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(Abstract)

Recent advances in wireless communications along with developments in low-power circuit design

and micro-electro mechanical systems (MEMS) have heralded the advent of compact and inexpen-

sive wireless micro-sensor devices. A large network of such sensor nodes capable of communicating

with each other provides significant new capabilities for automatically collecting and analyzing data

from physical environments.

A notable feature of these networks is that more nodes than are strictly necessary may be deployed

to cover a given region. This permits the system to provide reliable information, tolerate many

types of faults, and prolong the effective service time. Like most wireless systems, achieving low

power consumption is a key consideration in the design of these networks. This thesis presents

algorithms for managing power at the distributed system level, rather than just at the individual

node level. These distributed algorithms allocate work based on user requests to the individual

sensor nodes that comprise the network. The primary goal of the algorithms is to provide a robust

and scalable approach for tasking nodes that prolongs the effective life of the network.

Theoretical analysis and simulation results are presented to characterize the behavior of these

algorithms. Results obtained from simulation experiments indicate that the algorithms can achieve

a significant increase in the life of the network. In some cases this may be by an order of magnitude.

The algorithms are also shown to ensure a good quality of sensor coverage while improving the

network life. Finally, they are shown to be robust to faults and scale to large numbers of nodes.
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Chapter 1

Introduction

The past few years have seen the rapid proliferation of small wireless devices for personal com-

munication. Such devices are achieving increasing levels of connectivity with large networks such

as the Internet, and among themselves as peer-to-peer networks. As an example, consider that

the number of mobile phone subscribers world-wide was expected to be approximately 560 mil-

lion at the end of year 2000 [1]. Alongside these recent advancements in wireless networks [2],

there have been significant developments in low-power digital circuit design, sensing technology,

and Micro Electro-Mechanical Systems (MEMS) [3, 4]. The amalgamation of all these technologies

has sparked great interest in creating miniature units that combine physical sensing and wireless

communication - effectively, a wireless micro-sensor device.

Large numbers of such sensor nodes can be disseminated in a region, and can automatically collect

and analyze data from the physical environment. A large network of such nodes collaborating their

sensing efforts offers significant new opportunities in the study, monitoring, and maintenance of

physical environments.

Like most wireless systems, sensor networks must effectively manage the power consumption of indi-

vidual nodes to achieve satisfactory system lifetimes. It is imperative to design low-power hardware,

and power-aware operating systems so that power savings can be achieved at the node level [3].

This thesis introduces the concept of power management at the distributed system level. It con-

1



Chapter 1. Introduction 2

tributes a set of distributed algorithms that conserve power by efficiently managing and monitoring

the workload of sensor nodes. Also presented is a theoretical background and analysis of these

distributed algorithms along with extensive simulation results to demonstrate their applicability

for such sensor networks.

1.1 Motivation

1.1.1 What is a Distributed Sensor Network?

A Distributed Sensor Network consists of multiple sensor nodes that are capable of communicating

with each other and collaborating on a common sensing goal [5]. To some extent, such a network is

no different from the conventional perception of a distributed network, for example, the Internet,

or a cellular phone network. Both types of networks consist of nodes which can talk to each other,

which may have dissimilar capabilities, and which may be spatially separated. Notwithstanding

these similarities, considerable differences exist between these two types of networks. As a result,

many of the designs and protocols used in conventional networks do not apply to distributed sensor

networks [6]. Although there is no unique picture of what a distributed sensor network is expected

to look like, some characteristics and their implications are discussed below.

A distributed sensor network is expected to perform a very different function from traditional

networks, which are typically built to transfer data between nodes. In contrast, many nodes in a

sensor network combine their sensing resources locally, and then communicate the combined result

to a user. The user is not concerned with making requests to individual nodes, she is more likely

to want information from a region or a set of nodes [7]. In fact, the user may not even have enough

information to individually address nodes.

The size of a node is an important consideration. Nodes need to have small form factors so that

they may be located unobtrusively in the environment targeted for monitoring. If nodes are being

dispersed in inhospitable terrain such as a forest, a rugged and robust construction is required.

The restriction in size is closely related to the amount of energy available to a node. Given a small
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form factor, a node has a fairly limited energy budget. Because the cost of replacing the battery

may be high, nodes are expected to be thrown away once their energy supply is exhausted. Once

nodes die, the only way to replenish the sensing capabilities of the network is to add more nodes

to cover the depleted region.

It is infeasible, if not impossible to construct a distributed sensor network such that nodes commu-

nicate via a wired medium. For most urban or non-urban applications, it is impractical to network

a large number of sensor nodes with wires given the potential obstructions. Therefore, it is assumed

that most sensor networks will be constructed with a wireless topology.

A distributed sensing system such as the one being described is largely a collection of unattended

devices that must be self-organizing and capable of high levels of fault tolerance. Nodes may fail

often, or they may die when their energy quota is expended. The system must have multiple levels

of redundancy built into it to allow for these failures. This can be achieved by using more sensor

nodes than is strictly necessary to cover an area. Redundancy in the location of nodes and their

numbers allows for node attrition and increases the reliability of the system [8].

Finally, the configuration and topology of the sensor network may be rapidly changing in the

presence of a hostile environment, a large volume of assigned work, and nodes that fail routinely.

Conventional protocols may be inadequate to manage such situations; new protocols are required

to deliver effective coverage and ensure longevity.

1.1.2 Scenarios of Operation for a Sensor Network

The power of a distributed sensor network lies in its ability to deliver information from far flung

areas in response to questions posed by a user. These far flung areas may constitute regions that

are not suitable for human exploration. Examples include dense forests, remote planetary surfaces,

radioactive zones, highly polluted environments, or mine fields. Alternatively, nodes could be

deployed in military scenarios to detect and monitor the movements of personnel or combat vehicles.

Uses can be visualized for industry, offices, and urban scenarios. In these settings, miniature nodes

may be tacked onto objects to monitor production or inventory [6].
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Figure 1.1: A typical scenario for operation of a sensor network.

Figure 1.1 depicts a scenario where a user poses a query to the sensor network. In this case the

query is, “are there any tracked vehicles in the region bounded by the rectangular box [(x1, y1),

(x2, y2)] ?”. The query is routed to the appropriate nodes in the network, which are then tasked

by that user query. If a vehicle is detected, then the nodes indicate a positive response which

propagates back to the user. The querying approach is probably the most common mode in which

such a system may be employed.

In another proposed mode of operation, nodes may lie dormant for long periods waiting for some

environmental occurrence. A forest fire management system is envisaged as an example. For such

a system, many thousands of nodes may be preemptively deployed in the area at risk. An increase

in temperature or the CO2 level may trigger an event management module, which sends a signal to

the user. Many sensors may combine their sensing efforts to yield early information to help fight

these fires. Using these networks effectively can lead to a reduction in false alarms [9].
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1.1.3 Distributed Tasking Algorithms

It may be possible to have a centralized control point in the network that allocates node-level

tasks, oversees load balancing, and manages the entire network. This solution, however, suffers the

disadvantages posed by centralized systems, i.e., low fault tolerance, low scalability, communication

bottlenecks, and the need for continuous updates [6]. Because the sensing capabilities of these sensor

networks are distributed, it can be intuitively visualized that schemes for power management and

control also need to be distributed in nature.

Motivated by this reasoning, a set of distributed algorithms are proposed that manage power at

the system level by assigning work (user queries) to sensor nodes in such a way as to manage and

balance the power consumption among the nodes. These tasking algorithms determine which subset

of nodes will be tasked with a given user query, and which nodes will be switched off to conserve

power. Another goal of these algorithms is to rotate the assignments of tasks across redundant

nodes to prevent dead-spots in the area covered by the sensor network.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 gives an overview of ongoing research in distributed

sensor networks. Various aspects of these networks are explored to emphasize the need for energy

conservation across the entire system.

