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Preface

This book is the result of course notes that were created for a sequence of
new courses in the Department of Aerospace and Mechanical Engineering at
the University of Notre Dame. The new sequence of courses was comprised
of two courses, titled Differential Equations, Vibrations and Control I and II,
which cover material typically covered in three engineering courses: differential
equations, vibrations and controls (obviously).

The consolidation of the three courses into two was brought about to stream-
line the curriculum for undergraduate students in our department. It was felt,
by me at least, that if the most direct engineering applications were presented
in conjunction with the study of differential equations and the associated solu-
tion techniques, that students would be more motivated to study the material
and hence learn and retain it better. Also, some consolidation could be ac-
complished because the inevitable review of the relevant differential equations
subject matter in controls and vibrations would be obviated. Since the author
was the primary advocate of this consolidation, he was naturally assigned to
develop the courses. This book is the result.

With regard to the efficacy of this approach, it is clear, based upon grad-
uation survey results, that the students are very satisfied with it. The author
can state, based upon teaching experience, that the amount of controls ma-
terial that can be covered and understood is the same as when controls was
an independent course. With respect to the students’ ultimate understanding
and retention of the differential equations subjects as a purely mathematical
matter the result is less clear. Informal investigations by the author indicate
that that it is neither drastically better nor worse in comparison to the prior
situation when differential equations was an independent course. So, at least
to the extent that consolidation was accomplished the result is successful since
the students seem no worse off than before and the material is covered in two
courses instead of three; furthermore, it is successful to the extent that student
satisfaction is greatly increased.

Prerequisites

The student is assumed to have a good background in calculus and perhaps an
introduction to linear algebra. A dynamics course would be useful, but the basic
mechanics from the typical undergraduate engineering physics sequence seems
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to suffice.

Course structure

The material is organized in a manner that is most logical from my perspective.
However, curricular realities prevent me from teaching it in the sequential order
of the chapters. In particular, it seems logical to consider first order systems,
second order systems, systems of first order equations (nth order equations)
and then infinite dimensional systems (partial differential equations). However,
due to the fact that partial differential equations need to be covered in the
first semester in our curriculum, that subject is covered before systems of first
order equations when I teach the courses. What I typically cover is organized
as follows.

First semester

• Chapter 1, introduction: classification of differential equations (sections 1.5),
the definition of different types of solutions (section 1.6) and an introduc-
tion to numerical methods (section and 1.10)

• Chapter 2, first order ordinary differential equations: fast review.

• Chapter 3, second order, constant coefficient ordinary differential equa-
tions: covered in detail.

• Chapter 4, linear oscillations: covered in detail.

• Chapter 9, introduction to PID control (section 9.2).

• Chapter 13, numerical methods: covered in detail.

• Chapter 12, separation of variables for partial differential equations: cov-
ered in detail, with the numerical methods subjects covered in parallel.

• Chapter 14, nonlinear equations and linear approximations: time permit-
ting.

Second semester

• Chapter 6, systems of first order ordinary differential equations: covered
in detail.

• Chapter 7, multiple degree of freedom linear oscillations, covered in detail.

• Chapter 8, Laplace transform methods, covered in detail.

• Chapter 9, classical control theory, covered in detail.

• Chapter 16, Lagrange’s equations, covered in detail.
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What is not covered

The most conspicuous differential equations subject that is not covered in this
text is the use of power series solutions, particularly as applied to second order
linear ordinary differential equations with variable coefficients. Also, the con-
trols material is limited to the most basic subjects in classical control, transfer
functions, the root locus design method and frequency analysis (“Bode plots”)

Bill Goodwine
University of Notre Dame
Notre Dame, Indiana
USA
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Chapter 1

Introduction and
Preliminaries

1.1 The Engineering Utility of Differential Equa-

tions

Nearly all the fundamental principles that govern physical processes of engi-
neering interest are described by differential equations. Hence, it is fair to say
that the ability to analyze, solve and understand differential equations is fun-
damentally important for engineers. This book is intended to make differential
equations more accessible to engineering students by presenting and developing
some application areas in parallel with the presentation of the mathematics.
This is done sometimes by way of simply using the application as a motiva-
tional problem and other times by fully developing the application material.
The main two applications areas in this book are mechanical vibrations and
basic feedback control theory. Those two areas are completely presented. Many
other applications areas are also presented in the book, but are not presented
in a necessarily comprehensive manner.

Additionally, there is an emphasis on analyzing the solutions to each prob-
lem, e.g., instead of the “answer” being simply a mathematical expression of
the form

x(t) =
F0

(

k −mω2
)

(k −mω)2 + (cω)2
cosωt+

cωF0

(k −mω)2
sinωt (1.1)

the question may be to determine the frequency, ω, at which x(t) obtains the
greatest magnitude, which, of course, requires not only determining the “an-
swer” in Equation 1.1, but analyzing it as well.
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1.2 Mathematical Approach of this Book

The main approach to categorize differential equation solution methods in this
book is to distinguish differential equations using the following five criteria:

1. whether the equation is ordinary or partial;

2. the order of the equation;

3. whether the equation is linear or nonlinear;

4. if the equation is linear, whether the equation is homogeneous or inhomo-
geneous; and,

5. if the equation is linear, whether the equation has constant or variable
coefficients.

Without elaborating upon any of these distinctions, and for the moment restrict-
ing our attention to only first and second order equations, it is apparent that
already we are dealing with 25 = 32 different possible categorizations. Fortu-
nately, some solution techniques apply to more than one category of equations.
Also, for the purposes of this book, some of the distinctions are only important
when coupled with the others. Hence learning 32 different solution methods
is not necessary. However, complicating matters is the fact that some cate-
gories have more than one solution method and which one is desirable depends,
perhaps, upon which is simply the easiest to apply.

This book will outline a rather conventional set of solution methods with
more emphasis than usual on the mundane, but crucial, ability of categorizing
the equation and with much greater emphasis than usual on the immediate
engineering applications of each category of differential equation.

1.3 Notation

Throughout this book, the following rules for notation are usually observed.

1. Dots above variables indicate differentiation with respect to time, e.g.,

ẋ(t) =
dx

dt
(t)

ẍ(t) =
d2x

dt2
(t).

2. A natural number in parentheses as a superscript to a function indicates
the number of times the function is differentiated with respect to the
independent variable, e.g.,

x(n)(t) =
dnx

dtn
(t).
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3. Generally, the uppercase Roman letters A and B represent matrices, e.g.,

A =











2 3 · · · 8
3 7 · · · 8
...

. . .
...

8 2 · · · 9











.

4. The letter I usually represents the identity matrix, i.e.,

I =











1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1











.

The dimension of I is usually obvious from the context of its use. For
example, if A is a 3 × 3 matrix and the expression A + I is used, then I
is 3 × 3.

The symbol I(s) may also be used to represent the Laplace transform of
the variable i(t) representing current.

The letter I may also represent an interval of real numbers.

5. The letter i usually represents the imaginary unit, which satisfies i2 = −1.
The letter i may also be used to represent electric current.

6. The letter e represents the base of the natural logarithm, i.e., e ≈ 2.71828.

7. The letter m usually represents a mass.

8. The letter k usually represents a spring constant.

9. The letter b usually represents a viscous damping constant.

10. The letter R usually represents electrical resistance.

11. The letter C usually represents electrical capacitance.

12. The letter L usually represents electrical inductance.

13. The letter v usually represents a voltage or velocity.

14. The letter λ usually represents an eigenvalue.

15. The letter ξ usually represents a vector.

16. A symbol that is a vector with a hat usually represents an eigenvector of
a matrix, e.g., ξ̂.

17. The symbol R represents the set of real numbers.

18. The symbol C represents the set of complex numbers.
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1.4 Sets, Relations and Functions

Most engineering students have a pretty decent grip on the idea of a function,
and functions are pretty important in this book because the solution to a dif-
ferential equation is a function. Slightly more complicated subjects probably
need a quick review, however. This section will first deal briefly with sets since
functions are relationships between sets. Then a function is defined as well as
implicit functions. Implicit functions arise in this book because they are the
natural representation of a solution to certain differential equations considered
in Section 2.3.4. Next follows the definition of multivariable and multivalued
functions and a review of their calculus.

1.4.1 Sets

Without getting bogged down in the nuances of basic set theory, we will consider
a set to be a collection of elements.1 We assume that there is a way for us
to determine whether or not an element is in a set2 and whether or not two
elements are equal. Many sets have common names. The two sets we will be
most concerned with are the set of real numbers, typically denoted by R and
the set of complex numbers, typically denoted by C. We will often deal with
particular subsets, the most common of which are intervals of R, such as

[a, b] = {x ∈ R |a ≤ x ≤ b} ,

i.e., real numbers that are either a, b or between a and b, or

(a, b] = {x ∈ R |a < x ≤ b} ,

i.e., real numbers that are between a and b or are b. An open interval is an
interval of the form

(a, b) = {x ∈ R |a < x < b} ,
where the term “open” connotes the fact that the interval does not include its
boundary or endpoints.

Sometimes we will put more than one set together to make a new set. A
common way in which this is done is called the Cartesian product.

Definition 1.4.1 Let D1,D2, . . . ,Dn be sets. The Cartesian product of D1, D2,
. . . , Dn, is the set

D1 ×D2 × · · · × Dn = {(x1, x2, . . . , xn) |x1 ∈ D1, x2 ∈ D2, · · · , xn ∈ Dn} .
1More precisely, a collection of elements is a class and a set is a certain kind of class. A

reader interested in the distinction is referred to [11].
2Fuzzy logic is the branch of logic and mathematics where set theory is generalized to

include the notion of partial set membership. In this book an element is either in a set or it
is not in the set. In contrast, in fuzzy logic an element may be partially in a set. A classic
example of a fuzzy set is the set of “warm days.” It is natural to think of some days as “kind
of” warm, which is represented in fuzzy logic by a kind of warm day being partially in the
set of warm days and partially not in it. There is a vast literature on fuzzy logic and the
interested reader is referred to the original paper [22].
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Elements of D1×D2×· · ·×Dn are called n-tuples. Elements of D1×D2×· · ·×Dn
are ordered which means that

(x1, x2, . . . , xn) = (y1, y2, . . . , yn)

if and only if x1 = y1, x2 = y2, · · · , and xn = yn. ⋄

Example 1.4.2 As sets,
{1, 4, 6, 8}

and
{8, 4, 6, 1}

are the same. As ordered sets they are not the same.

An example of the way the Cartesian product is used is when vectors are
used to represent something.

Example 1.4.3 An example of a Cartesian product is the set of vectors
in three dimensional Euclidean space. To specify a point in space, a set
of three basis vectors is needed, and the point is then represented by its
component along each of these three basis vectors. In this book we will
write

ξ =





x1

x2

x3





to represent the point. The set to which this point belongs is

R × R × R = R
3.

1.4.2 Relations and Functions

In this book, a relation between elements of sets may be defined by equation
or set of equations. Elements of the sets satisfy the relation if they satisfy the
equation. A special kind of relation is a function.

Definition 1.4.4 Given two sets, D and R, if, for each element of x ∈ D there
is an assignment of one and only one element of y ∈ R then we say that y is a
function of x. The set D is called the domain and the set R the range.

The variable x denoting an element of the domain is called the independent
variable and the variable y denoting the elements of the range is called the
dependent variable. It is common to write y = f (x) to indicate that y is a
function of x. ⋄

Note that it may be necessary to specify which set is the domain and which
is the range. Of course, we do not usually bother to do that and it is normally
clear from the context which set is the domain and which is the range. We will
often indirectly specify the domain and range by saying that a function is from
the domain to the range.
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Example 1.4.5 If s = α+ iβ, the equation

r = ‖s‖ =
√

α2 + β2

defines a function from the complex numbers to the real numbers (the com-
plex numbers are the domain and the real numbers are the range) since
there is one and only one real number for each complex number that sat-
isfies the equation. The equation does not define a function from the real
numbers to the complex numbers because for most real numbers, r, there
are many complex numbers with ‖s‖ = r.

So far we have been considering functions between two sets. Of course, func-
tions may exist between multiple sets, which is manifested in the case where the
dependent variable depends upon more than one independent variable. In such
a case, the dependent variable is a function of the independent variables if, for
each possible combination of the independent variables, there corresponds only
one value of the dependent variable. Solutions to partial differential equations
are multi-variable functions.

Definition 1.4.6 Given m + 1 sets, D1,D2, . . . ,Dm, and R, element of x1 ∈
D1, x2 ∈ D2, . . . , xm ∈ Dm there corresponds one and only one element of y ∈ R,
then we say that y is a function of x1, x2, . . . , xm. The variables x1, x2, . . . , xm
are called the independent variables and the variable y denoting the elements
of the range is called the dependent variable. Using the Cartesian product, the
domain is given by

D = D1 ×D2 × · · · × Dm
and the function is a function from D to R. It is common to write y =
f (x1, x2, . . . , xm) to indicate that y is a function of x1, x2, . . . , xm. ⋄

Example 1.4.7 The equation

r =
√

x2 + y2

defines a function from R×R to R since there is only one r for any specified
values for x and y.

1.4.3 The derivative

The derivative is given by the usual limit definition.

Definition 1.4.8 Let x(t) be a function with the single independent variable
t. The derivative of x with respect to t is denoted by dx

dt
and is defined by

dx

dt
(t) = lim

∆t→0

x (t+ ∆t) − x (t)

∆t
.

⋄

Of course the usual interpretation of the derivative is that it is the rate of
change of the function with respect to the independent variable. If graphed,
it is the slope of the curve of x(t). If the function depends on more than one
independent variable, then we must consider the partial derivative.
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Definition 1.4.9 Let x(t1, . . . , tn) be a function with independent variables
t1, . . . , tn. The partial derivative of x with respect to tm is denoted by ∂x

∂tm
and

is defined by

∂x

∂tm
(t1, . . . , tn) = lim

∆t→0

x (t, . . . , tm + ∆t, . . . , tn) − x (t1, . . . , tm, . . . , tn)

∆t
.

⋄

This book will use practically all the usual notational means to represent
derivatives. Which one is used will typically depend on the conventional nota-
tion used by various application areas. In particular, because it can be difficult
to interpret an equation with many parentheses, we will often use a “subscript”
notation to indicate the values at which a derivative function is evaluated instead
of following the function name by parentheses, i.e.,

df

dx

∣

∣

∣

∣

x=x0

=
df

dx
(x0) .

1.4.4 Implicit Functions

So far things are simple: given an element of the domain, if we have a way to
determine one and only one element of the range, then we have a function. In
some cases, however, it naturally arises that for a function of more than one
variable, we are interested not so much in what element of the range corresponds
to elements of the domain, but rather in the relationship among the elements
of the domain that correspond to one particular element in the range. A circle
is an obvious example.

Example 1.4.10 Returning to Example 1.4.7, we may consider the set of
points that satisfy

x2 + y2 = 1. (1.2)

A plot of all points that satisfy this equation is illustrated in Figure 1.1.

In Example 1.4.7 we had a function of two variables, and in Example 1.4.10
we studied the set of points that satisfy x2 + y2 = 1. This second example
defines a relation, which is more general than a function. Two points x ∈ R

and y ∈ R satisfy the relation if they satisfy Equation 1.2. Mathematically a
relation is defined to be a subset of the domain. For purposes of this book we
will consider them to be the subset of the domain that satisfy some equation,
such as f(x, y) = 1, or f(x, y) ≥ 2.

It is logical in the second example to study the relationship between x and
y beyond simply asking whether or not they satisfy the relation. By referring
to Figure 1.1, it is clear that x and y are not related by a function since for any
x ∈ (−1, 1) there are two values for y (and vice-versa). In the next example,
we show that is possible to make the relationship between x and y that satisfy
f(x, y) = 1 into a function, at least for a limited domain and/or range.
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x

Figure 1.1. A plot of the subset of points in R2 that satisfy
x2 + y2 = 1.
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Example 1.4.11 Consider the set of points that satisfy

x2 + y2 = 1. (1.3)

One way to make this relation into a function is to appropriately restrict
the domain and range. It is clear from Figure 1.1 that, at most, the domain
must be limited at least to the interval D = [−1, 1]. With respect to the
range, it must also be restricted so that only the top half or bottom half of
the circle is included in the range.

So, in this example, Equation 1.3 defines a function y = f(x) if we
restrict the domain to be

D = {x ∈ R |−1 ≤ x ≤ 1}

and specify either

y =
√

1 − x2

or

y = −
√

1 − x2,

which corresponds to either the top or bottom half of the circle, respec-
tively.

Do not infer from Example 1.4.7 that it will always be the case that an equa-
tion that defines an implicit function can be “solved” for one of the variables.
In fact doing so will typically be difficult.

In Example 1.4.7 we were able to solve for y in terms of x for some region
of the domain. Motivated by this we define an implicit function as follows.

Definition 1.4.12 The equation f (x, y) = c where c is a constant, defines an
implicit function if and only if there exists a function g (x) such that

f (x, g (x)) = c. ⋄

The more natural way to write this is to write g(x) = y(x), i.e., the y variable
is actually a function of x. The idea is, that we want to be able to ask how y
should change if we want to vary x and simultaneously require f(x, y) = c. To
determine when such a y(x) will exist is not too hard. To do so, we differentiate
f (x, y (x)) = c with respect to x and solve for dy

dx
(how y changes with x) as

follows. Differentiating and using the chain rule for the second component gives

df

dx
=
∂f

∂x
+
∂f

∂y

dy

dx
.

Since y(x) is defined so that f(x, y(x)) = c, then

df

dx
= 0
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and hence
dy

dx
= −

∂f
∂x
∂f
∂y

. (1.4)

Intuitively, in order to determine how y should change as a function of x, we
need that the denominator on the right hand side of Equation 1.4 be nonzero.
In fact, this is exactly what is required and is the basis for the proof of the
following theorem.

Theorem 1.4.13 Let f(x, y) be a continuously differentiable real-valued func-
tion defined on an open set and let (x0, y0) be a point such that f (x0, y0) = c
and such that

∂f

∂y

∣

∣

∣

∣

(x0,y0)

6= 0.

Then there exists a function y(x) on an open interval containing x0 such that
y(x) is continuously differentiable and

f (x, y (x)) = c.

This theorem is called the implicit function theorem and is one of the most
fundamental and useful tools in analysis. Unfortunately for our purposes it is
not so useful since it only tells us when y may be considered a function of x,
but it does not tell us what that function is.

1.5 Types of Differential Equations

This section provides the basic definitions necessary to categorize a given dif-
ferential equation (or set of differential equations) according to the five criteria
outlined above. The solution methods developed subsequently will only be ap-
plicable to certain types of differential equations; hence, it is critical from the
beginning to be able to properly categorize them. Before that, however, we
must first consider what exactly a “differential equation” is.

Definition 1.5.1 Let x(t1, t2, . . . , tm) be a function of the m independent vari-
ables ti t1, t2, . . . , tm. A differential equation is simply an equation that involves
t, x(t1, . . . , tm) and contains at least one derivative (of any order) of x(t1, . . . , tm).⋄

Example 1.5.2 The equation

1

t
ẍ(t) = 3

is a differential equation with dependent variable x and independent
variable t.

Sometimes we will have to consider a set of differential equations, which will
be called a system of differential equations.
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Definition 1.5.3 Let each function in the set of functions {x1, x2, . . . , xn}
be a function of the m independent variables t1, t2, . . . , tm. A system of dif-
ferential equation is a set of n equations that contains at least one derivative
of each of the functions in the set {x1, x2, . . . , xn}. ⋄

Example 1.5.4 The set of equtions

x1(t1, t2, t3) +
∂5x2

∂t31∂t
2
2

(t) = sin 3t3

csc(t1)
∂x2

∂t2
=

∂2x1

∂t23
(t)

is a system of two differential equations with dependent variables x1 and
x2 and independent variables t1, t2 and t3.

In general, because they can be determined from fundamental scientific prin-
ciples, the differential equation governing a system is known, but the solution is
unknown. “Solving” a differential equation amounts to determining the function
(dependent variable) of the independent variable which satisfies the differential
equation.

1.5.1 Ordinary vs. partial differential equations

If In a differential equation, if the dependent variable is a function of only one
independent variable, then the differential equation is an ordinary differential
equation. If the dependent variable depends on more than one independent
variable then the differential equation is a partial differential equation. Generally
it is trivial to distinguish between ordinary and partial differential equations
since the derivatives are notationally different.

Example 1.5.5 The equation describing a mass-spring-damper system un-
der the influence of a forcing function given by

ẍ (t) + 3ẋ (t) + 5x (t) = cos (t) (1.5)

is an ordinary differential equation with independent variable t and depen-
dent variable x.

Example 1.5.6 The equation that described the shape of a vibrating string

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t)

where u(x, t) gives the displacement of the string, u, at position x at time
t, is a partial differential equation.



12 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

A system of differential equastions is ordinary if each of the dependent
variables are a function of one and the same independent variable.

Some nuances exist, but generally speaking if there are partial derivative
signs in the equation it is a partial differential equation and if there are only
ordinary derivative operators (d’s) or “dots,” e.g., ẋ or “primes,” e.g., y′ then
the equation is ordinary.

1.5.2 The order of a differential equation

The order of an ordinary differential equation is simply the order of the highest
derivative in the equation.

Example 1.5.7 The equation

sin t+ x (t) + ẍ (t) = 35ẋ (t) cos (t)

is second order.

For a partial differential equation, the order is also the order of the highest
derivative of the independent variable. We may also express the order with
respect to each of the independent variables.

Example 1.5.8 The wave equation

∂2u

∂x2
(x, t) =

∂2u

∂t2
(x, t)

is second order in both x and t.
The heat equation

∂2u

∂x2
(x, t) =

∂u

∂t
(x, t)

is second order in the independent variable x and first order in the indepen-
dent variable t.

Example 1.5.9 The equation

∂3u

∂2x∂t
(x, t) = 5

is third order and it is second order with respect to x and first order with
respect to t.

1.5.3 Linear vs. nonlinear differential equations

This is perhaps the most important distinction of all. With the exception of
some first order equations and other very specific examples, nonlinear differen-
tial equations do not have any known solution techniques; in contrast, linear
differential equations have some very nice properties. A differential equation is
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linear if all the terms in the equation are linear in the dependent variable and
its derivatives; otherwise, it is nonlinear.

Considering first an nth order ordinary differential equation with indepen-
dent variable t and dependent variable x, if the equation can be put in the form

fn(t)
dnx

dtn
(t) + fn−1(t)

dn−1x

dtn−1
(t) + · · · + f1(t)

dx

dt
(t) + f0(t)x (t) = g(t) (1.6)

it is linear.

Remark 1.5.10 The functions fi(t) and g(t) do not have to be linear functions
of t in order for the equation to be linear. Only linearity in the dependent
variable matters. ⋄

Extending this to the partial differential equation case is straight-forward.
The equation is linear if all the terms containing the dependent variable or any
of its derivatives appears linearly in the equation; otherwise, it is nonlinear.

Considering an nth order partial differential equation with independent vari-
ables x and t and dependent variable u, if the equation can be put in the form

∑

i,j,i+j≤n
fi,j (x, t)

∂i+ju

∂xi∂tj
(x, t) = g (x, t)

it is linear.

Example 1.5.11 The following differential equations are linear or nonlin-
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ear as indicated:

ẍ (t) + t2 sin (t)x (t) = 5t linear

ẍ (t) + t2 sin (t)x2 (t) = 5t nonlinear

ẍ (t) + t2 sin (t) sin (x (t)) = 5t nonlinear

ẍ (t) + t2 sin (t)x (t) = 5tx (t) linear

ẍ (t) + 2tẋ (t) = 5x (t) linear

ẍ (t) + 2ẋ (t) = 5x (t) linear

ẍ (t) + 2x (t) t = 5x (t) linear

ẍ (t) + 2x (t) ẋ (t) = 5x (t) nonlinear

ẍ (t) + 2x (t) = 5 sin (t) linear

ẍ (t) + 2x (t) = 5 sin (t) ẋ (t) linear

ẍ (t) + 2x (t) = 5 sin (t) sin (ẋ (t)) nonlinear

∂2u

∂x2
(x, t) =

∂u

∂t
(x, t) linear

∂2u

∂x2
(x, t) = u

∂u

∂t
(x, t) nonlinear

∂2u

∂x2
(x, t) =

∂u

∂t
(x, t)

∂u

∂t
(x, t) nonlinear

∂2u

∂x2
(x, t) =

∂u

∂t
(x, t) + x linear

∂2u

∂x2
(x, t) =

∂u

∂t
(x, t) x+ x linear.

1.5.4 Homogeneous vs. inhomogeneous linear ordinary
differential equations

If any of the terms of a linear ordinary differential equation are only a function
of the independent variable(s) or are a constant, then the equation is inhomo-
geneous; otherwise, it is homogeneous. The “terms” of a differential equation
are the elements of the equation that are on either side of the equality and that
are combined by addition or subtraction. Note that determining whether or
not an equation is homogeneous or inhomogeneous will require being precise
about what variables are dependent and independent. An equation that is not
already in a convenient or standard form may take more than cursory study to
determine homogeneity or inhomogeneity.

Example 1.5.12 The following linear ordinary differential equations with
dependent variable x and independent variable t are homogeneous or inho-
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mogeneous as indicated:

ẍ (t) + t2 sin (t)x (t) = 5t inhomogeneous

ẍ (t) + t2 sin (t)x (t) = 5tx (t) homogeneous

1.5.5 Constant vs. variable coefficient linear ordinary dif-
ferential equations

The coefficients in question are the terms which multiply the dependent variable
and its derivatives in a linear differential equation. If they are constants the
equation is constant coefficient; otherwise, it is variable coefficient. Note that
if the equation is inhomogeneous, then there may be terms that are functions
of the independent variable, but if they are not coefficients of the dependent
variable it will still be a constant coefficient differential equation. Especially
in control theory and in dynamical systems, constant coefficient equations are
often referred to as time invariant.

Example 1.5.13 The following linear ordinary differential equations with
dependent variable x and independent variable t are either constant or vari-
able coefficient as indicated:

ẍ (t) + t2 sin (t) x (t) = 5t variable coefficient

ẍ (t) + t2 sin (t)x (t) = 5tx (t) variable coefficient

ẍ (t) + 2ẋ (t) = 5x (t) constant coefficient

ẍ (t) + 2ẋ (t) t = 5x (t) variable coefficient

ẍ (t) + 2x (t) = 5 sin (t) constant coefficient

1.6 Solutions of Differential Equations

There are, in fact, several different types of solutions to differential equations.
Distinguishing among them is important, not only for fundamentally under-
standing the subject, but also for avoiding frustration subsequently when “solv-
ing” problems so that the right type of solution is actually obtained.

Definition 1.6.1 An explicit solution (usually just called “a solution”) of a
differential equation is a function that satisfies the differential equation.

Example 1.6.2 The function, x(t) = sin t is a solution to

ẍ+ x = 0. (1.7)

Actually, any function of the form x(t) = c sin t, where c is a constant, is a
solution to Equation 1.7.
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Example 1.6.3 The function x(t) = cos t+ t sin t is an explicit solution to

ẍ+ x = 2 cos t.

Sometimes a solution is only defined on a particular interval of the inde-
pendent variable. In such a case the interval must be stated as part of the
solution.

Example 1.6.4 The function

x(t) = 2 ln t+ c

where c is an arbitrary constant is a solution to

ẋ =
2

t

for t > 0.

Observe that that in Examples 1.6.2 and1.6.4 there are arbitrary constants in
the solution. We will also be interested in the case where there are no arbitrary
constants.

Definition 1.6.5 A particular solution of a differential equation is a function
which satisfies the differential equation, but contains no arbitrary constants. ⋄

Example 1.6.6 The function

x(t) = 2 ln t+ 6

is a particular solution to

ẋ =
2

t

for t > 0.
Also, x(t) = sin t is a particular solution to Equation 1.7 as are x(t) =

2 sin t, x(t) = 3 sin t, etc.

Example 1.6.7 The function x(t) = t sin t is a particular solution to

ẍ+ x = 2 cos t.

Sometimes we will determine solutions that are described by implicit func-
tions, as is illustrated by the following example. These arise in this book for
certain types of first order, nonlinear, ordinary differential equations.

Example 1.6.8 Consider the relation

f (x, t) = x2 + t2 = c. (1.8)

Since
∂f

∂x
= 2x 6= 0
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as long as x 6= 0, f(x, t) = c defines an implicit function x(t) according to
Theorem 1.4.13 away from x = 0.

For a specified constant c, the implicit function x(t) defined by the re-
lation in Equation 1.8 is a particular solution to

2xẋ+ 2t = 0. (1.9)

If c is arbitrary then x(t) is a solution to Equation 1.9.
This is verified by differentiating Equation 1.7 with respect to time and

noting that x is a function of t. In particular,

df

dt
(x(t), t) =

[

∂f

∂x
(x(t), t)

]

dx

dt
(t) +

∂f

∂t
(x(t), t)

= [2x(t)] ẋ(t) + 2t

= 0.

If some solutions contain arbitrary constants, then it is natural to ask when
a solution has enough arbitrary constants to represent every solution to a dif-
ferential equation.

Definition 1.6.9 The general solution of a differential equation is a function
from which every particular solution may be obtained by an appropriate choice
of values for arbitrary constants. ⋄

It should be apparent that it will typically be very difficult to know whether
or not a given solution is a general solution, even if it contains many arbitrary
constants. In certain cases where we can make some definite theoretical state-
ments regarding the uniqueness of solutions, it may be possible to assert that a
given solution is a general solution.

Example 1.6.10 At this point we have not developed to prove it, but the
function x(t) = c1 sin t+ c2 cos t happens to be the general solution to

ẍ+ x = 0.

Every particular solution may be obtained by the appropriate choice for c1
and c2.

Example 1.6.11 The function x(t) = c1 sin t+c2 cos t+t sin t is the general
solution to

ẍ+ x = 2 cos t.

For most engineering problems it is natural to expect that if a differential
equation describes some dynamical process, then there will be only one solution,
i.e., a unique solution. We will defer the issue of existence and uniqueness of
solutions to later. For present purposes we will address the question of exactly
how the arbitrary constants are determined. The data that is used to determine
the arbitrary constants in a general solution to determine a specific particular
solution are called either the initial conditions or boundary conditions.
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Example 1.6.12 Consider the differential equation and solution from Ex-
ample 1.6.11 again, and assume that we desire the solution that satisfies

x(0) = 0

ẋ(0) = 1.

Substituting this data into the general solution gives the two equations

x(0) = c1 sin 0 + c2 cos 0 + 0 sin 0

= c2.

Since it was specified that x(0) = 0,then c2 = 0. Similarly,

ẋ(0) = c1 cos 0 − c2 sin 0 + sin 0 + 0 cos 0

= c1.

Since ẋ(0) = 1, then c1 = 1. Hence, the function

x(t) = sin t+ t sin t

is the particular solution that satisfies, in addition to the differential equa-
tion, the two additional criteria that x(0) = 0 and ẋ(0) = 1.

Reviewing the examples presented so far regarding general solutions, it ap-
pears that the general solution to an nth order differential equation will have n
arbitrary constants. This is generally, although not always the case. For all the
general solutions we will consider in this book is, in fact, the case.

The term homogeneous solution means the general solution to an ordinary,
homogeneous differential equation. If the equation is inhomogeneous, the homo-
geneous solution is the general solution obtained by setting the inhomogeneous
term to zero. If the equation is inhomogeneous, then a subscript h will be used
to designate the fact that the solution is the homogeneous solution as opposed to
the particular, general or explicit solution. For the types of differential equations
will consider in this book where we deal with homogeneous solutions, an nth
order differential equation will have n different3 homogeneous solutions. An al-
ternative common name for homogeneous solutions is complementary functions.

Example 1.6.13 The function xh(t) = c1 sin t+c2 cos t is the homogeneous
solution to all of the following differential equations:

ẍ+ x = sin t

ẍ+ x = cos t

ẍ+ x = t

ẍ+ x = et

ẍ+ x =
sin t+ 35 cos t

et + 6
ẍ+ x = 5.

3What exactly constitutes “different” solutions is a bit subtle. In fact, we will require
linearly independent solutions, which is detailed subsequently in Section 3.2.2.
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As will be seen in Chapter 3, the homogeneous solution is usually added to
a particular solution to determine a general solution to an ordinary, inhomoge-
neous, linear equation.

1.7 Existence and Uniqueness of Solutions

Given a differential equation, the issue of whether or not it actually has a so-
lution, and if it does, whether or not that solution is unique, is clearly of great
importance.

1.8 Stability

1.9 A Few Fundamental Principles from Science

Differential equations arise in engineering because the fundamental laws govern-
ing many physical processes are known relationships between various quantities
and their derivatives. Hence, the fundamental law is known, and often quite sim-
ple such as Newton’s second law, F = ma; however, the ultimate consequences
of this law may be quite complicated. This section reviews a few fundamental
laws of science, some of which are the foundation which gives rise to differential
equations that have engineering importance.

1.9.1 Units

In order for numeric descriptions of quantities to be meaningful, a system of
units must be employed. As is conventional this book will use the following as
the base units for the seven base quantities, and all other units will be derived
from these. These base units are

1. the meter, m, which is a unit for the base quantity of length;

2. the second, s, which is a unit for the base quantity of time;

3. the kilogram, kg, which is a unit for the base quantity of mass;

4. the ampere, A, which is a unit for the base quantity of electric current;

5. the kelvin, K, which is a unit for the base quantity of thermodynamic
temperature;

6. the mole, mol, which is a unit for the base quantity of the amount of
substance; and,

7. the candela, cd, which is a unit for the base quantity of the luminous
intensity of light.
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Derived quantity Name Symbol Base Units Other Units
area square meter m2

volume cubic meter m3

plane angle radian rad m
m

speed, velocity meters per second m
s

angular velocity radians per second 1
s

rad
s

acceleration meters per second squared m
s2

mass density kilograms per cubic meter kg
m3

frequency Hertz Hz 1
s

force Newton N kg·m
s2

moment Newton meter kg·m2

s2 N · m
energy, work Joule J kg·m2

s2 N · m
power Watt W kg·m2

s3
J
s

electric charge Coulomb C A · s
electric potential Volt V kg·m2

s3·A
W
A

electric capacitance Farad F A2·s4
kg·m2

C
V

electric resistance Ohm Ω kg·m2

s3·A2
V
A

electric inductance Henry H kg·m2

s2·A2

heat capacity Joules per Kelvin kg·m2

s2·K
J
K

thermal conductivity Watt per meter Kelvin kg·m
s3·K

W
m·K

Table 1.1. Some derived units based upon the seven base units
in the SI system adapted from [20].

magnitude name symbol magnitude name symbol
1024 yotta Y 10−1 deci d
1021 zetta Z 10−2 centi c
1018 exa E 10−3 milli m
1015 peta P 10−6 micro µ
1012 tera T 10−9 nano n
109 giga G 10−12 pico p
106 mega M 10−15 femto f
103 kilo k 10−18 atto a
102 hecto h 10−21 zepto z
101 deka da 10−24 yocto y

Table 1.2. The standard prefixes corresponding to different
orders of magnitude [20].
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See [20] for further information. Units derived from these base units that are
used in this book are presented in Table 1.1. For completeness, the usual prefixes
used for different orders of magnitude are presented in Table 1.2.

The calculus operations of differentiation and integration change the units
of a function in an intuitive manner. By the definition of the derivative,

df

dt
(t) = lim

∆t→0

f (t+ ∆t) − f (t)

∆t

the units of a derivative of a function will be the units of that function di-
vided by the units of the independent variable with respect to which it is being
differentiated.

Example 1.9.1 If x(t) has units of meters, then ẋ(t) will have units of
meters divided by seconds.

Example 1.9.2 If u(x, t) has units of Kelvin, then ∂2

∂x2u
(x, t) ∂2

∂x2u (x, t)

will have units of Kelvin divided by meters squared.

Conversely, the units of the integral of a function will be the units of that
function multiplied by the units of the independent variable with respect to
which it is being integrated.

Example 1.9.3 If f(t) has units of meters and t has units of seconds, then
∫

f(t)dt will have units of meters times seconds.

1.9.2 Mechanical Systems

In this section we will consider some basic ways to determine the equations of
motion for mechanical systems. This text is not intended to be a mechanics
book; however, it is important to consider the manner in which differential
equations arise. Keep in mind that the point of this section is only the means
to determine the right equations. The rest of the book is about how to solve
them.

This section is intended as a summary of basic results from dynamics. A
complete exposition requires a much more comprehensive treatment. An inter-
ested reader is referred to, for example, [15] for an introductory treatment, [10]
for an intermediate treatment or to [8, 2, 4, 1] for a more advanced treatment.

In The Principia, [17, 18], Isaac Newton states the following three laws of
motion.

Law 1.9.4 Every body preserves in its state of rest, or of uniform motion in
a right line, unless it is compelled to change that state by forces impressed
thereon.4

4As originally published, it states “Lex I: Corpus omne perseverare in statu suo quiescendi
vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum
mutare.”
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The modern expression of this law is conservation of momentum.

Law 1.9.5 The alteration of motion is ever proportional to the motive forces
impressed; and is made in the direction of the right line in which that force is
impressed.5

This gives rise to the familiar “force equals mass times acceleration” rule.

Law 1.9.6 To every action there is always opposed an equal reaction: or the
mutual actions of two bodies upon each other are always equal, and directed to
contrary parts.6

In other words, forces occur in equal and opposite pairs. If you push on a
body, the force you exert is exactly the same as the force that the body exerts on
you. This law plays a critical role in the development of rigid body mechanics.

Application of Newton’s Laws to translational motion of a particle

Newton’s first law speaks of a “body.” We need to be a bit more precise and
distinguish between two types of bodies. In particular, we will consider particles
and rigid bodies. A particle is a object that generally has a finite mass, but has
no appreciable physical extent compared to its range of motion. In such a
case it is valid to assume that the mass is concentrated at a point. A rigid
body is a collection of particles where the distance between any two particles
remains fixed. In this text, unless otherwise indicated, all vectors describing
physical systems will be with respect to an inertial coordinate system, which is a
coordinate system that is not rotating and has an origin that is not accelerating.7

First, we will define some fundamental quantities for particles, collections of
particles and rigid bodies, and then express various forms of Newton’s laws for
each.

Definition 1.9.7 The linear momentum, p, of a particle of mass m with ve-
locity v measured relative to an inertial coordinate system is given by

p = mv. (1.10)

⋄

5“Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum
lineam rectam qua vis illa imprimitur.”

6“Lex III: Actioni contrariam semper et qualem esse reactionem: sive corporum duorum
actiones in se mutuo semper esse quales et in partes contrarias dirigi.”

7Exactly how to determine whether or not a coordinate system is inertial is not an easy
thing. Generally, however, on the earth if it is not accelerating with respect to the surface of
the earth, then it is approximately inertial unless the acceleration is extremely small or the
extent of motion is large. Sometimes an inertial frame is defined to be one in which Newton’s
laws hold; however, this is not of much use if our purpose is to apply Newton’s laws! Appealing
to Einstein’s general theory of relativity gives a complete answer, but is beyond the scope of
this text.
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F(t)F(t)
Fc(t)

Figure 1.2. System for Example 1.9.8.

Considering a particle of mass m, where x denotes its position, Newton’s
second law states that if F represents the vector sum of the forces acting on the
particle,

d (mv)

dt
(t) = F, (1.11)

and in the case where m is constant,

m
d2x

dt2
(t) = F. (1.12)

In the case where there are no forces, the first law follows. and is given by

d (p)

dt
(t) = 0 =⇒ p(t) = const.

Equations 1.11 and 1.12 are the primary equations used to determine equations
describing the translational motion of a particle. To use it for a problem where
the motion of the particle is constrained, the constraint forces must either be
determined or be orthogonal to the directions of motion under consideration.

Most of the use of Newton’s laws in this book will be concerned with the
special case of rectilinear motion, which is motion along a straight line. This
case is nice because the equations of motion will reduce to a scalar differential
equation and the application of Newton’s law will simply be to write F = ma
in the relevant direction. The student is cautioned to be cognizant of how
restrictive this case actually is and to exercise care in applying Newton’s law
in the appropriate form, in particular Equation 1.11, when the motion is not
necessarily rectilinear.

Example 1.9.8 Consider a particle of mass m constrained to move along
the x-axis and subjected to an applied force F(t) as is illustrated in Fig-
ure 1.2. The force F(t) may have both a magnitude and orientation that
changes with time. Assume that the constraint is frictionless.

Let

x =

[

x
y

]

,
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denote the position of the particle and

F(t) =

[

Fx(t)
Fy(t)

]

,

denote the two components of the force. A free body diagram8 of the particle
is illustrated on the right of Figure 1.2. There are two forces acting on the
particle; the applied force F(t) and some unknown constraint force, Fc(t).
Since the constraint is frictionless, Fc(t) must be purely in the y-direction
with no component in the x-direction, so we may write

Fc(t) =

[

0
Fc(t)

]

.

For this system, Equation 1.12 is of the form

m
d2x

dt2
= F(t) + Fc(t)

Writing the vectors in terms of their components gives

m

[

d2x
dt2

d2y
dt2

]

=

[

Fx(t)
Fy(t)

]

+

[

0
Fc(t)

]

=

[

Fx(t)
Fy(t) + Fc(t)

]

which is equivalent to the two scalar equations

mẍ = Fx(t) (1.13)

mÿ = Fy(t) + Fc(t). (1.14)

Since the motion is constrained to be only in the x-direction, Equation 1.14
reduces to

Fy(t) + Fc(t) = 0.

Observe that if the point of interest in the problem were only the motion
in the x-direction, we could have easily determined Equation 1.13 by only
considering the forces in the x-direction. In such a case there is no need to
even determine Equation 1.14. This nice form of the equations occurred not
only because the direction of motion and constraint force were orthogonal,
but because they were in constant directions, which is a consequence of the
motion being rectilinear.

The following example illustrates that things become more complicated when
the motion is not rectilinear.

Example 1.9.9 Consider a particle constrained to move along a curve de-
scribed by y = f(x) as illustrated in Figure 1.3 subjected to a known exter-
nal force, F(t). This may be thought of as a bead moving along a frictionless
wire with the prescribed shape.

8A free body diagram is an illustration of the particle isolated from the environment wherein
all the forces acting on the body are illustrated.
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F(t)

F(t)

Fc(t)

y = f(x)

Figure 1.3. System for Example 1.9.9.

The particle must obey Newton’s second law; hence,

m
d2x

dt2
= F(t) + Fc(t), (1.15)

where Fc(t) is the constraint force between the bead and wire.
This seems like two equations for the two components of x(t). However,

those two components are not actually the unknowns. Since the particle
must stay on the wire, if we know x(t), then we know y(t) since y = f(x).
So, only one of the two components is really not known. The other unknown
is actually the magnitude of Fc(t). Since the wire is frictionless, Fc(t) must
be orthogonal to the wire at the location of the bead. So we know its
direction at any location x(t), but not its magnitude. Since the slope of
y = f(x) is given by the derivative at x, then the vector

t(x) =

[

1
df
dx

∣

∣

∣

x

]

will be in the direction tangent to the curve. Computing the normal vector,
n(x) such that n(x) · t(x) = 0, we have that the normal vector at the point
x is

n(x) =

[

− df
dx

∣

∣

∣

x

1

]

.

Hence the constraint force is in the direction of this normal vector, but not
necessarily of the same magnitude. It is a vector that has the same direction
as the normal, but not the same magnitude i.e.,

Fc(t) = Fc

[

− df
dx

∣

∣

∣

x(t)

1

]

(1.16)

If we write

x(t) =

[

x(t)
y(t)

]
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since y(t) = f(x(t)), then the chain rule for differentiation gives

ẏ(t) =
df

dx

∣

∣

∣

∣

x(t)

ẋ(t)

and then the chain rule and product rule for differentiation gives

ÿ(t) =
d2f

dx2

∣

∣

∣

∣

x(t)

ẋ2(t) +
df

dx

∣

∣

∣

∣

x(t)

ẍ(t). (1.17)

Now we can substitute Equation 1.17 into the second component of
Equation 1.15 and substitute Equation 1.16 into Equation 1.15, solve one
of them for Fc(t) and substitute into the other to result in a single differential
equation in dependent variable x and independent variable t. Substituting
Equation 1.16 into Equation 1.15 and writing it in components gives

mẍ(t) = Fx(t) − Fc(t)
df

dx

∣

∣

∣

∣

x(t)

(1.18)

mÿ(t) = Fy(t) + Fc(t).

Hence
Fc(t) = mÿ(t) − Fy(t)

and substituting from Equation 1.17 gives

Fc(t) = m

(

d2f

dx2

∣

∣

∣

∣

x(t)

ẋ2(t) +
df

dx

∣

∣

∣

∣

x(t)

ẍ(t)

)

− Fy(t).

Finally, substituting for Fc(t) in Equation 1.18 gives

mẍ(t) = Fx(t) −
(

m

(

d2f

dx2

∣

∣

∣

∣

x(t)

ẋ2(t) +
df

dx

∣

∣

∣

∣

x(t)

ẍ(t)

)

− Fy(t)

)

df

dx

∣

∣

∣

∣

x(t)

.

(1.19)

The point of Example 1.9.9 was to demonstrate that the case of constrained
non-rectilinear motion is rather involved. There are other ways to approach the
problem (see Example 16.0.2), which in some cases may be more efficient, but
there is basically no way to just to be able to write the equations as one equation
that is of the form mẍ = F , where F is simply the applied forces projected
onto the direction of motion. This is because, in general, the motion of the
particle, the applied force and the constraint force have components in both
coordinate directions. Of course, one may attempt to realign the coordinate
axes with the curve y = f(x), but how to do this depends on the location of
the particle, and if the particle is moving, the realigned coordinates will have to
move with it, which, except in the simplest case of pure translation, will make
the realigned coordinates non-inertial. Such an approach is actually probably
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the most intuitive, but there is the complication of properly taking care of the
fact that the coordinate system is non-inertial. An interested reader is referred
to [10] for a comprehensive treatment of this issue.

Fortunately, for most problems in this book rectilinear motion is what is
considered and hence, it is usually relatively easy to write F = ma in the
correct direction.

Application of Newton’s laws to rotational motion of a particle

We now consider a formulation that is amenable to rotational motion, by ba-
sically taking the cross product of a vector from some point with each side of
Equations 1.10, 1.11 and 1.12.

Definition 1.9.10 The angular momentum, hO(t), of a particle of massm with
velocity v(t) about a point O

hO(t) = r(t) × p(t)

= m (r(t) × v(t)) (1.20)

where r is measured from O to the position of the particle and × is the normal
cross product in R3 and the second equation holds if the mass of the particle is
constant. ⋄

Computing the derivative of angular momentum with respect to time

dhO
dt

(t) =
d (r(t) × p(t))

dt

=
dr

dt
(t) × p(t) + r(t) × dp

dt
(t)

= v(t) × p(t) + r(t) × dp

dt
(t)

= v(t) × (mv(t)) + r(t) × dp

dt
(t)

= r(t) × dp

dt
(t),

and by Equation 1.11, we have

dhO
dt

(t) = r(t) × F(t). (1.21)

Equation 1.21 is the usual, “the rate of change of angular momentum about a
point is equal to the sum of the moments about that point.” If all the forces
acting on the particle are parallel to r, then angular momentum about the point
O is conserved.

Example 1.9.11 Consider a particle with mass m constrained to move
along a frictionless circular hoop with radius r, as illustrated in Figure 1.4.
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x

y

θ

mg

m

Figure 1.4. Hoop for Example 1.9.11.

Determine a differential equation that describes the motion of the particle
using θ as the dependent variable and t as the independent variable.

Since the particle is constrained to move along the hoop the magnitude
of the velocity will be

‖v‖ = rθ̇.

The angular momentum about the center of the hoop is

h = r × v.

We could determine the components of v and r as a function of θ.9 However,
it is easier to observe that because of the geometry of the hoop, v will
always be orthogonal to r and h about the center of the hoop will always be
orthogonal to the plane of the hoop. Hence, we can let h be the scalar that
represents the magnitude of the angular momentum of the particle along

9Heck, let’s work it out anyway. If we take the x-axis to the right, the y-axis up and the
z-axis out of the page in Figure 1.4, then

v =

2

4

−rθ̇ sin θ

rθ̇ cos θ

0

3

5

and

r =

2

4

r cos θ

r sin θ

0

3

5 .
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the axis orthogonal to and out of the plane of the hoop and write

h = r2θ̇.

To determine the motion of the particle, we will use Equation 1.21, so we
need to compute r × F. This cross product will also be along the axis
orthogonal to the plane of the hoop, so we may write

‖r× F‖ = rmg sin θ.

Finally, since r is constant,

dh

dt
(t) = r2θ̈(t)

and by Equation 1.21
r2θ̈ = rmg sin θ

or
θ̈ =

mg

r
sin θ,

which is a second order, nonlinear, ordinary differential equation.

Application of Newton’s Laws to a System of Particles

In order to extend Newton’s laws to rigid bodies, we must consider the appli-
cation of them to systems of particles, which is simply a collection of particles.
In the next section will consider the special case where the system of particles
makes a rigid body which requires the additional constrain that the distance be-
tween any two particles remains fixed. Also, generally, there will be an infinite
number of particles in a typical rigid body.

Application of Newton’s Laws to a Rigid Body

Now, for a rigid body is simply a system of particles where the particles are
constrained by internal forces to remain a fixed distance from each other. For-
tunately, a non-obvious consequence of Newton’s third law is that we may ex-
press the equation of motion for the translational motion of the rigid body in a

Hence

r × v =

2

4

r cos θ

r sin θ

0

3

5 ×

2

4

−rθ̇ sin θ

rθ̇ cos θ

0

3

5

=

2

4

0
0

r2θ̇ cos2 θ + r2θ̇ sin2 θ

3

5

=

2

4

0
0

r2θ̇.

3

5
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m m

k

b

x(t) x(t)

f(t) f(t)

kx

bẋ

Figure 1.5. Mechanical system with a mass, spring and
damper and its free body diagram for Example 1.9.12.

simple form with respect to its center of mass. In particular, if a rigid body is
subjected to external forces with sum F, then

m
d2xcom
dt2

= F. (1.22)

where m is the total mass of the rigid body, i.e.,

m =

∫

dm

and xcom is the center of mass of the body, defined by

xcom =

∫

xdm

m
,

where the integrals are over the extent of the rigid body. So, we have the
convenient result that we may simply think of F = ma as correct for a rigid
body as long as a represents the acceleration of the center of mass of the body
and F represents the sum of the external forces only.

Example 1.9.12 Determine the equation of motion for the mass-spring-
damper system illustrated in Figure 1.5. Assume that x = 0 when the
spring is unstretched.

A free body diagram of the mass is illustrated on the right in Figure 1.5.
So, since the acceleration of the mass is equal to ẍ, we have

f(t) − kx− bẋ = mẍ

which, is usually expressed in the form

mẍ+ bẋ+ kx = f(t).

Definition 1.9.13 The scalar moment of inertia, denoted by J , of a mass
particle about a specified point is

J = mr2,
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l

fs = 0

l + x

fs = kx

Figure 1.6. The relationship between force and extension of
an ideal spring.

where m is the mass of the particle and r is the distance from the point to the
particle, and for a collection of N particles,

J =

N
∑

i=1

mir
2
i .

Extending this to a planar rigid body

J =

∫

A

r2dm,

where A is the planar area of the body. ⋄

1.9.3 Mechanical Components

In this book we will be primarily concerned with interconnected rigid body
systems. It is presumed that the student has at least a basic introduction to
dynamics and is familiar with applying Newton’s laws to point masses and rigid
bodies constrained to motion in the plane. The two main components we need
to properly model are linear springs and viscous dampers.

Springs

An ideal linear spring is a mechanical device which requires a force to extend it
that is proportional to the amount of extension. Mathematically,

fs = kx,

where fs is the force required to extend the length of the spring, x is the amount
by which the length of the spring has been extended and k is the spring constant,
which is a characteristic of the spring. The force, fs and extension x must be
defined in a manner so that they have the same sign when a positive force and
extension are in the same direction. Negative extension is compression, and
the equation still holds. The relationship is illustrated in Figure 1.6 where the
unstretched length of the spring is l.

Throughout this book we will make an important assumption regarding the
reference point from which spring displacements are measured.
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ẋ = 0

fd = 0

ẋ 6= 0

fd = bẋ

Figure 1.7. The relationship between force and the rate of
extension of an ideal viscous damper.

Assumption 1.9.14 Unless stated otherwise, any variable that represents the
extension or compression of a spring is assumed to have a value of zero when
the spring is at an equilibrium. If there is no gravity, then the variable will
be zero when the spring is unstretched. If there is gravity acting on a mass
that is supported by the spring, then the variable will be zero when the spring is
stretched by an amount that results in a force equal to the weight of the mass.

Another important assumption is that, unless otherwise specified, the mass
of the spring itself may be neglected.

Viscous dampers

A viscous damper10 is a mechanical device that requires a force to extend it that
is proportional to the rate at which it is being extended. A common example
of such a device is an automobile shock absorber. Mathematically,

fd = bẋ,

where fd is the force required to extend the damper, ẋ is the rate at which the
damper is being extended and b is the damper constant, which is a characteristic
of the damper. The force, fd and the rate of extension ẋ must be defined in
a manner so that they have the same sign when a positive force and rate of
extension are in the same direction. Negative extension is compression, and the
equation still holds. The common schematic representation of a viscous damper
as well as the relationship between force and rate of displacement is illustrated in
Figure 1.7. Note that for an ideal damper, the force is independent of the length
of the damper. Unless otherwise specified, throughout this book we will assume
that the mass of the damper itself is negligible, and hence may be omitted from
any model.

Cantilever beams

Procedure to model mechanical systems

Now we will apply Newton’s second law and the definition of these mechanical
components to determine the equation of motion for a system.

10Another common term used to refer to these devices is viscous dashpot.
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Figure 1.8. Representation of an ideal resistor, capacitor and
inductor.

1.9.4 Kirchhoff’s Laws

Law 1.9.15 Kirchhoff’s voltage law states that the sum of the voltage drops
around any closed loop in a circuit is zero.

This is basically conservation of energy.

Law 1.9.16 Kirchhoff’s current law states that the sum of the currents into
any point in a circuit is zero.

This is basically conservation of charge.

1.9.5 Electronic Components

There are many types of electronic components, and properly modeling some
of them are necessary in this book. In particular, we will consider resistors,
capacitors, inductors, voltage sources, current sources, direct current motors
(“d.c. motors”) and operational amplifiers (“op-amps”).

Resistors

In an ideal resistor, the voltage drop across the resistor is proportional to the
current passing through the resistor. The constant of proportionality is called
the resistance and the equation describing this property is

vR = iR, (1.23)

where vR is the voltage across the resistor, i is the current passing through it
and R is the resistance of the resistor. The typical schematic representation of
a resistor is illustrated in Figure 1.8.

Capacitors

In an ideal capacitor, the time rate of change of the voltage across the capacitor
is proportional to the current through it. The constant of proportionality is



34 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

+

−
vin i i

Figure 1.9. An ideal voltage source (left) and current source
(right).

called the capacitance, is represented by the symbol C, and has units of Farads.
The equation describing it is given by

i = C
dvC
dt

.

This should make sense since charge will not flow through the capacitor, the
effect of current flow will be the accumulation of charge on the plates of the
capacitor, which results in a change in voltage across the plates. The schematic
representation of a capacitor is illustrated in Figure 1.8.

Inductors

In an ideal inductor, the voltage drop across the inductor is proportional to the
time rate of change of the current through it. The constant of proportionality is
called the inductance, is represented by the symbol L and has units of Henrys.
The equation governing it is

vL = L
di

dt
.

The schematic representation of an inductor is illustrated in Figure 1.8.

Voltage source

An ideal voltage source supplies a specified voltage that is independent of the
current that the circuit draws. A schematic illustration of an ideal voltage
source is illustrated in Figure 1.9. The voltage, v(t) is specified; whereas, the
current through the voltage source, i is determined by the circuit to which it is
attached. Of course, a real voltage source cannot maintain a specified voltage
if it would require a very high current, for example in a short circuit.

Current source

An ideal current source supplies a specified current that is independent of the
terminal voltage across the source. Its schematics representation is illustrated
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kτ , ke

Figure 1.10. Schematic representation of a direct current mo-
tor.

in Figure 1.9.

Direct current motors

The schematic representation for a direct current motor (“d.c. motor”) is il-
lustrated in Figure 1.10. The two idealized properties of a d.c. motor we will
need in this book relate the output torque of the motor to the current flowing
through it and the voltage drop across the motor to the angular velocity of the
shaft of the motor. Mathematically

τ = kτ i

vm = keθ̇

where τ is the torque produced by the motor, vm is the voltage drop across the
motor, θ̇ is the angular velocity of the shaft of the motor and kτ and ke are the
torque and back e.m.f. proportionality constants of the motor.

Operational amplifier

An operational amplifier (“op-amp”) scales an input voltage difference by an
amount called the gain11 The mathematical description is

vout = kvin

where vin is the potential difference across the two input pins and k is the
open loop gain. An ideal op-amp has infinite input impedance, which means that
no current flows across the input pins. Ideal op-amps are frequently assumed
to have infinite open loop gain. In this text, we will assume the open loop gain
is large, but not necessarily infinite. A schematic representation of an op-amp
is illustrated in Figure 1.11.

11Sometimes the gain is specifically called the open loop gain to distinguish it from the
closed loop gain. The closed loop gain of an op-amp will be discussed in Chapter 9.
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vin vout
+

−

Figure 1.11. Schematic representation of an ideal operational
amplifier.

1.9.6 Fourier’s Law

Gives rise to the heat equation:

∂2u

∂x2
= α

∂u

∂t

1.9.7 Lagrange’s Equations

This is complicated enough to warrant its own chapter.

1.10 Introduction to Numerical Methods

Because it is a sad, but true, fact that most differential equations cannot be
solved using methods in this book (and any other book, for that matter) meth-
ods that use computers to determine approximate solutions are extremely im-
portant. Even if we can solve a differential equation, it may be the case that
the solution is given as an implicit function, which is of somewhat limited use.
This section considers Euler’s method for solving initial value problems for ordi-
nary differential equations, which is the most basic, and perhaps most common,
method to use a computer to determine an approximate solution to a differen-
tial equation. Chapter 13 considers more advanced topics on numerical methods
including more sophisticated methods for initial value problems, as well as tech-
niques for boundary value problems and partial differential equations.

As should be clear subsequently there are two major shortcomings to re-
sorting to numerical techniques. First, only explicit solutions may be obtained,
i.e., general solutions that can be used for any initial conditions cannot be de-
termined using numerical methods (with exceptions). Therefore, if the initial
conditions to a problem change, the entire method must be used again. It is
not simply a matter of computing different coefficients within a solution. Sec-
ondly, the “answer” is only an approximate answer and will be in the form of
tabulated data. If a more accurate solution is required, then more computer
resources must be allocated to the problem and if an expression of the solution
in terms of close formed functions is required, the method is not appropriate.
Even with these two caveats, however, numerical methods are extremely useful
and commonplace in engineering.
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1.10.1 Euler’s Method

Consider an ordinary, first order differential equation of the form

ẋ = f(x(t), t), (1.24)

and assume that either we do not know how to solve it, or we are too lazy to
solve it using analytical techniques. In order to derive an algorithm to determine
an approximate solution, recall the definition of the derivative from calculus

ẋ(t) =
dx(t)

dt
= lim

∆t→0

(

x (t+ ∆t) − x (t)

∆t

)

. (1.25)

Another way to interpret this equation is that, if the limit exists and ∆t is small,
then

ẋ(t) ≈ x (t+ ∆t) − x (t)

∆t
.

Keep in mind that the typical scenario is that the differential equation is
known, i.e., f(x, t) in equation 1.24 is known. The solution, x(t) is unknown.
This is in contrast to the usual use of equation 1.25 where x(t) is known and
the derivative is unknown.

Now, assume that an initial condition is known as well, so that

x(t0) = x0 (1.26)

has been specified. So, what is known is f(x, t) in equation 1.24, the initial con-
dition in equation 1.26 and also the definition of the derivative in equation 1.25.
Now, at t = t0, the approximate derivative is given by

ẋ(t0) ≈
x(t0 + ∆t) − x(t0)

∆t
.

For a specified ∆t, everything in the preceding equation is known except x(t+
∆t), so it can be solved for x(t+ ∆t) as

x(t + ∆t) ≈ ẋ(t0)∆t+ x(t0)

or, from equation 1.24

x(t0 + ∆t) ≈ f(x(t0), t0)∆t+ x(t0). (1.27)

In words, if x(t0) is known and the differential equation, ẋ = f(x, t), is
known, then an approximation for x(t + ∆t) is given by equation 1.27. Also,
given normal convergence properties, it will be the case that as ∆t gets smaller,
the approximation will be more accurate. The final piece of the puzzle is to note
that once x(t+∆t) is computed, x(t+2∆t) can be computed from equation 1.27
by substituting the value for x(t + ∆t) for x(t0) and t0 + ∆t for t0in the right
hand side of equation 1.27, i.e.,

x(t+ 2∆t) ≈ f(x(t0 + ∆t), t0 + ∆t)∆t+ x(t0 + ∆t),
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and by recursion, then

x (t+ n∆t) ≈ f (x (t0 + (n− 1)∆t) , t0 + (n− 1)∆t) ∆t+ x (t0 + (n− 1)∆t) .
(1.28)

Equation 1.28 is “the answer.” The algorithm to implement it for a given
∆t is called Euler’s method, and is as follows.

1. Let x(t0) = x0;

2. let n = 0;

3. let n = n+ 1;

4. let x(t+n∆t) = f (x (t0 + (n− 1)∆t) , t0 + (n− 1)∆t)+x (t0 + (n− 1)∆t);

5. if n∆t is less than the time to which the approximate solution is needed,
return to step 3.

At this point, things may be a bit abstract, so an example may be helpful.

Example 1.10.1 Determine an approximate numerical solution to

ẋ = sin 2t (1.29)

x(0) = 3.

This equation is the type that will be considered in detail in section 2.3.4.
Note that since the left hand side is only a function of x and the right hand
side is only a function of t, both sides may be directly integrated. Since we
can find the exact solution, it will be useful to compare with the approximate
solution. The exact solution (which can be verified by differentiating it and
substituting into the equation 1.29) is

x(t) =
7

2
− 1

2
cos 2t.

In this example, t0 = 0, x0 = 3 and f(x, t) = −3x ∗ esin 2t. Picking ∆t =
0.5 (a discussion on how to choose ∆t appears subsequently), the first 20
steps of the algorithm are as follows. The last column is the exact solution,
which is included for comparison. A plot of the approximate numerical
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solution and the exact solution are illustrated in Figure 1.12.

t n x(t) f(x(t), t) x(t+ ∆t) 7
2 − 1

2 cos 2(t+ ∆t)
0.000000 0 3.000000 0.000000 3.000000 3.229849
0.500000 1 3.000000 0.841471 3.420735 3.708073
1.000000 2 3.420735 0.909297 3.875384 3.994996
1.500000 3 3.875384 0.141120 3.945944 3.826822
2.000000 4 3.945944 −0.756802 3.567543 3.358169
2.500000 5 3.567543 −0.958924 3.088081 3.019915
3.000000 6 3.088081 −0.279415 2.948373 3.123049
3.500000 7 2.948373 0.656987 3.276866 3.572750
4.000000 8 3.276866 0.989358 3.771545 3.955565
4.500000 9 3.771545 0.412118 3.977605 3.919536
5.000000 10 3.977605 −0.544021 3.705594 3.497787
5.500000 11 3.705594 −0.999990 3.205599 3.078073
6.000000 12 3.205599 −0.536573 2.937312 3.046277
6.500000 13 2.937312 0.420167 3.147396 3.431631
7.000000 14 3.147396 0.990607 3.642699 3.879844
7.500000 15 3.642699 0.650288 3.967844 3.978830
8.000000 16 3.967844 −0.287903 3.823892 3.637582
8.500000 17 3.823892 −0.961397 3.343193 3.169842
9.000000 18 3.343193 −0.750987 2.967700 3.005648
9.500000 19 2.967700 0.149877 3.042638 3.295959

Note that the numerical solution is approximate in two ways. First,
in between the times n∆t, the solution can only be interpolated. In Fig-
ure 1.12 the interpolation is linear; regardless, even if more sophisticated
interpolation methods are used, the solution will only be approximately
correct between the times n∆t. Second, even for the exact times n∆t, the
solution still does not exactly match the exact solution. This is due to the
fact that each computation for x(t0 +n∆t) is only an approximation. Thus,
except for the single point t = t0, the solution at the times t+ n∆t is only
approximately correct.

Decreasing the time step to ∆t = 0.1 gives the result illustrated in
Figure 1.13. Note that decreasing the step size by a factor of 5 greatly
improves the accuracy of the approximate solution. A code listing using C
is included in Appendix D.1.1. A code listing using FORTRAN is included
in Appendix D.2.1.

1.10.2 Determining an Appropriate Step Size

A more detailed and theoretically rigorous analysis of the types of errors intro-
duced by numerical methods will be considered in Chapter 13. At this point a
heuristic approach will be used, which is simply to continue to reduce the step
size by a certain factor (say by a factor of 2, or perhaps even by an order of
magnitude) until the answer seems to have converged to a fixed solution. This
is best illustrated by means of an example.
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Figure 1.12. Approximate and exact solutions for exam-
ple 1.10.1 with ∆t = 0.5.
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Figure 1.13. Approximate and exact solutions for exam-
ple 1.10.1 with ∆t = 0.1.
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Figure 1.14. Approximate solutions for equation 1.30 using
various ∆t values.

Example 1.10.2 Find an approximate solution to

ẋ = 75x(1 − x) (1.30)

x(−1) =
1

1 + e75
(1.31)

using Euler’s method on the time interval −1 ≤ t ≤ 1. The solution to this
problem is simply implementing Euler’s method using

t0 = −1

x0 =
1

1 + e75

f(x(t), t) = 75x(1 − x).

Figure 1.14 illustrates the solution for a variety of values for ∆t. Note
that ∆t must be quite small before the solution converges. A code listing
using C is included in Appendix D.1.1. A code listing using FORTRAN is
included in Appendix D.2.1.
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1.10.3 Numerical Methods for Higher Order Differential
Equations

The development so far is limited to ordinary, first order differential equations.
This section will extend the approach to higher order ordinary differential equa-
tions by using a straight-forward reformulation of the problem to convert it into
a system of first order equations. First an example will be presented which gives
the main idea. It will be followed by a more general theorem which states the
main result of this section.

Example 1.10.3 Find an approximate numerical solution to

ẍ+ sin(t)ẋ + cos(t)x = e−5t (1.32)

x(0) = 2

ẋ(0) = 5.

The main idea is the following. Consider the following change of variables

x1(t) = x(t)

x2(t) = ẋ(t).

Then the following equations are equivalent

ẍ+sin tẋ+cos tx = e−5t ⇐⇒
[

ẋ1

ẋ2

]

=

[

x2

e−5t − sin(t)x2 − cos(t)x1

]

.

(1.33)
This is because the second line of the right hand equation is determined by
simply solving equation 1.32 for ẍ and recognizing that ẍ = ẋ2 since x2 = ẋ.
The initial value problems are equivalent as well if

x1(0) = 2

x2(0) = 5.

Observe that in general terms, the right hand formulation of equa-
tion 1.33 is simply of the form

ẋ1(t) = f1(x1(t), x2(t), t)

ẋ2(t) = f1(x2(t), x2(t), t).

Hence, for this case Euler’s method, expressed in equation 1.28 has the
simple reformulation of

x1(t+ n∆t) ≈ f1(x1(t+ (n− 1)∆t), x2(t+ (n− 1)∆t), t+ (n− 1)∆t)∆t

+ x1(t+ (n− 1)∆t)

x2(t+ n∆t) ≈ f2(x1(t+ (n− 1)∆t), x2(t+ (n− 1)∆t), t+ (n− 1)∆t)∆t

+ x2(t+ (n− 1)∆t),
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Figure 1.15. Solution for equation 1.33.

or using the particular equations of this example

x1(t+ x∆t) ≈ x2(t+ (n− 1)∆t)∆t+ x1(t+ (n− 1)∆t)

x2(t+ x∆t) ≈
[

e−5(t+(n−1)∆t) − sin (t+ (n− 1)∆t)x2(t+ (n− 1)∆t)

− cos (t+ (n− 1)∆t) x1(t+ (n− 1)∆t)] ∆t

+ x2(t+ (n− 1)∆t).

Since this is notationally a bit cumbersome, it may be easier to refer
to the example code in the appendix. A code listing using C is included
in Appendix D.1.1. A code listing using FORTRAN is included in Ap-
pendix D.2.1. A plot of the solution for ∆t = 0.02 and ∆t = 0.01 is
illustrated in Figure 1.15.

1.10.4 Using Matlab to Solve Differential Equations

The ode series12 of functions in Matlab provide the basic functionality for solving
initial value problems for ordinary differential equations. Perhaps the most

12The functions include, ode43(), ode23(), ode113(), ode15s(), ode23s(), ode23t(),

ode23tb(), ode15i() which provide functionality using a variety of solution methods appli-
cable to a variety of differential equations.
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common of these is ode45(), the usage of which will be outlined here. This
function used the fourth order Runge-Kutta method, the details of which are
included in Chapter 13. The basic usage is

>> [T,Y] = ODE45(ODEFUN,TSPAN,Y0,OPTIONS)

where

T

is the time vector,

Y

is the solution vector (or matrix),

ODEFUN

is a function that provides the derivative information (the right hand side of the
equation),

Y0

in the initial condition, and

OPTIONS

is a list of optional parameters sent to the solver. The following example illus-
trates its basic use.

Example 1.10.4 Use Matlab to determine an approximate numerical so-
lution to the set of equations from example 1.10.3.

The file “secondorder.m” contains the following.

function xdot = secondorder(t,x)

xdot = zeros(2,1);

xdot(1) = x(2);

xdot(2) = exp(-5.0*t) - sin(t)*x(2) - cos(t)*x(1);

and in the command window

>> [t,y] = ode45(@secondorder,[0 30],[2 5]);

>> plot(t,y(:,1));

>> xlabel(’t’);

>> ylabel(’x(t)’);

will produce a plot similar to that illustrated in Figure 1.16.
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Figure 1.16. Solution output from Matlab for example 1.10.4.

1.10.5 Using Octave to Solve Differential Equations

Octave13 is free software designed primarily for Linux and Unix operating sys-
tems, but also available on Windows and Mac OS X and has many features
similar to Matlab. The main function for computing approximate solutions for
ordinary differential equations in Octave is lsode(). This function does not
use Euler integration as the default method; however, the usage is straight-
forward and the use of numerical computational environments is sufficiently
commonplace that a description of their use should appear with the introduc-
tory material. The basic usage is

y = lsode("f",x0,t)

where

"f"

is a function (which must be defined in a file with the same name),

"x_0"

is the initial condition and

13For more information visit http://www.octave.org.
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"t"

is a time vector. The following example illustrates its use.

Example 1.10.5 Use Octave to determine a solution to the set of equations
from example 1.10.3.

The file “secondorder.m” contains the following.

function xdot = secondorder(x,t)

xdot = zeros(2,1);

xdot(1) = x(2);

xdot(2) = exp(-5.0*t) - sin(t)*x(2) - cos(t)*x(1);

endfunction

Within the octave command line interface, the steps

octave:1> t = linspace(0,30,10000);

octave:2> y = lsode("secondorder",[2;5],t);

octave:3> plot(t,y(:,1),’;’)

octave:4> xlabel(’t’)

octave:5> ylabel(’x(t)’)

produces a solution vector called y. The solution is illustrated in Figure 1.17.
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Figure 1.17. Solution output from Octave for example 1.10.5.
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1.11 Exercises

Problem 1.1 Classify each of the following differential equations according
to whether it is

• ordinary or partial; and

• linear or nonlinear.

If it is linear, indicate whether it is

• constant or variable coefficient; and,

• homogeneous or inhomogeneous.

Also determine

• its order; and,

• the dependent and independent variables.

1.

5ẍ+ 6ẋ+ sin (t)x = cos
(

t2
)

x(0) = 1

ẋ(0) = π

2.

cos (t) ẋ+ etx = x2

x(ξ) = e

3.

cos (t) ẋ+ etx = x

x(ξ) = e

4.

cos (t) ẋ+ etx = 2

x(ξ) = e

5.

ẋ+ eπx = 2

x(0) = 1
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6.

2ẍ+ 19ẋ+ 24x = 0

x(0) = 1

ẋ(0) = 0

7.

2
∂2ζ

∂γ2
+ 19

∂ζ

∂α
+ 24ζ = γ2 + α2

ζ(0) = 1

ζ̇(0) = 0

8.

6ẍ+ 23ẋ+ t3x2 = 0

x(0) = 1

ẋ(0) = 0

9.

6ẍ+ 23ẋ+ x3 = sin
(

t2
)

x(0) = 1

ẋ(0) = 0

10.

2
d2ξ

dη2
+ 19

dξ

dη
+ 25ξ = 0

ξ(0) = 1

ξ̇(0) = 0

11.

πẍ+ eẋ+ x = sin (t)

x(0) = 1

ẋ(0) = 0

12.

2
d2ζ

dγ2
+ 19

dζ

dγ
+ γ24ζ = 0

ζ(0) = 1

ζ̇(0) = 0
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13.

2
d2ζ

dγ2
+ 19

dζ

dγ
+ 24ζ = γ

ζ(0) = 1

ζ̇(0) = 0

Problem 1.2 Write a computer program to determine an approximation
numerical solution to

ẋ+ x = e3t

x(0) = 1

using Euler’s method. Determine an appropriate step size by decreasing the
step size until the solution seems to converge. Compare your answer with
a solution determined using Matlab. Submit your computer code as well as
a plot of the approximate solution.

Problem 1.3 Write a computer program to determine an approximate nu-
merical solution to

ẋ =
(

t2 − x2
)

sinx

x(0) = −1

using Euler’s method. Be sure to continue to decrease the step size until
the solution seems to converge. Compare your answer with a solution de-
termined using Matlab or Octave. Submit your computer code as well as a
plot of the approximate solution.

Problem 1.4 Write a computer program to determine an approximate nu-
merical solution to

ẍ+ tẋ+ 2x = 0

x(0) = 3

ẋ(0) = −2

using Euler’s method. Be sure to continue to decrease the step size until
the solution seems to converge. Compare your answer with a solution de-
termined using Matlab or Octave. Submit your computer code as well as a
plot of the approximate solution.
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Chapter 2

Ordinary First Order
Equations

2.1 Introduction

First order ordinary differential equations are nice because they have some
rather special properties. All linear first order ordinary differential equations
can easily be solved. This is in contrast to higher order ordinary differential
equations that become much more complicated when, for example, they contain
variable coefficients. Furthermore, even some methods exist to solve nonlinear
first order ordinary differential equations. Such methods do not exist, in general,
for higher order equations.

This chapter considers methods to solve first order ordinary differential
equations of the form

ẋ = f (x(t), t) . (2.1)

If the differential equation that must be solved is not of the form of Equa-
tion 2.1 care must be taken that solutions are neither gained nor lost.

Example 2.1.1 Any function x(t) that satisfies

5ẋ(t) − cos t = 0

also satisfies

ẋ =
1

5
cos t.

Example 2.1.2 Clearly not all functions x(t) that satisfy

ẋ2(t) = cos2(t)

also satisfy
ẋ(t) = cos t.

53
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Both x(t) = sin(t) and x(t) = − sin(t) satisfy the former, but only x(t) =
− sin(t) satisfies the latter.

Most of the examples and exercises in this chapter start with an equation of
the form of Equation 2.1. The reader is cautioned to exercise care if a lot of
manipulation is required to convert the equation to be solved into the form
of Equation 2.1, particularly when making use of inverse functions, that the
equation that is solved actually is equivalent to the problem at hand.

2.2 Motivational Examples

The first example of a first order differential equation comes from heat transfer.

Example 2.2.1 Consider the problem of determining the temperature of
an object paced in an oven (or conversely, a refrigerator). If the inside of
the oven is at temperature Ta, and is constant, and the initial temperature
of the body is T (0), we want to determine T (t).

While a complete exposition of heat transfer requires an entire course
and hence is obviously outside the scope of this book, a couple relevant
concepts can be considered here. First, temperature can be considered as a
measure of the amount of thermal energy which a body contains. Second,
heat transfer, then, is a measure of how much energy is transferred between
systems in a given amount of time. Let q denote the rate of heat transfer.
The units for q will be energy per unit time, or J

s
or watts W .

Considering an energy balance on the body, we have that the rate of
change of the internal energy of the body must be equal to the rate of
energy transfer into (or out of) the body from the surrounding air. A basic
result from heat transfer is that the heat transfer from a surrounding fluid
to a body is given by

q(t) = hA (Ta − T (t)) , (2.2)

where A is the surface area of the body and h is the convection heat transfer
coefficient which will have units of W

m2K. Equation 2.2 should make perfect
sense. The rate at which energy is transferred from the body to the fluid,
or vice-versa is proportional to the difference in their temperatures and the
amount of area over which it may occur.

Since temperature is a measure of the amount of thermal energy con-
tained in the body, the rate of change of temperature should be proportional
to the rate at which energy is transferred into the body. This is true, and
in particular,

q(t) = ρV c
dT

dt
(t), (2.3)

where ρ is the density of the fluid, V is the volume and c is the specific heat
of the material, which has units of J

kg
K.

Since conservation of energy requires that the rate of heat transfer into
the body must equal the rate of change of its internal energy, Equation 2.2
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and 2.3 must be equal, so we have

hA (Ta − T (t)) = ρV cṪ (t).

If we let θ(t) = T (t) − Ta, then

−hAθ(t) = ρV cθ̇(t)

or

θ̇(t) +
hA

ρV c
θ(t) = 0.

Usually, this equation is written in the form

θ̇(t) +
1

RC
θ(t) = 0, (2.4)

where R is the resistance to convective heat transfer and C is called the
lumped thermal capacitance.1 Equation 2.4 is a linear, first order, ordinary,
constant coefficient, homogeneous differential equation.

The next section outlines how to solve various forms of first order equations.
As it turns out, there are multiple ways to solve equation 2.4, and in particular,
the two different methods from section 2.3.2 may be used to solve this problem.

The next examples come from the field of bioengineering. First we need to
consider some basic reaction rate concepts.

The Michaelis-Menton equation describes many physiological processes; among
other things, biological process catalyzed by enzymes and protein facilitated dif-
fusion of substances into or out of cells. The form of the equation is

vo =
vmax[s]

km + [s]
(2.5)

where vo is the reaction rate or uptake rate, [s] is the concentration of some
substrate and vmax and km are constants which depend upon the particular
process under consideration. A plot of vo vs. [s] for various values of vmax and
km are illustrated in Figures 2.1 and 2.2.

Example 2.2.2 The rate of uptake of blood plasma glucose into skeletal
muscle, the brain, liver and other organs for oxidation (use for energy) is
regulated by hormones such as insulin and are facilitated in the different
organs by the GLUT family of proteins. Thus if we let g represent plasma

1A careful reader, or one with a background in heat transfer, will recognize that fact that
when we use T (t) to represent the temperature of the body, it is implicitly assuming that
the temperature distribution in the body is uniform. This is intuitively appropriate in some
cases, and is rigorously justified when the Boit number, , which is defined as the dimensionless
quantity Bi = hk

L
, where k is the thermal conductivity of the body and L is a characteristic

length of the body. When Bi ≪ 1, then the approach taken in this example problem, which
is called the lumped capacitance method, is a justified approximation. See [12] for a complete
exposition.
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Figure 2.1. Reaction rate for various vmax and km = 1.0.
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2.3. SOLUTION METHODS 57

glucose levels, the change in plasma glucose concentrations due to uptake
by, say in, skeletal muscle, is given by

ġ = − vmaxg

km + g

or

kmġ + gġ + vmaxg = 0. (2.6)

This is an ordinary, first order, nonlinear differential equation.

Example 2.2.3 The rates of metabolism of many drugs are described by
equation 2.5 as well. In some cases, the constant km is either very large or
very small compared to the blood concentration of the drug so that some
simplifications are possible.

For example, alcohol is such that if x represents blood alcohol concen-
trations, x is always much larger than km. In this case the denominator of
equation 2.5 can be approximated by km + x ≈ x, and then the equation
describing the blood alcohol concentration as a function of time is

ẋ = −vmax. (2.7)

This is an ordinary, first order, constant coefficient, inhomogeneous, linear
differential equation.

Example 2.2.4 For other drugs, cocaine is an illicit example but there
are many pharmaceutical examples, metabolism is such that the constant
km is very large compared to the drug concentration levels. In that case,
the denominator of equation 2.5 can be approximated simply by km, i.e.,
km+x ≈ km and the blood drug concentration as a function of time is given
by

kmẋ = −vmaxx (2.8)

which is an ordinary, first order, constant coefficient, homogeneous, linear
differential equation.

2.3 Solution Methods

Section 2.2 presents several first order differential equations. This section con-
siders various methods to solve them.

Since a first order ordinary differential equation can contain, at most, three
terms, its simple structure lends itself to certain solution methods which will not
generally apply to higher order equations. In particular, the methods outlined
in section 2.3.4 make use of this fact.
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2.3.1 Ordinary First Order Linear Homogeneous Constant
Coefficient Differential Equations

Because it is the case that the coefficients of the dependent variable terms in
engineering differential equations are often parameters which describe the phys-
ical properties of a system, and it is also often the case that such parameters
are constant (mass, thermal capacitance, etc.), it is often the case that differ-
ential equations in engineering have constant coefficients. This section presents
a method to solve ordinary, first order, constant coefficient, linear differential
equations.

Before addressing ordinary, first order, constant coefficient, linear homo-
geneous differential equations, consider the following fact regarding ordinary,
constant coefficient, linear, homogeneous differential equations of any order.

If you remember anything from differential equations, remember the follow-
ing: ordinary, linear, constant coefficient, homogeneous differential
equations of any order have exponential solutions. To emphasize the
fact, let us make it a theorem.

Theorem 2.3.1 Ordinary, linear, constant coefficient, homogeneous differen-
tial equations with dependent variable x and independent variable t have solu-
tions of the form x = ceλt where c is a non-zero constant.

Proof Consider an nth order, ordinary, linear, constant coefficient, homoge-
neous differential equation of the form

αn
dnx

dtn
+ αn−1

dn−1x

dtn−1
+ · · · + α1

dx

dt
+ α0x = 0. (2.9)

To verify the form of the solution, simply substitute x = ceλt into Equation 2.9:

αnλ
nceλt + αn−1λ

n−1ceλt + · · · + α1λce
λt + α0e

λt = 0.

Since ceλt is never zero, it is legitimate to divide each side of the equation by it
which gives

αnλ
n + αn−1λ

n−1 + · · · + α1λ+ α0 = 0 (2.10)

which is an nth order polynomial in λ. Since, by the fundamental theorem of
algebra, Equation 2.10 has n solutions, there may be, in fact, up to n different
solutions of the form x = eλt. �

Remark 2.3.2 The fact bears repeating: ordinary, linear, constant coeffi-
cient, homogeneous differential equations of any order have exponen-
tial solutions. ⋄

Armed with this knowledge, we now consider solutions to ordinary, first
order, constant coefficient, linear differential equations. This will provide the
general solution to Equation 2.8 (since it is already homogeneous) as well as
the homogeneous solution to equations 2.4 and 2.7. It will do nothing for us for
Equation 2.6 since it is not linear.
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Any ordinary, first order, homogeneous, linear, constant coefficient differen-
tial equation can be written as

ẋ+ αx = 0.

Note that there is no restriction that α may not be zero. Assuming a solution
of the form

x(t) = ceλt

and substituting gives
λ = −α

or
x(t) = ce−αt. (2.11)

Example 2.3.3 Returning to example 2.2.4, we have a general solution of
the form

x(t) = ce−
vmax

km
t. (2.12)

To determine c, we would have to know the initial blood concentration of
the drug. Assuming x(0) = x0, substituting t = 0 into Equation 2.12 gives
c = x0, so the solution to

kmẋ = −vmaxx
x(0) = x0

is
x(t) = x0e

− vmax
km

t.

Remark 2.3.4 It is practically worth memorizing that the solution to

ẋ+ αx = 0

x(0) = x0

is
x(t) = x0e

−αt. (2.13)

⋄

2.3.2 Ordinary First Order Linear Inhomogeneous Con-
stant Coefficient Differential Equations

Now we consider the same case as in the previous section but where the equation
is inhomogeneous. Two solution methods will be presented. The first is easier,
but only works when the inhomogeneous term is in a particular class of functions,
and the second is computationally a bit harder, but will always work. Both
approaches require that a homogeneous solution be known, so the first order of
business is to determine the homogeneous solution in the form of Equation 2.11
(not in the form of Equation 2.13) as outlined in the previous section.
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Undetermined coefficients

The idea behind undetermined coefficients is relatively simple, as is illustrated
by the following example. The approach has two components. First a homoge-
neous and particular solution are determined separately and then combined for
the solution (this will be mathematically justified after the example). Second,
a particular form of the particular solution is assumed, which is then substi-
tuted into the differential equation which will give rise to equations for some
undetermined coefficients in the particular solution.

Example 2.3.5 Solve

ẋ+ 3x = sin 2t (2.14)

x(0) = 1.

This is an ordinary, first order, linear, constant coefficient, inhomogeneous
differential equation. From Equation 2.11, the homogeneous solution is

xh(t) = ce−3t

where c is an arbitrary real number.
To determine the particular solution, consider the following logic. We

seek a function, x(t) such that if we take its derivative and add it to three
times itself we will obtain the function sin 2t. A moment’s reflection will
result in the conclusion that the only sorts of functions that can be combined
with their derivative to obtain a sine function are sines and cosines that are a
function of the same argument. So, it is logical to assume that the particular
solution is of the form

xp(t) = c1 cos 2t+ c2 sin 2t

where c1 and c2 are coefficients that are yet to be determined, i.e., the
undetermined coefficients. The manner in which to compute the unde-
termined coefficients is obvious: substitute xp into the differential equa-
tion to see if equations for c1 and c2 can be derived. So, since ẋp(t) =
−2c1 sin 2t+ 2c2 cos 2t, and substituting gives

ẋ+ 3x = (−2c1 sin 2t+ 2c2 cos 2t) + 3 (c1 cos 2t+ c2 sin 2t)

= (2c2 + 3c1) cos 2t+ (−2c1 + 3c2) sin 2t

= sin 2t,

where the last sin 2t term is the inhomogeneous term from Equation 2.14.
Since the second and third lines of the above equation must be true for all
time, then

3c1 + 2c2 = 0

−2c1 + 3c2 = 1,
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which gives c1 = − 2
13 and c2 = 3

13 , so the particular solution is

xp(t) = − 2

13
cos 2t+

3

13
sin 2t.

The final task is to ensure that the initial condition is satisfied, i.e., x(0) = 1.
Note the following two facts:

1. The particular solution satisfies Equation 2.14 but does not satisfy
the initial condition.

2. The homogeneous solution does not satisfy the differential equation
in Equation 2.14, but does have a coefficient that has not yet been
specified that perhaps may be used to in some way to satisfy the initial
condition.

Now observe that since xh is a homogeneous solution, by definition when
it is substituted into Equation 2.14 the result will be zero. So, since the
equation is linear, it may be added to the particular solution and the sum
will still satisfy the differential equation. In particular, using x = xh + xp
and substituting gives

ẋ+ 3x = (ẋh + ẋp) + 3 (xh + xp)

= (ẋh + 3xh) + (ẋp + 3xp)

= 0 + (ẋp + 3xp)

= sin 2t.

So, since x = xh + xp satisfies Equation 2.14 and also contains a coefficient
that has not yet been specified (the c in xh) evaluating x(0) and setting it
equal to the initial condition will give an equation for c. So,

x(0) = xh(0) + xp(0)

= c+ − 2

13
.

Since the initial condition was x(0) = 1, clearly c = 15
13 and the solution to

the differential equation is

x(t) =
15

13
e−3t + − 3

13
cos 2t+

3

13
sin 2t.

At first glance, the main idea behind the undetermined coefficients approach
may seem to be simply educated guesswork. However, the method is actually
guaranteed to work if the right conditions are met. Insight into the method
is obtained by observing that certain functions have only a finite number of
linearly independent derivatives.

Example 2.3.6 Returning to Example 2.3.5, we computed that if

x(t) = c1 cos 2t+ c2 sin 2t,
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If the inhomogeneous term, g(t) is then assume for xp(t)

ĉ cosωt c1 cosωt+ c2 sinωt
ĉ sinωt c1 cosωt+ c2 sinωt

ĉeλt ceλt

αnt
n + · · · + α1t+ α0 cnt

n + · · · + c1t+ c0
sum of above terms sum of corresponding terms

product of above terms product of corresponding terms

Table 2.1. Forms to assume for xp depending on the inhomo-
geneous term g(t).

then

ẋ(t) + 3x(t) = (3c1 + 2c2) cos 2t+ (−2c1 + 3c2) sin 2t.

The critical observation is that we started with a function of the form

x(t) = c1 cos 2t+ c2 sin 2t,

and after substituting it into the differential equation obtained a function
of the form

x(t) = k1 cos 2t+ k2 sin 2t.

Specifically, a linear combination of the function x(t) and its derivative is
exactly the same form as the original function, albeit with different coeffi-
cients.

As the following theorem shows that if the inhomogeneous term, g(t) is
such that it only has a finite number of linearly independent2 derivatives, then,
assuming a solution that is a linear combination of g(t) and its derivatives will
always lead to a set of equations that will give a solution for the undetermined
coefficients. First we need to define what it means for functions to be linearly
independent.

Definition 2.3.7 A set of functions, f1(t), . . . , fn(t) is linearly dependent on an
interval I = (t0, t1) if there exists a set of constants, c1, . . . , cn which are not all
zero such that

c1f1(t) + c2f2(t) + · · · + cnfn(t) = 0, ∀t ∈ I. ⋄

If the functions are not linearly dependent, then they are linearly independent.

2A necessary consition for functions to be linearly independent is provided subsequently in
Section 3.2.2.
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Theorem 2.3.8 An nth order, linear, ordinary, constant coefficient, inhomo-
geneous differential of the form

αn
dnx

dtn
(t) + αn−1

dn−1x

dtn−1
(t) + · · · + α1

dx

dt
(t) + α0x(t) = g(t) (2.15)

where g(t) has only a finite number of linearly independent derivatives has a
particular solution

xp(t) = c0g(t) + c1
dg

dt
(t) + c2

d2g

dt2
(t) + · · · + cm

dmg

dtm
(t)

as long as none of the functions xp(t) is not a homogeneous solution to Equa-
tion 2.15 for any combination of the coefficients ci where not all of them are
zero and where m is the number of linearly independent derivatives of g(t) .

Proof Consider the vector space

V =

{

c0g (t) + c1
dg

dt
(t) + · · · + cm

dmg

dtm
(t) | ci ∈ R, i ∈ {1, . . . ,m}

}

.

The functions g(t), dg
dt

(t), . . . , d
mg
dtm

(t) are the basis elements for V . By assump-

tion the operator d
dt

is a linear operator on V . Conseqently

D = α0 + α1
d

dt
+ · · · + αm

dm

dtm

is also a linear operator on V . The null space of D is the empty set since by
assumption no element of V is a homogeneous solution to Equation 2.15. This
implies that the set of functions D g(t),D dg

dt
(t), . . . ,D dmg

dtm
(t) also is a basis for

V . Hence,

D xp(t) = c1 D g(t) + · · · + cm D
dmg

dtm
(t)

= g(t)

will be satisfied by a unique set of coefficients, ci. �

Example 2.3.9 Determine the particular solution to the ordinary, first
order, linear, constant coefficient, inhomogeneous differential equation

3ẋ+ 6x = 9et.

Assume xp(t) = c1e
t. Then ẋp(t) = c1e

t and substituting gives

3c1e
t + 6c1e

t = 9et =⇒ c1 = 1.

Hence
xp(t) = et.
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Complication: when the inhomogeneous term contains a homoge-
neous solution

It may be the case that the form of the particular solution that table 2.1 indi-
cates also happens to be a homogeneous solution to the differential equation.
The reason this is problematic is that it will be impossible to determine the
undetermined coefficients since the assumed form of the solution must be equal
to zero rather than the inhomogeneous term. An example illustrates this co-
nundrum and a subsequent example illustrates the solution.

Example 2.3.10 Use the method of undetermined coefficients to deter-
mine the general solution to

ẋ+ 3x = e−3t + sin 2t.

Referring to table 2.1, it is logical to assume

xp(t) = c1e
−3t + c2 sin 2t+ c3 cos 2t.

Differentiating and substituting gives

(

−3c1e
−3t + 2c2 cos 2t− 2c3 sin 2t

)

+ 3
(

c1e
−3t + c2 sin 2t+ c3 cos 2t

)

= e−3t + sin 2t.

Collecting coefficients of e−3t, sin 2t and cos 2t respectively gives the follow-
ing set of equations

−3c1 + 3c1 = 1

−2c3 + 3c2 = 1

2c2 + 3c3 = 0.

Note that the first equation is 0 = 1, i.e., there does not exist any c1 that
will satisfy the equations.

This problem is due to the fact that e−3t is, in addition to being a
component of the inhomogeneous term, a homogeneous solution to the dif-
ferential equation. When it is substituted into the differential equation it
must evaluate to zero, by definition.

If appropriately using the method of undetermined coefficients for first order
equations, this complication can only happen with an equation of the form

ẋ+ αx = e−αt. (2.16)

Table 2.1 would indicate to choose xp(t) = ce−αt; however, this is also the ho-
mogeneous solution. Using a technique that actually foreshadows the method of
variation of parameters presented subsequently, the approach will be to assume
a particular solution of the form

xp(t) = µ(t)e−αt,
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substitute into Equation 2.16 and use the result to (hopefully) determine µ(t).
Differentiating xp(t) and substituting gives

(

µ̇(t)e−αt − αµ(t)e−αt
)

+ αµ(t)e−αt = e−αt,

which simplified to
µ̇(t) = 1

or
µ(t) = t+ c.

Hence,
xp(t) = (t+ c) e−αt.

Note that since the term ce−αt is actually a homogeneous solution, it is not
necessary to add it to the particular solution at this stage in the process of
determining the solution since it will be added to it subsequently anyway. So
the simplest form for the particular solution is

xp(t) = te−αt.

Hence, when the assumed form of the particular solution is also the ho-
mogeneous solution to the differential equation, the solution is to multiply the
assumed form by the independent variable.

Example 2.3.11 Continuing from example 2.3.10, instead of assuming

xp(t) = c1e
−3t + c2 sin 2t+ c3 cos 2t

assume
xp(t) = c1te

−3t + c2 sin 2t+ c3 cos 2t.

Differentiating and substituting gives

(

c1e
−3t − 3c1te

−3t + 2c2 cos 2t− 2c3 sin 2t
)

+ 3
(

c1te
−3t + c2 sin 2t+ c3 cos 2t

)

= e−3t + sin 2t.

Collecting terms now gives

c1 = 1

−2c3 + 3c2 = 1

2c2 + 3c3 = 0

which has the solution

c1 = 1

c2 =
3

13

c3 = − 2

13
,
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and hence

xp(t) = te−3t +
2

13
sin 2t− 2

13
cos 2t,

and the general solution is

x(t) = xh(t) + xp(t) = ce−3t + te−3t +
2

13
sin 2t− 2

13
cos 2t.

So, the recommended procedure in using the method of undetermined co-
efficients is to solve for the homogeneous solution first. In that way it will be
possible to identify a priori if the assumed form of xp(t) will contain any homo-
geneous solutions. Alternatively, this scenario can be recognized if the situation
arises when it is algebraically impossible to determine the coefficients that will
make the particular solution satisfy the differential equation. In this latter case,
however, one must be careful to be sure that the form for xp(t) is otherwise
correct.

Variation of parameters

This method will always work for linear first order ordinary differential equa-
tions. As long as one is willing to evaluate the integrals required, it will yield
the solution.

