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Important Features of Some Mathematical Models
Describing Flow from Matrix to Fracture

Warren and Root (1965)
= Analytical model.
»Pseudo-steady state model.
»Matrix flux is independent of a spatial position and is proportional to the
pressure difference between matrix and fracture.
=Simplifying the mathematical analysis of the flow problem.
»S-shaped transitional curve with an inflection point.
»The separation of the two parallel lines allows calculation of the
storativity ratio.

Kazemi (1969)
=*Numerical model.
=Unsteady state model.
=L_inear transitional curve with no inflection point.




de Swaan (1976)
= Analytical model.
=Unsteady state model.
= A convolution theorem gives the relationship between the source term
and the pressure in the fracture medium.
=L_inear transitional curve with no inflection point.

Najurieta (1980)
= Analytical model.
=Unsteady state model.
= Approximate solution to de Swaan model.
=Only applicable for transient period (no boundary dominated period).
=_inear transitional curve with no inflection point.

Streltsova (1983)
= Analytical model.
=Pressure gradient model.
=Matrix flux is proportional to the averaged pressure gradient throughout
the matrix block.
=L_inear transitional curve with no inflection point.
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Fig. 2-9. Wellbore pressure solution as given by Kazemi's model and comparison with Warren
and Root’s model (after Kazemi, 1969). Duration of the first semi-log straight line is shorter as
predicted by Kazemi's model. Courtesy of SPE-AIME.



MODEL BY KAZEMI

Kazemi (1969) formulated a radial, numerical model for a well producing
from a finite drainage area. The model consisted of matrix and horizontal
fractures (Figure 6-8). Flow in the model was three dimensional and un-
steady state, but the fluid entered the wellbore only through the fractures.
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Figure 6-8. Grid for mesh points for ADI procedure. Copyright © SPE, Kazemi,
SPEJ, Dec. 1969 [8].



Based on this model, Kazemi reached the fﬁllnwing conclusions:

1. If the drainage boundary effects are not sensed during the test and
kb < <kehy such that A<5 x 105 and Ap (see Figure 6-3) is greater
than 100 psi, and if it is possible to produce the well at a constant rate
from the instant of opening the well to flow, then the slope, m, and the
pressure difference, Ap, would vield accurate estimates of k¢h, and w as
predicted by the theory developed by Warren and Root. However, be-
cause the duration of the first straight line is very short, it is unlikely
that the first straight line would develop under actual field test condi-
tions, thus w cannot be calculated in practice from a drawdown test.
Calculation of k¢h, and w from a buildup test would be possible if well-
bore storage effects are negligible. If A\>5 x 105, the duration of the
first straight line would be extremely short such that it may not be ob-
served under real field conditions.



2. If the drainage boundary effects are sensed during the test, then the
second straight line would not be parallel to the first, and w cannot be
calculated. But ksh, can be estimated from the slope, m, of the first
straight line. In the event that the first straight line is obscured by
wellbore storage effects, the use of the slope of the second straight line
would overestimate the flow eapacity, kih,.

3. The time to reach the semi-steady state, toss 1S given by:
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Shape Factor

Calculation of fluid transfer calculation between the matrix and fracture

network needs knowledge of: S IP7 e
>Matrix and fracture porosity, Iﬁﬁ’ f
»Matrix and fracture permeability, -
»Matrix and fracture compressibility, oo

» Shape factor

Shape factor is often represented by the symbol ‘e’ in units of ft2 . This term
IS best understood from the Warren and Root paper (1963) in which they
idealized the system as a stack of “sugar-cubes”.

>»There has been much discussion about the physical meaning and the
functional form of the shape factor.

»From a practical view, it is a second order, distance-related, geometric
parameter that is used to calculate the mass transfer coefficient between
matrix blocks and surrounding fractures.

