Naturally Fractured Reservoirs

Well Testing of Naturally Fractured Reservoirs (Part A)
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Analysis of Production Data
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Roles of Reservoir Analysis Models
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Well-test Interpretation

The aim of well-test interpretation is to obtain from the analysis of pressure versus
time data or of simultaneously measured pressure and sandface flow-rate data the
following parameters and functions:

-Average permeability for the drainage area of the well.

-Reservoir initial or average pressure.

-Sandface condition (damaged or stimulated).

-Volume of the drainage area.

-Degree of communication between wells.

-Validation of the geological model

- System identification (reservoir type and the mathematical model for its pressure
drop as a function of time)



Transient Tests mwesd Reservoir Characterization

RFT®, WFT®, MDT* ... pi. k, fluid samples

DST p.. k, fluid samples
Drawdown' / Injection k, s (often un-interpretable)
Buildup® / Falloff k.S, P,

Interference/Pulse k. ¢c,. lateralivertical continuity

Stabilized Tests mmssd Deliverability Forecasting

PR | Gstad

AOF

qsiah




A Typical Layout Used in Conducting a Well Test
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Fig. 1-1, Typical layout when conducting a production test. {a) Surface shut-in is not transmitted
instantaneously to sandface, (b) Bottonhole pressure behavior for the flow and build-up period.



Interpretation of a Transient Pressure Test

Uniqueness Dilemma: different reservoir situations yield the same pressure behavior

ADDITIONAL
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RESERVOIR WELL
MODELS CONDITIONS

Integrated approach: a combination of pressure transient data and geological and
geophysical information, well logging, production data, core analysis, etc.
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Components of Well Test Models

Well

Reservoir

Boundaries

Direction (Vertical, Horizontal)

Storage (Constant, Changing)

Completion (Damaged, Fractured and Acidized)

Homogeneous
Heterogeneous
-4 Composite

Multilayer

Dual porosity

Flow boundaries (No flow, Constant pressure, infinite)

Geometrical boundaries (Circular, Rectangular)



Direct versus Inverse Solutions

Direct solution (Convolution)

Inverse solution (Deconvolution)

BT TN —

- Example of a simple system

System Definition

/

|||||||

md OUtput (?)

Output

- Actual measurement compared to
" the system

System ® Actual Measurements




Inverse Solution Compared to Actual System

Inverse solution can be used for the identification of system characteristics
*Inverse solution can result in grossly erroneous answers

*Whereas the mathematics is correct, the utility of the results derived from this
mathematically process is questionable.

@ Actual Measurements

Actual System 1




Input-System-Response

: Reservoir
Input Perturbation e NV ===} Output Response

Well test interpretation is essentially an inverse problem and in general is better
suited to analytical solution.

Model Input m= Mathematical Mode| |======== [\/]odel Output

The objective of well test analysis is to describe an unknown system S ( well +
reservoir) by indirect measurement ( O a pressure response to | a change of
rate).

The unknown system (S) may be a type curve and its derivative to describe the
reservoir characteristics.



Flow of a Slightly Compressible Oil-Single
Porosity Models

Physical model
Simplifying assumptions
Mathematical model
— Choosing an appropriate element
— Governing equation
- Mass balance
- Momentum balance (Darcy’s law)
- Equation of state
— Initial and Boundary conditions
. Infinite acting
- Constant rate production

,~CORE PLUGS

- Constant pressure production P Nl H R

. Finite acting s
- Constant rate production N — 200"
- Constant pressure production :" —

- Solutions S e T

. Laplace space solutions e 1

. Time domain solutions B oonamuovs: SAND

. Simplified solutions aRAvEL (D19CONTINUOLS)

Applications (Drawdown (single rate & multi rate), Reservoir limit test, Build up,
Superposition (time & space), ...),



Simplifying Assumptions

Homogeneous

Isotropic

lgnore Gravity

Constant Temperature

Darcy's law applies

Single phase fluid

Radial flow

Totally penetrating vertical well
. Constant net pay, saturation
(@plar) - gradient in reservoir - is small
Constant wellbore storage

