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Mathematical Treatment of Engineering Problems

A quantitative description of a physical process always requires a
mathematical formulation. These mathematics aim at approximating these
processes in a more or less sufficient way, but they will always refer only to
the most important aspects of the process. These mathematics are
summarized by the term mathematical model.

Step-1: The expression of the problem in mathematical language (formulation)
— The key step in formulation of the problem is expression of conservation laws
— It frequently involves setting of a differential equation

Step-2: The appropriate mathematical operations (end up with solution of the PDE)

Step-3: The interpretation of the results (from behavior of the solution)



Relations of Diffusive and Convective Flow

* Flow of heat and fluid

— Diffusive (conductive): A potential (T, P,C,...) is transferred by diffusive
flow (molecular movement)

« Example: Molecular diffusion is the resulting net transport of

molecules from a region of higher concentration to one of lower
concentration.

— Convective: Convective transport occurs when a constituent of the fluid

(mass, energy, a component in a mixture) is carried along with the fluid
(bulk movement of a fluid)
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Transport of a
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initial condition:
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to gradients in ]
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In the general case, it is necessary to account for both mechanisms of transport. The flux of
each component of a mixture is determined by its concentration and both the "bulk" fluid
velocity (the average of all the components) and the "diffusion” velocity of the component.



Steady State Flow Behavior and Solution

Steady State Flow: A system is called steady state if none of the system
variables change with time.

kA dp
Darcy’s law for 1-D steady state flow g=—

U dx

kAp —plx
Separating variable and integrating lead to: g=— P1 F”: 3'

[ X

Behavior: Linear relation between pressure and distance

_ .. _ q¢
plx) =p i




1-D Radial Steady State Flow

Physical model g
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*Simplifying assumptions
Single phase fluid flow
*Fluid has a small compressibility
Darcy’s law applies
*Flow is radial towards the wellbore
*Rock and fluid properties are constant



Mathematical model Steady State, Radial Flow

*Choosing an appropriate element

«Governing equation

Mass balance Input — Output = 0
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Initial condition

pP=p, t=0, r=r,
Boundary conditions
(p)rw = Pus
(p), = p.

Solution

( dpj m) p=C,In(r)+C,
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Steady State Flow- Radial System
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Time-dependent Processes without Spatial Variation

Lumped Analysis (zero-dimensional) of Transfer Function in NFRs

Here, we will consider problems where changes of a parameter such as
pressure on a “ spatially averaged” is required.

In general, the matrix releases the fluid into the fractures upon pressure
decline (inter-porosity flow). Subsequently the fractures transport the fluid to
the wellbore.
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Time-dependent Processes with Spatial Variation

* The linear, one dimensional, horizontal, one phase,
partial differential flow equation for a liquid, assuming
constant permeability, viscosity and compressibility
for transient or time dependent flow:

(- )

* If the flow reaches a state where it is no longer time
dependent, we denote the flow as steady state. The
equation then simplifies to:

o0°P

OX* =0




* Transient and steady state pressure distributions are illustrated graphically in the
figure below for a system where initial and right hand pressures are equal:

pressure vs. X

Left side
pressure
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Transient
solution

Initial and
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pressure




Development of Hydraulic Diffusivity Equation for Flow of
a Slightly Compressible Oil and Its Solution Subjected to
Different Boundary Conditions

. Physical model
. Simplifying assumptions
. : __ Mathematical model -

- Choosing an appropriate element

I_ Governing equation :
[ - Mass balance |
I - Momentum balance (Darcy’s law) I
I - Equation of state |
|~ Initial and Boundary conditions I
I . Infinite acting I
I - Constant rate production I
- Constant pressure production I
| . Finite acting
[ - Constant rate production :

Laplace space solutions
[ . Time domain solutions

. Applications (Drawdown (single rate & multi rate), Reservoir limit test, Build up,
Superposition (time & space), ...),
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Physical Model

<— Reservoir Engineering Model
® \Works 95+ percent of the time...

® \Why? Pressure and volume averaging of
reservoir properties.