»Shape factor is a function of fracture spacing (or intensity), and is not
inherently a time-dependent parameter, but several authors have attempted to
treat it as such. 10




The pseudo-steady state, analytically derived expression for the shape factor
(Kazemi and Gilman, 1993, Chang, 1993, Zimmerman, 1993, Lim, 1995) in terms of
fracture spacing (L) in the X, y, and z directions is:

The pseudo-steady state, numerically derived expression for shape factor (Kazemi,
1976, Kazemi and Gilman, 1988) has a coefficient of 4 rather than IN.
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Effects of Fracture Boundary Conditions on
Matrix-fracture Transfer Shape Factor
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This study shows that for a single-phase flow in a particular matrix block, the
shape factor that Warren and Root defined is not unique and depends on the
pressure in the fracture and how it changes with time.
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Pseudo-steady state (PSS) Transfer Model

kmp
Om= r; U(Pm_Pf)~ (1)
P
Om=—PmCmpP P | (2)
Pr pressﬁre [M/L sz
?ﬂl

average matrix pressure in Laplace domain
Om matrix-fracture exchange term [M/L>T]

P fluid density [M/L7]

a shape factor constant [1/L7]

The PSS model does not account for the pressure transient within the matrix.
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Transient Transfer Model

»This type of model is called a “transient transfer model” and does not use the
matrix-fracture transfer shape factor.

| [0y
N (A 8
Nm \ Ot

Hm = km;‘(ﬁbﬂ Cm

the matrix hydraulic diffusivity

»In the transient model, the fluid transfer rate between the matrix and fracture is
proportional to the pressure gradient at the matrix block surface as given by:

0, = Akmp

V pm

matrix face » (4)
H Vm
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Petroleum engineering literature shows that the shape factor remains a
controversial topic. A large body of research in the area of naturally fractured
reservoirs simulation is devoted to representing an accurate matrix fracture
exchange term (Kazemi et al., 1976; Thomas et al., 1983; Kazemi and Gilman,
1993; Lim and Aziz, 1995; Quintard and Whittaker, 1996; Noetinger and
Estebenet, 1998; Bourbiaux et al., 1999; Coats, 1999; Noetinger et al., 2000;
Penuela et al., 2002a,b; Sadra et al., 2002).

The shape factor is usually derived from a simple mechanism of pressure
diffusion with constant fracture pressure as a boundary condition, whereas the
physical exchange mechanism in fractured reservoirs is more complex.

To investigate the boundary condition dependency of shape factor, the
diffusivity equation is solved analytically in Laplace domain for different
depletion regimes in the fracture including:

1. constant flux at a matrix-fracture interface,

2. exponential depletion, and

3. linear pressure depletion schemes.

16



Shape Factor- Literature Review

. Barenblatt et al. (1960) introduced the classic dual porosity concept in the
early 1960s.

. Warren and Root (1963) applied this concept to reservoir engineering,
principally for well testing applications. They used a geometrical approach to
derive the shape factors for one, two, and three sets of orthogonal fractures.

Kazemi et al. (1976) introduced the shape factor in double porosity simulators.
They obtained shape factors by discretization of pressure equation for single-
phase flow using the standard seven point finite difference. Since then, this
shape factor formulation has been used in standard reservoir simulators.

. Thomas et al. (1983) presented another expression for the shape factor that
was validated by multiphase flow numerical simulations.

Lim and Aziz (1995) suggested that the shape factor depends on the geometry
and physics of pressure diffusion in the matrix. Here, Hassanzadeh and Pooladi-
Darvish showed that the shape factor also depends on the way the pressure
changes in the fracture.

17



Table I. Summary of the shape factor constants o L® found in literature

Investigator(s) Approach Fluid flow 1D 2D 3D Transient/
PSS+

Warren and Root Geometrical Single phase 12 32 60 PSS

(1963)

Kazemi et al Numerical Single phase 4 8 12 PSS

(1976)

Thomas et al. Numerical Two phase — — 25 Transient

(1983)

Coats (1999) Analytical Single phase 12 28.45 4958 PSS

Coats (1999) Numerical Two phase 8 16 24 PSS

Kazemi and Gilman Analytical Single phase — — 29.61 Transient

(1993)

Lim and Aziz Analytical Single phase  9.87 19.74 29.61 Transient

(1994)

Quintard and Averaging Single phase 12 284 496

Whitaker (1996)

Bourbiaux et al. Numerical Single phase — 20 - PSS

(1999)

