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and almost certainly contains, typos as well as incorrect or inaccurate solutions. I can
not be made responsible for any inaccuracies contained in this handbook.
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1 Trigonometric Identities

cos(a+b) = cosacosb—sinasinb
cos(a —b) = cosacosb+ sinasinb
sin(a+b) = sinacosb+ cosasinb
sin(la —b) = sinacosb— cosasinb
cosacosh — cos(a + b) + cos(a — b)
B 2
sinacosh — sin(a + b) + sin(a — b)
B 2
sinasinh — cos(a — b) — cos(a + b)
2
cos2t = cos’t—sin’t
sin2t = 2sintcost
1 1+ cost
2
=
cos” 3 5
sin? 1t — 1 —cost
2 2
1+tan’t = sec’t
cot?’t+1 = csc?t
eir + e—ir
ST = ————
eir _ e—ir
sing = ————
x —T
coshz = re
2
et — e
mhy —
sinhz 5
. coshz = sinh(z)
x
. sinhz = cosh(z)
x

cosh?z — sinh?x = 1

d 1
/711 = Ztan 'S 4+C
a? + u? a a

du U
——— = sin —+C
/ a? — u? a+
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/ L nTT mnx 0 n#m
COS —— COS dx =
L L L L n=m
/ L nrx . mrx 0 n#m
sin —sin ——dz =
_L L L L n=m
L
/ sin 7 cos T g = 0
_L L L

/L nTT mnx 0 n#m
COS —— COS dr = L
/L_ nwr . Mmnx 0 n#m
sin — sin ——dxr = I
L
/ emreimr dr = 0 n#m
0 L n=m
L
/ o gy 0 n#0
0 L n=20
. 9 r sinzcosx
dr = — — —
sin“ x dx 5 5
xr sinxcosx

tan’z dz = tanz — x

COS2 T

sinx cosx dr = —

/
/ 2 2
/
/

lng = In(z) — In(y)

Inz" =rlnx

/lnxd;r = zlnzx—=x
2 2
rlnxdr = ?lnx—z

vors
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2 Simple Eigenvalue Problem
X"+AX =0
Boundary conditions Eigenvalues A\, Eigenfunctions X,
zi 2 i
X(0)=X(L)=0 (”Tl) ) sm”Tlx n=1,2,
X(0) = X/(L) = 0 [e227] sin (227 12,
_1y;72 “1yg
X'(0)=X(L)=0 [(nﬁ) } oS (nLQ) x n=1,2,
X'(0)=X'(L) =0 (”L—7f)22 cos My n=0,1,2
X(0)=X(L), X'(0) = X'(L) (2m) sin 208 n=1,2,
cos 22”;1? n=0,1,2,
X(-L)=X(L), X'(-L) = X'(L) Cak sin 27 n=1,2,
cos 7w n=20,1,2,
X//// _ )\X — 0
Boundary conditions Eigenvalues \,, Eigenfunctions X,
X(0)=X(L)=0, X"(0) = X"(L) =0 (%f)i sin 22 n=1,2,...
X'(0)=X'(L) =0, X"0)=X"(L)=0 (2%5) cos 2z n=0,1,2,...
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3 Separation of Variables:
Quick Guide

Laplace Equation: Awu = 0.
XM@Yy
X(z) Y(y) '
X"+ )2X =0.
X”(t) B _Y//(e) B )\
X Y
Y"(0) + \Y () = 0.
Wave Equation: 1wy — ugz, = 0.
X”(.’L‘) T”(t)
= = =\
X(z) T(t)
X"+ XX =0.
Ut + 33U + U = Uy
T// T/ X//
— —+1 = — = -\
T +3T + X
X"+ )2X =0.
U — Uy +u = 0.
T// X//
— 41 = — = =\
T + X
X"+ )MX =0.
Uy + pitty = gy + Bligat, (B>0)
X//
= -
X )
17" w T’ B <1+ﬁT/>X”
AT 2T 2T) X
4th Order: uy = —kUypppy-
X//// B 1 T// B )\
X kT ‘
X" - X =0.
Heat Equation: wu; = kug,.
T/ X//
— = k— = =\
T X
X"+ éX =0
k: .
4th Order: w; = —Uppps-
T/ X////
— = — = =\
T X

X" - XX =0.
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4 Eigenvalues of the Lapla-
cian: Quick Guide

Laplace Equation: u,; + u,, +Au = 0.

X// Y//
74‘7—1—)\:0. ()\:u2+y2)
X"+’ X =0, Y'4+.v=0.

Ugy + Uyy + k2

X//
X
X"+ X =0,

Y+ (k* =AY =0.

Y" + Y =0,
X”+ (k,Q _ C2)X —
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5 First-Order Equations

5.1 Quasilinear Equations

Consider the Cauchy problem for the quasilinear equation in two variables
a(x, Y, U)Uz + b(l‘, Y, U)Uy = C(.Z‘, Y, U),
with T' parameterized by (f(s), g(s), h(s)). The characteristic equations are

dx dy

d
E = a(x,y,z), % = b(x,y,z), d_i = C(.Z‘,Z/,Z),

with initial conditions

.Z‘(S,O) :f(s)v y(s,O) :g(s)v Z(S,O) = h(s)

In a quasilinear case, the characteristic equations for Ccll—f and Ccll—‘zt’ need not decouple from
the % equation; this means that we must take the z values into account even to find
the projected characteristic curves in the xy-plane. In particular, this allows for the
possibility that the projected characteristics may cross each other.

The condition for solving for s and ¢ in terms of x and y requires that the Jacobian
matrix be nonsingular:

X
JE<1§ Zj > :xsyt_ysxt#o'

In particular, at t = 0 we obtain the condition

f'(s) - b(f(5),9(s), h(s)) = g'(s) - a(f(s), g(s), h(s)) # 0.
Burger’s Equation. Solve the Cauchy problem

up + vy = 0, (51)
u(x,0) = h(x).
The characteristic equations are
dx dy dz
at a7 dt

and I" may be parametrized by (s, 0, h(s)).
x="h(s)t+s, y=t, z=nh(s).
u(z,y) = h(z —uy) (5:2)

The characteristic projection in the xt-plane! passing through the point (s, 0) is the
line

x="h(s)t+s

along which u has the constant value u = h(s). Two characteristics x = h(s1)t + $1
and x = h(sy)t + s9 intersect at a point (z,t) with

S9 — 81
h(s2) = h(s1)

Ly and t are interchanged here

t=—
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From (5.2), we have

h'(s)

I
z = — Uyt = ——————
u h(s)( u ) = u h/()

Hence for 1/(s) < 0, u, becomes infinite at the positive time

—1

The smallest ¢ for which this happens corresponds to the value s = sy at which h/(s)
has a minimum (i.e.—h/(s) has a maximum). At time T" = —1/h/(sg) the solution u
experiences a “gradient catastrophe”.
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5.2 Weak Solutions for Quasilinear Equations
5.2.1 Conservation Laws and Jump Conditions

Consider shocks for an equation
u + f(u)e =0, (5.3)

where f is a smooth function of u. If we integrate (5.3) with respect to z for a < x < b,
we obtain

b
at /. u(z,t)de + f(u(b,t)) — f(u(a,t)) =0. (5.4)

This is an example of a conservation law. Notice that (5.4) implies (5.3) if u is C, but
(5.4) makes sense for more general u.

Consider a solution of (5.4) that, for fixed ¢, has a jump discontinuity at = = £(¢).
We assume that u, u,, and u; are continuous up to &. Also, we assume that &(t) is C*
in t.

Taking a < £(t) < b in (5.4), we obtain

%(/(lgudm—l—/gbudx) + f(u(b,t)) — f(u(a,t))

£
= E(mEt). 1) — € (up (), 1) + /

a

+ f(u(b, 1)) = f(u(a,t)) =0,

where u; and u, denote the limiting values of u from the left and right sides of the shock.
Letting a 7 £(t) and b | £(t), we get the Rankine-Hugoniot jump condition:

&) (ur —ur) + fur) — flw) =0,

ey — )~ )

Up — UL

b
ug(x, t) dx + / ug(x, t) dx
3

5.2.2 Fans and Rarefaction Waves

For Burgers’ equation
1
w+ (307), =0

we have f'(u) = u, f’(ﬂ(%)) :% = ﬂ(%) = %

For a rarefaction fan emanating from (s,0) on zt-plane, we have:

U, IZS Sf/(ul) = uy,
u(z,t) = ¢ &2, w < 2 <y,
Uy, z;s > f/(ur) = Uy
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5.3 General Nonlinear Equations
5.3.1 Two Spatial Dimensions

Write a general nonlinear equation F(z,y, u, ug, uy) = 0 as
F(z,y,2p,q)=0.
I' is parameterized by
U2 (f(s),g(s), his), o(s),¥(s))
N N~
2(5,0) y(s,0) 2(s,0) p(s,0) q(s,0)
We need to complete T' to a strip. Find ¢(s) and 1 (s), the initial conditions for p(s, t)
and q(s, t), respectively:
o F(f(s),9(s),h(s), ¢(s),¥(s)) = 0
o N(s) = d(5)f(s) +1(s)g(s)

The characteristic equations are

dx dy

>~ _Fr 2 F

dt P dt 1

dz

%:pr‘i'qu

dp dq

EZ:: —F, —F.p 82:: _}% —F.q

We need to have the Jacobian condition. That is, in order to solve the Cauchy problem
in a neighborhood of I', the following condition must be satisfied:

f/(S) : Fq[fvgv hv ¢a¢](5) - gl(s) 'Fp[fvga ha ¢7w](8) 7& 0.

5.3.2 Three Spatial Dimensions
Write a general nonlinear equation F'(z1, x2, 23, U, Ug, , Us,, Ugs) = 0 as
F(J)l, X2, X3, 2, P15 P2, p3) = 0.
I' is parameterized by
Lo (fi(s1,s2), fa(s1,52), fa(s1, s2), h(s1, s2), d1(s1, 52), Pa(s1, 82), P3(s1, 52) )
—_— Y Y
x1(s1,52,0) x2(s1,52,0) x3(s1,52,0) 2(s1,52,0) p1(s1,52,0) p2(s1,52,0) p3(s1,52,0)

We need to complete I' to a strip. Find ¢1(s1, s2), ¢p2(s1, s2), and ¢3(s1, s2), the initial
conditions for py(s1, $2,t), p2(s1, s2,t), and p3(s1, S2,t), respectively:

o F(fi(s1,52), fa(s1,s2), fa(s1,82), h(s1, 82), b1, 2, 3) = O

oh 0 0 0

* e = ¢1 fl ¢2 f2 ¢3 f3
S1

oh 0 0 0
° —_ = ¢1_ll.+.¢ _lé.+.¢ _lé

882 882

The characteristic equatlons are

dxl dxg dxg
R A R
dz
dt 1? *‘p2l?u +_p3f}3
dp dp dp
= Fn-pF 2 =-Fo-pF 0 =-Fy -k
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6 Second-Order Equations

6.1 Classification by Characteristics

Consider the second-order equation in which the derivatives of second-order all occur
linearly, with coefficients only depending on the independent variables:

a(z, Y) gy + b(x, Y)ugy + c(x, y)uyy = d(z, Yy, u, Ug, Uy). (6.1)

The characteristic equation is

dy bxVb*—4dac

de 2a ’
e b? —4ac >0 = two characteristics, and (6
e b2 —4ac=0 = one characteristic, and (6
e b? —4ac <0 = no characteristics, and (6
These definitions are all taken at a point xy €
the type may change with the point xg.

.1) is called hyperbolic;

.1) is called parabolic;

.1) is called elliptic.

R?: unless a, b, and c are all constant,

6.2 Canonical Forms and General Solutions

[, — uyy = 0 is hyperbolic (one-dimensional wave equation).
[, —uy, =0 is parabolic (one-dimensional heat equation).
[, + uyy = 0 s elliptic (two-dimensional Laplace equation).

By the introduction of new coordinates p and 7 in place of x and y, the equation
(6.1) may be transformed so that its principal part takes the form [ of [ ]

If (6.1) is hyperbolic, parabolic, or elliptic, there exists a change of variables u(z,y) and
7(x,y) under which (6.1) becomes, respectively,

Uy = (1,0, 1) S gy — gy = d(7, 5,0, g, uy),
U,u,u = d(,uv n,u, u,uv uﬁ)?

Upp + Uy = d (e, M, U, Uy, Uy).

Example 1. Reduce to canonical form and find the general solution:
Ugg + Dlgy + 6y, = 0. (6.2)

Proof. a =1, b=5,¢=6 = b —4ac=1>0 = hyperbolic = two
characteristics.
The characteristics are found by solving

N 2

dy 5%1 [3
dzx 2

tofind y=3x+c¢; and y=2x+ cs.
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Let w(z,y) =3z —y, n(r,y)=2x—y.
Mo = 3, Ne =2,
My = —1, ny = —1.
u = u(p(z,y),n(x,y));

Uy = Upplg + UpNy = 3y + 2uy,

Uy = Upply + UnTly = —Uy = Un,
Upr = (3uy + 2up)e = 3(Upptte + W) + 2(Unptte + Unynz) = 9y, + 120, + daty,,
Uzy = (Buy + 2up)y = 3(upuply + wmny) + 2(Unpupty + twnyny) = =3ty — Sty — 2uyy,
Uyy = —(up + )y = —(Wuphty + Uyt + Unpuply + nnnly) = Upp + 2upn + .

Inserting these expressions into (6.2) and simplifying, we obtain

Uy = 0, which is the Canonical form,
Uy = f(u),
u = F(p)+G(n)),
u(z,y) = FBx—y)+G(2r—vy), General solution.
O
Example 2. Reduce to canonical form and find the general solution:
Y Uy — 2YUgy + Uy = Uy + 6Y. (6.3)

Proof. a=vy?>,b=—2y,c=1 = b>—4ac=0 = parabolic = one characteristic.
The characteristics are found by solving

dy _ 2y _ 1
de 2y gy

Y2
to find —?—I—c:x.

Let pu= % + 2. We must choose a second constant function n(z,y) so that n is not
parallel to p. Choose n(z,y) = y.

Mo =1, Nz =0,
Hy =Y, ny = 1.

u = u(pz,y),n(zy));
Ug = Upflg + UpTe = Uy,
Uy = Upfly + UpTly = YUy + Uy,
Uy = (Up)w = Upphle + UpyTe = Uy,
Uny = (Up)y = Uppbly + UunTly = YUy + Upn,
Uyy = (YUt un)y = up + Yty + wuyty) + (Unputty + tagy1y)

= uy+ y2uw + 2YUpy + Uy
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Inserting these expressions into (6.3) and simplifying, we obtain

Upy = 6y,
Uy, = 6, which is the Canonical form,
uy = 30+ f(w),
u o= 0’ +nf(p)+9(w),
y? y?
u(z,y) = y3 +y- f(; + x) + g(; + x), General solution.

16
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Problem (F’03, #4). Find the characteristics of the partial differential equation
TUgy + (T — Y)Uzy — YUyy = 0, x>0, y>0, (6.4)
and then show that it can be transformed into the canonical form
(€% + dn)ugy + Euy = 0

whence & and n are suitably chosen canonical coordinates. Use this to obtain the general
solution in the form

n / /
g d
e = () + [ LA
(& +4n')2
where f and g are arbitrary functions of & and 7.

Proof. a=x, b=x—y, c=—y = b®—dac=(x—y)®>+4xy >0 for = >0,
y >0 = hyperbolic = two characteristics.
[The characteristics are found by solving

dy  bEVb?—dac x—y:l:\/m r—y+(z+y) {g_;: 1

dx 2a 20 _g_g:_%
dy dx
= Y=+ cq, —_— = -,
Y T
Iny=Inz"t+é,
C2

CTet p=xz—y and n=uxy vy="1
pe= 1, 1=y,
py = —1, Ny = T.
u = u(p(z,y),n(z,y));

Uy = Upfhy + Uy = Uy + YUy,

Uy = Upyfly + UyTy = —Uy + DUy,
Upe = (U + Yun)e = Wppbla + UMz + Y(Unphe + UgpNz) = W + 2y + y2u7m,
Usy = (up + Yun)y = Upptly + Upntly + ty + Y (Unuply + UgnTly) = —Upp + Ty + Uy — Ylny + TYtigy,
Uy = (= + TUy)y = Wby — Wy + T (gputty + Ugynly) = Uy — 220Uy + 272Uy,

Inserting these expressions into (6.4), we obtain
@ (Wps + 2yt + Y2 ung) + (@ = ) (U + Ty + g — Y+ TYttgy) = YU — 200 + 2ugy) =0,
(372 + 2373/ + y2)um, +(z —y)uy =0,
( 2+ 43?3/)“;”7 +(z —y)uy =0,
(1 + 477)“;”7 + puy, =0, which is the Canonical form.
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[ We need to integrate twice to get the general solution:

(M2 + 4n) (uy) y + puy = 0,
(Un)u / I
Walw gy = — dp,

/ U : p? +4n :

1 N
Inuy = —5ln (1 +4n) + 3(n),

In uy, = In (4% +47) "7 + §(n),

_ g0
Tyt
u(p,n) = f(p) + / M, General solution.
(1 +4n)2

18
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6.3 Well-Posedness

Problem (S’99, #2). In R? consider the unit square Q defined by 0 < z,y < 1.
Consider

a) Uy + Uy =0;
b) Ugg + Uyy = 0;
¢) Ugg — Uyy = 0.

Prescribe data for each problem separately on the boundary of © so that each of these
problems is well-posed. Justify your answers.

Proof. e The initial / boundary value problem for the HEAT EQUATION is well-
posed:

up = Au re, t>0,
u(z,0)=g(z) €9,
u(z,t) =0 x €0, t>0.

Ezistence - by eigenfunction expansion.

Uniqueness and continuous dependence on the data - . ‘
by maximum principle.
The method of eigenfunction expansion and maximum r -
principle give well-posedness for more general problems:
n(0,t) u(l,t)
uy = Au+ f(x,t) T € 5_2, t>0, ) ()
u(e,0)=g(x)  wel )
u(x,t) = h(x,t) e i, t>0. 0 I >
u(x0) = £(x)

It is also possible to replace the Dirichlet boundary condition w(x,t) = h(z,t) by a
Neumann or Robin condition, provided we replace \,,, ¢, by the eigenvalues and eigen-

functions for the appropriate boundary value problem. -

w1 = gx)
1
a) e Relabel the variables (v — t, y — z). g
We have the BACKWARDS HEAT EQUATION: r r
U + Ugpye = 0. u0,6) SR r | uo
Need to define initial conditions u(z, 1) = g(x), and (00 (1.0
either Dirichlet, Neumann, or Robin boundary conditions. x
0 1 .

b) e The solution to the LAPLACE EQUATION
Au=0 in Q,
u=g on 0f)

exists if g is continuous on 02, by Perron’s method. Maximum principle gives unique-
ness.
To show the continuous dependence on the data, assume

{Aul =0 in Q, { Aus =0 in €,

ul = g1 on 0f); Uy = go on Of).
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Then A(u; —ug) =0 in Q. Maximum principle gives

max(u; —uz) = max(gs —g2). Thus,
Q [2/9)

mgx|u1 — ug| I%%X|91 — g2l

Thus, |u; — usg| is bounded by |g1 — go|, i.e. continuous dependence on data.

e Perron’s method gives existence of the solution to the POISSON EQUATION
Au=f in Q,
Qu—h  on 00
for f € C*®(Q) and h € C*(09Q), satisfying the compatibility condition faghdS =
fQ fdz. It is unique up to an additive constant.
c) e Relabel the variables (y — t).
The solution to the WAVE EQUATION
Upp — Ugg = 0,

is of the form wu(z,y) = F(z +1t) + G(x —t).
The existence of the solution to the initial /boundary value problem

Ut — Uy = 0 O<x<l1l,t>0
u(z,0)=g(z), w(z,0)=h(z) 0<z< ‘
u(0,t) = at),  u(l,t)=pB(t) t>0. '

is given by the method of separation of variables

L . u(®.0 = u(t (L6 = pit)
(expansion in eigenfunctions) o
ux(0,6) = o(t) u(L,t) = f(t)
and by the parallelogram rule.
Uniqueness is given by the energy method. .
Need initial conditions u(x,0), u(x, 0). 0 EPap—— 1
m(x0) = hix)

Prescribe u or u, for each of the two boundaries.
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Problem (F’95, #7). Let a,b be real numbers. The PDE
Uy + QUgg + Dty =0

is to be solved in the box Q = [0, 1]%

Find data, given on an appropriate part of 92, that will make this a well-posed prob-
lem.

Cover all cases according to the possible values of a and b. Justify your statements.

Proof.
[db <0 = two sets of characteristics = hyperbolic.
Relabeling the variables (y — t), we have

a
Ut + Buzz = —Eut-

The solution of the equation is of the form ¢

u(x,t) = F(x +\/—3t) + Gz — \/—31). L

Ezistence of the solution to the initial /boundary
value problem is given by the method of separation

. L . u(®.t) = o(e) u(t.6= o
of variables (expansion in eigenfunctions) w e
ux(0,6 = a(t) u(1,t) = PB(t
and by the parallelogram rule.
Uniqueness is given by the energy method. .
Need initial conditions u(z,0), u(x,0). o W) — g5, 1
W) = bx)

Prescribe u or u, for each of the two boundaries.

[ db >0 = no characteristics = elliptic.

The solution to the Laplace equation with boundary conditions u =g on 0 exists
if g is continuous on 0f2, by Perron’s method.

To show uniqueness, we use maximum principle. Assume there are two solutions ug
and ug with with u; = g(x), uga = g(z) on 9. By maximum principle

max(uy —uz) = max(g(z)—g(x))=0.  Thus, us = uy.
Q

1

[ db=0 = one set of characteristics = parabolic.

e a=0b=0. Wehave u, =0, a first-order ODE.

u must be specified on y = 0, i.e. z -axis.

e a=0,b#0. We have u, + bu,, = 0, a second-order ODE.

u and u, must be specified on y = 0, i.e. x -axis. 0 I 1

E

1) = glx)

e a>0,b=0. We have a Backwards Heat Equation. ' r |

r r
Up = —Algy.

uflht) uil)

Need to define initial conditions u(z,1) = g(x), and i) wilo
either Dirichlet, Neumann, or Robin boundary conditions. x
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e a<0,b=0. We have a Heat Equation.
Up = —QUgy -

The initial / boundary value problem for the heat equation is well-posed:

t

U = Au €T € Q7 t> 0, 1
u(w,0)=gx)  wel ,_
U(.’L‘, t) =0 T € aQ, t> 0. w6

™
(i1

Ezistence - by eigenfunction expansion.

Uniqueness and continuous dependence on the data - -

22

uil,r}

wilb)

v

by maximum principle. i
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7 Wave Equation

The one-dimensional wave equation is

Ut — gy = 0. (7.1)
The characteristic equation with a = —c?, b =0, ¢ = 1 would be
dt  bE Vb —dac i\/462 B :l:l
dr 2a T2z T
and thus
1 1
t=——x+c1 and t = —x+ co,
c c
n=x+ct n=x—ct,

which transforms (7.1) to
Uy = 0. (72)

The general solution of (7.2) is u(u,n) = F(u)+G(n), where F and G are C* functions.
Returning to the variables x, ¢t we find that

u(z,t) = F(z + ct) + G(x — ct) (7.3)

solves (7.1). Moreover, u is C? provided that F' and G are C?.
If F =0, then u has constant values along the lines  — ¢t = const, so may be described
as a wave moving in the positive z-direction with speed dx/dt = ¢; if G = 0, then w is
a wave moving in the negative z-direction with speed c.
7.1 The Initial Value Problem
For an initial value problem, consider the Cauchy problem
Ugy — Pligy = 0,
(7.4)
u(z,0) =g(z), w(z,0)=nh(z).
Using (7.3) and (7.4), we find that F' and G satisfy
F(z) 4+ G(z) = g(z), cF'(z) — cG'(z) = h(x). (7.5)

If we integrate the second equation in (7.5), we get cF(z) — cG(z) = [ h(§) dé + C.
Combining this with the first equation in (7.5), we can solve for F' and G to find

{ F(z) = 39(x) + 5; Jy h(€) dé + Cr
G(x) = 39(x) — 5 Jy h(€) d§ = C1,

Using these expressions in (7.3), we obtain d’Alembert’s Formula for the solution
of the initial value problem (7.4):

N[ N[

x+ct
u(z,t) = %(g(x—l—ct) +g(z—ct)) + 2% /_ t h() d€.

If g€ C? and h € C', then d’Alembert’s Formula defines a C? solution of (7.4).



Partial Differential Equations Igor Yanovsky, 2005 24

7.2 Weak Solutions

Equation (7.3) defines a weak solution of (7.1) when F' and G are not C? functions.
Consider the parallelogram with sides that are
segments of characteristics. Since

u(z,t) = F(x + ct) + G(z — ct), we have

u(A) +u(C) =

= F(k1) + G(k3) + F(k2) + G(k4)
u(B) + u(D),

which is the parallelogram rule.

7.3 Initial/Boundary Value Problem

Upp — CUpy = 0 O<ax<L,t>0
u(z,0)=g(x), w(x,0)=h(z) O0<z<L (7.6)
u(0,t) = a(t), wu(L,t) = p(t) t > 0.

Use separation of variables to obtain an expansion in eigenfunctions. Find u(z,t) in
the form

_aolt) | nme o
u(z,t) = 5 + nz_:l an(t) cos 7 + by, (t) sin 7
7.4 Duhamel’s Principle
Utt — C2uzz = f(xv t) Un — C2Uzz =0 t
u(z,0)=0 = qU(z2,0,5)=0 u(z,t) = / U(x,t—s,s)ds.
ug(z,0) = 0. Ui(x,0,5) = f(x, ) 0
al + Apan = fn(t) ar + Apan, =0 .
an(0) = 0 ~ L an(0,5) =0 an(®) :/ in(t—s.5) ds.
@, (0) =0 @,(0,) = fu(s) ’

7.5 The Nonhomogeneous Equation

Consider the nonhomogeneous wave equation with homogeneous initial conditions:

{utt — C2Uzz = f(xv t)v (77)

u(z,0) =0, w(x,0)=0.

Duhamel’s Principle provides the solution of (7.7):

1 t z4c(t—s)
wety=go [ ([ e mac)as

If f(x,t) is C' in # and CY in ¢, then Duhamel’s Principle provides a C? solution of
(7.7).




Partial Differential Equations Igor Yanovsky, 2005 25
We can solve (7.7) with nonhomogeneous initial conditions,

{ Ut — C2Uzz = f(xv t)v (78)

u(z,0) =g(x), uz,0)=h(x),

by adding together d’Alembert’s formula and Duhamel’s principle gives the solution:

u(xz, t) = %(g(x—l— ct) + gz —ct)) + 2% /:ﬂt h(§) d€ + L /Ot (/:jLC(t_S) f(&,s) df) ds.

—ct 2c —c(t—s)
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7.6 Higher Dimensions
7.6.1 Spherical Means

For a continuous function u(x) on R"™, its spherical mean or average on a sphere of
radius r and center x is

My(z,7r) = 1 /|£|_1 u(x 4+ 1&)dSe,

Wn

where wy, is the area of the unit sphere S"~! = {£ € R" : |¢| = 1} and dS¢ is surface
measure. Since u is continuous in x, M, (z,r) is continuous in x and r, so

M, (x,0) = u(x).

Using the chain rule, we find

G = [ Yt g s = @

or w _
n JIgl=152

To compute the RHS, we apply the divergence theorem in 2 = {£& € R™ : [{] < 1},
which has boundary 99 = S"~! and exterior unit normal n(¢) = ¢. The integrand is
V - n where V(€) = r'Veu(z + 7€) = Vyu(x + ré). Computing the divergence of V,
we obtain

divV(¢) = rZuzizi(x—l—rf) = rDzu(x+1rf),  so,

i=1
1
® = — rigu(r +1rf) dé = AN u(x + 7)) d§ (€ =rf)
Wn J¢|<1 Wwn, |€|<1
1
= L—nﬂz / u(x + &) d¢’ (spherical coordinates)
Wnp T |§/|<7‘

1 L
= ﬁAr/ P 1/ u(x + p§) dSedp
Wl 0 l€|=1

1

oo 1 v
= o1 WnAr/O p" lMu(.Z‘,p) dp = M—_lAz/O p" lMu(l‘,p) dp.
n

If we multiply by "~ !, differentiate with respect to r, and then divide by r" 1,

we obtain the Darboux equation:

(82 n—109

w + Ta,r)Mu(J),’l") = ArMu(.Z‘,’I")

Note that for a radial function v = u(r), we have M, = u, so the equation provides the
Laplacian of u in spherical coordinates.

7.6.2 Application to the Cauchy Problem

We want to solve the equation
uy = 2Au zeR" t>0, (7.9)
u(z,0) = g(x), w(x,0)=h(z) x € R"™.

We use Poisson’s method of spherical means to reduce this problem to a partial differ-
ential equation in the two variables r and t.
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Suppose that u(z,t) solves (7.9). We can view t as a parameter and take the spherical

mean to obtain M, (x,r,t), which satisfies

ok 1 1 ) )

s My(z,r,t) = — u(x + 7€, t)dSe = — ccAu(x +1E€,t)dSe = AM,(x,r,t).
ot Wn Jig|=1 Wn J|g|=1

Invoking the Darboux equation, we obtain the Euler-Poisson-Darboux equation:

0? 5[ 0® n—-10

wMu(.’I),T, t) = C <W + TE) Mu(l','l", t)

The initial conditions are obtained by taking the spherical means:

oM,
ot

If we find M, (x,r,t), we can then recover u(x,t) by:

My(z,7,0) = My(z,7), (z,7,0) = Mp(x,r).

u(z, t) = }1_)1% My (z,7,t).

7.6.3 Three-Dimensional Wave Equation

When n = 3, we can write the Euler-Poisson-Darboux equation as 2

0? 5 02

@QMH(;E, T, t)) = c W(rMu(x, T, t))

For each fixed x, consider V*(r,t) = rM,(x,r,t) as a solution of the one-dimensional
wave equation in r, ¢ > 0:

o0? . B 0? .
pre) (rt) = ¢ WV (r,t),
VE(r,0) = rMy(z,r) = G*(r), (IC)
ViE(r,0) = rMy(x,r) = H"(r), (IC)
VE0,t) = }1_)11((1) rMy(x,r,t) =0 u(z,t) =0 (BC)
G*(0) = H*(0) = 0.

We may extend G* and H” as odd functions of r and use d’Alembert’s formula for
VE(r,t):

1 r—+ct
Vi t) = =(G*(r+ct)+ G*(r —ct)) + —/ H*(p)dp.

2c —ct

| =

Since G* and H® are odd functions, we have for r < ct:
r—+ct ct+r
G*(r—ct) = —=G(ct —r) and / H*(p)dp = / H*(p)dp.
r—ct ct—r

After some more manipulations, we find that the solution of (7.9) is given by the
Kirchhoff’s formula:

10 t
u(x,t) = E§<t/|g|—1 g(x—l—ctf)ng) + E/|§|—1 h(x + ct&)dSe.

If g € C3(R?) and h € C?(R?), then Kirchhoff’s formula defines a C2-solution of (7.9).

2It is seen by expanding the equation below.
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7.6.4 Two-Dimensional Wave Equation

This problem is solved by Hadamard’s method of descent, namely, view (7.9) as a special
case of a three-dimensional problem with initial conditions independent of x3.
We need to convert surface integrals in R? to domain integrals in R2.

u(xy, x9,t)

10 <2t/ g(w1 + ctér, o + ct&z)d&dfz) Lt (2/ h(z1 4 ctéy, xo + ctéo)d€rdés
§%+§§<1 §%+§§<1

o Vi-§-8 i V1-8-8

If g € C3(R?) and h € C?(R?), then this equation defines a C2-solution of (7.9).

7.6.5 Huygen’s Principle

Notice that u(x,t) depends only on the Cauchy data g, h on the surface of the hyper-
sphere {z + ct{ : |¢] =1} in R™, n = 2k + 1; in other words we have sharp signals.

If we use the method of descent to obtain the solution for n = 2k, the hypersurface
integrals become domain integrals. This means that there are no sharp signals.

The fact that sharp signals exist only for odd dimensions n > 3 is known as Huygen’s

principle.
3

3For z € R™ :

9 1
&(/‘5‘21 ! @”“ﬁ)d&) = o Af(@+y)dy

ly|<t
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7.7 Energy Methods
Suppose u € C?(R" x (0, 00)) solves

Uy = c2A\u reR” t>0,
U(.Z‘, 0) = g(x), ut(xv 0) = h(l‘) x € R",

where g and h have compact support.
Define energy for a function u(z,t) at time ¢ by

1

B() = /n(u? + 2|Vul?) dz

If we differentiate this energy function, we obtain

dE d [1 / ( s o= ] / .
= - |z uy +c¢ uzz) dr| = (Ututt +c uriurit) dx
dt dt |2 R zz—; n Z

i=1
n n
= Upthgy AT + c? [ g uz.ut} — c? E U o Up AT
n ¢ 8R" Rn e
i=1 i=1

wy(ugy — 2Au) dx = 0,

n

I
T

or

dE

dt P

a
dt
= / upugy + AV - V) da
0
/ g dx + ¢ [/ ut—u ds — / U AU d:v]
— / ut(Utt — C2Au) d.’L‘ = 0

Hence, E(t) is constant, or E(t) = E(0).

n n
[— / (uf + ¢ Z ul) da:] = / (ueuge + Z Ug, Ugyt) d
i=1 R

29

(7.10)

In particular, if u; and ug are two solutions of (7.10), then w = uj —ug has zero Cauchy
data and hence E,,(0) = 0. By discussion above, E,(t) = 0, which implies w(zx,t) =

const. But w(x,0) =0 then implies w(x,t) = 0, so the solution is unique.
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7.8 Contraction Mapping Principle

Suppose X is a complete metric space with distance function represented by d(-, -).
A mapping T : X — X is a strict contraction if there exists 0 < a < 1 such that

d(Tz,Ty) < ad(z,y) Va,ye X.
An obvious example on X = R" is T'x = ax, which shrinks all of R", leaving 0 fixed.

The Contraction Mapping Principle. If X is a complete metric space and T :
X — X is a strict contraction, then T has a unique fixed point.

The process of replacing a differential equation by an integral equation occurs in
time-evolution partial differential equations.
The Contraction Mapping Principle is used to establish the local existence and unique-
ness of solutions to various nonlinear equations.
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8 Laplace Equation
Consider the Laplace equation

Au=0 in QCR" (8.1)
and the Poisson equation

Au=f  in QCR™ (8.2)

Solutions of (8.1) are called harmonic functions in €.

Cauchy problems for (8.1) and (8.2) are not well posed. We use separation of variables
for some special domains 2 to find boundary conditions that are appropriate for (8.1),
(8.2).

Dirichlet problem: u(x) = g(x), x € 0f)
0
Neumann problem: gf) = h(z), x €00
. ou
Robin problem: I + au = 3, x € 0f)

8.1 Green’s Formulas

/Vu-Vvd;r:/ v@ds—/vAudm (8.3)
Q a0 On Q
ou ov
—_— —U— = Au — u\
/89 (van uan)ds /Q(v u— ulv) dx
ou
—ds = Audr v=11n (8.3
0 O A ( (8.3))
2 du .
|Vu|*dz = u—ds— [ ulAudr (u=wvin (8.3))
Q oo On Q
/ UgVp dody = / VUugn ds — / VUgy dxdy i = (ny,ng) € R?
Q o0 Q
/ Ug, vdr = / wong ds — / UV, dx = (ny,...,n,) €R"
Q o0 Q
0N
/uA%d;r = / u Y ds — Ava—uds + / Aulv dx.
0 oo On o0  On 0

/Q(uA2v—vA2u) de = /89 (uaaAnv _UﬁaAnu) ds + / (Au% - Av%) ds.
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8.2 Polar Coordinates

Polar Coordinates. Let f : R" — R be continuous. Then

VAL

In particular

/ fds
OBr(z0)

fdz
Rn

for each xg € R™.
d

dr ( /Br(ro) g dx)

dr
for each r > 0.

u = u(x(r,0),y(r,0))
x(r,0) =rcosf
y(r,0) = rsind

Igor Yanovsky, 2005

Uy Up Ty + UyYyr = Uy cOS O + 1y sin b,
Up = UgTy + Uyl = —Uz7 SN O + uyr cos b,
Uy = (Ug o8t + uy sind), = (UgzZr + UzyYr) €SO + (UyzTr + Uyy Yy ) sin G
= Uy cos® O+ 2y cos 0 5in 0 + 1y, sin® 0,
ugg = (—uprsind 4+ uyrcosh)g

1
Upp + 72 U6

(—UzzTp — UzyYe)7 SING — ugyr cOS O + (UypTg + UyyYg)7T cOS O — uyr sin g

12 (U sin% 0 — 2y c0s 0sin 0 + uy, cos? 6) — r(uy cos @ + Uy sinf).

= Uy, cOS2 O + 2y cos 05in 0 + u,, sin 20 4+ uy, sin? 6 — 2y cos 05in 0 + 1wy, cos? 0 —

= Ugzz + Uyy

1 1
Ugy + Uyy = Upp + ;Ur + T_2U6'6'-

82
or?

82

oy

82
o2

10
r2 002

19
ror

8.3 Polar Laplacian in R? for Radial Functions

)u

1 9?2

;(Tur)r — <w +

10

Au = —
b ror

1
- ;ur.

8.4 Spherical Laplacian in R? and R" for Radial Functions

0?2 n—10
Au = (ﬁ r 81")
In R3; 4
1 1 2> 20
A = ——= 2 r = — = _
W= S, = 10, = (et i

4These formulas are taken from S. Farlow, p. 411.

32

(Ugg SIN G — Ugyr cos O)r sin b — uyr cos O + (—Uy, T sin 0 + uy,r cos 0)r cos § — uyrsin @

L (uy cos @ + uy sin )
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8.5 Cylindrical Laplacian in R? for Radial Functions

1 9 10

8.6 Mean Value Theorem

Gauss Mean Value Theorem. If u € C?(Q) is harmonic in Q, let £ € Q and pick
r >0 so that B, (§) ={z: |z =& <r} C Q. Then

Wn

1
u(@) =M€ = [ ule+ra)ds,
|z|=1
where w,, is the measure of the (n — 1)-dimensional sphere in R™.

8.7 Maximum Principle

Maximum Principle. Ifu € C?(Q) satisfies Au > 0 in Q, then either u is a constant,
or

u(§) < supu(z)
€

for all € € Q.

Proof. We may assume A = sup,cq u(z) < 0o, so by continuity of u we know that
{z € Q:u(x) = A} is relatively closed in Q. But since

u(e) < 2 /| )

Wn

if u(¢) = A at an interior point &, then u(x) = A for all x in a ball about &, so
{z € Q:u(x) = A} is open. The connectedness of Q implies u(§) < A or u(§) = A for
all € € Q. 0

The maximum principle shows that u € C%(Q) with Au > 0 can attain an interior
maximum only if u is constant. In particular, if Q is compact, and u € C%(Q) N C(Q)
satisfies Au > 0 in 2, we have the weak maximum principle:

maxu(r) = maxu(x).
€0 ( ) EAgelY) ( )
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8.8 The Fundamental Solution

A fundamental solution K (x) for the Laplace operator is a distribution satisfying
AK (z) = 6(x) (8.4)

where § is the delta distribution supported at z = 0. In order to solve (8.4), we should
first observe that A is symmetric in the variables x1, ..., z,, and §(x) is also radially
symmetric (i.e., its value only depends on r = |x|). Thus, we try to solve (8.4) with a
radially symmetric function K (z). Since §(x) = 0 for = # 0, we see that (8.4) requires
K to be harmonic for r > 0. For the radially symmetric function K, Laplace equation
becomes (K = K(r)):

82K+n—18K _ 9 (8.5)
Or? ro or '

The general solution to (8.5) is

| it =2
K(r) = { citelogr  in (8.6)

c1 4 cor?—m ifn > 3.

After we determine co, we find the fundamental solution for the Laplace operator:

1 ; _
K(a?)Z{ 27rllogr o lin;z
m?” 1Irn -~ o.

e We can derive, (8.6) for any given n. For intance, when n = 3, we have:

2
K”+;K’ =0. ®

Let
1
K = -
L),
1
K = —w'—iw,
r 72
1 2 2
K — _w//__2w/+_3w'
r r r

Plugging these into ®, we obtain:

1

—w" = 0, or

r

w// — 0
Thus,

w = c1r+ co,
1

K = -w(r) = 61—1-6—2. v
r r

See the similar problem, F’99, #2, where the fundamental solution for (A — I) is
found in the process.
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Find the Fundamental Solution of the Laplace Operator for n =3
We found that starting with the Laplacian in R? for a radially symmetric function K,
2
K'+~K' =0,
r
and letting K = %w(r), we obtained the equation: w = c¢ir + ¢, which implied:
K = c+ C—2
r

We now find the constant ¢y that ensures that for v € C§°(R?), we have

K(|z|) Av(z)dz = v(0).

R3
Suppose v(z) =0 for || > R and let Q = Br(0); for small € > 0 let
Q. = Q — B(0).

K(]z|) is harmonic (AK(|z|) = 0) in .. Consider Green’s identity (09 = 9Q U
0B(0)):

5 K(z))Avde = /aQ (K(|x|)g—z _ U8K8(7|;7|)>ds + /836(0) (K(|x|)g—z - ”w;(?'f'))ds-

=0, since v=0 for >R

lim [ K(|z|)Avdz| = / K(|z|)Avdz. (Since K(r)=c+ 2 g integrable at = = 0.)
e—0 Qe ] 9] T
On 0B.(0), K(|z|)= K(¢). Thus, 3
/ K(|x|)@ds = |K(e)| @‘ds < ‘61+C—2‘47T62max|Vv| — 0, as € — 0.
9B(0) an 8B.(0) 1 On €

/ v(x) OK () as = / C—gv(x) as
9B.(0) on 9B.(0) €

- / Zu(0) dS+/ Zlu(x) - v(0)] dS
9B(0) € 9B(0) €

62 2
= 5 v(0) dme” + 4mey zerggio) |v(z) —v(0)]

~
—0, (v is continuous)

= Admweyv(0) — —v(0).
Thus, taking 4meco = —1, i.e. czz—ﬁ, we obtain
/K(|x|)Avda¢ = lin% K(|z|)Avdz = v(0),

Q =0 Jq,

that is K(r) = —;= is the fundamental solution of A.

°In R3, for |z| = ¢,

K(z)) = K( = a+=.
aKaSLxD = _3I;T(e) = i—i, (since n points inwards.)

n points toward 0 on the sphere |z| =€ (i.e., n = —x/|x|).
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Show that the Fundamental Solution of the Laplace Operator is given by.

Llogr ifn=2

2w

K(z) = { L s (8.7)
(2—n)wn =

Proof. For v € C3°(R™), we want to show

K(|z|) Av(z)de = v(0).

Rn
Suppose v(z) =0 for |z| > R and let Q = Br(0); for small € > 0 let
Q. = Q — B(0).

K(|z|) is harmonic (AK(]z|) = 0) in Q.. Consider Green’s identity (92 = 9Q U
0B(0)):

=0, since v=0 for >R

lin% [/ K(|z|)Avdz| = / K(|z|)Avdz. (Since K(r) is integrable at = = 0.)

=0 | Jo, | Q

On 0B.(0), K(|z|)= K(¢). Thus, ©

/ K(|x|)@ds = ’K(e)’ @‘ds < ’K(e)’wne”_lmax’Vv’ — 0, as € —0.
9B(0) an 8B.(0) 1 On

/ v(x)wds = / —%v(x)ds
9B.(0) on 0B.(0) Wn€

1 1
s [ -
/836(0) w1 (0) 9B.(0) wne"—l[ (z) —v(0)]

N _wnjn_l U(O) wnfn_l a rerggi%o) |’U(.1‘) - 'U(O)|
—0, (v is ;ntinuous)
= —v(0).

Thus,

/K(|x|)Avda¢ — tim [ K(z])Avde = v(0).
Q e—0 Q.

]
SNote that for |z| = e,
3[(3(7|le) _ _3fa(r(€) _ _{ ii% EZ:; = _$7 (since n points inwards.)

n points toward 0 on the sphere |z| =€ (i.e., n = —z/|x|).
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8.9 Representation Theorem

Representation Theorem, n = 3.
Let Q be bounded domain in R3 and let n be the unit exterior normal to 9. Let
u € C%(Q). Then the value of u at any point x € Q is given by the formula

1 1 Ju(y) o )2 1 1 Au(y)
A Joq [lx —y| On y8n|x—y|

dy. (8.8)

wa) = dr Jo le—y[

Proof. Consider the Green’s identity:

ow ou
Aw — w = — —w—)dS
/Q(u w — wAu) dy /aQ(uan w@n) ,

where w is the harmonic function
1
w(y) = —
|z —yl’
which is singular at x € €. In order to be able to apply Green’s identity, we consider
a new domain €),:
Qe = Q — Be(x).

Since u, w € Co(Q), Green’s identity can be applied. Since w is harmonic (Aw = 0)
in Q. and since 09 = QU IB.(z), we have

Buly) [ [l duly)
2 1 B 1 ou(y)
! /836(1:) [u(y)anlw—yl lz—y| on ]ds' (8.10)

We will show that formula (8.8) is obtained by letting ¢ — 0.

A A 1
lim [—/ uy) dy] = —/ M dy. (Since is integrable at x = y)
=0 Q. [z =yl olr -yl |z =y

The first integral on the right of (8.10) does not depend on e. Hence, the limit as e — 0
of the second integral on the right of (8.10) exists, and in order to obtain (8.8), need

Jim [u( 21 1 duly)
0 Jopwy | Onlr—y|  Je—yl on

o 1 1 au(y)] / [ 1 1 au(y)]
e, - ds = Zaly) — = S
/(‘)Be(z) [ ) on |z —y |l —y| On 9B.(x) 2 (y) < on

_ /a i, éu(aﬁ) ds + /8 » [é[u(y) —u(z)] %ag—f)] is

— dru(n) + / [i[u(y) —u(z)] lau—(y)]ds.

9B, (z) L€ e On

]dS = dnu(z).
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" The last integral tends to 0 as € — O:

1 1 au(y)] ' 1 1 / du(y)
—luly) —u(z)] — ——==Z|dS| < — u(y) —u(z)| + - —221dS
Lo |t =) - 1558 5[, @l [ [
< 4r max |u(y) — u(x)‘ + 4me ma_x‘Vu(y)‘ .
yE€OBe(x) yeQ
—0, (u con;;nuous inQ) —0, (|V;|ris finite)
O
"Note that for points y on dB.(x),
1 1 0 1 1
and

fa—yl e mle—yl &
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Representation Theorem, n = 2.
Let Q be bounded domain in R? and let n be the unit exterior normal to 0. Let
u € C?(Q). Then the value of u at any point x € Q is given by the formula

1 1 0 ou
ue) = 5 [ Sutiosle = slay + - [ futs) -togke— o] - togle — 11 %5 | ags.an)

Proof. Consider the Green’s identity:

/Q(qu —wlAu)dy = /89 (u% - w%) das,

where w is the harmonic function

w(y) = log |z —yl,
which is singular at x € €. In order to be able to apply Green’s identity, we consider
a new domain €),:

Qe = Q — Be(x).

Since u, w € Co(Q), Green’s identity can be applied. Since w is harmonic (Aw = 0)
in Q. and since 99 = QU IB.(z), we have

—/Q Au(y)log|z — y| dy (8.12)

9 du(y)
= — —qyl =1 B Btk 4
/aQ [U(y)anloglx y| —log |z — g o ]dS

0 ou(y)
2 1og |z —y| - log |z — :
# [, [0 ggtosta =i = toele —i %5 s

We will show that formula (8.11) is obtained by letting € — 0.

lim [ - / Au(y) log|z — y dy] = — / Au(y) log |z — y| dy. (since log|z — y| is integrable at x = y)
Q. Q

e—0

The first integral on the right of (8.12) does not depend on €. Hence, the limit as ¢ — 0
of the second integral on the right of (8.12) exists, and in order to obtain (8.11), need

. 0 ou(y)
1 —qyl =1 —y|—= = 27 .
lm% oB.(o) [u(y) - oglz —y| —log |z — y| I ]dS u(x)

0 au(y)] / [1 au(y)]
u(y)=—1log |z — y| — log |z — y|—=—=|dS = —u(y) — loge ds
[ [0 0wl =yl <o =15 [ | 1o

_ /8 o %u(x) ds + /a i, E[u(y)—u(x)]—logeagg)]dS

= TTU\xr lu —u\xr)| — 10 68u<y)
= o)+ [ St~ u(w) 1o

€ n

Jas.
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8 The last integral tends to 0 as € — 0:

N B s T

< 27 max

u(y) — ()] + loge /

OB ()

u(y) — u(x)‘ + 27elog e max ‘Vu(y)‘ .

yEOBe(z) e
—0, (u continuous in Q) —0, (|Vu|is finite)
]

8Note that for points y on OB (x),

B 1
1 —yl =1 9 oglz—y| = =.
oglz —y| =loge and o og |z -yl .
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Representation Theorems, n > 3 can be obtained in the same way. We use the
Green’s identity with

1

w(y) = W7

which is a harmonic function in R™ with a singularity at z.

The fundamental solution for the Laplace operator is (r = |z|):

1 .
5-logr ifn=2
2m

K(.’L‘):{ ;,’AQ—TL lfn>3
(2—n)wn ==

Representation Theorem. If Q € R" is bounded, u € C*(Q), and x € Q, then

_ ) A RS Gl ) O 8u<>
we) = [ KG-pouway+ [ |u L= k- 250 agsas)

Proof. Consider the Green’s identity:

ow ou
Aw — w\ = — —w—)dS
/Q(u w — wAu) dy / (uan an) ,

where w is the harmonic function
w(y) = K(z —y),

which is singular at y = x. In order to be able to apply Green’s identity, we consider a
new domain €),:

Qe = Q — Be(x).

Since u, K(x —y) € C3(£), Green’s identity can be applied. = Since K(x — y) is
harmonic (AK(z —y) = 0) in 2, and since 9Q = 0Q U B.(x), we have

- [ Ka-poundy = [ [u@)M—K(x—y)a“(y) is (8.14)

O, on on
0K (x — ou
+ / [u(y)%—[((x—y) ay)]d&%.w)
OB (x) n n
We will show that formula (8.13) is obtained by letting € — 0.
lin% [— K(z—y)Au(y ] / K(z —y)Au(y) dy. (since K(x —vy) is integrable at x = y)
€E—> Qe

The first integral on the right of (8.15) does not depend on e. Hence, the limit as e — 0
of the second integral on the right of (8.15) exists, and in order to obtain (8.13), need

; 0K (z—y) ou(y)
im Y

~ K(x —
e—0 8Be(r)|: ) on (J) y) on

]dS = —u(z).
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OK(@—y) o y0uly) _ u(y O uly)
Lo D ke %2 as - [ Bem[ 25~ k(o250 as
-/ N )uu)afa{f s+ | . [afaige)[u(y)—u(x)]—K(e)agg)]ds
! u(x S u(y) — u(x - € duly)
= @ [ —was— [ k75 as
= —71 u(x)w e”_l—il u(y) — u(zx — € duly)
= @ o [ ) s [ k9% as

~~

—u(z)
9 The last two integrals tend to 0 as € — 0:

1 ou(y)
‘ T et /836(1) [u(y) — u(z)] dS — - K(e)—- ds‘
1

< o yerggfz) |u(y) — u(;r)|wne"_1 + |K(e)| I;leaﬁx |Vu(y)|wne”_1 .

—0, (u continuous in Q) —0, (|Vu|is finite)

O
8.10 Green’s Function and the Poisson Kernel

With a slight change in notation, the Representation Theorem has the following special
case.

Theorem. If Q € R" is bounded, u € C*(Q) (N CY(Q) is harmonic, and & € Q, then

u(€) = /a ) [u(x)% Kz 5)87553") as. (8.16)

Let w(z) be any harmonic function in Q, and for z, £ € Q consider
G(z,8) = K(z = §) + w(z).

If we use the Green’s identity (with Au =0 and Aw = 0), we get:

ow ou
0 = /aQ (u% - w%)ds. (8.17)
Adding (8.16) and (8.17), we obtain:
_ 0G(z,€) ou(z)
u(€) = /a ) [u(x)T ~ 6w, )74 g (8.18)

Suppose that for each £ € 2 we can find a function wg(z) that is harmonic in © and
satisfies we(x) = —K(xz — &) for all x € Q. Then G(x,§) = K(x — &) + we(x) is a
fundamental solution such that

G(z,§) =0 x €.

“Note that for points y on 0B (x),

== log e ifn=2
Kz—y) = K() = {
(@=v) () { —(2_711)% e ™ ifn > 3.

2me —

. - R
L if n > 3, wpen—1

o1

(since n points inwards.)

OK(z—y) _  0K(e) _ L ifn=2 1
on or
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G is called the Green’s function and is useful in satisfying Dirichlet boundary conditions.
The Green’s function is difficult to construct for a general domain €2 since it requires
solving the Dirichlet problem Awe = 01in €2, we(z) = —K(x —§) for x € 99, for each
£Ee.

From (8.18) we find 1°

B oG (z,¢)
u(€) = /a a5 as,

Thus if we know that the Dirichlet problem has a solution u € C?(Q), then we can
calculate u from the Poisson integral formula (provided of course that we can compute

G(z,¢)).

1°1f we did not assume Au = 0 in our derivation, we would have (8.13) instead of (8.16), and an
extra term in (8.17), which would give us a more general expression:

wé) = [ G(z,6) Audz +/ u(a) 26 @:6)

Q 99 on

ds.
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8.11 Properties of Harmonic Functions

Liouville’s Theorem. A bounded harmonic function defined on all of R™ must be a
constant.

8.12 Eigenvalues of the Laplacian

Consider the equation

Au+Adu=0 in Q
{ U+ Au mn (8.19)

u=0 on 09,

where ) is a bounded domain and A is a (complex) number. The values of A for which
(8.19) admits a nontrivial solution u are called the eigenvalues of A in 2, and the
solution u is an eigenfunction associated to the eigenvalue \. (The convention
Au 4+ Au = 0 is chosen so that all eigenvalues A\ will be positive.)

Properties of the Eigenvalues and Eigenfunctions for (8.19):

1. The eigenvalues of (8.19) form a countable set {A,}5°; of positive numbers with
Ap — 00 as n — 0.

2. For each eigenvalue )\, there is a finite number (called the multiplicity of \,) of
linearly independent eigenfunctions u,,.

3. The first (or principal) eigenvalue, A1, is simple and 11 does not change sign in .
4. Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

5. The eigenfunctions may be used to expand certain functions on €2 in an infinite
series.
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9 Heat Equation

The heat equation is
ug =kAu  forxzeQ, t>0, (9.1)

with initial and boundary conditions.

9.1 The Pure Initial Value Problem
9.1.1 Fourier Transform

If u € C3°(R™), define its Fourier transform u by

u(é) = (2;)% /n e" @y (x)de  for € € R™
We can differentiate 4:
9 — 1 —iz-€ . VAR
8—£ju(£) = a3 /Rn e~ (—izj)u(z) do = [(—iz;) u] (£).

Iterating this computation, we obtain

N
(5) a(e) = [(<iz P u] (€). (0.2)

Similarly, integrating by parts shows

(%)@ = [ e e = L [ D e a

Oz (2m)? Oz (2m)% Jon Ox;
N i&)e "y (x) dr
= g (@) )
= (i€)a(e).

Iterating this computation, we obtain

oFu ke

(55)© = grae. 0.3
Ly

Formulas (9.2) and (9.3) express the fact that Fourier transform interchanges differen-

tiation and multiplication by the coordinate function.

9.1.2 Multi-Index Notation

A multi-index is a vector a = (ay, . . ., ;) where each «; is a nonnegative integer.
The order of the multi-index is |a] = a1 + ...+ ay,. Given a multi-index «, define
olely
DYy= ——r——— = 8?11 Ot u.

« «
81‘11 M 'axnn

We can generalize (9.3) in multi-index notation:

Na, _ 1 —ix-§ Mo _ (_1)|a| o —iz-€
Dau(g) = 2n)E /ne D%u(x)dx = 2n)? /n D¢ (e Ju(z) dx
= ! i&)%e ™y (x) da
- (%%/n(s) () d

( .
@) = (@)™ - (in)™"
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Parseval’s theorem (Plancherel’s theorem).
Assume u € L*(R™) N L2(R™). Then @, u" € L*(R™) and

||77||L2(R") = ||u\/||L2(R”) = ||u||L2(R”)v or
/ u(z)?de = / ()2 de.

Also,

| wwi@as = [ a@ e e

—0o0 —0o0

The properties (9.2) and (9.3) make it very natural to consider the fourier transform
on a subspace of L'(R") called the Schwartz class of functions, S, which consists of the
smooth functions whose derivatives of all orders decay faster than any polynomial, i.e.

S = {uc C®(R"): for every k€ Nand o € N, |z|¥| D®(z)| is bounded on R"}.
For u € S, the Fourier transform u exists since u decays rapidly at oco.
Lemma. (i) If u € L'(R"), then i is bounded. (i) If u € S, then @ € S.

Define the inverse Fourier transform for u € L'(R"):

V _ 1 ix-& n
u'(§) = (2n)? /n e Su(x) dx for £ € R", or
1 ,
— ix-E ~ n
u(x) 2n)? /n e s u(g) dé for x € R".

Fourier Inversion Theorem (McOwen). If u € S, then (4)Y = u; that is,

1

u(@) = (2m)2

| ecaterie = g [ [ e umdyas = @ (a).

Fourier Inversion Theorem (Evans). Assume u € L?*(R™). Then, u = ().
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hift: L —a) = i v(&):
Shi et u(x —a) =v(zr), and determinte v(§&)

y
u?—\a =7 = _me dzr —i(y+a
Ea© =00 = —=[e = o= [ dy
= \/T_W/Re_zyge_mgu(y) dy = e %q(¢).
ulz —a)(€) = eT"u(g).
Delta function:
5(2) e i _ L smce u(x Tr—y
S = \/%/ “Ga)de = o= /5
(5(;1?/—\a)(£) = ity &) = % ek, (using result from ‘Shift”)
Convolution:
(fxg)(x) = fﬂf— v)9(y) dy,
Frg = e g T — o (g — €
Feo®) = Gz [ [ @00 dva / | e = st dyd
— ﬂ/n/n —Z(ry Fla — )dJSH —iy€ g }

o~

B <2w>s/n e f(2) dz / "Wy dy = (2m)% F(£)3(E).

o~

Gaussian: (completing the square)

2 iz 12 iz—2 2
(e‘%)(f) = 2 / e e T da: = —12 /6_# dr = —12 /6_% de e~
vV aT ™ JR m™JR
/ (z+£)2 _% 1 —Tde _% 1 Nor _é _%
= dx e = —= [ e e = ——V2me = e 2.
V2T V2T Jr Y V2T
2. 2
(%) = 7

Multiplication by x:

—/ix\u(f _”5 —izu(z))de = —u(f).

e

— d

zu(z)(§) = Zd—£U(5)
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Multiplication of ux by x: (using the above result)

48

R T e (3T e I
= 5 i [ rude - / —wf_udm
- M )(€) —a(e) = zs[zd—su@)} —a(e) = —5—£u<s>_a<g>.
Tug(2)(€) = —5—£u(5)—ﬁ(5)-
Table of Fourier Transforms: !!
(;: )€ = %e‘% (Gaussian)
e flane) = F(50),
fla) = {; ToL e -
emalel(g) = %6@2&52, (a>0)
ag/i:Q(f) = g —aldl, (a>0)
Ha—Ta©) = /= ¢ sinag, .
A@)E) = == (nb6)+ ) ®
(B AR = |2k cem)  ®
i) = V2mi(e). ©

M Results with marked with ® Were taken from W. Strauss, where the definition of Fourier Transform
is different. An extra multiple of \/— was added to each of these results.



Partial Differential Equations Igor Yanovsky, 2005

9.1.3 Solution of the Pure Initial Value Problem

Consider the pure initial value problem

u=Au  for t >0, x € R"
u(z,0)=g(x) for xz € R"™

We take the Fourier transform of the heat equation in the z-variables.

() = ! ey (x,t) do = g?’l
(6D = g [ S de = G
Au(et) = Y_(ig)%a(s,t) = —[¢[Pa(e, b).

j=1

The heat equation therefore becomes

0

&a(fv t) = _|£|2a(57 t)v

which is an ordinary differential equation in ¢, with the solution u(¢,t) = CeléPt,

The initial condition u(&,0) =g(§) gives

et = ge)e

u(w,t) = (5(5) e_|§|2t>v - (271)% [g*(6_|§|2t)v}

1 1 2 4
_ et g
g* |:(27T)% /n ¢ ¢ df}

) (47r12)%g o[ [ et = (47T12)g o [ (F

- Gt ] = g L e
B = )3 Je ST

Thus, 2 solution of the initial value problem (9.4) is

1 _lz—y]?
we)= [ Koo = [ S o

49

t

Uniqueness of solutions for the pure initial value problem fails: there are nontrivial
solutions of (9.4) with g = 0. 3 Thus, the pure initial value problem for the heat
equation is not well-posed, as it was for the wave equation. However, the nontrivial
solutions are unbounded as functions of x when ¢t > 0 is fixed; uniqueness can be

regained by adding a boundedness condition on the solution.

Tdentity (Evans, p. 187.) :
. |z z
[t - ()

3The following function u satisfies u¢ = uge for t > 0 with u(zx,0) = 0:

¢ _i 1 o d e
u@t) =2 oy g
k=0
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9.1.4 Nonhomogeneous Equation

Consider the pure initial value problem with homogeneous initial condition:

ug = Au+ f(x,t) for t >0, x € R"”
u(z,0)=0  for x € R"

Duhamel’s principle gives the solution:

t ~
w(a t) = /0 [ R(a= b9 fl0.5) dyds

9.1.5 Nonhomogeneous Equation with Nonhomogeneous Initial Conditions

Combining two solutions above, we find that the solution of the initial value problem

{ut:Au+f(xvt) for >0, z€R” (96)

u(x,0) = g(x) for x € R™.

is given by

~ t ~
ue.t)= [ Ke-vgwdr+ [ [ Kla=pt=s) f.9dyds

9.1.6 The Fundamental Solution

Suppose we want to solve the Cauchy problem

=L eR™ t>0
{“t v (9.7)

u(z,0)=g(z) xe€R™

where L is a differential operator in R™ with constant coefficients. Suppose K(x,t) is
a distribution in R™ for each value of ¢t > 0, K is C' in t and satisfies

{ Ki— LK =0, 05

K(z,0)=d(x).

We call K a fundamental solution for the initial value problem. The solution of
(9.7) is then given by convolution in the space variables:

u(z,t) = - K(z —y,t)g(y) dy.
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For operators of the form 0; — L, the fundamental solution of the initial value problem,
K (z,t) as defined in (9.8), coincides with the “free space” fundamental solution, which
satisfies

<8t—L>K(x,t) — 5z, 1),

provided we extend K (z,t) by zero to t < 0. For the heat equation, consider

2
=]

i 1k
K(wt) = 4 @t ™ 120 (9.9)

0 t <0.
Notice that K is smooth for (z,t) # (0,0).