. Constant pressure throughout reservoir
attimet=20

Constant production rate
Closed circular reservoir

Model complexities will be introduced
as necessary

ﬁ

OIL/IWATER

. Compressibility is small and constant

. Viscosity is constant

. Laminar flow




Mathematical Model-Governing Equation

*Mass balance :
( AV) ( AV) QProduchon
_ My
(- o,av),, ~p,av), = taw e !
Momentum balance (Darcy'’s law) ————— = P
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*Equation of state

p, = p,exple,(p-p,))

Pe

Center
of the Well

A (ap),

Fig. 9.1 Radial flow towards a well.
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seudo-Steady State Flow




Boundaryv-Dominated Flow
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Mathematical Model-Governing Equation

A reservoir model is the superposition of
reservoir, inner, and outer boundary conditions } Production

_ _ _— % — P
1| 0 ( dp)|_guc op =il

t ‘—F:If
r - — Tee— E -—

ryor\ or k ot — "

_ _ -
Initial Condition: — Fig. 9.1 Radial flow towards a well.

Well production Flow Inner Boundary Outer Boundary
regime Condition conditions

Constant rate Finite acting
(Bounded) = B, =
al’ 27z r_hk (9!‘ e

Constant pressure  Finite acting op
(Bounded) (p). = p., Al = 0




Radial Hydraulic Diffusivity Equation

9P, 1 aP, 3,792 S 4P, |
ATt 1L B & (1-26)

ar? r or T ot

Equation 1-26 is valid when oilfield units (ft, hr, STB!D cp, md, psi) are
used. Setting § = ¢Cih, and T = kh/u and changing to Darc}r units (cm, sec,
cc/sec, cp, darcy, atm) we obtain:

aﬂPr,t 1 aPr,t _ ¢ u G, dP,
o2 Tt or kot (-1

Let us define the following dimensionless parameters in Darcy units:
Ip = I'."II'W,,_,r (11“2}
to = kt/(¢uCird) (11-3)

Pp = 2kh (B — P,/ (q) (11-4)



Then, Also,

9D _ 1jr, P, 27 kh 9P,
ar or qup Or
Itp _ k/(ppCel) dPp _ dPp ar
at s 31‘13 ar 31'D
%=__2ﬂ-khaPr,t ' =_27Tkhr aPr’t
at qp 9t . qu or
0*Pp -27khr? 4%
aPp  dPp _ ot D _ W ot
D = D = al‘]% qu 31'2

dtp At Atp

_2Tkh¢ﬁctr§vapr1i
qp k dt

Now, by substituting in Equation 11-1 we get:

#Pp., 1 0P, aPp
—— e — = -
ﬂl’% I'ny E.irD ﬂt]:. (11 5]



-

d*Pp 1 dPp 9Py
— -
EIrE I'h HTD at]j

subject to the following conditions:

-1, Pn =0, for tp = 0 at all 1

9. oFp = —], forall tp >0
al'[. 'ﬁI‘D"i
3 3&) - 0 for all 4
arD Br]ye=te/ty
Let,

Pp(z) = Pp(rp,z) = L[Pp(rp,tp)]
and, |

Pp(0) = Pp(rp,tp = 0)

(11-5)

The Laplace transform of a continuous time function, f(t), is given by:

L] = j: e fit) dt

where z = Laplace parameter

(11-8)



then by Equation 11-11 the boundary value problem in the Laplace domain

is stated as:
dPD(E}

d*P 1
D

subject to the following conditions:

1. PD(E} = D., for tn =Iﬂ at all In

9. (dPD{E}] -~z
. dTD @[.D_ 1
3. ("““_"’D‘{"’jJ | =0
dTD @rDe=ra/Ty

Applying condition 1 to Equation 11-20 we obtain:

&Pp(z) . 1 dPp(z)

a&h | 1 drp =2 Folz)

(11-20)

(11-21)

(11-22)

(11-23)

(11-24)



