Flow in Porous Media

Module 3.a
Fundamental of Two Phase Flow in Porous Media
1-D Immiscible Displacement



Water Injection Well




THE FRACTIONAL FLOW EQUATION

In this lecture oil displacement will be assumed to take place under the so-
called diffuse flow condition. This means that fluid saturations at any point in
the linear displacement path are uniformly distributed with respect to
thickness. The sole reason for making this assumption is that it permits the
displacement to be described, mathematically, in one dimension and this
provides the simplest possible model of the displacement process.
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Fig. 10.6  Linear prototype reservoir model, (a) plan view; (b) cross section
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Fig. 10.8 (a) Capillary pressure function and; (b) water saturation distribution as a
function of distance in the displacement path



For displacement in a horizontal reservoir (sin 8 = 0), and neglecting, for the
moment, the capillary pressure gradient, the fractional flow equation is reduced to

f, = (10.12)
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Fig. 10.10 Mass flow rate of water through a linear volume element Ag dx
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which can be reduced to
il[ ) = —F‘uﬁ'ﬂ{ S, ) (10.14)
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and for the assumption of incompressible displacement (2, = constant)
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The full differential of the water saturation is swzsw(x’t)
ds ds
ds, =—*| dx + = dt
" ax | dt |,
and since it is the intention to study the movement of a plane of constant water
saturation, that is, dS, = 0, then
S| __9S.| & 31 term in R.H.S OF Eq. 10.15 (10.16)
dt |, dx |, dt|s,




Furthermore,
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and substituting equs. (10.16) and (10.17) in equ. (10.15) gives

dq,, dx
W | _ Ad—
ds,, ¢

10.18
A (10.18)
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Again, for incompressible displacement, q; is constant and, since gy = iy, equ. (10.18)
may be expressed as

_dx| g di

v (10.19)

= dtls, A@dS,|s,

This is the equation of Buckley-Leverett which implies that, for a constant rate of
water injection (g, = q;), the velocity of a plane of constant water saturation is
directly proportional to the derivative of the fractional flow equation evaluated for
that saturation.



Integrating for the total time since the start of injection gives

1 df,
g = — —2 dt
or
LY
X, = W, df, (10.20)
“ T A¢ dS, |s,

W, : the cumulative water injected

Therefore, at a given time after the start of injection (W, = constant) the position
of different water saturation planes can be plotted, using eq. (10.20), merely by

determining the slope of the fractional flow curve for the particular value of each
saturation.
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Fig. 10.9  Typical fractional flow curve as a function of water saturation, equ. (10.12)
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Fig. 9.10. Fluid distributions at initial conditions and at 60, 120, and 240 days.



There is a mathematical difficulty encountered in applying this technique which
can be appreciated by considering the typical fractional flow curve shown in fig.
10.9 in conjunction with eq. (10.20). Since there is frequently a point of inflexion
in the fractional flow curve then the plot of df /dS, versus S, will have a
maximum point, as shown in fig. 10.11 (a). R -
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Fig. 10.11 (a)




Using eq. (10.20) to plot the saturation distribution at a particular time will
therefore result in the solid line shown in fig. 10.11(b). This bulbous saturation
profile is physically impossible since it indicates that multiple water saturations

can co-exist at a given point in the reservair.

LU/ (10.20)
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Fig. 10.11 (b)
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*Behind the front in the saturation range S,;< S, < 1-S,, where S is the
shock front saturation, equs. (10.19) and (10.20) can be applied to determine
the water saturation velocity and position. Furthermore, in this saturation range
the capillary pressure gradient is usually negligible and the fractional flow

equation to be used in equs. (10.19) and (10.20) is simply:

W, df,
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For a horizontal reservoir
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*To draw the correct water saturation profile using the Buckley- Leverett
technigue requires the determination of the vertical dashed line, shown in fig.
10.11(b), such that the shaded areas A and B are equal. The dashed line then
represents the shock front saturation discontinuity.
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As a consequence of the conservation of mass the location of the discontinuity
must be fixed in a way so that the areas on both sides of the discontinuity are equal
In size.