K defined as in (9.9), is the fundamental solution of the “free space” heat
equation.

Proof. We need to show:
(at - A)K(x, ) = 8z, b). (9.10)
To verify (9.10) as distributions, we must show that for any v € C§°(R**1): 14

f((x,t)(—@t—A>vdxdt = /Rn+1 d(x,t)v(z,t)dedt = v(0,0).

Rn+1
To do this, let us take ¢ > 0 and define

~ 71 _ﬁ
Ko, t) = { Gmypm® ™ 1>¢€
0 t <e.

Then K. — K as distributions, so it suffices to show that (9, — A)K, — § as distribu-

tions. Now
)vdwdt = / ( f((x,t)(—@t—A>v(x,t)dx>dt
€ R™

[ (o
_ /OO< R (x, 1) Oy0(z, t)da:)dt—/;o(Rnk(x,t)m(x,t)dx>dt

_ [/RK (2,1) dx]:o +/:° ( [ 0k v da:) dt — /:o ( [ R0 vl da:) dt

_ /°°< i K1) v(z, 1) da:) dt + [ R(w, e oz e da.

Rn

But for t > ¢, (0 A)f((x, t) = 0; moreover, since lim;_ g+ K(x,t) = do(x) = 6(z),
we have K(x,e) — dg(x) as e — 0, so the last integral tends to v(0,0). O

"Note, for the operator L = 8/dt, the adjoint operator is L* = —0/0t.
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10 Schrodinger Equation
Problem (F’96, #5). The Gauss kernel

1 (z=y)?
G(t,z,y) = et
(4mt)2
1s the fundamental solution of the heat equation, solving

Gt = Grza G(Oa xz, y) = 5($ - y)

By analogy with the heat equation, find the fundamental solution H(t,z,y) of the
Schrodinger equation

Ht:inza H(O,x,y):5(x—y)

Show that your expression H(x) is indeed the fundamental solution for the
Schrodinger equation. You may use the following special integral

o0 —izQ
/ e 4 dr=+—i4m.

—0o0

Proof. ¢ Remark: Consider the initial value problem for the Schrédinger equation

up = 1Au reR” t>0,
u(z,0) = g(zx) x e R™
If we formally replace ¢ by 4t in the heat kernel, we obtain the Fundamental
Solution of the Schrédinger Equation: °
1 |22
H(x,t) = Te it reR™ t#0
@0) = Gy ( #0)
1 I
u(x,t) = m e @t g(y)dy.
(%) (4mit)2 /R" w)

In particular, the Schrodinger equation is reversible in time, whereas the heat equation
is not.

e Solution: We have already found the fundamental solution for the heat equation
using the Fourier transform. For the Schrédinger equation is one dimension, we have

e, 1) = ~€a(E, 1),

which is an ordinary differential equation in ¢, with the solution @(¢,t) = Ce %L,
The initial condition u(&,0) =g(&) gives

ety = gle)e
u(z,t) = (5(5) e_igt)v - #[g*(eﬂf%)v}

1 1 2,
_ —i&°t ix-€
= —gx|— [ € e~ d }
Vo g [\/ 27 /R :
1 L
= —gx [/ el Emiet df} = (need some work) =
2 R

1
= k e_ 4it i| = / e 4it d .
Vamit g [ Varit Jr 9(v) dy

z—y?

5Evans, p. 188, Example 3.
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e For the Schrédinger equation, consider
1 s
U(x,t) = { GmyZ© " -
0 t <0.

Notice that ¥ is smooth for (z,t) # (0,0).

53

(10.1)

¥ defined as in (10.1), is the fundamental solution of the Schrédinger equa-

tion. We need to show:

(at - m)\y(x, t) = o(z,t).

To verify (10.2) as distributions, we must show that for any v € C§°(R"1): 16

/ @(x,t)(—@t—iA>vdxdt = / d(x,t)v(z,t)dedt = v(0,0).
Rnt1 Rn+1

To do this, let us take ¢ > 0 and define

o
~ 4it t>¢€

1 -
U(x,t) = (4mit)n/?
0 t <e.

(10.2)

Then U, — VU as distributions, so it suffices to show that (8; —iA) U, — § as distribu-

tions. Now

/\ife<—8t—m>vdxdt = /Eoo(/n\if(x,t)(—at—z’A)U(%t)dx)dt
_ /f(/n (@—iA)‘if(x,t)v(w,t)dx)dt+/n

U(z,€e)v(x,€)de.

But for t > €, (9 — i) (x,t) = 0; moreover, since lim, o+ ¥(x,t) = do(x) = 6(z),

we have W(z,€) — dp(x) as e — 0, so the last integral tends to v(0,0).

%Note, for the operator L = 0/0t, the adjoint operator is L* = —9/0t.

O
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11 Problems: Quasilinear Equations

Problem (F’90, #7). Use the method of characteristics to find the solution of the
first order partial differential equation

x2uz + xYuy = u?

which passes through the curve uw =1, x = y>. Determine where this solution becomes
singular.

Proof. We have a condition wu(z =y?)=1. T is parametrized by I": (s2,s,1).

d 1 1 1 2
L L N x(0,8) = =5 = z= T = i ,
dt —t —c1(s) —c1(s) —t+5 1—ts?
dy dy 5%y co(s) s
a " it~ 1— ts2 A y(s,0) = eals) = s Vo1 s
d 1 1 1
2 N 2(0,8) = =1 = z=-—.
dt —t — c3(s) —cs(s) 1—1¢
Thus,
z 2
1
Ios = y=—Y_ = t= y—2 —
Y 1-— t;—z T T
N (@.9) 1 x?
u(x,y) = . = .
1-% 41 2+ —y?
The solution becomes singular when 4% = 22 + .
4
It can be checked that the solution satisfies the PDE and u(x = y?) = oy N

Problem (S’91, #7). Solve the first order PDE

fot+2yfy+f=0
flz=0,y) =y

using the method of characteristics.

Proof. Rewrite the equation

Ugp + x2yuy = —u,
w(0,y) = v
I is parameterized by I': (0, s, s2).
dz 1 = t
_— g xr =
dt ’
dy 2 dy 2 i
—-— = — =1 = =se3
dt Yy dt Yy Yy )
dz 2 —t
— = —z = z=s%"
dt

w

£ 2
3

Thus, x=t and s=ye 3 =ye 3, and

—ﬁ2—r 2 —243 ¢
u(z,y) = (ye  3)%e " =ye 3" "

The solution satisfies both the PDE and initial conditions. O



Partial Differential Equations Igor Yanovsky, 2005 55

Problem (S’92, #1). Consider the Cauchy problem

U = TUp — U+ 1 —oco<zr<oo, t>0
u(xz,0) =sinz —00 <z <00

and solve it by the method of characteristics. Discuss the properties of the solution; in
particular investigate the behavior of |uy(+,t)|e for t — oo.

Proof. T is parametrized by " : (s,0,sins). We have

dx N 4
—_— = —I Xr = Se
dt ’

dy
dt
dz 1 —sins
— = 1- = =1 - —
dt ¥ ¥ et

Thus, t =y, s = xze¥, and
1 sin(zeY)
ul@y)=1-—+——
It can be checked that the solution satisfies the PDE and the initial condition.
Ast — oo, u(z,t) — 1. Also,
[tug (2, ) |00 = | cos(ze?) |00 = 1.

ug(x,y) oscillate between —1 and 1. If x =0, u, = 1. O

Problem (W’02, #6). Solve the Cauchy problem

ut—l—u2uz:0, t >0,
u(0,2) =2+ x.

Proof. Solved O
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Problem (S’97, #1). Find the solution of the Burgers’ equation

U + Uy = —x, t>0

u(z,0) = f(z), —00 < x < 00.

Proof. T is parameterized by " : (s,0, f(s)).
dx
dt
dy
dt
dz

dt

which can be written as a second order ODE:
i4+z=0, x(s,0) =s, #(s,0)=2(0) = f(s).

Solving the equation, we get

x(s,t) = scost+ f(s)sint,  and thus,

z(s,t) = x(t) = —ssint + f(s) cost.
x = scosy + f(s)siny, N zcosy = scos’y + f(s)sinycosy,
u= —ssiny + f(s) cosy. usiny = —ssin®y + f(s) cosysiny.

= xCcosy —usiny = s(cos2y + sin? y) =s.
= wu(x,y) = f(zrcosy —usiny) cosy — (x cosy — usiny) siny. O
Problem (F’98, #2). Solve the partial differential equation
uy — uu, = 3u, u(x,0) = f(x)

using method of characteristics. (Hint: find a parametric representation of the solu-
tion.)

Proof. T is parameterized by T": (s,0, f(s)).

d d 1 1

d_f = -2 = d—f =—f3s)e = a= —6f2(5)€6t + ng(S) + s,
dy

= =1 = =t

I Y )

dz

il 32 = 2= f(s)e
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Thus,
w=—12(s)e + 1 2(s) + 5, N $:—lée6y+lé+8:z—2—z—2+8
f(s) =% 6 by 6 by 6efY 6 ’
22 22
= =r— —
S=x 666y+6
22 3
= — - R y'
i f<$ 6 +6>
2
u 3y
= — .
( 6)6
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Problem (S’99, #1) Modified Problem. a) Solve

3

" <u_> -0 (11.1)
3/z
fort >0, —0co < x < oo with initial data
cal-e), a<0 T AN
u(e,0) = hie) = { 0 PERN
_(I(l - e_r)j T > 0 ///' o \_\_\.‘

where a > 0 is constant. Solve until the first appearance of discontinuous derivative
and determine that critical time.
b) Consider the equation

3
ug + (%) = —cu. (11.2)

How large does the constant ¢ > 0 has to be, so that a smooth solution (with no discon-
tinuities) exists for all t > 0% Explain.

Proof. a) Characteristic form: u; + u?u, = 0. I: (s,0,h(s)).
dx 5 dy dz
o W ©y,
T T

z=h(s)’t+s, y=t 2z=h(s).

u(z,y) = h(z — u’y) (11.3)

The characteristic projection in the zt-plane!” passing through the point (s,0) is the
line

z=h(s)’t+s
= /// /

along which u has the constant value u = h(s). //// / /1, Jl,r /

The derivative of the initial data is discontinuous, and that leads to a
rarefaction-like behavior at t = 0. However, if the question meant to ask to
determine the first time when a shock forms, we proceed as follows.

Two characteristics = h(s1)?t + s1 and @ = h(sy)?t + s intersect at a point (z, )
with
S9 — 8§81
h(s2)? — h(s1)*

From (11.3), we have

t=—

K (s)
1+ 2h(s)h/(s)t
Hence for 2h(s)h/(s) < 0, u, becomes infinite at the positive time
—1
2h(s)I(s)"
The smallest ¢ for which this happens corresponds to the value s = sy at which h(s)h/(s)
has a minimum (i.e.—h(s)h/(s) has a maximum). At time T'= —1/(2h(so)h’(s0)) the

up = W (s)(1 = 2uust) =  uy=

t =

17y and t are interchanged here
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solution u experiences a “gradient catastrophe”.
Therefore, need to find a minimum of

B vy ) —2a(1 —€") - ae” B —2a%e®(1 —€%), <0

f(@) = 2h(@)k(z) = {—2(1(1 — e ). (—ae™®) {2@26_’5(1 —e ™), x>0

oo —2aPet(1—2¢"), x<0 z=In(3)=—-In(2), <0
fl) = {—2&26_I(1—26_I), x>0 -0 { = In(2), >0

7 T T amERh ()] @
Proof. b) Characteristic form: u; + u?u, = —cu. I': (s,0,h(s)).
dx 2 2 —2ct 1 2 —2ct
—_— = = = —_— 1 —
o 2% =h(s)e = x=s+ 2Ch(s) (1 —e %),
dy
— =1 = =t
dt Y )
dZ —ct C
o - T = E= h(s)e (= h(s) =ue?).

Solving for s and ¢ in terms of x and y, we get:

1
t=vy, s=x— —h(s)%(1 —e2Y),

2c
Thus,

1

u(z,y) = h(z-— 2—u2e2cy(1 - e_2cy)) e Y,
c

_ / —cy _ 1 2cy (1 _ ,—2cy

u, = h'(s)e (1 uuge (1 — e *Y)),
c
h(s)e= B h(s)e=

L+ 20/(s)eWu - (L—e=2w) 1+ Lh/(s)h(s)(1 — e~2¥)’
Thus, ¢ > 0 that would allow a smooth solution to exist for all ¢ > 0 should satisfy
1
1+ =K (s)h(s)(1 — e 2¥) £0.
c

We can perform further calculations taking into account the result from part (a):

a2
min{2h(s)h'(s)} = — 5
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Problem (S’99, #1). Original Problem. a). Solve
3
u
U + ?I =0
fort >0, —0o < x < oo with initial data
—a(l—¢€"), =<0
—a(l—e™®), >0

u(x,0) = h(z) = {

where a > 0 1s constant.

Proof. Rewrite the equation as
3

F(xvyvuvurauy) = u_;—l_uyzov
p3
F(xvyvzvpvq) = ?4‘(]:0

I' is parameterized by I : (s, 0, h(s), ¢(s),1(s)).

60

(11.4)

We need to complete T" to a strip. Find ¢(s) and 1 (s), the initial conditions for p(s, t)

and q(s, t), respectively:
o F(f(s),9(s),h(s), o(s),¥(s)) = 0,

3
Y 4 ) =0,
ROk
Y(s) = T3

o H(s) = 661 + B9 B
{ ae® = ¢(s), <0 N {w(s):—adeds, x <0

3
—ae™® = ¢(s), x>0 e, x>0

Therefore, now I' is parametrized by

{F: (5,0, —a(l —¢€%), ae’, —a3§3s), <0
e

3,—3s

I': (5,0, —a(l—e™®),—ae™®, “5—), x>0

dz a’e*s a?e?st + cy(s)
— = = p? = 0 0. = x(s,t) = N = x=
dt a‘e a“e”**t + c5(s)

a’e®st + s

a’e %5t + s

d
d_g; = =1 = y(st)=t+ca(s) = y=t
dz adeds — 22— 24303s <0
— = pF,+qF,=p’+q= . 3 )
dt Pfp T b —ade™35 + —adeg > = —2a%e™3, >0
2a%e3t + cg(s), <0 2a%e3t — a(1—ef),
= z(s,t) = b 3 a. =z = 5 3 s | s
—sa’e Pt +cr(s), w>0 —za’e >t —a(l —e™*),
d ae’ <0
P = F-Fp=0 = pst)=als) = p={
dt —ae %, z >0

xr <0
x>0
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3.3s

dq —ae <0
- = —-F,—-Fq=0 = ) =c3(s) = = 53 41
i Y zq q(s,t) = cs(s) q { a3e33 20
Thus,
(z.1) %a?’e?’sy —a(l—e€%), x<0
u(z,y) =
Y —%a?’e_?’sy —a(l—e"®), x>0
where s is defined as
a’e*y+s, <0
T=9 2 -2
a‘e”“y+s, x>0.
]
b). Solve the equation
3
ug + u_; = —cu. (11.5)
Proof. Rewrite the equation as
3
F(z,y,u, ugp, uy) = ?I + uy + cu =0,
P
F(xvyvzvpvq) = ? —I—q—l—cz:O

I is parameterized by I : (s, 0, h(s), ¢(s),1(s)).
We need to complete I" to a strip. Find ¢(s) and 1 (s), the initial conditions for p(s, t)
and q(s, t), respectively:

o F(f(s),9(s), h(s), ¢(s),9(s)) = 0,

)3
% +(s) + ch(s) =0,

o N(s) = &(s)f(s) +1(s)d(s)

ae® = ¢(s), x <0 N Y(s) = =5~ +ca(l —e”), x <0
—ae 5 =¢(s), x>0 P(s)= *“5—+ca(l—e™), x>0

Therefore, now I' is parametrized by

a3e3s

r: (50, —a(l—e*), ae®, —“5—+ca(l—€"), x<0
r': (50, —a(l —e™ %), —ae™*, ‘lde?)—_ds—l—ca(l—e_’”), x>0
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dx 9

@ = =

dy

ar ~ Tt

dz 3
d

= = —F—Fp=—c
dq

% = _Fy_qu:_Cq

We can proceed solving the characteristic equations with initial conditions above.

62

O
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Problem (5’95, #7). a) Solve the following equation, using characteristics,
~~ il

uy + udu, =0, N

U(.Z‘,O) :{ a(l_er)a for £ <0 I . I

—a(l—e™®), for x>0 | '

where a > 0 is a constant. Determine the first time when a shO;Ck forms. .
Proof. a) T' is parameterized by I" : (s,0, h(s)).

dz 3 gy_lfgzo
Tt '

at ot
z=n(s)’t+s, y=t, z=h(s).
u(z,y) = hiz — u’y) . (11.6)

The characteristic projection in the zt-plane!'®
passing through the point (s,0) is the line

z=h(s)t+s

along which u has a constant value u = h(s). hes)> 0 g <0
Characteristics x = h(s1)%t 4+ s1 and x = h(s2)3t + 55 intersect at a point (x,t) with
52 — 51
h(s2)3 — h(s1)3
From (11.6), we have

t=—

W
1+ 3h(s)2h/(s)t

Hence for 3h(s)?h(s) < 0, u, becomes infinite at the positive time

up = W (s)(1 — 3uust) = ug

-1
t= ——m——.
3h(s)2h/(s)
The smallest ¢ for which this happens corresponds to the value s = sy at which

h(s)?h/(s) has a minimum (i.e.—h(s)?h’(s) has a maximum). At time T' = —1/(3h(s)*h/(s0))
the solution u experiences a “gradient catastrophe”.
Therefore, need to find a minimum of

—3a2(1 — e*)%ae® = —3ae®(1 — e*)? x <0
x) = 3h(z)?H (z) = ’
f@) @)k (=) {—3@2(1—6_’3)2@6_’” = —3a%e (1 —e®)?2 >0
() —3a®[e”(1 — €*)? — e"2(1 — e")e”] = —3a%e”(1 — e%)(1 — 3e%), x <0
xTr) =
—3a®[—e " (1—e ") +e ™2l —e®)e ] =-3a’e " (1—e ") (-1+3e"), z>0

= 07 =—1 37 < 07 . . ..
The zeros of f'(x) are { v * " * We check which ones give the minimum of f(z) :

r=0, r= In3, x>0.

~ fwﬁnﬁﬁ,ﬂ—mm:—m%u—gﬁz—%a <0
f(0)==3d% f(ln3) =-3a*1(1-2)?=-2% 2>0

18 and t are interchanged here
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b) Now consider
ug + udug 4+ cu =0

with the same initial data and a positive constant c. How large does ¢ need to be in
order to prevent shock formation?

b) Characteristic form: u; + u3u, = —cu. [: (s,0,h(s)).
dx 3 3_—3ct 1 3 —3ct
—_— = = = — 1—

g 2° = h(s)’e = xz=s+ 3Ch(s) (1 —e7%),
dy
— =1 = =t
dt Y )
dz —ct C
o = ¢ = z=h(s)e (= h(s) =ue”).
1
= z(s,t) = h(x - §h(s)3(1 - e_3Ct)>e_Ct,
1
= u(z,y) = h(x - §u3e3cy(1 - e_3cy)>e_cy.
1
uy; = h'(s)-e” Y. (1 - Eu2uze?’cy(1 - e_3cy)>,
" h(s)e= B h(s)e=

L+ L0/ (s)u2e?v(1 — e3) 14 10/(s)h(s)2(1 — e3v)
Thus, we need
1
14 —h'(s)h(s)*(1 — e>Y) £ 0.
c
We can perform further calculations taking into account the result from part (a):

min{3h(s)?h'(s)} = —3a>.
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Problem (F’99, #4). Consider the Cauchy problem

uy + a(z)u, =0,
u(x,0) = h(x).

Give an example of an (unbounded) smooth a(x) for which the solution of the Cauchy
problem is not unique.

Proof. T is parameterized by T": (s,0, h(s)).

(2—13 = a(r) = x(t)—=x(0)= /0 alz)dt = x= /0 a(z)dt + s,
% =1 = y(s,t)=t+c(s) = y=t,
% = 0 = z(s1t)=cas) = z=h(s).

Thus,

u(x,t) = h(w - /Oy a(x)dy)

Problem (F’97, #7). a) Solve the Cauchy problem

ug —rut, = 0 —oo<zr<oo, t>0,
u(z,0) = f(x) —00 << 00.
b) Find a class of initial data such that this problem has a global solution for all t.

Compute the critical time for the existence of a smooth solution for initial data, f,
which is not in the above class.

Proof. a) T' is parameterized by I' : (s,0, f(s)).

dx dx

>~ o O
o vz = zf(s) = x=se ,
dy

— =1 = =t

dt Yy )

dz

= 0 = z=f(s).

y = f(xef(S)t)’
u(x,y) = f(xe“y).

dt

Check:
{ U= ) (€ 4 zeuy) { e — ' (s)ae Wy = (5)e™

uy = f'(s) - ve" (uyy + u) uy — f'(s)reWuyy = f'(s)ze™u

— f'(s)er¥ / u / U
Uy = 777 m f(s)e"Wxu f(s)e™¥
- { A R e 1-— S"/)(s)x cuy TN fs(j)x e
Uy = T (sYeyen” Y Y

u(z,0)= f(z). v
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b) The characteristics would intersect when 1 — f/(s)zye"” = 0. Thus,
1

te=———.
°= Flsywe:

67
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Problem (F’96, #6). Find an implicit formula for the solution u of the initial-value

problem

ug = (22 — 1)tuy, + sin(wzx) — ¢,
u(xz,t =0) =0.

Evaluate u explicitly at the point (z =

Proof. Rewrite the equation as

uy + (1 — 22)yu, = sin(mx) — y.

0.5, ¢

2).

I' is parameterized by I" : (s,0,0).
(2—13 = 1-2x)y=(1-22)t = x:%(2s—1)e_t2—|—%, <:> s:(x—%)
% =1 = y=t,
% = sin(mx) —y = sin (5(28 - 1)€_t2 + g) —t.
= z(s,t) = /Ot [sin (g(2s —1)e " + g) - t} dt + z(s,0),
z(s,t) = /Ot [sin (g(2s - 1)€_t2 + g) - t} dt.
= u(z,y) = /Oy [sin (g(2s —1)e ¥ + g) — y} dy
= /Oy :sin (g(2x —1)eY eV 4 g - y} dy
= /Oy [ sin (g(2x—1)—|—g> —y} dy:/oy [sin(wx)—y} dy,
2
= wu(x,y) = ysin(rzx)— y?

Note: This solution does not satisfy the PDE.

Problem (S’90, #8). Consider the Cauchy problem

Up = TUy — U,
U(.Z‘, 0) = f('r)a
Assume that f =0 for |z| > 1.

—oo < x <00, t>0,
flx) e C*=.

2 1
e—|-2

Solve the equation by the method of characteristics and discuss the behavior of the

solution.

Proof. Rewrite the equation as

dy
2 -1
dt

Uy — TUy = —U,
I' is parameterized by I": (s, 0, f(s)).
d_a: = -2 = gz=set
dt B ’
d
d_j = —z = z=f(s)e "
= u(z,y) = f(ze¥)e V.

).
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The solution satisfies the PDE and initial conditions.
Asy— +oo,u—0. u=0for|ze!|>1 = wu=0for |z Ze%"

2005
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Problem (F’02, #4). Consider the nonlinear hyperbolic equation
Uy + Uty = 0 —o0o < x < o0

a) Find a smooth solution to this equation for initial condition u(x,0) = x.

b) Describe the breakdown of smoothness for the solution if —wu(x,0) = —zx.
Proof. a) T' is parameterized by I' : (s,0,s). .
du = t 4 = —.I‘ JZ‘
—_— = z =38 r =S8 S S = -
dt t+1 y+1
dy
e
dt Y
d -1
d—i =0 = z=s
= u(z,y) = %; solution is smooth for all positive time .
Yy
b) T is parameterized by I': (s,0, —s). y
de B — Lo r
PP z2=—-8 = x=—st+s 8_—1—75_1—1 %1
d
had 1 = y=t,
dt
d
d—i = 0 = z=-s
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Problem (F’97, #4). Solve the initial-boundary value problem

w A+ (x+ 1), = z for ©>0,t>0
u(z,0) = f(x) 0 <z < +o0
u(0,t) = g(t) 0 <t< +o0.

Proof. Rewrite the equation as

uy + (r+ )%, = =z for x >0,y >0
u(z,0) = f(x) 0 <z <+o0
u©,y) = gly)  0<y <Aoo

e For region I, we solve the following characteristic equations with I' is parameterized
¥hy Tt (5,0, f(s)).

dx 9 s+1
= = 12 = z=—-—"1- 1 v
dt (@+1) T T G Dt-1
dy
-1 = y=t
dt ! n=gy 1 =
dz s+1 - R
—_— = r= ——— — 1’
dt (s+1)t—1
= z=—In|(s+ 1)t — 1] —t +c1(s), I .
= Z:—1n|($+1)t—1|—t+f(s) 0 u =f(x)
In region I, characteristics are of the form
s+1
r=—————
(s+1)y—1
Thus, region I is bounded above by the line
1 1 T
r=—-———=1, or =
y—1 Ye T
Since t =y, s = ;;jg;i’, we have
Ty —y Ty —y
u\zr, = _1‘<7+1> —1‘— <7>
() wyty+1 )Y v oy T
T—xy—y
e = w0,
() wryr1l Ty
e For region II, ' is parameterized by I : (0, s, g(s)).
dx 9 1
= = 12 = z=-———1
dt (z+1) S R
dy
— =1 = =t
It Y + s,
dz 1
—_— f— = —-—— — 1
dt T

= z=—In|t—1| —t + ca(s),
= z=—In|t—1| —t+g(s).

Variable ¢ as a third coordinate of u and variable t used to parametrize characteristic equations
are two different entities.
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Since t = ;1, s =y — 777, we have
T T T
=]l ).
u(@,y) nx—l—l x—|—1+gy z+1

Note that on y =

_x
x+17

both solutions are equal if f(0) = g(0).

72
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Problem (S’93, #3). Solve the following equation
Up + Ug + YUy = sint
for 0<t, 0<zx, —oco<y<oo andwith

u=x+y for t=0, x>0 and
u=t>+y for =0, t>0.

Proof. Rewrite the equation as (z < 1, y < 2, t <> x3):
Ugy + Uy, + ToUg, = SINT3 for 0 <uz3, 0 <z, —00 < 292 < 0,
u(a?l, X9, 0) = x1 + X2,
u(0, 9, £3) = 23 + T3

e For region I, we solve the following characteristic equations with I' is parameterized
20 by T: (s1,82,0, 81+ s2).

dey 1 = t+
_— g €T g S

dt ! b %
dx
it = X9 = To = Sget,

dt I
d.’l’)g 1 N " =%
_— g €T g

dt 3 ) f

dz . int

- = SN r3 = S1n

dt 3 /Xl

= z= —cost+ s; + s9+ 1. 0

Since in region I, in x1x3-plane, characteristics are of the form z1 = x3 4 s1, region
I is bounded above by the line 1 = x3. Since t = x3, s1 = 11 — 3, So = Toe "3, we
have
u(xy,x9,x3) = —cosxs+ x] —x3+ x20” P + 1, or
uw(z,y,t) = —cost+x—t+ye 41, x> t.
e For region II, we solve the following characteristic equations with I' is parameterized
by T': (0, s9, 83, 82 + 52).

d.)?l
— =1 = x1=t
dt 1 )
—= = Xy = 1x9=s9€
dt 2 2 2€,
d.)?g
— =1 = x3=t+s
I 3 + 83,
d
d—i = sinxz =sin(t+s3) = 2= —cos(t+ s3) + cosss+ sy + 3.
Since t = x1, s3 = T3 — T1, So = T2 *3, we have
u(z1, 2o, 23) = —cosxz+ cos(xy — x1) + Toe " + (23 — x1)%, or
u(z,y,t) = —cost+cos(t—x)+ye t + (t—x)? x <t
Note that on x = ¢, both solutions are u(x =t,y) = —cosx + ye * + 1. O

20Variable t as a third coordinate of u and variable ¢ used to parametrize characteristic equations
are two different entities.
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Problem (W’03, #5). Find a solution to
g + (T +y)uy =1

which satisfies u(l,y) =y for 0 <y < 1. Find a region in {x >0, y > 0} where u is
uniquely determined by these conditions.

Proof. T is parameterized by T": (1,s, s).

d_a: =z = x=é &
at -

dy / t
— — .’L‘—i— = — = e .
dt Y Y Y

d

1 = s=tts

dt

The homogeneous solution for the second equation is yp(s,t) = c1(s)e!. Since the
right hand side and y; are linearly dependent, our guess for the particular solution is
Yp(s,t) = ca(s)te’'. Plugging in y, into the differential equation, we get

co(s)te! + co(s)e! —ca(s)tel = et = co(s) = 1.
Thus, y,(s,t) = te! and

y(s,t) =yn+yp = cl(s)et + tel.
Since y(s,0) = s = c1(s), we get

Y = se! + tet. ©

With ® and ©, we can solve for s and t in terms of  and y to get

t = Inz,
y—zxzilnx
y=sr +xlnxr = s = ——.
x
—xl
u(z,y) = t+s=Inz+ L—20T
x
Y
u(x,y) = =.
(z,y) =~

We have found that the characteristics in the xy-plane are of the form
Yy =sr + zinz,

where s is such that 0 < s < 1. Also, the characteristics originate from T'.
Thus, u is uniquely determined in the region between the graphs:

y = xlnx,
y = x + zlnz. ¥
y=xtxlnx

¥
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12 Problems: Shocks
Example 1. Determine the exact solution to Burgers’ equation
Ly
ut—|—<—u> =0, t>0 "
2 Ja

with wnitial data

1 Z.f x<_1’ 1 o 1
u(z,0)=h(x)=¢ 0 if —1<xz<l,
1 if r> 1 N S

Proof. Characteristic form: wu; + uu, = 0.

The characteristic projection in xt-plane passing through the point (s, 0) is the line

x = h(s)t+s.
e Rankine-Hugoniot shock condition at s = —1:
F(u,)— F w2 -2 0-1 1
shock speed:  £'(t) = (ur) (w) _ g =% _ 2 _
Ur — Uy Uy — U] 0-1 2
The “1/slope” of the shock curve = 1/2. Thus,
1
x=£&(t) = 575—1—3,
and since the jump occurs at (—1,0), £(0) = —1 =s. Therefore,
1
= t—1.
YT
e Rankine-Hugoniot shock condition at s = 1:
Flu,)—F w2 -1y 10 1
shock speed:  £'(t) = (ur) (u) _ 3% —34 _ 3 =——.
Uy — Uy Uy — U —-1-0 2
The “1/slope” of the shock curve = —1/2. Thus,
1
x=£&(t) = —575—1—5,
and since the jump occurs at (1,0), £(0) =1 =s. Therefore,
1
=t
T 5 +
e At t = 2, Rankine-Hugoniot shock condition at s = 0:
F(u,) - F qu —tu} L3
shock speed:  &'(t) = (ur) (w) _ 3% 9% _ 373 _ 0.
Uy — Uy Uy — UJ —1-1

The “1/slope” of the shock curve = 0. Thus,
z=£(1) =s,
and since the jump occurs at (x,t) = (0,2), £(2) =0=s. Therefore,

x = 0.

75
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CFort<2, u(xt)= 0
-1

[ahd for ¢t > 2,  w(x,t) = {

1
1

Igor Yanovsky, 2005

if o<it—1,
if gt—1<az<-—%t+1,
if z>—-4t+1.

if x <0,
if z>0.
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Example 2. Determine the exact solution to Burgers’ equation

77

1
ut—|—<—u2> =0, t>0
2 x
with initial data
-1 if z< -1,
u(z,0)=h(z) =< 0 if —1l<az<]l, N
1 if z>1.

Proof. Characteristic form: wu; + uu, = 0.

The characteristic projection in xt-plane passing through the point (s, 0) is the line

x = h(s)t+s.

For Burgers’ equation, for a rarefaction fan emanating from (s, 0) on xt-plane, we have:

T—s
t
T—s
t

ug, < uy,

z—s
)
Up

U(.I',t) = up <

< Uy,

T—s
t

> Uy

r< —t—1,
==, —t—-1<ax< -1,
Cd(z,t)=¢ 0 -l<z<1,
==, l<x<t+1,
1, r>t+1.

i.e.

i.e. 0< 7

rz—1

—1< = <0

<1



T2
u=-1 u=1 /
Partial Differ y, 2005
X=-E5 XFHs x
5 1 1 )

h(s)=-1 . h(s) =0 his)=1 &
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Example 3. Determine the exact solution to Burgers’ equation

1
ut—|—<—u2> =0, t>0
2 Ja

e

with witial data

2 if O<z<l,

0 if otherwise. x

u(x,0) = h(z) = {

Proof. Characteristic form: wu; + uu, = 0.
The characteristic projection in xt-plane passing through the point (s, 0) is the line

x = h(s)t+s.
e Shock: Rankine-Hugoniot shock condition at s = 1:

Flu,) — F gur —3ui  0-2
shock speed: fl(t) _ (u,;) — ul(UZ) — 2 uT — 12” l — 032 =
r T

1.

The “1/slope” of the shock curve = 1. Thus,
x=£(t) =t+s,

and since the jump occurs at (1,0), £(0) =1 =s. Therefore,
r=t+1.

e Rarefaction: A rarefaction emanates from (0,0) on xt-plane.

0 if x<0,

if 0< oz <2t
CHr0<t<1l, w(zt)={ ! *

2 if 2t<z<t+1.

0 if x>t+1.

Rarefaction catches up to shock at t = 1.
e Shock: At (x,t) =(2,1), w; =xz/t, u, = 0. Rankine-Hugoniot shock condition:

f/(t) _ F(UT) —F(Ul) _ %ug B %ul2 _ 0— %(%)2 _ lf’
Uy — Uy Uy — Uy 0—% 2t

drs  x

a2t

r = oV,

and since the jump occurs at (z,t) = (2,1), (1) =2 =c. Therefore, z = 2/%.

o

if <0,
if 0<x< 2V,

CTort>1, wu(xt)=q %
0 if x>2v1t.



Partial Differ

un=u

2005

his)=0

his)=0
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Example 4. Determine the exact solution to Burgers’ equation
L,
ut—|—<—u> =0, t>0
2 Ja

with witial data

1+x if <0, «
0 if «>0. * ¢

u(x,0) = h(z) = {

Proof. Characteristic form: wu; + uu, = 0.
The characteristic projection in xt-plane passing through the point (s, 0) is the line

x = h(s)t+s.

[ Hor s > 0, the characteristics are x = s.

[Hor s < 0, the characteristics are z = (1 + s)t + s.

e There are two ways to look for the solution on the left half-plane. One is to notice
that the characteristic at s = 07 is = ¢ and characteristic at s = —1 is x = —1 and
that characteristics between s = —oo and s = 07 are intersecting at (z,t) = (—1, —1).
Also, for a fixed t, u is a linear function of z, i.e. for t = 0, u = 1 + z, allowing
a continuous change of u with x. Thus, the solution may be viewed as an ‘implicit’
rarefaction, originating at (—1, —1), thus giving rise to the solution

_;1?—1—1

) = ——.
u@,?) t+1
Another way to find a solution on the left half-plane is to solve [faok s to find

xr—t x—1 T+ 1
pr— . Th t:h :1 :1 pr— .
s 117 us, u(x,t) (s) + s +1—|—t 1

e Shock: At (x,t) =(0,0), wu; = fT“Lll, u, = 0. Rankine-Hugoniot shock condition:

Flu)— Fu) sa2—3ad 0-3(EH? 1541

!

t == = — — — ,
) Uy — Uy Uy — Uy 0—§T+11 2t+1
drs lx—l—l
a  2t+1’

r = cvVt+1—-1,

and since the jump occurs at (z,t) = (0,0), z(0) =0=c—1, or ¢ = 1. Therefore,
the shock curveis * =+t +1—1.
sl p < VI 1 -1,

Az, t) = ¢
(@¢) {() if z>Vt+1-1



Partial

h(s) =1+¢
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Example 5. Determine the exact solution to Burgers’ equation
L,
ut—|—<—u> =0, t>0
2 Ja

with witial data

ug if ©<0,
u(z,0) =h(z) = Qup- (1 —x) if 0<xz<1

0 if ©>1, — |
where ug > 0. \ x

Proof. Characteristic form: wu; + uu, = 0.
The characteristic projection in xt-plane passing through the point (s, 0) is the line

x = h(s)t+s.

[ Fdr s > 1, the characteristics are x = s.
[Fdr 0 < s < 1, the characteristics are z = ug(1 — s)t + s.
[ Fdr s < 0, the characteristics are x = ugt + s.

The characteristics emanating from (s,0), 0 < s < 1 on xt-plane intersect at (1, u—lo)

Also, we can check that the characteristics do not intersect before ¢t = % for this
problem:
. -1 1
tc:m1n<h/(s)> = U_o'

e To find solution in a triangular domain between x = upt and x = 1, we note that
characteristics there are x =wug - (1 — s)t +s. Solving for s we get

_x —ugpt

x—u0t> :uo-(l—x)'

Thus, u(x,t)zh(S)ZUO‘(l_s):“0'<1_ 1 — ugt 1 — ugt

5= 1-— U()t ’
We can also find a solution in the triangular domain as follows. Note, that the charac-
teristics are the straight lines
dx
dt
Integrating the equation above, we obtain

= u = const.

r=ut+c

Since all characteristics in the triangular domain meet at (1, %), we have c =1 — %,
and

(1 —
x:ut—|—<1—£> or uzw.
up 1 — ugt
. U if T < ugt,
[Thr0<t< - u(z,t) = “‘iﬁlu;f) if wt<z<1,
0

0 if x> 1.



Partial Differential Equations Igor Yanovsky, 2005 84

e Shock: At (x,t) = (1, ulo), Rankine-Hugoniot shock condition:

1 1 1
g = F(uy) = F(w) _ 3ui —3uf _0—3uf _ Lo,

Up — Uy Up — U 0—ug 2

1
&)y = §u0t +c,
and since the jump occurs at (z,t) = (1, 1), x(i) =1= %—I—c, or ¢ = 2. Therefore,

’ % uQ 2
the shock curve is = = %ﬂ



Partial Differential Equations Igor Yanovsky, 2005 85

1 uy i x < veitl
CTort>—, u(zt)= _ bt
uQ 0 if x> *5=.

t .
1 x = (ugt+1)2
g |
u=>0
=1y , w=0
X
his) = uy 0] his) =uy(l-5) 1 his)=0 !

O

Problem. Show that for u= f(x/t) to be a nonconstant solution of u; + a(u)u, =0,
f must be the inverse of the function a.

Proof. If u = f(x/t),

R IIOR

Hence, u; + a(u)u, = 0 implies that
OERONCRE
t) 12 t t) ot
or, assuming f’ is not identically 0 to rule out the constant solution, that

() -3

This shows the functions a and f to be inverses of each other. O
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13 Problems: General Nonlinear Equations

13.1 Two Spatial Dimensions
Problem (S’01, #3). Solve the initial value problem

You will find that the solution blows up in finite time. FEzxplain this in terms of the
characteristics for this equation.

Proof. Rewrite the equation as

2 .1‘2

p
F(w,y,z,p,Q):E_Q‘i‘?:O

I' is parameterized by ' : (s, 0, s, ¢(s),7(s)).
We need to complete T' to a strip. Find ¢(s) and 1 (s), the initial conditions for p(s, t)
and q(s, t), respectively:

o F(f(s),9(s),h(s), (s), w< ) =0,

F(s,0,5,0(s),¥(s)) =
5)? 52
e >+5—o,
$(s) + 5°
pe = 2L
o N(s) = ¢(s)f'(s) +1(s)g'(s),
1 =¢(s).
s?2+1
Therefore, now I' is parametrized by T : (8,0,8,1,32;—1).
dx
— = F =
dt p=P
dy
il Fo=-1 = y(st)=—t+ca(s) = y=-t,
dz
— = pF,4qF,=p*—
dt prp +q p q,
dp
-5 = _Fz_Fz = 4,
dt b=
2
1
% = —F,—F.q=0 = q(s,t)=cas) = q:s ;_ .

Thus, we found y and ¢ in terms of s and t. Note that we have a coupled system:

z' = p,
p/ =T,

which can be written as two second order ODEs:
2 +x=0, z(s,0)=s, 2'(s,0)= p(s,0) = 1,
p//+p:07 p(s,O) = 17 p/(s,O) = —1‘(8,0) = —S.
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Solving the two equations separately, we get
x(s,t) = s-cost+sint,
p(s,t) = cost— s-sint.
From this, we get
d 241 ) ) 5241
—z:p2—q = (cost—s'sint)2— i = cos’t —2scostsint + s%sin?t — .
dt 2 2
! 2 . 2 .. 2 82 +1
z(s,t) = / [cos t — 2scostsint + s”sin“t — }dt + z(s,0),
0
(5.1) [t +sintcost+ 2t—|—82t s?sintcost  t(s®+1) t+
= —_ —_— _ - — 8
8 2 2 508 2 2 2 Jo 7
sintcost 9 s?sint costt
= [7+SCOS t—i} + s,
2 2 0
sintcost 9 s?sintcost
= ————+scos’t———F—— —s+s=
2 2
sintcost 9 s?sint cost
= 5 + scos”t — — 5

Plugging in =

sin(—y) cos(—y) x —sin(—y)

and y found earlier for s and t, we get

(a — sin(~y))? _sin(~y) cos(~y)

J— 2 p— p—
u@y) = 2 cos(—y) cos™(=y) cos?(—y) 2
sinycosy x-+siny o (z —|—siny)2 sin gy cosy

= - + cos”y + 3 :

2 cos Y cos* y 2

i . x + siny)? sin

= —W—I—(x—l—smy)cosy—l-( Y) Y

2 2 cosy

sinycosy (x4 siny)?siny

= xcCosy + .

2

2 cosy
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Problem (S’98, #3). Find the solution of

2 2

ut—l-%:i, t>0, —oo<x <00
u(z,0) = h(z), —00 < x < 00,

where h(x) is smooth function which vanishes for |x| large enough.

Proof. Rewrite the equation as
2 72

p
F(w,y,z,p,Q):E‘i‘Q‘i‘?:O

I' is parameterized by I : (s, 0, h(s), ¢(s),1(s)).

88

We need to complete T' to a strip. Find ¢(s) and 1 (s), the initial conditions for p(s, t)

and q(s, t), respectively:

o F(f(s),9(s),h(s), o(s),¥(s)) = 0,
F(s,0,h(s), ¢(s),¥(s)) = 0,

¢(s)? s*
5 +(s) + 5 =0,
o(s)? + 52

u(s) = - 2L
o N(s) = o(s)f'(s) +1(s)d'(s),

W (s) = o(s).

h'(s)? + s?
IO
: : ) / W (s)*+s”
Therefore, now I' is parametrized by I' : (s, 0, s, h'(s), ———5—).

dx
—_— = F =
dt p=b
dy
e Fo=1 = y(s,t)=t+al(s) = y=t,
dz
— = pE,+qF, = p*
dt prp +4q P~ +q,
dp
— = —F,—F,p=-—ux,
dt b=t
d h/ 2 2
T = “B-Fq=0 = qst)=ol) = qz—%.

Thus, we found y and ¢ in terms of s and t. Note that we have a coupled system:

z’ =p,
{ p=—u,
which can be written as a second order ODE:
" +x =0, 2(s,0) =35, 2'(s,0)= p(s,0) = K (s).
Solving the equation, we get

x(s,t) = scost+ h(s) sint,
p(s,t) = 2'(s,t) = h'(s) cost — s sint.
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From this, we get

d h 2 2
—z:p2—|—q = (h'(s)cost—ssint)2—M
dt 2
h/ 2 2
= h/(s)*cos®t — 2sh/(s) costsint + s?sin®t — %
t h 2 2
z(s,t) = / [h'(s)2 cos®t — 2sh’(s) costsint + s° sin’ t — %} dt + z(s,0)
0
t h 2 2
= / [h'(s)2 cos®t — 2sh’(s) costsint + s° sin’ t — %} dt + h(s).
0

We integrate the above expression similar to S'01#3 to get an expression for z(s, t).
Plugging in  and y found earlier for s and ¢, we get u(x,y). O
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Problem (S’97, #4).
Describe the method of the bicharacteristics for solving the initial value problem
2

(%U(x,y)>2+<a%umy)> = 2+y,
u(z,0) = ug(z) = =

Assume that |§—Iu0(x)| < 2 and consider the solution such that > 0.
Apply all general computations for the particular case ug(x) = x

Proof. We have
ui + ui = 24y
u(z,0) = wug(z)==x.

Rewrite the equation as

F(z,y,2,0,9) =p* +¢" —y—2=0.
I' is parameterized by ' : (s, 0, s, ¢(s),7(s)).
We need to complete T" to a strip. Find ¢(s) and 1 (s), the initial conditions for p(s, t)
and q(s, t), respectively:
o F(f(s),9(s), h(s), ¢(s), w< )) =0,
F(s,0,5,0(s),¢(s)) =

¢(s) +¢(s)? =2 =0,
d(s)% +(s)? = 2.
o N(s) = &(s)f(s) +¥(s)g'(s),
1= ¢(s).
= P(s) =

Since we have a condition that ¢(s,t) > 0, we choose ¢(s,0) = ¥(s) = 1.
Therefore, now I' is parametrized by I : (s,0,s,1,1).

(ji_:; = F=2p = %:2 = x=2t+s,
% - F,=2 = %:QH—Q = y=t"+2,
% = pE,+qF, =20 +2¢* =2y +4 = %:2t2—|—4t—|—4,
= z:§t3+2t2—|—4t—|—s:§t3—1—2t2—|—4t—|—x—2t:§t3+2t2—|—2t—|—x,
% = —[L,—Fp=0 = p=1,
% = —F,-Fq=1 = gq=t+1.

We solve y = t? + 2t, a quadratic equation in ¢, t* + 2t —y = 0, for ¢ in terms of y to
get:

t=—1E£+/1+y

2
S(-1+ L+y)P+2(-1+£/1+y)?+2(-1£/1+y) +x

Both uy satisfy the PDE. u, =1, uy =+y+1 = 2 —I—ug =y+2 vV
uy satisfies uy (z,0) = v'. However, u_ does not satisfy IC, i.e. u_(z,0) = ;1:—%. O

= u(x, y) =
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Problem (S’02, #6). Consider the equation
Uy + Ugtly = 1,
u(z,0) = f(x).

Assuming that f is differentiable, what conditions on f insure that the problem is
noncharacteristic? If f satisfies those conditions, show that the solution is

2y
ulzx,y :f’l” _y+—7
(@)= 1) v+ 5
where © must satisfy y = (f'(r))*(x — 7).
Finally, show that one can solve the equation for (z,y) in a sufficiently small neighbor-
hood of (¢, 0) with r(xg,0) = xg.

Proof. Solved.
In order to solve the Cauchy problem in a neighborhood of I', need:

f/(S) : Fq[f797 hv ¢a¢](5) - gl(s) 'Fp[fvgv hv ¢a¢](5) 7& 07
11 (s)—0- (1+1_7h(8)> £0,

b (s)
B (s) #0.
Thus, 1/(s) # 0 ensures that the problem is noncharacteristic.
To show that one can solve y = (f'(s))?(x — s) for (z,y) in a sufficiently small

neighborhood of (zg,0) with s(xg,0) = xg, let

G(z,y,s) = (f(5)*(xz—s)—y=0,
G(20,0,79) = 0,
Gr(20,0,20) = —(f'(s))*

Hence, if f'(s) # 0, Vs, then Gg(xo,0,x9) # 0 and we can use the implicit function
theorem in a neighborhood of (xg, 0, x¢) to get

G(x,y, h(z,y)) = 0

and solve the equation in terms of x and y. ]
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Problem (S’00, #1). Find the solutions of
(uz)? + (uy)? =1

i a neighborhood of the curve y = % satisfying the conditions

u(x, %2> =0 and Uy (x, %2> > 0.
Leave your answer in parametric form.
Proof. Rewrite the equation as
F(z,y,2,p,q) =p" +¢*—1=0.

I is parameterized by I": (s, %, 0, d(s),1(s)).

92

We need to complete T" to a strip. Find ¢(s) and 1 (s), the initial conditions for p(s, t)

and (s, ?), respectively:
o F(f(5).9(). A(s). 6(s). () = 0.
F(s, 5.0.0(5),(5)) = 0,
HsP + s = 1

o N(s) = &(s)f'(s) +1b(s)d(s),
0= ¢(s) + sv(s),
P(s) = —sw< ).
Thus, s2¢(8)2 +¢(3)2 =1 = w(s)2 ~ 52 %1— 1

Since, by assumption, 1(s) > 0, we have (s

) 52+
Therefore, now I' is parametrized by T : (s, %, 0, =2 L )

P V241 V2T
dx —2s —2st
—_ — F — 2 - - = €r = — —|— S,
dt RV~ VT +1
dy 2 2t 52
- = F,=2q= — = =t —,
dt e s2+1 Y s2+1 2
d
d_j = pr—|—qu:2p2—|—2q2:2 = z=2t,
dp —S
—-— = —-F,—-Fp=0 = = —,
dq 1
— = —F,—F,qg=0 = = ——.
dt v ¢ 241
Thus, in parametric form,
z(s,t) = 2t
—2st
x(s,t) = —m—+s,
(s.) s2+1
2t 52
5,) = e
y(s:1) 241 2
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13.2 Three Spatial Dimensions
Problem (S’96, #2). Solve the following Cauchy problem?!

Ug + ui + ug =1,
u(0,y,2) =y - z.
Proof. Rewrite the equation as
Uy —|—u§2 —I-ufg3 =1,
u(0, x9, x3) = T2 - T3.
Write a general nonlinear equation

F(371733273737Z7p17p27p3) =Dp1 —l—p% -I-p% —1=0.

I' is parameterized by

I: 0 , S , S , S182 , 01(81,582), P2(s1,82), P3(s1, S
( , 1 2 152, ¢1(s1,52), Pa(s1, s2), P3(s1, 52) )
Il(sl’SQ’O) I2(3173270) I3(3173270) 2(3173270) pl(sl,SQ,O) p2(81,82,0) p3(81,82,0)

We need to complete I' to a strip. Find ¢1(s1, s2), ¢2(s1, s2), and ¢3(s1, s2), the initial
conditions for py(s1, $2,t), p2(s1, s2,t), and p3(s1, S2,t), respectively:

o F(fi(s1,82), fa(s1,82), f3(51,52), h(s1, 52), b1, da, 3) = 0,
F(0781782781827¢17¢27¢3) = ¢1+¢2+¢3_1 = 0,
= S+t gi=1.

. aa—h _ ¢13f1 +¢ 8fz +¢ 0fs
S1 851

= S ¢2
. g_h _ ¢13f1 +¢ 8fz +¢ 0fs
S9 852

= 81 = ¢3-
Thus, we have: ¢ = 59, ¢3 =51, ¢1 = —sl — 82 + 1.
I: ( 0 , S1 , S92 , S182 , —81 — 82 + 1, S92 , S1 )

z1(s1,52,0) x2(s1,52,0) x3(s1,52,0) 2(s1,52,0) p1(s1,52,0) p2(s1,52,0) p3(s1,s2,0)

21This problem is very similar to an already hand-written solved problem F’95 #2.
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The characteristic equations are

d.)?l
E = Fpl =1 = xr1 = t,
dxo dxo
—_— — F =9 = —_— = 28 = o = 28 t S1,
7t P2 D2 I 2 2 2t + 51
dwg d.’l?g
— = F.=2 = — =12s = w3 =251t + o9,
dt ps = 2P dt ! 3= st
dz
o0 = D1Fo tpaFy, +psyy = pi+ 295 +2pf = —s7 — 53+ 1+ 23 + 25
= si4+s24+1 = z=(s14s2+1)t+ 5159,
d
% - —le—pleZO = plZ_S%_S%—i_la
d
% = _Frg_p2Fz:0 = P2 = 82,
dp3
E - _Fr:s_p?)Fz:O =  p3 =51
Thus, we have
T =t t=m t=m
) 3
To = 289t + 51 N 51 = Tg — 2891 N S1 = I21—421§r
x3 = 251t + 52 Sy = x3 — 281t sy = B
1
z=(s]+s3+ 1)t +s182 z=(s]+s3+ 1)t +s182 2= (2 + 534 1)t + 515
To — 2.1‘1.1‘3)2 (.1‘3 — 2.1‘1.1‘2)2 (.1‘2 — 2.1‘1.1‘3) <.1‘3 — 2.1‘1.1‘2)
u(x1, x2, 73) [( 1— 422 T 1 —4a2 A 1 — 422 1 —4a3
O

Problem (F’95, #2). Solve the following Cauchy problem

Uy +uy Fud = xy+ oz,
u(z,y,0) = zy.
Proof. Solved O
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Problem (S’94, #1). Solve the following PDE for f(xz,y,t):
fotafe+36f,=0
f(z,y,0) =z + 2

Proof. Rewrite the equation as (x — 1, y — 2, t — x3, f — u):
T1Ug, + 3x§ur2 + Uz, =0,

u(x1, x2,0) = 2% + 3.

F(x1, 72,3, 2, p1, P2, p3) = T1p1 + 373p2 + p3 = 0.

I" is parameterized by

L: (st so, 0 ,si+s5,01(s1,50), d2(s1,52), d3(s1, 52) )
1(s1,82,0) w2(s1,82,0) ¥3(51,52,0) 2(s1,52,0) p1(s1,52,0) p2(s1,52,0) p3(s1,52,0)
We need to complete I' to a strip. Find ¢1(s1, s2), ¢2(s1, s2), and ¢3(s1, s2), the initial
conditions for py(s1, $2,t), p2(s1, s2,t), and p3(s1, s2,t), respectively:
o F(fi(s1,82), fa(s1,52), f3(s1,82), h(s1,82), b1, 2, 3) = O,
F(s1,82,0,87 + 83,61, ¢2,¢3) = s1¢1+¢3 = O,
= ¢3=s5101.

oh | Of Ofs Ofs
y 881 N ¢1 881 + ¢2 881 + ¢3 881 ’

= 281 = qbl.

oh _  Of  Ofr ., Of
y 882 N ¢1 882 + ¢2 882 + ¢3 8827

= 289 = ¢o.
Thus, we have: ¢ = 251, ¢g = 289, ¢3 = 2s2.
I: s , S , 0 ,s2+s2, 281 , 289 , 2s°
( 1 2 < 1 2 1 2, 1 )

x1(51,82,0) wa(s1,82,0) €3(51,52,0) 2(s1,52,0) P1(51,52,0) p2(51,52,0) p3(s1,82,0)

The characteristic equations are

d.i?l
g = =21 = mx= slet,
dzo 9 dzo 2 3
ﬁ = Fp2:31‘3 = E:?)t =  XTo =1+ S9,
d.i?g
E = Fp3 =1 = Tr3 = t,
dz 2 2 2
7l p1Fp, +paky, +p3ky, = p1rn +p23r5+p3 =0 = 2z =s]+ 55,
dpy _
’r = Iy, —pF.=—-p1 = p1=2se t,
dp2
E = _Frg_p2Fz:0 = p2 = 289,
d d
% = —Fy, —p3l, = —6x3ps = % = —12tsy, = p3= —675282 + 25%.
With ¢t =uz3, s1 = xle_z3, S9 = T9 — x%, we have
_ 3 —
u(zy, 2, x3) = rre 2% + (19 — x§)2 (f(x, y,t) = z2e 2+ (y — t3)2.>

The solution satisfies the PDE and initial condition. O
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Problem (¥’93, #3). Find the solution of the following equation

fitafet+(@+t)f, =1
f(z,y,0) = xy.

Proof. Rewrite the equation as (x — z1, y — 22, t — x3, f — u):

3
Tz, + (X1 + T3)Ugy + Ugy = 27,

u(xy, x9,0) = z129.

Method I: Treat the equation as a QUASILINEAR equation.
I is parameterized by I : (s1, s2,0, s152).

d.)?l N ‘
- = Z xr1 = S1€
dt ! 1= 41€,
— = X — = 381€ To = S1€ s So — §
dt LS dt 1 2 =951 5 2 — S1,
dzx
dz 3 dz 3 t4
w = %:t = z=tsis
2
Since t = a3, 51 = x1e %3, 59 = 19 — siet — % b8 =2y — 2 — %3 | 216775, we have
4 2
€z T
u(@1, 22, 23) = Zg +are (w2 — @1 — ?3 +x1e7"),  or
tt ; 2 .
flz,y,t) = Z+xe_(y—x—§+xe‘).

The solution satisfies the PDE and initial condition.

Method II: Treat the equation as a fully NONLINEAR equation.

F(xy, 39, 23, 2,1, P2, p3) = T1p1 + (21 + 23)p2 + p3 — 23 = 0.

I' is parameterized by

r:( SLo S o U 5152 , P1(51, 82), P2(s1, 82), P3(s1, 52) )

x1(51,52,0) wa(s1,52,0) ©3(51,52,0) 2(s1,52,0) p1(s1,52,0) p2(s1,52,0) pa(s1,s2,0)
We need to complete I' to a strip. Find ¢1(s1, s2), ¢2(s1, s2), and ¢3(s1, s2), the initial
conditions for pi(s1, $2,t), p2(s1, s2,t), and p3(s1, S2,t), respectively:
o F(fi(s1,82), fa(s1,52), f3(s1,82), h(s1, 82), b1, 2, 3) = O,
F(s1,82,0, 8152, 01, 92, ¢3) = s1¢1 + s1¢2 + 3 = 0,

= ¢3 = —s1(¢1 + P2).

oh 0 0 0
= ¢1ﬁ + ¢2£ + ¢3£
881 881

8—81 8817
= So = qbl.
oh Ofi dfa Ofs
* 882 N ¢1 882 + ¢2 882 + ¢3 8827
= S1 = qbg.
Thus, we have: ¢1 = s2, ¢ =51, ¢3 = —s% — §189.
I: s , S , 0 , S182 , S , 8 ,—82 — 5158
( 1 2 , 152 2 1 1 1 2)

x1(s1,52,0) @a(s1,82,0) ©3(51,52,0) 2(s1,52,0) p1(s1,52,0) pa(s1,82,0) p3(s1,52,0)
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The characteristic equations are

y = I =21 = 11 =s51€,

dxo dxo " ¢
- — F — — —_— = t = == . S — S8

I p2 = T1+ T3 I sie’ + Tg = s1€° + 2 + 82 1,

d.i?g
E = Fp3 =1 = Tr3 = t,

dz 3 3 t4
a - p1Fy, +paly, + p3Fy, = prxy +pe(oy +a3) +p3=a3=1t" = 2= 7 582,
dpy _

o = PnpE=-piop=opi-s = pi=2sie —s,

dp2

—_ = —FIQ—ngZZO =  p2 = S1,

dt

dp3

g = —Fz3—p3FZ:3$§—p2:3t2—81 = p3:t3—81t—8%—3132'

: —x3 t_ t2 3 —z3
With t =3, s1 =me™ , so =w2 — 51" — 5 +81 =22 — 71 — 5 +x1” ", We have
4 2
T o T .3
u(ry, vo,x3) = Z?’ +x1€ Id(l‘g — 1z — ?3 +xe” "), or
t t?
flz,y,t) = T +xe l(y—x— 5 + ze™).

22 The solution satisfies the PDE and initial condition. O

*2Variable ¢ in the derivatives of characteristics equations and ¢ in the solution f(z,y,t) are different
entities.
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Problem (F’92, #1). Solve the initial value problem
Ut + oy + Puy +yu =0 for t >0
u(z,y,0) = ¢(z,y),
in which o, B and v are real constants and ¢ is a smooth function.
Proof. Rewrite the equation as (z — 1, y — 2, t — x3)%%:
Qg + Pug, + Uzy = —YU,
u(xy, 22,0) = p(x1, 22).

I is parameterized by T : (s1, s2,0, p(s1, $2))-

4oy = t4
— = « r1 = at + s1,
o 1 1
d
% = ﬁ = €T = ﬁt + S92,
d.ﬂ?g
=2 -1 = =t
dt €T3 )
d d
d_j = v = Zz =—ydt = z=¢(s1,s2)e "
0(x1, 9, x3) 100
J = det (#) — 10 1 0|=1#0 = J is invertible.
(s1,52,t) a B 1
Since t = x3, s1 =x1 — ars, So = T9 — (x3, we have
u(wy, xo, w3) = (1 — w3, x2 — frz)e” ™3, or
u(x,y,t) = 80('1‘_ at,y _ﬁt)e_"ft.
The solution satisfies the PDE and initial condition.?* O

23Variable t as a third coordinate of u and variable ¢ used to parametrize characteristic equations
are two different entities.

2"Chain Rule: wu(z1,xa,z3) = o(f(x1, 2, 23), g(x1, 22, 23)), then uz, = 2—‘”% +

%)

9
g 0wy~

I

fag
Q
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Problem (F’94, #2). Find the solution of the Cauchy problem
u(,y,t) + aug(x, y, 1) + buy(z, y,t) + c(z, y, t)u(z, y,t) = 0
U(.T, Y, 0) = U(](.Z‘, y)7

where 0<t< 400, —oco<zx<4o0, —o0<y< 400,
a,b are constants, c(x,y,t) is a continuous function of (x,y,t), and ug(z,y) is a con-
tinuous function of (x,y).

Proof. Rewrite the equation as (x — 1, y — 22, t — x3):

aty, + bug, + Uy, = —c(x1, T2, T3)U,

u(xy, x2,0) = up(x1, x2).

I is parameterized by T : (s1, s2,0, ug(s1, s2)).

dey - t+
— = a 1 = at + s1,

7 1 1

d
% = b = x3=0bt+ S9,

d.ﬂ?g
=B 1 s m=t

dt s

dz dz

= = —c(x1, 29, 3)2 = i —c(at + s1,bt + s9,t)z = - = —c(at + s1,bt + s9,t)dt

t
= lnz:—/ c(a& + s1,b€ + s2,&)dE + c1(s1, 82),
0

= 2(s1,592,t) = ca(s1, 82)e” Jo clag+sibe+s2.€)de 2(s1, 82,0) = ca(s1, 52) = ug(s2, 52),
= 2(s1,82,1) = ug(s1, sa)e” Jo claterbitsa)de,

JEd&%‘u(M): (1)
a

6(81, 59, t)

= O

0
0|=1#0 = J is invertible.
1

Since t = x3, s1 =1 — axrg, So = xo — bxs, we have

w(x1, 2, x3) = ug(x1 — axs, x2 — brg)e” Jo? claé+m1—aws,bé+mo—brs,&)dé
= ug(z1 — axs, wy — bag)e Jo c@italE—zs)mtb(E—rs))ds o)
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Problem (F’89, #4). Consider the first order partial differential equation
ut + (o + Bt)ug + velu, =0 (13.1)

in which o, B and v are constants.
a) For this equation, solve the initial value problem with initial data

u(x,y,t =0) = sin(zy) (13.2)

for all x and y and fort > 0.

b) Suppose that this initial data is prescribed only for x > 0 (and all y) and consider
(13.1) in the region x > 0, t > 0 and all y. For which values of o, 3 and ~y is it possible
to solve the initial-boundary value problem (15.1), (13.2) with u(x = 0,y,t) given for
t>07

For non-permissible values of o, 8 and v, where can boundary values be prescribed in
order to determine a solution of (13.1) in the region (x > 0,t >0, all y).