The idea behind the variation of parameters method is, that if a homoge-
neous solution for a differential equation is known, denoted by xh, then assume
a solution of the form x(t) = µ(t)xh(t). Substituting the assumed form of the
solution into the differential equation will yield and equation for µ that, if it
can be solved, will give the solution. Unlike the method for undetermined coef-
ficients, this method will work for variable coefficients as well, but this section
will limit the coverage to the constant coefficient case. Also unlike the case
for undetermined coefficients, no special form of the inhomogeneous term is
necessary.

Consider the ordinary, first order, linear, constant coefficient, inhomogeneous
differential equation

ẋ+ αx = g(t)

x(t0) = x0.

From before, xh(t) = ce−αt. Assume x(t) = cµ(t)e−αt. Substituting into the
differential equation gives

cµ̇e−αt − cµαe−αt + αcµe−αt = cµ̇e−αt

= g(t).

Hence

µ̇ =
1

c
eαtg(t)
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which can be directly integrated. So

µ(t) − µ(t0) =

∫ t

t0

1

c
eαsg(s)ds

or

µ(t) =

∫ t

t0

1

c
eαsg(s)ds+ µ(t0)

where µ(t0) is arbitrary. So

x(t) = µ(t)ce−αt

= ce−αt
∫ t

t0

1

c
eαsg(s)ds+ µ(t0)ce

−αt

= e−αt
∫ t

t0

eαsg(s)ds+ c1e
−αt

where c1 = µ(t0)c. Evaluating x(t0) gives

x(t0) = e−αt
∫ t

t0

eαsg(s)ds+ c1e
−αt0

= c1e
−αt0

= x0.

Thus c1 = x0e
αt0 and

x(t) = e−αt
∫ t

t0

eαsg(s)ds+ x0e
αt0e−αt. (2.17)

Remark 2.3.12 If the initial condition were not specified and a general solution
were desired, the integral in the above method would become an indefinite
integral and a constant of integration would be necessary. It is left as an exercise
for the student to prove that the general solution to the ordinary, first order,
linear, constant coefficient, inhomogeneous differential equation

ẋ+ αx = g(t) (2.18)

is

x(t) = e−αt
∫

eαtg(t)dt+ ce−αt. (2.19)

⋄

2.3.3 Variation of Parameters for Ordinary First Order
Linear Inhomogeneous Variable Coefficient Differentail
Equations

The same procedure as above may be used in the case of ordinary, first order,
linear, variable coefficient, inhomogeneous differential equations. Consider

ẋ+ h(t)x = g(t) (2.20)

x(t0) = x0. (2.21)
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The procedure will be the same as before: find a homogeneous solution, xh(t),
assume the solution of the form x(t) = µ(t)xh(t), substitute to determine an
equation for µ(t), and if possible, solve for µ(t). The first task is to determine
the homogeneous solution, which is not simply xh(t) = ceλt in the case of a
variable coefficient.

First consider the corresponding homogeneous equation

dxh(t)

dt
+ h(t)xh(t) = 0.

Rearranging gives
1

xh(t)

dxh(t)

dt
= −h(t).

Integrating each side with respect to t gives
∫

1

xh(t)

dxh(t)

dt
dt =

∫

d

dt
(ln (xh(t))) dt

= ln (xh(t)) + c

= −
∫

h(t)dt.

Hence
xh(t) = ke−

R

h(t)dt, (2.22)

where k = −e−c.
Remark 2.3.13 This procedure to find the homogeneous solution is a special
case of the method for separable equations outlined in section 2.3.4. ⋄

Now armed with the homogeneous solution, assume a solution of the form

x(t) = µ(t)xh(t) = µ(t)ke
R

h(t)dt.

Substituting gives

(µ̇xh + µẋh) + h(t) (µxh) =
(

µ̇ke−
R

h(t)dt − µh(t)ke−
R

h(t)dt
)

+ h(t)
(

µke−
R

h(t)dt
)

= µ̇ke−
R

h(t)dt

= g(t).

Hence

µ̇ =
1

k
g(t)e

R

h(t)dt =⇒ µ(t) =

∫ (

1

k
g(t)e

R

h(t)dt

)

dt+ c.

and

x(t) =

(∫ (

1

k
g(t)e

R

h(t)dt

)

dt+ c

)

(

ke−
R

h(t)dt
)

=

(∫

(

g(t)e
R

h(t)dt
)

dt+ c

)

(

e−
R

h(t)dt
)

. (2.23)
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Remark 2.3.14 Occasionally it will be convenient to combine arbitrary con-
stants but not change the name of the variable, as was done in Equation 2.23.
The constant k was distributed across both terms in the left term of the equa-
tion, so the constant term c is now actually ck; however, since both c and k are
arbitrary, it is most convenient just to keep the variable name as c. ⋄

At this point it is worth observing that Equation 2.23 is the solution to
Equation 2.20. The only possible complication is that sometimes the integrals
may not have a closed-form solution, or may simply be difficult to evaluate.

Example 2.3.15 Determine the general solution to

ẋ+
3

t
x = sin t.

Since this equation is of the form of Equation 2.20, so the general solution
is given by Equation 2.23 where h(t) = 3

t
and g(t) = sin t. Substituting into

the solution gives

x(t) =

(∫

(

g(t)e
R

h(t)dt
)

dt+ c

)

(

e−
R

h(t)dt
)

=

(∫

(

(sin t) e
R

3
t
dt
)

dt+ c

)

(

e−
R

3
t
dt
)

=

(∫

(

(sin t) e3 ln t
)

dt+ c

)

(

e−3 ln t
)

=

(∫

(

(sin t) e3 ln t
)

dt+ c

)

(

e−3 ln t
)

2.3.4 Ordinary First Order Nonlinear Differential Equa-
tions

Unfortunately, it is generally the case that nonlinear differential equations are
difficult, at best, and generally do not even have closed-form solutions. In the
case of first order equations, however, there is one case in which a solution may
be obtained, and that case is the so-called exact equation. Before presenting the
theory and method of exact equations, the next section presents a simplified,
special case of exact equations, namely, separable equations.

Separable equations

A notationally simplistic, yet nonetheless useful, description of the idea behind
separable equations is, that if it is possible to put all the terms that are a
function of the dependent variable on one side of the equation and all the terms
that are a function of the independent variable on the other side of the equation
the equation is separable. In such a case, both sides may be directly integrated.
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Example 2.3.16 Find the general solution to

(x+ 1)
(

t2 + 5t+ 3
)

= xẋ.

This may be rearranged as

t2 + 5t+ 3 =
x

x+ 1

dx

dt

and each side may be integrated with respect to t
∫

t2 + 5t+ 3dt =

∫

x(t)

x(t) + 1

dx(t)

dt
dt.

Recall from calculus the substitution rule for integration, namely,

∫ t

t0

f (x(s))
dx(s)

ds
ds =

∫ x(t)

x(t0)

f(x)dx.

Using this fact,
∫

t2 + 5t+ 3dt =

∫

x(t)

x(t) + 1

dx(t)

dt
dt

=

∫

x

x+ 1
dx,

so
t3

3
+

5t2

2
+ 3t = x(t) − ln (x(t) + 1) + c.

Note that one problem is that the solution, x(t) may be, as is the case
in this example, only determined as an implicit function of the dependent
variable.

The preceding example was rather precise and in practice the approach is
a bit more formal. In words, the simplest way to approach the problem is
to notationally treat ẋ as dx

dt
and try to manipulate the equation so that all

the x terms are on one side of the equation along with the dx term and all
the t terms are on the other side with the dt term. While this casual use of
notational convenience works correctly in this case, it is important to recognize
that what is actually going on is an integration by substitution on the x side
of the equation. Another example will illustrate this point and complete the
treatment of separable equations. It will also illustrate the slight variation in
the approach when the problem is an initial value problem rather than finding
a general solution. The only difference being that data is now available to make
the integrals definite integrals.

Example 2.3.17 Determine the solution to

ẋ+ sin (t)x = 0

x(1) = 2.
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Note this can perhaps be more easily solved by directly using Equation 2.23
with g(t) = 0; however, just for the fun of it this example will solve it by
separation of variables.

A bit of manipulation gives

dx

dt
+ sin (t)x = 0 ⇐⇒ dx

x
= − sin (t) dt,

so
∫ t

x(t0)

1

x
dx = −

∫ t

t0

sin (s) ds

or
∫ x

2

(t)
1

x
dx =

∫ t

1

sin (t) dt ⇐⇒ lnx− ln 2 = cos t− cos 1,

which gives, upon taking the exponential of each side

x(t) = 2ecos t−cos 1.

Exact equations

While actually using it is another matter, the idea behind exact equations is
actually quite simple. Consider a function, ψ(x(t), t) (as usual, t is the inde-
pendent variable and x is the dependent variable) and consider the level sets of
ψ; namely, ψ(x(t), t) = c. Differentiating ψ with respect to time gives

dψ(x(t), t)

dt
=
∂ψ

∂x

dx

dt
+
∂ψ

∂t
= 0.

Note that this is of the form

f(x, t)ẋ+ g(x, t) = 0, (2.24)

where f and g are functions of both the independent variable, t, and the de-
pendent variable x. If a differential equation just so happens to be of the form
of Equation 2.24 such that there exists a ψ(x(t), t) such that ∂ψ

∂x
= f(x, t) and

∂ψ
∂t

= g(x, t), then solving Equation 2.24 is simply a matter of determining ψ
and setting ψ(x, t) = c for the general solution. The correct value of c will be
determined from the initial condition in the case of the initial value problem.

Since the order of differentiating the partial derivatives does not matter, i.e.,

∂2ψ

∂x∂t
=

∂2ψ

∂t∂x

and since
∂ψ

∂x
= f(x, t) and

∂ψ

∂t
= g(x, t)

the following are equivalent

∂2ψ

∂x∂t
=

∂2ψ

∂t∂x
⇐⇒ ∂f

∂t
=
∂g

∂x
.

In other words, this proves the following theorem.
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Theorem 2.3.18 For the ordinary, first order differential equation

f(x, t)ẋ+ g(x, t) = 0, (2.25)

if
∂f

∂t
=
∂g

∂x

then there exists a function ψ(x(t), t) such that

∂ψ

∂x
= f(x, t) and

∂ψ

∂t
= g(x, t).

The general solution to Equation 2.25 is given implicitly by

ψ(x(t), t) = c.

So far, so good, but while the theory is nice and tidy, there are still two
practical problems. First, the solution is only given implicitly by ψ. Second,
we still need to determine a way to find ψ. The first problem is inherent in the
method and is unavoidable. The second problem will be addressed subsequently.
First, an example.

Example 2.3.19 Consider

2xẋ = −2t− 1.

In this case f(x, t) = 2x and g(x, t) = 2t+ 1.

∂f

∂t
= 0

∂g

∂x
= 0,

the equation is exact. Note that

ψ(x, t) = x2 + t2 + t

is such that
ψ̇ = 0 ⇐⇒ 2xẋ+ 2t+ 1 = 0,

so
x2 + t2 + t = c

gives the solution x(t) implicitly.

Determining ψ(x, t) is actually rather straight-forward. Since

∂ψ

∂x
= f(x, t)

then

ψ(x, t) =

∫

f(x, t)dx+ h(t),
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and

g(x, t) =
∂ψ

∂t

=
∂

∂t

(∫

f(x, t)dx + h(t)

)

=
∂

∂t

(∫

f(x, t)dx

)

+ ḣ(t).

Thus,

h(t) =

∫ (

g(x, t) − ∂

∂t

(∫

f(x, t)dx

))

dt

and the general solution is given by

ψ(x, t) =

∫

f(x, t)dx +

∫ (

g(x, t) − ∂

∂t

(∫

f(x, t)dx

))

dt = c.

2.4 Stability

2.5 Summary

Ordinary first order differential equations are solved using the following meth-
ods.

• If the equation is linear, constant coefficient and homogeneous, then as-
suming a solution of the form x(t) = ceλt is probably the easiest method.

• If the equation is linear, variable coefficient and homogeneous, then using
equation 2.22 is probably the easiest method.

• If the equation is linear, constant coefficient and inhomogeneous with an
inhomogeneous term of the form given in Table 2.1, then the method of
undetermined coefficients outlined in section 2.3.2 is probably the easiest.

• If the equation is linear, constant coefficient and inhomogeneous the method
of variation of parameters with a solution given by equation 2.19 will work.
If the inhomogeneous term is not given in Table 2.1 then this is probably
the easiest method.

• If the equation is linear, variable coefficient and inhomogeneous the method
of variation of parameters with a solution given by equation 2.23 will work.

• If the equation is nonlinear, then first check if it is separable. If it is not,
then check if it is exact.
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2.6 Exercises

Problem 2.1 For each of the first order differential equations listed in
Problem 1.1, determine which, if any, of the following solution methods
apply based upon what has been covered in this book so far.

1. Assuming exponential solutions

2. Undetermined coefficients.

3. Variation of parameters.

4. Using the fact that the equation is separable.

5. Using the fact that the equation is exact.

6. Determining an approximate numerical solution.

It may be the case that no method, one method or more than one method
may apply.

Problem 2.2 In dead organic matter, the C14 isotope decays at a rate
proportional to the amount of it that is present. Furthermore, it takes
approximately 5600 years for half of the original amount present to decay.

1. If x(0) denotes the amount present when the organism is alive, deter-
mine a differential equation that describes the amount of the C14 iso-
tope present if x(t) represents the amount present after time t elapses
after the organism dies.

2. In contrast, to C14, the C12 isotope does not decay and the ratio of
C12 to C14 is constant while an organism is alive. Hence, one should
be able to compare the ratio of the two isotopes in a dead specimen
to that of a live specimen. Determine how many years have elapsed if
the ratio of the the amount of C14 to C12 is 30% of the original value.

Problem 2.3 You are in desperate need to determine (as in make up), by
hand, 100 different exact first order differential equations in less than one
hour. What would be a good way to do that? Determine 10 different exact
first order ordinary differential equations using your method.

Problem 2.4 Use two different methods to determine the general solution
to

ẋ+ x = sin 5t.

Also, find the solution if x(0) = 0.

Problem 2.5 Determine the general solution to

ẋ+
x

t
= cos 5t.
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Problem 2.6 Use two different methods to determine the general solution
to

ẋ+ 5x = e−5t.

Also, find the solution if x(0) = 1 and plot the solution versus time for a
length of time that is appropriate to demonstrate the qualitative nature of
the solution.

Problem 2.7 Determine the general solution to

(2x+ 1) ẋ = 3t2.

If necessary, you may express the solution as an implicit function.

Problem 2.8 Use two different methods to determine the general solution
to

3t2ẋ+ 6tx+ 5 = 0.

Problem 2.9 Determine the solution to

tẋ+ 2x = t2 − t+ 1

x(1) =
1

2
t > 0.

Problem 2.10 Prove that all separable first order ordinary differential
equations are exact. In other words, show that separable first order differ-
ential equations are a special case of exact first order ordinary differential
equations.

Problem 2.11 Prove that Equation 2.19 is the solution to Equation 2.18.

Problem 2.12 Consider the first order, linear, variable coefficient, homo-
geneous ordinary differential equation

ẋ+ tx = 0.

Does assuming a solution of the form

x(t) = eλt

work? Why or why not?

Problem 2.13 Consider the first order, nonlinear, ordinary differential
equation

ẋ+ x2 = 0.

Does assuming a solution of the form

x(t) = eλt

work? Why or why not?



76 CHAPTER 2. ORDINARY FIRST ORDER EQUATIONS



Chapter 3

Ordinary Second Order
Linear Constant Coefficient
Equations

3.1 Introduction

Second order equations arise quite frequently in engineering. In mechanical and
aerospace engineering, in particular, they arise often in the context of the study
of vibrations. First let us consider a few prototypical example problems example
to help motivate the importance of second order ordinary differential equations
as well as to illustrate their apparent importance.

Example 3.1.1 Consider the very simple mechanical system illustrated on
the left in Figure 3.1. The scenario modeled by the problem is that a mass is
attached to a moving base by a spring (on the left) and viscous damper (on
the right). The base is moving with a specified motion z(t). The question
is what is the resulting motion of the mass?

A free body diagram of the mass is illustrated on the right in Figure 3.1,
where fs and fd are the forces that the spring and damper exert on the
mass, respectively. Assume that y and z are measured from a configuration
where the spring is unstretched, i.e., at y = 0 and z = 0 the spring is
unstretched. In that case, fs = k (z − y). A viscous damper is such that
the force required to compress or extend it is proportional to the rate at
which it is being compressed or extended, respectively. Or mathematically,
fd = b (ż − ẏ).

Newton’s law gives

mÿ = fs + fd = k (z − y) + b (ż − ẏ)

or rearranging
mÿ + bẏ + ky = kz + bż.

77
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mm

k b

y(t)

z(t)

fs fd

Figure 3.1. Mechanical system for example 3.1.1.

This is an ordinary, second order, linear, constant coefficient, inhomoge-
neous differential equation. Remember that z(t) is assumed to be known.
For example, if z(t) = Z sinωt, then

mÿ + bẏ + ky = kZ sinωt+ bZ cosωt

which is more obviously in such a form.

For such a system, important and interesting questions may be the fol-
lowing:

1. Given y(0) and ẏ(0) what is the resulting motion of the mass, y(t)?

2. What is the magnitude of the resulting motion of the mass as a func-
tion of the magnitude of the base motion, Z?

3. What is the magnitude of the resulting motion of the mass as a func-
tion of the frequency of the motion of the base, ω?

4. Given either or both Z and ω, what are good choices for k and b so
that the magnitude of either or both the motion or acceleration of
the mass is minimized? (This is basically designing a suspension or
vibration absorber).

3.2 Theory of Linear, Homogeneous Equations

In the study of mechanical vibrations, the starting point is usually the case of
free, undamped vibrations. This case is illustrated by the following example and
will be the starting point for the study of homogeneous equations.
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m

k

x(t)

Figure 3.2. Mass spring system for example 3.2.1.

Example 3.2.1 Consider the mass–spring system illustrated in Figure 3.2.
Assume for present purposes that there is no gravitational force acting on
the spring and that x = 0 when the spring is unstretched. The only force
on the mass is due to the spring and the equation of motion will be

mẍ+ kx = 0. (3.1)

Recalling theorem 2.3.1, this ordinary, second order, homogeneous, lin-
ear, constant coefficient differential equation must have solutions of the form

x(t) = ceλt.

Substituting this into the differential equation gives

mλ2ceλt + kceλt = 0.

Since eλt is never zero and assuming that c 6= 0, we have the characteristic
equation

mλ2 + k = 0

or

λ = ±
√

− k

m
.

Since real spring constants and masses have only positive values,

λ = ±i
√

k

m
.

Let ωn =
√

k
m

denote the natural frequency of the system. Using this

notation, there are two possible solutions

x1(t) = eiωnt and x2(t) = e−iωnt.
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The fact that these two functions are indeed solutions to the differential
equation may be verified by direct substitution. We will return to this
example subsequently after a quick review of complex variables and then
take a detour into the notion of a fundamental set of solutions for second
order equations.

At this point it would behoove the reader to read Appendix A which gives
a several page review of complex variable theory. The one fact that will be
necessary and repeated here is the definition of Euler’s formula, which relates
the exponential of a complex number to trigonometric functions. Namely,

e(α+iβ)t = eαt (cosβt+ i sinβt) .

Example 3.2.2 Returning to example 3.2.1 and using Euler’s formula the
two solutions may be rewritten as

x1(t) = cosωnt+ i sinωnt

x2(t) = cosωnt− i sinωnt.

Now consider the question: when will it be possible to combine the two
solutions to satisfy any specified initial conditions? First, note that because
the equation is linear and homogeneous, the solution

x(t) = c1x1(t) + c2x2(t)

also satisfies the differential equation. This may be verified by direct sub-
stitution using either form of the solutions. Using the sine and cosine form,
then

ẋ1(t) = −ωn sinωnt+ iωn cosωnt

ẋ2(t) = −ωn sinωnt− iωn cosωnt

ẍ1(t) = −ω2
n cosωnt− iω2

n sinωnt

ẍ2(t) = −ω2
n cosωnt+ iω2

n sinωnt

and substituting into equation 3.1 and using the fact that ω2
n = k

m
gives

mẍ+ kx = m (c1ẍ1 + c2ẍ2) + k (c1x1 + c2x2)

= mc1
(

−ω2
n cosωnt− iω2

n sinωnt
)

+mc2
(

−ω2
n cosωnt+ iω2

n sinωnt
)

+kc1 (cosωnt+ i sinωnt)

+kc2 (cosωnt− i sinωnt)

= −c1k cosωnt− ic1k sinωnt

−c2k cosωnt+ ic2k sinωnt

+kc1 cosωnt+ ikc1 sinωnt

+kc2 cosωnt− ikc2 sinωnt

= 0.
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The fact that a linear combination of the two solutions of equation 3.1 also
satisfies the equation is a particular example of the principle of superposi-
tion.

3.2.1 The principle of superposition

The principle of superposition states that any linear combination of solutions
to an ordinary, linear, homogeneous differential equation is also a solution. An
example is the final computation in example 3.2.2. The following theorem proves
the principle for the second order case. Proving it for nth order equations is left
as an exercise.

Theorem 3.2.3 Let the functions x1(t) and x2(t) each satisfy the ordinary,
second order, linear, homogeneous differential equation

f2(t)ẍ(t) + f1(t)ẋ(t) + f0(t)x = 0. (3.2)

Then any linear combination of x1(t) and x2(t), i.e.,

x(t) = c1x1(t) + c2x2(t),

also satisfies equation 3.2.

Proof The proof is simply by direct substitution.

f2(t)ẍ(t) + f1(t)ẋ(t) + f0(t)x(t) = f2(t) (c1ẍ1(t) + c2ẍ2(t))

+f1(t) (c1ẋ1(t) + c2ẋ2(t))

+f0(t) (c1x1(t) + c2x2(t))

= c1 (f2(t)ẍ1(t) + f1(t)ẋ1(t) + f0(t)x1(t))

+c2 (f2(t)ẍ2(t) + f1(t)ẋ2(t) + f0(t)x2(t))

= 0 + 0

= 0.

Note that the principle of superposition does not require that the equation
have constant coefficients; however, that will be the predominant case in which
we will use it.

Example 3.2.4 Returning to example 3.2.2, at this point it has been
shown that the two functions

x1(t) = cosωnt+ i sinωnt

x2(t) = cosωnt− i sinωnt

are solutions to equation 3.1 and that any linear combination

x(t) = c1x1(t) + c2x2(t)

is also a solution.
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Because this text is also concerned with the solutions and analyses of
vibrations problems, an alternative, simpler form of the combination of
the two solutions would be nice. To achieve this, it is possible to simply
rearrange the linear combination as follows:

x(t) = c1x1(t) + c2x2(t)

= c1 (cosωnt+ i sinωnt) + c2 (cosωnt− i sinωnt)

= (c1 + c2) cosωnt+ i (c1 − c2) sinωnt

= ĉ1 cosωnt+ ĉ2 sinωnt,

where

ĉ1 = c1 + c2

ĉ2 = i (c1 − c2) .

Note also, by direct substitution, it may be verified that the two functions

x̂1(t) = sinωnt

x̂2(t) = cosωnt

are also solutions to equation 3.1. This is an otherwise unremarkable fact,
but they are generally a more convenient representation of two homogeneous
solutions than complex exponentials.

3.2.2 Linear independence

Now consider the question of determining when it will be the case that any initial
conditions can be satisfied by appropriately determining the two unspecified
coefficients in the various forms of the solutions above.

Example 3.2.5 Adding initial conditions to the problem statement corre-
sponding to the system illustrated in Figure 3.2 gives

mẍ+ kx = 0

x(0) = x0

ẋ(0) = ẋ0.

The examples above showed that

x(t) = c1x̂1(t) + c2x̂2(t)

= c1 cosωnt+ c2 sinωnt

is a solution to the differential equation. Now to determine the values for
c1 and c2 that satisfy the initial conditions, simply evaluate x(0) and ẋ(0)
and set them equal to x0 and ẋ0 respectively

x(0) = c1

ẋ(0) = c2ωn
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so

c1 = x0

c2 =
ẋ0

ωn
.

The main point of this example is the fact that regardless of the values given
for x0 and ẋ0, there are values for c1 and c2 that satisfy the differential
equation as well as the initial conditions and the solution is

x(t) = x0 cosωnt+
ẋ0

ωn
sinωnt.

Now consider the more general question: given two solutions, x1(t) and x2(t)
of an ordinary, second order, linear, homogeneous differential equation, when
will it be the case that the two coefficients in the general solution

x(t) = c1x1(t) + c2x2(t)

may be used to satisfy any given initial conditions?
Stated a bit more mathematically, consider the initial value problem

ẍ+ p(t)ẋ+ q(t)x = 0

x(t0) = x0

ẋ(t0) = ẋ0

and assume that x1(t) and x2(t) are solutions. From the principle of superpo-
sition in theorem 3.2.3, since the equation is ordinary, linear and homogeneous,
then

x(t) = c1x1(t) + c2x2(t)

also satisfies the differential equation.
Now solving x(t0) = x0 and ẋ(t0) = ẋ0 for c1 and c2 gives

x(t0) = c1x1(t0) + c2x2(t0) = x0

ẋ(t0) = c1ẋ1(t0) + c2ẋ2(t0) = ẋ0

which yields

c1 =
ẋ0x2(t0) − x0ẋ2(t0)

x1(t0)ẋ2(t0) − x2(t0)ẋ1(t0)
(3.3)

c2 =
ẋ0x1(t0) − x0ẋ1(t0)

x1(t0)ẋ2(t0) − x2(t0)ẋ1(t0)
, (3.4)

so the only time there will be a problem with solving for the coefficients is
then the denominator is equal to zero (note that both denominators are equal).
Observe furthermore that the denominators are only a function of the two solu-
tions, x1(t) and x2(t) and not the initial conditions. This leads to the following
definition.
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Definition 3.2.6 Given n functions, x1(t), x2(t), . . . , xn(t) define the Wron-
skian, W as the following determinant

W (x1(t), x2(t), . . . , xn(t)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1(t) x2(t) · · · xn(t)
dx1(t)
dt

dx2(t)
dt

· · · dxn(t)
dt

...
...

. . .
...

dnx1(t)
dtn

dnx2(t)
dtn

· · · dnxn(t)
dtn

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

⋄

In particular, relevant to the case of second order differential equations, the
Wronskian for two functions, x1(t) and x2(t) is

W (x1(t), x2(t)) =

∣

∣

∣

∣

x1(t) x2(t)
ẋ1(t) ẋ2(t)

∣

∣

∣

∣

= x1(t)ẋ2(t) − x2(t)ẋ1(t).

Because it is commonly used, the following definition introduces the notion
of linear independence for a set of functions.

Definition 3.2.7 A set of functions, x1(t), x2(t), . . . , xn(t) is called linearly in-
dependent on an interval I if there exist constants c1, . . . , cn that are not all
zero such that

c1x1(t) + c2x2(t) + · · · + cnxn(t) = 0

for all t ∈ I. ⋄

A necessary condition for functions to be independent is given by the Wron-
skian

If

Theorem 3.2.8 If
W (x1(t), x2(t), . . . , xn(t)) 6= 0

for any t ∈ I, then the set of functions, x1(t), x2(t), . . . , xn(t) is linearly inde-
pendent on I.

Proof If the functions are linearly dependent, then there exists c1, . . . , cn, not
all zero such that

c1x1(t) + c2x2(t) + · · · + cnxn(t) = 0.

Differentiating this equation with repsect to t gives

c1ẋ1(t) + c2ẋ2(t) + · · · + cnẋn(t) = 0,

and differentiating it n− 1 more times gives the system of equations

c1x1(t) + c2x2(t) + · · · + cnxn(t) = 0

c1ẋ1(t) + c2ẋ2(t) + · · · + cnẋn(t) = 0

c1ẍ1(t) + c2ẍ2(t) + · · · + cnẍn(t) = 0

...

c1x
(n−1)
1 (t) + c2ẍ

(n−1)
2 (t) + · · · + cnx

(n−1)
n (t) = 0.
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In order for there to be a nonzero solution to this system of equations, the
Wronskian must be zero for all t ∈ I, i.e.,,

W (x1(t), x2(t), . . . , xn(t)) = 0

Hence, if the Wronskian is nonzero for any t ∈ I, the set of functions must
be linearly independent. �

In particular, for the case of two functions, x1(t) and x2(t) are linearly
independent if

W (x1(t), x2(t)) = x1(t)ẋ2(t) − x2(t)ẋ1(t) 6= 0.

Finally, putting all results of the previous few pages together gives the fol-
lowing theorem.

Theorem 3.2.9 If x1(t) and x2(t) satisfy

ẍ+ p(t)ẋ + q(t)x = 0

and if
W (x1(t), x2(t)) = x1(t)ẋ2(t) − x2(t)ẋ1(t) 6= 0,

then
x(t) = c1x1(t) + c2x2(t)

satisfies the initial value problem

ẍ+ p(t)ẋ+ q(t)x = 0

x(t0) = x0

ẋ(t0) = ẋ0

where c1 and c2 are given by equations 3.3 and 3.4.

So, if the goal is to solve an ordinary, linear, homogeneous, second order
initial value problem, then it will not suffice to find any two homogeneous solu-
tions to combine, but two linearly independent solutions. Fortunately, as will be
illustrated subsequently, the methods developed in the next few sections will all
generate linearly independent solutions, so careful attention to this detail will
not be necessary.

3.3 Constant Coefficient, Homogeneous Equa-

tions

Recalling theorem 2.3.1 it is clear that ordinary, linear, constant coefficient,
homogeneous, second order differential equations have solutions of the form
x(t) = eλt. However, in contrast to the case of first order equations of this type,
there will generally be two solutions for λ which complicates matters somewhat,
as is illustrated by the following example.
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Example 3.3.1 Determine the general solution to

ẍ+ 5ẋ+ 6x = 0. (3.5)

Assuming
x(t) = eλt

and substituting gives

ẍ+ 5ẋ+ 6x = λ2eλt + 5λeλt + eλt

= 0

and since eλt is never equal to zero

λ2 + 5λ+ 6 = 0.

Using the quadratic formula (or simply factoring, as is possible in this case)
gives

λ = −2 or λ = −3

so

x1(t) = e−2t

x2(t) = e−3t

both satisfy equation 3.5 and

x(t) = c1e
−2t + c2e

−3t

is a general solution as long as the Wronskian, W (x1, x2) is nonzero. Check-
ing the Wronskian gives

W (x1, x2) =

∣

∣

∣

∣

e−2t e−3t

−2e−2t −3e−3t

∣

∣

∣

∣

= −3e−5t + 2e−5t = −1e−5t 6= 0.

Now, it should be clear that assuming exponential solutions for second order
equations of this type will result in a quadratic characteristic equation which,
in general, will have two roots. Unfortunately, a quadratic equation may have
either distinct roots, a complex conjugate pair of roots or a repeated root, and
each case results in a solutions of a different type. Hence, each case must be
considered separately.

As a recurring example throughout the investigation of the three possible
cases, consider the system mass-spring-damper illustrated in Figure 3.3 which
will have the equation of motion

mẍ+ bẋ+ kx = 0. (3.6)

Assuming x(t) = eλt will result in the characteristic equation

mλ2 + bλ+ k = 0
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m

k

b

x(t)

Figure 3.3. Mechanical system described by equation 3.6.

which has roots

λ1 =
−b+

√
b2 − 4mk

2m
and λ2 =

−b−
√
b2 − 4mk

2m
.

The roots, λ1 and λ2 will either be

• real and distinct (when b2 − 4mk > 0);

• a complex conjugate pair (when b2 − 4mk < 0); or,

• repeated (when b2 − 4mk = 0).

As is already clear, the solutions to equation 3.6 will involve the parameters
m, b and k. However, there exists a standard, canonical form for such equations.
This form is valuable to know both because it is a standard formulation for
second order problems and also because it simplifies notation the problem.

Canonical form for second order systems

Consider

mẍ+ bẋ+ kx = 0

and the following definitions

ζ =
b

2
√
mk

ωd = ωn
√

1 − ζ2

=

√

k

m

√

1 − b2

4mk

=

√

k

m

4mk − b2

4mk

=

√

4mk − b2

2m
.



88
CHAPTER 3. ORDINARY SECOND ORDER LINEAR CONSTANT

COEFFICIENT EQUATIONS

The first term, ζ is called the damping ratio and the second term, ωd is called
the damped natural frequency. Observing that

b

2m
= ζωn

equation 3.10 can be rewritten as

mẍ+ bẋ+ kx = m

(

ẍ+
b

m
ẋ+

k

m
x

)

= m
(

ẍ+ 2ζωnẋ+ ω2
nx
)

.

Since the equation is homogeneous and m 6= 0, the two differential equations
are equivalent, i.e.,

mẍ+ bẋ+ kx = 0 ⇐⇒ ẍ+ 2ζωnẋ+ ω2
nx = 0.

In this case, the characteristic equation is

λ2 + 2ζωnλ+ ω2
n = 0

which gives

λ =
−2ζωn ±

√

4ζ2ω2
n − 4ω2

n

2

= −ζωn ± ωn
√

ζ2 − 1.

The three cases corresponding to distinct, real roots, complex conjugate roots
and repeated roots correspond to the cases where ζ > 1, ζ < 1 and ζ = 1 respec-
tively. The “simplification” is in that the roots only contain two parameters,
ωn and ζ instead of the three parameters, m, b and k.

3.3.1 Distinct, real roots

In the case that the quadratic equation has distinct real roots, as was illustrated
in example 3.3.1, the two solutions

x1(t) = eλ1t

x2(t) = eλ2t

where λ1 and λ2 are the roots of the characteristic equation, will both satisfy the
differential equation and by the principle of superposition the linear combination

x(t) = c1x1(t) + c2x2(t)

will also satisfy it. Furthermore, in this case where λ1 6= λ2 the Wronskian is
always nonzero. This fact is illustrated by the direct computation,

W (x1, x2) =

∣

∣

∣

∣

eλ1t eλ2t

λ1e
λ1t λ2e

λ2t

∣

∣

∣

∣

(3.7)

= λ2e
(λ1+λ2)t − λ1e

(λ1+λ2)t

= (λ2 − λ1) e
(λ1+λ2)t

6= 0.
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To emphasize its importance, the above results are restated in the form of a
theorem.

Theorem 3.3.2 For an ordinary, second order, linear, constant coefficient, ho-
mogeneous differential equation, if the roots of the corresponding characteristic
equation are real and distinct, denoted by λ1 and λ2, then the functions

x1(t) = eλ1t

x2(t) = eλ2t

both are solutions to the differential equation. Furthermore x1(t) and x2(t) are
linearly independent and therefore

x(t) = c1e
λt + c2te

λt

is a general solution of the differential equation.

In the case of the mass-spring-damper system illustrated in figure 3.3 and
described by equation 3.6 the general solution will be

x(t) = c1e
−b+

√
b2−4mk

2m
t + c2e

−b−
√

b2−4mk

2m
t

= c1e

“

−ζωn+ωn

√
ζ2−1

”

t
+ c2e

“

−ζωn−ωn

√
ζ2−1

”

t
.

Note that since b2 − 4mk > 0 then this solution will correspond to the sum of
two decaying exponentials.

3.3.2 Complex roots

In the case in the mass-spring-damper problem where b2 − 4mk < 0 or ζ < 1,
the sign of the term inside the radical will be negative and hence the two roots
will be a complex conjugate pair given by

λ1 =
−b+ i

√
4mk − b2

2m
= −ζωn + iωn

√

1 − ζ2

λ1 =
−b− i

√
4mk − b2

2m
= −ζωn − iωn

√

1 − ζ2.

Using Euler’s formula, the two solutions

x̂1(t) = ĉ1e
λ1t

x̂2(t) = ĉ2e
λ2t

where, using the canonical formulation

x̂1(t) = ĉ1e
−ζωnt

(

cos
(

ωn
√

1 − ζ2t
)

+ i sin
(

ωn
√

1 − ζ2t
))

= ĉ1e
−ζωnt (cosωdt+ i sinωdt)

x̂2(t) = ĉ2e
−ζωnt

(

cos
(

ωn
√

1 − ζ2t
)

− i sin
(

ωn
√

1 − ζ2t
))

= ĉ2e
−ζωnt (cosωdt− i sinωdt) ,
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and, following the procedure outlined in example 3.2.4 and defining

c1 = ĉ1 + ĉ2 (3.8)

c2 = i (ĉ1 − ĉ2)

then the two solutions

x1(t) = e−ζωnt cosωdt (3.9)

x2(t) = e−ζωnt sinωdt

may be added in a linear combination

x(t) = c1
[

e−ζωnt cosωdt
]

+ c2
[

e−ζωnt sinωdt
]

(3.10)

to form a solution.
There is nothing wrong with repeating the Wronskian computation for this

case; however, it is worth noting that the computation in equation 3.7 is valid
for the case where the λ’s are complex as well. Also, since the combination
of solutions expressed by the constants in equation 3.8 is full rank, the sine
and cosine combination of the solutions will be linearly independent as well.
However, just to complete the picture, the detailed Wronskian computation is
as follows

W (x1, x2) =

∣

∣

∣

∣

e−ζωnt cosωdt e−ζωnt sinωdt
−e−ζωnt (ωd cosωdt+ ζωn sinωdt) e−ζωnt (ωd cosωdt− ζωn sinωdt)

∣

∣

∣

∣

= ωde
−2ζωnt

6= 0.

So, the above proves the following theorem.

Theorem 3.3.3 For an ordinary, second order, linear, constant coefficient, ho-
mogeneous differential equation, if the roots of the corresponding characteristic
equation are a complex conjugate pair, denoted by λ1 and λ2, then the functions

x1(t) = eλ1t

x2(t) = eλ2t

both are solutions to the differential equation. Furthermore x1(t) and x2(t) are
linearly independent and therefore

x(t) = c1e
λ1t + c2e

λ2t

is a general solution of the differential equation.

Using the sine and cosine formulation gives the following corollary to theo-
rem 3.3.3.
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Corollary 3.3.4 Equivalently, if the two roots are denoted by

λ1 = −ζωn + iωn
√

1 − ζ2

λ2 = −ζωn − iωn
√

1 − ζ2

then the functions

x1(t) = e−ζωnt cosωdt

x2(t) = e−ζωnt sinωdt

both are solutions to the differential equation. Furthermore x1(t) and x2(t) are
linearly independent and therefore

x(t) = c1e
−ζωnt cosωdt+ c2e

−ζωnt sinωdt

is a general solution of the differential equation.

A numerical example may be helpful at this point.

Example 3.3.5 Determine a general solution to

ẍ+ 2ẋ+ 5x = 0.

Just for fun, let us solve this two ways.

1. Assuming a solution of the form x(t) = eλt gives the characteristic
equation

λ2 + 2λ+ 5 = 0 ⇐⇒ λ = −1 ± 2i.

Immediately we can write either

x(t) = c1e
(−1−2i)t + c2e

(−1+2i)t

or
x(t) = c1e

−t cos 2t+ c2e
−t sin 2t.

2. Alternatively, using the definition of ωn, ζ and ωd,

ωn =

√

k

m
=

√
5

ζ =
b

2
√
mk

=
1√
5

=

√
5

5

ωd = ωn
√

1 − ζ2 =
√

5

√

1 − 1

5
= 2.

and substituting into equation 3.10 gives

x(t) = c1e
−t cos 2t+ c2e

−t sin 2t.
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3.3.3 Repeated roots

Now consider the case when b2 = 4mk or, equivalently, ζ = 1. In this case,
λ = −ζωn, and at this point there is only one solution

x1(t) = e−ζωnt.

To find another solution, assume a solution of the form

x2(t) = µ(t)x1(t),

substitute to see if it determines µ(t). Computing

ẋ2 = µẋ1 + µ̇x1

ẍ2 = 2µ̇ẋ1 + µẍ1 + µ̈x1.

and substituting into

ẍ+ 2ζωnẋ+ ω2
nx = 0

gives

(2µ̇ẋ1 + µẍ1 + µ̈x1) + 2ζωn (µẋ1 + µ̇x1) + ω2
nµx1 =

µ
(

ẍ1 + 2ζωnẋ1 + ω2
nx1

)

+ (2µ̇ẋ1 + µ̈x1 + 2ζωnµ̇x1) =

µ̈x1 + 2µ̇ (ẋ1 + ωnx1) =

µ̈x1 =

µ̈ = 0 =⇒ µ(t) = t+ c.

Note that in the second line the term in the left pair of parentheses is zero
because x1 is a solution to the homogeneous equation. In the third line the term
in parentheses is zero due to the definition of x1. Finally, since c is arbitrary, it
may be zero and hence, finally,

x2(t) = tx1(t)

= teλt

= te−ωnt.

So, the two solutions

x1(t) = eλt = eωnt

x2(t) = teλt = teωnt

both satisfy the differential equation.

A direct computation with the Wronskian shows they are linearly indepen-
dent, which is left as an exercise.

So, the above proves the following theorem.
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Theorem 3.3.6 For an ordinary, second order, linear, constant coefficient, ho-
mogeneous differential equation, if the roots of the corresponding characteristic
equation, are equal, i.e., the roots are repeated, and are denoted by λ, then the
following two functions

x1(t) = eλt

x2(t) = teλt

both are solutions to the differential equation. Furthermore x1(t) and x2(t) are
linearly independent and therefore

x(t) = c1e
λ1t + c2e

λ2t

is a general solution of the differential equation.

An example follows.

Example 3.3.7 Find a general solution to

ẍ+ 4ẋ+ 4 = 0.

The corresponding characteristic equation is

λ2 + 4λ+ 4 = 0.

Hence, λ = −2 is the repeated solution. Therefore

x(t) = c1e
−2t + c2te

−2t

is the general solution.

3.4 Inhomogeneous Equations

The two methods for solving inhomogeneous, second order, ordinary, linear
differential equations go by the same name, and are essentially equivalent in
approach, to the methods outlined in Chapter 2 for inhomogeneous first order
equations; namely, the method of undetermined coefficients and the method of
variation of parameters.

Before presenting the two approaches, note that any equation of this type
may be converted to the canonical form. In particular,

mẍ+ bẋ+ kx = f(t) ⇐⇒ ẍ+ 2ζωnẋ+ ω2
nx =

f(t)

m
. (3.11)

Hence, it will suffice to study solutions to equations of the form of the one on
the right in equation 3.11.
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3.4.1 The Method of Undetermined coefficients for Con-
tant Coefficient Equations

The method of undetermined coefficients is essentially the same as was pre-
sented for first order equations in section 2.3.2. Thus this section will limit the
presentation to a few examples.

Example 3.4.1 Find the general solution to

mẍ+ kx = F cosωt.

From examples 3.2.1 through 3.2.4, the homogeneous solution is

xh(t) = c1 cosωnt+ c2 sinωnt,

where, as usual, ωn =
√

k
m

. While not necessary to simply find the solution,

this example will work with the normal form

ẍ+ ωnx =
F

m
cosωt.

Referring to Table 2.1, as long as ω 6= ωn, then a correct assumption for the
form of the particular solution is

xp(t) = A cosωt+B sinωt.

Skipping the gory details, differentiating xp(t) and substituting into the
differential equation gives

A =
F

m (ω2
n − ω2)

B = 0,

so the entire solution is

x(t) = c1 cosωnt+ c2 sinωnt+
F

m (ω2
n − ω2)

cosωt

= c1 cosωnt+ c2 sinωnt+
F

k

(

1 −
(

ω
ωn

)2
) cosωt

To normalize the solution, note that the quantity F
k

is simply the amount
that the spring would displace under the action of a force of magnitude F .
Hence, define the static deflection as

δ =
F

k
.

Using this the solution becomes

x(t) = δ
1

1 −
(

ω
ωn

)2 cosωt.
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Figure 3.4. Magnification factor versus frequency ratio.

The term

M =
1

1 −
(

ω
ωn

)2

is called the magnification factor because it multiplies the static deflection
and hence determines the dependency of the magnitude of the response as
a function of the forcing frequency, ω. A plot of the magnification factor
versus frequency ratio, ω

ωn
is illustrated in Figure 3.4.

The case where ω = ωn is referred to as resonance, and will be further
explored in the exercises. At this point is suffices to note that it corresponds
to the case where the initially assumed form of the particular solution is the
same as a homogeneous solution; hence, the assumed form of xp(t) must be
multiplied by t, which will result in a solution with a magnitude that increases
linearly with time. This will be illustrated with a numerical example.

Example 3.4.2 Solve

ẍ+ x = cos t

x(0) = 0

ẋ(0) = 0,
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which corresponds, for example, to m = 1, k = 1 and hence, ωn = 1.
Assuming homogeneous solutions of the form xh(t) = eλt gives λ = ±i, so

xh(t) = c1 cos t+ c2 sin t

is a homogeneous solution. Note that due to the inhomogeneous term,
cos t, one may be inclined to assume xp(t) = A cos t+B sin t; however, since
sin t and cos t are homogeneous solutions, then the appropriate particular
solution is

xp(t) = t (A cos t+B sin t) .

Differentiating twice, substituting, equating coefficients of sin t and cos t
and solving for A and B gives A = 0 and B = 1

2 ; hence

x(t) = c1 cos t+ c2 sin t+
t sin t

2
.

Evaluating the initial conditions gives c1 = c2 = 0. Hence

x(t) =
t sin t

2

is the solution of the initial value problem. A plot of this solution is illus-
trated in Figure 3.5 and is an illustration of the phenomenon of resonance.
Note that the solution grows unbounded, i.e.,

lim
t→∞

|x(t)| = ∞.

Example 3.4.3 Find the general solution to

ẍ+ ẋ+ 4x = t sin 2t.

Assuming
xh(t) = eλt

gives the characteristic equation

λ2 + λ+ 4 = 0

so

λ =
−1 ±

√
1 − 16

2
= −1

2
±

√
15

2
i.

Hence,

xh(t) = e−
1
2 t

(

c1 sin

√
15

2
t+ c2 cos

√
15

2
t

)

.

Since the inhomogeneous term is of the product of a polynomial in t and
sin 2t, we must assume a solution that contains the product of the all the
corresponding linearly independent derivatives. Hence, assume

xp(t) = At sin 2t+Bt cos 2t+ C sin 2t+D cos 2t.
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Figure 3.5. Resonance response of solution to example 3.4.2.
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Differentiating gives

ẋp(t) = A sin 2t+ 2At cos 2t+B cos 2t− 2Bt sin 2t+ 2C cos 2t− 2D sin 2t

= −2Bt sin 2t+ 2At cos 2t+ (A− 2D) sin 2t+ (B + 2C) cos 2t

and differentiating again gives

ẍp(t) = −2B sin 2t− 4Bt cos 2t+ 2A cos 2t− 4At sin 2t+

2 (A− 2D) cos 2t− 2 (B + 2C) sin 2t

= −4At sin 2t− 4Bt cos 2t− 4 (B + C) sin 2t+ 4 (A−D) cos 2t.

Substituting into the differential equation gives

[−4At sin 2t− 4Bt cos 2t− 4 (B + C) sin 2t+ 4 (A−D) cos 2t] +

[−2Bt sin 2t+ 2At cos 2t+ (A− 2D) sin 2t+ (B + 2C) cos 2t] +

4 [At sin 2t+Bt cos 2t+ C sin 2t+D cos 2t] = t sin 2t

and equating the coefficients of t sin 2t, t cos 2t, sin 2t and cos 2t respectively,
gives the following set of equations

−4A− 2B + 4A = 1

−4B + 2A+ 4B = 0

−4 (B + C) + (A− 2D) + 4C = 0

4 (A−D) + (B + 2C) + 4D = 0.

From the first two equations, A = 0 and B = − 1
2 . Substituting this into

the third equation gives
2 − 2D = 0

so D = 1. From the last equation, C = 1
4 . Hence

xp(t) = −1

2
t cos 2t+ +

1

4
sin 2t+ cos 2t

and the general solution is

x(t) = xh(t) + xp(t)

= e−
1
2 t

(

c1 sin

√
15

2
t+ c2 cos

√
15

2
t

)

− 1

2
t cos 2t+

1

4
sin 2t+ cos 2t.

3.4.2 Method of Variation of Parameters for Constant or
Variable Coefficient Equations

Recall in section 2.3.2 the method of variation of parameters was used to find
solutions to ordinary, first order, linear, inhomogeneous differential equations
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(either constant or variable coefficients). The same approach may be used in
the case of second order equations; however, due to the second order nature
of the problem, the computations involved become a bit more algebraically
complex. Nevertheless, proceed, as before, and consider the ordinary, second
order, linear, inhomogeneous differential equation

ẍ(t) + p(t)ẋ(t) + q(t)x(t) = f(t) (3.12)

and assume a particular solution of the form

xp(t) = µ1(t)x1(t) + µ2(t)x2(t) (3.13)

where x1(t) and x2(t) are homogeneous solutions to equation 3.12. The approach
is hopefully obvious: substitute xp(t) into equation 3.12 to see if equations for
µ1(t) and µ2(t) may be obtained. So, proceeding thusly, and dropping the
explicit dependence on t

ẋp = µ̇1x1 + µ1ẋ1 + µ̇2x2 + µ2ẋ2

ẍp = µ̈1x1 + 2µ̇1ẋ1 + µ1ẍ1 + µ̈2x2 + 2µ̇2ẋ2 + µ2ẍ2

and substituting into equation 3.12 gives

ẍ+ pẋ+ qx = (µ̈1x1 + 2µ̇1ẋ1 + µ1ẍ1 + µ̈2x2 + 2µ̇2ẋ2 + µ2ẍ2)

+ p (µ̇1x1 + µ1ẋ1 + µ̇2x2 + µ2ẋ2)

+ q (µ1x1 + µ2x2)

= f.

Rearranging a bit gives

ẍ+ pẋ+ qx = µ1 (ẍ1 + pẋ1 + qx1)

+ µ2 (ẍ2 + pẋ2 + qx2)

+ (µ̈1x1 + 2µ̇1ẋ1 + µ̈2x2 + 2µ̇2ẋ2) + p (µ̇1x1 + µ̇2x2)

= f,

and noting that since x1 and x2 the terms in the parentheses multiplying µ1

and µ2 in the first two lines are zero, the equation reduces to

(µ̈1x1 + 2µ̇1ẋ1 + µ̈2x2 + 2µ̇2ẋ2) + p (µ̇1x1 + µ̇2x2) = f. (3.14)

At this point, there is one equation for two unknown functions, µ1(t) and µ2(t);
furthermore, it is second order, so at first glance it may seem not much progress
has been made since one second order equation (equation 3.12) has been with
another one (equation 3.14). However, since it is one equation with two un-
knowns, the system is under-determined, and we have the freedom to choose
another independent equation. So, let us try to make the term in the left set of
parentheses zero. Note that if we choose (with much foresight)

µ̇1x1 + µ̇2x2 = 0
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then its derivative must also be zero, so

µ̈1x1 + µ̇1ẋ1 + µ̈2x2x2 + µ̇2ẋ2 = 0.

In light of this, equation 3.14 reduces to

µ̇1ẋ1 + µ̇2ẋ2 = f.

Collecting what is left together, determining µ1 and µ2 amounts to finding
the functions that satisfy

µ̇1x1 + µ̇2x2 = 0

µ̇1ẋ1 + µ̇2ẋ2 = f,

which gives

µ̇1(t) = − x2(t)f(t)

x1(t)ẋ2(t) − ẋ1(t)x2(t)
(3.15)

µ̇2(t) =
x1(t)f(t)

x1(t)ẋ2(t) − ẋ1(t)x2(t)
. (3.16)

Thus, if x1(t) and x2(t) are known, everything on the right hand sides of the
above equations are known and µ1(t) and µ2(t) may be determined by direct
integration. Hence

µ1(t) = −
∫

x2(t)f(t)

x1(t)ẋ2(t) − ẋ1(t)x2(t)
dt+ c1

µ2(t) =

∫

x1(t)f(t)

x1(t)ẋ2(t) − ẋ1(t)x2(t)
dt+ c2,

where c1 and c2 are the integration constants and are arbitrary. Substituting
this into the original assumed form of the solution, Equation 3.13 gives

xp(t) = −x1(t)

(∫

x2(t)f(t)

x1(t)ẋ2(t) − ẋ1(t)x2(t)
dt+ c1

)

+ x2(t)

∫ (

x1(t)f(t)

x1(t)ẋ2(t) − ẋ1(t)x1(t)
dt+ c2

)

.

Note that

1. since the denominator in each integrand must be nonzero, x1(t) and x2(t)
must be linearly independent; and,

2. since xp(t) has a linear combination of the two homogeneous solutions
contained in it, it is actually the complete solution.

Hence the final answer is

x(t) = c1x1(t) + c2x2(t) (3.17)

− x1(t)

∫

x2(t)f(t)

x1(t)ẋ2(t) − ẋ1(t)x2(t)
dt

+ x2(t)

∫

x1(t)f(t)

x1(t)ẋ2(t) − ẋ1(t)x2(t)
dt.
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To illustrate the use of the method, consider a couple examples.

Example 3.4.4 Find the general solution

ẍ+ x =
1

cos t
x(0) = 0

ẋ(0) = 0.

Note that the method of undetermined coefficients cannot be used for this
problem since the inhomogeneous term is not of the appropriate form. For
the homogeneous solution, there are complex roots, λ = ±i; hence,

x1(t) = cos t

x2(t) = sin t.

Note that W (x1, x2) = 1. Substituting into Equation 3.17 gives

x(t) = c1 cos t+ c2 sin t− cos t

∫

sin t

cos t
dt+ sin t

∫

cos t

cos t
dt

= c1 cos t+ c2 sin t+ cos t ln (cos t) + t sin t.

Evaluating the initial conditions gives

x(0) = 0 ⇐⇒ c1 = 0

and
ẋ(0) = 0 ⇐⇒ c2 = 0.

It is worth observing that probably most engineering differential equations
are amenable to the method of undetermined coefficients. To show that variation
of parameters works for such equations as well, the following example repeats
example 3.4.2 using variation of parameters.

Example 3.4.5 Solve

ẍ+ x = cos t

x(0) = 0

ẋ(0) = 0.

The homogeneous solutions are

x1(t) = cos t

x2(t) = sin t.

A quick computation shows that W (x1, x2) = 1. Hence

x(t) = c1 cos t+ c2 sin t− cos t

∫

sin t cos tdt+ sin t

∫

cos2 tdt.
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Aside 3.4.6 As a quick reminder of what you should already know from
calculus, these integrals will be worked out in detail. For the first one, note
that if u = sin t then du

dt
= cos t; hence, by substitution

∫

sin t cos tdt =

∫

u
du

dt
dt

=

∫

d

dt

(

u2

2

)

dt

=
u2

2
+ c

=
1

2
sin2 t+ c.

Of course, mentally most people just “cancel” the dt terms on the right
hand side of the first line and skip right to

∫

udu, which is the familiar
substitution rule, in the above process.

For the second integral, integrating by parts1 gives
∫

cos2 tdt = cos t sin t+ c+

∫

sin2 tdt

= cos t sin t+ c

∫

(

1 − cos2 t
)

dt

= cos t sin t+ c+ t−
∫

cos2 tdt,

hence
∫

cos2 tdt =
t

2
+

cos t sin t

2
+ c

⋄

So, returning to the example, the general solution is

x(t) = c1 cos t+ c2 sin t− 1

2
cos t sin2 t+

1

2
t sin t+

1

2
sin2 t cos t

= c1 cos t+ c2 sin t+
1

2
t sin t.

Applying the initial conditions

x(0) = 0 ⇐⇒ c1 = 0

ẋ(0) = 0 ⇐⇒ c2 = 0.

1To remember integration by parts, simply integrate the product rule, i.e.,
Z „

d

dt
uv

«

dt =

Z „

u
dv

dt
+ v

du

dt

«

dt

which, following the substitution rules gives the usual formula
Z

udv = uv −

Z

vdu.
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Hence

x(t) =
1

2
t sin t,

which, thankfully, is the same answer as before.

3.5 Stability

3.6 Summary

1. For ordinary, second order, linear, constant coefficient, homogeneous dif-
ferential equations, solutions are of the form eλt. Substituting this into the
differential equation gives the characteristic equation, which will have ei-
ther distinct and real roots, a pair of complex conjugate roots or repeated
roots. When the equation is in canonical form

ẍ+ 2ζωnẋ+ ω2
nx = 0

the roots are

λ1 = −ζωn + ωn
√

ζ2 − 1

λ2 = −ζωn − ωn
√

ζ2 − 1.

(a) If the roots are real and distinct, then ζ > 1 and the general solution
is

x(t) = c1e

“

−ζωn+ωn

√
ζ1−1

”

t
+ c2e

“

−ζωn−ωn

√
ζ1−1

”

t
.

(b) If the roots are a complex conjugate pair, then 0 < ζ < 1 and the
general solution is

x1(t) = c1e
−ζωnt cosωdt+ c2e

−ζωnt sinωdt,

where ωd = ωn
√

1 − ζ2.

(c) If the roots are repeated, then ζ = 1 and the general solution is

x(t) = c1e
−ωnt + c2te

−ωnt.

2. For ordinary, second order, linear, constant coefficient, inhomogeneous
differential equations use

(a) undetermined coefficients if the inhomogeneous term is sums or prod-
ucts of polynomials, sines, cosines or exponentials; or,

(b) variation of parameters if the inhomogeneous term is not of that form.

Variation of parameters works for any form of inhomogeneous term, but is
generally more difficult than undetermined coefficients. For both methods,
the homogeneous solution is also needed.
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3. For ordinary, second order, linear, variable coefficient, inhomogeneous dif-
ferential equations, the method of variation of parameters works. How-
ever, two linearly independent homogeneous solutions are required for the
method, and at least at this point, you do not have any method to find
them!

3.7 Exercises

Problem 3.1 Determine the solution to

ẍ+ 4x = t2 + 3et

x(0) = 0

ẋ(0) = 0.

Problem 3.2 Determine the general solution to

x

t
+ 6t+ (ln t− 2) ẋ = 0

t > 0.

Problem 3.3 Determine the solution to

t+ xẋet = 0

x(0) = 1.

Problem 3.4 Determine the solution to

6ẍ− 5ẋ+ x = 0

x(0) = 4

ẋ(0) = 0.

Problem 3.5 Determine the general solution to

ẍ− 2tẋ+ x = sec t.

Problem 3.6 Determine the solution to

ẍ+ 4ẋ+ 5x = 0

x(0) = 1

ẋ(0) = 0.

Problem 3.7 Determine the solution to

ẋ

x2
= 1 − 2t

x(0) = −1

6
.
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Problem 3.8 Determine the general solution to

25ẍ− 20ẋ+ 4x = 0.

Problem 3.9 Assume that x1(t) and x2(t) are (individually) solutions to
the following ordinary, second order differential equations. For which of the
following is the linear combination

x(t) = c1x1(t) + c2x2(t)

also a solution?

1.

ẍ+ 5ẋ+ 4x = 0,

2.

ẍ+ sin tẋ+ 4x = 0,

3.

ẍ+ 4ẋx = 0,

4.

ẍ+ 5ẋ+ 4x = t.

What are the differences between the equations for which x(t) is a solu-
tion and x(t) is not a solution?

Problem 3.10 Prove the following theorem regarding the principle of su-
perposition for ordinary, linear, nth order, homogeneous differential equa-
tions.

Theorem 3.7.1 Let the functions x1(t), . . . , xn(t) each satisfy the ordi-
nary, nth order, linear, homogeneous differential equation

fn(t)
dnx

dtn
+ fn−1(t)

dn−1x

dtn−1
+ · · · + f1(t)

dx

dt
+ f0(t)x = 0. (3.18)

Then any linear combination of x1(t), . . . , xn(t), i.e.,

x(t) = c1x1(t) + · · · + cnxn(t),

also satisfies equation 3.18.

Problem 3.11 In the case of repeated roots of the characteristic equation

λ2 + 2ζωnζλ + ω2
n = 0,

prove that if the roots are repeated,
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1. the value of the root is λ = −ωn; and,

2. the two solutions

x1(t) = e−ωt

x2(t) = te−ωt

are linearly independent.

Problem 3.12 Table 3.1 contains 27 differential equations. Tables 3.2 and
3.3 each contain plots, each of which illustrates three solutions. Match each
equation with the corresponding plot. It is possible to do this by solving
only six equations! Write your answers in the form of “The solution to
Equation 3 C is plot x in Figure 5 B because...”

Problem 3.13 For each of the second order differential equations listed
in Problem 1.1, determine which, if any, of the following solution methods
apply based upon what has been covered in this book so far.

1. Assuming exponential solutions

2. Undetermined coefficients.

3. Variation of parameters.

4. Using the fact that the equation is separable.

5. Using the fact that the equation is exact.

6. Determining an approximate numerical solution.

It may be the case that no method, one method or more than one method
may apply.

Problem 3.14 Plot the solution to

ẍ+ ẋ+ x = cos 2.8t+ cos 3.0t

x(0) = 2

ẋ(0) = 5.

You may use any method you want, including writing a computer program
to determine an approximate numerical solution, but plot the whole solu-
tion, not just the steady state solution. Explain the various features of the
problem, namely

1. what is happening between 0 and 10 seconds; and

2. what is happening between 10 and 60 seconds.
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A B C

1

ẍ+ 8ẋ+ 4x = sin t

x(0) = 1

ẋ(0) = 0

ẋ = −5x

x(0) = 1

ẍ+ ẋ+ 4x = 0

x(0) = 1

ẋ(0) = 0

2
ẋ+ 3x = 1

x(0) = 1

ẍ+ x = 0

x(0) = 1

ẋ(0) = 0

ẍ+
1

2
ẋ+ 4x = 0

x(0) = 1

ẋ(0) = 0

3
xẋe2t − t = 0

x(0) = 1

ẍ+ 8ẋ+ 4x = sin 2t

x(0) = 1

ẋ(0) = 0

ẋ+ x = 1

x(0) = 1

4
ẋ− 0.1x = 0

x(0) = 1

ẋ = −5x+ 1

x(0) = 1

ẋ+ (t− 0.1)x = 0

x(0) = 1

5

ẍ+ 4x = sin t

x(0) = 1

ẋ(0) = 0

ẋ+ (t− 1)x = 0

x(0) = 1

xẋe3t − t = 0

x(0) = 1

6
ẋ = 0.5x

x(0) = 1

ẍ+ 4x = sin 2t

x(0) = 1

ẋ(0) = 0

ẍ+ 3x = 0

x(0) = 1

ẋ(0) = 0

7
ẋ− x = 0

x(0) = 1

ẋ+ x = 0

x(0) = 1

ẍ+ 2ẋ+ 4x = 0

x(0) = 1

ẋ(0) = 0

8
xẋet − t = 0

x(0) = 1

ẍ+ 4x = sin 1.9t

x(0) = 1

ẋ(0) = 0

ẍ+ 2x = 0

x(0) = 1

ẋ(0) = 0

9
ẋ+ (t− 0.5)x = 0

x(0) = 1

ẋ+ 3x = 0

x(0) = 1

ẍ+ 0.2ẋ− x+ x3

= 0.3 sin t

x(0) = 1

ẋ(0) = 0

Table 3.1. Differential equations for Problem 3.12.
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A B

1
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plot 1
plot 2
plot 3
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 0  2  4  6  8  10

plot 1
plot 2
plot 3

2

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10

plot 1
plot 2
plot 3

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25  30

plot 1
plot 2
plot 3

3

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

plot 1
plot 2
plot 3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

plot 1
plot 2
plot 3

Table 3.2. Solution graphs for Problem 3.12.
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A B
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plot 1
plot 2
plot 3

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10

plot 1
plot 2
plot 3

A

5

-40
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 0  20  40  60  80  100

plot 1
plot 2
plot 3

Table 3.3. Solution graphs for Problem 3.12.
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Chapter 4

Single Degree of Freedom
Vibrations

This chapter presents applications of second order, ordinary, constant coefficient
differential equations. The primary applications in mechanical engineering and
related fields is that of vibrations analysis. Additionally, since a second order
system is a canonical system for the design of some feedback controllers, a review
of the response characteristics of second order systems to step inputs is included.

The study of single degree of freedom vibrations considers the analysis of
problems of the type illustrated in Figure 4.1 and described by

mẍ+ bẋ+ kx = f(t), (4.1)

where f(t) is an applied force. The term “single” refers to the fact that they
system has only one degree of freedom. This is in contrast with multiple degree
of freedom system, an example of which is illustrated in Figure 6.1. This type
of problem is generally categorized according to whether it is

• free or forced; or,

• damped or undamped.

Sections 4.1 through 4.4 consider each of the four possible permutations of these
cases.

This chapter is a complete study and analysis of the solutions to

mẍ+ bẋ+ kx = f(t) ⇐⇒ ẍ+ 2ζωnẋ+ ω2
nx =

f(t)

m
. (4.2)

The system is free if it is unforced, i.e., f(t) = 0; otherwise it is forced. The
system is undamped if b = 0 (equivalently ζ = 0); otherwise, it is damped.
While somewhat scattered throughout the example problems in Chapter 3, the
quantities of major importance in this chapter that have already been introduced
include the following:

111
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m

k

b

x(t)

f(t)

Figure 4.1. Mechanical system described by equation 4.1.

1. the natural frequency: ωn =
√

k
m
> 0;

2. the damping ratio: ζ = b

2
√
km

> 0;

3. the damped natural frequency: ωd = ωn
√

1 − ζ2 (only relevant for 0 < ζ <
1).

4.1 Free, undamped oscillations

This problem has been completely solved in section 3.4.1 and particularly in
example 3.4.1. The results will be summarized here, so only the results and
an analysis and interpretation of the results will be presented here. Free and
undamped implies that in Figure 4.1 b = 0 and f(t) = 0, or equivalently, that
the system is as illustrated in Figure 4.2, so the equation of motion reduces to

mẍ+ kx = 0 ⇐⇒ ẍ+ ω2
nx = 0,

which, as presented previously, has a general solution

x(t) = c1 cosωnt+ c2 sinωnt.

If the initial conditions are specified as

x(0) = x0

ẋ(0) = ẋ0,

then the solution is

x(t) = x0 cosωnt+
ẋ0

ωn
sinωnt. (4.3)

While this equation is relatively simple to interpret and plot, it can be made
even simpler to analyze if the sine and cosine terms are combined. In particular,
equate the solution with a single, phase shifted cosine function

x0 cosωnt+
ẋ0

ωn
sinωnt = c cos (ωnt+ φ)

= c (cosφ cosωnt− sinφ sinωnt) ,
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m

k

x(t)

Figure 4.2. Mechanical system with solution described by
equation 4.4.

and solving for c and φ by equating the coefficients of the cosωnt and sinωnt
terms gives

c =

√

x2
0 +

(

ẋ0

ωn

)2

φ = tan−1

(

− ẋ0

ωnx0

)

,

so an equivalent representation of the solution is

x(t) = x0 cosωnt+
ẋ0

ωn
sinωnt

=

√

x2
0 +

(

ẋ0

ωn

)2

cos (ωnt+ φ) . (4.4)

A numerical example perhaps may be enlightening.

Example 4.1.1 Figure 4.3 is a plot of the solution to

ẍ+ ωnx = 0

x(0) = 1

ẋ(0) = 1

for ωn = 1, 2, 3, 4 and 5.
As is obvious from the form of the solution in example 4.1.1, the solution

is a cosine with a constant amplitude. As the natural frequency increases,
the frequency of the response increases. Also due to the ẋ0

ωn
term in the

amplitude of the response, as ωn increases, the amplitude of the response
decreases.

From the example and an analysis of the form of the solution in equation 4.4,
one may conclude the following regarding the response of an undamped, free,
single degree of freedom system.
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ωn = 1
ωn = 2
ωn = 3

Figure 4.3. Solutions to system in Example 4.1.1.
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m

k

x(t)

f(t)

Figure 4.4. Single degree of freedom, undamped, forced oscil-
lator.

1. If ωn increases, the frequency of the response will increase.

2. If k increases, the frequency of the response will increase.

3. If m increases, the frequency of the response will decrease.

4. If |x0| increases, the magnitude of the response will increase.

5. If |ẋ0| increases, the magnitude of the response will increase.

6. If ẋ0 6= 0 and ωn increases, the magnitude of the response will decrease.

4.2 Harmonically Forced, undamped vibrations

Now the problem considered in the previous section will be modified to add a
forcing function acting on the mass as is illustrated in Figure 4.4. The most
common scenario is the case when the forcing function, f(t) is a harmonic
function, i.e., sines, cosines or combinations thereof.

Consider the case when f(t) = F cosωt, i.e., a harmonic function of magni-
tude F and frequency ω. Note that there are now multiple frequencies; namely,

the natural frequency, ωn =
√

k
m

and the frequency of the forcing function,

ω. In general, they are not the same and care must be taken to observe the
subscript or absence thereof. The equation of motion for this system is

mẍ+ kx = F cosωt ⇐⇒ ẍ+ ω2
nx =

F

m
cosωt. (4.5)

Clearly, this is an ordinary, second order, constant coefficient, linear, inho-
mogeneous differential equation; furthermore, due to the form of the inhomoge-
neous term, the method of undetermined coefficients is probably most expedient
solution method. From section 4.1, the homogeneous solution is

xh(t) = c1 cosωnt+ c2 sinωnt.
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Hence, for undetermined coefficients, assume

xp(t) = A cosωt+B sinωt,

as long as ω 6= ωn! The special case where ω = ωn, which requires

xp(t) = t (A cosωt+B sinωt) ,

will be considered subsequently.
Differentiating xp and substituting gives

A =
F

m (ω2
n − ω2)

B = 0,

so a general solution to equation 4.5 is

x(t) = c1 cosωnt+ c2 sinωnt+
F

m (ω2
n − ω2)

cosωt. (4.6)

If the initial conditions are specified as

x(0) = x0

ẋ(0) = ẋ0,

then a quick calculation gives

c1 = x0 −
F

m (ω2
n − ω2)

c2 =
ẋ0

ωn
,

and hence the solution to the initial value problem is

x(t) =

(

x0 −
F

m (ω2
n − ω2)

)

cosωnt+
ẋ0

ωn
sinωnt+

F

m (ω2
n − ω2)

cosωt. (4.7)

To put equation 4.7 into a form more amenable to analysis, recall the def-
inition of the static deflection which is the amount the spring would displace
under the load of a static force of magnitude F , particularly,

δ =
F

k
.

Using this, and defining the frequency ratio as

r =
ω

ωn

a simple manipulation gives

x(t) =

(

x0 −
δ

1 − r2

)

cosωnt+
ẋ

ωn
sinωnt+

δ

1 − r2
cosωt. (4.8)
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Figure 4.5. Magnification factor versus frequency ratio.

In light of this solution, the term magnification factor for

M =
1

1 −
(

ω
ωn

)2 =
1

1 − r2

makes sense since it is the amount by which the static deflection is either am-
plified or attenuated in the solution. A plot of the magnification factor versus
frequency ratio is illustrated in Figure 4.5. Note that the case where r = 1 is
seemingly problematic; however, recall that is the case where ω = ωn, which
has a different solution. Also observe that for frequency ratios greater than one,
the magnification ratio is negative, which represents the fact that the particular
solution is out of phase with the forcing function.

Note that the solution, in equation 4.8 depends upon

1. the natural frequency, ωn;

2. the forcing frequency, ω;

3. the static deflection, δ; and,

4. the initial conditions, x0 and ẋ0.
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Figure 4.6. Harmonically forced, undamped solution where
ω ≪ ωn.

Note, however, that the initial conditions as well as the static deflection simply
scale individual terms of the solution. Therefore, the most interesting feature
of the solution is its dependence on the forcing and natural frequencies, which
will be explored in the following example.

Example 4.2.1 Plot the solution for

ẍ+ ω2
nx =

F

m
cosωt

x(0) = 0

ẋ(0) = 0

where ω ≪ ωn, i.e., the forcing frequency is much smaller than the natural
frequency. With zero initial conditions, the solution is

x(t) =
δ

1 − r2
(cosωt− cosωnt)

and if ω ≪ ωn, r ≈ 0; hence,

x(t) ≈ δ (cosωt− cosωnt) .

Thus, the solution will vary in magnitude between 0 and 2δ depending upon
whether ω and ωn are in phase or out of phase.
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Figure 4.7. Harmonically forced, undamped solution where
ωn ≪ ω.

A plot of the solution where δ = 1, ω = 0.1 and ωn = 5 is illustrated in
Figure 4.6. Note that because the two frequencies are well separated, the
solution is clearly the superposition of two cosine functions, one relatively
fast and the other relatively slow.

Example 4.2.2 Now considering the other extreme where ω ≫ ωn, i.e.,
the system is forced at a frequency that is much greater than the natural
frequency. In this case, the frequency ratio will become very large and the
coefficient of the solution

δ

1 − r2
≈ −δ

r2

will be very small.

A plot of the solution where δ = 1, ω = 5 and ωn = 0.1 is illustrated
in Figure 4.7. At first glance this appears similar to the response when
ω ≪ ωn; however, note the scale on the graph. The response is still the sum
of two cosine functions but the magnitude of the response is much smaller
than in the case where ω ≪ ωn

Example 4.2.3 Yet another interesting feature of this solution is apparent
when one considers the relative phase between the forcing function, F cosωt
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Figure 4.8. Forcing function and particular solution in phase
for ω < ωn.

and the response of the system. Just for the fun of it, let us assume that

x(0) = − δ

1 − r2

ẋ(0) = 0.

The initial conditions were picked so that the terms in the solution due to
the homogeneous solutions are zero and the complete solution is the same
as the particular solution; namely,

x(t) =
δ

1 − r2
cosωt.

Recall that the forcing function is

f(t) = F cosωt.

The response, x(t), and forcing function, f(t), are plotted together for the
two cases where ω < ωn (r = 0.5) and ω > ωn (r = 1.5) in Figures 4.8 and
4.9, respectively. In both figures, δ = 1.

The interesting feature of these solutions is that the response of the
system is in phase with the forcing function when ω < ωn and out of phase
with the forcing function when ω > ωn. The latter is the somewhat counter-
intuitive case when the force is always directed in the opposite direction of
the velocity of the mass.
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Figure 4.9. Forcing function and particular solution in phase
for ω > ωn.

4.2.1 Resonance

This section deals with the case where the forcing frequency and natural fre-
quency are equal. This is known as resonance and a quick look at Figure 4.5
would give the impression that unbounded solutions are a possibility, which is
the case. Additionally, resonance corresponds to the physically intuitive situa-
tion wherein a system is forced at the frequency at which it is most amenable.

For

ẍ+ ω2
nx =

F

m
cosωt (4.9)

x(0) = x0

ẋ(0) = ẋ0

where ω = ωn, it is clearly the case that the assumed form of the particular
solution is the same as the homogeneous solutions since

xh(t) = c1 cosωnt+ c2 sinωnt.

So, the correct assumption is

xp(t) = t (A cosωnt+B sinωnt) .

Skipping the mundane details of substituting and equating coefficients, the so-
lution is

x(t) = x0 cosωnt+
ẋ0

ωn
sinωnt+

δωnt

2
sinωnt. (4.10)
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Figure 4.10. Solution for example 4.2.4.

Since the part of the solution that is the particular solution (the second sinωnt
term) is multiplied by t, it grows linearly in time. A specific example follows,
but the general point that the solution grows with time is the fundamentally
important point regarding resonance.

Example 4.2.4 Solve

ẍ+ x = cos t

x(0) = 0

ẋ(0) = 0

and plot the solution versus time.
Since this equation is exactly of the form of equation 4.9 with ωn =

F = m = 1, simply substituting those values into equation 4.10 gives the
solution

x(t) =
t

2
sin t,

which is plotted in Figure 4.10

4.2.2 Near Resonance

Obviously in physical situations, it is impossible to exactly have ω = ωn, so the
question regarding the nature of the solution when ω ≈ ωn and its relationship
to the resonance solution naturally arises.
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Consider

ẍ+ ω2
nx =

F

m
cosωt (4.11)

x(0) = x0

ẋ(0) = ẋ0

where ω ≈ ωn. Since ω 6= ωn, the solution is not from equation 4.10 but rather
is from equation 4.7,

x(t) =

(

x0 −
F

m (ω2
n − ω2)

)

cosωnt+
ẋ0

ωn
sinωnt+

F

m (ω2
n − ω2)

cosωt.

If ω ≈ ωn, then the two coefficients with (ωn − ω) in the denominator will be
very large. Rewriting the solution by grouping those two terms gives

x(t) = x0 cosωnt+
ẋ0

ωn
sinωnt+

F

m (ω2
n − ω2)

(cosωt− cosωnt) . (4.12)

Note that the terms in this solution and in the resonance solution in equa-
tion 4.10 that depend on the initial conditions are identical. In the resonance
case, the solution grows large because of the t term multiplying the sinωt func-
tion in the solution. In the near resonance case, the solution grows large because
of the large coefficient, and the “growth” of the solution comes about because
of the cosωt and cosωnt terms shifting out of phase as t increases. To illustrate
this fact, consider the following example.

Example 4.2.5 Solve

ẍ+ x = cos 1.05t

x(0) = 0

ẋ(0) = 0

and plot the solution versus time.
The solution is of the form of equation 4.12 with ωn = 1, F

m
= 1 and

ω = 1.05, and is given by substitution into equation 4.12

x(t) =
1

(1 − (1.05)2)
(cos 1.05t− cos t) .

A plot of this solution for 0 < t < 50 is illustrated in Figure 4.11. Note
that, at least to the extent possible by casual observation, it appears to be
the same as the solution illustrated for resonance in Figure 4.10.

Plotting the solution for a longer period of time, 0 < t < 500, as is
illustrated in Figure 4.12, highlights the main difference. Since the solution
grows because the cosine terms slowly go out of phase as time increases,
they eventually must go back in phase, resulting in a decrease in magnitude
of the solution.
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Figure 4.11. Solution for example 4.2.5 for 0 < t < 50.
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Figure 4.12. Solution for example 4.2.5 for 0 < t < 500.
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Figure 4.13. Undamped vibrating base system.

4.2.3 Vibrating Base

Now consider the problem of a coupled by a spring to a vibrating base, as is
illustrated in Figure 4.13. In this problem the base of the system, illustrated by
the thin bar, moves with a prescribed motion, z(t). The focus of the analysis
is on the resulting motion of the mass, y(t) with particular emphasis on the
dependence of this motion on the system parameters, m and k as well as the
nature of the base motion, z(t).

Using Newton’s law, the equation of motion for this system is

mÿ + ky = kz(t).

or

ÿ + ω2
ny = ω2

nz(t).

Thus, the only variables of concern in the problem is the natural frequency and
the nature of z(t). For simplicity, assume that z(t) is harmonic, particularly,
z(t) = Z cosωt, so that

ÿ + ω2
ny = Zω2

n cosωt.

Clearly, the homogeneous solution is

xh(t) = c1 cosωnt+ c2 sinωnt.

Assuming that ω 6= ωn and

xp(t) = A cosωt+B sinωt

substituting and equating coefficients gives

xp(t) =
Zω2

n

ω2
n − ω2

cosωt
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so that

x(t) = c1 cosωnt+ c2 sinωnt+
Z

1 − r2
cosωt,

where, as before,

r =
ω

ωn
.

Since the coefficient of the part of the solution which is the particular solution
is exactly of the form of equation 4.8, the analysis is exactly the same as the
undamped, forced oscillation case, but where the static deflection is replaced by
the magnitude of the base motion. In this case, the magnification factor,

M =
1

1 − r2

has an even more direct interpretation in that it is the magnification of the base
motion in the response of the mass motion. Referring back to Figure 4.5, M
has a value of 1 at r = 0, increases to an unbounded value at r = 1, decreases to
M = 1 at r =

√

(2) and asymptotically approaches zero as r gets large. Hence,
the resonance analysis is similar to that of the simple forced case. Additionally,
the smallest magnification occurs at very high frequencies.

4.3 Free, damped vibrations

This section considers the case of damped oscillations with no forcing function,
i.e., the solution to

ẍ+ 2ζωnẋ+ ω2
nx = 0 (4.13)

x(0) = x0 (4.14)

ẋ(0) = ẋ0. (4.15)

Since this is a constant coefficient, linear, homogeneous, second order ordi-
nary differential equation, it has exponential solutions. The resulting charac-
teristic equation is

λ2 + 2ζωnλ+ ω2
n = 0

with roots

λ = −ζωn ± ωn
√

ζ2 − 1.

The nature of the solution will clearly depend upon whether ζ is less than one,
equal to one or greater than one.

4.3.1 Damping ratio greater than one

In this case, the solution is

x(t) = c1e

“

−ζωn+ωn

√
ζ2−1

”

t
+ c2e

“

−ζωn−ωn

√
ζ2−1

”

t
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Figure 4.14. Solution of second order system for various val-
ues of ζ.

and evaluating the initial conditions gives

x(0) = c1 + c2 = x0

and

ẋ(0) =
(

−ζωn + ωn
√

ζ2 − 1
)

c1 +
(

−ζωn − ωn
√

ζ2 − 1
)

c2 = ẋ0

which gives

x(t) =
ẋ0 + x0

(

ζωn +
√

ζ2 − 1
)

2
√

ζ2 − 1
e

“

−ζωn+ωn

√
ζ2−1

”

t

− ẋ0 + ζωnx0 − x0

√

ζ2 − 1

2
√

ζ2 − 1
e

“

−ζωn−ωn

√
ζ2−1

”

t
.

Figure 4.14 illustrates the response for ωn = 1, x(0) = 1 and ẋ(0) = 0 for
various values of ζ.

4.3.2 Damping ratio equal to one

When the damping ratio is equal to one there are repeated roots of the charac-
teristic equation

λ = −ωn
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Figure 4.15. Solution of second order system for various val-
ues of ζ.

so the general solution to the homogeneous equation is

x(t) = c1e
−ωnt + c2te

−ωnt.

4.3.3 Damping ratio less than one

When the damping ratio is less than one, the characteristic equation has complex
roots

λ = −ζωn ± ωn
√

ζ2 − 1 = −ζωn ± iωn
√

1 − ζ2

so the general solution to the differential equation is

x(t) = e−ζωnt
(

c1 cosωn
√

1 − ζ2t+ c2 sinωn
√

1 − ζ2t
)

. (4.16)

Figure 4.15 illustrates the response for ωn = 1, x(0) = 1 and ẋ(0) = 0 for
various values of ζ.

4.4 Harmonically forced, damped vibrations

In this section we consider the system illustrated in Figure 4.1 with the equation
of motion given by Equation 4.2 where the applied force, f(t) is assumed to be
harmonic, i.e., it is some combination of sine and cosine functions. For the rest
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of this section we will assume the forcing function is of the form

f(t) = F cosωt.

Confirming the details that the solution for a sine function of a combination of
sines and cosines is left as an exercise.

For the system

ẍ+ 2ζωnx+ ω2
nx =

F

m
cosωt (4.17)

Section 4.3 provides all the possible cases for the homogeneous solution. Since
the inhomogeneous term is of the class of function for which the method of unde-
termined coefficients is appropriate, we can choose to use either undetermined
coefficients from Section 3.4.1 or variation of parameters from Section 3.4.2.
Because it is more transparent, we will use undetermined coefficients.

Assuming a particular solution of the form

ẍp(t) = A cosωt+B sinωt

gives

ẋp = −Aω sinωt+Bω cosωt

ẍp = −Aω2 cosωt−Bω2 sinωt

and substituting into Equation 4.17 gives

(

−Aω2 cosωt−Bω2 sinωt
)

+

2ζωn (−Aω sinωt+Bω cosωt) + ω2
n (A cosωt+B sinωt) =

F

m
cosωt.

A bit of algebra gives A and B so that

xp(t) =
F

m

(

ω2
n − ω2

(ω2
n − ω2)

2
+ (2ζωωn)

2 cosωt+
2ζωωn

(ω2
n − ω2)

2
+ (2ζωωn)

2 sinωt

)

.

(4.18)
Observe that as long as ζ 6= 0 the solution given by Equation 4.18 is correct,
even in the case of resonance when ω = ωn. Furthermore, when ζ = 0 this
reduces to the undamped forced solution as long as ω 6= ωn.

Since the solution in Equation 4.18 is in the form of a linear combination of a
cosine and sine function an analysis of the effect of the nature of the response as
a function of the forcing frequency, ω and the damping ratio, ζ is not straight-
forward. Hence, we will convert the solution to the form of a single trigonometric
function with a phase shift, e.g.,

xp(t) = c cos (ωt+ φ)
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where the magnitude of the response, c and the phase shift, φ must be deter-
mined. Note that, reverting back to the coefficients A and B

xp(t) = A cosωt+B sinωt

=
√

A2 +B2

(

A√
A2 +B2

cosωt+
B√

A2 +B2
sinωt

)

.

Since the coefficients of the sine and cosine terms must have values in the interval
[−1, 1], we can write this as

xp(t) = c (cosφ cosωt− sinφ sinωt)

= c cos (ωt+ φ) ,

where

c =
√

A2 +B2

φ = tan−1

(

−B
A

)

,

or, using the actual expressions for A and B

c =
F

m

√

1

(ω2
n − ω2)

2
+ (2ζωnω)

2

φ = tan−1

(

− 2ζωωn
ω2
n − ω2

)

.

So, that bit of work resulted in

xp(t) =
F

m

√

1

(ω2
n − ω2)

2
+ (2ζωnω)

2 cos (ωt+ φ)

where φ is given as above.
A final step, that may not be obvious a priori is to factor an ω2

n out of the
denominator of c, which gives

xp(t) =
F

ω2
nm

√

√

√

√

1
(

1 − ω2

ω2
n

)2

+
(

2ζ ω
ωn

)2 cos (ωt+ φ) .

Note that
F

ω2
nm

=
F

k

from the definition of the natural frequency and that furthermore, the quantity
F
k

is the amount that the spring would be deflected under a static force of

magnitude F . Hence we will call δ = F
k

the static deflection and (finally) write

xp(t) = δ

√

√

√

√

1
(

1 − ω2

ω2
n

)2

+
(

2ζ ω
ωn

)2 cos (ωt+ φ)
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Figure 4.16. Magnification of static deflection for various
damping ratios versus frequency ratio.

which is a complete description of the response in terms of the static deflection,
the ratio of the forcing frequency to the natural frequency and the damping
ratio. The quantity

M =

√

√

√

√

1
(

1 − ω2

ω2
n

)2

+
(

2ζ ω
ωn

)2

can be interpreted to represent the amount that the static deflection is amplified
or attenuated in the response of the system due to the frequency of the forcing
function. The phase shift can similarly be expressed in terms of the frequency
ratio by dividing the numerator and denominator by ω2

n giving

φ = tan−1

(

−
2ζ ω

ωn

1 − ω2

ω2
n

)

.

We may gain insight into the nature of the response by considering the nature
of the dependence of M and φ on the frequency ratio ω

ωn
and the damping ratio,

ζ. A plot of M as a function of the frequency ratio for different damping ratios
is illustrated in Figure 4.16 and a plot of the phase shift, φ as a function of the
frequency ratio for different damping ratios is illustrated in Figure 4.17.

Up to now this section has considered only the particular solution to Equa-
tion 4.17. However, as long as the damping ratio is not zero, the homogeneous
solution will decay and the above analysis of M and φ are appropriate to con-
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tion for various damping ratios versus frequency ratio.

sider for the steady state solution, i.e., after the transient response represented
by the homogeneous solution has become negligible.

4.4.1 Resonance

Resonance when the damping ratio is greater than zero does not require a dif-
ferent solution method. If damping is light, however, the magnitude of the
response may be large; however, unlike the undamped case, it does not grow
unbounded.

4.4.2 Vibrating Base

In this section we will consider an example that is illustrative of the operation
of a suspension system.

Example 4.4.1 Consider the system illustrated in Figure 4.18. Assume
that a vehicle is driving over a road with constant velocity, v and that the
surface of the road is sinusoidal with wavelength λ and height, h. Determine
the magnitude of the steady state motion of the car body (the mass) as well
as the force transmitted to the mass as a function of the velocity of the
vehicle. For this problem we will assume there is no gravity and that x is
measured from the unstretched position of the spring. It is left as an exercise
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Figure 4.18. Model suspension system.

to show that if there is gravity if x is measured from the equilibrium position
(the amount of static deflection), the equations of motion are unchanged.

The first task is to determine the vertical motion of the wheel. Since the
velocity of the wheel is v, the horizontal position of the wheel at time t is
given by vt. Since the wavelength of the oscillations of the road surface is
λ, that means that the argument to the since function will need to go from
zero to 2π in the amount of time it takes the vehicle to travel the distance
λ. Hence, the time to travel λ is T = λ

v
is the period. Hence, the vertical

motion of the wheel is given by

y(t) = h sin

(

2π

T
t+ φ̂

)

= h sin

(

2πvt

λ
+ φ̂

)

(4.19)

where φ̂ is some unknown phase angle (we do not know where on the road
the car was at t = 0, and we will see subsequently that if all we care about
is the steady state behavior, then it does not matter).

To use Newton’s law to derive the equations of motion of the system, we
must draw a free body diagram of the mass, as illustrated in Figure 4.19.
The only forces acting on the mass are from the damper and spring in the
suspension. The force of the spring is proportional to the amount it is
compressed, which in this case will by y(t)− x(t). Similarly, the force from
the damper will be proportional to the rate at which it is being compressed,
which is ẏ(t) − ẋ(t).
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y(t) − x(t) ẏ(t) − ẋ(t)

m

Figure 4.19. Free body diagram for mass in suspension prob-
lem.

Hence, using Newton’s law, we have

∑

forces = ma =⇒ b(ẏ − ẋ) + k(y − x) = mẍ,

or, substituting for y(t) from equation 4.19 and rearranging gives

mẍ+ bẋ+ kx =
2πvhb

λ
cos

(

2πvt

λ
+ φ̂

)

+ kh sin

(

2πvt

λ
+ φ̂

)

.

Following the procedure used several times previously, we can rewrite the
right hand side to transform the equation into

mẍ+ bẋ+ kx =

√

(

2πvhb

λ

)2

+ (kh)2 cos

(

2πvt

λ
+ φ̂+ φ

)

,

where

φ = tan−1

(

−2πvb

λk

)

.

Dividing both sides by m and letting φ = φ̂+ φ gives

ẍ+ 2ζωnẋ+ ω2
nx =

√

(

2πvhb

λm

)2

+

(

kh

m

)2

cos

(

2πvt

λ
+ φ

)

.

Finally, to simplify writing it, let

ω =
2πv

λ
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(so ω is just proportional to v) which gives

ẍ+ 2ζωnẋ+ ω2
nx =

h

m

√

(ωb)2 + k2 cos (ωt+ φ) .

It may be tempting to think that we have already solved this problem
since this looks a lot like equation 4.17; however, there is one critical dis-
tinction. In equation 4.17 the coefficient of the forcing term was constant.
In this problem ω appears in the coefficient of the forcing term. Let us see
what effect, if any, this has.

Assuming a particular solution of the form

xp(t) = A cos (ωt+ φ) +B sin (ωt+ φ))

and doing all the usual work gives

A =
h

m

√

(ωb)
2

+ k2
ω2
n − ω2

(ω2
n − ω2)

2
+ (2ζωnω)

2

B =
h

m

√

(ωb)
2

+ k2
2ζωnω

(ω2
n − ω2)

2
+ (2ζωnω)

2 .

Examining the coefficients of the fractions and noting the k’s and m’s, one
might be inclined to try to convert those to ωn’s and get the b term expressed
somehow as ζ. In fact,

h

m

√

(ωb)
2
+ k2 = h

√

(

ωb

m

)2

+

(

k

m

)2

= h

√

(2ζωnω)
2

+ (ω2
n)

2

= hω2
n

√

(

2ζ
ω

ωn

)2

+ 1

Since we did it before, we might as well do it again. Dividing the nu-
merator of both A and B by ω2

n and the denominator by ω4
n, and while we

are at it, computing
√
A2 +B2 gives the final answer

xp(t) = h

√

√

√

√

√

√

1 +
(

2ζ ω
ωn

)2

(

1 − ω2

ω2
n

)2

+
(

2ζ ω
ωn

)2 cos
(

ωt+ φ̂+ ψ
)

,

where

ψ = tan−1



−
2ζ ω

ωn

1 −
(

ω2

ω2
n

)



 .

Note that the magnitude of the variation in the road height, h is scaled
by the term in the square root. In other words, the magnitude of the
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Figure 4.20. Transmissibility as a function of frequency ratio
and damping ratio.

oscillation of the mass is the magnitude of the oscillation of the road times
a factor that we will call the transmissibility. The transmissibility tells how
much the oscillation of the road is transmitted to result in an oscillation of
the mass. Plotting the transmissibility as a function of the frequency ratio
for various damping ratios is probably a idea, so it appears in Figure 4.20.

Note that Figures 4.16 and 4.20 are not identical. In particular, in
the latter case all the curves have the value of one at a frequency ratio of√

2. Also, for high frequency ratios, corresponding to high velocities, a low
damping ratio is preferable. This is in contrast to the magnitude factor
for a an applied force where it is always the case that a larger damping
ratio produces a smaller magnitude response, as should be apparent from
Figure 4.16.

4.5 Exercises

Several of the following exercises refer to the mass-spring-damper system il-
lustrated in Figure 4.21. Unless otherwise indicated, assume that there is no
gravity and that x(t) = 0 at the unstretched position of the spring.

Problem 4.1 Consider the system illustrated in Figure 4.21. Assume that
b = 0 and use either undetermined coefficients or variation of parameters to
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k

m

b

x(t)

F (t)

Figure 4.21. Mass-spring-damper system.

determine the solution to

ẍ+ ω2
nx =

F

m
sinωt

x(0) = x0

ẋ(0) = ẋ0.

Does it matter whether or not ω = ωn? If so, be sure to consider both cases.

Problem 4.2 Determine an approximate numerical solution to the system
in Problem 4.1 for the case where

m = 1

k = 4

F = 1

and ω = 1.99 or ω = 2.0. Plot the solution for each case on the same graph
and explain any significant phenomenal that you observe.

Problem 4.3 Consider the system illustrated in Figure 4.21.

1. Determine the solution when b 6= 0 and F (t) = F sinωt, x(0) = x0

and ẋ(0) = ẋ0. Does it matter if 0 < ζ < 1, ζ = 1 and ζ > 1? If so,
be sure to determine the solution for each case.

2. Recall that for the case of undamped, forced oscillations, it was nec-
essary to determine a separate form of the solution in the case of
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resonance. Is the form of the solution determined in part 1 the same
if ω = ωn or ω = ωd? If so, be sure to determine those solutions as
well.

3. Determine the magnification factor for the steady-state solution in
part 1 and plot it for ζ = 0.2, 0.4, 0.6 and 0.8 versus ω

ωn
.

4. Determine the phase shift between the forcing function and the steady
state response in part 1 and plot it for ζ = 0.2, 0.4, 0.6 and 0.8. Be
sure to indicate what form you assumed for the particular solution,
e.g., cos (ωt+ φ) or sin (ωt− φ), etc., since the phase may be different
depending on the form of the solution you used.

Problem 4.4 Use the figures you plotted for Problem 4.3 to determine
good approximations to the steady-state solutions for

ẍ+ 2ẋ+ 25x = 3 sin 2t

ẍ+ 2ẋ+ 25x = 3 sin 5t

ẍ+ 2ẋ+ 25x = 3 sin 10t

ẍ+ 4ẋ+ 25x = 3 sin 10t

ẍ+ 4ẋ+ 49x = 3 sin 10t

ẍ+ 2ẋ+ 36x = 6 sin 20t.

Problem 4.5 Consider the system illustrated in Figure 4.21. If 0 < ζ < 1
and

F (t) = Fc cosωct+ Fs sinωst

is it possible to combine your answer from Problem 4.3 and the solution in
Equation 4.18 to obtain the steady state solution, or is it necessary to work
out the whole thing again? In either case, provide the answer and justify
it.

Problem 4.6 Consider

ẍ+ 4ẋ+ 16x = cos 4t+ cos 4.2t.