Solution

Equation 11-24 is a form of Bessel’s equation. Its general solution is given
by:

Pp(z) = A L (rp Vz) + B K, (1p V2) (11-25)

where Iy(rp Vz) and Kq(rp /z), respectively, are zero order moditied Bes-
sel functions of the first and second kind; and A and B are constants to be
determined by applying boundary conditions 2 and 3.

|

Ky (pe2)o (rp V2) + 1 (rpe 2) Ko (1pv2) s
Zw2 [Kl {\JE:I I1 {IDE ‘\."E::I - Kl {TDE '&-"E:I I[ {\Gﬁ

Pp(z) =



Naturally Farctured Reservoirs
Porosity and Permeability

e Whereas the matrix permeability is much smaller than the fracture
permeability, the fracture porosity of a particular class of naturally fractured
reservoirs seldom exceeds 1.5% or 2%, and usually falls below 1%.

e The high permeability of a fracture results in a high diffusivity of the pressure
propagation pulse along the fracture.

A fracture of 0.1 mm will have a permeability of 833 darcys, whereas the

permeability of the limestone proper will usually be of the order of 0.01 darcy.
(Muskat (1937),pp.425)



Double Porosity Formulation

*The fractures which cut the reservoir rock in various directions, delineate a bulk unit
referred to as the matrix block unit or simply the matrix block.

*The shape of the matrix block is irregular, but for practical work the block units are
reduced to simplified geometrical volumes, such as cubes or as elongated or flat
parallelepipeds.




e Based on the theory of fluid flow in fractured porous media developed in the
1960's by Barrenblatt et a/, Warren and Root introduced the concept of
dual-porosity models into petroleum reservoir engineering. Their idealized
model of a highly interconnected set of fractures which is supplied by fluids
from numerous small matrix blocks, is shown below:

ACTUAL RESERVOIR MODEL RESERVIR

¢2 < 2% matrix block
\ fracture

fracture

matrix

vugs

e A naturally fractured formation is generally represented by a tight matrix rock
broken up by fractures of secondary origin.

e The fractures are assumed continuous throughout the formation and to
represent the paths of principal permeability.



ldealized Fracture Geometries
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Fluid Exchange

eAvery important characteristic of the double porosity system is the nature of
the fluid exchange between the two distinct porous systems.

source of
fluid to
fractures

i l l l transport of fluid
1 T T T along fractures

source of
fluid to
fractures

\V/

*The matrix system does not produce directly to the well but acts as a source of

fluid to the fissure system.
*The high diffusivity of a fracture results in a rapid response along the fracture

to any pressure change such as that caused by well production.



Radial Well in a Naturally Fractured Reservoir

In general, the matrix releases the fluid into the fractures upon pressure
decline (inter-porosity flow). Subsequently the fractures transport the fluid
to the wellbore.

Early-time: Fissure System Flow Late-time: Matrix contribution

%%
3

—__ fissure system

JEd|

HFar

- ® e ° o o ® e O o B e " e > o

Due to significant contrast between matrix and fracture permeabilities, the
matrix has a “delayed” response to pressure changes that occur in the
surrounding fractures. Such a non-concurrent response induces matrix-to-
fracture cross-flow.



Mathematical Model (Warren and Root)

Elemental volume in naturally fractured reservoir (Warren and Root model)



or

Continuity Equation

+q,

or

Elemental volume in naturally fractured gas reservoir

Lr op. [_ K, op, T _dlpig)

ot

31



Warren & Root Equations
Pseudo-steady state Model

B

Warren and Root (1963) derived the following radial flow equation in
Darcy units:

9%Pp; , 1 0Ppy 3P ap
cho o dh Dm oo
drp®  Ip drp (=) atp T dtp (11-60)
where - ¢ G
T $nC + #C (11-61)
\
t]j = kf t
(PmC + ¢:Cp) p 12, (11-62)
P‘Dm — 2 T ifh {Pl - P]‘,Hil) 11
q @ (11-63)
2 1£ h (P, - P X
T i Ly,
Py = f 1) (11-64)

qp



Equation 11-60 is based on the'assumptinn that semi-steady state condi-

tions develop instantaneously in the matrix, This assumption is stated as fol-
lows:

8P, ok,

¢nChy 3t . (Pe—P.) ' (11-65)

where « is a geometric factor which depends on number and orientation of
fractures.

