5                           |                     |
|                                  | Fotal pore volumes of way   | g and chase water injected    | 4                             |                     |
|                                  |                             |                               |                               |                     |
|                                  |                             |                               |                               |                     |
|                                  |                             |                               |                               | Clear               |
|                                  |                             |                               |                               |                     |
|                                  |                             |                               |                               | Reset D             |



| O CO2 Miscible Flood Predictive Model [US DOE CO2 Example SLAUGHTER.CO2]                                                                                                                                                                                                                                                                             | - • • |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 🔼 Recent Files 👻 🗁 🔚 🖳 🎯                                                                                                                                                                                                                                                                                                                             |       |
| Title SLAUGHTER                                                                                                                                                                                                                                                                                                                                      |       |
| Type of Recovery Calculation 3-D calculations (2-D + gravity, recommended for screening)                                                                                                                                                                                                                                                             |       |
| Reservoir Calculations Output 1-D summary and 3-D(or 2-D) pattern production and injection schedule for total layers                                                                                                                                                                                                                                 | •     |
| Solubility of CO2 in Water CO2 solubility in water not accounted for                                                                                                                                                                                                                                                                                 |       |
| Reservoir and Fluid Data Injection and Production Controls Results                                                                                                                                                                                                                                                                                   |       |
| Main Results Profiles Charts                                                                                                                                                                                                                                                                                                                         |       |
| 1<br>INPUT DECK ECHO<br>                                                                                                                                                                                                                                                                                                                             |       |
| DCO2 VISCOSITY, CP<br>                                                                                                                                                                                                                                                                                                                               |       |
| PRESS           0.0         0.0100         0.0100         0.0100         0.0100           1000.0         0.0270         0.0170         0.0170         0.0170           2000.0         0.0650         0.0350         0.0270         0.0270         0.0270           3000.0         0.0820         0.0560         0.0340         0.0270         0.0270 | -     |
| Calculate                                                                                                                                                                                                                                                                                                                                            | Close |

| Recent Files | s 🕶 🖬 🗎 🖡                              | <b>e</b> 0          |                       |                      |                      |                             |                               |
|--------------|----------------------------------------|---------------------|-----------------------|----------------------|----------------------|-----------------------------|-------------------------------|
| т            | itle SLAUGHTER                         |                     |                       |                      |                      |                             |                               |
| Tupe of P    | Calculation 2                          | Dealculations       | 2-D + gravity reco    | mmandad for so       | (aenina)             |                             |                               |
| i ype or N   | scovery calculation 5                  | Calculations        | 2-D+gravity, rect     | initiended for se    | reening)             |                             |                               |
| Reservoir    | Calculations Output 1-                 | D summary and       | 3-D(or 2-D) patte     | rn production and    | d injection schedu   | le for total layers         |                               |
| Solubi       | lity of CO2 in Water                   | O2 solubility in    | water not accounted   | ed for               |                      |                             |                               |
| Reservoirand | Fluid Data Injection a                 | nd Production C     | ontrols Results       |                      |                      |                             |                               |
| Main Results | Profiles Charts                        |                     |                       |                      |                      |                             |                               |
| Date         | Dimensionless<br>Time<br>[Pore Volume] | Oil Rate<br>[bbl/d] | Water Rate<br>[bbl/d] | Gas Rate<br>[Mscf/d] | CO2 Rate<br>[Mscf/d] | Cumulative<br>Oil<br>[Mbbl] | Cumulative<br>Water<br>[Mbbl] |
| Jan-2008     | 0.00                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 1.39                        | 10.40                         |
| Feb-2008     | 0.01                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 2.69                        | 20.12                         |
| Mar-2008     | 0.01                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 4.08                        | 30.52                         |
| Apr-2008     | 0.02                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 5.42                        | 40.58                         |
| May-2008     | Copy P                                 | rofiles Table       | 335.4                 | 26.9                 | 0.0                  | 6.81                        | 50.98                         |
| Jun-2008     | 0.05                                   | 44.63               | 335.4                 | 26.9                 | 0.0                  | 8.15                        | 61.04                         |
| Jul-2008     | 0.03                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 9.54                        | 71.44                         |
| Aug-2008     | 0.03                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 10.93                       | 81.84                         |
| Sep-2008     | 0.04                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 12.28                       | 91.90                         |
| Oct-2008     | 0.04                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 13.66                       | 102.3                         |
| Nov-2008     | 0.05                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 15.01                       | 112.3                         |
| Dec-2008     | 0.05                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 16.40                       | 122.70                        |
| Jan-2009     | 0.06                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 17.79                       | 133.1!                        |
| Feb-2009     | 0.06                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 19.04                       | 142.5                         |
| Mar-2009     | 0.06                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 20.43                       | 152.9                         |
| Apr-2009     | 0.07                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 21.77                       | 163.0                         |
| May-2009     | 0.07                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 23.16                       | 173.40                        |
| Jun-2009     | 0.08                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 24.51                       | 183.4(                        |
| Jul-2009     | 0.08                                   | 44.8                | 335.4                 | 26.9                 | 0.0                  | 25.89                       | 193.8                         |
| Aug-2009     | 0.08                                   | 8 44                | 225 A                 | 9.30                 | 0.0                  | 27.28                       | 201 21                        |
| 1            |                                        |                     |                       |                      |                      |                             |                               |

| Title     SLAUGHTER       Type of Recovery Calculation     3-D calculations (2-D + gravity, recommended for screening)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of Recovery Calculation 3-D calculations (2-D + gravity, recommended for screening)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Reservoir Calculations Output 1-D summary and 3-D(or 2-D) pattern production and injection schedule for total layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Solubility of CO2 in Water CO2 solubility in water not accounted for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reservoir and Fluid Data Injection and Production Controls Results Main Results Profiles Charts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Image: Construction of the construc |
| Calculate Close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### **Chemical Flood Predictive Model**

**Polymer Predictive Model** 

**In-situ Combustion Predictive Model** 

**Steamflood Predictive Model** 

**Infill Drilling Predictive Model** 



- Developer Company : ECL Technology (Subsurface group at Winfrith Dorset).
- Supporter : Collaboration with BP Institute, Cambridge .