® \When does it not work? High contrast in
reservoir properties.

<— Actual Reservoir Model
® Complex geology.
® Complex fluid behavior.
® Poor lateral (and vertical) continuity.



Simplifying Assumptions

Homogeneous

Isotropic

lgnore Gravity

Constant Temperature

Darcy's law applies

Single phase fluid

Radial flow

Totally penetrating vertical well
. Constant net pay, saturation
(aplar) - gradient in reservoir - is small
Constant wellbore storage

. Constant pressure throughout reservoir
attimet=20

Constant production rate
Closed circular reservoir

Model complexities will be introduced
as necessary
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OIL/IWATER

. Compressibility is small and constant
. Viscosity is constant

. Laminar flow
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Simplifying Assumptions- Single phase fluid
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Mathematical Model-Governing Equation

Mass balance

( ) ( ) A Production
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Fig. 9.1 Radial flow towards a well.

*Equation of state
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mass entering mass leaving
volume element | — | volume element
during interval Af during interval Af

rate of mass
= accumulation
during interval At

(Mass);, = Af[A Vo T g dr
where:

v = velocity of flowing fluid, ft/day
p = fluid density at (» + d»), Ib/ft*
A =area at (v + d¥)
At = time interval, days

The area of the element at the entering side is:

-'q'.i"+|:|.?' == 2."? l:‘-iliI + {I?']Jil?
Combining Equations 1.2.46 with 1.2.35 gives:
[Mass]y, = 27 At (r +dr)h(vo)y i

[1.2.44]

[1.2.45]

[1.2.46]

[1.2.47]

Mass leaving the volume element Adopting the same

approach as that of the leaving mass gives:
[Mass]ow = 27 Atk (vp)s

[1.2.48]

Total accumulation of mass The volume of some element
with a radius of # is given by:

V=nr'h
Differentiating the above equation with respect to » gives:
dl’
— =2k
dr
or:
dV = (Zxrh) dv [1.2.49]

Total mass accumulation during At = dV [ (o) ar — (@) ]
Substituting for dV yields:

Total mass accumulation = (27 #k)dr[(¢p)eear — (deht]
[1.2.50]

Replacing the terms of Equation 1.2.44 with those of the
calculated relationships gives:

2:‘.!';’?{.?‘ + d?}.ﬁt[q‘ﬁ;:]f_l_m — 215’??.’1&#(@5;?},-
= 2ari)dr[(@p)eear — (o]

Dividing the above equation by (27#h)dsr and simplifying
gives:

1 . , 1 o L
()dr [(r +dr) (vp)y 4 — 7ivp), ] = N [(br)eyae — (0]
or:

1 A o _ p
ol [rvpi] = = (¢p) [1.2.51]
where:

¢» = porosity
= density, lb/ft*
V' = fluid velocity, ft/day



The transport equation must be introduced into the conti-
nuity equation to relate the fluid velocity to the pressure gra-
dient within the control volume d 1. Darcy’s lawis essentially
the basic motion equation, which states that the velocity is
proportional to the pressure gradient 7p /9. From Equation
1.2.13:
kap

= (5.615) (0.001127) — —
1 ;

— (0.006328) 220 [1.2.52]

Ly

where:

k = permeability, md
1 = velocity, ft/day

Combining Equation 1.2.52 with 1.2.51 results in:

0.006328 & [k ap" i _
(_r,l” J_'P) = —[[,Jlll'] [1.2.53]
¥ ar a¥ dat
|I';' r;llri' r;L..I
_— JI']—(']—+ ) e []254]
ot o at ! dt

The porosity is related to the formation compressibility by
the following:

A
cr=1 ¢ [1.2.55]

@ ap
Applying the chain rule of differentiation to d¢/3¢:

l;{f‘l':!l ”n".'l'.l Hp

it ap dt
Substituting Equation 1.2.55 into this equation:

e o

p—— r_|,:’_‘

ot

Finally, substituting the above relation into Equation 1.2.54
and the result into Equation 1.2.53 gives:

. i 1) ; 3 ’ r; I';| )
Ulﬁlﬂb32,8_!(k ]r}_) _PMF_PWL [1.2.56]
¥ dr A e it dt

0.00632887 & /  ap ap dp '
[,x—r} F ( PT) = pher—+¢— [1.2.57]

Expanding the above equation gives:

ﬂﬂﬂhggg( ) P b 3pip
T ar VP

. rdp i
() o (%)

Using the chain rule in the above relationship yields:
Ut}uﬁszs( ) L, ;'gp+(—p) i
wllr dr " ¥ er

= pibey ( Zf ) +é (:_f) (%)

Dividing the above expression by the fluid density o gives:
o2 P R
0. nnhazs( ) { A (ﬁ) (lﬁ)}
¥y vt ar poap
LAY YE T
= iy ( oF ) + F (FTP)

Recalling that the compressibility of any fluid is related to its
density by:

_1%
o P



combining the above two equations gives:

visan(£)[ 2222 2]
o (2) ()

The term r[éip;’éir}z is considered very small and may be
ignored, which leads to:

0. mhszs( ) [ 4 1",*—;’} —plertoL  [1258]
i ¥oor af

Defining total compressibility, ¢, as:

€=+ 0q [1.2.59]

and combining Equation 1.2.57 with 1.2.58 and rearranging

gives:

A% N 1ap  dpe Op

ar2 oy ar 0,006328k ot

where the time £ is expressed in days.
Equation 1.2.60 is called the diffusivity equation and is

considered one of the most important and widely used

mathematical expressions in petroleum engineering. The

equation is particularly used in the analysis of well testing

data where the time ¢ is commonly reordered in hours. The
equation can be rewritten as:

a%p N 1ap  ¢ue,  ap
ar? oy oar 0.0002637k ot
where:

[1.2.60]

[1.2.61]

k= permeability, md
¥ = radial position, ft
1 = pressure, psia
= total compressibility, psi—!
f = time, hours
¢ = porosity, fraction
[t = viscosity, cp

Yy



Hydraulic Diffusivity Equation

1| o ( op
rjor\_ or

Hydraulic diffusivity equation determines the velocity at which pressure waves
propagate in the reservoir. The more the permeability the faster the pressure wave will
propagate.



Different Flow Regimes = Different Boundary Conditions

Pseudo-Steady State Flow

e
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Different Flow Regimes = Different Boundary Conditions

Boundary-Dominated Flow




Mathematical Model-Governing Equation

A reservoir model is the superposition of
reservoir, inner, and outer boundary conditions {f‘fﬂd““m
- - — B — |
1) 0 ( op @uc, op R o Hp T
r —_— — e E ¥ e—
rior\ or k ot —F —
- — :,..--""’
Initial Condition: p=Dp t— r> Fig. 9.1 Radial flow towards a well.
Well production Flow Inner Boundary Outer Boundary
regime Condition conditions
Constant rate Finite acting
(Bounded) = B, =
8I’ 27r r_hk Gr e

Constant pressure Finite acting op
(Bounded) (p). = p, L 0



Dimensionless Hydraulic Diffusivity

Equation
1 0( ap)|_guc, op
rpor\ or) k ot

= 1412 qBy * (1-2)

_ 0.000264 kt
‘b-“’ctrwﬁ

. and (1-3)

rp = rir, (1-4)




van Everdingen- Hurst Constant Terminal Rate Solution
Bounded Cylindrical Reservoir

(exact solution)
()= i) e " 92
ot —>+(n 0.75+2 B
Puolto)= Y et 3t

Approximate Solutions

1. Infinite cylindrical reservoir with line-source well

2. Bounded cylindrical reservoir, pseudo steady-state flow

YA



Infinite cylindrical reservoir with line-source well
(approximate solution)

Dimensionless solution Line-source: the well has zero radius
2
1 C.Ir
o, ———E, | 9482 <
2 kt “---lllll