If we are only interested in the steady state response, is it valid to write

xss = δ1M1 cos (ωt+ φ1) + δ2M2 cos (ωt+ φ2)

where M1, M2, φ1 and φ2 are determined from the appropriate graphs?
How would you determine δ1 and δ2? Demonstrate whether or not it works
by picking some initial conditions and writing a computer program to deter-
mine an approximate numerical solution and comparing it to the combina-
tion of the approximate steady state solutions determined from the graphs.
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Problem 4.7 Consider the system illustrated in Figure 4.21 and let

m = 1

b = 1

k = 1

F (t) = 3 cos 2t.

Use Figures 4.16 and 4.17 to determine a good approximation for the steady
state response of the system. Will the magnitude of the steady state re-
sponse increase or decrease if the forcing frequency ω = 2 is increased?

Problem 4.8 Write a computer program to determine an approximate nu-
merical solution to the system in Problem 4.4 with x(0) = 0 and ẋ(0) = 0.
Plot the approximate solution as well as the solution determined in Prob-
lem 4.4 and compare the results. Explain any significant differences.

Problem 4.9 Consider the system illustrated in Figure 4.21 and assume
that there is gravity.

1. Determine the equation of motion for the system when x = 0 at the
unstretched position of the spring.

2. Determine the equation of motion for the system when x = 0 at the
equilibrium position. In other words, x = 0 at the position when the
spring is stretched by an amount due to the weight of the mass.

Problem 4.10 Consider the system illustrated in Figure 4.21 with F (t) =
0, (damped, unforced). Let

ωn = 1

x(0) = 1

ẋ(0) = 0

and plot the solution for ζ = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 for t = 0 to t = 10.
Plot all the solutions on the same plot.

Problem 4.11 Write a computer program to determine an approximate
numerical solution for

mẍ+ bẋ+ kx = F sinωt

when

ωn = 2

ζ = 0.3

m = 1

ω = 1.5

F = 5

x(0) = 1

ẋ(0) = 1.
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1. On the same plot, plot the numerical solution and the solution for
these values substituted into the closed-form solution from Problem 4.3.

2. Vary the step size for the numerical solution to determine the largest
step size that gives a reasonable approximation to the exact solution.

3. Use the figures from Problem 4.3 to determine a good approximation
for the steady state solution and plot the solution on the same graph.
At approximately what time does the transient solution decay suffi-
ciently so that the steady state solution is approximately equal to the
exact solution?

Problem 4.12 Figure 4.20 plots the magnitude of the steady state oscilla-
tion of a mass subjected to a vibrating base. For some applications, such as
an automotive suspension, the magnitude of the response is not the critical
factor, but rather the net force to which the mass is subjected.

1. Determine an expression for the force to which the mass illustrated in
Figure 4.18 is subjected.

2. Manipulate the expression for the force so that it is in the form of

f = −khMf cos (ωt+ φ) .

Explain the interpretation of the term Mf . Plot Mf as a function of
ω
ωn

for various damping ratios.

Problem 4.13 Use Figure 4.20 to determine the magnitude of the motion
of the mass in Figure 4.18 if

k = 2

m = 2

b = 1

h = 0.25.

Plot the magnitude of the motion versus ω.



Chapter 5

Ordinary Second Order
Linear Variable Coefficient
Equations

This chapter presents the the use of power series solutions to differential equa-
tions. The primary use of such solutions will be for variable coefficient, linear,
ordinary differential equations. The approach will be to assume a solution of
the form

x(t) = a0 + a1 (t− t0) + a2 (t− t0)
2
+ a3 (t− t0)

3
+ · · · ,

and then substitute it into the differential equation to see if we can determine
the coefficients. Of course, in engineering where the solution must be evaluated,
at most only a finite number of terms in the series may be used unless the whole
series converges to some elementary function in an identifiable manner. So, to
be useful, we will want to know how to check the following.

1. To what extent does the series represent the actual solution to the differ-
ential equation?

2. To what extent is a truncacted series including only the first n terms a
good approximation to the solution?

3. If we include more terms in a trucated series, are we guaranteed to obtain
an better approximation?

4. Is there a way to determine the answer to some of the above questions
before solving for the coefficients?

5. Is there a way to determine the answer to some of the above questions
after solving for the coefficients?

141



142
CHAPTER 5. ORDINARY SECOND ORDER LINEAR VARIABLE

COEFFICIENT EQUATIONS

5.1 Motivational Example

Example 5.1.1 Consider the linear, second order, ordinary, homogeneous,
constant coefficient differential equation

ẍ+ 4x = 0 (5.1)

x(0) = 1

ẋ(0) = 1

Instead of making the usual assumption that this equation has exponential
solutions, let us assume a power series form for the solution. In particular,
assume

x(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + · · · . (5.2)

Observe that this is a particularly convenient form since

a0 = x(0)

a1 = ẋ(0).

We will proceed as usual: substitute the assumed form of the solution
into the differential equation to see if we get anything useful. So, differen-
tiating the solution givves

ẋ(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 + 6a6t

5 · · ·

and
ẍ(t) = 2a2 + 6a3t+ 12a4t

2 + 20a5t
3 + 30a6t

4 · · · .
Substituting into Equation 5.1 gives
(

2a2 + 6a3t+ 12a4t
2 + 20a5t

3 + 30a6t
4 + · · ·

)

+ 4
(

a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + · · ·

)

= 0.

Since this equality must hold for all t, we may equate the coefficients of t
on each side of the equation, which is particularly easy since the right hand
side is zero. Hence

2a2 + 4a0 = 0

6a3 + 4a1 = 0

12a4 + 4a2 = 0

20a5 + 4a3 = 0

30a6 + 4a4 = 0

...

and therefore through t6,

x(t) = a0 + a1t− 2a0t
2 − 2

3
a1t

3 +
2

3
a0t

4 +
2

15
a1t

5 − 4

45
a0t

6 + · · · .
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Substituting for the initial conditions gives

x(t) = 1 + t− 2t2 − 2

3
t3 +

2

3
t4 +

2

15
t5 − 4

45
t6 + · · · .

It will not always be the case, but for the example just completed, it is
possible to find an expression for every term in the power series.

Example 5.1.2 Consider again

ẍ+ 4x = 0 (5.3)

and assume the same power series solution. Note, however, that we may
express it in more general terms using

x(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + · · · (5.4)

=

∞
∑

n=0

ant
n. (5.5)

Differentiating Equation 5.5 gives

ẋ(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 + 6a6t

5 · · ·

=
∞
∑

n=1

nant
n−1

and

ẍ(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3 + 30a6t
4 · · ·

=

∞
∑

n=2

n (n− 1) ant
n−2.

Substituting the series expressions into Equation 5.3 gives

∞
∑

n=2

n (n− 1)ant
n−2 + 4

∞
∑

n=0

ant
n = 0. (5.6)

As before we want to equate powers of t, which would be easiest if there
were just one sum in the expression. We may rewrite the first sum as

∞
∑

n=2

n (n− 1) ant
n−2 =

∞
∑

n=0

(n+ 2) (n+ 1) an+2t
n

which simply shifted the index of the sum to start at zero instead of two.
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So, now Equation 5.6 is of the form

∞
∑

n=0

(n+ 2) (n+ 1)an+2t
n + 4

∞
∑

n=0

ant
n

=

∞
∑

n=0

((n+ 2) (n+ 1)an+2t
n + 4ant

n)

=

∞
∑

n=0

((n+ 2) (n+ 1)an+2 + 4an) t
n

= 0.

Thus,

(n+ 2) (n+ 1) an+2 + 4an = 0

or

an+2 = − 4

(n+ 2) (n+ 1)
an.

From this expression, all the even coefficients may be determined from a0

and all the odd coefficients may be obtained from a1. Observe that if n = 0,

a2 = − 4

(2) (1)
a0

= −2a0

for n = 2,

a4 = − 4

(4) (3)
a2

=

(

− 4

(4) (3)

)(

− 4

(2) (1)

)

a0

=
2

3
a0

and for any even n

an = − 4

n (n− 1)
an−2

=

(

− 4

n (n− 1)

)(

− 4

(n− 2) (n− 3)

)

· · ·
(

− 4

(2) (1)

)

a0

=
(−4)

n
2

n!
. (5.7)

The n
2 power is an integer since n is even. Recall that these coefficients

are for the terms in the series in Equation 5.5. Since it will have to be
combined with the odd terms, it will be much more conveneient for an
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expression where n = 0, 1, 2, 3, . . . instead of having to restrict it to be even.
So, replacing n with 2n in Equation 5.7 gives

a2n =
(−4)

n

(2n)!

for n = 0, 1, 2, . . ..
For the odd terms, for n = 1

a3 = − 4

(3) (2)
a1

= −2

3
a1

and for n = 3

a5 = − 4

(5) (4)
a3

=

(

− 4

(5) (4)

)(

− 4

(3) (2)

)

a1

=
2

15
a1

and for any odd n

an = − 4

n (n− 1)
an−2

=

(

− 4

n (n− 1)

)(

− 4

(n− 2) (n− 3)

)

· · ·
(

− 4

(3) (2)

)

a1.

Since a3 had one term multiplying a1 and a5 had two terms multiplying a1,
there are n−1

2 terms for a general odd n, or

an =
(−4)

n−1
2

n!
a1

for n = 3, 5, 7, . . .. Again, to have the series indexed by n = 0, 1, 2, 3, . . .,
change n to 2n+ 1 to give

a2n+1 =
−4n

(2n+ 1)!
a1

for n = 0, 1, 2, . . ..
Clearly, if we only consider a finite number of terms in the series, the

truncated series will only approximate the real solution. If we consider the
case where

x(0) = 1

ẋ(0) = 1,
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then we have

x(t) = cos 2t+
1

2
sin 2t (5.8)

for the “usual” solution, and, in series form after an easy computation that
shows that a0 = x(0) and a1 = ẋ(0),

x(t) =

∞
∑

n=0

(

(−1)
n

22n

(2n)!
t2n +

(−1)
n

22n

(2n+ 1)!
t2n+1

)

. (5.9)

Figure 5.1 illustrated the exact solution along with truncated series solutions
including the first 10, 15 and 20 terms.

To make the final connection between the two forms of the solution in
Equations 5.8 and 5.9, factor a 1

2 out of the second term to obtain

x(t) =
∞
∑

n=0

(

(−1)n 22n

(2n)!
t2n +

(

1

2

)

(−1)n 22n+1

(2n+ 1)!
t2n+1

)

.

The first term is the Taylor series for cos 2t and the second term is the
Taylor series for sin 2t.

Of course, Example 5.1.1 solved an equation that we already knew how to
solve; furthermore, it was even more work than assuming exponential solutions.
The real utility to series methods is in the case of variable coefficient problems.
If we were to return to Example 5.1.1, none of the steps in the process assumed
that the coefficients were constant, and, in fact, it turns out not to be necessary.

5.2 Convergence

A very important properties of a series is its convergence properties. If we are
to obatin series representations of solutions of differential equations, we must
be able to determine in what manner they converge. A general analysis of the
convergence properties of a series requires use of the property of analyticity.
Some readers of this text may have the required background while others may
not. Hence, instead of presenting general theorems to allow us to determine a
priori that a series solution is converngent (or its interval of convergence), we
will use a convergence test on each solution we obtain. This is much less efficient
than having the theorems handy; on the other hand, it is more straight-forward.

The test for convergence of a series that we will primarily use is the ratio
test

Theorem 5.2.1 For the series
∑∞

n=0 an, if an 6= 0 for n ≥ 1, suppose

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= r.

If
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Figure 5.1. Exact and truncated series solutions for Exam-
ple 5.1.1.
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1. If r < 1, then the series converges absolutely.

2. If r > 1, then the series diverges.

3. If r = 1, no conclusion can be drawn from this test alone.

In the case at hand when the series is a power series of the form
∑∞

n=1 ant
n,

we have

lim
n→∞

∣

∣

∣

∣

an+1t
n+1

antn

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

|t| .

So, a corollarly to Theorem 5.2.1 is as follows.

Corollary 5.2.2 If

tc = lim
n→∞

∣

∣

∣

∣

an
an+1

∣

∣

∣

∣

the power series
∑∞

n=1 ant
n converges for t ∈ (−tc, tc).

5.3 Series Solutions about an Ordinary Point

In Section 1.5.3 a linear differential equation was defined by Equation 1.6 to be
of the form

fn(t)
dnx

dtn
(t) + fn−1(t)

dn−1x

dtn−1
(t) + · · · + f1(t)

dx

dt
(t) + f0(t)x (t) = g(t).

While the methods generalize to higher order, we will restrict our attention to
second order equations of the form

f2(t)
d2x

dt2
(t) + f1(t)

dx

dt
(t) + f0(t)x (t) = g(t), (5.10)

because a surprizingly large number of important differential equations in engi-
neering fall into this category.

Examining Equation 5.10, one may reasonably (and correctly) conclude that
points where f2(t) = 0 are problematic. This is intuitively because the order
of the equation changes at those points. This section will consider solutions of
Equation 5.10 for values of t where f2(t) 6= 0. Unfortunately we can not simply
ignore the case where f2(t) is zero. The following section consders that case.

Definition 5.3.1 For the second order, linear, ordinary differential equation

f2(t)
d2x

dt2
(t) + f1(t)

dx

dt
(t) + f0(t)x (t) = g(t),

where f2(t), f1(t) and f0(t) are analytic, a point t where f2(t) 6= 0 is called an
ordinary point. ⋄
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Example 5.3.2 Determine a series solution to Airy’s equation

d2x

dt2
(t) − tx (t) = 0.

Assume

x(t) =

∞
∑

n=0

ant
n.

As before

d2x

dt2
(t) =

∞
∑

n=2

n (n− 1) ant
n−1

=

∞
∑

n=0

(n+ 2) (n+ 1) an+2t
n

and substituting into the differential equation gives

( ∞
∑

n=0

(n+ 2) (n+ 1) an+2t
n

)

− t

( ∞
∑

n=0

ant
n

)

=

( ∞
∑

n=0

(n+ 2) (n+ 1) an+2t
n

)

−
( ∞
∑

n=0

ant
n+1

)

= 0.

In order to equate powers of t, shift the index of summation in the second
sum by one, i.e.,

∞
∑

n=0

ant
n+1 =

∞
∑

n=1

an−1t
n,

so we have
( ∞
∑

n=0

(n+ 2) (n+ 1) an+2t
n

)

−
∞
∑

n=1

an−1t
n = 0.

The two series have the same powers in t, but start at different values of n.
To handle this, simply write the first term of the first series by itself, i.e.,

(2) (1) a2t
0 +

( ∞
∑

n=1

(n+ 2) (n+ 1) an+2t
n

)

−
∞
∑

n=1

an−1t
n =

2a2 +

∞
∑

n=1

[(n+ 2) (n+ 1) an+2 − an−1] t
n = 0.

So, equating powers of t gives

a2 = 0
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and

an+2 =
1

(n+ 2) (n+ 1)
an−1. (5.11)

Since a2 = 0, by Equation 5.11 gives that

a5 = a8 = a11 = a14 = · · · = 0.

For a1, a4, a7, . . . , observe that

a4 =
1

(4) (3)
a1

a7 =
1

(7) (6)
a4

=
1

(7) (6) (4) (3)
a1

a11 =
1

(10) (9)
a7

=
1

(10) (9) (7) (6) (4) (3)
a1

or, in general for n = 1, 2, 3, . . .

a3n+1 =
1

(3n+ 1) (3n) (3n− 2) (3n− 3) · · · (4) (3)
a1.

Similarly, for n = 1, 2, 3, . . .,

a3n =
1

(3n) (3n− 1) (3n− 3) (3n− 4) · · · (3) (2)
a0.

Substituting the cofficients into the solution gives

x(t) = a0

(

1 +
∞
∑

n=1

1

(3n) (3n− 1) (3n− 3) (3n− 4) · · · (3) (2)
t3n

)

+

a1

(

t+
1

(3n+ 1) (3n) (3n− 2) (3n− 3) · · · (4) (3)
t3n+1

)

5.4 Series Solutions about a Singular Point

5.5 A Collection of Famous Series Solutions

5.5.1 Bessel’s equation

Bessel’s equation is

t2
d2x

dt2
+ r

dx

dt
+
(

t2 −m2
)

x = 0. (5.12)
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Figure 5.2. Bessel functions of the first kind.

The parameter m may be a real or complex number, but in the special case
where it is an integer, it is called the order of the equation. Since this is a second
order equation, two linearly independent solutions are necessary to determine a
general solution. In the case when m is an integer, the two solutions are given
by

Jm(t) =

∞
∑

n=1

(−1)
n

22n+mn! (n+m)!
t2n+m

and

Ym(t) =
Jr(t) cos (mπ) − J−m(t)

sin (mπ)
.

The function Jm(t) is called the Bessel function of the first kind and the function
Ym(t) is called the Bessel function of the second kind. Figure 5.2 illustrates Jm(t)
for various integer orders and Figure 5.3 illustrates Ym(t) for various integer
orders. In addition to being the linearly independent solutions to Equation 5.12,
these two functions have some additional remarkable properties which will be
explored in Chapter 12.

It will turn out to be handy to have the values at which Jm(t) is zero.
Table 5.1 tabulates them for Jm(t) and Table 5.2 tabulates them for Ym(t).
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Figure 5.3. Bessel functions of the secon kind.

Order

0 2.40483 5.52008 8.65373 11.7915 14.9309 18.0711 21.2116 24.3525 27.4935 30.6346
1 3.83171 7.01559 10.1735 13.3237 16.4706 19.6159 22.7601 25.9037 29.0468 32.1897
2 5.13562 8.41724 11.6198 14.796 17.9598 21.117 24.2701 27.4206 30.5692 33.7165
3 6.38016 9.76102 13.0152 16.2235 19.4094 22.5827 25.7482 28.9084 32.0649 35.2187
4 7.58834 11.0647 14.3725 17.616 20.8269 24.019 27.1991 30.371 33.5371 36.699
5 8.77148 12.3386 15.7002 18.9801 22.2178 25.4303 28.6266 31.8117 34.9888 38.1599
6 9.93611 13.5893 17.0038 20.3208 23.5861 26.8202 30.0337 33.233 36.422 39.6032
7 11.0864 14.8213 18.2876 21.6415 24.9349 28.1912 31.4228 34.6371 37.8387 41.0308
8 12.2251 16.0378 19.5545 22.9452 26.2668 29.5457 32.7958 36.0256 39.2404 42.4439
9 13.3543 17.2412 20.807 24.2339 27.5837 30.8854 34.1544 37.4001 40.6286 43.8438
10 14.4755 18.4335 22.047 25.5095 28.8874 32.2119 35.4999 38.7618 42.0042 45.2316

Table 5.1. Table of zeros of the Bessel function of the first
kind.

Order

0 0.893577 3.95768 7.08605 10.2223 13.3611 16.5009 19.6413 22.782 25.923 29.064
1 2.19714 5.42968 8.59601 11.7492 14.8974 18.0434 21.1881 24.3319 27.4753 30.6183
2 3.38424 6.79381 10.0235 13.21 16.379 19.539 22.694 25.8456 28.9951 32.143
3 4.52702 8.09755 11.3965 14.6231 17.8185 20.9973 24.1662 27.3288 30.487 33.642
4 5.64515 9.36162 12.7301 15.9996 19.2244 22.4248 25.6103 28.7859 31.9547 35.1185
5 6.74718 10.5972 14.0338 17.3471 20.6029 23.8265 27.0301 30.2203 33.4011 36.575
6 7.83774 11.811 15.3136 18.6707 21.9583 25.2062 28.429 31.6349 34.8286 38.0135
7 8.91961 13.0077 16.5739 19.9743 23.294 26.5668 29.8095 33.0318 36.2393 39.4358
8 9.99463 14.1904 17.8179 21.2609 24.6126 27.9105 31.1737 34.4129 37.6346 40.8434
9 11.0641 15.3613 19.0479 22.5328 25.9162 29.2394 32.5233 35.7797 39.0162 42.2376
10 12.1289 16.5223 20.266 23.7917 27.2066 30.555 33.8597 37.1336 40.3851 43.6195

Table 5.2. Table of zeros of the Bessel function of the second
kind.



Chapter 6

Systems of Ordinary First
Order Linear Constant
Coefficient Equations

6.1 Introduction

So far this book has considered the theory and applications of first and second
order differential equations. This chapter considers nth order differential equa-
tions, or equivalently, systems of n first order differential equations. As will
become readily apparent, the theoretical basis for solving such systems relies
heavily upon matrix algebra theory.

The types of equations considered in this chapter are systems of of n first
order ordinary differential equations of the form

ẋ1(t) = f1 (x1(t), x2(t), . . . , xn(t), t) (6.1)

ẋ2(t) = f2 (x1(t), x2(t), . . . , xn(t), t) (6.2)

... (6.3)

ẋn(t) = fn (x1(t), x2(t), . . . , xn(t), t) . (6.4)

In vector form, this is equivalent to

d

dt











x1(t)
x2(t)

...
xn(t)











d

dt











f1 (x1(t), x2(t), . . . , xn(t), t)
f2 (x1(t), x2(t), . . . , xn(t), t)

...
fn (x1(t), x2(t), . . . , xn(t), t)











(6.5)

which will often be written more concisely as

ξ̇ (t) = f (ξ (t) , t) (6.6)
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x1 x2

k1

b1

k2

b2

F (t)m1 m2

Figure 6.1. Two degree of freedom mass-spring-damper sys-
tem.

where

ξ(t) =











x1(t)
x2(t)

...
xn(t)











and

f (ξ (t) , t) =











f1 (x1(t), x2(t), . . . , xn(t), t)
f2 (x1(t), x2(t), . . . , xn(t), t)

...
fn (x1(t), x2(t), . . . , xn(t), t)











6.2 Motivational Example

Consider the mass-spring-damper system illustrated in Figure 6.1. While this
is the simplified prototypical system that we will consider, it also is represen-
tative of a much larger class of useful engineering systems such as automobile
suspensions and civil structures. As is the usual case, assume that x1 and x2

are absolute the displacements of m1 and m2 respectively measured from in
an inertial coordinate system where the values of x1 and x2 are zero when the
springs are unstretched. the equilibrium configuration of the system. If there is
no gravity, then x1 and x2 will be measured from the position of the masses when
the springs are unstretched, and if there is gravity, then they will be measured
from the position of the masses when the springs are statically compressed or
extended by the weight of the masses.

Considering a free body diagram for each mass illustrated in Figure 6.2 and
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k1x1

b1ẋ1

k2 (x2 − x1)

b2 (ẋ2 − ẋ1)

k2 (x2 − x1)

b2 (ẋ2 − ẋ1)

m1

m2

Figure 6.2. Free body diagrams for masses in Figure 6.1.

applying Newton’s law gives

m1ẍ1 = −b1ẋ1 − k1x1 + k2 (x2 − x1) + b2 (ẋ2 − ẋ1)

m2ẍ2 = −k2 (x2 − x1) − b2 (ẋ2 − ẋ1) + F (t),

and rearranging into the standard form of descending order of derivatives gives

m1ẍ1 + (b1 + b2) ẋ1 − b2ẋ2 + (k1 + k2)x1 − k2x2 = 0 (6.7)

m2ẍ2 − b2ẋ1 + b2ẋ2 − k2x1 + k2x2 = F (t).

These equations are coupled since x1 appears in the x2 equation and vice-
versa. One’s first inclination may be to try to solve one equation for one of either
x1 or x2 and substitute into the other, but such an approach is impossible since
the equations involve the derivatives of the variables as well.

An insightful extrapolation of the method considered in Chapter 3 might
lead one to attempt to solve the homogeneous problem first followed by some
method for the particular solutions; indeed, this is fundamentally the approach
we will utilize. In fact, for the homogeneous case (F (t) = 0), i.e.,

m1ẍ1 + (b1 + b2) ẋ1 − b2ẋ2 + (k1 + k2)x1 − k2x2 = 0

m2ẍ2 − b2ẋ1 + b2ẋ2 − k2x1 + k2x2 = 0,

a good guess may be assume

x1(t) = eλ1t (6.8)

x2(t) = eλ2t,

and substitute. This will actually work and is essentially the approach we will
take. but as we consider higher and higher order systems, e.g., systems like
in Figure 6.1 but with more masses, presenting algebra will become somewhat
cumbersome. In order to consider the problem more concisely (and more elegantly)
resorting to matrix algebra is the typical approach. For the mathematically
inclined, the abstraction is nice because it still presents the essence of the
problem; however, for those less mathematically inclined it can be problematic.
In order to unify the solution method with one that is applicable to other types
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of problems in addition to vibrations problems with multiple masses, we will first
confert the system into an equivalent system of first order equations and the
result will be expressed in matrix form. The key concept to keep in mind is that
behind all the matrix theory presented, the basic approach for the homogeneous
problem is still to simply consider solutions of the form of Equation 6.9.

The general approach to solve systems of this type is to first convert the
system into a system of first order equations. This is illustrated by the following
example.

Example 6.2.1 Let

ξ1 = x1

ξ2 = ẋ1

ξ3 = x2

ξ4 = ẋ2.

Then

d

dt









ξ1
ξ2
ξ3
ξ4









=









ξ2
−b1ξ2−k1ξ1+k2ξ3−k2ξ1+b2ξ4−b2ξ2

m1

ξ3
−k2ξ3+k2ξ1−b2ξ4+b4ξ2

m2
.









(6.9)

Since this equation is linear in the ξi’s, it can be expressed as

d

dt









ξ1
ξ2
ξ3
ξ4









=









0 1 0 0

−k1+k2
m1

− b1+b2
m1

k2
m1

b2
m1

0 0 0 1
k2
m2

b2
m2

− k2
m2

− b2
m2

















ξ1
ξ2
ξ3
ξ4









.

If we let

ξ =









ξ1
ξ2
ξ3
ξ4









and

A =









0 1 0 0

−k1+k2
m1

− b1+b2
m1

k2
m1

b2
m1

0 0 0 1
k2
m2

b2
m2

− k2
m2

− b2
m2









, (6.10)

then this whole system can be expressed simply as

ξ̇ = Aξ. (6.11)

Clearly, the way to solve this equation hinges on the property of the matrix
A. Exploiting the properties of A to solve this equation is our task at hand.
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Now, considering a general first order matrix differential equation of the
form

ξ̇ = Aξ (6.12)

the question arises as to the nature of the solution. Motivated by the results
from Chapters 2 and 3, consider the possibility of a solution of the form

ξ(t) = ξ̂eλt,

where ξ̂ is a constant vector. In full detail,

ξ(t) =











ξ1(t)
ξ2(t)

...
ξn(t)











=











ξ̂1
ξ̂2
...

ξ̂n











eλt =











ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











.

Substituting this into Equation 6.12 gives

λ











ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











= A











ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











.

Inserting an identity matrix gives

λ











1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1





















ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











= A











ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











,

which can be rearranged to give

(A− λI) ξ̂ = 0, (6.13)

where the exponentials are canceled since they are never zero. Recall from linear
algebra, that the values for λ that satisfy Equation 6.13 are the eigenvalues of
the matrix A and the ξ̂ that satisfy it are the corresponding eigenvectors of A.
More importantly, what this shows is that solutions to Equation 6.12 are the
product of the eigenvectors and exponentials of the eigenvalues of A.
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6.3 Converting Ordinary Differential Equa-

tions of Order Greater than One or Sys-
tems of Equations of Order Greater than
One into Systems of First Order Ordinary

Differential Equations

Systems of first order differential equations may arise naturally, but they
are often the result of converting equations of another form into that form.
Rather than present a procedure to convert a system of ordinary differential
equations to a system of ordinary first order differential equations, a rather
involved example should suffice.

Example 6.3.1 Consider the system of three ordinary differential equa-
tions

d3x1

dt3
+

1

t
x2 = cos t (6.14)

dx2

dt
= 3

d2x3

dt2
+
dx3

dt
= x1(t) + x2(t).

Note that the highest order derivative of x1 is three, of x2 is one and of
x3 is two. If we let

ξ1 = x1 (6.15)

ξ2 =
dx1

dt

ξ3 =
d2x1

dt2

ξ4 = x2

ξ5 = x3

ξ6 =
dx3

dt
(6.16)

then system of equations in Equation 6.14 is equivalent to

d

dt

















ξ1
ξ2
ξ3
ξ4
ξ5
ξ6

















=

















ξ2
ξ3

cos(t) − 1
t
ξ4

3
ξ5

ξ1 + ξ4 − ξ6

















.

The ξ̇1, ξ̇2, ξ̇4 and ξ̇5 components follow from the definitions in Equa-
tion 6.15 and the ξ̇3, ξ̇4 and ξ̇6 components are determined by solving

the original three differential equations in Equation 6.14 for d3x1

dt3
, dx2

dt

and d2x3

dt2
, respectively
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6.4 Review of Linear Algebra

Moved to Appendix B.

6.5 Summary So Far

1. Systems of first order differential equations of the form

ξ̇ = Aξ ξ ∈ R
n, A ∈ R

n×n

arise naturally in engineering problems with coupled elements.

2. The system is homogeneous since

ξ̇ = Aξ ξ̇ −Aξ = 0

and each homogeneous solution is of the form

ξh(t) = ξ̂ieλit

where ξ̂i and λi is the ith eigenvector and eigenvalue of the matrix A.

3. In generalA has n eigenvalue/eigenvector pairs {λ1, . . . , λn} and {ξ̂1, . . . , ξ̂n},
(except possibly, as will be considered later, when A has repeated eigen-
values).

4. The general solution to ξ̇ = Aξ is a linear combination of n homogeneous
solutions

ξ(t) = c1ξ̂
1eλ1t + · · · + cnξ

neλnt,

and the coefficients ci may be used to satisfy specified initial conditions.

6.6 Distinct Eigenvalues

The case where the matrix A has distinct eigenvalues is the easiest and will be
considered first. It is basically a straight-forward application of what has been
covered up to this point. First, a critically important theorem.

Theorem 6.6.1 Let A ∈ Rn×n. If A has n distinct, real eigenvalues, then it
has a set of n linearly independent eigenvectors.

Proof Let λ1, . . . , λn denote the distinct eigenvalues of A, i.e., λi 6= λj if

i 6= j and let ξ̂1, . . . , ξ̂n denote the corresponding eigenvectors. To show that
the eigenvectors are linearly independent it suffices to show that

α1ξ̂
1 + α2ξ̂

2 + · · · + αnξ̂
n = 0 ⇐⇒ αi = 0 ∀i,

i.e., that is there is no linear combination of the eigenvectors that is zero.
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First consider finding α1 and α2 such that

α1ξ̂
1 + α2ξ̂

2 = 0. (6.17)

Multiply both sides of this equation by (A− λ2I) (note it is a specific eigenvalue,
λ2)

α1 (A− λ2I) ξ̂
1 + α2 (A− λ2I) ξ̂

2 = 0

α1

(

Aξ̂1 − λ2ξ̂
1
)

+ 0 = 0

α1

(

λ1ξ̂
1 − λ2ξ̂

1
)

= 0

α1 (λ1 − λ2) ξ̂
1 = 0.

Since λ1 6= λ2 and ξ̂1 6= 0, then α1 = 0. Hence by equation 6.17, α2 = 0 and

hence, by definition, the set
{

ξ̂1, ξ̂2
}

is linearly independent.

Now proceed by induction and assume the set
{

ξ̂1, ξ̂2, . . . , ξ̂i
}

is linearly

independent and consider

α1ξ̂
1 + α2ξ̂

2 + · · · + αiξ̂
i + αi+1ξ̂

i+1 = 0. (6.18)

Multiplying both sides of the equation by (A− λi+1I) gives

α1 (λ1 − λi+1) ξ̂
1 + α2 (λ2 − λi+1) ξ̂

2 + · · · + αi (λi − λi+1) ξ̂
i + 0 = 0.

Since the set
{

ξ̂1, ξ̂2, . . . , ξ̂i
}

is linearly independent, then

αi = α2 = · · · = αi = 0
�

and hence by equation 6.18, αi+1 = 0. Hence the set
{

ξ̂1, ξ̂2, . . . , ξ̂i, ξ̂i+1
}

is

linearly independent.

Hence, by induction, the set
{

ξ̂1, ξ̂2, . . . , ξ̂n
}

is linearly independent.

6.6.1 Solution Technique for ξ̇ = Aξ

The general solution to ξ̇ = Aξ is a linear combination of n homogeneous solu-
tions

ξ(t) = c1ξ̂
1eλ1t + · · · + cnξ

neλnt,

and the coefficients ci may be used to satisfy specified initial conditions. Since
the eigenvectors are linearly independent, any initial condition may be satisfied
with the appropriate coefficients, ci’s. In particular, for a specified ξ(0)

ξ(0) = c1ξ̂
1 + · · · + cnξ̂

n

=
[

ξ̂1 · · · ξ̂n
]







c1
...
cn






.
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Thus the coefficients can most concisely be expressed as







c1
...
cn






=
[

ξ̂1 · · · ξ̂n
]−1

ξ(0),

although, as illustrated in the examples below, it will usually be easiest just to
solve for the coefficients using row reduction methods.

Example 6.6.2 Find the homogeneous solutions to

ξ̇ = Aξ where A =

[

1 2
1 0

]

. (6.19)

Aside 6.6.3 Note that the system in Equation 6.19 is exactly equivalent
to the following two systems:

d

dt

[

ξ1
ξ2

]

=

[

1 2
1 0

] [

ξ1
ξ2

]

and

ξ̇1 = ξ1 + 2ξ2

ξ̇2 = ξ1.

If this is not readily apparent by inspection, some time should be invested
in verifying this fact. ⋄

As determined previously, the homogeneous solutions of Equation 6.19 can
be computed by determining the eigenvalues and eigenvectors of A. Thus

det (A− λI) =

∣

∣

∣

∣

1 − λ 2
1 −λ

∣

∣

∣

∣

= (1 − λ)λ− 2 = λ2 − λ− 2 − 0,

so the eigenvalues are

λ1 = 2

λ2 = −1.

Substituting each eigenvalue into (A− λI) ξ = 0 gives

[

−1 2
1 −2

] [

ξ1
ξ2

]

=

[

0
0

]

=⇒ ξ̂1 =

[

2
1

]

[

2 2
1 1

] [

ξ1
ξ2

]

=

[

0
0

]

=⇒ ξ̂2 =

[

1
−1

]

.
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Thus

ξ1(t) =

[

2
1

]

e2t

ξ2(t) =

[

1
−1

]

e−t

both satisfy ξ̇ = Aξ.

From the above example, since each of the two solutions are homogeneous
solutions, any linear combination of them also satisfies the differential equation,
i.e., the general solution,

ξ(t) = c1ξ̂
1eλ1t + c2ξ̂

2eλ2t

also satisfies ξ̇ = Aξ. If the problem were an initial value problem, then the
coefficients c1 and c2 could be used to satisfy the initial condition.

Example 6.6.4 Returning to Example 6.6.2 determine the solution to

ξ̇ = Aξ

where

ξ(0) =

[

1
0

]

.

The general solution to Equation 6.19 is

ξ(t) = c1

[

2
1

]

e2t + c2

[

1
−1

]

e−t.

Substituting t = 0 and the initial condition gives

ξ(0) = c1

[

2
1

]

+ c2

[

1
−1

]

=

[

1
0

]

,

which may be rearranged as

[

2 1
1 −1

] [

c1
c2

]

=

[

1
0

]

,

or in augmented matrix form as

[

2 1 1
1 −1 0

]

.

Multiplying the second row by 2 and subtracting the first row from it gives

[

2 1 1
0 −3 −1

]

.
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which gives Hence

c1 =
1

3

c2 =
1

3
,

so

ξ(t) =

[

2
3
1
3

]

e2t +

[

1
3

− 1
3

]

e−t

is the solution to the initial value problem.

Next are a few useful theorems that sometimes allow for some computational
shortcuts. It turns out that when the matrix A is symmetric, its eigenvalues
and eigenvectors have especially nice properties. First, however, we generalize
the notion of a symmetric matrix to the complex case and the corresponding
properties of a Hermitian matrix.

Definition 6.6.5 Hermitian Matrix Let A ∈ Cn×n. Let A∗ = A
T
, i.e., A∗

denotes the matrix where A is transposed an all the elements are changed to
their complex conjugates. A is Hermitian if A = A∗. ⋄

Note the following:

1. the notation A ∈ Cn×n simply means that A is n by n with complex
numbers for elements; and,

2. in particular, if A is real and symmetric, i.e., A ∈ Rn×n and A = AT it is
Hermitian.

Theorem 6.6.6 If A ∈ Cn×n is Hermitian, i.e., A = A∗, then

1. all the eigenvalues of A are real;

2. A has n linearly independent eigenvectors, regardless of the multiplicity of
any eigenvalue; and,

3. eigenvectors corresponding to different eigenvalues are orthogonal.

Proof 1. Assume A = A∗. Since

Aξ̂i = λiξ̂i =⇒ ξ̂∗iAξ̂i = λiξ̂
∗
i ξ̂i

the eigenvalue may be expressed as

λi =
ξ̂∗iAξ̂i

ξ̂∗i ξ̂i
.
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Note that the notation ξ̂∗i ξ̂i is simply the dot product between the vector

ξ̂i and its complex conjugate. Then

λ∗i =

(

ξ̂∗iAξ̂i

ξ̂∗i ξ̂i

)∗

=

(

ξ̂∗i Aξ̂i
)∗

(

ξ̂∗i ξ̂i
)∗ =

ξ̂∗i A
∗ξ̂i

ξ̂∗i ξ̂i
=
ξ̂∗iAξ̂i

ξ̂∗i ξ̂i
= λi.

Since λi = λ∗i , it must be real.

2. The proof of this part is beyond the scope of this book.

3. Let ξ̂i be the eigenvector associated with eigenvalue λi and ξ̂j be the
eigenvector associated with eigenvalue λj . Since A is Hermetian,

(

Aξ̂i

)∗
ξ̂j = ξ̂∗i A

∗ξ̂j

= ξ̂∗i Aξ̂j

= λj ξ̂
∗
i ξ̂j .

But we also have
(

Aξ̂i

)∗
ξ̂j = λ∗i ξ̂

∗
i ξ̂j .

Since these are equal, and λi 6= λj , then ξ̂∗i ξ̂j = 0, i.e., they are orthogo-
nal. �

6.7 Complex Eigenvalues

Example 6.7.1 Again consider the mass-spring-damper system illustrated
in Figure 6.1. Let

m1 = 1

m2 = 1

k1 = 10

k2 = 1

b1 = 0.1

b2 = 0.1.

The damping has been decreased greatly compared to the example for dis-
tinct real roots in Section 6.6, so oscillatory solutions should be expected.
Substituting these values into the A matrix in Equation 6.10 gives

A =









0 1 0 0
−11 −0.2 1 0.1
0 0 0 1
1 0.1 −1 −0.1








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which has eigenvalues

λ1 = −0.1093 + 3.3285i

λ2 = −0.1093− 3.3285i

λ3 = −0.0407 + 0.9487i

λ4 = −0.0407− 0.9487i,

and corresponding eigenvectors

ξ̂1 =









−0.0094− 0.2859i
0.9527

−0.0074 + 0.0287i
−0.0946− 0.0278i









ξ̂2 =









−0.0094 + 0.2859i
0.9527

−0.0074− 0.0287i
−0.0946 + 0.0278i









ξ̂3 =









0.0713 + 0.0060i
−0.0086 + 0.0674i

0.7216
−0.0294 + 0.6846i









ξ̂4 =









0.0713− 0.0060i
−0.0086− 0.0674i

0.7216
−0.0294− 0.6846i









.

Observe that the eigenvalues occur in complex conjugate pairs. This
should be obviously expected since eigenvalues are the roots of a polynomial.
Less obvious, but probably not surprising is that the eigenvectors also occur
in complex conjugate pairs. The reason this is true is given by the proof of
the following.

Proposition 6.7.2 If A ∈ Rn×n and two eigenvalues of A are such that λi =

λj, then if ξ̂i is the eigenvector corresponding to λi, λ̂i is an eigenvector corre-
sponding to λj.

Proof Eigenvector ξ̂i satisfies

(A− λiI) ξ̂i = 0.

Taking the complex conjugate of both sides gives

(A− λiI) ξ̂i = 0
(

A− λiI
)

ξ̂i = 0

(A− λjI) ξ̂i = 0.

Thus we make take ξ̂j = ξ̂i. �

To solve the initial value problem

ξ̇ = Aξ ξ(0) = ξ0

we may to proceed as before and simply write the general solution

ξ(t) = c1ξ̂
1eλ1t + · · · c1ξ̂neλnt,
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substitute t = 0
ξ(0) = c1ξ̂

1 + · · · c1ξ̂n,
and solve for the unknown coefficients, ci. The following example illustrates
that fact. In order to make it computationally simple, however, a simple 2 × 2
system is considered rather than the 4 × 4 oscillation problem.

Example 6.7.3 Solve

ξ̇ = Aξ ξ(0) =

[

1
1

]

where

A =

[

1 −2
2 1

]

.

Computing the eigenvalues gives

det (A− λI) = (1 − λ)
2

+ 4 = 0 =⇒ λ = 1 ± 2i.

For λ1 = 1 + 2i
[

−2i −2
2 −2i

] [

x1

x2

]

=

[

0
0

]

=⇒ ξ̂1 =

[

x1

x2

]

=

[

1
−i

]

and for λ2 = 1 − 2i
[

2i −2
2 2i

] [

x1

x2

]

=

[

0
0

]

=⇒ ξ̂1 =

[

x1

x2

]

=

[

1
i

]

So the general solution is

ξ(t) = c1

[

1
−i

]

e(1+2i)t + c2

[

1
i

]

e(1−2i)t

and at t = 0,

ξ(0) = c1

[

1
−i

]

+ c2

[

1
i

]

=

[

1 1
−i i

] [

c1
c2

]

=

[

1
1

]

.

Either solving for c1 and c2 by inverting the matrix or by eliminating one
coefficient from one equation and substituting into the other gives

c1 =
1

2
+

1

2
i

c2 =
1

2
− 1

2
i.

Finally, substituting c1 and c2 into the general solution gives

ξ(t) =

[

1
2 + 1

2 i
1
2 − 1

2 i

]

e(1+2i)t +

[

1
2 − 1

2 i
1
2 + 1

2 i

]

e(1−2i)t. (6.20)
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This is the correct answer, however it is somewhat dissatisfying in that
it is complex; whereas, the matrix A and the initial conditions were all real.
Quite a bit more manipulation using Euler’s formula eliminates this minor
problem and yields If the complex exponentials are expanded using Euler’s
formula, then

ξ(t) =

[

cos 2t− sin 2t
cos 2t+ sin 2t

]

et (6.21)

is obtained. Interestingly, the complex parts of Equation 6.20 are identically
zero; although, it is certainly difficult to see that without all the work to
convert from Equation 6.20 to Equation 6.21.

The preceding example illustrates that the general solution may still be cor-
rectly expressed as a linear combination of the eigenvalues times the exponential
of the corresponding eigenvectors. However,

1. the solution may not “naturally” result in a purely real expression for ξ,
which is what is expected;

2. further, and perhaps arduous manipulation may be necessary to determine
the form of the solution that is purely real;

3. many computations involving complex numbers, requiring four operations
for multiplication and two operations for addition, are involved in com-
puting the solution;

4. the fact that the eigenvalues and eigenvectors occur in complex conjugate
pairs was not exploited at all.

In order to make the computations less burdensome, an alternative approach
which is analogous to the approach in the case of second order system with
complex roots is utilized. Fundamentally, the “shortcut” to this approach is
based upon the conjugate nature of the eigenvalues and eigenvectors.

Consider a pair of complex conjugate eigenvalues and eigenvectors, denoted
by

λ1 = µ+ iω

λ2 = µ− iω

and

ξ̂1 = a + ib

ξ̂2 = a − ib.

Note that a and b are vectors in Rn.
The general solution is

ξ(t) = c1ξ̂
1eλ1t + c2ξ̂

2eλ2t + · · · .
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Substituting for the components of λ1, λ2, ξ̂
1 and ξ̂2 and using Euler’s formula

gives

ξ(t) = c1ξ̂
1eλ1t + c2ξ̂

2eλ2t + · · ·
= c1 (a + ib) e(µ+iω)t + c2 (a − ib) e(µ−iω)t + · · ·
= c1 (a + ib) eµt (cosωt+ i sinωt) + c2 (a− ib) eµt (cosωt− i sinωt) + · · ·
= eµt [c1a cosωt− c1b sinωt+ ic1a sinωt+ ic1b cosωt +

c2a cosωt− c2b sinωt− ic2b cosωt− ic2a sinωt] + · · ·
= eµt [(c1 + c2) a cosωt− (c1 + c2)b sinωt] +

eµti [(c1 − c2)a sinωt+ (c1 − c2)b cosωt] + · · · .

Let

k1 = c1 + c2

k2 = i (c1 − c2)

and substituting into ξ(t) gives

ξ(t) = k1e
µt (a cosωt− b sinωt) + k2e

µt (a sinωt+ b cosωt) + · · · . (6.22)

Example 6.7.4 Returning to the mass-spring-damper system in Exam-
ple 6.7.1, observe that we have

µ1 = −0.1093

ω1 = 3.3285

µ2 = −0.0407

ω2 = 0.9487

and

a1 =









−0.0094
0.9527
−0.0074
−0.0946









b1 =









−0.2859
0

0.0287
−0.0278









a2 =









0.0713
−0.0086
0.7216
−0.0294









b2 =









0.0060
0.0674

0
0.6846









.

From equation 6.22, the general solution is of the form

ξ(t) = k1e
µ1t (a1 cosω1t− b1 sinω1t) + k2e

µ1t (a1 sinω1t+ b1 cosω1t)

+ k3e
µ2t (a2 cosω2t− b2 sinω2t) + k4e

µ2t (a2 sinω2t+ b2 cosω2t) ,
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or substituting all the numerical values

ξ(t) = k1e
−0.1093t

















−0.0094
0.9527
−0.0074
−0.0946









cos 3.3285t−









−0.2859
0

0.0287
−0.0278









sin 3.3285t









+ k2e
−0.1093t

















−0.0094
0.9527
−0.0074
−0.0946









sin 3.3285t+









−0.2859
0

0.0287
−0.0278









cos 3.3285t









+ k3e
−0.0407t

















0.0713
−0.0086
0.7216
−0.0294









cos 0.9487t−









0.0060
0.0674

0
0.6846









sin 0.9487t









+ k4e
−0.0407t

















0.0713
−0.0086
0.7216
−0.0294









sin 0.9487t+









0.0060
0.0674

0
0.6846









cos 0.9487t









.

Example 6.7.5 Returning to Example 6.7.3,

λ1 = 1 + 2i

and

ξ̂1 =

[

1
−i

]

.

Hence

µ = 1

ω = 1

and

a =

[

1
0

]

b =

[

0
−1

]

Substituting into Equation 6.22 gives

[

ξ1(t)
ξ2(t)

]

= k1e
t

([

1
0

]

cos 2t−
[

0
−1

]

sin 2t

)

+

k2

([

1
0

]

sin 2t+

[

0
−1

]

cos 2t

)

.
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The initial condition is

ξ(0) =

[

1
1

]

.

Substituting t = 0 into the solution and equating it to the intial condition
gives

[

1
1

]

= k1

[

1
0

]

+ k2

[

0
−1

]

which gives

k1 = 1

k2 = −1.

Hence,

[

ξ1(t)
ξ2(t)

]

= et
([

1
0

]

cos 2t−
[

0
−1

]

sin 2t

)

−
([

1
0

]

sin 2t+

[

0
−1

]

cos 2t

)

= et
([

1
1

]

cos 2t+

[

−1
1

]

sin 2t

)

which is the same as Equation 6.21.

This next example contains one real eigenvalue and one complex conju-
gate pair of eigenvalues.

Example 6.7.6 Determine the general solution to

ξ̇ = Aξ

where

A =





−7 0 8
0 −2 0
−4 0 1



 .

Computing

det (A− λI) =

∣

∣

∣

∣

∣

∣

−7 − λ 0 8
0 −2 − λ 0
−4 0 1 − λ

∣

∣

∣

∣

∣

∣

by a cofactor expansion across the second row gives

−1 (−2 − λ) [(−7 − λ) (1 − λ) + 32] =

(2 + λ)
(

λ2 + 6λ+ 25
)

= 0.

Hence,
λ1 = −2
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and

λ =
−6 ±

√
36 − 100

2
= −3 ± 4i.

For λ1 = −2

(A+ 2I) ξ̂ = 0

is computed by





−5 0 8 0
0 0 0 0
−4 0 3 0



 ⇐⇒





−5 0 8 0
0 0 − 17

5 0
0 0 0 0





which gives

ξ̂1 =





0
1
0



 .

For λ2 = −3 + 4i,

(A+ (3 − 4i) I) ξ̂ = 0

is computed by





−4 − 4i 0 8 0
0 1 − 4i 0 0
−4 0 4 − 4i 0



 ⇐⇒





−4 − 4i 0 8 0
0 1 − 4i 0 0
0 0 0 0



 ,

which was obtained by dividing the first row by 1 + i and subtracting
the resut from the third row. If we let ξ̂23 = 1, then

ξ̂2 =





1 − i
0
1



 .

Since both the eigenvalues and eigenvectors must occur in complex con-
jugate pairs, for λ3 = −3 − 4i

ξ̂3 =





1 + i
0
1



 .

Using the second eigenvalue µ = −3, ω = 4,

a =





1
0
1



 and b =





−1
0
0



 .
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Hence,

ξ(t) = c1e
−2t





0
1
0



+ c2e
−3t









1
0
1



 cos 4t−





−1
0
0



 sin 4t



+

c3e
−3t









1
0
1



 sin 4t+





−1
0
0



 cos 4t



 .

6.8 Repeated Eigenvalues

The case where some of the eigenvalues are repeated is the most complicated.
This is because when there are repeated eigenvalues, there may or may not be a
complete set of linearly independent eigenvectors associated with the repeated
eigenvalue. The next set of examples illustrates this fact.

Example 6.8.1 Consider ξ̇ = Aξ where

A =

[

2 1
0 2

]

.

Computing the eigenvalues gives

(2 − λ)
2

= 0 =⇒ λ = 2.

Computing the eigenvectors,

[

0 1
0 0

] [

x1

x2

]

=

[

0
0

]

=⇒ ξ̂ =

[

1
0

]

.

In the preceding example, the eigenvalue λ = 2 was repeated. It may not
be surprising that there also is only one eigenvector, ξ̂ as well. However, things
are not so simple. Consider the following example.

Example 6.8.2 Consider ξ̇ = Aξ where

A =

[

2 0
0 2

]

.

Computing the eigenvalues gives

(2 − λ)
2

= 0 =⇒ λ = 2,

which is exactly the same as before. Now computing the eigenvectors,

[

0 0
0 0

] [

x1

x2

]

=

[

0
0

]

.
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In this case, however, we have that

ξ̂1 =

[

1
0

]

and ξ̂2 =

[

0
1

]

both satisfy the eigenvector equation and are linearly independent.

These two examples illustrate the fact that when there are n repeated eigen-
values, there may or may not be n linearly independent eigenvectors. This is
problematic in that to use the approach utilized so far to solve ξ̇ = Aξ we need
n linearly independent eigenvectors in order to obtain a general solution.

First we address the practical computational matter of determining how
many linearly independent eigenvectors are associated with a repeated eigen-
value. Then we delineate the solution techniques for each case.

6.8.1 Geometric and Algebraic Multiplicities

The number of times that an eigenvalue is repeated is called its algebraic mul-
tiplicity. Similarly, the number of linearly independent eigenvectors associated
with an eigenvalue is called its geometric multiplicity. Clearly, the former is an
algebraic concept and the latter a geometric one as is clear from the following
more general mathematical definitions of the two terms.

Definition 6.8.3 (Algebraic Multiplicity) Let A ∈ Rn×n and let

det (A− λI) =

m
∑

i=1

(λ− λi)
ki

where each λi is distinct. Note that
∑m

i=1 ki = n. The number ki is the algebraic
multiplicity of eigenvalue λi. ⋄

Example 6.8.4 Returning to example B.1.23, for

A =









1 0 0 0
−1 2 0 0
−1 0 1 1
−1 0 −1 3









we determined that

det (A− 2I) = (1 − λ) (2 − λ)3 .

Hence the algebraic multiplicity of λ = 1 is one and the algebraic multiplic-
ity of λ = 2 is three.

Definition 6.8.5 (Geometric Multiplicity) Let A ∈ Rn×n. The dimension
of the null space of (A− λiI) is the geometric multiplicity of eigenvalue λi. ⋄



174
CHAPTER 6. SYSTEMS OF ORDINARY FIRST ORDER LINEAR

CONSTANT COEFFICIENT EQUATIONS

The definition of geometric multiplicity should make sense. Since the defi-
nition of an eigenvector is a nonzero vector, ξ̂ satisfying

(A− λI) ξ̂ = 0,

and the null space of a matrix is simply all the vectors that, when multiplied
into the matrix produce the zero vector, the number of linearly independent
vectors that produce the zero vector is simply the dimension of the null space.

First we will consider a matrix with distinct eigenvalues to illustrate the
concept of the dimension of the null space of (A− λI) being the number of
linearly independent eigenvectors associated with an eigenvalue as well as the
simple procedural aspect of computing it.

Example 6.8.6 Determine all the linearly independent eigenvectors of

A =





1 0 1
0 1 1
0 −2 4



 .

The characteristic equation is
∣

∣

∣

∣

∣

∣

(1 − λ) 0 1
0 (1 − λ) 1
0 −2 (4 − λ)

∣

∣

∣

∣

∣

∣

= λ3 − 6λ2 + 11λ− 6 = 0,

so the eigenvalues are

λ1 = 1

λ2 = 2

λ3 = 3.

Since the eigenvalues are distinct, by Theorem 6.6.1, each should have one
linearly independent eigenvector associated with it and dim (N (A− λiI)) =
1 for each λi.

In detail, for λ1 = 1 the associated eigenvalue satisfies

(A− λ1I) ξ̂
1 = (A− I) ξ̂1 = 0.

The augmented matrix is




1 − λ 0 1 0
0 1 − λ 1 0
0 −2 4 − λ 0



 . (6.23)

Substituting λ1 = 1 and making a couple elementary row manipulations
yields




0 0 1 0
0 0 1 0
0 −2 3 0



 ⇐⇒





0 −2 3 0
0 0 1 0
0 0 1 0



 ⇐⇒





0 −2 3 0
0 0 1 0
0 0 0 0



 .
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The last augmented matrix has one row of zeros, indicating that the
dimension of its null space is one, so there is one linearly independent eigen-
vector associated with λ1 = 1.. From the second row, the third component
of ξ̂1 clearly must be zero. Using this fact and noting the first row indicates
that the second component must also be zero. Finally, the first component
of ξ̂1 is clearly arbitrary. Thus, the eigenvector must be

ξ̂1 =





1
0
0



 .

Similarly, substituting λ2 = 2 into Equation 6.23 gives




−1 0 1 0
0 −1 1 0
0 −2 2 0



 ⇐⇒





−1 0 1 0
0 −1 1 0
0 0 0 0



 .

Picking the third component of ξ̂2 to be one, we have

ξ̂2 =





1
1
1



 .

Finally, for λ3 = 3




−2 0 1 0
0 −2 1 0
0 −2 1 0



 ⇐⇒





−2 0 1 0
0 −2 1 0
0 0 0 0



 .

This time picking the third component of ξ̂3 to be 2 gives

ξ̂3 =





1
1
2



 .

Now consider an example with repeated eigenvalues.

Example 6.8.7 Determine the eigenvalues and eigenvectors of

A =





0 1 1
−4 5 1
−5 1 5



 .

The characteristic equation is

λ3 − 10λ2 + 32λ− 32 = 0,

so the eigenvalues are

λ1 = 2

λ2 = 4

λ3 = 4.
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For λ1 = 2





−2 1 1 0
−4 3 1 0
−4 1 3 0



 ⇐⇒





−2 1 1 0
0 1 −1 0
0 −1 1 0



 ⇐⇒





−2 1 1 0
0 1 −1 0
0 0 0 0



 .

Since there is one row of zeros, there is one linearly independent eigenvalue
associated with λ1 = 2, which is expected since it is not repeated. Picking
the third component of ξ̂1 to be one,

ξ̂1 =





1
1
1



 .

Now, for λ2 = 4





−4 1 1 0
−4 1 1 0
−4 1 1 0



 ⇐⇒





−4 1 1 0
0 0 0 0
0 0 0 0



 .

Since there are two rows of zeros, there are two linearly independent eigen-
vectors associated with λ2 = 4. Picking the third component of ξ̂2 to be 4
and the second component to be zero, we have

ξ̂2 =





1
0
4



 .

Since there are two rows of zeros, we can find another solution to the equa-
tions. To determine one, we pick another combination of variables with the
only restriction that it cannot be a scaled version of two of the components
of ξ̂2. Picking the third component to be zero and the second component
to be 4 gives

ξ̂3 =





1
4
0



 .

The fact that there were two rows of zeros in upper triangular form of
the augmented matrix indicates that the dimension of the null space of
(A− 4I) was two. Thus, we were able to determine two linearly independent
eigenvectors associated with the repeated eigenvalue.

Finally, just to complete the picture, the following is an example of an eigen-
value with algebraic multiplicity two but a geometric multiplicity of one.

Example 6.8.8 Returning to the matrix from Example 6.8.1 with

A =

[

2 1
0 2

]

,
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we computed previously that λ = 2 was the only eigenvalue and that it had
an algebraic multiplicity of two. Constructing the augmented matrix for
A− 2I gives

[

0 1 1
0 0 0

]

.

Since there is one row of zeros, the geometric multiplicity is one. Clearly the
first component of the eigenvector is arbitrary and the second component
must be zero. Thus, for example

ξ̂1 =

[

1
0

]

.

Finally, after this rather extensive detour into the realm of the nature of
repeated eigenvalues and the computational details of computing the associated
eigenvectors, we return to the main task at hand which is to solve ξ̇ = Aξ.

6.8.2 Homogeneous Solutions with Repeated Eigenvalues

Equal Algebraic and Geometric Multiplicities

This is the case for which to hope because the solution technique is identical
to the case of distinct eigenvalues. Even if there are repeated eigenvalues, the
general solution is simply

ξ(t) = c1ξ̂
1eλ1t + c2ξ̂

2eλ2t + · · · + cnξ̂
neλnt.

This is, in fact, the general solution. Since the set of eigenvectors is linearly
independent, it will always be possible to solve for the coefficients for a specified
initial condition regardless of the fact that some of the eigenvalues are repeated.

Repeated Complex Eigenvalues

The statement immediately preceding this is still correct, even if there are com-
plex conjugate eigenvalues and even if some of the repeated eigenvalues are
complex conjugates. In the first case where the repeated eigenvalues are real,
the more convenient form of the solution will be to simply convert the complex
conjugate eigenvalue and eigenvector pairs to the real and imaginary compo-
nents and express the two homogeneous solutions corresponding to the complex
conjugate pair in terms of the real functions given in Equation 6.22.

Algebraic Multiplicity Greater than the Geometric Multiplicity

The case where the geometric multiplicity of an eigenvalue is less than its al-
gebraic multiplicity is much more interesting, but unfortunately, requires a bit
more work. In this case, if we simply compute eigenvectors, we will have a set
of homogeneous solutions of the form

ξh(t) = ξ̂ieλit,
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but we will not have n linearly independent eigenvalues, so the partial general
solution will be of the form

ξ(t) = c1ξ̂
1eλ1t + c2ξ̂

2eλ2t + · · · + cmξ̂
meλmt,

where m < n. In this case, it will not be possible to compute coefficients, ci
to satisfy any set of initial conditions since there is not a full set of linearly
independent eigenvectors.

Recall from Chapter 3 that in the case of repeated roots, the approach was
to multiply the one homogeneous solution by the independent variable, t and
add it to the first solution. The following two examples illustrate that fact, but
also then goes to make a connection to the matrix approach that is the subject
of this chapter.

Example 6.8.9 Find the general solution to

ẍ+ 4ẋ+ 4x = 0. (6.24)

Assuming x(t) = eλt and substituting gives

λ2 + 4λ+ 4 = 0 (6.25)

(λ+ 2)2 = 0.

So, λ = 2 is the solution. Hence, xh(t) = e−2t is a homogeneous solution.
Since there is no other root to the characteristic equation, the approach
(which was fully detailed in Chapter 3) is to assume a second homogeneous
solution of the form xh(t) = te−2t. The fact that this a second homogeneous
solution can be verified by substituting it into Equation 6.24 and the fact
that it is linearly independent can be verified by computing the Wronskian.
Thus the general solution to Equation 6.24 is

x(t) = c1e
−2t + c2te

−2t. (6.26)

Example 6.8.10 Consider the same equation as in Equation 6.24, but first
convert it into a system of two first order equations. The equivalent system
is

ẋ =

[

0 1
−4 −4

]

x where x =

[

x1

x2

]

=

[

x
ẋ

]

.

Computing the eigenvalues for the matrix in the preceding equation gives

∣

∣

∣

∣

−λ 1
−4 −4 − λ

∣

∣

∣

∣

= λ2 + 4λ+ 4 = (λ+ 2)2 = 0.

It is no coincidence that the characteristic equation for the eigenvalue prob-
lem is exactly the same as Equation 6.25. Thus, the only distinction is
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one of nomenclature: there are “repeated eigenvalues” instead of “repeated
roots.” Now computing the eigenvectors corresponding to λ1 = −2 gives

[

2 1 0
−4 −2 0

]

⇐⇒
[

2 1 0
0 0 0

]

.

Thus, there is one linearly independent eigenvector,

ξ̂1 =

[

1
−2

]

.

The goal is to obviously construct a solution that is equivalent to the general
solution in Equation 6.26. Differentiating Equation 6.26 gives

ẋ(t) = −2c1e
−2t + c2e

−2t − 2c2te
−2t,

or in vector form

d

dt

[

x
ẋ

]

=
d

dt

[

ξ1
ξ2

]

= c1

[

1
−2

]

e−2t + c2

([

0
1

]

e−2t + t

[

1
−2

]

e−2t

)

= c1ξ̂
1eλ1t + c2

(

ξ̂2eλ1t + tξ̂1eλ1t
)

.

Clearly, in the notation of the last line in the above equation, ξ̂11 is simply
the eigenvector that we already computed. The question is how to compute
the other vector, ξ̂21 . Note that the superscripts for the ξ̂’s are indices, not
powers.

Recall, that the whole business regarding eigenvalues and eigenvectors
came about by simply assuming solutions of the form ξ(t) = ξ̂eλt. Substi-

tuting this into ξ̇ = Aξ then indicated that ξ̂ had to be an eigenvector and
λ had to be an eigenvalue. The approach now is pretty obvious: substitute
the assumed form of the second homogeneous solution

ξh(t) =
(

ξ̂2 + tξ̂1
)

eλt

to verify first, that ξ̂11 indeed satisfies the eigenvector equation (so that
the fact that they are the same in this example is not a coincidence) and

second, to determine what sort of equation ξ̂21 must satisfy. Differentiating
and substituting gives

λ
(

ξ̂2 + tξ̂1
)

eλt + ξ̂1eλt = A
(

ξ̂2 + tξ̂1
)

eλt.

Since this must hold for all t, the coefficients of the different powers of t
must be equal. Therefore, collecting terms multiplying the same powers of
t gives

t0 : λ
(

ξ̂2 + ξ̂1
)

eλt = Aξ̂2eλt

t1 : λξ̂1eλt = Aξ̂1eλt.
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Since eλt is never zero we have the following two equations

(A− λI) ξ̂1 = 0

(A− λI) ξ̂2 = ξ̂1.

The first equation has already been solved, so

ξ̂1 =

[

1
−2

]

.

For the second equation we have

[

2 1 1
−4 −2 −2

]

⇐⇒
[

2 1 1
0 0 0

]

.

Clearly, as with eigenvectors, the solution is determined only up to an ar-
bitrary scaling constant. In this case, clearly, the vector

ξ̂2 =

[

0
1

]

satisfies the equation for ξ̂2.

The task now is to generalize the approach used in the above example to
systems of n equations where the multiplicity of a repeated eigenvalue may be
greater than 2.

Now consider the general case of

ξ̇ = Aξ A ∈ R
n×n,

and assume that the algebraic multiplicity of eigenvalue λi is m but that the ge-
ometric multiplicity is less than m. Motivated by the above example, clearly the
approach is to multiply exponential solutions by t to obtain additional linearly
independent solutions. In the example, since the system was second order, the
highest power of t in the general solution was 1; however, in the case where the
algebraic multiplicity is greater than 2, additional powers of t may be necessary.
Therefore, let us propose the following homogeneous solution corresponding to
eigenvalue λi with algebraic multiplicity m

ξ(t) =

(

ξ̂m + tξ̂m−1 +
t2

2!
ξ̂m−2 + · · · + tm−1

(m− 1)!
ξ̂1
)

eλit. (6.27)

Differentiating this proposed solution gives

ξ̇(t) = λi

(

ξ̂m + tξ̂m−1 +
t2

2!
ξ̂m−2 + · · · + tm−1

(m− 1)!
ξ̂1
)

eλit

+

(

ξ̂m−1 + tξ̂m−2 + · · · + tm−2

(m− 2)!
ξ̂1
)

eλit. (6.28)
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Also,

Aξ(t) = A
(

ξ̂m + tξ̂m−1 + t2ξ̂m−2 + · · · + tm−1ξ̂1
)

eλit. (6.29)

Since eλit is never zero it can be canceled from both equations and since ξ̇ = At
must hold for all t, each the terms for each power of t in Equations 6.28 and
6.29, which gives

t0 : λiξ̂
m + ξ̂m−1 = Aξ̂m

t1 : λiξ̂
m−1 + ξ̂m−2 = Aξ̂m−1

t2 : λiξ̂
m−2 + ξ̂m−2 = Aξ̂m−2

...
...

tm−1 : λiξ̂
1 = Aξ̂1.

so, the following sequence is obtained

(A− λiI) ξ̂
1 = 0 (6.30)

(A− λiI) ξ̂
2 = ξ̂1

(A− λiI) ξ̂
3 = ξ̂2

...

(A− λiI) ξ̂
m = ξ̂m−1

The first equation is simply the equation for a regular eigenvalue. The vec-
tors ξ̂2 through ξ̂m are called generalized eigenvectors and are determined by
sequentially solving the second through mth equations.

Note that if the second line of Equation 6.30 is multiplied on the left by
(A− λiI) then

(A− λiI) (A− λiI) ξ̂
2 = (A− λiI) ξ̂

1,

but since
(A− λiI) ξ̂

1 = 0

then
(A− λiI)

2
ξ̂2 = 0.

Similarly, multiplying the jth line in Equation 6.30 by (A− λiI)
j

where 1 <
j < m gives

(A− λiI)
j
ξ̂j = 0.

Further note that

(A− λiI)
m
ξ̂j = (A− λiI)

m−j
(A− λiI)

j
ξ̂j = 0.

Hence, all the eigenvectors and generalized eigenvectors associated with λi are
in the null space of (A− λiI)

m
, which motivates the following definition.

Definition 6.8.11 (Generalized Eigenspace) The null space of (A− λiI)
m

is the generalized eigenspace of A associated with λi. ⋄
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The following theorem assures us that the dimension of the generalized
eigenspace associated with λi is the same as the algebraic multiplicity of λi.
This fact is necessary in order to ensure that enough generalized eigenvectors
exist to generate a full set of linearly independent homogeneous solutions to
construct a general solution.

Theorem 6.8.12 The dimension of the generalized eigenspace of A associated
with λi is equal to the algebraic multiplicity of the eigenvalue λi, i.e., if the
algebraic multiplicity of the eigenvalue λi is m, then

dim (N (A− λiI)
m

) = m.

Proof The reader is referred to [7] and [9]. �

The following theorem gives the form of the homogeneous solution for any
vector in generalized eigenspace of λi.

Theorem 6.8.13 For A ∈ Rn×n and λi an eigenvector of A with algebraic
multiplicity m, if

(A− λiI)
m
ξ̂ = 0,

then

ξ(t) =

(

ξ̂ + t (A− λiI) ξ̂ +
t2

2!
(A− λiI)

2
ξ̂ + · · · + tm−1

(m− 1)!
(A− λiI)

m−1
ξ̂

)

eλit

(6.31)
satisfies

ξ̇ = Aξ.

Proof This is by direct computation. Simply differentiate ξh(t) and substitute
into ξ̇ = Aξ. �

So, finally we have the following solution technique for ξ̇ = Aξ, for A ∈ Rn×n

where λi has an algebraic multiplicity of m.

1. For the non-repeated ed eigenvalues, λj , the corresponding homogeneous

solution is ξh(t) = ξ̂jj e
λjt. If two of these eigenvalues are a complex conju-

gate pair, then converting the homogeneous solution to sines and cosines
as outlined in Section 6.7 is preferable.

2. For each repeated λi

(a) Find all m ξ̂ in the generalized eigenspace of λi, i.e.,

(A− λiI)
m
ξ̂ = 0.

These ξ̂ may be regular eigenvectors, generalized eigenvectors or lin-
ear combinations thereof.
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(b) The homogeneous solution corresponding to each ξ̂ii is

ξ(t) =

(

ξ̂ + t (A− λiI) ξ̂ +
t2

2!
(A− λiI)

2
ξ̂ + · · · + tm−1

(m− 1)!
(A− λiI)

m−1
ξ̂

)

eλit.

A few examples will help illustrate the approach.

Example 6.8.14 Determine the general solution to ξ̇ = Aξ where

A =









1 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2









.

Since the matrix is triangular, the eigenvalues are the values along the
diagonal. Thus

λ1 = 1

λ2 = 2

λ3 = 2

λ4 = 2.

Thus, λ = 2 is an eigenvalue with algebraic multiplicity of 4. For λ1 = 1,
the eigenvector is

(A− λ1I) ξ̂
1 = 0 ⇐⇒









0 0 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 0









⇐⇒ ξ̂1 =









1
0
0
0









.

For λ2 = λ3 = λ4 = 2 we need to find all three vectors that satisfy
(A− 2I)

3
ξ̂ = 0, so we must compute

(A− 2I)
3

=









−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

Hence we need to find three solutions to








−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









.

The free components are obviously the second, third and fourth components.
Hence we have

ξ̂2 =









0
1
0
0









, ξ̂3 =









0
0
1
0









, ξ̂4 =









0
0
0
1









.
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Thus, the general solution is

ξ(t) = c1ξ̂1e
λ1t

+ c2

(

ξ̂2 + t (A− 2I) ξ̂2 +
t2

2!
(A− 2I)2 ξ̂2

)

eλ2t

+ c3

(

ξ̂3 + t (A− 2I) ξ̂3 +
t2

2!
(A− 2I)

2
ξ̂3
)

eλ2t

+ c4

(

ξ̂4 + t (A− 2I) ξ̂4 +
t2

2!
(A− 2I)

2
ξ̂4
)

eλ2t.

Since we need them in the answer, observe that

(A− 2I) =









1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0









and (A− 2I)
2

=









1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0









and hence

(A− 2I) ξ̂2 =









0
0
0
0









(A− 2I)
2
ξ̂2 =









0
0
0
0









(A− 2I) ξ̂3 =









0
1
0
0









(A− 2I)2 ξ̂3 =









0
0
0
0









(A− 2I) ξ̂4 =









0
0
1
0









(A− 2I)
2
ξ̂4 =









0
1
0
0









.

So, finally, the general solution is

= c1









1
0
0
0









et + c2









0
1
0
0









e2t + c3

















0
0
1
0









+ t









0
1
0
0

















e2t +

c4

















0
0
0
1









+ t









0
0
1
0









+
t2

2









0
1
0
0

















e2t.

That this is a solution may be verified by directly substituting this into the
original differential equation.
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Example 6.8.15 Determine the general solution to

ξ̇ = aξ

where

A =





3 −1 0
1 1 0
0 0 2



 .

Computing
∣

∣

∣

∣

∣

∣

3 − λ −1 0
1 1 − λ 0
0 0 2 − λ

∣

∣

∣

∣

∣

∣

= 0

using a cofactor expansion across the third row gives

(2 − λ) [(3 − λ) (1 − λ) + 1] =

(2 − λ)
[

λ2 − 4λ+ 4
]

=

(2 − λ)
[

(2 − λ)
2
]

= 0.

Hence, λ = 2 has an algebraic multiplicity of three.

Next we must determine the vectors that span the null space of
(A− λI)

3
. Substituting λ = 2 gives

(A− 2I) =





1 −1 0
1 −1 0
0 0 0





and an simple calculation shows that

(A− 2I)
2

= (A− 2I)
3

=





0 0 0
0 0 0
0 0 0



 ,

so we may choose any three vectors that span R3. Just for fun, we will
choose

ξ̂1 =





1
0
0



 ξ̂2 =





1
1
0



 ξ̂3 =





1
1
1



 .
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All that is left to do is to substitute into Equation 6.31, which gives

ξ(t) = c1e
2t









1
0
0



+ t





1 −1 0
1 −1 0
0 0 0









1
0
0







+

c2e
2t









1
1
0



+ t





1 −1 0
1 −1 0
0 0 0









1
1
0







+

c3e
2t









1
1
1



+ t





1 −1 0
1 −1 0
0 0 0









1
1
1







+

= c1e
2t









1
0
0



+ t





1
1
0







+ c2e
2t





1
1
0



+ c3e
2t





1
1
1



 .

Just to complete the picture, let us repeat the previous example, but choose
the usual basis for R3 instead.

Example 6.8.16 Returning to Example 6.8.15, choose

ξ̂1 =





1
0
0



 ξ̂2 =





0
1
0



 ξ̂3 =





0
0
1



 .

Substituting into Equation 6.31 gives

ξ(t) = c1e
2t









1
0
0



+ t





1 −1 0
1 −1 0
0 0 0









1
0
0







+

c2e
2t









0
1
0



+ t





1 −1 0
1 −1 0
0 0 0









0
1
0







+

c3e
2t









0
0
1



+ t





1 −1 0
1 −1 0
0 0 0









0
0
1







+

= c1e
2t









1
0
0



+ t





1
1
0







+ c1e
2t









0
1
0



+ t





−1
−1
0







+ c3e
2t





0
0
1



 .

This answer may appear to be different from the answer in Exam-
ple 6.8.15, however, if we let

k1 = c1

k2 = c1 + c2

k3 = c1 + c2 + c3
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the answer is

ξ(t) = k1e
2t









1
0
0



+ t





1
1
0







+ k2e
2t





1
1
0



+ k3e
2t





1
1
1



 ,

which is the same.

6.9 Stability

6.10 Diagonalization and Jordan Normal Form

6.11 Applications of Homogeneous Systems of
First Order Equations

This section has been moved to Chapter 7, Section 7.3.

6.12 Nonhomogeneous Systems of First Order
Equations

Now we consider how to solve systems of the type

ξ̇ = Aξ + g(t),

where

A ∈ R
n×n

ξ ∈ R
n

g(t) ∈ R
n,

or in detail

d

dt











ξ1
ξ2
...
ξn











=











a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann





















ξ1
ξ2
...
ξn











+











g1(t)
g2(t)

...
gn(t)











. (6.32)

First consider a mechanical example that gives rise to equations of this na-
ture.
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Example 6.12.1 As an example of a type of system that is modeled by
such a set of equations, consider again the system illustrated in Figure 6.1,
but unlike before we will not assume that F (t) = 0. As before, if

ξ1 = x1

ξ2 = ẋ1

ξ3 = x2

ξ4 = ẋ2

then the equations of motion given in Equation 6.7 are equivalent to

d

dt









ξ1
ξ2
ξ3
ξ4









=









0 1 0 0

−k1+k2
m1

− b1+b2
m1

k2
m1

b2
m1

0 0 1 0
k2
m2

b2
m2

− k2
m2

− b2
m2

















ξ1
ξ2
ξ3
ξ4









+









0
0
0

F (t)
m2









.

The following three methods are appropriate for solving nonhomogeneous
systems of first order linear ordinary differential equations.

6.12.1 Diagonalization and Jordan Canonical Form

The fundamental idea underlying this approach is to convert the system of
coupled first order equations into decoupled equations. What this means math-
ematically will be apparent shortly, but the consequence of this approach is
unlike the system in Equation 6.32 where the entire system must be solved at
once, each equation (or row) can be solved individually, or one at a time. First
we need to investigate the concept of converting a matrix to diagonal form.

For a system of the form

ξ̇ = Aξ + g(t) (6.33)

we first consider the easier case where A has a full set of n linearly indepen-
dent eigenvectors, ξ̂1, . . . , ξ̂n, and define the matrix T as the matrix with the
eigenvectors of A as its columns, i.e.,

T =
[

ξ̂1 ξ̂2 · · · ξ̂n
]

.

Since the definition of an eigenvector is

Aξ̂i = λi ξ̂i

then

AT =
[

λ1ξ̂1 λ2ξ̂2 · · · λnξ̂n
]

.
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Now, since we assumed that ξ̂1, ξ̂2, . . . , ξ̂n were linearly independent, then T
is invertible. Note that by definition

T−1T =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











.

Considering this equation column by column, we have

T−1ξ̂1 =











1
0
...
0











, T−1ξ̂2 =











0
1
...
0











, · · · T−1ξ̂n =











0
0
...
1











.

Also, since Aξ̂i = λiξ̂i

T−1Aξ̂1 = T−1λ1ξ̂1 = λiT
−1ξ̂1 = λ1











1
0
...
0











=











λ11
0
...
0











,

T−1Aξ̂2 = T−1λ2ξ̂2 = λiT
−1ξ̂2 = λ2











0
1
...
0











=











0
λ21
...
0











,

and so forth until

T−1Aξ̂n = T−1λnξ̂n = λiT
−1ξ̂n = λn











1
0
...
0











=











0
0
...
λn











.

Finally, putting it all together gives the important relation

T−1AT =















λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn















.

Now, using this, again consider Equation 6.33 and let

ξ = Tψ
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where the columns of T are the eigenvectors of A as before. Note that since T
is a constant matrix,

ξ̇ = T ψ̇.

Substituting into Equation 6.33 gives

T ψ̇ = ATψ + g(t),

or

ψ̇ = T−1ATψ + T−1g(t).

In detail, this looks like

d

dt















ψ1

ψ2

ψ3

...
ψn















=















λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn





























ψ1

ψ2

ψ3

...
ψn















+ T−1















g1(t)
g2(t)
g3(t)

...
gn(t)















(6.34)

=















λ1ψ1

λ2ψ2

λ3ψ3

...
λnψn















+ T−1















g1(t)
g2(t)
g3(t)

...
gn(t)















=















λ1ψ1

λ2ψ2

λ3ψ3

...
λnψn















+















h1(t)
h2(t)
h3(t)

...
hn(t)















where

h(t) = T−1g(t).

The significance of Equation 6.34 is that each of the ψi equations are decou-
pled and in the form of

ψ̇i = λiψ + hi(t).

Hence, each can be solved independently using the appropriate method from
Chapter 2. For example, using an integrating factor

d

dt
ψi − λiψi = hi(t)

e−λit

(

d

dt
ψi − λiψi

)

= e−λithi(t)

d

dt

(

e−λitψi
)

= e−λithi(t).
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Hence, integrating both sides gives

∫ t

0

d

dτ

(

e−λiτψi(τ)
)

=

∫ t

0

e−λiτhi(τ)dτ

e−λitψi(t) − ψi(0) =

∫ t

0

e−λiτhi(τ)dτ.

Hence

ψi(t) = eλit

∫ t

0

e−λiτh(τ)dτ + ψi(0)eλit,

if the initial condition is specified or

ψi(t) = eλit

∫ t

0

e−λiτh(τ)dτ + ceλit,

if the general solution is desired.
After solving all the ψi(t) equations, the solution for the ξ variables is simply

computed using the original equation

ξ = Tψ.

Example 6.12.2 Determine the general solution to

d

dt





ξ1
ξ2
ξ3



 =





1 1 1
2 1 −1
−8 −5 −3









ξ1
ξ2
ξ3



+





0
0

cos t



 .

Computing the eigenvalues and eigenvectors gives

λ1 = −2

λ2 = −1

λ3 = 2

and

ξ̂1 =





−4
5
7



 , ξ̂2 =





−3
4
2



 , ξ̂3 =





0
−1
1



 .

Thus

T =





−4 −3 0
5 4 −1
7 2 1





and

T−1 =





1
2

1
4

1
4

−1 − 1
3 − 1

3
− 3

2 − 13
12 − 1

12



 .
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Computing T−1AT and T−1g(t) gives the following equations for ψ

d

dt





ψ1

ψ2

ψ3



 =





−2 0 0
0 −1 0
0 0 2









ψ1

ψ2

ψ3



+





1
4 cos t

− 1
3 cos t

− 1
12 cos t





or as individual equations

ψ̇1 = −2ψ1 +
1

4
cos t

ψ̇2 = −ψ2 −
1

3
cos t

ψ̇3 = 2ψ3 −
1

12
cos t.

The solutions to these equations are

ψ1 = e−2t

∫ t

0

e2t
1

4
cos τdτ + ψ1(0)e−2t

ψ2 = −e−t
∫ t

0

et
1

3
cos τdτ + ψ2(0)e−t

ψ3 = −e2t
∫ t

0

e−2t 1

12
cos τdτ + ψ3(0)e2t,

or

ψ1(t) = c1e
−2t +

1

10
cos t+

1

20
sin t

ψ2(t) = c2e
−t − 1

6
cos t− 1

6
sin t

ψ3(t) = c3e
2t +

1

30
cos t− 1

60
sin t.

The final solution is computed by determining

ξ = Tψ,

which is a bit too messy to write out in detail.

which is




ξ1
ξ2
ξ3



 = T =





−4 −3 0
5 4 −1
7 2 1









c1e
−2t + 1

10 cos t+ 1
20 sin t

c2e
−t − 1

6 cos t− 1
6 sin t

c3e
2t + 1

30 cos t− 1
60 sin t





=





−4ψ1(t) − 3ψ2(t)
5ψ1(t) + 4ψ2(t) − ψ3(t)
7ψ1(t) + 2ψ2(t) + ψ3(t)



 ,
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which gives

ξ1(t) = −4c1e
−2t − 2

5
cos t− 1

5
sin t− 3c2e

−t +
1

2
cos t+

1

2
sin t

ξ2(t) = 5c1e
−2t +

1

2
cos t+

1

4
sin t+ 4c2e

−t − 2

3
cos t− 2

3
sin t−

c3e
2t − 1

30
cos t+

1

60
sin t

ξ3(t) = 7c1e
−2t +

7

10
cos t+

7

20
sin t+ 2c2e

−t − 1

3
cos t− 1

3
sin t+

c3e
2t +

1

30
cos t− 1

60
sin t.

6.12.2 Undetermined Coefficients

Recall that the method of undetermined coefficients from Section 3.4.1 was
based upon the fact that derivatives of functions of the form

1. sinωt and cosωt,

2. eαt,

3. α0t
n + α1t

n−1 + α2t
n−2 + · · · + αn−1t+ αn, and

4. products and sums of them,

are exactly the same set of functions. Thus when the nonhomogeneous term
contains function of this type, the particular solution of an ordinary differential
equation will be a general combination of the same type of functions. There
are two slight complications or variations that are necessary distinguish the ap-
proach for systems of first order equations from one scalar second order system.

General Form of Particular Solution

The first complication is that even though the nonhomogeneous term may ap-
pear in one component of the differential equation, the form of the solution must
have undetermined coefficients for all of the components. In a general functional
description, if the all the nonhomogeneous terms that appear in the vector g(t)
would require a particular solution of the form

xp(t) = af1(t) + bf2(t) + cf3(t) + · · ·

in the scalar (first or second order) case, then in the case of

ξ̇ = Aξ + g(t), ξ ∈ R
n,

then the assumed form of the solution will be

ξp(t) = af1(t) + bf2(t) + cf3(t) + · · ·
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where a, b, c, . . . ∈ Rn, i.e., the coefficients are vectors. The following example
illustrates this point.

Example 6.12.3 Find the general solution to

d

dt

[

ξ1
ξ2

]

=

[

2 1
0 3

] [

ξ1
xi2

]

+

[

0
cos 4t

]

.

In the scalar case, the assumed form of the solution would simply be
xp(t) = a cos 4t+ b sin 4t, so for this problem we assume

ξp(t) = a cos 4t+ b sin 4t =

[

a1

a2

]

cos 4t+

[

b1
b2

]

sin 4t.

The rest of the procedure is exactly as before. Substitute the assumed
form of the particular solution into the differential equations and equate
the coefficients of different functions of t. Thus,

ξ̇p(t) = −4a sin 4t+ 4b cos 4t,

and substituting gives

[

−4a1 sin 4t+ 4b1 cos 4t
−4a2 sin 4t+ 4b2 cos 4t

]

=

[

2 1
0 3

] [

a1 cos 4t+ b1 sin 4t
a2 cos 4t+ b2 sin 4t

]

+

[

0
cos 4t

]

.

Since this must be true for all time, the coefficients of the sine and cosine
terms in each equation must be equal. Thus, the coefficients are determined
by the following four equations:

sine term, first equation =⇒ −4a1 = 2b1 + b2

cosine term, first equation =⇒ 4b1 = 2a1 + a2

sine term, second equation =⇒ −4a2 = 3b2

sine term, first equation =⇒ 4b2 = 3a2 + 1.

Solving these gives

a1 = − 1

50

a2 = − 3

25

b1 = − 1

25

b2 =
4

25
.

Thus the particular solution is

ξp(t) =

[

− 1
50

− 3
25

]

cos 4t+

[

− 1
25

− 4
25

]

sin 4t.
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To compute the general solution, the homogeneous solution, i.e., the solu-
tion to

ξ̇ = Aξ

is needed. A simple computation shows that the eigenvalues and eigenvec-
tors of A are

λ1 = 3, ξ̂1 =

[

1
1

]

, λ2 = 2, ξ̂2 =

[

1
0

]

.

Thus, the general solution is

ξ(t) = c1

[

1
1

]

e3t + c2

[

1
0

]

e2t +

[

− 1
50

− 3
25

]

cos 4t+

[

− 1
25

− 4
25

]

sin 4t.

In the previous example, note that the sine and cosine terms appear in both
components of the solution even though the nonhomogeneous term contains
cos 4t only in the second term. This is due to the fact that the equations are
coupled, and the effect of the nonhomogeneity is not limited to the line in which
it appears.

Equivalent Homogeneous Solution and Nonhomogeneous Term

The second complication is when the nonhomogeneous term is the exponential of
an eigenvalue of the matrix A. When confronted with this problem in Chapter 3,
the approach was to multiply the assumed form of the particular solution by the
dependent variable. The approach for nonhomogeneous systems of first order
equations with equivalent homogeneous solutions and nonhomogeneous terms is
similar, but with a slight twist, as the following examples illustrate.

The first example is the second order scalar case, which is included to help
you recall the procedure from Chapter 3.

Example 6.12.4 (Review problem from Chapter 3) Determine the gen-
eral solution to

ẍ+ 4x = cos 2t. (6.35)

Assuming a homogeneous solution of the form

xh(t) = eλt

and substituting gives

λ2 + 4 = 0 =⇒ λ = ±2i.

For the particular solution, we are first inclined to assume a solution of the
form

xp(t) = a cos 2t+ b sin 2t.

One that is observant and experienced in dealing with undetermined coeffi-
cients will immediately recognize that this will not work since it is actually
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a homogeneous solution. When xp(t) of this form is substituted into Equa-
tion 6.35 it will disappear leaving nothing to equate to the nonhomogeneous
term since it is actually a solution of the homogeneous equation. In detail,

ẍp(t) = −4a cos 2t− 4b sin 2t,

and substituting gives

−4a cos 2t− 4b sin 2t+ 4 (a cos 2t+ b sin 2t) = cos 2t

0 = cos 2t.

The 0 on the left hand side of the previous equation is guaranteed to occur
since xp(t) happens to satisfy

ẍ+ 4x = 0.

Recall, that the correct form to assume for the particular solution in this
case would be

xp(t) = t (a cos 2t+ b sin 2t) .

Then,
ẍp(t) = −4 ((at− b) cos 2t+ (a+ bt) sin 2t)

and substituting and equating coefficients gives

−4 ((at− b) cos 2t+ (a+ bt) sin 2t) +

4t (a cos 2t+ b sin 2t) = cos 2t.

Since this must be true for all t, the coefficients of sin 2t, t sin 2t, cos 2t and
t cos 2t must be equal. Thus

−4a = 0

−4b+ 4b = 0

4b = 1

−4a+ 4a = 0

respectively. From this we obtain

a = 0

b =
1

4
,

and hence

xp(t) =
1

4
t sin 2t.

The analogous situation for a system of first order equations is when the
nonhomogeneous term includes the exponential of one of the eigenvalues of the
matrix A.
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Example 6.12.5 (Wrong approach number 1) Determine the general
solution to

d

dt

[

ξ1
ξ2

]

=

[

2 1
0 3

] [

ξ1
ξ2

]

+

[

0
e3t

]

.

An easy computation shows that the eigenvalues and corresponding eigen-
vectors of A are

λ1 = 2 ξ̂1 =

[

1
0

]

and λ2 = 3 ξ̂2 =

[

1
1

]

.

Since the nonhomogeneous term contains e3t which is precisely the expo-
nential of an eigenvalue of A, we should expect to run into trouble equating
coefficients. Trying it anyway gives

ξp(t) = ae3t =

[

a1

a2

]

e3t.

Thus
ξ̇p(t) = 3ae3t,

and substituting into the differential equation gives

3

[

a1

a2

]

e3t =

[

2 1
0 3

] [

a1

a2

]

e3t +

[

0
e3t

]

.

Equating coefficients of e3t in each equation gives

3a1 = 2a1 + a2

3a2 = 3a2 + 1.

Since there is no value for a2 that can satisfy the second equation, there is
no solution, and hence, no way to determine the undetermined coefficients.
It is left as a homework problem to see that exactly the same thing happens
if the eigenvalue is purely imaginary (complex) and the nonhomogeneous
term contains a sine or cosine at the same frequency.

Since the correct approach in Chapter 3 was to simply multiply the assumed
form of the solution by the independent variable, t, one may assume that the
same approach works in this case as well. Unfortunately, as the following ex-
ample illustrates, it does not work.

Example 6.12.6 (Wrong approach number 2) Again consider

d

dt

[

ξ1
ξ2

]

=

[

2 1
0 3

] [

ξ1
ξ2

]

+

[

0
e3t

]

.

Since the nonhomogeneous term contains e3t which is precisely the expo-
nential of an eigenvalue of A, we should expect to run into trouble equating
coefficients. Thus assume

ξp(t) = ate3t =

[

a1

a2

]

te3t.
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Thus
ξ̇p(t) = 3ate3t + ae3t

and substituting into the differential equation gives
(

3t

[

a1

a2

]

+

[

a1

a2

])

e3t =

[

2 1
0 3

] [

a1

a2

]

te3t +

[

0
e3t

]

.

Equating coefficients of e3t and te3t in each equation gives

a1 = 0

3a1 = 2a1 + a2

a2 = 1

3a2 = 3a2.

Again, there is no solution.

The following example elaborates upon the reason why the simple approach
of only multiplying by the independent variable t does not work.

Example 6.12.7 Determine the general solution to

d

dt

[

ξ1
ξ2

]

=

[

3 0
0 2

] [

ξ1
ξ2

]

+

[

e2t

e2t

]

.

These equations are decoupled, so we can immediately see (or compute)

ξ1h
= e3t

ξ2h
= e2t.

Since the homogeneous solution for ξ2 is the same as the nonhomogeneous
term, clearly assuming e2t will be problematic. Thus, we need a term of the
form te2t in the assumed form of the particular solution for ξ3. However,
a term of the form e2t in the particular solution is exactly what is needed
for the first line since the homogeneous solution for ξ1 contains e3t, not e2t.
Thus, assuming

ξp(t) = ae2t

will not work because of the ξ2 component, and

ξp(t) = ate2t

will not work because of the ξ1 component. A solution containing both terms
is necessary.

Unfortunately, there is still one final twist to this whole affair. Since it is
necessary to assume a particular solution that is the sum of the independent
variable, t times the homogeneous solution and the homogeneous solution itself,
there will not be a unique particular solution. This is because of the the term in
the homogeneous solution that is not multiplied by the independent variable in
the assumed form of the particular solution can be combined with the homoge-
neous solution in an arbitrary manner. This (along with the correct approach)
is illustrated by the following example.
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Example 6.12.8 (Right approach) Again consider

d

dt

[

ξ1
ξ2

]

=

[

2 1
0 3

] [

ξ1
ξ2

]

+

[

0
e3t

]

.

Observing that λ = 3 is an eigenvalue of A we assume

ξp(t) = ate3t + be3t =

[

a1

a2

]

te3t +

[

b1
b2

]

e3t.

Thus

ξ̇p(t) = 3ate3t + ae3t + 3be3t

and substituting into the differential equation gives

(

3t

[

a1

a2

]

+

[

a1

a2

]

+ 3

[

b1
b2

])

e3t =

[

2 1
0 3

]([

a1

a2

]

t+

[

b1
b2

])

e3t +

[

0
e3t

]

.

Equating coefficients of e3t and te3t in each equation gives

a1 + 3b1 = 2b1 + b2

3a1 = 2a1 + a2

a2 + 3b2 = 3b2 + 1

3a2 = 3a2.

Simplifying these equations gives only three independent equations

a1 + b1 = b2

a1 = a2

a1 = 1.

The reason there are less than four equations, and hence no unique solution,
is because the vector b in the assumed form of the solution must be an
eigenvector of A and hence can be combined in any linear way with one of
the homogeneous solutions. One solution to the above three equations is

a1 = 1

a2 = 1

b1 = 0

b2 = 1,

and hence

ξp(t) =

[

1
1

]

te3t +

[

0
1

]

e3t. (6.36)
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This particular solution is not unique. Indeed,

a1 = 1

a2 = 1

b1 = −1

b2 = 0,

also work giving

ξp(t) =

[

1
1

]

te3t +

[

−1
0

]

e3t. (6.37)

The reason both particular solutions work is that when they are combined
with the homogeneous solution, they yield the same solution. In particular,
from Example 6.12.5 we can write the homogeneous solution as

ξh(t) = c1

[

1
0

]

e2t + c2

[

1
1

]

e3t.

Then the general solution using the particular solution from Equation 6.36
gives

ξ(t) = c1

[

1
0

]

e2t + c2

[

1
1

]

e3t +

[

1
1

]

te3t +

[

0
1

]

e3t,

and the general solution using the particular solution from Equation 6.37
gives

ξ(t) = ĉ1

[

1
0

]

e2t + ĉ2

[

1
1

]

e3t +

[

1
1

]

te3t +

[

−1
0

]

e3t.

For c2 from the first equation and ĉ2 from the second equation, if ĉ2 = c2+1
the equations are identical.

6.12.3 Variation of Parameters

With all the complications involved in the method of undetermined coefficients,
one may be hesitant to even venture into the realm of variation of parameters
since, at least in Chapter 3 the derivation was rather complicated. Thankfully,
in the case of nonhomogeneous systems of first order equations, variation of
parameters is even more straightforward than in the scalar second order case.

Given
ξ̇ = Aξ + g(t) (6.38)

where

A ∈ R
n×n

ξ ∈ R
n

g(t) ∈ R
n
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assume that ξ1h
, ξ2h

, . . . , ξnh
are n linearly independent homogeneous solutions

to Equation 6.38, i.e., they satisfy

ξ̇ih = Aξih .

Because it is useful subsequently, we first construct and define a matrix, Ξ(t)
where the columns of Ξ(t) are the homogeneous solutions, ξih(t).

Definition 6.12.9 (Fundamental Matrix Solution) Let ξ1h
, ξ2h

, . . . , ξnh
sat-

isfy
ξ̇ih = Aξih .

The fundamental matrix solution is the matrix

Ξ(t) =
[

ξ1h
(t) ξ2h

(t) · · · ξnh
(t)

]

,

i.e., the columns of Ξ(t) are the homogeneous solutions. ⋄

Example 6.12.10 Consider the general solution to ξ̇ = Aξ where

A =









2 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3









.

