
Flow in Porous Media 
 
 
 
 

Module 2.b 
 Fundamental of Single Phase Flow in Porous Media 

  
SHAHAB GERAMI 



Outline 

• Mathematical treatment of engineering problems 

• Relations of Diffusive and Convective Flow 

• Steady State Flow Behavior and Solution 

• 1-D Radial Steady State Flow 

• Time-dependent Processes without Spatial Variation 

• Development of Hydraulic Diffusivity Equation 
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• van Everdingen- Hurst Constant Terminal Rate Solution 
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Mathematical Treatment of Engineering Problems 

Step-1: The expression of the problem in mathematical language (formulation) 

– The key step in formulation of the problem is expression of conservation laws 

– It frequently involves setting of a differential equation 

 

Step-2: The appropriate mathematical operations (end up with solution of the PDE)  

 

Step-3: The interpretation of the results (from behavior of the solution) 

 

A quantitative description of a physical process always requires a 

mathematical  formulation. These mathematics aim at approximating these 

processes in a more or less sufficient way, but they will always refer only to 

the most important aspects of the process. These mathematics are 

summarized by the term mathematical model. 



Relations of Diffusive and Convective Flow 
• Flow of heat and fluid 

– Diffusive (conductive): A potential (T, P,C,…) is transferred by diffusive 

flow (molecular movement) 

• Example: Molecular diffusion is the resulting net transport of 

molecules from a region of higher concentration to one of lower 

concentration.  

– Convective: Convective transport occurs when a constituent of the fluid 

(mass, energy, a component in a mixture) is carried along with the fluid 

(bulk movement of a fluid) 

In the general case, it is necessary to account for both mechanisms of transport. The flux of 

each component of a mixture is determined by its concentration and both the "bulk" fluid 

velocity (the average of all the components) and the "diffusion" velocity of the component. 



Steady State Flow Behavior and Solution 

• Steady State Flow:  A system is called steady state if none of the system 

variables change with time. 

 

• Darcy’s law for 1-D steady state flow 

 

 

• Separating variable and integrating lead to: 

 

 

 

• Behavior: Linear relation between pressure and distance 
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•Physical model 

•Simplifying assumptions 

•Single phase fluid flow 

•Fluid has a small compressibility 

•Darcy’s law applies 

•Flow is radial towards the wellbore 

•Rock and fluid properties are constant  

 

1-D Radial Steady State Flow 

pe 
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Mathematical model Steady State, Radial Flow 
•Choosing an appropriate element 

•Governing equation 
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Initial condition 
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Steady State Flow- Radial System 

Shape Factor: Depends only on system geometry 

Off-centered well 



Time-dependent Processes without Spatial Variation 

 
Lumped Analysis (zero-dimensional)  of Transfer Function in NFRs 

 

 
Here, we will consider problems where changes of a parameter such as 

pressure on a “ spatially averaged” is required.  

In general, the matrix releases the fluid into the fractures upon pressure 
decline (inter-porosity flow). Subsequently the fractures transport the fluid to 
the wellbore. 

source of 
fluid to 

fractures 

source of 
fluid to 

fractures 

transport of fluid 
along fractures 



• The linear, one dimensional, horizontal, one phase, 
partial differential flow equation for a liquid, assuming 
constant permeability, viscosity and compressibility 
for transient or time dependent flow: 
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dependent, we denote the flow as steady state. The 
equation then simplifies to: 
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Time-dependent Processes with Spatial Variation 

 



• Transient and steady state pressure distributions are illustrated graphically in the 
figure below for a system where initial and right hand pressures are equal: 

pressure vs. x
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 Development of Hydraulic Diffusivity Equation for Flow of 

a Slightly Compressible Oil and Its Solution Subjected to 

Different Boundary Conditions 

 

 

• Physical model 

• Simplifying assumptions 

• Mathematical model 

– Choosing an appropriate element 

– Governing equation 

– Mass balance 

– Momentum balance (Darcy’s law) 

– Equation of state  

– Initial and Boundary conditions 

• Infinite acting 

– Constant rate production  

– Constant pressure production 

• Finite acting 

– Constant rate production  

– Constant pressure production 

– Solutions 

• Laplace space solutions 

• Time domain solutions 

• Simplified solutions 

• Applications (Drawdown (single rate & multi rate), Reservoir limit test,  Build up, 

Superposition (time & space), …),  
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Physical Model 

Reservoir Engineering Model 
● Works 95+ percent of the time... 
● Why?  Pressure and volume averaging of 

reservoir properties. 
● When does it not work?  High contrast in 

reservoir properties. 

Actual Reservoir Model 
● Complex geology. 
● Complex fluid behavior. 
● Poor lateral (and vertical) continuity. 
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Simplifying Assumptions 
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Single phase assumption; pwf>pb 

Simplifying Assumptions- Single phase fluid 
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Mathematical Model-Governing Equation 
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•Mass balance 

 

 

 

 

•Momentum balance (Darcy’s law) 

 

 

 

 

•Equation of state  
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Hydraulic Diffusivity Equation 
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Hydraulic diffusivity equation determines the velocity at which pressure waves 
propagate in the reservoir. The more the permeability the faster the pressure wave will 
propagate. 
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Different Flow Regimes = Different Boundary Conditions 



Different Flow Regimes = Different Boundary Conditions 
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Mathematical Model-Governing Equation 
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Constant pressure  Finite acting 
(Bounded) 
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Dimensionless Hydraulic Diffusivity 

Equation 
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van Everdingen- Hurst Constant Terminal Rate Solution  

Bounded Cylindrical Reservoir  

(exact solution) 

 

1. Infinite cylindrical reservoir with line-source well 

2. Bounded cylindrical reservoir, pseudo steady-state flow  

Approximate Solutions 
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Infinite cylindrical reservoir with line-source well 
(approximate solution) 
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Infinite cylindrical reservoir with line-source well 
(Range of applicability) 
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First we must determine weather the Ei function solution is valid for the desired times. 
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Dimensionless Variables 
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Constant rate 

solution  

Infinite-acting reservoir 

 

 

Boundary dominated flow- approximate late time  
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Reservoir-Limits Test 

(Estimation of Reservoir Pore Volume) 
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Depletion Above the Bubble-point Pressure 

Constant pressure solution 
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Modified Bessel Differential Equation Bessel Differential Equation 
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Constant rate solution  

Infinite-acting reservoir 

 

 

Bounded reservoir 

 

 

Constant pressure solution  

Infinite-acting reservoir 

 

Bounded reservoir 
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Numerical Inverse Laplace Transformation 
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Numerical Inverse Laplace Transformation 
(Stehfest Algorithm) 



Superposition Principle 

A mathematical technique based on the property that solutions to linear partial 
equations can be added to provide yet another solution. This permits constructions of 
mathematical solutions to situations with complex boundary conditions, especially 
drawdown and buildup tests, and in settings where flow rates change with time. 

Linear diffusivity equation 

 Mathematically the superposition theorem states that any sum of individual solutions  
to the diffusivity equation is also a solution to that equation. This concept can be 
applied to account for the following effects on the transient flow solution: 

• Superposition in time 

– Effects of rate change 

• Super position in space 

–  Effects of multiple wells 

– Effects of the boundary 

 