Noetinger et al. Random walk Single phase 11.5 27.1 -

(2000)

Penuela et al. Numerical Two phase 9087 - - Transient

(2002)

Sarda ef al (2002)  Numerical Single phase 8§ 24 48 Transient

*Pseudo-steady state transfer model.
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Methodology

Combining Equations (1) and (2) leads to the definition of the single-phase shape
factor

R..
Qm::‘—fn@m—m (1)
P
Om=—¢Pmcmp o ) (2)
ol
g:—(afj'“) L (5)
dt Nm( Py — Pr)

19



Determination of p., in Equation (5) requires solution of the matrix pressure subject
to the appropriate initial and boundary conditions. The governing partial differential
equation that describes the single-phase pressure diffusion in a matrix block is given
by Equation (3).

l 07
VE.”I]] = ( f”m ) . (3)
Nm \ Jf

This equation can be solved by the Laplace transform method with an arbitrary
boundary condition. The Laplace domain solution for matrix pressure P, (X, S), can
then be integrated to obtain the average matrix block pressure in the Laplace
domain P,.(s), as given below:

_ ] _
Pm:ﬂ/ melvm- (6)

F
IHI"I.TI'I.

Jp — _
t { : érxn } =5 Py — !-:'m{ol'- (7)

T P =P (0)]

— — + (8)
m (€ (Pm) — pr}




Solutions

Consider a slab shape matrix block of thickness h,,, with initial pressure p,
sandwiched by two parallel planes of fractures with pressure p; where in
general p;can be a function of time. The governing partial differential equation
and its associated initial and boundary conditions are given by:

%A Pm  0Apm

—S = Constant boundary condition 9)
dxp Jtp
._T,". La*** -: -
Apm(xp.tp) =0, =0 0<xp=<l, =t

Apm(xp.tp)=Aps, =0, xp=1.

{I}&[Jm{.'f[}. TD} ' "‘ I S "‘.; '|I _.malri:; t:lcn:k ‘ "

- =0, ip=>0, xp=0, ‘T'; ‘—T' el whs
IXD 2 | R n-l_ 3
where No flow boundary condition = — - — fracture- - —. ;-: —
Ap = p(xp. tp) — p;i. :.';".-*, : .j_-"r_::-_‘-_f.". BRI
xp=x/l. and tp= I;mf/fg, (10)

For a slab shaped matrix block we consider half of the matrix-block thickness

as the characteristic length. 21



AP, — 1 (hm)2 ﬂ.f)fCDSh(.k'[)\/E)q (an
Nm \ 2 s cosh /s

5 laplace variable with respect to ip

s’ laplace variable with respect to ¢
time [T]

D dimensionless time

Vin

_ 1 /] 2 Apetanh /s

APm= (““) prtanh /s (12)
Nm \ 2 s/s



Before we substitute for P, in Equation (8), we need to distinguish between the
Laplace transform parameters when transform is taken with respect to t and when
taken with respect to t, called s’ and s, respectively

= (”mf”g) S

) _ 407 Hs APy}
- {¢-1{APy}— Apr]

Equation (12) can be incorporated in Equation (13) to obtain

-1 { tanh J

2

m = M 1 {"_ tanh /s
hl 4 NG

m

ah

The product group oh,,? is dimensionless and will be called shape factor.
23



Governing Equation

E}zﬂpm JdApm

Ixd dtp

xp=x/l. and rD:nmr/s’E

IC & BCs
Apm(xp.p) =0,

Apm(xp. p) = Aps.
a&f}]]]{ﬁ'D. rD} _[}
dxp '

p =0,
FD:}O, .XD:L

O<xp=<lI

Ip = 0, XD =0,

Table 1I. Matrix pressure and its average in slab shape for different boundary conditions