Skipping the details the general solution was

ξ(t) = c1ξ̂1e
λ1t + c2ξ̂2e

λ1t + c3ξ̂
1
3e
λ3t + c4

(

ξ̂23 + tξ̂13

)

eλ3t

= c1









1
0
0
0









e2t + c2









0
1
0
0









e2t + c3









0
0
1
0









e3t +

c4

















0
0
0
1









+ t









0
0
1
0

















e3t.

Since each term that is multiplied by a constant, ci is a homogeneous solu-
tion simply construct a matrix with each one as a column to construct the
fundamental matrix solution

Ξ(t) =
[

ξ̂1e
λ1t ξ̂2e

λ2t ξ̂13e
λ3t

(

ξ̂23 + tξ̂13

)

eλ3t
]

=

















1
0
0
0









e2t









0
1
0
0









e2t









0
0
1
0









e3t

















0
0
0
1









+ t









0
0
1
0

















e3t









=









e2t 0 0 0
0 e2t 0 0
0 0 e3t te3t

0 0 0 e3t









.
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The fundamental matrix solution has one important property that will be
used in the derivation of the variation of parameters solution; namely, the whole
matrix satisfies the homogeneous equation. In other words, if Ξ(t) is the funda-
mental matrix solution to

ξ̇ = Aξ

then
Ξ̇ = AΞ.

This is true since each column of Ξ(t) is a homogeneous solution and is illustrated
by the following example.

Example 6.12.11 From Example 6.12.10 we have

Ξ(t) =









e2t 0 0 0
0 e2t 0 0
0 0 e3t te3t

0 0 0 e3t









so

Ξ̇(t) =









2e2t 0 0 0
0 2e2t 0 0
0 0 3e3t 3te3t + e3t

0 0 0 3e3t









=









2 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3

















e2t 0 0 0
0 e2t 0 0
0 0 e3t te3t

0 0 0 e3t









.

Thus Ξ̇ = AΞ.

Similar to the approach for second order equations, the approach to find the
particular solution for a nonhomogeneous system of first order equations is to
assume that the particular solution is of the form of

ξp(t) = Ξ(t)u(t)

where u(t) is a vector of unknown functions. To determine u(t), simply substi-
tute into Equation 6.38. First note that (dropping the explicit dependence on
t)

ξ̇p = Ξ̇u+ Ξu̇.

Substituting into Equation 6.38 gives

Ξ̇u+ Ξu̇ = AΞu+ g.

Since
Ξ̇ = AΞ =⇒ Ξ̇u = AΞu
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so
Ξu̇ = g.

Since Ξ contains n linearly independent solutions, it is invertible and hence

u̇ = Ξ−1g =⇒ u(t) =

∫ t

t0

Ξ−1(τ)g(τ)dτ.

Substituting into the assumed form of the particular solution gives a complete
expression for the particular solution as

ξp(t) = Ξ

∫ t

t0

Ξ−1(τ)g(τ)dτ.

Note that to even compute the particular solution we need the fundamental
matrix which contains a full set of homogeneous solutions. Since any linear
combination of the homogeneous solutions can be expressed as

c1ξ1h
+ c2ξ2h

+ · · · + cnξnh
= Ξ(t)c

where

c =











c1
c2
...
cn











the general solution to Equation 6.38 is

ξ(t) = Ξ(t)c + Ξ(t)

∫ t

t0

Ξ−1(τ)g(τ)dτ. (6.39)

Finally, if the initial conditions, ξ(t0) are specified, then

ξ(t0) = Ξ(t0)c

since the integral with the same upper and lower limits is zero. Hence

c = Ξ−1(0)ξ(t0)

and substituting into the general solution gives the entire answer as

ξ(t) = Ξ(t)Ξ−1(t0)ξ(t0) + Ξ(t)

∫ t

t0

Ξ−1(τ)g(τ)dτ. (6.40)

An example illustrates the straightforward application of this method.

Example 6.12.12 Solve

d

dt

[

ξ1
ξ2

]

=

[

−3 1
1 −3

] [

ξ1
ξ2

]

+

[

e−4t

0

]

.
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A simple computation determines the eigenvalues and eigenvectors for the
matrix as

λ1 = −4 ξ̂1 =

[

−1
1

]

λ2 = −2 ξ̂2 =

[

1
1

]

,

thus

Ξ(t) =

[

−e−4t e−2t

e−4t e−2t

]

.

A simple computation determines that

Ξ−1(t) =
1

2

[

−e4t e4t

e2t e2t

]

,

and

Ξ−1(t)g(t) =

[

− 1
2

1
2e

−2t

]

.

Assuming that t0 = 0,

∫ t

0

Ξ−1(τ)g(τ)dτ =

∫ t

0

[

− 1
2

1
2e

−2τ

]

dτ

=

[

− 1
2τ

1
4

(

1 − e−2t
)

]

.

Then

Ξ(t)

∫ t

0

Ξ−1(τ)g(τ)dτ =

[

1
4

(

e−2t + 2te−4t − e−4t
)

1
4

(

e−2t − 2te−4t − e−4t
)

]

.

So finally we have

ξ(t) = Ξ(t)c+ Ξ(t)

∫ t

t0

Ξ−1(τ)g(τ)dτ

= c1

[

−e−4t

e−4t

]

+ c2

[

e−2t

e−2t

]

+

[

1
4

(

e−2t + 2te−4t − e−4t
)

1
4

(

e−2t − 2te−4t − e−4t
)

]

.

6.13 Applications of Nonhomogeneous Systems

of Equations

6.14 Exercises

It is possible to complete all of these exercises by hand.
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Problem 6.1 Determine the general solution to

ξ̇ = Aξ

where

A =









0 1 0 0
−4 4 0 0
0 0 3 2
0 0 −2 3









.

Problem 6.2 Determine the general solution to

ξ̇ = Aξ

where

A =

[

6 −4
0 2

]

.

Determine the solution if

ξ(0) =

[

2
1

]

.

Problem 6.3 Determine the general solution to

ξ̇ = Aξ

where

A =





−3 0 0
0 −3 1
0 1 −3



 .

Determine the solution if

ξ(0) =





3
2
2



 .

Problem 6.4 Determine the general solution to

ξ̇ = Aξ

where

A =





−3 0 0
−1 −3 1
−1 1 −3



 .

Determine the solution if

ξ(0) =





3
1
1



 .
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Problem 6.5 Determine the general solution to

ξ̇ = Aξ

where

A =





−8 7 1
0 −1 1
0 0 0



 .

Determine the solution if

ξ(0) =





2
1
1



 .

Problem 6.6 Determine the general solution to

ξ̇ = Aξ

where

A =





− 7
2

15
2 −3

− 3
2 − 1

2 3
0 0 1



 .

Determine the solution if

ξ(0) =





1
1
0



 .

Problem 6.7 Determine the general solution to

ξ̇ = Aξ

where

A =

[

−1 −4
4 −1

]

.

Problem 6.8 Determine the general solution to

ξ̇ = Aξ

where

A =





−1 −3 2
1 −5 5
3 −3 −2



 .

Problem 6.9 Determine the general solution to

ξ̇ = Aξ

where

A =









2 0 0 0
0 2 0 9
0 2 1 4
0 −4 0 14









.
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Problem 6.10 Determine the general solution to

ξ̇ = Aξ

where

A =





11 0 17
0 −6 0
−2 0 1



 .

Problem 6.11 Determine the general solution to

ξ̇ = Aξ

where

A =









−5 1 0 0
−1 −3 0 0
0 0 −1 −4
0 0 2 −5









.

Problem 6.12 Determine the general solution to

ξ̇ = Aξ

where

A =













−5 0 0 0 0
0 −3 2 0 0
0 −4 1 0 0
0 0 0 −5 1
0 0 0 −1 −7













.

Problem 6.13 Determine the solution to

ξ̇ = Aξ + g(t)

where

A =





−3 1 0
0 −2 0
1 1 −4





and

g(t) =





0
0

cos t



 .
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Chapter 7

Applications of Systems of
First Order Equations

7.1 Introduction

7.2 Linearization of Nonlinear Systems

7.3 Multi-Degree of Freedom Vibrations

Classical Normal Modes of Vibration

Consider the system illustrated in Figure 7.1. We will first analyze this
system using the approach from classical vibrations theory and then relate
it to the material covered previously in this chapter.

x1 x2

k1 k3 k2

m1 m2

Figure 7.1. Two degree of freedom mass-spring-damper sys-
tem.
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A simple analysis of the free body diagrams for the two masses yields the
following equations of motion

mẍ1 + (k1 + k3)x1 − k3x2 = 0 (7.1)

mẍ2 + (k2 + k3)x2 − k3x2 = 0.

Classical Approach

The classical approach is simply to assume (perhaps based upon some
intuitive insight into the problem) the form of the solutions for masses one
and two. For present purposes, assume

x1(t) = a1 cosωt

x2(t) = a2 cosωt.

Note the assume form of the solution is very restrictive; in particular, it will
at best only be valid when ẋ1(0) = ẋ2(0) = 0; furthermore, it assumes the
frequency of oscillation of the two masses must be the same. Regardless, let
us proceed to substitute these solutions into the equations of motion. Upon
doing so we obtain

[

−m1a1ω
2 + (k1 + k3) a1 − k3a2

]

sinωt = 0
[

−m2a2ω
2 + (k2 + k3) a2 − k3a1

]

sinωt = 0.

Since this must be true for all t, the terms in brackets must be zero, which
gives

a1

a2
=

−k3

m1ω2 − k1 − k3

a1

a2
=

m2ω
2 − k2 − k3

−k3
.

Since these must be equal

−k3

m1ω2 − k1 − k3
=
m2ω

2 − k2 − k3

−k3
,

which gives

ω4 +

(

k1 + k3

m1
+
k2 + k3

m2

)

ω2 +
k1k2 + k2k3 + k1k3

m1m2
= 0.

Note this is a quartic equation in ω but due to the absence of the odd powers
of ω it may be considered a quadratic equation in ω2. Although it is not
necessary, to simplify things a bit, assume

k1 = k2 = k (7.2)

m1 = m2 = m.
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Using these values

a1

a2
=

−k3

mω2 − k − k3
(7.3)

a1

a2
=

mω2 − k − k3

−k3
,

and

ω4 +

(

2
k + k3

m

)

ω2 +
k (k + 2k3)

m2
= 0.

This has roots

ω2 =
k + k3

m
±
√

(

k + k3

m

)2

− k (k + 2k3)

m2
,

so

ω2 =
k

m
or

=
k + 2k3

m
.

Substituting these values into Equation 7.3 gives

a1

a2
= 1

a1

a2
= −1,

for each of the two values of ω2 respectively.
The interpretation of these two pairs of values for ω2 and a1

a2
is straight-

forward. Considering

ω2 =
k

m
a1

a2
= 1

the two solutions are

x1(t) = a cos

√

k

m
t

x2(t) = a cos

√

k

m
t

where a1 = a2 = a. Thus, the two masses move with the same frequency, in
the same direction with the same magnitude of oscillation, as is schematically
illustrated in Figure 7.2.
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k

k

k3

k3

k

k

m

m

m

m

Figure 7.2. Mode one oscillations.

A similarly straight-forward analysis for the second solution shows that

x1(t) = a cos

√

k + 2k3

m
t

x2(t) = −a cos

√

k + 2k3

m
t,

where the masses move in opposite directions, as is illustrated in Figure 7.3.

Since the system is linear, the principle of superposition applies; hence,
any solution starting with zero initial velocities may be written as a combi-
nation of the two modes of oscillation

x1(t) = a cos
√
kmt+ b cos

√

k + 2k3mt

x2(t) = a cos
√
kmt− b cos

√

k + 2k3mt.

A similarly straightforward analysis starting with assumed solutions of
the form

x1(t) = a1 cosωt+ c1 sinωt

x2(t) = a2 cosωt+ c2 sinωt

would yield the same solutions for ω2 and the same conditions on the rela-
tionship between the coefficients b1 and b2. Since the same conditions apply
for b1 and b2, the same interpretation of the two modes applies for systems
with initial velocities.
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k

k

k3

k3

k

k

m

m

m

m

Figure 7.3. Mode two oscillations.

Hence any solution, including solutions with nonzero initial velocities,
may be represented as

x1(t) = a cos

√

k

m
t+ b cos

√

k + 2k3

m
t+ c sin

√

k

m
t+ d sin

√

k + 2k3

m
t

x2(t) = a cos

√

k

m
t− b cos

√

k + 2k3

m
t+ c sin

√

k

m
t− d sin

√

k + 2k3

m
t,

where the coefficients a, b, c and d depend upon the initial conditions.

Eigenvalue/Eigenvector Approach

Considering the equations of motion for the system illustrated in Fig-
ure 7.1, which are given by Equation 7.1, if

ξ1 = x1

ξ2 = ẋ1

ξ3 = x2

ξ4 = ẋ2,

and the simplifications given in Equation 7.2 hold, then

ξ̇ =
d

dt









ξ1
ξ2
ξ3
ξ4









=









0 1 0 0

−k+k3
m

0 k3
m

0
0 0 0 1
k3
m

0 −k+k3
m

0

















ξ1
ξ2
ξ3
ξ4









= Aξ.
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The eigenvalues of A are determined by the cofactor expansion

|A− λI| =

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 0

−k+k3
m

−λ k3
m

0
0 0 −λ 1
k3
m

0 −k+k3
m

−λ

∣

∣

∣

∣

∣

∣

∣

∣

= −λ

∣

∣

∣

∣

∣

∣

−λ k3
m

0
0 −λ 1

0 −k+k3
m

−λ

∣

∣

∣

∣

∣

∣

+ (−1)

∣

∣

∣

∣

∣

∣

−k+k3
m

k3
m

0
0 −λ 1
k3
m

−k+k3
m

−λ

∣

∣

∣

∣

∣

∣

= λ4 + 2
k + k3

m
λ2 +

(

k + k3

m

)2

−
(

k3

m

)2

= 0.

Hence

λ1 = i

√

k

m

λ2 = −i
√

k

m

λ3 = i

√

k + 2k3

m

λ4 = −i
√

k + 2k3

m
.
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Now computing the eigenvectors gives

(A− λ1I) ξ̂1 = 0 ⇐⇒

















−i
√

k
m

1 0 0 0

−k+k3
m

−i
√

k
m

k3
m

0 0

0 0 −i
√

k
m

1 0

k3
m

0 −k+k3
m

−i
√

k
m

0

















multiply first row by

−
k+k3

m

i
√

k
m

and add to sec-

ond row

=⇒















−i
√

k
m

1 0 0 0

0 i k3√
km

k3
m

0 0

0 0 −i
√

k
m

1 0

k3
m

0 −k+k3
m

−i
√

k
m

0















multiply first row by
k3
m

i
√

k
m

and add to fourth

row

=⇒

















−i
√

k
m

1 0 0 0

0 i
√

k3
km

k3
m

0 0

0 0 −i
√

k
m

1 0

0 −i
√

k3
km

−k+k3
m

−i
√

k
m

0

















add second row to fourth
row

=⇒

















−i
√

k
m

1 0 0 0

0 −i
√

k3
km

k3
m

0 0

0 0 −i
√

k
m

1 0

0 0 − k
m

−i
√

k
m

0

















multiply third row by

−
k
m

i
√

k
m

and add to fourth

row

=⇒















−i
√

k
m

1 0 0 0

0 −i
√

k3
km

k3
m

0 0

0 0 −i
√

k
m

1 0

0 0 0 0 0















.

Thus,

ξ̂1 =













−i
√

k
m

−i
√

k
m













.

Similar computations show that

ξ̂2 =













i
√

k
m

i
√

k
m













ξ̂3 =













1

i
√

k+2k3
m

−1

−i
√

k+2k3
m













ξ̂4 =













1

−i
√

k+2k3
m

−1

i
√

k+2k3
m













.
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The important point of this example is two fold:

1. the eigenvalues are exactly the same as the frequencies computed using
the classical method; and,

2. the eigenvectors reflect the relative magnitude conditions as well; i.e.,
in particular

(a) the first and third components of ξ̂1 and ξ̂2 are identical, which
is a consequence of the fact that a1

a2
= 1 in the case where the

frequency is
√

k
m

; and,

(b) the first and third components of ξ̂3 and ξ̂4 have the same mag-
nitude but opposite sign, which is a consequence of the fact that
a1

a2
= −1 in the case where the frequency is

√

k+2k3
m

.

7.4 Undamped Structural Dynamics

Consider the structure illustrated in Figure ??. It models a building with
n floors. Assume that the ith floor of the building has a mass of mi and
that the mass of the floors is much greater than the mass of the supporting
columns, so that the mass of the columns may be neglected.

7.5 Introduction to “Modern” Control

7.5.1 Controllability and observability

7.5.2 Pole placement

7.5.3 The linear quadratic regulator

7.6 Exercises

Problem 7.1 Determine the equations of motion for the system illus-
trated in Figure 7.4.

1. Write the equations as a set of two, second order ordinary differ-
ential equations.

2. Write the equations as a set of four, first order ordinary differential
equations of the form

ξ̇ = Aξ

where ξ ∈ R4 and A ∈ R4×4.
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m1

b1

k1

x1

m2

b2

k2

x2

b3

k3

Figure 7.4. Two mass sysetm for Problem 7.1.

m1

b1

k1

x1

m2

b2

k2

x2

x3

b3

k3

m3

Figure 7.5. Three mass sysetm for Problem 7.2.

Problem 7.2 Determine the equations of motion for the system illus-
trated in Figure 7.5.

1. Write the equations as a set of three, second order ordinary differ-
ential equations.

2. Write the equations as a set of six, first order ordinary differential
equations of the form

ξ̇ = Aξ

where ξ ∈ R6 and A ∈ R6×6.
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. . .. . .m1

b1

k1

x1

m2

b2

k2

b3

k3

x2 xi

bi

ki
mi

bi+1

ki+1

xn
kn−1

bn−1

mn

Figure 7.6. Sysetm with n masses for Problem 7.3.

Problem 7.3 Determine the equations of motion for the system illus-
trated in Figure 7.6.

1. Write the second order differential equation which is the equation
of motion for masses 1, 2, i, and n.

2. Write the equations in the form

ξ̇ = Aξ

where ξ ∈ R2n and A ∈ R2n×2n. Since n is not specificed, it is
acceptable for the matrix A to contain ellipses.

Problem 7.4 Consider the system illustrated in Figure 7.7.

1. Determine the equations of motion if x1 and x2 are measured from
the unstretched position of the springs.

2. Determine the equations of motion if x1 and x2 are measured from
the equilibrium position of the masses.

Problem 7.5 Consider the system with 10 masses illustrated in Fig-
ure 7.8. Assume that all the masses have a mass of one and all the
spring have a spring constant of one except the spring between the sec-
ond to last and last mass which has a spring constant of five. Assume
the system starts with zero initial conditions.

1. Determine the equations of motion for the system and convert them
to the form

ξ̇ = Aξ + g(t).

Compute the eigenvalues and eigenvectors of the matrix A. You
may use a computer program to do this computation.
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m1

b1 k1

x1

m2

b2 k2

x2

b3 k3

g

Figure 7.7. Two mass sysetm for Problem 7.4.
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k = 1k = 1 k = 1

m = 1m = 1

k = 5

f(t)

· · ·

Figure 7.8. 10 mass system for Probelm 7.5.

2. Write a computer program to determine an approximate numerical
solution for the system when

f(t) = sinωt

for the cases where

ω = 0.25

ω = 1.00

ω = 1.97.

Compare the response of the system for the three different frequen-
cies and explain any significant differences. Relate these differences
to the eigenvalues and eigenvectors of A.

Problem 7.6 Consider the structure illustrated in Figure ??. Assume
that all the masses have a mass of one and all the spring have a spring
constant of one. Assume the system starts with zero initial conditions.

1. Determine the equations of motion for the system and convert them
to the form

ξ̇ = Aξ + g(t).

Compute the eigenvalues and eigenvectors of the matrix A. You
may use a computer program to do this computation.

2. Write a computer program to determine an approximate numerical
solution for the system when

f(t) = sinωt

for the cases where

ω = 0.25

ω = 1.00

ω = 1.97.
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Compare the response of the system for the three different frequen-
cies and explain any significant differences. Relate these differences
to the eigenvalues and eigenvectors of A.
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kl1 kr1

kl2 kr2

kli kri

ki+1

k15

ml
1 mr

1

ml
2 mr

2

ml
i mr

i

mi+1

mi+2

m14

m15

xl1 xr1

xl2 xr2

xli xri

xi+1

xi+2

x14

x15

f(t)

...

...
...

Figure 7.9. Structure for Probelm 7.6.



Chapter 8

The Laplace Transform

The Laplace transform is an integral transformation that converts solving ordi-
nary differential equations into solving a system of algebraic equations. Various
types of integral transform methods exist, but due to its central role in control
theory, this text will focus on Laplace transforms.

8.1 Motivational Example

Integral transform methods are sufficiently abstract that it may be useful to
demonstrate their utility up front. The steps involved with the following exam-
ple will not be the obvious ones to the uninitiated, but nonetheless are intended
to illustrate that

1. it is a way to solve linear, constant coefficient ordinary differential equa-
tions; and,

2. if one can tolerate the “overhead” of computing the transforms, it converts
solving a differential equation into algebra.

Example 8.1.1 Consider

ẋ+ 2x = 6e4t

x(0) = 2.

Let us start the exercise by stating two facts, both of which have some
unstated assumptions that will be addressed subsequently.

Fact 8.1.2

∫ ∞

0

eate−stdt =
1

s+ a
.

⋄

223
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Fact 8.1.3
∫ ∞

0

dx(t)

dt
e−stdt = s

∫ ∞

0

x(t)e−stdt− x(0).
⋄

Both of these facts can be verified by simply evaluating the integrals.
Returning to the problem at hand, multiply each side of the differential

equation by e−st and integrate from 0 to ∞
∫ ∞

0

e−st
(

dx(t)

dt
+ 2x(t)

)

dt =

∫ ∞

0

dx(t)

dt
e−stdt+ 2

∫ ∞

0

x(t)e−stdt

= 6

∫ ∞

0

e4te−stdt.

Clearly, the whole point of the exercise is to find x(t), so there is not too
much that can be done with the right hand side of the first equation except
to get rid of the derivative of x(t) in the first integral by making use of
fact 8.1.3. Also, since we do not know what x(t) is, for the time being, let

X(s) =

∫ ∞

0

x(t)e−stdt.

Note that the second equation can be evaluated using fact 8.1.2, so

6

∫ ∞

0

e4te−stdt =
6

s− 4
.

Substituting these into the original differential equation gives

sX(s) − x(0) + 2X(s) =
6

s− 4
(8.1)

and substituting for x(0) and solving for X(s) gives

X(s) =
1

s+ 2

(

6

s− 4
+ 2

)

=
2s− 2

(s− 4)(s+ 2)
=

1

s+ 2
+

1

s− 4
. (8.2)

Referring to fact 8.1.2 it is clear that the right hand side of this equation
is simply the same transform (multiply by e−st and integrate) that was
originally used on the differential equation of the sum of two exponentials.
Hence, it is reasonable to assume that

x(t) = e−2t + e4t

is the solution to the differential equation. A quick substitution shows that
indeed it satisfies the differential equation as well as the initial condition.

There will be a few important details added subsequently, but for purposes
of this example take note that the integral

F (s) =

∫ ∞

0

f(t)e−stdt

is called the Laplace transform of f(t).
Observe the following
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1. Much like in fact 8.1.2, for a given function, f(t), the Laplace transform
only needs to be computed one time. Hence, tables of Laplace transforms
may be compiled that essentially eliminate the need for actually evaluating
the integrals most of the time.

2. Once the equation was fully transformed, which is represented in equa-
tion 8.1, solving for X(s) was simply algebra!

3. Converting from X(s) back to x(t) was simply a matter of determining
which functions transformed to x(t). Hence, this step too, can frequently
be handled by tables.

4. The initial condition was handled automatically.

So, it is clearly justified to conclude that as long as the work involved in
appropriately transforming the differential equation and then untransforming it
at the end is not to great, this is a handy way to solve at least some types of
differential equations. The general manner in which to do this will be outlined
subsequently. However, before that a short review of a related concept, Fourier
transforms, is in order.

8.2 Fourier Transforms

This chapter starts with a brief description of the Fourier transform. This is
not strictly necessary for the Laplace transform material that follows, but since
many students may already be familiar with it and it is a bit easier to understand
than the Laplace transform it will be included here.

First, recall the definition of an improper integral

∫ ∞

a

f(t)dt = lim
b→∞

∫ b

a

f(t)dt.

Similarly for the lower limit of integration

∫ b

−∞
f(t)dt = lim

a→−∞

∫ b

a

f(t)dt,

and
∫ ∞

−∞
f(t)dt = lim

a→−∞
lim
b→∞

∫ b

a

f(t)dt.

Definition 8.2.1 For a function, f(t), the Fourier transform is given by

F(ω) =

∫ ∞

−∞
f(t)eiωtdt

if the integral converges. ⋄



226 CHAPTER 8. THE LAPLACE TRANSFORM

Note, by Euler’s formula, the Fourier transform may also be written as

F(ω) =

∫ ∞

−∞
f(t) (cosωt+ i sinωt) dt.

Using this expression, the usual interpretation of the Fourier transform as pro-
viding the “frequency content” of the signal, f(t) is obvious. For a given ω, the
cosine and sine functions will be in phase with the components of the signal of
f(t) which have the same frequency and thus integrate to some non-zero value.
For a given ω if there is no component of the signal f(t) with that frequency,
the integral will be zero. The relative contribution of the real and imaginary
components of the transform will give the phase of a given frequency in the
signal f(t).

Just for completeness, the inverse Fourier transform is given by

f(t) =
1

2π

∫ ∞

−∞
F(ω)eiωtdω.

8.3 Laplace Transforms

This section defines the Laplace transform and considers some of its properties.

Definition 8.3.1 Define the Laplace transform of a function f(t) to be

F (s) =

∫ ∞

0−

f(t)e−stdt,

where s ∈ C, i.e., s is a complex number. ⋄

First, we will clarify some notation. With respect to the limits of integration
of the Laplace transform, define an integral of a function with lower limit 0−

and upper limit ∞ to be

∫ ∞

0−

f(t)dt = lim
ǫ↓0

∫ ∞

−ǫ
f(t)dt,

where the notation limǫ↓0 means that the limit approaches 0 from the right, i.e.,
positive values or “from above” so the lower limit of integration approaches zero
from below. The reason for having the lower limit be 0− instead of simply 0 is
because if something interesting, such as an impulse, occurs exactly at t = 0,
having the lower limit equal to 0 is ambiguous as to whether or not that effect
is included in the integral.

Second, with respect to the variable s, since it is a complex number it has
a real and imaginary part. If it is denoted by s = σ + iω, then the Laplace
transform becomes

F (s) =

∫ ∞

0−

f(t)e−σt (cosωt+ i sinωt)dt.
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So, one way to interpret the Laplace transform is that it is similar to the Fourier
transform in that it provides some information about the frequency content of
f(t), but has, for positive values of σ a multiplicative decaying exponential term.

Since the Laplace transform is a transform, we will frequently use an operator
notation to represent it. If we are considering the function f(t), the Laplace
transform will be denoted by L, i.e.,

F (s) = L (f(t)) =

∫ ∞

0−

e−stf(t)dt.

The fundamental concept to keep in mind regarding the transformation is that
it transforms the function from the time domain, t to the frequency domain, s.

The Laplace transform has an inverse. This is important because it guar-
antees that there is one and only one F (s) corresponding to L (f(t)), so if we
use the Laplace transform of a function to solve a differential equation, it will
correspond to the unique solution.

Definition 8.3.2 The inverse Laplace transform is given by

f(t) = L−1 (F (s)) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)estds

where σ is a real number such that F (s) converges. Typically this will require
that σ be larger than the real part of all values of s for which the denominator
of F (s) is equal to zero. ⋄

As will be clear subsequently, the values of s for which the denominator and
numerator of F (s) are zero provide almost all the essential information we need
regarding the properties of the time domain function f(t) = L−1 (F (s)). For
example, referring back to example 8.1.1, observe that the values for which the
denominator of X(s) in equation 8.2 is equal to zero are s = −2 and s = 4.
It is no coincidence that these are exactly the values of the coefficients in the
exponents of the time domain answer

x(t) = e−2t + e4t.

Because we will refer to these values frequently, they are given names.

Definition 8.3.3 The values of s for which the denominator of F (s) is equal
to zero are called the poles of F (s). ⋄

Definition 8.3.4 The values of s for which the numerator of F (s) is equal to
zero are called the zeros of F (s). ⋄

Example 8.3.5 The frequency domain function

F (s) =
s+ 2

(s− 3) (s+ 10)

has one zero at s = −2 and two poles, one at s = 3 and one at s = −10.
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Of course, the poles and zeros may occur at values where s is complex, as is
illustrated by the following example.

Example 8.3.6 The function

F (s) =
s+ a

(s+ a)
2

+ b2

has a zero at s = −a and two poles that comprise a complex-conjugate pair
at s = −a± ib.

8.3.1 The Laplace Transform of Some Common Functions

This section will compute the Laplace transform of some functions common in
engineering. Unless otherwise stated, we will make the following assumption for
all computations regarding Laplace transforms.

Assumption 8.3.7 In this book, whenever a Laplace transform or inverse Laplace
transform is computed, the values for s are assumed to be such that all the re-
quired integrals converge.

Example 8.3.8 The Laplace transform of f(t) = eat is

L
(

eat
)

=

∫ ∞

0−

e−steatdt

=

∫ ∞

0−

e(a−s)t

=
1

a− s
e(a−s)t

∣

∣

∣

∣

∞

0

=
1

a− s
(0 − 1)

=
1

s− a
.

Hence

L
(

eat
)

=
1

s− a
.

With regard to Assumption 8.3.7, note that the upper limit of integration
only converges if the real part of s is greater than a. While this is a mathemat-
ical necessity, it is one that fortunately rarely concerns us in application and,
consistent with the assumption, we will assume that the values of s are appro-
priately restricted. Henceforth, unless it is necessary, we will implicitly assume
whatever restriction is necessary for convergence and only explicitly deal with
it if it is necessary.
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Example 8.3.9 Compute the Laplace transform of f(t) = sinωt. We want
to evaluate

L (sinωt) =

∫ ∞

0−

e−st sin (ωt)dt.

Integrating once by parts gives

∫ ∞

0−

e−st sin (ωt)dt =

(

− 1

ω
e−st cos (ωt)

)∣

∣

∣

∣

∞

0−

− s

ω

∫ ∞

0−

e−st cos (ωt) dt

=
1

ω
− s

ω

∫ ∞

0−

e−st cos (ωt) dt. (8.3)

Integrating the last term by parts gives

∫ ∞

0−

e−st cosωtdt =

(

1

ω
e−st sin (ωt)

)∣

∣

∣

∣

∞

0−

+
s

ω

∫ ∞

0−

e−st sin (ωt) dt

=
s

ω

∫ ∞

0−

e−st sin (ωt)dt.

Substituting this into equation 8.3 gives

∫ ∞

0−

e−st sin (ωt) dt =
1

ω
− s2

ω2

∫ ∞

0−

e−st sin (ωt)dt,

and solving for the original integral, L (sinωt) gives

∫ ∞

0−

e−st sin (ωt) dt =
1
ω

1 + s2

ω2

=
ω

ω2 + s2
.

One set of functions that may appear in differential equations for which the
Laplace transform is particularly useful are those with discontinuities. So next
we consider step functions and impulses.

Definition 8.3.10 The function

f(t) = 1(t) =

{

0 t < 0
1 t ≥ 0

is called the step function. ⋄

The step function is illustrated in Figure 8.1. It will be useful in two ways.
First, it is very common in controls since it represents the situation when some
control command is activated, i.e., at t = 0 the control command switches from
“off” to “on.” Second, it will allow us to easily piece together some discontinuous
functions.
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Figure 8.1. The step function, 1(t).

Example 8.3.11 Compute the Laplace transform of the step function.
Evaluating the transform gives

∫ ∞

0−

e−st1(t)dt =

∫ ∞

0−

e−stdt

=
1

−s
(

e−st
)∣

∣

∞
0−

=
1

−s (0 − 1)

=
1

s
.

We will occasionally need step functions where the discontinuity does not
occur at zero. Note that the function 1(t− τ) will have the discontinuity occur
at time t = τ . A plot of 1(t − 1.5) is illustrated in Figure 8.2. Note that the
proper interpretation of 1(t−τ) is that the function 1(t) is shifted by an amount
τ . We will consider time shifts of arbitrary functions in Section 8.3.2.

Example 8.3.12 Compute the Laplace transform of f(t) = 1(t − τ). As-
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Figure 8.2. The step function, 1(t− 1.5).

suming τ ≥ 0 substituting into the definition of the Laplace transform gives

∫ ∞

0−

e−st1 (t− τ) dt =

∫ τ

0−

0e−stdt+

∫ ∞

τ

1e−stdt

=
1

−s
(

e−st
)∣

∣

∞
τ

=
1

−s (0 − esτ )

= e−sτ
1

s
.

Another object that is elegantly handled by Laplace transform is the impulse.
It provides a manner to model, for example, extremely large forces that occur
over a very short period of time. An example of an impulse would be the force
exerted by a bat on a ball.

Definition 8.3.13 Consider the function

δǫ(t) =

{

1
2ǫ |t| ≤ ǫ
0 |t| > ǫ

which is illustrated in Figure 8.3 for various values of ǫ. Define

δ(t) = lim
ǫ→0

δǫ(t). ⋄
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Figure 8.3. Series of functions leading to the definition of an
impulse.

Note that while δ(t)1 is zero everywhere except at the origin, it still satisfies

∫ ∞

−∞
δ(t)dt = 1,

and then furthermore for any function, f(t),

∫ ∞

−∞
δ(t)f(t)dt = f(0),

and similarly if shifted

∫ ∞

−∞
δ(t− τ)f(t)dt = f(τ).

Example 8.3.14 Compute the Laplace transform of f(t) = δ(t). Substi-
tuting into the definition of the Laplace transform gives

∫ ∞

0−

e−stδ(t)dt = e0 = 1.

1While δ(t) is commonly called the delta function or Dirac delta function, it is not a
function. This is because it is zero everywhere except precisely at the point where we care
about it, which is t = 0. A reader interested in pursuing the matter further is referred to [19].
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f(t), t ≥ 0 F (s)
δ(t) 1
1(t) 1

s

t 1
s2

t2 2!
s3

t3 3!
s4

tm m!
sm+1

e−at 1
s+a

te−at 1
(s+a)2

1
2! t

2e−at 1
(s+a)3

1
(m−1)! t

m−1e−at 1
(s+a)m

1 − e−at a
s(s+a)

1
a
(at− 1 + e−at) a

s2(s+a)

e−at − e−bt b−a
(s+a)(s+b)

(1 − at)e−at s
(s+a)2

1 − e−at(1 + at) a2

s(s+a)2

be−bt − ae−at (b−a)s
(s+a)(s+b)

sin at a
s2+a2

cos at s
s2+a2

e−at cos bt s+a
(s+a)2+b2

e−at sin bt b
(s+a)2+b2

t sin at 2as
(s2+a2)2

t cosat s2−a2

(s2+a2)2

1 − eat
(

cos bt+ a
b

sin bt
)

a2+b2

s[(s+a)2+b2]

Table 8.1. Table of Laplace transform pairs.

The reason that the lower limit of the integral in the definition of the Laplace
transform is 0− is so that it is clear whether or not to include impulses that occur
at t = 0. Since the impulse has zero width, if the lower limit were simply 0, then
it whether or not the impulse is included in the integral would be ambiguous.

Example 8.3.15 Compute the Laplace transform of f(t) = δ(t− τ). Sub-
stituting into the definition of the Laplace transform gives

∫ ∞

0−

e−stδ(t− τ)dt = e−sτ .

Table 8.1 summarizes the Laplace transform of some common functions in
engineering.
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8.3.2 Properties of the Laplace Transform

It will be useful to study the definition of the Laplace transform to determine
some of its generic properties that we may exploit when using it. The first
property we will consider is how the derivative of a function acts under a Laplace
transform. It turns out that it is very simple and extremely useful. It is simple in
that the Laplace transform transform of a derivative of a function is algebraically
related to the Laplace transform of the function itself. In particular, it is simply
multiplication of F (s) by s. So, in the frequency domain, differentiation by t
is replaced by multiplication by s. This is also its utility in that the Laplace
transform then transforms differential equations into algebraic equations.

Theorem 8.3.16 If the Laplace transform of a function, f(t) is L (f(t)) =
F (s), then

L
(

df(t)

dt

)

= sF (s) − f(0).

Proof The proof is simply evaluating the integral by as follows
∫ ∞

0−

df(t)

dt
e−stdt =

(

e−stf(t)
)∣

∣

∞
0−

+ s

∫ ∞

0−

f(t)e−stdt

=
(

e−stf(t)
)∣

∣

∞
0−

+ sF (s)

= (0 − f(0)) + sF (s)

= sF (s) − f(0).

The second property we consider is called the Final Value Theorem. It is
useful because it will allow us to determine the steady state values of a solution to
a differential equation without having to compute the inverse Laplace transform.

Theorem 8.3.17 If all the poles of sF (s) are in the left half of the complex
plane, then

lim
t→∞

f(t) = lim
s→0

sF (s). (8.4)

Proof Consider

lim
s→0

∫ ∞

0−

e−st
df(t)

dt
dt =

∫ ∞

0−

(

lim
s→0

e−st
df(t)

dt

)

dt

=

∫ ∞

0−

df(t)

dt
dt

= lim
t→∞

f(t) − f(0). (8.5)

Also, by theorem 8.3.16

lim
s→0

∫ ∞

0−

e−st
df(t)

dt
dt = lim

s→0
(sF (s) − f(0)) . (8.6)

Setting equations 8.5 to 8.6 gives

lim
t→∞

f(t) − f(0) = lim
s→0

(sF (s) − f(0))
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or
lim
t→∞

f(t) = lim
s→0

(sF (s)) .
�

Another very useful property of Laplace transforms is that the shifts in time
have a very simple form.

Theorem 8.3.18 If L (f(t)) = F (s), then the Laplace transform of a function
shifted in time satisfies

L (f(t− τ)1(t − τ)) = e−sτF (s)

for τ ≥ 0.

Proof The proof is based upon a simple change of variable. If we let t̂ = t− τ ,
then

L (f (t− τ)1(t− τ)) =

∫ ∞

0−

e−stf (t− τ)1(t− τ)dt

=

∫ ∞

−τ−

e−s(t̂+τ)f
(

t̂
)

1
(

t̂
)

dt̂

= e−sτ
∫ ∞

−τ−

e−st̂f
(

t̂
)

1
(

t̂
)

dt̂

= e−sτ
(

∫ 0−

−τ−

e−st̂f
(

t̂
)

1
(

t̂
)

dt̂+

∫ ∞

0−

e−st̂f
(

t̂
)

1
(

t̂
)

dt̂

)

= e−sτ
∫ ∞

0−

e−st̂f
(

t̂
)

1
(

t̂
)

dt̂

= e−sτ
∫ ∞

0−

e−st̂f
(

t̂
)

dt̂

= e−sτF (s).

The proper interpretation of Theorem 8.3.18 takes some care, especially with
respect to the step function appearing in it. Figure 8.4 illustrates a function as
well as that function shifted by an amount τ ≈ 0.75. Since the lower limit of
the Laplace transform is t = 0−, the values for f(t) for t < 0 and the values do
not affect the Laplace transform. Mathematically, L (f(t)1(t)) = L (f(t)) .

When f(t) is shifted by a positive τ , then we need to either account for the
part of f(t) shifted into positive times, or exclude it. If we want to include
it, then we must reevaluate the integral in the transform, because F (s) only
contains information about f(t) for positive time and e−sτ does not depend on
f(t), and hence contains no information regarding f(t). If we do want to use
F (s) and not evaluate the integral, then we must exclude the part of f(t) shifted
into positive time. This is accomplished by multiplying f(t − τ) by 1(t − τ)
since the step function will be zero for t < τ , which corresponds exactly to the
part of f(t) which F (s) does not represent.

So, the functions to which Theorem 8.3.18 applies are illustrated in Fig-
ure 8.5. The portion of f(t) for t ≥ 0 is shifted by an amount τ , but for t < τ ,
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Figure 8.4. A function, f(t) compared to f(t− τ).

the shifted function must be zero. This fact appears in the proof of Theo-
rem 8.3.18 in the line where the integral with lower limit τ− and upper limit
0− is evaluated to zero.

Finally we will consider units. From the definition of the Laplace trans-
form of a function, f(t),

F (s) =

∫ ∞

0−

f(t)e−stdt,

since t has units of seconds, F (s) will have the units of f(t) times seconds.
Since the exponent of e must be dimensionless, s must have units of one
divided by seconds. Of course, there is the possibility for much confusion here
since we are using the symbol s to represent the argument of the function
F (s) as well as for the units of time, which is seconds.

Example 8.3.19 Let x(t) denote the position of something, with units
m. Then

X(s) = L{x(t)}
will have units m · s.
The derivative works as expected as an operator.

Example 8.3.20 Let x(t) denote the position of something, with units
m. Then

sX(s) − x(0) = L{ẋ(t)}
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Figure 8.5. A function, f(t)1(t) compared to f(t − τ)1(t −
τ) for which L (f(t)) = L (f(t− τ)1(t− τ)) and Theo-
rem 8.3.18 properly applies.

Name Time Function Laplace Transform
Transform pair f(t) F (s)
Superposition αf1(t) + βf2(t) αF1(s) + βF2(s)

Differentiation dm

dtm
f(t) smF (s) − sm−1f(0) − sm−2ḟ(0)−

· · · − s d
m−2

dtm−2 f(0) − dm−1

dtm−1 f(0)
Time delay (τ ≥ 0) f(t− τ)1(t− τ) F (s)e−sτ

Time scaling f(at) 1
|a|F

(

s
a

)

Frequency shift e−atf(t) F (s+ a)
Integration

∫

f(ξ)dξ 1
s
F (s)

Convolution f1(t) ∗ f2(t) F1(s)F2(s)
Initial Value Theorem f(0+) lims→∞ sF (s)
Final Value Theorem limt→∞ f(t) lims→0 sF (s)

Time product f1(t)f2(t)
1

2πj

∫ c+j∞
c−j∞ F1(ξ)Fs(s− ξ)dξ

Multiplication by time tf(t) − d
ds
F (s)

Table 8.2. Properties of the Laplace transform.
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will have units m·s
s = m, and

s2X(s) − sx(0) − ẋ(0) = L{ẍ(t)}

will have units m·s
s2 = m

s .

Just as d
dt

alters the units of x(t) by dividing by s, the manner in which the
Laplace transform of a derivative works is by dividing the units of L{x(t)}
by s.

8.4 Solving Initial Value Problems

Laplace transforms may be used to solve initial value problems for linear, con-
stant coefficient ordinary differential equations. There are two attributes worth
noting. First, there is no need to separate the solution method into homogeneous
and particular solutions. Second, the method works particularly well for system
where the inhomogeneous term is discontinuous. In such a case the methods
from Chapters 2 and 3 would require that we “piece together” solutions, which
would amount to evaluating the constants in the homogeneous solution each
time there is a discontinuity in the inhomogeneous term.

We will illustrate the means to use Laplace transforms to solve initial value
problems with a few examples. The procedure is the same as in example 8.1.1,
which is to Laplace transform the entire equation, algebraically solve for the
dependent variable and then determine inverse Laplace transform to find the
time domain function for the dependent variable.

Example 8.4.1 Find the solution to

ẍ+ 4ẋ+ 13x = 20 cos 5t− 12 sin5t

x(0) = 1

ẋ(0) = 15.

Laplace transforming the equation gives

(

s2X(s) − sx(0) − ẋ(0)
)

+ 4 (sX(s) − x(0)) + 13X(s) =

20
s

s2 + 25
− 12

5

s2 + 25
.

Substituting the initial conditions gives

(

s2X(s) − s− 15
)

+ 4 (sX(s) − 1) + 13X(s) = 20
s

s2 + 25
− 12

5

s2 + 25
.

Rearranging some gives

X(s)
(

s2 + 4s+ 13
)

=
20s− 60

s2 + 25
+ s+ 19,
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or

X(s) =
20s− 60

(s2 + 25) (s2 + 4s+ 13)
+

s+ 19

s2 + 4s+ 13
.

Now we want to covert the right hand side into a combination of terms that
appear in Table 8.1. Attempting to factor the denominator s2 +4s+13 will
show that it has the complex roots, s = −2 ± 3i, and is, by completing the
square, equivalent to (s+ 2)

2
+ 9, which is of the form of a denominator in

table. So

X(s) =
20s− 60

(s2 + 25)
(

(s+ 2)
2
+ 9
) +

s+ 19

(s+ 2)2 + 9
.

A partial fraction expansion2, of the first term gives

X(s) =
as+ b

s2 + 25
+

cs+ d

(s+ 2)
2
+ 9

+
s+ 19

(s+ 2)
2

+ 9

=
(as+ b)

(

s2 + 4s+ 13
)

+ (cs+ d)
(

s2 + 25
)

(s2 + 25)
(

(s+ 2)2 + 9
) +

s+ 19

(s+ 2)
2

+ 9
.

Equating numerators in the first term gives

(a+ c) s3 + (4a+ b+ d) s2 + (13a+ 4b+ 25c) s +

(13b+ 25d) = 20s− 60

and some tedious algebra gives

a = 0

b = 5

c = 0

d = −5.

So,

X(s) =
5

s2 + 25
− 5

(s+ 2)
2
+ 9

+
s+ 19

(s+ 2)
2
+ 9

=
5

s2 + 25
+

s+ 14

(s+ 2)
2
+ 9

.

Referring to the table, we want either s + 2 or 3 in the numerator of the
second term, so we split the second term into two terms as follows

X(s) =
5

s2 + 25
+

s+ 2

(s+ 2)
2

+ 9
+

12

(s+ 2)
2

+ 9

=
5

s2 + 25
+

s+ 2

(s+ 2)
2

+ 9
+ 4

3

(s+ 2)
2

+ 9
.

2Readers not familiar with partial fractions are referred to Appendix A.3.
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Figure 8.6. Function for Example 8.4.2.

Now all the terms are entries in Table 8.1 and the solution is

x(t) = sin 5t+ e−2t cos 3t+ 4e−2t sin 3t.

8.4.1 Solving Differential Equations with Discontinuous
Forcing

Step functions and time shifts may be combined in useful ways to easily evaluate
differential equations that have inhomogeneous terms with discontinuities. The
means to effectively do this will be presented as a series of examples.

Example 8.4.2 Determine the solution to

ẋ+ x = f(t) (8.7)

x(0) = 0

where

f(t) =

{

1 2 ≤ t < 3
0 otherwise

The function f(t) is illustrated in Figure 8.6.
For purposes of using the tools at our disposal to solve this differential

equation, the critical observation is that we may write

f(t) = 1(t− 2) − 1(t− 3),

which is illustrated in Figure 8.7.
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Figure 8.7. Two step function combined to give f(t) in Fig-
ure 8.6 from Example 8.4.2.

So, now we simply Laplace transform

ẋ+ x = 1(t− 2) − 1(t− 3)

x(0) = 0

to get

sX(s) +X(s) =
e−2s

s
− e−3s

s

and solving for X(s) gives

X(s) =
1

s (s+ 1)

(

e−2s − e−3s
)

.

If needed we could use partial fractions to convert the fraction into terms
appearing in a table; however, in this case the term itself is in Table 8.1. In
particular

L−1

(

1

s (s+ 1)

)

= 1 − e−t.

Hence,

X(s) = L
(

1 − e−t
) (

e−2s − e−3s
)

= e−2sL
(

1 − e−t
)

− e−3sL
(

1 − e−t
)

.

So, referring to Theorem 8.3.18 (or the corresponding entry in Table 8.2),
each term that is multiplied by e−τs must have t shifted by τ , and must be
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Figure 8.8. Solution for Example 8.4.2.

multiplied by 1(t− τ). Hence

x(t) =
(

1 − e−(t−2)
)

1(t− 2) −
(

1 − e−(t−3)
)

1(t− 3), (8.8)

is the solution to equation 8.7. A plot of Equation 8.8 is illustrated in
Figure 8.8. Written in another form this solution is

x(t) =







0 t < 2

1 − e−(t−2) 2 ≤ t < 3
e−(t−3) − e−(t−2) t ≥ 3

.

At this point we can recognize that if we are able to piece together step
functions to be either one (or negative one) for specific ranges in time, then we
can use such a structure to multiply other functions to have them appear for
only a limited period of time. The next example illustrates that fact.

Example 8.4.3 Find the solution to

ẋ+ x =







0 t < 1
3t2 1 ≤ t < 2
0 t ≤ 2

x(0) = 0.

We can write the inhomogeneous term as a combination of step functions
as

ẋ+ x = 3t2 [1 (t− 1) − 1 (t− 2)]

= 3t21 (t− 1) − 3t21 (t− 2) .
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If we denote f(t) = t2, neither of the two terms on the right hand side are
in the appropriate form to use Theorem 8.3.18. For the first one, we need

f(t− 1) = (t− 1)
2

= t2 − 2t+ 1

and for the second one we need

f(t− 2) = (t− 2)
2

= t2 − 4t+ 4.

So, to make the equation amenable for use by Theorem 8.3.18, write

ẋ+ x = 3
[

t21 (t− 1) − t21 (t− 2)
]

= 3
[(

(t− 1)2 + 2t− 1
)

1 (t− 1) −
(

(t− 2)2 + 4t− 4
)

1 (t− 2)
]

= 3
[

(t− 1)21(t− 1) − (t− 2)21(t− 2) +

(2t− 1)1(t− 1) − (4t− 4)1(t− 2)] .

The first two terms may make use of Theorem 8.3.18, but now we need to
take care of the terms that were added, i.e., the 2t − 1 and 4t − 4 terms.
So, write

2t− 1 = 2(t− 1) + 1

and
4t− 4 = 4(t− 2) + 4

and substituting gives

ẋ+ x =
[

(t− 1)21(t− 1) − (t− 2)21(t− 2) +

(2(t− 1) + 1)1(t− 1) − (4(t− 2) + 4)1(t− 2)] .

Let us consider this term by term using the relationship

L (f(t− τ)1(t − τ)) = e−τsL (f(t)) .

1. For the first term

L
(

(t− 1)
2
1(t− 1)

)

= e−sL
(

t2
)

= e−s
2

s3
.

2. For the second term

L
(

(t− 2)2 1 (t− 2)
)

= e−2sL
(

t2
)

= e−2s 2

s3
.
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3. For the third term

L ((2 (t− 1) + 1)1 (t− 1)) = e−sL (2t+ 1)

= e−s
(

2

s2
+

1

s

)

.

4. For the last term

L ((4(t− 2) + 4)1(t− 2)) = e−2sL (4t+ 4)

= e−2s

(

4

s2
+

4

s

)

.

Taking the Laplace transform of the entire equation gives

sX(s) +X(s) = e−s
2

s3
− e−2s 2

s3
+ e−s

(

2

s2
+

1

s

)

− e−2s

(

4

s2
+

4

s

)

.

So

X(s) = e−s
(

2

s3 (s+ 1)
+

2

s2 (s+ 1)
+

1

s (s+ 1)

)

−

e−2s

(

2

s3 (s+ 1)
+

4

s2 (s+ 1)
+

4

s (s+ 1)

)

.

From Table 8.1 we can find the inverse Laplace transform of the second two
terms

L−1

(

1

s (s+ 1)

)

= 1 − e−t

L−1

(

1

s2 (s+ 1)

)

= t− 1 + e−t.

It is left as an exercise to show that

L−1

(

1

s3 (s+ 1)

)

=
1

2
t2 − t+ 1 − e−t.

Finally, remembering to replace t by t−1 or t−2 depending on whether
the Laplace transform is multiplied by e−s or e−2s respectively,

x(t) = 2

(

1

2
(t− 1)2 − (t− 1) + 1 − e−(t−1)

)

1 (t− 1) +

2
(

(t− 1) − 1 + e−(t−1)
)

1 (t− 1) +
(

1 − e−(t−1)
)

1 (t− 1) −

2

(

1

2
(t− 2)2 − (t− 2) + 1 − e−(t−2)

)

1 (t− 2) −

4
(

(t− 2) − 1 + e−(t−2)
)

1 (t− 2) −

4
(

1 − e−(t−2)
)

1 (t− 2) ,
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Figure 8.9. Inhomogeneous term for Equation 8.9 in Exam-
ple 8.4.4.

which simplifies to

x(t) =
[

(t− 1)2 + 1 − e−(t−1)
]

1 (t− 1) −
[

(t− 2)
2

+ 2 (t− 2) + 2 − 2e−(t−2)
]

1 (t− 2) .

Finally, another example involving some trigonometric functions.

Example 8.4.4 Find the solution to

ẋ+ 2x = f(t) (8.9)

x(0) = 1

where

f(t) =







1 t < π
cos 2t π ≤ t < 7π

2

−e−(t− 7π
2 ) t > 7π

2

This function is illustrated in Figure 8.9.

To express f(t) in a manner that is convenient to Laplace transform, we
may write f(t) as the sum of three functions, f(t) = f1(t) + f2(t) + f3(t)
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where

f1(t) =

{

1 0 ≤ t < π
0 otherwise

f2(t) =

{

cos 2t π ≤ t < 7π
2

0 otherwise

f3(t) =

{

−e−(t− 7π
2 ) t ≥ 7π

2
0 otherwise

Each of these functions may be written as a single expression using step
functions as

f1(t) = 1 (t) − 1 (t− π)

f2(t) = 1 (t− π) cos 2t− 1

(

t− 7π

2

)

cos 2t

f3(t) = −1
(

t− 7π

2

)

e−(t− 7π
2 ).

The second function, f2(t) is not in a form that will allow us to use Theo-
rem 8.3.18 since the argument to the step functions and the cosine function
do not match. What we need is to convert cos 2t to a function of t− π and
t− 7π

2 for each of the step functions. Observing that

cos (2 (t− π)) = cos 2t

cos

(

2

(

t− 7π

2

))

= − cos 2t

we then have

f2(t) = 1 (t− π) cos 2 (t− π) + 1

(

t− 7π

2

)

cos 2

(

t− 7π

2

)

.

So,

L (f(t)) =
(

1 − e−πs
) 1

s
+
(

e−πs + e−
7π
2 s
) s

s2 + 4
− e−

7π
2 s

1

s+ 1

Laplace transforming Equation 8.9 gives

(sX(s) − 1) + 2X(s) = L (f(t))

=
(

1 − e−πs
) 1

s
+
(

e−πs + e−
7π
2 s
) s

s2 + 4
− e−

7π
2 s

1

s+ 1

and solving for X(s) gives

X(s) =
(

(

1 − e−πs
) 1

s
+
(

e−πs + e−
7π
2 s
) s

s2 + 4
− e−

7π
2 s

1

s+ 1
+ 1

)

1

s+ 2
.

Considering the inverse Laplace transform term-by-term gives
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1. Rearranging the first term

(

1 − e−πs
) 1

s (s+ 2)
=

1

2

(

1 − e−πs
) 2

s (s+ 2)

so

L−1

(

1

2

(

1 − e−πs
) 1

s (s+ 2)

)

=

1

2

[

(

1 − e−2t
)

1 (t) −
(

1 − e−2(t−π)
)

1 (t− π)
]

.

2. The product in the second term needs to be expanded as

s

s2 + 4

1

s+ 2
=

as+ b

s2 + 4
+

c

s+ 2

=
(a+ c) s2 + (2a+ b) s+ (2b+ 4c)

(s2 + 4) (s+ 2)
,

Equating numerators gives

(a+ c) s2 + (2a+ b) s+ (2b+ 4c) = s.

Since this must be true for arbitrary s, the coefficients of different
powers of s must be equal, so

a+ c = 0

2a+ b = 1

2b+ 4c = 0,

and solving for a, b and c and substituting gives

s

s2 + 4

1

s+ 2
=

1
4s+ 1

2

s2 + 4
+

− 1
4

s+ 2

=
1

4

(

s+ 2

s2 + 4
− 1

s+ 2

)

=
1

4

(

s

s2 + 4
+

2

s2 + 4
− 1

s+ 2

)

,

where each term appears in Table 8.1. Hence

L−1

(

(

e−πs + e−
7π
2 s
) s

s2 + 4

1

s+ 2

)

= L−1

(

1

4

(

e−πs + e−
7π
2 s
)

(

s

s2 + 4
+

2

s2 + 4
− 1

s+ 2

))

=
1

4

[

1 (t− π)
(

cos 2 (t− π) + sin 2 (t− π) − e−2(t−π)
)

+

1

(

t− 7π

2

)(

cos 2

(

t− 7π

2

)

+ sin 2

(

t− 7π

2

)

− e−2(t− 7π
s )
)]

.
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3. The product in the next term can be expanded as

1

s+ 1

1

s+ 2
=

a

s+ 1
+

b

s+ 2

=
a (s+ 2) + b (s+ 1)

(s+ 1) (s+ 2)

=
(a+ b) s+ (2a+ b)

(s+ 1) (s+ 2)
.

Equating powers of s in the numerator gives

1

s+ 1

1

s+ 2
=

1

s+ 1
− 1

s+ 2

both of which are in Table 8.1. Hence

L−1

(

−e− 7π
2 s

1

s+ 1

1

s+ 2

)

= 1

(

t− 7π

s

)

(

e−(t− 7π
2 ) − e−2(t− 7π

2 )
)

.

4. Finally, the last term gives

L−1

(

1

s+ 2

)

= e−2t.

The entire solutions is, of course, the sum of these four terms and is

x(t) =
1

2

[

(

1 − e−2t
)

1 (t) −
(

1 − e−2(t−π)
)

1 (t− π)
]

+

1

4

[

1 (t− π)
(

cos 2 (t− π) + sin 2 (t− π) − e−2(t−π)
)

+

1

(

t− 7π

2

)(

cos 2

(

t− 7π

2

)

+ sin 2

(

t− 7π

2

)

− e−2(t− 7π
s )
)]

−1
(

t− 7π

s

)

(

e−(t− 7π
2 ) − e−2(t− 7π

2 )
)

+ e−2t.

We can check the solution by evaluating it in each of the regions in which
f(t) has a different form. In particular

1. For 0 ≤ t < π,

x(t) =
1

2

(

1 − e−2t
)

+ e−2t (8.10)

and
ẋ(t) = −e−2t. (8.11)

Hence, substituting into Equation 8.9 gives

ẋ+ 2x = −e−2t + 2

(

1

2

(

1 − e−2t
)

+ e−2t

)

= 1.

Also checking the initial condition gives

x(0) =
1

2

(

1 − e0
)

+ e0 = 1.
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2. For π ≤ t < 7π
2 , x(t) is the same as in equation 8.10 with the addition

of the terms multiplied by 1 (t− π),

x(t) =
1

2

(

1 − e−2t
)

+ e−2t − 1

2

(

1 − e−2(t−π)
)

+

1

4

(

cos 2 (t− π) + sin 2 (t− π) − e−2(t−π)
)

(8.12)

and

ẋ(t) = −1

2
e−2t − e−2(t−π)

+
1

2

(

− sin (2 (t− π)) + cos (2 (t− π)) − e−2(t−π)
)

.

Substituting into Equation 8.9 gives

ẋ+ 2x = cos (2 (t− π)) = cos 2t.

Also, the solution the solutions in Equations 8.10 and 8.12 must match
at t = π. Substituting t = π into Equation 8.10 gives

x(π) =
1

2

(

1 − e−2π
)

+ e−2π =
1

2

(

1 + e−2π
)

.

Substituting t = π into Equation 8.12 gives

x(π) =
1

2

(

1 − e−2π
)

+ e−2π − 1

2

(

1 + e−2(π−π)
)

+

1

4

(

cos 2 (π − π) + sin 2 (π − π) − e−2(π−π)
)

=
1

2

(

1 − e−2π
)

+
1

4
(1 + 0 − 1)

=
1

2

(

1 − e−2π
)

,

so the two solutions match at t = π.

3. Verifying for t ≥ 7π
2 is left as an exercise.

8.5 Transfer Functions

The notion of a transfer function is particularly useful in engineering since it
is a concise representation of the relationship between the input and output
of a system with all the intermediate variables implicitly represented. In or-
der to determine transfer functions in engineering a student must have basic
abilities to model engineering components. If that is not something that comes
naturally, perhaps a review of the material from Section 1.9 would be useful be-
fore proceeding. A simple example will help illustrate the concept of a transfer
function.
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x1(t) x2(t)

m1 m2

k

f(t)

Figure 8.10. System to control for example 8.5.1.

Example 8.5.1 Consider the task of controlling the system illustrated in
Figure 8.10. What is desired is to control the position of mass 2 with the
input force, f(t). Exactly how to control it will be addressed subsequently.
Now we consider the task of determining a convenient way to model it.

The equations of motion are simple to determine:

m1ẍ1 = k (x2 − x1) + f(t) (8.13)

m2ẍ2 = k (x1 − x2) . (8.14)

Clearly these are coupled and, in the present form it will be impossible to
determine x2(t) without simultaneously solving for x1(t). The same is true
if we represent it as a system of first order equations by setting

ξ1 = x1

ξ2 = ẋ1

ξ3 = x2

ξ4 = ẋ2

which gives

d

dt









ξ1
ξ2
ξ3
ξ4









=









0 1 0 0
− k
m1

0 k
m1

0

0 0 0 1
k
m2

0 − k
m2

0









+









0
f(t)
m1

0
0









.

Solving these equations is no problem, however it would be especially
convenient if we could have a more concise representation of the relation-
ship between the input, f(t) and the output, x2(t). Recalling that a main
feature of Laplace transforms is that, once transformed, solving the differen-
tial equations is reduced to algebra, if we Laplace transform the equations
of motion, it may be possible to algebraically eliminate the intermediate
variable(s).
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Assuming that the initial conditions are all zero, i.e.,

x1(0) = 0

ẋ1(0) = 0

x2(0) = 0

ẋ2(0) = 0

taking the Laplace transform of equations 8.13 and 8.14 gives

m1s
2X1(s) = k (X2(s) −X1(s)) + F (s) (8.15)

m2s
2X2(s) = k (X1(s) −X2(s)) . (8.16)

These are two equations that are linear in three functions, X1(s), X2(s) and
F (s). Hence, we may use one of the equations to eliminate one of the func-
tions. Since we are interested in the relationship between the input force,
f(t) and the position of mass 2, x2(t), it makes sense to solve one equation
for X1(s) and substitute into the other equation. Solving Equation 8.16 for
X1(s) gives

X1(s) =
m2s

2 + k

k
X2(s).

Substituting this into the Equation 8.15 and rearranging gives

X2(s) =
k

s2 (m1m2s2 + k (m1 +m2))
F (s). (8.17)

Since it directly relates the effect of the input force on the position of
the output mass, we will call the function

X2(s)

F (s)
=

k

s2 (m1m2s2 + k (m1 +m2))

the transfer function from the input F (s) to the output X2(s).
Observe the following about equation 8.17.

1. This is a concise relationship between the input force and the position
of mass two. In fact, the variable representing the position of mass
one does not explicitly appear in the equation at all.

2. Given an input force, f(t), we could compute its Laplace transform,
F (s) = L (f(t)), substitute F (s) into equation 8.17 and, in principle,
compute the inverse Laplace transform of X2(s) to find the motion of
x2(t).

3. While mass one does not explicitly appear in the equation, it is im-
plicitly in the equation in the terms in the denominator of the transfer
function. In fact, it should be obvious that it cannot be eliminated.
After all, the only way mass two moves is by the force accelerat-
ing mass one, and mass one’s motion affecting mass two through the
spring.
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In light of the usefulness of the formulation of the relationship between the
force and position of the mass represented by Equation 8.17, we may define a
transfer function in the following manner.

Definition 8.5.2 A transfer function is the ratio of the Laplace transform of
the output to the input of some system assuming all the initial conditions are
zero. ⋄

What exactly is the input and output of a system depends on the problem
and either must be stated or should be clear from the context of the problem.
Subsequently it will be apparent that the output of one system may be the input
to another. For example, the output of a motor which may be the torque or
position of the motor shaft, is the input to whatever it is driving.

As will be clear subsequently, the denominator of the transfer function is of
particular importance.

Definition 8.5.3 Let

G(s) =
N(s)

D(s)

be a transfer function. The equation

D(s) = 0,

i.e., setting the denominator equal to zero is called the characteristic equation.⋄

A property regarding a transfer function that will be assumed throughout
the rest of this text is that the order of the polynomial in the denominator is
greater than the order of the polynomial in the numerator. Such a transfer
function is called proper.

Now, we will make the problem more complicated by replacing the general
forcing function in Example 8.5.1, f(t), with something more realistic.

Example 8.5.4 Consider the same system as in Example 8.5.1 but where
the force is generated by a belt attached to a pulley attached to a d.c. motor
which is driven by an electric circuit, as illustrated in Figure 8.11 and 8.12.
In Figure 8.11, the first mass is attached to a belt that driven by a pulley.
The pulley on the left is attached to a d.c. motor that is driven by the circuit
illustrated in Figure 8.12. The pulley on the right is identical to the pulley
on the left except it is not driven and is free to rotate. Each pulley has a
radius r and moment of inertia of J about its center. Assume that belt is
light so that its mass may be ignored and that it does not slip on the pulleys.
The motor circuit is comprised of an ideal current source, a resistor and a
d.c. motor attached to the output. The d.c. motor has a torque constant
of kτ and a back e.m.f. constant of ke. We wish to determine the transfer
function from the input current to the circuit to the position of mass 2.

The Laplace transform of the differential equations for the two masses
are given in Example 8.5.1 in Equations 8.15 and 8.16. So what is left is to
model the belt and pulley system as well as the circuit. Free body diagrams
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x1(t) x2(t)

m1 m2

k

τ(t)

r

J

Figure 8.11. System to control for example 8.5.4.

iin

R

ke, kτ

Figure 8.12. Motor driving circuit for Example 8.5.4.
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T1T1

T2 T3

τ

r

J

Figure 8.13. Free body diagrams of the pulleys from Exam-
ple 8.5.4.

of the two pulleys are illustrated in Figure 8.13. Since the bottom portion
of the belt is attached to the mass, if the mass is accelerating the tension
on each side of the mass must be different. Since there is no mechanical
component between the pulleys on the top, the tension in the top belt is
constant. Denote the tension in the top portion of the belt by T1(t), and
T2(t) and T3(t) on the bottom of the belt to the left and right of the mass
respectively.

If we denote the angular position of both pulleys by θ, since the belt
does not slip, θ is related to the position of the mass by rθ = x1. Newton’s
law on the right pulley gives

J
ẍ1

r
= r (T1 − T3)

and on the left pulley gives

J
ẍ1

r
= r (T2 − T1) + τ.

The force on mass 2 is
f = T2 − T3.

Taking the Laplace transform of these three equations with zero initial con-
ditions gives

Js2X1(s) = r2 (T1(s) − T3(s))

Js2X1(s) = r2 (T2(s) − T1(s)) + rT (s)

F (s) = T2(s) − T3(s).

Adding the first two equations gives

2Js2X1(s) = r2 (T2(s) − T3(s)) + rT (s)

and using the last equation

2Js2X1(s) = r2F (s) + rT (s) (8.18)
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Since the circuit has a current source, the torque produced by the motor is

τ = kτ i ⇐⇒ T (s) = kτI(s).

Substituting into Equation 8.18 gives

2Js2X1(s) = r2F (s) + rkτ I(s),

and eliminating X1(s) and F (s) from this equation and Equations 8.15 and
8.16 gives

X2(s)

Iin(s)
=

kτkr

s2 [2J (m2s2 + k) − r2 (k (m1 +m2) +m1m2s2)]
.

Let us consider one more example which probably qualifies as rocket science.

Example 8.5.5 Consider the rocket illustrated in Figure 8.14. The veloc-
ity of the center of mass (com) of the rocket is at an angle θr with respect
to the axis of symmetry of the rocket body. The point through which all
aerodynamic forces may be resolved is call the center of pressure (cop).
The component of the aerodynamic force along the axis of symmetry of the
rocket body is called the drag and the component orthogonal to the drag is
called the lift. The lift force will be denoted by fl. The mass moment of
inertia of the rocket about its center of mass will be denoted by Jr. Assume
the distance between the center of mass and center of pressure is l1 and the
distance between the center of mass and the location of the rocket nozzle is
l2.

The rocket is controlled by thrust vectoring, which means that the nozzle
of the rocket engine is gimballed and can pivot. The thrust of the rocket
engine is denoted by ft and the angle of the nozzle with respect to the
center-line of the rocket body is denoted by θn.

In this problem we will be concerned with the angle of attack of the
rocket, i.e., the angle between the direction it is pointing and its velocity.
This is rocket is unstable since the center of pressure is above the center
of mass. This would typically be considered a poor design; however, if
we want the rocket to be highly maneuverable, then perhaps it is a good
feature. The problem is to find the transfer function from the nozzle angle
to the pitch angle of the rocket. To simplify the analysis, we will assume
that the velocity of the rocket is constant.

Basic aerodynamics provides a formula for the lift force, which is

fl = Cl
ρ‖v‖2A

2

where Cl is the coefficient of lift, ρ is the density of the air, ‖v‖ is the
magnitude of the velocity of the rocket and A is reference area, which is a
function of the lateral area of the rocket exposed to the sideways flow due
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θr

fl

v

ft
θn

com

cop

Jr

l1

l2

Figure 8.14. Rocket for Example 8.5.5.
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to a non-zero angle of attack.. We will assume that A is proportional to the
angle of attack, θr, so

A = Aref sin θr

and then

fl =
1

2
ρCl‖v‖2Aref sin θr

and for θr ≪ 1, then

fl ≈
1

2
ρCl‖v‖2Arefθr.

Assuming θr ≪ 1 is reasonable; otherwise the rocket would essentially be
flying “sideways.”

Newton’s law for the rotation of the rocket body gives

Jr θ̈r = ftl2 sin θn +
1

2
ρCl‖v‖2Aref l1θr.

For small θn,

Jr θ̈r = ftl2θn +
1

2
ρCl‖v‖2Aref l1θr.

Taking the Laplace transform and assuming zero initial conditions gives

Jrs
2Θr(s) = ftl2Θn(s) +

1

2
ρCl‖v‖2Aref l1Θr(s) (8.19)

and solving for the transfer function gives

Θr(s)

Θn(s)
=

ftl2

Jrs2 − 1
2ρCl‖v‖2Aref l1

.

Let us extend the example now to include some sort of actuation. We will
assume that the thrust vectoring is achieved by attaching a d.c. motor to the
axis of rotation of the rocket engine nozzle. For very large rocket engines, such
as the main engines launch vehicles, the actuation for the thrust vectoring is
achieved by hydraulic systems. For smaller systems, such as the maneuvering
thrusters for the space shuttle orbiter, the actuation is achieved by d.c. servor
motors.3

Example 8.5.6 Figure 8.15 is a schematic of the nozzle actuation system.
The nozzle has moment of inertia Jn about its pivot point and there are two
springs with spring constant kn

2 attached to the nozzle a length l3 from the
pivot point. A dc motor with torque constant Kτ and back emf constant ke
attached to the pivot point that rotates the nozzle and provides a torque τ .
The circuit driving the motor is illustrated in Figure 8.16. Find the transfer
function from the input voltage to the circuit to the angle of the nozzle, and
then find the transfer function from the input voltage to the angle of attack
of the rocket. Assume that the overall rotation of the nozzle is small.

3A servo motor is a unit where the angle of the motor is controlled. A signal to the servo
motor, typically a pulse width modulated signal indicates what the angle of the shaft of the
motor should be, and internal feedback control circuitry controls the output angle of the shaft
so that is accomplished. The means to to this will be covered when we consider feedback in
the following sections.
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τ

kn

2
kn

2

l3

Jn

θn
ft

Figure 8.15. Close-up of vectored thrust rocket nozzle for Ex-
ample 8.5.6.

If θn ≪ 1, then the restoring torque about the pivot point due to the
displacement of the springs will be approximately

τs = l23k sin θn ≈ l23knθn.

The only torques about the pivot point are τs from the springs and τ from
the dc motor. Hence, Newton’s law about the pivot point is

Jnθ̈n = τ − τs

= τ − l23knθn.

Computing the Laplace transform with zero initial conditions gives

s2JnΘn(s) = T (s) − l23knΘn(s)

where T (s) = L (τ(t)) so the transfer function from the motor torque to the
nozzle angle is

Θn(s)

T (s)
=

1

Jns2 + l23kn
. (8.20)

Returning to Equation 8.19, the torque required to pivot the nozzle has
an equal and opposite effect on the rocket body. In particular, Equation 8.19
is now

Jrs
2Θr(s) = ftl2Θn(s) +

Cl‖v‖2Aref
2

l1Θr(s) + T (s). (8.21)
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+

−

vin

R

kτ , ke

i

Figure 8.16. Actuator circuit for vector thrust nozzle in Ex-
ample 8.5.6.

Now considering the circuit, Kirchhoff’s voltage law around the circuit
gives

vin = iR+ keθ̇n

or
Vin(s) = I(s)R + skeΘn(s) (8.22)

and the torque property of the motor gives

τ = ikτ

or
T (s) = kτI(s). (8.23)

So we have four equations, 8.20, 8.21, 8.22 and 8.23 and five variables,
Θr(s), Θn(s), T (s), Vin(s) and I(s). A few lines of algebra gives

Θr(s)

Vin(s)
=

kτ
(

Jns
2 +

(

knl
2
3 + ftl2

))

(

Jrs2 − Cl‖v‖2Aref

2 l1

)

(JnRs2 + kekτs+ knl23R)
.

This expression is rather complicated, but it is not surprising: the effect
of a voltage through a circuit with a motor attached to a nozzle that directs
the angle of attack of a rocket will not necessarily be very simple.

There is something wrong
with this example. I
think the math is right,
but the circuit seems weird.
With an ideal voltage source,
neither C1 nor L1 appear in
the transfer function, which
makes sense – but why have
them in the circuit then?

Example 8.5.7 Determine the transfer function from the input voltage,
vin to the output voltage, vout for the circuit illustrated in Figure 8.17.

Let vL1 , vC2 , etc., denote the voltage drops across inductor L1, capacitor
C2, etc. and assume that positive voltage drops are in the direction of the
arrows for the currents. Kirchhoff’s voltage law gives three equations of the
form

vin = vC1

vin = vL1

vin = vC3 + vL3 + vL2

vout = vC2

vout = vL2 .
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−

vin C1
L1 C2 L2

C3 L3

vout

i1

i2 i3 i4 i5

i6

Figure 8.17. Circuit for Example 8.5.7.

Kirchhoff’s current law gives two equations at the top and bottom nodes in
the center of the circuit of the form

i1 = i2 + i3 + i6

i6 = i4 + i5.

Note that even though the top part of vertical inductor and capacitor pairs
do not meet at a point, since there is no component between them they
meet at a node.

The inductor and capacitors are described by

vLj
= Lj

diLj

dt

iCj
= Cj

dvCj

dt
.

respectively. Laplace transforming and solving for the voltage across a ca-
pacitor gives

VCj
(s) =

ICj
(s)

sCj
.

Laplace transforming the voltage equations and substituting for the com-
ponent laws gives

Vin(s) =
I2(s)

sC1

Vin(s) = sL1I3(s)

Vin(s) =
I6(s)

sC3
+ sL3I6(s) + sL2I5(s)

Vout(s) =
I4(s)

sC2

Vout(s) = sL2I5(s).
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These five voltage equations along with the two current equations gives
seven equations. The variables are the input and output voltages and the
six currents. So, we have the right number of equations and variables to
eliminate the six currents to find the transfer function from the input voltage
to the output voltage. Doing so gives

Vout(s)

Vin(s)
=

C3L2s
2

C2C3L2L3s4 + (C2L2 + C3L2 + C3L3) s2 + 1
.

May systems have more than one input and more than one output. Even
for control systems where we want to control a single variable with one input,
there will often be external disturbances. The following example illustrates
this fact.

Example 8.5.8 Consider the mechanical system illustrated in Fig-
ure 8.18, which is the same as the system in Example 8.5.1 except now
an external disturbance force, d(t) is acting on the second mass. The
equations of motion for each mass are

m1ẍ1(t) = k (x2(t) − x1(t)) + f(t)

m2ẍ2(t) = k (x1(t) − x2(t)) − d(t),

so

(

m1s
2 + k

)

X1(s) = kX2(s) + F (s)
(

m2s
2 + k

)

X2(s) = kX1(s) +D(s).

Eliminating X1(s) gives

X2(s) =
k

(m1s2 + k) (m2s2 + k) − k2
F (s)+

m1s
2 + k

(m1s2 + k) (m2s2 + k) − k2
D(s).

The term multiplying F (s) is the transfer function from F (s) to X2(s)
and the term multiplying D(s) is the transfer function from D(s) to
X2(s). Clearly, both from the equation as well as intuition, the response
x2(t) will be a linear combination of the two terms. A lot of the purpose of
controls is to specify f(t) as a function of either or both x1(t) and x2(t)
so that x2(t) maintains a desired value, regardless of the disturbance,
d(t).

8.6 Block Diagram Representation and Algebra

Block diagrams are a graphical means to represent transfer functions and feed-
back control systems. They are particularly convenient because they represent
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x1(t) x2(t)

m1 m2

k
f(t) d(t)

Figure 8.18. System to control for example 8.5.8.

X(s) T (s) X(s)T (s)

Figure 8.19. A block with an input and output arrow.

feedback in a visually intuitive manner, the various components are often iso-
lated and the overall representation is simpler. The salient point to keep in mind
is that they are simply an alternative representation, and that this alternative
representation is as rigorous as the algebraic representation.

Block diagrams are comprised of four types of components.

1. A block represents a transfer function describing the relationship between
some input and output. It is usually graphically represented by rectangle.
The output is equal to the input times the transfer function inside the
block.

2. Arrows represent signals, which are the Laplace transform of some time
domain function. Arrows directed into blocks represent input signals and
arrows directed out of blocks represent output signals from that trans-
fer function. A block with an input and output arrow is illustrated in
Figure 8.19.

3. Comparators add or subtract multiple signals, as is illustrated in Fig-
ure 8.20. The sign associated with any signal is indicated near the corre-
sponding arrow where it enters the comparator.

4. Branch points distribute a signal concurrently to multiple arrows, as is
illustrated in Figure 8.21. They do not “split” or “divide” the signal.

Since the elements of a block diagram are defined with mathematical preci-
sion it is important to keep in mind that they are an exact representation of a
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X1(s) X1(s)

X2(s) X2(s)

X1(s) +X2(s) X1(s) −X2(s)

+

+ +

−

Figure 8.20. A block diagram comparator.

X(s) X(s)

X(s)

Figure 8.21. A block diagram branch point.

system. In other words, there is a one-to-one correspondence between a block
diagram representation and an equation that represents the differential equation
governing the system. This notion will be highlighted by a series of examples,
including some that refer back to the robot arm PID control examples from
Section 9.2.

Example 8.6.1 Consider the block diagram in Figure 8.22. Using the rules
for the block diagram representation of transfer functions we will verify that
this is the same representation as determined in Example 9.2.3.

The signal coming out of the first comparator is the error, E(s) =
Θd(s) − Θ(t). Then it is multiplied by the proportional gain to give the
torque, T (s) = kp (Θd(s) − Θ(s)). Figure 8.23 illustrates the same block di-
agram with these two signals labeled. Then it it added to the gravity term

Θd(s) kp

mgl
s

1
Js2

Θ(s)
+

++

−

Figure 8.22. Block diagram for proportional control of a robot
arm in Example 8.6.1.
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Θd(s) kp

mgl
s

1
Js2

Θ(s)E(s) T (s)
+

++

−

controller robot

Figure 8.23. Block diagram for proportional control of a robot
arm in Example 8.6.1.

and finally multiplied by the robot dynamics to give Θ(s). Mathematically,

Θ(s) =

[

kp (Θd(s) − Θ(s)) − mgl

s

]

1

Js2
.

Solving for the arm angle gives

Θ(s) =
kpΘds−mgl

s (Js2 + kp)
,

is the same as Equation 9.5.

Note that other than simply providing an alternative representation Equa-
tion 9.5, the block diagram in Figure 8.22 also represents the interconnected
nature of the system more explicitly and more naturally. The algebraic rep-
resentation of a transfer function does not necessarily provide an indication of
the relationship between components; whereas, the block diagram provides this
information explicitly.

Since components of a block diagram have explicit algebraic meaning, just
as it is possible to algebraically manipulate an equation, it is possible to alge-
braically manipulate a block diagram. All of these are relatively straight-forward
and a few examples should help elucidate the concept.

Example 8.6.2 A branch point carries a signal concurrently along multiple
arrows. If a signal is multiplied by a transfer function in a block before a
branch point, the arrows out of the branch point are both multiplied by the
transfer function inside the block. In order to move a branch point from the
output side of a block to the input side, both arrows must then have the
transfer function inside a block so that they carry the same signal. This is
represented in Figure 8.24.

Similarly, the manner in which to move a branch point from the input
side of a block to the output side of the block is illustrated in Figure 8.25.

Example 8.6.3 The previous example illustrated how to move a branch
point to another side of a block. Mathematically it represents the alge-
braic property of distribution. The algebraic property that multiplication
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B(s)

B(s)

B(s)A(s)

B(s)A(s)

B(s)A(s)

B(s)A(s)

A(s)

A(s)

A(s)A(s)

⇐⇒

Figure 8.24. Moving a branch point to the input side of a
block.

B(s)

B(s)

B(s)

B(s)

B(s)A(s)

B(s)A(s)

A(s)

A(s)A(s)

1
A(s)

⇐⇒

Figure 8.25. Moving a branch point to the output side of a
block.
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B(s)

B(s)

C(s)

C(s)

A(s)

A(s)A(s)

A(s)A(s) D(S)

D(s)

+

+ +

+

⇐⇒

Figure 8.26. Equivalent block diagrams representing the fact
that multiplication distributes over addition.

B(s)

B(s)

C(s)

C(s)

A(s)

A(s)A(s) D(S)

D(s)

1
A(s)

+

+

+

+

⇐⇒

Figure 8.27. Equivalent block diagrams.

distributes over is represented by the equality

D(s) = (B(s) + C(s))A(s) = B(s)A(s) + C(s)A(s).

In a block diagram, it is represented by the fact that the two block diagrams
in Figure 8.26 are equivalent.

Similarly, the relationship

D(s) = B(s)A(s) + C(s) =

(

B(s) +
C(s)

A(s)

)

A(s)

is represented in Figure 8.27.
So, we now have a rule to move a comparator to either side of a block.

If a comparator is moved to the output side of a block, each arrow entering
the comparator must multiply the block. If a comparator is moved to the
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R(s)R(s) Y (s)Y (s)
G(s)

H(s)

+

− ⇐⇒
G(s)

1+H(s)G(s)

Figure 8.28. Feedback transfer function.

input side of the block, the arrow that originally did not multiply the block
must have a block that inverts the multiplication of the block.

The next example illustrates what is perhaps the most important block di-
agram manipulation that we will commonly utilize.

Example 8.6.4 Consider the feedback system illustrated on the left in
Figure 8.28. We will show that it is equivalent to the block diagram on the
right.

To show these are equivalent, write

Y (s) = (R(s) −H(s)Y (s))G(s)

and solve for Y (s), which gives

Y (s) =
G(s)

1 +H(s)G(s)
R(s).

As the next example shows, the order of branch points may be switched as
long as there is no component between them. However, in general switching the
order of a comparator and branch point will require some care.

Example 8.6.5 The two block diagrams in Figure 8.29 are equivalent.
Switching a comparator and branch point in a similar manner results

in a block diagram that is generally not equivalent, as is illustrated in Fig-
ure 8.30.

These and a few other manipulations are summarized in Table 8.3.
The canonical form for a feedback block diagram is the form on the right

in Figure 8.28, where there is one feedforward block leading from the input to
output and one feedback block. This form is convenient because it is natural
minimal representation for a feedback system, and many analysis and design
methods in controls start with this canonical form. In particular, the root
locus design method in Section 9.9 and the frequency response methods from
Section 9.11 both start with this canonical form.
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cascade elements

R
G1 G2

Y R
G1G2

Y

parallel elements

R
G1

G2

Y
+

+ R
G1 +G2

Y

moving comparator

R1

R2

GG Y
+
+

R1

R2

G

GG Y
+
+

moving comparator

R1

R2

GG Y
+
+

R1

R2

G Y

1
G

+
+

moving branch point

R Y

Y

GG

R Y

Y

G

G

moving branch point R

R YGG

R

R YG

1
G

eliminating feedback loop

R Y
G1

G2

+

−

R YG1

1+G1G2

Table 8.3. Summary of block diagram algebraic manipula-
tions.
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R(s) R(s)R(s)B(s)

R(s)B(s)

R(s)B(s) R(s)B(s)

R(s)B(s)

R(s)B(s)B(s) B(s)⇐⇒

Figure 8.29. Switching the order of branch points in a block
diagram.

+

+

+

+

R(s)

R(s)

R(s)B(s) + C(s)

R(s)B(s) + C(s)

R(s)B(s) + C(s)
B(s) B(s)

C(s) C(s)

R(s)B(s)

6⇐⇒

Figure 8.30. Switching the order of a branch point and com-
parator in a block diagram.

Just as a sequence of algebraic steps may be used to simplify an complicated
algebraic expression, a sequence of corresponding manipulations in a block di-
agram may be used to determine an alternative block diagram. According to
[14], a good recipe for simplifying block diagrams is the following.

1. Combine cascade blocks.

2. Combine parallel blocks.

3. Eliminate interior feedback loops.

4. Shift comparators to the left.

5. Shift branch points to the right.

6. Iterate until canonical form is obtained.

The following example illustrates block diagram manipulations for a reason-
ably complicated block diagram.

Example 8.6.6 Consider the block diagram illustrated in Figure 8.31. De-
termine the transfer function from the input to the output.

In Figure 8.32, the block diagram has been modified by switching moving
the branch point that was between the comparator and block containing
C(s) to the output side of C(s). The the block containing the transfer
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A(s)

B(s)

C(s)

D(s)

R(s) Y (s)
−

−−
+++

Figure 8.31. Block diagram for Example 8.6.6.

function B(s) was modified by dividing by C(s). Also, since the order of
adjacent branch points does not matter, the branch point was moved to be
the middle of the three on the right side of Figure 8.32. Now the result from
Example 8.6.4 may be used to simplify the portion outlined by the dotted
box. The result is illustrated in Figure 8.33.

A(s) C(s)

D(s)

R(s) Y (s)

−−

−
++ +

B(s)
C(s)

Figure 8.32. Block diagram for Example 8.6.6.

Since the two blocks in the top are adjacent, they are simply multi-
plied. Hence, they may be combined as is illustrated in Figure 8.34. After
combining them, the portion of the block diagram in the dotted line is ex-
actly of the form from Example 8.6.4. The simplified result is illustrated in
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A(s)
R(s) Y (s)

− −
+ +

B(s)
C(s)

C(s)
1+C(s)D(s)

Figure 8.33. Block diagram for Example 8.6.6.

Figure 8.35 after the simplification of

A(s)C(s)
1+C(s)D(s)

1 + B(s)
C(s)

A(s)C(s)
1+C(s)D(s)

=
A(s)C(s)

1 + C(s)D(s) +A(s)B(s)
.

R(s) Y (s)

− −
+ +

B(s)
C(s)

A(s)C(s)
1+C(s)D(s)

Figure 8.34. Block diagram for Example 8.6.6.

Finally, all of Figure 8.35 is of the form of the feedback loop from Exam-
ple 8.6.4, so this would be the usual stopping point for this problem. Just
for completeness we will take it one step further and reduce it to one block
with one transfer function which, after some simplification, is illustrated in
Figure 8.36.
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R(s) Y (s)

−
+ A(s)C(s)

1+C(s)D(s)+A(s)B(s)

Figure 8.35. Block diagram for Example 8.6.6.

R(s) Y (s)
A(s)C(s)

1+C(s)D(s)+A(s)B(s)+A(s)C(s)

Figure 8.36. Block diagram for Example 8.6.6.

8.7 Computational Tools

8.7.1 Newton’s method

8.7.2 Matlab

Four functions are particularly useful and will be highlighted here. Since we are
dealing with polynomials in s, a function that multiplies polynomials will be
handy, which is what conv() does. The function pzmap() computes and plots
the poles and zeros of a transfer function. The functions step() and impulse()

computes and plots an approximate numerical solution for the step and impulse
responses, respectively.

The conv() function takes two vectors as arguments. The elements of the
vectors are the coefficients of the powers of s in a polynomial. For example,
(

s2 + 3s+ 5
) (

7s4 + 11s2
)

is computed as follows:

>> conv([1 3 5],[7 0 11 0])

ans =

7 21 46 33 55 0

which tells us that

(

s2 + 3s+ 5
) (

7s4 + 11s2
)

= 7s5 + 21s4 + 46s3 + 33s2 + 55s.

Note that the 0’s are necessary, both in the vectors entered into conv() as well
as in the answer, to determine to what power of s the coefficient belongs.
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The step() function computes an approximate numerical solution to the
step response of a transfer function. If G(s) is a transfer function, then the step
response is given by

y(t) = L−1

(

G(s)
1

s

)

.

In its simplest implementation, the arguments to step() are vectors whose
components are the coefficients of the polynomials in s in the numerator and
denominator of G(s), respectively. For example, to compute and plot the step
response for

G(s) =
s+ 2

s2 + 5s+ 10

which is

y(t) = L−1

(

G(s)
1

s

)

enter

>> step([1 2],[1 5 10])

at the command prompt. If there is a need to record the response, enter

>> [y,t] = step([1 2],[1 5 10])

and then the vector y would contain the step response, and each element of y
would correspond to the time contained in the corresponding element of t.

The impulse() function is the same as step() except it determines a
numerical solution for the impulse response. The pzmap() function takes the
input in the same format as step() and impulse(), but it plots the location of
the poles and zeros of the transfer function. This is useful for transfer functions
with polynomials that are of higher order than can be factored by hand.

8.7.3 Octave

The syntax for Octave is very similar to matlab, with the only exception that
the step() and impulse() functions require that the transfer function be des-
ignated as such with the tf() function.

The conv() function takes two vectors as arguments. The elements of the
vectors are the coefficients of the powers of s in a polynomial. For example,
(

s2 + 3s+ 5
) (

7s4 + 11s2
)

is computed as follows:

octave:> conv([1 3 5],[7 0 11 0])

ans =

7 21 46 33 55 0

which tells us that
(

s2 + 3s+ 5
) (

7s4 + 11s2
)

= 7s5 + 21s4 + 46s3 + 33s2 + 55s.

Note that the 0’s are necessary, both in the vectors entered into conv() as well
as in the answer, to determine to what power of s the coefficient belongs.
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The step() function computes an approximate numerical solution to the
step response of a transfer function. If G(s) is a transfer function, then the step
response is given by

y(t) = L−1

(

G(s)
1

s

)

.

In its simplest implementation, the arguments to step() are vectors whose
components are the coefficients of the polynomials in s in the numerator and
denominator of G(s), respectively. For example, to compute and plot the step
response for

G(s) =
s+ 2

s2 + 5s+ 10

which is

y(t) = L−1

(

G(s)
1

s

)

enter

octave:> step(tf([1 2],[1 5 10]))

at the command prompt. The output to this function is illustrated in Fig-
ure 8.37. If there is a need to record the response, enter

octave:> [y,t] = step(tf([1 2],[1 5 10]))

and then the vector y would contain the step response, and each element of y
would correspond to the time contained in the corresponding element of t.

The impulse() function is the same as step() except it determines a
numerical solution for the impulse response. The pzmap() function takes the
input in the same format as step() and impulse(), but it plots the location of
the poles and zeros of the transfer function. This is useful for transfer functions
with polynomials that are of higher order than can be factored by hand.

8.8 Exercises

Problem 8.1 Determine the inverse Laplace transform of

F (s) =
a

s3 (s+ a)
.

Problem 8.2 Solve

ẍ+ 4x = cos 5t

x(0) = 1

ẋ(0) = 1

using Laplace transforms.
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Figure 8.37. The step response of G(s) = s+2
s2+5s+10 produced

by the Octave command step(tf([1 2],[1 5 10])).

Problem 8.3 Determine the solution to

ẍ+ 16x = 0

x(0) = 1

ẋ(0) = 0

using Laplace transforms.

Problem 8.4 Determine the solution to

ẍ+ 16x = 0

x(0) = 1

ẋ(0) = 1

using Laplace transforms.

Problem 8.5 Determine the solution to

ẍ+ 5ẋ+ 6x = 0

x(0) = 2

ẋ(0) = −5

using Laplace transforms.
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Problem 8.6 Determine the solution to

ẍ = 0

x(0) = 0

ẋ(0) = 1

using Laplace transforms.

Problem 8.7 Determine the solution to

ẍ+ 2ẋ+ 5x = 6 cos 3t− 4 sin 3t

x(0) = 0

ẋ(0) = 5

using Laplace transforms.

Problem 8.8 Determine the solution to

ẍ+ 16x = δ(t)

x(0) = 0

ẋ(0) = 0

using Laplace transforms.

Problem 8.9 Determine the solution to

ẍ+ 16x = δ(t− 2)

x(0) = 0

ẋ(0) = 0

using Laplace transforms. Plot the solution.

Problem 8.10 Determine the solution to

ẍ+ 9x = 1(t)

x(0) = 0

ẋ(0) = 0

using Laplace transforms.

Problem 8.11 Determine the solution to

ẍ+ 9x = 1(t− 3)

x(0) = 1

ẋ(0) = 0.

Plot the solution.
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Problem 8.12 Determine the solution to

ẍ+ 4x =

{

cos t, 0 ≤ t < π
0, π ≤ t

x(0) = 0

ẋ(0) = 0

using Laplace transforms. Plot your answer. Compare your answer with
an approximate numerical solution for the differential equation obtained
by writing a computer program or using a computer package such as
Matlab.

Problem 8.13 Determine the solution to

ẍ+ 25x =

{

t, t ≤ t < 1
cos(t− 1), 1 ≤ t

x(0) = 0

ẋ(0) = 0

using Laplace transforms. Plot your answer. Compare your answer with
an approximate numerical solution for the differential equation obtained
by writing a computer program or using a computer package such as
Matlab.

Problem 8.14 Solve

ẋ− 5x =







0 t < 3
t 3 ≤ t < 4
0 4 ≤ t

x(0) = 0.

Problem 8.15 This problem is going to find the transfer function for a
loudspeaker.

From physics, if a wire of length l carries a current of i amperes and is
arranged at a right angle to a magnetic field of strength B Tesla, then the
force (in Newtons) on the wire is at a right angle to the plane of the wire
and magnetic field and has a magnitude

f = Bli. (8.24)

In a speaker, the wire is usually coiled to fit a longer length in a small space.
This is illustrated schematically in Figure 8.38. A current, i through the

coil, c causes a force, f on the mass (which, in this example, is the magnet)
in the direction shown with a magnitude given by Equation 8.24.

1. Find the transfer function from the current through the speaker coil,
i to the location of the mass, x.
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i

i

c

f

m

x

Figure 8.38. Speaker model for Problem 8.15.

2. Now we will attach a high pass filter to the speaker. The circuit is
illustrated in Figure 8.39. An analysis of the properties of high pass
filters is presented in Chapter 10.

f
m

x

vin

C

R

L

esp

Figure 8.39. Speaker model for Problem 8.15.

Everything in the circuit should be obvious except the circle labeled
esp. Just like a d.c. motor, there is a voltage drop across the speaker
due to the speaker moving. It is given by

esp = Blẋ.

Find the transfer function from vin to the position of the speaker, x.
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Problem 8.16 Solve

ẍ+ 9x = cos 2t

x(0) = 1

ẋ(0) = 1

using Laplace transforms.

Problem 8.17 Consider the inverted pendulum illustrated in Fig-
ure 8.40.