Dimensional solution

C.l,
Dt = P +7o.6qu—rf‘ Ei[—948“ ”“j

Kt

w0 fanf, T

The mathematical function, Ei, is called the exponential
integral and is defined hy:

et

i

mpn=_/

v I

i .--"3 :,3
=|lnr - — 4+ — - 4 1.2.67
11 2421 3(3) [ ]



Infinite cylindrical reservoir with line-source well
(Range of applicability)

kKt

The reservoir is no longer
infinite acting

C.r’
0. = p. +7o.6qf—: E{—948” t WJ

The assumption of zero wellbore
limits the accuracy of the solution




First we must determine weather the Ei function solution is valid for the desired times.
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Dimensionless Variables

p= p,+706qBﬂE| —948¢M:tr
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Solutions- Time Domain

Constant rate

solution

Infinite-acting reservoir

Puo(ts )= %[fn(tD)+0-80908]

Boundary dominated flow- approximate late time

Puo (tD ) = ?tZD + fn(reD )— 0.75

eD




Dimensionless transient pressure response of a
radial well in infinite reservoir

D
]

| . i = .
Punltp ==+ tnlry, )-0.75+ EE ——

Fars m=] Ly

14 "exact” solution

_ self-similar solution

o

- [I:nga[ithmic: appreximation

dimensionless pressure, pp
L]

le-2 1e-1 1e+0 1e+1 lesd le+3d
dimensionless time, tg
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Reservoir-Limits Test
(Estimation of Reservoir Pore Volume)

kh r

W

du c,r’

4

P 0.074470B,
ot pc.r?
2
V,=7rr'h¢

o p 14126Bu {0.0005274k . zn[ A ]_ 0_75}




Depletion Above the Bubble-point Pressure
Constant pressure solution

For o, >(th )

It may be used for reservoir limit test




Dimensionless Diffusivity Equation

_opp

op, | dp,
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' Modified Bessel Differential Equation
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Bessel Differential Equation
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Solutions- Laplace Domain (Sabet, 1991).

Constant rate solution

Infinite-acting reservoir

ey KO(rD\@)
Po(S)= S\/gKl(\/g)

Bounded reservoir

) (/S )+ 1\, 'S K, lry
Po(S)= L\/(’lK Ws ) )'1 r:\/)g)—(Kl(r:\)/g)(ll(

&

|

a1
—

Constant pressure solution

Infinite-acting reservoir

_ K, \r,v/S
o))

Bounded reservoir

o) Kl )
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Numerical Inverse Laplace Transformation

THE INVERSE LAPLACE TRANSFORM

The inverse Laplace transform can be found by different ways. For exam-
ple, we could prepare a table of transforms in which we list the transforms
of many functions and refer to this table to find the inverse transform. We .
can use the table of transform in conjunction with Equation 11-17 and other
known properties of the transform. Another technigue relies on integration
in the complex plane, However, in most problems related to well testing,
this latter technique could lead to expressions that are very difficult to evalu-
ate, For this reason, the present trend is to find the inverse transform numer-
ically and present the results in the form of a type-curve.

The algorithm presented by Stehfest (1970) has gained wide acceptance
by researchers in the field of well testing. We will discuss Stehfest’s algo-
rithm and with the exception of referring to a table of transforms, we will
not discuss any of the other methods of finding the inverse Laplace trans-

form.
Stehfest's algorithm is based on the following formulae:
iz L arE) s .
1||I,ri - { _ 1:':1.'21-'. - k ':'Ekjll [ll-lﬁ]
ke (W2 -K K (k- 1M {i— Kk {2k - 1)!
In 2 & in 2 |
ft) === 32 Vi o (11-19)
i 1 |

=1

The number, n, in these expressions should be optimized by trial and error.
Increasing n increases the accuracy of the results up to a peint, and then the
aceuracy declines because of roundoff errors, since the word length on the
computer is finite, Note that £(t} = L-'P{z), and z is replaced by i In/t,
where t is the time at which the inverse transform is required. Also note that
for a given n the Stehfest algorithm requires calculation of V; only once.



