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Important Features of Some Mathematical Models 
Describing Flow from Matrix to Fracture

Warren and Root (1965)

Analytical model.

Pseudo-steady state model.

Matrix flux is independent of a spatial position and is proportional to the 

pressure difference between matrix and fracture.

Simplifying the mathematical analysis of the flow problem.

S-shaped transitional curve with an inflection point.

The separation of the two parallel lines allows calculation of the 

storativity ratio.

Kazemi (1969)

Numerical model.

Unsteady state model.

Linear transitional curve with no inflection point.
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de Swaan (1976)

Analytical model.

Unsteady state model.

A convolution theorem gives the relationship between the source term 

and the pressure in the fracture medium. 

Linear transitional curve with no inflection point.

Najurieta (1980) 

Analytical model.

Unsteady state model.

Approximate solution to de Swaan model.

Only applicable for transient period (no boundary dominated period).

Linear transitional curve with no inflection point.

Streltsova (1983) 

Analytical model.

Pressure gradient model.

Matrix flux is proportional to the averaged pressure gradient throughout 

the matrix block.

Linear transitional curve with no inflection point. 5
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Shape Factor

There has been much discussion about the physical meaning and the

functional form of the shape factor.

From a practical view, it is a second order, distance-related, geometric

parameter that is used to calculate the mass transfer coefficient between

matrix blocks and surrounding fractures.

Shape factor is a function of fracture spacing (or intensity), and is not

inherently a time-dependent parameter, but several authors have attempted to

treat it as such.

Calculation of fluid transfer calculation between the matrix and fracture

network needs knowledge of:

Matrix and fracture porosity,

Matrix and fracture permeability,

Matrix and fracture compressibility,

Shape factor

Shape factor is often represented by the symbol ‘σ ’ in units of ft-2 . This term

is best understood from the Warren and Root paper (1963) in which they

idealized the system as a stack of “sugar-cubes”.
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The pseudo-steady state, analytically derived expression for the shape factor

(Kazemi and Gilman, 1993, Chang, 1993, Zimmerman, 1993, Lim, 1995) in terms of

fracture spacing (L) in the x, y, and z directions is:

The pseudo-steady state, numerically derived expression for shape factor (Kazemi, 

1976, Kazemi and Gilman, 1988) has a coefficient of 4 rather than Π.



12

This study shows that for a single-phase flow in a particular matrix block, the

shape factor that Warren and Root defined is not unique and depends on the

pressure in the fracture and how it changes with time.



Dual Porosity Models

pm

pf pf

Pseudosteady State Transient
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Pseudo-steady state (PSS) Transfer Model

The PSS model does not account for the pressure transient within the matrix.
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Transient Transfer Model

the matrix hydraulic diffusivity

This type of model is called a “transient transfer model” and does not use the

matrix-fracture transfer shape factor.

In the transient model, the fluid transfer rate between the matrix and fracture is

proportional to the pressure gradient at the matrix block surface as given by:
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Petroleum engineering literature shows that the shape factor remains a

controversial topic. A large body of research in the area of naturally fractured

reservoirs simulation is devoted to representing an accurate matrix fracture

exchange term (Kazemi et al., 1976; Thomas et al., 1983; Kazemi and Gilman,

1993; Lim and Aziz, 1995; Quintard and Whittaker, 1996; Noetinger and

Estebenet, 1998; Bourbiaux et al., 1999; Coats, 1999; Noetinger et al., 2000;

Penuela et al., 2002a,b; Sadra et al., 2002).

The shape factor is usually derived from a simple mechanism of pressure

diffusion with constant fracture pressure as a boundary condition, whereas the

physical exchange mechanism in fractured reservoirs is more complex.

To investigate the boundary condition dependency of shape factor, the

diffusivity equation is solved analytically in Laplace domain for different

depletion regimes in the fracture including:

1. constant flux at a matrix-fracture interface,

2. exponential depletion, and

3. linear pressure depletion schemes.
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Shape Factor- Literature Review

1. Barenblatt et al. (1960) introduced the classic dual porosity concept in the

early 1960s.

2. Warren and Root (1963) applied this concept to reservoir engineering,

principally for well testing applications. They used a geometrical approach to

derive the shape factors for one, two, and three sets of orthogonal fractures.

3. Kazemi et al. (1976) introduced the shape factor in double porosity simulators.

They obtained shape factors by discretization of pressure equation for single-

phase flow using the standard seven point finite difference. Since then, this

shape factor formulation has been used in standard reservoir simulators.