Proof. a) Rewrite the equation as (z — 1, y — %2, t — x3):
(o + Br3)ug, +veug, + ugy =0,
u(x1, x2,0) = sin(zqx9).
I is parameterized by ' : (s1, s2, 0, sin(s12)).

d.ﬂ?l d.ﬂ?l t2

g = C\f‘i‘ﬁl‘g = g:a‘i‘ﬁt = $1:7+C¥t+81,
d d
% = e = %zyet =  xp=rel — v+ sy,
d.i?g
— =1 = =t
dt €T3 )
dz
— = 0 = z=sin(s182).
dt (s152)
0(x1, 9, x3) 1 0 0
J = det (#) = 0 1 0]|=1#0 = J isinvertible.
(817827 ) ﬁt—l—a ,Yet 1
2
Since t=x3, s1 =1 — % — axs, So = Ty —Yye*3 4+ v, we have
. B} .
u(xy, x9,x3) = sin((z1 — - axs)(xe —ve™ +7)),  or
. pt? t
uwy,t) = sinl(— S —at)y — e + 7))

The solution satisfies the PDE and initial condition.

b) We need a compatibility condition between the initial and boundary values to hold
on y-axis (z = 0,t = 0):
u(lx=0,y,0) = u(0,y,t=0),
0 = 0.



u(0,y.t)
given
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0 u(x,y,0) = sin(xy) X
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14 Problems: First-Order Systems
, ‘ . up(z,t)
Problem (S’01, #2a). Find the solution u = ws(zt) )’ (z,t) e Rx R,
2\,
to the (strictly) hyperbolic equation
10
ut—<5 3 )uzzo,
L up(z,0) \ [ €@
satisfying ( s (. 0) ) = ( 0 , a€eR.
Proof. Rewrite the equation as
-1 0
Ut—|—< 5 _3 >UI—0,
MW (z,0)
ulM (x
U(z,0) =
(2,0) (u(2x0> (0)
The eigenvalues of the matrix A are A = —1, A\a = —3 and the corresponding
eigenvectors are e; = ( ) ( 1 ) Thus,
(-1 0 0 a1 (30
A‘(o —3) F_<—5 1)’ t _detFF_<g1
Let U =TV. Then,
U +AU, =0
I'Vy + ATV, =0,
V, + 1ALV, = 0,
Vi4+ AV, =0.
Thus, the transformed problem is
-1 0
Vt+< 0 —3 )Vz—O,
1 ,
1 9 elra 1 . 1
—_ -1 — 2 _ _iza
V(z,0)=T""U(x,0) <% 1)( 0 ) 5¢ <5>
We have two initial value problems
vt(l) — vg(gl) =0, (2) — 31)(2) =0,
’U(l)(l‘, 0) _ %eima; ’U(2)(1‘, 0) _ geima’
which we solve by characteristics to get
v (z,t) = %em(”t), v (z,t) = gem(“?’t).
(1) 2 0 1 _ia(z+t)
v e
We solve for U: U:FV:F< e ) = ( 5 1 ) ( ngia(r+3t) )
(1)( t) ia(z+t)
ul(x, - e
Thus, U= < u(2)(x,t) > = < _%eia(r—f—t) + geia(r—i—i’)t) ) :
Can check that this is the correct solution by plugging it into the original equation. [
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Part (b) of the problem is solved in the Fourier Transform section.
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Problem (S°’96, #7). Solve the following initial-boundary value problem in the do-
(1)
main x > 0, t > 0, for the unknown vector U = ( Z(Q) )

-2 3
m+<0 1)@_0 (14.1)
U(z,0) = ( sn(;a: ) and v (0,t) =t.
Proof. The eigenvalues of the matrix A are A\ = —2, Ao = 1 and the corresponding

. 1 1
eigenvectors are e} = ( 0 ), ey = ( 1 ) Thus,

_ 1 _
(7)) =0 ) a0 1)
Let U =TV. Then,
Ui+ AU, =0,
'V, + ATV, =0,

Vi+T7LATV, =0,
Vi + AV, = 0.

Thus, the transformed problem is

-2 0
W+<0 1)%-& (14.2)

V(w,0) = T~ Uz, 0) = ( (1) - ) ( Sig”“" ) _ ( Sigx ) . (14.3)

Equation (14.2) gives traveling wave solutions of the form
v (z, 1) = F(z + 2¢), v(z,t) = Gz —1).

We can write U in terms of V:

rerv= (o 1) ()= (o 1) (Gam0 ) (Mg
(14.4)

X+2A=C X t=C=<0 x-t=0 X-t=C>0
v =c W=cC

u@0.t =t

L 2

vW(x,0) = sin x, u’(x,0) = sin x,
vOx0) =0 u?(x0)=0



Partial Differential Equations Igor Yanovsky, 2005 105

e For region I, (14.2) and (14.3) give two initial value problems (since any point in
region I can be traced back along both characteristics to initial conditions):

o — 20V =, v 0P =0,
v (2,0) = sin; v®(2,0) = 0.
which we solve by characteristics to get traveling wave solutions:
vWM(z,t) = sin(z + 2t), v (z,t) = 0.

[ Thus, for region I,

U TV — ( (1) 1 ) ( sin(xo—|—2t) > _ ( sin(xo—|—2t) )

e For region II, solutions of the form F'(x+2t) can be traced back to initial conditions.
Thus, vV is the same as in region I. Solutions of the form G(x —t) can be traced back
to the boundary. Since from (14.4), u@ = ’U(Q), we use boundary conditions to get

u®(0,t) =t = G(—t).

Hence, G(x —t) = —(z — ).
[ Thus, for region II,

— ( (1) 1 ) <Sli1§i—|—_§)t) ) _ ( sin(xt?;)_—tgx—t) >

Solutions for regions I and II satisfy (14.1).
Solution for region I satisfies both initial conditions.
Solution for region II satisfies given boundary condition. O
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Problem (S’02, #7). Consider the system

0 ( u -1 2 0 [ u
()02 3)m0) =
Find an explicit solution for the following mized problem for the system (14.5):
u(z,0)\ _ [ f(z)
(v(m,O) ) = ( 0 for x>0,
u(0,t) = 0  for t>0.

You may assume that the function f is smooth and vanishes on a neighborhood of x = 0.

Proof. Rewrite the equation as

w+<1 _2>m:m

-2 =2
M (,0) f(x)
ul(x, - x
v = (Lo )= ()
The eigenvalues of the matrix A are A\ = —3, Ao = 2 and the corresponding eigen-

1 -2
vectors are ey = ( 9 ), ey = ( 1 ) Thus,

— — 1 1
A:<(?g>’ F:<; f)’ FJ:deT:S<E2§>'
Let U =TV. Then,
Ui+ AU, =0,
IV, + ATV, = 0,

V, + 1ALV, = 0,
V, + AV, = 0.

Thus, the transformed problem is

%+<§gg>mzu (14.6)
V(x,O)::F_lU(x,O)::é-< ;; f ) ( f&f) ) ::1€§2 ( jé ). (14.7)

Equation (14.6) gives traveling wave solutions of the form:
vW(z,t) = F(z + 3t), v (z,t) = Gz — 2t). (14.8)

We can write U in terms of V:

e (37 () (2 ) () (e e

(14.9)

).
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x+3=C X-2t=C<0 x-2t=10 X-2t=C>0
Fx+3t)=C Gx-2t)=C
11
uP0, =0
1
X
- .
vWix0) = V51x), u(x,0) = [(x),
v (x,0) = -2/5 f(x) u®x,0)=0

e For region I, (14.6) and (14.7) give two initial value problems (since value at any
point in region I can be traced back along both characteristics to initial conditions):

vV =30 =0, v 20 =0,
v(@,0) = 3 f(2); v®(@,0) = =2 ().

which we solve by characteristics to get traveling wave solutions:

v D(g, 1) = %f(a: 430, o@D = —%f(a: o).

o s v-wv = (3 ) (%) ) ()

e For region II, solutions of the form F'(x+3t) can be traced back to initial conditions.
Thus, vV is the same as in region I. Solutions of the form G(x —2t) can be traced back
to the boundary. Since from (14.9),

uM =M - 21)(2), we have
1
uV(z,t) = F(z + 3t) — 2G(z — 2t) = =fla +3t) — 2G(x - 21).

The boundary condition gives

W (0,4) = 0 = % F(3) — 2G(—21),
26G(~20) = £/ (31),
a) = :7(~51),
Glo—2t) = 11—0f<—g(3:—2t)>.
. o (1 =2 Lf(x+3t)  if(x+3t) - Lf(-3(z—21))
[Thus, forregionIl, U =TV = ( 5 1 ) ( %f?(_%(x_%)) ) = ( %Sf(l"-l-?)t)-l-lio (—2%(3:—275)) )

Solutions for regions I and II satisfy (14.5).
Solution for region I satisfies both initial conditions.
Solution for region II satisfies given boundary condition. O
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Problem (F’94, #1; S’97, #7). Solve the initial-boundary value problem

u + 3v, = 0,
v+ uy + 20, =0
in the quarter plane 0 < x,t < oo, with initial conditions 2°
u(z,0) =p1(z), v(z,0)=¢p(x), 0<zx<-+o00
and boundary condition

w(0,8) = ¥(t), > 0.

Proof. Rewrite the equation as Uy + AU, = 0:

0 3
Us + ( 1 9 ) U, =0, (14.10)
M), 0) (z)
~( u(z, _ [ ez
ww0= (Lt )= (50 )
The eigenvalues of the matrix A are A\ = —1, Ao = 3 and the corresponding eigen-

— 1
vectors are ey = ( 13 ), ey = ( 1 ) Thus,

(-1 0 (-3 1 41 B
A= ( 0 3 ) b= ( 11 ) et e

Let U =TV. Then,
Ui+ AU, =0,
'V, + ATV, = 0,
V, + 1ALV, = 0,
Vi + AV, = 0.

(7 3)

=1 =

Thus, the transformed problem is

0 3

voo-reo=3 (1) (50) -4 ) v

Equation (14.11) gives traveling wave solutions of the form:

m+<_10)m:m (14.11)

vW(z,t) = F(z + 1), v (z,t) = Gz — 3t). (14.13)

We can write U in terms of V:

ver=(30 ) G ) = (0 1) (osn ) = (Rl

(14.14)

25In S°97, #7, the zero initial conditions are considered.

).
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X+t=C X-3t=C=<0 X-3t=0 X—3t=C>0
Fix+t)=C G(x-3f=C
I
u0,6)
=y
|
X
VW(R,0) = 41D + g2(x), u(x0) = i(x),
vO(x.0) = ta(1(X) + 392(X)) 1?(x,0) = ¢2(%)

e For region I, (14.11) and (14.12) give two initial value problems (since value at
any point in region I can be traced back along characteristics to initial conditions):

o0 o o, o 43 o,
v (2,0) = —fe1(x) + Fa(); v (2,0) = jo1(x) + Foa(),
which we solve by characteristics to get traveling wave solutions:
1 1 1 3
v(l)(x, t) = —Zpl(a: +1)+ Z(pg(x + 1), ’U(Q)(.I‘, t) = Z(pl(x —3t) + Z(pg(x — 3t).
[ Thus, for region I,

-3 1 —do1(z+1) + tpoa(x + 1) )
U = TV = 4 1
( 1 1)(%%@—3@%@@—3@

1 ( 3p1(x+1t) — 3pa(x +1t) + p1(x — 3t) + 3pa(z — 3t) )
4\ —pi(x+t)+pa(x+ 1)+ p1(z — 3t) + 3pa(z — 3t)

e For region II, solutions of the form F(z +t) can be traced back to initial conditions.
Thus, v(!) is the same as in region I. Solutions of the form G(x — 3t) can be traced back
to the boundary. Since from (14.14),

u = —30M 4 @), we have
3 3
uD(z,1) = Zor(a+1) = Soa(a +1) + Gla = 31).

The boundary condition gives

u®(0,1) = 6(t) = Sea(t) — Sepalt) + C(-31),

3 3
G(=3t) =v(t) — Z‘Pl(t) + Z@z(t),
t 3 t 3 t
6 =v(-3)-1o(-3)+70(-3)
-3 3 -3 3 -3
G<x_3t):¢<_$ 3 t>_1‘p1 -- 3 t>+1‘p2<_x 3 t)'
[ Thus, for region II,
B (=31 —to1(z+ )—I—i«pg(x—i—t) >
0= = (1) (a2 e
3 z—

! (
S (L ARIS cMA T e I come
R R R e R e R e
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Solutions for regions I and II satisfy (14.10).
Solution for region I satisfies both initial conditions.
Solution for region II satisfies given boundary condition. O
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Problem (F’91, #1). Solve explicitly the following initial-boundary value problem for
linear 2x 2 hyperbolic system

Ut = Uy + Vg

vy = Uy — Uy,
where 0 < t < 400, 0 < z < 400 with initial conditions
u(x,0) = ug(z), v(z,0) = vo(x), 0 <z < +o0,
and the boundary condition
u(0,t) + bv(0,t) = (1), 0 <t < o0,

where b # % s a constant.
What happens when b = %?

Proof. Let us change the notation (u < uM, v u(2)). Rewrite the equation as

-1 -1
Uy + ( s ) U, =0, (14.15)
M (z,0) ) ) (@)
ul (x uy ’(x
U(x,0) = ’ = 0 .
(=0) ( u®(z,0) u(()z)(x)
The eigenvalues of the matrix A are A\ = —2, Ao = 2 and the corresponding eigen-

vectors are e; = ! , € = 1 . Thus,
1 -3
([ -2 0 (1 1 1 1/3 1
A‘(o 2)’ F_<1-3>’ t _Z<1—1)

Let U =TV. Then,

Ui+ AU, =0,
'V, + ATV, = 0,
V, + 1ALV, = 0,
V, + AV, = 0.

Thus, the transformed problem is

-2 0
%+<0 2>m_m (14.16)

cm-rra-(3 4) () -

Equation (14.16) gives traveling wave solutions of the form:

oW (x,t) = F(x + 2t), v (z,t) = Gz — 2t). (14.18)
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We can write U in terms of V:

o3 ()-8 () - (e )
(14.19)

e For region I, (14.16) and (14.17) give two initial value problems (since value at any
point in region I can be traced back along characteristics to initial conditions):

v =20 =0, v 20 =0,
1 2 1 2
v (,0) = Fup (@) + fug? (2); v®(,0) = Jug” (2) = fug? (@),
which we solve by characteristics to get traveling wave solutions:

1 1 1
oW (z,t) = %ugl)(x +2t) + Zu(()z)(x + 2t); v (z,1) = Zu(()l)(x —2t) — Zu(()z)(x — 2t).

[ Thus, for region I,
ooy ( 11 > Sug (2 + 2t) + Ll (@ +21)
I -3 iugl)(x —2t) — iu((f)(x —2t)
%ugl)(x + 2t) + iu((f)(x +2t) + iugl)(x —2t) — iu((f)(x — 2t)
%ugl)(x + 2t) + iu((f)(x +2t) — %ugl)(x —2t) + %u((f)(x — 2t)

e For region II, solutions of the form F'(x+2t) can be traced back to initial conditions.
Thus, v(!) is the same as in region I. Solutions of the form G(x —2t) can be traced back
to the boundary. The boundary condition gives

uM (0, 1) + bu?(0,) = (1)
Using (14.19),
vM(0, 1) + G(—2t) + bu™M(0, ) — 3bG(—2t) = (t),
(1+ b)wM(0,8) + (1 — 3b)G(—2t) = ¢(1),
(14 0) (Sl 21) + 2l 20)) + (1 30)G(-20) = (1),

4
o) = (1+0) (3ug’ 2t) + dui (20))
G(=2t) = 1—3b ’
(=) = (14 0) (3up) (=) + Juf (1))
G(t) = T :
B bl D) (3ub” (~ (@ — 20) + Juld (~ (2 — 20)))
(= 20) = 1—3b '
[ Thus, for region II,
oo (1 Bult (2 + 2t) + TulP (@ + 20)
- 1 =3 (=252~ (14b) (Buf) (—(@—20) +3uf? (- (z-21))
1-3b
_z=2ty_ B (g 1,2
B
—z=2ty_ Bust (—(x— Lus? (—(z—
3500 (2 + 2¢) + Lul (x + 2t) — 222 3093 o (lem2reg )

The following were performed, but are arithmetically complicated:
Solutions for regions I and II satisfy (14.15).
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Solution for region I satisfies both initial conditions.

Solution for region II satisfies given boundary condition.

Ifo=1, u(0,t)+2u®(0,t) = F(2t) + G(—2t) + 1 F(2t) — G(—2t) = 3F(2t) = (2).
Thus, the solutions of the form v(2) = G(x — 2t) are not defined at = = 0, which leads
to ill-posedness. O



Partial Differential Equations Igor Yanovsky, 2005 114

Problem (F’96, #8). Consider the system

U = 3ug + 20,

Vg = —Vp — 0

in the region x > 0, t > 0. Which of the following sets of initial and boundary data
make this a well-posed problem?

a)  u(z,00=0, x>0
v(z,0)=2% >0
v(0,t) =t* t>0

b)  wu(x,0)=0, z>0
v(z,0) =22 >0
u(0,t)=¢t, t>0

c)  u(x,0)=0, >0
v(z,0)=2% >0
u(0,t)=t, t>0

Proof. Rewrite the equation as U; + AU, = BU. Initial conditions are same for

(a),(b),(c):
Ut+<_03 _12>U1, (8 Y )U
v =( g )= (2 )

The eigenvalues of the matrix A are A = —3, Ay = 1, and the corresponding eigen-

1 1
vectors are 61:<0>,€2:<_2>. Thus,
([ -3 0 (1 1 o _L1/2 1
A_< 0 1)’ F_<0 —2)’ r _2<0 —1)'

Let U =TV. Then,

U, + AU, = BU,

I'V, + ATV, = BTV,

Vi+ T LATV, =T !'BIV,
Vi+ AV, =T"'BIV.

Thus, the transformed problem is

Vt+<03o)v—<8 _11)1/, (14.20)

V(2,0) = T-'U(z, 0) = % ( - ) ( g ) _ %2< ! ) (14.21)

Equation (14.20) gives traveling wave solutions of the form

vW(z,t) = Fz+3t), vP(x,t) = Gz —1). (14.22)
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We can write U in terms of V:

e (1)(5)- (5 ) (8- (e

(14.23)

e For region I, (14.20) and (14.21) give two initial value problems (since a value at any
point in region I can be traced back along both characteristics to initial conditions):

{,Uzgl) - 3’[);(51) == 'U(2)7 {,Ulg2) + U:(Ez) = _U(2)7
2

’U(l)(l‘,O) = %? ’U(2)($70) = _%7

which we do not solve here. Thus, initial conditions for v(*) and v(2) have to be defined.
Since (14.23) defines u") and u(?) in terms of v(!) and v(?), we need to define two initial
conditions for U.

e For region II, solutions of the form F'(x+3t) can be traced back to initial conditions.
Thus, ") is the same as in region L. Solutions of the form G(z — t) are traced back to
the boundary at z = 0. Since from (14.23), u® (z,t) = =20 (x,t) = —2G(x — 1), i.e.
1 is written in term of v(?) only, u? requires a boundary condition to be defined on
z = 0.

x+3=C X-t=C<0 X-t=0 X-t=C=0
) _
v =C Vo
11(1) =C
s
1]
W =¢
I
X
- >
vWix0) =52, u(x,0) =0,
v (x,0) = 12 u?(x0) =¥

Thus,

a) u@(0,t) =2, t>0. Well-posed.

b) uM(0,t)=t, t>0. Not well-posed.

c) u(l)((), t) =t, u(2)(0, t) =112, t>0. Not well-posed. U

).
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Problem (F’02, #3). Consider the first order system
U +uy +v, = 0
vt u,—v, = 0

on the domain 0 < t < oo and 0 < x < 1. Which of the following sets of initial-
boundary data are well posed for this system? Explain your answers.

a) u(z,0) = f(z), v(z,0) = g(z);

b) u(x,0) = f(x), v(x,0) = g(x), u(0,t) = h(z), v(0,t) = k(x);

c) u(x,0) = f(x), v(x,0) = g(x), u(0,t) = h(x), v(1,t) = k(x).

Proof. Rewrite the equation as U+ AU, = 0. Initial conditions are same for (a),(b),(c):

1 1
Ut—|—<1 _1)UI—0,

U(,0) = ( jjﬁliéijﬁi ) - ( ﬁéiﬁi ) |

The eigenvalues of the matrix A are A = v/2, \a = —v/2 and the corresponding

igenvectors ar = 1 = 1 Th
eigenvectors are e} = 142 , €y = 1 _va ) us,

(8 2 (G o ta) ()

Let U =TV. Then,
Ui+ AU, =0,
'V, + ATV, = 0,
V, + 1ALV, = 0,
V, + AV, = 0.

Thus, the transformed problem is

Vi + ( ‘f _?/5 ) V, =0, (14.24)

Vi) =m0 0 = S (V) () < (R e

2)
(14.25)

Equation (14.24) gives traveling wave solutions of the form:
vW(z,t) = Flz —Vv2t), v®(x,t) = Gz + V2t). (14.26)

However, we can continue and obtain the solutions. We have two initial value problems

{ + V2ol =0, { V2@ — g
vM(z,0) = “;f Lf(@) + 5L50(2); v®(z,0) = S £(2) — Sl ),

which we solve by characteristics to get traveling wave solutions:

vW(z,t) = %ﬂx —V2t) + %g(ac —V21),
v@(z,t) = (_12;5‘[) flz+V2t) -

\/5 g(z +V2t).
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We can obtain general solution U by writing U in terms of V:

e A 1 1 L (14 V2)f(z—V2t) + g(z — V2)
U‘FV‘F<v<2>>‘<—1+ﬂ —1—ﬂ>ﬁ<<—1+ﬂ>f<x+ﬂt>—g<x+ﬂt>>'

(14.27)
14 4t e
x+2t=C x-2t=C
V= VO
IV
u®(0,6) = h(x) I > @0 =Ky
I X
0 1 '

u’(x,0) = f(x).
u?(x,0) = g

e In region I, the solution is obtained by solving two initial value problems(since a
value at any point in region I can be traced back along both characteristics to initial
conditions).

e In region II, the solutions of the form v(2) = G(z ++/2t) can be traced back to initial
conditions and those of the form v(") = F(x — v/2t), to left boundary. Since by (14.27),
v and u® are written in terms of both v(®) and v(®, one initial condition and one
boundary condition at x = 0 need to be prescribed.

e In region III, the solutions of the form v(2) = G(x 4 v/2t) can be traced back to
right boundary and those of the form v") = F(x — /2t), to initial condition. Since by
(14.27), u™ and u(? are written in terms of both v and v(?), one initial condition
and one boundary condition at x = 1 need to be prescribed.

e To obtain the solution for region IV, two boundary conditions, one for each bound-
ary, should be given.

Thus,

a) No boundary conditions. Not well-posed.

b) uM(0,t) = h(zx), u?(0,t) = k(z). Not well-posed.

c) uM(0,t) = h(z), uP(1,t) = k(z). Well-posed. O
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Problem (S’94, #3). Consider the system of equations

ft+gr:0
gt+fr:0
hs +2h, =0

on the set x > 0, t > 0, with the following initial-boundary values:

a) f, g, h prescribed ont =0, x > 0; f, h prescribed on x =0, t > 0.
b) f, g, h prescribed ont =0, 2>0; f—g,h prescribed on x =0, t>0.
c) f+g, h prescribed ont =0, 2 >0; f, g, h prescribed on x =0, t > 0.

For each of these 3 sets of data, determine whether or not the system is well-posed.
Justify your conclusions.

Proof. The third equation is decoupled from the first two and can be considered sepa-
rately. Its solution can be written in the form

h(z,t) = H(x — 2t),

and therefore, h must be prescribed on ¢ = 0 and on x = 0, since the characteristics
propagate from both the z and t axis.
We rewrite the first two equations as (f < u1, g < u2):

0 1
Ut—|—<1 O)UI—O,

M (z,0)

ul(x,

w0 =L )

The eigenvalues of the matrix A are A\ = —1, Ao = 1 and the corresponding eigen-

-1 1
vectors are e :< 1 ), ey = ( 1 ) Thus,
(-1 0 (-1 1 4 1/ =11
A‘(o 1)’ F_<1 1)’ t _2<1 1)

Let U =TV. Then,
U+ AU, =0,
'V, + ATV, = 0,
V, + 1ALV, = 0,
V, + AV, = 0.

Thus, the transformed problem is

%+<51?>W:Q (14.28)
V(2,0) = T-'U(z, 0) = %( B ) ( Zgggi ) (14.29)

Equation (14.28) gives traveling wave solutions of the form:

vW(z,t) = F(z + 1), v (z,t) = Gz —1). (14.30)
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We can write U in terms of V:

ver= () G )= (30 D (60) = (Crevdliai )
(14.31)

e For region I, (14.28) and (14.29) give two initial value problems (since a value at any
point in region I can be traced back along both characteristics to initial conditions).
Thus, initial conditions for v() and v(?) have to be defined. Since (14.31) defines u(!)
and ©@ in terms of vV and v(?), we need to define two initial conditions for U.

e For region II, solutions of the form F(z +t) can be traced back to initial conditions.
Thus, v(M) is the same as in region L Solutions of the form G(z — t) are traced back
to the boundary at = 0. Since from (14.31), u@(z,t) = vV (z,t) + v (z,t) =
F(z +1t) 4+ G(z — t), i.e. u® is written in terms of v?) = G(x —t), u(? requires a
boundary condition to be defined on x = 0.

a) u(l), u? prescribed on t = 0; e prescribed on x = 0.

Since uM(x,t) = —F(x +t) + G(z — t), ‘

u@(z,t) = F(z +1t) + G(z — 1), i.e. both N x-t=0 Ga-p=c
uM and u® are written in terms of F(x +t) e t‘:%‘f;x/ yd A
and G(z —t), we need to define two initial on- ‘l'::y<-"'1i,;Aff. /// //’/ s
conditions for U (on ¢t = 0). Fio + Geo) \:“ O ey
A boundary condition also needs to be prescribe S < /:x:;»:ii /I/’)(‘)«f:_ /"’ P
on x = 0 to be able to trace back v(?) = G(z —t T Tl T s
Well-posed. ’ Wik, WWixo)

b) uD, u@ preseribed ont =0;  uwM —u®  prescribed on x = 0.

As in part (a), we need to define two initial ‘

conditions for U. seemc | t-t=0 Gty o
Since u() — u® = —2F (2 +t), its definition "¢ M‘"“m.‘_\ o
on x = 0 leads to ill-posedness. On the S | S /,//,/ ) e e
contrary, u) + u(® = 2G(x — t) should be e N T~ N S ) _/"/ s
defined on x = 0 in order to be able to trace /:; (:';».{i ,I/"%;t«f:_y/’/ -
back the values through characteristics. A T Tl T s
Tll-posed. ! W0, w0

c) u® +u®@  prescribed on t =0;  uwD, u®  prescribed on x = 0.

Since u) + u(?) = 2G(z — t), another initial

condition should be prescribed to be able to ¢

trace back solutions of the form v(?) = F(z 4 t), e x—t=0  Ga-pec
without which the problem is ill-posed. o 7 A
Also, two boundary conditions for both (%) o ﬁ/”'ﬂ/’/ /‘"/// ’,/’/ e
and u® define solutions of both v) = @ (z—1) W0 d _/"/ ////"/// o
and v(2) = F(z +t) on the boundary. The forme < ////// - /-/ //’/ -
boundary condition leads to ill-posedness. A AdE
Ill-posed. ! W u® =269
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Problem (F’92, #8). Consider the system
U + Uy + avy, =0
vt + bug + v, =0
for 0 < x < 1 with boundary and initial conditions
u=v=0 for =20
u=ug, V=1 for t=0.

a) For which values of a and b is this a well-posed problem?

120

b) For this class of a,b, state conditions on ug and vy so that the solution u,v will be

continuous and continuously differentiable.

Proof. a) Let us change the notation (u < u), v < u(). Rewrite the equation as

1 a
Ut—|—<b 1)UI—0,

uM(z,0 u (@
U(x,0) = ( u® x70; ) - ( uEQ)Exi )7
U,t) = (um

The eigenvalues of the matrix A are A\ =1 — \/%, Ao =1+ Vab.

Ao (1-Vab 0
- 0 1+ Vab )° ‘

Let U =T'V, where I' is a matrix of eigenvectors. Ther

(14.32)

U+ AUz =0, ooz

'V, + ATV, = 0,

Vi+T71ATV, =0,

V, + AV, = 0. ’ !

Thus, the transformed problem is

1—+Vab 0
W+< 0 1+%%>%_Q

V(x,0)=TI"U(z,0).
The equation (14.33) gives traveling wave solutions of the form:

v (z,t) = F(z — (1 — Vab)t), v (2,1) = Gz — (14 Vab)t).

(14.33)

(14.34)

We also have U = I'V, i.e. both (") and u(?) (and their initial and boundary conditions)

are combinations of v(1) and v(2).

In order for this problem to be well-posed, both sets of characteristics should emanate
from the boundary at x = 0. Thus, the eigenvalues of the system are real (ab > 0) and

)\172 >0 (ab < 1). Thus,

0<ab<1.

b) For U to be C', we require the compatibility condition, u(l)(O) =0,
0

0.

(0) =

O
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Problem (¥’93, #2). Consider the initial-boundary value problem

ur +u, =0

v — (1 — ca®)vy +up =0
on —1 <z <1 and 0 <t, with the following prescribed data:

u(x,0), v(z,0),
u(—1,1), v(1,t).

For which values of ¢ is this a well-posed problem?

Proof. Let us change the notation (u — u, v — u(?).

The first equation can be solved with u(!)(z,0) = F(z) to get a solution in the form
uM(z,t) = F(x — t), which requires u" (2, 0) and u)(—1,¢) to be defined.

With «(!) known, we can solve the second equation

u§2) — (1 —ca®)ul® + F(z —t) = 0.

Solving the equation by characteristics, we obtain

the characteristics in the xt-plane are of the form e

. . (e @
We need to determine ¢ such that the prescribed wee e

data u?(z,0) and u(?)(1,t) makes the problem to
be well-posed. The boundary condition for u(2)(1, t)

requires the characteristics to propagate to the m
left with ¢ increasing. Thus, z(t) is a decreasing
function, i.e.
dx
dt

uﬂ)(x,ﬂ), u(z)(x,ﬂ)

<0 = c?’-1<0 for —1<z<1 = c<l1.

We could also do similar analysis we have done in other problems on first order sys-
tems involving finding eigenvalues/eigenvectors of the system and using the fact that
uM(z,t) is known at both boundaries (i.e. values of u(1)(1,) can be traced back either
to initial conditions or to boundary conditions on z = —1). O
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Problem (S’91, #4). Consider the first order system

Uy + auy + bv, =0
Vg + cuy + dv, =0
for 0 < x < 1, with prescribed initial data:
U(.Z‘, 0) = UO('Z‘)
v(z,0) = vo(x).
a) Find conditions on a,b,c,d such that there is a full set of characteristics and, in
this case, find the characteristic speeds.
b) For which values of a,b, c,d can boundary data be prescribed on x = 0 and for which

values can it be prescribed on x = 1¢ How many pieces of data can be prescribed on
each boundary?

Proof. a) Let us change the notation (u < u), v < u(). Rewrite the equation as

a b
Ut+<c d)Ur_o, (14.35)

M) (e, 0) ) ) (@)

ulM (x uy ’(x

U(xz,0) = ’ = 0 .

(2:9) ( u®(z,0) u((f)(x)

The system is hyperbolic if for each value of u¥) and u(® the eigenvalues are real

and the matrix is diagonalizable, i.e. there is a complete set of linearly independent
eigenvectors. The eigenvalues of the matrix A are

N a+dxy/(a+d)?—4(ad—bc) a+d=+/(a—d)%+4dbc
2 = :
2

b 2
We need (a — d)? + 4bc > 0. This also makes the problem to be diagonalizable.
Let U =T'V, where I is a matrix of eigenvectors. Then,
Ui+ AU, =0,
I'vy + AI'V, =0,
Vi+ T LAV, =0,
Vi+ AV, =0.

Thus, the transformed problem is

A0 B
Vi + ( 0 A ) V, =0, (14.36)

Equation (14.36) gives traveling wave solutions of the form:

oW (z, 1) = Fz — M\it), v (z, 1) = Gla — Aat). (14.37)

The characteristic speeds are Ccll—’t” = A, Ccll—’t” = Ag.

b) We assume (a + d)? — 4(ad — bc) > 0.

a+d>0, ad—bc>0 = A, >0 = 2B.C.onx=0.

a+d>0, ad—bc<0 = M <0,X2>0 = 1B.C.onz=0,1B.C.onz=1.
a+d<0, ad—bc>0 = A,X<0 = 2BC.onz=1.
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a+d<0, ad—bc<0 = MM <0,X>0 = 1B.C.onz=0,1B.C.onz=1.
a+d>0, ad—bc=0 = X =0,>0 = 1B.C.onz=0.
a+d<0, ad—bc=0 = X =0,<0 = 1B.C.onz=1.
a+d=0, ad—bc<0 = A <0 X>0 = 1BC. onz=0,1B.C.on
z=1. O
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Problem (S’94, #2). Consider the differential operator
I w o\ U+ — Uge
v )\ v Uy — Vg

. . t . .
on 0 < x < 2w, t >0, in which the vector ( u(z, ; > consists of two functions that

v(z,t

are periodic in x.
a) Find the eigenfunctions and eigenvalues of the operator L.
b) Use the results of (a) to solve the initial value problem

L(“):o for >0,

v

m eir
<v>_<0> for t=0.
Proof. a) We find the ”space” eigenvalues and eigenfunctions. We rewrite the system

as
0 9 -1 0
v (O g )uer (Y )

and find eigenvalues

( 10 ) ( ) vz = AU. (14.38)

Set U — ( > (%Z:Z gz: ) Plugging this into (14.38), we get
() (B )+ (30 ) (B ) - (B
(500) oo )+ (0 5) () = (0.
(S W)@ )00 ) () - (00,
() () = o
n2 = )2 — 9n2 =0,

which gives \; = n?+3n, Ay = n?—3n, are eigenvalues, and v; = ( 30 ), Vg = ( 3 )7

are corresponding eigenvectors.
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b)Wewanttosolve<u>—|— (“):0, L<u>:<9vz—um ).Wehave
v/, v —Up — Vgg

L
( u ) = —L( u ) = —A( v ), i.e. ( v ) = e . We can write the solution as
v/, v v v

<

U (t)e™ = Mt ot i
Uz, t) = ( 2, Un i ) = Z ane 1™ 4+ bpe 2 uge™
> vn(t)e M
= 2 3i > 3i
_ —(n*+3n)t i —(n?=3n)t inx
— Z apne” e ( 1 )em’”—l—bne nemen (_1>e .
n=-—oo
o0 .
_ 31 inx 31 nr __ e
U(x,0) = n_z_:ooan< 1 )e —I—bn<_1 emt=1y )

= ap,=0b,=0, n#1;

1 1
a1 +by=— and a =b; = a1 =b =—.
31 6i
_ 1 —4t 31 i 1 2t 31 i
= U(.I‘,t) = &e < 1 ) e + &6 1 e
= < %(6—41% + e2t) ) ez’r'
&(6—415 . ezt)
26 27 0

26ChiuYen’s and Sung-Ha’s solutions give similar answers.

2TQuestions about this problem:
1. Needed to find eigenfunctions, not eigenvectors.
2. The notation of L was changed. The problem statement incorporates the derivatives wrt. ¢t into L.
3. Why can we write the solution in this form above?
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Problem (W’04, #6). Consider the first order system
U — Uy =V + 0, =0

in the diamond shaped region —1 < x4+t <1, —-1<zx—1t<1. For each of
the following boundary value problems state whether this problem is well-posed. If it is
well-posed, find the solution.

a) ulxz+t)=up(x+t)onr—t=-1, ve—1t)=vo(x—1t) onx+t=-1.

b) vx+t)=vo(x+t)onzr—t=-1, ulx—t)=up(x—1t) onz+t=—1.

Proof. We have
U — Uy = 0, !

v + v, = 0. 1
up(x+t)

e u is constant along the characteristics: x +t = c1(s).
Thus, its solution is u(z,t) = ug(z + ).
It the initial condition is prescribed at x —t = —1,

the solution can be determined in the entire region

by tracing back through the characteristics.

e v is constant along the characteristics: = —t = ca(s).
Thus, its solution is v(x,t) = vo(z — t).

It the initial condition is prescribed at x +t = —1,

the solution can be determined in the entire region

by tracing forward through the characteristics. ]
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15 Problems: Gas Dynamics Systems

15.1 Perturbation
Problem (S92, #3). 28 29 Consider the gas dynamic equations

ug + utg + (F(p))z = 0,
pt+ (up)e = 0.

Here F(p) is a given C*-smooth function of p. Att =0, 2w-periodic initial data

w(z,0) = f(x),  plz,0)=g(z).
a) Assume that

f(x) =Uo+efi(x),  g(x) = Ro+egi(x)

where Uy, Ry > 0 are constants and cfi(x), €g1(x) are “small” perturbations. Lin-
earize the equations and given conditions for F such that the linearized problem is
well-posed.
b) Assume that Uy > 0 and consider the above linearized equations for 0 < x < 1,
t > 0. Construct boundary conditions such that the initial-boundary value problem is
well-posed.

Proof. a) We write the equations in characteristic form:
g + uug + F'(p)pr = 0, ®
pt + Uugp + upy = 0.
Consider the special case of nearly constant initial data
u(z,0) = up + eui(z,0),
p(z,0) = po + ep1(z,0).
Then we can approximate nonlinear equations by linear equations. Assuming
u(z,t) = up + euy (z, t),
p(z,t) = po +epi(z,t)
remain valid with u; = O(1), p; = O(1), we find that
Ut = EU1t, Pt = EP1L;
Uy = EULg, Pz = EP1x;
F'(p)=F'(po+epi(,t)) = F'(po) +epiF"(po) + O(e?).
Plugging these into ®, gives
eury + (ug + eur)eury + (F'(po) + ep1F” (po) + O(e?))epiz = 0,
ep1t + euiz(po +ep1) + (uo + euy)epry = 0.
Dividing by € gives
U + uouig + F'(po)pra = —curury — ep1p1aF” (po) + O(£2),

P1t + Uiz Po + UPle = —EULLP1 — EULP1z-

288ee LeVeque, Second Edition, Birkhéduser Verlag, 1992, p. 44.
29This problem has similar notation with S92, #4.
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For small e, we have

p1t + Uizpo + uop1e = 0.

{ U1t + w1y + F'(po)p1z = 0,

This can be written as
o) O S ) ()= (6)
p o/, PO U0 1), 0
ug — A F'(po)

po up — A

I = (UO — )\)(UO — )\) — pOF/(pO) = 07

A2 = 2up\ + ug — poF" (pg) = 0,
A2 = ug £ v/ poF’(po), uo >0, po > 0.

For well-posedness, need Aj2 € R or F'(pg) > 0.

b) We have up > 0, and A1 = ug +/pol"(po), A2 =uo —~/pol’(po).
° IfUO>\/p0F/(p0) = M>0X>0 = 2 BC at x = 0.
° Iqu:\/poF/(po) = M >0X=0 = 1 BC at x =0.

o If0<uy<+/poF'(po) = A >0,X<0 = 1BCatz=0,1BCatz=1.

15.2 Stationary Solutions
Problem (S92, #4). 39 Consider

Up + Uy + Pr = VUgy,

pr+ (up)e =0

fort>0, —oco < x < 0.
Give conditions for the states Uy, U_, Ry, R_, such that the system has
stationary solutions (i.e. uy = py = 0) satisfying

. u . U_|_ . u . U_
o () =( ) () -(o )

Proof. For stationary solutions, we need

2

u
ut:—<—> — Pz + Vg, =0,
2 /x

pr = —(up)z = 0.
Integrating the above equations, we obtain

u2

—7—p+vuz=C1,

—up = Chs.

30This problem has similar notation with S’92, #3.

128
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Conditions ® give wu, =0 at = +oo0. Thus

U? U?
o T = i

U_|_R_|_ - U_R_.
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15.3 Periodic Solutions
Problem (F’94, #4). Let u(z,t) be a solution of the Cauchy problem

Ut = —Uggpr — 2Upy, —00 < x < 400, 0 <t< 400,
u(z,0) = ¢(z),

where u(z,t) and p(x) are C*° functions periodic in x with period 2m;
i.e. u(x+2m,t) =u(x,t), Va, Vt.
Prove that

[Ju(-, t)]| < Ce™[| ]

where ||u(-,t)|| = \/ u(z, t)|2dx, ||| = 027r lp(x)2dz, C,a are some constants.

Proof. METHOD 1I: Since u is 27-periodic, let

o

u(z,t) = Z an(t)em?.

n=-—oo

Plugging this into the equation, we get

0o
Z a;l(t)emr — Z nt an mr+2 Z n2 an mr’
n=-—00 n=-—00 n=-—00

ap(t) = (=n"+2n%)an(t),

an(t) = an(0)e—"+207)1,

Also, initial condition gives

o0
w(@,0) = Y an(0)e™ = (),
n=—oo
m .
> an(0)e™| = [p(x).
n=—oo
2 2 0 ‘ 00 -
||U(1‘,t)||% = / u2($,t) d,’p:/ < Z an(t)elnr>< Z an(t)ezmz> dx
0 0 n=-—0o0 m=—00
S o > 4 2
= Z ai(t)/ eI oy = 9 Z ) =27 Z a2 (0)e2(-n* 2t
n=—00 0 N——00 o
00 00 o o
< 127 Z ai(o) Z 62(—n4+2n2)t —or Z ai(O) o2t Z o—2(n?=1)%
n=—oo n=—oo n=—oo N——o0
RE =y, (co;vergent)
= Coe™||op]]*.

= lu(z, )| < Ce'[[gl]-
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METHOD II: Multiply this equation by u and integrate

UUt
1d,,
5@(“)
1d [2r
2dt J,

1d

2dt

u? dx
[|ull3

1d

- 2
5 2ol

IN

—Ulggre — 2UUgg,

~Ulggre — 2UUgg,

2T 2
— / Ul g gpy AT — / 22Uy, d,
0 0

2w 21 2m 9 2w
—UUgzx + Uy Uy 0 - / gy dx — / Uty dz,
——— N — 0 0
=0 =0
2w 2w
— / u?, de — / Uy, dx (—2ab < a* + b?)
0 0

2w 2w 2w
—/0 uirdx—l—/o (u2—|—u§m)dx:/0 u? dx = ||ul|?,

d
T llll® < 2f[ul?,

[Jull* < [Ju(0)] %,
[Jull < [Ju(0)]]e". v/

METHOD III: Can use Fourier transform. See ChiuYen’s solutions, that have both

Method II and III.

0
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Problem (S’90, #4).
Let f(x) € C* be a 2m-periodic function, i.e., f(x) = f(x + 27) and denote by

27
112 =/0 ()2 de

the Lo-norm of f.
a) Express ||dPf/dzP||? in terms of the Fourier coefficients of f.
b) Let g > p > 0 be integers. Prove that Ve >0, 3K = N(e,p, q), constant, such that

41 < i

2 K 9
P da:qH + KA

¢) Discuss how K depends on e.
Proof. a) Let 3!
0 .
fl@) = Y fac™,
—0oQ

arf
dxP

[22 = [ IS e = [ |5 e a

21 o o
- / |annpem’”|2dw = QWngnQP.
0 —00 n=0

= i In (in)pemz )

b) We have
dpf 2 de ‘ ‘2 9
— < — K
Hda:PH = EHdwq + KIS
o0 o0 o0
27TZ A% < ¢ 27TZ f2n?1 + K 21 Z 12
n=0 n=0 n=0
n? —en? < K,
n? (1-—en?) < K, some ¢ > 0.
——
<0, fornlarge
Thus, the above inequality is true for n large enough. The statement follows. O

31Note:

/L inr _imex O n#m
e"e de =
0 L n=m
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Problem (S’90, #5). 32 Consider the flame front equation
Ut + Uy + Upy + Uppze = 0 ®

with 2m-periodic initial data
u(z,0) = f(z), f(z) = f(x +2m) € C*.

a) Determine the solution, if f(x) = fo = const.
b) Assume that

f(@)=1+¢g(z), 0<e<l, |glo=1  g(z)=g(x+2m).

133

Linearize the equation. Is the Cauchy problem well-posed for the linearized equation,

i.e., do its solutions v satisfy an estimate
lo(, D) < K)o -, 1o)]|?

¢) Determine the best possible constants K, «.

Proof. a) The solution to

Ut + Uy + Ugg + Uggzs = 0,

u(x,0) = fo = const,

is u(z,t) = fo = const.

b) We consider the special case of nearly constant initial data
u(z,0) =1+ euy(z,0).
Then we can approximate the nonlinear equation by a linear equation. Assuming
u(z,t) =1+ euy(z,t),
remain valid with u; = O(1), from ®, we find that
eurr + (1 + euy)euty + eUizr + EU1zeee = 0.
Dividing by € gives
Ul + Uty + EULULE + ULz + Ulzgzs = 0.

For small e, we have

Ul + Uty + Uige + Wiggze = 0.

Multiply this equation by u; and integrate

ULULE + UL ULz + U ULge + U UL zgze = O,
2 2

d/u U
( 1) + (—1>I + U ULz + UL ULzzze = O,

dt\ 2 2
1d 2 U2 o2 2T 2
§d_/ u% dr + 51 —I—/ UL ULz AT + / U U pgze AT = 0,
tJo 2o Jo 0
=0
1d ) 21 2m ) 21 21 2m )
§%||u1||2 + UL UL . —/0 ul, dx + U1 Ul gy . — UL Ul . —I—/O Uiy, dx =0,
Af—/ ~~ ~~
=0 =0 =0

1d ) 2w ) 2w )
sl = [ e [t

325790 #5, #6, #7 all have similar formulations.
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Since u is 27-periodic, let

[e.e]
up = Z an(t)e™™. Then,
n=-—oo

e , e N2
Uy =0 Z na,(t)e™® = ul = —( Z nan(t)emr> ,

n=-—oo n=-—oo
e , e N2
Ulzgr = — Z n2an(t)emr = u%rr = ( Z n2an(t)emr> :

n=-—oo n=-—oo

Thus,

1d ) 2w ) 2w )
sl = [Cudde— [Tudae

27 ) 2 2w ) 2
= _ /0 (Znan(t)e ) dr — /0 (Z n?a,(t)e ) dz
= —27TZn2an(t)2 - 27TZn4an(t)2 = —27TZan(t)2(n2 +nt) <0.

1= [l )l < [Jua(0)]l,

where K =1, a = 0. U

Problem (W’03, #4). Consider the PDE

up = uy +ut for t>0
u=1ug for t=0
for 0 < x < 2m. Define the set A = {u = u(z) : w(k) =0 if k < 0}, in which
{u(k,t)}>° is the Fourier series of u in x on [0, 27].

a) If ug € A, show that u(t) € A.
b) Find differential equations for u(0,t), u(1,t), and 4(2,t).

Proof. a) Solving
Ut = Uy + u4
u(z,0) = ug(x)
by the method of characteristics, we get
uo(x + t)
(1 — 3t(ug(a +1))3)5
Since ug € A, Uor = 0if k < 0. Thus,

u(x,t) =

[ee]
up(x) = ﬁokei%z.
k=0
Since
1 2 )
up = — u(x,t)e "2 dr,
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we have
o0
u(x,t) = Zﬁk ei%z,
k=0

that is, u(t) € A. O
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15.4 Energy Estimates

Problem (S’90, #6). Let U(xz,t) € C* be 2m-periodic in x. Consider the linear
equation

ug + Uty + Uzy + Ugzar = 0,
u(z,0) = f(z),  f(z)=f(z+2m)eC™.

a) Derive an energy estimate for u.
b) Prove that one can estimate all derivatives ||0Pu/0zP||.
c) Indicate how to prove existence of solutions. 33

Proof. a) Multiply the equation by u and integrate

uty + Uty + Uty + Uliggry = 0,

1d 1
ia(ff) + §U(u2)z + Uy + Wlpppr = 0,
1d 27 1 27 27 27
T, w?dr + = / U(u2)z dx + / WUlgg AT + / Ulhgpze dx = 0,
t Jo 2 Jo 0 0
1d ) 1 ) o 1 /27r ) o /27r )
-4 U ‘ | Uvald - d
2dt||u|| +5Uu 0 T2, LU x—l—uuzo ; uy dz
=0
27 27 2 9
FUUppy|  — Upllgs| + / Upy dx =0,
0 0 0

1d, o 1 [ o o
g zllull” =5 | Uwtde— [ upde s | g, de =0,

1d ) 1 2w ) 2w ) 2w ) 7
——||u||* = = Uyu® dx + us dr — us,. dr < (from S'90, #5) <

1 27 1 27
< —/ Ugu?de < —maxUz/ u? de.
2 0 2 x 0
S D2 < max Uy [Jul?
dt R ’

[lu(e, )| < [|u(z, 0)][? elmas T,

This can also been done using Fourier Transform. See ChiuYen’s solutions where the
above method and the Fourier Transform methods are used. U

338790 #5, #6, #7 all have similar formulations.
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Problem (S’90, #7). 3* Consider the nonlinear equation

Ut + Uy + Ugg + Uggzs = 0, ®

u(z,0) = f(x),  f(z)= f(z+2m) e C.

a) Derive an energy estimate for u.
b) Show that there is an interval 0 <t < T, T depending on f,
such that also ||Ou(-,t)/0x|| can be bounded.

Proof. a) Multiply the above equation by u and integrate

2
Uy + U Uy + Ulgy + Ulgzee = 0,

1d 1
Ea(ff) + g(u?’)z + Uy + Ulprpr = 0,
1d 2 1 2 2 27
27 u? dz + —/ (u?’)z da:—l—/ Uy da:—l—/ Ulgpes dr = 0,
t Jo 3 Jo 0 0
1d 1 o 27 27
——||u||2—|——u3‘ —/ uidaz—l—/ ul, dz =0,
2.dt 3 0 0 0
=0
1d

2w 2w
||u|)? = / u? dx — / u?, dr <0, (from S’90, #5)
= (-, Ol < [Jul-, 0)]].

b) In order to find a bound for ||u,(-,t)||, differentiate ® with respect to x:
Uty + (uur)r + Uggr + Uszgaz = 0,
Multiply the above equation by u, and integrate:

Uz Uty + Uy (uur)r + UgUpgy + UgUggrar = 07

1d 2 2 2 2
T, (ug)? dx + / Uy (Utiy), dx + / UpUggy AT + / UpUppres AT = 0.
t Jo 0 0 0

We evaluate one of the integrals in the above expression using the periodicity:

2 2 2 2 2
2 3
/ Uy (Utiy) do = —/ Uy Uy = / Ug (U + Ulgy) = / u, —I—/ Ul Uz s
0 0 0 0 0
2T 1 2T
_ 3
= / Upp Uy = ——/ u,
0 2 Jo
2 1 2
_ 3
= Uy (Ulg)y = = .
0 2 Jo

2 2 2
2
——||uz||* + / ui dx + / UypUppy AT + / UpUppres AT = 0.
0 0 0

349790 #5, #6, #7 all have similar formulations.
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Let w = uy, then

1d ) 2 3 2 2
§d—||w|| = — w® dr — WWa AT — WWoyppz AT
t 0 0 0

2w 2w 2w 2w
:—/ w3d33+/ wgdas—/ wgzdasg—/ w? dz,
0 0 0 0

d ) 2 3
SN :—/ 3 da.
0

138
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16 Problems: Wave Equation

16.1 The Initial Value Problem
Example (McOwen 3.1 #1). Solve the initial value problem:

2 _
Ut — C Uz = 0,

u(z,0) = 23 | w(z,0)=sinz.
g(x) h(z)

Proof. D’Alembert’s formula gives the solution:

x+ct
w(zt) = (gt ct)+glz—ct) + i/_ b de

2 2c
1 1 1 x+ct
= 5(;1: + ct)® + 5(;1? —ct) + % /I_Ct sin & d¢
= 23+ 2uc? — 1 cos(x +ct) + 1 cos(z — ct) =
2c 2c
1
= 2%+ 22c%? + “sinxsinct.
c
Problem (S’99, #6). Solve the Cauchy problem

{ Ut = a2um + cosx,

u(z,0) =sinz, u(z,0)=1+z.

139

(16.1)

Proof. We have a nonhomogeneous PDE with nonhomogeneous initial conditions:

2
Upp — C*Ugyy = COS T
T N )

f(xt)
u(z,0) =sinz, w(xr,0)=1+x.
g(x) h(z)

The solution is given by d’Alembert’s formula and Duhamel’s principle.®>

x+ct
utx,t) = 1(g(a: +ct)+g(x—ct)) + 1 /_ t h(§) d¢

2 2c

x+ct

= 1(sin(;r—l—ct)—I—Sin(;r—ct))—l—i/ (1+¢)d¢
2 T—ct

2c
1 52 E=x+ct
= sinz cosct—l——[f—l——} =sinx cosct + xt + t.
2c 2 le=z—ct

1 t z4c(t—s) 1 t T4c(t—s)
uD(;r,t) = — (/ f(f,s)df) ds = — (/ cosfdf) ds
2¢ Jo x—c(t—s) 2¢ Jo x—c(t—s)

I 1
= 5% (sin[x +c(t — s)] — sinfz — ¢(t — s)]) ds = —(cosw — cosw cosct).
Cc Jo C
1
u(z,t) = uax,t)+uP (2, t) =sinz cosct + xt +t + — (cosx — cos w cosct).
c

35Note the relationship: = < &, t < s.
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We can check that the solution satisfies equation (16.1). Can also check that u4, u”

satisfy

{ uft — ul, =0, { ull — ul, = cos

ul(z,0) =sinz, u(z,0)=1+z; uP(z,0) =0, uP(z,0)=0.
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16.2 Initial/Boundary Value Problem

Problem 1. Consider the initial /boundary value problem

Ut — Uy = 0 O<ax<L,t>0
u(z,0)=g(z), w(z,0)=h(z) O0<z<lL
u(0,t) =0, u(L,t) =0 t>0.

Proof. Find u(x,t) in the form

t o0
u(z,t) = a°2( ) +3 an(t) cos$ +b (t)sm?.
n=1

e Functions a,(t) and b, (t) are determined by the boundary conditions:

0 = u(0,1) Zan = ap(t)=0. Thus,

o

nwx
E by (¢ sm—

e If we substitute (16.3) into the equation wuy — cuz, =0, we get

[e.e]
Zbg(t) sin @ 22 (mr) sanﬂ =0, or

n=1

nmwe\ 2

br(t) + (“7) balt) =0,
whose general solution is

mrct
L

by (t) = ¢y, sin —|— d,, cos

Al50, ¥, () = ea( ) cos 232 — d (%) sin 232

e The constants ¢, and d,, are determined by the initial conditions:

g(z) = u(z,0) = an( Sin@—Zd i
n=1

[e.e]
h(z) = u(z,0) = Y b,(0)sin 0" = chmc : mm:'
n=1
By orthogonality, we may multiply by sin(mmz/L) and integrate:

L mmx L nwx mmwx L
/Og(x)sin dr = / ZdnsinTs'n—d@"—d m—s

2
L
/ h(x) sin mre
0

Thus,

L

L L
2
d, = — /0 g(x) sin? dz, Cn = " ; h(x) sin? dzx.

The formulas (16.3), (16.4), and (16.5) define the solution.

L [ee]
nwe . MY . MTT mme L
dr = E Cn 7 sin 7 sin dr = ¢p————.

L 2

141

(16.2)

(16.3)

(16.4)

(16.5)
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Example (McOwen 3.1 #2). Consider the initial/boundary value problem

U — Uggy = 0 O<z<m t>0
u(z,0)=1, w(x,00=0 O0<zx<m (16.6)
u(0,t) =0, u(m,t) =0 t>0.

Proof. Find u(x,t) in the form
at) | .
u(z,t) = ——= + Z an(t) cosnx + by (t) sinnz.
2
n=1
e Functions a,(t) and b,(t) are determined by the boundary conditions:

0=u(0,t) = QOT“) n ian(t) — ap(t)=0. Thus,
n=1

u(x, t) = Z by, (t) sinn. (16.7)

n=1

e If we substitute this into wuy — uze =0, we get

[e.e] [e.e]
Z b (t) sinnx + Z bo(t)n?sinne =0, or
n=1 n=1
b (t) +nb,(t) =0,
whose general solution is
by (t) = cp sinnt + d,, cos nt. (16.8)

Also, b),(t) = ncy, cosnt — nd, sinnt.
e The constants ¢, and d, are determined by the initial conditions:

1 =wu(z,0) = Z b, (0) sinnx = Z dy sinnx,
n=1

n=1

[e.e] [e.e]
0=wu(x,0) = Z bl (0) sinnz = chn sinn.
n=1

n=1

By orthogonality, we may multiply both equations by sinmax and integrate:

T T
/ sinmz dx = dy,—,
0

2
i T
0dx = —.
/0 T ncn2

Thus,
2 4 podd,
dp,=—(1—cosnm) =< "7 and cn = 0. (16.9)
nmw 0, n even,

Using this in (16.8) and (16.7), we get

4 cosnt, n odd,
bp(t) =< "7

0, n even,
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i cos(2n + 1)t sin(2n + 1)z

1
et =2 @2n+1)

n=0




Partial Differential Equations Igor Yanovsky, 2005 144

We can sum the series in regions bouded by characteristics. We have

4 X cos(2n + D)t sin(2n + 1)z
t) ==
(@) == ZO 2n+1) ’ o
2 = sin[(2n + 1) (z +1)] 2 = sin[(2n+ 1)(z —t)]
) = . 16.10
u@,?) ZO @t 772% 2n+1) (16.10)
The initial condition may be written as
4 sin(2n + 1)z
1 =u(z,0) = ;ZJW for 0<x<m. (16.11)

We can use (16.11) to sum the series in (16.10).

1 1

In Ry, u(zx,t) = 5T 5= 1.

Since sin[(2n+ 1)(z —t)] = —sin[(2n+ 1)(—(z —1t))], and 0 < —(x — t) < 7 in Ro,
1 1

in Ry, u(;r,t):§—§:0.
Since sin[(2n+ 1)(z +1t)] =sin[(2n+ 1)(z 4+t — 27)] = —sin[(2n + 1) (27 — (x + 1))],
and 0 < 27 — (x +t) < 7 in R,

. 1 1

in Ry, wu(x,t) = 5 + 5= 0.
Since 0 < —(z—t) <7 and 0< 27 — (z+1t) <7 in Ry,

. 1 1

in Ry, u(z,t)= e —1.

& t
x+t=m x-t=0
\ -m=x—t=0
/ m=x+t=2m
Xx-t=-m Xx+t=1x
Ry
—m=x—t=0 Dox—t=m
D=x+t=m R R r<x+t<lm
R,
x+t=0 O x_tem Xx-t=m
\ O<x+t<n
0 x
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Problem 2. Consider the initial /boundary value problem

Upt — CUpy = 0 O<ax<L,t>0
u(z,0) = g(z), uz,0)=h(x) O<z<L
u.(0,t) =0, ug(L,t) =0 t>0.
Proof. Find u(x,t) in the form
(2. 1) ap(t) N i ) UL () sin nwr
= 0s — —
u(z, 5 2 an(t) cos — 7

e Functions a,(t) and b,(t) are determined by the boundary conditions:

RIS DI PN P

n=1
> nm
0= uy(0,t) = ;1 bu(t) (f) —  by(t) =0. Thus,
u(z,t) = GOT(t) + Zan(t) cos ?
n=1

e If we substitute (16.13) into the equation wus — c*uze = 0, we get

a(?) + ia”(t) cos 2L C2ia (t)(ﬂycos@ =0
2 &= L —NL L ’
A =0  and  a’(t) + (?)zan(zﬁ) 0,
whose general solutions are

nmwe mrct
—I— d,, cos

ap(t) = cot + do and an(t) = ¢, sin

Also, aj(t) =co and al(t) = c,(™F¢) cos 2TL — d,, (7€) sin 22,
e The constants ¢, and d, are determined by the initial conditions:

g(z) =u(x,0) = GOT(O) + Z an(0) cos @ Z dy, cos 2L
n=1

h(z) = ug(z,0) = @ + Za;(O) cos 28 = ch
n=1

145

(16.12)

(16.13)

(16.14)

By orthogonality, we may multiply both equations by cos(mmz/L), including m = 0,

and integrate:

L L
L mne L
/0 g(z)de = dOE’ /0 g(z) cos 7 dr = de’
L L
L L
/0 h(z)dz = €05 /0 h(zx) cos mzx dr = cm$§
Thus,
9 (L 2 L 2
d, = Z/o g(x) cos? dr, cp= prll h(x) cos? dr, c¢o= 17

The formulas (16.13), (16.14), and (16.15) define the solution.
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Example (McOwen 3.1 #3). Consider the initial/boundary value problem

Ut — Ugg = 0 O<z<m t>0
u(z,0) =z, w(x,0)=0 O<z<m (16.16)
ug(0,t) =0, ug(m,t)=0 t>0.

