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In immiscible displacement in porous media: 
 The immiscible fluids flow in separate channels. 
 An interface separates the fluids. 
 There will be irreducible or residual saturations after the displacement has reached 
steady state. 
The interfacial tensions associated with the immiscible fluid interfaces play a 
significant role in determining the fluid distributions within the porous medium.  
The displacement front in an immiscible displacement will be sharper at higher flow 
rates, or when capillary forces are neglected. 

 

In a miscible displacement in porous media: 
 No interface exists between miscible fluids of different composition. 
 A mixing zone is established, where the composition of the in-situ fluid changes 
from the composition of one pure fluid to that of the other pure fluid. 
 In the absence of fluid/fluid interfaces, capillary forces are absent. 
 Fluid composition is determined by mixing, which occurs by molecular diffusion 
and convective dispersion. 
 Steady state is reached when one fluid has completely displaced the other fluid; 
the concept of irreducible or residual saturations does not apply. 
The mixing zone will be short at low flow rates, resulting in a steep concentration 
profile. 

 



The oil recovery in a miscible displacement process depends on the size of the 
mixing zone between the injected fluid and the reservoir oil.   
For maximum oil recovery at breakthrough to occur, the mixing zone should remain 
small compared to the reservoir volume so that the oil produced is not diluted by the 
injected fluid.  
Ideally in a reservoir with a small mixing zone, for complete oil recovery, slightly 
more than one reservoir pore volume of injection fluid is required. However, if the 
mixing zone is large, several reservoir pore volumes of injection fluid may be needed 
to achieve complete recovery.  
The mixing due to diffusion and dispersion can dampen out viscous fingers in an 
unstable displacement, leading to increased sweep efficiency. 

Miscible Displacement in Porous Media 



Dispersive mixing is caused by molecular diffusion and mechanical dispersion and is 
the main part of the mixing in miscible displacements. 

 
Molecular diffusion is a phenomenon whereby the transport of mass of a species 
(component) occurs within a single fluid phase from one point to the other in the 
direction of decreasing concentration.  

Diffusion is a consequence of the random motion of molecules and can also take 
place in the absence of bulk movement or agitation.  

 
Spreading of a component in a phase due to microscopic variations in the velocity field 
is called convective or mechanical-dispersion.  A number of  mechanisms are 
responsible for variations in both magnitude and direction of the velocity in permeable 
media:  

oparabolic velocity distribution associated with viscous flow through a pore, 
oexistence of different pore geometries, and 
o fluctuations in the stream lines with respect to the mean flow direction. 



The Equation of Continuity 
Application of the principle of mass conservation of species i in a multi-component fluid 
mixture to an arbitrary control volume of the fluid yields the well-known equation of 
continuity, which, in it's most general form, can be written as follows (Bird et al., 1960): 
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ci: Concentration of species i (mass per unit volume), 
ni: Mass flux vector (mass of species i per unit area per unit time) 
ri: A source or sink term (mass of i per unit volume per unit time)  
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ui: the mass average velocity vector (length per unit time), 
ρ: fluid (mixture) mass density (mass per unit volume) 
Do : molecular diffusion coefficient (length squared per unit time) 
Xi: mass fraction of species i 

 (xi = ci/)  
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For constant   and Do 
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For one-dimensional flow 

Some examples of the magnitude of the molecular diffusion coefficients are as 
follows (Bird et al., 1960): 
 Pairs of dilute gases   0.1 – 0.7 cm2/s 
 Liquids    of the order of 10-5 cm2/s 
 Solids    10-8 – 10-30 cm2/s 



The Equation of Continuity in Porous Media 

The molecular diffusion coefficient (Do), is replaced by the dispersion coefficient 
Dispersion coefficient: a measure of mixing during flow 

 The velocity “u “ is replaced by “v” 
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The dispersion of a substance during flow in porous media results from: 
 molecular diffusion in the direction of flow,  
coupled with transverse molecular diffusion due to the velocity profiles, and  
mechanical mixing arising from velocity variations due to the complex nature of the 
pore structure 

i2
i

2
ii r

z

c
D

z

c
v

t

c















     (7) 

1-D Constant  Density and Constant Dispersion Coefficient 



Solutions to the 1-D Convection-Dispersion Model 

Infinite System  
For a single solute and no source/sink, Equation 7 becomes: 
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where c is solute concentration and D represents longitudinal dispersion. 
 
The following assumptions are implicit in Equation 20: 
homogeneous porous medium of constant cross-section; 
bulk flow in the axial direction at constant interstitial velocity; 
constant fluid density; 
constant dispersion coefficient; 
incompressible porous medium; 
uniform concentration distribution in the direction perpendicular to flow (i.e., time 
is “long” enough for the convection-dispersion model to hold); 
no solute sources or sinks. 

Equation 20 is a second order partial differential equation, requiring two boundary 
conditions and an initial condition for its solution. 



When the space variable z is translated such that the transformed distance z' becomes 
the distance from the flood front rather than the distance from the inlet of the porous 
medium, Equation 20 reduces to the one-dimensional unsteady diffusion or heat 
conduction equation, also known as Fick’s second law (Taylor, 1953; Nunge and Gill, 1970):  
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z'=z-vt 

vt : distance of the flood front from the porous medium entrance 

This equation has been solved analytically for a variety of initial and boundary conditions 
(see, for example, Carslaw and Jaeger, 1959; Özişik, 1980).  



