Naturally Fractured Reservoirs

Well Testing of Naturally Fractured Reservoirs (b)




Well Test Analysis on the Basis of
Warren & Root Model




Dual Porosity Parameters Storativity Ratio
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The storativity ratio is a measure of the pore space in the fracture system relative to
the total pore space.

For naturally fractured reservoirs, o will normally be in the range of 102 to 10°. For
layered reservoirs, ® may be as high as 0.1.

Values higher than 0.1 usually do not exhibit dual porosity behavior.

Nomenclature:

o - storativity ratio, dimensionless

¢, - matrix porosity, dimensionless

¢ - fracture porosity (=1.0), dimensionless

Cy, - total compressibility of matrix porosity and fluids, psi*

C - total compressibility of fracture porosity and fluids, psi-?

C



Dual Porosity Parameters Interporosity Flow Coefficient
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The interporosity flow coefficient A is a measure of the ability of fluids to flow from the
matrix to the natural fracture system, relative to the ability of fluids to flow from the
fracture system to the wellbore.

The interporosity flow coefficient A is not a pure property of the reservoir rock, because it
includes the wellbore radius.

For naturally fractured reservoirs, A will usually be in the range of 103 to 108. Larger
values of A cause the effects of dual porosity behavior to end very quickly. In this case,
the dual porosity behavior is often obscured by wellbore storage. Smaller values of A
will cause the dual porosity behavior to occur much later in time, and may not be
apparent before the end of the test.
Nomenclature

A - interporosity flow coefficient, dimensionless

k., - matrix permeability, md

k; - bulk fracture permeability, md

r, - wellbore radius, ft

a - shape factor, ft2

n - number of sets of mutually orthogonal fractures
L., - characteristic size of matrix blocks




Interporosity Flow Coefficient

The “characteristic matrix dimension” in the definition of A is simply the width of a matrix
block, if the blocks are the same dimensions in each direction. If the blocks are
different sizes in different directions, then L is given by the expressions in the third
column of this table.

Nomenclature: Yoy
a - width of matrix block

b - length of matrix block

c - height of matrix block

Cube
Slab

Geommatry Geometry
Geometry n Lm A Column
Geometry
12k, 1
Slabs 1 a Pz
fHm
2ab 32k, r”
Columns 2 (a+b) kaz
cub 3 3abc 60kmr,3
ubes (ab + bc + ca) kafn



Interprosity Flow Parameter

The factor a is the block-shape parameter that depends on the geometry and the
characteristic shape of the matrix—fissures system and has the dimension of a reciprocal

of the area.
A
fHf = —
Ve
where:
A = surface area of the matrix block, ft*

V=
X =

volume of the matrix block

characteristic length of the matrix block, ft

Most of the proposed models assume that the matrix—
fissures system can he represented by one the following
four geometries:

(a) Cubic matrix blocks separated by fractures with i as
@iven by:

60 (R
=g (5 )%

where Iy, 15 the length of a block side.

{(b) Spherical matrix blocks separated by fractures with

(d)

A as given by

'—E k_m r.-::
f._r%(kf)w

where ry is the radius of the sphere.
Horizontal strata (rectangular slab) matrix blocks
separated by fractures with A as given by:

S 12 (fem)r2
R Nk ST

where ki is the thickness of an individual fracture or
high-permeability layer.
Vertical cvlinder matrix blocks separated by frac-
tures with A as given by:

8 [k o
h=— (—m) ve
¥ kf

where ¥y is the radius of the each cylinder
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eThe curve is characterized by two parallel straight lines due to the two separate

porosities in the reservoir.

eBecause the secondary porosity (fissures) has the greater transmissivity and is
connected to the wellbore, it responds first as described by the first semilog

straight line.

eThe primary porosity (matrix), having a much lower transmissivity, responds
much later. The combined effect of the two porosities gives rise to the second

semilog straight line.

*The two straight lines are separated by a transition period during which the

pressure tends to stabilize.
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e Intheory, double-porosity behavior yields two parallel straight lines on a
semi-log plot, provided there is no wellbore nor outer boundary effects.

e The semi-log plot consists of three sections:

— (i) the first straight line, which represents the homogeneous behavior of the
naturally fractured medium before the matrix medium starts to respond (transient
radial flow) — the slope of this line gives the fracture permeability;

— (ii) a transition section (between two straight lines), which corresponds to the
onset of inter-porosity flow;

— (iii) the second semi-log straight line, which represents the homogeneous
behavior of composite media (fracture permeability with the sum of matrix and
fracture storages) when recharge from the matrix medium is fully established.
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. The characteristics of the transitional segment are determined by the way
the matrix and fracture interact.