*A more elegant method of achieving the same result was presented by Welge in
1952, This consists of integrating the saturation distribution over the distance from
the injection point to the front, thus obtaining the average water saturation behind

the front g as shown in fig. 10.12.
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Fig. 10.12 Water saturation distribution as a function of distance, prior to breakthrough

in the producing well



The situation depicted is at a fixed time, before water breakthrough in the producing
well, corresponding to an amount of water injection W;. At this time the maximum water

saturation, Sy = 1 - 54, has moved a distance ¥4, its velocity being proportional to the
slope of the fractional flow curve evaluated for the maximum saturation which, as

shown in figs. 10.9 and 10.11 (a), is small but finite. The flood front saturation S,z is
located at position x> measured from the injection point. Applying the simple material
balance

W =x,A¢ (Sw-S,.)

or
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X, Add
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Sue s —  1.s. S S,—= 1-S,

and using equ. (10.20) which is applicable up to the flood front at x2, then

— =T A
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An expression for the average water saturation behind the front can also be obtained
by direct integration of the saturation profile as

X
(1-S, )%, + [S,dx
Sw = il (10.23)
HE
1 sa,‘[__ A
p >
S, s,
Sw
for a given vélume of injected water, and for S, = Sy, then equ. (10.23) can be
expressed as
St
(a-s,) o [s, d ﬂw
= ds, | +s« 2 ds,, |
Sw = (10.24)
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The integral in the numerator of this equation can be evaluated using the method of
integration by parts, 1.e.

I udv = uv — | vdu

to give

Sar Swr S
| s. d[dfwwz[gw df*“} -[f,]
5 ds,, | ds, s

1-Zar Sor

and substituting this in equ. (10.24) and cancelling terms gives
df
St ) / ds,,

in which both f,, and its derivative are evaluated for the shock front saturation S,
Finally, equating (10.22) and (10.25) gives

S :::1,,f+(1—fw

(10.25)
St
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Sw—S, = — = 10.22
xAd  df, (1022
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df, B SO (10.26)
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The significance of this result is illustrated in fig.10.13.

To satisfy equ. (10.26) the tangent to the fractional flow curve, from the point 5, = Sy
fw = 0, must have a point of tangency with co-ordinates S, = E‘;wf;fw =1, |5~‘r , and the

extrapolated tangent must intercept the line f, = 1 at the point S :E f =1.

W gy

g — 1-S

& or

Fig. 10.13 Tangent to the fractional flow curve from §, =5,



This method of determining Sy, f, - and Ew requires that the fractional flow curve

be plotted. using either equ. (10.12) or equ. (10.21), for the entire water saturation
range

Swe < Sw < 1-Sq

As noted previously, the use of either of these equations ignores the effect of the
capillary pressure gradient, dP_/dx. This neglect, however, i1s only admissible behind
the flood front for

Swi < Sw < 1—So

The part of the fractional flow curve for saturations less than S, Is, therefore, virtual
and the first real point on the curve has the co-ordinates Sy, f

W Q- a
=

corresponding to

the shock front. This simple graphical technique of Welge has much wider application
in the field of oil recovery calculations which will be described in the following section.
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Fig. 9.10. Fluid distributions at initial conditions and at 60, 120, and 240 days.
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OIL RECOVERY CALCULATIONS

Before water breakthrough (bt) in the producing well, equ. (10.20) can be applied to
determine the positions of planes of constant water saturation, for Sy < Sw < 1 — Sqr, a5
the flood moves through the reservoir, and hence the water saturation profile. At the
time of breakthrough and subsequently, this equation is used in a different manner, to
study the effect of increasing the water saturation at the producing well. In this case
X = L, the length of the reservoir block, which is a constant, and equ. (10.20) can be
expressed as

W 1

L — =W, 10.27

W

ds

WS

IN which Sue 15 the current value of the water saturation in the producing well, fig. 10.14,
and W4 the dimensionless number of pore volumes of water injected (1PV= LAg).
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Fig. 10.14 Water saturation distributions at breakthrough and subsequently in a linear
waterflood



Before breakthrough occurs the oil recovery calculations are trivial. For incompressible
displacement the oil recovered is simply equal to the volume of water injected, there

being no water production during this phase. At the time of breakthrough the flood front
saturation, S,; = Swwreaches the producing well and the reservoir watercut increases

suddenly from zero to wa =1, |5wf a phenomenon frequently observed in the field and

one which confirms the existence of a shock front. At this time equ. (10.22) can be
Interpreted in terms of equ. (10.27) to give

= 1
Nog, = Wiy, = Qaler = (SWm _ch) = | (10.28)

ds,

St

In which all volumes are expressed, for convenience, as dimensionless pore volumes.

qd. the dimensionless injection rate 1s gi/(LA@) (PV/unit of time)

Se-S,_=—___ (10.22)
XAD  d,
as, |.
W 1w (10.27)
LA¢  df




In particular, the dimensionless injection rate is gi/(LAg) (PV/unit of time) which
facilitates the calculation of the time at which breakthrough occurs as

(, = qmm (10.29)

After breakthrough, L remains constant in equ. (10.27) and S.e and fye, the water
saturation and fractional flow at the producing well, gradually increase as the flood
moves through the reservoir, as shown in fig. 10.14. During this phase the calculation
of the oil recovery is somewhat more complex and requires application of the Welge

equation, (10.25), as . ] !