# MAESTRO

- is the first of three stages of IOR screening system
- It quickly identifies potentially viable IOR processes and eliminates unviable processes for each asset in a Field Portfolio
- Maestro Rapid Simulation can then be focused on the detailed modeling of the most potentially viable processes

# MAESTRO processes are currently considered

- Waterflooding
- WAG (Lean hydrocarbon gas (LHG), CO2, nitrogen, enriched hydrocarbon gas (EHG))
- SWAG (LHG, CO2, nitrogen, EHG)
- GSGI (LHG, CO2, nitrogen, EHG)
- Polymer for mobility control
- Polymer/gels for vertical conformance
- Surfactants

# Planning Successful EOR Projects



### EOR Decision making work flow



192

### **Typical EOR Implementation Approach**

Lab Core Flood Evaluation



- 3-6 Months Work
- Scale; PV < 250 milliliters (0.001 bbls)</li>
- Cost ~ \$200K
- Justification: Essential Screening Step

#### Single 5-Spot, (or More) Pattern



- 3-5 Years Work
- Scale; PV ~ 500,000 bbls
- Cost ~ \$10MM-\$20MM
- Justification: Oil in Tank In-Situ Test Reduce Further Risk

#### Field Wide or Expanded Flood Pattern



- 5-15 Years Work
- Scale; PV ~ 10MM to >100MM bbls
- Risk ~ \$100MM-\$400MM
- Justification: Additional OOIP Recovery

### **Better EOR Implementation Approach**

#### Lab Core Flood Evaluation





INCRESED KNOWLEDGE, UNDERESTANDING, INVESTMENT, AND RECOVERY

Design

Field Implementation

Implement in Field

Fine Tune (Update) Field **Development Plan** 

Monitor and

Control Project

**Expand Field Development** 



## IOR / EOR developments Ultra mature carbonate environment Abu Al Bukhoosh Field

- Review of IOR / EOR development on ABK field
  - Tertiary gas injection
- Lessons to be learned

### Screening study – Phased approach

- 1. Evaluate potential for Enhanced Oil Recovery based on optimized field management
- Screening of alternative production mechanisms injection of various gas WAG

steam injection chemical treatments microbial EOR

3. Numerical modeling on selected fields for selected techniques

**Tertiary Process Selection Criteria** 

- Reservoir characteristics and status
- Microscopic / Macroscopic efficiencies
- Maturity level of the technique
- > Injected fluids:
  - Availability / Cost / Suitability (environment, safety)
- Process efficiency:
  - Additional reserves
- > Economics:
  - Capex, Opex, Barrel price

#### Geological heterogeneities is most of the time a killing factor

### **ABK field overview**



> 2/3 of the structure is located in Iran

#### • Produced since:

- 1968 in Iran
- 1974 in the UAE
- Production history on the Iranian side is known up to mid-2001

### ABK production history



### **Developed IOR concepts**

#### *Tertiary gas injection (swelling)*

Lower Arab production history and forecast

![](_page_200_Figure_3.jpeg)

#### Dedicated production

![](_page_200_Figure_5.jpeg)

#### Slots optimization

![](_page_200_Picture_7.jpeg)

#### Selective completion

![](_page_200_Figure_9.jpeg)

### Tertiary non miscible gas Injection

- Lab experiments
  - Centrifuge experiments: no reduction of residual oil saturation
  - Swelling tests: 16% volume increase
  - Recovery efficiency: 200stb/MMScf gas injected)
    - High variation depending upon permeability
    - High sensitivity to rock wettability
- Sweep efficiency
  - Gravity: gas breakthrough in updip producers
  - Impact of the open fractures
  - Efficiency impaired by permeability reduction and low Kv/Kh
- Objectives
  - 10 MMSbbls in 10 years incremental recovery
- Results
  - Excellent response to gas injection
  - Recovery in line with objectives

# Key elements

• EOR is complex technically and not totally risk free

- Ability to master a gas injection project
- Need for accurate reservoir characterization, extensive reservoir studies and sophisticated lab experiments
- Validation by pilots before implementation at field scale
- Careful monitoring mandatory for continuous project optimization
- Synergy between geoscientists and engineers
- EOR is more expensive than primary/secondary recovery techniques
  - Tax incentives may play a role
- EOR successful implementation has three main issues
  - Time / Economy / Technique
  - Any of these may be a killing factor
  - Need for anticipation and technical/economical integrated studies

# Lessons to be learned

The reservoir is best known when it is abandoned

Due to lack of information, initial development are never optimized

### What are the fundamental heterogeneities

- Tertiary recovery should be always initiated at the earliest stage of field development
  - What are the most important secondary heterogeneities
- ABK field is a precursor in terms of maturity for carbonate fields in the Middle East
- Total ABK will study all adapted EOR techniques
  - Surfactant / Polymer injection
  - Water Alternate Gas