In Chapter 3, a purely distributed algorithm for the selection of Application Query Servers is

presented. A theoretical background of the algorithm is presented. The algorithm is discussed in

the context of execution times, scalability, and faults such as node failure. Variations in the basic

algorithm are proposed to make it more efficient.

Chapter 4 introduces approaches to distributed tasking of the sensor network using AQSs. These

approaches attempt to (a) prolong the life of the network by efficiently utilizing the redundancy in

node locations, (b) load balance the network by selecting appropriate nodes to task for each user

query, and (c) ensure good quality of sensor coverage for queries.
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Extensive simulations are conducted to explore the viability of these tasking algorithms. Chapter 5

presents an overview of the simulation tools, models, and methodologies. Chapter 5 also includes a

discussion of two expected scenarios in which such networks may be deployed and operated. These

scenarios are constructed and used in simulations as part of the experimental process.

Chapter 6 introduces metrics to evaluate the data collected in simulations. These metrics are

applied to the scenarios described in Chapter 5. Results are presented along with a discussion of

the observed trends. An analysis of the results obtained indicates that these distributed algorithms

can increase the effective sensor network lifetime while maintaining minimal dead-spots in the area

covered by sensors.

In Chapter 7, the assumptions used in constructing simulation models are validated against real

system measurements and intuition about the operation of the network. These models are also

verified to be an accurate representation of the system under study by performing multiple tests

and checks in simulations.

Finally, Chapter 8 gives concluding remarks and outlines some possible future work in this area.

This includes a discussion of the areas where the existing models need to be augmented and other

ramifications of this work.



Chapter 2

Overview of Related Work

Distributed sensor networks have many operating requirements and characteristics that distinguish

them from the traditional view of a wireless network. Some of these differences were outlined in

Section 1.1. Many research efforts are currently underway to develop solutions and designs that

best address these differences. The most stringent of these requirements is that all the hardware,

software, and protocols for such networks must be designed to be highly energy efficient. This is

the primary goal underlying most of the work outlined in this chapter.

This chapter begins by highlighting efforts to create efficient hardware implementations of a micro-

sensor node. It then proceeds to analyze network layer issues, attempts at profiling energy con-

sumption, strategies for collaborative processing of data, and optimization based techniques for the

optimal placement of sensor nodes.

An understanding of the efforts being currently undertaken provides insight into designing dis-

tributed algorithms for the efficient tasking and power management of these networks.

7
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2.1 Node and Network Architecture

The design of a sensor node is motivated by the need to create an inexpensive device with a small

form factor and low power dissipation. This section outlines the efforts of various research groups in

developing viable node architectures, and the corresponding perception of how these nodes operate

in a network. The distributed tasking algorithms presented in this thesis draw upon the designs

summarized in this section to construct simulation models. Moreover, understanding the sensing

and communication capabilities of these prototype nodes allows the distributed algorithms to be

more efficiently structured and fine-tuned.

The Wireless Integrated Network Sensors (WINS) project [10] at UCLA and Rockwell has led to

the development of sensor nodes that integrate sensing, processing, and communication on micro-

sensor platforms [11]. These sensors are fabricated using low-power wireless integrated microsensor

(LWIM) technology [4], and are capable of forming self-assembling, multihop networks. A new

generation of WINS nodes currently being developed by Sensoria Corporation provides a develop-

ment platform to monitor and process multiple sensor signals [12, 13]. Sensor data and messages

are exchanged amongst nodes via a radio frequency (RF) modem. These WINS nodes are capable

of fielding seismic, acoustic, and infrared sensing elements 1. Each of these individual sensors is

capable of detecting targets at different ranges, for example, the seismic sensor can detect tracked

vehicles at distances greater than it can detect personnel. This creates an important requirement

for the tasking algorithms; they must be aware of the effective coverage radii of individual sensors

to optimize assignment of tasks to nodes.

The Smart-Dust project [14] explores an alternative to the traditional view of radio linked sensor

networks. The project uses MEMS-based sensor nodes [15] approximately a cubic millimeter in

size which communicate with a base station via a free space optical link. These nodes store no

more than 1 Joule of energy and exhibit power consumption at microwatt levels. Individual nodes

may be scattered in a region or attached to the objects that require monitoring. A user may then

communicate with these nodes using a mobile base station unit equipped with a transceiver unit.
1The term sensor node pertains to a node in the sensor network. This term is used interchangeably with node.

The terms sensing elements or sensors are used for individual sensors packaged within a node
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The downlink communication pattern between the base station and a node employs an external

illuminating laser to download command signals to the node. The node uses the energy of the

laser via a CCR (Corner Cube Retro-reflector) [16] to reflect the signal back to the base station.

Analysis by the researchers shows that a range of a few hundred meters with a bit rate of a several

kilobits per second is achievable.

The micro-Adaptive Multi-domain Power-aware Sensors (µAMPS) project [17] is designing power-

aware nodes, software for those nodes, and protocols for communication between the nodes [7].

The hardware design of these nodes incorporates techniques such as dynamic voltage scaling to

make energy-quality tradeoffs for a low processor duty cycle. Another focus of this project is the

development of power management techniques at the software level by restructuring of the data

processing algorithms [18]. Experimental results are presented for two common signal processing

applications, finite impulse response filtering and image decoding. An implementation of the former

is shown to suffer a degradation of only 10% if the available energy per sample is reduced by 50%.

The modified image decoding application reconstructs an image at nearly 90% of its original quality

while reducing energy consumption by 75%.

The PicoRadio project [19] aims to create a single-chip implementation of a low-power (< 500µW

power dissipation), configurable radio device, and to network large numbers of such devices. This

effort targets the energy efficiencies that can be realized through careful optimization of the radio

network, particularly the physical, medium access control (MAC), and network layers [20].

Rockwell Science Center [21] has developed a prototype micro-sensor unit [22] with a modular design

that allows the incorporation of multiple sensing modules within a node. The sensor, processor, and

communication modules are mounted on circuit boards that are stacked together and connected

via a system bus. The software platform consists of a real-time, multi-tasking kernel based on the

MicroC/OS.
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2.2 Energy Usage Characterization

Energy consumption patterns of individual nodes and of the entire network must be systematically

characterized and profiled. This process yields a better understanding of where to apply tradeoffs

in the design of algorithms and hardware for nodes.

Studies conducted by Katz and Stemm [23] provide information on the energy consumption of small

wireless devices and network interfaces such as wireless PDAs and wireless LAN adapters. They

show that the time spent in the idle state (where data is not actually being received or sent but

the network interface is operational) dominates power consumption in these devices. Transport

and application layer optimizations, primarily based on switching off the network interface, are

proposed to minimize the power consumption. Therefore, a key observation is that nodes which

are not being tasked or relaying messages must conserve resources by switching off their network

interface.

Srivastava, et al., classify energy consumption by introducing the concept of energy consumers and

producers [24]. The processor, radio, and sensing elements of a node are the consumers, while the

static battery source is the producer. The energy consumers are profiled for a set of prototype

nodes, which include the node developed by Rockwell [22]. Another contribution they make is to

introduce three battery models, namely, the linear model, the discharge rate dependent model, and

the relaxation model. In the linear model, the battery is considered to be a bucket of energy. Energy

is linearly drawn from this bucket by the energy consumers. The discharge rate dependent model

considers the rate at which energy is drawn from the battery to compute the remaining battery

life. At high discharge rates, the capacity of the battery is reduced. Finally, the relaxation model

takes into account a phenomenon seen in real-life batteries where the battery’s voltage recovers if

the discharge rate is decreased.

Srivastava, et al., use the information derived from their study of prototype nodes to create Sensor-

Sim [25], a simulation infrastructure built on top of ns-2, a popular discrete event simulator. Their

tool specifically targets the evaluation and performance analysis of sensor networks. In addition to

the capabilities offered by traditional simulation tools, SensorSim incorporates features to model



Chapter 2. Overview of Related Work 11

power usage and study new communication protocols for sensor nodes. An interesting feature of

this simulation framework is that physical nodes can be combined with simulated nodes to conduct

hybrid simulations.