1. Determime the equation of motion for the system.

2. Determine the best linear approximation for the equation of motion
for small θ.

3. Using the linear approximation, determine the transfer function
from the input torque, τ to the angle of the pendulum, θ.

4. Determine the transfer function from the input torque to the an-
gular velocity of the pendulum.

5. Assume the torque is produced by a dc motor that is driven by the
circuit illustrated in Figure 8.41. Determine the transfer function
from the input voltage to the circuit to the pendulum angle, θ.

6. Assume the torque is produced by a dc motor that is driven by the
circuit illustrated in Figure 8.41. Determine the transfer function
from the input voltage to the circuit to the pendulum angle angular
velocity.

Problem 8.18 Consider the system illustrated in Figure 8.42. A pulley
with a mass moment of inertia J1 and r1 is subjected to a torque, τ .
A light belt connects the first pulley to a second pulley with an inner
and outer spool. The mass moment of inertia of the pulley is J2. The
inner spool has radius r1 and the outer spool has a radius r2. A belt
around the outer spool of the second pully is attached to a third pulley
and mass. The third pulley has radius r2 and mass moment of inertia J3.
The mass has a mass m and is attached to a linear spring with spring
constant k. The variable x(t) represents the displacement of the mass
with respect to an inertial coordinate frame. The variables θ1(t), θ2(t)
and θ3(t) represent the angular displacements of the pulleys.

1. Determine the transfer function from τ(t) to x(t).

2. Assume the torque, τ is imposed on the first pulley by a dc motor
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g

m

τ

θ

Figure 8.40. System for Problem 8.17.

+

−

vin(t)

R L

ke, kτ

Figure 8.41. Motor circuit for Problem 8.17.
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m

J1, r1, τ

J2, r2

J3, r2

x(t)

k

Figure 8.42. System for Problem 8.18.

driven by the circuit illustrated in Figure 8.43. Find the transfer
function from the input voltage of the circuit, vin(t) to x(t).
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Figure 8.43. Motor circuit for Problem 8.18.



Chapter 9

Basic Control Theory:
Analysis

9.1 Introduction

The exploitation of feedback was fundamental to many engineering breakthroughs
of the 20th century. While feedback was certainly manifested well before that,
such as in Watt’s steam engine governor [], it was the need for and development
of feedback amplifiers in the first half of the century that drove the development
of the theory and analysis that made the use of feedback of general utility.

The utility of feedback has several aspects:

1. it may stabilize an otherwise unstable system;

2. it may improve the performance of a system;

3. it may make a system operate similarly regardless of variability in the
components or operating conditions; and,

4. it may increase the bandwidth of the response of a system.

This chapter provides an detailed introduction to classical control theory. In
order to develop some intuition regarding feedback and because it is ubiquitous,
Section 9.2 presents an introduction to proportional–derivative–integral control.
It is intended as an introduction to this very common control methodology and
intended also as an introduction to the concept of feedback. Section 9.4 provides
the definition of various quantities that are commonly used to specify desired
control system behavior. Section 8.6 considers block diagrams, which are a
graphical representation of the differential equations describing control systems.

The most critical section is Section 9.6 which discusses how system response
is a function of the location in the complex plane of the poles of a transfer
function. Understanding of this material is critical for understanding the root
locus design method, which is in Section 9.9. Finally, Section 9.11 presents the
frequency response analysis and design methods.

283
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mg

θ
τ

A

Figure 9.1. Robot arm mechanism.

9.2 PID Control

It is accurate to say that the vast majority of feedback control, particularly of
mechanical systems, in industry is the so-called proportional plus integral plus
derivative (PID) control. While designing PID controllers is usually somewhat
ad hoc, this section will be devoted to the analysis of the features of these
controllers as well as presenting a few “rules of thumb” with respect to designing
them. The approach will be by way of an exhaustive example.

Example 9.2.1 Consider the simple “robot arm” illustrated in Figure 9.1.
The arm is a rigid link constrained to rotate about the fixed point A. The
arm has a moment of inertia, J and a center of mass located at a length, l
(not shown) from the point A. The arm has a mass m and is subjected to
gravity. The robot is fitted with a sensor that is able to determine the angle
θ, which is measured from the horizontal position as indicated. Finally, a
motor provides a torque, τ about the point A.

The purpose of feedback control is to determine a control law which makes
the arm move to a desired angle, say θd and stay there despite any variable
forces that may be applied to the arm (say by manipulating different objects
of different masses). The idea of feedback is that the sensor measures θ which
is then used (fed back) to determine a good value for the torque, τ .

Using Newton’s law, the equation of motion for the system is

Jθ̈ = τ −mgl cos θ.

This is an ordinary, second order, nonlinear, constant coefficient, inhomo-
geneous differential equation. In order to make it much more amenable to
analysis, we will assume that θ ≪ 1 so that cos θ ≈ 1. In such a case, then
the equation of motion is

Jθ̈ = τ −mgl. (9.1)
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9.2.1 Proportional control

The idea of proportional control is simple and has an obvious intuitive appeal:
have the control input be proportional to the error in the system. How this would
specifically be implemented in the robot arm and its efficacy is considered in the
following examples. The first example, Example 9.2.2 uses the techniques from
Chapter 3 to solve the resulting equations. In order to partially motivate the
use of frequency domain analysis tools from Chapter 8 in control theory and the
use of a transfer function, developed subsequently in section 8.5, Example 9.2.3
presents the same analysis, but using Laplace transform tools.

Example 9.2.2 Returning to the system in example 9.2.1, using propor-
tional control would be to specify that

τ(t) = kp (θd(t) − θ(t)) , (9.2)

where, as stated previously, θd(t) is the desired position of the arm at time
t. Thus, the torque, τ is proportional to the error, θd(t) − θ(t). The pro-
portionality constant, kp is called the proportional gain.

Depending upon the system, sometimes proportional controls suffices.
However, in the case at hand, it is straightforward to illustrate that the
approach has several drawbacks. Substituting the control law from equa-
tion 9.3 into the (linearized) equation of motion from equation 9.1 gives

Jθ̈ = kp (θd − θ) −mgl

or
Jθ̈ + kpθ = kpθd −mgl, (9.3)

which is an ordinary, second order, constant coefficient, linear, inhomoge-
neous differential equation. The rest of this example will analyze this system
using the tools and methods from Chapter 3. Obviously the homogeneous
solution is

θh(t) = c1 cos

(
√

kp
J
t

)

+ c2 sin

(
√

kp
J
t

)

and the particular solution depends upon the form of θd(t).
In order to precede with the analysis, let θd be a specified constant. In

that case,

θp(t) = θd −
mgl

kp
,

and the general solution is

θ(t) = c1 cos

(
√

kp
J
t

)

+ c2 sin

(
√

kp
J
t

)

+ θd −
mgl

kp
.

In order to precede further and plot some solutions, let us specify some
numerical values for the initial conditions and all parameter values except
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Figure 9.2. Response of robot arm under proportional control.

for kp; namely,

J = 1

mgl = 1

θ(0) = 0

θ̇(0) = 0

θd = 1

in which case

θ(t) =

(

1

kp
− 1

)

cos
√

kpt+ 1 − 1

kp
. (9.4)

While θd = 1 violates the assumption that θ is small, because the Equa-
tion 9.2 is linear, the nature of the solutions will be qualitatively the same as
the case when the assumption is satisfied. In other words, due to linearity,
the shape of the response will be the same regardless of whether the desired
value is one or 0.01. The value of one is used simply to have the equations
in a somewhat “normalized” form.

A plot of the movement of the robot arm for various values of kp is
illustrated in Figure 9.2. Note that with proportional control

1. the solutions are oscillatory and are not decaying;

2. as kp increases the frequency of oscillation increases;
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3. as kp increases the average value of the oscillation approaches θd = 1;
and,

4. as kp increases, the earliest time at which θ = θd decreases.

Clearly, using proportional control for this example is not adequate if we
desire that the robot arm approach θd and not oscillate about it.

Now, the same analysis is repeated using Laplace transforms.

Example 9.2.3 Referring back to example 9.2.2, the equation of motion
for proportional feedback is

Jθ̈ + kpθ = kpθd −mgl.

Assuming zero initial conditions, the Laplace transform of the above equa-
tion is

Js2Θ(s) + kpΘ(s) = kpΘd(s) −
mgl

s
.

and

Θ(s) =
kpsΘd −mgl

Js2 + kp
. (9.5)

Assuming, as before, mgl = J = 1 and θd = 1 so Θd(s) = 1
s
, then

Θ(s) =
kp − 1

s (s2 + kp)
. (9.6)

The inverse Laplace transform for 9.6 is exactly the same as equation 9.4,
and for various kp values must give the same response curves as are illus-
trated in Figure 9.2

9.2.2 Proportional plus derivative control

The idea of proportional plus derivative control is that, in contrast to propor-
tional control, the control law should also reflect the derivative of the error.
The intuition is that while the error may be positive or negative, how large the
control input should be should also depend upon whether the error is increasing
or decreasing.

Referring to Figure 9.2, the idea is that, for example, for the case of kp = 8
and 0 < t < 0.6 where the error, θd − θ > 0, since the error is decreasing,
reducing τ relative to what it is for just proportional control should reduce
the amount by which the response “overshoots” during the time interval from
approximately 0.6 < t < 1.6.

Example 9.2.4 Returning to the system in examples 9.2.1 and 9.2.2, using
proportional plus derivative control (PD control) would be to specify that

τ(t) = kp (θd(t) − θ(t)) + kd

(

θ̇d(t) − θ̇(t)
)

,
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where, as stated previously, θd(t) is the desired position of the arm at time t.
Thus, the torque, τ is not simply proportional to the error, but also includes
a term proportional to the derivative of the error. The proportionality
constant for the derivative term, kd is called the derivative gain.

Substituting this into the equation of motion and rearranging gives

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d −mgl. (9.7)

In this case, the homogeneous solution is

θh = e−
kd
2J
t

(

c1 cos

(

√

4kpJ − k2
d

2J
t

)

+ c2 sin

(

√

4kpJ − k2
d

2J
t

))

as long as k2
d < 4Jkp. Note that the oscillations due to the homogeneous

solution decay with time as long as kp, kd, J > 0, so this potentially improves
the performance over proportional control since the continued oscillations
present in proportional control will decay with derivative control. Thus, the
steady state solution depends only upon the form of the particular solution,
which, of course, depends upon the exact nature of θd(t).

In order to continue the analysis as before, let us consider the case where
θd is a constant. In that case, since θ̇d = 0, the particular solution is the
same the proportional control case in example 9.2.2 and hence

θ(t) = e−
kd
2J
t

(

c1 cos

(

√

4kpJ − k2
d

2J
t

)

+ c2 sin

(

√

4kpJ − k2
d

2J
t

))

+

θd −
mgl

kp
.

Clearly, since the homogeneous solution decays for positive kd, kp and J ,
the steady state solution is

θss(t) = θd −
mgl

kp
.

Before plotting some solutions with numerical values, note for the steady
state response, a very large kp is desirable since it makes θss → θd. Also, if
kd increases, any oscillations should decay more quickly.

To plot a solution, let

J = 1

mgl = 1

θ(0) = 0

θ̇(0) = 0

θd = 1
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Figure 9.3. Response of robot arm under PD control with
fixed kp = 8.0 and various kd.

in which case

θ(t) = e−
kd
2 t

[

(

1

kp
− 1

)

cos

(

√

4kp − k2
d

2
t

)

+

(

kd (1 − kp)

kp
√

4kp− k2
d

)

sin

(

√

4kp − k2
d

2
t

)]

+ 1 − 1

kp
. (9.8)

Figure 9.3 illustrates the response for a fixed kp = 8.0 and various kd
values. Note that as kd is increased, the oscillations decay more quickly
and the value of the first maximum (near t = 1.0) is decreased. Also note
that changing kd does not affect the steady state value of θ(t) and that the
steady state error is nonzero.

Figure 9.4 illustrates the response for a fixed kd = 1.0 and various kp
values. Note that as kp is increased, the final steady state error decreases
(recall θd = 1), but that the initial overshoot is greatly increased and the
frequency of oscillation increases.

Now, the same analysis is repeated using Laplace transforms.

Example 9.2.5 Picking up from equation 9.7 from example 9.2.4, the
equation of motion for proportional plus derivative control is

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d −mgl.
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Figure 9.4. Response of robot arm under PD control with
fixed kd = 1.0 and various kp.

Assuming zero initial conditions and Laplace transforming gives

Js2Θ(s) + kdsΘ(s) + kpΘ(s) = kpΘd(s) + kdsΘd(s) − θd(0) − mgl

s

which gives

Θ(s) =
kdΘd(s)s

2 + kpΘd(s)s− sθd(0) −mgl

s (Js2 + kds+ kp)
.

As before, the nature of the solution depends upon Θd(s). Assuming
θd = J = mgl = 1, then

Θd(s) =
1

s

and

Θ(s) =
kds+ kp − 1

s (s2 + kds+ kp)
,

and the inverse Laplace transform is the same as the solution from exam-
ple 9.2.4 given in equation 9.8 and plotted in Figures 9.3 and 9.4 for various
gain values.
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Also, using Theorem 8.3.17,

lim
t→∞

θ(t) = lim
s→0

sΘ(s)

= lim
s→0

s
kp − 1

s (s2 + kds+ kp)

= 1 − 1

kp
.

9.2.3 Proportional plus integral plus derivative control

With proportional plus derivative plus integral (PID) control, a third term is
added to proportional plus derivative control that is, naturally, the integral of
the error. In examples 9.2.2, 9.2.3, 9.2.4 and 9.2.5 there was always a steady
state error, i.e., limt→∞ θ(t) 6= θd. The idea behind integral control is that as
time increases, if there is a consistent error the input to the system will increase
with time to compensate for the error. The need for integral control in many
problems is obvious considering the robot arm from these examples. In the
case of both proportional and proportional plus derivative control, if there is no
error, i.e., θ = θd then τ = 0. If the torque is zero, then there is nothing to
offset the torque caused by gravity and the arm will rotate. The steady state
value in the case of PD control is the angle at which the error is great enough
to cause an error that will result in a torque that will offset the torque due to
gravity.

The following example illustrates the the efficacy of integral control with
respect to eliminating steady state error.

Example 9.2.6 Returning, yet again, to the system from example 9.2.1,
adding integral control yields an expression for the torque of the form

τ = kp (θd − θ) + kd

(

θ̇d − θ̇
)

+ ki

∫ t

0

θd(t̂) − θ(t̂)dt̂

so the equation of motion for the robot arm becomes

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d + ki

∫ t

0

θd(t̂) − θ(t̂)dt̂−mgl. (9.9)

This is a second order integral-differential equation and there are various
ways to handle the integral term.

1. One way to eliminate the integral is to differentiate the entire equation
with respect to time as follows

J
...
θ + kdθ̈ + kpθ̇ = kpθ̇d + kdθ̈d + ki (θd − θ)

or
J
...
θ + kdθ̈ + kpθ̇ + kiθ = kiθd + kpθ̇d + kdθ̈d.
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Note that the solution to this equation requires an initial condition
for θ̈; however, that may be computed from equation 9.9 using θ(0)
and θ̇(0). In particular, if θ(0) = θ̇(0) = 0

θ̈(0) = kpθd(0) + kdθ̇d(0).

In order to proceed, assume, as before, mgl = J = θd = 1 and θ(0) =
θ̇(0) = 0, which gives

...
θ + kdθ̈ + kpθ̇ + kiθ = ki (9.10)

θ(0) = 0

θ̇(0) = 0

θ̈(0) = kpθd(0) = kp.

The particular solution is easy to obtain from the method of undeter-
mined coefficients; namely,

θp(t) = 1.

The homogeneous solution, on the other hand, depends upon the roots
of the characteristic equation

λ3 + kdλ
2 + kpλ+ ki = 0,

which clearly depends upon ki, kd and kp.

In order to proceed, let ki = 32, kd = 8 and kp = 24, in which case

λ1 = −6

λ2 = −2 − 2i

λ3 = −2 + 2i

and
θh(t) = c1e

−6t + e−2t (c2 cos 2t+ c3 sin 2t) ,

and hence the general solution is

θ(t) = c1e
−6t + e−2t (c2 cos 2t+ c3 sin 2t) + 1.

Evaluating the initial conditions gives

θ(t) = 1 + 2e−4t + e−2t (sin 2t− 3 cos 2t) .

Note, at t→ ∞, θ(t) → 1 = θd, so this method does, indeed, eliminate
the steady state error. Note also, though, that this solution is only
valid for the specific values for kp = 24, kd = 8 and ki = 32.

Figure 9.5 illustrate the response of the arm for fixed values of kp,
kd and various ki. Note that any nonzero value for ki eliminates the
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Figure 9.5. Response of robot arm under PID control for fixed
kp = 24 and kd = 8 and various ki.

steady state error; however, increasing ki increases the magnitude and
duration of the transient oscillations, and, if large enough, destabilizes
the system (ki = 200). The reason for this is that ki is the coefficient
of θ in Equation 9.10 and hence appears in the characteristic equation.
As ki gets large, one or more of the roots of the characteristic equation
has a positive real part, which corresponds to an exponential with a
positive coefficient.

2. An alternative to differentiating equation 9.9 is to convert the system
into a coupled set of ordinary differential equations. The approach is
mathematically equivalent to the preceding approach, but perhaps is
more amenable to numerical analysis. Note that since

d

dt

∫ t

0

θd(t̂) − θ(t̂)dt̂ = θd(t) − θ(t),

if we define a new variable, Î (I for “integral”), then equation 9.9 is
equivalent to the two ordinary differential equations

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d + kiÎ

˙̂
I = θd − θ.
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If

x1 = θ

x2 = θ̇

x3 = Î ,

then

d

dt





x1

x2

x3



 =





x2

kpθd+kdθ̇d+kix3−kdx2−kpx1

J

θd − x1



 ,

which can be solved analytically using the methods from Chapter 6 or,
perhaps more conveniently, can be solved numerically using the meth-
ods from Chapter 13. Regardless, the same results will be obtained
as outlined above.

Example 9.2.7 finally, for completeness, we will determine the PID con-
trol equations using Laplace transforms. The equation of motion for the
robot arm under PID control was given in Equation 9.9 and is

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d + ki

∫ t

0

θd(t̂) − θ(t̂)dt̂−mgl.

Taking the Laplace transform with zero initial conditions gives

(

Js2 + kds+ kp +
ki
s

)

Θ(s) =

(

kp + kds+
ki
s

)

Θd(s)

or

Θ(s) =
kp + kds+ ki

s

Js2 + kds+ kp + ki

s

Θd(s)

=
kds

2 + kps+ ki
Js3 + kds2 + kps+ ki

Θd(s).

Using Theorem 8.3.17 and assuming Θd(s) = 1
s
, i.e., θd is a unit step input

lim
t→∞

θ(t) = lim
s→0

sΘ(s)

= lim
s→0

s
kds

2 + kps+ ki
Js3 + kds2 + kps+ ki

1

s

= 1.
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Figure 9.6. Time domain specifications definitions for a unit
step input.

9.3 Sensitivity

9.4 Time Domain Specification

The qualitative discussions regarding the effect of altering controller gains in
section 9.2 practically beg us to be more precise and quantitative about the
nature of the response of a system. Consider a generic system response to a
unit step input illustrated in Figure 9.6.

From the diagram, the following quantities are apparent.

1. The rise time, tr, is the time at which the response is first equal to the
magnitude of the input. For a unit step input, it is the time at which
the response is first equal to one. If the system is overdamped, then the
response may only asymptotically approach the desired value. In that case
the rise time may be defined to be the time it takes to achieve 90% of the
desired value. Unless otherwise specified, in this book the rise time will
refer to the first definition.

2. The peak time, tp, is the time at which the response reaches its maximum
value.

3. The settling time, ts, is the time after which the response always stays
within a range of its steady state value. In Figure 9.6, this is illustrated
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as 0.9 ± 0.05, but other ranges may be specified as a certain percentage,
e.g., “the 3% settling time.”

4. The maximum percentage overshoot, O, is defined to be the percentage
that the peak value, xp exceeds the desired value, xd, i.e.,

O =
xp − xd
xd

.

Collectively these terms are referred to as the transient response since they
describe how the system transitions from the initial conditions to the steady
state behavior, but do not describe the steady state behavior. With regard to
the steady state, the steady state error is the difference between the steady state
value of the response and the desired value, i.e.,

ess = xss − xd.

The tools used to determine the nature of the transient response are dis-
cussed subsequently in Section 9.6. The usual tool for the steady state error is
Theorem 8.3.17, the Final Value Theorem.

These time domain specifications may be used to specify the manner in which
a control system should respond. For example, it may be desired that a control
surface on an airplane wing, say an aileron, respond with less than 1 second rise
time, less than 1% overshoot and a settling time less than 3 seconds. As in many
design problems, it may or may not be possible to meet all the specifications.
Whether or not it is possible depends, among other things, upon the dynamics
of the system and the nature of the actuation.

9.5 Block Diagram Representation and Algebra

Moved to Section 8.6.

9.6 Response versus Pole Location

This section considers the mathematical basis for the rest of this chapter. Un-
derstanding this section is critical for a fundamental understanding of what
follows. The main concept is that the nature of the response of a system is gov-
erned by the location in the complex plane of the poles of the transfer function
describing the system.

If we consider a generic transfer function, G(s) and the relationship between
the reference signal for the system, R(s) and the output, Y (s), we have

Y (s) = G(s)R(s).

If we were to solve this for the time domain response of the system, y(t), we
would need to know the input, R(s) and then would compute a partial frac-
tion expansion of G(s)R(s) to algebraically manipulate the expression to be a
combination of terms that appear in a Laplace transform table.



9.6. RESPONSE VERSUS POLE LOCATION 297

Example 9.6.1 To solve

Y (s) = − 6s+ 5

(s+ 3) (s2 + 4)
(9.11)

for y(t), we would convert

Y (s) = − 6s+ 5

(s+ 3) (s2 + 4)

=
c1

s+ 3
+
c2s+ c3
s2 + 4

=
1

s+ 3
− s+ 3

s2 + 4

=
1

s+ 3
− s

s2 + 4
− 3

2

2

s2 + 4
,

which corresponds to

y(t) = e−3t − cos 2t− 3

2
sin 2t. (9.12)

Now, if we look at the original transfer function in Equation 9.11, the
poles (the values of s for which the denominator is equal to zero, see Defini-
tion 8.3.3), are s = −3 and s = ±2i. It is no coincidence that the solution
in Equation 9.12 is a linear combination of an exponential with a −3 in the
exponent, corresponding to the pole at s = −3 and sine and cosine functions
with a frequency of 2, corresponding to the complex conjugate pair of poles
at s = ±2i.

Because they are commonly used to characterize the nature of a transfer
function, the time domain solution of the output for two specific inputs are
given names.

Definition 9.6.2 For a transfer function, G(s), input R(s) and output Y (s)
which satisfy

Y (s) = G(s)R(s),

the unit impulse response, or simply the impulse response is the inverse Laplace
transform of the output when the input is an impulse. Since L (δ(t)) = 1,
the impulse response is given by the inverse Laplace transform of the transfer
function

yδ(t) = L−1 (G(s)) . ⋄

Definition 9.6.3 For a transfer function, G(s), input R(s) and output Y (s)
which satisfy

Y (s) = G(s)R(s),

the unit step response, or simply the step response is the inverse Laplace trans-
form of the output when the input is a unit step function. Since L (1(t)) = 1

s
,

the impulse response is given by

y1(t) = L−1

(

G(s)

s

)

.
⋄
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A detailed study of Table 8.1, would make it clear that what differentiates
the fundamental nature of the response of a system is the location of the poles.
We will consider the various possible cases which depend upon whether the pole
is real, zero, purely imaginary or complex.

9.6.1 Real poles

First we will consider the case where a transfer function has a pole that is real.
Consider

Y (s) =
1

s+ p
R(s). (9.13)

Note that Y (s) has a pole at s = −p. Regardless of the nature of R(s), a partial
fraction expansion of Equation 9.13 will be of the form

Y (s) =
c1

s+ p
+
∑

R̂(s)

where
∑

R̂(s) are the terms in the partial fraction expansion due to the input.
So, regardless of the input, if p is real, y(t) will contain a term of the form

e−pt, it i.e.,

y(t) = c1e
−pt + other terms.

Hence, we have the following proposition.

Proposition 9.6.4 If a transfer function has a pole that is a real, it will have
an exponential term in the solution and that exponential term will decay to zero
if p < 0 and will grow unbounded if p > 0.

Example 9.6.5 Predict the unit step response of the two transfer functions

G1(s) =
2

s+ 2

and

G2(s) =
4

s+ 4

without actually computing the inverse Laplace transform.
We want to compare

Y1(s) = G1(s)R(s)

=
2

s+ 2

1

s

and

Y2(s) = G2(s)R(s)

=
4

s+ 4

1

s
.
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Using Theorem 8.3.17,

lim
t→∞

y1(t) = lim
s→0

s
2

s+ 2

1

s
= 1

and

lim
t→∞

y2(t) = lim
s→0

s
4

s+ 4

1

s
= 1.

The final value theorem may be applied to both of these since all the poles
of both sG1(s)R(s) and sG2(s)R(s) are in the left half plane if R(s) is a
step function. If we were to compute them, the partial fraction expansions
would be of the form

Y1(s) =
c1

s+ 2
+
c2
s

and

Y2(s) =
c1
s+ 4

+
c2
s
.

Observe that in both cases the first term gives an exponential solution
with a negative coefficient in the exponent and the second term gives a
constant value. Since G1(s) has a pole at s = −2 and G2(s) has a pole at
s = −4, as is illustrated in Figure 9.7, the exponential part of the solution
in Y2(s) decays more quickly than the exponential part in Y1(s). Hence
we may conclude that y2(t) converges more quickly to the steady state
value than y1(t). This is verified by in Figure 9.8 which compares the
two solutions. The association between pole locations, Figure 9.7, and the
nature of the response, Figure 9.8, cannot be emphasized enough. In this
particular example, if another system were compared that had a pole farther
to the left, then its response would be even faster, and if another system
had a pole farther to the right (but still less than zero), its response would
be slower. If any system has a pole to the right of the imaginary axis, the
solution will blow up, i.e., the system will be unstable.

For comparison, the impulse response of two transfer functions with pole
locations as the same points as before are illustrated in Figure 9.9. Again,
the system with the pole farther to the left has a faster decaying transient
response.

9.6.2 Poles at the origin

Now we will consider some poles at the origin.

Consider

Y (s) =
1

s
R(s). (9.14)
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Figure 9.7. Pole locations for G1(s) = 2
s+2 and G2(s) = 4
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Figure 9.9. Impulse response for G1(s) = 1
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Note that Y (s) has a pole at s = 0. Regardless of the nature of R(s), a partial
fraction expansion of Equation 9.14 will be of the form

Y (s) =
c0
s

+
∑

R̂(s)

where
∑

R̂(s) are the terms in the partial fraction expansion due to the input.
So, regardless of the input, y(t) will contain a term of the form c0, it i.e.,

y(t) = c0 + other terms.

We may conclude from that, in general, if a transfer function has a pole at
the origin it will have a constant term in the solution.

If the transfer function has multiple poles at the origin, i.e.,

Y (s) =
1

sn
R(s)

then the partial fraction expansion will be of the form

Y (s) =
c0s

n−1 + c1s
n−2 + · · · + cn−1

sn
+
∑

R̂(s)

=
c0
s

+
c1
s2

+ · · · + cn−1

sn
+
∑

R̂(s).

So, regardless of the input, y(t) will contain an n− 1th order polynomial in
t, i.e.,

y(t) = c0 + c1t+
c2
2
t2 + · · · + cn−1

(n− 1)!
tn−1 + other terms.
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Hence, we have the following.

Proposition 9.6.6 If a transfer function has multiple poles at the origin, it
will have a polynomial term in the solution that has an order one less than the
multiplicity of the pole at the origin.

9.6.3 Purely imaginary poles

Now we will consider a complex conjugate pair of purely imaginary poles.
Consider

Y (s) =
1

s2 + ω2
R(s),

which as poles at s = ±iω. The partial fraction expansion will be of the form

Y (s) =
c1s

s2 + ω2
+
c2
ω

ω

s2 + ω2
+
∑

R̂(s)

and the solution will be of the form

y(t) = c1 cosωt+
c2
ω

sinωt+ other terms.

So, we have shown the following.

Proposition 9.6.7 If a transfer function has a purely imaginary complex con-
jugate pair of poles, it will have sine and cosine terms in the solution. If the
magnitude of the purely imaginary pair of poles is increased, the frequency of
oscillation will increase.

Example 9.6.8 The poles of

G1(s) =
2

s2 + 4

and

G2(s) =
8

s2 + 16

are plotted in Figure 9.10. The corresponding step responses are plotted
in Figure 9.11. Note as the poles move farther from the real axis, the
frequency of oscillation increases. For comparison, the impulse response,
when R(s) = 1, for both cases is illustrated in Figure 9.12.

9.6.4 Complex conjugate poles

Finally, the last case to consider is when a transfer function contains a complex
conjugate pair of poles with nonzero real and imaginary parts.

Consider

Y (s) =
1

(s+ a)
2

+ b2
R(s)
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Figure 9.10. Pole locations for G1(s) = 2
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Figure 9.12. Impulse response for G1(s) = 2
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which has a complex conjugate pair of poles at s = −a±−b. The partial fraction
expansion will be of the form

Y (s) = c1
s+ a

(s+ a)
2

+ b2
+ c1c2

b

(s+ a)
2
+ b2

+
∑

R̂(s)

and hence the solution will be of the form

y(t) = c1e
−at cos bt+ c2e

−at sin bt+ other terms.

This shows the following.

Proposition 9.6.9 If a transfer function contains a complex conjugate pair
of poles, it will have exponentially decaying or growing sinusoidal terms in the
solution. Whether or not the terms are decaying or growing depend upon whether
the real part of the pair of poles is negative or positive, respectively.

Example 9.6.10 The poles of

G1(s) =
1

s2 + 2s+ 5

=
1

(s+ 1)2 + 4

and

G1(s) =
1

s2 + 2s+ 10

=
1

(s+ 1)
2
+ 9
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Figure 9.13. Pole locations for G1(s) = 1
(s+1)2+4

and G2(s) =
1

(s+1)2+9
.

are plotted in Figure 9.13. The corresponding step responses are plotted in
Figure 9.14 and the impulse responses are plotted in Figure 9.15. Because
the analysis of the response is a bit more complicated due to the fact that
both the real and imaginary parts of the poles need to be considered and
also because the response of a second order system of this type is the basis
for many control design methods, a complete analysis of a system with
complex conjugate poles is discussed subsequently, in Section 9.8.

A summary of these results is illustrated in Figure 9.16. Any poles in the
right half plane lead to instabilities. Complex conjugate purely imaginary poles
contribute sinusoidal solutions. Poles at the origin contribute polynomial so-
lutions in t. Negative real poles contribute to decaying exponential terms and
complex conjugate poles with negative real part contribute decaying sinusoidal
terms.

Also, because the real part of any pole corresponds exactly to the coefficient
of time in an exponential, we may talk about “fast” and “slow” poles. In
particular, for poles with negative real part, the farther the pole is to the left,
the faster it decays. All poles with positive real part are unstable; however, the
larger the magnitude of the real part of the positive pole, faster the instability
grows. This is qualitatively summarized in Figure 9.17.

Based upon what we know so far, we can state the following important result.

Proposition 9.6.11 Given a transfer function, G(s), the impulse and step re-
sponses are stable if and only if all the poles of

Y (s) = G(s)R(s)
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are in the left half plane where R(s) = 1 or R(s) = 1
s

in the case of the impulse
and step responses respectively.

Before we proceed with a detailed analysis of a prototypical type of response,
which is the step response of a second order system, we need an important
result very relevant to engineering design of control systems. It is the notion of
dominant poles in a transfer function. The idea is that if a transfer function has
a multiple left poles in the left half plane and none in the right half plane, then
the poles far to the left will contribute very little to the solution because they
decay so quickly. An example will hopefully elucidate this idea.

Example 9.6.12 Consider the step response of

G(s) =
5

1
10 (s+ 10) 1

8 (s+ 8)
(

(s+ 1)
2

+ 4
)

i.e.,

y(t) = L−1

(

G(s)
1

s

)

= L−1





5

1
10 (s+ 10) 1

8 (s+ 8)
(

(s+ 1)2 + 4
)



 .

Before we solve this, we observe that two poles are pretty far to the
left and two are relatively close to the imaginary axis as is illustrated in
Figure 9.18. Since the effect of the two far to the left should decay rapidly,
the solution should be rather close to that if only the complex conjugate
poles near the imaginary axis comprised the system, i.e., the step response
of

G1(s) =
5

(

(s+ 1)
2
+ 4
)

should be a good approximation to the step response to

G(s) =
5

1
10 (s+ 10) 1

8 (s+ 8)
(

(s+ 1)2 + 4
)

Skipping all the gritty details, for

Y (s) = G(s)
1

s

the time domain response is

y(t) = 1 +
4

17
e−10t − 25

53
e−8t − 688

901
e−t cos 2t− 58

53
e−t sin 2t
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Figure 9.18. Pole locations for transfer function in Exam-
ple 9.6.12. The two poles near the imaginary axis should
dominate the response.

and for

Y1(s) = G1(s)
1

s
the time domain response is

y1(t) = 1 − e−t
(

cos t2 +
1

2
sin 2t

)

.

The two step responses are plotted in Figure 9.19. Clearly, the step response
of G1(s) is a fairly good approximation of the step response of G(s). The
reason for this is because the e−10t and e−8t terms decay so rapidly.

9.7 Stability

From Section 9.6 it is clear that if a transfer function has any poles in the right
half complex plane then components of the solution will grow unbounded. In
this section we will make the notion of stability a bit more precise and present
a test to determine whether or not a transfer function has any right half plane
poles. For a transfer function the notion of stability is a little more complicated
than “the solutions do not blow up” since, the solution depends upon the input
to the transfer function as well as possibly any initial conditions. So, the correct
notion is that “bounded inputs result in bounded outputs.”
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Figure 9.19. Comparison of step responses of the transfer
function with four poles, G(s), and the transfer function with
only the two dominant poles, G1(s) from Example 9.6.12.

Definition 9.7.1 A transfer function is bounded input bounded output stable
(“BIBO stable”) if the output is bounded for every input that is bounded.
Mathematically, if

Y (s)

R(s)
= G(s)

is the transfer function and y(t) = L−1 (Y (s)) and r(t) = L−1 (R(s)) are the
time domain functions describing the output and input of the transfer function
respectively, then the transfer function is BIBO stable if and only if

|r(t)| ≤ Kr ∀t =⇒ |y(t)| ≤ Ky ∀t
where Kr and Ky are some real constants. ⋄

It should be clear from our analysis in Section 9.6 that a necessary condition
for stability is that there should be no poles of the transfer function in the right
half complex plane. For high order polynomials, which are difficult to factor by
hand, it will be useful to have a test which, while it does not give exactly what
the poles of the transfer function are, at least provides some information about
how many are in the left or right half complex plane.

There are various methods to do this1, but the one typically covered in
undergraduate controls courses is the so-called Routh criterion.

1The Hurwitz criterion, the Hermite criterion, the Liénard-Chipart criterion and the
Kharitonov test, for example
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The method is based upon constructing an array and examining the number
of sign changes of numbers in the first column of the array. First we will define
the array and then we will present the stability test.

Consider an nth order polynomial of the form

D(s) = a0s
n + a1s

n−1 + · · · + an−1s+ an.

Our interest is the case when this is the denominator of a transfer function. The
Routh array is constructed as follows.

sn a0 a2 a4 a6 · · · 0
sn−1 a1 a3 a5 a7 · · · 0
sn−2 b1 b2 b3 · · · 0
sn−3 c1 c2 c3 · · · 0 0
sn−4 d1 d2 d3 · · · 0 0

...
s0 e1 0 0 0 0 0

where

b1 = −

∣

∣

∣

∣

a0 a2

a1 a3

∣

∣

∣

∣

a1

b2 = −

∣

∣

∣

∣

a0 a4

a1 a5

∣

∣

∣

∣

a1

b3 = −

∣

∣

∣

∣

a0 a6

a1 a7

∣

∣

∣

∣

a1

...

c1 = −

∣

∣

∣

∣

a1 a3

b1 b2

∣

∣

∣

∣

b1

c2 = −

∣

∣

∣

∣

a1 a5

b1 b3

∣

∣

∣

∣

b1

c3 = −

∣

∣

∣

∣

a1 a7

b1 b4

∣

∣

∣

∣

b1
...
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d1 = −

∣

∣

∣

∣

b1 b2
c1 c2

∣

∣

∣

∣

c1

d2 = −

∣

∣

∣

∣

b1 b3
c1 c3

∣

∣

∣

∣

c1
...

Any term that is not defined is zero.
Finally, the point of all of this is the following theorem that will help us

determine the stability of a transfer function.

Theorem 9.7.2 The number of solutions to

a0s
n + a1s

n−1 + · · · + an−1s+ an = 0

that are in the right half plane is equal to the number of sign changes of the
coefficients in the first column of the Routh array.

For our purposes, if the polynomial we use is the denominator of a transfer
function, the number of sign changes in the first column of the Routh array is
equal to the number of right half plane poles.

Before we present any examples, sufficient condition for stability will be
presented as a corollary following from Routh’s criterion.

Corollary 9.7.3 If the coefficients in

D(s) = a0s
n + a1s

n−1 + · · · + an−1s+ an.

are not all of the same sign, then D(s) will have at least one right half plane
root.

The proof is left as an exercise.

Example 9.7.4 Determine the number of right half plane poles of the
transfer function

G(s) =
s+ 6

s4 + 7s3 + 18s2 + 22s+ 12
.

This is, of course, equivalent to determining the number of solutions to

s4 + 7s3 + 18s2 + 22s+ 12 = 0 (9.15)

that have a positive real part.
So, the start of the Routh array is

s4 1 18 12 0
s3 7 22 0 0

.
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Computing the next row,

b1 =
(7)(18) − 22

7
=

104

7

b2 =
(7)(12) − 0

7
= 12

so the array is
s4 1 18 12 0
s3 7 22 0 0
s2 104

7 12 0 0
.

Computing the next row,

c1 =
22 104

7 − 7 ∗ 12
104
7

=
425

26

c2 = 0

so the array is
s4 1 18 12 0
s3 7 22 0 0
s2 104 12 0 0
s1 425

26 0 0 0

.

Finally,
d1 = 12,

so the complete array is

s4 1 18 12 0
s3 7 22 0 0
s2 104 12 0 0
s1 425

26 0 0 0
s0 12

.

Since there are no sign changes in the first row, all the solutions to Equa-
tion 9.15 are in the right half plane.

There is a minor complication when a zero appears in the first column of
the Routh array. In such a case simply replace the zero with a small positive
variable, 0 < ǫ≪ 1 and proceed with the subsequent computations and analysis
as usual.

Example 9.7.5 Determine the number of solutions to

s4 + 4s3 + s2 + 4s+ 5 = 0

with positive real part.
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Constructing the Routh array, the first two rows are

s4 1 1 5 0
s3 4 4 0 0

.

The first term in the third row will be

b1 = −

∣

∣

∣

∣

1 1
4 4

∣

∣

∣

∣

4
= 0.

Replacing this with 0 < ǫ≪ 1 and substituting for

b2 = −

∣

∣

∣

∣

1 5
4 0

∣

∣

∣

∣

4
= 5

gives
s4 1 1 5 0
s3 4 4 0 0
s2 ǫ 5 0 0

.

Proceeding to the next row gives

c1 = −

∣

∣

∣

∣

4 4
ǫ 5

∣

∣

∣

∣

ǫ

=
4ǫ− 20

ǫ

so the array is
s4 1 1 5 0
s3 4 4 0 0
s2 ǫ 5 0 0
s1 4ǫ−20

ǫ
0 0 0

.

Finally, computing the last row gives

s4 1 1 5 0
s3 4 4 0 0
s2 ǫ 5 0 0
s1 4ǫ−20

ǫ
0 0 0

s0 5 0 0 0

.

Since ǫ is small and positive 4ǫ− 20 will be negative. Hence there are two
sign changes in the first column and therefore there are two roots with
positive real part.

This may be confirmed numerically where the poles are determined to
be

p1 = −3.92219

p2 = 0.40832 + 1.12184i

p3 = 0.40832− 1.12184i

p4 = −0.89444.
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We can use this to accomplish a bit more than simply determine whether or
not poles are in the right half plane. For example, we may determine ranges of
parameter values for which a transfer function is stable.

Example 9.7.6 Determine the values of k for which

G(s) =
k s+2
s2−2s+2

1 + k s+2
s2−2s+2

is stable.
Simplifying the denominator gives

D(s) = s2 + (k − 2) s+ (2 + 2k) .

Constructing the Routh array gives

s2 1 2 + 2k 0
s1 k − 2 0 0

.

Computing the last row gives the complete array

s2 1 2 + 2k 0
s1 k − 2 0 0
s0 2k + 2 0 0

.

In order for there to be no sign change from the s2 row to the s1 row,
we need that k > 2. In order for the first element s0 to be greater than zero
we need k > −1. In order to satisfy both, we need k > 2.

A final example will illustrate the obvious fact that there will not necessarily
be any values for k to make some transfer functions stable.

Example 9.7.7 Determine the values of k for which

G(s) =
k s−2
s2−2s+2

1 + k s−2
s2−2s+2

is stable.
In this case the characteristic polynomial is

D(s) = s2 + (k − 2) s+ (2 − 2k) ,

and the Routh array is

s2 1 2 − 2k 0
s1 k − 2 0 0
s0 2 − 2k 0 0

.

In order for the first element in the s1 row to be positive we need that k > 2.
In order for the first element in the s0 row to be positive we need k < 1.
There are no values of k that can satisfy both.
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9.8 Response of a Second Order System

Recall the canonical form for a generic second order system from Section 3.3

mẍ+ bẋ+ kx = f(t) ⇐⇒ ẍ+ 2ζωnẋ+ ωnx =
f(t)

m

where

ωn =

√

k

m

ζ =
b

2
√
mk

.

Taking the Laplace transform with zero initial conditions gives

X(s) =
1

s2 + 2ζωns+ ω2
n

F (s)

m

= G(s)R(s).

If 0 ≤ ζ < 1, the poles of G(s) are

s = −ζωn ± iωn
√

1 − ζ2

= ωn

(

−ζ ± i
√

1 − ζ2
)

(9.16)

= −ζωn ± iωd, (9.17)

where
ωd = ωn

√

1 − ζ2.

Using the notation from Table 8.1, if the denominator of the transfer function

contains a term of the form
(

(s+ a)2 + b2
)

, then the poles are located at

s = −a± ib

= ωn

(

−ζ ± i
√

1 − ζ2
)

.

As is illustrated in Figure 9.20, the relationship between the pole location and
the parameters in the canonical second order system are as follows.

1. The length of the vector from the origin to the pole is ωn.

2. If the angle from the imaginary axis to the vector from the origin to the
pole is denoted by θ, then

ζ = sin θ.

3. The damped natural frequency, ωd is the imaginary component of the pole,

ωd = b

= ωn
√

1 − ζ2.
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Im(s)

Re(s)
−a = −ζωn

b = ωn
√

1 − ζ2 = ωd

θ

ωn

Figure 9.20. Relationship between the location of complex
conjugate poles and ωn, ζ and ωd.
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increased frequency,
decreased dampingincreased frequency,

constant damping

increased damping,
constant frequency ωd

−ζωn

θ

Im(s)

Re(s)

Figure 9.21. Effect of moving the location of a complex con-
jugate pole.

From the discussion in the previous section regarding the response when a
transfer function contains a complex conjugate pole, we can deduce that the
solution will have terms of the form e−ζωnt sinωdt and e−ζωnt cosωdt. Hence,
if the effects of moving the location of a complex conjugate pole with negative
real part are as follows.

1. If the imaginary part of the pole is increased and the real part is held
constant, then the frequency of the response will increase and the damping
ratio will decrease.

2. If the real part of the pole is decreased and the imaginary part is held
constant, then the damping ratio is increased and the frequency of the
response will be constant.

3. If the angle between the imaginary axis and the vector from the origin to
the pole is held constant and the the magnitude of the vector is increased,
then the damping remains constant and the frequency of the response
increases.

All three of these cases are illustrated in Figure 9.21.
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9.8.1 Second order system step response

Now let us relate the location of the poles for a second order system to the time
domain specifications defined in Section 9.4 for a unit step input.

Consider

G(s) =
k

s2 + 2ζωns+ ω2
n

.

For a step input to this transfer function, we will have

Y (s) =
k

s2 + 2ζωns+ ω2
n

1

s

=
k

ω2
n

[

− s+ 2ζωn
s2 + 2ζωns+ ω2

n

+
1

s

]

=
k

ω2
n

[

− s+ 2ζωn

(s+ ζωn)
2

+ ω2
d

+
1

s

]

=
k

ω2
n

[

− s+ ζωn

(s+ ζωn)
2

+ ω2
d

− ζωn
ωd

ωd

(s+ ζωn)
2
+ ω2

d

+
1

s

]

=
k

ω2
n

[

− s+ ζωn

(s+ ζωn)
2 + ω2

d

− ζ
√

1 − ζ2

ωd

(s+ ζωn)2 + ω2
d

+
1

s

]

so

y(t) =
k

ω2
n

[

−e−ζωnt

(

cosωdt+
ζ

√

1 − ζ2
sinωdt

)

+ 1

]

. (9.18)

Plots of the step response for k = ω2
n for various ζ and various ωn are

illustrated in Figure 9.22 and 9.23.

Steady state error

Since,

lim
t→∞

y(t) =
k

ω2
n

the steady state error to a unit step input will be zero if k = ω2
n.
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Figure 9.22. Step response of second order system with ωn =
1 and for various ζ.
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Figure 9.23. Step response of second order system with ζ =
0.2 and for various ωn.
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Peak time

The peak time is determined by finding the time when the derivative of Equa-
tion 9.18 is zero. Hence

d

dt
y(t) = ζωne

−ζωnt

(

cosωdt+
ζ

√

1 − ζ2
sinωdt

)

−

e−ζωnt

(

− sinωdt+
ζωd

√

1 − ζ2
cosωdt

)

= ζωne
−ζωnt

(

cosωdt+
ζ

√

1 − ζ2
sinωdt

)

−

e−ζωnt (− sinωdt+ ζωn cosωdt)

=

(

ζ2ωn
√

1 − ζ2
+ 1

)

sinωdt

= 0.

The first positive time for which this is zero is the peak time and is

tp =
π

ωd
.

Overshoot

The overshoot is determined by substituting the peak time into Equation 9.18:

xp = y

(

π

ωd

)

=
k

ω2
n

[

−e−
ζωnπ

ωd

(

cosπ +
ζ

√

1 − ζ2
sinπ

)

+ 1

]

=
k

ω2
n

(

1 + e
− ζωnπ

ωd

)

.

Hence, the percentage overshoot is given by the exponential term. Substituting
for the definition of ωd gives

O = e
− πζ√

1−ζ2 . (9.19)

Observe that the percentage overshoot depends upon the damping ratio only.
A plot of O it versus ζ is given in Figure 9.24. Since the maximum overshoot is
a function of only the damping ratio, there is a simple geometric interpretation
for second order poles that will meet an overshoot specification, as is illustrated
by the following example.

Example 9.8.1 Determine the region in the complex plane where the poles
should be located in order for a second order system to have a maximum
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Figure 9.24. Percentage overshoot, O versus damping ratio,
ζ and angle between imaginary axis and the pole, θ.

overshoot of less than 10%. Either referring to Figure 9.24 or solving Equa-
tion 9.19 gives

O < 0.1 ⇐⇒ ζ > 0.6.

So, the region in the complex plane where a pair of second order poles must
be located to satisfy this specification are illustrated in Figure 9.25.

Settling time

To determine the settling time, note that the rate at which the transient response
decays is governed by the exponential term, e−ζωnt. Hence, for the 5% settling
time,

0.05 = e−ζωnts ⇐⇒ ts = − ln(0.05)

ζωn
≈ 3

ζωn
.

Since ζωn is the real component of the pole, the settling time is given by the
distance from the imaginary axis. Similarly, if we were interested in the x%
settling time, it would be given by

ts = − ln( x
100 )

ζωn
.
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Figure 9.25. Hatched region corresponds to pole locations for
a second order system with less than 10% overshoot.

Example 9.8.2 Determine the region in the complex plane where the poles
should be located in order for a second order system to have a 2% settling
time of less than 3 seconds. Thus

− ln 0.02

ζωn
< 3

which gives

ζωn > 1.3.

Since ζωn is the real component of the pole, the region in the complex
plane where the 2% settling time is less than 3 seconds is illustrated in
Figure 9.26.

Rise time

The solution will first equal its steady state value when

e−ζωntr

(

cosωdtr +
ζ

√

1 − ζ2
sinωdtr

)

= 0,

which requires

cosωdtr = − ζ
√

1 − ζ2
sinωdtr ⇐⇒ tanωdtr = −

√

1 − ζ2

ζ
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Figure 9.26. Hatched region corresponds to pole locations for
a second order system with a settling time of less than 3
seconds.

or, solving for tr

tr =
1

ωd
tan−1

(

−
√

1 − ζ2

ζ

)

.

This has an infinite number of solutions, but tr will be the smallest positive
time that satisfies this equation.

Given a specified rise time, tr, then we require that

ωd ≥
1

tr
tan−1

(

−
√

1 − ζ2

ζ

)

(9.20)

in order for the system response to be equal to or faster than the specification.
This relationship is not as simple as the preceding ones for the overshoot and
settling time since it does not reduce to a line in the complex plane. Since
we are pursuing a geometric interpretation, a more useful relationship would
be the one between the damped natural frequency, ωd, and the angle from the
imaginary axis to the pole, θ.

First observe that if ζ ≪ 1

tan−1

(

−
√

1 − ζ2

ζ

)

≈ π

2
,

since π
2 is the first positive value for which satisfies tan−1 0, so we have

tr ≈
π

2ωd
.
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Figure 9.27. Lines in the complex plane of pole locations cor-
responding to constant rise times.

Conversely, if ζ ≈ 1, then

tan−1

(

−
√

1 − ζ2

ζ

)

≈ π,

so
tr ≈

π

ωd
.

So, we may use these as an approximation for small ζ and for ζ ≈ 1.
For intermediate values, since ζ = sin θ and keeping in mind we need to

consider the first positive value, substituting into Equation 9.20 gives

ωd ≥ 1

tr
tan−1

(√

1 − sin2 θ

sin θ

)

≥ 1

tr

(

θ +
π

2

)

(9.21)

where the additive π
2 term is is needed to make the value the first positive

solution for the inverse tangent function. A plot of ωd which satisfy the equality
in Equation 9.21 for tr = 1, 2 and 3 is illustrated in Figure 9.27. Regions in the
complex plane which satisfy the inequality will be above the curves.

Example 9.8.3 The region in the complex plane where the poles should
be located in order for a second order system to have a rise time of less than
2 seconds would be above the bottom curve in Figure 9.27.
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Remark 9.8.4 Different approximations for the rise time appear in different
texts. For example [6] gives

tr ≈
1.8

ωn
,

and [13] gives

tr ≈
0.8 + 2.5ζ

ωn
or tr ≈

1 − 0.4167ζ + 2.917ζ2

ωn
.

One reason for the different formulae is because of different definitions of the
rise time. For example, in [13] it is defined as the time to go from 10% to 90% of
the final value. Another reason for the differences is the fact that rise time is a
sort of fickle quantity, as is illustrated in Figure 9.28 and 9.29. In those figures,
the poles were located along the bottom curve in Figure 9.27, corresponding to
tr = 2.

However, observe that if, instead of the quantity of interest being when the
system first achieved the steady state value, it was instead 90% of the steady
state value. Referring to Figure 9.29, it is clear that there is a drastic difference
between the times at which each curve passes through y(t) = 0.9.

The reader is cautioned to either be careful about the definition of the rise
time, and choose an appropriate one for a given situation, or to accept the
somewhat gross approximate nature of the concept. It is necessary component
for specifying control system performance, however. If all that were considered
were the settling time and the overshoot, these specifications would be easily
satisfied by a system with very slow performance. If the application requires
a reasonable response time, then the rise time, or something similar, must be
considered. ⋄

We can now combine these specifications to determine pole locations that
satisfy more than one specification.

Example 9.8.5 To determine the region in the complex plane where the
poles should be located in order for a second order system to have a 2%
settling time of less than 3 seconds and a maximum overshoot less than 10%
we can take the intersection of the regions in Figures 9.25 and 9.26. This
region is illustrated in Figure 9.30.

Example 9.8.6 Returning to Example 9.8.5, assume that, in addition to
the overshoot and settling time specifications, we require a rise time of less
than 3 seconds. We could copy the 1 second curve from Figure 9.27. Al-
ternatively, we could adopt a more conservative engineering approximation
and use the approximation for a damping ratio near one. Hence, we will
use

ωd ≥
π

tr
,

or, for this case,

ωd ≥
π

3
.
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Figure 9.28. Step responses corresponding to tr = 2.
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Figure 9.29. Step responses corresponding to tr = 2.
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Figure 9.30. Hatched region corresponds to second order pole
locations with a settling time less than 3 seconds and less
than 10% overshoot.

The region satisfying all three specifications is illustrated in Figure 9.31.

As a check, the step response for a unit step input is illustrated in
Figure 9.32, and it is apparent that all three specifications are satisfied.

9.8.2 Additional Poles and Zeros

At this point we have developed practically every possible way to consider the
response of a second order system and it is completely characterized in terms
of the time domain specifications of the step response, etc. Unfortunately, the
world is not composed entirely of second order systems, so it will be useful to
relate, when possible, the response of a system that is not second order to the
second order response we know so well. We will consider several ways in which
a system may deviate from a canonical second order system.

Additional poles far to the left

We considered this previously in Example 9.6.12). If there are poles relatively far
to the left, their effect will decay very fast compared to poles near the imaginary
axis and the system response will be dominated by the poles near the imaginary
axis.
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Figure 9.31. Hatched region corresponds to second order pole
locations with a settling time less than 3 seconds, less than
10% overshoot and less than a 3 second rise time.
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Figure 9.32. Step response of G(s) = 8
(s+2)2+22 , which has

poles within the region satisfying all three specifications in
Example 9.8.6.
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An additional real zero

If a transfer function has a complex conjugate pair of poles and one real zero,
the effect of the zero on the response will depend on the location of the zero.
This section will draw some conclusions based upon inference from an example.
The analytical proof of the conclusions is left to Exercise 9.6.

Example 9.8.7 Consider

G(s) =
5

s2 + 2s+ 5

and

G1(s) =
5
r

(s+ r)

s2 + 2s+ 5

where r = 10, 1,−1 and = 10, corresponding to the zero being far to the
left, in the left half plane but near the imaginary axis, in the right half plane
and near the imaginary axis and far to the right. The step responses are
illustrated in Figure 9.33.

From this example we may infer the following general rules:

• if the zero is far from the imaginary axis, then it has little effect on the
step response;

• if the zero is in the left half plane and close to the imaginary axis, it will
decrease the rise time and increase the overshoot; and,

• if the zero is in the right half plane and close to the imaginary axis, it
will increase the rise time, perhaps increase the overshoot and perhaps
the system will initially move in the “wrong direction.”

An additional real pole

Consider

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

and

G1(s) =
ω2
n

(s2 + 2ζωns+ ω2
n)

1
r

(s+ r)
.

From Equation 9.18, the partial fraction expansion is

Y (s) = − s+ 2ζωn

(s+ ζωn)
2 + ω2

d

+
1

s
(9.22)

and the step response is

y(t) = −e−ζωnt

(

cosωdt+
ζ

√

1 − ζ2
sinωdt

)

+ 1.
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Figure 9.33. The effect of an additional real zero on the second

order step response: the step response of G1(s) =
5
r
(s+r)

s2+2s+5
for various values of r.

Computing the partial fraction expansion for a step response gives

Y (s) =
ω2
nr

(s2 + 2ζωns+ ω2
n) (s+ r)

1

s

= −
(

ω2
n

r2 − 2ωnζr + ω2
n

)

1

s+ r
+

1

s
(9.23)

+

(

−r2 (s+ 2ωnζ) − r
(

ω2
n − 4ω2

nζ
2 − 2sωnζ

)

(r2 − 2ωnζr + ω2
n)

)

1

(s2 + 2ωnζs+ ω2
n)

As r → ∞ we expect this to approach Equation 9.22, which it does. Because of
the r2 in the denominator of the first term, it approaches zero, and in the last
term the r2 terms in the numerator and denominator would dominate, giving
the same second order term as in Equation 9.22. At least for one additional
pole, this verifies our intuition that poles far to the left will have little effect on
the response.

If r is positive and small, which corresponds to a pole close to the imaginary
axis in the left half plane, then the exponential term will dominate the solution.
Mathematically

lim
r↓0

Y (s) = − 1

s+ r
+

1

s
,
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so for small r,

y(t) ≈ 1 − e−rt,

which has no overshoot and infinite rise time. Since r is small, the exponential
terms decays very slowly and hence y(t) approaches the steady state value very
slowly.

Conceptually interpolating between these to extremes we can conclude that
if a second order system has an additional pole in the left half plane then

• if it is far to the left, it will have little effect on the response;

• if it is very close to the imaginary axis compared to the second order poles,
it will dominate the response and the solution will slowly asymptotically
approach the steady state value;

• if it is of the same order as the second order poles it should decrease both
the rise time and overshoot; and,

• if the pole is anywhere in the right half plane, then the solution will be
unstable.

Example 9.8.8 Consider

G(s) =
5

s2 + 2s+ 5

and

G1(s) =
5r

(s+ r) (s2 + 2s+ 5)

where r = 10, 1, 0.1, and −1, corresponding to the pole being far to the
left, in the left half plane of the same order of magnitude as the complex
conjugate pair of poles, very near the imaginary axis and in the right half
plane. The step responses are illustrated in Figure 9.34.

Poles and zeros close together

If a pole and zero are close together, algebraically they nearly cancel. It is
natural to expect, then, that their effect in the solution would nearly cancel as
well. In fact, this is true which we will demonstrate with one zero and one pole
located near each other.

Consider

G(s) =
ω2
n

(s2 + 2ζωns+ ω2
n)

s+ r̂

s+ r
.

A partial fraction expansion gives

G(s) =
c1s+ c2

s2 + 2ζωns+ ω2
n

+
c3
s+ r
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Figure 9.34. The effect of an additional real pole on the
second order step response: the step response of G1(s) =

5r
(s+r)(s2+2s+5) for various values of r.

where

c1 =
ω2
n

(

1 − r̂
r

)

r − 2ζωn +
ω2

n

r

c2 =
ω2
n

r

[

r̂ +
ω2
n

r

(

1 − r̂
r

r − 2ζωn +
ω2

n

r

)]

c3 = − ω2
n

(

1 − r̂
r

)

r − 2ζωn +
ω2

n

r

.

If the pole and zero are located at the same point, then r = r̂ and c1 = c3 = 0
and c2 = ω2

n, as we would expect.

Furthermore, if the pole and zero are close together, then r ≈ r̂, so c1, c3 ≪ 1
and c2 ≈ ω2

n. The effect of the magnitude of the coefficients will depend upon
whether the pole and zero are in the left or right half plane. If they are in the
left half plane, then the coefficient of the exponential term will be small, so the
solution will be approximately the same as the second order system. If it is in
the right half plane, even though the coefficient is small, the exponential term
will grow unbounded and the system will be unstable.
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Example 9.8.9

G(s) =
5

s2 + 2s+ 5
,

G1(s) =
5

s2 + 2s+ 5

s+ 1
1
.95 (s+ 0.95)

,

G2(s) =
5

s2 + 2s+ 5

s+ 1
1
2 (s+ 2)

,

and

G3(s) =
5

s2 + 2s+ 5

s− 1
1
.95 (s− 0.95)

.

The first transfer function, G(s) only has a complex conjugate pair of poles.
The second, G1(s) has an additional pole at s = −.95 and an additional
zero at s = −1. The third has a pole and zero that are not close together
and finally, the fourth, C3(s) has a pole and zero that are close, but in the
right half plane.

The step responses are illustrated in Figure 9.35. Observe that if the
pole and zero are in the left half plane and are close together, then they
almost cancel and the step response is much like that of G(s). If they are
not close together then they have a substantial effect on the response. If
they are in the right half plane, then even if they are close together the
system is unstable.

Remark 9.8.10 It is true that mathematically if there is a pole and zero in
the right half plane that exactly cancel, then they will have no effect on the
response of the system. However, for a real engineering system, if there is a
pole in the right half plane attempting to cancel it with a zero will not work
since it is impossible to characterize any real system exactly. ⋄

9.9 The Root Locus Design Method

The root locus design method is probably the most fundamental feedback control
design methodology. This section develops the rules for constructing root locus
plots and presents examples illustrating the utility of the method for control
design.

9.9.1 Motivational Example

From Section 9.6 it should be clear that the nature of the response of a system
is dictated by the pole locations of the transfer function which describes it. A
root locus plot is a plot of how the poles of a transfer function change as some
parameter in the system is varied. This is useful because it may give us a means
to determine the value of such a parameter that gives the system some desired
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Figure 9.35. Effect of additional poles and zeros that are close
together from Example 9.8.9.

response such as a specified rise time, maximum overshoot, settling time, etc.
We will motivate this by a particular example and then in the following sections
develop the rules that will allow us to basically sketch a root locus plot by hand.

Example 9.9.1 Consider the system illustrated in Figure 9.36 and assume
the task is to control the position of the mass so that it stays at some desired
location, xd. Assume that there is some way to measure x(t).

The equation of motion is

mẍ+ bẋ+ kx = f(t).

To simplify the following equations, let f̂(t) = f(t)
k

so the equation of motion

k

b

m f(t)

x(t)

Figure 9.36. System for Example 9.9.1.



336 CHAPTER 9. BASIC CONTROL THEORY: ANALYSIS

Xd X
ω2

n

s2+2ζωns+ω2
n

kp

F̂E+

−

Figure 9.37. Block diagram for proportional control for Ex-
ample 9.9.1.

can written

ẍ+
b

m
ẋ+

k

m
x =

k

m
f̂(t)

and the transfer function from the input force to the position of the mass
is given by

X(s)

F̂ (s)
=

k
m

s2 + b
m
s+ k

m

=
ω2
n

s2 + 2ζωns+ ω2
n

We will use proportional control so that

f̂(t) = kp (xd − x(t))

or

F̂ (s) = kp (Xd(s) −X(s)) .

A block diagram representation of the system with proportional control is
illustrated in Figure 9.37. Included in the figure are labels for the error
signal, E(s) and the force, F̂ (s). The transfer function from the desired
position of the mass to the actual position is given by

X(s)

Xd(s)
=

kpω
2
n

s2 + 2ζωns+ ω2
n (kp + 1)

. (9.24)

The nature of the transient response is easy to determine from the poles
of Equation 9.24, which are simply given by the quadratic equation

p = −ζωn ± ωn

√

ζ2 − (kp + 1).

If ωn = 1 and ζ = 2, then

p = −2 ±
√

4 − (kp + 1),
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so if kp < 3 the solutions will be exponentials and if kp > 3 the solutions
will be damped oscillations. A plot of the pole locations for various kp is
illustrated in Figure 9.38. Observe that for very small kp there will be two
real poles. One will be near the origin and the other will be near s = −4.
As kp increases the poles move toward each other along the real axis and
at kp = 3 they will both be at s = −2. Further increasing kp will result in
a complex conjugate poles. The real part of the poles forkp ≥ 3 is fixed at
s = −2 and the imaginary part increases as kp increases.

Before we solve for the step responses we can observe the following re-
garding the nature of the step response.

1. For kp ≥ 3 the settling time will not be changed by altering kp. For
kp < 3 the settling time will be larger than for kp ≥ 3 since one of the
poles will have a real part to the right of s = −2. Thus, the best we
can do for settling time is at kp = 3.

2. There will be no overshoot for kp ≤ 3 since the solutions will be
exponentials. For kp > 3 increasing kp will increase the overshoot
since it will decrease the angle between the pole and the imaginary
axis.

3. For kp > 3 the rise time will decrease as kp increases. Note that it
may be the case that it will be possible to satisfy either a rise time
or a overshoot specification, but not both, since one gets worse with
increasing kp while the other gets better.

To verify our analysis, the corresponding step responses are illustrated in
Figure 9.39.

At least in one respect our attempt to control the location of the mass in
Example 9.9.1 is deficient since the steady state value of x depends on kp and the
steady state error is not zero. The way to remedy this should be obvious from
Section 9.2, which is to add integral control. In the following example we will
do just that. As expected, this will eliminate the steady state error. The larger
point of the example, though is that once integral control is added, plotting the
pole locations will not be easy since the denominator of the transfer function
will be a third order polynomial, so a method to plot how the poles move as a
parameter is varied that works for higher order polynomials is needed.

Example 9.9.2 In this example we will add integral control to try to con-
trol the location of the mass in Figure 9.36. Let

f̂(t) = kp (xd − x(t)) + ki

∫ t

0

xd(τ) − x(τ)dτ.

In general, it will be necessary to consider how altering both kp and ki
affect the nature of the solution. Since we are considering how the system
responds when one parameter is varied, we will fix the relationship between
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Figure 9.38. Pole locations for various kp for Example 9.9.1.
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Figure 9.39. Step response for various kp for Example 9.9.1.
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Xd X
ω2

n

s2+2ζωns+ω2
n

k
(

1 + 1
2s

)

F̂E+

−

Figure 9.40. Block diagram for proportional plus integral con-
trol for Example 9.9.2.

kp and ki and if a satisfactory result is not obtained, change the relationship
between them and start over.

Somewhat arbitrarily let ki =
kp

2 , so

f̂(t) = k

(

(xd − x(t)) +
1

2

∫ t

0

xd(τ) − x(τ)dτ

)

where kp = k and ki = k
2 . The Laplace transform of the control law is

F̂ (s) = k

(

(Xd −X) +
1

2s

)

(Xd −X)

= k

(

1 +
1

2s

)

(Xd −X)

and the block diagram representation of this system is illustrated in Fig-
ure 9.40.

Using this control law, the transfer function, after a bit of algebra, is

X(s)

Xd(s)
=

kω2
n

(

s+ 1
2

)

s3 + 2ζωns2 + ω2
n (1 + k) s+

kω2
n

2

and if ωn = 1 and ζ = 2

X(s)

Xd(s)
=

k
(

s+ 1
2

)

s3 + 4s2 + (1 + k) s+ k
2

=
2ks+ k

2s3 + 8s2 + 2 (1 + k) s+ k
.

A critical point regarding the preceding two equations is that, in contrast
to the system in Example 9.9.1, a tool as simple as the quadratic equation
is not available to check how the poles of the transfer function vary as the
parameter k is varied. Of course it may be done numerically, but having a
tool available to do the analysis by hand is important to gain insight into
such system. We will return to this example subsequently after we develop
a method for doing that.
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9.9.2 A Quick Review of Functions of a Complex Variable

A more detailed review of complex variable theory is contained in Appendix A.
This section highlights the results necessary for sketching root locus plots.

Consider a transfer function of the form

G(s) =
N(s)

D(s)
.

Regardless of whether we can do it by hand, we may write the numerator and
denominator in factored form. In particular, if we write

G(s) =
N(s)

D(s)

=

∏nz

i=1 (s− zi)
∏np

i=1 (s− pi)
, (9.25)

where the zi are the zeros, the pi are the poles, nz is the number of zeros and
np is the number of poles of G(s).

Example 9.9.3 The transfer function

G(s) =
s+ 3

s4 + 11s3 + 40s2 + 58s+ 40
(9.26)

may be written in the form

G(s) =
s+ 3

(s+ 4) (s+ 5) (s+ (1 + i)) (s+ (1 − i))
. (9.27)

A fundamental property of complex numbers is that they may be represented
in a Cartesian manner, which is typically of the form

s = a+ ib

where a is the real component and b is the imaginary component of s. This is a
useful representation since the usual rules for multiplication hold as long as one
considers i =

√
−1.

An alternative representation is in polar coordinates where s is represented
by a magnitude and phase which are the usual Euclidean norm and angle if the
number is plotted in its Cartesian coordinates. Referring to Figure 9.41, clearly
if s = a+ ib, then

r =
√

a2 + b2

= |s|

and

θ = tan−1

(

b

a

)

= ∠s.
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Re(s)
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Figure 9.41. Cartesian, s = a+ ib and polar, s = (r, θ) forms
of a complex number, s.
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The Cartesian form is easy for addition and subtraction since if s1 = a1+ ib1
and s2 = a2 + ib2, then

s1 + s2 = (a1 + a2) + i (b1 + b2) .

However, multiplication is easier in polar form. In particular, if s1 = (r1, θ1)
and s2 = (r2, θ2), then the product is

s1s2 = (r1r2, θ1 + θ2)

and the quotient is
s1
s2

=

(

r1
r2
, θ1 − θ2

)

.

Proving these two results is simple and is left as an exercise.
The critical concept in this section is relating how to evaluate a transfer

function in terms of the location in the complex plane of s and the location of
its poles and zeros. Returning to Equation 9.25,

G(s) =

∏nz

i=1 (s− zi)
∏np

i=1 (s− pi)
=

(s− z1) (s− z2) · · · (s− znz
)

(s− p1) (s− p2) · · ·
(

s− pnp

) .

note that the numerator is simply the product of the difference between s and all
of the zeros of G(s). Similarly, the denominator is the product of the difference
between s and each of the poles of G(s).

This concept is critical to understand the development which follows. If it
is still not clear after the following example, the reader is strongly encouraged
to fully understand it before proceeding to the next section.

Example 9.9.4 Returning to the transfer function from Example 9.9.3 let

G(s) =
s+ 3

(s+ 4) (s+ 5) (s+ (1 + i)) (s+ (1 − i))
.

If we wish to determine G(s) at a particular value for s the easiest thing
would be just to substitute in into G. For example,

G(0) =
3

(4) (5) (1 + i) (1 − i)

=
3

40

and

G(i) =
3 + i

(4 + i) (5 + i) (1 + 2i) (1)

=
3 + i

1 + 47i

=
3 + i

1 + 47i

1 − 47i

1 − 47i

=
−44 + 142i

2210
.
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Note that in polar coordinates

G(0) =

(

3

40
, 0

)

and

G(i) ≈ (0.067267,−1.2278)

= (0.067267,−70.346◦) .

“Plugging and chugging” may be best to evaluate the Cartesian form of
G(s). In polar form there is a geometric interpretation as well. Figure 9.42
plots the poles and zeros of G(s) and marks s = i with a +. Now consider
each term in the numerator and denominator of G(s). Each is of the form
s− z or s− p and one way to interpret s− z or s− p is that it is the vector
from z or p respectively to the point s, as is illustrated in Figure 9.43.

So, an alternative way to evaluate G(s) is to consider the vectors from
all the zeros and poles of G(s) to the point s. The magnitude of G(s) will
be the product of the magnitudes of all the vectors from the zeros of G(s)
to s divided by the product of the magnitudes of all the vectors from the
poles of G(s) to s. Mathematically,

|G(s)| =

∏nz

i=1 (s− zi)
∏np

i=1 (s− pi)

=
|s− z1| |s− z2| · · · |s− znz

|
|s− p1| |s− p2| · · ·

∣

∣s− pnp

∣

∣

.

In words, we may graphically measure the length of all the arrow from the
poles and zeros of G(s) to s and multiply them for zeros and divide by them
for poles to determine the magnitude of G(s).

Since the angle of complex numbers add when they are multiplied, then
the angle of G(s) is determined by summing the angles from all the zeros
to s and by subtracting the angle from all the poles to s. Mathematically,

∠G(s) =

nz
∑

i=1

∠ (s− zi) −
np
∑

i=1

∠ (s− pi)

= ∠ (s− z1) + ∠ (s− z2) + · · · + ∠ (s− znz
)

− ∠ (s− p1) − ∠ (s− p2) − · · · − ∠
(

s− pnp

)

.

In words, we can measure the angle from all the zeros and poles to s and
sum the angles from the zeros and subtract the angles from the poles.

Now evaluating G(s) using this graphical interpretation

|G(i)| =

∣

∣

√
10
∣

∣

|1|
∣

∣

√
5
∣

∣

∣

∣

√
17
∣

∣

∣

∣

√
26
∣

∣

≈ 0.067267,
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Figure 9.42. The poles and zeros of G(s) =
s+3

(s+4)(s+5)(s+(1+i))(s+(1−i)) and the point s = i (+) for

Example 9.9.4.

and

∠G(i) = tan−1

(

1

3

)

− tan−1

(

0

1

)

− tan−1

(

2

1

)

− tan−1

(

1

4

)

− tan−1

(

1

5

)

≈ −70.346◦.

Observe that with an even scale on the graph, a ruler and protractor, one
could evaluate G(s) with pretty decent accuracy.

In the next section we are going to be very concerned with values of s for
which G(s) is negative and real. In that case we want ∠G(s) = ±180◦, which
is the angle for a negative real number.

9.9.3 Root Locus Plotting Rules

Consider the transfer function described by the block diagram illustrated in
Figure 9.44. Because the feedback loop does not contain a block, it is called
unity feedback . The transfer function for this system is

Y (s)

R(s)
=

kG(s)

1 + kG(s)
. (9.28)

We wish to study how the poles of kG(s)
1+kG(s) change as k is varied, so we need

to know the poles change with k. A pole is a value of s which satisfied

1 + kG(s) = 0.
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Im(s)

Re(s)

p

s

s− p

θ = ∠ (s− p)

Figure 9.43. The vector (s− p) from the point p to the point
s.

R(s) Y (s)

G(s)k

+

−

Figure 9.44. Unity feedback block diagram.
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k → 0+

G→ −∞
k → +∞
G→ 0− Re(s)

Im(s)

Figure 9.45. The relationship on the complex plane of k and
G(s) if 1 + kG(s) = 0.

Hence, s is a pole if

G(s) = −1

k
.

We will limit our attention to k values that are zero or real and positive. As k
goes from 0 to +∞, − 1

k
will go from the −∞ to the origin along the negative

real axis as is illustrated in Figure 9.45.
So, if we can determine all s values for which ∠G(s) = 180◦, we will have

plotted all the solutions to 1+ kG(s) = 0 for positive k values. Doing so we can
determine how the poles of the transfer function in Equation 9.28 change with k,
and hence will be able to determine properties of the response of Equation 9.28
such as the percent overshoot, settling time, rise time, etc. This is the root locus

plot for the transfer function Y (s)
R(s) .

First let us consider the two limiting cases where k = 0 and k → +∞. In the
case where k = 0, the only way for 1+kG(s) to be zero is if G(s) is unbounded.
So we can state the following rule.

Rule 9.9.5 If the denominator of G(s) is nth order, then At k = 0, one of each
of the n branches of the root locus will start at one of the poles of G(s). ⋄

As k → +∞, the only way for 1 + kG(s) to equal zero is for G(s) → 0.
Since we are considering only proper transfer functions where the order of the
denominator is greater than the numerator, the only way for |G(s)| → ∞ is for
s to approach a pole. In contrast, there are two ways that |G(s)| may approach
0. The first, obviously, is if s approaches a zero. Also, if s grows unbounded
in any direction G(s) will approach 0 since the transfer function is proper and
order of the denominator is greater than the order of the numerator. So, we can
state the second rule.
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Figure 9.46. The root locus plot for Example 9.9.7. The poles
ofG(s) are marked with a × and the zeros ofG(s) are marked
with a ◦.

Rule 9.9.6 As k → +∞, the root locus either approaches a zero of G(s) or
grows unbounded. ⋄

An example may be useful at this point. At this point we only have two
rules, so many of the features of the root locus unrelated to these two rules will
not be obvious.

Example 9.9.7 Figure 9.46 illustrates the solutions of

1 + k
s+ 3

(s+ 4) (s+ 5) (s2 + 2s+ 3)
= 0

as k goes from 0 to +∞. As is clear from the figure, the branches of the
root locus starts at each pole of G(s) and one of them approaches the one
zero of G(s) while the other three grow unbounded as k → +∞.

Before we determine exactly how the solutions to 1+kG(s) grow unbounded
as k → +∞, observe that the root locus is comprised of branches. For a transfer
function with a characteristic equation of order n, the fundamental theorem of
algebra requires that there be n solutions. Indeed, in the previous example,
it appears that for any given value of k, there are four solutions and as k
varies, these solutions move along continuous lines in the complex plane. The
fact that these lines are continuous should make sense. If k is only slightly
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altered, then the n solutions will only be slightly altered as well. Hence, as k
varies continuously from 0 to +∞, the solutions to 1 + kG(s) = 0 will vary
continuously as well. Since the root locus starts at k = 0 at the poles of G(s),
each branch that corresponds to one of the solutions will start at one of the
poles. Since we will need to refer back to it, we will restate this argument as a
proposition.

Proposition 9.9.8 The solutions to 1 + kG(s) = 0 depend continuously on k.

Referring to Figure 9.46 with is the root locus for Example 9.9.7, it is clear
that the three branches that grow unbounded do so along specific asymptotes.
Since G(s) is the same in Example 9.9.7 as in Example 9.9.4 we can use the
same labels for the poles as in Figure 9.42.

Specifically, the branch of the locus that leaves pole p1 grows unbounded
in a manner where both the real and imaginary parts of s approach +∞. The
branch that leaves p2 has an imaginary part that grows to −∞ whereas the real
part approaches +∞. This branch also appears symmetric to the first branch
about the real axis. In fact this must be so since if a complex number is a
root of a polynomial, its complex conjugate must also be a root. Finally, the
third branch grows unbounded with a zero imaginary part and a real part that
approaches −∞.

In order to determine these asymptotes, consider a map of the poles and
zeros of G(s) that has a very large scale, such as illustrated in Figure 9.47
for the transfer function in the previous examples. If we desire to determine
whether or not a point, indicated by a cross in the figure, we will use the fact
that it will be on the root locus only if ∠G(s) = ±180◦.

Recall that

∠G(s) =

nz
∑

i=1

∠ (s− zi) −
np
∑

i=1

∠ (s− pi) .

For very large s, the angle from all the poles and zeros are approximately the
same. Hence if θ is this angle then

∠G(s) = θ (nz − np)

and s will be on the root locus if

θ (nz − np) = ±180◦.

We can always add or subtract 360◦ from the angle. Doing so and solving for θ
gives

θ =
(180◦ + n360◦)

(nz − np)
n = 0, 1, . . . (np − nz) ,

where nz is the number of zeros and np is the number of poles of G(s). It looks
like we have figured out another rule.
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Figure 9.47. The poles and zeros of a transfer function with
a large scale appear in a small cluster.

Rule 9.9.9 The branches of the root locus that grow unbounded do so along
asymptotes with angles

θn =
(180◦ + n360◦)

(nz − np) ⋄

Let us verify this rule on the previous example.

Example 9.9.10 Since G(s) from Example 9.9.7 had four poles and one
zero, there asymptotes will have angles

θ0 = −60◦

θ1 = −180◦

θ2 = −300◦

= 60◦.

Rule 9.9.9 gives and angle of the asymptote, but not the point at which the
asymptotes intersect the real axis.

Rule 9.9.11 The asymptotes intersect the real axis at the point

sint =

∑nz

i=1 zi −
∑np

i=1 pi
nz − np ⋄

A particularly easy set of points on the locus to plot are those on the real
axis. The critical fact to consider is that for a point, s, on the real axis, the angle
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Figure 9.48. Evaluating ∠G(s) = 0◦ by considering the ge-
ometry of s relative to the poles and zeros of G(s) on the
complex plane.

of the point will not be affected by either complex conjugate poles or zeros. In
each case the contribution to the angle from each part of the complex conjugate
pair will cancel. This is illustrated in the following example.

Example 9.9.12 Consider once again

1 + k
s+ 3

(s+ 5) (s+ 5) (s2 + 2s+ 2)
= 0

and let s = −2.5. The poles and zeros are plotted in Figure 9.48 and the
point s is illustrated by the cross. Observe that the contribution to the
angle of G(s) by the complex conjugate pair of poles in this example is
360◦, which is equivalent to 0◦. Hence, when evaluating

∠G(s) =

nz
∑

i=1

∠ (s− zi) −
np
∑

i=1

∠ (s− pi)

they do not matter.

From the preceding example it is hopefully obvious that all complex conju-
gate pairs of poles or zeros will contribute nothing to ∠G(s). Hence, for real s
only the poles and zeros on the real axis affect ∠G(s). Furthermore, if s is real
and the only poles and zeros that matter are real, all of the angles in the sum

∠G(s) =

nz
∑

i=1

∠ (s− zi) −
np
∑

i=1

∠ (s− pi)
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Figure 9.49. Evaluating ∠G(s) = 180◦ by considering the ge-
ometry of s relative to the poles and zeros of G(s) on the
complex plane.

will either be 0◦ or 180◦ depending upon whether the point s is to the right or
left respectively of the pole or zero in question.

In fact, if s is to the right of all the real poles and zeros of G(s), then
∠G(s) = 0 since the angle from each of them is zero. If s is decreased and
crosses to the left of the first pole or zero, then ∠G(s) = ±180◦ where the sign
of the angle depends upon whether or not it was a pole or a zero.

Example 9.9.13 Returning to the previous series of examples, if s = −3.5,
as is illustrated in Figure 9.49, then ∠G(s) = 180◦. This should be clear
from the figure since s is to the left of z1, so ∠ (s− z1) = 180◦. Since s is
to the right of p2 and p3, ∠ (s− p2) = ∠ (s− p3) = 0.

If we continue to decrease s so that it passes another pole or zero, then the
angle of G(s) will increase or decrease by 180◦. Regardless ∠G(s) = 0◦ since
it will either algebraically sum to zero or it will be 360◦, which is equivalent to
zero. Once it passes another one, ∠G(s) = ±180◦ and then when it passes the
next, ∠G(s) = 0, etc. Hence, we have the following rule.

Rule 9.9.14 On the real axis, the root locus is to the left of an odd number of
zeros and poles. ⋄

This rule certainly holds in the example case we have been considering if we
refer back to Figure 9.46.

At this point we have considered every feature of the root locus in Figure 9.46
except one, which is the angle the locus departs the complex conjugate pair of
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poles. The loci appear to depart p1 at approximately 90◦ and depart p2 at
approximately −90◦. Instead of zooming out to consider a very large s like we
did to find the asymptote angles, we will zoom in and consider a point s very
close to a pole. We should be able to determine, for example, that a point s
very close to p1 must be at an angle approximately equal to 90◦ from p1.

In fact, in order to determine the departure angle from a pole or zero, all we
must do is consider a point very close to it. If s is very close to a pole, pi, or
zero, zi, the angle from all the other poles and zeros to it is approximately the
same as the angle from the other poles and zeros to the pole or zero to which s
is close and all we must do is solve

∠G(s) =

nz
∑

i=1

∠ (s− zi) −
np
∑

i=1

∠ (s− pi)

for the term (s− pi) or (s− zi) and substitute pi or zi for s in all the terms
except the one to which s is adjacent.

Rule 9.9.15 The angle at which a branch of the root locus leaves a pole, pj is
given by

∠ (s− pj) =

nz
∑

i=1

∠ (pj − zi) −
np
∑

i=1,i6=j
∠ (pj − pi) − 180◦

and the angle which it approaches a zero, zj is given by

∠ (s− zi) = 180◦ −
nz
∑

i=1,i6=j
∠ (zj − zi) +

np
∑

i=1,i6=j
∠ (zj − pi) .

⋄

Rule 9.9.15 works for real as well as complex poles and zeros. However
there is no point in doing the computation for the real poles and zeros because
Rule 9.9.14 gives the appropriate angle.

The final rule is addresses a feature not present in Figure 9.46, so we will
present another example that will review a couple of the rules we know so far
and introduce the need for the final rule.

Example 9.9.16 Consider

G(s) =
s+ 6

(s+ 1) (s+ 3)
.

The poles and zeros of G(s) are illustrated in Figure 9.50. The first rule
will will apply is Rule 9.9.14, so we know the root locus will be between the
two poles and then to the left of the zero. If we compute the asymptote
angles, we will get only one asymptote at θ0 = 180◦, which coincides with
the part to the left of the zero already completed by Rule 9.9.14. This part
of the root locus is illustrated in Figure 9.51.
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Figure 9.50. Poles and zeros of G(s) = s+6
(s+1)(s+3) for Exam-

ple 9.9.16.

Now, consider Rules 9.9.5 and 9.9.6, which require that the branches of
the root locus start at the poles of G(s) and end at either zeros of G(s) or
grow unbounded. So far the root locus does have branches that start at the
poles and it does end at the zero and a does grow unbounded.

However, recall Proposition 9.9.8 which states that the root locus must
be continuous. Therefore there must be a way that the branches that start
from the poles are connected to the branches that go to the zero or infinity.
They cannot connect along the real axis because between the middle pole
and the zero ∠G(s) = 0◦. Hence, the only way it may happen is that they
“break away” from the real axis between the poles and “break in” to the
real axis to the left of the zero. If you have not already peeked, the root
locus, computed numerically, is illustrated in Figure 9.52.

This example is actually quite interesting. For small k, the poles are
both real, then as k is increased they are a complex conjugate pair, and as
k is even further increased they become real again. Intriguing.

First we will determine the rule to compute exactly where the root locus will
break in and away from the real axis. Then we will present an argument as to
why the curve between the break in and away points is a rather nice near-circle,
as opposed to being, for example, very wavy between the break in and away
points.

The rule for the break in and out points is simple. Since the root locus starts
at the poles, the point at which the locus will break away corresponds to the
maximum value that k attains on the real axis. Correspondingly, the branches
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Figure 9.51. A partial root locus plot for Example 9.9.16.
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Figure 9.52. The root locus plot for G(s) = s+6
(s+1)(s+3) .
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will break in at a minimum value for k. Hence the break away and break in
points can be determined by solving 1 + kG(s) = 0 for k and determining the
points on the part of the locus on the real axis for which the derivative of
k = 1

G(s) with respect to s is maximum.

Rule 9.9.17 For the part of the root locus on the real axis (determined by
Rule 9.9.14), the locus will break in or break away at points where

d

ds

(

1

G(s)

)

= 0. (9.29)

⋄

Note that there may be other points at which the derivative in Equation 9.29
are zero, but if they are not on the real axis to the left of an odd number of
poles and zeros they are not relevant. The reason these may occur include, for
example, an extremum for k that corresponds to a negative value for k.

Example 9.9.18 Returning to Example 9.9.16, solving 1 + kG(s) = 0 for
k gives

k =
(s+ 1) (s+ 3)

s+ 6
.

Differentiating with respect to s gives

dk

ds
=

(2s+ 4) (s+ 6) − (1)
(

s2 + 4s+ 3
)

(s+ 6)
2

=
s2 + 12s+ 21

(s+ 6)2
.

Hence,
dk

ds
= 0 ⇐⇒ s = −6 ±

√
15

or
s ≈ −2.1270 and s ≈ −9.8730,

which conforms to Figure 9.52.

Let us revisit the very first motivational example.

Example 9.9.19 The transfer function from Example 9.9.1 was

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

,

or using the numerical values ωn = 1 and ζ = 2,

G(s) =
1

s2 + 4s+ 1
.

We will reconstruct the whole root locus subsequently, but for now observe
that solving 1 + kG(s) = 0 for k gives

k = s2 + 4s+ 1
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and hence
dk

ds
= 0 ⇐⇒ s = −2,

which is where the poles break away from the real axis in Figure 9.38.

A summary of the root locus plotting rules, reordered in a manner that is
most useful for sketching the root locus by hand appears in Table 9.1.

9.9.4 Examples

This section will present a few examples which will illustrate the application of
the root locus plotting rules in Table 9.1.

Example 9.9.20 Let us return to the PI control problem from Exam-
ple 9.9.2. In that problem the transfer function was expressed in the block
diagram in Figure 9.40. If ωn = 1 and ζ = 2, transfer function is

X(s)

Xd(s)
=

k
1+ 1

2s

s2+4s+1

1 + k
1+ 1

2s

s2+4s+1

(9.30)

Hence, the transfer function to use in all the plotting rules is

G(s) =
1 + 1

2s

s2 + 4s+ 1

=
s+ 1

2

s (s2 + 4s+ 1)
.

Recall that when we added integral control in Example 9.9.2 we could
not proceed any farther than determining the transfer function since the
denominator was third order. Now, after all the work in the preceding
section, we can accomplish what we wanted, which was to see how the poles
of the transfer function in Equation 9.30 vary as the gain k is varied from
0 to +∞.

Let us follow the steps exactly as they appear in Table 9.1.

1. G(s) has a zero at a = − 1
2 and three poles at s = 0, s ≈ −3.73205

and s ≈ −0.26795, all of which are easy to determine by hand. A plot
of the poles and zeros for G(s) appears in Figure 9.53.

2. Now filling in to the left of an odd numbers of zeros plus poles results
in the partial root locus plot illustrated in Figure 9.54.

3. There are three poles and one zeros, so nz − np = −2. Hence the two
asymptote angles are

θ0 = −90◦

θ1 = 90◦,
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Rules to plot the solutions of 1 + kG(s) = 0 for k ∈ [ 0,∞) .

1. Plot the poles and zeros of G(s). Each branch of the root locus starts at
one of the poles. If G(s) has np poles and nz zeros, nz of the branches
will end at the zeros (Rules 9.9.5 and 9.9.6)

2. Draw the root locus on the real axis to the left of an odd number of poles
plus zeros. (Rule 9.9.14)

3. Compute the asymptote angles using

θn =
(180◦ + n360◦)

(nz − np)

Sketch the asymptotes, which intersect the real axis at

sint =

∑nz

i=1 zi −
∑np

i=1 pi
nz − np

.

(Rules 9.9.9 and 9.9.11)

4. If G(s) has any complex conjugate pairs of poles or zeros, compute the
departure or arrival angles, respectively, by taking a point very close to
one of them and computing the angle from the pole or zero that would be
necessary to ensure ∠G(s) = 180◦. (Rule 9.9.15)

5. Compute the break away or break in points from the real axis, if any, by
computing the values for which

d

ds

(

1

G(s)

)

= 0.

(Rule 9.9.17)

6. Complete the root locus keeping in mind that the branch connecting two
sections cannot be too complicated if the order of the numerator and
denominator of G(s) is not too large.

Table 9.1. Root locus plotting rules.
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Figure 9.53. Partial root locus plot for G(s) =
s+ 1

2

s(s2+4s+1) af-
ter step 1.

and the intersection with the real axis is at

sint =
(−1/2)− (0 − 3.73205− 0.26795)

1 − 3
= −1.75.

The asymptotes are sketched on the root locus diagram by the dashed
lines in Figure 9.55.

4. Step 4 does not apply since there are no complex conjugate poles and
zeros.

5. Differentiating k = 1
G(s) with respect to s gives

d

ds

(

1

G(s)

)

=
d

ds

s
(

s2 + 4s+ 1
)

s+ 1
2

=

(

3s2 + 8s+ 1
) (

s+ 1
2

)

−
(

s3 + 4s2 + s
)

(

s+ 1
s

)2

=
2s3 + 11

2 s
2 + 4s+ 1

2
(

s+ 1
2

)2 .

Finding the zeros of the cubic polynomial in the numerator unfortu-
nately is a bit hard to do by hand. Hence, we will just give the answer.
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Figure 9.54. Partial root locus plot for G(s) =
s+ 1

2

s(s2+4s+1) af-
ter step 2.

dk
ds

= 0 at the values

s = −1.59307

s = −1.00000

s = −0.15693.

The root locus must break out from the point s = −0.15693 since it
is between two poles. The other two points are also on the root locus
on the real line, so one must be a break in point and one a break away
point for the loci to grow unbounded along the asymptotes.

6. The completed root locus is illustrated in Figure 9.56.

Example 9.9.21 Sketch the root locus plot for

G(s) =
s+ 3

(s+ 1) (s+ 2)
.

1. The poles are at s = −1 and s = −2. There is one zero at s = −3.

2. The root locus on the real axis is to the left of an odd number of zeros
plus poles, as is illustrated in Figure 9.57.
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Figure 9.55. Partial root locus plot for G(s) =
s+ 1

2

s(s2+4s+1) af-
ter step 3.

3. There are two poles and one zero, so the only asymptote is at θ = 180◦,
which has already been plotted by the step dealing with the root locus
on the real axis.

4. There are no complex conjugate poles or zeros of G(s), so this step
does not apply.

5. The break in and away points will be where

dk

ds
= 0

or

dk

ds
=

d

ds

1

G(s)

=
d

ds

(

(s+ 1) (s+ 2)

s+ 3

)

=
d

ds

(

s2 + 3s+ 2

s+ 3

)

=
(2s+ 3) (s+ 3) −

(

s2 + 3s+ 2
)

(s+ 3)
2

=
s2 + 6s+ 7

(s+ 3)
2 ,
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Figure 9.56. The completed root locus plot for G(s) =
s+ 1

2

s(s2+4s+1) .

which is equal to zero at s ≈ −4.4142 and s ≈ −1.5858. The first
must be a break in point and the latter a break away point.

6. Since the root locus must break out between the poles and break in
to the left of the zero, the root locus must be comprised of complex
conjugate pairs between the two. Because we are sketching the roots
of a relatively low order polynomial, the path between the break away
and break in point must be relatively low order, i.e., constant, or
nearly constant, curvature, which is somewhat semi-circular. The
completed root locus is illustrated in Figure 9.58.

Example 9.9.22 Sketch the root locus for

G(s) =
s− 1

s2 + 2s+ 5
.

1. There is a zero at s = 1 and two poles at s = −1 ± 2i.

2. On the real axis, the root locus will be to the left of the zero, as is
illustrated in Figure 9.9.22.

3. There are two poles and one zero, so the only asymptote is at 180◦,
which has already been completed by the rule for the locus on the real
axis.
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Figure 9.57. Partial root locus for Example 9.9.21.
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Figure 9.58. Root locus for Example 9.9.21.

.
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4. Considering a point near the upper complex conjugate pole and de-
termining ∠G(s), we have

135◦ − 90◦ − θ = ±180◦

which gives the departure angle as

θ = 225◦.

The angle of departure for the bottom pole is symmetric, so is equal
to 135◦.

5. The locus must break in to the real axis as some point because it ends
at the zero and along the asymptote going to −∞. Computing

dk

ds
=

d

ds

(

1

G(s)

)

=
d

ds

(

s2 + 2s+ 5

s− 1

)

=
(2s+ 2) (s− 1) −

(

s2 + 2s+ 5
)

(s− 1)2

=
s2 − 2s− 7

(s− 1)
2 ,

which gives

dk

ds
= 0 ⇐⇒ s ≈ 3.8284,−1.8284.

Since the first solution is not on the root locus on the real axis, we
may ignore it. The second solution gives the break in point.

6. The complete root locus plot is illustrated in Figure 9.60.

9.9.5 Determining the Gain

Once the root locus plot has been sketched, if it appears that it passes through
a region where it will have the desired response characteristics, then it will be
necessary to determine the gain (k) value that corresponds to a point on the
locus in that region. Fortunately, this is relatively easy.

Since points on the root locus satisfy

1 + kG(s) = 0

then

|k| =

∣

∣

∣

∣

− 1

G(s)

∣

∣

∣

∣

=
1

|G(s)| .
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Figure 9.59. Partial root locus for Example 9.9.22.
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Figure 9.60. Root locus for Example 9.9.22.

.
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Also, since

|G(s)| =

∣

∣

∣

∣

∏nz

i=1 (s− zi)
∏np

i=1 (s− pi)

∣

∣

∣

∣

=
|s− z1| |s− z2| · · · |s− znz

|
|s− p1| |s− p2| · · ·

∣

∣s− pnp

∣

∣

,

we have

k =
|s− p1| |s− p2| · · ·

∣

∣s− pnp

∣

∣

|s− z1| |s− z2| · · · |s− znz
| . (9.31)

In words, the value of k is simply the product of the distance from the point on
the locus to all the poles divided by the product of the distance from the point
on the locus to all the zeros.