Matrix and
fracture BC

Constant

pressure py
Linear

decline, p;=
pill —at)a <1/t

Exponential,

—al

Pr = pic
Constant

flux, O,

=

Pp

[ pi | coshGp5) 1 (hp\2 [, (pr—p)tanhy5
s+scn}s]'lﬁ:| i;m(E) _s—|_ LN

P _ ﬂamshtrnﬁ] 1 (hm 2 _ﬂ P

X _.i_-’ cosh{ﬁ) ] m 7 ) I - Hgﬁﬂftanh \/E
B p (L - L) (sehinyd L (m)? _ﬂ_i(l — =)
5 Pils P~ cosh(/5) fm * 2 K 55 st

tanh /5]

_ﬂ o Qm;mﬁl coshixp D/¥) 1 (m)l _ﬂ . J'?[:nﬂl Om

5 dpkm  5./5sinh 5 fm * 2 | s dkmp | 52




Table I1I. Matrix pressure and its average in cylindrical shape for different boundary

conditions
Matrix and fracture Py P
BC
R [ pi 4 (pr—pi) Io(ri/3) Ra [ pi | (pr=pi) 21(J5)
Constant pressure py | s + mﬁ‘w’?)] m | s + s h(ds)
- ' _ Ra | pi  pielplrpy® Ry [ p 2ep L ®
Linear decline, p; = m |5 T2 ] m |5 T AL
pill —at)a <1/t
; Ro [ _ ) (1 _ 1Y Io(py5) Ra (1 s )2 o)
EKpGﬂEﬂtlﬂl. mm | s pl(s s—cr) I (/5) mm | s 5 (1 .i—cr) VE ()
pr=pie ™
Ri [ pi _ (BarQn '\ hirpys) R [ Rt \ Qm
CDnStaﬂt ﬂl]){.. Qm Mm | & ( 2kmp s+/511 (/) Tm | ¥ 2Zkmp 52
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Table 1V. Matrix pressure and its average in spherical matrix block for different boundary
conditions

Matrix and P P
fracture BC
Ry [ pi , (pe—pi) 1 sinh(rp./5) R’ [ n ‘Fr pi) 3
Constant m | s + o S T } m | ++ ‘cc-thf }]

pressure py

- Ry [pi_ pi e 1 sinh(pys) Ry [pi_ pi e L
Linear mm | s 52 s rp  sinhs . s s coth/s Vs

decline, py=
pill —at)a <1/t

- R%—, __1 P l . 1 [ b]l'lh{.l"”.'.-"'_]l Ff_]-'-:l A jpi &
EXDGHEH“HL Mm | S NG (.5' .5'+n:e') rp  sinh 5 MTm | ¥ 5.5 (1 s—q:r)
—at |
P = pi€ (CDth VS — ﬁ”
Cﬂﬂﬂtﬂﬂt R%-, P R%-,,u@m 3sinhirp./s) R_r:u P R%l,u ) LG
m 5 kmp {coﬁh Jr _W]H sinh ﬁ] Mm | ¥ kmp | s*
flux, On
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The results show that not only the transient
values of shape factor depends on fracture
pressure regime but also the late time values
of shape factor depends on how pressure
changes in the fracture.
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Constant flux

The low and high stabilized values of
shape factor are roughly 20% apart.
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Figure 1. Shape factor constant for slab shape matrix block subject to different
boundary conditions. 27
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Figure 2. Shape factor constant for cylindrical shape matrix block subject to differ-
ent boundary conditions.
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Significance of the Results

»>It is found that depending on the boundary condition two stabilized shape factor
constant can be obtained for each geometry, which could be 20-40% apart.

»Results also reveal that the time to stabilization depends on the boundary condition
imposed on the matrix block.

»It was shown in Figures 1-3 that the different stabilized values can be obtained by
applying an exponential boundary condition with various a exponents, where large
values of the exponent give the smaller stabilized value of the shape-factor constant.

Table V. Shape factor constant for different geometry matrix block subject to different
boundary conditions

Type of boundary condition Shape factor constants, oL’

Slab Cylindrical Spherical
Constant fracture pressure 9.87 18.2 25.65
Exponential, a=1 0.87 18.2 25.65
Exponential, a =0.0001 12 25.13 39
Linear, all a 12 25.5 39
Constant flux 12 25.13 39

30



»The stabilized value of the shape-factor constant is usually used in the
traditional double porosity model. This can cause the following two types of
errors:

(1) the matrix-fracture transfer would be underestimated at early times,
because Figures 1-3 show that at early times, the actual value of
shape-factor constant is larger than the stabilized value.