A network-level perspective on energy usage is presented in [26]. By simulating data gathering,

simulating energy consumption, and using analytical methods, the authors establish upper bounds

on the lifetime of a sensor network. The relationship of these bounds with the available initial

energy, number of nodes, base station location, and other factors is explored. These bounds may

be near-optimal if the deployment of nodes can be controlled by the user.

2.3 Inter-Node Communication and Routing

Network layer design for large sensor networks [5] also has to work within the same energy con-

servation goals that motivate node architecture. Optimization of the network protocol stack is a

very important consideration if substantial energy savings are being targeted. Any gains achieved

by efficient node design may be easily offset if non power-aware routing or communication schemes

are used. Much of the work outlined in this section is compared to traditional network protocols

to illustrate this key point.

Estrin, et al., examine large sensor networks and their applications in [6]. They propose a set of

distributed algorithms running on each node that are responsible for all the sensing and communi-

cation tasks. A clustering algorithm for selecting local cluster heads is described, and its advantages

characterized in terms of robustness and energy savings. On-demand and a priori routing algo-

rithms are discussed in [6] as they are applied to large networks. Because sensor nodes may be

dormant for long time periods, on-demand algorithms may achieve greater energy savings because

no traffic is generated periodically as in a priori protocols.

Estrin, et al., discuss routing in sensor networks [27] and introduce two algorithms, the Basic

Energy Conservation Algorithm (BECA) and the Adaptive Fidelity Energy Conservation Algorithm

(AFECA). The former switches off the radio periodically and trades off higher route latency for

power savings. The latter uses information about node density to adaptively let neighboring nodes
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handle network traffic. Using comparisons with Ad-hoc On Demand Distance Vector (AODV)

routing, they report energy savings of up to 40% with BECA with a 50% duty cycle. AFECA is

shown to achieve a two-fold increase in lifetime with a four-fold increase in node density.

Estrin, et al., also describe a method to express communication patterns between the nodes via

directed diffusion [28]. In directed diffusion, nodes express a willingness to publish or disseminate

data. Other nodes may express subscribtion requests for obtaining that data. These subscribtion

requests are used to establish gradients between these two sets of nodes. Gradients can also be

used to model physical or logical attributes of the path between two nodes, for example, the link

capacity. A message propagates between nodes along the paths with the maximum gradient until it

reaches the node(s) which desires that data. Data may be locally modified, aggregated, or cached

at intermediate nodes along the route.

Pottie, et al., [29] describe a protocol suite for sensor networks beginning with the allocation and

organization of TDMA-like time slots, to establishing routes among the nodes. The algorithm for

the discovery of time slots proceeds without global knowledge of other nodes, or frame synchroniza-

tion. A MAC protocol for interaction between a mobile node and the rest of the network is also

discussed. The underlying idea behind these protocols is to minimize messages among nodes and

limit the amount of information stored locally in registries to conserve energy. This is in contrast

to protocols for traditional applications where energy constraints are not as strict.

The PicoRadio research effort [20] addresses the network layer by introducing designs for the MAC

layer using dynamic channel assignment techniques. They propose using multiple communication

channels to alleviate the problems of contention and collision. They characterize multihop routing

schemes [30, 31] in terms of the energy required to transfer useful bits of information across the

network. They find that sending a packet along multiple hops of shorter lengths is more efficient

than using one longer hop.
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2.4 Data Fusion

For a computational system such as a distributed sensor network, it is desirable for nodes to share

raw sensor data with each other so that the quality of the final output may be increased. A single

node may report erroneous values that may need to be averaged with the values reported by other

nodes. Alternatively, the sensor coverage of a single node may not be adequate to provide the

final output, and may require combination with the coverage of neighboring nodes. Both these

cases require some form of collaborative processing between nodes to achieve the levels of service

and reliability desired by the end user. A listing of the advantages and implications of redundant

multi-sensor systems can be found in [8].

Another motivation for data aggregation is that raw data is much more expensive to transmit over

a radio link than locally processing that data at the node level (for a comparison of the typical

costs associated with these operations see [11]). Finally, it may be noted that for sensor networks,

an end user is typically concerned with obtaining estimates or aggregate values from a group of

sensors, and not individual node data.

The distributed tasking algorithms introduced in this thesis achieve their power conservation goals

primarily by relying on the redundancy found in these sensor networks. Additionally, understanding

how data is fused between nodes also gives these tasking algorithms a perspective on which nodes

are essential to the tasking process, and which nodes can be switched off to conserve power.

A large body of literature addresses collaborative signal processing for distributed systems such as

sensor networks. While it is impossible to list all sources, a few efforts in this direction are out-

lined. Beamforming is the process of aggregating co-related sensor signals using filters, to enhance

or optimize some property of the original signals [32]. Yao, et al., consider blind beamforming

for a randomly located sensor array [33]. A beamforming problem in the absence of sensor loca-

tions is referred to as blind beamforming. The approach employed by the authors uses only the

measured sensor data to form a correlation matrix, which is then processed using the maximum

power criterion. This method is well suited to sensor networks that typically contain sensor node

arrays whose geometry is irregular. A potential drawback of this approach is its dependence on
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time synchronization between the sensors.

Research conducted by the µAMPS group [32] explores the energy savings afforded by using a

cluster head to collect beamformed data vs. a direct transmission scheme, and vs. a multi-hop

communication scheme. They report that the clustering algorithm shows a reduction by a factor

of six in the energy consumed, and a two-fold increase in the total lifetime of the network over

the other two schemes. They also perform hardware comparisons of two beamforming algorithms,

specifically, Maximum Power Beamforming and Least Mean Square Squares (LMS). The LMS

algorithm is shown to be superior to the Maximum Power Beamforming algorithm; it consumes

1/5th the energy with a 3 dB loss in performance.

Yoo and Chien use the Rockwell sensor node [22] to classify seismic and acoustic data signatures

for target recognition [34]. They extend the target recognition capabilities of the node to target

tracking by simulating two co-operative processing algorithms. The first uses Wave Intensity Com-

parison (WIC) of the seismic readings. The second operates on acoustic data using a technique

called Interaural Time Differencing (ITD). These approaches are less computationally complex

than beamforming. Additionally, ITD is shown to be less dependent on clock synchronization than

beamforming.

Iyengar, et al., [35] propose to architect a sensor network as a multi-level deBruijn network. Such

a configuration is shown to achieve fault tolerance along with a simple and decentralized routing

scheme. This work also includes an overview of the sensor integration problem, i.e., combining

the outputs of n sensors to produce a meaningful output, given that f (f < n) sensors produce

faulty information. The construction of the network as described allows the search for a fault in

the network to be narrowed to two faulty nodes or communication links.

2.5 Optimal Placement of Sensor Nodes

As noted in the introduction, a distributed sensor network is characterized by many redundant

nodes placed in the region of interest. The eventual deployment of these nodes, i.e., determining

where to locate these nodes given a set of fixed constraints, is a problem that has not been as
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widely addressed as other aspects of these networks. Node deployment is affected by many factors,

some of them being the sensor capabilities of individual nodes, radio propagation characteristics,

and the topology of the region. Other constraints may include introducing a degree of overlap

in the sensor coverage of two nodes so that they may collaborate their data processing efforts.

For the system to operate effectively, redundancy should be utilized in a way that single points

of failure in the communication network are avoided. This constraint may require knowledge of

the underlying network protocols. Effective deployment of nodes can greatly impact the efficiency

achieved by distributed tasking algorithms proposed in this thesis. This is chiefly because of the

inherent assumption on the part of the algorithms that many nodes are located close enough to

each other to permit some measure of load balancing.

Some of the related work in determining optimal placement of sensors focuses on placing sensors

for structural analysis, optimizing placement for range finders, and placement of acoustic sensor

arrays [36, 37, 38]. Spall and Sadegh [36] deal with determining an optimal configuration of sensors

for systems where the prior knowledge is either sparse or too complex to construct reliable models.