Example 9.9.23 The root locus plot for

G(s) =
s+ 2

(s+ 1) (s+ 3)

is illustrated in Figure 9.58.
If we wish to determine the gain corresponding to the top and bottoms

of the “circle” portion of the locus, we simply measure the distance from the
two poles and zero to the point, as is illustrated in Figure 9.61 and substitute
into Equation 9.31. The three distances are approximately, 2.4495, 1.7321
and 1.4142

k ≈ (2.4495) (1.7321)

1.4142
≈ 3.

9.9.6 Computational Tools

This section will discuss some very basic numerical methods to find roots of
polynomials.

Newton’s method

Matlab

The Matlab command to plot a root locus is rlocus(). As the reader probably
expects, it takes the numerator and denominator of G(s) as arguments and then
plots the solutions to 1 + kG(s) = 0 for k ∈ [ 0)

Example 9.9.24 To use Matlab to plot the root locus for the system in
Example 9.9.16 where

G(s) =
s+ 6

(s+ 1) (s+ 3)
.

enter
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Figure 9.61. Measuring the distance from the poles and zeros
of G(s) to the point of interest to determine the gain for
Example 9.9.23.

.

>> rlocus([1 6],conv([1 1],[1 3]))

or equivalently

>> rlocus([1 6],[1 4 3])

Octave

The Octave command to plot a root locus is rlocus(). As the reader probably
expects, it takes the numerator and denominator of G(s) as arguments and then
plots the solutions to 1 + kG(s) = 0 for k ∈ [ 0)

Example 9.9.25 To use Octave to plot the root locus for the system in
Example 9.9.16 where

G(s) =
s+ 6

(s+ 1) (s+ 3)
.

enter

octave:> rlocus(tf([1 6],conv([1 1],[1 3])))

or equivalently

octave:> rlocus(tf([1 6],[1 4 3]))
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Figure 9.62. Root locus plot for the system from Exam-
ple 9.10.1.

9.10 Controller Design Using the Root Locus

Method

Root locus plots may be used to determine a “good” value for the feedback gain.
Since all the tools necessary to accomplish this have already been developed, we
will do this by way of a couple examples.

Example 9.10.1 Consider again the system illustrated in Figure 9.36 with
the transfer function

X(s)

F̂ (s)
=

k
m

s2 + b
m
s+ k

m

.

If m = k = 1 and b = 4 then

X(s)

F̂ (s)
=

1

s2 + 4s+ 1
.

The root locus plot is relatively simple. The open loop transfer function has
two poles, one at s ≈ −3.73205 and the other at s ≈ −0.26795. On the real
axis, the locus is between the two poles. The asymptote angles are ±90◦

and the asymptotes intersect the real axis at s = −2. The break away point
is at s = −2. The complete root locus plot is illustrated in Figure 9.62.

Focusing on the transient response for the moment, assume it is desired
that the percentage overshoot be less than 10%. From Figure 9.24, the
damping ratio must be greater than 0.6. Since sin−1 0.6 ≈ 37◦, we need
that k be in the region between the lines of constant damping illustrated
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Figure 9.63. Pole locations which result in less than a 10%
overshoot for Example 9.10.1.

in Figure 9.63. Picking the point s = −2 ± 2.5i to locate the poles of the
closed loop transfer function, we may determine k from the distance from
the two poles of the open loop transfer function. By Equation 9.31, we need
to know the distance from all of the open loop poles and zeros to the desired
pole location of the closed loop transfer function. Figure 9.64 indicates the
two relevant distances, both of which are equal to

√
1.72 + 2.52 ≈ 3.0414.

Hence we will use k = 9.25.
To verify the answer, we will compute the step response of the closed

loop system using the computed gain. The closed loop transfer function is

Y (s)

R(s)
=

k 1
s2+4s+1

1 + k 1
s2+4s+1

=
k

s2 + 4s+ 1 + k
,

and for k = 4,
Y (s)

R(s)
=

4

s2 + 4s+ 5
.

The step response is illustrated in Figure 9.65, and the overshoot appears
to be slightly less than 10%.

Let us make the preceding example more difficult by adding a rise time
specification to the problem as well.

Example 9.10.2 For the system in Example 9.10.1, in addition to requir-
ing the closed loop step response to have less than a 10% overshoot, assume
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Figure 9.64. Distances to determine the gain for Exam-
ple 9.10.1.
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shoot for Example 9.10.1.
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Figure 9.66. Complex plane regions satisfying the overshoot
and rise time requirements for Example 9.10.2.

also that we desire the rise time to be less than 0.5 seconds. Use the ap-
proximation

tr ≈
1.8

ωn
.

If we require
tr ≤ 0.5

then
1.8

ωn
≤ 0.5 =⇒ ωn ≥ 3.6.

The region in the complex plane where the closed loop system will satisfy
this requirement is outside the semi-circle illustrated in Figure 9.66. Also
plotted are the lines corresponding to the damping ratio that satisfy the
overshoot requirement.

Observe that it is impossible to choose a gain value that corresponds
to a point on the root locus that is between the lines that indicate the
overshoot specification and outside the semi-circle that indicates the rise
time specification.

This is true even for the part of the root locus on the real axis. If you
choose a point that is outside the semi-circle on the root locus on the real
axis there is another pole on the branch that is coming from the other pole,
which does not satisfy the specifications. For example, if we place a closed
loop pole at s = −3.65, which seemingly satisfies the specification, this
corresponds to a k value determined by

k ≈ 0.2775.
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Figure 9.67. Closed-loop poles indicated by a + for k = 0.2775
for Example 9.10.2.

For k = 0.2775 the closed loop poles will be located at s = −3.36 and
s = −0.35, as is illustrated in Figure 9.67, and the latter does not satisfy
the rise time specification. Hoping it will anyway, we can compute the step
response, which is illustrated in Figure 9.68. Clearly, it does not work.

The next example will consider how to use the root locus analysis to design
a good controller to stabilize an unstable system.

Example 9.10.3 Consider the inverted pendulum illustrated in Figure 9.69.
Assume the bar has a length, l, and is light with negligible inertia and that
the mass moves under the influence of gravity and a torque, τ that is ap-
plied about the point of rotation of the pendulum. Assume that we require
an overshoot less than 25% and a rise time less than 0.6 seconds.

Using Newton’s second law for a planar system rotating about a point,
the equation of motion is

ml2θ̈ = mgl sin θ + τ.

This is a nonlinear equation due to the sin θ term. For small θ, sin θ ≈ θ,
and making this approximation we have

ml2θ̈ −mglθ = τ.

For computational purposes, let mgl = ml2 = 1. Using proportional feed-
back for τ , the transfer function from a specified desired angle, Θd(s) to the
actual angle, Θ(s) is given illustrated in Figure 9.70 where the controller,
C(s) = kp.
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Figure 9.68. Closed-loop step response for k = 0.2775 for Ex-
ample 9.10.2.
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Figure 9.69. Inverted pendulum system for Example 9.10.3.
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Figure 9.70. Block diagram for feedback control of the in-
verted pendulum in Example 9.10.3.

The root locus plot for the open loop transfer function

G(s) =
1

s2 − 1

is illustrated in Figure 9.71. From the root locus plot we can conclude that
for kp ≤ 1, the system will be unstable and for kp > 1 the system will be
marginally stable. In other words, the linearized equation will have non-
decaying sinusoidal solutions. The step responses of the linearized system
with kp = 0.1, kp = 1 and kp = 2 are illustrated in Figure 9.72.

In this case it will be impossible to meet the overshoot specification.
If kp ≤ 1 the system is unstable and for kp > 1 there is zero damping,
independent of kp.

For any real engineering system, predicting an exactly marginally stable
response is impossible since any modeling errors will keep the system from
either behaving in either an exactly linear manner or, for that matter, being
exactly on the imaginary axis.

The obvious thing to do to add some extra stability, and hence to pull
the branches of the root locus to the left, is to add some derivative control.
If we specify

C(s) = k

(

1

2
s+ 1

)

which fixes kd = 1
2kp, then the open loop transfer function is

G(s) =
1
2s+ 1

s2 − 1

is illustrated in Figure 9.73.
The regions in the complex plane where the overshoot and rise time

specifications are met are illustrated in Figure 9.74. From Figure 9.24, an
overshoot of less than 25% corresponds to a damping ratio of greater than
0.4, which corresponds to a pole location at an angle of sin−1 (0.4) ≈ 25◦.
Using the relationship

tr ≈
9

5ωn
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Figure 9.71. Root locus plot for linearized inverted pendulum
for Example 9.10.3.
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Figure 9.72. Step responses for various proportional gains for
unity feedback for the linearized inverted pendulum in Ex-
ample 9.10.3.
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Figure 9.73. Root locus plot for linearized inverted pendulum
for Example 9.10.3 with PD control.

a rise time less than 0.6 seconds requires a natural frequency greater than 3.
Since the closed-loop poles start at the open loop poles, an analysis of the
root locus plot shows that any gain that meets the rise time specification
will also meet the overshoot specification. Using a rough approximation, if
we desire to place the poles at s ≈ −3.5 ± i then

k ≈
√

4.52 + 12
√

2.52 + 12

√
1.52 + 12

= 12.

A plot of the closed loop poles with k = 12 is illustrated in Figure 9.75.
The closed loop step response for k = 12 is illustrated in Figure 9.76.

9.11 Frequency Response Analysis and Design

Frequency-response analysis of a system focuses upon analyzing the relationship
between the input and output of a transfer function when the input is a purely
sinusoidal signal. If an input to a transfer function is a pure sinusoid, r(t) =
sinωt the output will be a sinusoid of the same frequency (see Exercise 9.14),
but with a magnitude and phase shift that depend on the frequency of the input.

Example 9.11.1 Consider

R(s)

Y (s)
=

2

s+ 2
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Figure 9.74. Pole locations satisfying the overshoot and rise
time specifications for Example 9.10.3.
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Figure 9.75. Closed loop pole locations for PD control with
k = 12 for Example 9.10.3.
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Figure 9.76. Closed loop step response with k = 12 and
PD control for the linearized inverted pendulum in Exam-
ple 9.10.3.

and two input signals

r1(t) = sin t

r2(t) = sin 3t,

or

R1(s) =
1

s2 + 1

R2(s) =
3

s2 + 9
.

Solving either

y1(t) = L−1

(

2

s+ 2

1

s2 + 1

)

y2(t) = L−1

(

2

s+ 2

3

s2 + 9

)

or

ẏ1 + 2y = 2 sin t

ẏ2 + 2y = 2 sin 3t
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(the latter with zero initial conditions) gives

y1(t) =
2

5

(

e−2t + 2 sin t− cos t
)

y2(t) =
2

13

(

3e−2t + 2 sin 3t− 3 cos 3t
)

.

Hence, for large t, the steady state solutions are

y1,ss(t) =
2

5
(2 sin t− cos t)

y2,ss(t) =
2

13
(2 sin 3t− 3 cos 3t) ,

or using the relationship

sin (ωt+ φ) = cosφ sinωt+ sinφ cosωt

y1,ss(t) =
2

5

√
5 sin (t+ φ1) , φ1 = tan−1 −1

2

y2,ss(t) =
2

13

√
13 sin (3t+ φ2) , φ2 = tan−1 −3

2
.

Observe that the steady state solution is a sinusoid of the same frequency
as the input, but the magnitude is scaled and there may be a phase shift.
Foreshadowing what is to come, note that if we substitute s = iω into G(s),
we get, for each case respectively,

G(i) =
2

i+ 2
=

4 − 2i

5

G(3i) =
2

3i+ 2
=

4 − 6i

13
.

The magnitude of these are

|G(i)| =
1

5

√
20 =

2√
5

|G(3i)| =
1

13

√
52 =

2√
13
.

So, it appears that if we simply substitute s = iω into G(s) and determine
its magnitude, it gives the magnitude of the response.

Similarly, if we compute

∠G(i) = tan−1

(−2

4

)

= tan−1

(−1

2

)

∠G(3i) = tan−1

(−6

4

)

= tan−1

(−3

2

)

,

it appears that the phase shift in the steady state response is given by the
angle of G(iω).

In fact, both of these are true in general, which is what we will prove
next.
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Next we will show that if a transfer function is stable, then if the input is
A sinωt then the steady state solution will be scaled by |G (iω)| and have a

phase shift of φ = tan−1
(

Im(iω)
Re(iω)

)

.

Proposition 9.11.2 If all the poles of G(s) are in the left half plane, then if

y(t) = L−1

(

G(s)
Aω

s2 + ω2

)

as t becomes large, the steady state solution is given by

yss(t) = A |G (iω)| sin (ωt+ φ)

where

φ = tan−1

(

Im (iω)

Re (iω)

)

.

Proof Let

G(s) =
N(s)

D(s)

then one form of a partial fraction expansion will be

G(s)
Aω

s2 + ω2
=

N(s)

D(s)

Aω

s2 + ω2

=
C1(s)

D(s)
+
Aω (c1s+ c2)

s2 + ω2
.

Using the method from Appendix A.3, to determine C2(s), multiply both sides
of this equation by

(

s2 + ω2
)

and take the limit as s→ iω, i.e.,

lim
s→iω

(

G(s)
Aω

s2 + ω2

(

s2 + ω2
)

)

= lim
s→iω

(

AC1(s)

D(s)

(

s2 + ω2
)

+
Aω (c1s+ c2)

s2 + ω2

(

s2 + ω2
)

)

which gives
c1iω + c2 = G (iω) ,

so

c1 =
1

ω
Im (G (iω))

c2 = Re (G (iω)) .

Referring to Table 8.1, the c1 term corresponds to the cosine component in the
steady state solution and the c2 term corresponds to the sine component.

Hence,

yss(t) = A (Re (G (iω)) sinωt+ Im (G (iω)) cosωt)

=

√

[Re ((G (iω))]
2

+ [Im ((G (iω))]
2
sin (ωt+ φ)

= |G (iω)| sin (ωt+ φ)
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where

φ = tan−1

(

Im (G (iω))

Re (G (iω))

)

.
�

It turns out that

1. it is relatively easy to sketch by hand |G (iω)| and φ = tan−1
(

Im(G(iω))
Re(G(iω))

)

,

so it is not too difficult to obtain information about the steady state
response of the system to sinusoidal inputs; and,

2. more importantly very useful information regarding the stability of a sys-
tem under unity feedback and information on designing feedback con-
trollers may be obtained by graphs of the magnitude and phase of the
steady state response to a sinusoidal input.

This type of analysis is referred to as a frequency response analysis and is com-
mon in control theory, particularly in electrical engineering.

9.11.1 Bode Plots

A Bode plot is a log-log plot of the magnitude and angle of G(iω) versus ω. It
is conventional to plot the magnitude on a log scale and it is conventional to do
so in decibels. For our purposes definition of a decibel is

|G (iω)|dB = 20 log10 |G (iω)| .

Since the plot is on a logarithmic scale, we may construct the plot for individual
components of a transfer function and them add them together to construct the
overall plot. In order to do this, we need to have handy the plot for the typical
components of a transfer function.

Example 9.11.3 Consider

G(s) =
10

s+ 10
.

A computer-generated Bode plot of G(s) is illustrated in Figure 9.77.
Let us first rewrite G (iω) in a way that will help with our analysis

subsequently:

G (iω) =
10

iω + 10

=
10

iω + 10

10 − iω

10 − iω

=
100 − 10iω

100 + ω2
.

For ω ≪ 10,
G (iω) ≈ 1,
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Figure 9.77. Bode plot for G(s) = 10
s+10 .

so
|G (iω)| ≈ 1 = 0db

and
∠G (iω) ≈ 0◦.

For small frequencies, the Bode plot in Figure 9.77 corresponds to this.
For ω ≫ 10

G (iω) ≈ −10i

ω
so

|G (iω)| ≈ 10

ω
.

As ω increases, |G (iω)| decreases, and in particular whenever ω increases
by a factor of 10, |G (iω)| decreases by a factor of 10. Since a decrease by a
factor of 10 corresponds to a decrease of 20 dB, the slope of the magnitude
curve at high ω should be −20 dB/decade (-20 dB for every increase in order
of magnitude of ω). Also, for ω ≫ 10, G (iω) is almost a purely negative
imaginary number, so

∠G (iω) ≈ −90◦.

For large frequencies, the Bode plot in Figure 9.77 corresponds to this.

The beauty of logarithms is that multiplication is reduced to addition. We
may exploit this fact when sketching Bode plots by sketching each term in a
transfer function individually and then adding them.
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Example 9.11.4 Sketch the Bode plot for

G(s) =
100

s (10s+ 1)
.

Explicitly writing all three terms we have

G(s) = 100 · 1

s
· 1

10s+ 1
so

|G (iω)| =

∣

∣

∣

∣

100 · 1

iω
· 1

10ωi+ 1

∣

∣

∣

∣

= |100| ·
∣

∣

∣

∣

1

iω

∣

∣

∣

∣

·
∣

∣

∣

∣

1

10ωi+ 1

∣

∣

∣

∣

or, in decibels and making use of the fact that the logarithm of a product
is the sum of the logarithms

|G (iω)|dB = |100|dB +

∣

∣

∣

∣

1

iω

∣

∣

∣

∣

dB

+

∣

∣

∣

∣

1

10ωi+ 1

∣

∣

∣

∣

dB

. (9.32)

Similarly, because in polar coordinates the angle of complex numbers add
when complex numbers are multiplied we have

∠G (iω) = ∠

(

100 · 1

iω
· 1

10ωi+ 10

)

= ∠100 + ∠
1

iω
+ ∠

1

10ωi+ 1
. (9.33)

Considering each term in Equation 9.32.

9.11.2 Gain and Phase Margins

9.12 Controller Design using Bode Plots

9.13 Exercises

Problem 9.1 Find the transfer function for the circuit illustrated in Fig-
ure 9.78.

Problem 9.2 Show that if the transfer function has multiple poles at the
origin, i.e.,

Y (s) =
1

sn
R(s)

then regardless of the input, y(t) will contain an n − 1th order polynomial
in t, i.e.,

y(t) = c0 + c1t+
c2
2
t2 + · · · + cn−1

(n− 1)!
tn−1 + other terms.
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Figure 9.78. Circuit for problem 9.1.

Problem 9.3 Write a computer program that determines an approximate
numerical solution to the equations of motion for the robot arm from Ex-
ample 9.2.1. Assuming zero initial conditions and a small desired angle, use
your program to verify the following “rules of thumb” for PID control for a
step input.

Your program should be for the original nonlinear model, not the lin-
earized one that we can solve analytically. The idea is to verify that what we
determined analytically using the linearized version works for the nonlinear
case as well as long as the desired angle of the robot arm is small.

1. For proportional control, i.e., kp > 0, kd = 0 and ki = 0, the solutions
are oscillatory, and increasing kp increases the frequency of oscillation
(which decreases the rise time and peak time) but decreases the mean
steady state error. The settling time is infinite. Hint pick a starting
value of kp = 5.

2. If derivative control is added to the proportional controller, i.e., kp >
0, kd > 0 and ki = 0, then

(a) for small kd the solutions are decaying oscillations;

(b) increasing kd decreases the settling time;

(c) increasing kd sufficiently eliminates the oscillatory behavior com-
pletely, resulting in an solution which exponentially decays to the
final, steady state value;

(d) increasing kp decreases the final steady state error;

(e) increasing kp decreases the rise time.

Hint pick a starting value of about kd = 0.5.

3. Adding integral control (PID control)

(a) eliminates the steady state error, even for small values of kp,

(b) increasing ki generally increases the overshoot and settling time;
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(c) increasing kp decreases rise time, but may increase overshoot;

(d) increasing kd increases damping and stability.

Hint: pick a starting value of about ki = 0.5.

4. Choose a set of gain values from the above simulations that seems
to work well. Use those for an attempt to have the desired angle be
large. Does it still work well?

Problem 9.4 Verify the results in Figure 9.21 by using a computer to
compute a numerical solution to the step response to

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

and by appropriately varying ωn and ζ so that the poles move in the three
directions indicated in the figure. Submit plots illustrating the pole loca-
tions and corresponding step responses and whether or not the change in
the step response when the pole is moved in one of the three directions
indicated are as predicted.

Problem 9.5 Plots of the poles and zeros of different transfer functions
appear in Table 9.2. Match the plots of the pole and zero zero locations
with the corresponding step responses in Table 9.3.

Problem 9.6 The step response of

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

.

is given by Equation 9.18. Now consider

G(s) =
ω2

n

r
(s+ r)

s2 + 2ζωns+ ω2
n

.

Compute the partial fraction expansion of the step response of G(s), and
using the resulting time function, explain why the rules for an additional
real zero added to a second order system are true.

Problem 9.7 If s1 = a1 + ib1 and s2 = a2 + ib2, and

s1s2 = (a1a2 − b1b2) + i (a1b2 + a2b1)

use the fact that
r =

√

a2 + b2

and

θ = tan−1

(

b

a

)
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Table 9.2. Pole-zero maps for Problem 9.5.
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Table 9.3. Step responses for Problem 9.5.
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to show that in polar coordinates

s1s2 = (r1r2, θ1 + θ2)

and
s1
s2

=

(

r1
r2
, θ1 − θ2

)

.

Problem 9.8 The root locus plots we considered in Section 9.9 considered
only the case where k ∈ [ 0,+∞) and is often called the 180◦ root locus.
Determine each of the rules (Rule 9.9.5 through Rule 9.9.17) for the case
where k ∈ (−∞, 0] , called the 0◦ root locus.

Problem 9.9 Consider a DC motor connected to the circuit illustrated in
Figure 9.79. Assume that the shaft of the motor has a moment of inertia J .

+

−

vin

R

kτ , ke

Figure 9.79. DC motor for Problem 9.9.

1. If the block diagram in Figure 9.80, represents this system, determine
G(s).

Vin(s) Θ(s)
G(s)

Figure 9.80. Block diagram for d.c. motor in Problem 9.9.

2. Consider the block diagram illustrated in Figure 9.81. Determine the
transfer function, C(s) in the controller block for

(a) proportional control;

(b) proportional plus derivative control;

(c) proportional plus integral control; and
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Θd(s) Θ(s)
G(s)C(s)

+

−

Figure 9.81. Feedback control loop for Problem 9.9.

(d) proportional plus derivative plus integral control.

3. Determine the transfer function from the desired angular position of

the motor to the actual position, Θd(s)
Θ(s) (do not substitute for C(s) or

G(s)).

4. If ω = θ̇, determine the transfer function Ω(s)
Ωd(s) .

5. If

ke = 1

kτ = 2

R = 3

J = 4

and we use proportional control, use the root locus plotting rules to

sketch, by hand, the how the poles of Θ(s)
Θd(s) vary as the proportional

gain is varied from 0 to +∞. Determine the approximate gain value,
if any, that gives a damping ratio of approximately 1

2 .

6. For the same parameter values as above, use PD control and fix the
ratio between the proportional gain and the derivative gain to be 1

2 ,
i.e.,

vin = kp (θd − θ) + kd

(

θ̇d − θ̇
)

= k

[

(θd − θ) +
1

2

(

θ̇d − θ̇
)

]

,

sketch the root locus plot for the system. Discuss qualitatively what
will happen to the rise time, the percentage overshoot and the settling
time as k increases.

Problem 9.10 Consider

G(s) =
4

(s+ 1) (s+ 3)
.
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1. Sketch the root locus plot for this transfer function

2. If this transfer function is placed in a feedback loop as illustrated in
Figure 9.81, with C(s) = k, what will happen to the overshoot of the
step response as k gets large? Explain your answer.

3. Determine the maximum value for k so that the percentage overshoot
remains under 20%.

Problem 9.11 Consider

G(s) =
s+ 5

(s+ 1) (s+ 3)
.

1. Sketch the root locus plot for this transfer function

2. If this transfer function is placed in a feedback loop as illustrated in
Figure 9.81, with C(s) = k, what will happen to the overshoot of the
step response as k gets large? Explain your answer.

Problem 9.12 Consider

G(s) =
1

(s+ 1) (s+ 3) (s+ 5)
.

1. Sketch the root locus plot for this transfer function

2. What can you say about the stability of the response of the system
under unity feedback as k gets large?

Problem 9.13 Prove Corollary 9.7.3.

Problem 9.14 Prove that if all the poles of a transfer function are in the
left half plane, then the steady state response of the system with a sinusoidal
input, r(t) = sinωt will be a sinusoid with the same frequency, but with a
possibly a different magnitude and a phase shift, i.e., y(t) = m sin (ωt+ φ).

Problem 9.15 A minor complication occurs if a transfer function has two
more poles or zeros at the same location. The root locus plot for

G(s) =
s+ 3

s2 (s+ 2)
,

which has a double pole at the origin is illustrated in Figure 9.82 and the
root locus for

G(s) =
s+ 3

s (s+ 2)
2 ,

which has a double pole at s = −2 is illustrated in Figure 9.83. Multiple
poles at the same location are often, but not always, represented by slightly
offset ×’s to indicate that there is more than one pole of G(s) at that
location.

Do all the rules summarized in Table 9.1 still apply? Explain your answer
for each of the rules by specifically referring to the features of Figures 9.82
and 9.83.
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Figure 9.82. Root locus plot for G(s) = s+3
s2(s+2) for Prob-

lem 9.15.
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Figure 9.83. Root locus plot for G(s) = s+3
s(s+2)2

for Prob-

lem 9.15.
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m

x(t)

f(t)

Figure 9.84. System for Problem 9.16.

Problem 9.16 In order to do this problem, you must understand how to
deal with multiple poles in the same location, which was considered in
Problem 9.15.

Consider the system illustrated in Figure 9.84.

1. Determine the transfer function from the applied force, f(t) to the
position of the mass, x(t).

2. Sketch the root locus plot for this transfer functions if m = 1.

3. What does the root locus plot tell you about using proportional control
to control the position of the mass? Specifically,

(a) will it be stable, unstable or on the margin;

(b) for the step response, by changing the proportional gain can you
affect

i. the rise time;

ii. the settling time;

iii. the percent overshoot?

Problem 9.17 Consider again the system illustrated in Figure 9.84.

1. Determine the transfer function from the applied force, f(t) to the
velocity of the mass, ẋ(t).

2. Sketch the root locus plot for this transfer function.

3. Discuss the use of proportional control for this system. What charac-
teristics of the response of the system can you affect by altering the
proportional gain?

Problem 9.18 Sketch the Bode plot for

G(s) =
100

(s+ 10) (s+ 100)
.



392 CHAPTER 9. BASIC CONTROL THEORY: ANALYSIS

Problem 9.19 Sketch the Bode plot for

G(s) =
100

(s+ 10) (s+ 100) (s+ 1000)
.

Problem 9.20 Sketch the Bode plot for

G(s) =
s

(s+ 10) (s+ 100) (s+ 1000)
.

Problem 9.21 Sketch the Bode plot for

G(s) =
s+ 100

(s+ 10) (s+ 10000)
.

Problem 9.22 Consider the low pass filter illustrated in Figure 9.85. De-
termine the transfer function from the input voltage to the output voltage.
Sketch the Bode plot for this circuit if RHP = 100 and CHP = 100.

+

−

Vin Vout

RLP

CLP

Figure 9.85. Low pass filter for Problem 9.22.

Problem 9.23 Consider the high pass filter illustrated in Figure 9.86. De-
termine the transfer function from the input voltage to the output voltage.
Sketch the Bode plot for this circuit if RHP = 10 and CHP = 10.

+

−

Vin VoutRHP

CHP

Figure 9.86. High pass filter for Problem 9.23.
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Problem 9.24 Consider connecting a low pass filter and high pass filter
together in series, as is illustrated in Figure 9.87.

1. Determine the transfer function from the input voltage to the output
voltage. (Hint: if you did Problems 9.22 and 9.23, this is trivial).

2. If

RHP = 10

RLP = 100

CHP = 10

CLP = 100

sketch the Bode plot for this transfer function.

3. How would you modify the circuit to make the band pass region either
narrower or wider? Do so and either sketch or use a computer package
to generate the Bode diagram.

4. How would you make the transitions in the band pass filter sharper,
i.e., steeper transitions? Do so and either sketch or use a computer
package to generate the Bode diagram.

+

−

Vin VoutRHP

CHP RLP

CLP

Figure 9.87. Band pass filter for Problem 9.24.

Problem 9.25 Consider

G(s) =
1

s (s+ 2) (s+ 4)
.

1. Sketch the root locus plot for this transfer function.

2. Determine the closed loop transfer function, i.e., Y (s)
R(s) if G(s) is in

the block diagram illustrated in Figure 9.88. Use the Routh array to
determine the values for k for which the closed loop transfer function
is stable.
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R(s) Y (s)
k G(s)

+
−

Figure 9.88. Closed-loop system for Problem 9.25.

3. Verify your computation from the previous step by using the root locus
plot to determine the values for k for which the closed loop transfer
function is stable.

4. Sketch the Bode diagram for gain values much smaller, equal to and
much larger than the gain values you determined in the previous steps
and determine the gain and phase margins in each case.

Problem 9.26 Sketch the root locus plot for

Y (s)

R(s)
=

kG(s)

1 + kG(s)

where

G(s) =
1

s2 + 4s+ 5
.

1. Indicate on your root locus plot the region on the complex plan where
the the maximum percent overshoot for the step response for a com-
plex conjugate pair of poles is less than 16%. Label any angles that
you use in this determination.

2. Compute and then indicate on the root locus plot the region on the
complex plan where the the rise time for the step response for a com-
plex conjugate pair of poles is less than .65 seconds. Use the approx-
imation

tr ≈
1.8

ωn
.

Label any angles or distances that you used in this determination.

3. Use the root locus plot to determine the approximate range of values
for the parameter k that satisfy both the rise time and overshoot
specifications.

Problem 9.27 Sketch the root locus plot for

Y (s)

R(s)
=

kG(s)

1 + kG(s)
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where

G(s) =
1

(s+ 3) (s2 + 4s+ 5)
.

Be sure to include the details of all your computations.

1. Use your sketch on the previous page to determine the approximate
value for k at which the root locus crosses the imaginary axis.

2. Use the Routh array to determine the exact value of k at which the
root locus crosses the imaginary axis.

Problem 9.28 Sketch the Bode plot for

G(s) =
20000

(s+ 10) (s+ 1000)
.

Problem 9.29 1. Sketch the root locus plot for

G(s) =
20

s2 + s+ 10
.

2. Consider the phase lead compensator of the form

C(s) =
s+ 10

s+ 20
.

Sketch the root locus plot for C(s)G(s) and explain why this phase
lead compensator increases the stability of the system under unity
feedback.

Problem 9.30 Use a partial fraction expansion to compute x(t) when

X(s) =
4

s2 + 2s+ 4

1

s
.

Use a partial fraction expansion to compute x(t) when

X(s) =
4

(s2 + 2s+ 4) (s+ 20)

1

s
.

Are the responses similar? Explain whether this was expected or unex-
pected.
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Chapter 10

Basic Filter Theory

This chapter considers the characteristics of several types of filters. They will
be employed in various manners as the basic building blocks in the subsequent
chapter on controller design. This chapter is particularly straightforward: ev-
erything is a simple application of circuit analysis and frequency response.

To motivate the utility of filters, consider the following example.

Example 10.0.1 A common problem in the control of large structures such
as aircraft and space vehicles is to control the rigid body mode of the struc-
ture while not exciting the elastic modes of the structure. As an example,
consider the coupled mass system in Figure 10.1. We want to control the
position of the center of mass of the system while affecting the relative posi-
tion of the two masses as little as possible. Mathematically, we want to use

f(t) to control m1x1(t)+m2x2(t)
m1+m2

and simultaneously we want x1(t)− x2(t) to
remain constant. The force d(t) is an external disturbance, which we will
initially consider to be zero.

One approach to this problem would be a multi-loop feedback method
where some balance is struck between controlling the rigid body mode of
the system and suppressing the flexible mode. In this example we will

m1 m2

b

k

x1 x2

f(t)

d(t)

Figure 10.1. Controlled coupled mass system with a rigid
body mode and a flexible mode.

397
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approach the problem simply as one of controlling x1 with feedback and
designing the control law to minimize the effect on x1(t)−x2(t) rather than
simultaneously controlling the two.

The equations of motion for the two masses are

m1ẍ1 = k (x2 − x1) + b (ẋ2 − ẋ1) + f(t)

m2ẍ2 = k (x1 − x2) + b (ẋ1 − ẋ2) .

Adding the two equations gives

m1ẍ1 +m2ẍ2 = f(t).

If we let xcom denote the center of mass, then

xcom(t) =
m1x1(t) +m2x2(t)

m1 +m2

and

(m1 +m2) ẍcom = f(t).

Subtracting the two equations gives

m1ẍ1 −m2ẍ2 = 2k (x2 − x1) + 2b (ẋ2 − ẋ1) + f(t).

So if we let

xflex =
x1

m2
− x2

m1

then
m1m2ẍflex =

10.1 Low and High Pass Filters

Consider the circuit illustrated in Figure 10.2. For reasons that will be addressed
subsequently, this is called a low pass filter. Kirchhoff’s voltage law around the
circuit gives

vin = vR + vC

= vr + vout,

where vR and vC are the voltage drops across the resistor and capacitor respec-
tively. Since

vR = iR

i = C
dvC
dt
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+

−

vin

R

C vout

i

Figure 10.2. Low pass filter circuit.

in the frequency domain we have

VR(s) = I(s)R

I(s) = CsVC(s)

= CsVout(s)

and substituting into the voltage equation gives

Vin(s) = (CRs+ 1)Vout(s).

So the transfer function is
Vout
Vin

=
1

CRs+ 1
.

Clearly, this circuit has a pole at s = − 1
CR

. The frequency, ω = 1
CR

is called the
cutoff frequency. For the case where C = R = 10, the Bode plot is illustrated in
Figure 10.3. Frequencies below ω ≈ 0.01 are passed through the filter without
any amplification or attenuation; in contrast, frequencies above ω ≈ 0.01, are
attenuated.

If the output voltage is measured across the resistor instead of the capacitor,
the circuit is a high pass filter, which is illustrated in Figure 10.4. An easy circuit
analysis gives the transfer function as

Vout
Vin

=
CRs

CRs+ 1

and the frequency response is illustrated in Figure 10.5. Frequencies above
ω ≈ 0.01 are passed through the filter without any amplification or attenuation;
in contrast, frequencies below ω ≈ 0.01, are attenuated.

10.2 Band Pass Filters

The band pass filter may be constructed by placing low and high pass filter in
series. If the cutoff frequency of If the cutoff of the low pass filter is higher
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Figure 10.3. Frequency response of a low pass filter with C =
10 and R = 10.

+

−

vin

C

R vout

i

Figure 10.4. High pass filter circuit.
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Figure 10.5. Frequency response of a high pass filter with C =
10 and R = 10.



402 CHAPTER 10. BASIC FILTER THEORY

+

−

vin

CH

RH CL

RL

vout

Figure 10.6. Band pass filter circuit.

than the high pass filter, a band pass filter results. The circuit in Figure 10.6
is simply a low and high pass filter placed in series, where RH , CH , RL and
CL indicate the resistors and capacitors corresponding to the high and low pass
filters, respectively. The transfer function is simply obtained by multiplying the
transfer functions for the low and high pass filters,

Vout
Vin

=
1

CLRLs+ 1

CHRHs

CHRHs+ 1
.

The frequency response for when R1 = 1 and C1 = 1 (cutoff for the low pass
filter ω = 1) and R2 = 10 and C2 = 10 (cutoff for the high pass is ω = 0.01)
is illustrated in Figure 10.7. Frequencies between the two cutoffs are passed
unattenuated whereas frequencies above the low pass filter cutoff and below the
high pass cutoff are attenuated.

10.3 Notch Filters

If placing low pass and high pass filters in series results in a band pass filter,
a reasonable guess to get a notch filter would be to place them in series with
their outputs added, as is illustrated in Figure 10.8, where RH , CH , RL and
CL indicate the resistors and capacitors corresponding to the high and low pass
filters, respectively.

It is left as an exercise to show that the transfer function for the notch filter
circuit in Figure 10.8 is given by

Vout
Vin

=
(CLRH + 1) (CHRL + 1)

CLCHRLRHs2 + (CHRL + CLRH + CLRL) s+ 1
.

The frequency response for the notch filter is illustrated in Figure 10.9 where
CL = 10, RL = 10, CH = 1 and RH = 1.

If the same filter is placed in series with itself, its general effect will be
multiplied. For example, for the notch filter, if two of them placed in series, as
is illustrated in Figure 10.10, and if CL = 10, RL = 10, CH = 1 and RH = 1, the
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Figure 10.7. Frequency response of a notch filter with C1 =
10, R1 = 10 and C2 = 1 and R2 = 1.

+

−

vin

CH

RH

CL

RL

vout

Figure 10.8. Notch filter circuit.



404 CHAPTER 10. BASIC FILTER THEORY

-16
-14
-12
-10
-8
-6
-4
-2
0

0.0001 0.001 0.01 0.1 1 10 100

|G
(i
ω
)| d

B

ω

-40

-20

0

20

40

0.0001 0.001 0.01 0.1 1 10 100

∠
G

(i
ω
)

ω

Figure 10.9. Frequency response of a notch filter with C1 =
10, R1 = 10 and C2 = 1 and R2 = 1.
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+

−

vin

CHCH

RHRH

CLCL

RLRL

vout

Figure 10.10. Notch filter circuit.

frequency response is illustrated in Figure 10.11. Note that when compared with
the frequency response in Figure 10.9, the depth of the notch in Figure 10.11 is
increased. The slope of the magnitude curves at the cutoff frequencies is also
increases (which may be hard to casually see since the scales on the graphs are
different).

10.4 Phase Lead and Lag Filters

10.5 Exercises

Problem 10.1 Show that the transfer function for the notch filter illus-
trated in Figure 10.8 is given by

Vout
Vin

=
(CLRH + 1) (CHRL + 1)

CLCHRLRHs2 + (CHRL + CLRH + CLRL) s+ 1
.

Problem 10.2 Place two band pass filters in series and plot the frequency
response. Describe the effect of placing the filters in series compared with
a single filter.
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Figure 10.11. Frequency response of two notch filters in series
with C1 = 10, R1 = 10 and C2 = 1 and R2 = 1.



Chapter 11

Basic Control Theory:
Design

11.1 Types of Feedback Compensation

Various configurations are possible for feedback compensation. This book will
particularly focus on compensation added in a feedback loop in the configura-
tions illustrated in Figure 11.1 which is commonly called cascade compensation.
In Figure 11.1, the block with Gp(s) represents the plant dynamics, the output
of which we desire to control. The block Gc(s) is the compensator block, which
must be designed based upon the performance specifications for the system.
The block with Gs(s) represents the sensor dynamics. In this text, this will
often be idealized as the identity; however, in most applications the dynamics
(or, at a minimum, the gain) of the sensors must be considered.

R(s) Y (s)
Gc(s) Gp(s)

Gs(s)

+

−

Figure 11.1. Cascade compensation configuration.
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Vin Vout

R1

R2

C

Figure 11.2. Lead compensator circuit.

11.2 Lead/Lag Compensation

Section 9.2 introduced the notion of PID control and presented the usual effects
of each type of feedback on a second order system (e.g., introducing or increasing
the gain for derivative control increases damping). While the mathematical
analysis is useful and the proper point to initially consider the tool, what was
completely missing was the means by which one could actually implement it in
a real engineering system.

Lead and lag filters are easy to implement with analog circuits and are
hence economical and effective means for control. As will be demonstrated
subsequently, a lead compensator is a means to approximate PD control and a
lag compensator is a means to approximate PI control. Combined, obviously,
results in an approximate manner to implement PID control.

11.2.1 Lead compensation

Consider the circuit illustrated in Figure 11.2. It is left as an exercise (Prob-
lem 11.1) to show that the transfer function for this circuit is

Vout
Vin

=

(

R2

R1 +R2

)

R1Cs+ 1
(

R2

R1+R2

)

R1Cs+ 1
.

Example 11.2.1 Consider a phase lead circuit where

R1 = 10

R2 = 0.1

C = 1.
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Figure 11.3. Pole and zero location for a lead compensator.

The pole and zero for this transfer function is illustrated in Figure 11.3.
Observe that, for these parameter values, the zero is very close to the imag-
inary axis and the pole is relatively far to the left. If a zero is located very
near the imaginary axis, the term in the transfer function is of the form

(s+ ǫ) ≈ s

if ǫ ≪ 1. Because differentiation in the frequency domain is given by mul-
tiplication by s, this term approximates differentiation. Since the pole is
relatively far to the left, we may treat its contribution as negligible. By
this interpretation, then, if a lead compensator is added in cascade form,
it acts much like term proportional to the derivative of the error, which, in
accordance with our intuition from Section 9.2 generally acts in a stabilizing
manner. While this example considered very specific parameter values, in
fact, it is left as an exercise to show that the pole is to the left of the for
all positive values for the circuit parameters and hence the interpretation
of the effect of the circuit is general.
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11.2.2 Lag compensation

11.3 Tracking and System Type

11.4 Disturbance Rejection

11.5 Multi-Loop Feedback

11.6 Exercises

Problem 11.1 Determine the transfer function from the input voltage to
the output voltage for the circuit illustrated in Figure 11.2. Show that for
this circuit the pole and zero are in the left half plane and that the pole is
always to the left of the zero.



Chapter 12

Partial Differential
Equations

This chapter considers techniques for solving partial differential equations. The
solution method that is considered in this book is the separation of variables
separation of variables method. Partial differential equations can be categorized
by type, similar to categorizing ordinary differential equations. However, in
contrast to ordinary differential equations, the categorization will not affect the
solution method, but rather be a reflection of the properties of the resulting
solution, which itself, is a result of the underlying physics.

The outline of this chapter is to first present three common engineering
problems that lead to different types of partial differential equations. As will
be apparent, there are some broad commonalities with respect to the solution
technique. An extension of the theory developed by the engineering problems
will be investigated later in the chapter in section 12.7.

12.1 The Wave Equation

The so-called wave equation describes many different physical wave-like phenom-
ena. It will be motivated and initially solved using the example of a vibrating
string.

12.1.1 Derivation of the Wave Equation

Consider the elastic string illustrated in Figure 12.1. Let x describe the location
along a straight line between the end points and u denote the displacement of
the string. Let the length between the end points be L. The function u will
be a function of the position along the string, x as well as time, i.e., u(x, t).
Solving the wave equation will amount to determining the function, u(x, t) that
gives the displacement of the string at time t and location x. Let the tension
in the string be denoted by τ and the mass per unit length be denoted by ρ.

411
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x

u(x, t) u(x, t)

x = L

Figure 12.1. Vibrating string.

The string is assumed to elastic, which means it may have an internal tension,
τ , but it requires no moment to bend it.

The derivation of the wave equation is simply using Newton’s law on a
infinitesimal segment of the string. Consider the small section illustrated in
Figure 12.2. Newton’s law on the element in the vertical direction gives

ρ∆x
∂2u

(

x+ ∆x
2 , t

)

∂t2
= τ (x+ ∆x, t) sin (θ (x+ ∆x, t)) − τ (x, t) sin (θ (x, t)) .

(12.1)
Expanding each of the terms in a Taylor series individually gives

∂2u
(

x+ ∆x
2 , t

)

∂t2
=

∂2u (x, t)

∂t2
+
∂3u (x, t)

∂2t∂x

∆x

2
+ · · ·

τ(x + ∆x, t) = τ(x, t) +
∂τ(x, t)

∂x
∆x+ · · ·

sin (θ(x+ ∆x, t)) = sin (θ(x, t)) +
d sin(θ)

dθ

∂θ(x, t)

∂x
∆x

= sin (θ(x, t)) + cos (θ(x, t))
∂θ(x, t)

∂x
∆x

Substituting into equation 12.1 and keeping terms only up to ∆x, i.e., assuming
∆x≪ 1 gives

ρ∆x =
∂2u(x, t)

∂t2
= τ(x, t) cos (θ(x, t))

∂θ(x, t)

∂x
∆x+ sin (θ(x, t))

∂τ(x, t)

∂x
∆x,

or

ρ
∂2u(x, t)

∂t2
= τ(x, t) cos (θ(x, t))

∂θ(x, t)

∂x
+ sin (θ(x, t))

∂τ(x, t)

∂x
. (12.2)

To proceed any further, we need some assumptions. Assume that the string
only undergoes small displacements, i.e., u(x, t) ≪ 1 and furthermore that the
slope of the string is small, i.e., ∂u

∂x
≪ 1. This would imply immediately that

sin (θ(x, t)) ≈ θ(x, t)

cos (θ(x, t)) ≈ 1.
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x x+ ∆x

θ(x, t) θ(x + ∆x, t)

τ(x, t)

τ(x + ∆x, t)

Figure 12.2. Infinitesimal element of the string.

Also, express the tension in the string as

τ(x, t) = τ + τ̂(x, t)

where τ is a constant and is the tension in the string when it is still (u(x, t) = 0).

For small motions, it will be the case that τ̂ (x, t) ≪ 1 and ∂τ(x,t)
∂x

≪ 1.
Since both terms in the second term of the sum on the right hand side of

equation 12.2 are small, then

ρ
∂2u(x, t)

∂t2
= τ

∂θ(x, t)

∂x
. (12.3)

Finally, for small u(x, t) and small θ(x, t),

θ(x, t) ≈ tan (θ(x, t)) =
∂u(x, t)

∂x

so
ρ

τ

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
. (12.4)

12.1.2 Boundary Conditions

In general, the wave equation is of the form

∂2u

∂t2
= α2 ∂

2u

∂x2
.

Analogous to ordinary differential equation, in order to solve this equation con-
ditions on u(x, t) at the initial time for the problem, usually t = 0 as well as
conditions on u(x, t) on the physical boundaries of the problem must be speci-
fied. The latter are normally called boundary conditions and play a fundamental
role in the solution of the problem.

To proceed, assume the simplest case: the ends of the string are fixed, i.e.,

u(0, t) = u(L, t) = 0.
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Also, assume that the initial shape and velocity of the string is known, i.e.,

u(x, 0) = f(x)

du

dt

∣

∣

∣

∣

(x,0)

= g(x),

so the function f(x) is the initial shape profile of the string and g(x) is the
initial velocity profile.

12.1.3 Separation of Variables

The basic idea behind the method of separation of variables is that the solution
to the wave equation can be expressed in the form

u(x, t) = X(x)T (t),

i.e., the solution is the product of two functions where one of the functions
only depends on the spatial variable, x and the other function only depends
on the temporal variable, t. Subsequently in section 12.7 it will be shown that
this assumption is not some sort of wild guess, but rather is theoretically well-
grounded. Regardless, at this point there is no harm in assuming it is true,
substituting it into the differential equation and see what pops out. Note that
due to the assumed form of u(x, t)

∂2u

∂t2
= X(x)

d2T (t)

dt2
= X(x)T ′′(t)

∂2u

∂x2
=

d2X(x)

dx2
T (t) = X ′′(x)T (t).

So, substituting into the wave equation gives

X(x)T ′′ = α2X ′′(x)T (t).

or
X ′′(x)

X(x)
=

1

α2

T ′′(t)

T (t)
. (12.5)

The critical feature of equation 12.5 is that the left hand side depends only upon
x, the right hand side depends only upon t and they are equal. The only way
a non-trivial function of x can equal a non-trivial function of t for arbitrary x
and t is for both sides to be equal to a constant. Note, this does not mean X(x)

is a constant and T (t) is a constant; rather, the ratios X′′(x)
X(x) and T ′′(t)

T (t) must be

constant. That constant is denoted by −λ, and is called an eigenvalue. Thus

X ′′(x)

X(x)
=

1

α2

T ′′(t)

T (t)
= −λ
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which are actually two equations

d2X(x)

dx2
+ λX(x) = 0

d2T (t)

dt2
+ α2λT (t) = 0.

The general solutions to these two equations are obvious from inspection
(hopefully):

X(x) = c1 sin
√
λx+ c2 cos

√
λx (12.6)

T (t) = c3 sinα
√
λt+ c4 cosα

√
λt. (12.7)

This solution assumes that λ > 0. It is left as an exercise to show that if λ ≤ 0
the boundary conditions can not be satisfied.

Now consider the boundary conditions

u(0, t) = u(L, t) = 0.

Substituting u(x, t) = X(x)T (t) gives

X(0)T (t) = X(L)T (t) = 0

which gives

X(0) = 0

X(L) = 0.

To satisfy the first boundary condition, c2 = 0 in equation 12.6. To satisfy the
second, either

c1 = 0

or

λ =
(nπ

L

)2

, n = 1, 2, . . . .

Note that c1 = 0 leads to the trivial solution (u(x, t) = 0) which will not be
able to satisfy the initial shape and velocity profiles. Note also that there are
an infinite number of solutions, one for each n = 1, 2, . . ..

Hence, proceed with the assumption for λ = n2π2

L2 . Substituting into u(x, t) =
X(x)T (t) gives

un(x, t) = c1 sin
nπx

L

(

c3,n sin
αnπt

L
+ c4,n cos

αnπt

L

)

n = 1, 2, . . .

or

un(x, t) = sin
nπx

L

(

an sin
αnπt

L
+ bn cos

αnπt

L

)

, n = 1, 2, . . . (12.8)

where the constant were combined into an and bn.
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Observe the following very important point. Any of the un(x, t) satisfies
the wave equation as well as the two boundary conditions, as do any linear
combination of the un(x, t).

The last task is to satisfy the initial conditions, which were

u(x, 0) = f(x)

du

dt

∣

∣

∣

∣

(x,0)

= g(x).

This may seem like an impossible task at first, but perhaps the availability of
an infinite number of solutions will be of some help. In fact, let us just go for it
and try to combine all the infinite number of solutions together in the form

u(x, t) =

∞
∑

n=1

sin
nπx

L

(

an sin
αnπt

L
+ bn cos

αnπt

L

)

. (12.9)

Note that in this form, the initial conditions are

u(x, 0) =

∞
∑

n=1

bn sin
nπx

L
= f(x) (12.10)

u′(x, 0) =

∞
∑

n=1

an
αnπ

L
sin

nπx

L
= g(x). (12.11)

Finally, the last bit of trickery is to multiply each side of equation 12.10 by
sin mπx

L
and integrate from 0 to L

∫ L

0

sin
mπx

L

( ∞
∑

n=1

bn sin
nπx

L

)

dx =

∫ L

0

sin
mπx

L
f(x)dx (12.12)

and note that every single term on the left hand side of the equation is zero
except for m = n, which nicely kills off all but one of the infinite number of
terms in the series.1 Hence

bn

∫ L

0

(

sin
nπx

L

)2

dx =

∫ L

0

sin
nπx

L
f(x)dx,

or

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx. (12.13)

Using these values for bn, equation 12.10 is called the Fourier sine series for
f(x). The following example illustrates the computations involved in computing
the Fourier sine series as well as gives an indication of the convergence properties
of such a series.

1The detailed computation for this is in Appendix C.1.
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Example 12.1.1 Let L = 3 and

f(x) =

{

x x < 1
3−x

2 1 ≤ x ≤ 3
. (12.14)

Computing the Fourier coefficients,

bn =
2

3

∫ 3

0

f(x) sin
nπx

3
dx

=
2

3

[∫ 1

0

x sin
nπx

3
dx+

∫ 3

1

3 − x

2
sin

nπx

3

]

=
2

3

[

− 3x

nπ
cos

nπx

3

∣

∣

∣

∣

1

0

+

∫ 1

0

3

nπ
cos

nπx

3
dx+

3

2

∫ 3

1

sin
nπx

3
dx+

3x

2nπ
cos

nπx

3

∣

∣

∣

∣

3

1

− 1

2

∫ 3

1

3

nπ
cos

nπx

3
dx

]

=
2

3

[

− 3x

nπ
cos

nπx

3

∣

∣

∣

∣

1

0

+
9

n2π2
sin

nπx

3

∣

∣

∣

∣

1

0

− 9

2nπ
cos

nπx

3

∣

∣

∣

∣

3

1

+

3x

2nπ
cos

nπx

3

∣

∣

∣

∣

3

1

− 9

2n2π2
sin

nπx

3

∣

∣

∣

∣

3

1

]

=
2

3

[

− 3

nπ
cos

nπ

3
+

9

n2π2
sin

nπ

3
− 9

2nπ

(

cosnπ − cos
nπ

3

)

+

(

9

2nπ
cosnπ − 3

2nπ
cos

nπ

3

)

+
9

2n2π2
sin

nπ

3

]

=
9

n2π2
sin

nπ

3
.

Figure 12.3 is a plot of the first four terms in the Fourier series; namely,

f1(x) =
9

12π2
sin

1π

3
sin

1πx

3
=

9
√

3

2π2
sin

πx

3

f2(x) =
9

22π2
sin

2π

3
sin

2πx

3
=

9
√

3

8π2
sin

2πx

3

f3(x) =
9

32π2
sin

3π

3
sin

3πx

3
= 0

f4(x) =
9

42π2
sin

4π

3
sin

4πx

3
= − 9

√
3

32π2
sin

4πx

3

Figure 12.4 illustrates the sum of the first three, 10 and 20 components.
Note that the curve converges to f(x) as the number of components in-
creases.

Now return to the solution for the vibrating string in equation 12.9. The
bn coefficients have already been determined by equation 12.13 and the an co-
efficients are computed similarly, i.e., multiply each side of equation 12.11 by
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Figure 12.3. First four Fourier sine components of equa-
tion 12.14.

sin mπx
L

and integrate from 0 to L which gives

an =
2

αnπ

∫ L

0

g(x) sin
nπx

L
dx. (12.15)

Summary of the solution to the vibrating string problem

For small displacements u(x, t), the vibration of a string of length L fixed at
each end point is given by

∂2u

∂t2
= α2 ∂

2u

∂x2

with

u(0, t) = 0

u(L, t) = 0

as boundary conditions and

u(x, 0) = f(x)

du

dt

∣

∣

∣

∣

(x,0)

= g(x),
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Figure 12.4. Truncated Fourier sine series converging to f(x)
from equation 12.14.

as initial conditions, where f(x) and g(x) are the initial shape of the string and
initial velocity profile, respectively.

From the preceding analysis, the solution for the vibrating string problem is

u(x, t) =

∞
∑

n=1

[

sin
nπx

L

(

an sin
αnπt

L
+ bn cos

αnπt

L

)]

where

α =

√

T

ρ

an =
2

αnπ

∫ L

0

g(x) sin
nπx

L
dx

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.

Example 12.1.2 Solve

∂2u

∂t2
= α2 ∂

2u

∂x2
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Figure 12.5. Response of a plucked string from exam-
ple 12.1.2.

where L = 3 and α = 2 subjected to the boundary conditions

u(0, t) = 0

u(L, t) = 0

and initial conditions

u(x, 0) =

{

x x < 1
3−x

2 1 ≤ x ≤ 3

u′(x, 0) = 0.

This represents a string plucked 1
3 of the way along its length with zero

initial velocity.
All the computations for this problem have already been carried out.

Substituting for bn from example 12.1.1 and an = 0 (since the initial velocity
is zero) into equation 12.9 gives

u(x, t) =

∞
∑

n=1

bn sin
nπx

3
cos

2nπt

3
=

∞
∑

n=1

(

9

n2π2
sin

nπ

3

)

sin
nπx

3
cos

2nπt

3
.



12.1. THE WAVE EQUATION 421

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10  12

frequency (Hz)

∣ ∣

9
n

2
π

2
si

n
n
∗π 3

∣ ∣

Figure 12.6. Spectrum for plucked string in example 12.1.2.

A plot of the motion of the string for various t values including the
first 20 terms in the Fourier series is illustrated in Figure 12.5. A plot of
the magnitude of the coefficient, bn versus frequency, αnπ

L
is illustrated in

Figure 12.6. This is called the spectrum of the response and is an illustration
of the contribution of each mode to the overall response of the system.

Example 12.1.3 Consider the same string as in example 12.1.2 but in-
stead of having the string plucked, like a guitar or banjo, consider it being
impacted by a small hammer over a small segment of its length, like a piano.
Thus, solve

∂2u

∂t2
= α2 ∂

2u

∂x2

where L = 3 and α = 2 subjected to the boundary conditions

u(0, t) = 0

u(L, t) = 0

and initial conditions

u(x, 0) = 0

u′(x, 0) =







0 0 < x ≤ 3
4

1 3
4 < x ≤ 1

0 1 < x ≤ 3
.
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Figure 12.7. Spectrum for impacted string in example 12.1.3.

Substituting into equation 12.15

an =
1

nπ

∫ 3

0

g(x) sin
nπx

3
dx

=
1

nπ

∫ 1

3
4

sin
nπx

3
dx

= − 3

n2π2
cos

nπx

3

∣

∣

∣

∣

1

3
4

=
3

n2π2

(

cos
nπ

4
− cos

nπ

3

)

.

Hence,

u(x, t) =

∞
∑

n=1

3

n2π2

(

cos
nπ

4
− cos

nπ

3

)

sin
nπx

3
sin

2nπt

3

A plot of the magnitude of the coefficient, bn versus frequency, αnπ
L

is
illustrated in Figure 12.7. This is called the spectrum of the response and
is an illustration of the contribution of each mode to the overall response
of the system. Note that the relative contributions of the harmonics in this
example are different than from the plucked example (example 12.1.2). This
explains why a plucked and struck sting (say on a guitar) do not sound the
same, even if they are the same note.
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12.1.4 The Wave Equation with Dispersion

12.2 Fourier Series

Motivated by our apparent ability to use an infinite series of sine and cosine
functions to match any initial conditions for the wave equation defined on the
length of the string (equations 12.13 and 12.15), we will now consider the general
problem of representing an arbitrary periodic function as a trigonometric series.

Motivated by the form of the solution to the wave equation, consider the
series

f(x) =
∞
∑

n=0

[

an sin
nπx

L
+ bn cos

nπx

L

]

. (12.16)

The question to consider is under what conditions will we be able to compute
the infinite number of coefficients an and bn so that this series converges to a
specified function? There are a variety of reasons to pursue this, not the least
of which are

• we may be forced to represent a function in this manner, as was the case
for satisfying the initial conditions for the wave equation; and,

• even though it is an infinite series, sine and cosine functions are generally
pretty easy to deal with, so, in the right context, it may be worth the
effort to represent some given function as a trigonometric series of this
nature because it may save us work elsewhere.

An example of the second case is considered in Section 12.2.6.

12.2.1 Periodic functions

As an initial observation, it is worth noting that because of the periodic nature
of the trigonometric functions, it will probably not be possible to represent any
function by a series of the form of equation 12.16. In particular, observe that

f(x+ 2L) =

∞
∑

n=0

[

an sin
nπ (x+ 2L)

L
+ bn cos

nπ (x+ 2L)

L

]

=

∞
∑

n=0

[

an sin
(nπx

L
+ 2nπ

)

+ bn cos
(nπx

L
+ 2nπ

)]

=
∞
∑

n=0

(

an sin
nπx

L
+ bn cos

nπx

L

)

= f(x).
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Of course, mathematically what this represents is that the series repeats itself
over every interval of 2L. Observe that similarly

f(x) = f(x+ 2L)

= f(x+ 4L)

= f(x+ 6L)

...

= f(x+ 2mL)

where m is a natural number (positive integer). Motivated by this we define a
periodic function as follows.

Definition 12.2.1 A function f(x) is periodic with period T if T is the smallest
number such that f(x) = f(x+ T ). ⋄

Having defined a periodic function and observed that the series we are con-
sidering is periodic with period 2L, it is obvious to conclude that the class of
functions for which the series will converge must be periodic. In the case of the
wave equation and other partial differential equations that will be considered
subsequently, the initial shape of the string was not periodic; however, we were
only interested in its shape over the length of the string. If we had plotted the
Fourier series for the initial condition outside the domain of x = 0 to x = L we
would have observed that, in fact, the function was periodic, but we were only
interested in it over the length of one half of its period.

If we wish to consider the properties of the series for general periodic func-
tions, since the length L was one half of the period, we could substitute L = T

2
in the sine and cosine functions in the series to put it in the form

f(x) =

∞
∑

n=0

[

an sin
2nπx

T
+ bn cos

2nπx

T

]

(12.17)

that is in terms of the period, T rather than the length L.

12.2.2 Inner products

Not surprisingly, the “trick” (equation 12.12) that allowed us to compute the
infinite number of coefficients in the Fourier series will be used in a similar
manner here. However, instead of simply considering it to be a trick, whose
only redeeming feature is one of mathematical manipulation, we will investigate
things a bit further to see that, in fact, this “trick” is nothing more than using
the usual dot product to project one vector onto another. In the rest of this sec-
tion we will consider the generic properties of the dot product and its geometric
interpretation which includes the important concept of orthogonality.
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The dot product

Recall from vector algebra that the dot product between two vectors is defined
as

x · y =















x1

x2

x3

...
xn















·















y1
y2
y3
...
yn















= x1y1 + x2y2 + · · · + xnyn =
n
∑

i−1

xiyi.

So, in words, the dot product is simply the sum of the product of all of the
corresponding components of the vectors x and y.

To generalize this idea to functions, first note that, loosely speaking, one
may think of a function as a vector by “sampling” its values at various points
(perhaps an infinite number of points) along its domain, i.e.,

f(x) =











f(x0)
f(x1)
f(x2)

...











.

Now, considering the dot product between two functions f(x) and g(x) over
an interval of −L < x < L and taking the values of each at e we may write















f(−L)
f(−L+ dx)
f(−L+ 2dx)

...
f(L)















·















g(−L)
g(−L+ dx)
g(−L+ 2dx)

...
g(L)















=

2L
dx
∑

n=0

f(−L+ ndx)g(−L+ ndx).

Now clearly our goal is going to be to take the limit as dx → 0; however in
this limit this sum will typically not converge for nonzero f(x) and g(x) since
it will be the infinite sum of finite values. However, if we modify it slightly by
multiplying the product of f and g by dx, and taking the limit as dx → 0 we
have

lim
dx→0

2L
dx
∑

n=0

f(−L+ ndx)g(−L+ ndx)dx =

∫ L

−L
f(x)g(x)dx.

Motivated by this we define the inner product between two periodic functions
with period 2L.

Definition 12.2.2 Let f(x) and g(x) be periodic functions with period 2L.
The inner product of f and g, denote by 〈f, g〉 is

〈f, g〉 =

∫ L

−L
f(x)g(x)dx.

⋄
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With this definition, it is clear that all the usual properties of the dot product
generalize to this inner product. In particular

1. 〈f1 + f2, g〉 = 〈f1, g〉 + 〈f2, g〉;

2. 〈αf, g〉 = α〈f, g〉;

3. 〈f, g〉 = 〈g, f〉 (for real f and g); and,

4. 〈f, f〉 6= 0 unless f = 0.

In addition to the usual properties of a dot product holding for the general-
ization of the inner product to functions, the main intuitive idea also holds: the
inner product gives a measure of the degree of “alignment” the functions.

Example 12.2.3 Consider the three functions

f1(x) = sinx

f2(x) = sin 2x

f3(x) =







x 0 ≤ x ≤ π
2

π − x π
2 < x ≤ 3π

2
x− 2π 3π

2 < x ≤ 2π

These three functions are plotted in Figure 12.8. Observe that f1(x) and
f3(s) are well-aligned over the interval; whereas, f2(x) is not aligned with
f1(x) or f3(x). In fact, careful inspection of Figure 12.8 will make it clear
that for every value for x where f2(x) and the other two functions have a the
same sign, there is a point where they have the same absolute values, but
opposite signs. Thus, if the interpretation of the inner product is that it is a
measure of alignment of the functions, we would expect that 〈f1(x), f3(x)〉
would be positive and that both 〈f2(x), f1(x)〉 and 〈f2(x), f3(x)〉 would be
zero.

Computing the three inner products on the interval [0, 2π] gives

〈f1(x), f2(x)〉 =

∫ 2π

0

(sinx) (sin 2x) dx

= 0

by Proposition C.1.1. Computing

〈f1(x), f3(x)〉 =

∫ 2π

0

(sinx) f3(x)dx

=

∫ π
2

0

x sinxdx+

∫ 3π
2

π
2

(π − x) (sinx) dx+

∫ 2π

3π
2

(x− 2π) (sinx) dx

= 4,
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Figure 12.8. Three functions from Example 12.2.3.
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which makes sense that it is nonzero since, by Figure 12.8, the functions are
somewhat aligned. Also,

〈f2(x), f3(x)〉 =

∫ 2π

0

f3(x) sin 2xdx

=

∫ π
2

0

x sin 2xdx+

∫ 3π
2

π
2

(π − x) (sin 2x) dx +

∫ 2π

3π
2

(x− 2π) (sin 2x) dx

= 0.

12.2.3 Orthogonality

Recall from vector algebra that two vectors are orthogonal if their dot product
is zero. In Euclidean space this corresponds to the angle between the vectors
being 90◦. Given two vectors with varying orientation, the dot product will be
maximum when they are perfectly aligned (colinear and pointing in the same
direction) and zero when they are perfectly “unaligned,” i.e., orthogonal. Using
a similar notion, we will define two functions to be orthogonal when their inner
product is zero, i.e., the functions f and g are orthogonal if 〈f, g〉 = 0.

For the present case, the most important class of functions that are orthog-
onal are trigonometric and have already been used. In particular

〈sin nπx
L

, sin
nπx

L
〉 =

∫ L

−L
sin

nπx

L
sin

mπx

L
dx =

{

0 m 6= n
L m = n

〈cos
nπx

L
, cos

nπx

L
〉 =

∫ L

−L
cos

nπx

L
cos

mπx

L
dx =

{

0 m 6= n
L m = n

〈sin nπx
L

, cos
nπx

L
〉 =

∫ L

−L
sin

nπx

L
cos

mπx

L
dx = 0 ∀m,n.

While a full investigation is beyond the scope of this text, it is worth noting
that there are other sets of orthogonal functions as well, including Legendre
polynomials, Hermite polynomials, Chebyshev polynomials and Bessell func-
tions.

12.2.4 The general Fourier series

Given a function, f(x), with period T = 2L, we now have all the tools to be
able to express it as a Fourier series of the forjm

f(x) =
∞
∑

n=0

an sin
nπx

L
+ bn cos

nπx

L
.
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To find the coefficients, multiply by sin mπx
L

for the an and multiply by cos mπx
L

for the bn and integrate from −L to L with respect to x. Due to the orthogonality
of the sine and cosine functions, all the terms in the series will vanish except
for one of them, which will allow us to solve for the coefficient. In particular,

∫ L

−L
sin

mπx

L

( ∞
∑

n=0

an sin
nπx

L
+ bn cos

nπx

L

)

dx =

∫

−L
Lf(x) sin

mπx

L
dx,

which gives

Lam =

∫ L

−L
f(x) sin

mπx

L
dx

or

am =
1

L

∫ L

−L
f(x) sin

mπx

L
dx.

Similarly,

bm =
1

L

∫ L

−L
f(x) cos

mπx

L
dx.

Note that since sin 0 = 0, a0 will always be equal to zero (which is why all the
Fourier series for the wave equation started at n = 1). However, the same is
not true for b0, which will have to be evaluated for each series. In particular,

∫ L

−L
cos

0πx

L

( ∞
∑

n=0

an sin
nπx

L
+ bn cos

nπx

L

)

dx =

∫ L

−L
b0dx

= 2Lb0

=

∫ L

−L
f(x)dx,

which gives

b0 =
1

2L

∫ L

−L
f(x)dx.

Note that this is “off” by a factor of two compared to all the other coefficients.
Hence, it is conventional to write

f(x) =
b0
2

+

∞
∑

n=1

an sin
nπx

L
+ bn cos

nπx

L
(12.18)

where

an =
1

L

∫ L

−L
f(x) sin

nπx

L
dx, n = 1, 2, 3, . . . (12.19)

and

bn =
1

L

∫ L

−L
f(x) cos

nπx

L
dx, n = 0, 1, 2, 3, . . . (12.20)

which allows us to use the same forumula for b0 as the rest of the cosine coeffi-
cients.
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Figure 12.9. Square wave function for Example 12.2.5.

Remark 12.2.4 Since all the functions involved are periodic, the integrals in
Equations 12.19 and 12.20 may have any limits as long as the difference between
the upper and lower limit is T = 2L. ⋄

12.2.5 Examples of Fourier series

A few examples will be helpful at this point.

Example 12.2.5 Determine the Fourier series representation for the square
wave function, given by

f(x) =

{

1 0 < x ≤ 1
−1 1 < x ≤ 2

for x ∈ (0, 2] and by f(x+2) = f(x) for other x 6∈ (0, 2] , which is illustrated
in Figure 12.9.
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Computing the Fourier coefficients,

an =

∫ 2

0

f(x) sin
2nπx

2
dx

=

∫ 1

0

(1) sin (nπx) dx+

∫ 2

1

(−1) sin (nπx) dx

=
1

nπ

[

− cos (nπx)|10 − − cos (nπx)|21
]

=
1

nπ
[− cos (nπ) + 1 + cos (2nπ) − cos (nπ)]

=
2

nπ
[1 − cos (nπ)] .

and

bn =

∫ 2

0

f(x) cos
2nπx

2
dx

=

∫ 1

0

(1) cos (nπx) dx+

∫ 2

1

(−1) cos (nπx) dx

=
1

nπ

[

sin (nπx)|10 − sin (nπx)|21
]

= 0.

Also,

b0 =

∫ 2

0

f(x)dx

=

∫ 1

0

1dx−
∫ 2

1

dx

= x|10 − x|21
= 0.

Hence,

f(x) =

∞
∑

n=1

2

nπ
(1 − cos (nπ)) sin (nπx) .

Plots comparing the exact square wave to the first five, 10 and 50 terms,
respectively, are illustrated in Figures 12.10 through 12.12.

Example 12.2.6 Determine the Fourier series representation for the saw-
tooth wave function given by

f(x) =
x

2

for x ∈ (0, 2] and f(x + 2) = f(x). This function is illustrated in Fig-
ure 12.13.
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Figure 12.10. The first five terms in the Fourier series for the
square wave in Example 12.2.5.

Computing the Fourier coefficients and noting that T = 2 so L = 1

an =
1

1

∫ 2

0

f(x) sin
nπx

1
dx

=

∫ 2

0

x

2
sin (nπx) dx

= −cos 2nπ

nπ

and

bn =
1

1

∫ 2

0

f(x) cos
nπx

1
dx

= 0

for n 6= 0. For n = 0,

b0 =
1

1

∫ 2

0

x

2
dx

= 1.

Hence

f(x) =
1

2
+

∞
∑

n=1

−cos (2nπ)

nπ
sin (nπx) .
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Figure 12.11. The first 10 terms in the Fourier series for the
square wave in Example 12.2.5.

A plot of the first five and 10 terms of the series is illustrated in Figure 12.14.

Example 12.2.7 Compute the Fourier series for the function

f(x) =

{

x, 0 < x ≤ 1
1, 1 < x ≤ 2

where f(x+ 2) = f(x).

The function is periodic with period T = 2; hence, L = 1. The coeffi-
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Figure 12.12. The first 50 terms in the Fourier series for the
square wave in Example 12.2.5.

cients are given by

an =
1

1

∫ 1

−1

f(x) sin
nπx

1
dx

=

∫ 0

−1

1 sin (nπx) dx+

∫ 1

0

x sin (nπx) dx

= − 1

nπ
cos (nπx)

∣

∣

∣

∣

0

−1

−
(

1

nπ
x cos (nπx)

)∣

∣

∣

∣

1

0

+
1

nπ

∫ 1

0

cos (nπx) dx

= − 1

nπ
cos (nπx)

∣

∣

∣

∣

0

−1

−
(

1

nπ
x cos (nπx)

)∣

∣

∣

∣

1

0

+
1

n2π2
sin (nπx)

∣

∣

∣

∣

1

0

= − 1

nπ
(1 − cos (−nπ)) − 1

nπ
(cos (nπ) − 0) +

1

n2π2
(0 − 0)

= − 1

nπ



12.2. FOURIER SERIES 435

-0.5

0

0.5

1

1.5

-4 -2 0 2 4

f
(x

)

x

Figure 12.13. Sawtooth wave for Example 12.2.6.
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Figure 12.14. First five and 10 terms in the Fourier series for
the sawtooth function in Example 12.2.6.
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and

bn =
1

1

∫ 1

−1

f(x) cos
nπx

1
dx

=

∫ 0

−1

1 cos (nπx) dx+

∫ 1

0

x cos (nπx) dx

=
1

nπ
sin (nπx)

∣

∣

∣

∣

0

−1

+
1

nπ
x sin (nπx)

∣

∣

∣

∣

1

0

− 1

nπ

∫ 1

0

sin (nπx) dx

=
1

nπ
sin (nπx)

∣

∣

∣

∣

0

−1

+
1

nπ
x sin (nπx)

∣

∣

∣

∣

1

0

+
1

n2π2
cos (nπx)

∣

∣

∣

∣

1

0

=
1

n2π2
(cos (nπ) − 1) .

The b0 coefficient must be computed separately,

b0 =

∫ 0

−1

(1) (1) dx+

∫ 1

0

xdx

= x|0−1 +
1

2
x2

∣

∣

∣

∣

1

0

= 0 − (−1) +
1

2

=
3

2
.

Hence,

f(x) =
3

4
+

∞
∑

n=1

(

− 1

nπ
sin (nπx) +

cos (nπ) − 1

n2π2
cos (nπx)

)

.

A plot of f(x) as well as partial sums of the series including the first 10 and
20 terms of the series is illustrated in Figure 12.15.

12.2.6 Forced oscillations with discontinuous forcing func-
tions

12.3 The Heat Equation

12.3.1 Derivation and interpretation

Hence, the one dimensional heat conduction equation is give by

α2 ∂
2u

∂x2
=
∂u

∂t
.
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Figure 12.15. Fourier series for Example 12.2.7.
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Figure 12.16. Head condution with zero and nonzero temper-
ature curvature.

The mathematical interpreation of the heat equation is that the temperature
at a given point, x will change if the curvature of the temperature profile is
nonzero. Figure 12.16 contains two temperature profiles. In the one with no
curvature, the rate of heat condution along the entire bar will be constant. In
the case where the temperature profile has a nonzero, there will be a higher
rate of heat conduction where the gradient is steep and a lower rate where
it is less steep. Thus, for the curved temperature profile, there will be more
heat condution from the left to the center than there will be from the center
to the right boundary, the consequence of which will be that the temperature
in the center of the bar will increase. In fact, as will be shown subsequently,
the steady-state solution is the solution with no curvature, i.e., a straight line.
Hence, the curved solution will approach the straight solution as t→ ∞.

12.3.2 Solution to the heat equation with homogeneous
boundary conditions

The usual approach to solve the heat equation is to solve it with homogeneous
boundary conditions and then solve it with nonhomogeneous boundary condi-



440 CHAPTER 12. PARTIAL DIFFERENTIAL EQUATIONS

tions. Homogeneous boundary conditions are where boundary conditions are

u(0, t) = u(L, t) = 0,

i.e., the temperature at both ends is zero. This is not a very realistic situation,
but we will use the solution for the homogeneous boundary conditions as part
of the solution to the more realistic nonhomogeous case.

The complete problem statement includes the differential equation, the bound-
ary conditions as well as an initial temperature profile:

α2 ∂
2u

∂x2
=

∂u

∂t
u(0, t) = 0

u(L, t) = 0

u(x, 0) = f(x).

The approach is exactly the same as for the wave equation. Assuming

u(x, t) = X(x)T (t)

and substituting into Equation 12.3.1 gives

α2X ′′(x)T (t) = X(x)T ′(t).

As before, this is separable, so

X ′′(x)

X(x)
=

1

α2

T ′(t)

T (t)
,

and since the left hand side is a function only of x and the right hand side is
only a function of t, and x and t are independent, then each side must be equal
to a constant. Hence,

X ′′(x)

X(x)
=

1

α2

T ′(t)

T (t)
= −λ

or

X ′′(x) + λX(x) = 0

T ′(t) + α2λT (t) = 0.

This is similar to the wave equation except that the equation for T (t) is a first
order equation instead of second order. This should make sense since we would
not expect that the temperature profile in a bar would exhibit solutions that
are oscillatory, which may the case for a second order equation.

We will proceed as before by applying the boundary conditions to determine
λ, which will give an infinit number of solutions for X(x). We may then use the
infinite number of solutions to satisfy the initial temperature profile by using a
Fourier series. In fact, the homogeneous boundary conditions give rise to exactly
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ths same case as for the wave equation. In particular, the general solution for
X(x) is

X(x) = c1 sin
√
λx + c2 cos

√
λx

and the boundary conditions require

u(0, t) = 0 =⇒ X(0) = 0

=⇒ c2 = 0,

and

u(L, t) = 0 =⇒ X(L) = 0

=⇒ λ =
n2π2

L2
, n = 1, 2, 3, . . . .

So, we have

X(x) =

∞
∑

n=1

cn sin
nπx

L
.

Since the general solution for T (t) is then

T (t) = e−α
2λt

= e−
α2n2π2t

L2

the general solution to Equation 12.3.1 is

u(x, t) =

∞
∑

n=1

cn sin
nπx

L
e−(αnπ

L )
2
t. (12.21)

Given some initial temperature profile, at t = 0 the exponential term is one and
the initial profile may be satisfied by a Fourier series, i.e.,

u(x, 0) =

∞
∑

n=1

cn sin
nπx

L
e
−

“

α2nπ
L

”2
0

=
∑

n=1

∞cn sin
nπx

L

= f(x).

The coefficients are determined by expoiting orthogonality as before. In par-
ticular, multiplying by sin mπx

L
and integrating from 0 to L with respect to x

gives
∫ L

0

sin
mπx

L

∑

n=1

∞cn sin
nπx

L
dx =

∫ L

0

sin
mπx

L
f(x)dx.

Since the sine functions are orthogonal except for the case where n = m, the
infinite series reduces to one term, which gives

∫ L

0

sin
mπx

L
sin

mπx

L
dx =

∫ L

0

sin
mπx

L
f(x)dx.
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Evaluating the integral on the left hand side gives what is exactly the same
answer as before for the wave equation; namely,

cn =
2

L

∫ L

0

sin
nπx

L
f(x)dx.

Hence, for homogeneous boundary conditions

u(0, t) = u(L, t) = 0

and initial condition

u(x, 0) = f(x)

we have the general solution

u(x, t) =

∞
∑

n=1

cn sin
(nπx

L

)

exp

(

−
(αnπ

L

)2

t

)

. (12.22)

Example 12.3.1 Determine the solution to

4
∂2u

∂x2
=
∂u

∂t

with

u(0, t) = u(10, t) = 0

and

u(x, 0) =

{

x 0 < x ≤ 5
10 − x 5 < x ≤ 10

This is the case where α = 2 and L = 10 and u(x, 0) is as illustrated
in Figure 12.17, and the solution is simply given by substituting into Equa-
tion 12.22.

The only work is to determine the coeffiients in the Fourier series to
satisfy the initial condition,

cn =
2

L

∫ L

0

sin
nπx

L
f(x)dx

=
2

10

[∫ 5

0

x sin
nπx

10
dx+

∫ 10

5

(10 − x) sin
nπx

L
dx.

]

Using the fact that

∫ b

a

x sin cxdx = −1

c
x cos cx

∣

∣

∣

∣

b

a

+
1

c2
sin cx

∣

∣

∣

∣

b

a
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Figure 12.17. Initial temperature profile for Example 12.3.1.
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the coeffients are

cn =
1

5



− 10

nπ
x cos

nπx

10

∣

∣

∣

∣

5

0

+

(

10

nπ

)2

sin
nπx

10

∣

∣

∣

∣

∣

5

0

+

−10
10

nπ
cos

nπx

10

∣

∣

∣

∣

10

5

+

10

nπ
x cos

nπx

10

∣

∣

∣

∣

10

5

−
(

10

nπ

)2

sin
nπx

10

∣

∣

∣

∣

∣

10

5





=
2

nπ

[

−5 cos
nπ

2
− 0 +

10

nπ

(

sin
nπ

2
− 0
)

− 10
(

cosnπ − cos
nπ

2

)

+ 10 cosnπ − 5 cos
nπ

2
− 10

nπ

(

0 − sin
nπ

2

)

]

=
40

n2π2
sin

nπ

2
.

A plot of the solution for various times is illustrated in Figure 12.18.

12.3.3 Solution to the heat equation with inhomogeneous
boundary conditions

Of course, the boundary conditions for the heat condution equation are seldom
both zero. Let us now consider the case where

u(0, t) = T1

u(L, t) = T2.

From section 12.3.1, the steady state solution will be

lim
t→∞

u(x, t) =
T2 − T1

L
x+ T1

= uss(x)

which is simply a straight line from u(0, t) = T1 at x = 0 to u(L, t) = T2 at
x = L. Since there is no curvature, this solution will satisfy the heat equation
since it is constant in time. It also satisfies the boundary conditions.

Since we have the solution to homogeneous boundary conditions from sec-
tion 12.3.2 given by

uh(x, t) =
∞
∑

n=1

cn sin
nπx

L
e−(αnπ

L )2
t
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Figure 12.18. Solution for heat equation in Example 12.3.1
for various times.
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and the steady-state solution from Equation 12.23, it makes sense to try to add
them to find the complete solution. Along these lines, let

û(x, t) = uh(x, t) + uss(x)

=
∞
∑

n=1

cn sin
nπx

L
e−(αnπ

L )2
t +

T2 − T1

L
x+ T1.

We need to

1. check that it satisfies the heat equation;

2. check that it satisfies the boundary conditions; and,

3. find equations for the cn so that it satisfies the initial conditions.

For the coefficients, substituting t = 0 into the general solution gives

u(x, 0) =

∞
∑

n=1

cn sin
nπx

L
e−(αnπ

L )
2
0 +

T2 − T1

L
x+ T1

=
∞
∑

n=1

cn sin
nπx

L
+
T2 − T1

L
x+ T1

= f(x).

Thus, at t = 0 we may write

∞
∑

n=1

cn sin
nπx

L
= f(x) − T2 − T1

L
x− T1.

If we let

f̂(x) = f(x) − T2 − T1

L
− T1

we may compute the Fourier coefficients in the usual manner:

cn =
2

L

∫ L

0

f̂(x) sin
nπx

L
dx.

12.4 Laplace’s Equation

Laplace’s equation is
∂2u

∂x2
+
∂2u

∂y2
= 0 (12.23)

and represents the steady state temperature distribution in a rectangular do-
main. Various combinations of boundary conditions are possible and are fully
explored in the exercises. In this section we will consider

u(0, y) = 0

u(a, y) = 0

u(x, 0) = 0

u(x, b) = f(x).
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Assuming u(x, y) = X(x)Y (y) and substituting into Equation 12.23 gives

X ′′(x)Y (y) +X(x)Y ′′(y) = 0 ⇐⇒ X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

Since the left hand side is only a function of x and the right hand side is only
a function of y and x and y are independent variables, each side must be equal
to the same constant, i.e.,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= −λ.

At this point we do not know whether λ must be positive or negative. We will
assume that it is real since it is a coefficient in the ordinary differential equations
for X(x) and Y (y) and we are seeking real solution to Equation 12.23.

Based upon our experience with the wave and heat conduction equation, it
is reasonable to expect that we will have to use a Fourier series to satisfy the
boundary condition u(x, b) = f(x). Hence, we will consider the X(x) equation
first. Specifically, we have

X ′′ + λX(x) = 0 (12.24)

with

X(0) = 0

X(a) = 0.

Regardless of the value of λ, the general solution to Equation 12.24 is

X(x) = c1e
√
−λx + c2e

−
√
−λx.

The boundary condition at x = 0 gives

X(0) = c1 + c2 = 0 ⇐⇒ c1 = −c2.

Hence,

X(x) = c1

(

e
√
−λx − e

√
−λx

)

.

The boundary condition at x = a requires that

X(a) = c1

(

e
√
−λa − e−

√
−λa
)

= 0.

If λ < 0, then
√
−λ is real. Hence, either c1 = 0 or e

√
−λa = e−

√
−λa. If c1 = 0,

then u(x, y) = 0 and the solution can not satisfy the boundary condition at
y = b unless it happens that f(x) = 0. Furthermore, it is not possible for

e
√
−λa = e−

√
−λa if λ < 0. So, then either λ = 0 or λ > 0.

In the case where λ = 0, Equation 12.24 is of the form

X ′′(x) = 0
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which has a general solution

X(x) = c1x+ c2.

Using the boundary conditions gives

X(0) = 0 =⇒ c1 = 0

X(a) = 0 =⇒ c2 = 0.

Again, unless f(x) = 0, this will not work.
Rapidly running out of options, consider the case where λ > 0. In that case

X(x) = c1e
√
−λx + c2e

−
√
−λx

= c1e
i
√
λx + c2e

−i
√
λx

= (c1 + c2) cos
√
λx+ i (c1 − c2) sin

√
λx

= ĉ1 cos
√
λx+ ĉ2 sin

√
λx.

Applying the boundary condition at x = 0 gives

X(0) = 0 =⇒ ĉ1 = 0.

At x = a the boundary condition requires that either ĉ2 = 0 or

sin
√
λa = nπ n = 1, 2, 3, . . . .

As before if ĉ2 = 0, then u(x, y) = 0 which can not satisfy the boundary
condition at y = b unless f(x) = 0. So, finally we have that

λ =
(nπ

a

)2

.

Now, substituting the value of λ into the equation for Y (y) gives

Y ′′(y) −
(nπ

a

)2

Y (y) = 0,

which has a general solution

Y (y) = k1e
npiy

a + k2e
−nπy

a .

Applying the boundary condition at y = 0 gives

Y (0) = k1 + k2 = 0 =⇒ k1 = −k2.

Hence,

Y (y) = k1

(

e
nπy

a − e−
nπy

a

)

.

We have an infinite number of general solutions for X(x) and one solution
for Y (y). Combining them gives

u(x, y) =
∞
∑

n=1

cn sin
nπx

a

(

e
nπy

a − e−
nπy

a

)

.
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To satisfy the boundary condition at y = b we need that

u(x, b) =

∞
∑

n=1

cn sin
nπx

a

(

e
nπb

a − e−
nπb

a

)

= f(x).

At this point it is hopefully obvious what must be done: multiply by sin mπx
a

and integrate from 0 to a with respect to x. Doing so gives

∫ a

0

( ∞
∑

n=1

cn sin
nπx

a

(

e
nπb

a − e−
nπb

a

)

)

sin
mπx

a
dx =

∫ a

0

f(x) sin
mπx

a
dx.

Rearranging the left hand side gives

∞
∑

n=1

cn

(

e
nπb

a − e−
nπb

a

)

∫ a

0

sin
nπx

a
sin

mπx

a
dx =

∫ a

0

f(x) sin
mπx

a
dx,

and due to the orthogonality of the sine functions the only nonzero term in the
infinite series is the case where n = m, so

cm

(

e
mπb

a − e−
mπb

a

) a

2
=

∫ a

0

f(x) sin
mπx

a
dx

or, finally,

cn =
2

a

1

e
nπb

a − e−
nπb

a

∫ a

0

f(x) sin
nπx

a
dx.

So, in summary, the solution to

∂2u

∂x2
+
∂2u

∂y2
= 0

with boundary conditions

u(0, y) = 0

u(a, y) = 0

u(x, 0) = 0

u(x, b) = f(x).

is

u(x, y) =

∞
∑

n=1

cn sin
nπx

a

(

e
nπy

a − e−
nπy

a

)

.

where

cn =
2

a

1

e
nπb

a − e−
nπb

a

∫ a

0

f(x) sin
nπx

a
dx.
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Figure 12.19. Approximate solution to Laplace’s equation
from Example 12.4.1 using a partial sum containing the first
10 terms.

Example 12.4.1 Find the solution to Laplace’s equation in a rectanglular
domain where a = 4 and b = 2 and

u(x, 2) =

{

x, 0 < x ≤ 1
2 − x, 1 < x ≤ 2.

Evaluating the integrals for the Fourier coefficients gives

cn =
64e

nπ
2 cos

(

nπ
4

)

sin3
(

nπ
4

)

(−1 + enπ)n2π2

A plot of the solution containing the first 10 terms of the series is illustrated
in Figure 12.19.
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12.5 Vibrating Membranes

12.5.1 The Two Dimensional Wave Equation in Rectan-
gular Coordinates

The two dimensional wave equation is given by

∂2u

∂y2
+
∂2u

∂y2
=

1

α2

∂2u

∂t2
.

12.5.2 The Two Dimensional Wave Equation in Polar Co-
ordinates

In polar coordinates, the two dimensional wave equation is

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
=

1

α2

∂2u

∂t2
(12.25)

with boundary condition
u(r̂, θ, t) = 0 (12.26)

and initial conditions

u(r, θ, 0) = f(r, θ)

∂u

∂t

∣

∣

∣

∣

r,θ,0

= g(r, θ).

Assuming a solution of the form

u(r, θ, t) = R(r)Θ(θ)T (t)

and substituting into Equation 12.25 gives

R′′(r)Θ(θ)T (t) +
1

r
R′(r)Θ(θ)T (t) +

1

r2
R(r)Θ′′(θ)T (t) =

1

α2
R(r)Θ(θ)T ′′(t)

and dividing by R(r)Θ(θ)T (t) gives

R′′(r)

R(r)
+

1

r

R′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
=

1

α2

T ′′(t)

T (t)
.

Since the right side of the equation only depends on t and the left side depends
only on r and θ, and all three variables are independent, both sides must be
constant; hence,

R′′(r)

R(r)
+

1

r

R′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
=

1

α2

T ′′(t)

T (t)
= −λ

where λ is a yet to be determined constant. Hence,

T ′′(t) + α2λT (t) = 0 (12.27)



452 CHAPTER 12. PARTIAL DIFFERENTIAL EQUATIONS

and
R′′(r)

R(r)
+

1

r

R′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
= −λ.

Multiplying by r2 and rearranging gives

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
+ r2λ = −Θ′′(θ)

Θ(θ)
.

Since the left side of this equation only depends on r and the right side only
depends on θ and the variables are independent, these also must be equal to a
constant, which is not necessarily the same as λ. Calling this constant γ, we
have

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
+ r2λ = −Θ′′(θ)

Θ(θ)
= γ.

Hence,
Θ′′(θ) + γΘ(θ) = 0 (12.28)

and
r2R′′(r) + rR′(r) +

(

r2λ− γ
)

R(r) = 0. (12.29)

If we determine the solutions to Equations 12.27, 12.28 and 12.29, we will have
a solution to Equation 12.25.

We will proceed has we have done before by finding the general solutions
to the ordinary differential equations for R(r), Θ(θ) and T (t) and applying
the boundary conditions. While is appears that we only have one boundary
condition given by Equation 12.26, there is also the fact that the solution for
Θ(θ) must be periodic, i.e., Θ(θ) = Θ(θ + 2π). Thus, γ must be positive and

Θ(θ) = c1 sin
√
γθ + c2 cos

√
γθ.

In order for Θ (θ + 2π) = Θ (θ),
√
γ must be an integer, or

γ = m2, m = 0, 1, 2, . . . ,

so
Θn (θ) = c1 sinnθ + c2 cosnθ, n = 1, 2, 3, . . . .

The ordinary differential equation for R(r) is variable coefficient, so we must
use a power series solution. Assuming

R(r) = rk
∞
∑

n=0

anr
n =

∞
∑

n=0

anr
n+k

we have

R′(r) = (n+ k)

∞
∑

n=0

anr
n+k−1

and

R′′(r) = (n+ k) (n+ k − 1)
∞
∑

n=0

anr
n+k−2.
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Substituting into Equation 12.29 gives

(n+ k) (n+ k − 1)

∞
∑

n=0

anr
n+k+(n+ k)

∞
∑

n=0

anr
n+k+

(

r2λ− γ
)

∞
∑

n=0

anr
n+k = 0.

Collecting the first two terms and distributing the r2 over the last sum gives

(

(n+ k)
2 − γ

)

∞
∑

n=0

anr
n+k + λ

∞
∑

n=0

anr
n+k+2.

Shifting the index of summation on the last sum gives

(

(n+ k)
2 − γ

)

∞
∑

n=0

anr
n+k + λ

∞
∑

n=2

an−2r
n+k = 0.

Hence,

an =
λ

(n+ k)
2 − γ

an−2, n ≥ 2

and
a0

(

(0 + k)2 − γ
)

= 0

and
a1

(

(1 + k)
2 − γ

)

= 0.

Since γ = m2 for m = 0, 1, 2, . . . ,, the a0 equation requires that k = ±m, for
m = 0, 1, 2, . . . . Then, if k makes the term multiplying a0 zero, it can not make
the term multiplying the a1 term zero; hence, we need that a1 = 0.

Define

Jm(λr) =

∞
∑

n=0

(−1)
n

22n+mn! (m+ n)!
(λr)

2n+m
.

complete...
So, finally we have

u(r, θ, t) =
∞
∑

k=1

∞
∑

m=0

Jm

(

λm,kr

r̂
(am,k sin (mθ) + cos (mθ))

(

a cos
√

λm,kt+ b cos
√

λm,kt
)

)

12.6 The Euler-Bernoulli Beam Equation

The Euler-Bernoulli beam equation is a partial differential equation de-
scribing small vibrations of beams. In contrast to strings, beams can support
bending loads, which results in a higher order partial differential equation de-
scribing its motion.

12.6.1 Derivation of the Beam Equation
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Consider the cantilever beam illustrated in Figure 12.20. Assume that the
beam is subjected to a distributed load that may vary in time, f(x, t), where
the units of f(x, t) are force per unit length. We will make the following
assumptions about the manner in which the beam deflects.

Assumption 12.6.1 1. Assume that the beam deflects in the vertical di-
rection only and that the deflection of the beam in the vertical direction
is small.

2. Assume that the slope is also small.

3. Assume that any planar cross section of the beam remains planar when
it is deflected.

Consider the coordinate axes illustrated in Figure 12.20 with the y–axis
directed into the page. Since the beam deflects in the z–direction only, all
deflections remain within the plane of the page. Define the neutral plane
to be the plane before deformation whose length is not changed when the
beam is deformed. In Figure 12.21 the top of the beam is extended and the
bottom of the beam is compressed. The neutral plane is illustrated by a
dashed line. Let u(x, t) represent the deflection of the beam’s neutral plane
at location x at time t from its unloaded equilibrium position, as is illustrated
in Figure 12.21.

Now we may restate the assumption that the deformations are small
with the equation u(x, t) ≪ 1 and the assumption that the slope is small by
∂u
∂x

(x, t) ≪ 1. Having defined the neutral plane and coordinate axes we state
another assumption.

Assumption 12.6.2

Assume that a cross section normal to the neutral plane does not change in
height or width when the beam is deflected.

To derive the equation of motion, consider a small segment of the beam,
as is illustrated in Figure 12.22. Let A be the cross sectional area of the
beam and ρ the density. Newton’s law in the vertical direction gives

ρA
∂2u

∂t2
(x, t)dx = V (x+ dx, t) − V (x, t) +

1

2
(f(x, t) + f(x+ dx, t)) dx,

(12.30)
where the total applied load is computed as the average of f(x, t) and f(x+
dx, t) times the length of the segment, dx. Expanding V (x+dx, t) in a Taylor
series about x gives

V (x+ dx, t) = V (x, t) +
∂V

∂x
(x, t)dx + · · ·
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z

x = 0 x = L

f(x, t)

Figure 12.20. Loaded beam.

z

x = 0 x = L

u(x, t) u(L, t)

Figure 12.21. Deflected beam.
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x

f(x, t)

f(x+ dx, t)

x+ dx

M(x, t) M(x+ dx, t)

V (x, t) V (x+ dx, t)

Figure 12.22. Small segment of a beam.

and similarly expanding f(x+ dx, t) gives

f(x+ dx, t) = f(x, t) +
∂f

∂x
(x, t)dx + · · · .

