Flow in Porous Media

Module 2.a
A quick review on method of separation of variables
and Laplace transformation for solution of PDEs
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Non-Steady State Filtration in Infinite Acting Systems
Radial Systems with Constant Production Rate

Line-source: the well has zero radius Finite-wellbore
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Non-Steady State Filtration in Infinite Acting Systems

Radial Systems with Constant Production Rate
Solution method: Combination of variables
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Based on this assumption we get:
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Substituting Eq. 3.39 - Eq. 3.41 into Eq. 3.30 yields:
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To solve Eq. 3.42 the boundary conditions must also be transformed. Using Eq. 3.38 the
B.C. in Eq. 3.33 can be transferred into:

p=p; == =0 (3.43)

Using Eq. 3.38 and Eq. 3.40. the first B.C. in Eq. 3.32 can be transformed as well to:

dp _  ugB "
o Axhh (3.44)
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Eq. 3.42 can be written as:
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then Eq. 3.46 becomes:
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By separation of variables:
d Y
"y = 3.48
a 4 (3.48)

By integrating Eq. 3.48 yields:

Iny—Ind, = —i (3.49)
where 4; is a constant of integration, taking the exponential of Eq. 3.49

y=dpe " (3.50)
or

z% = Ale_zﬂ (3.51)

and the second substitution with the notation £ = z/4 and by separation of variables. Eq.
3.51 becomes:
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Integrating Eq. 3.52 yields:
oo E—E_.
p;—p = 4, j —d:3 (3.53)
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Using Eq. 3.51 and the boundary condition in Eq. 3.44 and assuming that r,, is very small
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s0 that the condition fm‘ = 0 15 valid. Al can be determined as:

_ _lgB ‘.
7 ynnk (3:54)

The integral in Eq. 3.53 cannot be solved in a closed form. This integral is defined as the
so called exponential integral and its numerical solution can be found in any mathematical
handbook:

Ei(—x) = —| £=asz (3.55)
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Figure 6-19. The E-function. [After Craff, Hawkins, and Terry, 1991




Finally Eq. 3.53 becomes:

Pi=Pr-0) = ok ik

The calculation of the pressure drop at the well bottom is made by substituting »

and p(r.f) = P, AL into Eq. 3.56:
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= }LLBE-[_’L
Pi=Puwr = yznk | 4Kr_J

3.2.2 Properties of the Ei-Function

The function —Ei(—z) is illustrated in Figure 3.4, In the vicinity of z = 0 the
TAYLOR-Series of —Ei(—z) is defined as:
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—Ei(-z) = —'f—lnz+:—‘:—.... (3.58)

where y = 0, 57722 is the EULER-Constant.

If z« 1 the series in Eq. 3.58 will have very small values in terms higher than the third
term, which makes the following approximation valid:

—Ei(-z) = -0,57722—-Inz (3.59)

then:
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Analytical Solution of PDEs
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u+Cxy)—u=q¢ u,—u,—u.x, (101)
(X,¥) o d{ x oy }’J

A(%Y) %u +B(x,y) oy

Au_+Bu _+Cu_=0o(u,u,u,X¥) (10.2)

u}m=iu %zﬂfﬁyu and 11W=iu

5?;3 ayﬂ
The most common PDE classification scheme identifies the PDE as either a
hyperbolic, parabolic, or elliptic equation depending on the sign of the term B*-4acC

(which can vary with x and y). In particular, we have the following classification
scheme:

(>0 hyperbolic
B'-4AC{=0 parabolic
| <0 elliptic




These types of systems give rise to significantly different characteristic behavior
and, as mentioned above, the solution scheme for each method can also differ.
An example of each type of PDE is summarized below:

Application Differential Value of Sign of PDE

APP Equation Coefficients B* - 4AC Class
Wave u, =c'u A=1,B=0,C=—a’ positive hyperbolic
Equation & = ’ ’ -
LR u, =oa’u A=0,B=0,C=-¢" zZero parabolic
Equation
Poisson’s : .