The authors base their criterion of optimality on maximizing the cumulative sensor response, and

minimizing the correlation between the individual sensor responses. This approach has benefits in

situations where exact measurements and models are not available initially, and some arbitrary or

near arbitrary initial configuration must be chosen. Various optimization techniques are compared

as part of this study, specifically, Finite Difference Stochastic Approximation (FDSA), Simulta-

neous Perturbation Stochastic Approximation (SPSA), Deterministic Gradient Based Techniques,

Simulated Annealing, and Genetic Algorithms. SPSA is found to be preferable because it offers

savings in the number of observations per gradient approximation and does not need detailed model

information.

Another class of problems that bears close resemblance to the problem at hand is the optimal

location of transmitters, or base stations for wireless and cellular networks. The primary difference

between these two problems is that the sensor network is assumed to be collaborative and redundant

unlike a cellular network. Any placement approach for sensor nodes must also take into account

the expense and difficulty in re-deploying nodes. This is chiefly due to the limited lifespan of nodes,

and the fact that their battery sources are non-replaceable. Cellular networks, in contrast, do not
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suffer from this limitation.

Sherali, et al., [39] outline the differences between the traditional facility location problem and

that of placing a set of radio transmitters optimally. They approach the problem by constructing a

discrete grid to specify the radio coverage region associated with one or more transmitters. Their

model description decomposes into a non-linear programming problem, which they solve using non-

linear optimization algorithms such as Hooke and Jeeves’ method, quasi-Newton techniques, and

conjugate gradient methods. They describe their search methods as viable algorithmic procedures

in addressing problems of this nature.

Wright, et al., have developed a software visualization tool called Wireless System Engineering

(WISE) [40, 41] to plan where to place base stations. Their approach uses a combination of com-

putational geometry, Computer Aided Design (CAD), and numerical optimization methods. The

authors show that the objective functions derived from radio propagation models are typically

discontinuous and, therefore, choose an optimization scheme based on the simplex direct search

method. The application of WISE software is primarily for locating base stations within buildings.

Local minima in the objective functions are considered acceptable solutions because many compet-

ing locations may exist within a single building. Sensor networks may share this characteristic of

multiple locations.

Howitt and Ham [42] propose a technique for base station location by employing a global optimiza-

tion strategy. They contend that due to the inherent non-smooth and non-convex nature of local

objective functions, modeling the objective function with a stochastic process yields substantial

improvements.

2.6 Summary

This chapter outlines literature that addresses node architecture, collaborative processing and de-

tection algorithms, and communication protocols for distributed sensor networks. Most of the

techniques proposed are motivated by the need to minimize the energy consumption of nodes. A

significant observation in this context is that design aspects across all layers must be considered
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relative to each other to achieve major energy savings. An inefficient scheme at any layer may

adversely affect overall performance. Power management objectives must be aggressively pursued,

if these networks are to take shape as large, unattended, sensing systems capable of operating for

substantial time periods.



Chapter 3

Distributed Algorithms for Electing

Application Query Servers

To achieve distributed management of tasks in the network, the concept of an Application Query

Server (AQS) is introduced. An AQS is essentially a node in the network that oversees the as-

signment, arbitration, and control of user queries for all the nodes in its geographic region of the

network. This task assignment should take into account the energy level of the nodes, the current

workload of the nodes, and the capabilities of the nodes. As indicated by the name, the AQS op-

erates at a layer of abstraction higher than a cluster-head for communication or routing purposes

[6, 32]. Instead, the AQS advertises itself to the routing layer to allow queries destined for its region

to be routed to it.

An AQS is a node that manages a set of nodes in a region. The goal of the AQS is to extend the

service life of the network by assigning tasks to individual nodes in a power-aware fashion. As noted

in Chapter 2, a sensor node may have different coverage areas for each of its individual sensing

elements. This requires selecting an AQS for each application or sensing element that a node may

contain. An AQS does not necessarily have to cover its entire region with its own sensing elements.

However, it is in contact with nodes that cover that area.

Achieving energy savings using AQSs requires that, as indicated in [23], some nodes in the region

18
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and their radios are shutdown when their services are not required for tasking or communication

purposes. AQSs may also sleep for long periods of inactivity and may be woken on request from

the network. The underlying assumption in using this approach is that the sensor field is quite

dense and allows significant levels of redundancy. If the sensor field is not redundant, then to some

extent, one does not need to consider efficiency because every sensor in the a region will be needed

to service a query.

In addition to efficiently assigning tasks, an AQS must balance energy consumption across nodes

to avoid the formation of dead-spots in the areas covered by the sensor network. This goal when

combined with energy scavenging techniques, such as recovering energy from the environment by

using solar cells [16], gives nodes an opportunity to rejuvenate their energy source.

This distributed tasking algorithm operates in two stages. The first stage is the localized elec-

tion of application query servers from among the nodes in a network. The algorithm to conduct

these localized elections is based on existing distributed algorithms for the selection of a maximal

independent set (MIS) for simple graphs. These algorithms are particularly appealing for this ap-

plication because of their asynchronous and distributed nature that makes them suitable for sensor

networks. These algorithms are also seen to exhibit scalable and fault-tolerant properties. This

chapter introduces the stage of the algorithm used to elect AQSs. The discussion is prefaced with

a theoretical analysis of the algorithm. Variations in the basic algorithm and its fault-tolerant

abilities are also characterized.

In the second stage of the algorithm, elected AQSs use distributed methods to task individual nodes

with user queries. The goal of these schemes is to select an appropriate subset of nodes in a region

that are assigned tasks. A discussion of these methods is given in Chapter 4
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Figure 3.1: Independent sets for a simple graph.

3.1 Selecting a Maximal Independent Set

3.1.1 Definitions

Before discussing the problem of electing application query servers from among the set of sensor

nodes, the following definitions are presented.

The sensor network is represented by a simple graph G = (V, E). Each vertex vi represents a sensor

node in the network. Each edge (vi, vj) represents two adjacent nodes vi and vj . The adjacency

criteria could be, for example, two nodes that have an overlap in the area covered by their radios.

Two nodes that are adjacent are said to be neighbors of each other.

Further, consider the definitions of the following properties of simple graphs [43]. Given a simple

graph G with a vertex set V and edge set E; an independent set of G is a subset S of V , such that

no two vertices of S are adjacent in G. A independent set S of G is called a maximal independent

set if all the vertices of G are either in S, or adjacent to a vertex in S. Finally, an independent set

S of G is a maximum independent set if there is no independent set S′ with |S′| > |S|. A pictorial

representation of these sets is shown in Figure 3.1.
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A maximal independent set S in G can be considered to be a set of AQSs. This is so because by

definition each and every node in V is either an element of S or is adjacent to an element of S.

Therefore, the elements of S are collectively responsible for all the nodes in the sensor network,

i.e., V . Consider Figure 3.1(a); node vi is neither in the independent set nor adjacent to a node

in the independent set. Therefore, it is not accounted for by any AQS. In contrast, Figure 3.1(b)

represents a MIS where all nodes are either AQSs or are adjacent to an AQS. Figure 3.1(c) shows

a maximum independent set. To summarize, the problem of electing AQSs for the management of

nodes can be viewed as one of finding a maximal independent set (MIS) from among the nodes in

the network.

3.1.2 Algorithm to Generate a Maximal Independent Set

The maximal independent set of nodes chosen to be the AQSs should ideally be the minimum

maximal independent set, i.e., the maximal independent set of minimum size. This is because

the smallest possible number of AQSs should be chosen to manage other nodes. The problem

of determining a maximal independent set of size K or less where K ≤ |V | is known to be NP-

complete [44]. It is also known that the problem of finding a maximum independent set of a given

size is an NP-complete [45].

In contrast, a simple linear time algorithm exists for determining a maximal independent set of a

simple graph. While this may not lead to the best selection of AQSs, i.e., the size of the maximal

independent set chosen may be larger than the minimum maximal independent set, this problem

can be effectively solved due to its polynomial bound. Such an algorithm is shown in Figure 3.2.