Numerical Inverse Laplace Transformation
(Stehfest Algorithm)

Program 11-1 is written in FORTRAN. Tt is written to find the inverse
transform of P(z) = Uz, at t=1,2 3, .....10. The program is suil-
able for finding the inverse transform of any given continuous function by
making the necessary changes where indicated in the program. With
n = 18, the program gave exact results up to 5 decimals. This was possible to
check becanse we know that:

1y [ 1]

\z Vit
For a given {{z} for which we do not know the inverse transform, n can be
aptimized by referring to a table of transforms and choosing a function that
is close to the function on hand. Also, if n is not properly selected, a plot of

the inverse transform will tend to cscillate, whereas an appropriately chosen
value of n will yield a smooth inverse transform,

Program 11-1

Inverse Laplace Transform by the Stehfest Algorithm

10

50
100

IMPLICIT REAL"8 (A-H.0-Z)
DIMENSION Wi30),3(30), H(30)
M SHOULD BE OPTIMIZED
M=18

DLMNZ = 0.6931471805699453
G(1) = 1.0

MH = M2

DO0 | =2MN

Gill) = G{l-1)"1

H{T) = 2 0/G(NH-1)

DO 100 | = 2,NH

Fl=1

IF(LEQ.NH) GO TO 50,

I = FI**PIH G2 * GNH- GO G(l-1))
GO TO 100

T = FI**NH G2 G Gi-1))
CONTINUE

SN = 2*(NH-NH/Z*2)-1

DO 200 | = 1,N
Vil = 0.0
K=+ 142
KK = |

IFIKE.GT.NH) KE = NH
00 180 J = K KK
IF(2*J-LEC.0) GO TD 120
IF{ILEQ.]) GO TO 130

[ PSP PP . [ |

¢



Superposition Principle

Linear diffusivity equation

op 1 op _ _dpe 9p
ar? r ar  k ot

A mathematical technique based on the property that solutions to linear partial
equations can be added to provide yet another solution. This permits constructions of
mathematical solutions to situations with complex boundary conditions, especially
drawdown and buildup tests, and in settings where flow rates change with time.

Mathematically the superposition theorem states that any sum of individual solutions
to the diffusivity equation is also a solution to that equation. This concept can be
applied to account for the following effects on the transient flow solution:
Superposition in time

— Effects of rate change
Super position in space

— Effects of multiple wells

— Effects of the boundary



SUPERPOSITION IN TIME

Theorem: when a rate changes, at time t, from

g4 to a new rate gz, this is equivalent ds
to: q q:-d; L

o q : -——b -
g1 continuing forever a 4,4, _{I
+ - . T T
(q2-q4) starting at time t, and | I

continuing forever : I

t, t, ¢t

. The pressure caused by this rate change is
obtained by superposing (ADDING) these two
effects.

. ¢z can be greater or less than q;

. g2 can be zero (Buildup)

. additional rate changes are treated in the
same way

. @ = +ve means production

. = -ve means injection



SUPERPOSITION IN SPACE

X X

Well A Well B

X

Observation Point
Theorem:

. Ap at observation point =
Ap (caused by Well A)
+ Ap (caused by Well B)

. Observation point may be located anywhere,
even at point A

- Ap at Well A has two components:

(1)  Well A flowing (well in an infinite
reservoir)

(2) Effect of Well B (in an infinite
reservoir) evaluated at distance A-B
from Well B.

METHODS of IMAGES

Single Boundary
Replace Boundary by IMAGE WELL.

Multiple Boundaries

Replace Boundaries by IMAGE WELLS PLUS
IMAGES of the image wells!

Parallel Boundaries

INFINITE number of images.

Ap at real well = Ap due to real well in infinite

reservoir
+

sum of all the image well

effects at the location of the
real well



&

NO-FLOW BOUNDARY
(even image)

CONSTANT PRESSURE
{odd image)

o

Twa Perpendicular No-Flow Boundaries

Two Parallel No-Flow Boundaries

L] L] L] . - [ ]
L] L ] . L L J .
L] L] L ] L] L J [ ]
. ] . L] L J L]
L] L] L L] L] ]
L L] L) L] L ]

SOME images of a well inside a rectangle