4. Thomas et al. (1983) presented another expression for the shape factor that

was validated by multiphase flow numerical simulations.

Lim and Aziz (1995) suggested that the shape factor depends on the geometry

and physics of pressure diffusion in the matrix. Here, Hassanzadeh and Pooladi-

Darvish showed that the shape factor also depends on the way the pressure

changes in the fracture.
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Methodology

Combining Equations (1) and (2) leads to the definition of the single-phase shape

factor
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Determination of pm in Equation (5) requires solution of the matrix pressure subject

to the appropriate initial and boundary conditions. The governing partial differential

equation that describes the single-phase pressure diffusion in a matrix block is given

by Equation (3).

This equation can be solved by the Laplace transform method with an arbitrary

boundary condition. The Laplace domain solution for matrix pressure Pm(x, s), can

then be integrated to obtain the average matrix block pressure in the Laplace

domain Pm(s), as given below:
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Consider a slab shape matrix block of thickness hm, with initial pressure pi

sandwiched by two parallel planes of fractures with pressure pf where in

general pf can be a function of time. The governing partial differential equation

and its associated initial and boundary conditions are given by:

Solutions

For a slab shaped matrix block we consider half of the matrix-block thickness

as the characteristic length.

Constant boundary condition

No flow boundary condition
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Equation (12) can be incorporated in Equation (13) to obtain

The product group σhm
2 is dimensionless and will be called shape factor.

Before we substitute for Pm in Equation (8), we need to distinguish between the

Laplace transform parameters when transform is taken with respect to t and when

taken with respect to tD called s’ and s, respectively
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Governing Equation IC & BCs
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Results

The results show that not only the transient

values of shape factor depends on fracture

pressure regime but also the late time values

of shape factor depends on how pressure

changes in the fracture.

The low and high stabilized values of 

shape factor are roughly 20% apart.
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Significance of the Results

It is found that depending on the boundary condition two stabilized shape factor

constant can be obtained for each geometry, which could be 20–40% apart.

Results also reveal that the time to stabilization depends on the boundary condition

imposed on the matrix block.

It was shown in Figures 1–3 that the different stabilized values can be obtained by

applying an exponential boundary condition with various a exponents, where large

values of the exponent give the smaller stabilized value of the shape-factor constant.
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The stabilized value of the shape-factor constant is usually used in the

traditional double porosity model. This can cause the following two types of

errors:

(1) the matrix-fracture transfer would be underestimated at early times,

because Figures 1–3 show that at early times, the actual value of

shape-factor constant is larger than the stabilized value.

(2) Depending on the stabilized value of the shape factor chosen, the

calculated value could be significantly different even at late times.

What is the magnitude of the error if one uses the stabilized value of shape

factor instead of its transient value?

The relative errors as the difference between the flow rates as calculated using

the transient shape-factor and the stabilized-shape factor divided by the rate

using the transient-shape factor.
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The time variability of boundary conditions can be accounted for by using the

Duhamel’s theorem.

In theory a linear pressure decline in the fracture can be modeled by an infinite

number of infinitesimal step changes and application of the Duhamel’s theorem to

calculate the pressure and fluid efflux.

Using Equations (1) and (2) assuming the matrix block behaves as a lumped

system, the pressure change in the matrix block can be described by the following

ordinary differential equation

Time Variability of Boundary Conditions 
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The average matrix pressure and fluid efflux for a linear fracture pressure can be

obtained by superposition of the constant fracture pressure solutions.
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The matrix-fracture transfer shape factor depends on the pressure regime in the

fracture and how it changes with time. Depending on the pressure regime in the

fracture a range of stabilized values can be obtained. The upper value is obtained

from a slow (linear or exponential) pressure depletion in the fracture and the lower

bound by a fast depletion in the fracture.

The time variability of the fracture boundary condition can be accounted for by the

superposition solution of the constant fracture pressure only through a large number

of pressure steps.

The boundary condition dependency of a shape factor can be characterized by

applying an exponential-decline boundary condition with varying decline exponents,

where fast declines lead to a smaller value of the shape-factor constant. A range of

shape factors can be obtained by assigning different exponents.

It is shown that using the stabilized shape factor introduces large errors in the rate

of matrix-fracture transfer by fluid expansion at early and late times.

For single-phase flow applications, using the shape factor is meaningful when it is

derived based on an appropriate geometry, physics, and boundary conditions.

Conclusions
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Appendix 

Duhamel’s Theorem
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Superposition
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No Skin

Convolution Integral
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Duhamel’s Theorem- Variable Rate

Duhamel’s Theorem- Variable Pressure