The operation of this algorithm is simple. At each iteration a vertex is chosen from the set V and

a check is performed to determine if it belongs to the set NG(I) where the set NG(I) is defined to

be the neighbor set of I in G [43]. If not, it is added to the independent set I. The algorithm

iterates over all the vertices in V . It can be seen from Figure 3.2 that the algorithm executes with

a polynomial complexity.

A parallel solution to the maximal independent problem that is NC-complete is proposed by Karp

and Widgerson [46]. Another approach that has been successfully employed in this regard is to
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1: I = ∅
2: for all v ∈ V do

3: if v /∈ NG(I) then

4: I = I ∪ v

5: end if

6: end do

Figure 3.2: Sequential algorithm to determine a maximal independent set.

generate a maximal independent set based on the Monte Carlo method. This method is attributed

to Luby [47]. The Monte Carlo algorithm proposed by Luby selects an initial independent set I ′,

and then increments it to obtain a maximal independent set I. The following rule determines if a

node vi is a member of the independent set I ′.

Rule 3.1 For each vertex vi ∈ V , choose a distinct random number ρ(vi). Let vi ∈ I ′ ⇔ ρ(vi) >

ρ(vj), ∀ vj adjacent to vi.

The algorithm is presented in Figure 3.3. After determining the initial independent set I ′ in step

5, the vertices adjacent to the vertices in I ′ are determined in step 7. These vertices constitute

set NG(I ′). In step 8, the union of sets I ′ and NG(I ′) is removed from V ′. The subgraph of G

induced by the vertices remaining in V ′, i.e., G(V ′), is constructed in step 9. This loop iterates until

this vertex induced subgraph is empty; at this point the maximal independent set I is obtained.

Analysis by Luby shows that the expected number of iterations required to generate the set I is

EO(log(|V |)).

Given the distributed nature of the sensor network, one needs a method for determining a maximal

independent set that can be executed by all the nodes in parallel. The basic algorithm introduced

by Luby is used by Jones and Plassmann [48] to create a method for vertex coloring a graph

in parallel. The process by which maximal independent sets are created for this parallel coloring

algorithm is an improvement over Luby’s algorithm in two important respects. Firstly, the expected

execution time is shown to be smaller than the bound derived by Luby. Secondly, this algorithm is

asynchronous in nature. The algorithm to elect AQSs that is introduced in this thesis is based on
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1: I = ∅
2: V ′ = V

3: G′ = G

4: while G′ 6= ∅ do

5: Select an independent set I ′ in G′

6: I = I ∪ I ′

7: H = I ′ ∪NG(I ′)
8: V ′ = V ′ \H

9: G′ = G(V ′)
10: end do

Figure 3.3: Luby’s Monte Carlo algorithm to determine a maximal independent set.

this coloring algorithm.

3.2 Basic AQS Election Algorithm

This section describes the basic AQS election algorithm. An analysis later Section 3.2 proves that

the algorithm is fast, scales gracefully to a large number of sensor nodes, and is robust to failure.

3.2.1 Description of the Algorithm

Some definitions are required prior to presenting the algorithm.

S = set of sensor nodes

|S|= cardinality of S

si = sensor node i

A(si)k = effective coverage area of sensor node i for the sensor type k

R(si) = effective radio coverage area of sensor node i

Rs((si)k) = effective coverage radius of sensor node i for the sensor type k

Rr(si) = effective radio coverage radius of sensor node i
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node status = {battery status, sensor capabilities, A(si), R(si), workload}
Gr = the intersection graph where si is a vertex in the graph, and an edge eij exists if and only if

R(si) intersects with R(sj)

A set of application query servers is chosen such that each si is either an application query server

or R(si) intersects with the R(si) of an application query server. As explained in the previous

section, these application query servers form a maximal independent set in the intersection graph

Gr. Each application query server, sk, maintains the node status of each sj where R(sk) intersects

with R(sj). The algorithm is presented in Figure 3.4. Upon completion, I forms the MIS.

1: assign each si a random number, 0 < r(i) < 1

2: P = S

3: I = ∅
4: H = Gr

5: while (P 6= ∅) do

6: V = {si ∈ H : r(i) > r(j) for each eij}
7: P = P \ V

8: P = P \ adjoining (V )

9: I = I ∪ V

10: H is now the graph induced by P

11: end while

Figure 3.4: The basic algorithm for selection of AQSs.

The operation of this algorithm is similar to the one in Figure 3.3. At each iteration, the set of

nodes V , with random neighbors greater than their neighbors’ random numbers is chosen from the

remaining graph, H. This set, V , is added to the maximal independent set and then subtracted

from H, along with all nodes which are neighbors of H. The algorithm is presented in graph

notation for the purpose of clarity. In the actual implementation, the algorithm proceeds in a

purely distributed manner without the formation of graphs.
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3.2.2 Distributed Operation of the Algorithm

The algorithm requires no global communication; all communication is only with the nearest neigh-

bor. The operation of the algorithm at the sensor node level can be expressed as follows. At the

beginning of the algorithm, each node broadcasts its random number to its neighbors. Following

this initial message, the only information sent out by a node is (a) when it is included in the MIS,

or (b) when it knows that it does not need to be in the MIS. Due to the condition under which

nodes are included in the initial independent set (Rule 3.1), a node needs to send this information

only to its neighbors whose random number is lower than its random number. However, because

a broadcast medium (wireless) is being assumed for this discussion, nodes that receive messages

from neighbors with lower random numbers ignore those messages.

The asynchronous nature of the algorithm is illustrated in Figure 3.5, where node 7 must wait on

information from nodes 1 and 5 before deciding whether to include itself in the independent set.

Once node 7 has made a decision, it communicates this to its other neighbors which are then free

to take their own decisions.

3.2.3 Scalability and Fault Tolerance

If it assumed that the number of neighbors of any node in Gr remains bounded as |S| grows, the

loop executes EO(log(|S|)/ log log(|S|)) iterations. This is shown by the analysis of the parallel

graph coloring heuristic in [48]. This assumption is not excessively restrictive; for most sensor

network applications the density of nodes in a particular region is expected to be nearly constant

even as the total number of nodes across the network grows. Therefore, the execution time of this

algorithm grows very slowly with an increase in |S|. This leads to the belief that the algorithm

is scalable to a large number of nodes. Experimental results presented in Chapter 6 confirm this

belief.

The algorithm, as presented, assumes symmetric and reliable communication between each pair of

nodes. This may not always be the case, for example, if a reliable underlying transport protocol is

not being used. The effect of lost messages on the algorithm is now considered. Consider a failure



Chapter 3. Distributed Algorithms for Electing Application Query Servers 26

Figure 3.5: An example scenario for an AQS election. Flow of information from various nodes

with respect to Node 7 is shown.

in the exchange of r values between s1 and s2 such that s1 receives r(2), but s2 does not receive

r(1) (asymmetric communication). This failure can be considered for the two separate cases shown

in Figure 3.6.

Case 1. If r(1) > r(2), then both nodes will proceed normally through the algorithm, with

the potential that both of them may become an AQS. An extra elected AQS can be considered

inefficient, but if the communication between the two nodes is unreliable then this may be a desirable

result.

Case 2. If r(1) < r(2), then s2 will proceed normally and correctly through the algorithm and s1

will wait for a message from s2 indicating whether or not s2 is an AQS. If the message is received

(assuming that s2 is broadcasting only to its neighbors), then s1 proceeds normally and correctly

through the algorithm. If this message is not received (assuming that s2 is communicating only to

its neighbors and does not know about s1), then s1 will wait indefinitely for a message. To prevent

a deadlock, a timeout is introduced in the election process. After the timeout period, if for any
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Figure 3.6: Asymmetric communication between two nodes due to an unreliable link.

reason a node does not receive a message it expects from a neighbor regarding inclusion in the

independent set and none of its neighbors have been elected as an AQS, then it elects itself as an

AQS and lets its neighbors know. Again, this may result in an extra AQS, but if communication

is unreliable then this may be desirable.