. u, +u_=f(x, A=1B=0,C=1 e oativi -

Equation = T Uy, = 1(X,) negative elliptic




Introduction to the 1-D Heat Equation

0 X L

Fourier’s law of heat transfer: rate of heat transfer proportional to negative
temperature gradient,

Rate of heat transfer . du
= —Ko— (1)
area dr

Governing Equation

du %u
ot o 2)
K

cp



Initial Condition and Boundary Conditions
Ou _ 0%u ——————————

Tt R "_‘);,‘3 f 1
C o 0 X L

To make use of the Heat Equation, we need more information:
1. Initial Condition(IC): in this case ,the initial temperature distribution in the
rod u(x,0).

2. Boundary Conditions(BC): in this case, the temperature of the rod is
affected by what happens at the ends, x =0,l. What happens to the
temperature at the end of the rod must be specified. In reality, the BCs can be
complicated. Here we consider three simple cases for the boundary at x =0.

(I) Temperature prescribed at a boundary. For ¢ > 0,

Drichlit BC u(0,t) = w1 ().

(IT) Insulated boundary. The heat flow can be prescribed at the boundaries,
. Ou

Neumann BC —Ko— (0,t) = ¢4 (1)

Ja

(III) Mixed condition: an equation involving u (0.t), du/dz (0,t), ete.



Example 1: Consider a rod of length | with insulated sides is given an initial
temperature distribution of f (x) degree C, for O <x<l. Find u(x,t) at subsequent
times t> 0 if end of rod are kept at 0°C. The Heat Eqgn and corresponding IC

and BCs are thus

o

0 . i
PDE: MWy = Kl 0<z<l. (4)
IC: u(z,0)=f(x), 0<x<l, (5)
BC: w(0,t) =u(L,t) =0, t > 0. (6)

Physical intuition: we expect © — U as { — oc.



Non-dimensionalization

du ﬁc”fzu
ot  or2

(2)

Dimensional (or physical) terms in the PDE (2): k, I, z, t, u. Others could be
introduced in IC and BCs. To make the solution more meaningful and simpler. we
group as many physical constants together as possible. Let the characteristic length,
time and temperature be L,, T, and U,, respectively, with dimensions [L,] = L,
IT.] =T, [U.] = U. Introduce dimensionless variables via

t 2

t= T (5, 5)=

i T
r=—,
L.

The variables z, £, @t are dimensionless (i.e. no units, [#] = 1). The sensible choice
for the characteristic length is L. = [, the length of the rod. While z is in the range
0<z<l, zisin the range 0 < < 1.

The choice of dimensionless variables is an ART. Sometimes the statement of the
problem gives hints: e.g. the length [ of the rod (1 is nicer to deal with than [, an
unspecified quantity). Often you have to solve the problem first, look at the solution,
and try to simplify the notation.



From the chain rule,

u duot U, di

= TgGe Lo

= 28 _ et U0

* T 8z ozor L.ok
A

Yo = 2022

Substituting these into the Heat Eqn (4) gives

o T.k 0%
of L2 912

To make the PDE simpler, we choose T, = L?/k = I?/k, so that

ou 0% ;
—lf=—Au, R L350,
ot  o0z?

The characteristic (diffusive) time scale in the problem is T. = I?/k. For different
substances, this gives time scale over which diffusion takes place in the problem. The
IC (5) and BC (6) must also be non-dimensionalized:

-

IC: w(z,0) = f(2), 0<z<l,
BC: a(0,t) =a(1,t) =0, t>0.



Dimensionless Problem

Dropping hats, we have the dimensionless problem

PDE: Uy = Usr, 0<zx<l,
IC: u(z,0) = f(z), O<coe<l,
BC: u(0,¢) =w(l,t)y=10, 350,

where x, t are dimensionless scalings of physical position and time.

Separation of Variables

We look for a solution to the dimensionless Heat Equation (8)

u(z.t) = X (z) T (t)

(10) of the form

(11)



Separation of Variables

Take the relevant partial derivatives:
e = X" (@) T (), w=X(@)T(t)

where primes denote differentiation of a single-variable function. The PDE (8), u, =

Urr, Decomes
(g X"(z)

Tt X(z)

The left hand side (Lh.s.) depends only on ¢ and the right hand side (r.h.s.) only

depends on . Hence if ¢ varies and z is held fixed, the r.h.s. is constant. and hence
T"/T must also be constant, which we set to —A by convention:
() X"(x)

T(t) N X (z) === A = constant. (12)