Keeping the higher order terms and substituting into Equation 12.30 gives

ρA
∂2u

∂t2
(x, t)dx =

∂V

∂x
dx +

1

2

(

2f(x, t) +
∂f

∂x
dx

)

dx,

or

ρA
∂2u

∂t2
(x, t) =

∂V

∂x
+

1

2

(

2f(x, t) +
∂f

∂x

)

dx. (12.31)

Taking the limit as dx→ 0 gives

ρA
∂2u

∂t2
(x, t) =

∂V

∂x
(x, t) + f(x, t). (12.32)

Since we are assuming the motion is only vertical, there is no angular
acceleration,so the sum of the moments about any point must be zero. Com-
puting the moments about the center of the right end of the beam segment
in Figure 12.22 gives

M(x, t) −M(x+ dx, t) − V (x, t)dx +
1

2
(f(x, t) + f(x+ dx, t)) dx

dx

2
= 0,

where the moment due to the loading is approximated as the average load
with an average moment arm of dx

2 .
Using a Taylor series expansion M and f ,

M(x+ dx) = M(x, t) +
∂M

∂x
(x, t) dx+ · · ·

f(x+ dx, t) = f(x, t) +
∂f

∂x
(x, t)dx + · · ·
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Figure 12.23. Cross section of a beam.

gives

−∂M
∂x

(x, t)dx − V (x, t)dx +
1

2

(

2f(x, t) +
∂f

∂x
(x, t)dx

)

dx2

2
= 0

or

−∂M
∂x

(x, t) − V (x, t) +
1

2

(

2f(x, t) +
∂f

∂x
(x, t)dx

)

dx

2
= 0

Taking the limit as dx→ 0 gives

−∂M
∂x

(x, t) = V (x, t), (12.33)

or, substituting into Equation 12.31 gives

ρA
∂2u

∂t2
(x, t) = −∂

2M

∂x2
(x, t) + f(x, t). (12.34)

Now, consider a cross section of the beam, as is illustrated in Figure 12.23.
The normal stress on the face of the cross section is denoted by σx(x, y, z, t)
and the two shear stresses are τxy(x, y, z, t) in the horizontal direction and
τxz(x, y, z, t) in the vertical direction.

If we consider the normal stress over a small area of a cross section, as is
illustrated in Figure 12.24, the moment due to the total force acting on that
area is

dM = zσx(x, y, z, t)dA,

or integrating over the whole surface of the cross section

M(x, t) =

∫ ∫

zσx(x, y, z, t)dzdy, (12.35)
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σx(x, y, z, t)z

dA = dxdy

Figure 12.24. Moment due to normal stress over a small area.

where the limits of integration are determined by the geometry of the cross
section.

The basic constitutive law from solid mechanics is that normal stress and
strain are related by

σ(x, y, z, t) = Eǫ(x, y, z, t) (12.36)

where E is the modulus of elasticity and has units of pascals, denoted by
Pa where 1Pa = 1 N

m2 . Finally, to relate the strain to the deformation of
the beam, consider the deflection of a small segment of the beam illustrated
in Figure 12.25. Since the slope is small, θ(x, t) ≈ ∂u

∂x
(x, t). Since strain is

defined as the displacement per unit length, we have for the location z on
the right face of the segment

ǫx(x, y, z, t) =
z (sin θ(x, t) − sin θ(x+ dx, t))

dx

=
z
(

∂u
∂x

(x, t) − ∂u
∂x

(x+ dx, t)
)

dx
(x, y, z, t)

=
z
(

∂u
∂x

(x, t) −
(

∂
∂x

(x, t) +
(

∂u
∂x

(x, t)
)

dx
))

dx
(x, t)

= −z ∂
2u

∂x2
(x, t).



12.6. THE EULER-BERNOULLI BEAM EQUATION 459

θ(x + dx, t)

θ(x, t)

x x+ dx

Figure 12.25. Strain relationship for small beam segment.
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Substituting this into Equation 12.36, and using that in Equation ?? gives

M(x, t) =

∫ ∫

−z2E
∂2u

∂x
(x, t)dydz

= −E∂
2u

∂x2
(x, t)

∫ ∫

z2dydz.

Since the integral is the definition of the area moment of inertia, if we let

I(x) =

∫ ∫

z2dydz

we have

M(x, t) = −EI(x)∂
2u

∂x2
(x, t)

and substituting this into Equation 12.34 gives

ρA
∂2u

∂t2
(x, t) = − ∂2

∂x2

(

EI(x)
∂2u

∂x2
(x, t)

)

+ f(x, t).

Finally, if the cross section of the beam is uniform along its length, then
we have

ρA
∂2u

∂t2
(x, t) = −EI ∂

4u

∂x4
(x, t) + f(x, t). (12.37)

12.6.2 Solutions to the Beam Equation

Static deflection

Let us consider the case where

∂2u

∂t2
(x, t) = 0.

First, we will consider the case where the beam is cantilever and subjected
to a static force at the end, as is illustrated in Figure 12.26. Since there is no
acceleration and the solution does not depend upon time, the beam equation
reduces to

EI
d4u

dx4
(x) = 0. (12.38)

There are four boundary conditions:

1. since the beam is fixed at zero, u(0) = 0;

2. since the beam is a cantilever beam, the slope zero is zero, du
dx

(0) = 0;

3. since there is a point load at x = L, the shear force at x = L must

equal F , and using Equation 12.33 gives EI d
3u
dx2 (L) = F ; and,
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x = 0 x = L

F

Figure 12.26. Cantilever beam subjected to a force at the end.

4. since there is no moment applied at x = L, d
2u
dx2 (L) = 0.

Clearly, the general solution to Equation 12.38 is a third order polynomial
in x,

u(x) = c1x
3 + c2x

2 + c3x+ c4.

Applying the boundary conditions gives

1. fixed at zero:

u(0) = 0 =⇒ c4 = 0;

2. cantilever:
du

dx
(0) = 0 =⇒ c3 = 0;

3. shear at end:

6EIc1 = F =⇒ c1 =
F

6EI

and

4. no moment at end:

F

6EI
6L+ 2c2 = 0 =⇒ c2 = − FL

2EI

Hence

u(x) =
F

6EI
x3 − FL

2EI
x2

and at x = L, an applied force of F produces a displacement of

u(L) =
FL3

6EI
− FL

2EI
L2 = − L3

3EI
F
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F

L

u(L)

Figure 12.27. A deflecting column.

Since the displacement is proportional to the applied force and the propor-

tionality constant is L3

6EI , we can conclude that a cantilever spring will have
a spring constant of

k =
3EI

L3
.

In the case of a rectangular beam with width w and height h,

I =

∫ ∫

z2dzdy =
1

12
wh3

so

k =
Ewh3

4L3
.

Proving following two force deflection relationships is left as an exercise.
The first is a cantilever beam which can not bend at either end, as is illus-
trated in Figure 12.27. For this system

k =
12EI

L3
,

or in the case of a rectangular cross section,

k =
Ewh3

L3
,
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12.7 Sturm-Liouville Theory

Problem 12.1 Show that the the eigenvalue for the wave equation with
boundary conditions

u(0, t) = u(L, t) = 0

must be positive.
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Chapter 13

Numerical Methods

This chapter deals with numerical methods for determining approximate solu-
tions for differential equations. It presents the derivation of the methods as well
as analyses of the types of errors that are inherent in each method. Section 13.1
presents Euler’s method with more mathematical rigor than was considered in
Section 1.10. Section 13.2 presents a method based upon Taylor series, which,
actually, is the basis for all the methods we consider. Section 13.3 presents
the ubiquitous Runge-Kutta method. Section 13.4 considers the various types
of errors inherent in each method. All the methods presented in Sections 13.1
through Section 13.3 work for a single, first order ordinary differential equation.
Section 13.5 extends these methods to systems of coupled first order ordinary
differential equations. Finally, Section 13.7 presents some basic techniques for
determining approximate numerical solutions for partial differential equations.

13.1 Another Look at Euler’s Method

In Section 1.10, Euler’s method was derived as an approximation to the usual
definition of the derivative. In particular, for a first order, ordinary differential
equation of the form

ẋ = f(x, t) (13.1)

the derivative with respect to time is approximated by

ẋ(t) ≈ x(t+ ∆t) − x(t)

∆t

for ∆t≪ 1. Consequently,

x(t+ ∆t) ≈ x(t) + f(x(t), t)∆t (13.2)

for ∆t≪ 1.
In this section a slightly more sophisticated analysis will be undertaken that

will allow for easy extensions to higher order methods and error analysis. In

465
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particular, the analysis will be based upon a Taylor series expansion of the form

x (t+ ∆t) = x(t) +
dx(t)

dt
∆t+

1

2!

d2x(t)

dt2
(∆t)2 +

1

3!

d3x(t)

dt3
(∆t)3 + · · · . (13.3)

Since the problem statement includes the fact that

ẋ(t) = f(x(t), t)

substituting this into equation 13.3 gives

x (t+ ∆t) = x(t)+f(x(t), t)∆t+
1

2!

df(x(t), t)

dt
(∆t)

2
+

1

3!

d2f(x(t), t)

dt2
(∆t)

3
+· · · .
(13.4)

Clearly, Euler’s method amounts to only using the first two terms in the series
to approximate x(t + ∆t), and if ∆t ≪ 1, the local truncation error due to

the fact that only a finite number of terms is used is proportional to (∆t)
2
. In

other words, if the time step is cut in half, the truncation error is reduced by
(

1
2

)2
= 1

4 and if ∆t is reduced by an order of magnitude, the truncation error

is reduced by
(

1
10

)2
= 1

100 .
The following example illustrates the method as well as the effect of the time

step on the error.

Example 13.1.1 Use Euler’s method to determine an approximate solu-
tion to

ẋ = 5x

x(0) = 1

for 0 < t ≤ 2.
Note that the exact solution is easy to compute and is x(t) = e5t. At a

given time, the equation to compute the value of the solution at the next
time step is given by

x(t+ ∆t) = f(x(t), t)∆t

= 5x(t)∆t.

A program listing in C for this problem appears in Appendix D.1.4. A
program listing in FORTRAN for this problem appears in Appendix D.2.4.
A plot of the solutions for two time steps as well as the exact solution is
illustrated in Figure 13.1.

The first few steps of the results of the computations for the case where
∆t = 0.1 are

t x(t) e5t

0.000000 1.000000 1.000000
0.100000 1.500000 1.648721
0.200000 2.250000 2.718282
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Figure 13.1. Solution to example 13.1.1 illustrating the fact
that for Euler’s method the accumulated global error is pro-
portional to ∆t.

and first few steps of the results of the computations for the case where
∆t = 0.05 are

t x(t) e5t

0.000000 1.000000 1.000000
0.050000 1.250000 1.284025
0.100000 1.562500 1.648721.

After the first step when ∆t = 0.1, the error in the approximate solution is
1.648721 − 1.5000000 = 0.14872. When ∆t = 0.05 the error is 1.284025 −
1.250000 = 0.034025. The critical observation is that when the time step
was cut by a factor of two, after the first step of the algorithm the error
was decreased by approximately a factor of four, illustrating the fact that
the error in Euler’s method is proportional to (∆t)

2
.

However, referring to Figure 13.1 it appears that the overall error, or
global error is not decreased by a factor of four, but rather simply cut
in half, i.e., it appears that the overall error is proportional to ∆t. Upon
a little reflection, the reason for this is obvious. The error at each time
step may be decreased in proportion to (∆t)

2
but the number of time steps

necessary to cover a specified time interval is inversely proportional to ∆t.
Specifically in this example, if ∆t is reduced by a factor of two, the number
of time steps necessary to go from t = 0 to t = 1 is doubled. Because of
this, even though the error introduced at each time step is proportional to
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Figure 13.2. Solution to example 13.1.2 illustrating the fact
that for Euler’s method the overall accumulated error is pro-
portional to ∆t.

(∆t)
2
, if the number of steps needed is proportional to 1

∆t , the overall error
will be proportional to ∆t.

Another example will help flesh out the relationship between the changes in
step size and the resultant error.

Example 13.1.2 Determine an approximate solution to

ẋ = − sin t

x(0) = 1

using Euler’s method. Not too much thought (or even less work) gives
the exact solution as x(t) = − cos t. A plot of the approximate solutions
for ∆t = 1.0 and ∆t = 0.5 as well as the exact solution are illustrated in
Figure 13.2.

Note that, as was the case in the previous example, decreasing the time
step by a factor of two generally decreases the overall error by a factor of two
as well. In other words, the overall error is proportional to the time step.
A program listing in C for this problem appears in Appendix D.1.4. A
program listing in FORTRAN for this problem appears in Appendix D.2.4.

It appears that the above reasoning is correct. After a single time step,
starting when the approximate and exact solutions are identical, Euler’s method
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will produce an error proportional to (∆t)
2
. However, because the number of

time steps necessary to for the algorithm to complete a particular time interval
is inversely proportional to the time step, the overall error, i.e., the error that
can be discerned by general observation, will typically be proportional to ∆t.

13.2 Taylor Series Methods

If it is necessary to increase the accuracy of the approximate solution without
the computational burden of an excessively small step size, the relatively obvious
thing to do is to starting including higher order terms from the Taylor series
expansion for x(t+∆t) in equation 13.4. Upon initially considering this notion,
it may appear to be a rather trivial exercise. While it is manageable to include
the (∆t)2 term, and even possibly the (∆t)3 term, a quick review of multivariable
calculus will illustrate that the complexity of such an endeavor quickly becomes
rather burdensome. The reason for this is simply because the function f depends
upon both x and t, but x also depends upon t, but determining exactly that
dependence of x on t is the whole point of the problem, i.e., determining x(t).

Hence, dropping the explicit dependence of x on t

df(x, t)

dt
=
∂f

∂x

dx

dt
+
∂f

∂t
=
∂f

∂x
f +

∂f

∂t
.

or, including the dependence

df(x(t), t)

dt
=

(

∂f

∂x

dx

dt
+
∂f

∂t

)∣

∣

∣

∣

(x(t),t)

=

(

∂f

∂x
f +

∂f

∂t

)∣

∣

∣

∣

(x(t),t)

,

where the notation

∂f

∂x

∣

∣

∣

∣

(x(t),t)

means, as usual, to compute the partial derivative of f with respect to x and
then evaluate it at the values of x(t) and t.

Again, the crux of the matter is that the problem statement specifies how
ẋ depends on x and t, but not how x depends on t. Thus, one cannot simply
compute derivative of f(x(t), t) with respect to t since x(t) is not known; rather,
one must compute resort to the chain rule as expressed in the equations above.
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13.2.1 Second order Taylor series expansion

Returning to the Taylor series expansion and including all the terms through
(∆t)2 gives

x (t+ ∆t) = x(t) + f(x(t), t)∆t +
1

2

df

dt

∣

∣

∣

∣

(x(t),t)

(∆t)2 + · · ·

= x(t) + f(x(t), t)∆t +
1

2

(

∂f

∂x
f +

∂f

∂t

)∣

∣

∣

∣

(x(t),t)

(∆t)
2

+ · · ·

(13.5)

Hence, keeping all terms through (∆t)2, which should produce a step truncation

error proportional to (∆t)
3

and an overall error proportional to (∆t)
2

is given
by

x (t+ ∆t) = x(t) + f(x(t), t)∆t+
1

2

(

∂f

∂x
f +

∂f

∂t

)∣

∣

∣

∣

(x(t),t)

(∆t)2 .

Returning to example 13.1.1 illustrates the fact that the error is indeed as
would be expected.

Example 13.2.1 Use a second order Taylor series expansion to determine
an approximate solution to

ẋ = 5x

x(0) = 1

for 0 < t ≤ 2.

Since f(x(t), t) = 5x(t),

∂f

∂x
= 5

∂f

∂t
= 0.

Hence,

x(t+ ∆t) = x(t) + 5x(t)∆t+
25

2
x(t) (∆t)

2
. (13.6)

A program listing in C for this problem appears in Appendix D.1.4. A
program listing in FORTRAN for this problem appears in Appendix D.2.4.

The first few steps of the results of the computations for the case where
∆t = 0.1 are

t x(t) e5t

0.000000 1.000000 1.000000
0.100000 1.625000 1.648721
0.200000 2.640625 2.718282
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Figure 13.3. Solution to example 13.2.1. Note that for the
second order Taylor series, the overall accumulated error is
proportional to (∆t)

2
.

and first few steps of the results of the computations for the case where
∆t = 0.05 are

t x(t) e5t

0.000000 1.000000 1.000000
0.050000 1.281250 1.284025
0.100000 1.641602 1.648721

A the two approximate solutions and the exact solution are illustrated in
Figure 13.3.

Observe that after the first time step, the error for ∆t = 0.1 is 1.648721−
1.625000 = 0.023721, and the error for ∆t = 0.05 is 1.284025− 1.281250 =
0.0027750. Since 0.023721

0.0027750 = 8.5 ≈ 8 it is clear that the error is proportional

to (∆t)3 since the step size was reduced by a factor of two and the error
was reduced by a factor of eight.

With respect to the overall error, referring to Figure 13.3, it is clear
that the overall error is proportional to (∆t)2 since the ∆t = 0.05 curve has
approximately 1

4 the error of the ∆t = 0.1 curve. Observe also that for the
case of ∆t = 0.1 in Figures 13.1 and 13.3, the overall error decreases by an
order of magnitude, which is consistent with the second order Taylor series
in the latter case including the (∆t)

2
in the expansion.

Because the form of the partial derivatives in equation 13.5, an example with
the function f(x, t) that includes both x and t may be helpful.
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Example 13.2.2 Determine an approximate solution to

ẋ = −x3 + sin(tx)

x(0) = 1

using a second order Taylor series expansion.
In this problem

f(x, t) = −x3 + sin(tx)

Hence,

∂f

∂x
= −3x2 + t cos(tx)

∂f

∂t
= x cos(tx).

Thus, the equation for x(t+∆t) using a second order Taylor series expansion
is

x(t+ ∆t) = x(t) + f(x(t), t)∆t +

1

2

(

∂f

∂x
f +

∂f

∂t

)∣

∣

∣

∣

(x(t),t)

(∆t)2

= x(t) +
(

−x3(t) + sin(tx(t))
)

∆t+

1

2

{[

−3x2(t) + t cos(tx(t))
] [

−x3(t) + sin(tx(t))
]

+

x(t) cos(tx(t))} (∆t)2 .

The solution is illustrated (along with another solution generated by another
method) in Figure 13.6 for the cases where ∆t = 0.4 and ∆t = 0.2. A
program listing in C for this problem appears in Appendix D.1.4. A
program listing in FORTRAN for this problem appears in Appendix D.2.4.

13.2.2 Third order Taylor series expansion

The obvious thing to do at this point to improve the accuracy of the method
is to try to include the third order terms in the expansion. So, let’s go for it.
Starting with equation 13.4

x (t+ ∆t) = x(t)+f(x(t), t)∆t+
1

2!

df(x(t), t)

dt
(∆t)2+

1

3!

d2f(x(t), t)

dt2
(∆t)3+· · · .

(13.7)
As has already been stated, the dependence of f on x and t is specified, but the
dependence of x on t. Hence, as in the case of the second order Taylor series, the
chain rule must be used to expand the derivatives in terms of known quantities.
In particular, as above

df

dt
=
∂f

∂x
f +

∂f

∂t
. (13.8)
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So, to start to compute the next higher order term,

d2f

dt2
=

d

dt

df

dt

=
d

dt

(

∂f

∂x
f +

∂f

∂t

)

=
d

dt

(

∂f

∂x

)

f +
∂f

∂x

d

dt
(f) +

d

dt

(

∂f

∂t

)

, (13.9)

where the last line is simply using the product rule for differentiating the ∂f
∂x
f

term. Recall that the need for the expansion in equation 13.8 was the fact that
f depended on both x and t, but x also depended on t, but only the derivative
of x with respect to t is known. Similarly, ∂f

∂x
and ∂f

∂t
can depend on both x and

t as well, so must be expanded similarly. Hence,

d

dt

(

∂f

∂x

)

=
∂2f

∂x2
f +

∂2f

∂x∂t

d

dt

(

∂f

∂t

)

=
∂2f

∂x∂t
f +

∂2f

∂t2
.

Using these two expressions as well as the one for df
dt

in equation 13.8 in equa-
tion 13.9 gives

d2f

dt2
=

(

∂2f

∂x2
f +

∂2f

∂x∂t

)

f +
∂f

∂x

(

∂f

∂x
f +

∂f

∂t

)

+
∂2f

∂x∂t
f +

∂2f

∂t2
. (13.10)

Finally, substituting the terms from equations 13.10 and 13.8 gives

x(t + ∆t) = x(t) + f(x(t), t)∆t +
1

2

(

∂f

∂x
f +

∂f

∂t

)∣

∣

∣

∣

(x(t),t)

(∆t)
2

+

1

6

[(

∂2f

∂x2
f +

∂2f

∂x∂t

)

f +
∂f

∂x

(

∂f

∂x
f +

∂f

∂t

)

+

∂2f

∂x∂t
f +

∂2f

∂t2

]∣

∣

∣

∣

(x(t),t)

(∆t)3 (13.11)

Remark 13.2.3

1. While it is theoretically possible to use equation 13.11, as a practical
matter it would be quite arduous to correctly compute all the partial
derivatives, products, etc.

2. If even greater accuracy is needed, including the fourth order terms in
∆t will result in an absolutely huge expansion since every term in equa-
tion 13.11 depends on f , which will result in two partial derivative terms
when expanded, as will all the terms that are products of two terms, which
is every term except one. Clearly, an approach that gives higher order ac-
curacy without the hassle of such computations would be useful. Hence,
the next section. ⋄
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Example 13.2.4 Use the first, second and third order Taylor series meth-
ods to determine an approximate numerical solution to

ẋ = 10x(1 − x)

x(−1) =
1

1 + e10

and compare it to the exact solution, which is

x(t) =
1

1 + e−10t
.

For this problem,

ẋ = f(x, t) = 10x(1 − x)

so for the second and third order methods we need to compute

∂f

∂x
= 10 − 20x

∂f

∂t
= 0

∂2f

∂x2
= −20

∂2f

∂t2
= 0

∂2f

∂t∂x
= 0.

Thus, the equation for the first order method (or Euler’s method) is

x(t+ ∆t) = x(t) + f(x, t)∆t

= x(t) + 10x(1 − x)∆t.

The equation for the second order method is

x(t+ ∆t) = x(t) + f(x, t)∆t+
1

2

df

dt
(∆t)

2

= x(t) + f(x, t)∆t+
1

2

[

∂f

∂x
f +

∂f

∂t

]

(∆t)
2

= x(t) + (10x (1 − x))∆t+

1

2
[(10 − 20x) (10x (1 − x))] (∆t)

2
.
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The equation for the third order method is

x(t+ ∆t) = x(t) + f(x, t)∆t +
1

2

df

dt
(∆t)

2
+

1

6

d2f

dt2
(∆t)

3

= x(t) + f(x, t)∆t +
1

2

(

∂f

∂x
f +

∂f

∂t

)

(∆t)
2

+

1

6

[(

∂2f

∂x2
f +

∂2

∂x∂t

)

+
∂f

∂x

(

∂f

∂x
f +

∂f

∂t

)

+

∂2f

∂x∂t
f +

∂2f

∂t2

]

(∆t)3

= x(t) + (10x (1 − x))∆t+

1

2
[(10 − 20x) (10x (1 − x))] (∆t)

2
+

1

6

[

−20 (10x (1 − x)) + (10 − 20x)
2
(10x (1 − x))

]

(∆t)
3
.

Clearly, as the order of the method increases, so does the complexity of the
expression for x (t+ ∆t) .

13.3 The Runge-Kutta Method

The main idea behind the so-called Runge-Kutta methods is, instead of eval-
uating all the partial derivatives necessary in a straight-forward Taylor series
computations, to approximate the derivatives to the same order of accuracy
using combinations of the function f(x, t) evaluated not only at x(t) and t, but
other x and t values as well.

Consider the function, x(t) illustrated in Figure 13.4. The curve represents
the unknown function x(t). Assume that x(t) is known exactly at two points,
say at t = 1.5 and t = 2.0. Anyone with a background in first year calculus
knows that the derivative of x with respect to t at t = 1.5 can be approximated
by

ẋ ≈ x(t+ ∆t) − x(t)

∆t
=
x(2.0) − x(1.5)

0.5
.

In the figure, it is clear that the derivative of x(t) at t = 1.5, which is the slope
of the tangent line at that point, is approximately the same as the slope of the
line connecting the values of x(1.5) and x(2.0) at times t = 1.5 and t = 2.0.
Similarly, for that matter, the slope at t = 2.0 is approximately the same as
well, as is the slope at any point between t = 1.5 and t = 2.0. Furthermore,
the smaller the difference between the two points in time is, the better the
approximation will be.

Now, consider the task of computing an approximation to the second deriva-
tive of x with respect to t. Since the second derivative is the derivative of the
derivative, it will be necessary to have an approximate computation for the
derivative at two values for t. Hence, assume that the exact values for x(t) are
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Figure 13.4. Approximating derivatives of a function x(t) by
computing the slope of a line connecting two points.

known for three points, say t = 1.5, t = 2.0 and t = 2.5, as is illustrated in
Figure 13.5. The second derivative, then, is approximated by

ẍ ≈ ẋ(t+ ∆t) − ẋ(t)

∆t

≈ ẋ(2.0) − ẋ(1.5)

0.5

≈

(

x(2.5)−x(2.0)
0.5

)

−
(

x(2.0)−x(1.5)
0.5

)

0.5

=
x(2.5) − 2x(1.5) + x(1.5)

(0.5)
2

where the second to last equation was obtained simply by substituting the equa-
tion for the approximate value of the derivative for each of t = 1.5 and t = 2.0.
The main point is that the computation for an approximation for the second
derivative of x with respect to t required that three points of x(t) be known.

So, to summarize, in order to approximate the derivative of x we needed
to evaluate x(t) at two points in time. In order to approximate the second
derivative, we needed to compute x(t) at three points in time. Clearly, to
compute an approximate for the nth derivative, we will need to evaluate x(t) at
n+ 1 points in time.

The main approach of the Runge-Kutta methods in this section is, in order to
avoid all the complications associated with expanding the derivatives of f(x(t), t)
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Figure 13.5. Approximating derivatives of a function x(t) by
computing the slope of a line connecting two points.

in a Taylor series, the higher order derivatives will be approximated by simply
evaluating f(x(t), t) at different x and t values to approximate the higher order
terms in the Taylor series.

So, in the case of attempting to compute approximate solutions to

ẋ = f(x(t), t)

there is a slight twist, which is that the first derivative of x is already given by the
problem; namely, f(x(t), t). So, the picture gets a little more abstract because
the approximate derivatives that we will be computing will not be for x(t), but
rather for f(x(t), t), i.e., we will approximate the terms in equation 13.4 instead
of equation 13.3. The one final conceptual complication is that the whole point
of the problem is to determine x(t); hence, these approximations for derivatives
are not simple to compute because the x(t) to plug into f(x(t), t) is not known.

The approach will ultimately be to approximate the x(t+ ∆t) value that is
used to evaluate the f(x(t+ ∆t), t+ ∆t) values, that will be used to determine
approximations to the derivatives of f(x(t), t) that appear in the Taylor series
expansion of x(t+ ∆t) in order to compute an approximation for x(t + ∆t).

13.3.1 The first order Runge-Kutta method

Approximating

x (t+ ∆t) = x(t)+f(x(t), t)∆t+
1

2!

df(x(t), t)

dt
(∆t)

2
+

1

3!

d2f(x(t), t)

dt2
(∆t)

3
+· · · .
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through the ∆t term requires no derivative computations for f(x(t), t). Hence,
it is just Euler’s method,

x(t+ ∆t) ≈ x(t) + f(x(t), t)∆t.

13.3.2 The second order Runge-Kutta method

The goal is to compute

x (t+ ∆t) = x(t) + f(x(t), t)∆t +
1

2!

df(x(t), t)

dt
(∆t)

2
+ · · ·

= x(t) + f(x(t), t)∆t +
1

2

(

∂f

∂x
f +

∂f

∂t

)∣

∣

∣

∣

(x(t),t)

(∆t)
2

+ · · ·

(13.12)

through the (∆t)
2

term without computing the derivatives of f(x(t), t), but
rather by evaluating f(x(t), t) at different values of x(t) and t to approximate
those derivatives. With that in mind, consider the task of determining the values
of c1, . . . , c4 in the following

x(t + ∆t) = x(t) + c1f(x(t), t)∆t + c2f (x(t) + c3f(x(t), t)∆t, t+ c4∆t) ∆t
(13.13)

that will make it exactly equal to equation 13.12 up to the (∆t)
2

term. Careful
scrutiny of the second f term will show that this is the term where f(x(t), t) is
evaluated at different values for x(t) and t; namely, x(t)+ c3f(x(t), t)∆t for the
x-value and t+ c4∆t for the t-value.

Although it is understandable that by this point the reader may be inclined
to quit Taylor series for life, the way to determine the c3 and c4 constants is,
obviously, to expand f(x(t) + c2f(x(t), t)∆t, t + c4∆t) in a Taylor series. In
particular,

f(x(t) + c3f(x(t), t)∆t, t+ c4∆t) =

f(x(t), t) +
∂f

∂x

∣

∣

∣

∣

(x(t),t)

(c3f(x(t), t)∆t) +
∂f

∂t

∣

∣

∣

∣

(x(t),t)

c4∆t+ · · · .

Substituting this into equation 13.13 gives

x(t+ ∆t) = x(t) + c1f(x(t), t)∆t+

c2

(

f(x(t), t) +
∂f

∂x

∣

∣

∣

∣

(x(t),t)

(c3f(x(t), t)∆t) +
∂f

∂t

∣

∣

∣

∣

(x(t),t)

c4∆t+ · · ·
)

= x(t) + (c1 + c2) f(x(t), t)∆t +
(

c2c3

(

∂f

∂x
f

)∣

∣

∣

∣

(x(t),t)

+ c2c4
∂f

∂t

∣

∣

∣

∣

(x(t),t)

)

(∆t)
2

+ · · · . (13.14)
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Equating coefficients in equations 13.12 and 13.14 gives

c1 + c2 = 1

c2c3 =
1

2

c2c4 =
1

2
.

Clearly, there are multiple solutions, but

c1 =
1

2

c2 =
1

2
c3 = 1

c4 = 1

is perhaps the most commonly used. Hence, substituting these values into
equation 13.13 gives

x (t+ ∆t) ≈ x(t) +
1

2
(f (x(t), t) + f (x(t) + f (x(t), t) ∆t, t+ ∆t)) ∆t, (13.15)

which is known as either the improved Euler formula or second order Runge-
Kutta formula.

The following example illustrates the fact that this approach gives the same
approximate solution as the second order Taylor series method, but without the
need to compute the derivatives of the function f(x(t), t).

Example 13.3.1 Determine an approximate solution to

ẋ = 5x

x(0) = 1

for 0 < t ≤ 2 using the second order Runge-Kutta method.
Since f(x(t), t) = 5x, then

f(x(t) + f(x(t), t)∆t, t+ ∆t) = 5 (x(t) + f(x(t), t)∆t) .

Hence, the second order Runge-Kutta formula is

x(t + ∆t) = x(t) +
∆t

2
[5 (x(t)) + 5 (x(t) + f(x(t), t)∆t)]

= x(t) +
∆t

2
[5 (x(t)) + 5 (x(t) + 5x(t)∆t)] .

= x(t) + 5x(t)∆t+
25

2
x(t) (∆t)

2
,

which happens to be identical to equation 13.6. Hence, any computer
program that computes an approximate solution will be the same as for
example 13.2.1. A program listing in C for this problem appears in Ap-
pendix D.1.4. A program listing in FORTRAN for this problem appears
in Appendix D.2.4.
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Because of the rather complicated form of f(x(t) + f(x(t), t)∆t, t + ∆t), a
slightly more complicated example is in order.

Example 13.3.2 Determine an approximate solution to

ẋ = −x3 + sin(tx)

x(0) = 1

using the second order Runge-Kutta formula (the improved Euler formula).
This is the initial value problem from example 13.2.2. Since

f(x, t) = −x3 + sin(tx)

substituting x(t) + f(x(t), t)∆t for x and t+ ∆t for t gives

f(x(t) + f(x(t), t)∆t, t+ ∆t) = − (x(t) + f(x(t), t)∆t)
3

+

sin ((t+ ∆t) (x(t) + f(x(t), t)∆t))

(verify this yourself — it is critical!). Hence, substituting for f(x(t), t) and
f(x(t) + f(x(t), t)∆t, x + ∆t) into equation 13.15 gives

x(t+ ∆t) ≈ x(t) +
∆t

2

[(

x3(t) + sin(tx(t))
)

+
(

(x(t) + f(x(t), t)∆t)
3

+ sin ((t+ ∆t) (x(t) + f(x(t), t)∆t))
)]

Figure 13.6 illustrates the approximate solution for the cases where ∆t =
0.2 and ∆t = 0.4. A program listing in C for this problem appears in
Appendix D.1.4. A program listing in FORTRAN for this problem appears
in Appendix D.2.4.

Comparison of second order Runge-Kutta and Taylor series methods

As is clear from the formulae in examples 13.2.2 and 13.3.2, the second order
Taylor series method and the second order Runge-Kutta method do not result
in exactly the same approximate solution. However, both methods are accurate
to the same order. Figure 13.6 illustrates an accurate solution (generated with
a very small time step) and solutions from the two second order approximate
methods for two different time steps. Clearly, the two approximate solutions
are not identical; however, they both demonstrated second order accuracy.

Interpretation of the second order Runge-Kutta formula

While the next two subsequent sections will present the results of exactly this
same approach carried out to third and fourth order, respectively, this approach
yields a rather easy interpretation beyond the fact that it is the result of the
above mathematical manipulations.
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Figure 13.6. A comparison of the solutions from examples
13.2.2 and 13.3.2. The second order Taylor series and sec-
ond order Runge-Kutta do not give the same approximate
solutions; however, both methods have the same order of
accuracy.
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Figure 13.7. Interpretation of the improved Euler method. It
uses the average of the slopes at the values at the beginning
of the time step and at the end of the time step, but with an
x(t+ ∆t) value computed using a first order approximation.

One way to think of the second order Runge-Kutta formula is that it is simply
Euler’s method using the average of the slopes of x(t) at the two endpoints of
the time interval, i.e., the average of the slope at x(t) and the slope at x(t+∆t).
Mathematically, this formula would be

x(t + ∆t) = x(t) +
1

2
[f(x(t), t) + f(x(t+ ∆t), t+ ∆t)] ∆t.

However, the term x(t+∆t) appears on both sides of the equation and is exactly
the term that is unknown. Also, unless the function f(x(t), t) is of a very special
form, it will generally be impossible to solve this equation for x(t + ∆t). The
idea is to replace the x(t+∆t) term that is on the right hand side of the equation
with an approximation for it; particularly, simply using Euler’s formula for it
on the right hand side. Hence,

x(t+ ∆t) = x(t) +
1

2
[f(x(t), t) + f(x(t) + f(x(t), t)∆t), t + ∆t)] ∆t.

Initially, this approach may intuitively be no better than Euler’s method since
Euler’s method was used on the right hand side of the equation. However, since
it was used in a term that is already multiplied by ∆t, the overall order of that
term will be (∆t)

2
and hence an order better in accuracy.
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This is conceptually illustrated in Figure 13.7 which illustrates the same
function, x(t) that was illustrated in Figures 13.4 and 13.5. Figure 13.7 il-
lustrates the same function, but plotted over a much shorter time interval.
In this figure, t = 1.5, ∆t = 0.5 and t + ∆t = 2.0. The slope of x(t) is
known and is f(x(t), t). The value of x(t + ∆t) is not known, and hence
f(x(t + ∆t), t + ∆t) cannot be directly computed. However, if ∆t is small,
then x(t+ ∆t) ≈ x(t) + f(x(t), t)∆t and also then

f(x(t+ ∆t), t+ ∆t) ≈ f(x(t) + f(x(t), t)∆t, t + ∆t),

which is illustrated graphically in Figure 13.7.

13.3.3 The third order Runge-Kutta method

The third order Runge-Kutta method (as well as the fourth order method in
the following subsection) is derived in exactly the same manner as the second
order Runge-Kutta method, except to third and fourth orders, respectively.
Hence the goal is to compute equation 13.11 through the (∆t)3 term without
explicitly computing the derivatives of f(x(t), t) but rather approximating those
derivatives to third order by evaluating f(x(t), t) at different x and t values. In
particular, equating

x(t + ∆t) = x(t) + f(x(t), t)∆t +
1

2

(

∂f

∂x
f +

∂f

∂t

)∣

∣

∣

∣

(x(t),t)

(∆t)
2

+

1

6

[(

∂2f

∂x2
f +

∂2f

∂x∂t

)

f +
∂f

∂x

(

∂f

∂x
f +

∂f

∂t

)

+

∂2f

∂x∂t
f +

∂2f

∂t2

]∣

∣

∣

∣

(x(t),t)

(∆t)
3

+ · · ·

and

x(t + ∆t) = x(t) + [c1f+

c2f (x+ c3f∆t, t+ c4∆t) + (13.16)

c5f(x+ c6f∆t+ c7f (x+ c8f∆t, t+ c9∆t)∆t, t+ c10∆t)] ∆t
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(if no arguments to f are specified, it is evaluated at (x(t), t)) to third order
gives

c1 =
1

6

c2 =
2

3

c3 =
1

2

c4 =
1

2

c5 =
1

6
c6 = −1

c7 = 2

c8 =
1

2

c9 =
1

2
c10 = 1. (13.17)

A detailed derivation appears in Appendix C.2.1.

A more standard expression of this solution is

x(t+ ∆t) = x(t) +
1

6
(v1 + 4v2 + v3) (13.18)

where

v1 = f (x(t), t) ∆t (13.19)

v2 = f

(

x(t) +
1

2
v1, t+

1

2
∆t

)

∆t

v3 = f (x(t) + 2v2 − v1, t+ ∆t)∆t. (13.20)

Example 13.3.3 Determine an approximate solution to

ẋ = −x3 + sin (tx)

x(0) = 1

using the third order Runge-Kutta method.

This is simply a matter of substituting into equations 13.18 and 13.19
as follows:

x(t+ ∆t) = x(t) +
1

6
(v1 + 4v2 + v3)



13.3. THE RUNGE-KUTTA METHOD 485

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  1  2  3  4  5

accurate solution
∆t = 0.5

∆t = 0.25

Figure 13.8. Accurate and approximate solutions for exam-
ple 13.3.3. The third order Runge-Kutta has a local trunca-
tion error proportional to (∆t)

4
and an overall accumulated

error proportional to (∆t)
3
.

where

v1 =
(

− (x(t))3 + sin (tx(t))
)

∆t

v2 =

(

−
(

x(t) +
1

2
v1

)3

+ sin

((

t+
1

2
∆t

)(

x(t) +
1

2
v1

))

)

∆t

v3 =
(

− (x(t) + v2)
3 + sin ((t+ ∆t) (x(t) + v2))

)

∆t.

An accurate solution determined with a very small time step as well
as approximate solutions for ∆t = 0.5 and ∆t = 0.25 are illustrated in
Figure 13.8. Note the substantial increase in accuracy when the time step
is cut by a factor of two. A program listing in C for this problem appears in
Appendix D.1.4. A program listing in FORTRAN for this problem appears
in Appendix D.2.4.

13.3.4 The fourth order Runge-Kutta method

Again, the idea is exactly the same as the previous Runge-Kutta derivations.
The famous fourth order Runge-Kutta formula is

x(t+ ∆t) = x(t) +
1

6
(k1 + 2k2 + 2k3 + k4) , (13.21)



486 CHAPTER 13. NUMERICAL METHODS

where

k1 = f (x(t), t) ∆t (13.22)

k2 = f

(

x(t) +
1

2
k1, t+

1

2
∆t

)

∆t

k3 = f

(

x(t) +
1

2
k2, t+

1

2
∆t

)

∆t

k4 = f (x(t) + k3, t+ ∆t)∆t.

Example 13.3.4 Determine an approximate solution to

ẋ = −x3 + sin (tx)

x(0) = 1

using the fourth order Runge-Kutta method.
This is simply a matter of substituting into equations 13.21 and 13.22

as follows:

x(t+ ∆t) = x(t) +
1

6
(k1 + 2k2 + 2k3 + k4)

where

k1 =
(

− (x(t))
3
+ sin (tx(t))

)

∆t

k2 =

(

−
(

x(t) +
1

2
k1

)3

+ sin

((

t+
1

2
∆t

)(

x(t) +
1

2
k1

))

)

∆t

k3 =

(

−
(

x(t) +
1

2
k2

)3

+ sin

((

t+
1

2
∆t

)(

x(t) +
1

2
k2

))

)

∆t

k4 =
(

− (x(t) + k3)
3
+ sin ((t+ ∆t) (x(t) + k3))

)

∆t.

An accurate solution determined with a very small time step as well
as approximate solutions for ∆t = 0.5 and ∆t = 0.25 are illustrated in
Figure 13.9. Note the substantial increase in accuracy when the time step
is cut by a factor of two and the generally better accuracy than the lower
order methods for the same time steps. A program listing in C for this
problem appears in Appendix D.1.4. A program listing in FORTRAN for
this problem appears in Appendix D.2.4.

13.4 Error Analysis

13.4.1 Local truncation error

In each of the methods we have considered, we have explicitly accounted for a
certain number of terms in the Taylor series expansion

x (t+ ∆t) = x(t)+f(x(t), t)∆t+
1

2!

df(x(t), t)

dt
(∆t)

2
+

1

3!

d2f(x(t), t)

dt2
(∆t)

3
+· · · .
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Figure 13.9. Accurate and approximate solutions for exam-
ple 13.3.4. The fourth order Runge-Kutta has a local trunca-
tion error proportional to (∆t)5 and an overall accumulated

error proportional to (∆t)
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.
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Method Local Truncation Error Overall Error

Euler ∼ (∆t)2 ∼ (∆t)
First order Taylor Series
First order Runge-Kutta

Second order Taylor Series ∼ (∆t)
3 ∼ (∆t)

2

Second order Runge-Kutta ∼ (∆t)3 ∼ (∆t)2

Improved Euler

Third order Taylor Series ∼ (∆t)4 ∼ (∆t)3

Third order Runge-Kutta ∼ (∆t)
4 ∼ (∆t)

3

Fourth order Runge-Kutta ∼ (∆t)5 ∼ (∆t)4

Table 13.1. Local truncation error and overall error for various
numerical method schemes for ∆t≪ 1. Equivalent methods
are listed in the same row.

The local truncation error is the error introduced at each time step that arises
because only a finite number of terms in the Taylor series expansion are used.
In contrast, the overall error or global error is the error at a given t. Since the
number of time steps required to reach a given t increases as ∆t decreases, the
overall error is proportional to one order less of ∆t than the local truncation
error.

13.4.2 Global error

13.4.3 Some subtleties

It is worth emphasizing that the analyses presented in sections 13.4.1 and 13.4.2
are true in general, but that does not preclude the existence of somewhat patho-
logical cases that seemingly defy the rules. Such cases are presented by way of
examples.

Example 13.4.1 Consider

ẋ+ 3x = 15 (cos 3t+ sin 3t)

x(0) = 0.

It is straightforward to verify that

x(t) = 5 sin 3t

is the solution to this initial value problem. The first three steps of the
output of the algorithm for the case where ∆t = 0.25 is as follows. The
first column is time, the second is the approximate solution at that time,
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the third column is the exact solution and the fourth column is the error:

t x(t) 5 sin 3t 5 sin 3t− x(t)
0.000000 0.000000 0.000000 0.000000
0.250000 3.750000 3.408194 −0.341806
0.500000 6.237479 4.987475 −1.250004

The first three time steps for the case where the time step has been reduced
in half to ∆t = 0.125 is as follows:

t x(t) 5 sin 3t 5 sin 3t− x(t)
0.000000 0.000000 0.000000 0.000000
0.125000 1.875000 1.831363 −0.043637
0.250000 3.603338 3.408194 −0.195144

Comparing the error after the first time step in each case, since the er-
ror has been reduced by approximately a factor of eight, it is tempting to
conclude that the method used must be a second order method, i.e., the
improved Euler method, 2nd order Runge-Kutta or a second order Taylor
series method. However, Figure 13.10 is a plot of the two approximate so-
lutions and the exact solution for the time interval 0 < t ≤ 1. Note that
the overall error has been reduced by a factor of two, rather than a factor
of four as would be expected by a second order method.

This apparent contradiction is resolved by studying the exact solution.
Since

x(t) = 5 sin 3t

the Taylor series for x(t) is

x(t+ ∆t) = x(t) +
dx

dt

∣

∣

∣

∣

t

(∆t) +
1

2

d2x

dt2

∣

∣

∣

∣

t

(∆t)
2

+ · · ·

= 5 sin 3t+ 15 cos3t (∆t) − 45

2
sin 3t (∆t)

2
+ · · ·

Since every other term is contains sin 3t, at t = 0, every other term is
zero. Thus when comparing the local truncation error by examining the
error after the first time step, a first order method will look like a second
order method due to the fact that the coefficient of the (∆t)

2
term in the

Taylor series is zero. Similarly, a third order method will look like a fourth
order one, etc.. After the first time step, however, the relevant coefficients
are nonzero, and hence the global error behaves as expected. A program
listing in C for this problem implementing Euler, 2nd order Runge-Kutta,
a 2nd order Taylor series expansion and 4th order Runge-Kutta appears in
Appendix D.1.4.
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Figure 13.10. Exact and approximate solutions for exam-
ple 13.4.1 exhibiting an overall accumulated error propor-
tional to ∆t.

13.5 Numerical Methods for Higher-Order Sys-

tems

All the examples so far have been for first order ordinary differential equations.
This section will present the relatively easy extension to systems of first order
equations and higher order ordinary differential equations and highlight the one
subtlety with respect to computer implementation of the algorithms.

13.5.1 Systems of first order, ordinary differential equa-
tions

As a matter of notation, the extension of each of the numerical methods pre-
sented in sections 13.1 through 13.3 to systems of differential equations is simply
a matter of converting the equations to vector notation. As a matter of sub-
stance is is a matter of considering multivariable Taylor series expansions. This
section will present the details of Euler’s method for systems of equations but
simply present the results for the other methods since providing the details
would be rather cumbersome with little added pedagogical insight.
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13.5.2 Higher order, ordinary differential equations

Consider the system of first order differential equations

ẋ1 = f1(x1(t), x2(t), . . . , xn(t), t) (13.23)

ẋ2 = f2(x1(t), x2(t), . . . , xn(t), t)

...
...

ẋn = f1(x1(t), x2(t), . . . , xn(t), t).

Expanding each of the xi in a Taylor series gives

x1(t+ ∆t) = x1(t) +
dx1

dt
∆t+

1

2

d2x1

dt2
(∆t)

2
+ · · ·

x2(t+ ∆t) = x2(t) +
dx2

dt
∆t+

1

2

d2x2

dt2
(∆t)

2
+ · · ·

...
...

xn(t+ ∆t) = xn(t) +
dxn
dt

∆t+
1

2

d2xn
dt2

(∆t)
2

+ · · · ,

or expressing the derivatives in terms of the functions fi gives

x1(t+ ∆t) = x1(t) + f1(x1(t), x2(t), . . . , xn(t), t)∆t +
1

2

df1
dt

(∆t)
2

+ · · ·

x2(t+ ∆t) = x2(t) + f2(x1(t), x2(t), . . . , xn(t), t)∆t +
1

2

df2
dt

(∆t)
2

+ · · ·
...

...

xn(t+ ∆t) = xn(t) + f1(x1(t), x2(t), . . . , xn(t), t)∆t +
1

2

dfn
dt

(∆t)
2
+ · · · ,

where the derivatives of each of the fi are evaluated at (x1(t), x2(t), . . . , xn(t), t).

13.5.3 Euler’s method

Euler’s method for a single first order equation was based upon simply keeping
the terms in the Taylor series of x(t) up through the ∆t term, and the same is
easily done in the case of a system of equations. In particular, Euler’s method
is simply written as

x1(t+ ∆t) = x1(t) + f1(x1(t), x2(t), . . . , xn(t), t)∆t (13.24)

x2(t+ ∆t) = x2(t) + f2(x1(t), x2(t), . . . , xn(t), t)∆t

...
...

xn(t+ ∆t) = xn(t) + fn(x1(t), x2(t), . . . , xn(t), t)∆t

Rewriting all of this in vector notation simplifies the expressions and fur-
thermore makes the relationship between the methods for systems of equations
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and for a single first order equation transparent. Let

x(t) =











x1(t)
x2(t)

...
xn(t)











(13.25)

and

f(x1(t), x2(t), . . . , xn(t), t) =











f1(x1(t), x2(t), . . . , xn(t), t)
f2(x1(t), x2(t), . . . , xn(t), t)

...
fn(x1(t), x2(t), . . . , xn(t), t)











or substituting the vector notation for x(t) from equation 13.25

f(x(t), t) =











f1(x(t), t)
f2(x(t), t)

...
fn(x(t), t)











.

Then the original system of equations expressed in equation 13.23 simply be-
comes

ẋ = f(x(t), t),

which looks remarkably like equation 13.1 with a few of the terms in bold face
font. Furthermore, expressing equation 13.24 in this notation reduces the ex-
pression to

x(t+ ∆t) = x(t) + f(x(t), t)∆t, (13.26)

which, again, is exactly the same as the equation for Euler’s method for a single
first order equation with the vector terms in bold face.

Example 13.5.1 Determine an approximate numerical solution to

ẋ = y

ẏ = (1 − x2)y − x

where

x(0) = 0.02

y(0) = 0.0

using Euler’s method. Substituting into equation 13.26 gives the system of
equations

x(t+ ∆t) = y(t)∆t

y(t+ ∆t) =
((

1 − (x(t))
2
)

y(t) − x(t)
)

∆t.
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Figure 13.11. Numerical solutions for the system of equations
example 13.5.1 using Euler’s method.

Figure 13.11 illustrates both components of the solution for 0 < t < 20.
A program listing in C for this problem appears in Appendix D.1.4. A
program listing in FORTRAN for this problem appears in Appendix D.2.4.

Observe that the right hand side of equation 13.26 is evaluated at time t. It
is very easy to write a computer program that does not quite do that, as the
following example illustrates.

Example 13.5.2 Consider the system from example 13.5.1 and the follow-
ing lines of code:

x = x + y*dt;

y = y + ((1.0 - x*x)*y - x)*dt;

This seemingly incorrectly implements Euler’s method because the value
for x, which appears on the right hand side of the second, y, equation has
already been changed from x(t) to x(t+ ∆t) by the first line.

While this approach deviates from the exact expression for Euler’s method
(and does indeed result in a different approximate solution since the second
equation uses the x(t+∆t) values instead of x(t)) it is inconsequential with
respect to the accuracy of the method. To see this consider the second
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equation using the “incorrect” method:

y(t) = y(t) + ((1 − x(t+ ∆t)x(t+ ∆t))y(t) − x(t+ ∆t))∆t

= y(t) + [(1 − (x(t) + f(x, y, t)∆t) (x(t) + f(x, y, t)∆t)) y(t) −
(x(t) + f(x, y, t)∆t)]∆t

= y(t) + [(1 − x(t)x(t)) y(t) − x(t)] ∆t+ O
(

(∆t)
2
)

,

where the notation O
(

(∆t)
2
)

means a collection of terms that multiply

(∆t)2.
The bottom line is that while this approach modifies the second equation

and “adds” some extra terms to the expression for y(t + ∆t), these added
terms are of a higher order than the accuracy of the method, and hence do
not affect the order of accuracy of the approach.

13.5.4 Second order Taylor Series

Extending equation 13.24 to the (∆t)
2

term gives

x1(t+ ∆t) = x1(t) + f1(x1(t), x2(t), . . . , xn(t), t)∆t+
1

2

df1
dt

(∆t)
2
(13.27)

x2(t+ ∆t) = x2(t) + f2(x1(t), x2(t), . . . , xn(t), t)∆t+
1

2

df2
dt

(∆t)
2

...
...

xn(t+ ∆t) = xn(t) + fn(x1(t), x2(t), . . . , xn(t), t)∆t+
1

2

dfn
dt

(∆t)2 .

Since each component of f possibly depends on each xi as well as t, and each of
the xi depends on t, we have

dfi
dt

=
∂fi
∂x1

f1 +
∂fi
∂x2

f2 + · · · + ∂fi
∂xn

fn +
∂fi
∂t
.

Expanding each derivative term in equation 13.27 would be cumbersome, so
to use a more compact notation, recall the definition of the Jacobian

∂f

∂x
=













∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
. . .

...
∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn













.

Using this, the the Taylor series to second order may be written in vector
form as

x(t + ∆t) = x(t) + f(x, t) +
1

2

∂f

∂x
f (∆t)

2
. (13.28)

Obviously, computing all the partial derivatives would be a hassle. There is
not much point to doing so since the same accuracy may be obtained by using
the Runge-Kutta methods, as is outlined subsequently.
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13.5.5 Fourth order Runge-Kutta

Rather than provide the details for every method, this section skips right to the
fourth order Runge-Kutta method. From it, the generalizations necessary to
implement the other methods for systems of equations should be obvious. Sim-
ilar to the manner in which Euler’s method generalized to the case of a system
of equations, fourth order Runge-Kutta may be expressed as the following. For

ẋ = f(x(t), t)

let

x(t + ∆t) = x(t) +
1

6
(k1 + 2k2 + 2k3 + k4) (13.29)

where

k1 = f (x(t), t) ∆t (13.30)

k2 = f

(

x(t) +
1

2
k1, t+

1

2
∆t

)

∆t

k3 = f

(

x(t) +
1

2
k2, t+

1

2
∆t

)

∆t

k4 = f (x(t) + k3, t+ ∆t)∆t.

Note that k1 through k4 are vector quantities since f(x(t), t) is a vector.

Example 13.5.3 Determine an approximate solution to

ẋ = y

ẏ = (1 − x2)y − x sin t

where

x(0) = 0.02

y(0) = 0.0

using the fourth order Runge-Kutta method.

Let

x(t) =

[

x(t)
y(t)

]

=

[

x1(t)
x2(t)

]

and

f(x(t), t) =

[

x2(t)
(

1 − (x1(t))
2
)

x2(t) − x1(t) sin t

]

.
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Then

k1 =

[

k11

k21

]

=

[

x2
(

1 − (x1)
2
)

x2 − x1 sin t

]

∆t

k2 =

[

k12

k22

]

=

[

x2 + 1
2k21

(

1 −
(

x1 + 1
2k11

)2
)

(

x2 + 1
2k21

)

−
(

x1 + 1
2k11

)

sin
(

t+ 1
2∆t

)

]

∆t

k3 =

[

k13

k23

]

=

[

x2 + 1
2k22

(

1 −
(

x1 + 1
2k12

)2
)

(

x2 + 1
2k22

)

−
(

x1 + 1
2k12

)

sin
(

t+ 1
2∆t

)

]

∆t

k4 =

[

k14

k24

]

=

[

x2 + k23
(

1 − (x1 + k13)
2
)

(x2 + k23) − (x1 + k13) sin (t+ ∆t)

]

∆t,

where all of the xi terms are evaluated at t. Then finally

x(t+ ∆t) = x(t) +
1

6
(k1 + 2k2 + 2k3 + k4) .

A program listing in C for this problem appears in Appendix D.1.4. A
program listing in FORTRAN for this problem appears in Appendix D.2.4.

Note that when writing a program for the system in example 13.5.3, it may
be tempting to compute all the k values for the x term first, followed by all the
k values for the y term. However, note that since the equations are coupled,
the k12 term (the “second” x term), for example, depends upon k21 (the “first”
y term). Hence, it is necessary to compute all the components of the vector k1

first, followed by all the components of k2, etc. The following example illustrates
this fact.

Example 13.5.4 Compute an approximate numerical solution for

ẋ = y

ẏ = −x,

where

x(0) = 0

y(0) = 1
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Figure 13.12. Approximate numerical solutions for the sys-
tem of equations from example 13.5.3 using the fourth order
Runge-Kutta method.

using the fourth order Runge-Kutta method. Compare the approximate
solution when the terms in the algorithm are computed in the correct and
incorrect order.

Using the notation from example 13.5.3, the correct order of computa-
tion for the k values is

k11, k21, k12, k22, k13, k23, k14, k24.

By comparison, the incorrect, but tempting order, is

k11, k12, k13, k14, k21, k22, k23, k24.

Figure 13.13 illustrates an accurate solution and compares the approximate
solutions for x(t) for both cases when ∆t = 0.4. Clearly, the correct ap-
proach produces a much more accurate approximate solution.
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Figure 13.13. Comparison of approximate solutions from ex-
ample 13.5.4 when making a common error in implementing
the fourth order Runge-Kutta algorithm for systems of first
order differential equations.
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Figure 13.14. Vibrating string.

13.6 Convergence

13.7 Numerical Methods for Partial Differential
Equations

The focus of this section will be on the so-called finite difference method for
partial differential equations. The main idea is, similar to the manner in which
time was discritized for determining a numerical approximation to the time
derivative for ordinary differential equations, that the spatial dimension(s) must
be similarly discritized for partial differential equations with an independent
variable corresponding to the spatial direction. Doing so will result in a system
of coupled ordinary differential equations, which then may be solved using the
methods from the previous sections of this chapter.

13.7.1 Finite Difference Approximation

Consider, for example, the the function u(x, t) that describes the solution to the
wave equation

α2 ∂
2u

∂x2
=
∂2u

∂t2
. (13.31)

Obviously, if the solution is known and x is fixed, then the solution is only a
function of time. In particular, consider the fixed x values, n∆x where n =
0, 1, 2, . . . , N (so L = N∆x) and ∆x ≪ 1 is a fixed. In that case, define un(t)
to be

un(t) = u(n∆x, t) n = 0, 1, 2, . . . , N

which is the motion of the string at the fixed location x = n∆x that is only a
function of time. This is illustrated in Figure 13.14 for the string example.

Since un(t) is only a function of time, it stands to reason that it is governed
by an ordinary differential equation with independent variable t. The purpose of
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the finite difference method is to approximate the second order spatial derivative
on the left hand side of equation 13.31 with values of u(x, t) at other fixed values.

In particular, consider approximating the first partial derivative with respect
to x at x = n∆x. This is simple enough using the definition of the derivative

∂un(t)

∂x
≈ un(t) − un−1(t)

∆x

if ∆x ≪ 1. Now, since the second derivative is the derivative of the derivative,
then

∂2un(t)

∂x2
≈

∂un+1(t)
∂x

− ∂un(t)
∂x

∆x

≈

(

un+1(t)−un(t)
∆x

)

−
(

un(t)−un−1(t)
∆x

)

∆x

=
un+1(t) − 2un(t) + un−1(t)

(∆x)
2 .

Finally, substituting this approximation back into equation 13.31 gives

α2 un+1(t) − 2un(t) + un−1(t)

(∆x)2
=
d2un(t)

dt2
. (13.32)

Since the boundary conditions are specified, u0(t) and uN (t) are specified,
which means equation 13.32 is N − 1 ordinary, linear, constant coefficient, ho-
mogeneous, second order, coupled differential equations. In a more expanded
form (and dropping the explicit dependence of un on t)

ü1 = (u2 − 2u1 + u0)

(

α2

∆x

)2

ü2 = (u3 − 2u2 + u1)

(

α2

∆x

)2

ü3 = (u4 − 2u3 + u2)

(

α2

∆x

)2

... =
...

üN−1 = (uN − 2uN−1 + uN−2)

(

α2

∆x

)2

.

Thus, determining a numerical approximation to the wave equation amounts
to determining the numerical approximations to these N−1 ordinary differential
equations. Since this is a system of ordinary differential equations, an approx-
imation method will be necessary for the time derivative as well, and may be,
for example, implemented using Euler’s method, Runge-Kutta, etc.
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Figure 13.15. Numerical approximate solution for wave equa-
tion in example 13.7.1 with ∆x = 0.03 and ∆t = 0.000225.

Example 13.7.1 Use the finite difference method and Euler’s method to
determine an approximate solution to

α2 ∂
2u

∂x2
=
∂2u

∂t2

where L = 3 and α = 2, subjected to the boundary conditions

u(0, t) = 0

u(L, t) = 0

and initial conditions

u(x, 0) =

{

x x ≤ 1
3−x

2 1 < x ≤ 3

∂u

∂t

∣

∣

∣

∣

t=0

= 0.

This is the same system that was solved analytically in example 12.1.2.

The solution for ∆x = 0.03 and ∆t = 0.000225 for various t values is
illustrated in Figure 13.15. Close examination indicates that the solution is
not sufficiently accurate. There appears to be dissipation that is not present
in the exact solution from example 12.1.2.
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Figure 13.16. Numerical approximate solution for wave equa-
tion in example 13.7.1 with ∆x = 0.03 and ∆t = 0.000225.

At this point it is not necessarily clear whether to reduce ∆x, ∆t or both.
Without further information, let us simply reduce ∆x by a factor of four to see
if there is improvement.

Example 13.7.2 This example considers the same system with a smaller
∆x = 0.0075.

The solution for the same system as in example 12.1.2 with ∆x = 0.0075
and ∆t = 0.000225 for various t values is illustrated in Figure 13.16. This
solution, unfortunately, is not even close to the solution from example 12.1.2.
Clearly, reducing ∆x did not have the intended consequence.

The result from example 13.7.2 should be surprising even to the most casual
reader. In an attempt to increase the accuracy of the solution, the size of
∆x was decreased by a factor of four and the result was that the approximate
solution became unstable. Recall that this system is exactly the same as from
example 12.1.2, so we know that the exact solution is stable, so the approximate
solution became worse instead of better when ∆x was decreased. The reason
this happened is that there is a relationship between ∆x and ∆t that is necessary
for the stability of the numerical solution. Investigating this will be the subject
of the next section.
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13.7.2 Numerical stability

Heat equation

Let us consider the heat equation with homogeneous boundary conditions

∂u

∂t
= α2 ∂

2u

∂x2

u(0, t) = 0

u(L, t) = 0

u(x, 0) = f(x).

From section 12.3, the exact solution is given by

u(x, t) =

∞
∑

n=1

cne
−α2n2π2t

L2 sin
nπx

L

cn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.

Since the solution for u(x, t) is the superposition of an infinite number of
modes, let us consider what happens to one mode when it is used in the finite
difference method. In particular, consider

u(x, t) = cne
−α2n2π2t

L2 sin
nπx

L

for some integer n. Using Euler’s method for the time steps and the finite
difference method for the second derivative,

u(x, t+ ∆t) = u(x, t) +
( α

∆x

)2

(u(x+ ∆x, t) − 2u(x, t) + u(x− ∆x, t)) ∆t

= cne
−α2n2π2t

L2 sin
nπx

L
+
( α

∆x

)2

cne
−α2n2π2t

L2

(

sin
nπ (x+ ∆x)

L
−

2 sin
nπx

L
+ sin

nπ (x− ∆x)

L

)

∆t

= cne
−α2n2π2t

L2 sin
nπx

L
+
( α

∆x

)2

cne
−α2n2π2t

L2 ·
((

sin
nπx

L
cos

nπ∆x

L
+ sin

nπ∆x

L
cos

nπx

L

)

− 2 sin
nπx

L
(

sin
nπx

L
cos

nπ∆x

L
− sin

nπ∆x

L
cos

nπx

L

))

∆t

= cne
−α2n2π2t

L2 sin
nπx

L
+
( α

∆x

)2

cne
−α2n2π2t

L2 ·
(

2 sin
nπx

L
cos

nπ∆x

L
− 2 sin

nπx

L

)

∆t

= cne
−α2n2π2t

L2 sin
nπx

L

[

1 + 2∆t
( α

∆x

)2
(

cos
nπ∆x

L
− 1

)]

.(13.33)
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At this point a little interpretation is required.

1. The value for the solution of the nth mode at time t+ ∆t is the value at
time t scaled by the term in the parentheses. If the term in parentheses
has a magnitude greater than one, the mode will grow; conversely, if the
magnitude is less than one, it will decay.

2. Note that

−2 ≤ cos
nπ∆x

L
− 1 ≤ 0.

Hence, when n = N , this term will have the largest magnitude, i.e.,

∣

∣

∣

∣

cos
Nπ∆x

L
− 1

∣

∣

∣

∣

= 2.

3. Do not be tempted to assume that cos nπ∆x
L

≈ 1 because ∆x is small,
because it may be the case that n is large.

4. The exact solution for the left hand side of the equation is

u(x, t+ ∆t) = cne
−α2n2π2(t+∆t)

L2 sin
nπx

L

= cn sin
nπx

L
e−

α2n2π2t

L2 e−
α2n2π2∆t

L2 .

Comparing this with the left hand side of equation 13.33 we can see that
the solution will be exactly correct if ∆t is such that

e−
α2n2π2∆t

L2 = 1 + 2∆t
( α

∆x

)2
(

cos
nπ∆x

L
− 1

)

.

Unfortunately, this is a transcendental equation which will be generally
difficult to solve; furthermore, different values for n will require different
∆t.

5. Pursuing the notion developed above that n = N will be the most unstable
mode, let n = N and furthermore, pick ∆t so that the right hand side of
the equation is zero, i.e.,

∆t =
1

2

(

∆x

α

)2

.

Substituting this into the right hand side gives

e−
α2n2π2∆t

L2 = e−
α2n2π2 1

2 (∆x
α )2

.

L2

= e−
π2

2 .
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Wave equation (incomplete and wrong!)

In order to establish some insight into the reason that reducing ∆x made the
situation worse in examples 13.7.1 and 13.7.2, consider the exact solution

u(x, t) =

∞
∑

n=1

bn sin
nπx

L
cos

αnπt

L
.

In example 13.7.2 it appears that the higher order modes were unstable. To
understand the mechanism for this, substitute one of the modes from the exact
solution into equation 13.32. Let u(x, t) be only the ith mode

u(x, t) = bi sin
iπx

L
cos

αiπt

L
1 < i < N.

Then, Euler’s method should be of the form

u(x, t+ ∆t) = u(x, t) + u̇(x, t)∆t

u̇(x, t+ ∆t) = u̇(x, t) + ü(x, t)∆t,

where u̇(x, t) and ü(x, t) are the first and second partial derivatives respectively
of u(x, t) with respect to time. Substituting the assumed form for u(x, t) into
these equations gives

u(x, t+ ∆t) = u(x, t) − bi
αiπ

L
sin

iπx

L
sin

αiπt

L
∆t

u̇(x, t + ∆t) = u̇(x, t) − bi

(

αiπ

L

)2

sin
iπx

L
cos

αiπt

L
∆t. (13.34)

Note that these represent the manner in which one mode in the exact solution
should appear in Euler’s formula. If the terms multiplying ∆t in either equation
are larger or smaller, then the contribution of the ith mode to the exact solution
will either decay or grow, when, in fact, the magnitude should remain constant.
Since the first equation is simply the integral of the second, let us consider
equation 13.34 only.

Using the approximation for the second derivative from equation 13.32,,
Euler’s method for u̇i(t) is

u̇(x, t+ ∆t) = u̇(x, t) +
( α

∆x

)2

(u(x+ ∆x, t) − 2u(x, t) + u(x− ∆xt)) ∆t

= u̇(x, t) +
( α

∆x

)2

bi cos
αiπt

L

(

sin
iπ (x+ ∆x)

L
− 2 sin

iπx

L
+ sin

iπ (x− ∆x)

L

)

∆t

= u̇(x, t) +
( α

∆x

)2

bi cos
αiπt

L

(

2 sin
iπx

L
cos

iπ∆x

L
− 2 sin

iπx

L

)

∆t

= u̇(x, t) + 2
( α

∆x

)2

bi cos
αiπt

L
sin

iπx

L

(

cos
iπ∆x

L
− 1

)

∆t (13.35)

= u̇(x, t) − 4
( α

∆x

)2

bi cos
αiπt

L
sin

iπx

L
sin2 iπ∆x

2L
∆t. (13.36)
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Note that the largest the sin2 term can be is 1 and this will occur when
i∆x
2L = 1, or when i = 2L

∆x = 2N . For this mode, the magnitude of u(x, t)

is bi and the magnitude of u̇(x, t) is αiπ
L
bi. Referring to equation 13.36, the

magnitude of the right hand side will be

2αNπ

L
=

2αNπ

L
− 4

( α

∆x

)2
(

sin2 2Nπ∆x

L

)

∆t,

or
2απ

∆x
=

2απ

∆x

Finish this mess!!!

13.8 Exercises

Problem 13.1 Consider

ẋ+ x = sin t

x(0) = −1.

1. Write and submit a listing of a computer program to compute an
approximate numerical solution for this differential equation using

(a) Euler’s method;

(b) the second order Taylor series method; and,

(c) the fourth order Runge-Kutta method.

You may decided to write three separate programs or include all three
methods in one program.

2. For each of the following time steps

(a) ∆t = 0.5

(b) ∆t = 0.25

(c) ∆t = 0.125

(d) ∆t = 0.01

submit a plot of the exact solution and the approximate solution using
each of the three methods for the time interval t = 0 to t = 10. Thus,
there should be four plots and each plot should have four curves.

3. Submit a plot illustrating the difference between the exact solution
and the numerically computed solutions for the same time steps and
time interval as in part 2 above. In each case indicate the factor by
which the global error changes as the time step changes and indicate
whether such a factor would be expected for the global truncation
error for the corresponding method.
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4. What is the difference between the exact solution and the numeri-
cally computed solutions after the first time step for each method and
time step size above? Determine the factor by which this error (the
local truncation error) changes as the time step changes and indicate
whether such a factor corresponds to what is theoretically expected.
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Chapter 14

Introduction to Nonlinear
Systems

A quick review of the subject matter of this book up to this point will confirm
the fact that, with the exception of some specific first order, ordinary differen-
tial equations which happen to be exact or separable, all the solution methods
covered so far have only been applicable to linear differential equations. While
the study of nonlinear differential equations is extremely interesting, it is also
substantively difficult and rather advanced. This chapter will only introduce
some of the reasons why nonlinear systems are important, why they are inter-
esting, and the main tool used to deal with them, which is to simply determine
the linear differential equation that best approximates the nonlinear equation.

14.1 Motivation: Complexity of Nonlinear Sys-
tems

By way of one example, this section illustrates a couple aspects of the complexity
of nonlinear systems and introduces the the phase plane, which is one specific
tool that is useful for two dimensional systems. The example is the famous
Duffing equation and both the forced and unforced case will be considered.

Example 14.1.1 Consider

ẍ+ bẋ− x+ x3 = 0. (14.1)

Since this equation is nonlinear in x, none of the methods considered pre-
viously in this text are applicable to determine a solution, so this example
will solve it numerically. Using the fourth order Runge-Kutta method to
determine an approximate solution to this equation with

b = 0.2

x(0) = −1

509
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Figure 14.1. Solutions for equation 14.1 from example 14.1.1
for two slightly different initial conditions.

and ẋ(0) equal to 10.2 and 10.3, the solutions are illustrated in Figure 14.1.
The obvious feature of these two solutions is that while the initial con-

dition was changed very slightly, and indeed the two solutions were nearly
indistinguishable up until approximately t = 20, near that time the solu-
tions rather radically diverged and ultimately appeared to approach differ-
ent steady state values. While it is the case that such features are very
sensitive to numerical errors, it will hopefully be clear subsequently that
such a feature is inherent in this system and is actually fundamental fea-
ture of it.

This example illustrates the fact that solutions to nonlinear differen-
tial equations may be sensitive to initial conditions and furthermore may
have multiple equilibria. In this case, the equilibria illustrated are the two
steady state solutions in Figure 14.1; namely, limt→∞ (x(t), ẋ(t)) = (1, 0)
and limt→∞ (x(t), ẋ(t)) = (−1, 0).

Remark 14.1.2 The approximate numerical solutions used in this exam-
ple were computed with a very small time step. As of the time of this
writing other numerical packages may give a slightly different answers. In
particular, since the solutions are so sensitive to initial conditions, slightly
different initial conditions may be necessary to produce a similar result. ⋄

The following example illustrates the fact that an additional complexity,
namely, a time-varying inhomogeneous term, may result in a chaotic solution.
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Figure 14.2. Chaotic solution to equation 14.2 from exam-
ple 14.1.3.

Example 14.1.3 Consider

ẍ+ bẋ− x+ x3 = γ cosωt, (14.2)

where

b = 0.2

γ = 0.3

ω = 1.0.

A plot of a numerical solution to this equation with

x(0) = 0

ẋ(0) = 0

is illustrated in Figure 14.2.

While any precise definition of the term chaos is beyond the scope of
this book, it is clear from the solution illustrated in Figure 14.2 that the
numerical solution is “chaotic” at least in the sense of the common use of the
term. At least for the time interval plotted, the solution does not appear to
repeat, i.e., it is non-periodic, and seems to evolve in a rather unpredictable
way.
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ẋ
(t

)

ẋ(0) = 10.2
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Figure 14.3. Phase portraits for solutions to equation 14.1
from example 14.1.1.

14.1.1 The phase plane

The phase portrait of a solution to a differential equation is a parametric plot
of the solution versus its derivatives up to the derivative that is one less than
the order of the differential equation. The parameter that varies in the plot is
the independent variable, i.e., usually t. For a second order system, a phase
portrait is two dimensional and the domain of the plot is often referred to as
the phase plane.

Example 14.1.4 The phase portraits for the solutions from Examples 14.1.1
and 14.1.3 are illustrated in Figures 14.3 and 14.4 respectively.

While arguably there is not much to be gained from the second figure,
Figure 14.4, the first figure, Figure 14.3 is somewhat enlightening. Judging
from the point where the two solutions diverge after closely tracking each
other for quite a long time, it is reasonable to infer that the geometric
structure of the origin in the phase plane may be significant. In fact, as will
be developed subsequently, this is indeed the case.

14.1.2 Poincare sections

As indicated in example 14.1.4, other than the chaotic nature of the solution,
there is not much to observe from the solution to equation 14.2 illustrated in
Figure 14.4. However, one slight modification of the manner in which the data
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Figure 14.4. Phase portrait for solutions to equation 14.2.

is illustrated reveals some very interesting structure to the solution. In partic-
ular, instead of plotting the complete solution curves x(t) vs. ẋ(t), Figure 14.5
illustrates the discrete values of x(t) vs. ẋ(t) for t = 0, 2π, 3π, 4π . . ..

Example 14.1.5 Considering again the system in equation 14.2 and com-
puting an approximate numerical solution for the same parameter values
and initial conditions, but for a much larger time range 0 ≤ t < 3000π, a
plot of the discrete values of x(t) versus ẋ(t) for the t = 2mπ is illustrated
in Figure 14.5.

Note that a rather coherent structure becomes apparent when the data
is presented in this manner. This topic will not be pursued further in this
text, but the reader should be at least made aware of its existence and its
name: a strange attractor.

14.2 Linearization

One obvious approach to attempt to determine at least the basic features of a
nonlinear differential equation is to determine a differential equation that we can
solve that is a good approximation to the nonlinear differential equation. In the
case where the nonlinear equation is homogeneous and has constant coefficients,
if a good linear approximation can be determined then, since it can be solved,
at least some of the features of the solution of the nonlinear equation may be
determined from the solution to the linear one.
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Figure 14.5. Poincare section for the forced Duffing equation
in example 14.1.3.

The initial approach presented will be to simply compute a Taylor series for
all of the nonlinear terms about some point and keep only the first two terms
from the Taylor series, which will result in a linear differential equation. The
following example illustrates this approach.

Example 14.2.1 Consider

ẍ+ ẋ− 2x+ x3 = 0. (14.3)

Determine a linear approximation for this equation by substituting a Taylor
series for the x3 term, where the Taylor series is computed about x =

√
2.

Since the Taylor series for x3 about x = x0 is

x3 = x3
0 + 3x2

0(x− x0) + 3x0(x− x0)
2 + · · ·

keeping only the first two terms gives

ẍ+ ẋ− 2x+
(

x3
0 + 3x2

0 (x− x0)
)

= 0

ẍ+ ẋ+
(

3x2
0 − 2

)

x = 2x3
0 (14.4)

which is a constant coefficient, linear, inhomogeneous differential equation
which we know how to solve.

Substituting x0 =
√

2 equation 14.4 gives

ẍ+ ẋ+ 4x = 4
√

2, (14.5)



14.2. LINEARIZATION 515

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 1.38 1.39 1.4 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49

nonlinear
linear

x(t)

ẋ
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Figure 14.6. Comparison of solutions of equation 14.3 (non-
linear) with equation 14.5 (linear approximation) with initial
conditions near x =

√
2.

which is easily solved. The particular solution is xp =
√

2 and substituting
eλt into the homogeneous equation gives

λ2 + λ+ 4 = 0 ⇐⇒ λ =
−1

2
± i

√
15

2
,

so the solution to the linear approximation is

x(t) = c1e
− 1

2 t cos

√
15

2
t+ c2e

− 1
2 t sin

√
15

2
t+

√
2. (14.6)

Intuitively, in example 14.2.1, the solutions to the linear approximation,
equation 14.5 will be approximately the same as the solutions to equation 14.3
as long as x ≈

√
2. Since only the first two terms of the Taylor series were used,

then the neglected terms, which were the higher powers of (x− x0) will only be
small if x stays near

√
2. The following example illustrates this fact.

Example 14.2.2 Figure 14.6 illustrates the solutions to equation 14.3 and
14.5 for x(0) = 1.4 and ẋ(0) = 0.2. Note that the approximate solution
closely tracks the solution to the nonlinear equation.

If the initial conditions are moved farther away from the point of lin-
earization, say x(0) = 1.0 and ẋ(0) = 0.2, as is illustrated in Figure 14.7 the
linear solution is not as good of an approximation to the nonlinear solution
as was the case illustrated in Figure 14.6.
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Figure 14.8. Comparison of solutions of equation 14.3 (non-
linear) with equation 14.5 (linear approximation) with initial
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However, if the initial conditions are farther away from x =
√

2, say
x(0) = −1, ẋ(0) = 0.0, then the two solutions are as illustrated in Fig-
ure 14.8. Since the solution is not near the point of linearization, the so-
lution to the linearized differential equation is not even remotely a good
approximation to the solution to the nonlinear equation.

Now, let us investigate what is happening near the origin.

Example 14.2.3 Determine the best linear approximation to

ẍ+ ẋ− 2x+ x3 = 0

for values of x near 0. Substituting x0 = 0 into equation 14.4 gives

ẍ+ ẋ− 2x = 0,

which is linear, constant coefficient, homogeneous and ordinary, so solutions
are of the form x = eλt. Substituting gives the characteristic equation

λ2 + λ− 2 = 0 ⇐⇒ λ = 1,−2.

Hence, the general solution is of the form

x(t) = c1e
t + c2e

−2t.

Note that this solution is unstable unless c1 = 0. Computing ẋ(t) gives

x(t) = c1e
t + c2e

−2t

ẋ(t) = c1e
t − 2c2e

−2t.

Expressing this in vector form gives
[

x(t)
ẋ(t)

]

= c1

[

1
1

]

et + c2

[

1
−2

]

e−2t. (14.7)

Considering the solution in this manner indicates that in the phase plane,
any initial condition which is exactly a multiple of the vector

[

x(0)
ẋ(0)

]

= α

[

1
−2

]

will result in c1 = 0 and hence will be stable, i.e.,

lim
t→∞

[

x(t)
ẋ(t)

]

=

[

0
0

]

.

Any other initial condition will have a nonzero c1 and hence will be unstable.
If the initial condition is very close to the

[

x(0)
ẋ(0)

]

= α

[

1
−2

]
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Figure 14.9. Solution of the linear approximation to equa-
tion 14.3 near the origin.

vector, then c1 may be very small and the stable solution may initially
dominate; however, due to the exponential term the solution will ultimately
be unstable.

In Figure 14.9 of the six solutions plotted, three start in the upper left
portion of the plot and initially move toward the origin. Similarly, the other
three solutions start in the lower right portion of the graph and initially head
to the origin as well. However, ultimately the et term dominates and all six
solutions ultimately move away from the origin and grow unbounded.

Figure 14.10 illustrates the solutions to the linear approximation near
the origin (equation 14.4 with x0 = 0) and the solution to the nonlinear
equation (equation 14.3) with the same initial conditions near the origin.
While initially the solutions are similar in nature, due to the instability of
both solutions they both ultimately leave the domain in which the linear
equation is a good approximation to the nonlinear equation.

In principle, it is appropriate to compute a Taylor series approximation for
any nonlinear terms in a differential equation and keep only the linear terms to
determine some of the features of the solution of the nonlinear equation near
the point about which the linearization was computed. However, the main
utility of linearization is to determine a linear approximation to a differential
equation near an equilibrium point since that will provide information about
the stability of the equilibrium point. Furthermore, if the equilibrium point is
indeed stable, then the solutions to the linear approximation will be close to



14.2. LINEARIZATION 519

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

x(t)

ẋ
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Figure 14.10. Comparison of solutions of linear approxima-
tion and nonlinear solution for initial conditions near the
origin.

the solutions to the nonlinear equation. The following example illustrates the
fact that while a linear approximation computed near a non-equilibrium point
gives some information about the nonlinear solution, it is only transiently valid
and furthermore, information regarding an equilibrium point of the linearized
equation has nothing to do with the nonlinear system.

Example 14.2.4 Determine a linear approximation to

ẍ+ ẋ− 2x+ x3 = 0 (14.8)

near x0 = 4. Substituting x0 = 4 into equation 14.4 gives

ẍ+ ẋ+ −2x (64 + 48 (x− 4)) = 0

ẍ+ ẋ+ 46x = 128 (14.9)

which has the general solution

x(t) = c1e
− 1

2 t cos

√
183

2
t+ c2e

− 1
2 t sin

√
183

2
t+

64

23
.

A plot of the the solution to the nonlinear equation and the linear approx-
imation is illustrated in Figure 14.11.

Note that while the solutions stay near x = 4, they are nearly identical.
However, as expected, as they diverge from x = 4 the linear approximation
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Figure 14.11. Solutions to equation 14.8 and 14.9.

is increasingly less valid. Also note that the linearized equation has an
equilibrium at x = 64

23 which is not an equilibrium for the nonlinear equation.
The stability of the equilibrium point for the linearized equation at x = 64

23
has nothing to do with the stability or instability of the nonlinear equation
near that point.

Typically, linear approximations to nonlinear differential equations are only
computed about equilibrium points. This is due to the fact that the linear ap-
proximation about a non-equilibrium point in general will have an equilibrium
that is not the same as the nonlinear equation. Furthermore, in applications
such as feedback control, stabilizing a system to an equilibrium is typically the
desired goal and hence it is desirable for the linearized approximation of the
nonlinear equation to have an equilibrium in common.

The next sections considers the more standard and systematic approach to
doing this; namely, if necessary, converting a system of higher order differential
equations to s system of first order equations and computing the Jacobian.

14.3 Jacobian Linearization

This will initially be developed by mirroring the example from the previous
section, example 14.2.1.

Example 14.3.1 Convert

ẍ+ ẋ− 2x+ x3 = 0 (14.10)
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into a system of two first order equations. Using the standard approach of
letting

x1 = x

x2 = ẋ

the following is equivalent to equation 14.10

d

dt

[

x1

x2

]

=

[

x2

−x2 + 2x1 − x3
1

]

. (14.11)

Adopting a notation that mirrors that of chapter 6, let

ξ =

[

x1

x2

]

and

f(ξ) = f(x1, x2) =

[

x2

−x2 + 2x1 − x3
1

]

.

Observe carefully that in example 14.3.1, both ξ and f(ξ) are vectors and
that the whole system may be represented abstractly as

ξ̇ = f(ξ),

as long as the original equation is homogeneous. Since it may be represented
so compactly, even though it is, in general, a system of differential equations, it
may simply be referred to a a or the differential equation.

Definition 14.3.2 A point, ξ0 is an equilibrium point of

ξ̇ = f(ξ)

if
f(ξ0) = 0,

where the 0 on the right hand side of the equation is a vector of zeros that is
the same dimension as ξ and f(ξ). ⋄

Note, that if ξ0 is an equilibrium point, then

ξ̇ = f(ξ0) = 0

so
ξ(t) = ξ0

is a solution to
ξ̇ = f(ξ)

if
ξ(0) = ξ0.
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Example 14.3.3 Determine the equilibrium points for equation 14.11. Clearly,
x2 = 0 is necessary to make the first component vanish. For the second com-
ponent any of the three x1 = 0 or x1 = ±

√
2. So, any of the three vectors

ξ0 =

[

0
0

]

,

[ √
2

0

]

or

[

−
√

2
0

]

when substituted into equation 14.11 will result in

f(ξ0) =

[

0
0

]

.

First we will define the Jacobian and by referring to the previous examples
will show that it may be used to determine an equivalent linear approximation
to a nonlinear equation near an equilibrium point.

Definition 14.3.4 For a vector valued function, f of a vector

ξ =











ξ1
ξ2
...
ξn











,

denoted by

f(ξ) =











f1 (ξ1, ξ2, . . . , ξn)
f2 (ξ1, ξ2, . . . , ξn)

...
fm (ξ1, ξ2, . . . , ξn)











,

the Jacobian matrix for f(ξ) is given by

∂f

∂ξ
=













∂f1
∂ξ1

∂f1
∂ξ2

· · · ∂f1
∂ξn

∂f2
∂ξ1

∂f2
∂ξ2

· · · ∂f2
∂ξn

...
...

...
...

∂fm

∂ξ1

∂fm

∂ξ2
· · · ∂fm

∂ξn













where f(ξ) ∈ Rm, i.e., f is m elements “tall” and ξ ∈ Rn, i.e., ξ is n elements
tall. ⋄

For a system of n first order homogeneous differential equations, the equa-
tions themselves will only depend on the n state variables; hence, for systems
of first order equations, the Jacobian matrix will always be square. Now, we
can define a linearization that will be equivalent to the Taylor series method
outlined previously.

Definition 14.3.5 For the system of n first order, homogeneous differential
equations

ξ̇ = f(ξ) (14.12)
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where f(ξ0) = 0, the linear approximation to equation 14.12 about ξ0 is given
by

ξ̇ =
∂f

∂ξ

∣

∣

∣

∣

ξ0

(ξ − ξ0) . (14.13)

⋄

Let us compare the results of using this linearization method with the lin-
earization approximations determined using Taylor series in the previous exam-
ples.

Example 14.3.6 Consider

ẍ+ ẋ− 2x+ x3 = 0,

which, when converted to two first order equations is given by

d

dt

[

x1

x2

]

=

[

x2

−x2 + 2x1 − x3
1

]

,

where

ξ =

[

x1

x2

]

=

[

x
ẋ

]

.

The Jacobian for this system of equations is

df

dξ
=

[

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]

=

[

0 1
2 − 3x2

1 −1

]

.

Evaluated at the equilibrium point

ξ0 =

[

0
0

]

and substituting into equation 14.13 gives

ξ̇ =
d

dt

[

x1

x2

]

=

[

0 1
2 −1

] [

x1

x2

]

.

From example 14.2.3, the Taylor series linearization about x0 = 0 was

ẍ+ ẋ− 2x = 0,

which, when converted to two first order equations, gives the same result.
Similarly, at

ξ0 =

[ √
2

0

]

the linearization is

d

dt

[

x1

x2

]

=

[

0 1
−4 −1

]([

x1

x2

]

−
[ √

2
0

])

.

Referring back to example 14.2.1, the Taylor series linearization resulted in

ẍ+ ẋ+ 4x = 4
√

2,

which is the same.
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It is worth remarking that the general equation for the Taylor series of a
vector valued function of several variables about the point ξ0 is of the form

f(ξ) = f(ξ0) +
∂f

∂ξ

∣

∣

∣

∣

ξ0

(ξ − ξ0) + · · · .

Since ξ0 was assumed to be an equilibrium point in the above development,
what is obviously happening is that f(ξ) is replaced by the first two terms in
its Taylor series, but the first term f(ξ0) happens to be zero.

Finally, while there is not anything wrong with equation 14.13, the inhomo-
geneous term resulting from the “−ξ0” term in (ξ − ξ0) adds a bit of extra work
that is easily avoided. By letting

η = ξ − ξ0

then, since ξ0 is a constant, η̇ = ξ̇ and hence the linear approximation can be
expressed simply as

η̇ =
∂f

∂ξ

∣

∣

∣

∣

ξ0

η. (14.14)

Clearly, the origin for η is the fixed point ξ0, and the constant inhomogeneous
term is eliminated by the simply coordinate transformation.

Example 14.3.7 Referring back to example 14.3.6, determine the homo-
geneous linear approximation to

ẍ+ ẋ− 2x+ x3 = 0

about the fixed point

ξ0 =

[ √
2

0

]

.

Letting

η =

[

y1
y2

]

=

[

x1

x2

]

−
[ √

2
0

]

and using equation 14.14, then

d

dt

[

y1
y2

]

=

[

0 1
−4 −1

] [

y1
y2

]

.

14.4 Geometry and Stability of Equilibrium Points
in the Phase Plane

This section will first outline the procedure to solve systems of two first order,
linear, homogeneous differential equation. This material will be a bit of a review
of the methods from Chapter 6, but will be developed with the ultimate goal of
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gaining some insight of the relationship between the linear algebra, i.e., eigen-
value and eigenvectors, and the nature and geometry of solutions of systems
near equilibrium points.

Examples 14.2.1 and 14.2.3 from Section 14.2 determined linear approxima-
tions to the nonlinear Duffing equation and solved them. In the case of exam-
ple 14.2.1, the solution to the linear approximation near the point x0 =

√
2

is

x(t) = c1e
− 1

2 t cos

√
15

2
t+ c2e

− 1
2 t sin

√
15

2
t+

√
2,

and in the case of example 14.2.3, the solution to the linear approximation near
the point x0 = 0 is

x(t) = c1e
t + c2e

−2t. (14.15)

Note that both of these solutions are easily differentiated. In particular, for the
solution of the linearization about the origin, we can write

d

dt

[

x1(t)
x2(t)

]

= c1

[

1
1

]

et + c2

[

1
−2

]

e−2t, (14.16)

where x1(t) = x(t) and x2(t) = ẋ(t) = ẋ1(t) as usual. The second line is
computed by simply differentiating the solution from equation 14.15.

Observing the form of equation 14.16, rather than computing it from the
solution of the original scalar equation, it seems reasonable that an alternative
solution method designed to determine the solution directly from the vector
form of the equation would be reasonably useful.

In particular, note that equation 14.14 is a system of first order, homogeneous
differential equations, which may be expressed in the form

η̇ = Aη,

where A ∈ R2×2 and

A =
∂f

∂ξ

∣

∣

∣

∣

ξ0

.

Referring to equation 14.16, it seems reasonable to simply assume a solution of
the form

η(t) = ηeλt

where η ∈ R2, i.e., it is a vector. Note that η̇ = ληeλt. Substituting this into
the differential equation gives

ληeλt = Aη.

Rearranging gives

Aηeλt − ληeλt = 0

Aηeλt − λIηeλt = 0

(A− λI) ηeλt = 0

(A− λI) η = 0, (14.17)
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where I is the 2 × 2 identity matrix. Canceling the eλt terms is justified since
it may never be zero.

Hence, solutions of

η̇ = Aη

are of the form

η(t) = ηeλt

where η and λ satisfy equation 14.17. It is not a coincidence that equation 14.17
is the equation for the eigenvalues and eigenvectors of the matrix A; in fact,
one of the primary uses of eigenvalue and eigenvector computations is to solve
systems of first order, linear, constant coefficient differential equations.

Recall, that the procedure is to compute the λ values that satisfy equa-
tion 14.17 by observing that the equation only has solutions for nonzero η if

det (A− λI) = 0.

Once the values for λ are determined, each value is substituted into equa-
tion 14.17 and the corresponding eigenvector, η is computed. Various procedures
are necessary depending upon whether the eigenvalues are real or complex and
whether or not they are repeated. A compete consideration of all these cases
appears in Chapter 6, a summary of which is as follows.

Theorem 14.4.1 For the linear, homogeneous, constant coefficient system of
n first order ordinary differential equations

ξ̇ = Aξ,

if λi are the eigenvalues of A and ξ̂i are the corresponding eigenvectors, then
the general solution ξ(t) depends upon the nature of the eigenvalues as follows.

1. If the eigenvalues are distinct, then

ξ(t) = c1ξ̂
1eλ1t + c1ξ̂

2eλ2t + · · · cnξ̂neλnt.

2. If there are any complex eigenvalues, say λi and λi+1 = λi with complex

conjugate eigenvectors ξ̂1 and ξ̂i+1 = ξ̂i respectively, then the two terms
in the general solution corresponding to λi and λi+1 satisfy

ciξ̂
ieλit + ci+1ξ̂

i+1eλi+1t = (14.18)

k1e
µt (a cosωt− b sinωt) + k2e

µt (a sinωt+ b cosωt)

where λi = µ + iω and ξ̂i = a + ib. It is usually more convenient to
have terms in the general solution to be in terms of the trigonometric
functions instead of the complex exponentials; hence, it is preferable to
replace the left hand side of equation 14.18 with the right hand side for the
corresponding terms in the general solution.
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3. For any repeated eigenvalues, if λi is repeated m times, then there will be
m solutions to

(A− λiI)
m ξ̂ = 0. (14.19)

Then for each of the m solutions to equation 14.19, a term of the form

ξ(t) =

(

ξ̂ + t (A− λiI) ξ̂ +
t2

2!
(A− λiI)

2 ξ̂ + · · · + tm−1

(m− 1)!
(A− λiI)

m−1 ξ̂

)

eλit

will appear in the general solution.

• real versus imaginary eigenvalues/vectors

Example 14.4.2 Consider the second order, nonlinear differential equa-
tion

ẍ+ ẋ− 2x+ x2 = 0. (14.20)

Determine and solve the linear differential equations that approximate this
nonlinear equation near all the equilibria and graphically compare the so-
lutions to the linear approximation to the nonlinear equation.

1. To convert to a system of first order differential equations, let

x1 = x

x2 = ẋ

which gives
d

dt

[

x1

x2

]

=

[

x2

−x2 + 2x1 − x2
1

]

. (14.21)

2. The equilibrium points are where the right hand side of equation 14.21
is zero. In particular

[

x2

−x2 + 2x1 − x2
1

]

=

[

0
0

]

⇐⇒
[

x1

x2

]

=

[

0
0

]

,

[

0
2

]

.

(14.22)

3. A Taylor series approximation of the nonlinear term in equation 14.21
about x = x0 gives

ẍ+ ẋ− 2x+
(

x2
0 + 2x0 (x− x0)

)

= 0.

(a) Near x = 0, the linear approximation is

ẍ+ ẋ− 2x = 0,

which has a general solution

x(t) = c1e
t + c2e

−2t.
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Figure 14.12. Comparison of solutions of nonlinear equation
with solutions of the linear approximation near x0 = 2 for
equation 14.21.

(b) Near x = 2, the linear approximation is

ẍ+ ẋ+ 2x = 4,

which has a general solution

x(t) = c1e
− 1

2 t cos

√
7

2
t+ c2e

− 1
2 t sin

√
7

2
t+ 2.

4. The best way to compare the validity of the solution to the linear
approximation is to graphically compare the two solutions.

(a) A plot for three different sets of initial conditions of the solutions
of the linear approximation about x = 2 and nonlinear equation
is illustrated in Figure 14.12. Clearly, the farther the initial con-
ditions are from the equilibrium point the less accurately the
solution to the linear approximation approximates the solution
to the nonlinear equation.

By inspecting Figure 14.12, it appears that the solution to the
linear approximation is a good approximation to the nonlinear
equation as long as the solution stays within approximately±0.25
of the the point about which the system is linearized (x = 2).

(b) A plot for three different sets of initial conditions of the solutions
of the linear approximation about x = and nonlinear equation is
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Figure 14.13. Comparison of solutions of nonlinear equation
with solutions of the linear approximation near x0 = 0 for
equation 14.21.

illustrated in Figure 14.13. Clearly, the farther the initial con-
ditions are from the equilibrium point the less accurately the
solution to the linear approximation approximates the solution
to the nonlinear equation.

By inspecting Figure 14.13, it appears that the solution to the
linear approximation is a good approximation to the nonlinear
equation as long as the solution stays within approximately±0.25
of the the point about which the system is linearized (x = 0).

5. The Jacobian for equation 14.22 is

∂f

∂ξ
=

[

0 1
2 − 2x1 −1

]

.

(a) Near

ξ0 =

[

0
0

]

the linear approximation is

η̇ =

[

0 1
2 −1

]

η.
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(b) Near

ξ0 =

[

2
0

]

the linear approximation is

η̇ =

[

0 1
−2 −1

]

η.