Proof. Find u(x,t) in the form
u(z,t) = _ aolt) + Z an(t) cosnx + by (t) sinnx
7 2 n n .

e Functions a,(t) and b,(t) are determined by the boundary conditions:

[e.e]
E —ay (t)nsinnx + by, (t)n cos nx,

n=1

0=1us(0,t) = bu(thn = by(t)=0.  Thus,
n=1

u(x,t) = GOT(t) + ian(t) CoS Nx. (16.17)

e If we substitute (16.17) into the equation wuy — uz, =0, we get

a”(t) o o
OT + Z al(t) cosnz + Z an (t)n? cos nz = 0,
= n=1
apg(t) =0 and a’ (t) 4+ n2a,(t) =0,
whose general solutions are
ap(t) = cot + do and an(t) = ¢, sinnt + d,, cos nt. (16.18)

Also, ay(t) =c¢op and a,(t) = eyncosnt — dynsinnt.
e The constants ¢, and d, are determined by the initial conditions:

0) «— dy |~
x=u(x,0) = GOT()—I-Zan(O)cosnx:EO—I-Zdncosm?,

n=1
(16(0) = / Co =

0=wu(x,0) = 5 + Z a,(0) cosnz = 5 + chn COS NT.
= n=1

By orthogonality, we may multiply both equations by cosmaz, including m = 0, and
integrate:

/ rdr = doi, / rcosmxdr = dmi,
0 2 0 2
/ 0dx = COE, / 0cosmaxdx = cmmi.
0 2 0 2
Thus,
2
do =, d, = —3 (cosnm — 1), cn = 0. (16.19)

Using this in (16.18) and (16.17), we get

2
ap(t) =do =, an(t) = — —(cosnm — 1) cosnt,
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T
2

2

u(x,t) = =+ =

™

[e.e]
Z (cosmm — 1) cos nt cos nx:
n? '

n=1

147
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We can sum the series in regions bouded by characteristics. We have

T 2 «= (cosnm — 1) cosnt cos nx
u(;r,t):§—|—gz 2 , or
n=1
T 1 = (cosnm — 1) cos[n(z —t)] 1 = (cosnm — 1) cos[n(z + t)]
t) = —+— — . (16.20
wet) =542 - =y - (16.20)
n=1 n=1
The initial condition may be written as
T 2 <= (cosnm — 1) cosnz
u(m,O):x:§+;Z 3 for 0<z<m,
n=1
which implies
x 7w 1 i (cosnm — 1) cosnx for 0< < (16.21)
c_L_Z or x<m .
2 4 m4 n? ’
We can use (16.21) to sum the series in (16.20).
T x—1 x+t T

v
I _ T
n Ry, u(z,t) 5 T3 172 1
Since cos[n(z —t)] = cos[n(—(z —t))], and 0 < —(z —t) < 7 in Ry,
T, (-t 7T z+t w

in R H=l *7Y 7 T_y
in Ry ul@t) =5+ 12 T

Since cos[n(z+t)] = cos[n(z+t—27)] = cos[n(2mr —(x+1t))], and 0 < 27— (z+t) <7

in Rs,

) T x—t w 2m—(rx+t) w
R t) == SRS L
in Ry, u(x,t) 5t Vil 5 1=
Since 0 < —(zx —t) <mand 0 < 2 — (z+¢) < 7 in Ry
. o —(x—t) 7w 2m—(x+t) T
in Ry, u(;r,t)—2—|— 5 1 5 1T
& t
x+t=m x-t=0
\ -m=x—t=0
/ m=x+t=1m
X-t=-m X+t=21m
Ry
-m=x—t=0 D=x—t=m
D=x+t=mx R, R; m=x+t=2mx
R,
x+t=0 D=x-t=m x-t=m
\\\\ O<x+t<n
0 r




Partial Differential Equations Igor Yanovsky, 2005 149

Example (McOwen 3.1 #4). Consider the initial boundary value problem

Upp — gy = 0 for z>0,t>0
u(z,0) = g(z), uz,0)=h(x) for >0 (16.22)
u(0,t) =0 fort >0,

where g(0) = 0 = h(0). If we extend g and h as odd functions on —oo < x < 00, show
that d’Alembert’s formula gives the solution.

Proof. Extend g and h as odd functions on —oo < x < o0:

§(x):{ g(x), z>0 ﬁ(w):{ h(x), z>0

_g(_x)v z <0

Then, we need to solve

_ (16.23)

Upp — Uy = 0 for —oco<r<oo,t>0
w(x,0) = g(x), ugz,0)=h(x) for —oo <z < o0.

To show that d’Alembert’s formula gives the solution to (16.23), we need to show that
the solution given by d’Alembert’s formula satisfies the boundary condition @ (0, ¢) = 0.

T+t
iet) = 5le+a)rola—c)+g [ REd,

ct

A0 = e +al-e) + 5 [ b de

1, - 1
= 5(g(ct) = glet)) + - (H(ct) — H(~ct))
1
= 0+ 2—C(H(ct) — H{(ct)) =0,
where we used H(z) = [ h(€) d€; and since h is odd, then H is even. O

Example (McOwen 3.1 #5). Find in closed form (similar to d’Alembet’s formula)
the solution u(x,t) of

Ut — gy = 0 for =, t >0
u(z,0) =g(z), wuz,0)=h(x) for >0 (16.24)
u(0,t) = a(t) fort >0,

where g, h,a € C? satisfy a(0) = g(0), o/(0) = h(0), and o (0) = c*g”(0). Verify that
u € C2, even on the characteristic x = ct.

Proof. As in (McOwen 3.1 #4), we can extend g and h to be odd functions. We want
to transform the problem to have zero boundary conditions.
Consider the function:

U(x,t) =u(z,t) — at). (16.25)
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Then (16.24) transforms to:

\

Uy — C2Urz = _a”(t)

——
fU(Ivt)
U(z,0) = g(x) — a(0), Ui(x,0) = h(z) —a'(0)
—_— ————
gu(z) hy (z)
U0,t) = \0,_/
ay(t)

We use d’Alembert’s formula and Duhamel’s principle on U.
After getting U, we can get u from u(z,t) = U(x,t) + a(t).

150
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Example (Zachmanoglou, Chapter 8, Example 7.2). Find the solution of

Upp — CUpy = 0 for ©>0,t>0
u(z,0) =g(z), uz,0)=h(x) for >0 (16.26)
U (0,8) =0 fort > 0.

Proof. Extend g and h as even functions on —oo < x < o0:

v )gl), x>0 = ) h(x), x>0
fl=) = { g(-=z), =<0 hle) = { h(—z), = <0.

Then, we need to solve

. (16.27)

Upt — Uy = 0 for —oco<zr<oo, t>0
w(x,0)=g(x), ugz,0)=h(x) for —oo <z < o0.

To show that d’Alembert’s formula gives the solution to (16.27), we need to show that
the solution given by d’Alembert’s formula satisfies the boundary condition (0, ¢t) = 0.

x+ct B
w(z,t) = %(g(x +ct) + gz — ct)) + % /_ t h(§) d¢.
Ug(z,t) = %(g’(x +ct)+ G (x—ct)) + %C[ﬁ(x + ct) — h(x — ct)],
B0,1) = L((et) +(~et) + pelhlet) ~ h(~et)] = 0.
Since g is even, then ¢’ is odd. O

Problem (F’89, #3). 3¢ Let a # ¢, constant. Find the solution of

Ut — gy = 0 for ©>0,t>0
u(z,0) =g(z), wuz,0)=h(x) for >0 (16.28)
ut(0,t) = au, (0, t) fort >0,

where g, h € C? for x > 0 and vanish near x = 0.
Hint: Use the fact that a general solution of (16.28) can be written as the sum of two
traveling wave solutions.

Proof. D’Alembert’s formula is derived by plugging in the following into the above
equation and initial conditions:

u(z,t) = F(z +ct) + G(x — ct).

As in (Zachmanoglou 7.2), we can extend g and h to be even functions. O

36Similar to McOwen 3.1 #5. The notation in this problem is changed to be consistent with McOwen.



Partial Differential Equations Igor Yanovsky, 2005 152

Example (McOwen 3.1 #6). Solve the initial /boundary value problem

Upp — Uy = 1 for 0<x<m and t>0
u(z,0) =0, w(x,0)=0 for 0<z<m (16.29)
w(0,t) =0, w(mt)=—-7w2/2 fort>0.
Proof. If we first find a particular solution of the nonhomogeneous equation, this re-
duces the problem to a boundary value problem for the homogeneous equation ( as in

(McOwen 3.1 #2) and (McOwen 3.1 #3) ).
Hint: You should use a particular solution depending on z!

[ TFirst, find a particular solution. This is similar to the method of separation of
variables. Assume
Up(.l‘, t) = X(.Z‘),

which gives

—X”(.Z‘) = 17
X'z) = -1
The solution to the above ODE is
2
X(z) = —%—I—aw—l—b.

The boundary conditions give

up(0,t) = b=0,
2

2
T T

t = _— b = ——,
up(m, t) 5 +am + 5
Thus, the particular solution is

x
up(z,t) = -5

This solution satisfies the following:

Upst = Upgy :21
up(2,0) = =%, up,(z,0) =0
2

up(0,t) =0, up(m,t) = =75

[ Skcond, we find a solution to a boundary value problem for the homogeneous equa-
tion:

Upp — Ugge = 0

U(J,‘,O) = %7 ut(x,O) =0

u(0,t) =0, u(m,t) = 0.
This is solved by the method of Separation of Variables. See Separation of Variables
subsection of “Problems: Separation of Variables: Wave Equation” McOwen 3.1 #2.

The only difference there is that u(z,0) = 1.
We would find up(z,t). Then,

u(z,t) = up(z, t) + up(z, t).
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Problem (S’02, #2). a) Given a continuous function f on R which vanishes for
|z| > R, solve the initial value problem

Utt — Ugx = f(.l‘) cost,
u(xz,0) =0, w(x,0)=0, —o<r<oo, 0<t<

by first finding a particular solution by separation of variables and then adding the
appropriate solution of the homogeneous PDE.

b) Since the particular solution is not unique, it will not be obvious that the solution
to the initial value problem that you have found in part (a) is unique. Prove that it is
unique.

Proof. a) [Hirst, find a particular solution by separation of variables. Assume
up(z,t) = X(z) cost,
which gives
— X (x)cost — X"(x)cost = f(x)cost,
X"+X = —f(x).

The solution to the above ODE is written as X = X}, 4+ X,,. The homogeneous solution
is

Xp(x) = acosx+bsinx.
To find a particular solution, note that since f is continuous, 3G € C?(R), such that
G"+G=—f(z).
Thus,
Xp(z) = G(x).
= X(z)= Xn(z)+ X,(x) =acosz + bsinz + G(z).

up(z,t) = [acosz + bsinz + G(z)] cost.

It can be verified that this solution satisfies the following:

Upst = Upgye = f(.l‘) cost,
up(x,0) = acosx + bsinx + G(x),  up,(x,0)=0.

[Second, we find a solution of the homogeneous PDE:

Ut — Ugg = 0,
u(xz,0) = —acosx —bsinx — G(z), wu(z,0)=_0
h(x)

~~

g(x)

The solution is given by d’Alembert’s formula (with ¢ = 1):

wot) = W) = ol ole—0)+y [ e

(—acos(z +t) —bsin(z +t) — Gz + 1)) + (— acos(z — t) — bsin(z — t) — G(z — t)))

Il
N | —
N — /N

(acos(z+t) + bsin(z +t) + Gz +t)) — %(a cos(z — t) + bsin(z — t) + G(z — t)).
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It can be verified that the solution satisfies the above homogeneous PDE with the
boundary conditions. Thus, the complete solution is:

u(z,t) = up(z, t) + up(z, t).

Alternatively, we could use Duhamel’s principle to find the solution: 37

t z4(t—s)
u(x,t) = %/0 (/z_:t_s) f(&) coss df) ds.

However, this is not how it was suggested to do this problem.

b) The particular solution is not unique, since any constants a, b give the solution.
However, we show that the solution to the initial value problem is unique.
Suppose u1 and ug are two solutions. Then w = u; — uy satisfies:

Wit — Wag = 0,
w(z,0) =0, wy(z,0)=0.
D’Alembert’s formula gives

r+t
wz,t) = §<g<x+t>+g<x—t>>+—/ he) de = 0.

Thus, the solution to the initial value problem is unique. ]

3TNote the relationship: = « &, ¢ < s.
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16.3 Similarity Solutions

Problem (F’98, #7). Look for a similarity solution of the form
v(z,t) = t*w(y = x/t?) for the differential equation

vy = Vg + (V%) (16.30)

a) Find the parameters o and (3.

b) Find a differential equation for w(y) and show that this ODE can be reduced to first
order.

¢) Find a solution for the resulting first order ODE.

Proof. We can rewrite (16.30) as
Ut - ’Uzz + 2UUI' (1631)

We look for a similarity solution of the form

x
v(a, 1) = tw(y), (v=15)-
o a—1 o, o a—1 @ ﬁl‘ ! a—1 a—1 /
v = atTTw+t"wy = ot w4t —Ww = at® w —tY Py’
v, = twy, = t"w't P =t
Vpy = (ta—,é’w/)r _ ta_’gw”yz _ ta—,ﬁ’w//t—,é’ _ ta_2’8w”.
Plugging in the derivatives we calculated into (16.31), we obtain
Oéta_l’w o to‘_lﬁyw' _ 75(1—2,6’,11)// + 2(taw)(ta—,6’w/)’
aw — By’ = 72w + 200 P .

The parameters that would eliminate ¢ from equation above are

ﬁ: y = —2.

With these parameters, we obtain the differential equation for w(y):

1 1
W §yw’ = w" 4 2ww’,

" / 1 !/ 1
w4 2ww —|—§yw —|—§w:0.

We can write the ODE as

1
w” 4+ 2ww’ + §(yw)’ =0.

Integrating it with respect to y, we obtain the first order ODE:

/ 2 1
w +w —|—§yw:c.
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16.4 Traveling Wave Solutions
Consider the Korteweg-de Vries (KdV) equation in the form 3%
up + 6uty + Uprr = 0, —oo < x < oo, t>0.
We look for a traveling wave solution
u(z,t) = f(x —ct).
We get the ODE
—cf'+6ff + " =0.
We integrate (16.34) to get
—cf +3f2+ f" =a,
where a is a constant. Multiplying this equality by f’, we obtain
—cf '+ 32 + f'f = af'.
Integrating again, we get
(f)?

—ng—I-f?’—I—T:af—l—b.

156

(16.32)

(16.33)

(16.34)

(16.35)

(16.36)

We are looking for solutions f which satisfy f(x), f'(z), f"(z) — 0 as ¢ — £oo. (In
which case the function u having the form (16.33) is called a solitary wave.) Then

(16.35) and (16.36) imply a = b = 0, so that

N2
—§f2+f3+%:0, or f'=+f\/c—2f.
The solution of this ODE is
flx) = gsech2[§(a¢ — x9)],

where xg is the constant of integration. A solution of this form is called a soliton.

38Evans, p. 174; Strauss, p. 367.
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Problem (S’93, #6). The generalized KdV equation is

ou 1 Lou  Ou

where n is a positive integer. Solitary wave solutions are sought in which v = f(n),
where n = x — ct and

L —=0, s |n] — oo

¢, the wave speed, is constant.
Show that

f/2 — fn+2 +Cf2-

Hence show that solitary waves do not exist if n is even.
Show also that, when n = 1, all conditions of the problem are satisfied provided ¢ > 0
and

u = —csech? [%\/E(x — ct)]

Proof. ¢ We look for a traveling wave solution
u(x,t) = f(x — ct).
We get the ODE
—ef = S+ )2 - 1
Integrating this equation, we get
—cf = %(n—+2)f”+1——f”+—a, (16.37)

where a is a constant. Multiplying this equality by f’, we obtain

1
_Cff/ — 5(77/‘1‘ 2)fn+1f/ _ f//f/ + (If/.
Integrating again, we get

Cf2 o 1 n+2 (f/)2
= = G- taf 40 (16.38)

We are looking for solutions f which satisfy f, f/, f/ — 0 as © — +oo. Then (16.37)
and (16.38) imply a = b = 0, so that
_f _ lfn+2 _ (f/)2
2 2 2’
(F)P = fEaeft v
e We show that solitary waves do not exist if n is even. We have

I +\/ frt2 4 cf? = [ f|V M +e,
/ Fdg = i/ IV e dn,

—00 —

i = i/ IV e dn,

0 = i/ |FIV 7+ cdn.
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Thus, either [JA/=0 = f=0,or
[ fA*+c=0. Since f - 0asx — oo, we have c=0 = f=0.
Thus, solitary waves do not exist if n is even. v ]
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e When n =1, we have

(f)? =P +cf (16.39)
We show that all conditions of the problem are satisfied provided ¢ > 0, including

u = —csech? [%\/E(x - ct)} , or

f = —csech? [77_\/5} S —ccosh [WT\/E} _2.

2 cosh?[ 1

= c¢y/ccosh

[ S

f' = 2ccosh [—\/_} - - sinh [777\/5} . [777\/5}—3 - sinh [%\/E}a

¢® sinh

Plugging these into (16.39), we obtain: 39

e
nve 3 N
cosh® [HT‘/E} cosh? [7726} ’

—3 + 3 cosh? [77‘2/5}

3 sinh? 3

3'.
S

cosh®

.
RN
5

3 sinh?

cosh®

.'wd
S
(@)
8
wn
P
rm
=
S
| IE—

3 sinh?

3
S
o
w0
—
=
=
e}
S [
3
—_

cosh®

r
=
o
BIEs
o o
O
2 .
=
=
L—

Also, f,f',f"— 0, as |n| — oo, since

fn) = —0560h2[n7\/6} = —% = —C< 2 )2 — 0, as |n| — oo.

cosh?[ 1Y )y 1B

Similarly, f/,f” — 0, as |n| — oc. v

39 cosh?z — sinh?z = 1.

e’ +e” . e’ —e "
, sinhx =
2 2

coshz =
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Problem (S’00, #5). Look for a traveling wave solution of the PDE
Ut + (u2)rr = —Uggzx

of the form u(x,t) = v(x — ct). In particular, you should find an ODE for v. Under
the assumption that v goes to a constant as |x| — oo, describe the form of the solution.

Proof. Since (u?); = 2uu,, and (u?) = 2u? + 2uuy,, we have
Ut + 2ui + 2UUgy = —Uggpz-

We look for a traveling wave solution
u(x,t) =v(x —ct).

We get the ODE

A" 4200 4+ 200" = =",
A" 4+ 2((W) P+ w") = =",
A" 4+ 20) = =", (exact differentials)
A 4200 = ="+ a, s=x—ct
v+ = —v"+as+b, ®

v+ Pv+v* =alx —ct) +b.

Since v — C' = const as |x| — oo, we have v/, v — 0, as |z| — oco. Thus, ® implies
v +v® =as +b.

Since |z| — oo, but v — C, we have a = 0:
v+ v —b=0.

—2 4+ A+ 4
5 )

v =
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Problem (S’95, #2). Consider the KdV-Burgers equation
Ut + Uy = EUgy + (5Uzrz

in which € >0, § > 0.
a) Find an ODE for traveling wave solutions of the form

u(z,t) = p(z — st)
with s > 0 and

lim ¢(y) =0

y——00

and analyze the stationary points from this ODE.
b) Find the possible (finite) values of

¢4 = lim ¢(y).

y—00
Proof. a) We look for a traveling wave solution
u(x,t) = p(x — st), y =z — st.

We get the ODE

—8g0/+(pg0/ — 6()0//—1_5()0/”,
1
—sp + §<p2 = e +6¢" +a.
Since ¢ — 0 as y — —oo, then ¢’, ¢ — 0 as y — —oo. Therefore, at y = —o0, a = 0.

We found the following ODE,

" € 4 S 1 2
- “p— —p*=0.
<P+5<P+5<P 25@

In order to find and analyze the stationary points of an ODE above, we write it as a
first-order system.

¢1:SO7

b2 =¢.

¢/1:§0/:¢27

b Eg S L e e s 1.2
¢ = ¢ =0, ¢ = ¢2 =0, &) = ¢o =0,
¢/—_E¢ _§¢ +L¢2_0 = ¢/__§¢ +L¢2_0 = ¢/__l¢( 1 -0
2= "502— 501+ 3501 =U; 2= 591t 3501 =0 5= —501(s— 5¢1) =0.

Stationary points: (0,0), (2s,0), s> 0.

& = b2 = f(¢1, ¢2),
1
Py = —§¢2 — §¢1 + 2—5¢% = g(¢1, P2).
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In order to classify a stationary point, need to find eigenvalues of a linearized system
at that point.

o oL 0 1
J(f(61,02), 9(61, 62)) = [ b ] = [ sl

e For (¢1,¢2
det(J|(0 0)

o)lcny'

452
If 55>s = )\ieR, A < 0.
= (0,0) is Stable Improper Node.
If 55 <s = A eC, Re(Ay)<O.
= (0,0) is Stable Spiral Point.
o For (¢1,¢2) = (25,0):

—-A 1
det(J|(2370) — )\I) = ‘ ‘
A =—5E/5+ 5
= A >0, A_<0.
= (2s,0) is Untable Saddle Point.

b) Since

lim p(y) =0= lim ¢(z — st),
t—00

y——00
we may have

lim ¢(y) = lim @(x— st) = 2s.
Yy—+00 t——o0

That is, a particle may start off at an unstable node (2s,0) and as ¢ increases, approach
the stable node (0, 0).

A phase diagram with (0, 0) being a stable spiral point, is shown below.
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Problem (F’95, #8). Consider the equation

U + f(u)r = €Ugy

where f is smooth and ¢ > 0. We seek traveling wave solutions to this equation,
i.e., solutions of the form u = ¢(x — st), under the boundary conditions

u—u;r and uz; — 0 as x — —o0,

u—urp and uy, — 0 as x — +oo.

Find a necessary and sufficient condition on f, ur, ur and s for such traveling waves
to exist; in case this condition holds, write an equation which defines ¢ implicitly.

Proof. We look for traveling wave solutions
u(x,t) = ¢(x — st), y=x — st.

The boundary conditions become
¢ —ur and ¢ -0 as x — —o0,
¢ —ugp and ¢’ —0 as x — +oo. ®
Since f(d(x — st)). = f'(P)¢', we get the ODE
—s¢' + f(¢)¢' = €d”,
—s¢' + (f(¢)) = ¢,
—s¢ + f(¢) = €¢' +a,

We use boundary conditions to determine constant b:
At T = —00, 0:¢/:M+b = b:suL_ef(uL)
At x = 400, oqu’:—_suRtf(uR) +b = p=TRZTOR) _6f(u3).
— J(uz) — J(ur)
up, —ur
40 U

4OFor the solution for the second part of the problem, refer to Chiu-Yen’s solutions.
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Problem (S’02, #5; F’90, #2). Fisher’s Equation. Consider
up = u(l —u) + Ugy, —o<r<oo, t>0.
The solutions of physical interest satisfy 0 < u < 1, and

lim w(z,t) =0, lim wu(x,t)=1.

T——00 r——+00

One class of solutions is the set of “wavefront” solutions. These have the form u(x,t) =
¢(x+ct), c>0.

Determine the ordinary differential equation and boundary conditions which ¢ must
satisfy (to be of physical interest). Carry out a phase plane analysis of this equation,
and show that physically interesting wavefront solutions are possible if ¢ > 2, but not if
0<e<?2.

Proof. We look for a traveling wave solution
u(z, t) = ¢p(x + ct), s =x + ct.
We get the ODE

cd =¢(1—¢)+4¢",

¢" —c¢' +¢—¢° =0,

o o(s) — 0, as s — —o0,
o ¢(s) — 1, as s — +oo,
o 0<p< 1.

In order to find and analyze the stationary points of an ODE above, we write it as a
first-order system.

y1:¢7

Yy =¢'.

yiqu/:y%
yo=¢"=c¢/ —p+¢* =cy2 — 1 +yi.

Z/i:y2:07 — y2:07
yh = cyo — 1 + yi = 0; y1(yr — 1) = 0.

‘ Stationary points: (0,0), (1,0).‘

Yy =12 = f(y1,92),
Yy =cy2 — y1 +yi = 9(y1, 12).

In order to classify a stationary point, need to find eigenvalues of a linearized system
at that point.

K = | 3 3 | <[, 0 1
1,Y2), 9\Y1, Y2 dg  9g 2:{/1 -1 ¢ '
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e For (y1,12) = (0,0):

—A 1
det(J‘(O’O)—/\I):‘ 1 e— 2\

‘Z/\Q—c/\—l—lz().
ctVe2—4
5 .

Ife>2 = M eR, AL>0.

(0,0) is Unstable Improper (¢ > 2) / Proper (¢ =2) Node.
f0<ec<2 = ALeC, Re(Ay)>0.

(0,0) is Unstable Spiral Node.

Ap =

e For (y1,12) = (1,0):

-1
det(J\(LO) - /\I) =

N2 a1 —
1 c—/\‘_/\ cA—1=0.

ct Ve +4
—

Ife>0 = A >0, A\_<0.
(1,0) is Unstable Saddle Point.

At =

166

By looking at the phase plot, a particle may start off at an unstable node (0,0) and as

t increases, approach the unstable node (1,0).
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Problem (¥’99, #6). For the system
O+ 0y (pu) = d*u

look for traveling wave solutions of the form p(x,t) = p(y = x —st), u(x,t) = u(y =
x — st). In particular

a) Find a first order ODE for u.

b) Show that this equation has solutions of the form

u(y) = uo + w1 tanh(ay + o),

for some constants ugy, u1, «, yo.

Proof. a) We rewrite the system:
prtu, = 0
Ut + PrU+ PUy = Ugy
We look for traveling wave solutions
p(z,t) = p(x — st), u(x,t) = u(x — st), y =z — st.
We get the system of ODEs
—sp' +u' =0,
{—su’ + plu+ pu’ =",
The first ODE gives
, 1

P = _ulv
S
1
p = —u + a,
S
where a is a constant, and integration was done with respect to y. The second ODE
gives
!/ 1 !/ 1 !/ "
—Su + —uu+ (—u—l—a)u = u,
S S
!/ 2 !/ !/ " :
—su + —uuw +au = u'. Integrating, we get
S

1
—su+ -ut+au = u +b.
s

1
' = ~u®+ (a — s)u —b.
s

b) Note that the ODE above may be written in the following form:
W + Au® + Bu = C,

which is a nonlinear first order equation. ]
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Problem (S’01, #7). Consider the following system of PDEs:
ft + fr = 92 - f2
gi—9: = [°—yg

a) Find a system of ODEFEs that describes traveling wave solutions of the PDE
system; i.e. for solutions of the form f(x,t) = f(x — st) and g(x,t) = g(x — st).

b) Analyze the stationary points and draw the phase plane for this ODE system in the
standing wave case s = 0.

Proof. a) We look for traveling wave solutions
f(xvt):f(x_‘gt)v g(xvt):g(x_‘gt)'
We get the system of ODEs
—sf S = g f

—sg'—g = -y
Thus,
f/ — 92_f2
1—5 "’
g/ _ f2_9
—1—35s"

b) If s = 0, the system becomes
f/ — 92 _ f2
g=9-1
Relabel the variables f — y1, g — .
V=4 —yi =0,
Yo =y2 —yi =0.

‘ Stationary points: (0,0), (—1,1), (1, 1)‘

yi = y% - y% = ¢(y17y2)7

Yo =y2 — ¥t = (Y1, 42).
In order to classify a stationary point, need to find eigenvalues of a linearized system
at that point.

g—i a% —2y1 2y
J(Oy1,v2), ¥y y2)) = | G 9% | = _9 1 |-
Y1 Y2 y1
e For (y1,12) = (0,0):
—A 0
det(Tlooy - M) =| o |, l — _A(1—)) =0

1
A1=0, Aa=1; eigenvectors: v; = ( 0 ) , Vg = ( ? > ,

(0,0) is Unstable Node.
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[
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e For (y1,12)

Ao <0, Ay >0.
(-1,1) is Unstable Saddle Point.

e For (y1,y2) = (1,1):

—2—-A 2
det(J|(171)—)\I): _9 11—\
Ay = 1 :I:Z'ﬂ.
2 2

Re(Ax) < 0.
(1,1) is Stable Spiral Point.

Igor Yanovsky, 2005

=X +A+2=0.
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16.5 Dispersion
Problem (S’97, #8). Consider the following equation
Uty = (f(ur))r — QUggrr, f(’U) = U2 -0, (1640)

with constant c.

a) Linearize this equation around uw = 0 and find the principal mode solution of the
form e*t k= - For which values of o are there unstable modes, i.e., modes with w = 0
for real k? For these values, find the maximally unstable mode, i.e., the value of k with
the largest positive value of w.

b) Consider the steady solution of the (fully nonlinear) problem. Show that the resulting
equation can be written as a second order autonomous ODE for v = u, and draw the
corresponding phase plane.

Proof. a) We have

Ut = (f(ur))r — QUggza,
ug = (Ui - Ur)r — QUggg,
U = 2Uplzy — Ugg — QCUggra- ®

However, we need to linearize (16.40) around u = 0. To do this, we need to linearize f.

2
flu) = f(O)—I—uf’(O)—I—%f”(O)—I—'“ =04+u0—-1)+- = —u+---
Thus, we have

Ut = —Ugy — QUggra-
Consider u(x,t) = ewt ke,
wewt—f—ikr — (k‘2 _ ak,4)ewt+ikz
)
w = k% — ak?.

To find unstable nodes, we set w = 0, to get
1
ﬁ.
e To find the maximally unstable mode, i.e., the value of k with the largest positive

value of w, consider

wk) = Kk —ak?,
(k) = 2k —4akd.

o =

To find the extremas of w, we set w’ = 0. Thus,the extremas are at

ki1 =0, kog=+= i
' 2c0
To find if the extremas are maximums or minimums, we set w” = 0:
W'k) = 2—12ak?* = 0,
J'0) = 2 >0 k =0 is the minimum.

=
1 . .
= k== %0 is the maximum unstable mode.
«

w”(:l:
w(:l:

=l 2=

= — is the largest positive value of w.

) = <o
)
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b) Integrating ®, we get

2 _
Uy — Uy — OUggy = 0.

Let v = uy;. Then,
2 _
V' — v — vy, =0, or
I v? —w
v = .

a

172

In order to find and analyze the stationary points of an ODE above, we write it as a

first-order system.

Y1 =0,
Yo = "
/
Yy =v =Y2,
yézv”_vz_vzy%_yl.
(6 (6
yi:y2:07 y2_07
2
yh = A = 0; yi(yr — 1) =0.

Yy =12 = f(y1,92),

Yy = = g(y1,v2).

In order to classify a stationary point, need to find eigenvalues of a linearized system

at that point.

J(f(y1,92), 9(y1, v2)) =

of  of
oy o | | 0 1
Q99 09 | T | 2m=l g |-

e For (y1,y2) = (0,0), Ay = i\/j.

Ifa<0, At R, A\ >0, \_<0. = (0,0) is Unstable Saddle Point.

fFa>0, \x = :I:i\/g € C, Re(Ay)=0. = (0,0) is Spiral Point.
e For (y17y2):(170)7 )‘:I:::l:\/g
Ifa<0, Ay ==+iy/—-1€C, Re(\x)=0. = (1,0) is Spiral Point.

Ifa>0, At eR, A\ >0, \_<0. = (1,0) is Unstable Saddle Point.
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x
yr=-xaex ALPHA <D

ylexx-x ALPHA =0
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16.6 Energy Methods

Problem (S’98, #9; S’96, #5). Consider the following initial-boundary value
problem for the multi-dimensional wave equation:

ugp = Au in £ x (0,00),
ou
U(.Z‘,O):f(.l‘), E(x,()):g(x) fO?” .Z‘EQ,
ou du
i = Q.
7 + a(zx) 5 0 on 0

Here, Q) is a bounded domain in R™ and a(x) > 0. Define the Energy integral for this
problem and use it in order to prove the uniqueness of the classical solution of the prob-
lem.

Proof.

E 0
d— =0 = /(utt — Au)updxr = / Uy AT — / —uut ds + / Vu - Vug dx
dt Q Q o0 On Q

= [ 22w)a =9 \vul?d ds.
/92875(1%) T+ 928t| ul|* dx + aQa(;r)ut s

Thus,

10
— aqudxz——/uQ—l— Vul? dz.
| atwpias =35 [ i+ ivu

~~

<0

Let Energy integral be

2

1
E(t) == / u? + |Vul? da.
)

In order to prove that the given E(t) < 0 from scratch, take its derivative with respect
to t:
dFE

—((t) = / (ututt + Vu - Vut) dx
dt 0

0
= /ututtdx—l—/ ut—uds—/utAud:U
Q o0 On Q

= /ut(utt— Au) da:—/ a(x)u?dr < 0.
Q

o0

~~

=0
Thus, E(t) < E(0).
To prove the uniqueness of the classical solution, suppose uq and uy are two solutions
of the initial boundary value problem. Let w = u; — us. Then, w satisfies

wy = Aw in Q x (0,00),
w(xz,0) =0, wz,0)=0 for z€Q,

ow ow

o + a(a:)a =0 on 99.

We have

B, (0) = %/Q(wt(x, 0)2 + [Vaw(z, 0)[2) dz = 0.
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Eu(t) < Ey(0) =0 = E,(t) =0. Thus, w; =0, wy, =0 = w(x,t) = const = 0.
Hence, u1 = uo.

Problem (S’94, #7). Consider the wave equation

1
——uy = A Q
62(1‘) Ut u S
du du
_ = = Q x R.
5 a(x)an 0 on 0§ x

Assume that a(x) is of one sign for all x (i.e. a always positive or o always negative).
For the energy

1 1
Eft)== [ —u? 2
(t) 9 [) C2($)Ut + |VU| d.’l?,

show that the sign of % 1s determined by the sign of c.

Proof. We have

dE 1
%(t) = /Q <—C2(1‘)UtUtt + Vu - Vut> dz

Il
S~

0
Uty dx + / ut—u ds — / urAu dx
oo O 0

o () n

1 1,
ut<62(x) Utt — Au) dr + /8Q wut dx
=0

/ 1 >0, if a(z)>0, Ve Q,
= ——uy dr = ]
a0 () <0, if a(z) <0, Ve Q.

I
S~




Partial Differential Equations Igor Yanovsky, 2005 176

Problem (F’92, #2). Let Q € R". Let u(x,t) be a smooth solution of the following
wnatial boundary value problem:

u — Au+ud =0 for (z,t) € Q x[0,T]
u(x,t) =0 for (z,t) € 9Q x [0,T].
a) Derive an energy equality for u. (Hint: Multiply by us and integrate over ) x

[0,77.)
b) Show that if uli—=o = utlt=0 =0 for = € Q, then u=0.

Proof. a) Multiply by u; and integrate:

0
0 = /(utt—Au—l—ug)uthS:/Uttutdw—/ —uutd8+/Vu-Vutdx+/u3utdx
Q Q a0 On Q Q
————

=0
= /92815(ut)d$+/928t|vu| da:—l—/ﬂzlat(u)da:—2dt/9(ut—|—|Vu| —|—2u)d33.

Thus, the Energy integral is

1
E(t) = / (U? + |Vu|2 + §u4) dx = const = FE(0).
Q

b) Since u(z,0) =0, wu(z,0)=0, we have

E0) = / (ue(z,0)* + |Vu(z, 0)]* + %u(;r, 0)") dz = 0.

o)

Since E(t) = E(0) =0, we have

E(t) = /Q (ue(2, ) + |Vu(z, t)[* + %u(;r, t)Y) dz = 0.
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Problem (F’04, #3). Consider a damped wave equation
{ u — Au~+ a(z)uy =0, (7,t) € R3 x R,

U|t:0 = Uuop, ut|t:0 =uj.

Here the damping coefficient a € C§°(R3) is a non-negative function and ug, ui €
Cs°(R3). Show that the energy of the solution u(w,t) at time t,

1

B = [, (Vaul + ) da

s a decreasing function of t > 0.

Proof. Take the derivative of E(t) with respect to t. Note that the boundary integral
is 0 by Huygen’s principle.

dFE
(t) = / (Vu'Vut—l—ututt) dx
R3

dt
ou
= Up— dS — urAu dx + Uy dx
OR3 on R3 R3
—_—

=0
= / ug(—Au + ug) da::/ up(—a(x)uy) da:z/ —a(z)u?dz < 0.
R3 R3 R3

Thus, % <0 = E(t) < E(0), ie. E(t)is a decreasing function of ¢. O
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Problem (W’03, #8). a) Consider the damped wave equation for high-speed waves
(0 < e << 1) in a bounded region D

€2Utt +ur = Au ®

with the boundary condition u(x,t) =0 on dD. Show that the energy functional
E(t) :/ u? + |Vul? dx
D
18 nonincreasing on solutions of the boundary value problem.

b) Consider the solution to the boundary value problem in part (a) with initial data
u(z,0) =0, uf(z,0) = e “f(x), where f does not depend on € and o« < 1. Use part
(a) to show that

/ IV (z, )2 dz — 0
D
uniformly on 0 <t <T for any T as e — 0.

c¢) Show that the result in part (b) does not hold for « = 1. To do this consider
the case where f is an eigenfunction of the Laplacian, i.e. ANf 4+ Af = 0 in D and
f =0 o0n 0D, and solve for u¢ explicitly.

Proof. a)

dE

— = /262ututtdw—|—/ 2Vu - Vu dx
dt D D

0
= /262ututtd33—|—/ 2—uutds —/ 2wy dx
D ap On
————

=0, (u=0 on aD)
= 2/(62utt—Au)utd33 = ® = —2/ lug|?dz < 0.
D D
Thus, E(t) < E(0), i.e. E(t) is nonincreasing.
b) From (a), we know 2£ < 0. We also have

E.(0) = /De2(u§(x,0))2—|—|Vu6(x,0)|2d33

= /62(6_af(.1‘))2—|—0d$ = /62(1_0‘)f(x)2d33—>0 as € — 0.
D

D

Since E(0) > = [ (u§)* + |Vuc|* dz, then Ec(t) — 0 as € — 0.
Thus, fD|Vu |2d33—>0 as e—>0

c) fa=1,

E.(0) = /D 21-0) (2 gy = /D F(2)dz

Since f is independent of €, E.(0) does not approach 0 as e — 0. We can not conclude
that [}, [Vu(z,t)|*dz — 0. O
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Problem (F’98, #6). Let f solve the nonlinear wave equation
ftt - frr = _f(l + f2)_1

for z € [0,1], with f(x = 0,t) = f(z = 1,t) = 0 and with smooth initial data f(z,t) =
fo(z).

a) Find an energy integral E(t) which is constant in time.

b) Show that | f(z,t)| < ¢ for all x and t, in which c is a constant.

Hint: Note that

oo 1d 2
1472 2q o)
Proof. a) Since f(0,t) = f(1,t) =0, Vt, we have f;(0,¢) = fi(1,¢t) = 0. Let
L g
P = /0 (fit = fox + FQA+f2)7Y) frda

Lrf
o 1+ f?

1 1
- / fufide—1fs fi b+ / fofun da +
0 ~ 0 0

dzx

= /01 feefe da — /01 Jaa fr du +

L

1+f2d33

_[t1o 10 10 )
= [ smUtries [ Soddes [ Sona s e

0 20t
_ ld (F2+ f2+n(1+ f?)) dx
2dt J, VPO '
Thus,
Lt 2 2
E(t) =5 (fZ+ f7+n(1+ f?)da.
0
b) We want to show that f is bounded. For smooth f(z,0) = fo(z), we have
1 1
mm:§/‘mumﬁ+ﬁumﬁ+mu+ﬂ%m%mx<m.
0

Since E(t) is constant in time, E(t) = E(0) < oco. Thus,

1 1
%/0 In(1+ f2) da < %/0 (F2 4 12+ In(1 + 7)) dx = E(t) < .

Hence, f is bounded. O
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Problem (F’97, #1). Consider initial-boundary value problem
wg + a®(z, )ug — Au(z,t) =0 reQCR" 0<t< 400
u(z) =0 x € 0f)
U(.Z‘,O):f(l‘), Ut(l‘,O):g(l‘) z €.

Prove that La-norm of the solution is bounded in t on (0, +00).
Here Q is a bounded domain, and a(x,t), f(x), g(z) are smooth functions.

Proof. Multiply the equation by u; and integrate over €Q:

Uplgt + a2u? —ugAu = 0,

/ututtdx—l—/autdx—/utAudmzo,
Q Q Q

1d ou
5%/911?@3—1—/9@ utdx— /{mut%ds + Vu-Vutdx:O,
————

=0, (u=0, z€IN)

1d
37 Qu?das—l—/ﬂa utdx—|—§£/|Vu|2dx—0

- <
B t/(ut—|—|9u|)dx /autdx 0.

Let Energy integral be

E(t) = /Q (uf + |Vul?) d

We have £ <0, ie. E(t) < E(0).
B(0) < £(0) = | (w07 + [Vu(e,0F) do = [ (g0 +]97(0)) d < o
Q Q
since f and g are smooth functions. Thus,
E(t) :/ (uf + |Vul?) dz < oo,
Q
/ |Vul?dr < oo,
Q
/u2 dr < C/ |Vul?dz < oo, by Poincare inequality.
Q Q

Thus, ||u||2 is bounded Vt. O
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Problem (S’98, #4). a) Let u(x,y, 2,t), —oo < z,y,z < 00 be a solution of the
equation

Ut + Ut = Ugy + Uyy + Uzz
u(z,y, 2,0) = f(z,y,2), (16.41)
ut(xv Y, z, 0) = g(-T, Y, Z)
Here f, g are smooth functions which vanish if \/x% + y2 + 22 is large enough. Prove
that it is the unique solution for t > 0.

b) Suppose we want to solve the same equation (16.41) in the region z >0, —oo <
xz,y < 00, with the additional conditions

u(z,y,0,t) = f(z,y,t)
uz(x,y,O,t) = g(a?,y,t)
with the same f, g as before in (16.41). What goes wrong?

Proof. a) Suppose uj and ug are two solutions. Let w = uy — ug. Then,

wy + wy = Aw,
w(x7 y7 Z? 0) = 07
wt(xv Y, z, 0) =0.
Multiply the equation by w; and integrate:

wWiWyt + wt2 = wiAw,
/wtwttdx—l—/ wfda: = /thwdas,
R3 R3 R3
1d 9 9 / ow
—— d dr = —dx — Vw - Vw, dx,
5 7 ngt x—l—/ngt T 8R3wtan T s w - Vwgdx
=0
1d 9 9 1d 9
—— d dr = —-—— d
2dt ngt .23—1—/ngt * 2dt R3|Vw| “
d
dt o (w?—|—|Vw|2) de = —2/R3wt2da: < 0,
E(t)
dFE
— < 0
= 7

E(t) < E(0) = / (wi(z,0)* + |Vw(z,0)[%) dz = 0,
R3
- B) = / (w? + |Vul?) do = 0.
R3
Thus, wy = 0, Vw = 0, and w = constant. Since w(x,y, z,0) = 0, we have w = 0.

b) O
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Problem (F’94, #8). The one-dimensional, isothermal fluid equations with viscosity
and capillarity in Lagrangian variables are

v — Uy =0

Ut +p(v)r = EUgy — (5'Urrz
in which v(= 1/p) is specific volume, u is velocity, and p(v) is pressure. The coefficients
€ and § are non-negative.
Find an energy integral which is non-increasing (as t increases) if € > 0 and con-

served if e = 0.
Hint: if 6 =0, E= [u?/2— P(v)dz where P'(v)=p(v).

Proof. Multiply the second equation by u and integrate over R. We use u, = v;.
Note that the boundary integrals are 0 due to finite speed of propagation.

uug +up(v)y = EUULy — OUVLgg,

/uut dx + / up(v), de = 5/ Uy AT — (5/ UVpae AT,
R R R R

1/ g(u2) da:—l—/ up(v) ds—l—/uzp(v) dz
2 Jr Ot OR R
—_—

=0

= 5/ Uy dT —5/ ui dr — 6 UV AT —|—(5/ Uz Ve AT,
OR R OR R
—— ———

=0 =0

1 0
—/ —(u?) da:—l—/vtp(v) da::—s/ui da:—l—&/vtvm dx,
2 R ot R R R

1[0 0

—/ —(u?) da:—l—/ —P(v) da::—a/ui dr + 6 vtvzdx—é/vrtvzdx,

2 Jr Ot R Ot R OR R
—_—

=0

1[d , ) 5[ /2

A “p A _

2/Rat(u)dx—|—/Rat (v)da:—|—2/Rat(vr)dx £ IRumda:,
2

d U 0 o 9
- - — = — < 0.
7 R<2 —|—P(v)—|—2vm>dx E/R%dx <0

2

E(t) = /IR (% + P(v) + gﬁ) da

is nonincreasing if € > 0, and conserved if € = 0. O
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Problem (S’99, #5). Consider the equation

0
= — - 16.42
Ut 8xa(u ) (16.42)

with o(z) a smooth function. This is to be solved for t >0, 0<x <1, with
periodic boundary conditions and initial data u(x,0) = ug(z) and ug(x,0) = vo(x).
a) Multiply (16.42) by us and get an expression of the form

d 1

L Puguy) =0
dt |, (ur, ta)

that is satisfied for an appropriate function F(y, z) with y = ut, 2 = uy,

where u is any smooth, periodic in space solution of (16.42).

b) Under what conditions on o(z) is this function, F(y, z), convex in its variables?
c) What a priori inequality is satisfied for smooth solutions when F' is convex?

d) Discuss the special case o(z) = a?23/3, with a > 0 and constant.

Proof. a) Multiply by u; and integrate:

upttyy = U0 (Ug) s
1 1
/ Wty AT = / upo (ug )z de,
0 0
d 1 U2 1
— —tdr = uta(uz)|(1) —/ Utpo(ug) de = &
dt 0 2 N—— 0

=0, (2r-periodic)

Let Q'(z) = o(z), then %Q(ur) = 0 (ug)uz. Thus,

1 1
® = —/0 U0 (ug) dr = —%/0 Q(uy) dzx.

d [ u?
b) We have
uj
F(ug, uz) = 5 + Q(ug).

41 For F to be convex, the Hessian matrix of partial derivatives must be positive definite.

4T A function f is convex on a convex set S if it satisfies

flaz+ (1 —-a)y) < af(z)+ 1 —-a)f(y)

foral 0 < a <1 and forall z, y € S.
If a one-dimensional function f has two continuous derivatives, then f is convex if and only if

' (x) > 0.

In the multi-dimensional case the Hessian matrix of second derivatives must be positive semi-definite,
that is, at every point x € S

y" Vif(x)y >0, forall y.

The Hessian matrix is the matrix with entries

V2 f(2)y = 21

= 3361330] ’

For functions with continuous second derivatives, it will always be symmetric matrix: fz,2; = fo;z;-
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The Hessian matrix is
F, F, 1 0
2 Ut Ut Ut Ug
F = = .
V (ut7 Ur) < Fuzut Fuzuz ) < 0 O'/(UI) )

T o2 _ 1 0 Y1 9 2
y' VF(x)y = (51 u2) ( 0 o'(uy) w ) = yi +o'(ug)yy > 0.
need

Thus, for a Hessian matrix to be positive definite, need o’(u;) > 0, so that the above
inequality holds for all .

c) We have
d 1
dt Jy

1
/F(ut,uz)dx = const,
0

F(utaur)dx = 07

1 1
/OF(ut,uz)dx = /OF(ut(x,O),uz(x,O))dx,

2

/01 (“3? + Q(uz)> dr — /01 (%0 + Q(uor)> dz.

d) If 0(z) = a%23/3, we have

+

u ui  a‘u
F(utaur) ?t"i'Q(ur) = _t+ 12I7
d [tru?  a®ul
(e dr = 0
dt/o (2 * 12) * ’
1,2 2,4
/ (u—t—l-auI)da: = const,
, V2 T
(4 +55)
2

1 2 2.4
dr = / (UL—I-GUOI)da:.
s V2 T
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Problem (8’96, #8). * Let u(x,t) be the solution of the Korteweg-de Vries equation

Up + Uy = Ugzy, 0 <2< 2,

with 2mw-pertodic boundary conditions and prescribed initial data
u(z,t=0) = f(z).
a) Prove that the energy integral

2m
Il(u):/o u?(z,t) da

1s independent of the time t.
b) Prove that the second “energy integral”,

I(u) = /027r (%ui(w,t) + éu%x,t)) dx

18 also independent of the time t.

c) Assume the initial data are such that Iy(f) + I2(f) < oo. Use (a) + (b) to prove
that the maximum norm of the solution, |u|s = sup,, |u(z,t)|, is bounded in time.
Hint: Use the following inequalities (here, |ul, is the LP-norm of u(x,t) at fized time

t):

o u: < %(|u|§ + |ug|2) (one of Sobolev’s inequalities),

o |uli < |ul3uloo (straightforward).

Proof. a) Multiply the equation by u and integrate. Note that all boundary terms are
0 due to 27-periodicity.

2
U + U Uy = Ulggy,

27 2
/ uty dr + / u2uz dzx
0 0

1d 27 ) 1 27 3

27
/ Uy A,
0

9 27

™

Uz | _/ Ugp Uy AT,
0

1d 2T ) 1 3127 1 2T )
5% o u dﬂ?+§u |0 —5/(; (ur)zdas,
1d 2 2 1 22w
5% o u” dx —§Ur|0 = 0.
2m
I (u) :/ u? dx C.
0

Thus, I(u) = o u?(x,t)dz is independent of the time ¢.

—Jo

Alternatively, we may differentiate I (u):

dh ey - d
dt - dt ),

2m 2m 2m
2 w
= / —2u%u, dx + / 2Ulygy dx = / —g(ug)z dx + 2uty, (2) —
0 0 0

2 2 2
u?dr = / Quuy de = / 2u(—uuy + Ugyy) dz
0 0

2 2w 2m 2w
= ——u30 —/0 (ui)zdasz—uﬂo =0.

3

42 Also, see S92, #7.

2T
/ QU Uy dx
0
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b) Note that all boundary terms are 0 due to 27-periodicity.

dI d [* /1 1 2m 1
d—;(u) = 4 <§u§ + gu?’) dr = / (uzurt + §u2ut> dr = ®
0 0
We differentiate the original equation with respect to x:
Ut = —Uly + Uggy
Uty = _(uur)z + Ugza-

27 2
1
® = / Ug (— (Utg) x + Uggae) dx + 5/ u2(—uuz—|—umz)dx
0 0

27 27 1 27 1 27
— / —uy (uty), dr + / Ug Uy AT — —/ wuy dr + —/ Wy py d
0 0 2 Jo 2 Jo

27 s
27 27
= —uzuuz’() —I—/ Ugz Uy AT + Uglgeg | —/ UgpUpze AT
0 0

1 /27r <U4> 1 5 o 1 /27r
— = — ) dr+ —u‘u — = 2UlpUgpy AT

2 2 4 2T
1u* 2
= Upp Uy dx — UpgpUppe AT — sl Uy Uy AT
0 0 0
2 9 2T 2
2 T
= _/ UggUpgy AT = —Ugz|g +/ UggrUgy AT = / UggplUgy AT = 0,
0 0 0
. 2 2
since — fo T U Uy AT = + fo " UpgUpay dz. Thus,

2 6
and I(u) is independent of the time ¢.

1 1
Bw) = [ (Gudw.0)+ gue, ) do = C.
0
c) From (a) and (b), we have
27
hw = [ e = [lulf
0

2 6

Using given inequalities, we have

27
1 1 1 1
Bw = [ (gt ge¥) do = gl + Gl

™

" (1a(u) + 215(u) — 3] Jul1})

s s s s s s
< Shw)+3h(w) + llulllulle < Fh(u)+ 3h(w) + gh@)lule
= C+ Ci|ul|so-

= lul3 < O+ Cillulls,

= |ulleo < Cs.

s
lulle < g lullz+ ullz) <

Thus, ||u||s is bounded in time. O

Also see Energy Methods problems for higher order equations (3rd and
4th) in the section on Gas Dynamics.
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16.7 Wave Equation in 2D and 3D
Problem (F’97, #8); (McOwen 3.2 #90). Solve

Ut = Ugg + Uyy + Uzz
with tnitial conditions

_ .2 2 _
U(.T,y,Z,O)—.Z‘ +y7 ut(x,y,z,O)—\O,

g(z) h(z)
Proof.
[ We may use the Kirchhoff’s formula:
10 / t
uw(x,t) = ——|t gz + cté dS)—I——/ h(x + ct&) dS
@0 = (e[ oregas) + [ beragas

10
- Eﬁ(t/m_l ((z1 4 ct€1)® + (w2 + ct€a)?) dS&) +0 =

[ We may solve the problem by Hadamard’s method of descent, since initial con-
ditions are independent of z3. We need to convert surface integrals in R3 to domain
integrals in R?. Specifically, we need to express the surface measure on the upper half
of the unit sphere Si in terms of the two variables & and &;. To do this, consider

f&,&) = /1 -6 —¢€  over the unit disk & + &3 < 1.

d&id§
dSe = \/1+(f§1)2—|—(f§2)2d51d£2 _ \/ﬁ
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w(zy, wat) = Lﬁ@ / 9(371+ct£1,x2+ct£2)d£1d£2>
Aot Jarga V1-& &
Lt (2 / h(z1 + ct&r, 2o + ctlp) d51d52>
Am\ Jere < V1-& -6
10 ( / (21 +t€1)% + (22 + t&)? )
= 2t d§idée ) + 0
4ot \" Jeiga V1= -6
10 (t / a3 + w18y + 1263 + a3 + 2a9tEy + 1263 i d£>
= 5_ A 1
271’875 §2+§2<1 1/1_51 52
10 (/ tr? + 221261 + 13€2 + tad + 2aot2&y + 1362 ded )
= 3 _a: 14GQ2
27T at §1+§2<1 V 1 - 51 52
1 (/ o3 + dwqt&y + 3t2F + 23 + daotés + 31383 dt,dés >
- 5_ 1
2m\ Jezrez< VI-6 -6
1 (/ (23 4 22) + 4t (211 + 228o) + 32(E7 + &3) d, de )
- 5_ 1062
2m \ Jezpez<a V1-& —&
1 USTLS 4t 161 + 1282
= —(z} +$2)/ —F— t —/ — = d61d&
2 grg<aV1-6§ -8  2mJarga V1-6 -8
1 1
3t g+8
+ — ————= _d&idéy = ®
2m Jereg<r V11— 86— &
—
1 dé1dé, 1 2 rdrdf
3+ —x2+x2/ —:—x2+x2/ /
T g Visag-g w0 b i
2 du do 9
= x1+x2/ —2/ — (uzl—r, du:—2rdr)
- — (2% + 23) / 1d9 = x% 4 23
= o .'L'l To : = To.
4t 11 + 1282 / / Vg 37151 + 37252
L+ — ————_d&1déy = d§1d&o
2m Jerga 16 - & e/ 1-6-
= 0.
2 2 2 2 27
3 SF _Gits +252 _dédey = i / / (rcosf)” T;m 0 1 ard
21 Jezrez<r /1 - 51 & Vi—r?
3t2 2
= drdf wu=1-7r% du=—2rdr
/ V1—r? ( )
3t2 27r 9 t2
= — [ Zdf = — d0:2t2.
2 0 3 ™ Jo

® = u(w,me,t) = CHACHACT 22 + 23 +2t%

[ We may guess what the solution is:

1
u(z,y,2,t) = 5[(x+t)2+(y+t)2+(x—t)2+(y—t)2] = 22 + % + 262
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Check:

22 4+y% v
(x+t)+@y+t)—(z—1t)—
0. vV

4,

(x+1t)+ (x — 1),

2,

(y+1t)+y—1),

2,

0,

Ugpg + Uyy + Uzze V'

Igor Yanovsky, 2005
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Problem (S’98, #6).

Consider the two-dimensional wave equation wy = a?/w, with initial data which van-
ish for x?+y? large enough. Prove that w(x,y,t) satisfies the decay |w(z,y,t)] < C-t~ 1.
(Note that the estimate is not uniform with respect to x, y since C' may depend on x, y).

Proof. Suppose we have the following problem with initial data:
ug = a’Au zeR? t>0,
u(z,0) = g(x), w(x,0)=h(z) r € R?

The result is the consequence of the Huygens’ principle and may be proved by Hadamard’s
method of descent: %3

wt) = +2 2t/ (@1 + ctéy, my + ctly) dE1déy
) 4 Ot 24e2<1 Ji—e€-¢&

G (2 / h(w1 + ct€y, my + cts) d51d52>
A\ g Ji-&-&

_ L th(z +&) + g(z + &) d&rdé
2 |€|2<c2t2 1— % 242

P L[ Tl s
2w €|2<c2t2 \/@ 242

For a given x, let T'(z) be so large that T" > 1 and supp(h + ¢g) C Byp(z). Then for
t > 2T we have:

1 tM + M +2Mct d&1dés
|U(.Z‘,t)| = 5 212
2w |€|2<c2T? 1 — c2T2 c“t
c2T?4
B 7TC2T2|:< M ) 1 ( M ) 1 +2Mc
27 3/4/ ¢t 3/4) ATt 2t )
= wu(x,t) < Cy/t fort>2T.
For ¢t < 2T
1 2TM + M + 4McT d&1dés
|u(a:,t)| - % 2 0242 HE c2t2
|€[2<c?t 1— —
1 ct d 2t2
= —(2TM+ M+ 4Mct)27r/ rdr/ct”
2 0 _ 2
ct?
 M@T +1+4cT) /1 —du  MQ2T+1+ 4cT)2 o MQ@T +1+4¢T)2T
N 2 0 u1/2 N 2 - t '

Letting C' = max(Cy, M (2T + 1 + 4¢T')2T), we have |u(zx,t)| < C(z)/t.

e For n = 3, suppose g, h € C5°(R3). The solution is given by the Kircchoff’s
formula. There is a constant C so that u(z,t) < C/t for all x € R? and t > 0. As
McOwen suggensts in Hints for Exercises, to prove the result, we need to estimate the

43Nick’s solution follows.
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area of intersection of the sphere of radius ¢t with the support of the functions g and
h. O
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Problem (S’95, #6). Spherical waves in 3-d are waves symmetric about the origin;
i.e. u = wu(r,t) where r is the distance from the origin. The wave equation

Upp = A u
then reduces to
1 2
_2utt == urr + _UT' (1643)
c T

a) Find the general solutions u(r,t) by solving (16.43). Include both the incoming waves
and outgoing waves in your solutions.
b) Consider only the outgoing waves and assume the finite out-flux condition

0 < lim r2ur < 00
r—0
for all t. The wavefront is defined as r = ct. How is the amplitude of the wavefront

decaying in time?

Proof. a) We want to reduce (16.43) to the 1D wave equation. Let v = ru. Then

Vit = TUt,
Uy = TUp + U,
Vppr = TUpp + 2Up.
Thus, (16.43) becomes
11 1
S50t = —Urp,
ccr r
1
SVttt = Upr
c? ’
2
Vit = C Upp,

which has the solution
v(r,t) = f(r+ct) + g(r—ct).
Thus,

u(r,t) = %v(r, t) = %f(r +ct) + %g(r —ct)

~~

incoming, (¢>0)  outgoing, (¢>0)

b) We consider u(r,t) = Lg(r — ct):
0 < lin% r?u, < 00,

r—

1 1
: 2 (2 I(. - o
714111%1" (Tg (r —ct) T2g(’l” ct)) < oo,

}i_)rr(l) (rg'(r—ct) — g(r—ct)) < oo,
—g(—ct) < oo,
—g(=ct) = G(t) < oo,

g(t) = —G(_i).

C

o o o o
N NN A



Partial Differential Equations Igor Yanovsky, 2005 193

The wavefront is defined as r = c¢t. We have

u(rt) — %g(r—ct) _ —%G(T:Cd) _ —20(0).
w0l = <] 260)|

The amplitude of the wavefront decays like % O
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Problem (S’°00, #38). a) Show that for a smooth function F on the line, while
u(x,t) = F(et + |x|)/|z| may look like a solution of the wave equation uy = c*Au
in R3, it actually is not. Do this by showing that for any smooth function ¢(x,t) with
compact support

/ () (b — D) dadt = A / (0, 1) F(ct) dt.
R3 xR R

Note that, setting r = |z|, for any function w which only depends on r one has

Aw = r~2(r2w,), = wy, + %wr.

b) If F(0) = F'(0) = 0, what is the true solution to uy = Au with initial conditions
u(z,0) = F(lz])/|z| and u(x,0) = F'(|z|)/|=|?

c) (Ralston Hw) Suppose u(x,t) is a solution to the wave equation uy = c*Au in
R3 x R with u(x,t) = w(|z|,t) and u(x,0) = 0. Show that

F(|z| + ct) — F(|z| — ct)

u(x,t) = 7]

for a function F' of one variable.

Proof. a) We have

/R3/RU(¢tt @) dxdt lg%/Rdt/mxu((ptt ) dx
¢

ou
— 1 YN Ty w2 as|.
lim Rdt[ |z|>e¢(Utt w) da?—l—/m_E anqb um as

The final equality is derived by integrating by parts twice in ¢, and using Green’s
theorem:

At —uls - AREAY
/Q(v u— ulv) dx /aQ(van uan)ds

Since dS = €%sin¢/d¢'dd and 8% = —%, substituting u(z,t) = F(|z| + ct)/|z]

gives:
A = .
/3 / u (u ¢) dzdt / AT pF(ct) dt

Thus, u is not a weak solution to the wave equation.

b)
¢) We want to show that v(|z|,t) = |z|w(|x|,t) is a solution to the wave equation in
one space dimension and hence must have the from v = F(|z|+ ct) + G(|z| — ct). Then
we can argue that w will be undefined at z = 0 for some ¢ unless F(ct) + G(—ct) =0
for all t.

We work in spherical coordinates. Note that w and v are independent of ¢ and 6. We
have:

1
v(r,t) = Ehw = A= (rw,), = c2—2(2er + 72wy,

1
r2
= rwy = Erwy, + 2w,.

Thus we see that vy = c2vr,a, and we can conclude that
v(r,t) = F(r+ct)+G(r—ct) and

F(r+ct)+ G(r —ct)

w(r,t) = . .
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lim, o w(r,t) does not exist unless F(ct) + G(—ct) = 0 for all ¢. Hence

wirt) = F(ct—l—r);lﬂ—G(ct—r)’ and
w(t) = F(ct—|—|x|)|—;—|G(ct—|x|)'
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17 Problems: Laplace Equation

A fundamental solution K (z) for the Laplace operator is a distribution satisfying *4
AK(x) = ()

The fundamental solution for the Laplace operator is

1 .

5r lOg |.Z‘| ifn=2
K(z)=1*? 1 2=n

g ifn >3,

(2—n)wn

17.1 Green’s Function and the Poisson Kernel

Green’s function is a special fundamental solution satisfying 4°

(17.1)

AG(z,€) =0(x) for x€Q
G(z,§)=0 for x € 09,

To construct the Green’s function,

[cbnsider we(x) with Awe(z) = 01in Q and we(x) = —K(z — ) on 0%

[donsider G(z,¢) = K(x — £) + we(x), which is a fundamental solution satisfying
(17.1).

Problem 1. Given a particular distribution solution to the set of Dirichlet problems

Aug(z) = 0¢(x)  for x€Q
ug(x) =0 for x € 09,

how would you use this to solve

Au =0 for xe€Q
u(z) =g(x)  for x € Q.

Proof. u¢(z) = G(x,§), a Green’s function. G is a fundamental solution to the Laplace
operator, G(z,&) = 0, x € 99). In this problem, it is assumed that G(z, £) is known for
Q. Then

oG
u(§) = / G(JTaf)AUde-i—/ u(x)ﬁdsr
Q o0 ong
for every u € C%(Q). In particular, if Au = 0 in Q and u = g on 95, then we obtain

the Poisson integral formula

ue) = [ 20 gy as.

4We know that u(x) = Jen K(z—y)f(y)dy is a distribution solution of Au = f when f is integrable
and has compact support. In particular, we have

u(z) = K(z —y)Au(y)dy  whenever u € C5°(R"™).
]R‘n.

The above result is a consequence of:

u(z) = ., Srz—yuly)dy = (AK)*xu = K=x*(Au) = ; K(z —y) Au(y) dy.

45Green’s function is useful in satisfying Dirichlet boundary conditions.
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where H(z,§) = %If) is the Poisson kernel.