The BCs become, for ¢ > 0,

u(0,t) = X(0)T(t)=0
u(l,t) = X(Q)T()=0

Taking T (t) = 0 would give u = 0 for all time and space (called the trivial solution),
from (11), which does not satisfy the IC unless f(z) = 0. If you are lucky and
f(z) =0, then u = 0 is the solution (this has to do with uniqueness of the solution,
which we’ll come back to). If f(z) is not zero for all 0 < z < 1, then T'(¢) cannot be
zero and hence the above equations are only satisfied if

X (0)=X(1)=0. (13)



Solving for X(x) — Case(1)

We obtain a boundary value problem for X (z), from (12) and (13),

X"(z)+AX(z)=0, O<z<l, (14)

X (0)=X(1)=0. (15)

This is an example of a Sturm-Liouville problem (from your ODEs class).
There are 3 cases: A >0, A < 0and A = 0.
(i) A < 0. Let A = —k® < 0. Then the solution to (14) is

X = Ae** + Be™*®
for integration constants A, B found from imposing the BCs (15),
X(0)=A+B=0, X (1) = Ae* + Be* =0.

The first gives A = —B, the second then gives A (¢?* — 1) = 0, and since |k| > 0 we
have A = B = u = 0, which is the trivial solution. Thus we discard the case A < 0.



Solving for X(x) — Case(2, 3)

(ii) A= 0. Then X (z) = Ar + B and the BCs imply 0= X (0)=B,0=X (1) =
A, so that A = B = u = 0. We discard this case also.
(iii) A = 0. In this case, (14) is the simple harmonic equation whose solution is

The BCs imply 0 = X (0) = A, and Bsin VA = 0. We don’t want B = 0, since that
would give the trivial solution u = 0, so we must have

Fr e "

Thus- for any nonzero integer n (n = 1,2.3,...). We use subseripts
to label the particular n-value. The values of A are called the_ of the
Sturm-Liouville problem (14),

A =02, n=123,..

and the corresponding solutions of (14) are called the_of the Sturm-Liouville

problem (14),
R R a

We have assumed that n > 0, since n < 0 gives the same solution as n > 0.




Solving for T (t)

When solving for X (z), we found that non-trivial solutions arose for A = n?z2 for all
nonzero integers n. The equation for T (¢) is thus, from (12),
T (&) = —n°n*T (t)
and, for n. the solution is
T BV n=1;2.3 .. (19)

where the ¢,’s are constants of integration.



Full Solution u(x,t) - Principle of Superposition

Putting things together, we have, from (11), (18) and (19),

where B, = ¢,b,. Each function u, (z,t) is a solution to the PDE (8) and the BCs
(10). But, in general, they will not individually satisfy the IC (9),

Uy (z,0) = Bsin (nnz) = f(z).

We now apply the principle of superposition: if u; and us are two solutions to the

PDE (8) and BC (10), then ¢yu; + cous is also a solution, for any constants ¢;, ¢.
This relies on the linearity of the PDE and BCs. We will, of course, soon make this

more precise....



Full Solution u(x,t) - Fourier Sine Series

Since each u, (z,0) is a solution of the PDE, then the principle of superposition
says any finite sum is also a solution. To solve the IC. we will probably need all the
solutions u,, and form the infinite sum (convergence properties to be checked),

o0

u(z,t) = Z uy (@) - (21)

n=1

u (x,t) satisfies the BCs (10) since each u, (z,f) does. Assuming term-by-term dif-
ferentiation holds (to be checked) for the infinite sum, then u (z,t) also satisfies the
PDE (8). To satisfy the IC, we need to find B,’s such that

f(z)=u(z,0)= Z U, (z,0) = Z B, sin (n7z). (22)

n=1 n=1

This is the Fourier Sine Series of f (z).




Full Solution u(x,t) - Orthogonality Relation

To solve for the B,’s. we use the orthogonality property for the eigenfunctions

sin (n7z),

_61nn 23
1/2 m=n 2 (23)

1
/ sin (mmz) sin (nmz) dr =
0

{ 0 m#n 1

where §,,,,, is the kronecker delta,

: 0 - ,
5 = { m # n

1 m=n
The orthogonality relation (23) is derived by substituting

2sin (mnz) sin (nmz) = cos ((m — n) 7zx) — cos ((m + n) 7x)

into the integral on the left hand side of (23) and noting

1
/ cos (mnz) dx = dpp.
0

The orthogonality of the functions sin (n7z) is analogous to that of the unit vectors
X and ¥ in 2-space; the integral from 0 to 1 in (23) above is analogous to the dot
product in 2-space.