Simulation experiments performed to study the algorithms consider the effect of link failure and

packet errors on the execution of the election algorithm. Results from these simulations presented

in Chapter 6 indicate that the performance of the algorithm scales gracefully in the presence of

these failures.

3.3 Extensions to the Algorithm

In the basic algorithm, the decision on whether or not a node si is included in the MIS depends on

the value of its random number r(i), and the random numbers of its neighbors. Choosing an AQS

based solely on this random number does not take into account the node status. For example, it
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might be desirable to select application query servers from those nodes with the longest remaining

battery life. In this case, the remaining battery life can be defined as an integer x, such that

0 ≤ x ≤ k. The algorithm can then be modified to redefine r(i) = x + a, where a is a random

number between 0 and 1. With this modification, the nodes with the longest remaining battery

life are always elected over other nodes, however, including the term a in r(i) helps to break ties

randomly.

The communication pattern is unchanged. As before, only the r(i) value and messages indicating

inclusion or non-inclusion in the MIS are exchanged between nodes. This technique can be used to

define r(i) as any function of desired node characteristics, thereby leading to the election of the most

appropriate node as the AQS for a given region. This scheme is motivated by the balanced graph

coloring algorithms introduced by Gjertsen, et al. [49]. These algorithms rely on adding weights to

the initial random numbers to improve the graph colorings obtained. It is proved in [49] that the

expected execution time of this algorithm remains EO(log(|S|)/ log log(|S|)). Experimental results

presented in Chapter 6 confirm that the running time of the algorithm remains bounded.

This scheme can be modified as follows so that it is not dependent on the relative magnitudes of a

and x. Define r(i) to be the tuple {x, a}. For nodes si and sj , define r(i) > r(j) if (xi > xj) or if

(xi = xj and ai > aj).

Another variation in the basic algorithm can be introduced by considering the definition of two

adjacent nodes. The basic algorithm defines two nodes si and sj to be adjacent if and only if R(si)

intersects with R(sj). The algorithm can also be extended to a different type of graph, where

adjacency is defined by a criterion other than radio connectivity. An example of such a criterion

is the sensor range. To understand the advantage in doing this, consider the case when the sensor

range is much larger than the radio range. For this scenario, the graph based on the overlap in

sensor coverage is more dense than the one based on radio coverage. If the radio connectivity graph

is used to elect AQSs, then a larger number of AQSs will be chosen than if the sensor connectivity

graph is used. A larger number of AQSs can be considered inefficient because each AQS makes its

task assignments independently (task assignment is discussed in detail in Chapter 4). This can lead

to inefficiency if a node is assigned the same task by two different AQSs. In contrast, if the graph
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is based on the overlap in sensor coverage fewer AQSs are chosen. This leads to a more efficient

allocation of tasks to the nodes with fewer conflicts from other AQSs.

Therefore, in certain cases it may be advantageous to use the graph based on sensor coverage over-

lap. However, the communication pattern between nodes may change as a result of this condition.

To understand the effect on inter-node communication, consider the following scenario. Define

two nodes si and sj to be adjacent if and only if A(si)k intersects with A(sj)k. The operation of

the algorithm is not affected by this new definition because the algorithm operates only on the

underlying connectivity graph. The communication patterns are considered for the case when the

sensor range is smaller than the radio range, and vice-versa. For both these cases, an example of a

connectivity graph is shown in Figure 3.7.

Figure 3.7: Connectivity graphs based on sensor range. The circle with the broken line represents

the sensor range whereas the circle with the unbroken line represents the radio range.

Case 1. If Rs((si)k) ≤ Rr(si) (Figure 3.7 (a)), then the required radio communication is still only
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a single hop. The algorithm at each node proceeds exactly as described earlier in Figure 3.5.

Case 2. If Rs((si)k) > Rr(si) (Figure 3.7 (b)), then the communication between nodes is no longer

a single hop. A message between two nodes si and sj may need to propagate over multiple hops.

Nevertheless, the basic algorithm remains the same.

The optimizations mentioned in this section have been incorporated in the simulation models used

to study the operation of the distributed election algorithm. Results for these are presented in

Chapter 6.

3.4 Summary

This chapter introduces the concept of an Application Query Server (AQS), which is a node in the

network that manages and assigns user queries to nodes within its region. AQSs are chosen for the

network such that each node in the network is either an AQS or is adjacent to another AQS. This

problem is reduced to one of finding a maximal independent set (MIS) of nodes for the network. A

theoretical background of the MIS problem for simple graphs is presented. A distributed algorithm

by Luby [47] that chooses a maximal independent set is analyzed, and extended to an algorithm for

the election of application query servers. The election algorithm is analyzed from the perspective

of its fault-tolerance and scalability to a large number of nodes. Finally, variations in the basic

algorithm are proposed to fine-tune its performance. The first variation attempts to select the nodes

with the longest remaining battery lives as AQSs. The second variation explores using intersection

graphs other than the basic radio connectivity graph to elect AQSs.



Chapter 4

Assignment of Tasks Using

Application Query Servers

This chapter considers the operation of the distributed tasking algorithm following the election of

a set of AQSs. As a result of the election, the geographical confines of the network are sub-divided

into regions with an AQS being responsible for each region. Each node is a part of at least one

such region; some nodes may belong to more than one region. At this point, the sensor network is

ready to be tasked with user queries. Application query servers advertise themselves to the routing

layer of the network. This causes a user query designated for a particular region of the network to

be routed to the application query server(s) responsible for that region.

It is the responsibility of an AQS to assign tasks related with user queries to the nodes within its

region. To accomplish this objective, an AQS must maintain a record of the status of nodes within

its area of responsibility. This status information includes the remaining battery life of a node, the

current activity status of a node (awake, asleep, or dead), the sensor capabilities of the node, and

the current task load of the node. This requires nodes to periodically inform their AQSs of their

battery status. The remainder of this chapter describes how an AQS uses this status information

to assign tasks to nodes within its area of responsibility.

31
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4.1 Energy Aware Task Assignment

4.1.1 State Transitions at a Node

As noted earlier, a high degree of node redundancy is a characteristic feature of distributed sensor

networks. This property allows for only a subset of nodes in a given region to be tasked for actually

servicing a user query. Before addressing the assignment of tasks to this subset of nodes consider

the following observation. When a node is not actively being tasked or relaying messages, it should

be powered down to a sleep state to conserve energy. To achieve any substantial energy gains in

this sleep state, the radio interface must be switched off [23]. Nodes may toggle themselves between

the awake and asleep state periodically to check for new tasks. The AQS could then determine

the sleep period of a node and wait for it to power up before it dispatching it a task. However,

this presents a difficulty if the AQS must task a node while it is asleep. A low-power wakeup

radio [50, 20], similar to a pager, can be attached to a node that allows the node to be woken up

on demand. This wakeup radio is only meant to allow the node to transition from the sleep to the

awake state. It allows only for a small amount of information relevant to this process to be sent

to a node. The use of the wakeup radio is assumed in the simulations; it allows nodes to remain

in the sleep state for long time periods because they can be woken up when required by the AQS.

Nevertheless, the use of such a system is not required for the proper functioning of the tasking

algorithms.

Figure 4.1 shows a state diagram showing the transitions between several states of a node. The

awake/idle state is where the network interface is operational and the node can send or receive

data. The asleep state was described in the previous paragraph. A node enters the transmit or

receive states to send or receive data, and returns immediately to the awake state. The dead state

is reached when the battery of the node is completely drained, and it cannot function any longer.
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Figure 4.1: Transitions between states at a node.

4.1.2 The Grid Map

An AQS may use two approaches to process a user level query into task assignments for nodes. A

simplistic approach, Approach I, involves receiving a query at the AQS, and activating all nodes

in its range to retrieve the information required by the query. Approach I requires relatively little

information to be maintained at the AQS, and in some sense is a brute force approach to tasking.