Thus if we know that the Dirichlet problem has a solution u € C?(Q), then we can
calculate u from the Poisson integral formula (provided of course that we can compute

G(z,¢)). O
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Dirichlet Problem on a Half-Space. Solve the n-dimensional Laplace/Poisson
equation on the half-space with Dirichlet boundary conditions.

Proof. Use the method of reflection to construct Green’s function. Let 2 be an
upper half-space in R™. If z = (2/, z,,), where 2’ € R"~!, we can see

|o" — & = |2 — €*|, and hence K(2' —¢&) = K(2' —€%). Thus
|G, ) =K@—¢§-K@z-¢)

is the Green’s function on Q. G(z, ) is harmonic in 2,

and G(x,£) = 0 on 09Q.

To compute the Poisson kernel, we must differentiate G(x, )
in the negative x, direction. For n > 2,

0 n—E&n _
9 Ra—g) = g,

o

1

ox, Wn,

e

so that the Poisson kernel is given by

0 2571 -n n—1
—a—%G(%f)‘znzo = Exl—ﬂ , for 2’ e R"7.

i

Thus, the solution is

u(§) = /89 9G(,§) g(x)dS, = &/[R (@) dx’.

ony, Wp Jre-1 |z’ — &7

If g(2') is bounded and continuous for 2’ € R™"1, then u() is C* and harmonic in R”
and extends continuously to R’ such that u(¢") = g(¢').
U

L 2
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Problem (F’95, #3): Neumann Problem on a Half-Space.
a) Consider the Neumann problem in the upper half plane,
Q={z=(z1,22) : —00 < w1 <00, T3 >0}:

AU = Ugy gy + Ugyzy, =0 T € Q,

urz(xlvo) :f(xl) -0 < ] < oQ.

Find the corresponding Green’s function and conclude that

ue) = u(en&) = o [ T inf(o - )2+ &) f(a) dmy

21 J_

s a solution of the problem.

b) Show that this solution is bounded in Q0 if and only if ffooo f(x1)dxy = 0.

199

Proof. a) Notation: x = (z,y), & = (20,%0). Since K(x—§¢) = =loglz—¢|, n=2.

T

[ Hirst, we find the Green’s function. We have

Ko =€) = 5-log /o =202 + (y — )",
Let G(z,&) = K(x — &) + w(x).
Since the problem is Neumann, we need:
AG(.’E,f) = (5(:’13 - 5)7
85 ((,0),8) = 0.

Gl(@9),6) = 5-loav/T— TP T (5~ o + w((w9),),

oG _ 1 Y — Yo

a_y((xvy)vg) - o (x_xo)g_i_(y_yo)g +wy((x7y)7£)7

oG 1 Yo _

a_y((xvo)vf) - _271' (1'_~T0)2+yg +Wy(($70)af) = 0.
Let

w((@,9),6) = 5-logV/@—2) + (y+w)?  Then,

oG 1 Yo a Yo _

a—y((x,O),é") = _27r(x—x0)2+yg+27r(x—x0)2+yg = 0.
Thus, a =1.

1 1

Gl(w,4).) = 5-log /=202 + (5~ 0 + 5-logV/[z — 202 + (T 40"

46

[—Qonsider Green’s identity (after cutting out B.(§) and having € — 0):

/(uAG—GAu)da: - / (u%—G@>ds
Q ~~ o0 \812_/ on
—0 5

46Note that for the Dirichlet problem, we would have gotten the “” sign instead of “+” in front of

w.
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Since g—z = a(a_“y) = —f(x), we have

[usa-ga = [ " G((2,9).6) f(a) d.
Q —00
u(é) = / G((2,9).6) f(x) d.

For y = 0, we have

1 1
G((z,y),8) = %bg\/ (x —20)2+ 92 + %bg (x—20)? + 43

1
- %2log (z —x0)2 + 43
1 2, .2
= %bg [(x—xo) —I-yo].
Thus,
1 o0
u©) = 5 [ lorlw—20)?+ 4] fle)dr. v

b) Show that this solution is bounded in Q0 if and only if ffooo f(x1)dxy = 0.

Consider the Green’s identity:

/Audmdy = @ds = — @dx = flx)dx = 0.
Q a0 On —0 Oy —o
Note that the Green’s identity applies to bounded domains €.

R 27

0
/ fdui+ [ Z=Rdo = 0.

—R 0 or

777 H
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McOwen 4.2 # 6. For n = 2, use the method of reflections to find the Green’s
function for the first quadrant Q = {(x,y) : x,y > 0}.

Proof. For x € 09,

o — €O Jo = €2 = |z — D] Jo — €0,
| 5(0 | |J;‘—f(1 | |33_5(3)|' y
|z — €3] L0 o
But £© = ¢, so for n = 2, \‘\\ e
1 o — €D - |z — €O L
G(.’L‘, 5) - % log |x £| - _1 | - 5(2)| . ”, - X \\\
G(x,£) =0, z € 09. 3(2)/ - @
O
Problem. Use the method of images to solve by
AG = 6(x — &) =%, 30) - - 3%=o.y0)
in the first quadrant with G = 0 on the boundary.
X
Proof. To solve the problem in the first quadrant
we take a reflection to the fourth quadrant O gyy) - Doz
and the two are reflected to the left half. e e e

AG = 3z —€9) =0z — W) — bz — @) + 5(x — €).
o — 0o — €]

(
1
=
R P reyze]
1
2

V@ —20)2+ (y—y0)2 V/(z +20)2 + (y + v0)?
Ve =202+ (y+v0)2 /(@ +20)% + (y — )2
Note that on the axes G = 0. O
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Problem (S°96, #3). Construct a Green’s function for the following mixed Dirichlet-
Neumann problem in Q= {x = (v1,22) € R? : 21 > 0, 19 > 0}:

Pu %
A= —+— = [, €0,
" Ox? * ox3 ! ’
Ug,(21,0) = 0, x1 >0,
u(0,z9) = 0, x9 > 0.

Proof. Notation: z = (z,y), &= (xg,y0). Since K(x—§) = %logkr —¢|, n=2.

Ko=) = 5-log /(= 202 + (y — )%
Let G(z,€) = K(z — &) + w(x).

At (0,y),y >0,
G((0,9),¢) = %log\/xﬁﬂy—yo)%w(&y) = 0.
Also,
1
Gy((z,y),&) = i( 237)2(1/ (yo) )2+wy($,y)
L J =90 wy (T
2w (@ —20)% + (Y —wo)? Tyl y).
At (2,0), z >0,
Gy((.l‘,()),f) = —%(w_l‘zﬁ —|—’LUy(.Z‘ 0) = 0.
We have
w((@y).§) = 5-logv/(w+w) +(y— w)?

b
+ %log\/(w— 20)? + (y + v0)?

c
+ oy logv/(z + 20)2 + (y + v0)2.

Using boundary conditions, we have

0 = G((0,9),¢) = —log + (y — yo)? + w(0,y)
= —log\/ (¥ — vo) +—10g\/x0 (¥ — v0) +—10g\/x0 (y + vo) +—10g\/x0 (y+yo)?
Thus, 1, ¢=—b. Also,
0 = Gy((2.0),6) = o 4w (2,0)
v 21 (z —x0)2 + Y2 Y
1 Yo (—1) Yo b Yo (—b) Yo

- + + .
21 (z — 20)2 + 43 2 (x4z0)2+ 93 27 (z—20)2 4 Y3 2r (z+20)? + Y2
Thus, b=1, and

Gl(#1).8) = 5-log V=202 + (s~ w0 + wl(@) = o |log /G~ 20 + (s~ y0)?
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—log\/(z + 20)2 + (y — y0)® +log v/ (z — 0)2 + (y + y0)® — log v/ (z + 20)? + (y + 10)? |-

It can be seen that G((x,y),&) =0 on x = 0, for example. O
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Dirichlet Problem on a Ball. Solve the n-dimensional Laplace/Poisson equation on
the ball with Dirichlet boundary conditions.

Proof. Use the method of reflection to construct Green’s function.

2
Let Q@ = {x € R" : |z| < a}. For £ € Q, define £* = &? as its reflection in 92; note
¢ Q.

|.’L‘—£*| _a B B B @ .
¢ = i for |z| = a. = |lz—¢& = . |z — &% (17.2)
From (17.2) we conclude that for z € 9Q (i.e. |z| = a),
K(.’L‘ _ 5) _ 27 Oigza |.’L‘ 5 |> IIn (173)
(ﬁ) K(x—¢) if n > 3.
Define for =, £ € Q:
Gla.6) = K(a:—f)—%lof_g%x—f?) .jfn:2
K(x—¢) - ()" K¢ ifn > 3.

Since £* is not in €2, the second terms on the RHS are harmonic
in x € Q. Moreover, by (17.3) we have G(z, &) = 0 if z € 99Q.
Thus, G is the Green’s function for €.

_ [ G oo at g 9(x)
we) = [ HE giwyas, - L | 5.

ong awn, x|=a |.1‘ - £|n
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17.2 The Fundamental Solution

Problem (F’99, #2). [ Tiven that K,(x —y) and Ky(x — y) are the kernels for
the operators (A — al)™t and (A — bI)~% on L*(R™), where 0 < a < b, show that

(A —al)(A —=bl) has a fundamental solution of the form c1 K, + coKp.
[Wse the preceding to find a fundamental solution for A* — A\, when n = 3.

Proof. METHOD L[]

1
(A —alu=f (A =blu=f
u= K, xf u= Ky xf
—~ ~—
fundamental solution & kernel
= u=K,f i=Kyf if uwe L?
(A —alyu=(—|¢f —a)i=f (A —blyu=(—|¢*-b)a=f
N 1 ~ N 1 ~
e = —— -
=~y © T~ 1
— 1 —~ 1
K,=———— Ky=—
- &+a b E+b
(A —al)(A=bl)u = f,
(A% = (a+b)A+abl)u = f,
1 —~ o o~
u= = Knew s
~ 1 1 1 1 1 -~ ~
Knew = = - = K _Ka s
(€2 + a) (€2 +b) b—a 52—|—b+£2—|—a> o )
1
Knew = —(K _Ka s
b—a( b )
1 B 1
DTV T Th—a
[ = 3 is not relevant (may be used to assume K,, K} € L2).
For A? — A, a =0, b= 1 above, or more explicitly
(A2_A)u = f7
E+&u = f
~ 1 ~
i = ol
(&4 +¢€2)
K = = = + = = K1 — K().

(E1+e2) e+l e+1 e
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METHOD [
e For u € C§°(R™) we have:

u(z) = - Ko(z —y) (A —al)u(y)dy, L[]

u(z) = - Ky(z —y) (A =bl)u(y)dy. L1

Let
u(z) = c(A—=0bl)p(x), for [
u(x) = co(AD—al)p(x), for [

for ¢(x) € C3°(R™). Then,

ci(A—bl)p(x) = - Ko(z —y) (A —al) er(A = bI)¢(y) dy,

(A —al)p(x) = - Ky(x —y) (A = bI) co(A — al)p(y) dy.

We add two equations:
(c1 + c2)Ad(x) — (c1b + caa)p(x) = / (1Ko + coaKy) (A —al) (A —bI) ¢(y) dy.
If ¢4 =—cy and —(c1b+ coa) =1, thatis, ¢ = ﬁ, we have:

oa) = [ e = K) (5= al) (5 b)) dy

na—
which means that —1;(K, — K;) is a fundamental solution of (A — al)(A —bI). v
o N2 AN = A(A—-1) = (A—=0I)(A—11).
(A —0I) has fundamental solution Ko = —4= in R3.

To find K, a fundamental solution for (A —17), we need to solve for a radially
symmetric solution of

(A —1DK = &

In spherical coordinates, in R3, the above expression may be written as:

2
K”+;K’—K =0. ®

Let
1
K = -
L),
1 1
K = —u' - Sw,
r r
1 2 2
K" = —w'— Suw' + Fw.
r r r

Plugging these into ®, we obtain:

1, 1
—w' ——-w = 0, or
r r

w'—w = 0.
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Thus,
w = cre +ece ",
1 e’ e "
= —w('r) = c1— + 2 v
r r

Suppose v(z) =0 for |z| > R and let Q = Br(0); for small € > 0 let
Qe = Q — B(0).
Note: (A —T)K(|z])=0 in Q. Consider Green’s identity (09 = 0Q U dB(0)):
ov 0K (|z|) / ov 0K (|z|)
_ — = K =
/ (K(ah o0 — vAK(2)) d /aQ (ke 5o — v 20 a5 4 o (k) 52— v ) g

€

[

.

=0, since UEO for x>R
We add — [, K(|z|)vdz + [, vK(|z|)dr to LHS to get:

[ (ka0 - vo - nren) e = [ (a5 - 0250 as

€

=0, in Q¢

r -

lgré[ ; K(|x|)(A—I)vdx] = /QK(|;1:|)(A—I)vdx. (Since K('I”):Cle?—i—cger

is integrable at = = 0.)

On 9B.(0), K(|x|) = K(¢). Thus, 47

e—E

. 47762max|Vv| — 0, as € — 0.

ov ov ef
K(lx]) =—dS| = |K(e —\dS < |ez— +ec
[, o Kb Geas| = o] [ [Z]as < [a e,

OK(z)) o _ 1 R
/8B6(0)U($) on a5 = /836(0) [;(_Cle + co€ )+€—2(Cle + coe )}v(x)ds

1 1
—( —cref + cze_ﬁ) + —2(616E + 626_6)} / v(z)dS
€ HBc(0)

€ —€ 1 € —€
— c1ef 4 coe”) + 6—2(616 + coe )} /aBE(O)v(O) ds

(
+ E( —c1ef + coe) + %2(016E + cze_ﬁ)} /8B o [v(z) — v(0)]dS

_
€
— A4r

Thus, taking c¢; = co, we have ¢ =co = —8%, which gives

/QK(|;1:|)(A—I)vdx _ 15%/9 K(lz))(A = Dvde = v(0),

TIn R?, for |z| = e,

K(z)) = K(e) = C1%+cf€ .
OK (|z]) OK (e) e e e e € 1 . e 1 . e
o = e = a(Tog) el ) = f(ac e + (e +ae),

since n points inwards. n points toward 0 on the sphere |z| =€ (i.e,, n = —x/|z]).
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that is K(r) = —%ﬁ(% + e;—T> = —cosh(r) is the fundamental solution of
(A=1T).

By part (a), ﬁ(Ka — Kp) is a fundamental solution of (A —al)(A —bI).

Here, the fundamental solution of (A —0I)(A—11) is 2 (Ko— K) = —( — =+

= cosh(r)) = = (1 — cosh(r)). =
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Problem (¥’91, #3). Prove that

1 cosk|x|

Cdm |7

is a fundamental solution for (A + k?) in R® where |z| = /2% + 23 + 22,
i.e. prove that for any smooth function f(x) with compact support

1 cosklr — y|

u(x) = T s ﬂf(y) dy

is a solution to (A + k*)u = f.

Proof. For v € Cg°(R™), we want to show that for K(|z|) = 417r COT;“"’”"
we have (A + k?)K =6, i.e.

K(|z|) (A + E*)v(z) dz = v(0).

Rn
Suppose v(z) =0 for |z| > R and let Q = Br(0); for small € > 0 let
Q. = Q — B(0).

(A4 E*)K(|z]) = 0 in Q.. Consider Green’s identity (92 = 9Q U 0B(0)):
ov 0K (|z|) / ov 0K (|z|)
K(jz)Av — vAK _ K(lz) 28 — k() 28— <
[ (e = varin)as = [ (ke G~ o2 as 4 [ (el G2 0 D)

=0, since v=0 for >R

We add [, K K(|z|)vdr — [, vk* K(|z])dz to LHS to get:

/ (Kah(a+ Ky = (A fok%ﬂ;uxl)) i~ [ o (rc(lal) 22— 2Dy 4
cos kr

1im[ o K(|x|)(A—|—kz2)vda¢] = /QK(|;1?|)(A—|—I<:2)vdx. (Since K(r)=—

e—0

On 0B(0), K(|z|) = K(e). Thus, *®

ov
/8B6(0)K(|x|)%ds‘ = |K()] 05.(0) ‘dS < ‘_

“8In R?, for |z| = e,

is integrable at = = 0.)

cos ke

‘47‘1’6 max|Vv| — 0, as ¢ —0.

cos ke
K(la) = Ko = -2
e
0K (|z]) 0K(e) 1 ksinke coske\ 1 . cos ke
on o or 47r( € €2 ) B 47r6(l<:smk:e—|— )7

since n points inwards. n points toward 0 on the sphere |z| =€ (i.e,, n = —x/|z]).
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/ ( )OK(|$|)dS _ / —<k‘Slnk‘€—|—COSk6>’U( ) dS
9B (0) on oB.(0) 4me
1
= ——(kzsmkze—l— COSke)/ v(x)dS
dme € 9B.(0)
— —i<kzsmkz +cosk‘€>/ v(0)dS — —(k:smk: —|—COSk6>/ v(z) —v(0)] dS
Ame € 9B.(0) me € dB.(0)
B 1 . os ke 9 cos ke 9
= (k; sin ke + ) (0) 4me” — - (k: sin ke + ) [v(x) —v(0)] 4me

—0, (v is continuous)

—  —coskev(0) — —v(0).

Thus,

/K(|x|)(A—|—kz2)vda¢ —tim [ K(2))(A+ K)ode = v(0),
Q e=0Jq.

that is, K(r) = —£ " s the fundamental solution of A + k2. O

T

Problem (F’97, #2). Let u(x) be a solution of the Helmholtz equation
Au+ k*u =0 rcR3

satisfying the “radiation” conditions

1 0 1
uzO(—), i ku—0<—2>, |z| =r — oo.
r or r
Prove that uw = 0. ‘
Hint: A fundamental solution to the Helmholtz equation is ﬁe”ﬂ"

Use the Green formula.

Proof. Denote K (|z|) = £=¢'*", a fundamental solution. Thus, (A + k%) K = 4.
Let z¢ be any point and Q = BR(.Z‘()) for small € > 0 let

QE =0 - BE(.Z‘()).
(A4 E*)K(|z]) = 0 in Q.. Consider Green’s identity (9 = 9QU 0Bc(x0)):

/ (u(A—I—k2)K—K(A—|—k2)u>dx :/ ( %—f—KgZ)ds + /aBe(zo)( zf

€

K@)ds.

on

~~ ~~

=0 —u(zo), as e—0

(It can be shown by the method previously used that the integral over B.(z¢) ap-
proaches u(xg) as € — 0.) Taking the limit when ¢ — 0, we obtain

0K ou 0 etklz—wol etkle=wol oy,
— = — - K = — — — ) dS
u(@o) / ( on 8n> ds /89 (u ordrle —xo|  4m|z — x| 8r>
B eik|r—zo| eik|r—zo| eik|r—zo| ou
= — — ik — — —ik as
/aQ (u [8r47r|x—x0| ! 47T|x—x0|} Am|x — o [81" ! u})

~~

= O(ﬁ); (can be shown)
- ofE)-0(k) et -o(4) o{pm) e - o
Taking the limit when R — oo, we get u(xg) = 0. O
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Problem (S°02, #1). a) Find a radially symmetric solution, u, to the equation in
R?,

1
Au=—1
u = 5loglal,
and show that v is a fundamental solution for A?, i.e. show
#(0) = / ul%¢ dx
R2

for any smooth ¢ which vanishes for |x| large.
b) Explain how to construct the Green’s function for the following boundary value in
a bounded domain D C R? with smooth boundary 0D

w=0 and a—w:O on 0D,
on

N*w=f inD.

Proof. a) Rewriting the equation in polar coordinates, we have

1 1 1
Au = ;(rur)r—l—T—ngg = %logr.

For a radially symmetric solution u(r), we have ugg = 0. Thus,

1(1"u) = ilo r
Pl =5 0BT
(rur)r = —rlogr
21 2
ru, = _/rlogrdr = r 40g’l”_;”_’
m m
rlogr
ur =
= —/rlogrdr——/rdr = (logr—l)
u(r) = . (logr—l)

We want to show that u defined above is a fundamental solution of A? for n = 2. That
is

/RzuA%da: = v(0), v e Cg°(R™).

See the next page that shows that u defined as u(r) = &r?logr is the

Fundamental Solution of A2. (The —8%1"2 term does not play any role.)

In particular, the solution of
Nw = f(x),
if given by

o) = [ =)ty = o [ o=y (logle =l = 1) f0)
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b) Let

K(z &) = |z — € (logle — €] - 1).
We use the method of images to construct the Green’s function.
Let G(z,§) = K(z —&) +w(z). Weneed G(z,§) =0 and g—g(x,f) =0 for x € 90.
Consider we(x) with A?we(z) =0 in Q, we(zr) = —K (2 — &) and %(w) = —%—I;(x —&)
on 0f). Note, we can find the Greens function for the upper-half plane, and then
make a conformal map onto the domain. ]



Partial Differential Equations Igor Yanovsky, 2005 213

Problem (8’97, #6). Show that the fundamental solution of A? in R? is given by

1
V(xlva) = gﬁln(r), r= |.Z‘ - £|7

and write the solution of
A2’LU = F(.Z‘l, .1‘2).

Hint: In polar coordinates, /\ = %%(r%) + 7}2 5025 Jfor ezample, AV = =(1+1n(r)).

Proof. Notation: z = (x1,22). We have
1

V(x) = g?ﬁ log(r),

In polar coordinates:  (here, Vyg = 0)

AV = %(rvr)r - %(r(%ﬁlog(r)))r - $%<r(2rlog(r)+r>>

11 11
(r og(r)—l—r)r 87rr(r+ rlogr)

T

8rr

1
= %(1 +logr).

The fundamental solution V(z) for A2 is the distribution satisfying: A2V (r) = 4(r).
1 1 11
2 — — JE— = — = —
NV = AAV) = A<2 (1—1—10gr)> 27TA(1 +logr) 27TT(T(1 +logr),),.

27T’I”<
Thus, A2V (r) = §(r

27T r
=V is the fundamental solution. v/

) =0 for r #0.
)

The approach above is not rigorous. See the next page that shows that
V defined above is the Fundamental Solution of AZ.

The solution of
A?w = F(z),
if given by

o) = [ V- sy = o [ oy lole — ] P dy
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Show that the Fundamental Solution of A? in R? is given by:
1
K(x) = 8—r2ln(r), r=lr—¢, (17.4)
m

Proof. For v € C§°(R"), we want to show

K(|z]) A%(z) de = v(0).

Rn
Suppose v(z) =0 for |z| > R and let Q = Br(0); for small € > 0 let
Q. = Q — B(0).

K(|z|) is biharmonic (A2K (|z|) = 0) in Q.. Consider Green’s identity (992, = 9 U
0B(0)):

K(|1‘|)A2’L)d1‘ = /aQ (K(|x|)aaAnv—vaA§;§|x|))d5 + /8Q (AK(|$|)2_Z _ A’UOK;IL.Z‘D)CZS

=0, since v=0 for >R

Qe

0 v OAK (|x]) / ov 0K (|x|)
+ / K(|z —v ds + AK(|z|)=— — Av ds.
OB (0)( (| |) 8n 8n ) 336(0)( (| |)8n 8n )
lin% [/ K(|z)) A% dx] = /K(|x|)Av2 dx. (Since K(r) is integrable at x = 0.)
=0 [ Ja. Q

On 0B.(0), K(|z|) = K(¢). Thus, 4

[OYANY
| K S as
8B.(0) n

0Av

I = ’K(e)’ ‘dS < ’K ’wne max’V Av)’

9B(0) x€eq)

|—e log(e |wnemax|v (Av) |—> 0, as € — 0.
z€9Q

() Mds — _Lv(;r) ds
0 2
9B.(0) n dB:(0) 4T€

- / Lo dS+/ ~ L @) —v(0)] ds
9B.(0) 2me€ oB.(0) 2me
1
= —2—7T6v(0) 27T€—r€%lg}%0 lo(z) = v(0)] = —v(0). v
—0, (v is ;ntinuous)
/ AK(|x|)@dS' |AK (e)| @‘ds < |L(1+loge)|27rema3<|Vv| — 0, as e — 0.
9B.(0) on 9B.(0) 1 On 27 2€Q

0K (|z|) / 1 1
Ay ————=dS = — —e¢loge — —¢)Av(x)dS
/8B6(0) on 9B(0) ( ar 8¢ B ) (@)

< —’10ge—|——’ 2re max |Av| — 0, as e — 0.
2€dB.(0)
“ONote that for |z| =,
K(lz]) = K(e) = ieQIOge7 AK:i(l—kloge)7
8T 2m
OK (|z|) 0K (e) 1 1 ONK ONK 1

= - = ——¢loge — —¢, = - = ——.

on or 4m 8m on or 2me
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N /K(|x|)A2vda¢ - lin%/ K(|z))A2vdz = v(0).
Q € Qe
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17.3 Radial Variables

Problem (F’99, #8). Let u = u(x,t) solve the following PDE in two spatial dimen-
$10MS8

—Au=1
for r < R(t), in which r = |z| is the radial variable, with boundary condition
u=20
on r = R(t). In addition assume that R(t) satisfies
dR ou
— =——"(r=R
dt or (r ) ©

with initial condition R(0) = Ry.
a) Find the solution u(x,t).
b) Find an ODE for the outer radius R(t), and solve for R(t).

Proof. a) Rewrite the equation in polar coordinates:
1 1
—Au = —(;(rur)r + T—2u99> =1.

For a radially symmetric solution u(r), we have ugg = 0. Thus,

1
;(rur)r = —1,
(rup), = -—r,
2
Ty = ) + c1,
T 4 C1
U = —=+—
T 2 r 9
2
r
u(r,t) = -7 + 1 logr + co.

Since we want u to be defined for » = 0, we have ¢; = 0. Thus,
2

u(r,t) = —%—1—02.
Using boundary conditions, we have
2 2
u(R(t),t) = —#—1— =0 = CQ—R(Zf) Thus,
r?  R(t)?
u(r,t)——z—l— 1
b) We have
2 R(t)?
U(’I”,t) - _Z"i' 4 )
ou _ 1
or 2
dR ou R
= (= = = f
dt ar(r R) 2’ (from @)
dR - _ e
R 2’
logR = <+
0g = 3

R(t) = ciez, R(0) = ¢1 = Ryp. Thus,
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R(t) = Roe:.
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Problem (F’01, #3). Let u = u(x,t) solve the following PDE in three spatial di-
mensions

Au =10

for Ry <r < R(t), in which r = |z| is the radial variable, with boundary conditions
u(r=R(t),t) =0, and u(r= Ry, t)=1.

In addition assume that R(t) satisfies
dR ou

with initial condition R(0) = Ry in which Ry > R;.

a) Find the solution u(x,t).

b) Find an ODE for the outer radius R(t).

Proof. a) Rewrite the equation in spherical coordinates (n = 3, radial functions):

0?2 20 1,
bu = (gatig) v =t =0
(r*u,), = 0,
ru, = ¢,
C1
Uyr = 7”_2’
C1
) = —Z+4oc
u(r,t) " + c2
Using boundary conditions, we have
c1 C1
R(t),t) = ——— =0 =
w(Ri,t) = —;—11+cz - 1.
This gives
o R1R(t) o Ry
""Ri—R(t) 7 Ri—-R@)
RiR(t) 1 Ry
) = — = :
u(r.?) Ri—R() r ' Ri—R()
b) We have
RiR(t) 1 Ry
) = — Lz
u(r.?) Ri—R() r ' Ri—R()
Ou _ RiR(1) 1
or Ry —R(t) %’
dR au RlR(t) 1 R1
it or "= R) Ri—R() R()? B RO R om @)

Thus, an ODE for the outer radius R(¢) is

R(0) = Ry, Ro> Ri.

ar _ Ry
{ dt — TRO-R)EQ)’
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Problem (S’02, #3). Steady viscous flow in a cylindrical pipe is described by the
equation

1
(@ V)i +-Vp— L AG=0
P P

on the domain —oco < x1 < 00, x3+1z% < R%, where @ = (uy,uz,u3) = (U(xa,x3),0,0)
is the velocity vector, p(x1, x9, x3) is the pressure, and n and p are constants.

a) Show that g—ﬁ is a constant ¢, and that AU = ¢/n.

b) Assuming further that U is radially symmetric and U = 0 on the surface of the pipe,
determine the mass QQ of fluid passing through a cross-section of pipe per unit time in
terms of ¢, p, n, and R. Note that

Q = p/ degdﬂ?g.
{z3+23<R?}

Proof. a) Since 4 = (uq, ug, u3z) = (U(x2,x3),0,0), we have

8u1 8’&2 8’&3

(@-V)i = (ul,uQ,U3)-< ) = (U(x2,3),0,0)-(0,0,0) = 0.

8.1‘17 8.1‘27 8.1‘3
Thus,
1
“vp-Iaz = o,
P P
Vp = nAdq,
dOp Op 8p>
_— =, = Aug, Aug, A
<8.1‘17 8.1‘27 8.1‘3 77( St U3),
dp  Op 3p>
—_— U Usg.nay 0,0).
<8$1’8J)2781‘3 77( I2I2+ T3xr3r VY )
We can make the following observations:
dp
8—1‘1 - n(Urzrz +UI3I3)7
indep. of x1
P _ 0 = p=flanay)
— = = f(x1,x
8x2 p 17 3 )
dp
— =0 = = .
B3 p = g(z1,2)

Thus, p = h(x1). But g—; is independent of x;. Therefore, 59_; =c.

Jp
= = pAU
8.’,1:1 "7 Y
1
AU = Lo _c

noxr
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b) Cylindrical Laplacian in R? for radial functions is

AU =

2w
Q = p/ Udzodrs = %/ (r? — R®) rdrdf =
{z3+22<R?} 4n Jo 0

cpR'm

1
;(TUT)T’
C

n

C

C'I"2 +
—_— C
277 1,
cr
2n r

8

cr
%7

cr?

E + c2,

cR?

H + c2,

cr?  cR? c

It is not clear why @ is negative?
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e [TR
477 0 4
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17.4 Weak Solutions

Problem (S’98, #2).
A function u € H3(Q) is a weak solution of the biharmonic equation

Ny = f in

u=20 on 09
% =0 on 09
provided

/AuAvdx:/fvdx
Q Q

for all test functions v € Hg(Q) Prove that for each f € L?*(SY), there exists a unique
weak solution for this problem. Here, HZ(Q) is the closure of all smooth functions in
Q which vanish on the boundary and with finite H* norm: ||ul|3 = [,(u2, + ugy +
uz,) dedy < oc.

Hint: use Lax-Milgram lemma.

Proof. Multiply the equation by v € Hg(Q) and integrate over ):

A%y 1
/A2uvd33 = /fvdx,
Q Q

0
vds — Au—vds—l—/AuAvdx = /fvdx,
a0 On oo On Q Q

—_——
a(u,v) L(v

/ Aulvdr = / fodzx.
Q Q )
Denote: V = HZ(£2). Check the following conditions:
1 a(-,-) is continuous: Fy >0, s.t. |a(u,v)| < y||lullv||v]lv, Yu,veV;
1 a(-,-) is V-elliptic: Ja >0, s.t. a(v,v) > al|v|[}, YveV;
1 L(-) is continuous: JA >0, s.t. [L(v)| < Alvlly, YveV.
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We have %0

Ca(u,v)|> = ‘/QAuAvdx

:

h(v,0) — /Q(Av)2d3:2 ollzy v

L) = ‘/vadx‘ < /Qlfllvldw < (/Qde@")%(/Q

= |[fllezollvlicze) < Nl ollaz@)- v
0
N——

A
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2 2 2 2
< ([(owpan)( [(o0rd) < g lolie. v

1

v? da:) >

Thus, by Lax-Milgram theorem, there exists a weak solution u € HZ(Q).

Also, we can prove the stability result.

allulffzq) < alu,uw) = |L(w)| < Allull gz,
0(©) 0

A
= ullgzq) < P

Let w1, us be two solutions so that
a(ul,v) = L(U)v
a(ug,v) = L(v)

for all v € V. Subtracting these two equations, we see that:

a(up —ug,v) = 0 YvelV.

Applying the stability estimate (with L = 0, i.e. A =0), we conclude that

||U1 — u2||H§(Q) = 0, i.e. Ul = ug.

*Cauchy-Schwarz Inequality:

[(u, v)|
u,v)| < a(v,v)%;

a(u, au, u)
/|v|dx - /|v|-1dw - (/|u|2dx)%(/ 12dz)E

Poincare Inequality:

ol a2 < C / (L) da
Q

IN

=

Green’s formula:

/ (Auw)’ de = / (U + Upy + 2Uaatyy) dedy = /
Q Q

Q

(U + Upy — 2Uaayuy) dedy = /

Q

[lu||||v]] in any norm, for example /|1w|dx < (/ u2dx)%(/ U2dl‘)%;

(Ure + usy + 2|tuay|?) dody > ||U||fqg(n)-
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17.5 Uniqueness
Problem. The solution of the Robin problem

a_u
on

for the Laplace equation is unique when o > 0 is a constant.

+ au = 3, x € 01}

Proof. Let uy and us be two solutions of the Robin problem. Let w = u; — us. Then
Aw =0 in Q,
0
7 +aw=0 on 0f.
on
Consider Green’s formula:

/Vu-Vvd;r:/ v@ds—/vAud:U.
Q a0 On Q

Setting w = u = v gives

/|Vw|2d33:/ wa—wds—/wAwdx.
Q o On Q
—_—

=0

Boundary condition gives

/|Vw|2d33 = —/ aw? ds.
Q 00
>0

~~

<0
Thus, w = 0, and u; = us. Hence, the solution to the Robin problem is unique. ]
Problem. Suppose q(xz) > 0 for x € Q and consider solutions u € C*(Q2) N CH(Q) of
Au—q(z)u=0 in Q.

Establish uniqueness theorems for
a) the Dirichlet problem:  u(x)=g(x), x € 0Q;
b) the Neumann problem: 0Ou/On = h(x), x € .
Proof. Let uy and us be two solutions of the Dirichlet or Neumann problem.
Let w = u1 — ug. Then
Aw —q(x)w =0 in Q,
ow

w=0 or —=0 on 0f).
on

Consider Green’s formula:

/Vu-Vvd;r:/ v@ds—/vAud:U.
Q a0 On Q

Setting w = u = v gives

/|Vw|2d33 = / wa—wds —/wAwda:.
Q o On Q

=0, Dirichlet or Neumann
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/|Vw|2d33 = —/q(x)w2d33.
Q Q

~~ ~~

>0 <0

Thus, w = 0, and u; = us. Hence, the solution to the Dirichlet and Neumann problems
are unique. O

Problem (F’02, #8; S’93, #5).
Let D be a bounded domain in R3. Show that a solution of the boundary value problem

Nu=f inD,
u=~Au=0 ondD

s unique.

Proof. Method I: Maximum Principle. Let u1, us be two solutions of the boundary
value problem. Define w = u; — uo. Then w satisfies

A?w =0 in D,
w=Aw=0 ondD.
So Aw is harmonic and thus achieves min and max on 0D = Aw =0.
So w is harmonic, but w =0 on 0D = w = 0. Hence, u; = us.
Method II: Green’s Identities. Multiply the equation by w and integrate:
wh®w = 0,

/wA2w de = 0,
Q

/ w@(Aw) ds—/VwV(A)w dr = 0,
[ely) on Q

=0
0
—/ —wAwds—l—/(Aw)2 dr = 0.
o On Q
0

~~

Thus, Aw = 0. Now, multiply Aw = 0 by w. We get

/ |Vwl|? dz = 0.
Q

Thus, Vw = 0 and w is a constant. Since w = 0 on 02, we have w = 0. ]

Problem (F’97, #6).
a) Let u(z) > 0 be continuous in closed bounded domain Q C R"™, Au is continuous in
Q,

Au=u? and  ulpq =0.

Prove that u = 0. B
b) What can you say about u(x) when the condition u(x) > 0 in Q is dropped?
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Proof. a) Multiply the equation by u and integrate:

whu = u?
/uAu dr = /u3 dx,
Q
/ w2l ds — /|Vu|2 dr = /
Q on Q

/(u3+|Vu|2) de =
Q

Since u(z) > 0, we have u = 0.

e

b) If we don’t know that u(x) > 0, then u can not be nonnegative on the entire
domain Q. That is, u(z) < 0, on some (or all) parts of Q. If u is nonnegative on {2,
then u = 0. O



Partial Differential Equations Igor Yanovsky, 2005 226

Problem (W’02, #5). Consider the boundary value problem
Au—l—zn:a@—ug—o in
— Moy, B ’
u=0 on 0S,

where € is a bounded domain in R™ with smooth boundary. If the ay’s are constants,
and u(z) has continuous derivatives up to second order, prove that u must vanish
tdentically.

Proof. Multiply the equation by u and integrate:

n
0
uAu—l—Zak—uu—u4 = 0,
Tk

k=1
4 _
/{mu%ds—/|Vu| da:—l—/Zaka—wkudm—/Qu dr = 0.
_0 vV

We will show that [C=10.

0 0
/ak—uudm = / aku2ds—/aku Y dx,
8.1‘k o0 ox Ll
——

Thus, we have

—/|Vu|2d33— /u4d33 = 0,

Q Q
/(|Vu|2—|—/u4)dx = 0.
Q Q

Hence, |Vu|? =0 and u* = 0. Thus, u = 0. O
Note that
n
ou 9
/Zak—udw = /a'Vuud:U = / - nu ds—/a'Vuud:U,
i= Oz Q 00 Q
—_——
=0

and thus,

/a-Vuud:U = 0.
Q
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Problem (W’02, #9). Let D = {x € R? : 21 > 0,25 > 0}, and assume that f is
continuous on D and vanishes for |z| > R.
a) Show that the boundary value problem

X2
Rxl
Au = f n D, a0

ou -0

u(x1,0) = o (0,29) =0

. 0 —
can have only one bounded solution. UEL0=0 Ra %

b) Find an explicit Green’s function for this boundary value problem.

Proof. a) Let uy, us be two solutions of the boundary value problem. Define w =
u1 — uy. Then w satisfies

Aw=0 in D,

ow
w(zy,0) = a—xl(O,xg) =0.

Consider Green’s formula:

/Vu-Vvda::/ v@ds—/vAudm.
D op On D

Setting w = u = v gives

3}
/|Vw|2d33 = / w—wds—/wAwdx,
D op On D

w|“dxr = w—das + w——ds + w——ds — w Aw dx
Vw|?d o, o, ow Awd
D R on R on || >R on D

T2

ow ow ow
= w(x, 0 —ds—l—/ w(0, —ds—l—/ w —ds—/
/IRz H(i—zaﬂ?z R, (0,22) e|>R 7 On D

8.1‘1
1 -0 2 ~—~
=0

/|Vw|2d33 = 0 = |Vw?=0 = w=-const.
D

Since w(r1,0) =0 = w=0. Thus, u; = us.

b) The similar problem is solved in the appropriate section (S’96, #3).
Notice whenever you are on the boundary with variable z,

_ Mg — B
7~ €@
1 jz — €W||z — €¥)]

is the Green’s function. O

w Aw dz,
~—~
=0
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Problem (F’98, #4). In two dimensions x = (x,y), define the set Q, as

Q,=0tuQ~
in which
QF = {|lx—xo|<a}n{z>0}
QO = {|x+x<a}n{z<0}=-0F

and xg = (1,0). Note that Q, consists of two components when 0 < a < 1

and a single component when a > 1. Consider the Neumann problem

Viuw = f, x €
ou/on = 0, x € 09,

i which

fx)dx = 1
o+

fx)dx = -1
-

a) Show that this problem has a solution for 1 < a, but not for 0 < a < 1.

(You do not need to construct the solution, only demonstrate solveability.)

b) Show that maxq, |Vu| — oo as a — 1 from above. (Hint: Denote L to be
the line segment L = QT NQ~, and note that its length |L| goes to 0 as a — 1.)

Proof. a) We use the Green’s identity. For 1 < a,
ou

0 = —ds = Audxr = f(x)dx
00, On Qa Q ()

Thus, the problem has a solution for 1 < a.

For 0 <a <1, QF and Q~ are disjoint. Consider QF:

0
0 = / s = Audr = f(z)de = 1,
oo+ On Q+ O+
ou
0 = —ds = Audr = f(z)de = —1
o0~ On Q- Q-

We get contradictions.
Thus, the solution does not exist for 0 < a < 1.

1<a
_ flx)de+ | fla)de = 1-1 =0. v b
QO+ O-
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b) Using the Green’s identity, we have: (n™ is the unit normal to Q)

ou ou

JAN = - — el
o udx o D ds o+ ds,
ou ou ou
JAN = —— = ——ds.
o udx /89— e ds an ds e ds
ou
Audx — Audr = 2 | ——d
Q+u:v Q_uw L8n+s’
ou
_ — 9 | 2=
o f(x)dz o f(x)dz i ds.
0
2 = 2 8—uds
2 2
b= 8n+ s /‘8n+‘d8 /\/ 8n+ _) = |L|mLax|Vu|
Thus,
Vul > —
T VU =gy

Asa—1(L—0) = maxq, |Vu|— oc.

229

< |L|ng12ax|Vu|.
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Problem (F’00, #1). Consider the Dirichlet problem in a bounded domain D C R"
with smooth boundary 0D,

Au+ a(x)u= f(x) in D,
u=0 on 0D.

a) Assuming that |a(x)| is small enough, prove the uniqueness of the classical solution.
b) Prove the existence of the solution in the Sobolev space H'(D) assuming that f €
Ly(D).

Note: Use Poincare inequality.

Proof. a) By Poincare Inequality, for any u € C§(D), we have ||u||3 < C||Vul|3.
Consider two solutions of the Dirichlet problem above. Let w = uq — us. Then, w
satisfies

Aw+a(x)w=0 in D,

w=0 ondD.

whw + a(z)w? = 0,
/wAw da:—l—/a(;r)w2 dr = 0,
—/|Vw|2dx+/a(x)w2dx = 0,

/ w? dz, (by Poincare inequality)

—
2
S
gl\)
QL
IS

[l

-
4
g
o
IS
AV

Ql —

—
@
S
N
8
|

Ql~

—
g,
o
8
\Y,
[=)

/N _
= s
=

Q‘

[ 8
al=
N— |
——

S S

Q‘ Q‘

8 8

(V2 (V2

o \.O

If la(z)| <& = w=0.
b) Consider

F(v,u) = — / (vAu+ a(x)vu) de = — / vf(x)dx = F(v).
Q )
F(v) is a bounded linear functional on v € HY?(D), D = Q.

[E ()| < (I fll2llvll2 < Hf112C 0l 2oy

So by Riesz representation, there exists a solution u € Hé ’2(D) of

— <u,v >:/vAu—l—a(x)vudx:/vf(x)da::F(v) VUEH3’2(D).
Q Q
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Problem (S’91, #8). Define the operator
Lu = ugy + uyy — 4(r* + Du

in which r? = x? + 2.

2
a) Show that ¢ = €" satisfies Ly = 0.
b) Use this to show that the equation

Lu = f in
@— on 0N
On_7

has a solution only if

/wadx = /{mwdS(w)-

Proof. a) Expressing Laplacian in polar coordinates, we obtain:

1
Lu = ;(rur)r —4(r? + 1),
1 2 1 2 r2 2 r2
Ly = ;(7”907«)7« —4(r*+1)p = ;(21" e ) —4(r 4+ 1)e
1
= Z(dre” 4207 2re”) —dr2e” —4e” =0. v
r
b) We have ¢ = ¢ = ¥ t¥" = ¢*"¢¥". From part (a),
Ly =0,
9%

0 - VSO n = (Qorv ‘Py) n= (2x6I26y272yez26y2) ‘n= 267“2 (.Z‘, y) : (_yv .Z‘) =0.
n

51 Consider two equations:
Lu = Au—4(r*+1)u,
Lo = Ap—4(r2+1)e.
Multiply the first equation by ¢ and the second by u and subtract the two equations:
oLu = @Au—4(r* 4+ 1)uep,
uLe = ulp —4(r? + 1uyp,
wLu—uLy = @Au—ulp.
Then, we start from the LHS of the equality we need to prove and end up with RHS:

/@fd;r = /@Ludax = /(@Lu—uIAp)dx = /(@Au—u&@)daz
Q Q Q Q

ou o2 ou
/Q((p@n “n) % /Q(p@n o /des

O

5IThe only shortcoming in the above proof is that we assume 7 = (—y, =), without giving an expla-
nation why it is so.
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17.6 Self-Adjoint Operators
Consider an mth-order differential operator
Lu= Z aq () D%u.
loe|<m
The integration by parts formula
/uzkvdx = / uvny ds — /uvzkdx = (ny,...,n,) €R",
Q o9 Q
with « or v vanishing near 0f2 is:
/ Ug, VdT = — / UV, dx.
Q Q
We can repeat the integration by parts with any combination of derivatives
= (0/0x1)* -+ - (0)0xy)*:
/(Dau)vdx = (—1)m/ uD% dx, (m = |al).
Q Q
We have
/(Lu)vda: = /( Z o(x) D% >vda:— Z /aa )v D%udx
Q Q
lo] <m lo]<m
= Z (—1)'0"/ D%(aq(z)v)udr = / Z DI DY (ag(z) v) uda
jal<m ¢ jal<m
L:Ev)

_ /QL*(v)uda:,

for all u € C™ () and v € C§°.
The operator

L*(v) = Y (-1)"D*(aa(z) )

la|<m

is called the adjoint of L.
The operator is self-adjoint if L* = L.
Also, L is self-adjoint if °2

/Q oL(u) dz — /Q uL(v) da.

2L=L" < (Lupv) = (u|L*v) = (u|Lv).
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Problem (F’92, #6).
Consider the Laplace operator A\ in the wedge 0 < x <y with boundary conditions

of _

P 0 on =0
%—ag—o on r =
ox oy — v

a) For which values of « is this operator self-adjoint?
b) For such a value of «, suppose that

Af = e /2 cos

with these boundary conditions. Evaluate

0
—fd
/CR 8rf 5 0

in which Cg is the circular arc of radius R connecting the boundaries x = 0 and x = y.

y

Proof. a) We have
Lu = Au=0

0

O_ZZO on =0
u_ou_ o

9 a@y_ on x =y.

The operator L is self-adjoint if:

/(uLv—vLu)da: = 0.
Q

Lo—vL - Av — v - v _ g
/Q(u v —v Lu) dx /Q(u v—vAu)dr /ag<u8n van>ds

= /z_o(u(Vv-n)—v(Vu'n)>ds—|—/z_ (u(Vv-n)—v(Vu'n)>ds

=Y

— /_0 (U ((Uz,vy) (-1, 0)) —v ((umuy) (—1, 0))) ds
+ (U ((Uz,vy) . (1/\/5, —1/\/5)) —v ((umuy) . (1/\/57 _1/\/5))> ds

z=y
— /_0 U((O,’U'y)'(—l,O)) —’U((O,uy) .(_1’0))> ds
=0
[ (g - (V2. ~1/V) — v (0 ) - (1/V2,~1/V2))) ds
z=y
N /_ (u—;ﬁy(a_l)_%(a—l)>ds =0

Y need
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Thus, we need a =1 so that L is self-adjoint.

b) We have a = 1. Using Green’s identity and results from part (a), (2 = 0 on
x=0and z =y):

/Afdx: gds: gds—l—/ gds—l—/ gds:/ gds.
Q o0 on 0CRr on r:O\aﬁ, =y on 0CRr or
=0 =0
Thus,
R =
gds = Afdr = / /2€_r2/2COSQTde9
ocy Or Q 0 Jz
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Problem (F’99, #1). Suppose that Au = 0 in the weak sense in R™ and that there
is a constant C' such that

/ lu(y)|dy < C, VzeR"
{lz—yl<1}

Show that u is constant.

Proof. Consider Green’s formula:

For v =1, we have

%ds = /Audw
o0

Let B,(xo) be a ball in R™. We have

0 = / Audr = / @ds = r”_l/ @(J?o-l-m?)ds
By (o) OB, () N =1 O

01

= "y ——/ w(xg + rx) ds.
"arwn |z|:1 ( )

Thus, i f| 2|=1 u(xg+ rx)ds is independent of r. Hence, it is constant.
By continuity, as » — 0, we obtain the Mean Value property:

1
u(xg) = . /| . u(zo + rx) ds.

If f|r_y|<1 lu(y)|dy < C Vz € R", we have |u(z)]<C inR".
Since u is harmonic and bounded in R™, w is constant by Liouville’s theorem. 53 [J

53Liouville’s Theorem: A bounded harmonic function defined on R™ is a constant.
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Problem (S°01, #1). For bodies (bounded regions B in R?) which are not perfectly
conducting one considers the boundary value problem

3 ou
0= V-r(@)Vu = > o (v(@)5)
j=1 J

The function ~y(x) is the “local conductivity” of B and u is the voltage. We define
operator A(f) mapping the boundary data f to the current density at the boundary by

AP =)o

and 0/0n is the inward normal derivative (this formula defines the current density).
a) Show that A is a symmetric operator, i.e. prove

| onnyas = [ pag)as
0B

0B
b) Use the positivity of v(x) > 0 to show that A is negative as an operator, i.e., prove

FA(f)dS < 0.
OB

Proof. a) Let

V- -y@)Vu=0 on Q, V- -y(@)Vv=0 on Q,
u=f on 0Of. v=g on Of).
ou v
A(f) = ()5, Ag)=n(z)5 .
Since 9/0n is inward normal derivative, Green’s formula is:

du

— v T dS—/Vv- xVud:U:/vV- z)Vudz.
/m_gw )5mdS— [ Toeata) [ 0¥ 9(a)
We have
0
/ gA(f)dS = / g'y(x)—udS = —/Vv"y(x)Vud:U—/vV-'y(x)Vu dx
o0 o0 on Q Q) N —

0
= / u'y(;r)a—vdS—l— /uV"y(x)Vv dx
o n Q S——

ov
. fv(x)an an (9)

b) We have v(z) > 0.

fA(f)dS = / u'y(x)@ds = —/qu'y(x)Vu da:—/'y(x)Vu-Vud:U

o0 Q
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Problem (S’01, #4). The Poincare Inequality states that for any bounded domain
Q in R™ there is a constant C' such that

/|u|2d33§C/|Vu|2dx
Q Q

for all smooth functions u which vanish on the boundary of €.

a) Find a formula for the “best” (smallest) constant for the domain  in terms of the
etgenvalues of the Laplacian on 2, and

b) give the best constant for the rectangular domain in R?

Q={(z,y): 0<z<a, 0<y<b}

Proof. a) Consider Green’s formula:

Setting v = v and with « vanishing on 92, Green’s formula becomes:

/|Vu|2d33 = —/uAuda:.
Q Q

Expanding u in the eigenfunctions of the Laplacian, wu(z) =) anén(z), the formula
above gives

/Q Vul?dz = — /Q g:lanqbn Z A (z Z Amn / G d

m,n=1
— Z)\n|an|2. ®
n=1
Also,
LluPdz = [ 3 a6n@) > anén(e) = Sl
n=1 m=1 n=1

Comparing ® and ®, and considering that \,, increases as n — 0o, we obtain

Al/ ulde =1 fan> < Aalan)? = / \Vul? da.
2 n=1 n=1 2

1
/|u|2d33§—/ |Vu|? d,
Q A1 Ja

with C' = 1/)\1

b) For the rectangular domain Q = {(z,y) : 0 <2 < a, 0 <y < b} C R? the
eigenvalues of the Laplacian are 4

v
2 2 b
An = 7T2<m —|—n> m,n=1,2
b2
1 1
W)
1 1 1
= (C = —=— .
A 7 (G4 ) - a 3
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Problem (S’01, #6). a) Let B be a bounded region in R3 with smooth boundary OB.
The “conductor” potential for the body B is the solution of Laplace’s equation outside
B

AV =0 in R3/B

subject to the boundary conditions, V=1 on OB and V (z) tends to zero as |x| — oo.
Assuming that the conductor potential exists, show that it is unique.

b) The “capacity” C(B) of B is defined to be the limit of |z|V(x) as |x| — oco. Show
that

1 ov

where OB is the boundary of B and n is the outer unit normal to it (i.e. the normal
pointing “toward infinity”).
¢) Suppose that B' C B. Show that C(B') < C(B).

Proof. a) Let Vi, V5 be two solutions of the boundary value problem. Define W =
Vi — V5. Then W satisfies

AW =0 in R®/B
W =0 ondB

W —0 as |z] — .

Consider Green’s formula:

/Vu-Vvd;r:/ v@ds—/vAud:U.
B o On B

Setting W = u = v gives

oW
/|VW|2da: = / W —ds—/WAWda::O.
B 8Bv:0 on B =

Thus, [VW[? =0 = W = const. Since W =0on 0B, W =0, and V; = V4.

b & c) For (b)&(c), see the solutions from Ralston’s homework (a few pages
down). O
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Problem (W’03, #2). Let L be the second order differential operator L = /\ — a(x)
in which x = (x1, T2, x3) is in the three-dimensional cube C = {0 < x; < 1,1 =1,2,3}.
Suppose that a > 0 in C. Consider the eigenvalue problem

Lu= Au for xeC
u =0 for x€0C.

a) Show that all eigenvalues are negative.

b) If u and v are eigenfunctions for distinct eigenvalues A and p, show that u and v
are orthogonal in the appropriate product.

c) If a(x) = a1 (x1) + az(x2) + as(x3) find an expression for the eigenvalues and eigen-
vectors of L in terms of the eigenvalues and eigenvectors of a set of one-dimensional
problems.

Proof. a) We have
Au — a(z)u = Au.
Multiply the equation by v and integrate:

ulAu —a(x)u? = I,

/uAud:U—/a(x)u2dx = A
Q Q

/ u@ds—/|Vu|2dx—/a(x)u2dx = A
on On Q Q

—_—

_ fQ(|VU|2 + a(r)u?) dx
- Jq u?dx

u? de,

S— 5—

u? de,

A

b) Let A, u, be the eigenvalues and u, v be the corresponding eigenfunctions. We have

Au — a(x)u = Au. (17.5)

Av —a(x)v = p. (17.6)
Multiply (17.5) by v and (17.6) by u and subtract equations from each other

vAu —a(z)uv = Auw,

ulv —a(z)uv = puv.

vAu—ulv = (A — p)uv.

Integrating over €2 gives

/Q(vAu—uAv) dr = (A—p) /qu dz,

/ (va—u—u@>dx = (A—u)/uvdaz.
o0 on on, QO
—_———

Since A # p, u and v are orthogonal on €.
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c) The three one-dimensional eigenvalue problems are:
Uigyzy (1) — a(z1)ur(21) = A (21),
U2y, (T2) — aw2)ua(22) = Agua(22),

U3gyes (T3) — a(@3)us(w3) = Azus(w3).

We need to derive how wuq, us, ug and A, Ay, A3 are related to w and A.

241
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17.7 Spherical Means
Problem (S’95, #4). Consider the biharmonic operator in R?

o2 o2 o2 2
Ay = (4 2 L9 )
" (8;132 " oy? " 8z2> "
a) Show that A? is self-adjoint on |x| < 1 with the following boundary conditions on
|x| = 1:

9

Au=0
Proof. a) We have
Lu = A*u=0
u = 0 on |z|=1
Au = 0 on |z|=1.

The operator L is self-adjoint if:

/(uLv—vLu)da: = 0.
Q

/(uLv—vLu)da: = /(uA2v—vA2u)dx
Q Q

A A
= / ua Uds—/Vu'V(Av)dx—/ va uds—l—/Vv'V(Au)dx
a0 On 0 o0 On 0
—_— —_—

=0 =0

0 0
= - Av—uds—l—/AuAvdx + Au—vds —/AvAudm = 0.
a0 on Q on Q

o0
=0 =0
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b) Denote |z| = r and define the averages

S(r) = (471”1”2)_1/"_ u(x) ds,

4 -1
V(r) = <—7T’I”3> Au(z) dx.
3 jal <r
Show that
d r

Hint: Rewrite S(r) as an integral over the unit sphere before differentiating; i.e.,

S(r) = (4#)_1/|/|_1u(m?') dx’.

c) Use the result of (b) to show that if u is biharmonic, i.e. A?u =0, then

2
S(r) = u(0) + EAu(O).

Hint: Use the mean value theorem for Au.

b) Let ' = x/|z|. We have %

1 1 "2 b /
S0) = 1 /m_ru(x) ase = /W'_lu(m?)r 51 = g2 [ uiraass
dsS 1 ou, 1 ou 1 ou
- = — B — dS = — - ! dS = - a_ dST
dr At Jigr1=1 Or (ra’) S, AT J|gr=1 On(m?) ! 4mr? /|I|_r on z)

1
= Audx. v
a2 Joger T

where we have used Green’s identity in the last equality. Also
1
47 ’1”2 |z|<r

SV =

3 Audx. v

¢) Since u is biharmonic (i.e. Awu is harmonic), Au has a mean value property. We
have

-1
iS(r) = CV(’I”) = C<é71”l”3> e Au(z)dr = gAu(O),

r? r?
S(r)y = G Au(0) +S5(0) = u(0)+ — Au(0).

4 Change of variables:
Surface integrals: = = rz’ in R%:

/ u(z)dS = / u(ra’)r* dSy.
|z|=r |z’ |=1

Volume integrals: ¢ = r¢ in R™:

/ Wz +¢)de = / h(z +r€) r™ dE.
[&[<r [¢1<1
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Problem (S’00, #7). Suppose that u = u(x) for x € R? is biharmonic;
i.e. that N?u= A(Au) = 0. Show that

(4r?) ! / (@) ds(z) = u(0) + (r2/6) Au(0)
|z|=r
through the following steps:

a) Show that for any smooth f,

d
r Jig|<r

Fz)dz = /| ) dste).

b) Show that for any smooth f,
%(47‘(’?2)_1 /M_r f(x)ds(x) = (471”1”2)_1/ n-Vf(z,y)ds

|z|=r

in which n is the outward normal to the circle |z| =r.

c) Use step (b) to show that

4 grr2)t /| ist) = e [ Apdn

dr x| <r

d) Combine steps (a) and (c) to obtain the final result.

Proof. a) We can express the integral in Spherical Coordinates:

/IzISRf(x) v = /OR /027r /07r f(6,0,7)r%sing do d dr.

d B i R 27 pm 5 . s
flx)dx = dr/o /0 /0 f(@,0,r)r" sing do df dr = 777

r Jiei<r

27 T
= / / f(é,0,r)R? sin¢ do df
0 0

- /M_R f(z)dS.

55Differential Volume in spherical coordinates:

| @0 = W sing do db dw. |

Differential Surface Area on sphere:

| 45 = o sing do do. |
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b&c) We have

d ! == i ! 7\ 2 — ii /
£<4M2 /Irl—r /e dS) - dr<47””2 /Ir/l—l flra)r d81> B 47rdr</|z/|—1f(m)d81>

1 of , 1 of
47 |a|=1 or (’I”-T) ! 47 |a|=1 an(m?) !
1 of !
- /m_r 5.5 = g5 | Viomds v
1

Green’s formula was used in the last equality.
Alternatively,

d( 1 _od (1 AT 2 .
a(m /m_r f(x)dS) - a(m | seom sm¢d¢d0>

d 1 2 T
- %@/0 /0f<¢,0,r> sin¢d¢d0)

1 27 Waf ]
= o E(QS’Q’T) sin ¢ d¢ df

1 27 T
= — / Vf-nsing do db
4 0 0

1 2w ™
= / / Vf-nr?sing do do
47TT2 0 0
1
= ! Afd v
- 47‘1”1”2 |z|:r v

d) Since f is biharmonic (i.e. Af is harmonic), Af has a mean value property. From
(c), we have °6

d( 1 /|r|_rf(g;)ds(x)> _ 1 Af(eyde — T N

dr \ 4772 4mr? J z1<r 5%771"3 |z|<r
T
1 r?
Tz [ J@aste) = G AS0+ 50)

%Note that part (a) was not used. We use exactly the same derivation as we did in S’95 #4.
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Problem (F’96, #4).
Consider smooth solutions of Au = k?>u in dimension d = 2 with k > 0.
a) Show that u satisfies the following ‘mean value property’:

1
MY(r) + <My (r) = KMo (r) = 0,

in which M, (r) is defined by

1

M, (r) = Py

2w
/ u(x + rcosb, y+ rsind) do
0

and the derivatives (denoted by ') are in r with = fized.
b) For k =1, this equation is the modified Bessel equation (of order 0)

e f =0,
T

for which one solution (denoted as Iy) is

1 27 .
Io(r) / s gg.
0

"~ or

Find an expression for M,(r) in terms of Iy.

Proof. a) Laplacian in polar coordinates written as:
1 1
AU = Upp + —Up + —5ugy-
r r
Thus, the equation may be written as

1
2
Uy + ;ur + T_QU% = k“u.

1 2w
M,(r) = o /. ude,
1 2w
M.(r) = o/, uy db,
1 2w
M!(r) = 5 /. Uy d6.
" 1 ! 2 1 o 1 2
M!(r) + ;Mr(r) —k*M,(r) = oy (rr + Sy = k*u) df
0
1 2 1 o
= - dd = ——— =0. vV
27Tr2/0 100 2772 [u0]o

b) Note that w = "% satisfies Aw =w, i.e.

1 1
Aw = wp+ —wp + —5 Weo
r r
. . 1 . . 1 . . . .
_ Sln296rsm0 4= Slneersmﬁ + _2(_T81n06rsm6' —|—T2 Cos2eersm6') _ ersmﬁ —
r r
Thus,
1 27 -
My(r) = eY— e d = eYly.

27T0
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57 O

5TCheck with someone about the last result.
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17.8 Harmonic Extensions, Subharmonic Functions

Problem (S°94, #8). Suppose that Q0 is a bounded region in R? and that u = 1 on
0Q. If Au = 0 in the exterior region R3/Q and u(x) — 0 as || — oo, prove the
following:

a) u >0 in R3/Q;
b) if p(x) is a smooth function such that p(x) =1 for |x| > R and p(x) =0 near 01,
then for |x| > R,

1 (A(pu))(y)
u(x) = /R3/Q — = dy.

dn |z —y]

c) limyg o |z|u(x) ewists and is non-negative.

Proof. a) Let B,(0) denote the closed ball {x : |z| > 7}.

Given e > 0, we can find r large enough that Q € Bg, (0) and Max,c 5, (0) lu(z)| < e,
since |u(x)| — 0 as |x| — oo.

Since u is harmonic in Bg, — €, it takes its maximum and minimum on the boundary.
Assume

min  u(z) = —a < 0 (where |a| < ¢).
IEaBRl (0)
We can find an R; such that max g o) |u(z)| < 3; hence u takes a minimum inside
2

B, (0) — £, which is impossible; hence u > 0.

Now let V = {z : u(z) # 0} and let @ = mingey |x|. Since u cannot take a minimum
inside Br(0) (where R > a), it follows that u = C' and C = 0, but this contradicts
u =1 on 9Q. Hence u > 0 in R® — Q.

b) For n = 3,
1 1
A o -yl

K(lz—y|) = lz —y|*" =

1
(2 —n)wy
Since p(z) =1 for |x| > R, then for x ¢ Br, we have A(pu) = Au=0. Thus,

1 (A(pu))(y)

dr

lz -yl
_ A G,
4m Br/Q |z —y|
i 1 1 P 1
= = () Vylw dy— 9 )Y as
47 Br/Q y<|.’L‘—y|> y(p ) V% O(BR/Q) an(p )|.’L'—y| Y
1 / 1 1 0 1 1 9
AT JBr/ <|x_y|>p AT Jo(Br/9) 8n<|x—y|>p Yoo4n O(Br/Q) 8n(p )|;1?—
1 1 ou
= 777 = — _ ou
u(@) — /a wis,~ 7 [ Stas,
—0, a:R_’OO —0, a:R—n)o
= u(z).