Full Solution u(x,t) - Solve for B,’s

To solve for the B,’s, we multiply both sides of (22) by sin (mmz) and integrate
from 0 to 1:

/ 1 sin (mnz) f (z)dx = i B, / 1 sin (nmz) sin (mnx) dx
0 = 0
Substituting (23) into the right hand side yields
o _ — 1
fo sin (mnz) f (z)dz = ; 8"50'""

By definition of é,,,, the only term that is non-zero in the infinite sum is the one

where n = m, thus

1
/ sin (mrz) f (z)dr = ‘le
A 2
Rearranging yields
1
By = ‘2/ sin (mnz) f (z)dz. (24)
0
The full solution is, from (20) and (21),
u(z,t) = Z B, sin (nwz)e ™™, (25)

n=1
where B, are given by (24).
To derive the solution (25) of the Heat Equation (8) and corresponding BCs
(10) and IC (9), we used properties of linear operators and infinite series that need

justification.



The Classical Separation of Variables Method

* It can only be applied directly to linear homogeneous problems with homogeneous
boundary conditions.

» The basic idea is to assume that the original function of two variables can be written
as a product of two functions, each of which is only dependent upon a single
independent variable.

» The separated form of the solution is inserted into the original linear PDE and, after
some manipulation, one obtains two homogeneous ODEs that can be solved by
traditional means.

« If the original boundary conditions (BCs) for the problem are homogeneous, one of
the ODEs will give a Sturm-Liouville type problem, which leads to a set of orthogonal
eigen-functions as solutions.

» Because the original PDE is linear, its final solution is formed as a linear
combination of the individual solutions - which gives rise to a solution written in the
form of an infinite series.

« A final condition imposed on the problem (either an initial condition or a remaining
BC that has not yet been used) is used to determine the unknown expansion
coefficients in the infinite series solution. Since the basis functions are orthogonal,
these coefficients are readily determined.

* The analytical solution is complete once the coefficients have been determined.
However, since the solution is still written in the form of an infinite series expansion, it
is often evaluated and plotted using computer techniques - thus completing the
overall problem.



Example : Cooling of a Rod from a Constant
Initial Temperature

Suppose the initial temperature distribution f (z) in the rod is constant, i.e. f ()
ug. The solution for the temperature in the rod is (25)

x.
s — 272t
=E B, sin (nwz)e ™™,
n=

O
0 X L
where, from (24), the Fourier coefficients are given by
1 1
e 2/ sin (nwz) f (z) dox = 2110/ sin (n7x) dz.
0 0
Calculating the integrals gives
1
: cos(nm) — 1 2 0 n even
B, =2ug | sin(nmx)dr = —2uqg : = =—((=-1)"—1) =1 ,
0 nmw nw —L nodd
In other words,
4y
Bs, =0, By e
Sk = (2n—1)7
and the solution becomes
4ug — sin ((2n — 1) 72) -
exp(—(2n—1)"77t).
2. (@n=1) p (= )" m°t)
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Figure 1: Spatial temperature profiles u(z,tp).



TABLE 1-2 The Solutica X{f_, ), the Norm Mf.) and the Eigenvalues f§_ of the Differential Equation

Subject to the Boundary Conditions Shown in the Table Below

4Xtx

dx?