. Flow from matrix to fractures takes place according to the assumptions
used in the available double porosity models:

1. The flow rate is proportional to the pressure difference between matrix and
fracture (Warren and Root, 1963)

2.  The flow rate is proportional to the averaged pressure gradient through the
matrix (Streltsova, 1983)

3. The flow rate is an unsteady state function of pressure drop across the
matrix(Kazemi, 1969; deSwaan, 1976, and Najurrieta, 1980)
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For a well producing at a constant rate from an infinite, naturally frac-
tured reservoir with the assumption that matrix-to-fracture flow oceurs un-
- der instantaneously established pseudosteady state conditions, Warren and

Root derived drawdown and buildup equations. Useful forms of their equa-
tions were presented by Kazemi (1969):

For drawdown:

162.6 q B p k
P,-P.; = log t + lo — 3.23
Y e b+ b | B 0nCn + G g 2
+0.435 Ei [ - Mplw (1-w)]
— 0.435 Ei [ — Mp/(L - w)] + 0.87s (6-1a)
For buildup:
_p _16269Bul| t+At . ~
Pi=Pu = e [Iug B2 0.435 Ei [ — N Atp/oo(] — )]
+0.435 Ei [ — \ Atp/(1 — w]]} (6-1b)
-4
where  t - 264X1071 ket

(@C + 6,Cp) p 13

9.64 x 104 k; At

and, Atp =
P (3Ce + 9uCu) £ TS 12




When t or At is small, the value of the first Ei function in Equations 6-1a
and 6-1b will be close to zero, whereas the second Ei function will be a con-
stant. Thus a plot of Py versus t or P, versus [(t, + At)/At] on semi-log
graph paper should yield a straight line of slope m. From the slope of the
straight line, one can determine ke(h,, + hg). As t or At increases, however,
the Ei functions exert their influence and we get the transitional segment of

the curve shown in Figure 6-3.
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The signature of dual porosity systems on a semi-log plot is two parallel lines as

shown below.

Dual Porosity Analysis
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Figure 1.62 shows the pressure buildup data for a nat-
urally fractured reservoir. As for the drawdown, wellbore
storage effects may obscure the first semilog straight line.
If both semilog straight lines develop, analysis of the total
permeability—-thickness product is estimated from the slope
m of either straight line and the use of Equation 1.3.8, or:

(k) = 1@3.1@3#

Bourdet and Gringarten (1980) indicated that by drawing
a horizontal line through the middle of the transition curve
to intersect with both semilog straight lines, as shown in
Figures 1.61 and 1.62, the interporosity flow coefficient A
can be determined by reading the corresponding time at the
intersection of either of the two straight lines, e.g. f; orts, and
applyving the following relationships:
In drawdown tests:

§_ [ ) j| [{qﬁrhf‘t}my?‘%} _ [ 1 } [{q‘mhq}m#r&,}
; 1 —ew 1. 781kt 1—w 1. 781ksts

[1.5.11]

In buildup tests:

L [ w {{,i'?hf-‘t)m#r&r (fli' +‘j'f)

T 1—w || 178k, Aty
or:

_ 2 ‘
W= |: 1 j| (ﬁf'hft)mﬂrw} (fp-l— &f) [1.5.12]
l—w]| 1781kt At /,

where:

ki = permeability of the fracture, md

f, = producing time before shutin, hours
¥y = wellbore radius, ft

= viscosity, cp
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The skin factor s and the false pressure p* are calculated as
described by using the second straight line. Warren and Root
indicated that the storativity ratio @ can be determined from
the vertical displacement between the two straight lines,
identified as Ap in Figures 1.61 and 1.62, by the following
expression:

w = 10\-2/m [1.5.10]

21

Figure 1.62 Buildup curve from a fractured reservoir (After Warren and Root, 1963).



The subscripts 1and 2 (e.g., ;) refer to the first and second
line time intersection with the horizontal line drawn through
the middle of the transition region pressure response during
drawdown or buildup tests.