Warren and Root defined « as follows:

_4n(n+2)

* L

(11-66)

where n = number of orthogonal sets of fractures
L. = geometrical factor characteristic of matrix

Forslabs: n = 1; and L = h2, (h,, = thickness of matrix). For spheres: n = 3;
and L = 4 12, (r, = radius of sphere which approximates a matrix block).



PmCrn

8P, ok

at

1

!

(Pf - Pm)

Equation 11-65 can be written as follows:

¢]TlCII'I

AP, _«a k.,
at 1

{'&Pf — ﬁPm}

where AP, = P; — Py,
. ﬁPf = P1 - Pf

Thus, Equation 11-65 can be written as:

ITI{:]:T:I
i oty ot

aP[}m w ﬂt[;,. _ X l{m

M

(11-65)

tp

P‘Drn

k; t
(@0Cin + 6:Cg) p 13

= 27 kfh (Pl - Pr,tlm)
qu

(Ppi — Ppm)




Since,

dtp _ k¢ o = ¢ Gt
ot (¢'an1 + 'i’fcf} K I'E.r qr}mcm + ﬁbf{;f
then,
(1-w) B;JDI" km 5, (Ppr — Ppm)
o
or,
P
(1-w) B Dt = \ (Pt ~ Pom) | (11-67)
atp

where A = dimensionless matrix-fracture flow coefficient

= (o ki 1)kt (11-68)
~ L )
For slabs: }“=h_§jr‘2" Em For spheres: h=%§ wi—j


http://www.geom.uiuc.edu/zoo/toptype/sphere/gifs/sphere.gif
http://www.geom.uiuc.edu/zoo/toptype/sphere/gifs/sphere.gif
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Assuming that at tp = 0, Pp, = 0, the Laplace transform of Equation
11-67 is given by:

(1 = ©) 2 Pp,(z) = N (Pps(z) — Ppm(2))

Thus,
- A PDE{E) h \
P = -
sy oA

Again, assuming that at tp = 0, Pp¢ = 0, the Laplace transform of Equa-
tion 11-60 is given by: b -

-~\

2 /’ N
d PD'. f(z)_ + _1_ M =(l —w) APpn(z) 1+ wz Pry(z)
.’:}r% rp  drp s ol

p Juepnsy g

Substituting Equation 11-69 in the above equation, we get:

Porz) , 1 o) _ 1, ] Poyia) | (11-70)

dr;, deID/

e

-~

(11-71)



It should be evident that Equation 11-70 is the same as Equation 11-24
except that z on the right-hand side of Equation 11-24 is replaced by z {(z)
on the right-hand side of Equation 11-70. Therefore, all the solutions pre-
sented for Equation 11-24 are also solutions of Equation 11-70 providing
that z is replaced by z f(z). Thus, the general solution of Equation 11-70 is
obtained from Equation 11-25 by substituting z f(z) for z, and the result is as
follows: -

d*Ppy(z) L1 dPoi(z)

? = dm = [z £(z)] Ppy(z) - (11-70)
d*Pp(z) , 1 dPp(z) _ ” . (11-24)
i + o dr z Pp(z)

Ki(rpevzi(z)) Lo(rpvz(z)) + I (rpevzE(z)) Ko(rpvzi(z))
E\d zf(z) [Ky(Vzi(z)) Li(rpevzi(z)) — Ki(rpevzi(z)) 11Vzi(z) ]
(11-73)

Pp(z) =

ﬂﬁm .