+ fiX(x)=0 in

D<x<lL

Boundary Boundary .
Condition Condition : Eigenvalues f,'s are
No. atx=0 atx=L X(B.x) 1IN Paositive Roots of
ax F) A I Ha) ]" . © BAH,+Hy)
—_—— = _— - H S | | H L+ +H 1a st ¥
JI+HIX o ‘x"Hzx 0 ’-“’-“" |“le [ﬁ*" :’( ﬁ.’,"’H: i nf.L ﬁi—HpH;
dXx o X ' B+ H} )
2 —E+H,X-0 -E-ﬂ ouf__[l.-x] 21{’:4‘”3"1": Batanf L=H,
dx ] . g+ H;
3 -+ HX=0 Xw=0 sin p L ~ x) G+ M)+ H, Bucotf.L=~H,
dx ax . B+ H3
“© =70 o Xm0 b L+ H)+H, Aoap. L=ty
2 Y By =0 ~ sinfL=0"
5 X _y X _o *cos fx I,‘“p"’m‘l.h"
dx dx
' 2 cosf L=0
dx
x . g+ B BacotBuL=—Hy
7 X=0 5 HHX=0 sin fx L2+ H})+H,
: 1 cosf L=0
dx . z
- —=0 sin fx
8 X=0 x L
. 2 sl =0
9 X=0 X=0 sin fx L

“For lﬁMuh-Ok#HWMw X=1



Introduction to Laplace Transforms

*The method of Laplace transform has been widely used in time-dependent heat
conduction problems, because the partial derivative with respect to the time-
variable can be removed from the differential equation by Laplace

transformation.

Definition
LIf(t)] = f(s) = / e “SLE(t)dt, for s > 0. (1.1)
J0O

Linear operator

Llaf + bg| = alf] + bL]g]

*Conditions for the existence of Laplace transform:
=Function F(t) is continuous or piecewise continuous in any interval between t; and t,

for ;>0

*The term t™|F{t)| is bounded as fapproaches to O- for some number n when n<1,

=Function F(t) is of exponential order, namely e~¥*|F(t)| Is bounded for some
positive number y, as t approaches to infinity.



Some Examples

For f(t) =1, L[]l]= / Ae_S' dt = [—le—‘“] = 1
Jo

s Bl
- —St 1 —St - xl —5t l

For f(t) =t, L[t] = e Stdt = |——e 't| + G
JO S 0 JO S S~

dt’ dt di

For f(t) = €*, a constant,

il o | . i 1
Lle¥] = / e T dt = / e 5-at gy — [— e—(s_a-”] — . §>a.
Jo Jo

S—a 0 S—a

For f(t) = dy e [d_y] = / e-‘“@di = [G_Sty]ge-*-/ se Sydt = —y(0)+sy(s).
Jo Jo




Laplace Transform of the Derivative
Suppose that the Laplace transform of y(t) is Y(s). Then the Laplace Transform of

y'(t) is :
Ly (t)](s) = sY (s) — y(0)
For the second derivative we have
Lly"()](s) = Y (s) — s3(0) — 4'(0)

For the n'th derivative we have

L™ (®)](s) = s"Y (8) — s" 1y(0) — 8" 2 (0) — ... — ™ 7(0)

Derivatives of the Laplace Transform
Let Y(s) be the Laplace Transform of y(t). Then

LIy ()(s) = (~1)" T (s)



Table of Laplace Transforms

o
o(p) = [ e-?tu(t) dz.
0

WE write g = +/(p/x). xand = are alwaysreal and positive. aand k areunrestricted.

B(p) v(t)
1 % 1
2 y v> —1 A
vl Tv+1)
1 —af
3 P¥a °
. 2
4 p2+w3 sin wi
D
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6. &—0% L eaant
PN )
=9z K\t 2] 4kt
7 T (;t) g
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, o erfc ;—— 2‘/( 3
e Xt __
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B — ) e—xtaxt
10. P ‘ (t+2 )erfc 2 J(t) :l‘(m‘) e
e~
11, -Z;I‘:-*—;‘, n = 0, 1; 2’--- (4t)iﬂl”erf0 24( t)
; B A3 +xihs
12. q_+h (1;) e~ Tt __ pycehxtriht
 exf {5t
13. sl Kehettht erfc{ +h4(xz)}
q(g+h) 24(«ct)
B _]_'_ z _l ha-+xthe
e HaEh) PRl N A
m .
X erfe {m"}* h\/('d)}
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1 ey s
+‘%,e*‘+“"’erfo‘m:—;—‘—)+h,/(xt)
16. g?i“%ﬁ‘) (—__i‘i‘-)-;.c‘""”erfc{w%‘-‘s-{»-h\/(u)}—
—(T",,—,—Sn (=2t irorfo 5y
17. F:-:F.ﬁ')‘ -n(-&’f)‘rwuwx(um:rw«w
xorfo’z—ﬁ;i»l-h\/(nt)
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Numerical Laplace Inversion Methods

H. Hassanzadeh, M. Pooladi-Darvish / Applied Mathematics and Computation 189 (2007) 1966—1981

Using the Laplace transform for solving differential equations, however, sometimes
leads to solutions in the Laplace domain that are not readily invertible to the real
domain by analytical means. Numerical inversion methods are then used to
convert the obtained solution from the Laplace domain into the real domain.