The above relationships indicate that the value of A is
dependent on the value of w. Since « is the ratio of fracture
to matrix storage, as defined in terms of the fofal isother-
mal compressibility coefficients of the matrix and fissures
by Equation 1.5.8, thus:

1
(Ql}h}m {ft}mj|
I [ (ph)s (er)s

it suggests that @ is also dependent on the PVT properties
of the fluid. It is quite possible for the oil contained in the
fracture to be below the bubble point while the oil contained
in the matrix is above the bubble point. Thus, @ is pressure
dependent and, therefore, A is greater than 10, so the level
of heterogeneity is insufficient for dual porosity effects to he
of importance and the reservoir can be treated with a single
porosity.

) =

Example 1.34 The pressure buildup data as presented
by Najurieta (1980) and Sabet (1991) for a double-porosity
system is tabulated below:

At (hr) s (psi) b
0.003 6617 31 000000
0.017 G632 516 668

0.033 44 358334

0.067 G650 129 168

0.133 G654 A4 544

0.267 Gh61 32293

(1.533 G666 16147

L.OAT 66RO BOT4

2.133 GETE 4038

4 267 G685 2019

B.633 G6OT 1010

17.067 G704 506
34.133 G712 253

The following additional reservoir and fluid properties are
available:

By = 6789, 5 psi, pur at areo = 6352 psi,

&), = 2554 STB/day, B, = 2.3 bbl/STB,

o = 1 cp, f, = 8611 hours

re = 0.375ft, e, = 8. 17 x 107° psi~!, ¢, = 0. 21
b =0.1md, by, = 17 ft

Estimate « and 5.
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Solution

Step 1.
Step 2.
Step 3.

ws PSi

%

Plot prs vs. (f; + Af) /At on a semilog scale as shown
in Figure 1.63.

Figure 1.63 shows two parallel semilog straight lines
with a slope of m = 32 psi/cycle.

Calculate (k¢h) from the slope m:

162.6Q,Bop,  162.6(2556)(2.3)(1.0)

(keh) m 32
= 20848 3md ft
6750.00 TTTTIT T TTTT0 T T T T T
] \ \ I I
6725.00 - " " Ap=25psi T~ I
1 \ J ||/1 1|
1 AR
6700.00 | L1
1 ]
] X Y \‘ 25
6675.00 - N AN L
] M*‘ ' ’0‘9“'@, |
— \\ \'\ .HH.I %
6650.00: F “\ ‘\J LI
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- £ \
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Figure 1.63 Semilog plot of the buildup test data (After Sabet, M. A. Well Test Analysis 7991, Gulf Publishing

Company).

and:
20848.3
17

Determine the vertical distance Ap between the two
straight lines:

ki = = 1756 md

Step 4.

Ap =25 psi

Step 5. Calculate the storativity ratio « from Equation 1.5.10:

w = 10~/ — 10-552 — (165

Draw a horizontal line through the middle of the

transition region to intersect with the two semilog

straight lines. Read the corresponding time at the
second intersection, to give:

t, + At

At

Calculate A from Equation 1.5.12:

[ 1 j| |i(<|ﬁ'hft)mﬂry2;i| (fp + fj-f)
L1 —w 1. 781ksty At 5

1
[ 1-10.165

[(0.21) (17)(8.17 x 107°)(1)(0.375)* ] .
“1 1. 781(1756) (8611) }mm)

Step 6.

)2=2mm

Step 7.

=3.64 x 1077

It should be noted that pressure behavior in a naturally
fractured reservoir is similar to that obtained in a layered
reservolr with no crossflow. In fact, in any reservoir system
with two predominant rock types, the pressure buildup
behavior is similar to that of Figure 1.62.
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Naturally Fractured Reservoir
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log t
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Gringarten (1987) pointed out that the two straight lines
on the semilog plot may or may not be present depending

on the condition of the well and duration of the test. He
concluded that the semilog plot is not an efficient or suf-
ficient tool for identifving double-porosity behavior. In the
log-log plot, as shown in Figure 1.62, the double-porosity
behavior vields an S-shaped curve. The initial portion of the
curve represents the homogeneous behavior resulting from
depletion in the most permeable medium, e.g., fissures. A
transition period follows and corresponds to the interporos
ity flow. Finally, the last portion represents the homogeneous
behavior of both media when recharge from the least per-
meable medium (matrix) is fully established and pressure
is equalized. The log-log analysis represents a significant
improvement over conventional semilog analysis for identi
fving double-porosity behavior. However, S-shape behavior
is difficult to see in highly damaged wells and well behav-
ior can then be erroneously diagnosed as homogeneous.

Furthermore, a similar S-shape behavior may be found in
irregularly bounded well drainage systems.