The second approach, Approach II, is motivated by the fact that nodes need to be kept asleep as

long as possible to achieve meaningful energy savings. Therefore, Approach II tries to select a set of

appropriate nodes to task by taking into account the remaining battery life at each node, number

of active tasks at a node, and the geographical region of the query. All other nodes in the region

of the AQS are allowed to transition to the asleep state.

In Approach II, an AQS forms a grid map by subdividing its region into a rectangular grid. The

purpose of this map is to represent sensor coverage of various nodes in the AQS’s region. Therefore,

the size of the grid map must be such that it includes the sensor coverage of all the nodes that
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Figure 4.2: Size of the grid map/geographical region of an AQS. The circle with the broken line

represents the sensor range whereas the circle with the unbroken line represents the radio range.

may lie in its region of responsibility. As seen from Figure 4.2, the size of the grid map is different

for the case when the sensor coverage radius is smaller than the radio radius (Figure 4.2 (a)) and

vice-versa (Figure 4.2 (b)). For both these cases, the area covered by the grid map is also defined

as its geographical region of responsibility.

A cell in the grid map is colored to denote the relative position of a node from the AQS. Cells

around that particular cell are colored with the same color to indicate the sensor coverage of that

node. Eventually, when such a map has been constructed, a colored cell on the grid map represents

the presence of sensor coverage at that location, while an un-colored cell denotes the absence of

sensor coverage. Such a grid map is shown in Figure 4.3. The center of this map is drawn relative

to the position of the AQS. The black region corresponds to sensor coverage provided by the AQS

itself. Other shaded regions correspond to nodes around the AQS within its region. All un-shaded
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Figure 4.3: Representation of a grid map at an AQS.

blocks correspond to uncovered area. The assignment of tasks to nodes is a two step process. The

first step consists of constructing the grid map by selecting nodes that satisfy some fitness criteria.

The second step consists of actually assigning tasks to a subset of the nodes that are currently in

the grid map.

4.1.3 Construction of the Grid Map

At all times during its operation, the AQS maintains a set B that is a subset of all the nodes in its

region. This set essentially contains those nodes that can be used to service a query that is sent

to its region. The nodes in B are placed on the grid map and the sensor coverage associated with

them is used to color the pixels of the grid map.

Before discussing how the set B is chosen, the following nomenclature is defined. Define set

N = {s1, s2 . . . sn} to be all the alive nodes in the region of the AQS. Further, define b(si) to

be the current energy level of node si ∈ N . Finally, define rindex to the redundancy index, i.e.

the value of the sensor coverage overlap between two nodes at which they are considered to be

redundant with respect to each other.
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The selection of B is described using the algorithm given in Figure 4.4. The operation of the

algorithm can be explained as follows. In steps 3 and 4, a node that does not have any coverage

overlap with any node currently in the grid map is added to set B. If a node si does have an

overlap with a node sj ∈ B, two cases may occur. If the overlap of si and sj exceeds the value of

the redundancy index rindex, then the node with the greater energy level is selected in B and the

other node is removed from B (steps 8, 9 and 10). Alternatively, if the two nodes are not redundant

both are added to B (step 13). To summarize, a node is added to set B under 3 conditions, (a) if

it has no overlap with any node currently on the grid map, (b) if it is redundant with a node in the

grid map with a lower energy level than itself, and (c) if its coverage overlaps but is not redundant

with any node on the grid map. The only condition under which a node is removed from the grid

map is when it is redundant with another node with a greater energy level.

1: B = ∅
2: for all si ∈ N do

3: if (A(si)k ∩A(sj)k) = ∅ ∀ sj ∈ B then do

4: B = B ∪ si

5: else

6: for all sj ∈ B : A(si)k ∩A(sj)k) 6= ∅ do

7: if (A(si)k ∩A(sj)k) > rindex then do

8: if b(si) > b(sj) then do

9: B = B ∪ si

10: B = B \ sj

11: end if

12: else

13: B = B ∪ si

14: end if

15: end do

16: end if

17: end do

Figure 4.4: Algorithm for constructing the grid map.
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1: S = ∅
2: A = ∅
3: for each q ∈ Q

4: q = {qid, {∅}}
5: select {s1, s2 . . . sm} in B which will service q

6: q = {qid, {s1, s2 . . . sm}}
7: end for

8: for each node si ∈ B

9: if ∃ q ∈ Q : q is serviced by si, and si /∈ A

10: A = A ∪ si

11: end for

12: S = N \A

Figure 4.5: Algorithm for assigning tasks to nodes in the grid map.

4.1.4 Using the Grid Map to Assign Tasks

Following the construction of the grid map, an AQS attempts to assign tasks to the nodes in the

grid map (set B) by using the algorithm described in Figure 4.5. Prior to a discussion of this

tasking algorithm some additional terminology is introduced. Define A to be the set of all the

currently awake nodes that are being tasked, and S to be the set of all the asleep nodes. Therefore,

N = A ∪ S. Q is the set of currently active queries at an AQS. Each query q ∈ Q is organized as

the following tuple: {qid, {s1, s2 . . . sm}} where qid is the query identifier and s1, s2 . . . sm are the

nodes that are being tasked by this query.

It is observed that many queries sent to an AQS in the network may require the AQS to task only

a portion of the region it covers. Therefore, not all nodes in set B need to be in the awake state.

Only a subset of the nodes in B, i.e., A need to be awake at a given time to actually service those

queries. The remainder of the nodes are in the asleep state, i.e. S. The algorithm in Figure 4.5

describes the partitioning of nodes in N into sets A and S.

The important step in this algorithm is the method for the selection of the query tuple for a query

q in step 5. This is done by calculating the intersection of the geographical area specified by the



Chapter 4. Assignment of Tasks Using Application Query Servers 38

query with the corresponding area in the grid map. This is shown in Figure 4.6. All nodes whose

sensor coverage lies within this region are added to the tuple. In step 9, the AQS calculates if

a node in B needs to be awake for any of these queries. All such nodes are added to the set A.

Once the construction of these sets is complete, nodes in A are sent wakeup messages and task

assignments whereas the nodes in S are sent messages that enable them to enter the asleep state.

Figure 4.6: Intersection of the region of a query with the corresponding region in the grid map.

Because nodes in A report their battery level to the AQS periodically, the grid map must be redrawn

to reflect these updated values. Each time the grid map is redrawn, sets B and A are re-calculated

and new nodes take over the existing queries. To understand the effect of reconstructing this grid

map, consider the following scenario. Battery updates are received very often from nodes that are

awake and the period for redrawing the grid map is small. In this situation, nodes are quickly

toggled between the awake and asleep state in the grid map. This leads to a situation where the

set B, and therefore the set A are re-calculated too rapidly. On the other hand, if the battery

updates are received at widely spaced intervals and the grid map redraw periods are comparatively

large, sets B and A remain fairly constant for long periods of time. This may lead to the excessive

energy consumption of the nodes in A. Therefore, the frequency of these updates and the frequency

of reconstructing the grid map should be infrequent when the activity in the network is low, and

somewhat higher for more active periods of the network.
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The assignment of tasks using methods described above requires the mapping of sensor nodes

to physical locations in the network. Nodes may need to be aware of their absolute or relative

geographical positions in the network. Approaches for the geo-location of nodes are discussed

in [51, 52].

4.2 Quality of Sensor Coverage for User Queries

While extending the life of the network by increasing |S| is an important objective of these tasking

models, it is also necessary to ensure that adequate sensor coverage is achieved for all queries.

Because there are at most |N | nodes which can be tasked by the AQS, one cannot achieve coverage

greater than would be achieved by activating all those nodes simultaneously. Two factors determine

whether the quality of coverage equivalent to turning on all nodes can be achieved.