6. By computing the eigenvalues and eigenvectors, the solutions to the
linear approximations are computed as follows.

(a) For

A =

[

0 1
2 −1

]

the eigenvalues are λ1,2 = −2, 1 and the corresponding eigenvec-
tors are

ξ̂1 =

[

−1
2

]

and

ξ̂2 =

[

1
1

]

.

Hence, the general solution is

d

dt

[

x1

x2

]

= c1

[

−2
1

]

e−2t + c2

[

1
1

]

et.

(b) For

A =

[

0 1
−2 −1

]

the eigenvalues are

λ1,2 = −1

2
± i

√
7

2

and the corresponding eigenvectors are

ξ̂1 =

[

− 1
4 − i

√
7

4
1

]

and

ξ̂1 =

[

− 1
4 + i

√
7

4
1

]

As is necessary, the eigenvectors are complex conjugates.
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Let

u(t) = e−
1
2 t

(

[

− 1
4

1

]

cos

√
7

2
t+

[
√

7
4
0

]

sin

√
7

2
t

)

v(t) = e−
1
2 t

(

[

− 1
4

1

]

sin

√
7

2
t−
[

√
7

4
0

]

cos

√
7

2
t

)

and the general solution may be written as

η(t) = c1u(t) + c2v(t).

Note: this form of the solution is not unique. Since eigenvectors
may be arbitrarily scaled, it is possible to have an equivalent
solution that looks very different.

14.5 Introduction to Bifurcation Analysis

This section will present a catalog of typical bifurcations by way of examples. It
is not intended to be a complete exposition on the subject; for that, interested
readers are referred to [21, 9]. The examples are of the simplest type; namely,
first order and generally solvable.

14.5.1 Saddle-node bifurcations

Consider the first order differential equation

ẋ+ x2 − µ = 0. (14.23)

The equilibria for this equation are x0 =
√
µ if µ ≥ 0. If µ < 0 there are no equi-

libria. These equilibrium values are plotted as a function of µ in Figure 14.14.
About x0 the linear approximation is

ẋ+
(

x2
0 + 2x0 (x− x0)

)

− µ = 0.

Substituting x0 = ±√
µ gives

ẋ± 2
√
µx = 2µ,

which has the general solution

x(t) = ce∓2
√
µt +

√
µ,

which is stable for +
√
µ and unstable for −√

µ. These are indicated in Fig-
ure 14.14 with a solid line for the stable upper branch and a dashed line for the
unstable lower branch.

Solutions for various initial conditions and µ = −0.1 are illustrated in Fig-
ure 14.15. Solutions for various initial conditions and µ = 0.5 are illustrated in
Figure 14.16. Note that solutions that start with x(0) > −√

µ are attracted to
the upper stable equilibrium. Solutions with x(0) < −√

µ are unstable.
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Figure 14.14. Equilibrium values for equation 14.23.
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Figure 14.15. Solutions to equation 14.23 for µ = −0.1 and
for various initial conditions.
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Figure 14.16. Solutions to equation 14.23 for µ = 0.5 and for
various initial conditions.

14.5.2 Pitchfork bifurcations

Example 14.5.1 Consider the first order differential equation

ẋ+ x3 − µx = 0. (14.24)

This equation is actually separable, but the solution is not in a convenient
form for analysis. Also, the solution is not even needed for present purposes.

The way we will proceed is to determine the equilibrium point(s) and
compute a linear approximation about each one. For equation 14.24, the
equilibrium points satisfy

x3 − µx = 0 ⇐⇒ x = 0,±√
µ.

So, if µ ≤ 0 there is one equilibrium at x = 0, and if µ > 0 there are three
equilibria: x = 0, x =

√
µ and x = −√

µ. A plot of these equilibrium values
versus µ is illustrated in Figure 14.17.

This type of bifurcation, for an obvious reason, is called a pitchfork
bifurcation. The bifurcation aspect arises from the fact that as µ changes
from negative to positive values, the number of equilibria changes from one
to three.

Now consider the stability of these equilibria. For any value of µ the
linear approximation about the x0 = 0 equilibrium is

ẋ− µx = 0,
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Figure 14.17. Equilibrium values for equation 14.24 versus µ.

which has solutions of the form

x(t) = ceµt.

Clearly, for µ < 0 these solutions are stable and for µ > 0 these solutions
are unstable. About x0 = ±√

µ the linearization is

ẋ+
(

±µ 3
2 + 3µ (x∓√

µ)
)

− µx = 0

ẋ+ 2µx = ±2µ
3
2 . (14.25)

Note the solutions to equation 14.25 is

x(t) = ce−2µ ± 1

2

√
µ

which is stable regardless of the sign of ±√
µ. Hence, referring back to

Figure 14.17, the branches of the equilibrium solutions which are stable are
indicated by solid lines and the unstable branch is indicated by dashed lines.
Observe that the stability of the x0 = 0 equilibrium switches form stable to
unstable as µ switches from negative to positive. The two outer branches
for positive µ are stable.

Plots of solutions of equation 14.24 for µ = −0.5 and for various initial
conditions are illustrated in Figure 14.18. Note that, the x0 = 0 equilibrium
point is stable. Solutions for µ = 0.5 are illustrated in Figure 14.19. Note
that the x0 = 0 equilibrium point is unstable; whereas, the x0 = ± 1√

2

equilibria are stable.
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Figure 14.18. Solutions to equation 14.24 for µ = −0.5 and
for various initial conditions.
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Figure 14.19. Solutions to equation 14.24 for µ = 0.5 and for
various initial conditions.
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14.6 Exercises

Problem 14.1 Consider

ẍ+ x− x3 = 0.

1. Write this as two first order ordinary differential equations.

2. Determine all the equilibrium points.

3. Using the Jacobian, determine the differential equation that is the
best linear approximation about the equilibrium that is farthest to
the right, i.e., about the equilibrium point that has the largest value.

4. Determine the general solution to the linear approximation.

5. Sketch the phase portrait near the equilibrium point. Include the
eigenvectors of the Jacobain matrix evaluated at the equilibrium point
in the sketch.

Problem 14.2 Consider

ẍ+ 0.2ẋ− x+ x2 = 0.

1. Determine a linear differential equation that is the best linear approx-
imation to Equation 14.20 near an arbitrary point x = x0.

2. For x0 = 1 determine the analytical solution to the linear approxima-
tion. Make a plot in the phase plane for comparing the solution to
the linear approximation and the nonlinear equation for various initial
conditions. Include plots of solutions with initial conditions for which
the solution to the linear equation is near the solution to the nonlinear
equation as well as plots where the solution to the linear equation is
not near the solution to the nonlinear equation.

3. Near x0 = 0, determine the solution to the linear approximation.
Write it in the form of

d

dt

[

x1(t)
x2(t)

]

= c1ξ̂1e
λ1t + c2ξ̂2e

λ2t

where ξ̂1 and ξ̂2 are vectors. Plot the two vectors on the phase plane
and also plot −ξ̂1 and −ξ̂2. Compare the solution to the linear ap-
proximation and the nonlinear approximation for initial conditions on
either side of these vectors, i.e., for initial conditions that are like the
×s illustrated in Figure 14.20.

(a) Plot all the solutions where the range for the axes are x ∈ [−.5, .5]
and ẋ ∈ [−.5, .5].
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Figure 14.20. Initial conditions for Problem 14.2.

(b) Plot all the solutions where the range for the axes are x ∈ [−2, 2]
and ẋ ∈ [2, 2].

Note: the solutions in this problem are unstable. You may need to
adjust the total time for the numerical solution for the nonlinear equa-
tion so that the solution does not exceed the maximum value allowable
for the simulation and plotting program.
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Chapter 15

Perturbation Methods

15.1 Introduction

Based upon the results in Chapter 14, it is possible to obtain an approxima-
tion to the solution to a nonlinear differential equation provided that the so-
lution remains sufficiently close to an equilibrium point. This chapter presents
a method to determine an approximate solution to a nonlinear equation away
from an equilibrium point. However, what is necessary in this chapter is that
the nonlinear term in the differential equation must be “small.” The approach
will be motivated by an example.

Example 15.1.1 Consider

ẍ+ ẋ+ x− ǫx3 = 0 (15.1)

x(0) = 1

ẋ(t) = 0

where ǫ≪ 1 is a constant.
The idea is that if ǫ is small, the it is reasonbale to attempt to compute

a solution that is a series expansion in ǫ, i.e.,

x(t) = x0(t) + ǫx1(t) + ǫ2x2(t) + ǫ3x3(t) + · · ·

where each of the functions, x0(t), x1(t), x2(t), etc., must be computed.
To determine these, substitute the assumed form of the solution into Equa-
tion 15.1 noting that

ẋ(t) = ẋ0(t) + ǫẋ1(t) + ǫ2ẋ2(t) + ǫ3ẋ3(t) + · · ·
ẍ(t) = ẍ0(t) + ǫẍ1(t) + ǫ2ẍ2(t) + ǫ3ẍ3(t) + · · ·

which gives
(

ẍ0(t) + ǫẍ1(t) + ǫ2ẍ2(t) + · · ·
)

+
(

ẋ0(t) + ǫẋ1(t) + ǫ2ẋ2(t) + · · ·
)

+
(

x0(t) + ǫx1(t) + ǫ2x2(t) + · · ·
)

− ǫ
(

x0(t) + ǫx1(t) + ǫ2x2(t) + · · ·
)3

= 0.

539
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Chapter 16

Lagrange’s Equations

Example 16.0.2 Consider a particle constrained to move along a friction-
less wire where the shape of the wire is given by the function y = f(x),
illustrated in Figure 16.1. This was considered previously in Example 1.9.9.

The position of the particle is given by

x =

[

x
f(x)

]

and the velocity is give by

ẋ =

[

ẋ
df
dx
ẋ

]

.

�
�
�
�

�
�
�
�

��������������������������x

y

F(t)

F(t)

Fc(t)

y = f(x)

Figure 16.1. System for Example 16.0.2.
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Hence, the kinetic energy is

T =
1

2
mẋ · ẋ

=
1

2
m

(

ẋ2 +

(

df

dx

)2

ẋ2

)

=
1

2
mẋ2

(

1 +

(

df

dx

)2
)

.

Since there is no potential energy, L = T . The virtual work done by the
applied force is

Q = F · dx
dx

= Fx +
df

dx
Fy.

Considering each term in Lagrange’s equations

d

dt

(

∂L

∂ẋ

)

− ∂L

∂x
= Q

we have:

d

dt

(

∂L

∂ẋ

)

=
d

dt

(

mẋ

(

1 +

(

df

dx

)2
))

= mẍ

(

1 +

(

df

dx

)2
)

+mẋ

(

2
df

dx

d2f

dx2
ẋ

)

= mẍ

(

1 +

(

df

dx

)2
)

+ 2mẋ2 df

dx

d2f

dx2

and

∂L

∂x
=

1

2
mẋ2

(

d

dx

(

df

dx

)2
)

=
1

2
mẋ2

(

2
df

dx

d2f

dx2

)

mẋ2 df

dx

d2f

dx2
.

So, substituting into Lagrange’s equation gives

mẍ

(

1 +

(

df

dx

)2
)

+ 2mẋ2 df

dx

d2f

dx2
−mẋ2 df

dx

d2f

dx2
= Fx +

df

dx
Fy,
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or

mẍ

(

1 +

(

df

dx

)2
)

+mẋ2 df

dx

d2f

dx2
= Fx +

df

dx
Fy,

which is the same as Equation 1.19.
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Chapter 17

System Identification

This chapter considers the problem of system identification which is the prob-
lem of determining the differential equation(s) governing a system based upon
experimental data rather than first principles. In principle, it should always
be possible to use first principles to determine the governing equations for a
given system. However, in practice this is not always the case. First, many
engineering systems may simply be too complicated to reduce to a collection of
interconnected systems that can be individually modeled. Second, even if the
components may be individually modeled, the interaction among them may not
be. Finally, even if both of the above are possible, the approximations involved
in modeling each individual component may combine in a manner that make the
overall model a poor representation of the actual system. Hence, if it is the case
that some data is available regarding how the system behaves, it makes sense
to use that data t either validate the given model or as a basis for modeling the
system.

17.1 The Damped Natural Frequency and Log-
arithmic Decrement

Consider the problem of modeling the system illustrated in Figure 17.1 where
it is the case that the parameters for the model, m, k and b are not known, but
what is known is that the system responds in a particular manner as illustrated
in Figure 17.2.

Since the system is governed by the differential equation

mẍ+ bẋ+ kx = 0, (17.1)

at first it may seem like a simple matter to find m, b and k to give a response
that looks like what is in the figure. In fact, attempting to do so by trial and
error is not too difficult. However, since the system is simple enough, we may
as well make the effort to at least be a bit more sophisticated about it in order
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m

b

k

x(t)

Figure 17.1. Mass–spring–damper system.
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Figure 17.2. Response of a second order system.
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to save the time involved in a trial and error method and to gain some insight
into the problem at hand.

First, note that there will actually be an infinite number of sets of values for
m, b and k that give the same response. This is because of the fact that if x(t)
satisfied equation 17.1 it will also satisfy a scaled version of the equation such
as

αmẍ+ αbẋ+ αkx = 0,

or, in particular, it will also satisfy

ẍ+ 2ζωnẋ+ ω2
nx = 0.

Since we may arbitrarily scale the equation without changing the solution, it
seems reasonable to conclude that we may only find at most two of the three
parameters. In fact this is the case, as will be outlined subsequently, and hence
it makes sense to attempt to find the natural frequency, ωn and the damping
ratio, ζ which are the parameters in the canonical form of the second order lin-
ear oscillation equation. Of course, once these two parameters are determined,
it will be possible to use their definitions to find all the possible combinations of
m, b and k that are equivalent. Furthermore, if one of the parameters can be de-
termined using an independent method, then the unique set of three parameters
may be determined.

Recall that the solution to

ẍ+ 2ζωnẋ+ ω2
nx = 0

x(0) = x0

ẋ(0) = ẋ0

is given by equation 4.16 which is

x(t) = e−ζωnt
(

c1 cosωn
√

1 − ζ2t+ c2 sinωn
√

1 − ζ2t
)

= e−ζωnt (c1 cosωdt+ c2 sinωdt) . (17.2)

Inspecting equation 17.2 indicates that it should be straightforward to de-
termine ωd from simply inspecting the period of oscillation in the figure, as is
illustrated in Figure 17.3. If the period is given by T , then the relationship
between the frequency and period is simply ωdT = 2π, which gives

ωd =
2π

T
. (17.3)

Another quantity that is easy to determine from the response of the system
is the ratio of the magnitudes of two successive peaks in the response. Using
equation 17.2 we have

x(t+ T )

x(t)
=
e−ζωn(t+T ) (c1 cosωd (t+ T ) + c2 sinωd (t+ T ))

e−ζωnt (c1 cosωdt+ c2 sinωdt)
.
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x (t+T)

T

x(t)

Figure 17.3. Response of a second order system.

However, since the period of oscillation is T , then the sine and cosine terms in
the ratio are the same, so

x(t+ T )

x(t)
=
e−ζωn(t+T )

e−ζωnt
= e−ζωnT = e

−ζωdT√
1−ζ2 = e

−2πζ√
1−ζ2 . (17.4)

Hence, the ratio of the magnitude of two successive peaks is a function of the
damping ratio only. Simply reading the values of two successive peaks, comput-
ing their ratio and then solving equation 17.4 for the damping ratio is all that
is necessary. Observe that in the previous computations t was not specified;
hence, it does not patter which peaks are used as long as they are successive
peaks.

Since the study of linear oscillations is a classical subject, we will take it
one step further to make the presentation consistent with the usual treatment.
Taking the natural logarithm of both sides of equation 17.4 gives

δ = ln

(

x(t+ T )

x(t)

)

= lnx(t+ T ) − lnx(t) =
−2πζ
√

1 − ζ2
.

This quantity, δ is called the logarithmic decrement and Figure 17.4 is a plot of
the logarithmic decrement versus damping ratio.

Note for small ζ the logarithmic decrement is approximately linearly related
to ζ and is given by

δ ≈ −2πz.
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Figure 17.4. Plot of the logarithmic decrement versus damp-
ing ratio.

Example 17.1.1 Find the damping ratio and natural frequency for the
response illustrated in Figure 17.2. Referring to the figure, T ≈ 3. Hence,
ωd ≈ 2π

3 . Also the value of x(t) at the second peak is approximately 0.7
and at the third peak it is approximately 0.4. Hence

δ ≈ ln

(

0.4

0.7

)

= −.56.Sincethat

is a rather small value to use in Figure 17.4 (corresponding to a small value
of ζ) so we will use the formula for the approximation for small ζ, which
gives

ζ ≈ − δ

2π
= −−.56

2π
= 0.089.

Using this value gives

ωn =
ωd

√

1 − ζ2
= 2.1.

In fact, the plot was generated using ζ = 0.1 and ωn = 2, so the ap-
proximations involved in reading the values from the graphs and for the
linear approximation for the relationship between the damping ratio and
logarithmic decrement were really quite good.
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17.2 Flexibility Influence Coefficients

Palm, page 494.

17.3 Exercises

Problem 17.1

The free response of a second order system is illustrated in Figure 17.5.
Determine the natural frequency and the damping ratio.
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Figure 17.5. System response for Exercise 17.1.



Chapter 18

Symmetry and
Transformation Methods

All the material from Chapter 6 related to diagonalization and Jordan canonical
form is a special case of coordinate transformation methods. The basic idea is
simple: find an alternative set of coordinates in which an equation is particularly
simple (and hence, easy to solve). This chapter deals with the generalization of
that idea and the manner in which differential equations act under coordinate
transformations.

18.1 Coordinate Transformations

While the most general case is rather straightforward to write, it is sufficiently
abstract that it is probably easiest to consider a few specific and simple cases
before presenting the most general formulation.

18.1.1 Time and Length Scaling

Often it may prove convenient to simply re-scale length or time scales in a prob-
lem, which, in fact, are just a very simple subset of the general transformations
considered previously.

Consider first, an ordinary, nth order, linear differential equation of the form

fn(t)
dnx

dtn
+ fn−1(t)

dn−1x

dtn−1
+ · · · + f1(t)

dx

dt
+ f0(t)x = g(t), (18.1)

and consider the new variables τ and y given by

τ = st

y = rx,
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or

t =
τ

s

x =
y

r
.

The new coordinates are (y, τ) and the old coordinates are (x, t). Now consider
how to express each of the terms in equation 18.1 in terms of y and τ .

Note that

y(τ) = rx(τ) = rx(st)

and

x(t) =
y(t)

r
=
y
(

τ
s

)

r
,

so that if we know either x(t) or y(τ) it is easy to compute the other.

Example 18.1.1 Consider the function

x(t) = sin t

and consider the time and length scalings

y = 5x

τ = 3t.

Then

y(τ) = rx(st) = 5 sin (3t)

The function is illustrated in Figure 18.1. Note that both x(t) and y(τ)
are the same shape, and, in fact, the difference between the two are simple
scales of the two axes.

Since the differential equation involves derivatives of x with respect to t,
converting equation 18.1 to the new coordinates also requires determining how
derivatives transform.

Calculus gives

dx

dt
=

1

r

dy

dt
=

1

r

dy

dτ

dτ

dt
=
s

r

dy

dτ
(18.2)

d2x

dt2
=

1

r

d2y

dt2
=
s

r

d

dt

dy

dtau
=
s

r

d

dτ

dy

dτ

dτ

dt
=
s2

r

d2y

dτ2

...
dnx

dtn
=

sn

r

dny

dτn
.

The approach is first illustrated by means of an example.
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Figure 18.1. A function scaled by 3 in t and by 5 in x.

Example 18.1.2 Consider the initial value problem with an ordinary, sec-
ond order, constant coefficient, linear, inhomogeneous differential equation
of the form

ẍ+ 2ẋ+ 4x = 1 (18.3)

x(0) = 1

ẋ(0) = 2

If

τ = st (18.4)

y = rx

then equation 18.3 expressed in the y and τ coordinates is simply determined
by substitution,

s2
d2y

dτ2
+ 2s

dy

dτ
+ 4y = r (18.5)

y(0) = r

dy

dτ

∣

∣

∣

∣

τ=0

= 2
r

s
.

Now, for equation 18.5 to represent a scaled version of equation 18.3,
the two solutions must be related by via equation 18.4. Using, for example,
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the method of undetermined coefficients for ordinary, second order, linear,
constant coefficient, inhomogeneous differential equations, the solution to
the initial value problem in equation 18.3 is

x(t) =
1

4
+ e−t

(

3

4
cos

√
3t+

11
√

3

12
e−t sin

√
3t

)

,

and the solution to the initial value problem in equation 18.5 is

y(τ) =
r

4
+ e−

τ
s

(

3r

4
cos

√
3

s
τ +

11
√

3r

12
sin

√
3r

s
τ

)

.

Clearly, the relationship between the y(τ) solution and the x(t) solution
is exactly the scales given in equation 18.4. Hence, the differential equa-
tion and initial conditions transformed according to the scale rules in equa-
tion 18.2 has a solution that is the transform of the original solution.

18.1.2 Transformations of nth Order Scalar Equations

18.1.3 General Coordinate Transformations

First, consider the ordinary differential equations with independent variable
t. Since any system of differential equations of order higher than one may be
converted to a system of first order equations, without loss of generality, we can
consider

ξ̇(t) = f(ξ(t), t) (18.6)

where ξ ∈ Rn. Of course, “solving” this equation amounts to determining ξ(t)
and satisfying any given initial conditions.

Now, consider a coordinate transformation ψ = Ψ (ξ) ∈ Rn, and τ = φ (t) ∈
R, i.e., ψ and τ are the new dependent and independent variables, respectively.
Also, assume that these coordinate transformations are invertible. Particular
examples will be presented shortly, but assume that these transformations are
given and consider the problem of transforming the differential equation given
in equation 18.6 to the new coordinates. By a simple application of the chain
rule

dψ

dτ
=

dψ

dt

dt

dτ

=
dΨ

dξ

dξ

dt

dt

dτ



Appendix A

Some Complex Variable
Theory

This appendix presents a very short overview of complex variable theory. An
interested reader is referred to [3] for a complete exposition.

A.1 Complex Numbers

Historically, of course, imaginary numbers have a natural association with the
square root of negative numbers. We will develop the definitions of complex
numbers in a more deductive manner and then show that the approach is con-
sistent with the more historical view.

All readers should be familiar with the usual notion that a complex numer
has a real and imaginary component, where we may write

s = σ + iω

where s is the complex number, σ is its real part and ω is the imaginary part
. Since a complex number has two components, it may naturally be consid-
ered an ordered pair of numbers. The only twist is to ensure that we define
multiplication correctly.

Definition A.1.1 A complex number is an ordered pair of real numbers,

s = (a, b)

where for
s1 = (a1, b1)

and
s2 = (a2, b2)

addition is defined by

s1 + s2 = (a1 + a2, b1 + b2)
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and multiplication is defined by

s1s2 = (a1a2 − b1b2, a1b2 + a2b1) . ⋄

This definition is consistent with the idea of using i because if we write

s1 = a1 + ib1

and
s2 = a2 + ib2

then

s1 + s2 = a1 + ib1 + a2 + ib2

= (a1 + a2) + i (b1 + b2)

and

s1s2 = (a1 + ib1) (a2 + ib2)

= a1a2 + ib1a2 + a1ib2 + ib1ib2

= (a1a2 − b1b2) + i (a1b2 + b1a2) .

It follows from the definition of addition and multiplication that the additive
inverse of

s = a+ ib

is
−s = −a− ib

and the multiplicative inverse is

s−1 =

(

a

a2 + b2
,− b

a2 + b2

)

.

Using the multiplicative inverse, division may be defined as

s1
s2

= s1s
−1
2 .

An alternative representation is in polar coordinates where s is represented
by a magnitude and phase which are the usual Euclidean norm and angle if the
number is plotted in its Cartesian coordinates. Referring to Figure A.1, clearly
if s = a+ ib, then

r =
√

a2 + b2

= |s|

and

θ = tan−1

(

b

a

)

= ∠s.
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a

b

r

θ

Re(s)

Im(s)

Figure A.1. Cartesian, s = a+ ib and polar, s = (r, θ) forms
of a complex number, s.

The number (angle) θ is called an argument of the complex number s. There are
an infinite number of arguments which differ by a multiple of 2π. The principal
value of the arguments in the unique value θ ∈ (−π, π ].

The previous two equations relate the Cartesian for to polar form. Going
from polar for to Cartesian form is simple geometry and is given by

s = r (cos θ + i sin θ) .

The Cartesian form is easy to use for addition and subtraction since if s1 =
a1 + ib1 and s2 = a2 + ib2, then

s1 + s2 = (a1 + a2) + i (b1 + b2) .

However, multiplication is easier in polar form. In particular, if s1 = (r1, θ1)
and s2 = (r2, θ2), then the product is

s1s2 = (r1r2, θ1 + θ2)

and the quotient is
s1
s2

=

(

r1
r2
, θ1 − θ2

)

.

This multiplication rule is easily seen by writing

s1 = r1 (cos θ1 + i sin θ1)
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and
s2 = r2 (cos θ2 + i sin θ2) .

Taking the product

s1s2 = r1 (cos θ1 + i sin θ1) r2 (cos θ2 + i sin θ2)

= r1r2 [cos θ1 cos θ2 − sin θ1 sin θ2 + i (sin θ1 cos θ2 + sin θ2 cos θ1)]

= r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)]

so
s1s2 = (r1r2, θ1 + θ2) .

A.2 Functions of a Complex Variable

The most important function of a complex variable is the exponential function
due to the fact that exponentials are solutions to homogeneous, linear, constant
coefficient, ordinary differential equations.

Definition A.2.1 If s = a+ ib, define

es = ea (cos b+ i sin b) . ⋄

Remark A.2.2 Note that this is a definition, which we choose to adopt. It
remains to determine whether or not it is a useful definition or whether it
reduces to the usual form when the imaginary part of s is zero. ⋄

Developing calculus for functions of a complex variable is beyond the scope
of this book. However, if we have a complex-valued function of a real variable,

f(t) = fr(t) + ifi(t)

then is makes sense to define

df

dt
(t) =

dfr
dt

(t) + i
dfi
dt

(t).

The property that we must verify for exponentials is

d

dt
est =

d

dt
e(a+ib)t

=
d

dt

(

eat (cos bt+ i sin bt)
)

= aeat (cos bt+ i sin bt) + beat (− sin bt+ i cos bt)

= aeat (cos bt+ i sin bt) + ibeat (cos bt+ i sin bt)

= (a+ ib)
(

eat (cos bt+ i sin bt)
)

,

so the usual rule for differentiating an exponential function holds.
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A.3 Partial Fraction Decomposition

This subject is not limited to the field of complex variables, but since it appears
in the process of solving for inverse Laplace transforms, it is included with the
supplemental material, which is primarily complex-variable in nature.

The use of the partial fraction decomposition in this text is exclusively for
the means of decomposing a rational function1 into a linear combination of
terms that appear in a Laplace transfor table (Table 8.1). If it is possible to
do this, then it completely avoids the rather arduous exercise of evaluting the
inverse Laplace transform, which is given by Definition 8.3.2.

We will use a partial fraction decomposition to reduce the degree of the
polynomial appearing in the denominator of a rational function, which we will
always assume to be proper.2 Reducing the degree of the denominator is useful
because, referring to Table 8.1, the distinguishing features of different elements
of the table are the denominators of the functions.

The approach is to express a rational function in the form

N(s)

D(s)
=
N1(s)

D1(s)
+
N2(s)

D2(s)
+ · · · + Nn(s)

Dn(s)
,

where the Di(s) satisfy

D(s) = D1(s)D2(s) · · ·Dn(s)

and are of a desired form, i.e., for our purposes of the form of the denominator
of elements in Table 8.1. The Ni(s), then are simply polynomials in s that make
the equality hold. First we will state a proposition that is helpful for computing
the Ni(s).

Proposition A.3.1 If the function is proper, then the order each Ni(s) will be
less than the order of the corresponding Di(s).

Proof If P (s) is a polynomial in s, let O (P (s)) denote the order of P (s).
Writing the decomposition and then putting it over a common denominator
gives

N(s)

D(s)
=

N1(s)

D1(s)
+
N2(s)

D2(s)
+ · · · + Nn(s)

Dn(s)

=
(N1(s)D2(s)D3(s) · · ·Dn(s)) + (N2(s)D1(s)D3(s) · · ·Dn(s)) + · · ·

D1(s)D2(s) · · ·Dn(s)

=

∑n
i=1

∏n
j=1,j 6=iNi(s)Dj(s)
∏n
i=1Di(s)

. (A.1)

At least one term in the sum in the numerator on the right in Equation A.1
must have the same order as N(s). Since O (N(s)) < O (D(s)), then each term

1A rational function, is a function that may be written as a ratio of polynomials.
2A rational function is proper if the degree of the numerator is less than the degree of the

denominator.
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in the sum in the numerator on the left hand side of Equation A.1 has lower
order than D(s). Since

O (P1(s)P2(s)) = O (P1(s)) + O (P2(s))

then

O (D(s)) =
n
∑

j=1

O (Dj(s)) .

Then, for any i ∈ {1, . . . n},

O (D(s)) > O (Ni(s)D1(s)D2(s) · · ·Di−1(s)Di+1(s) · · ·Dn(s))

= O (Ni(s)) + O (D1(s)) + · · ·O (Di−1(s)) +

O (Di+1(s)) + · · · + O (Dn(s))

= O (Ni(s)) + O (D(s)) −O (Di(s)) .

Hence
O (Di(s)) > O (Ni(s)) . �

The proof was a bit detailed, but what it tells us is that if we need to assume
a form for the numerator of one of the fractions, Ni(s) the largest its order can
be is one less than the order of the denominator, Di(s).

Example A.3.2 Compute the partial fraction decomposition for

G(s) =
s+ 1

(s+ 2) (s+ 3)

so the result is a linear combination of terms appearing in Table 8.1.
Since they correspond to an entry in Table 8.1, we will pick the two

denominators to be

D1(s) = s+ 2

D2(s) = s+ 3.

Since both of these have order 1 in s, then each numerator must be of order
0, i.e., a constant. Hence

s+ 1

(s+ 2) (s+ 3)
=

c1
s+ 2

+
c2
s+ 3

.

The task now is to determine c1 and c2 so that the equality holds. We will
present two ways to do this.

1. One way would be to put the right hand side over the common de-
nominator and equate the resulting numerators, i.e.,

s+ 1

(s+ 2) (s+ 3)
=

c1
s+ 2

+
c2
s+ 3

=
c1 (s+ 3) + c2 (s+ 2)

(s+ 2) (s+ 3)
.
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Since the equality must hold, the numerators must be equal. So

s+ 1 = c1 (s+ 3) + c2 (s+ 2) .

Also, for this to hold for any s, the coefficient of each power of s must
be equal so

s+ 1 = (c1 + c2) s+ (3c1 + 2c2)

requires

c1 + c2 = 1

3c1 + 2c2 = 1

which gives

c1 = −1

c2 = 2.

Hence,
s+ 1

(s+ 2) (s+ 3)
=

−1

s+ 2
+

2

s+ 3
.

2. Another way to determine an equation to compute the numerators
is to multiple each side of the expression by the denominator corre-
sponding to the numerator we want to compute and then take the
limit as s approches the value of the pole location for that term. So
for

s+ 1

(s+ 2) (s+ 3)
=

c1
s+ 2

+
c2
s+ 3

to determine c1, multiply both sides by (s+ 2) and let s = −2, i.e.,

s+ 1

(s+ 2) (s+ 3)
(s+ 2) =

c1
s+ 2

(s+ 2) +
c2
s+ 3

(s+ 2)

or
s+ 1

s+ 3
= c1 +

c2
s+ 3

(s+ 2) .

Evaluating this as s→ −2, then

−2 + 1

−2 + 3
= c1 +

c2
−2 + 3

(−2 + 2) .

Since the last term is zero,

c1 = −1.

Similarly,

s+ 1

(s+ 2) (s+ 3)
(s+ 3) =

c1
s+ 2

(s+ 3) +
c2
s+ 3

(s+ 3)
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or
s+ 1

(s+ 2)
=

c1
s+ 2

(s+ 3) + c2.

Evaluating this as s→ −3 gives

c2 = 2.

Hence
s+ 1

(s+ 2) (s+ 3)
=

−1

s+ 2
+

2

s+ 3
.

Either approch works for complex conjugate poles as well.

Example A.3.3 Compute the partial fraction decomposition for

G(s) =
1

(s+ 2) (s2 + 2s+ 2)

so the result is a linear combination of terms appearing in Table 8.1. The
roots for the second term in the denominator are s = −1 ± i. We could
factor it, but the form (s+ 1)

2
+ 1 is what appears in Table 8.1. Hence we

wish to determine c1, c2 and c3 such that

1

(s+ 2) (s2 + 2s+ 2)
=

c1
s+ 2

+
c2s+ c3

(s+ 1)
2
+ 1

. (A.2)

1. Combining the terms on the right hand side gives

1

(s+ 2) (s2 + 2s+ 2)
=
c1

[

(s+ 1)
2
+ 1
]

+ (c2s+ c3) (s+ 2)

(s+ 2) (s2 + 2s+ 2)
,

and equating the numerators gives

1 = c1
(

s2 + 2s+ 2
)

+ (c2s+ c3) (s+ 2)

= (c1 + c2) s
2 + (2c1 + 2c2 + c3) s+ (2c1 + 2c3) .

Since this equality must hold for all s, the coefficients of each power
of s must be equal so

c1 + c2 = 0

2c1 + 2c2 + c3 = 0

2c1 + 2c3 = 1,

which gives

c1 =
1

2

c2 = −1

2
c3 = 0.
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Hence,

1

(s+ 2) (s2 + 2s+ 2)
=

1

2 (s+ 2)
− s

2
[

(s+ 1)2 + 1
] .

2. Alternatively, multiplying both sides of Equation A.2 by s + 2 and
computing the limit as s→ −2 gives

c1 = lim
s→−2

1

s2 + 2s+ 2

=
1

2
.

Similarly multiplying both sides of Equation A.2 by s2 + 2s + 2 and
computing the limit as s→ −1 + i gives

lim
s→−1+i

(c2s+ c3) = lim
s→−1+i

1

s+ 2

which gives

c2 (−1 + i) + c3 =
1

−1 + i+ 2

=
1

1 + i

1 − i

1 − i

=
1 − i

2
.

Equating the real and imaginary parts gives

−c2 + c3 =
1

2

c2 = −1

2
,

and hence
c3 = 0,

which is the same answer as before.
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Appendix B

Linear Algebra Review

This appendix reviews some basic concepts from linear algebra. In particular,
the definition of a linear vector space and transformations between them are
considered.

B.1 Linear Vector Spaces

The most fundamental object in linear algebra is a vector space. A vector space
is a generalization of the usual notion of a collection of vectors in Euclidean space
and is useful to because such a generalized space will have all the properties that
the set of vectors has. Instead of simply defining a vector space, let us present
a list of those so-called useful properties and give examples of sets of objects
other than vectors that also exhibit them or examples of objects that do not
satisfy them.

B.1.1 Properties of vector operations in the Euclidean
plane

While the notation will be abandoned subsequently, for this introductory section
the common practice of denoting vectors with bold letters will be used. Also,
to distinguish it from addition of real numbers, vector addition will be denoted
bold plus sign. Also, while a vector space is fundamentally a set, the important
properties that define it as a vector space are related to operations on these
vectors, particularly, how they add and how they are scaled.

Specifically, define vector addition in the usual “head to tail” manner (illus-
trated in Figure B.1) and define

Property B.1.1 Vector addition is commutative, i.e., for vectors x1 and x2,

x1 + x2 = x2 + x1.

This property is illustrated in the usual way in Figure B.1. ⋄

565
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x1

x1

x2

x2

x1 + x2

Figure B.1. Vector addition is commutative.

x1

x2

θ1

θ2

Figure B.2. Rotating a rigid body.

Example B.1.2 An example of an operation that is not commutative is
rigid body rotations. Consider the book illustrated in Figure B.2 where the
front cover is shaded and the top is indicated by arrows. If the book is
first rotated about axis x1 by an angle of 90◦ and then about axis x2 by
an amount 90◦, the final orientation is illustrated in Figure B.3. Positive
directions of rotation are given by the right hand rule. In contrast, if the
body is rotated about axis x2 by an amount 90◦ followed by a rotation about
x1 by an amount 90◦, the final orientation is illustrated in Figure B.4.

If we use some sort of mathematical operation to represent these ro-
tations, it may not commute, because one rotation followed by another
rotation is, in general, not equal to the reverse order of rotations. While it
is outside the scope of this text, it should not come as a surprise that rigid
body rotations are represented by matrices, and one rotation follwed by an-
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x1

x2

Figure B.3. Final book position after a rotation about x1 of
90◦ followed by a rotation about x2 by an amount 90◦.

x2

Figure B.4. Final book position after a rotation about x2 of
90◦ followed by a rotation about x1 by an amount 90◦.
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other is represented by matrix multiplication, which does not commute. An
interested reader is referred to [5] for a complete exposition on rigid body
kinematics and [16] for a more advanced treatment.

Property B.1.3 Vector addition is associative, i.e., if x1, x2 and x3 are vec-
tors, then

x1+ (x2 + x3) = (x1 + x2)+x3. ⋄

An example of a nonassiciative operation is the cross product in R3.

Example B.1.4 Let i, j and k deonte the usual coordinate axes in R3.
Then observing that

i × j = k

and
i × i = 0,

then

i × (i × j) = i × k

= −j.

However

(i × i) × j = 0 × k

= 0.

Property B.1.5 Vector addition has an identity element, i.e., there is a zero
vector, 0 such that for any vector x,

x + 0 = x. ⋄

In the case of vectors in Euclidean space, the zero vector has no length.

Property B.1.6 Vector addition has an inverse, i.e., for each vector x, there
exists another vector denoted by −x such that

x+ (−x) = 0. ⋄

In the case of vectors in Euclidean space, the additive inverse of a vector is
a vector with the same lenght, but with the opposite orientation.

Property B.1.7 Scalar multiplication distributes over vector addition. So, for
vectors x1 and x2, and a real number α,

α (x1 + x2) = αx1 + αx2. ⋄

Example B.1.8 Considering the two vectors in Figure B.1 again, if we
double the sum, it is equal to doubling the length of each vector first, and
then adding them. This is illustrated in Figure B.5.
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2x1

2x2

x1

x2

2 (x1 + x2)

x1 + x2

Figure B.5. Scalar multiplication distributes over vector ad-
dition.

Property B.1.9 Addition of two real numbers, a and b, distributes, i.e.,

(a+ b)x = ax + bx.

In other words, it does not matter if you add a and b first and then scale the
vector, or if you multiply the vector individually by a and b and take the sum.⋄

Example B.1.10 Considering the vector x illustrated in Figure B.6, and
the scalars a = 1.5 and b = 1.5, it is the case that

(1.5 + 1.5)x = 3x,

as is illustrated in Figure B.6.

Property B.1.11 Scalar multiplication of a vector is compatable with multi-
plication of real numbers, i.e., for real numbers a and b

(ab)x = a (bx) .

In other words, it does not matter if you multiply a and b together first and
then scale the vector x or if you scale the vector by one of them followed by
scaling by the other. ⋄
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x

3x

1.5x

1.5x

Figure B.6. Scalar addition distributes.

B.1.2 Definition and examples of vector spaces

A vector space is simply any set where you can add elements and scale them.
To add some degree of generality, we will allow the vectors to be scaled by either
real or complex numbers.

Definition B.1.12 Let the set1 F be either R or C and let V be a set with

1. a mapping V × V → V called vector addition and denoted by x1 + x2 for
x1 and x2 ∈ V ; and,

2. a mapping F × V → V called scalar multiplication and denoted by ax for
a ∈ F and x ∈ V

where the mappings satisfy the following:

1. x1 + x2 = x2 + x1;

2. (x1 + x2) + x3 = x1 + (x2 + x3);

3. ∃0 ∈ V such that 0 + x = x for all x ∈ V ;

4. for each x ∈ V, ∃−x such that x+ (−x) = 0;

5. (ab)x = a (bx) for all a, b ∈ F and for all x ∈ V ;

6. 1x = x for all x ∈ V ;

7. 0x = 0 for all x ∈ V ;

8. a (x1 + x2) = ax1+bx2 for all a ∈ F and for all x1,x2 ∈ V ; and,

9. (a+ b)x = ax+bx for all a, b ∈ F and for all x ∈ V . ⋄

1The set F is generally a field, but for the purposes of this book it will always be the real
or complex numbers.
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Example B.1.13 Consider the set of polynomials of the independent vari-
able t with real coefficients and degree less than or equal to n. Denote this
set by P (t, n). Any element of P (t, n) my be expressed as

αnt
n + αn−1t

n−1 + · · · + α1t+ α0 ∈ P (t, n).

If addition and scalar multiplication are defined in the usual manner, i.e.,

(

αnt
n + αn−1t

n−1 + · · · + α1t+ α0

)

+
(

βnt
n + βn−1t

n−1 + · · · + β1t+ β0

)

= (αn + βn) t
n + · · · + (α1 + β1) t+ (α0 + β0) (B.1)

and

β
(

αnt
n + αn−1t

n−1 + · · · + α1t+ α0

)

= (βαn) t
n + · · · + (βα1) t+ (βα0)

(B.2)
then P (t, n) is a vector space.

To actually prove this, we must verify each of the properties. This is
generally a somewhat arduous exercise, but it is worth doing at least a few
times.

1. For
p1 = αnt

n + αn−1t
n−1 + · · · + α1t+ α0

and
p2 = βnt

n + βn−1t
n−1 + · · · + β1t+ β0

we may write

p1 + p2 = (αnt
n + · · · + α0) + (βnt

n + · · · + β0) (B.3)

= (αn + βn) t
n + · · · + (α1 + β1) t+ (α0 + β0) (B.4)

= (βn + αn) t
n + · · · + (β1 + α1) t+ (β0 + α0) (B.5)

= (βnt
n + · · · + β0) + (αnt

n + · · · + α0) (B.6)

= p2 + p1. (B.7)

These steps are justified as follows.

(a) The step from Equation B.3 to B.4 is by the definition of vector
addition in P (t, n) given by Equation B.1.

(b) The step from Equation B.4 to B.5 is justified because the coef-
ficients in the polynomial are real and real addition commutes.

(c) The step from Equation B.5 to B.6 is by the definition of addition
in P (t, n).

Observe that, basically, addition of elements in P (t, n) is defined in
such a manner that the commutative property of addition of real num-
bers gave rise to the property that addition of two polynomials was
also commutative.
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2. For p1, p2, p3 ∈ P (t, n), where

p1 = αnt
n + · · · + α1t+ α0

p2 = βnt
n + · · · + β1t+ β0

p3 = γnt
n + · · · + γ1t+ γ0

we have already that

(p1 + p2) = (αn + βn) t
n + · · · + (α1 + β1) t+ (α0 + β0)

and

(p2 + p3) = (βn + γn) t
n + · · · + (β1 + γ1) t+ (β0 + γ0) .

Hence,

(p1 + p2) + p3 = ((αn + βn) + γn) t
n + · · · + ((α0 + β0) + γ0)

= (αn + (βn + γn)) t
n + · · · + (α0 + (β0 + γ0))

= p1 + (p2 + p3) .

Again, the associative property of vector addition basically follows
from the definition of addition and the fact that real number addition
is associative.

3. Define the zero polynomial as

p0 = 0tn + · · · + 0t+ 0.

Then for any other

p = αnt
n + · · · + α1t+ α0

we have

p0 + p = (0 + αn) t
n + · · · + (0 + α1) t+ (0 + α0)

= αnt
n + · · · + α1t+ α0

= p.

4. Since for any α ∈ R there exists −α ∈ R, then for any

p = αnt
n + · · · + α1t+ α0 ∈ P (t, n)

there exists a

(−p) = (−αn) tn + · · · + (−α1) t+ (−α0) ∈ P (t, n)
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such that

p+ (−p) = (αnt
n + · · · + α1t+ α0) +

((−αn) tn + · · · + (−α1) t+ (−α0))

= (αn − αn) t
n + · · · + (α1 − α1) t+ (α0 − α0)

= 0tn + · · · + 0t+ 0

= p0.

5. For
p = αnt

n + · · · + α1t+ α0 ∈ P (t, n)

we have

(ab) p = (ab) (αnt
n + · · · + α1t+ α0) (B.8)

= ((ab)αn) t
n + · · · + ((ab)α1) t+ ((ab)α0) (B.9)

= (a (bαn)) t
n + · · · + (a (bα1)) t+ (a (bα0)) (B.10)

= a ((bαn) t
n + · · · + (bα1) t+ (bα0)) (B.11)

= (a) (bp) . (B.12)

The justification for each step is as follows.

(a) The step from Equation B.8 to B.9 is the definition of scalar
multiplication in P (t, n) given by Equation B.2.

(b) The step from Equation B.9 to B.10 is justified because multi-
plication of real numbers is associative.

(c) The step from Equation B.10 to B.11 is the definition of scalar
multiplication in P (t, n).

6. For
p = αnt

n + · · · + α1t+ α0 ∈ P (t, n)

we have

1p = 1 (αnt
n + · · · + α1t+ α0)

= (1αn) + · · · + (1α1) t+ (1α0)

= αnt
n + · · · + α1t+ α0

= p.

7. For
p = αnt

n + · · · + α1t+ α0 ∈ P (t, n)

we have

0p = 0 (αnt
n + · · · + α1t+ α0)

= (0αn) + · · · + (0α1) t+ (0α0)

= 0tn + · · · + 0t+ 0

= 0.
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8. For

p1 = αnt
n + · · · + α1t+ α0

p2 = βnt
n + · · · + β1t+ β0

we have

a (p1 + p2) = a [(αnt
n + · · · + α1t+ α0)+

(βnt
n + · · · + β1t+ β0)] (B.13)

= a [(αn + βn) t
n + · · · + (α0 + β0)] (B.14)

= [a (αn + βn) t
n + · · · + a (α0 + β0)] (B.15)

= [(aαn + aβn) t
n + · · · + (aα0 + aβ0)] (B.16)

= ((aαn) t
n + · · · + (aα1) t+ (aα0)+

(aβn) t
n + · · · + (aβ1) t+ (aβ0)) (B.17)

= ap1 + ap2. (B.18)

Each step is justified as follows.

(a) The step from Equation B.13 to B.14 is justified by the definition
of addition in P (t, n) given by Equation B.1.

(b) The step from Equation B.14 to B.15 is justified by the definition
of scalar multiplication in P (t, n) given by Equation B.2.

(c) The step from Equation B.15 to B.16 is justified by the fact that
multiplication of real numbers distributes over addition of real
numbers.

(d) The step from Equation B.16 to B.17 is justified by the definition
of addition in P (t, n).

9. For
p = αnt

n + · · · + α1t+ α0 ∈ P (t, n)

and a, b ∈ R, we have

(a+ b) p = (a+ b) (αnt
n + · · · + α1t+ α0) (B.19)

= ((a+ b)αn) t
n + · · · + ((a+ b)α0) (B.20)

= (aαn + bαn) t
n + · · · + (aα0 + bα0) (B.21)

= (aαn) tn + · · · + (aα0) +

(bαn) t
n + · · · + (bα0) (B.22)

= ap+ bp. (B.23)

Each step is justified as follows.

(a) The step from Equation B.19 to B.20 is justified by the definition
of scalar multiplication in P (t, n) given by Equation B.2.
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(b) The step from Equation B.20 to B.21 is justified by the fact that
multiplication of real numbers distributes over addition of real
numbers.

(c) The step from Equation B.21 to B.22 is justified by the definition
of vector addition in P (t, n) given by Equation B.1.

Before giving examples, we must discuss the closure property. The idea of
closure is that you can not add to vectors in a vector space to create a vector
not in it. Similarly, you can not scale a vector and leave the vector space.

Property B.1.14 COMPLETE! ⋄

The remaining sections in this appendix were moved from Chapter 6 to
here.

B.1.3 Linear independence

Consider the set of vectors
{

ξ1, . . . , ξk
}

∈ Rn, i.e., k vectors that are n elements
“tall” such as

ξi =











ξi1
ξi2
...
ξin











.

Definition B.1.15 (Linear (in)dependence) The set
{

ξ1, . . . , ξk
}

is linearly
independent if ∃ scalars α1, . . . , αk, where at least one αi 6= 0 such that

α1ξ
1 + α2ξ

2 + · · · + αkξ
k =

k
∑

i=1

αiξ
i = 0.

⋄

If the set is non not linearly dependent, then it is linearly independent.

A simple example is in order.

Example B.1.16 Let n = 3 and

ξ1 =





1
2
3



 ξ2 =





1
1
1



 ξ3 =





5
7
9



 .

Clearly, determining linear dependence or independence by inspection is not
easy. So we try to solve

α1





1
2
3



+ α2





1
1
1



+ α3





5
7
9



 =





0
0
0







576 APPENDIX B. LINEAR ALGEBRA REVIEW

or, as three scalar equations

α1 + α2 + 5α3 = 0

2α1 + α2 + 7α3 = 0

3α1 + α2 + 9α3 = 0.

A tedious calculation gives

α1 = 2

α2 = 3

α3 = 1,

which determines that the set of vectors {ξ1, ξ2, ξ3} is linearly dependent.

An easier approach is to recall the following basic result from linear algebra
[7].

Proposition B.1.17 If A ∈ Rn×n and if det (A) = 0 then the set of vectors
that are the columns of A are linearly dependent. Also, the set of vectors that
are the rows of A are linearly dependent. If det (A) 6= 0 then the columns and
rows are linearly independent.

Example B.1.18 Considering the system in Example B.1.16, an easy com-
putation gives

det









1 1 5
2 1 7
3 1 9







 = 0

thus confirming the result from Example B.1.16 that the vectors are linearly
dependent.

The primary utility of the notion of linear independence is that in a n di-
mensional vector space, a set of n linearly independent vectors, {ξ1, . . . , ξn},
form a basis for the vector space. Thus any vector in that space can be written
as a linear combination, i.e., ξ =

∑n
i=1 αiξ

i.

Remark B.1.19 Relationship with the Wronskian

Recall from Chapter 3 that we were concerned with linearly indepen-
dent functions, and in particular used the notion of the Wronskian in Def-
inition 3.2.6 to determine whether or not a set of functions was linearly
independent. Analogous to the definition for vectors, a set of functions,
{x1(t), x2(t), . . . , xn(t)} is linearly dependent on an interval, I, if there ex-
ists constants, c1, c2, . . . , cn, where not all of the constants are zero, such that

c1x1(t) + c2x2(t) + · · · + cnxn(t) = 0. (B.24)
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Differentiating Equation B.24 n− 1 times gives the system of equations

c1x1(t) + c2x2(t) + · · · + cnxn(t) = 0

c1
dx1

dt
(t) + c2

dx2

dt
(t) + · · · + cn

dxn
dt

(t) = 0

c1
d2x1

dt2
(t) + c2

d2x2

dt2
(t) + · · · + cn

d2xn
dt2

(t) = 0

...

c1
dn−1x1

dtn−1
(t) + c2

dn−1x2

dtn−1
(t) + · · · + cn

dn−1xn
dtn−1

(t) = 0

which can be written in matrix form as











x1(t) x2(t) · · · xn(t)
dx1

dt
(t) dx2

dt
(t) · · · dxn

dt
(t)

...
...

. . .
...

dn−1x1

dtn−1 (t) dn−1x2

dtn−1 (t) · · · dn−1xn

dtn−1 (t)





















c1
c2
...
cn











=











0
0
...
0











. (B.25)

A solution to Equation B.25 requires

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1(t) x2(t) · · · xn(t)
dx1

dt
(t) dx2

dt
(t) · · · dxn

dt
(t)

...
...

. . .
...

dn−1x1

dtn−1 (t) dn−1x2

dtn−1 (t) · · · dn−1xn

dtn−1 (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

⋄

B.1.4 Eigenvalues and eigenvectors

Given a matrix A ∈ R
n×n and a vector ξ ∈ R

n, the product y = Aξ is simply
another vector in Rn. However, there are two classes of the vectors x that give a
special result when multiplied into A. The first special case is then the resulting
vector is all zeros and the second special case is when the resulting vector is just
a scaled version of x. The following two definitions elaborate upon this.

Definition B.1.20 (Null Space) The null space of a matrix A ∈ R
n×n, de-

noted by N (A), is the set of all vectors ξ ∈ Rn such that

Aξ = 0.

In this case 0 is the vector in Rn full of n zeros. ⋄

Definition B.1.21 (Eigenvectors and Eigenvalues) An eigenvector of a

matrix A ∈ Rn×n is a non-zero vector, ξ̂, such that

Aξ̂ = λξ̂. ⋄
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The number λ, which may be real or complex, is the associated eigenvalue.

To compute eigenvalues and eigenvectors, note that

Aξ̂ = λξ̂ =⇒ Aξ̂ − λξ̂ = (A− λI) ξ̂ = 0, (B.26)

where I is the n × n identity matrix. By Cramer’s rule, Equation B.26 has a
solution if and only if

det (A− λI) = 0. (B.27)

Equation B.27 is an nth degree polynomial in λ and hence has with n solutions,
and is called the characteristic equation. Thus, A ∈ R

n×n has n eigenvalues. At
this point, all we know is that there are n eigenvalues. Note that the eigenvalues
may be all real and distinct, or some of them may be repeated and/or complex
conjugate pairs.

To compute the eigenvalue associated with a particular eigenvalue λ, simply
substitute the value for λ into Equation B.26 and solve for each component of
ξ̂. As the following example illustrates, the eigenvector can only be determined
up to a unique scaling factor.

Example B.1.22 Compute the eigenvalues and eigenvectors of

A =

[

1 2
1 3

]

.

First, to compute the eigenvalues,

det (A− λI) = det

([

1 2
1 3

]

− λ

[

1 0
0 1

])

= det

([

1 − λ 2
1 3 − λ

])

= (1 − λ) (3 − λ) − 2

= λ2 − 4λ+ 1

= 0.

Thus,
λ = 2 ±

√
3.

To compute the eigenvectors, substituting the two values for λ into Equa-
tion B.27 gives

(

A−
(

2 +
√

3
)

I
)

=

[

1 − 2 −
√

3 2

1 3 − 2 −
√

3

] [

ξ1
ξ2

]

which gives
(

−1 −
√

3
)

ξ1 + 2ξ2 = 0

ξ1 +
(

1 −
√

3
)

ξ2 = 0.
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A quick computation will show that if we try to solve for one variable, say
ξ2, from one of the equations and substitute into the other equation, we will
end up with the degenerate equation 0 = 0. This is precisely due to the fact
that we are trying to solve a system of linearly dependent equations. Thus
there are an infinite number of solutions.

The most straightforward approach may be to simply set one of the vari-
ables equal to one and solve for the others. So, in this example, arbitrarily
let ξ2 = 1. Both equations then give ξ1 =

√
3−1, and hence the eigenvector

corresponding to the eigenvalue λ = 2 +
√

3 is

ξ̂ =

[ √
3 − 1
1

]

.

Note that any vector of the form

ξ̂ = α

[ √
3 − 1
1

]

,

where α is a real or complex number is also an eigenvector corresponding
to the eigenvalue λ = 2 +

√
3.

A similar computation (and again arbitrarily setting ξ2 = 1) gives

ξ̂ =

[

−
√

3 − 1
1

]

as an eigenvector corresponding to the eigenvalue λ = 2 −
√

3.

It will sometimes be the case that there ismore than one linearly independent
solution to the eigenvector problem. In that case it will be useful to have a
more systematic approach to determining the linearly independent solutions.
In order to be more systematic in the approch to computing eigenvectors recall
that Recall to solve a set of linear equations

Ax = b,

where A ∈ Rn×n, b, x ∈ Rn where A and b are given and x is to be determined,
one approach is to construct the augmented matrix

[

A b
]

and use row reduction operations to convert the left part of the augmented ma-
trix to a convenient form (typically triangular form). In the case of determining
eigenvectors, b will be a column of zeros, so the problem will be somewhat sim-
pler. The details of the approach will be illustrated by the following example.

Example B.1.23 Determine the eigenvalues and eigenvectors of

A =









1 0 0 0
−1 2 0 0
−1 0 1 1
−1 0 −1 3









.
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We have

det (A− λI) = (1 − λ)

∣

∣

∣

∣

∣

∣

2 − λ 0 0
0 1 − λ 1
0 −1 3 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ) (2 − λ)

∣

∣

∣

∣

1 − λ 1
−1 3 − λ

∣

∣

∣

∣

= (1 − λ) (2 − λ) ((1 − λ) (3 − λ) + 1)

= (1 − λ) (2 − λ)
(

λ2 − 4λ+ 4
)

= (1 − λ) (2 − λ)
(

λ2 − 4λ+ 4
)

= (1 − λ) (2 − λ)3 .

So, λ = 1 has an algebraic multiplicity of one and λ = 2 has an algebraic
multiplicity of three. So, λ = 1 is an eigenvalue and λ = 2 is an eigenvalue
that is repeated three times.

Note that, in general, for matrices larger than two by two we will not
be able to do such computations by hand. It was only due to the particular
structure of the way the zeros were arranged in A that allowed us to do it
in this example. For larger matrices, In general, for matrices larger than
2 × 2 using a computer program or calculator will be necessary to compute
the eigenvalues, which are the roots of the characteristic equation.

Now, to compute the eigenvectors, substituting λ = 1 into (A− λI) ξ̂1 =
0 gives









0 0 0 0
−1 1 0 0
−1 0 0 1
−1 0 −1 2

















ξ̂11
ξ12
ξ13
ξ14









=









0
0
0
0









which, in augmented matrix form is








0 0 0 0 0
−1 1 0 0 0
−1 0 0 1 0
−1 0 −1 2 0









.

Interchanging the first and fourth rows gives








−1 0 −1 2 0
−1 1 0 0 0
−1 0 0 1 0
0 0 0 0 0









and subtracting the first row from the second and third rows gives








−1 0 −1 2 0
0 1 1 −2 0
0 0 1 −1 0
0 0 0 0 0








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which is in upper triangular form. If we choose ξ̂14 = 1, then from the third

row we have ξ̂13 = 1. Substituting both of these values into the second row

gives ξ̂12 = 1 and finally the first row gives ξ̂11 = 1. Hence

ξ̂1 =









1
1
1
1









.

Now, for λ = 2 we have det (A− 2I) ξ̂ = 0 as









−1 0 0 0
−1 0 0 0
−1 0 −1 1
−1 0 −1 1

















ξ̂21
ξ̂22
ξ̂23
ξ̂24









=









0
0
0
0









,

or, in augmented matrix form









−1 0 0 0 0
−1 0 0 0 0
−1 0 −1 1 0
−1 0 −1 1 0









and, without elaborating on all the details, the row reductions gives









−1 0 0 0 0
−1 0 0 0 0
−1 0 −1 1 0
−1 0 −1 1 0









⇐⇒









−1 0 0 0 0
0 0 0 0 0
−1 0 −1 1 0
0 0 0 0 0









⇐⇒









−1 0 0 0 0
−1 0 −1 1 0
0 0 0 0 0
0 0 0 0 0









⇐⇒









−1 0 0 0 0
0 0 −1 1 0
0 0 0 0 0
0 0 0 0 0









.

The procedure we will adopt is the following.

1. Inspecting each row in the reduced matrix, we will identify the vari-
ables as not free if they are the first nonzero term in any row. So, in
the proceeding matrix, the components ξ̂1 and ξ̂3 are not free.

2. The remaining variables are free. Choose one of the free variables to
be equal to one and the rest of the free variables to be equal to zero and
compute the remaining components. This will give one eigenvector.
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3. To compute another linearly independent eigenvector, choose another
of the free variables to be one and the rest to be zero, and compute
the remaining components. Continue through the entire list of free
variables. This will result in a linearly independent set of eigenvectors.

Returning to the example, ξ̂24 and ξ̂22 are free. Choosing ξ̂24 = 1 and ξ̂22 = 0
gives

ξ̂2 =









0
0
1
1









and choosing ξ̂34 = 0 and ξ̂32 = 1 gives

ξ̂3 =









0
1
0
0









.

B.2 Matrix Computations

It will be necessary to be able to compute matrix determinants and inverses.
This section reviews how to do so. It is the way to do it by hand and is also
the way that a computer program does it.

B.2.1 Computing Determinants

Define the determinant of a 2 × 2 matrix

A =

[

a11 a12

a21 a22

]

by
detA = a11a22 − a12a21.

For matrices larger than 2 × 2, we will use the following theorem is from
[7].

Theorem B.2.1 Let A = (aij) be an n×n matrix, where n ≥ 2. Let Aij be
the (n− 1) × (n− 1) matrix formed by deleting row i and column j from A.
Defining the cofactor

cij = (−1)
i+j

detAij

we then have the expansion by rot i:

detA = ai1ci1 + ai2ci2 + · · · + aincin

and we have the expansion by column j:

detA = a1jc1j + a2jc2j + · · · + anjcnj .
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The 3 × 3 case should probably be memorized.

Corollary B.2.2 For

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





applying Theorem B.2.1 gives

detA = a11 (a22a33 − a23a32)−a12 (a21a33 − a23a31)+a13 (a21a32 − a22a31) .

Example B.2.3 Compute the determinant of

A =









−2 0 1 −3
−1 −1 1 −3
2 −2 −3 −1
0 0 0 −4









.

Clearly, it is best to expand on a row or column with the most zeros.
Expanding across the fourth row gives

detA = 0 (−1)
4+1

detA41 + 0 (−1)
4+2

detA42 +

0 (−1)4+3 detA43 + −4 (−1)4+4 detA44

= −4

∣

∣

∣

∣

∣

∣

−2 0 1
−1 −1 1
2 −2 −3

∣

∣

∣

∣

∣

∣

= −4 [−2 (3 + 2) − 0 (4 − 2) + 1 (2 + 2)]

= 24.

B.2.2 Computing a Matrix Inverse

Let A−1 be the matrix From [7] is the following useful theorem to compute
matrix inverses by hand.

Theorem B.2.4 Let A be an n × n matrix, with n > 1. Let Aij be the
(n− 1) × (n− 1) matrix formed by deleting row i and column j from A.
Define the cofactor matrix

cof A = C =
[

(−1)
i+j

detAij

]

(i, j = 1, . . . , n) .

Let ∆ = detA. Then if ∆ 6= 0

A−1 =
1

∆
CT .
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Example B.2.5 Compute the inverse of

A =









−2 0 1 −3
−1 −1 1 −3
2 −2 −3 −1
0 0 0 −4









.

From Example B.2.3 we know that ∆ = 24. The terms in the cofactor
matrix are

C11 = (−1)
1+1

∣

∣

∣

∣

∣

∣

−1 1 −3
−2 −3 −1
0 0 −4

∣

∣

∣

∣

∣

∣

= (−1)
1+1

(−1)
3+3

[−4 (3 + 2)]

= −20,

C12 = (−1)
1+2

∣

∣

∣

∣

∣

∣

−1 1 − 3
2 −3 −1
0 0 −4

∣

∣

∣

∣

∣

∣

= −1 [−1 (12) − 1 (−8) − 3 (0)]

= 4

C13 = (−1)1+3

∣

∣

∣

∣

∣

∣

−1 −1 −3
2 −2 −1
0 0 −4

∣

∣

∣

∣

∣

∣

= (1) [−1 (8) − (−1) (−8) + 0]

= −16

and

C14 = (−1)1+4

∣

∣

∣

∣

∣

∣

−1 −1 1
2 −2 3
0 0 0

∣

∣

∣

∣

∣

∣

= 0,

and so on. Completing the tedious calculations gives

A−1 =
1

24









−20 4 −16 0
8 −16 16 0
−4 −4 −8 0
22 −14 26 −6











Appendix C

Detailed Computations

This appendix contains some of the important, but detailed or cumbersome
computations, inclusion of which in the main text perhaps would be distracting.

C.1 Computations Related to Fourier Series

Proposition C.1.1 The integral

∫ L

0

sin
(nπx

L

)

sin
(mπx

L

)

dx =

{

0 m 6= n
L
2 m = n

m, n ∈ N.

Proof The case for n 6= m is shown simply by integration by parts.

∫ L

0

sin
(nπx

L

)

sin
(mπx

L

)

dx = − L

mπ
sin
(nπx

L

)

cos
(mπx

L

)

∣

∣

∣

∣

L

0

+

n

m

∫ L

0

cos
(nπx

L

)

cos
(mπx

L

)

dx

=
n

m

∫ L

0

cos
(nπx

L

)

cos
(mπx

L

)

dx,

which is clearly asking us to integrate by parts again. So

n

m

∫ L

0

cos
(nπx

L

)

cos
(mπx

L

)

dx =
n

m

L

nπ
cos
(mπx

L

)

sin
(nπx

L

)

∣

∣

∣

∣

L

0

+

( n

m

)2
∫ L

0

sin
(mπx

L

)

sin
(nπx

L

)

dx.

Thus
∫ L

0

sin
(nπx

L

)

sin
(mπx

L

)

dx =
( n

m

)2
∫ L

0

sin
(nπx

L

)

sin
(mπx

L

)

dx.

585
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Hence, if n 6= m the integral must be zero.
The case where n = m is simply done by a trigonometric substitution. Recall

that

cos 2θ = cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ

=
(

1 − sin2 θ
)

− sin2 θ

= 1 − 2 sin2 θ,

so

sin2 θ =
1 − cos 2θ

2
.

�

Hence
∫ L

0

sin2
(nπx

L

)

dx =
1

2

∫ L

0

1 − cos

(

2nπx

L

)

dx

=
x

2

∣

∣

∣

L

0
− L

4nπ
sin

(

2nπx

L

)∣

∣

∣

∣

L

0

=
L

2
.

Note that N is the set of natural numbers, N = {1, 2, 3, . . .}.
Proposition C.1.2 The integral

∫ L

0

cos
(nπx

L

)

cos
(mπx

L

)

dx =

{

0 m 6= n
L
2 m = n

Proof This exactly mirrors the proof to Proposition C.1.1. �

Proposition C.1.3 The integral
∫ L

0

sin
(nπx

L

)

cos
(mπx

L

)

dx = 0

for all m,n ∈ N.

C.2 Detailed Runge-Kutta Derivations

C.2.1 Third order Runge-Kutta method

The third order Runge-Kutta formula is derived by equating

x(t+ ∆t) = x(t) + f(x(t), t)∆t +
1

2

(

∂f

∂x
f +

∂f

∂t

)∣

∣

∣

∣

(x(t),t)

(∆t)
2
+

1

6

[(

∂2f

∂x2
f +

∂2f

∂x∂t

)

f +
∂f

∂x

(

∂f

∂x
f +

∂f

∂t

)

+

∂2f

∂x∂t
f +

∂2f

∂t2

]∣

∣

∣

∣

(x(t),t)

(∆t)
3
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with

x(t+ ∆t) = c1f +

c2f(x+ c3f∆t, t+ c4∆t) +

c5f(x+ c6f + c7f(x+ c8f∆t, t+ c9∆t) (C.1)

(if no arguments to f are specified, it is evaluated at (x(t), t)).
To determine the coefficients, equation C.1 must be expanded to third order.

Since

f(x+ a, t+ b) = f +
∂f

∂x
a+

∂f

∂t
b+

1

2

∂2f

∂x2
a2 +

1

2

∂2f

∂t2
b2 +

1

2

∂2f

∂x∂t
ab+ · · ·

where f and all the derivative terms are evaluated at (x, t), to third order
equation C.1 is...
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Appendix D

Example Programs

D.1 C Programs

D.1.1 Programs from Chapter 1

Program for example 1.10.1

/* Example C program to determine an approximate solution to

*

* x’ = sin(2 t)

* x(0) = 3

*

* using Euler’s method.

*

* To compile on the unix platfom, run "gcc example.c -lm" and then type

* "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

int main() {

int n;

float x,t,dt,f;

FILE *fp;

fp = fopen("eulerexample05.d","w");

n = 0;

dt = 0.5;

589
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x = 3.0;

for(t=0;t<10;t+=dt) {

f = sin(2.0*t);

fprintf(fp,"%f \t %d \t %f \t %f \t ",t,n,x,f);

x += f*dt;

fprintf(fp,"%f \t %f\n",x,7.0/2.0 - cos(2.0*(t+dt))/2.0);

n++;

}

fclose(fp);

return 0;

}
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Program for example 1.10.2

/* Example C program to determine an approximate solution to

*

* x’ = 75 x (1 - x)

*

* using Euler’s method.

*

* To compile on the unix platfom, run "gcc example.c -lm" and then type

* "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

int main() {

int n;

double x,t,dt,f;

FILE *fp;

fp = fopen("output.d","w");

n = 0;

dt = 0.1;

x = 1.0/(1.0+exp(75.0));

for(t=-1;t<1;t+=dt) {

f = 75.0*x*(1-x);

fprintf(fp,"%f\t%d\t%f\t%f\t%f\n ",t,n,x,f,x+f*dt);

x += f*dt;

n++;

}

fclose(fp);

return 0;

}
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Program for example 1.10.3

/* Example C program to determine an approximate solution to

*

* x’’ + sin(t) x’ + cos(t) x = exp(-5*t)

*

* using Euler’s method.

*

* To compile on the unix platfom, run "gcc example.c -lm" and then type

* "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

int main() {

int n;

float x[2],t,dt,f[2];

FILE *fp;

fp = fopen("output.d","w");

n = 0;

dt = 0.01;

x[0] = 2;

x[1] = 5;

for(t=0;t<30;t+=dt) {

f[0] = x[1];

f[1] = exp(-5*t) - sin(t) * x[1] - cos(t)*x[0];

fprintf(fp,"%f\t%d\t%f\t%f\t%f\t%f\t%f\t%f\n ",t,n,

x[0],f[0],x[1],f[1],x[0]+f[0]*dt,x[1]+f[1]*dt);

x[0] += f[0]*dt;

x[1] += f[1]*dt;

n++;

}

fclose(fp);

return 0;

}
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D.1.2 Programs from Chapter 2

D.1.3 Programs from Chapter 3

D.1.4 Programs from Chapter 13

Program for example 13.1.1

/* This is from the file C/eulererroranalysis.c

*

* Example C program to determine an approximate solution to

*

* x’ = 5 x

* x(0) = 1

*

* using Euler’s method. The exact solution is also printed to the

* data file for comparsion purposes.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

int main() {

float x,t,dt;

FILE *fp;

fp = fopen("data.d","w");

dt = 0.1;

x = 1.0;

for(t=0;t<=1;t+=dt) {

fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));

x += 5.0*x*dt;

}

fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));

fclose(fp);

return 0;

}
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Program for example 13.1.2

/* This is from the file C/eulererroranalysis2.c

*

* Example C program to determine an approximate solution to

*

* x’ = -sin t

* x(0) = 1

*

* using Euler’s method. The exact solution is also printed to the

* data file for comparsion purposes.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

int main() {

float x,t,dt;

FILE *fp;

fp = fopen("eulererroranalysis2.d","w");

dt = 1.0;

x = 1.0;

for(t=0;t<30;t+=dt) {

fprintf(fp,"%f\t%f\t%f\n",t,x,cos(t));

x += -sin(t)*dt;

}

fprintf(fp,"%f\t%f\t%f\n",t,x,cos(t));

fclose(fp);

return 0;

}
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Program for example 13.2.1

/* This is from the file C/secondordertaylor.c

*

* Example C program to determine an approximate solution to

*

* x’ = 5 x

* x(0) = 1

*

* using a second order Taylor series expansion. The exact solution

* is also printed to the data file for comparsion purposes.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

int main() {

float x,t,dt;

FILE *fp;

fp = fopen("secondordertaylor.d","w");

dt = 0.1;

x = 1.0;

for(t=0;t<=1;t+=dt) {

fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));

x += 5.0*x*dt + 25.0/2.0*x*pow(dt,2);

}

fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));

fclose(fp);

return 0;

}
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Program for example 13.2.2

/* This is from the file C/secondordertaylorhard.c

*

* Example C program to determine an approximate solution to

*

* x’ = -x^3 + sin(t x)

* x(0) = 1

*

* using a second order Taylor series expansion.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

int main() {

float x,t,dt;

FILE *fp;

fp = fopen("secondordertaylor2a.d","w");

dt = 0.2;

x = 1.0;

for(t=0;t<5;t+=dt) {

fprintf(fp,"%f\t%f\n",t,x);

x += (-pow(x,3) + sin(t*x))*dt

+ 1.0/2.0*((-3*pow(x,2) + t*cos(t*x))*(-pow(x,3) + sin(t*x))

+ x*cos(t*x))*pow(dt,2);

}

fprintf(fp,"%f\t%f\n",t,x);

fclose(fp);

return 0;

}
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Program for example 13.3.1

/* This is from the file C/rk2.c

*

* Example C program to determine an approximate solution to

*

* x’ = -x^3 + sin(t x)

* x(0) = 1

*

* using the second order Runge-Kutta (or improved Euler) method. The

* exact solution is also printed to the data file for comparsion

* purposes

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

int main() {

float x,t,dt;

FILE *fp;

fp = fopen("rk2.d","w");

dt = 0.1;

x = 1.0;

for(t=0;t<=1;t+=dt) {

fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));

x += 5.0*x*dt;

}

fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));

fclose(fp);

return 0;

}



598 APPENDIX D. EXAMPLE PROGRAMS

Program for example 13.3.2

/* This is from the file C/rk2hard.c

*

* Example C program to determine an approximate solution to

*

* x’ = -x^3 + sin(t x)

* x(0) = 1

*

* using the second Runge-Kutta method.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

double f(double x, double t);

int main() {

double x,t,dt;

FILE *fp;

fp = fopen("secondorderrk2a.d","w");

dt = 0.2;

x = 1.0;

for(t=0;t<5;t+=dt) {

fprintf(fp,"%f\t%f\n",t,x);

x += dt/2*(f(x,t) + f(x+f(x,t)*dt,t+dt));

}

fprintf(fp,"%f\t%f\n",t,x);

fclose(fp);

return 0;

}

double f(double x, double t) {

return -pow(x,3) + sin(t*x);

}
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Program for example 13.3.3

/* This is from the file C/rk3.c

*

* Example C program to determine an approximate solution to

*

* x’ = -x^3 + sin(t x)

* x(0) = 1

*

* using the third order Runge-Kutta method.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

double f(double x, double t);

int main() {

double x,t,dt;

double v1,v2,v3;

FILE *fp;

fp = fopen("rk3.d","w");

dt = 0.5;

x = 1.0;

for(t=0;t<5;t+=dt) {

fprintf(fp,"%f\t%f\n",t,x);

v1 = f(x,t)*dt;

v2 = f(x+v1/2.0,t+dt/2.0)*dt;

v3 = f(x+2.0*v2-v1,t+dt)*dt;

x += 1.0/6.0*(v1+4.0*v2+v3);

}

fprintf(fp,"%f\t%f\n",t,x);

fclose(fp);

return 0;

}
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double f(double x, double t) {

return -pow(x,3) + sin(t*x);

}
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Program for example 13.3.4

/* This is from the file C/rk4.c

*

* Example C program to determine an approximate solution to

*

* x’ = -x^3 + sin(t x)

* x(0) = 1

*

* using the fourth order Runge-Kutta method.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

double f(double x, double t);

int main() {

double x,t,dt;

double k1,k2,k3,k4;

FILE *fp;

fp = fopen("rk4a.d","w");

dt = 0.25;

x = 1.0;

for(t=0;t<5;t+=dt) {

fprintf(fp,"%f\t%f\n",t,x);

k1 = f(x,t)*dt;

k2 = f(x+k1/2.0,t+dt/2.0)*dt;

k3 = f(x+k2/2.0,t+dt/2.0)*dt;

k4 = f(x+k3,t+dt)*dt;

x += 1.0/6.0*(k1 + 2.0*k2 + 2.0*k3 + k4);

}

fprintf(fp,"%f\t%f\n",t,x);

fclose(fp);

return 0;
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}

double f(double x, double t) {

return -pow(x,3) + sin(t*x);

}
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Program for example 13.4.1

/* This is from the file C/subtleerror.c

*

* Example C program to determine an approximate solution to

*

* x’ + 3 x = 15(cos(3 t) + sin(3 t))

* x(0) = 1

*

* using Euler’s method, 2nd order RK, a 2nd order Taylor series

* expansion and 4th order RK. The exact solution is also printed to

* the data file for comparsion purposes.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

double f(double x, double t);

main() {

double xe,xie,t,dt=0.125;

double xts,x4rk;

double w1,w2,w3,w4;

double t_final=5;

double exact;

FILE *fp;

fp = fopen("subtledata2.d","w");

xe = 0.0; /* euler’s method */

xie = 0.0; /* 2nd order RK */

xts = 0.0; /* 2nd order TS */

x4rk = 0.0; /* 4th order RK */

exact = 0.0;

for(t=0;t<=t_final;t+=dt) {

fprintf(fp,"%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",

t,xe,xie,xts,x4rk,exact,exact-xe,exact-xie,exact-xts,exact-x4rk);

xe += f(xe,t)*dt;

xie += (f(xie,t)+f(xie+f(xie,t)*dt,t+dt))*dt/2.0;

xts += f(xts,t)*dt + pow(dt,2)/2.0*
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(-3.0*f(xts,t)+45.0*(-sin(3.0*t) + cos(3.0*t)));

w1 = f(x4rk,t)*dt;

w2 = f(x4rk+w1/2.0,t+dt/2.0)*dt;

w3 = f(x4rk+w2/2.0,t+dt/2.0)*dt;

w4 = f(x4rk+w3,t+dt)*dt;

x4rk += 1.0/6.0*(w1 + 2.0*w2 + 2.0*w3 + w4);

exact = 5.0*sin(3.0*(t+dt));

}

fclose(fp);

}

double f(double x, double t) {

return 15.0*(cos(3.0*t)+sin(3.0*t)) - 3.0*x;

}
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Program for example 13.5.1

/* This is from the file C/systemeuler.c

*

* Example C program to determine an approximate solution to

*

* x’ = y

* y’ = (1 - x^2)y - x

* x(0) = 0.0 2

* y(0) = 0.0

*

* using Euler’s method.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

int main() {

double x[2],t,dt;

double copy[2];

int i;

FILE *fp;

fp = fopen("system.d","w");

dt = 0.001;

x[0] = 0.02;

x[1] = 0.0;

for(t=0;t<=20;t+=dt) {

fprintf(fp,"%f\t%f\t%f\n",t,x[0],x[1]);

for(i=0;i<2;i++)

copy[i] = x[i];

x[0] += copy[1]*dt;

x[1] += ((1.0-pow(x[0],2))*x[1]-x[0])*dt;

}

fclose(fp);

return 0;

}
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Program for example 13.5.3

/* This is from the file C/systemrk4.c

*

* Example C program to determine an approximate solution to

*

* x’ = y

* y’ = (1 - x^2)y - x sin(t)

* x(0) = 0.0 2

* y(0) = 0.0

*

* using the fourth order Runge-Kutta method.

*

* To compile on the unix platfom, run "gcc <filename>.c -lm" and

* then type "a.out" to execute the program.

*

*/

#include<stdio.h>

#include<math.h>

double f(double x, double y, double t);

double g(double x, double y, double t);

int main() {

double x,y,t,dt;

double v1,v2,v3,v4,w1,w2,w3,w4;

FILE *fp;

fp = fopen("systemrk4.d","w");

dt = 0.001;

x = 0.02;

y = 0.0;

for(t=0;t<=20;t+=dt) {

fprintf(fp,"%f\t%f\t%f\n",t,x,y);

v1 = f(x, y, t)*dt;

w1 = g(x, y, t)*dt;

v2 = f(x+v1/2.0, y+w1/2.0, t+dt/2.0)*dt;

w2 = g(x+v1/2.0, y+w1/2.0, t+dt/2.0)*dt;

v3 = f(x+v2/2.0, y+w2/2.0, t+dt/2.0)*dt;

w3 = g(x+v2/2.0, y+w2/2.0, t+dt/2.0)*dt;

v4 = f(x+v3, y+w3, t+dt)*dt;

w4 = g(x+v3, y+w3, t+dt)*dt;
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x += (v1 + 2.0*v2 + 2.0*v3 + v4)/6.0;

y += (w1 + 2.0*w2 + 2.0*w3 + w4)/6.0;

}

fclose(fp);

return 0;

}

double f(double x, double y, double t) {

return y;

}

double g(double x, double y, double t) {

return (1.0 - pow(x,2))*y - x*sin(t);

}
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D.2 FORTRAN Programs

D.2.1 Programs from Chapter 1

Program for example 1.10.1

program eulerexample

c This is a sampe FORTRAN program that solves the differential

c equation

c

c x’ = sin(2*t)

c

c using Euler’s method.

c

c To compile this on a unix machine, type ’f77 exulerexample.f’

c and then type ’a.out’ to execute it.

real x,t,dt,f

integer n

open(unit=13,file="output.d")

n = 0

dt = 0.01

x = 3.0

c 100 format(f3.5,i4,f3.5,f3.5,f3.5,f3.5)

do 10 t = 0, 10, dt

f = sin(2.0*t)

write(13,*) t,n,x,f,x+f*dt, 7.0/2.0 - cos(2.0*(t+dt))/2.0

x = x + f*dt

n = n + 1

10 continue

stop

end
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Program for example 1.10.2

program eulerexample

c This is a sampe FORTRAN program that solves the differential

c equation

c

c x’ = 1/(1 + exp(-10*(t-5)))

c

c using Euler’s method.

c

c To compile this on a unix machine, type ’f77 exulerexample.f’

c and then type ’a.out’ to execute it.

double precision x,t,dt,f

integer n

open(unit=13,file="output.d")

n = 0

dt = 0.00001

x = 1/(1+exp(75.0))

do 10 t = -1, 1, dt

f = 75*x*(1-x)

write(13,*) t,n,x,f,x+f*dt

x = x + f*dt

n = n + 1

10 continue

stop

end
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Program for example 1.10.3

program eulerexample

c This is a sampe FORTRAN program that solves the differential

c equation

c

c x’’ + sin(t) x’ + cos(t) x = exp(-5*t)

c x(0) = 2

c x’(0) = 5

c

c using Euler’s method.

c

c To compile this on a unix machine, type ’f77 exulerexample.f’

c and then type ’a.out’ to execute it.

double precision x(2),t,dt,f(2)

integer n

open(unit=13,file="output.d")

n = 0

dt = 0.02

x(1) = 2.0

x(2) = 5.0

do 10 t = 0, 30, dt

f(1) = x(2)

f(2) = exp(-5.0*t) - sin(t)*x(2) - cos(t)*x(1)

write(13,*) t,x(1),x(2)

x(1) = x(1) + f(1)*dt

x(2) = x(2) + f(2)*dt

n = n + 1

10 continue

stop

end
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D.2.2 Programs from Chapter 2

D.2.3 Programs from Chapter 3

D.2.4 Programs from Chapter 13

Program for example 13.1.1

program eulererroranalysis

c This is from the file FORTRAN/eulererroranalysis.f

c

c This is a sample FORTRAN program that solves the differential

c equation

c

c x’ = 5 x

c x(0) = 1

c

c using Euler’s method.

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x,t,dt

open(unit=13,file="fortrandata.d")

dt = 0.1

x = 1.0

do 10 t = 0, 1, dt

write(13,*) t,x,exp(5*t)

x = x + 5*x*dt

10 continue

write(13,*) t,x,exp(5*t)

stop

end
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Program for example 13.1.2

program eulererroranalysis2

c This is from the file FORTRAN/eulererroranalysis2.f

c

c This is a sample FORTRAN program that solves the differential

c equation

c

c x’ = -sin(t)

c x(0) = 1

c

c using Euler’s method.

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x,t,dt;

open(unit=13,file="fortrandata.d")

dt = 1

x = 1.0

do 10 t = 0, 30, dt

write(13,*) t,x,cos(t)

x = x - sin(t)*dt

10 continue

write(13,*) t,x,cos(t)

stop

end
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Program for example 13.2.1

program secondordertaylor

c This is from the file FORTRAN/secondordertaylor.f

c

c This is a sample FORTRAN program that solves the differential

c equation

c

c x’ = 5 x

c x(0) = 1

c

c using a second order Taylor series expansion

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x,t,dt;

open(unit=13,file="secondordertaylor.d")

dt = 0.1

x = 1.0

do 10 t = 0, 1, dt

write(13,*) t,x,exp(5*t)

x = x + 5*x*dt + 25/2*x*dt**2

10 continue

write(13,*) t,x,exp(5*t)

stop

end
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Program for example 13.2.2

program secondordertaylor2

c This is from the file FORTRAN/secondordertaylorhard.f

c

c This is a sample FORTRAN program that solves the differential

c equation

c

c x’ = -x^3 + sin(t x)

c x(0) = 1

c

c using a second order Taylor series expansion

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x,t,dt;

open(unit=13,file="secondordertaylor2a.d")

dt = 0.2

x = 1.0

do 10 t = 0, 5, dt

write(13,*) t,x

x = x + (-x**3 + sin(t*x))*dt

c + 1.0/2.0*((-3*x**2 + t*cos(t*x))*(-x**3 + sin(t*x)) +

c x*cos(t*x))*dt**2

10 continue

write(13,*) t,x

stop

end
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Program for example 13.3.1

program rk2

c This is from the file FORTRAN/rk2.f

c

c This is a sampe FORTRAN program that solves the differential

c equation

c

c x’ = 5*x

c x(0) = 1

c

c using the second order Runge-Kutta method.

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x,t,dt;

open(unit=13,file="secondorderrk.d")

dt = 0.1

x = 1.0

do 10 t = 0, 1, dt

write(13,*) t,x,exp(5.0*t)

x = x + dt/2.0*(f(x,t) + f(x+f(x,t)*dt,t+dt))

10 continue

write(13,*) t,x,exp(5.0*t)

stop

end

double precision function f(x,t)

double precision x,t

f = 5*x

return

end
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Program for example 13.3.2

program secondorderrk

c This is from the file FORTRAN/rk2hard.f

c

c This is a sampe FORTRAN program that solves the differential

c equation

c

c x’ = -x^3 + sin(t x)

c x(0) = 1

c

c using the second order Runge-Kutta method.

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x,t,dt;

open(unit=13,file="secondorderrk2a.d")

dt = 0.2

x = 1.0

do 10 t = 0, 5, dt

write(13,*) t,x

x = x + dt/2.0*(f(x,t) + f(x+f(x,t)*dt,t+dt))

10 continue

write(13,*) t,x

stop

end

double precision function f(x,t)

double precision x,t

f = -x**3 + sin(t*x)

return

end
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Program for example 13.3.3

program rk3

c This is from the file FORTRAN/rk3.f

c

c This is a sampe FORTRAN program that solves the differential

c equation

c

c x’ = -x^3 + sin(t x)

c x(0) = 1

c

c using the third order Runge-Kutta method.

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x,t,dt;

double precision v1,v2,v3;

open(unit=13,file="rk3.d")

dt = 0.25

x = 1.0

do 10 t = 0, 5, dt

write(13,*) t,x

v1 = f(x,t)*dt

v2 = f(x+0.5*v1,t+0.5*dt)*dt

v3 = f(x+2.0*v2-v1,t+dt)*dt

x = x + (v1 + 4*v2 + v3)/6.0

10 continue

write(13,*) t,x

stop

end

double precision function f(x,t)

double precision x,t

f = -x**3 + sin(t*x)

return

end
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Program for example 13.3.4

program rk4

c This is from the file FORTRAN/rk4.f

c

c This is a sampe FORTRAN program that solves the differential

c equation

c

c x’ = -x^3 + sin(t x)

c x(0) = 1

c

c using the fourth order Runge-Kutta method.

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x,t,dt;

double precision k1,k2,k3,k4

open(unit=13,file="rk4.d")

dt = 0.25

x = 1.0

do 10 t = 0, 5, dt

write(13,*) t,x

k1 = f(x,t)*dt

k2 = f(x+k1/2.0,t+dt/2.0)*dt

k3 = f(x+k2/2.0,t+dt/2.0)*dt

k4 = f(x+k3,t+dt)*dt

x = x + (k1 + 2.0*k2 + 2.0*k3 + k4)/6.0

10 continue

write(13,*) t,x

stop

end

double precision function f(x,t)

double precision x,t

f = -x**3 + sin(t*x)

return

end
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Program for example 13.4.1

still needs to be written!!!!!!!!!!
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Program for example 13.5.1

program systemeuler

c This is from the file FORTRAN/systemeuler.f

c

c This is a sample FORTRAN program that solves the differential

c equation

c

c x’ = y

c y’ = (1 - x^2)y - x

c x(0) = 0.02

c y(0) = 0.0

c

c using Euler’s method.

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x(2),t,dt

double precision copy(2)

open(unit=13,file="systemfortran.d")

dt = 0.001

x(1) = 0.02

x(2) = 0.0

do 10 t = 0, 20, dt

write(13,*) t,x(1),x(2)

copy(1) = x(1)

copy(2) = x(2)

x(1) = x(1) + (copy(2))*dt

x(2) = x(2) + ((1.0 - copy(1)**2)*x(2) - x(1))*dt

10 continue

stop

end
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Program for example 13.5.3

program systemrk4

c This is from the file FORTRAN/systemrk4.f

c

c This is a sample FORTRAN program that solves the differential

c equation

c

c x’ = y

c y’ = (1 - x^2)y - x sin(t)

c x(0) = 0.02

c y(0) = 0.0

c

c using the fourth order Runge-Kutta method.

c

c To compile this on a unix machine, type ’f77 <filename>.f’

c and then type ’a.out’ to execute it.

double precision x,y,t,dt

double precision v1,v2,v3,v4,w1,w2,w3,w4

open(unit=13,file="systemrk4f.d")

dt = 0.001

x = 0.02

y = 0.0

do 10 t = 0, 20, dt

write(13,*) t,x,y

v1 = f(x, y, t)*dt

w1 = g(x, y, t)*dt

v2 = f(x+v1/2.0, y+w1/2.0, t+dt/2.0)*dt

w2 = g(x+v1/2.0, y+w1/2.0, t+dt/2.0)*dt

v3 = f(x+v2/2.0, y+w2/2.0, t+dt/2.0)*dt

w3 = g(x+v2/2.0, y+w2/2.0, t+dt/2.0)*dt

v4 = f(x+v3, y+w3, t+dt)*dt

w4 = g(x+v3, y+w3, t+dt)*dt

x = x + (v1 + 2.0*v2 + 2.0*v3 + v4)/6.0

y = y + (w1 + 2.0*w2 + 2.0*w3 + w4)/6.0

10 continue
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stop

end

double precision function f(x,y,t)

double precision x,y,t

f = y

return

end

double precision function g(x,y,t)

double precision x,y,t

g = (1.0-x**2)*y - x*sin(t)

return

end
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Airy’s equation, 149
algebraic multiplicity, 173
ampere, 19
analyticity, 146
angular momentum, 27
argument, 557
associative, 568

beam equation, 453
Bessel function, first kind, 151
Bessel function, second kind, 151
Bessel’s equation, 150
block diagram, 261

algebra, 261
Bode plot, 375, 380
Boit number, 55
boundary conditions, 17

candela, 19
capacitor, 33
Cartesian product, 4
cascade compensation, 407
center of mass, 30
commutative, 565
complementary functions, 18
complex number, 555
conduction heat transfer coefficient, 54
constant coefficient differential equation,

15
conv(), 272, 273
Coulomb, 20
cross product, 27
current source, 34
cutoff frequency, 399

damped natural frequency, 88

damper, 32
damping ratio, 88
dashpot, 32
decibel, 380
delta “function”, 231
dependent variable, 5
derivative, 6
derivative control, 287
derivative gain, 288
differential equation

time invariant, 15
constant coefficient, 15
homogeneous, 14
inhomogeneous, 14
linear, 12
nonhomogeneous, 14
nonlinear, 12
order, 12
ordinary, 11
partial, 11
types, 10
variable coefficient, 15

differential equations
solutions of, 15

Dirac delta, 231
domain, 5
dominant poles, 308

eigenvalue, 414, 578
eigenvector, 577
elastic modulus, 458
element, 4
Euler’s method, 37, 465
Euler-Bernoulli beam equation, 453
exact, 71

Farad, 20
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feedback, 283
field, 570
final value theorem, 234
first order

exact, 71
separable, 69

first order Runge-Kutta method, 477
Fourier transform, 225
Fourier’s law, 36
fourth order Runge-Kutta method, 485
free body diagram, 30
frequency response, 375, 380
function, 5

general solution, 17
geometric multiplicity, 173
global error, 467

heat capacity, 20
heat equation, 12, 36
Henry, 20
Hermitian matrix, 163
Hertz, 20
high pass filter, 399
homogeneous boundary conditions, 439
homogeneous differential equation, 14
homogeneous solution, 18

identity element, 568
imaginary part, 555
implicit function theorem, 10
impulse, 231
impulse response, 297
impulse(), 273, 274
independent variable, 5
inductor, 34
inertial coordinate system, 22
inhomogeneous differential equation, 14
initial conditions, 17
integral control, 291
internal forces, 29
interval, 4
inverse, 568
Inverse Laplace transform

definition of, 227

kelvin, 19

kilogram, 19
Kirchhoff, 33

current law, 33
voltage law, 33

Laplace transform, 223, 226
definition of, 226
derivative, 234
table of Laplace transform pairs,

233
time shift, 235

linear dependence, 575
linear differential equation, 12
linear independence, 82, 84, 575
linear momentum, 22
linear spring, 31
linearly dependent functions, 62
linearly independent functions, 62
local truncation error, 466
low pass filter, 398
lumped capacitance method, 55
lumped thermal capacitance, 55

Matlab
conv(), 272
impulse(), 273
pzmap(), 273
step(), 273
rlocus(), 365

matlab, 44
ode45(), 45

meter, 19
modulus of elasticity, 458
mole, 19
moment of inertia, scalar, 30

natural frequency, 79
neutral plane, 454
Newton, 20
Newton’s iteration method, 272
Newton, Isaac, 21

first Law, 21
second law, 22
third law, 22

nonhomogeneous differential equation,
14
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nonlinear differential equation, 12
null space, 577

Octave
conv(), 273
impulse(), 274
pzmap(), 274
step(), 274
tf(), 273
rlocus(), 366

octave, 46
ode45(), 45
Ohm, 20
order of a differential equation, 12
ordinary differential equation, 11
ordinary point, 148
overall error, 467

partial differential equation, 11
particular solution, 16
pascal, 458
peak time, 295
percentage overshoot, 296
PID control, 284
pole, 227
principal value, 557
proper, 252
proportional control, 285
proportional gain, 285
pzmap(), 273, 274

range, 5
ratio test, 146
rational function, 559
real part, 555
rectilinear motion, 23
relation, 5
resistor, 33
rigid body, 22
rise time, 295
rlocus(), 365, 366
root locus plot, 334
Routh stability criterion, 310
Runge-Kutta method, 475

scalar moment of inertia, 30

scalar multiplication, 570
second, 19
second order Runge-Kutta method, 478
second order Taylor series method, 470
separable, 69
set, 4

element, 4
sets, 4
settling time, 295
solutions, 15

explicit, 15
general, 17
homogeneous, 18

solutions:
particular, 16

specific heat, 54
spring, 31
step function, 229
step response, 297
step size, 37, 39
step(), 273, 274
superposition, 81

tf(), 273
thermal conductivity, 20, 55
third order Runge-Kutta method, 483
third order Taylor series method, 472
time invariant differential equation, 15
time invariant system, 15
time shift, 235
transfer function

zero of, 227
pole of, 227
proper, 252

transient response, 296
truncation error, 466

undetermined coefficients, 94
unit impulse response, 297
unit step response, 297
units, 19
unity feedback, 344

variable coefficient differential equation,
15

variation of parameters, 66, 98
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vector addition, 570
vector space, 565
viscous damper, 32
viscous dashpot, 32
Volt, 20
voltage source, 34

Watt, 20
wave equation, 411
Wronskian, 84, 576

zero, 227
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