For the case of an infinite, naturally fractured reservoir with the well pro-

ducing at a constant rate, and damage and skin included in the solution, we
can obtain the solution from Equation 11-53. The result is as follows:

Pup(z) =

- Kplv=t(z)) + 5 «/zbz) Kj(vzHz))
zf(z) {Nzh(z) Ky (Vef(z)) + (af (2)) Ol Kow'zflz) +8vef(z) K2 {2) |}
”“‘““”’ {11-74]

S:?ce Rate

— AV JAP -

V., bbl/psi v > Rate (4-2)

Cp, = dimensionless wellbore storage coefficient defined by Equa-
tion 4-5

Rate

C = 144 V,Jp, bblipsi | (4-3)



In Darey units, C is expressed in res cofatm, O, is the total sysbem compress-
ibility at prevailing reservoir conditions in L/atm, and hy and ry are ex-
pressed in em. Note, however, that the expreszion, C/(2réhCrd), is both di-
mensionless and unitless. If C is given in reservoir cu. ft/psi, and both h and
ry are given in ft, and C, is in 1/psi, the expression Cf(2edhCyrs) will re-
main unchanged. Therefore, we can define the dimensionless wellbore stor-
age, Cp, as follows:

5.615 C
2rghCors

Cp = (4-3)

where  C = res bbl/psi
h,r, =1t



Double Porosity
Pseudo-steady State Formulation

Deruyek et al. (1982) presented derivations and solutions for both the
semi-steady state and transient flow models. Tt would be instructive to re-
view their derivations here even though the serni-steady state case has al-

ready been presented.

We begin with the semi-steady state interporosity flow model. In this case
the diffusivity equation for the fractures is given by:

ar*  r dr o dt ke

Fracture Flow Equation (11-75)

ks

where 5= ——
o Gy p

q" = interporosity flow rate per unit bulk volume



In the matrix, the pressure is assumed to vary only in the vertical direc-
tion, v. Thus, the diffusivity equation is given by:

f‘_ﬂl:'m _ 1 ab, + (q" i
avi g a8t k..

The above equation can be written as follows:

" ,
k;ln ﬂﬂf; = o, Co % +q° Matrix Flow Equation _ (11-76)

When k. is very small and {8°P_/av®) is negligible, Equation 11-76 takes
the following form:

Q" = = ¢y Cyy % (11-77)



The semi-steady state interporosity flow assumption is stated as follows:

qQF = % (P, = Py) (11-78)

Thus, by equating Equations 11-77 and 11-78 we obtain Equation 11-65.

b Cpy T '# ' (Ps ~ P,) (11-65)




In dimensionless form, Equation 11-75 becomes:

EEPDf_I_ 1 al'-‘1~;.5=wim_&r_?;iﬂwlqh

driy  rp drp dtp  k  qp

=5

Thus, the above equation is written as follows:

Y
TP, 1 Por_ o kv (11-79)

dryy I drp itp ke

By assuming that at t = 0, Pp; = 0, the Laplace transform of Equation
11-79 is given by:

d*Pp(z) + 1 dPpy(z)
dl'E: I'my J-'.'.lll']j

=@ z Ppi(z) - % q'(z) (11-80)




By writing Equation 11-78 in dimensionless form and then taking the La-
place transform, we obtain:

q+{z) = o % (Pom(z) — Ppi(z)) (11-81)

By Equation 11-69, Equation 11-81 becomes:

ke (1-@)2 b (11-82)

@@= e

Noting that A = {erlk,)/k:. then substituting Equation 11-82 in Equation
11-80, we obtain:

d*Ppilz) | 1 dPpez) _ _
ar, + E ar, - = 7 {{z) Ppelz) (11-83)

Equation 11-83 is identical to Equation 11-70, and f{z) is the same as that
defined by Equation 11-71.




Dual Porosity Models

...................

HE HE

....................

P

....................

HE HE

....................