(2) Depending on the stabilized value of the shape factor chosen, the
calculated value could be significantly different even at late times.

What is the magnitude of the error if one uses the stabilized value of shape
factor instead of its transient value?

»The relative errors as the difference between the flow rates as calculated using

the transient shape-factor and the stabilized-shape factor divided by the rate
using the transient-shape factor.

31
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Figure 4. Relative error for a slab shape matrix block subject to different boundary
conditions.
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Time Variability of Boundary Conditions

»The time variability of boundary conditions can be accounted for by using the
Duhamel’s theorem.

»In theory a linear pressure decline in the fracture can be modeled by an infinite
number of infinitesimal step changes and application of the Duhamel’'s theorem to
calculate the pressure and fluid efflux.

kmp
Om= Z o(Pm— Pr), (1)
_ dAP; _
- jo ——alt =7 dr
ap
Om=—PmCmp ( ‘; m) ’ (2)
ot

Using Equations (1) and (2) assuming the matrix block behaves as a lumped
system, the pressure change in the matrix block can be described by the following
ordinary differential equation

d pp,

dt

_h
—

+YPm=VPs (1

where Y = ’{‘-mﬁ/ AP Cmy ( l 6) 35



We solve the above problem using Duhamel’s theorem and its stepwise
approximation and compare the solutions. Solution for this ODE for con-
stant and linear (ps=p;(l —a'tp). o’ <1/tp) fracture pressure are given by
the following equations, respectively.

Pm(tp)=pr+ ( pi—p f) {-?_( . )’D (constant fracture pressure) (17)

4o’

(l — e—”T'f‘a)} (linear fracture pressure)

Pm(tp) = pi !(1 —a'tp) +
(18)

772

The average matrix pressure and fluid efflux for a linear fracture pressure can be

obtained by superposition of the constant fracture pressure solutions.

36



Conclusions

»The matrix-fracture transfer shape factor depends on the pressure regime in the
fracture and how it changes with time. Depending on the pressure regime in the
fracture a range of stabilized values can be obtained. The upper value is obtained
from a slow (linear or exponential) pressure depletion in the fracture and the lower
bound by a fast depletion in the fracture.

» The time variability of the fracture boundary condition can be accounted for by the
superposition solution of the constant fracture pressure only through a large number
of pressure steps.

»The boundary condition dependency of a shape factor can be characterized by
applying an exponential-decline boundary condition with varying decline exponents,
where fast declines lead to a smaller value of the shape-factor constant. A range of
shape factors can be obtained by assigning different exponents.

»>It is shown that using the stabilized shape factor introduces large errors in the rate
of matrix-fracture transfer by fluid expansion at early and late times.

»For single-phase flow applications, using the shape factor is meaningful when it is
derived based on an appropriate geometry, physics, and boundary conditions.
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Appendix
Duhamel’s Theorem

38



Superposition

"

Figure 3-5. Hypothetical case of varying g versus time.
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Let qgy=0and =0
q; = the mean flowrate fromt=0tot = t;
gy = the mean flow rate fromt =t tot = t;
qy = the mean flow rate fromt = g to t = t3

i ,

(Qo-1 = the mean flow rate fromt = t,_sto t = t,_,
g, = the mean flow rate from t = t,_; to t = t,

162.6 B,
kh

Also let m’ =

then, Equation 1-22 can be superposed as follows:

AP, =m’ q; [log t, + 5]
APy = - m’ (q — qo) [log (ta — t) + §]
APy = —m’ (go — q) [log (t. — t5) + 5]

AP, = —m’ (gn-1 — qo) [log (tn — ta-1) + 5]

The sum AP = P; — P, is given by:

(3-5)
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P, -P, ,
' o {= m%{é{(q} — o) log (ty, = to) + (g — q) log (t, — ;) +
L !