¢) See the next problem. O

1

Y|

ds,
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Ralston Hw. a) Suppose that u is a smooth function on R® and ANu = 0 for |z| > R.
Iflim, o u(z) = 0, show that you can write u as a convolution of Au with the _#Irl
and prove that lim, . |z|u(z) = 0 exists.

b) The “conductor potential” for Q0 C R3 is the solution to the Dirichlet problem Av =
0. The limit in part (a) is called the “capacity” of Q. Show that if Q1 C Qo, then the

capacity of Qo is greater or equal the capacity of €.
Proof. a) If we define

U(x)__i Au(y)
 dm gl —y|

then A(u—v) = 0 in all R?, and, since v(z) — 0 as |z| — oo, we have lim,| o (u(z) —
v(z)) = 0. Thus, u — v must be bounded, and Liouville’s theorem implies that it is
identically zero. Since we now have

1 x| Au
ofu(e) = = [ 2y,
™ JR3

[z —yl
and |z|/|x — y| converges uniformly to 1 on {|y| < R}, it follows that
1
lim |zju(z) =—— | Au(y)dy.
|z|—o0 47 Jps

b) Note that part (a) implies that the limit lim,_o |7|v(x) exists, because we can
apply (a) to u(x) = ¢(x)v(z), where ¢ is smooth and vanishes on 2, but ¢(z) = 1 for
|z| > R.

Let v1 be the conductor potential for 2 and vy for 5. Since v; — oo as || — oo and
v; = 1 on 0€);, the max principle says that 1 > v;(x) > 0 for z € R® — Q;. Consider
vy — v1. Since 1 C Qo, this is defined in R3 — €9, positive on 9, and has limit 0 as
|z| — oo. Thus, it must be positive in R* — Q. Thus, lim,_ |[#|(vz —v1) > 0. O

Problem (F’95, #4). °® Let Q be a simply connected open domain in R?
and u = u(x,y) be subharmonic there, i.e. Au >0 in Q. Prove that if

Dg = {(z,y) : (=) +(y—w0)* <R’} CQ

then
1 27
u(xo,yo) < 2—/ u(xg+ Rcosb, yo + Rsinb) df.
T Jo
Proof. Let
1 27
M(xg,R) = py u(xg + Rcosh, yo + Rsin6) db,
0
w(r,0) = wu(xg+ Rcosb, yo + Rsinb).
Differentiate M (z(, R) with respect to R:
Do B) = —— [ w(R.6)RA8
dr O - 27R J, Wit ’

58See McOwen, Sec.4.3, p.131, #1.
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59 0

%9See ChiuYen’s solutions and Sung Ha’s solutions (in two places). Nick’s solutions, as started above,
have a very simplistic approach.
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Ralston Hw (Maximum Principle).
Suppose that u € C(Q) satisfies the mean value property in the connected open set Q.

a) Show that u satisfies the mazximum principle in €, i.e.
either u is constant or u(x) < supq u for all x € Q.

b) Show that, if v is a continuous function on a closed ball B.(§) C Q and has the
mean value property in B, (§), then u = v on B.(§) implies u =v in B, (§). Does this
imply that w is harmonic in ¢

Proof. a) If u(z) is not less than supq u for all z € Q, then the set
K = {z€Q: u(r) =supu}
)

is nonempty. This set is closed because w is continuous. We will show it is also open.
This implies that K = € because () is connected. Thus u is constant on €.

Let zg € K. Since 2 is open, 36 > 0, s.t. Bs(xg) = {x € R" : |z —xg| <0} C Q. Let
supqg © = M. By the mean value property, for 0 < r <§

M = u(xzg) = ;/m_lu(xo +7€)dSe, and 0 = ;/K'_I(M—u(xo—l—rf))d&.

A(Sn1) A(Snh
Sinse M —u(xg+r€) is a continuous nonnegative function on &, this implies M —u(zo+
ré) =0 for all £ € S*~1. Thus u = 0 on Bs(zq).

b) Since v — v has the mean value property in the open interior of B,.({), by part
a) it satisfies the maximum principle. Since it is continuous on B, (&), its supremum
over the interior of B, (&) is its maximum on B, (£), and this maximum is assumed at a
point zg in B,.(§). If xg in the interior of B, (&), then u — v is constant ant the constant
must be zero, since this is the value of © — v on the boundary. If xg is on the boundary,
then u — v must be nonpositive in the interior of B,(§).

Applying the same argument to v — u, one finds that it is either identically zero or
nonpositive in the interior of B, (£). Thus, u —v =0 on B, (§).

Yes, it does follow that « harmonic in Q. Take v in the preceding to be the harmonic
function in the interior of B, () which agrees with u on the boundary. Since u = v on
B, (&), u is harmonic in the interior of B, (). Since 2 is open we can do this for every
& € Q. Thus u is harmonic in Q. O
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Ralston Hw. Assume Q is a bounded open set in R™ and the Green’s function, G(x,y),
for Q exists. Use the strong mazimum principle, i.e. either u(x) < supgu for all x € €,
or u is constant, to prove that G(xz,y) <0 for x,y € Q, x # y.

Proof. G(x,y) = K(z,y) +w(z,y). For each x € Q, f(y) = w(x,y) is continuous on ,
thus, bounded. So |w(z,y)| < M, forall y € Q. K(x —y) — —oc0 as y — x. Thus,
given M,, there is § > 0, such that K(z —y) < —M, when |z —y| =7 and 0 < r <.
So for 0 < r < § the Green’s function with = fixed satisfies, G(z,y) is harmonic on
2 — B,(z), and G(z,y) < 0 on the boundary of 2 — B,(x). Since we can choose r as
small as we wish, we get G(z,y) < 0 for y € Q — {z}. O

Problem (W’03, #6). Assume that u is a harmonic function in the half ball

D = {(z,y,2) : 22 +y?+2% < 1, 2 > 0} which is continuously differentiable, and satis-
fies u(x,y,0) = 0. Show that u can be extended to be a harmonic function in the whole
ball. If you propose and explicit extension for u, explain why the extension is harmonic.

Proof. We can extend u to all of n-space by defining
u(@d', zn) = —u(x', —xy,)

for z,, < 0. Define

w(xr) = ! a2—|x|2v as
@ =] (1)ds,

awy, |z — y|"

w(x) is continuous on a closed ball B, harmonic in B.

Poisson kernel is symmetric in y at ,, =0. = w(z) =0, (z, = 0).

w is harmonic for z € B, x, > 0,with the same boundary values w = u.

w is harmonic = wu can be extended to a harmonic function on the interior of B. [

Ralston Hw. Show that a bounded solution to the Dirichlet problem in a half
space is unique. (Note that one can show that a bounded solution exists for any
given bounded continuous Dirichlet data by using the Poisson kernel for the half space.)

Proof. We have to show that a function, u, which is harmonic in the half-space, con-
tinuous, equal to 0 when x, = 0, and bounded, must be identically 0. We can extend
u to all of n-space by defining

w(z!, xy) = —u(a', —x,)

for x,, < 0. This extends u to a bounded harmonic function on all of n-space (by the
problem above). Liouville’s theorem says u must be constant, and since u(z’,0) = 0,
the constant is 0. So the original « must be identically 0. U

Ralston Hw. Suppose u is harmonic on the ball minus the origin, By = {z € R3 :
0 < |z| < a}. Show that u(z) can be extended to a harmonic function on the ball
B = {|z| < a} iff limy g |z|u(z) = 0.

Proof. The condition lim,_,o |z|u(z) = 0 is necessary, because harmonic functions are
continuous.

To prove the converse, let v be the function which is continuous on {|z| < a/2},
harmonic on {|z| < a/2}, and equals u on {|z| = a/2}. One can construct v using the
Poisson kernel. Since v is continuous, it is bounded, and we can assume that [v] < M.
Since lim|y_ |z[u(x) = 0, given € > 0, we can choose §, 0 < § < a/2 such that
—e < |z|u(xz) < € when |z| < §. Note that u, v — 2¢/|x|, and v + 2¢/|z| are harmonic
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on {0 < |z| < a/2}. Choose b, 0 < b < min(e,a/2), so that ¢/b > M. Then on both
{|z] = a/2} and {|z| = b} we have v — 2¢/|x| < u(z) < v + 2¢/|z|. Thus, by
max principle these inequalities hold on {b < |z| < a/2}. Pick z with 0 < |z| < a/2.
u(z) = v(x). v is the extension of u on {|z| < a/2}, and u is extended on {|z| < a}. O
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18 Problems: Heat Equation

McOwen 5.2 #7(a). Consider

Up = Uy for ©>0,t>0
u(z,0) = g(x) for >0
u(0,t) =0 for t >0,

where g is continuous and bounded for x > 0 and g(0) = 0.
Find a formula for the solution u(x,t).

Proof. Extend g to be an odd function on all of R:

g(x), x>0

9la) = { —g(—z), z<0.

Then, we need to solve

Up = Ugy for xeR, t>0
u(x,0) = g(x) for = € R.

The solution is given by:

_@=yp? y>2

a(w,t) = /ny dy—m 9(y) dy
— _[/ ST G(y) dy + Oe‘ )d]
=/ gwydy+ | y) dy
2

(z—y)*

 (a+y)?

i g(
- g(y) dy]

st dy+ |
= \/i?[/me‘(sz)Qg(y)dy—/o e

2 2

—x +21y—y —x“—2zy—y
= Tw —e ) 9(y) dy
= Tw - (e% - 6_%> 9(y) dy.
(z +y
) b9 h( ) dy.
u(w,t) \/E / sinh (57 ) 9(y) dy

Since sinh(0) = 0, we can verify that «(0,¢) = 0.

50Tn calculations, we use: fi) eVdy = [Te Vdy, and g(—y) = —g(y).

255
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McOwen 5.2 #7(b). Consider

Up = Uy for ©>0,t>0
u(z,0) = g(x) for = >0
U (0,8) =0 for t >0,

where g is continuous and bounded for x > 0.
Find a formula for the solution u(x,t).

Proof. Extend ¢ to be an even function %' on all of R:

mmz{g“% v

g(—x), x<O0.
Then, we need to solve

Up = Ugy for xR, t>0
u(x,0) = g(x) for = € R.

The solution is given by: 92

_@-yp? y>2

M%@Zl/Kx% )@—¢E— 3(y) dy

Y) dy]

_(z—y)?

Y, [/ e g(y) dy + R e 1
47Tt 0 —00
[ee]
.
2

) /
- [/me‘(zZE)QQ(y)der/o

\/47‘1’
—x +21y Y —x*—2zxy—y

= \/R +e )g(y)dy
) zy zy

_ \/R T (e? —I—e_7> 9(y) dy.

(z+y
t

e g(
- 9(y) dy]

4

_ (2 +y

u(x,t) =

Lo cosh ( ZZ) 9(y) dy.

\/H

To check that the boundary condition holds, we perform the calculation:

1 o0 d (z +y)
L(z,t) = il 2 cosh d
ug (T, 1) N dw[ cos ( t)]g(y) Yy

256

1 & T _ @) Ty <z+
— \/R/o [_4_756_ i cosh(2 )—l—e = 22—snh<2t>]g(y)dy,

1 -
ug(0,t) = =i ), [0'6_%2C08h0+6_%2%81nh0:| g9(y) dy = 0.

O

5'Even extensions are always continuous. Not true for odd extensions. g odd is continuous if g(0) =

0.
52In calculations, we use: fi) eVdy = [Ce Vdy, and g(—y) = g(y).
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Problem (F’90, #35).
The initial value problem for the heat equation on the whole real line is
ft = frz t>0
ft=0,2) = fo(z)
with fo smooth and bounded.
a) Write down the Green’s function G(x,y,t) for this initial value problem.
b) Write the solution f(x,t) as an integral involving G and fj.

¢) Show that the mazimum values of | f(x,t)| and |fz(x,t)| are non-increasing
as t increases, i.e.

sup |f(z,t)] < sup | fo(z)] sup | fo(x, )] < sup | fou ()]

When are these inequalities actually equalities?

Proof. a) The fundamental solution

1 lz—y|?
K(x,y,t) = e 4t
R
The Green’s function is: 63
1 - 7 wp?
Gz, t;y,8) = —— | —— A(i—s)
509 = G Fry)

b) The solution to the one-dimensional heat equation is

== y\2

- /R K(x.9.1) foly) dy m foly) dy.

c) We have

_(z—y)” y)

‘ _(e— y>2

sgp|u(x,t)| = it Ja )dy‘ = \/%M/R
- \/T7/e_ﬂ|fo($—y)|dy

| fo(y)| dy

Cownl [ Fy (e )
< Sup|f0( ) ﬁ e Vit dz
= sup|f0 / = SUP|f0( )N v

A,_/

=7

53The Green’s function for the heat equation on an infinite domain; derived in R. Haberman using
the Fourier transform.
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B 1 2(z—y) (e=p? 1 A _ew?
w(t) = <= /R TS = —— /R ol
1 z—y 00 1 z—y)?
- =[] s [ w

~~

0

1 (z—y) 1 2
sup |u(z,t)| < su (T e dy = su (T e VAatdz
wlu(@ )| < —=swplfoa)] | v = = swlfos(o)] [V
= sup |fou(z)]. v

These inequalities are equalities when fo(z) and fo,(z) are constants, respectively. [
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Problem (S’01, #5). a) Show that the solution of the heat equation
Ut = Ugy, —o0o<r <o

with square-integrable initial data u(xz,0) = f(x), decays in time, and there is a constant
a independent of f and t such that for allt > 0

max (2, )| Sat_%</m|f(;r)|2das>%.

b) Consider the solution p of the transport equation p;+up, = 0 with square-integrable
initial data p(x,0) = po(x) and the velocity u from part (a). Show that p(x,t) remains
square-integrable for all finite time

1
/ o, t)2de < 11 / po(@)|? de,
R R

where C' does not depend on pg.

Proof. a) The solution to the one-dimensional homogeneous heat equation is
_e=y)? y>2
f(y) dy.
VAart )

Take the derivative with respect to x, we ge

u(x,t) =

t64

(z—)? 1 (z—)?
Ug (2, 1) / e 1 f(y)dy = —— /x—ye_ & f(y)dy.
0= 7= Wdy=—g = kY )
)2
fua,t)] < — / (@~ e )|y (Cauchy-Schwarz)
4t2\/m JR
1 5 _=9® N3 r—y dy
< - — 2t d = s d = ——
1 2 2
= _ —z7(2t = \d
4t%ﬁ< R| z( | Z) ||f||L2(R
3 1
2t)a . 3
- (g) (/226 2dz>2||f||L2(1R)
4t2\/7 VN JR
M <oo
3.1
= Ot IM3||fllew = ot~ 1||flr2gm)-
b) Note:
e 1 _@—w)? 3
= < t
maxful = x| | >dy| < = ([ @) Wil
1
_ 2 — dy
< — e V2t dz) 2 _ 7t y’d___
< Tﬂ(/R| IVEH &) Il (2= d= -
1
2t)1 . 3
= B ([ as) Welmy = €Ml
2m2t2 R
——
=7
65 |

64 Cauchy-Schwarz: |(u,v)| < ||u|||[v|]| in any norm, for example [ |uv|dz < ([ u’dx) B (J v?dx) B

65 See Yana’s and Alan’s solutions.
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Problem (F’04, #2).

Let u(z,t) be a bounded solution to the Cauchy problem for the heat equation
U = Uy, t>0, xR, a>0,
u(z,0) = p(z).

Here p(z) € C(R) satisfies

lim ¢(z) =b, lim ¢(z) =

r——+00 T——00

Compute the limit of u(x,t) as t — +oo, x € R. Justify your argument carefully.

Proof. For a = 1, the solution to the one-dimensional homogeneous heat equation is
) y)
o(y) dy.
\/47‘1’ )
We want to transform the equation to v; = v,,. Make a change of variables: x = ay.
u(z,t) = u(x(y),t) = u(ay,t) = v(y,t). Then,

u(x,t) =

Vy = Uply = AUy,

Vyy = QUggpTy = AUy,

v(y,0) = u(ay,0) = p(ay).

Thus, the new problem is:
Vg = Uyy, t>0, yeR,
(4,0) = ¢(ay).
( t y42) )d ®
v\y, t (IZ zZ.
\/47‘1’

Since ¢ is contlnuous, and limg_, 4o () = b, lim,—,_o () = ¢, we have

lp(z)] < M, VxeR. Thus,

M 22 p
e 4t dz (s = —
VAt /R \/ﬂ

lu(y,t)] <
M

2 M 2
= e ¥ Vatds = —/e_S ds = M.
VT IR
—_—

VAart Jr
N
Integral in ® converges uniformly = lim [ = flim. For ¢ = p(a-):

_ =22 z>2
U(yvt) = \/E w( )dz = \/R

= \/E —5\/_)\/_ds

:f/ Wy —sVan ds

ey d:
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1 [e.e]
lim v(y,t) = ﬁ/o e lim W(y — sV/4t) ds—l——/ = hm W(y — sV/4t) ds

t——+4o00 t——+4o00
1 [ 1 /0
= —/ e_SQCds—l——/ e bds = —£ \/_
v Jo NI V2 T 2
_c+b
— R
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Problem. Consider

Uy = kug, +Q, 0<zx<1
u(0,t) = 0,
u(l,t) = 1.

What is the steady state temperature?

Proof. Set uy = 0, and integrate with respect to x twice:

Q

Uy = —Ex—l—a,

_ Qa7
u——k 2 + ax + b.

Boundary conditions give

u(x) = —%ﬁ + (1 + %)x

2005

262
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18.1 Heat Equation with Lower Order Terms
McOwen 5.2 #11. Find a formula for the solution of

{ut — Au— cu in R™ x (0, 00) (18.1)

u(x,0) = g(x) on R".

Show that such solutions, with initial data g € L*(R™), are unique, even when c is
negative.

Proof. McOwen. Consider v(z,t) = e“u(x,t). The transformed problem is

(18.2)

v = Av in R™ x (0, 00)
v(z,0) = g(x) on R™.

Since ¢ is continuous and bounded in R", we have

1 Cz—yl?
wot) = [ Kepngmd=—— [ 5w,
u(z,t) = e Yoz, t)= : / e_‘zj‘fp_“g(y) dy
’ ’ (4mt)2 Jrn '

u(z,t) is a bounded solution since v(z, t) is.
To prove uniqueness, assume there is another solution v’ of (18.2). w = v — v’ satisfies

{wt = Aw in R™ x (0, 00) (18.3)

w(z,0)=0 on R™

Since bounded solutions of (18.3) are unique, and since w is a nontrivial solution, w is
unbounded. Thus, v’ is unbounded, and therefore, the bounded solution v is unique. [
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18.1.1 Heat Equation Energy Estimates

Problem (F’94, #3). Let u(z,y,t) be a twice continuously differential solution of

ut:Au—ug m QCR2, t>0
u(z,y,0) =0 in
u(x,y,t) =0 in 09, t>0.

Prove that u(x,y,t)=0 1in Q x [0,T].

Proof. Multiply the equation by u and integrate:

wy = ulu—ul

/uutdx = /uAud:U—/u4dx,
Q Q Q

1d 0
—— [ WPdx = / u—uds—/|Vu|2dx—/u4dx,
2dt QO o0 on 9] 9]
—_—
=0

1d

S ollully = —/Q|Vu|2dx—/9u4dx <o
Thus,

lu(z, y, 1)l < [lu(z,y,0)[[2 = 0.

Hence, ||u(z,y,t)||l2=0, and u =0. O
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Problem (F’98, #5). Consider the heat equation
u—Au = 0

i a two dimensional region . Define the mass M as

M(t) = /Q w(z, t) dz.

a) For a fized domain ), show M is a constant in time if the boundary conditions are
ou/On = 0.

b) Suppose that Q@ = Q(t) is evolving in time, with a boundary that moves at velocity
v, which may vary along the boundary. Find a modified boundary condition (in terms
of local quantities only) for u, so that M is constant.

Hint: You may use the fact that

DA ) de = ft(x,t)das—i—/ n-v f(z,t) di,
dt Jo Q(t) a9(t)

i which n is a unit normal vector to the boundary OS2.

Proof. a) We have

— Au = 0, on )
gz =0, on 0.

We want to show that iM(t) = 0. We have %

d d ou
—M = = AN = - =
o (t) = dt/ u(x,t)de = /Qut dr = / udr = /89 o ds = 0. v

b) We need 4 SM(t) = 0.

OziM(t) _ 4 u(x,t)da:z/ utdas—l—/ n-vuds
dt dt Jo Q(t) a9(t)

= Audm—l—/ n'vuds:/ —ds—l—/ n-vuds
Q(t) a9(t) a(t) On a9(t)

= Vu'nds—l—/ n-vuds:/ n - (Vu+vu) ds.
89(t) 89(t) 89(t)

Thus, we need:

n-(Vu+ou)ds = 0, on 0.

56The last equality below is obtained from the Green’s formula:

Audr = / —ds
Q 00
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Problem (S’95, #3). Write down an explicit formula for a function u(x,t) solving

in R™ x (0, 00)

{ut—l—b'Vu—l—cu:Au (18.4)

u(x,0) = f(x) on R™.
where b € R™ and ¢ € R are constants.

Hint: First transform this to the heat equation by a linear change of the dependent
and independent variables. Then solve the heat equation using the fundamental solution.

Proof. Consider

o u(z,t) = ¥ Ply(x,t).
u = PeX TPy 4 e Bl — (v, 4 fu)e O
Vu e Bty 4 e tBiyyy = (av + Vv)ea'“ﬂt,
V- (Vu) V- ((av + V)e® 1) = (a- Vo + £0)e™ ™ P 4 (|a?v + a - Vo)er ™ot

= (Av+2a- Vv + |af?v)e* ™,

Plugging this into (18.4), we obtain
vi + v +b-(av+ Vo) +cv = Av + 2a - Vo + |al?v,
ve+ (b—2a) - Vo+ (B+b-a+c— |a|2)v:Av.

In order to get homogeneous heat equation, we set

b b
a=g, p=-"7 ¢
which gives
v = Av in R"™ x (0, 00)
v(z,0) = e_g"”f(x) on R™

The above PDE has the following solution:

1 lz—y|> _
v(x,t) = D e a e 2Yf(y)dy
(1) (47t /n )
Thus,
b (102 4oy L b (B2 oy =yl b
u(x,t) = ez 4 v(z,t) = —e2 e a e 2Yf(y)dy
(4mt)2 n
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Problem (F’01, #7). Consider the parabolic problem
U = Ugy + c(T)u

for —oo < x < 00, in which
clx) =0  for |x|>1,
clz) =1  for |z| <1

Find solutions of the form u(z,t) = eMv(x) in which [~ |u|*dx < cc.
Hint: Look for v to have the form

v(z) = ae”M for x| > 1,
v(z) = beosle  for |x| <1,

for some a,b, k, 1.

Proof. Plug u(xz,t) = eMv(z) into (18.5) to get:
MeMo(z) = M (2) + ceto(x),
M(z) = 0'(z) + cv(z),
v"(z) — Mv(z) + cv(z) = 0.

e For |z| >1, ¢=0. We look for solutions of the form wv(z) = ae ",

v'(z) — Mv(z) = 0,

ak?e Fl —gre~klel = 0,
E—-X = 0,
K o=

ko= £V
Thus, v(z) = cre™V2 4 cpeV™ | Since we want 25 Juf da < oo

u(z, t) = aeMe=VAe,

e For x| <1, ¢=1. We look for solutions of the form wv(x) = bcoslz.
V"(x) = M(z)+v(xz) = 0,
—bl?coslz 4 (1 — Nbcosle = 0,
P+ (1-) = o0,
2 = 1-),
I = +V1-X\

Thus, (since cos(—x) = cosx)

u(z, t) = beM cos /(1 — N)z.

e We want v(x) to be continuous on R, and at = +1, in particular. Thus,

ae=V* = bcos (1=N),

a = beY™ cos \/ (1=N).

e Also, v(x) is symmetric:

00 00 1 00
/ lul? de = 2/ lul? de = 2[/ |u|2d33—|—/ |u|2d33] < 00.
—00 0 0 1

267

(18.5)
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Problem (F’03, #3). [_The function
1 _x?
WX, T) = (4nT) 307
satisfies (you do not have to show this)
hr = hxx.

Using this result, verify that for any smooth function U

satisfies
Ut + TU = Ugy-

[—®iven that U(x) is bounded and continuous everywhere on —oo < x < 0o, establish
that

o

lim [ U(€) h(z— & t)de = Ulx)

t—0 S

[—dnd show that u(x,t) — U(x) ast — 0. (You may use the fact that [;° e ¢ d¢ =
1
3VT.)

Proof. We change the notation: h — K, U — g, £ — y. We have

K(X,T)= —— 37
s — e aT
VarT
[ We want to verify that
i [e%S)
u(w,t) = [ K-y £,0) 90 dy
—0Q
satisfies
Ut + TU = Ugy- &
We have
> d L3 gt 2
wo= [ Gl Ry - 2.0 gy dy
t
e 3
— / [(t2 —x)es 303t )0 4 o3t _It(KX (=2t) + KT)} g(y) dy,
ou = [ e R @y - 20 0) d,
[ee]
> d L3 gt 2
o= | [T K@ -y - 20| gy dy
—0Q
e 3
= / [ e | 4 estiot Kx} 9(y) dy,
[ee]
> d
Upy = / — —tedt_ItK—l—ed K } g(y) dy
oo Az
> L3 —at L3 —at L3 —at L3 _at
_ [ K — test ot |y Kx + e3" " Kxx| g(y) dy.
—0Q
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269

Plugging these into ®, most of the terms cancel out. The remaining two terms cancel

because K1 = Kxx.

[QGiven that g(z) is bounded and continuous on —oo < x < 0o, we establish that 67

o

lim K(z—y,t)g(y)dy = g(x).

t—0 J_
Fix zg € R™, € > 0. Choose § > 0 such that
l9(y) —g(xo)| <& if |y —mxo| <4, y eR™

Then if |x — z¢| < g, we have: fRK x,t)de=1)

(/Kx—y, )dy—g:ro (/Kx—y l9(y) — g(xo)]dy(

< / K(z —y.t) |g(y) — g(zo)| dy + / Kz —y,1) |g(y)
Bs(z0) R—Bs (o)

<efz K(rty,t) dy = ¢
Furthermore, if |x — 2| < g and |y — x| > 9§, then
) 1
vzl < ly—al+y < ly—al+ 5ly—aol

Thus, |y — x| > %|y — xo|. Consequently,

® = e+2||g||Loo/ Ko —y,t) dy
R— B5 s}
_lz—yl?
< ¢ —|— — it dy
R— Ba(ro
< & —|— — ylzt‘ dy
R— Ba(ro

= 5—1——/ elotrdr—>5—|—0 as t— 0T,

Hence, if |x — z¢| < 5 and ¢t > 0 is small enough, |u(z,t) — g(zg)| < 2e.

S"Evans, p. 47, Theorem 1 (c).

— g(xo)|dy ®
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Problem (S’93, #4). The temperature T(x,t) in a stationary medium, x > 0, is
governed by the heat conduction equation

or  0°T
— = . 18.6
ot 0x? (18.6)
Making the change of variable (x,t) — (u,t), where u = x/2\/t, show that
T 2T T
oL 0T, 0T (18.7)

ot ou? Ou

Solutions of (18.7) that depend on u alone are called similarity solutions. %

Proof. We change notation: the change of variables is (x,t) — (u,7), where t = 7.
After the change of variables, we have T = T'(u(x,t),7(t)).

T 1
= = = T3> T = T o zz = 0,
U NG Uy g U NG U
T=1 = =1, Ty = 0.
or _ orou ot
ot Oudt  Or’
o _ T
or  Ou oz’
T _ D (OLy _ 0 (I oy _<02_T@>@+8_T82_u 82_T<@>2
ox2  Qx\dx/  Oxr\dudx)  \ou2dx/Or Ou dx2  Ou2\dx/)
=0
Thus, (18.6) gives:
O Ou 0T _ 82_T<@>2
ou ot  or  ou\ox/’
oT x or 0T /1 1 \2
%(‘g)*% = Fela)
or 1 0T i@_T
or At Ou?z g5 Ou’
oT 0T x 0T
= = 4L
or ou?  \/t du
oT o*T oT
w2 = T 9
t@T 8u2+ Yo v
O

58This is only the part of the qual problem.
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19 Contraction Mapping and Uniqueness - Wave

Recall that the solution to
{ Uty — gy = f(,1),
u(z,0) =g(z), w(z,0)=h(z),
is given by adding together d’Alembert’s formula and Duhamel’s principle:

(19.1)

z+ct 1 t z4c(t—s)
o) = ot et +ota— e+ 5o [~ n@ace o [ 77 e s ac) o

Problem (W’02, #8). a) Find an explicit solution of the following Cauchy problem
2 2
S — =1, (19.2)
w(0,2) =0, 2%(0,2)=0.
b) Use part (a) to prove the uniqueness of the solution of the Cauchy problem
2 2
‘?)T? — % +q(t,x)u =0, (19.3)
w(0,2) =0, 2%(0,z)=0.

Here f(t,x) and q(t,z) are continuous functions.

Proof. a) It was probably meant to give the u; initially. We rewrite (19.2) as

{ Ut — Ugy = f(xvt)a

u(z,0) =0, wu(z,0)=0. (19.4)

Duhamel’s principle, with ¢ = 1, gives the solution to (19.4):
1 t z4c(t—s) 1 rt z4(t—s)
wa) =g [ ([ T resae)as= 3 ([ siendc)as
2c¢ Jo z—c(t—s) 2 Jo x—(t—s)

b) We use the Contraction Mapping Principle to prove uniqueness.
Define the operator

/ /r;(t: s)ul€, 5) de ds.

on the Banach space C?2, || - ||o-
We will show |Tu, — Tupt1| < al|lun — upt1]] where @ < 1. Then {u,}5:
Unt1 = T'(u,) converges to a unique fixed point which is the unique solution of PDE.

Ttn — Tuper| = | / /Mts £,5) (un(£, ) — wnsa (€, 5)) dé ds

(t—s)

< 2 [ llcln — oo 20~ ) s
0

< 752||q||oo||un—un+1||Oo < allun — Unti||oos for small t.

Thus, T is a contraction = 3 a unique fixed point.
Since Tw = u, w is the solution to the PDE. ]
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Problem (F’00, #3). Consider the Goursat problem:

t 4
()
71 72

a-f} utp

-o.p)
Find the solution of the equation
0%u  0%u
otz 0x?

i the square D, satisfying the boundary conditions

+a(z,t)u=0

u+h =¥, U+w ::¢7

where 1, 2 are two adjacent sides D. Here a(x,t), ¢ and ¥ are continuous functions.
Prove the uniqueness of the solution of this Goursat problem.

Proof. The change of variable p=xz+t, n=x —1t
transforms the equation to

Uy + g, ) = 0.

We integrate the equation:

nore
/ / Uy (u,v) dudv = / / a(p,m) adudv,
0o Jo
nore
/ (i (p, v) — Uy (0,v)) dv = / / n) wdu dv,
0 0 0

() = (1, 0) + 3(0, 1) / n) du do.
We change the notation. In the new notation:

fay) = ole.y) - /0 ' /0 " 4, 0) £, v) dud,

[ = o+ Kf,
[ = o+ K(e+Kf),

o0
f= o+> K,
n=1

f = Kf = f=0

max |f| < d0max|a|max]|f]|.
0<x<d

For small enough d, the operator K is a contraction. Thus, there exists a unique fixed
point of K, and f = K f, where f is the unique solution. O
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20 Contraction Mapping and Uniqueness - Heat

The solution of the initial value problem

ug = Au+ f(x,t) for t >0, x € R"” (20.1)
u(x,0) = g(x) for x € R™. '
is given by
~ t ~
wet)= [ K=y o+ [ [ Klayt=s .5 dyds
n 0 n
where

e~ for ¢ >0,
0 for ¢t <O0.

Problem (F’00, #2). Consider the Cauchy problem

u — Au+ui(z,t) = f(z,t), zeRY, 0<t<T
u(xz,0) = 0.

Prove the uniqueness of the classical bounded solution assuming that T is small
enough.

Proof. Let {u,} be a sequence of approximations to the solution, such that

t

S = wr [ K@ t= ) (fs) = i) d s

use Duhamel’ s principle
We will show that S has a fixed point ( |S(un) — S(upt1)| < efun — uns1], a<1)
< {u,} converges to a uniques solution for small enough 7.
Since up, tunt1 € C2RM)NCHE) = |upt1 +un| < M.
t
[S(upn) — S(uns1)| < / / |K(;r -y, t— s)| |ui+1 — ui| dy ds
0 JRn

— /0 /n |K(x—y,t—s)| |un+1 —un| |un+1 +un|dyds

t
< M// |K(z =y, t—5)| |unt1 — un| dy ds
0 n
t
< MMl/ [tnt1 (2, ) — un(z,s)|ds
0
< MMT ||up+1 — unlloo < ||tns+1 — tnlloo for small 7.

Thus, S is a contraction = 3 a unique fixed point u € C?(R") N C*(t) such that
u = limy, o0 Up. w is implicitly defined as

u(x,t) :/0 RnK(;r—y,t—s) (f(y,s)—u2(y,s))dyds.
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Problem (S°97, #3). a) Let Q(z) > 0 such that [° _ Q(z)dz =1,
and define Q. = 1Q(Z). Show that (here x denotes convolution,)

|1Qc(x) * w(z)|[ee < [|w(@)]|oe.
In particular, let Q¢(x) denote the heat kernel (at time t), then

1Q¢(2) * wi(x) — Qi) * wa(x)|| L < [Jwi(2) — wa(2)]] Lo

b) Consider the parabolic equation wu; = Uz, +u®  subject to initial conditions
u(x,0) = f(x). Show that the solution of this equation satisfies

u(z,t) = Qu(x) * f(x) —I—/O Qi_s(x) x u*(z, 5) ds. (20.2)

c) Fixt > 0. Let {uy(z,t)}, n = 1,2,... the fized point iterations for the solution of
(20.2)

t
Uns1(z,t) = Qi(x) * f(x) —I—/ Qi—s(x) xu(x, s)ds. (20.3)
0
Let Ky (t) = suPo<im<p |[um (2, t)||p. Using (a) and (b) show that
t
unt1(z,t) = un (2, t)[[ze < 2 sup Kn(T)'/ un (2, ) = un—1(x, s)|[ L ds.
0<r<t 0

Conclude that the fized point iterations in (20.3) converge if t is sufficiently small.

Proof. a) We have
Q@) * w(a) e = ' /_ZQe(w—y)w(y)dy' < [ 1Qde - wuw) iy
< holle [ Qe =)y = ol [~ 20(Z) ay

folle |~ Z2(%)d (= Lae )

- ||w||oo/_°° Q) dz = [lw(@)llo

A
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12
Qi(z) = ﬁe‘ﬂ, the heat kernel. We have %9

1Qu() * w1 (z) — Qul) * wr(@) [z = H/ Ay [ ey w2<>dyH

/ e (143) 1(y) dy — / e (143) wa(y dyH

\/E

< \/i% - (143) ’LU1 ) 2(y)|dy
< Hw1(y)—w2(y)Hoo\/%m/_ _eo? dy
Z:xﬁyv dz:%i—i = Hwﬂy)—ua(y)iywiH Zmd
1>,
= le(y)—wz(y)Hoo—W e dz
Al
VT
= Jlwi(y) —w2(y)]| - v
59Note:

o o _y)2 o o
/ Qt(r)dr = i t/ e dy = \/%t/ e VHdz = %/ e dy = 1.
— 00 T — 00 T — 0 — 0
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b) Consider

Ut = Ugy + u27

u(z,0) = f(x).
We will show that the solution of this equation satisfies

umwsznﬂm+AQHmnﬁm@w

/Qts *udes—//Qtsx— s) dyds
B /0 /RQt_S T-y) US y’s)_“yy(yas)> dy ds

_ /0 /R%(Qt—s(x—y)u(y,s))—d%(Qt_s(x—y))u( $) — Qu—s(x — y)uyy (y, s) dy ds

— [ /]R Qo(z — y)uly, t) dy — /IR Qi(r — y)u(y,0) dy]
] Qe - )l ) + (e — . 5) dy ds
/0 /Rds dy

~
=0, since Q¢ satisfies heat equation

= u(x,t) /Qt x—y Note: lim Q(x,t) = dp(x) = (x).
= u(x,t) = Q) * f(x). v tl_lglfR (z —y,t)o(y) dy = v(0).

Note that we used: D*(fxg) = (D*f)xg = f*(D%).

c) Let .
Uns1(z,t) = Qi(x) * f(x) —I—/O Qi—s(x) *ui(x,s) ds

||Un+1($at)_un($vt)||[z°° =

[ Qi) () 9

o

< / HQt_S (z) = ( u2 (z,s —ui_l(x,s))Hoods
/Hu x,8) nlxs)Hoods

< /0 Hun(x, 8) — Up—1(x, s)HooHun(x, $) + up—1(x, S)Hoo ds

< s flunGo9) + s (@) [ onte8) = v ds

< 2 sup K / ||un(z,8) = tUn—1(x,8)||L=ds. v
0<r<t

Also, |lunta(@,t) —un(@, )|l < 2 sup Kn(7) - |lun(z, s) — un—1(x, 5)|| Lo
<r<t
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For ¢ small enough, 2tsupy<,<; Kn(7) < a < 1. Thus, T' defined as

Tu = Qi) f(z) + /0 Qrs(z) *u(z, 5) ds

is a contraction, and has a unique fixed point u = T'u. ]
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Problem (S’99, #3). Consider the system of equations
U = gy + fu,0)
vy = 2055 + g(u, v)
to be solved for t >0, —oo < x < oo, and smooth initial data with compact support:
u(x,0) = ug(z), v(z,0) = vo(x).

If f and g are uniformly Lipschitz continuous, give a proof of existence and unique-
ness of the solution to this problem in the space of bounded continuous functions with

[lu(-, D) = sup, |u(z, t)].

Proof. The space of continuous bounded functions forms a complete metric space so
the contraction mapping principle applies.
First, let v(z,t) = w(%,t), then
Ut = Ugg + f(uvw)
W = Wy + g(u, ’LU)
These initial value problems have the following solutions (K is the heat kernel):

~ t ~
wet) = [ Ke—pnu@dr [ [ Ka=pe-s o) s

t
wat) = [ K@=yt dy+ / [ Ra =yt =) gluw) dyds,
n 0 n

By the Lipshitz conditions,

lg(u, w)| < Ma||wl].

Now we can show the mappings, as defined below, are contractions:

t
Tiu = [ Klz—yt)uly)dy+ / Rz -yt —s) flu,w) dyds,
Rn 0 Rn

t
Tow = [ K(z—y t)woly)dy+ / Rz -yt — ) g(u, w) dyds.
Rn 0 Rn

t
i) = TiCwnrs)] < [ [ R G@= 9t =) [fn0) = Flnor, w)] dyds
0 n
t
< Ml/ / |K(z =y, t—5)||un — tns1| dyds
0 n
t ~
< M / sup !un — un+1| / K(zx —y,t—s)dyds
0 = Rn
t
< M / sup [y, — unt1|ds < Mitsup un — tpii]
0 =« T
< sup |un - un+1| for small ¢.
x
We used the Lipshitz condition and fR f((x —y,t—s)dy = 1.
Thus, for small ¢, T} is a contraction, and has a unique fixed point. Thus, the solution
is defined as u = Tju.

Similarly, T is a contraction and has a unique fixed point. The solution is defined as
w = TQ’LU. Ol
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21 Problems: Maximum Principle - Laplace and Heat

21.1 Heat Equation - Maximum Principle and Uniqueness

Let us introduce the “cylinder” U = Ur = Q x (0,7). We know that harmonic (and
subharmonic) functions achieve their maximum on the boundary of the domain. For
the heat equation, the result is improved in that the maximum is achieved on a certain
part of the boundary, parabolic boundary:

I' = {(z,t)eU:2€0Q or t=0}.
Let us also denote by C*!(U) functions satisfying u¢, tg,q, € C(U).

Weak Maximum Principle. Let u € C*Y(U) N C(U) satisfy Au > uy in U.
Then u achieves its mazimum on the parabolic boundary of U:

maxu(z,t) = mlgxu(;r,t). (21.1)
U

Proof. e First, assume Au > u; in U. For 0 < 7 < T consider
Ur=Q0x(0,7), TI,={xtelU,:2€0Q or t=0}

If the maximum of v on U, occurs at z € Q and t = 7, then w(x,7) > 0 and
Au(z, ) < 0, violating our assumption; similarly, u cannot attain an interior maximum
on U,. Hence (21.1) holds for U,: maxg u = maxp, u. But maxp, u < maxpu
and by continuity of u, maxgu = lim, 7 maxg_u. This establishes (21.1).

e Second, we consider the general case of Au > u; in U. Let u = v + et for ¢ > 0.
Notice that v <u on U and Av — v > 0 in U. Thus we may apply (21.1) to v:

maxu = max(v+et) < maxv+ el = maxv+el < maxu+eT.
U U U r r

Letting ¢ — 0 establishes (21.1) for w. O
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Problem (S’98, #7). Prove that any smooth solution, u(x,y,t) in the unit box
Q={(z,y)| —1<=x,y <1}, of the following equation

up = Uy + uuy + Au, t>0, (z,y) €Q
u(z,y,0) = f(z,y), (z,y) € Q
satisfies the weak maximum principle,
max u(z,y,t) < max{ max u(xl,+£1,t), max f(x .
Qx[0,T] (@,y,) < {ogth (£1, £1,9), (z,y)eﬂf( 9)}
Proof. Suppose u satisfies given equation. Let w=v +et fore > 0. Then,
v+ e = Vo +vvy +et(vy +vy) + Av.
Suppose v has a maximum at (g, Yo, to) € € x (0,7). Then
Vpy=vy=1=0 = e=Av = Av>0
= v has a minimum at (z9, yo, to), a contradiction.
Thus, the maximum of v is on the boundary of Q x (0, 7).
Suppose v has a maximum at (zg, y0,T), (zo,y0) € Q. Then
V=0, =0, >0 = e<Av = Av>0
= v has a minimum at (zg, y0,T), a contradiction. Thus,

max v < max{org&xTv(:l:l,:l:l,t),(mz)}x flz,y)}.

Qx[0,1] T,y
Now
max u = max (v+et) < max v+l < max{max v(£l,+1,¢), max f(z,y)}+eT
Qx[0,T] Qx[0,T] Qx[0,T] 0<t<T (z,y)€Q

< max{orgngu(il,ﬂ:l,t),(gj)ﬂéﬂ (z,y)} +eT.

Letting ¢ — 0 establishes the result. U
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21.2 Laplace Equation - Maximum Principle

Problem (S’91, #6). Suppose that u satisfies
Lu = augy + buyy + cuy + duy —eu = 0

with a >0, b >0, e > 0, for (z,y) € Q, with Q a bounded open set in R2.

a) Show that u cannot have a positive mazimum or a negative minimum in the in-
terior of €.

b) Use this to show that the only function u satisfying Lu =0 in Q, u =0 on 9
and v continuous on Q isu = 0.

Proof. a) For an interior (local) maximum or minimum at an interior point (z,y), we
have

uy =0, uy =0.

e Suppose u has a positive maximum in the interior of 2. Then
u>0, Uz <0, uyy <0.

With these values, we have

AUy + bUyy + cuy + duy, —eu = 0,
—— T O~ o =
<0 <0 =0 - <0

which leads to contradiction. Thus, u can not have a positive maximum in 2.

e Suppose u has a negative minimum in the interior of €2. Then
u <0, Ugp =0, uyy =>0.
With these values, we have
AUy + bUyy + cuy + duy, —eu = 0,
M~ N
>0 >0 =0 =0 >0

which leads to contradiction. Thus, v can not have a negative minimum in €.
b) Since u can not have positive maximum in the interior of 2, then maxu = 0 on Q.

Since u can not have negative minimum in the interior of €2, then minu = 0 on €.
Since u is continuous, v = 0 on 2. ]



Partial Differential Equations Igor Yanovsky, 2005 282

22 Problems: Separation of Variables - Laplace Equation

Problem 1: The 2D LAPLACE Equation on a Square.
Let Q = (0,7) x (0,7), and use separation of variables to solve the boundary value
problem

Uz + Uyy = 0 O<z,y<m 7
u(0,y) =0 = u(m,y) 0<y<m
u(x,0) =0, u(z, ) = g(x) 0<z<m,
where g is a continuous function satisfying g(0) = 0 = g(7). ” T

Proof. Assume u(z,y) = X ()Y (y), then substitution in the PDE gives XY + XYY" =
0.
X// Y//

e % -

e From X"+ AX =0, we get X,(z) = a,cosnx + b,sinnz. Boundary conditions
give

u(0,y) = X(0)Y(y) =
X

u(m,y) = X (m)Y(y) =
Thus, X,(0) =a, =0, and
Xp(x) =bpsinnz, n=1,2,.... V
—n2b, sinnz + \b, sinnz = 0,
=02 n=12,.... V

e With these values of A\, we solve Y” —n?Y =0 to find Y,(y) = ¢, coshny +
d,, sinhny.
Boundary conditions give

u(z,0)=X(z)Y(0)=0 = Y(0)=0=c,.

Y, (z) = dy,sinhny. v

e By superposition, we write

o0
u(x,y) = Z ay, sin nw sinh ny,

n=1

which satifies the equation and the three homogeneous boundary conditions. The
boundary condition at y = 7 gives
[e.e]
u(z, ) =g(x) = Z ap, sinnx sinh n,

n=1
o)

™ ™
. ~ . . . ™. .
/ g(z) sinmz dr = E Gy, Sinh mr/ sinnx sinmax dx = 5 (m sinhmr.
0 0

n=1
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2 ™
ap sinhnr = —/ g(z) sinnz dz.
T Jo
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Problem 2: The 2D LAPLACE Equation on a Square. Let Q = (0,7) x (0,7),
and use separation of variables to solve the mixed boundary value problem

Au =0 in
Uz (0,y) = 0 = uz(m,y) O<y<m
u(x,0) =0, u(z,m) = g(x) O<z<m.

Proof. Assume u(z,y) = X ()Y (y), then substitution in the PDE gives XY + XY =
0.

X// Y//

e % -

e Consider X"+ \X = 0.

If A=0, X()(.Z‘) = apx + bg.

If A\>0, X,(z)=ay,cosnz+ by,sinnx.
Boundary conditions give

{ u.(0,y) = X'(0)Y (y)

=0 , o )
g (myy) = X' (7)Y (y) =0 = X'(0)=0=X'(m).

Thus, X((0) =ap =0, and X}, (0) = nb,, = 0.

Xo(x) = by, Xp(x)=ancosnz, n=1,2,.... v
—n2a, cosnx + Aa, cosnz = 0,
Ap=n% n=01,2,.... Vv

e With these values of \,, we solve Y” —n?Y =0.
If n=0, Yo(y) = coy + do.

If n#0, Y,(y) = ¢, coshny + d,, sinhny.
Boundary conditions give

u(z,0) = X(z)Y(0)=0 = Y(0)=0.
Thus, Yy(0) = dy =0, and Y,,(0) = ¢, = 0.
Yo(y) = coy, Yn(y) =dpsinhny, n=1,2,....
e We have

ug(,y) = Xo(2)Yo(y) = bocoy = oy,
un(z,y) = Xp(2)Y,(y) = (ay, cosnx)(d, sinhny) = a, cos nx sinh ny.

By superposition, we write

o0
u(x,y) = apy + Z @y, cos na sinh ny,

n=1

which satifies the equation and the three homogeneous boundary conditions. The fourth
boundary condition gives
[e.e]
u(z, ) = g(x) = agm + Z ayp, cosnx sinh n,

n=1
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Jo g(x) dx = [ (aom + Y op | @n cosna sinhnr) da = aon?,
Jo 9(x) cosmzdx =307 | Gnsinhnm [ cos na cosma dx = 7 Gy, sinhmr.

n=1
0= [ g(r)d
ap = — x)dz,
0 2 0 g
~ 2 [
apsinhnmt = — [ g(x) cosnz dz.
T Jo




Partial Differential Equations Igor Yanovsky, 2005 286

Problem (W’04, #5) The 2D LAPLACE Equation in an Upper-Half Plane.
Consider the Laplace equation

¥
Ou  Pu_, >0 <z<+
—+ === —o00 < T 00
8.1'2 ay2 ) y )
0 0
P — u(w.0) = 1(2),
where f($) c Cgo(Rl). wx0)-ux) = | 0 x

Find a bounded solution u(x,y) and show that u(x,y) — 0 when |z|+y — oo.

Proof. Assume u(z,y) = X (z)Y (y), then substitution in the PDE gives XY + XY =
0.

X// Y//

e v —A. ®

e Consider X"+ XX = 0.

If A=0, X()(.Z‘) = apx + bg.

If A >0, X,(z)=ay,cos vz + by,sin /.

Since we look for bounded solutions as |z| — oo, we have ag = 0.

e Consider Y — \,)Y = 0.

If A, =0, Yo(y) = coy + do.

If A, >0, Y,(y) = cne_‘/my + dnemy.

Since we look for bounded solutions as y — oo, we have ¢g =0, d, = 0. Thus,

u(x,y) = ag + Z e~ VAny (dn cos \/Ex + by, sin \/Ex)
n=1

Initial condition gives:

flx) = Uy(J% 0) —u(x,0) = —ag — Z(\/E + 1)(dn cos \/Ex + l;n sin \/Ex)
n=1

f(z) € C5°(RY), i.e. has compact support [—L, L], for some L > 0. Thus the coefficients

Gn, by are given by

L
/ f(x) cos /A de

-L
/L f(x)sin/ Az de

-L

Thus, u(z,y) — 0 when |z| +y — oco. 7 O

~(V/An + Dan L.
~(v A + 1)L

"Note that if we change the roles of X and Y in ®, the solution we get will be unbounded.
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Problem 3: The 2D LAPLACE Equation on a Circle.

Let Q2 be the unit disk in R? and consider the problem N
Au=0 m Q f\ .

In=h on 09, Y

1

where h is a continuous function.

Proof. Use polar coordinates (r, )

U + L+ Sugg =0  for 0<r<1,0<60<2r
e(1,0) = h(0) for 0 <6 < 2.

r2um« + ru, + ugg = 0.
Let r = et u(r(t),0).
U = Uplp = —e_tur,
U = (_e_tur)t = e, + e Uy = rup 4 U,
Thus, we have
Uy + ugg = 0.
Let u(t,0) = X (¢)Y(0), which gives X" (¢)Y(0) + X (¢t)Y"(0) = 0.
X"(t) _Y”(@)

X0 - v

e From Y”(0) + A\Y(0) =0, we get Y,,(0) = a,, cosnf + b, sin nf.
A=n% n=0,1,2,...
e With these values of \,, we solve X" (t) —n?X(t) = 0.

If n=0, X()(t) = cot + dp. = X()(’I”) = —cglogr + dy.
Ifn#0, X,(t) =cpe™ +dpe™™ = X,(r)=cor ™+ d,r".
e We have

up(r,0) = Xo(r)Yo(0) = (—cologr + do)ao,

up(r,0) = Xn(r)Yn(0) = (cpr " + dpr")(ayn cosnb + by, sinnb).
But v must be finite at r =0,s0¢, =0, n=0,1,2,....

uo(r,0) = doao,

Up(r,0) = dpr"(ay, cosnb + b, sinnd).

By superposition, we write

u(r,0) = agp + Z (G, cos 16 + by, sinnf).

n=1

Boundary condition gives
[e.e]
ur(1,0) = Z n(an cos n + by, sinnd) = h(6).
n=1
The coefficients a,, b, for n > 1 are determined from the Fourier series for h(6).
ap is not determined by h(f) and therefore may take an arbitrary value. Moreover,
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the constant term in the Fourier series for h(#) must be zero [i.e., 027r h(0)do = 0].
Therefore, the problem is not solvable for an arbitrary function h(#), and when it is
solvable, the solution is not unique. O
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Problem 4: The 2D LAPLACE Equation on a Circle.
Let Q= {(z,y) e R2: 2?2 + 92 <1} ={(r,0): 0<r <1,0< 6 <27},
and use separation of variables (r,0) to solve the Dirichlet problem
Au =0 in §Q
u(1,0) =g(0) for 0 <60 <2m.

Proof. Use polar coordinates (r, )

uw+%ur+r%u99:0 for 0<r<1,0<60<2m
u(1,0) = g(0) for 0 <0 < 2m.

r2um« + ru, + ugg = 0.
Let r =e7t, u(r(t),0).
U = Uplp = —e_tur,
U = (_e_tur)t = e, + ey = rup 4 U,
Thus, we have
Uy + ugg = 0.
Let u(t,0) = X (¢)Y (), which gives X" ()Y (0) + X (t)Y"(0) = 0.

X”(t) B Y”(Q)
X Y

=\

e From Y"(0) + A\Y(0) =0, we get Y, (0) = a,, cosnb + b, sinnb.
A=n? n=0,1,2,...
e With these values of A\, we solve X" (t) —n?X(t) = 0.
If n=0, X()(t) = cot + dp. = X()(’I”) = —cglogr + dy.
Ifn#0, X,t) =cpe™ +dpe™ = X,r)=cpr ™"+ d,r™.
e We have

up(r,0) = Xo(r)Yo(0) = (—cologr + do)ao,

un(r,0) = X,(r)Yn(0) = (cpr™" + dpr™)(ay, cosnb + by, sinnd).

But u must be finite at r =0,s0¢, =0, n=0,1,2,....

up(r,0) = doao,
Up(r,0) = dpr"(ay, cosnb + b, sinnd).

By superposition, we write

u(r,0) = agp + Z (G, cos N6 + by, sinnf).

n=1

Boundary condition gives

u(1,6) = ag + Z(dn cosnb + by, sinnd) = g(0).

n=1

289
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1 T
G = L / 9(6) db,
0

v

anp = g/ g(6) cosnf db,
T Jo

. 2 [T _

b, = —/ g(0) sinnd do.
T Jo
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Problem (F’94, #6): The 2D LAPLACE Equation on a Circle.
Find all solutions of the homogeneous equation

v
Ugy + Uyy =0, x2—|—y2 <1,
0
—u—u:O, 2?4+ y? = 1. x
" <

2 1

r—gé% i polar coordinates.

Proof. Use polar coordinates (r,6):
{uw+%ur+%2u99:0 for 0<r<1,0<60<2m
9u(1,0) — u(1,0) = 0 for 0 <6 < 2r.
Since we solve the equation on a circle, we have periodic conditions:
u(r,0) =wu(r,2r) = XY (0)=X(r)Y(2r) = Y(0) =Y(2n),
up(r,0) =ug(r,27) = X(r)Y'(0)=X(r)Y'(2r) = Y'(0)=Y'(2n).
Also, we want the solution to be bounded. In particular, u is bounded for r = 0.
r2um« + ru, + ugg = 0.
Let r = e™t, u(r(t),0), we have
Uy + ugg = 0.
Let u(t,0) = X (¢)Y(0), which gives X" (¢)Y(0) + X (¢t)Y"(0) = 0.
X"(t) _Y”(@)
X(t) Y (0)
o From Y”(0) + A\Y(0) = 0, we get Y, (0) = a,, cos VA0 + by, sin V6.
Using periodic condition: Y, (0) = a,,
Y (27) = @ cos(y/An 270) + b sin(y/ A, 270) = a, = Av=n = A\, =n’

Thus, Y,(0) = a, cosnf + b, sinnf.

e With these values of A\, we solve X" (t) —n?X(t) = 0.

If n=0, X()(t) = cot + dp. = X()(’I”) = —cglogr + dy.
Ifn#0, X,(t) =cpe™ +dpe™™ = X,(r)=cor ™+ dr™.
u must be finiteat r =0 = ¢,=0,n=0,1,2,....

=\

u(r,0) = agp + Z (G, cos N6 + by, sinnf).

n=1

Boundary condition gives

[e.e]
0 = u(1,0) — u(l,0) = —ap+ Z(n — 1) (@ cos b + by, sinnb).
n=1
Calculating Fourier coefficients gives —2mag =0 = ag = 0.
m(n—1)a,=0 = a,=0, n=2,3,...
ai, by are constants. Thus,

u(r, 0) = r(ay cos O + by sin6).
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Problem (S’00, #4).

v
a) Let (r,0) be polar coordinates on the plane,
i.e. x1 + izy =re'?. Solve the boudary value problem f\

Au = 0 m or<l T
ou/or = f(0) on r=1,

beginning with the Fourier series for [ (you may assume that f is continuously dif-
ferentiable). Give your answer as a power series in x1 + ixy plus a power series in
x1 — ixe. There is a necessary condition on f for this boundary value problem to be
solvable that you will find in the course of doing this.

b) Sum the series in part (a) to get a representation of u in the form

2w
u(r,0) = N(r,0—0)f(0')do'.
0

Proof. a) Green’s identity gives the necessary compatibility condition on f:
27
0 0
F(0)do = i = [ Nags = /Audm ~ 0.
0 r=1 Or a0 On Q
Use polar coordinates (r, 0):
uw+%ur+%2u99:0 for 0<r<1,0<60<2m
gu(1,0) = f(0) for 0 <6 < 2r.
Since we solve the equation on a circle, we have periodic conditions:
u(r,0) =wu(r,2r) = XY (0)=X(r)Y(2r) = Y(0) =Y(2n),
up(r,0) =ug(r,27) = X(r)Y'(0)=X(r)Y'(2r) = Y'(0)=Y'(2n).
Also, we want the solution to be bounded. In particular, u is bounded for r = 0.
r2uw + ru, + ugg = 0.
Let r = e™t, u(r(t),0), we have
Ut + ugg = 0.
Let u(t,0) = X (t)Y(6), which gives X" ()Y (0) + X (t)Y"(0) = 0.
X”(t) B Y//(e)
X Y
o From Y”(0) + AY(0) = 0, we get Y, (0) = a, cos VA0 + by, sin V6.
Using periodic condition: Y, (0) = a,,
Y, (27) = ay cos(\/ Ap 27) + by sin(\/ A\, 27) = a,, = Ap=n = A\, =n’

Thus, Y,(0) = a, cosnf + b, sinnf.
e With these values of \,, we solve X" (t) —n?X(t) = 0.
If n=0, X()(t) = ¢ot + dp. = X()(’I”) = —cglogr + dy.

=\
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Ifn#0, X,t) =cpe™ +dpe™ = X,r)=cpr ™+ d,r™.
u must be finiteat r=0 = ¢,=0,n=0,1,2,....

u(r,0) = agp + Z (G, cos N6 + by, sinnf).

n=1

Since
up(r,0) = Z nr" (@, cos né + by, sinnb),
n=1

the boundary condition gives

uy(1,60) = Zn(dncosnﬁ—l—gnsinnﬁ) = f(0).
n=1
1 2w
ap, = — f(0) cosnb db,
nm Jo
B 1 2w
b, = — f(0) sinnd df.
nm Jo

ap is not determined by f(6) (since f027r f(@)do = 0). Therefore, it may take an
arbitrary value. Moreover, the constant term in the Fourier series for f(#) must be zero
i.e., 027r f(0)dd = 0]. Therefore, the problem is not solvable for an arbitrary function

f(0), and when it is solvable, the solution is not unique.

b) In part (a), we obtained the solution and the Fourier coefficients:

1 2w

ap, = — f(0") cosnb do',
nm Jo
1 2w

S
S
I

— f(0") sinn®’ do'.
nm Jo

u(r,0) = ap+ Z (@, cos nf + by, sinnf)

n=1
e 1 21 1 21
— ~ n = / / / - / . / / .
= a —I-nz_:lr (Lm ; f(0") cosnb dﬁ} cosnf + [mr ; f(0") sinnf dﬁ} smn9>
X n 27
= ap+ Z L f(0) [cosnb’ cosnf + sinnd’ sinnd| do’
o— nm Jo
~ - Tn o / / /
= ap+ — f(0) cosn(0" — 0) do
n=1 0
2r X n
— G +/ S cosn(6—¢) f(¢)db.
0 fo—) nm
N(r,0—0)
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Problem (S’92, #6). Consider the Laplace equation
Ugz + Uyy = 0

for 22 +y?> > 1. Denoting by x = rcosf), y = rsin polar coordinates, let f = f(6) be
a given smooth function of 0. Construct a uniformly bounded solution which satisfies

boundary conditions
¥
u=f for z?+y?=1.

What conditions has f to satisfy such that

= \ | &
I2+y2—>00

Proof. Use polar coordinates (r,):

{uw+%ur+%2u99:0 for r>1

u(1,0) = f(0) for 0 <0 < 2m.

Since we solve the equation on outside of a circle, we have periodic conditions:
u(r,0) =wu(r,2r) =  X(MY(0)=X(r)Y2r) = Y(0)=Y(2n),
up(r,0) =u(r,2r) = X(@)Y'(0)=Xr)Y'(2r) = Y'(0)=Y'(2n).

Also, we want the solution to be bounded. In particular, u is bounded for r = oo.
r2um« + ru, + ugg = 0.

Let r = e™t, u(r(t),0), we have
Ugt + ugg = 0.

Let u(t,0) = X (t)Y (#), which gives X" ()Y (0) + X (t)Y"(0) = 0.
X" Y"()
X(t) Y(0)

e From Y”(#) + \Y(0) = 0, we get Y,,(8) = a,, cos VA0 + by, sin v/ M.

Using periodic condition: Y, (0) = a,,

Y, (27) = @ cos(V/ An 27) + by sin(v/ A 27) = @ = Av=n = A, =n’

Thus, Y,(0) = a, cosnf + b, sinnf.

e With these values of \,, we solve X" (t) —n?X(t) = 0.

If n=0, X()(t) = cot + dp. = X()(’I”) = —cglogr + dy.
Ifn#0, X,(t) =cpe™ +dpe™™ = X,(r)=cor ™+ d,r".
u must be finiteat r =00 = ¢=0,d,=0,n=1,2,....

=\

u(r,0) = ap + Z 7" (@, cosné + by, sinnf).
n=1

Boundary condition gives

f(0) = u(1,0) = do-l—Z(dncosnO—l—aninnO).

n=1
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2 = [ f(6) db,

fo=do= 5 J;" f(6)db,
Ty = fo% f(0) cosnb db, = fo=an =12 027r f(0) cosnb db,
Ty = [T £(8) sinnd df. fo=bn =L [27 £(6) sinnd db.
e We need to find conditions for f such that
, lim (22 + yHu(z,y) =0, or
Te+y*—00
lim r2u(r, ) = 0,
r—00 ~~~
need
lim 72 [fo + Zr_n(fn cosnf + f, sin n@)} = 0.
n=1 need
Since
lim [Z 2" f, cosnf + f, sin n@)} =0,
e n>2
we need
2
. 2 2—n P _
rli)rgo [r fo+ Z:IT (frncosnb + fn smn@)} —d 0.