Pseudosteady State Transient



Double Porosity

Transient Formulation

In the case of the transient interporosity flow model, Equation 11-80 is
still valid except that q®(z) is now defined as follows:

ein 2 ky dPy(z)
4 EE}_ hm K d"if v=1

(11-84)

For the matrix, it is necessary to know whether the matrix can be approx-
imated by slabs or by spheres. In the case of slabs, the following equation
applies:

EEP,T,= 1 4P,
vt my Ot

(11-85)

Subject to the following conditions: “l :

l. Fm _ Pj at t = ﬂ g || w—_
2. dPyfdv =0atv="h_/2, at all t
3. Ppo=Fratv =0, at all




Before we take the Laplace transform of Equation 11-85, we need to dis-

tinguish between the Laplace parameters when the transform is taken with
respect to t and when it is taken with respect to tp.

Let,
flz') = | £t) exp (~2'1) dt to = I t
’ (@G + &Cy) p 3
and

f(z) = | F{to) exp (~ 7tp) dtn

Since tp is defined by Equation 11-62, z° and z are related as follows:

|
= — | . -
[6m Co+ b Cl s ! (11-86)



Laplace Space Solution

In terms of z’, the Laplace transform of Equation 11-85 is given by:

d*P(z'y 1 )
dv’""jn_mz Poiz") (11-87)

The solution of Equation 11-87 is given by:

h,,

ﬂﬂﬁh [ (‘:"2'- - uz’."r;m]
Pm{.'{."} = Pf{Z":I )

h (11-88)
cosh (== -..-"z“fnm-]
By Equation 11-84, Equation 11-88 is written as: | 4°®) = 32— % dP;jz)
m v=0

‘i 2k, — —
q-(2") = — i'TkJI VZ 'y Ppe tanh [% 's"'E_"."'r]m] (11-89)



In terms of the Laplace param&tef, z, Equation 11-89 becomes:
1 1

ﬂ tanh :kz”' ::E a _r;} z}ﬂ } (11-90)

= 2 km’h (1-e)z

hy po ke T

Substituting the above value of g-(z) in Equation 11-80 we obtain Equa-
tion 11-70 except that now f(z) is given by:
1

1
kw (1- (1-w) k 5 .
fz)=w+ E r,%,r - 1 tanhl ’ = H (11-91)
dPp(z) . 1 dPpilz) _ et
d:é +E a ¢ z Ppilz) T q:(z) (11-80)

'I:].E'PD-_F{E} 1 -IﬂPEH'[
dl‘% r].']. 'dl']_'_;.

= [z £(z)] Ppy(z) (11-70)



THE INVERSE LAPLACE TRANSFORM

The inverse Laplace transform can be found by different ways. For exam-
ple, we could prepare a table of transforms in which we list the transforms
of many functions and refer to this table to find the inverse transform. We
can use the table of transform in conjunction with Equation 11-17 and other
known properties of the transform. Another technique relies on integration
in the complex plane. However, in most problems related to well testing,
this latter technigue could lead to expressions that are very difficult to evalu-
ate. For this reason, the present trend is to find the inverse transform numer-
ically and present the results in the form of a type-curve.

The algorithm presented by Stehfest (1970) has gained wide acceptance
by researchers in the field of well testing. We will discuss Stehfest’s algo-
rithm and with the exception of referring to a table of transforms, we will
not discuss any of the other methods of finding the imverse Laplace trans-
borm. '

Stehfest’s algorithm is based on the following formulae:

mdndi,BeE) ; -
= [ e JyERE ol . k== {2]:[}' N 1.
vimte b h-;i.:.h.g AECRTH G- G @ e

n | |
iy = n2 Y VP JIE i (11-19)
- | 1

|
tf t |

The number, n, in these expressions should be optimized by trial and error,
Increasing n increases the accuracy of the results up to a point, and then the
accuracy declines because of roundoff errors, since the word length on the
computer is finite. Note that £(t) = L~'P(z), and z is replaced by i In2/t,
where t is the time at which the inverse transform is required. Also note that
for & given n the Stehfest algorithm requires caleulation of V| only once.