o _ , 1 ft:—o'% i \\‘.“;,__

Su =S e+ (1= )= A PN (10.30)

s,
[jgw . .| Se =s,,+(|-v,|_~) :‘L} S..=S,
0 X — L

which, using equ. (10.27), can also be expressed as

Sw =S, +(1-1,_ )W, (10.31)

Finally, subtracting Sw. from both sides of equ. (10.31) gives the oil recovery equation

Noa = S w— Swe = (Swe — Swe) + (1 — fwe) Wig(PV) (10.32)



The manner in which equs. (10.28) and (10.32) can be used in practice Is described
below.

a) Draw the fractional flow curve, equ. (10.12) or (10.21), allowing for gravity effects,
If necessary, but neglecting the capillary pressure gradient dP./dx.

1
f, = (10.12)
1+ o
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b)  Draw the tangent to this curve from the point S, = S, T, = 0. As described in the
previous section, the point of tangency has the co-ordinates

S =Sy = Swht, f, =1, s = f“ht and the extrapolation of this line to f,, = 1 gives
the value of the average saturation behind the front at breakthrough E,, :Ewm_

Equations (10.28) and (10.29) can then be applied to calculate the oil recovery
and time at which breakthrough occurs.

(10.28)

Nog, =W, = Aol = (gwm —S.c ) =

fy, = — =1 ' (10.29)




C) Choosing 5, as the independent variable; allow its value to increase In

Increments of, say, 2% above the saturation at breakthrough. Each point on the
fractional flow curve, for S, > S, has co-ordinates Sw = Swe, fw = fwe and,

applying equ. (10.30), fig. 10.15 demonstrates that the tangent to fractional flow
curve intersects the line f,, = 1 to give the current value of the average water

saturation in the reservoir block, gw

—h
=

bt

Fig. 10.15 Application of the Welge graphical technique to determine the oil recovery
after water breakthrough



For each new value of S,. the corresponding value of Ew Is determined graphically
and the oil recovery calculated as

Npa = Sw — Swe (PV)

The reciprocal of the slope of the fractional flow curve, for each value of Se, gives Wig,

the number of pore volumes of water injected, equ. (10.27). This allows a time scale to
be attached to the recovery since

Wig=qia t

Alternatively, equ. (10.32) can be used directly to calculate the oil recovery by
determining f,. and W,; from the fractional flow curve for each chosen value of S,..

This latter method is illustrated in exercise (10.2) in which N4 and Wy are evaluated
numerically.

A, - =W, (10.27)

Npd = Sw— Suc = (Swe — Swe) + (1 = fue) Wig(PV) (10.32)



EXERCISE 10.1 FRACTIONAL FLOW

Qil is being displaced by water in a horizontal, direct line drive under the diffuse flow
condition. The rock relative permeability functions for water and oil are listed in
table 10.1.

Sw Knw Kro Sw Krw Kro
20 0 800 00 075 163
25 .002 610 .55 100 120
30 009 470 60 132 081
.35 020 370 65 170 050
40 033 285 70 208 027
45 051 220 75 251 010
80 300 0
TABLE 10.1

Pressure is being maintained at its initial value for which

Bo = 1.3 rb/sth and By, = 1.0 rb/stb

Compare the values of the producing watercut (at surface conditions) and the
cumulative oil recovery at breakthrough for the following fluid combinations.

Case oll viscosity water viscosity
1 50 ¢p o cp
2 5 " 5 "
3 4 " 10 "

Assume that the relative permeability and PVT data are relevant for all three cases.



EXERCISE 10.1 SOLUTION

1)  For horizontal flow the fractional flow in the reservoir is

f, S B (10.12)

'I+#—“ : Ko
|.(I"olal' #D
while the producing watercut at the surface, fue, Is

—_ qw "f Bw
qw 'IfBTAI' +qo 'FB:'

WS

where the rates are expressed in rb/d. Combining the above two equations leads to an
expression for the surface watercut as

foe = L , (10.33)
1+B—“’ 1 ’IW
B, \f, Fractional Flow (f,,)
Case 1 Case 2 Case3
Sw krw ko kro'Krw Moo= 01 wltis =1 phltlo =25

2 0 800 oo 0 0 0
25 002 610 305.000 247 032 {001
30 009 470 52222 657 161 008
35 020 370 18.500 844 351 021
40 033 285 8.636 2921 937 044
45 051 220 4314 959 699 085
50 075 163 2173 979 821 155
55 J00 0 120 1.200 988 893 250
60 32 081 614 2994 942 2394
65 70 050 294 997 971 576
70 208 027 130 2999 987 755
75 251 010 040 2999 996 909
.a0 300 0 0 1.000 1.000 1.000

TABLE 10.2



1.0

09

038

0.7

06

fu 05
(rb/rb)