Thus, the conditions are

fn7 fnzov n:07172'

295
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Problem (F’96, #2): The 2D LAPLACE Equation on a Semi-Annulus.
Solve the Laplace equation in the semi-annulus

Au =0, 1<r<2, 0<0<m,
u(r,0) = u(r,m) =0, 1<r<2,
u(1,0) = sinb, 0<6b<m,
u(2,6) =0, 0<O<m.

1 2

Hint: Use the formula A = %%(T%) + 359z Jor the Laplacian in polar coordinates.

Proof. Use polar coordinates (r, 0)

1 1
Upp + —Up + —Ugp =0 1<r<2, 0<0<m,
r r
r2uw + ru, + ugg = 0.
With r = e, we have
ugt + ugg = 0.
Let u(t,0) = X (¢)Y (), which gives X" ()Y (0) + X (t)Y"(0) = 0.

X”(t) B Y//(e)

X Y

=\

e From Y () + \Y () = 0, we get Y, (0) = a, cos VA + by, sin v/ M.
Boundary conditions give
Un(rv 0) =0= Xn(T)Yn(O
Un(rv 7T) =0= Xn(’r)yn(ﬂ-
Thus, 0 = Y;,(0) = ap, and Yy, (7) = b,sinvVAr =0 = VA=n = \, =n’
Thus, Y,(0) =b,sinnd, n=1,2,...
e With these values of \,, we solve X" (t) —n?X(t) = 0.

If n=0, X()(t) = cot + dp. = X()(’I”) = —cglogr + dy.
Ifn>0, X,(t) =ce™ +dpe™™ = X,(r)=cor ™+ d,r".
e We have,
u(r,0) = Z Xn(r)Y,(0) = Z(Enr_” + dpr™) sinnd.
n=1 n=1

Using the other two boundary conditions, we obtain

> ~ 51—1—621—1
sinf = wu(l,0) = én +dy) sinnf = -
(1,9) nz_:l(” n) {En+dn:0, n=2.3,....
s ~ ~
0 = w20) = > (627" +dp2")sinnf = 27" +d,2" =0, n=12,....
n=1

Thus, the coefficients are given by
4 1

Clzgv
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Problem (S’98, #8): The 2D LAPLACE Equation on a Semi-Annulus.
Solve

Au =0, 1<r<2, 0<0<m,
u(r,0) = u(r,m) =0, 1<r<2,
u(1,0) =u(2,0) =1, 0<f<m.

Proof. Use polar coordinates (r, 0)

uw+%ur+%u99:0 for 1<r<2, 0<0<m,
r2um« + ru, + ugg = 0.
With r = e, we have
Ut + ugg = 0.
Let u(t,0) = X (t)Y(0), which gives X" (t)Y(0) + X (¢t)Y"(0) = 0.

X”(t) o Y//(e)

X0 oY)

e From Y (0) + A\Y(0) =0, we get Y,,(0) = a,, cosnf + b, sinnf.
Boundary conditions give

Up(r,0)=0=X,(r)Y,(0) =0, = Y,(0)=0,

Up(ry,m) =0= X, (r)Y,(mr) =0, = Y,(7)=0.
Thus, 0 = Y,(0) = a,, and Y, (0) = b, sinnf.

A=n% n=12,...
e With these values of \,, we solve X" (t) —n?X(t) = 0.

—_ —

If n=0, X()(t) = cot + dp. = X()(’I”) = —cglogr + dy.
Ifn>0, X,(t) =cpe™ +dpe™™ = X,(r)=cor ™+ d,r".
e We have,

u(r,0) = Z Xn(r)Y,(0) = Z(Enr_” + dpr™) sinnd.

n=1 n=1

Using the other two boundary conditions, we obtain

o

u(l,f)=1 = Z(En +d,,) sinnd,

n=1
o)

w(2,0)=1 = Z(En2_" + d,2") sin nb),

n=1

which give the two equations for ¢, and Jn:

0 2

/sinn@d@ = g(én2_”—|—czn2”),
0

that can be solved. O
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Problem (F’89, #1). Consider Laplace equation inside a 90° sector of a circular
annulus

Au =0 a<r<b,0<0<g

subject to the boundary conditions

ou ou, m ¥
90 (T 0) 0, %(Tv 5) =0,
La.0) = 1(O), G (6.6) = F(6),

where f1(0), f2(0) are continuously differentiable. A,%\

a) Find the solution of this equation with the prescribed
boundary conditions using separation of variables.

u, = f3(8)

a w=0 b

Proof. a) Use polar coordinates (r, )

1 1
Upr + —Ur + —ugg =0 for a<r<b,0<0<i,
r r 2
r2uw + ru, + ugg = 0.
With r = e, we have
Ut + ugg = 0.
Let u(t,0) = X (¢)Y (), which gives X" ()Y (0) + X (t)Y"(0) = 0.

X”(t) _ _Y”(Q) .
X(t) Y (6) '

e From Y () + \Y(0) = 0, we get Y, (0) = a,, cos VA + by, sin v/ M.
Boundary conditions give

Unp(r0) = X,(rY(0)=0 = Y'(0)=0,

3 = X(Yi(5)=0 = Yi(5)=0.

Y (0) = —anvAnsin VA0 + b/ A cos VA0, Thus, Y/(0) = b,/ Ay =0 = b, =0.
Vi(5) = —anVAnsiny/A 5 =0 = VA Z=n1r = X\, =(2n)

Thus, Y, (0) = a, cos(2nd), n=10,1,2,....

In particular, Yy(0) = agt + bg. Boundary conditions give Yy(6) = by.

e With these values of )\, we solve X" (t)— (2n)2X (t) = 0.

If n=0, X()(t) = cot + dp. = X()(’I”) = —cglogr + dy.

Ifn >0, X,(t) =cpe?™ +dpe 2 = X, (r)=cyr 2" +d,r*

=<

o1 3

Ung (Ta

u(r,0) = élogr+ dy + Z(Enr_% + d, ™) cos(2n8).

n=1

Using the other two boundary conditions, we obtain

[e.e]
up(r,0) = C?O + Z(—2nénr_2”_1 + 2nd, 1) cos(2n0).
n=1
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f10) = up(a,6) = Dt Z n(—épa= "1 + d,a* 1) cos(2n),
a n=1

f2(0) = u.(b,0) = %0 +2 Z n(—Eb~ 2" 4+ d,b* 1) cos(2n0).
n=1
which give the two equations for ¢, and d~n:

/2 f1(0) cos(2n) df = gn(_éna—%—l + dNna%_l),
0

u, = ()

j€2‘ﬁﬂ0)snm2nﬁ)d0 = Tl ).
b) Show that the solution exists if and only if ¥
bl bl
a/ ﬁwme—b/ £2(0)do = 0. w0
0 0
u, = (0
Proof. Using Green’s identity, we obtain: A\\
0 a w=0 b
0 = / Audr = Ou
Q aq On

s

ou ou
= o 5(6,0)(194‘/% —a(a,ﬁ)dﬁ—l—/a —%(’I”,O)dT‘F/bv
- /Qﬁwm0+/”ﬁwme+o+o
0 0

- /ffa(e) a6 + /ffa(e) 0.

c) Is the solution unique?

300

Proof. No, since the boundary conditions are Neumann. The solution is unique only

up to a constant.

O
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Problem (S’99, #4). Let u(z,y) be harmonic inside the unit disc,
with boundary values along the unit circle ¥

T T
1, y>0
u(x,y) = x
0, y<0. T
Compute u(0,0) and u(0,y). kJ

Proof. Since u is harmonic, Awu = 0. Use polar coordinates (r, 6)

Urr + 2up + Hugg =0 0<r<1,0<0<2rm
1, 0<f<m

1,0) =
w1, 6) 0, w<80<2r.

2
r“Uppr + 17U + ugg = 0.
With r = e, we have
Ut + ugg = 0.

Let u(t, 6) = X (£)Y(0), which gives X" (¢)Y (6) + X (£)Y"(8) = 0.
X”(t) B Y//(e)

X))  Y(H)

=\

e From Y"(0) + A\Y(0) =0, we get Y, (0) = a,, cosnb + b, sinnb.
An=n2 n=12,...
e With these values of A\, we solve X" (t) —n?X(t) = 0.

If n=0, X()(t) = ¢ot + dp. = X()(’I”) = —cglogr + dy.
Ifn>0, X,t) =cpe™ +dpe™ = X,0r)=cyr ™+ d,r"
e We have

up(r,0) = Xo(r)Yo(0) = (—cologr + do)ao,

up(r,0) = Xn(r)Yn(0) = (cpr " + dpr™)(ayn cosnb + by, sinnb).
But u must be finite at r =0,s0¢, =0, n=0,1,2,....

up(r,0) = ao,

unp(r,0) = r"(a,cosnd + b, sinnh).

By superposition, we write

u(r,0) = agp + Z (G, cos N6 + by, sinnf).

n=1

Boundary condition gives

u(1,6) = ag + Z(dn cosnf + by, sinnf) =

n=1

1, 0<f<m
0, T <60 <2m,

and the coefficients @,, and l;n are determined from the above equation.
71 [

"1See Yana’s solutions, where Green’s function on a unit disk is constructed.
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23 Problems: Separation of Variables - Poisson Equation

Problem (F’91, #2): The 2D POISSON Equation on a Quarter-Circle.
Solve explicitly the following boundary value problem

Ugy + Uyy = f(.l‘, y)

in the domain Q = {(z,y), z >0,y > 0, 22 + ¢y < 1}
with boundary conditions
u =0 for y=0, 0<x <1,
— =0 for =0, O0<y<1, u,=0
ox
u=20 for >0, y>0, 22 +y?=1.

Function f(x,y) is known and is assumed to be continuous. 0 u=0 1

Proof. Use polar coordinates (r,6):

urr—l—%ur—l—r%ug(;:f(r,e) 0<r<1,0<0<73
u(r,0) = 0 0<r<l,
ug(r,5) =0 0<r<l,
u(l,0) = 0 0<6< 3.
We solve

r2urr + ru, + ugg = 0.

Let r = e™t, u(r(t),0), we have
Ut + ugp = 0. ®

Let u(t,0) = X (¢)Y (), which gives X" ()Y (0) + X (t)Y"(0) = 0.
X"(t) _Y"(0)

X)) Y(0)
e From Y"(0) + \Y () = 0, we get Y, (0) = a,cos VA + b,sinyv/A0. Boundary

conditions:

= Y(0)=Y'(3)=0.

= VAS=nr—% n=12.. = \=2n-1)>~
Thus, Y,(0) =b,sin(2n—1)§, n=1,2,.... Thus, we have

u(r,0) = Z Xy (r)sin[(2n — 1)6].
n=1
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We now plug this equation into ® with inhomogeneous term and obtain

D (X(t) sin[(2n —1)8) — (2n — 1)2X,(t) sin[(2n — 1)0]) = f(t,0),
n=1

o

D> (X)) = (20— 1)°X, (1) sin[(2n — 1)6] = f(t,6),

n=1

TXU(t) — (20— 12X,(1)) = /0 ® £(t,6) sin](2n — 1)6] do,

4
4 s
XU~ (@20 - 12Xa(t) = = / * £(t,0) sin[(2n — 1)0] do.
0
The solution to this equation is
X,(t) = cpe® V4 g e nt Unp(t),  or
X,(r) = cnr_(zn—l) + dnr(%—l) + 1t (1),

where uy,, is the particular solution of inhomogeneous equation.
u must be finiteat r =0 = ¢,=0,n=1,2,.... Thus,

Z (dn pr(2n=1) —I—unp( 7)) sin[(2n — 1)6].

n=1

Using the last boundary condition, we have

o

0=u(L,0) = Y (dn+uny(1)) sin[(2n—1)8],

n=1

u(r,0) = Z (- unp(l)r(2"_1) + Upy(r)) sin[(2n — 1)6].

The method used to solve this problem is similar to section

Problems: Eigenvalues of the Laplacian - Poisson Equation:

1) First, we find Y;,(0) eigenfunctions.

2) Then, we plug in our guess u(t, ) = X (¢)Y () into the equation wuy + ugs = f(t,6)
and solve an ODE in X (¢).

Note the similar problem on 2D Poisson equation on a square domain. The prob-
lem is used by first finding the eigenvalues and eigenfunctions of the Laplacian, and
then expanding f(z,y) in eigenfunctions, and comparing coefficients of f with the gen-
eral solution u(z,y).

Here, however, this could not be done because of the circular geometry of the domain.
In particular, the boundary conditions do not give enough information to find explicit
representations for yi,, and v,,. Also, the condition u =0 for = >0, y >0, z°4y% =1
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can not be used.
72 [

"2 ChiuYen’s solutions have attempts to solve this problem using Green’s function.
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24 Problems: Separation of Variables - Wave Equation

Example (McOwen 3.1 #2). We considered the initial/boundary value problem and
solved it using Fourier Series. We now solve it using the Separation of Variables.

Upt — Ugy = 0 O<zx<m, t>0
u(z,0)=1, w(z,00=0 O0<z<mw (24.1)
u(0,t) =0, u(m,t) =0 t>0.

Proof. Assume u(x,t) = X (2)T'(t), then substitution in the PDE gives XT" - X"T = 0.
X// T//
Y
X T

e From X"+ A\X =0, we get X, (z) = aycosnx + b, sinnz. Boundary conditions
give

u(0,t) = X(0)T(t)=0 - X0
u(m,t) = X(m)T'(t) =0

Thus, X,,(0) = a, =0, and X, (z) = b,sinnz, A\, =n% n=1,2,....
e With these values of \,,, we solve T”+4n?T =0 to find T),(t) = ¢, sinnt+d, cosnt.
Thus,
o0
u(z,t) = Z (¢nsinnt + dy, cos nt) sinnz,

n=1
o)

ug(xz,t) = Z (nén cosnt — nd,, sin nt) sinnz.

n=1

e Initial conditions give

[e.e]
1=wu(z,0) = Zcznsinm:,
n=1

[e.e]
0=wu(x,0) = Znénsinm:.
n=1

By orthogonality, we may multiply both equations by sinmax and integrate:

/ sinmz dx = czmi,
0 2
T m
O0dz = né, =
/0 T = nlng,
which gives the coefficients
~ 2 4 podd, N
d, = — (1 —cosnm) = { nm and én = 0.
nmw 0, n even,

Plugging the coefficients into a formula for u(z,t), we get

4 2n+ 1)t sin(2n + 1
(1) = _ZCOS( n+ 1)t sin(2n + );1:
(s (2n+1)
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Example. Use the method of separation of variables to find the solution to:

Upr + 3Up + U = Ugy, 0<z<l1
u(0,t) =0, wu(l,t)=0,

u(xz,0) =0, wu(z,0)=zsin(27rz).

Proof. Assume u(x,t) = X (x)T'(t), then substitution in the PDE gives

XT'+3XT' + XT = X"T,
T// T/ X//
341 = S = -
T 3Tt X

e From X"+ XX =0, X,(z) = a,cosV\pz + by siny/\,z. Boundary conditions
give
u(0,t) = X(0)T(t) =0
u(l,t) = X(1)T(t) =0

Thus, X,,(0) =a, =0, and X,,(z) = b, sin/\,z.
X,(1) = b, sin /A, = 0. Hence, VA, =nm, or A\, = (nm)?, n=1,2,...

\p = (nm)?, Xn(x) = by sinnme.

e With these values of \,, we solve
T +3T'+T = -\, T,
T"4+31 +T = —(nn)*T,
T" + 37" + (1 + (nm)*)T = 0.
We can solve this 2nd-order ODE with the following guess, T'(t) = ce*® to obtain

s:—%j:\/m. Forn > 1, %—(mr)2<0' Thus, 8:_%ii\/m'
_ =3t 2 5 . 2 5
To(t) =e 2 (cn cos {/ (nm)? — Zt + dp, sin [ (nm)2 — Zt>

u(z,t) = X(x)T(t) = ni; e st (cn cos /[ (nm)? — Zt + dp siny /[ (nm)? — Zt) sinnwz.

e Initial conditions give

[e.e]
0=u(z,0) = chsinnm?.
n=1

By orthogonality, we may multiply this equations by sin m7x and integrate:

! 1
/ Odr = =¢y = ¢, =0.
0 2
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Thus,

u(z,t) = Zdne_%t<sin (nm)? —
n=1

wy(z,t) = i[——dne—%(sm,/ 1) + due 3 (mr)2—g><cos (m)2—gt)]sinnm,

n=1

zsin(2rr) = Zd (,/ 4>smn7m?

By orthogonality, we may multiply this equations by sin m7x and integrate:

! 1 5
. . . - 2 _
/0 xsin(27x) sin(mnrx) de = dm2 ( (mm) 4>,

ﬁ/
u(z,t) = __tZd (smw )2 —gt) sinnwr.

Problem (F’04, #1). Solve the following initial-boundary value problem for the wave
equation with a potential term,

t) sinnmwx.

»-l>|01

xsin(27x) sin(nwx) d.

O

Ut — Uge +u =10 O<z<mt<O
u(0,t) = u(m,t) =0 t>0
u(z,0) = f(z), uz,0)=0 O<z<m,

where

f(x):{ x if xe€(0,7/2),

T—x if ve(n/2,m).

The answer should be given in terms of an infinite series of explicitly given functions.

Proof. Assume u(x,t) = X (x)T'(t), then substitution in the PDE gives

XT"'—X"T+ XT = 0,
T// X//
i S

e From X"+ A\X =0, X,(z) = a,cosv/Ax + bysiny/A\,z.  Boundary conditions
give
0,t) =X(0)T(t)=0
ul0,1) = X ()T (1) = X(0)=X(r)=0.
u(m,t) = X(m)T'(t) =0

Thus, X,,(0) = a, =0, and X,,(z) = b, sin/\,z.
Xo(m) = bpsin vVA,m = 0. Hence, VA, =n, or A\, =n? n=12...

A = n?, X, (x) = by sinna.
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e With these values of \,, we solve
T"+T = -\,T,
T'+T = —n’T,
T) + (14 n*)T, =
The solution to this 2nd-order ODE is of the form:

Th(t) = cpcos V1 +n2t+d,siny1+n?t.

[e.e]
u(z,t) = X(x)T(t) = Z (cncos V1+n2t+d,siny/1+n?t) sinnz.

n=1

[e.e]
ug(x,t) = Z(—cn(\/l—|—n2)sin\/1—|—n2t—|—dn(\/1—|—n2)cos 1+ n?t)sinnz.

n=1

e Initial conditions give

flz) = wu(z,0) = chsinm?.
n=1

[e.e]
0 = wuz,0) = Zdn(\/l + n?) sinnz.
n=1
By orthogonality, we may multiply both equations by sinmx and integrate:
/ f(x) sinmzxdx = cmi,
0 2
/ Odr = dmg\/ 1+ m2,

0
which gives the coefficients

s s

9 [T 2 (% 2 (7
cp, = —/ f(x) sinnxdx = —/ x sinnx dr + —/ (m — ) sinnz dz
™ Jo 0 T

2 1 z 1/% ] 2[ T m 1 m 1/7r
= —| —xz—cosnx| -+ — cosnrdr| +—| — —cosnx| +x—cosnx| — —
T “n o nJo T n z " > nJg
21 = n7r+ 1 . nr 1 . 0
= —|—-—cos— + —sin — — — sin
T 2n 2 n? 2 n?
20 =« T nt o T nt 1 . 1 . nrm
+ Z| — —cosnwm+ —cos — + —cosnmT — — cos — — — sinnT + — sin —
T n n 2 n 2n 2 n? n? 2
211 nm +2 1 . nr 4 nm
= Z|—sin Z | =sin—| = sin
7| n? 2 n? 2 ™n? 2
0, n =2k
4 A+ 1 0, n =2k
= T2 n=a4am = n—1
e (1) 25, n=2k+1
T an2) n:4m—|—3 4
d, = 0.

[e.e]
u(z,t) = Z (cncos 1+ n?t) sinna.

n=1

CcOS NI dx]
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25 Problems: Separation of Variables - Heat Equation

Problem (F’94, #35).
Solve the initial-boundary value problem

Ut = Ugy O<ax<2,t>0
u(z,0) =22 -z +1 0<z<2
u(0,t) =1, wu(2,t)=3 t>0.

Find limy_, 4o u(x,t).

Proof. [__First, we need to obtain function v that satisfies vy = v, and takes 0
boundary conditions. Let

o v(x,t)=u(x,t)+ (ax+0), (25.1)

where a and b are constants to be determined. Then,

Vy = U,
Vgr = Uge-
Thus,
V¢ = Ugg-

We need equation (25.1) to take 0 boundary conditions for v(0,t) and v(2,1t):
v(0,t)=0 = u(0,t)+b = 1+b = b=-1,
v(2,t) =0 = wu(2,t)+2a—-1 = 2a+2 = a=-1.
Thus, (25.1) becomes
v(z,t) =u(x,t) —x — 1. (25.2)
The new problem is
UVt = Vga,
v(r,0)= (2> -z +1) -2 —1=2%— 2z,
v(0,t) =v(2,t) = 0.
[ We solve the problem for v using the method of separation of variables.
Let v(z,t) = X (x)T(t), which gives XT" — X"T = 0.
X// T/
Y
X T
From X" + XX =0, we get X, (x) = a, cos V Az + by, sin vV \z.

Using boundary conditions, we have

{ v(0,t) = X (0)T'(t) =0 —~  X(0)=X(2)=0.
X 0

Hence, X,,(0) = a,, = 0, and X,(z) = by, sin vV \z.
Xn(2) = bysin2vVA =0 = 2VA=ntr = \,= (”TW)?

nmwT <n7T>2
5 ) -

Xn(x) = by SinTa An =
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With these values of \,, we solve T + (”7“)2T =0 to find

nm

T,(t) = cpe” (5,

o

’U(-T, t) = ZXn(-T)Tn(t) = Zén 6_(%)% sin 7?,2ﬂ
n=1 n=1

Coefficients ¢, are obtained using the initial condition:

o
nwx
v(z,0) = z:lén sinT = 2% — 2.
-

2 0 n 1s even,
Cn = / (z% — 2z) sin iy 39 .
0 2 ~Tms 18 odd.

o
nm nmwxT

= U(.T, t) = Z - (nﬂ-)g e_(T)Qt Sin T
n=2k—1

We now use equation (25.2) to convert back to function u:

u(x,t) =v(x,t)+x + 1.

s 32 —(M)Qt . nmx
u(z, t) = Z _(mr)?’e 2 smT—l—x—l—l.
n=2k—1

lim w(z,t) = z+1.

t——+o00

310
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Problem (S’96, #6).
Let u(z,t) be the solution of the initial-boundary value problem for the heat equation

Ut = Ugy O<z<L, t>0
u(x,0) = f(x) 0<z<L
Uz (0,t) = ug (L, t) = A t>0 (A= Const).

Find v(x) - the limit of u(x,t) when t — oo. Show that v(x) is one of the inifinitely
many solutions of the stationary problem

Vg = 0 O<z<L
v:(0) = vy (L) = A.

Proof. [__First, we need to obtain function v that satisfies vy = v, and takes 0
boundary conditions. Let

o v(x,t)=u(x,t)+ (ax+0), (25.3)

where a and b are constants to be determined. Then,

Vy = U,
Vge = Uge-
Thus,
V¢ = Ugg-

We need equation (25.3) to take 0 boundary conditions for v,(0,¢) and v, (L, t).
Ve = Uy + Q.

v(0,) =0 = u,(0,t)+a = A+a = a=—A,

V(L) =0 = wuy(L,t)+a = A+a = a=-A

We may set b = 0 (infinitely many solutions are possible, one for each b).
Thus, (25.3) becomes

v(z,t) = u(z,t) — Ax. (25.4)
The new problem is

UVt = Vga,
v(2,0) = f(z) — Az,
v.(0,t) = v, (L, t) = 0.
[ We solve the problem for v using the method of separation of variables.
Let v(x,t) = X ()T (t), which gives XT' — X"T = 0.
X// T/
X T

From X" + XX =0, we get X, (x) = a, cos V Az + by, sin vV Az.
Using boundary conditions, we have

{ vr(% tt) = X'(0)T(t) =0 —~  X'(0)=X'(L) = 0.

-
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X! (z) = —apVAsin vV Az + b, v/ A cos vV Az
Hence, X/ (0) = byv/An =0 = b, =0; and X,,(z) = a, cosVAz.
2

nm

X/(L) = —apVAsinLVA=0 = LVA=nt = \,=("5)2

nmwT nm\ 2
X (x) = ay, cos R p_— (f) )

With these values of \,, we solve T + (”%)2T =0 to find

nm

To(t) = co, Tn(t) = cpe VTV, n=1,2,....

00 00
nw\2 nmwxT

= ;Xn(w)Tn(t) =Co + nz_:lén e T cos -

Coefficients ¢, are obtained using the initial condition:

v(z,0) = EO—I—ZEn COS? = f(x) — Ax.
n=1
L
Léyg = /O(f( — Azx) da:—/ flx da:—— = EO—% ; f(x)da:—%,
L L
gén = /O(f() A;r)cosn—dx = En:%/o (f(z) — Az) cos— dx

1 L AL s - _(M)Qt
= o(x,t) = /) f(x)da:—T—l—che L7 cos ——.

We now use equation (25.4) to convert back to function u:

u(x,t) =v(x, t) + Az.

o0
= / [z da:———l— Cne€ —(g)% COS? + Ax.
n

lim w(z,t) = Az +0b, b arbitrary.

t——+o00
To show that v(x) is one of the inifinitely many solutions of the stationary problem
Vg = 0 O<z<L
v:(0) = vz (L) = A,

we can solve the boundary value problem to obtain v(x,t) = Az+b, where b is arbitrary.

O
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Heat Equation with Nonhomogeneous Time-Independent BC in N-dimensions.
The solution to this problem takes somewhat different approach than in the last few prob-
lems, but is similar.

Consider the following initial-boundary value problem,

up = Au, zeQ, t>0
U(.Z‘,O):f(l‘), z €
u(z, t) = g(z), x €0, t>0.

Proof. Let w(x) be the solution of the Dirichlet problem:
Aw =0, HE<RY)
w(z) = g(x), x € 0f)

and let v(x,t) be the solution of the IBVP for the heat equation with homogeneous
BC:

vy = Aw, reQ, t>0
’U(.Z‘,O) :f(;r)—w(x), z €
v(z,t) =0, x €I, t>0.

Then u(x,t) satisfies
u(z,t) =v(x, t) + w(zx).

tlim u(z, t) = w(z).
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Nonhomogeneous Heat Equation with Nonhomogeneous Time-Independent
BC in N dimensions.
Describe the method of solution of the problem

uy = Au+ F(x,t), zeQ, t>0
U(.I‘,O) = f(x)a z €
u(z, t) = g(x), x €, t>0.

Proof. [—We first find uy, the solution to the homogeneous heat equation (no F(z,t)).
Let w(x) be the solution of the Dirichlet problem:

Aw =0, x €
w(z) = g(x), x € 0f)

and let v(x,t) be the solution of the IBVP for the heat equation with homogeneous
BC:

v = Aw, reQ, t>0
’U(JZ‘,O) :f(;r)—w(;r), z €
v(z,t) =0, x €I, t>0.

Then uy(x,t) satisfies

ui(z,t) = v(z, t) + w(x).
tli)rgo ui(z,t) = w(x).

[ The solution to the homogeneous equation with 0 boundary conditions is given by
Duhamel’s principle.

{ us, = Aug + F(z,t)  for t>0, z€R” (25.5)

ug(x,0)=0  for x € R™.
Duhamel’s principle gives the solution:
¢
w(et) = [ [ K@yt Ply.s)dyds
0 JRn

Note: uz(z,t) =0 on 92 may not be satisfied.

u(x,t):v(x,t)—l—w(x)—l—/o - K(z —y,t—s) F(y,s)dyds.
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Problem (S’98, #5). Find the solution of

Up = Ugy, t>0, 0<z<l,
u(z,0) =0, 0<z<l1,
w(0,t) =1—e7t, w,(l,t)=et—1, t>0.

Prove that limy_, o u(x, t) exists and find it.

Proof. [__First, we need to obtain function v that satisfies vy = v, and takes 0
boundary conditions. Let

o v(x,t)=u(x,t)+ (ax +b) + (c1cosz + casinz)e ™, (25.6)

where a, b, c1, cy are constants to be determined. Then,

v; = u;— (cicosx 4 cysinz)e,
Ve = Uge+ (—cicosx —cysinz)e".
Thus,
V¢ = Ugg-

We need equation (25.6) to take 0 boundary conditions for v(0,t) and v,(1,¢):

v(0,)=0 = u(0,t)+b+cre’
t

= l—e'+btce
Thus, b = —1, ¢; = 1, and (25.6) becomes

v(x,t) = u(x,t) + (ax — 1) + (cosz + casinz)e™ . (25.7)
ve(z,t) = ug(x,t)+a+ (—sinz+ cycosz)e™,
v:(L,) =0 = wu(l,t)+a+ (—sinl+cycosl)e™
= —14a+(1—sinl+cycosl)e ™
Thus, a =1, ¢y = %, and equation (25.7) becomes
sinl—1 . _t
v(z,t) =u(z,t) + (z — 1) + (cosz + : sinx)e (25.8)
08
Initial condition tranforms to:
inl—1 inl —1
v(z,0) =u(x,0)+ (x — 1) + (cosz + Smisinx) =(zr—1)+ (cosx + Smisinx).
cos1 cos 1

The new problem is

UVt = Vga,
v(z,0) = (. — 1) + (cosz + 2=l sing),
v(0,t) =0, wv,(1,¢)=0.

[ We solve the problem for v using the method of separation of variables.
Let v(z,t) = X (x)T(t), which gives XT" — X"T = 0.
X// T/

e T -
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From X" + XX =0, we get X, (x) = a, cos V Az + by, sin vV Az.
Using the first boundary condition, we have

0(0,8) = X(O)T(H)=0 = X(0)=0.

Hence, X,,(0) = a, = 0, and X,,(x) = b, sin v/ Az. We also have
ve(1,t) = X'()Tt)=0 = X'(1)=0.
X/ () = Vb, cosVz,
X\(1) = VAb,cosVA=0,
cos VI = 0,

\/X =nw+ g
Thus,
. T T\ 2
X (x) = by sin (mr + 5);1?, Ay, = (mr + 5) .

2
With these values of \,, we solve T + (mr + %) T =0 to find

T,(t) = cpe (TR

o

v(z,t) = Z;Xn(x)Tn(t) = iz}n sin (m n g)x o~ (5t

We now use equation (25.8) to convert back to function u:

inl—1
u(x,t) =v(x,t) — (x — 1) — (cosz + Mo sinz)e™!
cos1
. ™ sinl — 1
- . _
u(z, t) = Z by, sin (mr + —)x e ()M (2 — 1) — (cosx + sinz)e
ot 2 cos 1
Coefficients b,, are obtained using the initial condition:
- ™ sinl — 1
u(x,O):nz_:lbn sin (mT—I—E)x —(z—1) — (cosx + 1 sinz).

[Flinally, we can check that the differential equation and the boundary conditions are

satisfied:
w0,t) = 1—(1+0e'=1-¢" v

[e.e]
uz(x,t) = Zl;n (mr + g) cos (mr + g);r e~ (TR 1 4 (sinz —
n=1

inl—1
ug(l,t) = —14(sinl — M cos Det=—-1+4+et v

cos1

[e.e]
~ 2 T
up = Z —by, (mr + g) sin (mr + g>$ e~ (TR 4 (cosz +

n=1

sinl —1 4
———cosz)e ',
cos 1

sinl —1 . 4
sinz)e”" = Ugy.
cos 1

O
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Problem (F’02, #6). The temperature of a rod insulated at the ends with an ex-
ponentially decreasing heat source in it is a solution of the following boundary value
problem:

U = Uy + e 2tg(x)  for (z,t) €[0,1] x Ry
Uz (0,t) = ugr(1,8) =0
u(z,0) = f(x).

Find the solution to this problem by writing u as a cosine series,
o0
u(x,t) = Zan(t) cosnm, ®
n=0

and determine limy_,o u(x,t).

Proof. Let g accept an expansion in eigenfunctions

o0 1
g(x) = by + Z bpcosnmx  with b, = 2/0 g(x) cosnrmx dzx.

n=1

Plugging ® in the PDE gives:

[e.e] [e.e] o
ap(t) + Z a, (t) cosnrr = — Z n*m?a,(t) cosnma 4 boe 2t 4 7% Z by, cosnrz,
n=1 n=1 n=1

which gives
agp(t) = boe™,
al (t) +n’m2an(t) = be 2, n=12,....

Adding homogeneous and particular solutions of the above ODEs, we obtain the solu-
tions

{ ag(t) = co— e %,

22 _
an(t) = cpe™™ Tt — 2_?{57rge 2oon=1,2,...,
for some constants ¢,, n=0,1,2,.... Thus,
- b
_ —n2n2t n —2t
u(z, t) = nz_% (cne ~ 5 2t ) COSNTT.

Initial condition gives

= b

u(z,0) = Z) (cn — 2_7;;27T2> cosnmx = f(x),
n=

As, t — oo, the only mode that survives is n = 0:

b
u(x,t) — 60—1—50 as t — oo.
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Problem (F’93, #4). a) Assume f,g € C*°. Give the compatibility conditions which
f and g must satisfy if the following problem is to possess a solution.

Au = f(x) x e
Z—Z(s) = g(s) s € 0N.

Show that your condition is necessary for a solution to exist.

b) Give an explicit solution to

Up = Ugy + COS T x € [0, 27]
Uz (0,t) = uy(2m,t) =0 t>0
u(x,0) = cos x + cos 2z x € [0, 27].

¢) Does there exist a steady state solution to the problem in (b) if
ugy(0) =1 ug(2m) =0 7

Explain your answer.

Proof. a) Integrating the equation and using Green’s identity gives:

ou
/Qf(x)dx = /QAud:U = 89%(13 = /an(s)ds.

b) With
e v(x,t) =u(x,t) — cosx
the problem above transforms to
UVt = VUgx
v.(0,t) = v (2m,t) =0
v(z,0) = cos 2.
We solve this problem for v using the separation of variables. Let v(z,t) = X (x)T'(¢),
which gives XT" = X"'T.
X// T/
X T

From X" + XX =0, we get X, (x) = a, cos V Az + by, sin vV Az.
X! (2) = =/ Anan sin V Az + VA, by, cos V.

Using boundary conditions, we have

{ 0,(0,8) = X'(0)T(t) = 0

-

ve(2m, 1) = X'(2m)T(t) = 0 X'(0) = X'(2m) = 0.

Hence, X/, (0) = VAnb, =0, and X, (z) = a,, cos vV A,z.
X)(2m) = =V Apapsiny/A2r =0 = VA, =% = X\, = (%)% Thus,
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With these values of \,, we solve T + (%)2T =0 to find

To(t) = cpe= (37,

v(z,t) = ZXn(x)Tn(t) = Zdn e~ (2)° cos 122_;13
n=0

n=0

Initial condition gives
- nx
v(z,0) = Z}dn cos o = cos 2.
-

Thus, a4y =1, a, =0, n # 4. Hence,

v(z,t) = e cos2a.

u(z,t) =v(x,t) +cosz = e cos2x + cosz.

¢) Does there exist a steady state solution to the problem in (b) if
u,(0) =1 uy,(2m) =0 7

Explain your answer.

c) Set uy = 0. We have

Uge +cosz =0 x € [0, 27]
ugy(0) =1, wux(2m) =0.

Upy = —COST,

u, = —sinz+ C,

u(x) = cosx+Cx+ D.
Boundary conditions give:
1 = u,(0) = C,
0=u,(2r) = C = contradiction

There exists no steady state solution.

We may use the result we obtained in part (a) with w,, = cosxz =
need
ou

/Qf(x)dx = aQ%cls,

2w
dr = uy(271) —ug(0) = —1 .
/Ocosxx Ug (27) — uz(0)

N—— given
=0

319
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Problem (F’96, #7). Solve the parabolic problem

1
<u>:<(1)5><u> , 0<zx<m t>0
v t v xx

u(x,0) =sinz, u(0,t) = u(m, t) =0,
v(z,0) = sinz, v(0,t) = v(m, t) = 0.

Prove the energy estimate (for general initial data)

T

/W 2z, 8) + 02(x, )] dz < c/ 2 (z, 0) + v2(z, 0)] dz

=0 =0
for come constant c.

Proof. We can solve the second equation for v and then use the value of v to solve the

first equation for u. ™3
[ We have
Uy = 2Vgq, 0<z<m t>0

v(z,0) = sinz,
v(0,t) = v(m, t) = 0.
Assume v(z,t) = X (x)T'(t), then substitution in the PDE gives XT' = 2X"T.
T/ X//

—=2T =\
T X

From X"+ %X =0, we get X,(x) = a,cos \/gx + b, sin %x
Boundary conditions give

{ v(0,¢) = X (0)T(¢)

=0
v(m,t) = X (7)T(t) =0 = X(0)=X(m)=0.

Thus, X,,(0) = a, = 0, and X,,(z) = b, sin /5.

X (7) = by sin %77 = 0. Hence \/g =n, or A = 2n?.

A =2n? X (z) = by sinnx.

With these values of A, we solve 17 + 2n2T = 0 to get Ty (t) = cpe 27",
Thus, the solution may be written in the form

[e.e]
v(z,t) = Z dne 2"t sinna.
n=1
From initial condition, we get
[e.e]
v(z,0) = Zdn sinnz = sinz.
n=1

Thus, a1 =1, a,=0, n=2,3,....

v(z,t) = e sina.

"Note that if the matrix was fully inseparable, we would have to find eigenvalues and eigenvectors,
just as we did for the hyperbolic systems.
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[ We have

2tsin;r, 0<z<m t>0

Ut = Ugpy — %e‘
u(x,0) =sinx,

u(0,t) = u(m, t) = 0.

Let u(z,t) = > 02 uy(t) sinnz. Plugging this into the equation, we get

o0 o0 1
z:l U;z(t) sinnx + z:l n2un(t) sinnr = —56_% sin .
n= n=

For n = 1:

T
() +u(t) = —5¢ 2z,

Combining homogeneous and particular solution of the above equation, we obtain:

1
ui(t) = —e 2t 4 cret.

2
Forn=2,3,...
ul, (1) + n’u,(t) =0,
un(t) = cpe ™t
Thus, . - . -
u(x,t) = (56_% + cle_t> sinz + nz:z cpe " sinne = 56_% sinz + nz:l e sinna.

From initial condition, we get

1 [e.e]
u(x,0) = §sinx—|—chsinna¢ = sinz.

n=1

1
u(x,t) = 5 sing (e 2 + 7).

To prove the energy estimate (for general initial data)

T

/W 2z, 8) + 02z, )] dz < c/ 2 (z, 0) + v2(z, 0)] dz

=0 =0
for come constant ¢, we assume that

[e.e] [e.e]
u(x,0) = Z an sinnz, v(z,0) = Z by, sinnx.
n=1 n=1
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The general solutions are obtained by the same method as above

[e.e]
T o . _n2t .
u(x,t) = 3¢ sing + E cne” ™ tsinna,
n=1
[e.e]
— 2 .
v(x,t) = be 2"t sinnz.
)
n=1

T T 1 o o
/ [u?(z,t) + v*(x, 1)) dx = / (56_% sinz + Z cne” " sin m?)2 + (Z bpe """ sin m?)2 dz
z=0 z=0 n=1 n=1

T

sin? nzdr < / [u?(x,0) + v%(x,0)] d.
0 =0

o T

Seiead) |

n=1 =

IN

O
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26 Problems: Eigenvalues of the Laplacian - Laplace

The 2D LAPLACE Equation (eigenvalues/eigenfuctions of the Laplacian).
Consider

v

uzz+Uyy+)\u:0 mn Q
u(0,y) =0=u(a,y) for 0<y<b, (26.1)
u(z,0)=0=u(x,b) for 0<z<a.

Proof. We can solve this problem by separation of variables. % a
Let u(z,y) = X(2)Y (y), then substitution in the PDE gives XY + XY” + AXY = 0.
X// Y//

—+—=+A=0.
X+Y+

Letting A = p? + % and using boundary conditions, we find the equations for X and
Y:

X"+ 12X =0 Y +12Y =0
X(0)=X(a)=0 Y(0)=Y(b) =0.
The solutions of these one-dimensional eigenvalue problems are
mm nm
Hm = —— VUp = —/—
a b
X (z) = sin mre Y, (y) = sin n_z'y’
a
where m, n =1,2,.... Thus we obtain solutions of (26.1) of the form
5 /m?  n? mrx . nmy
Amn = T (? + b—2> Umn (2, y) = sin sin 5

where m, n =1,2,....

Observe that the eigenvalues { Ay}, ,—1 are positive. The smallest eigenvalue A1
has only one eigenfunction uy1(z,y) = sin(7wz/a) sin(7wy/b); notice that uy; is positive
in 2. Other eigenvalues A\ may correspond to more than one choice of m and n; for
example, in the case a = b we have A\, = Apym. For this A, there are two linearly
independent eigenfunctions. However, for a particular value of A there are at most
finitely many linearly independent eigenfunctions. Moreover,

b ra b ra / /
mmrxr . nmw m'rx | n'w
//umn(x,y) Uy (2, y) dedy = //sin sin ¥ gin sin yda:dy
0 Jo 0 Jo a

b a b
_ %fgsm%sm%ﬁydy B @ if m=m and n=n'
0 0 if m#m' or n#n'.

In particular, the {u,,} are pairwise orthogonal. We could normalize each uy,, by a
scalar multiple (i.e. multiply by \/4/ab) so that ab/4 above becomes 1. O

Let us change the notation somewhat so that each eigenvalue \,, corresponds to a
particular eigenfunction ¢, (z). If we choose an orthonormal basis of eigenfunctions in
each eigenspace, we may arrange that {¢,}°° is pairwise orthonormal:

1 if m=n
/Q%(x)%(x) = { 0 if m#n.
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In this notation, the eigenfunction expansion of f(xz) defined on 2 becomes

flx) ~ nz_:l andn(x), where  a, = /Qf(x)qbn(x) dzx.
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Problem (S’96, #4). Let D denote the rectangular

D= {(z,y) eR*: 0<z<a, 0<y<b} b

Find the eigenvalues of the following Dirichlet problem:

(A+XNu=0 in D
u=0 on 0D. :

Proof. The problem may be rewritten as

Ugz + Uyy + Au =0 in Q
uw(0,y) =0=wu(a,y) for 0<y<hb,
u(xz,0)=0=u(x,b) for 0 <z <a.

We may assume that the eigenvalues A are positive, A\ = % + v2. Then,

Amnzw2<7;l—22+7;—22> umn(x,y):sinmﬂxsinn—zy, m,n=1,2,....
]
Problem (W’04, #1). Consider the differential equation:
821;(33932, v 3212(;27 Y 4 vu(e,y) = 0 (26.2)
in the strip {(z,y), 0 <y <m, —o0 < x < 400} with boundary conditions
u(xz,0) =0, wu(x,7)=0. (26.3)

Find all bounded solutions of the boundary value problem (26.4), (26.5) when
a) \=0, b)A>0, ¢c))<O0. ¥

bre u(x,m=0

Proof. a) A =0. We have

0 ux0)=0 ¥
Uz + Uyy = 0.

Assume u(z,y) = X (2)Y(y), then substitution in the PDE gives
X"Y + XY = 0.
Boundary conditions give
{ u(z,0) = X (2)Y(0) =0
u(z,m)=X(x)Y(r)=0
Method I: We have
X" Yy”
X Y
From X"+ c¢X =0, we have X,(x) = a, cos/cx + b, sin/cz.

From Y” —¢Y =0, we have Y, (y) = cne VY + d, eV,
Y0)=c,+dyn=0 = ¢, =—d,.

= —c, c> 0.
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Y(m)=cne VT — eV =0 = ¢, =0 = Yu(y)=0.
= u(z,y) = X(2)Y(y)=0.

Method II: We have
X// Y//
X Y

From X" —¢X =0, we have X,(x)= ane Ver 4 b evVer,

Since we look for bounded solutions for —co < z < 00, a, =b, =0 = X,(z)=0.

From Y” +c¢Y =0, we have Y, (y) = ¢, cos/cy + d, sin/cy.

Y (0) = ¢, =0,

Y(r)=d,siny/er =0 = Jc=n = c=n?

= Y,(y) =d,sinnz = 0.

= u(z,y) = X(z)Y(y) =0.

= c, c>0.

b) A > 0. We have

X// Y//
b+ A=0.
<ty

Letting A\ = p? + v2, and using boundary conditions for Y, we find the equations:
X"+ X =0 Y +12Y =0
Y(0)=Y(r)=0.
The solutions of these one-dimensional eigenvalue problems are

X () = ap, €08 @ + by, sin pup, .
VUp =n, Yo(y) =d,sinny, where m,n=1,2,...

[e.e] [e.e]
u(x,y) = Z Umn (T,Y) = Z (@ COS @ + by SiN @) SinNY.
m,n=1 m,n=1

c) A < 0. We have

Ugg + Uyy + Au = 0,
u(xz,0) =0, u(x,7)=0.

u = 0 is the solution to this equation. We will show that this solution is unique.
Let uy and us be two solutions, and consider w = u; — us. Then,

Aw + Aw = 0,
w(z,0)=0, w(z,m)=0.
Multiply the equation by w and integrate:
wAw + \w? =0,

/wAwda:—l—)\/w2dx:0,
Q Q

0
/ w—wds—/|Vw|2d33+)\/w2dx:0,
o0 On Q Q
—_—

=0
/|Vw|2d33:)\/w2dx.
Q Q
>0

~~

<0
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Thus, w = 0 and the solution u(z,y) = 0 is unique. ]
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Problem (F’95, #5). Find all bounded solutions ¥
for the following boundary value problem in the strip
O<zx<a, —o00 <y < o0,

u(0,y)=0 Uy (a,y)=0

(A+EHu=0 (k= Const > 0), x

0 a

u(07 y) = 07 uz(a7 y) = 0'

In particular, show that when ak < T,
the only bounded solution to this problem is u = 0.

Proof. Let u(x,y) = X (2)Y (y), then we have XY + XY” + k2XY = 0.

X// Y//
S btk =0.
x v

Letting k? = u? + % and using boundary conditions, we find:
X"+ X =0, Y" 4+ %Y =0.
X(0) = X'(a) = 0.

The solutions of these one-dimensional eigenvalue problems are

(m— 3
Hm = ——
a
1
m — 5 )T
Xm(x) = sin ( a2) Y, (y) = cpcosvpy + dy sinvyy,

where m, n =1,2,.... Thus we obtain solutions of the form

328

1 2 1
m — 5)T m— 5)Tx
k?nn = <Q> +V72m umn(xa y) = sin % <Cn cos Vpy+d;, sin Vny>7

1
m— =)Tx
uw(z,y) = E Umn (2, y) = g Sini( 2) (cncosuny—l-dnsinuny).

e We can take an alternate approach and prove the second part of the question. We

have

X"Y + XY" + E2XY = 0,
Y// X// 9 9
—7 = 7 + k= ¢°.

We obtain Y, (y) = ¢, coscy + dy, sincy. The second equation gives
X"+ kX = 2X,
X"+ (k* - )X =0,

Vi —ka + bmemz.

Xm(x) = ame

Thus, X,,(z) is bounded only if k2 —c? > 0, (if k2 —c? =0, X" =0, and X,,,(v) =

am® + by, BC’s give X, () = 7z, unbounded), in which case

Xm(z) = ameosV k2 —c2x+bysinVk?—c2x.
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Boundary conditions give X,,(0) = a,, = 0.

X! () = by Vk2 —c2cos VEk2 — 2,
X! (a) = bV k% — c2cos VK2 —c2a = 0,
VEkZ2—c2a = mw—i, m=1,2,...,

2

¢ = ()

1
ak:>7r<m——>, m=12,....

Thus, bounded solutions exist only when ak > 7.

Problem (S’90, #2). Show that the boundary value problem

Pulay) , Pulz.y)

952 12 + k2u(z,y) =0,

where —oco <z < +o0, O<y<m, k>0 1isa constant,

u(xz,0) =0, u(z,7)=0 v
has a bounded solution if and only if k > 1. Al uEm=0
Proof. We have 0 wwom0  x

Uy + Uy + K20 = 0,
X"Y + XY"+ E2XY = 0,
X// Y//
X - 7 + k2 = %
We obtain X, (x) = a;, coscx + by, sincz.  The second equation gives
Y+ kY = &Y,
Y+ (K- A)Y =0,

You(y) = epe’ =k%y 4 dneY =k,

329

(26.4)

(26.5)

Thus, Y, (y) is bounded only if k2 —c? > 0, (ifk?—c®> =0,Y"” =0, and Y,,(y) = cpy-+dn,

BC’s give Y =0), in which case
Yn(y) = Cp COS m:g—kdn sin vV k2 — ¢2 n

Boundary conditions give Y;,(0) = ¢, = 0.

Y,(r) = dpsinvk? —c2n =0 = K2—c2=n = k®-¢c%=

B =n?+c* n=1,2,... Hence, k>n, n=1,2,....

=
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Thus, bounded solutions exist if k£ > 1.
Note: If k =1, then ¢ = 0, which gives trivial solutions for Y,,(y).

u(a:,y): Z Xm(x)yn(y) = Z sinny Xm(x)

m,n=1 m,n=1
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McOwen, 4.4 #7; 266B Ralston Hw. Show that the boundary value problem

—V-a(x)Vu+b(z)u=Au  in Q
u=0 on 0N
has only trivial solution with A < 0, when b(x) > 0 and a(z) > 0 in Q.

Proof. Multiplying the equation by w and integrating over 2, we get

/—uV-aVud:U+/bu2dx:)\/u2dx.
Q Q Q

Since V- (uaVu) =uV -aVu + a|Vul?, we have

/ —V - (uaVu) da:—l—/ a|Vu|2d33—|—/ bu? dx = )\/ u? dz. (26.6)
Q Q Q Q

Using divergence theorem, we obtain

0
u a—uds—l—/a|Vu|2dx+/bu2dx:)\/u2dx,
0 7 on Q Q Q

/ a |Vu|2d33—|—/ b uldr=_\ /u2d33,
o~ o ~ Ja
>0 >0 <0

Thus, Vu =0 in Q, and u is constant. Since © = 0 on 992, u = 0 on €.
Similar Problem I: Note that this argument also works with Neumann B.C.:

—V-a(z)Vu+b(z)u=Au in Q
odu/On=0 on 0N

Using divergence theorem, (26.6) becomes

0
/ —ua a_u ds—l—/a|Vu|2d33—|—/bqux:)\/qua:,
o0 un, Q Q Q

=0
/ a |Vu|2d33—|—/ b uldr=_\ /u2d33.
o~ o> ~Ja
>0 >0 <0
Thus, Vu = 0, and u = const on 2. Hence, we now have
/ b uwldr=_\ /u2d33,
o~ ~ Jo
>0 <0

which implies A = 0. This gives the useful information that for the eigenvalue problem™

-V -a(z)Vu+b(z)u = Au
du/On = 0,

A = 0 is an eigenvalue, its eigenspace is the set of constants, and all other \’s are
positive.

"1In Ralston’s Hw#7 solutions, there is no ‘-’ sign in front of V - a(x)Vu below, which is probably a
typo.
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Similar Problem II: If A < 0, we show that the only solution to the problem below
is the trivial solution.

Au+du=0 in €
u=20 on Of)

/uAudm—l—A/u%la:zO,
Q Q
ou

/ u 8—ds—/|Vu|2d33—|— A /qux:O.
o0 g on Q vgo Q

Thus, Vu =0 in Q, and u is constant. Since © = 0 on 992, u = 0 on €. [l
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27 Problems: Eigenvalues of the Laplacian - Poisson

The ND POISSON Equation (eigenvalues/eigenfunctions of the Laplacian).

Suppose we want to find the eigenfunction expansion of the solution of

Au=f m
u=20 on 05,

when f has the expansion in the orthonormal Dirichlet eigenfunctions ¢,,:
f(.l‘) ~ Z an¢n(x)v where ap = / f(.l‘)¢n(.1‘) dr.
n=1 Q

Proof. Writing u = " ¢, ¢, and inserting into —Au = f, we get

Z —AnCndn = Z an¢n(x)
n=1 n=1

Thus, ¢, = —a,/ A\, and

> an¢n(x)
u(x) = — A
2N

O

The 1D POISSON Equation (eigenvalues/eigenfunctions of the Laplacian).

For the boundary value problem
u' = f(z)

u(0) =0, wu(L)=0,
the related eigenvalue problem is
/! — _)\¢

$(0) =0, ¢(L)=0.

The eigenvalues are N, = (nw/L)?, and the corresponding eigenfunctions are sin(nmwx /L),
n=12 ...
Writing uw =Y cadn = > cpsin(nma/L) and inserting into —Au = f, we get

i—@(%fsin? = f(x),

n=1
L 9 L
/0 ;—ch}J—W) sin?sin?dw = /0 f(x) sin mzx dz,
2], L
—cn<ﬂ> — = / f(x) sin@dx,
0 L

2 fOL f(z) sin(nrz/L) dx
L (nmw/L)?
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: =2 L sin(nmz /L) sin(nmé/L) d
) = Y casintama/2) = 3 -2 o L) Smomt L) nlnn I,

n=1

_[F 2 2. sin(nwx/L) sin(nwé/L)
“_/0 {CIES (n/L)?

n=1

} d.

= G‘(rzvg)

See similar, but more complicated, problem in Sturm-Liouville Problems (S92, #2(c)).
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Example: Eigenfunction Expansion of the GREEN’s Function.
Suppose we fix x and attempt to expand the Green’s function G(x,y) in the orthonormal
eigenfunctions ¢n(y):

y) ~ nz_:l an(z)on(y), where  ap(x) = /QG(.Z‘, 2)pn(z) dz

Proof. We can rewrite Au+Au=01in €, u=0on dQ, as an integral equation ™

—I—)\/ny y)dy = 0. ®

Suppose, u(x) =Y c,¢n(x). Plugging this into ®, we get

Z (@ / Z an(@)on(y) 3 cmbm(y) dy =0,
m=1
3 (@) A ) 3 / 6n(y)m(y) dy = 0,
m=1 n=1 m=1 Q
Z Cn¢n(x) + Z )‘an(x)cn =0,

ch )+ Aan(z)) =0,
n=1

an(z) = — .

Thus,

n=1 n

"5See the section: ODE - Integral Equations.
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The 2D POISSON Equation (eigenvalues/eigenfunctions of the Laplacian).
Solve the boundary value problem

Ugg + Uyy = f(2,y) for 0<z<a,0<y<b

u(0,y) =0=u(a,y) for 0<y<b, . (27.1)
u(z,0)=0=u(x,b) for 0<z<a. b
2 _
flz,y) = T Z cmnsin$sin % - : :

m,n=1

Proof. [Hirst, we find eigenvalues/eigenfunctions of the Laplacian.

Ugg + Uyy + Au =0 in Q

uw(0,y) =0=wu(a,y) for 0<y<hb,

u(xz,0)=0=u(x,b) for 0 <z <a.

Let u(z,y) = X (2)Y (y), then substitution in the PDE gives XY + XY” + AXY = 0.
X// Y//
7 + 7 +A=0.

Letting A = p2 + % and using boundary conditions, we find the equations for X and
Y:

X"+ X =0 Y +12Y =0
X(0)=X(a)=0 Y (0)=Y(b) =0.
The solutions of these one-dimensional eigenvalue problems are
mm nmw
Hm = — Vp = —
a b
X (z) = sin e Y, (y) = sin n—zy,
where m, n = 1,2,.... Thus we obtain eigenvalues and normalized eigenfunctions of
the Laplacian:
2 2
m n 2 . mmxr . nw
A, = 71'2(? + b—2> Omn(T,y) = \/%sm ” sin by’
where m, n =1,2,.... Note that
[e.e]
f(xay) = Z Cmn®Pmn-
m,n=1

[—Second, writing u(z,y) = Y émnPmn and inserting into —Au = f, we get

00 00
- Z )\mnémnﬁbmn(l‘a y) = Z Cmn¢mn(xa y)
m,n=1 m,n=1
Thus, énp = —f\mﬁ.
> C
u(x,y) = _Z)\mn qun(x,y),
T
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with An, Gmn(z) given above, and ¢, given by

b ra b ra 0
/ / f(xa y)¢mn dx dy = / / Z Cm/n/¢m/n/¢mn dx dy = Cmn-
0 JO 0 0 m

''n'=1
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28 Problems: Eigenvalues of the Laplacian - Wave

In the section on the wave equation, we considered an initial boundary value problem
for the one-dimensional wave equation on an interval, and we found that the solu-
tion could be obtained using Fourier series. If we replace the Fourier series by an
expansion in eigenfunctions, we can consider an initial/boundary value problem for the
n-dimensional wave equation.

The ND WAVE Equation (eigenvalues/eigenfunctions of the Laplacian).
Consider

u = Au for z eQ, t>0
u(xz,0)=g(x), wu(z,0)=h(zx) for x € Q
u(z,t) =0 for x € 09, t > 0.

Proof. For g,h € C?(Q) with g = h = 0 on 912, we have eigenfunction expansions

- Z A (0) and h(z) = Z by (). ®
n=1 n=1

Assume the solution u(z,t) may be expanded in the eigenfunctions with coefficients
depending on t:  wu(z,t) = > 02 up(t)dp(x). This implies

Z ui{(t)qbn(x) = — Z Antn (t)dn ()
n=1 n=1

wl (t) + Apun(t) = 0 for each n.
Since A, > 0, this ordinary differential equation has general solution
up(t) = Apcos/ At + By siny/Ayt. Thus,
u(x,t) = Z (An cos \/ A\t + B,, sin v/ )\nt) On(T)
n=1
ug(z,t) = Z ( — VA, sin /At + A\, By, cos / )\nt) On(T)
n=1

u(x,O) = ZAn¢n —g )

w(z,0) = Z@Bn%(@n) = h(z).
n=1

Comparing with ®, we obtain
bn
\/)\_n '

Thus, the solution is given by

Ay, = Gnp, B, =

n

u(z,t) = Z (an cos VAt + —= sm \/_t)qbn
n=1
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The 2D WAVE Equation (eigenvalues/eigenfunctions of the Laplacian).
Let Q= (0,a) x (0,b) and consider

v

Upp = Ugz + Uyy for z eQ, t>0
u(z,0)=g(x), wu(z,0)=h(zx) for x € Q (28.1)
u(xz,t) =0 for z € 092, t > 0.

0 a
Proof. [Hirst, we find eigenvalues/eigenfunctions of the Laplacian.

Ugz + Uyy + Au =0 in Q
uw(0,y) =0=wu(a,y) for 0<y<b,
u(xz,0)=0=u(x,b) for 0 <z <a.

Let u(z,y) = X (2)Y (y), then substitution in the PDE gives XY + XY” + AXY = 0.

X// Y//

—+—=+A=0.

X + Y +
Letting A = p? + % and using boundary conditions, we find the equations for X and
Y:

X"+ 12X =0 Y" +12Y =0
X(0)=X(a)=0 Y(0)=Y(b) =0.
The solutions of these one-dimensional eigenvalue problems are
mm nmw
Hm = —— Vp = —F—
a b
X (z) = sin mre Y, (y) = sin n_z'y’
where m, n = 1,2,.... Thus we obtain eigenvalues and normalized eigenfunctions of
the Laplacian:
2 2
m n 2 . mmxr . nw
A, = 71'2(? + b_2> Omn(T,y) = \/%sm . sin by’

where m, n =1,2,....
[Second, we solve the Wave Equation (28.1) using the “space” eigenfunctions.
For g, h € C?(Q) with g = h = 0 on 91, we have eigenfunction expansions "

g(z) = Z anén(x) and h(z) = Z bndn (). ®
n=1 n=1

Assume u(z,t) = > 07 up ()¢ (x). This implies
wl (t) + Ay (t) =0 for each n.

"n 2D, ¢y, is really ¢mn, and z is (z,y).
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Since A, > 0, this ordinary differential equation has general solution

up(t) = A, cos \/Et + B,, sin \/)\_nt. Thus,
u(x,t) = Z (A, cos VAnt + B, sin \/Et) On (),
n=1
ug(xz,t) = Z (- VA Ay sin \/Apt + /A By cos mt) On(T),
n=1

u(x,O) = ZAn(bn(l'):g(l'),
n=1

u(2,0) = Y VAuBngn(x) = h(x).
n=1

Comparing with ®, we obtain
by,
Van

Thus, the solution is given by

Ay, = Gnp, B, =

o

bmn .
u(x,t) = Z (amn cos v/ Ant + Nowm sin )\mnt) Omn(T),

m,n=1

with A\pn, Gmn(z) given above, and
Amn = / g(x)¢mn(x) d.ﬂ?,
0
byan = / h() by () dz.
0

341
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McOwen, 4.4 #3; 266B Ralston Hw. Consider the initial-boundary value problem

ug = Au+ f(x,t) for e, t>0
u(z,t) =0 for €0, t>0
u(z,0) =0, u(z,0)=0 for x € Q.

Use Duhamel’s principle and an expansion of f in eigenfunctions to obtain a (formal)

solution.

Proof. a) We expand u in terms of the Dirichlet eigenfunctions of Laplacian in

Q.
Ny + Appp, =0 in Q, ¢n =0 on 0N

Assume

u(w,t) = an(t)gn(x), an(t) = | on(x)u(z,t) da.
n=1

Q
F@t) =3 fult)on(@), Fult) = / 6 () f (. 1) d
n=1 Q

d(t) = /qun(x)uttdx:/ﬂqbn(Au—l—f) da::/ﬂqbnAud:U—i—/qunfdx
= /QAqbnud:U—l—/qunfdx:—)\n/ﬂqbnudm—l—/ﬂqbnfdm:—)\nan(t)—l—fn(t).
o

fn
an(0) — /Q bn(@)u(z, 0) da = 0.

d (0) = /Q b (), 0) dar = 0.

T Thus, we have an ODE which is converted and solved by Duhamel’s principle:

al 4+ Apan, = fu(t) an 4+ Apan, =0 .
a,(0) =0 = an(0,8) =0 an(t) = / an(t—s,s)ds.
al,(0) =0 @, (0,8) = fuls) ’

With the anzats a,(t, s) = ¢1 cos VAnt + casiny/Apt, we get ¢c1 =0, ca = fn(8) /v An,
or

- B sin vt
an(t,s) = fn(S)W'

Duhamel’s principle gives

an(t) = /0 an(t —s,s)ds = /0 fn(s)sm(\/gl)\ﬁ_ s)) ds.

_°°¢n—($) t §) sin —5))ds
U(ﬂ%t)—;m/ofn() (Vo — 5)) ds.

""We used Green’s formula: [, (fn e — u%)ds = [o(onAu— Appu) da.

On 09, u = 0; ¢, = 0 since eigenfunctions are Dirichlet.
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Problem (F’90, #3). Consider the initial-boundary value problem

g = a(t)ugy + fx,t) 0<z<mt>0
u(0,t) = u(mw,t) =0 t>0
u(z,0) =g(x), ue(x,0)=h(z) O<z<m,

where the coefficient a(t) # 0.