 
Assumptions: 

An infinite porous medium 
Zero initial concentration,  
A step change in inlet concentration (c0)  

 t = 0 z’  0  c = 0 
  z’ < 0  c = c0 
         
                                                                                                                                       (22) 
 t > 0 z’ → -∞ c → c0 
  z’ → +∞ c → 0 

The solution to Equation 21 with initial and boundary conditions 22 is (Danckwerts, 1953; 
Brigham et al., 1961) 
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IC & BCs: 
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where c/c0 is normalized concentration and erf(r) is the error function of a variable r, 
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Some properties of the error function are 
 
erf(0) = 0 erf(∞) = 1 erf(-r) = -erf(r)  
 
Then, from Equation (23), 
 z’ = 0  c/c0 = 1/2 
 z’ → -∞  c/c0 = 1 
 z’ → +∞  c/c0 = 0 
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Typical concentration profiles, obtained from 
Equation 23, are shown in Figure 6. The curves 
are symmetrical about the point (z’=0, 
c/c0=1/2). The profiles become more dispersed 
when D increases or as time progresses. 

Figure 6. Concentration as a function of transformed 

distance for different values of dispersion coefficient 

or time, calculated from Equation 23, infinite system. 
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Dimensionless  form of  Equation 20 becomes 
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(26)  

and V is volume injected, Vp is pore volume, and Pe is the porous medium Peclet 
number, 

D

Lv
Pe         (27) 

The Peclet number represents the ratio of characteristic times for mass transfer by 
flow and by dispersion, and is a measure of the length of the mixing zone relative to 
the length of the porous medium.  



Determination of the Dispersion Coefficient 

Because of its simplicity, Equation 23, although representing infinite systems, is often 
used to approximate concentration distributions in finite systems.  

 
Typical laboratory core flood experiment:  

A porous medium is fully saturated with a fluid.  
A miscible fluid or tracer, such as a salt solution or dye or radioactive material, is 
then injected at a known, constant flow rate.  
Effluent samples are collected at the core exit and analyzed for tracer 
concentration. 
 In such an experiment, Equation 23 represents the effluent concentration, i.e., the 
concentration at a fixed distance (z=L, or z’=L-vt).  
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In an experiment such as this one, the dispersion coefficient can be determined using a 
simple procedure described by Brigham et al. (1961). When Equation 23 is used to 
calculate effluent concentrations from a finite porous medium (z=L or z'=L-vt), it is 
convenient to transform variables such that time is replaced by throughput in pore 
volumes (Brigham et al., 1961; Brigham, 1974). Change variables such that 
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Equation 23 then becomes 
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where 
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When  is plotted against the percentage of displacing fluid in the effluent on 
arithmetic probability coordinates (Figure 7), and provided the convection-dispersion 
model holds, a straight line results from which the longitudinal dispersion coefficient 
can be obtained using the following equation (Brigham et al., 1961; Perkins and 
Johnston, 1963): 

Figure 7. Typical probability plot for determination of longitudinal dispersion coefficient. 
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10 and 90 are the values of  
when the effluent concentration is 
10% and 90% of the injected value, 
respectively, and v and L are known 
experimental parameters. 
The constant 3.625 arises from 
the error function and the choice 
of 10% and 90% concentrations. 



Alternatively, the dispersion coefficient can be determined by plotting experimental 
effluent concentration profiles against volume injected and adjusting D until Equation 30 
fits the experimental data. This is commonly done with effluent concentrations, since they 
are easily measured through chemical analysis. 
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1D Pure Diffusion Equation 

IC: 

BCs: 

Governing Equation 

Solution: 



The Analytical Solution to 1D Convection-Diffusion Equation 

•The flow of a component in a phase can be described by the convection-

diffusion (C-D) equation in 1D, dimensionless form 

Assumptions:  

•flow of a single phase incompressible fluid in permeable media  

•ideal mixing 

•miscible displacement of an initially 

•uniform fluid distribution in a finite length L 



Governing Equation 

1D Convection-Diffusion Equation 

•The flow of a component in a phase can be described by the convection-diffusion 

(C-D) equation in 1D, dimensionless form 



Initial & Boundary Conditions 

IC: 

BCs: 

 C, CI, and CJ indicate current, initial, and injected concentrations. 
L denotes the distance over which longitudinal dispersion, Dl, is measured.  
The dimensionless time, tD, corresponds physically to the number of cumulative 
pore volumes injected into the medium. 



Analytical Solution 

The solution has the form of an infinite series of error functions where successive terms 
arise from the superimposed reflections at the outlet. The series converges rapidly for 
Peclet numbers of interest and can be accurately approximated by the first three terms. 



Assignment  No. 4: Reproduce the analytical parts  of the paper  

Reservoir Models 

The reservoir models are set up as shown in Figure 1, wherein solvent is injected at one 
end and production is obtained from the other end of the model, with the production 
well(s) kept at a constant bottom-hole pressure. Table 1 provides model details. 



The reservoir and injected fluids have exactly the same thermodynamic properties and 
consist of a single component, which is named as nC4-R in the reservoir and nC4 as the 
only component in the injected solvent. 







Mass Balance 
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diffusion phenomena in the liquid 
phase can be about hundred times less 
significant than diffusive effects within 
a gas phase, therefore, 

In this work we are going to consider the combined action of the  diffusion of all 

chemical composition that  results in a net diffusive motion of  the phase as a 

whole, rather than diffusion of each of the species  alone.  Therefore,  
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Multi-Mechanistic Flow Consideration 
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Special equation ordering 

Newton – Raphson’s linearization 
method  

Two-component, Two-phase 
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