04

0.3

02

0.1

Fig. 10.16 Fractional flow plots for different oil-water viscosity ratios (table 10.2)



Fractional flow plots for the three cases are shown in fig. 10.16, and the results
obtained by applying Welge's graphical technique, at breakthrough, are listed in
table 10.3.

gjll
=

Case St o Fas

pdgt

(reservoir)  (surface) (PV)

1 28 Rils) 61 34 14
2 45 70 75 RS 35
3 .80 1.00 1.00 80 .60

TABLE 10.3



Influence of the Capillary Force

The Buckley-Leverett solution neglecting the capillary force is illustrated in Figure 4.7
which has been discussed previously. The other profiles were calculated by applying Eq.
4.30 for various rates of filtration with the help of the method of finite differences.

In case of a slow displacement the capillary force is larger than the viscous forces. This is
expressed in a rather flat saturation profile. In the case of a fast displacement the profile
becomes steeper and tends to the Buckley-Leverett solution. It can be observed that when
the displacing phase reaches the end of the medium the displacing efficiency is larger at
a fast displacement than at a slow displacement.
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Figure 4.7: Influence of the velocity of displacement on the distribution of saturation regarding the
capillary force (by Douglas ef al 1958)



Figure 4.8 shows the oil recovery versus the rate factor for different core lengths and for
a strong water-wet system. Two things are of importance: First the efficiency of
displacement is at certain values independent of velocity. Second the time period between

the arrival and breakthrough of the displacing phase at a small displacing speed is large.

The point of breakthrough is defined as the moment of first outflow of the displacing
phase. The deviation is effected by the capillary end-effect.
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Figure 4.8: The displacing efficiency as a function of velocity (by Kvte, Rappoport 1958)



Effect of End-Point Mobility Ratio

An important parameter in determining the effectiveness of a waterflood is the
end point mobility ratio.

1 oy 1
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*For horizontal flow, stable, piston-like displacement will occur for M < 1

*The more significant parameter for characterizing the stability of Buckley
Leverett displacement is the shock front mobility ratio, Mg,

M, = KeOu )/ e * Kow (S )/ P (10.34)
o | My

*If this condition is not satisfied there will be severe viscous channelling of
water through the oil and breakthrough will occur even earlier than predicted
using the Welge technique.



Values of M and M for the three cases defined in exercise 10.1 are listed in
table 10.3(a). Using these data

I,

Case No. s S Krwl Swi) Kol Sws) Ms M
(exercise 10.1) How

1 100 28 006 520 1.40 37.50

2 10 A5 051 220 91 3.75

3 4 .80 300 0 15 0.15

TABLE 10.3(a)
Values of the shock front and end point relative permeabilities calculated using the data
of exercise 10.1



the results of exercise 10.1 can be analysed as follows:

a)

b)

Case 1 - this displacement is unstable due to the very high value of the oil/water
viscosity ratio. This results in the by-passing of oil and consequently the
premature breakthrough of water. The oll recovery at breakthrough i1s very small
and a great many pore volumes of water will have to be injected to recover all the
movable oil. Under these circumstances oil recovery by water injection is hardly
feasible and consideration should be given to the application of thermal recovery
methods with the aim of reducing the viscosity ratio.

Case 2 - the oil/water viscosity ratio is an order of magnitude lower than in case 1
which leads to a stable and much more favourable type of displacement (M, < 1).
This case will be analysed in greater detail in exercise 10.2, in which the oil
recovery after breakthrough is determined as a function of the cumulative water
injected and time.

Case 3 - for the displacement of this very low viscosity oil (i = .4 cp) both the
end point and shock front mobility ratios are less than unity and piston-like
displacement occurs. The tangent to the fractional flow curve, from

Sw = S Tw = 0, meets the curve at the point Swm =1-5_, fwm =1 and therefore
S, :Ewm =1-5, . The total oil recovery at breakthrough is
Ewm =5, =1-5, —5,., which is the total movable oil volume.



DISPLACEMENT UNDER SEGREGATED
FLOW CONDITIONS

Previously, a one dimensional displacement theory was presented

which relied on the assumption of diffuse flow. Now, precisely the opposite will be
assumed, namely, that displacement occurs under the segregated flow condition
shown in fig.10.18.

Fig. 10.18 Displacement of oil by water under segregated flow conditions
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Fig. 10.19 Illlustrating the difference between stable and unstable displacement, under
segregated flow conditions, in a dipping reservoir; (a) stable: G>M-1; M > 1;
B < 8. (b) stable: G > M-1; M < 1; f> 8. (c) unstable: G < M-1.



Assignment No. 3.a:

Determination of relative permeability from unsteady-state experiments
1. JBN Method
2. Jones and Roszelle Method

Your report should include both of the theory (derivation) and experimental
procedure