«Some Numerical inversion methods:
*Stehfest’s method: It is used in many engineering applications is easy to implement
and leads to accurate results for many problems including diffusion-dominated ones and
solutions that behave like e? type functions. However, this method fails to predict e*
type functions or those with an oscillatory response, such as sine and wave functions.

«Zakian’s method: Zakian’s algorithm is accurate for e*’ functions, diffusion problems,
and fractional functions in the Laplace domain.

*Fourier series method : the most powerful but also the most computationally
expensive.

*Schapery’s method: It is an analytical inversion method, may be used to estimate the
global behavior of the solution before applying a numerical inversion method.



Stehfest’s Method

This numerical Laplace inversion technique was first introduced by Graver [4] and its algorithm then
offered by Stehfest [5]. This method has been used extensively in petroleum engineering literature [6].
Stehfest’s algorithm approximates the time domain solution using the following equation [5.6]:

n

In2 In2
1) =223 v (S21), ®)

where V; is given by the following equation:

min (i3) (841) (g
(&) okl 05
) k»-%—;ly (& — k)1 —k)!(2k — 1)1 :

The parameter n is the number of terms used in the summation in Eq. (3) and should be optimized by trial and
error. Increasing n increases the accuracy of the result up to a point, and then the accuracy declines because of
increasing round-off errors. An optimal choice of 10 < n < 14 has been reported by Lee et al. for some prob-
lem of their interest [6] This method results in accurate solutions when the time function is in the form of ¢ .

It is very simple to implement, but it leads to inaccurate solutions for some functions.



Zakian’s method

Zakian's method [7,8] approximates the time domain function using the following infinite series of weighted
evaluations of domain function [9]:

1(0) :%Zn:Re{K,F(%)}. ()
i=|

The constants K; and «; for n = 5 are given in Table 1.

This method is fast and easy to implement, and there is one free parameter, », to be determined. The param-
eter n should be optimized to obtain accurate solutions. Zakian’s method is suitable for time domain solutions
that have a positive exponential term, ¢'. The method requires using complex arithmetic. Lee et al. [6] found
that an accurate solution is obtained in a well-testing application of single well pulse testing when n = 10.

Re real part of a complex number
§ Laplace variable
Table 1
Five constants for « and K for the Zakian method [10]
i x K
12.83767675 + j1.666063445 —36902.08210 + j196990.4257

L B ek D =

12.22613209 + j5.012718792
10.93430308 + j8.409673116
B.776434715 4 j11.92185389
5.225453361 + j15.72952905

+61277.02524 — j95408.62551
—28916.56288 4 j18169.18531
+4655.361138 — j1.901528642
—118.7414011 — j141.3036911




Fourier Series Method

Dubner and Abate [10] were the first to use the Fourier series technique for the Laplace inversion. The tech-
nique 1s based on choosing the contour of integration in the inversion integral, converting the inversion inte-
gral into the Fourier transform, and, then, approximating the transform by a Fourier series. This method
approximates the mversion integral using the following equation:

where
j=v-1. (6)

The parameters @ and n» must be optimized for increased accuracy. Lee et al. [6] suggested values of atf between
4 and 5.



Schapery’s method

Schapery’s method [11] 1s a simple analytical inversion technique that is very simple to implement. It leads
to approximate solutions, and therefore is suitable for the initial evaluation of the time domain solution: for
example, when the global behaviour of the time domain solution needs to be predicted. Jelmert [12] reported
an accuracy of 5% in a petroleum engineering application of linear flow. This method is applicable when the
Laplace domain solution is in the form of sF(s) = As™ and m < 1. In this case, the following relationship exists
between the real time solution and its form in the Laplace domain [12]:

f(t) = [sF(s)]_‘__%, (7)
where y = 1.781.
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