{q;]‘—f_J[gj lﬁg {tn_tﬂ} * oot {qn '_q:l—l} IDE Etn '_tn—l}]

f—

+m's (3-6)

Equation 3-6 is the multirate flow equation, In this equation, the rate-time
function, RTF, is defined by:

1
RTFI:]— (a1 = qo) log (t, — tg) + (gz — q) log (t. — t;) + (qz — Qo)

A

log (t, — t2) + ... + (Qn — qu-1) log {tn—tn,_fj] (3-7)

According to Equation 3-6, a plot of (P; — Py)/q, versus RTF is a straight
line of slope m’ and intercept equal to m’ s, from which s is determined,
Equation 3-6 can also be expressed as follows:

P, — P,
- =m’ :2;1—;{{% gs-1) log (t, — 1)}

+m5s (3-6)

where gy = 0
ty = 0

41



No Skin

=m’ iil—ql At log (t, - t,- }} (3-10)

Since for a given n both t, and q, are constants, then Equation 3-10 is
numerically equivalent to the following equation:

Convolution Integral

P[ = Pw "t d
w3 j qlﬂg (t,— t) dt (3-11)

G G o dt
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SUPERPOSITION, CONVOLUTION, AND DECONVOLUTION

It is evident that the multirate drawdown equation (Equation 3-10) was
derived by superposition. It has been shown that the convolution integral
equation (Equation 3-11} is an equivalent expression of Equation 3-10.
Therefore, we conclude that convolution and superposition are the same.

We could write Equation 3-11 as follows:

[P.——Pws{t}=m’ K;%lﬂg t—7)dr+m’ q, J (3-11)

Since q(t) and log (t) are continuous functions of time, the above equation
could also be written as:

P; — P.gt) =m"’ j;w log (r} dr+m" g, s

Note that the occurrence of m’ log(t = 7) and § in Equation 3-11 is due to
the fact that we have adopted the approximate logarithmic solution to the
radial flow Equation 1-26 for a homogeneous, infinite reservoir and con-

stant flow rate. Furthermore, in deriving Equation 3-11 we have assumed
that att = 0, g(0) = 0.



To generalize Equation 3-11, we first remove the requirement that
g(D) = 0, and we let P{t) be the unit influence function. It is the solution of

Equatmn 1-26, at r = 1, which corresponds to a unit I‘ﬂtﬂ of production.
Then,

AP(D) = q(0) P(t)
and
AP(Y) = [q(t) — q(0)] P(t - t;)

AP(tz) = [qfts) — qlts)] P{t — to)

g —

AP(ts

L

qits)] Pt = t5)

|—|

.-'_‘-\.

&'

—
I
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By superposition, the total pressure drop at the wellbore, AP = P, — P (1)

is simply the sum of the above expressions. Thus,

AP = q(0) P(t) + [q(t;) — q(0)] P(t — t;) + [q(ts)

or, AP = q(0) P(t) + Q{ti} - g‘:ﬂ} (t = 0) P(t — 1)
=
q{tﬂ} - q{tl} {tg _ tl} Pﬂ:
ts — 1

which in the limit becomes:

AP = g(0) P{t) + [; dlﬁé{ﬂ P(t - 7) dr

-

¥

(3-20)
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We now integrate by parts. Let

dP(t — 7)

= P(t - 1) then du = -
dr

dr

and dv = dg{ﬂ then v = g(7)

T

o B2

= q(HPO) ~ 40P + | q(7)

dP(t — 7)
d
dr §

Equation 3-20 can now be written

dr

Thus, [G :13?} P(t - 7) dr = q(7) P(t — 7)

AP = q(t)P(0) + j; q(7) % dr (3-21)
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Let AP, = P, — Py

then, when q(0) = 0, Equation 3-20 becomes

AP, = j:} dj(:} Bt - 7)dr b

Since q(t) and P(t) are continuous functions of t, the following result applies
to all the convolution integrals:

dP,(t - 7)

T

‘ dPy(r)

df=jl}q(tr-*r} i dr

|, 4
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Duhamel’s Theorem- Variable Rate

AP, = j

0 df

44 p i~

Duhamel’s Theorem- Variable Pressure

qm—_—-

S

t 0AP;
0 dr

q(t — 7) dr
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