Perhaps the most efficient means for identifving double-
porosity systems is the use of the pressure derivative plot.
It allows unambiguous identification of the system, provided
that the quality of the pressure data is adequate and, more
importantly, an accurate methodology is used in calculating
pressure derivatives. As discussed previously, the pressure
derivative analysis involves a log-log plot of the derivative
of the pressure with respect to time versus elapsed time.
Figure 1.64 shows the combined log-log plot of pressure
and derivative versus time for a dual-porosity system. The
derivative plot shows a “minimum” or a “dip” on the pressure
derivative curve caused by the interporosity flow during the
transition period. The “minimum” is between two horizon-
tal lines; the first represents the radial flow controlled by

the fissures and the second describes the combined behav-
ior of the double-porosity system. Figure 1.64 shows, at early
time, the typical behavior of wellbore storage effects with the
deviation from the 45° straight line to a maximum represent-
ing a wellbore damage. Gringarten (1987) suggested that
the shape of the minimum depends on the double-porosity
behavior. For a restricted interporosity flow, the minimum
takes a Vshape, whereas unrestricted interporosity yields
an open U-shaped minimum.
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Based on Warren and Root's double-porosity theory
and the work of Mavor and Cinco (197Y9), Bourdet and
Gringarten (1980) developed specialized pressure type
curves that can be used for analyzing well test data in dual-
porosity systems. They showed that double-porosity behav-
ior is controlled by the following independent variables:

o
tn/Cp
CD el
[l
e

with the dimensionless pressure pp and time ff, as defined
below:

_ 'kfh £
o= [141. ZQBJ ap

_ 0, 0002637kt _ 0, 0002637kt
T [ppeds + (predmlprs — (dpetdiempury

o

where:

k = permeability, md
t = time, hours

= viscosity, cp

7w = wellbore radius, ft

and subscripts:

f = fissure
m = matrix
f + m = total system
D = dimensionless

Bourdet et al. (1984) extended the practical applications
of these curves and enhanced their use by introducing the
pressure derivative type curves to the solution. They devel-
oped two sets of pressure derivative type curves as shown
in Figures 1.65 and 1.66. The first set, i.e., Figure 1.65, is
based on the assumption that the interporosity flow obeys
the pseudosteady-state flowing condition and the other set
(Figure 1.66) assumes transient interporosity flow. The use
of either set involves plotting the pressure difference Ap and
the derivative function, as defined by Equation 1.5.4 for draw-
down tests or Equation 1.5.5 for buildup tests, versus time
with same size log cycles as the type curve. The controlling
variables in each of the two type curve sets are given below.

Drawdown
L (dp)
1ar _'_f( d(t) )
[1.5.4]

Buildup

[1.5.5]

AbAP = af(fp + i‘—.i‘) [d{&p}}

Af d(Af)
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Identification Of Double Porosity System from Well Tests

%  In practice the two parallel straight line may or may not be present ( It
depends on the condition of the well, composition of the reservoir fluid,
duration of the test,...) thus a semilog plot is not an efficient tool for
identifying double porosity behavior.

%  Double porosity behavior yields an S-shaped log-log pressure curve on a log-
log plot.

3%  Double porosity behavior is characterized by the existence of a minimum on
the pressure derivative.

%  The P.S.S. model shows a V-shaped minimum
%  The Transient models show an open U-shaped minimum.
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Important Features of Some Mathematical Models
Describing Flow from Matrix to Fracture

Warren and Root (1965)
= Analytical model.
»Pseudo-steady state model.
»Matrix flux is independent of a spatial position and is proportional to the
pressure difference between matrix and fracture.
=Simplifying the mathematical analysis of the flow problem.
»S-shaped transitional curve with an inflection point.
»The separation of the two parallel lines allows calculation of the
storativity ratio.

Kazemi (1969)
=*Numerical model.
=Unsteady state model.
=L_inear transitional curve with no inflection point.
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de Swaan (1976)
= Analytical model.
=Unsteady state model.
= A convolution theorem gives the relationship between the source term
and the pressure in the fracture medium.
=L_inear transitional curve with no inflection point.

Najurieta (1980)
= Analytical model.
=Unsteady state model.
= Approximate solution to de Swaan model.
=Only applicable for transient period (no boundary dominated period).
=_inear transitional curve with no inflection point.

Streltsova (1983)
= Analytical model.
=Pressure gradient model.
=Matrix flux is proportional to the averaged pressure gradient throughout
the matrix block.
=L_inear transitional curve with no inflection point.
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