FProgram 11-1 iz written in FORTRAN, It is written to find the inverse
transform of Plz) = U4z, at t= 1, 2, 3,. . .. .. 10. The program is suit-
- able for finding the inverse transform of any given continuous function by

making the necessary changes where indicated in the program, With
n = 18, the program gave exact results up to 5 decimals. This was possible to

check beecause we lenow that:

1o

1
e
For a given f(z) for which we do not know the inverse transform, n can be
optimized by referring to a table of transforms and choosing a lunction that
is close to the function on hand. Also, if n is not properly selected, a plot of
the inverse transform will tend to oscillate, whereas an appropriately chosen
value of n will vield a smooth inverse transform.




Program 11-1

Inverse Laplace Transform by the Stehlest Algorithm

10

50
100

IMPLICIT REAL*S (A-H,0-2)

DEMENSION Va0, GHa0), H{30)

N SHOULD BE OPTIMIZED
MN=18

DLNZ = 06931471 805555453

G{1) = 1.0

MH = b2

DO 101 = 2,M

G} = G{-1)"1
H(1} = 2.0/G{NH-1)
DO 100 | = 2,NH
Fl=1

IF(LEQLNH) GO TO 50

Hl) = FI* " MH G2 GENH-1)* G Gil-1)

GO TO 100

Hil) = FI* " MH" G2 WGl = Gil-1))

CONTINUE
SN = 2*(NH-NH2*2)-1
DO 200 F = 1,N

il = 0.0

K=l + 1§2

WK =1

IF(KK.GT.NH) KK = MH
DO 150 J = KKK
IF{2*J.EQ.0) GO TO 120
IFLEQLS) GO TO 130

e e LT e

R ]

(progrom continued or sext page)



3

o0 0O

00

280

300

Vi) = Wil) + HEWGE) " Gi2* JH))

GO TO 150

V(I = Vi) + HEIVG{-J)

GO TO 150

Wil = VIO + HIGE"J-)

CONTINUE

Wil = SV

SN = 3N

CONTINUE

FT =00

t SHOULD BE CHANGED AS DESIRED

T= 1.0

HERE, WE EVALUATE THE INVERSE LAPLACE TRANSFORM AT
T=1,2 3.0

THIS SHOULD BE CHANGED IF OTHER T VALUES ARE NEEDED.
Do 3001 = 1,10

T = DLNAT

DO 270K = 1N

Z=AK

THE FUNCTION BEING EVALUATED HERE IS: Fiz) = 1/SQRAT(z). THIS
SHOULD BE CHANGED.,

FT = FT + {1.QDSQRTZ)"VIK}

FT = FT + (1.0/DSQRTZ)" V(K
CONTINUE

FT = AFT

WRITE (" 2B0)T,FT

FORMAT[Sx,T = F8.0.5X,FT = "F12.3)
T = T = 1

FT=0.0

COMNTINUE

END




Spherical Coordinate- PDE

When the matrix blocks are assumed to be spheres, Equation 11-8{ is still
valid except that q*(z) iz now defined by:

2 ky dPulz)

lll:l._,; -
q I::::I Im M dr [ T

(11-92)
and Equation 11-85, the matrix equation, is replaced by:

:
P + 2dPy, 1 9P, (11-£63)

'  r ar Ny L
with the following initial and boundary conditions:

1. P, =F,att=10
2. P, = Pyatr = r,, for all t and for each sphere

In the Laplace domain, Equation 11-93 is given by

d®F (2"} +E dP (=" _ 1
dr? r dr T

z'Pn(z') [11-94)



Spherical Coordinate-Solution

The solution to Equation 11-94 is given by:

Po(z') = ™ Pyiz'} sinh [r vZTnn] / sinh [n V2 na] (11-95)
r

From Equations 11-92 and 11-95, g:(z") is given by:

)= -5 ‘ff Poslz’) {VETm coth [tn vZ7T1n] - 1} (11-96)

By converting Equation 11-96 to the Laplace parameter, z, by Equation
11-86, and then by substituting in Equation 11-80 and noting that h = 1513/
i kn ks, we obtain Equation 11-70 with f{z) now given by

[ | :

ﬁz}-m+é}_‘“15‘“._;”}_.“rm&. ok i Er—l} e

z kA



Well Test Analysis on the Basis of
Warren & Root Model