343

a) Ezxpress (formally) the solution of this problem by the method of eigenfunction ex-

Pansions.
b) Show that this problem is not well-posed if a = —1.

Hint: Take f = 0 and prove that the solution does mot depend continuously on the

watial data g, h.

Proof. a) We expand u in terms of the Dirichlet eigenfunctions of Laplacian in

Q.
Gnze + AnPn =0 in Q, ¢n(0) = ¢n(7T) =0.
That gives us the eigenvalues and eigenfunctions of the Laplacian: A\, = n?, ¢,(z) =
sinn.
Assume

D=3 un()n(o) un(t) = /Q by, £) da

0=3 hnt)onte), fult) = /Q bn() (2, 1) d

- Zgn¢n(1‘)a gn = /Qﬁbn(x)g(x) dx
Zhn% = [ onla

%®=:/% wm—/% e + f)d /mmm+/%mx

= a(t)/ﬂqbnmud:v—l—/ﬂqbnfdx:—)\na(t)/ﬂqbnudm—l—/ﬂqbnfd;r

fn
un(t) + fu(t)

—A\palt
un(0) = /qbn u(x,0) das—/qbn x)dr = gp.
%@::A%um@mmzé%uwmm:m

Thus, we have an ODE which is converted and solved by Duhamel’s principle:

ull + Apa(t)u, = firn(t)
un(o) = 0gn ®
ul (0) = hy,.
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Note: The initial data is not 0; therefore, the Duhamel’s principle is not applicable.
Also, the ODE is not linear in ¢, and it’s solution is not obvious. Thus,

u(x, t) = Z un(t)¢n(x)a
n=1

where u,(t) are solutions of ®.
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b) Assume we have two solutions, u; and ug, to the PDE:

ULyt + Ulgy = 07 Uy + U2y = 07
u1(0,t) = uy(m,t) =0, u2(0,t) = ug(m,t) =0,
ui(z,0) = g1(x), wie(z,0) = hi(x); ug(z,0) = go(x), wugi(x,0) = ho(x).

Note that the equation is elliptic, and therefore, the maximum principle holds.
In order to prove that the solution does not depend continuously on the initial data
g, h, we need to show that one of the following conditions holds:

— > —_
mgx |ug — us| Hal%X lg1 — 92|,
mgx|ut1 Uts| 1181%X| 1 2|

That is, the difference of the two solutions is not bounded by the difference of initial
data.
By the method of separation of variables, we may obtain
[e.e]
u(x,t) = Z(an cos nt + by, sinnt) sinnz,

n=1

o
u(x,0) = Zan sinnz = g(z),
n=1

ug(z,0) = ann sinnz = h(x).
n=1

Not complete.

We also know that for elliptic equations, and for Laplace equation in particular, the
value of the function u has to be prescribed on the entire boundary, i.e. u = g on
012, which is not the case here, making the problem under-determined. Also, wu; is
prescribed on one of the boundaries, making the problem overdetermined. U
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29 Problems: Eigenvalues of the Laplacian - Heat

The ND HEAT Equation (eigenvalues/eigenfunctions of the Laplacian).
Consider the initial value problem with homogeneous Dirichlet condition:

up = Au for zeQ, t>0
uw(x,0)=g(x) for x€Q
u(z,t) =0 for x €909, t>0.

Proof. For g € C%(Q) with g = 0 on 052, we have eigenfunction expansion
o
g(l‘) = Z an¢n(x) ®
n=1

Assume the solution u(z,t) may be expanded in the eigenfunctions with coefficients
depending on t:  w(x,t) = > 07, up(t)¢p(x). This implies

> U O pn() = =AY tn(t)dn(2),
n=1 n=1

ul, (t) + Apun(t) = 0, which has the general solution
Un(t) = Ape b, Thus,

u(z,t) = ZAne_’\"thn(l")a
n=1

u(a:, 0) = Z An¢n(x) = g(a?)
n=1

Comparing with ®, we obtain A,, = a,,. Thus, the solution is given by

u(z,t) = Z ane o (x),
n=1

with an:/Qg(x)qbn(x) dzx.

Also
u(wt) = Y ane M ou(a) =Y ( / 9(©)6nly) dy)e 6 ()
n=1 n=1 Q

_ /Q > e Gn () dn(y) 9(y) dy
n=1

K(zy,t), };éat kernel
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The 2D HEAT Equation (eigenvalues/eigenfunctions of the Laplacian).
Let Q= (0,a) x (0,b) and consider

¥
b

Up = Ugg + Uyy for z eQ, t>0
u(z,0) = g(zx) for z€Q (29.1)
u(z,t) =0 for x € 0Q, t>0.

0 a
Proof. [Hirst, we find eigenvalues/eigenfunctions of the Laplacian.

Ugg + Uyy + Au =0 in Q
uw(0,y) =0=u(a,y) for 0<y<b,
u(xz,0)=0=u(x,b) for 0 <z <a.
Let u(z,y) = X (2)Y (y), then substitution in the PDE gives XY + XY” + AXY = 0.
X// Y//
Tty rA=0.

Letting A = p? + % and using boundary conditions, we find the equations for X and
Y:

X"+ 12X =0 Y +12Y =0
X(0)=X(a)=0 Y (0)=Y(b) =0.
The solutions of these one-dimensional eigenvalue problems are
mm nmw
Hm = —— Vp = —/—
a b
X (z) = sin mre Y, (y) = sin n_z'y’
where m, n = 1,2,.... Thus we obtain eigenvalues and normalized eigenfunctions of
the Laplacian:
2 2
m n 2 . mmx . nw
A, = 71'2(? + b_2> Omn(T,y) = \/@sm . in by’

where m, n =1,2,....
[Second, we solve the Heat Equation (29.1) using the “space” eigenfunctions.
For g € C?(Q) with g = 0 on 91, we have eigenfunction expansion

g(l‘) = Zan¢n(1‘) ®
n=1

Assume u(z,t) = > o7 uy(t)¢pn(x). This implies
ul, (t) + Apun(t) = 0, which has the general solution

Un(t) = Ape b, Thus,

u(x,t) = ZAne_’\"tqbn(x),
n=1

u(a:, 0) = Z An¢n(x) = g(a?)
n=1
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Comparing with ®, we obtain A,, = a,,. Thus, the solution is given by

u(z,t) = Z amne_kmnt¢mn(x)v

m,n=1

with A\, Gmn given above and ayy,, = fQ 9(2) Grn () d. O
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Problem (S’91, #2). Consider the heat equation

Ut = Ugg + Uyy 27

on the square Q ={0 <z <27, 0 <y <27} with
pertodic boundary conditions and with initial data

u(O,x,y):f(x,y) x

a) Find the solution using separation of variables.

Proof. [Hirst, we find eigenvalues/eigenfunctions of the Laplacian.

Ugg + Uyy + Au =0 in Q
u(0,y) =u(2m,y) for 0 <y <2,
u(z,0) =u(z,2r) for 0 <z <27,

Let u(z,y) = X (2)Y (y), then substitution in the PDE gives XY + XY” + AXY = 0.

X// Y//
—+—+2=0.
X * Y *
Letting A = p? + v and using periodic BC’s, we find the equations for X and Y:
X"+ 12X =0 Y"+12Y =0
X(0) = X(2m) Y(0) =Y (27).

The solutions of these one-dimensional eigenvalue problems are

L, =M Up =7
Kon(w) = €™ Yo(y) = €™,
where m,n=...,—2,—1,0,1,2,.... Thus we obtain eigenvalues and normalized eigen-

functions of the Laplacian:

Amn = ’I?’L2 + 7?,2 ¢mn(xa y) = eimremy’

where m,n=...,-2,-1,0,1,2,....
[ Second, we solve the Heat Equation using the “space” eigenfunctions.
Assume u(z,y,t)=> " (t)e"™*e™ . This implies

m,n=—o0 Umn

ul () + (m? + n®)umn(t) =0,  which has the general solution

mn

Up(t) = cmne_(m2 +n?)t Thus,

0o
— 2 2 . .
U(.Z‘, Y, t) = Z Conn€ (m*+n )tezmremy'

m,n=—o0
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(e}

u(x,y,O) = Z Cmneimremy = f(xay)a
m,n=—o0
21 21 _ 21 27 0 -

/ f(z,y)e™ ™ dedy = / / Z Conn €T Y VT Y Gy
o Jo o Jo i

2 ©© .

= 27T/ Z Cnn€™e™Y dy = Anlcpn.
0 n=—oo
1 2 2 ) )
Cmn = 4—7_‘_2/ f(x,y)e ey dxdy = fmn
0 0

O
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b) Show that the integral [, u?(x,y,t) dedy

Proof. We have
Ut = Ugg + Uyy

Multiply the equation by v and integrate:

wuy = ulu,
1d
3 %u2 = ulu,

1
5%/9112 dxdy = /QuAud:Udy =

Igor Yanovsky, 2005 351

18 decreasing in t, if f is not constant.

/ u@ ds —/ |Vul|? dady
oq On Q
—_—

=0, (periodic BC)
= —/ |Vul?dzdy < 0.
Q

Equality is obtained only when Vu =0 = wu = constant = f = constant.

If f is not constant, [, u? dxdy is decreasing in t.



Partial Differential Equations Igor Yanovsky, 2005 352

Problem (F’98, #3). Consider the eigenvalue problem

2
O \p=0,

d2
50~ L) =0, o)+ La)=o.

a) Show that all eigenvalues are positive.
b) Show that there exist a sequence of eigenvalues X\ = \,,, each of which satisfies

tan\/_ = 2\/X

A—1"
c¢) Solve the following initial-boundary value problem on 0 < x < 1,t >0
ou_
ot 0z%’
ou ou
- — = 1 —(1,t) =
u(0,1) = 52 (0,6) =0, u(l,t)+ 50 (1,5) =0,
u(z,0) = f(x).

You may call the relevant eigenfunctions ¢, (x) and assume that they are known.

Proof. a) e If A\ =0, the ODE reduces to ¢ = 0. Try ¢(z) = Az + B.
From the first boundary condition,

#(0)-¢'(0)=0=B-A = B=A
Thus, the solution takes the form ¢(z) = Az+ A. The second boundary condition gives
p(1)+¢'(1)=0=34 = A=B=0.

Thus the only solution is ¢ = 0, which is not an eigenfunction, and 0 not an eigenvalue.
v

o If A <0, try ¢(x) = %, which gives s = v/ -\ = £5 € R.

Hence, the family of solutions is ¢(z) = AeP* + Be™5%. Also, ¢(x) = BAel* — BBe=P,
The boundary conditions give

$(0) = ¢'(0)=0=A+ B~ A+ 3B =A(l-3)+ B(1+p), (29.2)

p(1)+¢'(1) =0 = Ae’ + Be P + BAe’ — fBe™" = AP (14 3)+Be P (1—4). (29.3)
From (29.2) and (29.3) we get

1+5 A 1+8 B 5 A 5
1—5 =-3 and 1—5__146 , or B—e .
A+ B A At
From (29.2), (= i and thus, — = eB—g, which has no solutions. v/

A—-B B

b) Since A > 0, the anzats ¢ = e gives s = 4iy/A and the family of solutions takes
the form

d(z) = Asin(zvVA) + B cos(zVA).
Then, ¢'(z) = Av/Acos(xv/A) — By/Asin(zv/\). The first boundary condition gives
p(0)—¢'(0) = 0=B—-—AVA = B=AVA\
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Hence, ¢(z) = Asin(zv/A) + AV Acos(zv/)\). The second boundary condition gives
p(1)+¢'(1)=0 = Asin(vVA) + AV Acos(VA) + AV Acos(VA) — Axsin(v/A)
= A[(1 - \)sin(VX) + 2V A cos(VV)]

A # 0 (since A = 0 implies B = 0 and ¢ = 0, which is not an eigenfunction). Therefore,
—(1 = A sin(v/A) = 2v/Acos(V/A), and thus tan(v/)) = ?\é

¢) We may assume that the eigenvalues/eigenfunctins of the Laplacian, \,, and ¢, (x),
are known. We solve the Heat Equation using the “space” eigenfunctions.

u(O_,t)gf’uz(O, t)=0, w(l,t)+u,(1,t)=0,
u(x,0) = f(z).

For f, we have an eigenfunction expansion
[e.e]
f(z) :Zan¢n(x)' ®
n=1

Assume u(z,t) = > 07 up(t)¢n(x). This implies
ul (t) + Apun(t) = 0,  which has the general solution

Un(t) = Ape b, Thus,

u(z,t) = ZAne_’\"thn(l")a
n=1

u(x, 0) = Z An¢n(x) = f(.l‘)
n=1

Comparing with ®, we have A, = a,. Thus, the solution is given by

u(w,t) = Z ane” oy, (x),
n=1

with

1
an:/ f(z)on(z) dz.
0
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Problem (W’03, #3); 266B Ralston Hw. Let Q be a smooth domain in three
dimensions and consider the initial-boundary value problem for the heat equation

uy = Au+ f(x) for e, t>0
ou/on =0 for ©€9Q, t>0
u(z,0) = g(x) for xz € Q,

in which f and g are known smooth functions with
dg/on=0  for x € 0.

a) Find an approximate formula for u as t — oo.

Proof. We expand u in terms of the Neumann eigenfunctions of Laplacian in (.

Ny + Appp, =0 in Q, %:0 on Of).
on

Note that here A\ = 0 and ¢; is the constant V2, where V is the volume of €.
Assume

w(z, t) = nz_:lan(t)qbn(x), an (t) = /Q (@ )ule, 1) da.

g9(z) = nz_:lgn¢n(1‘)a gn = /Q(bn(l‘)g(l‘) dx.

a1 = /Q(bn(x)utdx:/ﬂqbn(Au—l—f) da::/ﬂqbnAud:v—l—/qunfdx
= /QAqbnud:U—l—/qunfdx:—)\n/ﬂqbnudm—l—/ﬂqbnfdx:—)\nan—l—fn.
e

fn
an(0) = /qun(x)u(x,O) da::/ﬂqbngdx:gn.

8 Thus, we solve the ODE:

(I;l + Anan = fn
an(0) = gp.

For n =1, Ay =0, and we obtain a1 (t) = fit + g1.
For n > 2, the homogeneous solution is a,, = ce
solution is ap, = cit + c2, which gives ¢; = 0 and ¢y = fn/An. Using the initial
condition, we obtain

an(t) = (gn ~ {—Z)e—knt + {—Z

"We used Green’s formula: [, (¢n 2t — u222)ds = [,,(¢nLu — Adnu) da.

On 09, g—z =0; 85% = 0 since eigenfunctions are Neumann.

—Ant The anzats for a particular
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et = (it + 0)r(@) + 3 [(an— L)t 2], o).
n=2 " "

t =0 ([ f@rde=0).  Jim utet) = o+ > L0
n=2 n

It f, £0 (/Qf(;r) dz + o), lim u(z, t) ~ fiont.
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b) If g >0 and f > 0, show that u > 0 for all t > 0.
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Problem (S’97, #2). a) Consider the eigenvalue problem for the Laplace operator
A in Q € R? with zero Neumann boundary condition

u _ on 0f).

{um—l—uyy—l—)\uzo mn Q
on

Prove that A\g = 0 is the lowest eigenvalue and that it s simple.
b) Assume that the eigenfunctions ¢n(x,y) of the problem in (a) form a complete
orthogonal system, and that f(x,y) has a uniformly convergent expansion

f(.l‘, y) = Z fn¢n(xa y)
n=0

Solve the initial value problem
Uy = Au—l—f(ﬂfay)
subject to initial and boundary conditions

du

Y 70 :07
u(@, ,0) o

u|ga = 0.

What is the behavior of u(x,y,t) ast — co?
¢) Consider the problem with Neumann boundary conditions

Ugg + Vyy + f(z,y) =0 in Q
g—flv =0 on 0f).

When does a solution exist? Find this solution, and find its relation with the behavior
of limu(x,y,t) in (b) as t — co.

Proof. a) Suppose this eigenvalue problem did have a solution u with A < 0.
Multiplying Awu + Au =0 by v and integrating over €2, we get

/uAud:U—l—)\/u2d33:0,
Q Q

/ u@ ds—/|Vu|2d33+)\/u2d33:0,
0 Q Q

Q on
/|Vu|2d33: A /u2d33,
Q ~Ja

=0
<0

Thus, Vu =0 in €2, and u is constant in 2. Hence, we now have
0=_A\ / u? da.
~— Ja
<0

For nontrivial v, we have A\ = 0. For this eigenvalue problem, A = 0 is an eigenvalue,
its eigenspace is the set of constants, and all other \’s are positive.
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b) We expand v in terms of the Neumann eigenfunctions of Laplacian in Q. ™

Nty + Appp, =0 in Q, %:0 on Of).
on

.Z‘ Y, t Zan (bn x y an(t) = /qun(x,y)u(x,y,t) dzx.

d(t) = /qun(x,y)utdx:/ﬂqbn(Au—I—f) da::/ﬂqbnAud:v—l—/qunfdx
= /QAqbnud:U—l—/qunfdx:—)\n/ﬂqbnudm—l—/ﬂqbnfdx:—)\nan—l—fn.
e

In
an(0) = /qun(x,y)u(x,y,O)dx:O.

80 Thus, we solve the ODE:

a;z + Apay, = fn
a,(0) = 0.

For n =1, Ay =0, and we obtain a4 (t) = fit.

For n > 2, the homogeneous solution is a,, = ce The anzats for a particular
solution is ap, = cit + c2, which gives ¢; = 0 and ¢y = fn/An. Using the initial
condition, we obtain

fn —Ant fn
)\ne + )\n.

—Ant

an(t) = —

u(z, f1¢1t+z< In g fn)%( ).

8

—0Q

If f1=0 (/Qf(x) dr = 0), tlim u(z,t) = In®n
n=2

It f, £0 (/Qf(x) dz + o), lim u(z, t) ~ fiont.

c) Integrate Av+ f(z,y) =0 over {2

/fdx:—/Avdx:—/V-Vvdle— a—vdS— 0,
Q Q Q an On

where we used ! divergence theorem and ? Neumann boundary conditions. Thus, the
solution exists only if

| rdz=o.

We use dzdy — dx.
%9We used Green’s formula: [, (¢n 2% — uﬂ)ds = [o(ondu— Appu) dz

On 012, g—z =0; %L; = 0 since eigenfunctlons are Neumann.
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Assume v(z,y) = > 02 andn(z,y). Since we have f(z,y) = > 07 fudn(z,y), we
obtain

- Z AnGn®n + Z fn¢n = 0,
n=0 n=0
_)\nanQSn + fn¢n — 0,

a, = .

(@, y) = Ealo(32)dn(,y). O
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29.1 Heat Equation with Periodic Boundary Conditions in 2D
(with extra terms)

Problem (F’99, #5). In two spatial dimensions, consider the differential equation
u = —elu — N

with periodic boundary conditions on the unit square [0, 277]2.
a) If e =2 find a solution whose amplitude increases as t increases.
b) Find a value gq, so that the solution of this PDE stays bounded as t — oo, if € < &g.

Proof. a) Eigenfunctions of the Laplacian.
The periodic boundary conditions imply a Fourier Series solution of the form:

u(z,t) = Zamn(t)ei(mr“my).

U = Z a (t)etmeny)
m,n
AU = Uy + Uy = _Z(m2 + 12) Ay ()l
m,n
A2u = Upprr + 2umyy + Uyyyy = Z(m4 + 2m2n2 + n4) amn(t)ei(mr+ny)
m,n
= Z(m2 +n2)2amn(t)ei(mz+ny)'
m,n

Plugging this into the PDE, we obtain

al(t) = e(m? 4+ n?)amn(t) — (M? + 1) 2amn (1),
07

W (t) = [£(m® 4+ 17) — (M® + 1°) ] amn(t) =
al () — (m? +n?)e — (m? 4+ n?)]amn(t) = 0.
The solution to the ODE above is

amn(t) = Qmn e(m2+”2)[5—(m2+n2)]t'
2 2 2 2 i
u(.’,lﬁ" t) — Zamn e(m +n )[e—(m +n )]t el(mr+ny) ' ®
——
i oscillates

When ¢ = 2, we have
u(z,t) = Z Q€ T2 (M2 02t pi(matny)
m,n
We need a solution whose amplitude increases as t increases. Thus, we need those
Qmn > 0, with
(m?* +n?)[2 — (m? +n?)] >0,
2 — (m*+n?) >0,
2> m? +n?
Hence, oy, >0 for (m,n)=(0,0), (m,n)=(1,0), (m,n)=(0,1).
Else, a, = 0. Thus,
u(z,t) = ago+ arpele™ + agrele” =1 + ele™® + ele

= 14 e'(cosx +isinz) + e'(cosy + isiny).
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b) For ¢ < gy = 1, the solution ® stays bounded as t — co. ]
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Problem (F’93, #1).
Suppose that a and b are constants with a > 0, and consider the equation

in which u(x,y,t) is 2w-periodic in x and y.

a) Let u be a solution of (29.4) with

2 2
lu(t = 0)]| = / / lu(z, . t = 0)[2 dady'/? < .
0 0

Derive an explicit bound on ||u(t)|| and show that it stays finite for all t.
b) If a =0, construct the normal modes for (29.4); i.e. find all solutions of the form

u(;v, v, t) — e>\t+ikr+ily'

c) Use these normal modes to construct a solution of (29.4) with a = 0 for the initial
data

1 1
1— %eir + 1— %e‘ir'

u(z,y,t=0) =

Proof. a) Multiply the equation by u and integrate:

w = Au—au’®+bu,
wy = ulu— aut + bu?,
/uutdw = /uAud:U—/au4d33+/bu2da:,
Q Q Q Q
1d 0
—— [ WPdz = / w2l ds —/|Vu|2d33—/au4d33—|—/bu2das,
2dt Jg a0 On Q Q Q
=0, u pem’o;lric on [0,27]2 ;6
d
%IIUI@ < 26 |Jull3,
b
lull3 < u(z,0)|[3 ™,
lulle < Jlu(z,0)]|2 € < e

Thus, ||u|| stays finite for all ¢.

b) Since a = 0, plugging u = MY into the equation, we obtain:
Ut = Ugg + Uy + bu,
—_ .
AeMtFikerily (g2 g2 4 gy Miketily
A= k=P
Thus,
uy = (TR Hb)itiketily
U(.Z‘, Y, t) = Z apl e(_k2_12+b)t+ikz+ily'

k.l
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¢) Using the initial condition, we obtain:

1 1
i(kz+ly)

- S0 B G

_ kz% zkr+z_:2_ke—ikz’
= 2+Z ok ”“+Z—e

k=—1
Thus, [ =0, and we have
k . k ikx
Zakezz = 2+Z2—ke“ﬂ—|—z2_ke ,
k=—o0 k=1 k=—1
1 _ 1
=  ag=2; ag 2_k’ k> 0; ak—ﬁ, k<0
1
=  ag=2; Qap; %, k # 0
+00 1
bt (— k2+b)t+zkz
u(z,y,t) = 2e” + Z o
k=—00, k#0

81

81Note a similar question formulation in F’'92 #3(b).
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Problem (S’00, #3). Consider the initial-boundary value problem for u = u(x,y,t)
wu = Au —u

for (x,y) € [0, 27)%, with periodic boundary conditions and with
u(z,y,0) = uo(z,y)

i which ug is periodic. Find an asymptotic expansion for w for t large with terms
tending to zero increasingly rapidly as t — oo.

Proof. Since we have periodic boundary conditions, assume

u(x,y,t) = Zumn(t) gl(mz+ny)

Plug this into the equation:
Zu;nn(t) ei(mr—f—ny) _ Z(_m2 —n?_ 1) umn(t) ei(mz—f—ny)’
m,n

m,mn
u;nn(t) = (_m2_n2_1)umn(t)v
umn(t) = amm e(_mQ—”Q—l)t,
U,y t) =D gy e (M gima ),

m,n

Since wuyg is periodic,
) 1 2 p27 )
up(z,y) = ZUOmn gllmetny), UOmn = —2/ / uo(z,y) €M) dady.
m,n 4m 0 0

Initial condition gives:

w2 ,0) = 3 @ = (),
m,n
Z A, ei(mz+ny) = Z UOmn ei(mz—i—ny) )
m,n m,n
= Gmn = UOomn-
_ 2 201t 4
u(z,y, t) = ZUOmne (m*4+n?+1)t ji(ma+ny)
m,n

2, 2 . . 22
UG €~ (M T+t gilmatny) (0 a5 ¢ — 0o, since e” M Dt (0 a5 t— 0. O
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30 Problems: Fourier Transform

Problem (S’01, #2b). Write the solution of initial value problem

1 0
Ut_<5 3)UI_07

for general initial data

) . . ¢ '
( U(2)(1‘, 0) ) ( 0 ) as an tnverse Fourier 7'anstorm

You may assume that f is smooth and rapidly decreasing as |z| — oo.

Proof. Consider the original system:

Ugl) — U‘(rl) - 07
W2 sl 3@ = o
Take the Fourier transform in x. The transformed initial value problems are:
a® _iea® — o, a(g,0) = F(©),
' _siea® — 3iea® = o, a@(,0) =0

Solving the first ODE for 2! gives:
iy = fee. v
With this 2", the second initial value problem becomes
at? —3ica® = sicf(6)e, a?(,0) = 0.
The homogeneous solution of the above ODE is:
a2 t) = e
With @()2) = c2e’!  as anzats for a particular solution, we obtain:
i€coe™t — 3itcpeltt = 5i£f(£)ei§t,
—2iteae’t = BicF(&)et,

cg = —gﬂf)-
= APE = —2f©e

a2(g, 1) = BEH +AR (6, ) = 1 — gﬂf)ew.

We find ¢; using initial conditions:

i@ (g,0) = cl—gf(f) =0 = a=2f©

2
Thus,

100 = SFEOEE - ). v

365
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uM(z,t) and v (z,t) are be obtained by taking inverse Fourier transform:

(@M, )"
(@?(e,1)"

uM(, 1)

u?(z, t)

7 Lo
77 bt

Igor Yanovsky, 2005

zm§ f
zm§ f

th df,

) (e 3igt

eigt) d€.
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Problem (S’02, #4). Use the Fourier transform on L*(R) to show that

Z—Z +cu(z)+u(z—1)=f (30.1)

has a unique solution u € L*(R) for each f € L*(R) when |c| > 1 - you may assume
that c is a real number.

Proof. u € L?(R). Define its Fourier transform % by

ulg) = \/%/ e y(x)dr  for £ €R.
du .
Do) = (e,

—

We can find u(x — 1)(&) in two ways.
e Let wu(x—1)=wv(x), and determinte v(§):
——

e =16 =) = —= / ist xz%ﬁ [ euy) ay
- m/ Culy)dy = Cag). @

e We can also write the definition for u(£) and substitute x — 1 later in calculations:

ae) = \/%/ ety \/%/ Dy (p 1) da

—iz ik, u(r —1)dx = eru(g—\l)(f)a

7
= ule— 1)) = e ().
Substituting into (30.1), we obtain
i€a(e) + cu(§) + e4a(€) = f(9),

. f®
W) = Fretew
iy \Y
o~ 1
u(z) = (%) = (fB)’ = \/T_wf*B’
~ 1
Where B = W’

1 v
= B=|———-—-— = — dE.
(z’f—l—c—l—e‘Zﬁ) \/27T/Ri£—|—c—|—e—lf ¢
For |c| > 1, u(&) exists for all £ € R, so that u(z) = (u(£))Y and this is unique by the
Fourier Inversion Theorem. U

Note that in R", ® becomes

u?—\ =7 = 1 e~ (1) dr = 1 o~ iy +1)
0O =70 = G [ = ooy [ D) ay
1
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Problem (F’96, #3). Find the fundamental solution for the equation
Up = Upy — Ty (30.2)

Hint: The Fourier transform converts this problem into a PDE which can be solved
using the method of characteristics.

Proof. u € L?(R). Define its Fourier transform @ by

i) = o=
uz(§) = igu(g),
Uza(€) = (©)%u(e) = —€uE). v
We find Tu,(€) in two steps:
[ Nlultiplication by z:

() de  for £ eR.

—

—izu = _”5 —izu(x))der = —u(f).
© = o= (@) dz = ZZ(e
d
= u(z)(€) = Zd—£U(5)
[ Using the previous result, we find:
Tug(x = ”5 xu T = 1 ey R —i€)e e 4+ e )y da
A1) \/%/ «(z)) d \/%[ . \/g/R« e+ e )ud
= zf/ xudw——/ _mgudw
— iEaulz)(©) -7 = i€fiaO)] - = €L - aAE)
= T ()E) = ~Ewi(e) ~aE). <

dg
Plugging these into (30.2), we get:

0 . d
6 = ~€aEn ~ (- 6N (D),
W= —E0+ER 4T
- gie = ~(& - Di.

We now solve the above equation by characteristics.
We change the notation: © — u, t — y, £ — x. We have

uy —zuy = —(x* —1)u.
d
d_f = 2 = z=ce, (1 = we')
dy
=] = y=t
dt Yy + ¢,
d d
- —(@?—Dz=—(Ge -1z = ~_ —(Ae™? —1)dt
dt z
1 z? 7’ 2?
= 10gz-§cle —I—t—l—c?,—?—l—t—l—c?,—?—l—y—@—l—c?, = z=ce2 1Y,
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Changing the notation back, we have

Thus, we have

52
(g t) = cen T,

We use Inverse Fourier Tranform to get u(x,t): 52

1 : 1 ; €2

wz,t) = —— [ EqEt)de = —/e”gceTHd
@) = o= [ e<aena - — [ :
€ et | et eé d¢ = € ¢t em&é d¢
V2T R V2T R

c t/ 2ing 4e” it c t/ (etin)? " =2
= e e = e e (&

V2T R Vo R

2
z_
u(z,t) = cele™
Check:
;22
u = ce'ez,
;22
U, = ce'zez,
22 o2
Upy = cet(e2 —|—x262)
Thus,
Uy = Uggy — TUyg,
22 22 22 22
celer = cet(e2 —|—x2e2)—xcetxe2 v

82We complete the square for powers of exponentials.
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Problem (W’02, #4). a) Solve the initial value problem

n

ou ou
e - =0 R"
8t+ ak()aw +ap(t)u =0, =x€
where ag(t), k = 1,...,n, and ap(t) are continuous functions, and f is a continuous

function. You may assume f has compact support.
b) Solve the initial value problem

n

ou ou

il = R"
ot + - (Ik(t) ox}, + aO(t)u f(xvt)v T )
u(0,2) =0

where f is continuous in x and t.

Proof. a) Use the Fourier transform to solve this problem.

1 ,
ulg,t) = @n)3 /n e" @y (x,t)de  for & eR.
u o
8—1‘]{; = szu.

Thus, the equation becomes:

up +i 22:1/\%(15)&77 +aop(t)u = 0,
u(§,0) = f(¢),

TG iaw it a®i = o,

U = —(id(t)-€+ao(t))a

This is an ODE in @ with solution:
A, t) = ce Jolia()Erao(s)ds U, 0) = ¢ = f&). Thus,

G, t) = f(€) e Jolia)Erao()ds

Use the Inverse Fourier transform to get u(z,t):

u(z,t) = a(Et)Y = [f(f) e—f(f(ia(s)@ao(s))ds}v _ Fr9)=)
| | (n)F
where §(€) = e Jo(ia(s)-Erao()ds,

_ (f*g)(x _ z(r fO(za(s E¥ag(s))ds
Wl = Tont @y // ’ ki

b) Use Duhamel’s Principle and the result from (a).

t
u(x,t) = /U(x,t—s,s)ds, where U(z,t,s) solves
0

Zak ——l—ao( )Wu = 0,

oxy,
U(.Z‘, 07 8) - f(xv 8).
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t
u(x,t) = / U(x,t—s,8)ds =
0

1
(2m)"

- -
/ / / )€ o ;—S(m(s)~§+ao(s))ds] dé f(y, s) dyds.
0 n n

O
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Problem (S’93, #2). a) Define the Fourier transform 5

flo- [ e i () da

—0o0

State the inversion theorem. If

7, [ <a,
f(&) =4 37, £ =a,
0, [£]>a,

where a is a real constant, what f(x) does the inversion theorem give?

b) Show that

—

fla—b) = e f(a),
where b is a real constant. Hence, using part (a) and Parseval’s theorem, show that

l/‘x’ sina(x + z) sina(z + §) dr — sina(z — &)

T ) T+2 x+& z—&

where z and & are real constants.

Proof. a) e The inverse Fourier transform for f € L'(R"):

1

— /00 e " f(x)de  for & eR.

1© =5

Fourier Inversion Theorem: Assume f € L?(R). Then

fo) = 50 [ e Rode= o [ [T g ayag = (7)) @)

—00

e Parseval’s theorem (Plancherel’s theorem) (for this definition of the Fourier
transform). Assume f € L'(R") N L2(R"). Then f, fV € L%(R") and

Nflle@y = 1V 2@y = 1fll2@ny,  or
27

| @l = o [ iferas

Also,

/_Zf(x)g(x / 76 5@ de

e We can write

T o T, |£| <a,
fle) = { e

83Note that the Fourier transform is defined incorrectly here. There should be -’ sign in e~**¢.
Need to be careful, since the consequences of this definition propagate throughout the solution.



Partial Differential Equations Igor Yanovsky, 2005 373

. 00 N —a a ) 1 00
f@) = (R = 5= [ e Reds = o [ odes o [ eimtnagr o [Toag
. 1 “ —ix€ . _L —ix€ £=a . _L —iax _ tax | __ sin ax
- 2/_ae de = 2@';1:[6 L:_a_ 2@';1:[6 ¢ }_ PR
b) e Let f(x—0b)=g(z), and determinte g(¢):
y
fo=0© =3 = [ otw)da= [ %1y dy
R R
= [ ) dy = Fi). v
R
o With f(z)= 29 (from (a)), we have
%/_(: sin;z(i—zl—z) sin;z(i:—s) dr = %/_(:f(x—l—z)f(w—l—s) dx (' =x+s, di' =dx)
= l/oo fl@'+2z—s)f(2))da (Parseval’s)

_ W%/ fa+z—s)f@)ds  part (b)
_ e~ i(z=8)¢
- 2Wg/ j€ 7©) de

= 75 f(f) et dg

1 @ .
= 2—71-2 / 7T2 e—Z(Z—S)§ df

= %/_va e_i(z_s)g df

_ 1 [e—i(z—s)ﬁ]fza

—2i(z — s) t=—a
cilz=s)a _ ,—i(z—s)a sina(z — s)

- 2i(z — s) - z—s v
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Problem (F’03, #5). [Jtate Parseval’s relation for Fourier transforms.

[Mind the Fourier transform f(f) of
el /2 /my, x| <y
fy= g AT
0, |z| > v,

i which y and o are constants.

[ Wse this in Parseval’s relation to show that
* sin?(a — &)y
s de =y
/—oo (Oﬁ - 5)2

What does the transform f(f) become in the limit y — oo ?

[ WUse Parseval’s relation to show that

sinfa — )y 1 /°° sin(a — &)y sin(B — &y

(=8 7)o (a=§ (B=9)

de.

Proof. e f € L?(R). Define its Fourier transform % by

&) = #/}Re_mgf(x)dx for £ € R.

[ Parseval’s theorem (Plancherel’s theorem):
Assume f € L'(R") N L?(R™). Then f, f¥ € L*(R") and

Wl 2@y = IV 2@ny = 1Ifll2@ny,  or

R TR

Also,

| tws@a = [ fomea

[ Find the Fourier transform of f:

_ it I S L _ pila—t)e
f(&)—m/ fa \/_/ye o %r

1 i(a—€)a _ b ey —z(a—f)
22y z(a— [ L——y 201 2y(a — €) le Toe ’]
siny(a — &)

= avme—o Y

[ Harseval’s theorem gives:
GRS
/oo sin y(a—f) _ /y |e2iaz|
—oo T22y(cx 5)2 —y
< silylo - 7 [
/. (a—gz “ = 2/_;“"’

> sin’ y(a - §)
- 7 >/ = . v
/—oo (Oﬁ - 5)2 df ™
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[ We had
O - e
e We make change of variables:
f&) = f€+a-p) =
fe+a-p) =

e We will also use the following result.

Let f(f +a) =g(¢), and determinte g(£)V:

é‘/

Fle+a)Y

= 9" =

e Using these results, we have

sin(a — &)y sin(f —

7 ke

¢')

£)

zmﬁ/\

e f(x).

)y

1 o
g

(a—=¢)

(8-

£)

¢ =

a—§=p-¢.

siny (6 — ¢')
(8-

siny (8 —§)
B=&

9

27Ty/ fxe
—0

27Ty/ f(z)2e @B gy
y | 2iax )
—y Amy

Y .
/ e~ (a=Biz 7.
-y

1

2
—2i(a —f)

_%m—ﬁﬂe
sin(a — By

Igor Yanovsky, 2005

Then, £ =& +a— (3. We have

or

ﬂﬁ/‘mg ey ae

(/3 / T Fle+a—B)de

() da

1 —(a—p0)ix]T=
[e=(e—F) o=
1 e

By _ e(a—ﬁ)iy}

a— 0 v
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Problem (S’95, #5). For the Laplace equation

0? 0?

i the upper half plane y > 0, consider
e the Dirichlet problem f(x,0) = g(x);
e the Neumann problem a%f(x, 0) = h(z).

Assume that f, g and h are 27 periodic in x and that [ is bounded at infinity.
Find the Fourier transform N of the Dirichlet-Neumann map. In other words,
find an operator N taking the Fourier transform of g to the Fourier transform of h; i.e.

NG = hg.

Proof. We solve the problem by two methods.
[ Hourier Series.
Since f is 2m-periodic in x, we can write
[e.e]
f) = Y mly) e,
n=—oo

Plugging this into (30.3), we get the ODE:

[e.e]

> (= rfan)e™ +an(y)e™) = 0,

n=-—oo

an(y) —n*an(y) = 0.

Initial conditions give: (g and h are 27-periodic in x)

o o

f@,0) = D an(0)e™ = g(z) = 5™ = an(0) = G
f(@,0) = 3 a0 = h@) = Y hae™ =, (0) =hn.

Thus, the problems are:

an(y) —n*an(y) = 0,

an(0) = Gn, (Dirichlet)
a,(0) = hy. (Neumann)

n

= an(y) = bpe™ +cpe™™, n=1,2,...; ao(y) = boy + co-
a“;l(y) = nbneny - ncne_ny7 n = 17 27 ceey a(](y) = bO

Since f is bounded at y = +o00, we have:
b, =0 for n >0,

c, =0 for n <0,
bg = 0, co arbitrary.
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e n>0:
an(y) = cpe ™,
an(0) = cp = Gn, (Dirichlet)
an(0) = —ne, = T (Neumann)
= —ng, = hn.
e n<0
an(y) = bpe™,
an(0) = bp = Gn, (Dirichlet)
a(0) = nb, = T (Neumann)
= NGy = hy
_|n|/g\n = Iy, n;«éo.
en=0: ay(y) = co,
ao(0) = co = Go, (Dirichlet)
ap(0) = 0 = ho. (Neumann)
Note that solution f(x,y) may be written as
o0 -1
foy) = S ame™ = al)+ Y an W+Zan
n=-00 n=—o00
ot 3 b Y e
n=—o0
I D DN AL D lgne—”y e, (Dirichlet)
- {CO+Zn——oo e e 4N 1——6 ez (Neumann)

[Hourier Transform. The Fourier transform of f(z,y) in z is:

few = —= / e f(a,y) du
f(z.y) m/ ¢ Fe,y) de.

(€)°F(&y) + Fy(&y) = 0,
J/C\yy — 52]? = 0. The solution to this ODE is:

F(&y) = c1e + cpe™V.
For £ >0,¢1=0; for £ <0, cyg =0.

o~

(>0 fl&y) = cze—fy, fu(&y) = —scze—fy,
— Iy — —zm§ ng _ =
7(€.0) m / fa.0)dz = —= / (2)dz = 3(E),
. 1 00 -
o = 60 = = [ e hw0de = <= [ e h@)de = T

~

= —£9(§) = h(§).

(Dirichlet)

(Neumann)
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e£<0:  fle&y) = ae, &y = fae,
Fle,0) = — / T e o 0)dr = —— / ¥ e (1) dy = §(6),  (Dirichlet)

) \/% ) o )
1 o0

e = ﬁ(f,o) = \/ﬁ/ e £ (x,0)dr = 7 ) e " p(x)de = h(¢). (Neumann)
= &9 = h(9).
—[€[5() = h(©)-
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Problem (F’97, #3). Consider the Dirichlet problem in the half-space x, > 0,
n>2:

0
Au—l—a—u—l—kz2u:0, T >0
ox,

u(z’,0) = f(a'), 2= (21,..., 20 1).

Here a and k are constants.
Use the Fourier transform to show that for any f(x') € L?*(R™') there exists a
solution u(z', zy,) of the Dirichlet problem such that

/ lu(z!, z,)|? da’ < C

for all 0 < x, < +00.

Proof. 8 Denote & = (¢/,&,). Transform in the first n — 1 variables:

. 0%u ou R
_|£l|2u(£/7$n) + W(f/,l‘n) + (I%(f/,l‘n) + ]{;2u(5/71‘n) = 0.

Thus, the ODE and initial conditions of the transformed problem become:
gy, + aly, + (K2 =€) = 0,
{ g, 0) = f(&).
With the anzats 4 = ce**”, we obtain s+ as + (k* —|¢'|?) =0, and
_ @ AR [EP)

S$12 = .
2

Choosing only the negative root, we obtain the solution:

_ Y T )
u(l ) = c(f)e Z .

WE xn) = f(€)e

Parseval’s theorem gives:

ey = NalBagoy = [ (6w Pde
Rn—l

85

UE,0) = ¢ = f(¢).  Thus,

—a—\/a2—§(k2—\s/\2>rn

~ —a—v/aZ-a(k2-[12) |9 2
= [ Re et e < [ R a
Rn—1 Rn—1
= [fllZ2@n-1y = IfllZe@ny < C,
since f(2') € L*(R"'). Thus, u(z’,z,) € L*(R*1). O
84Note that the last element of = (2/, z,) = (T1,...,Tn_1,Zn), i.e. Tn, plays a role of time ¢.

As such, the PDE may be written as

Au+ uy + au + E2u = 0.

8 Note that a > 0 should have been provided by the statement of the problem.
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Problem (¥’89, #7). Find the following fundamental solutions
OG(x,y,t)  0°G(x,y,1) OG(z,y,t)
a) — 5 = a(t) o2 + b(t) a0
G(.Z‘, Y, 0) = (5(1‘ - y)7

+c(t)G(z,y,t)  for t>0
where a(t), b(t), c(t) are continuous functions on [0, +o0], a(t) > 0 fort > 0.

oG - oG
b) E(.’L‘l,...,wn,yl,...,yn,t) = Zak(t)% fO?" t > 0,

G(l‘l, -y Tpy Y1, - - '7yn70) = 6('7:1 - yl) (.1‘2 - y2) ( Tn — yn)

Proof. a) We use the Fourier transform to solve this problem.
Transform the equation in the first variable only. That is,

~ 1 X
G(f,y,t) = \/T—W/Re_zmgG(l‘,y,t) dx.

The equation is transformed to an ODE, that can be solved:

G&y.t) = —a)EG(Ey.1) + ib()ECE 1) + () G(& u.1),
Gy, t) = [—at)& + ib(t)E + c(t)] G(& y. 1),
Ge,y,t) = celolra@EHibE)Ete(s)]ds

We can also transform the initial condition:
~ _— R 1 ,
G(,y,0) = d(x— = e WS = W,
(€ 0.0) = 3z =1)(©) © = 7=

Thus, the solution of the transformed problem is:

~ 1 —i _a(s ib(s)é+c(s)] ds
Gl ut) = e el o

The inverse Fourier transform gives the solution to the original problem:

Gla.y ) = (@@,y,t))v - L /R 7€ G(e, y, 1) de

— Zmﬁ o~ WE plol—a(s)E2+ib(s)é+c(s)]ds| 4
V2T / :
_ 1 / cilz—u)¢ efo e ds ge
2 R

b) Denote ¥ = (z1,...,%,), ¥= (Y1,--.,Yn). Transform in ¥

L 1 Lz

CETt) = — [ om0 i

(27]’) 2 n

The equation is transformed to an ODE, that can be solved:

~

1) = Y a(t)i& G(S 7. 1),

k=1
t) — Ceif(f[zz:l ak(s) gk]ds

Gi(E. .

‘@1

1

G(

A
1

)
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We can also transform the initial condition:
~ o 1

é(g’ 7, 0) — [5(1»1 — yl)é(xQ — yg) .. 5(1'71 — yn)]A(f) = 6_1375(5(5) = (27_‘_)%

Thus, the solution of the transformed problem is:

é(gv v, t) = ! D e—iﬂfei f(f[ZZ:l ag(s) fk]ds'
(2m)2
The inverse Fourier transform gives the solution to the original problem:

= ! n/ erg[ ! = o€ i [ [ h—y an(s) ] ds d<
(2m)2 Jrn (2m)2
= (;m / T E i [JITE an() &l ds g7
Rn
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Problem (W’02, #7). Consider the equation

o2 o2
(52 922

>u =f inR", (30.4)

where f is an integrable function (i.e. f € L'(R™)), satisfying f(x) =0 for |z| > R.
Solve (30.4) by Fourier transform, and prove the following results.

a) There is a solution of (30.4) belonging to L*(R™) if n > 4.
b) If [pn f(x)dx =0, there is a solution of (30.4) belonging to L2(R™) if n > 2.

Proof.
A = f,
—lelfate) = (),
a@::—éﬂ& £eR”,
u(z) = —(%)V.
a) Then

N

7P mm2)%
d d .
S(Am|w 5+A@|w ¢

A B

(Y2
lallon = ([ 5 ae)

Notice, ||f|l2 = ||f|le > B, so B < oc.
Use polar coordinates on A.

2 N 1 N
A = / 4| d¢ = / / f_ n—1 dS,_1dr = / / |f|27”n_5 ds,, 1 dr.
[€l<1 |f| 0 JS,_1

If n>4,

A< [ 1fRas. = 17 < o
n—1

1
2

lull2@ny = [lull2@ny = (A+B)2 < oo
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b) We have

u(x,t)

u(z, )]

_<@>V _ 13/_00 zzﬁ{é?df

ok /Oo fw) /Oo e(;'? ) dy
1

(
/f (// e(zy P S,y dr) dy
) (

<M<oo if n>2.

/_Z M f(y)dy| < oo.

/ / eil@=vr pn=3 4g dr)dy.

383
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Problem (F’02, #7). For the right choice of the constant ¢, the function
F(x,y) = c(z +iy)~" is a fundamental solution for the equation

ou .0u ) 9
— 4 i— = R-.
Ox—Hay f mn

Find the right choice of ¢, and use your answer to compute the Fourier transform

(in distribution sense) of (x 4 iy)~!.

Proof. 86

& = (o) (o2,

Fi(z,y) = = log|z| is the fundamental solution of the Laplacian. z = x + iy.

AFl(xvy) = (57

0 0 0 0
—tig )~ ) F = 0.
(8$+Z8y><8x Z@y) (@)
hz + Zhy = e_i('r§1+y§2)'
Suppose h = h(z& + y&) or h = ce i #1tvk2),

= C( —i& e~ @1 +yéa) _ i252 e—i(rﬁl-l—yﬁz)) = —ic(& —i&) e~ i@i+yé) — e_i(-r§1+y§2)’
= —ic(fl — ng) = 1,
1
= Cc = N )
(&1 — &)
1 ,
- _ —i(z&1+y&2)
= e = T ) ¢ |
Integrate by parts:
1 : 1 o 0 1
— —i(ebitys) _ — (2 TN 2 dad
<$+iy>(£) /Rze i(fl—i&)(@;r—Hﬁy)(x—l—iy)—o v
1 1

i(& —i&o) i(&y + i)

86 Alan solved in this problem in class.
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31 Laplace Transform

If u € LY(R, ), we define its Laplace transform to be

Llu(t)] = u¥(s) = /000 e Stu(t) dt (s >0).

In practice, for a PDE involving time, it may be useful to perform a Laplace transform
in ¢, holding the space variables z fixed.
The inversion formula for the Laplace transform is:

1 c+ioco
u(t) = LM u#(s)] = — et u? (s) ds.
2mi c—100
Example: f(t) =1
o0 1 _ = 1
L[] = / e St 1dt = [— —e‘ﬂ = - for s> 0.
0 S t=0 S
Example: f(t) = e®.
S S 1 t=00 1
Ll = / e et dt = / el = —[e(a_s)t} = for s> a.
0 0 a—S t=0 s—a
Convolution: We want to find an inverse Laplace transform of = - ﬁ
-1 1 1 ! CRY R 7Y
L [— —} = fxg = 1-sint"dt’ = 1— cost.
s s241 0
N N —~
LIfl  Llg
Partial Derivatives: u = u(z,1)
o t=00 o
Llw) = / e Sty dt = [e_Stu(x,t)L . + s/ e Studt = sLu] — u(z,0),
0 = 0
o t=00 o
Lluy] = / e Sty dt = [e_StutL . + s/ e Stupdt = —ug(w,0) + sL[uy]
0 = 0
= $2L[u] — su(z,0) — u(x,0),
o0 d
Lluy] = “uydt = =—L[u],
w) = [T uedr = el
00 . 82
Llug,] = T Uy dt = —=Lul.
] = [T udt = S5l

Heat Equation: Consider

ug—Au=0 in U x (0,00)
u=f on U x{t=0},

and perform a Laplace transform with respect to time:
o0
Llu) = / e Stugdt = sLu] —u(x,0) = sLu] — f(x),
0

LiAu] = / e S Audt = AL
0
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Thus, the transformed problem is:  sL[u] — f(x) = AL[u]. Writing v(z) = L[u], we
have

—ANv+sv = f in U.

Thus, the solution of this equation with RHS f is the Laplace transform of the solution
of the heat equation with initial data f.
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Table of Laplace Transforms: L[f] = f#(s)

L[sin at]
L]cos at]
L[sinh at]
L[cosh at]
L]e™ sin bt]

Lle™ cos bt]

a
52 +qa?’
s
52+ a?’
a

2 27

sT—a

s
2 _ a2’
b
s—a
(s —a)?+ b2’
n!
n!

e—as

)
S

e—aSL[f:I’
al[f]+bL]g],
LI LLg),

LILLg),

Igor Yanovsky, 2005

s>0
s>0
s> |al
s> lal
s>a
s>a
s>0

s>a

s>0

Example: f(t) =sint. After integrating by parts twice, we obtain:

L[sint] =

[ee]
= / et sint dt
0

1
1+ 82"

o0 o0
/ e tsintdt =1— 52/ e % sint dt,
0 0

387
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Example: f(t) =t".

[e’e) n ,—5t 1 00 [e’e)
L") = / et dt = —[t ~—| +ﬁ/ etlar = Lo
0 S 0 S Jo S
n/m—1 n! n!
S L2 = ... = =L[1] = ——.
s( s ) [ ) s™ 1 sntl
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Problem (F’00, #6). Consider the initial-boundary value problem

Up — Upy +au = 0, t>0, x>0
u(z,0) = 0, x>0
U(O, t) = g(t)v t >0,

where g(t) is continuous function with a compact support, and a is constant.
Find the explicit solution of this problem.

Proof. We solve this problem using the Laplace transform.

Llu(z,t)] = u¥(x,s) = /000 e Sz, t)dt (s >0).
Llu] = /Ooo e Sty dt = [e‘StU(x,t)}ioo + s/ooo e Studt
= su”(z,s) —u(x,0) = su(z,s), (since wu(x,0)=0)
00 2
Llugz] = /0 e MUy, dt = %u#(x,s),
Lu(0,)] = u(0,s) = /0 Tetgydt = gt(s).

Plugging these into the equation, we obtain the ODE in u7:

2

su(x,s) — %u#(x, s) +au” (z,s) = 0.
x

{ (u#) e — (s + a)u® = 0,
u#(0,5) = g% (s).

This initial value problem has a solution:
u”(z,5) = c1eV5TOT 4 cpemVetazT,

Since we want u to be bounded as x — oo, we have ¢; = 0, so

u’(z,s) = cpem Vot u”(0,s) = ¢ = g¢”(s), thus,

u”(z,5) = g¥(s)e”Vetar,

To obtain u(z,t), we take the inverse Laplace transform of u#(z, s):

u(a,t) = L7'u¥(x,s)] = L7 g% (s)eVH"] = g« f
g L]
1 c+i00o
— g*L_l [e—\/s—kaz] = gx |:2_m/ est e—\/S—I—az ds ’

t 1 c+ioco , -
u(z,t) = / g(t—t) [—/ est e_‘/S“L“ds} dt'.
0 c

211 J o
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Problem (F’04, #8). The function y(x,t) satisfies the partial differential equation

9y , 0%
Yor T oot

and the boundary conditions
y(a?, 0) =1, y(ov t) = e—at’

where a > 0. Find the Laplace transform, y(x,s), of the solution, and hence derive
an expression for y(xz,t) in the domain x >0, t > 0.

+ 2y =0,

Proof. We change the notation: y — u. We have

TUy + Uz + 20 = 0,
u(z,0) =1, u(0,t) =,

The Laplace transform is defined as:

o0
Clu(e, t)] = wt(z,s) = / u ) dt (s> 0).
0
o0 o0
Llzuy] = / e St pu, dt = x/ e, dt = x(u#)z,
0 0 L .
Llug] = / ety dt = [e‘Stuz(x, t)} + s/ e St uy, dt
0 t=0 0
= s(u®)y —ux(z,0) = s(u¥),, (since wu(z,0) =0)
[ee) o8] 1 ‘ t=00
Lu(0,t)] = u*(0,5) = / e Stem i dt = / e~ Tt g — [— ¢~ (sta)
0 0 s+ a t=0
- 1
 s+a
Plugging these into the equation, we obtain the ODE in u#:
(z + 5)(u#)z + 207 = 0,
U#(O, 8) = H%a
which can be solved:
(u?)s log(z+s) 2 €2
w* zts = logu® = —2log(z+5) +c1 = u¥ = cpes" )T = (z+8)%
From the initial conditions:
1 52
u™(0,5) 2 s+a 2T 5T
2
# . S
u”(r,8) = ————.
(=, 5) (s+a)(x+ s)?
To obtain u(z,t), we take the inverse Laplace transform of u*(z, s):
2 1 c+io0o 82
u(z,t) = L Yu"(x,5)] = L_l[s—} = —/ eSt[— ds.
(2,1) ™ (, 5)] (s+a)(x + s)? 2700 Jerioo (s+a)(x+s)?

1 c+ioco 82
u(z,t) = —

st s d .
270 S [<s+a><x+s>2} i
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Problem (F’90, #1). Using the Laplace transform, or any other convenient method,
solve the Volterra integral equation

u(z) = sinx + /Or sin(z — y)u(y) dy.

Proof. Rewrite the equation:

t
u(t) = sint—l—/ sin(t — t")u(t) dt’,
0

u(t) = sint+ (sint) * u. ®
Taking the Laplace transform of each of the elements in ®:
o
Llu®)] = uh(s) = / et u(t) dt,
0
. 1
L[Sln t] == 1—1_—82’
u¥t

Ll(sint) xu] = L[sint] xL[u] = T

Plugging these into the equation:

= 1482 1482 1482
1
u#(s):s—2.

To obtain u(t), we take the inverse Laplace transform of u#(s):

w(t) = L Vuk(s)] = L [s%} _—

u(t) = t.
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Problem (F’91, #5). In what follows, the Laplace transform of x(t) is denoted
either by T(s) or by Lx(t). [—Jhow that, for integral n > 0,
n n!
[_Hence show that
1
LJo(2vut) = =e~¥/*,
s

where

n!n!

X 1\n lz 2n
By = 35 ED )
n=0

1s a Bessel function. [_Hence show that

L [/Ooo Jo(2V/ut)z(u) du] = %E G) (31.1)

[ Assuming that
1
Va2 + s
prove with the help of (31.1) that if t > 0
& 1
/ Jo(au)Jo(2v/ut) du = —J0<3).
a a

0

Ljo(at) =

Hint: For the last part, use the uniqueness of the Laplace transform.

Proof.
00 n ,—st o8]
L] = / I e e +9/ et tdr = Dol
0 \gf’\f/ s o s Jo s
=0
_ ony/mn—1 9 ~on! ~nl
= L) == T = e

n!n!

nln! nlsntl
n=0 n=0 n=0
o P O
m[/ooo Jo(2v/al) )du] _ /OOOL[JO(m/qE)] o(u) du = é/oooe_zx(u) du
Ly,
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32 Linear Functional Analysis

32.1 Norms

[| - || is @ norm on a vector space X if

D) 2] =0 iff 2 = 0.

i) ||ax|| = |a| - ||z|| for all scalars .
iii) ||z + y|| < ||z|| + [|ly|| (the triangle inequality).
The norm induces the distance function d(x,y) = ||z — y|| so that X is a metric space,

called a normed vector space.

32.2 Banach and Hilbert Spaces

A Banach space is a normed vector space that is complete in that norm’s metric. lL.e.
a complete normed linear space is a Banach space.

A Hilbert space is an inner product space for which the corresponding normed space
is complete. I.e. a complete inner product space is a Hilbert space.

Ezamples: 1) Let K be a compact set of R™ and let C(K') denote the space of continuous
functions on K. Since every u € C(K) achieves maximum and minimum values on K,
we may define

[lulloo = max |u(z)].

[| - || is indeed a norm on C(K) and since a uniform limit of continuous functions is
continuous, C'(K) is a Banach space. However, this norm cannot be derived from an
inner product, so C(K) is not a Hilbert space.

2) C(K) is not a Banach space with || - ||2 norm. (Bell-shaped functions on [0, 1] may
converge to a discontinuous d-function). In general, the space of continuous functions

on [0, 1], with the norm || - [|,, 1 < p < oo, is not a Banach space, since it is not
complete.

3) R™ and C™ are real and complex Banach spaces (with a Eucledian norm).

4) LP are Banach spaces (with || - ||, norm).

5) The space of bounded real-valued functions on a set S, with the sup norm || - ||g are

Banach spaces.
6) The space of bounded continuous real-valued functions on a metric space X is a
Banach space.

32.3 Cauchy-Schwarz Inequality

|(u,v)] < [|ull|[v]] in any norm, for example [ |uv|dz < (qudas)%(fv2dx)%
ja(u,v)| < a(u,u)? a(v,v)?
[|oldz = [|o]-1dz = ([|v|2da)2([ 12dx)?

32.4 Holder Inequality

[ 1uvlds < ol

Q

which holds for u € LP(2) and v € L9(S2), where % + % = 1. In particular, this shows
wv € LY(Q).
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32.5 Minkowski Inequality

[u+ollp < [lullp + [[v]]p,

which holds for uw,v € LP(Q2). In particular, it shows u + v € LP(2).

Using the Minkowski Inequality, we find that || - ||, is a norm on L”(2).

The Riesz-Fischer theorem asserts that LP(2) is complete in this norm, so LP(2) is a
Banach space under the norm || - |,.

If p = 2, then L?(Q) is a Hilbert space with inner product

(u,v) = /uv dzx.
Q

Ezample: Q € R™ bounded domain, C*(Q) denotes the functions that, along with
their first-order derivatives, extend continuously to the compact set Q. Then C*(Q) is
a Banach space under the norm

[ull1,00 = max(|Vu(z)| + |u(z)]).
€
Note that C1(£2) is not a Banach space since ||u|1 o need not be finite for u € C*(Q).

32.6 Sobolev Spaces

A Sobolev space is a space of functions whose distributional derivatives (up to some
fixed order) exist in an LP-space.
Let © be a domain in R", and let us introduce

<u,v>1= /(Vu - Vo +w) dz, (32.1)
Q

lulliz = VS wwST = (/(|Vu|2 luf?) da:) ’ (32.2)
Q

when these expressions are defined and finite. For example, (32.1) and (32.2) are defined
for functions in C§(Q2). However, C}(Q) is not complete under the norm (32.2), and so
does not form a Hilbert space.

Divergence Theorem

/ ff-ndSz/div/Yda:
o0 Q

Trace Theorem
ull Lyo0) < Cllullg(o) Q smooth or square
Poincare Inequality

lully < CIVull,  1<p<oo
[l@pdr < ¢ [ Fu@Pde  uech@, HA@) e p=

17
lu—ually < [Vull, we H(Q)
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1
ug = @/ u(x)dxr  (Average value of u over Q), |Q| is the volume of Q
Q

Notes
ou - ou ou 9 9 9
%:Vun—nla—xl—l—n% |vu| :ur1—|—uz2
Vlu| dz :/MVud:U
Q Qu
2, 12 2 2
Vab < “;b = ab<? "2”’ S [Vl < Yl
2
uVu = V(?)
/(uzy)2d33 = /umuyy dx Vu € HE(Q) ) square
Q Q

Problem (F’04, #6). Let ¢ € C3(R3). Prove that the vector field

-k [ ey,

T dr |z —y?

enjoys the following properties: 87

a) u(r) is conservative;
b) divu(z) = q(x) for all z € R3;
c) |u(z)| = O(|z|~2) for large .

Furthermore, prove that the proverties (1), (2), and (3) above determine the vector field

u(x) uniquely.

Proof. a) To show that #(z) is conservative, we need to show that curl @ = 0.

The curl of V is another vector field defined by

€1 €2 e3
- - oVz  OVy 0Vy 0OV OV, OV,
el V= VxV =det| o 9 95 | = (—3——2, A AL )
Vl V2 Vg 81‘2 81‘3 81‘3 81‘1 81‘1 81‘2
Consider
i z (1‘1,1‘2,1‘3)
Viz) = 1ZP 7 (24 24 42)8
r (z1 + 23+ 235)2
Then,
i0) = — [ a@)V(e-v)d
ilz) = — T — ,
e quy y)ay
. 1
curl d(z) = pp 3q(y) curl, V(z —y)dy
R
curl V(z) = curl (21, 73, 23) =
(2% + 23 + 23)2
. D) 2.1‘2.1‘3 _ D) 2.1‘3.1‘2 —% . 2.1‘3.1‘1 _ —% . 2.1‘1.1‘3 —% . 2.1‘1.1‘2
(x%—l—;r%—l—x%)% (;r%—l—x%—l—x%)g’ (;r%—l—x%—l—x%)g (;r%—l—x%—l—x%)%’ (x%—l—;r%—l—x%)%
— (0,0,0).

8TMcOwen, p. 138-140.
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Thus, curl @ = ﬁ g3 q(y) -0dy = 0, and u(x) is conservative. v/
b) Note that the Laplace kernel in R? is — -

4mr”
1 [ ay)(z—y) L[ oq(r)r / q(r)
() A7 Jps |z —yl3 At Jps 13 rar r3 4mr " ¢
c) Consider
1
Fla) = q(y) .

A R3 [z — Y|

F(z)is O(|z|™Y) as |z| — oo.
Note that w = VF, which is clearly O(|z|72) as|z| —o00. O