(a) The first is the criteria used to determine the value of the redundancy index rindex. It is obvious

that if a node’s sensor coverage has no overlap with any other in node in N , then it must be included

in B. Also, a node si may be replaced in the grid map by node sj if si and sj are located at the

same position, and b(sj) > b(si). To conserve resources, the restriction that the nodes be exactly

co-located can be relaxed; for example two nodes may be defined to be replaceable with each other

if the coverage of one overlaps that of the other by 80%. This percentage, i.e., the redundancy

index (RI), is varied in simulation experiments. The drawback of this approach is that the queried

area and the actual tasked area may differ if low values are used for the RI. This heuristic however,

provides a means to tradeoff network life with the quality of coverage. It may also be employed

to increase the life of the network for periods when queries have relatively non-critical boundary

requirements, or when prolonging the network life is more important than maintaining high fidelity

for queries.

(b) The second factor that has bearing on sensor coverage is how nodes are added to the query

tuples in step 5 of Figure 4.5. As shown in Figure 4.6, this method involves intersecting the area

defined by the query with the corresponding region in the grid map and selecting nodes that lie in

the intersection. The shape of the query and the approximation of a sensor’s coverage in the grid
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map must accurately represent the region of the query and the actual sensor coverage respectively.

For this implementation a simple rectangular representation is chosen for both the queries and the

sensor coverage. This simplifies the calculation of the intersection. These representations can be

extended to better approximations. Note that for queries that lie across multiple AQSs, the sum

of queried areas at those AQSs provides the total coverage.

Also note that some collaborative signal processing algorithms may require the use of overlapping

sensor node coverage areas; the methods for choosing B and adding nodes to query tuples can be

modified to address this requirement.

4.3 Potential Inefficiencies in Task Assignment

An AQS is responsible for the physical area associated with the sensors of all the nodes in its region.

Because the set of AQSs is essentially a MIS for the nodes in the network, it is noted that a node

could have more than one neighboring AQS. In addition, a query could be sent to a region that

contains multiple AQSs, i.e., the queried area could extend beyond the region associated with a

single AQS. Both these situations are illustrated in Figure 4.7. Methods for assigning tasks must

take both of these overlapping situations into account to avoid overloading a node. The basic

problem is that one node could be assigned tasks by two different AQSs simultaneously; in this

situation, neither AQS knows about the assignment of the other AQS. This may overload the node.

This problem is considered for intersection graphs based on the radio coverage, and those based on

the sensor coverage.

4.3.1 Intersection Graph Based on Radio Coverage

The potential inefficiencies of such an intersection graph are explored by considering the case of a

sensor range greater than the radio range separately from the case of a sensor range smaller than

the radio range.
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Figure 4.7: Overlapping regions of Application Query Servers.



Chapter 4. Assignment of Tasks Using Application Query Servers 42

Figure 4.8: Intersection graph based on radio coverage, Case 1(a): Rs((si)k) > Rr(si). The circle

with the broken line represents the sensor range whereas the circle with the unbroken line represents

the radio range.

Case 1(a). For si, the range of the sensors for application k, Rs((si)k), is greater than the radio

range, Rr(si). As shown in Figure 4.8, this case has the difficulty that significant overlap in coverage

area may occur between nodes that belong to different AQSs. Consider the non-AQS node, Node

X, as an example. This node has significant overlap in coverage with several nodes that do not

belong to the same AQS as it does. This creates a potential lack of efficiency if each AQS makes

its assignment separately.

Case 2(a). For si, the range of the sensors for application k, Rs((si)k), is smaller than the

radio range, Rr(si). As shown in Figure 4.9, the nodes whose sensor coverage intersects with only

one AQS are simple to handle; they are completely managed by that AQS. The overlap in sensor

coverage between nodes belonging to two or more AQSs may still lead to inefficient task assignment.

However, because the sensor range is smaller than the radio range this happens more infrequently

than in Case 1(a).

To resolve this problem without excessive coordination between AQSs, the following scheme could be
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Figure 4.9: Intersection graph based on radio coverage, Case 2(a): Rs((si)k) < Rr(si). The circle

with the broken line represents the sensor range whereas the circle with the unbroken line represents

the radio range.

used. A node notifies each neighboring AQS whenever it is assigned a task (this can be accomplished

via broadcast). Each neighboring AQS then ACKs that message. If a node receives a second task

assignment from any AQS before it receives an ACK from that AQS, then it assumes the assignment

was made without considering its current load and rejects the new task. The AQS must then

decide to reaffirm the assignment or task a substitute node. This method of conflict resolution

allows boundary conflicts to be avoided while maintaining only nearest neighbor communication

(single-hop communication).

4.3.2 Intersection Graph Based on Sensor Coverage

Similarly, for intersection graphs based on the sensor range the case of a sensor range greater than

the radio range is considered separately from the case of a sensor range smaller than the radio

range.

Case 1(b). For si, the range of the sensors for application k, Rs((si)k), is greater than the radio

range, Rr(si). As shown in Figure 4.10, the use of an intersection graph based on sensor range
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Figure 4.10: Intersection graph based on sensor coverage, Case 1(b): Rs((si)k) > Rr(si). The

circle with the broken line represents the sensor range whereas the circle with the unbroken line

represents the radio range.

rather than radio range leads to a more efficient selection of AQSs. However, this requires the use

of multi-hop communication between nodes.

Case 2(b). For si, the range of the sensors for application k, Rs((si)k), is smaller than the radio

range, Rr(si). This case is somewhat redundant because typically when Rs((si)k) < Rr(si) one

would select AQSs based on the radio range. However, it is analyzed for completeness. As shown

in Figure 4.11, too many AQSs may be elected for a node density comparable to Case 2(a). This

happens because there may not be enough overlap in sensor coverage between nodes. However, if

the density of nodes in a region is high enough to introduce substantial overlap in sensor coverage,

this case may yield an acceptable number of AQSs.

4.3.3 Conclusions

From an analysis of intersection graphs based on radio and sensor coverage as they relate to task

assignment, it is concluded that neither type of graph offers a clear advantage over the other. The
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Figure 4.11: Intersection graph based on sensor coverage, Case 2(b): Rs((si)k) < Rr(si). The

circle with the broken line represents the sensor range whereas the circle with the unbroken line

represents the radio range.

decision on which graph to use is dictated by the relative difference between the sensor range and

the radio range of a node. Additionally, if a node has multiple sensing elements with widely differing

sensor ranges different types of graphs for different sensing elements may be required. The eventual

objective is to minimize the number of AQSs and the potential for boundary conflicts.

In this thesis, simulations are conducted by considering both types of graphs. While the intersection

graph based on the radio range yields to a simple implementation, the intersection graph based

on sensor range requires the implementation of a multi-hop scheme to route messages between two

nodes. Details of these implementation are presented in Chapter 5

4.4 Periodic Re-Election of Application Query Servers

New AQS must be chosen periodically to prevent the nodes chosen as the original AQSs from

dying due to excessive load caused by the communication and co-ordination of tasks. Due to these

reasons nodes that are functioning as AQSs will typically deplete their batteries faster than other
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nodes. When a re-election is conducted all nodes exchange their remaining battery life values; the

nodes with the longest remaining battery lives are assigned more preference in the election (this

is explained in Section 3.3). This usually leads to the selection of nodes that were not previously

AQSs.

The re-election of new AQSs poses some problems. The primary issue is one of succession; the suc-

cessor/s to the original AQSs must be made aware of the all the tasks and queries existing in the net-

work just before the re-election. In this section the succession issue is analyzed for the three mutu-

ally exclusive cases. Prior to this discussion, the following nomenclature is introduced. A re-election

begins at time t. A node that is an AQS just before a re-election, i.e., at time t−δ, is represented as

AQS(t−δ). The nodes chosen as the new application query servers that are adjacent to the previous

application query server, AQS(t−δ), are represented as AQS(t+δ)1
, AQS(t+δ)2

. . . AQS(t+δ)n
. X is

the set of these newly elected AQSs.

Case 1. |X| = 1, X ∩ {AQS(t−δ)} = {AQS(t−δ)}. In this case, the same node is chosen to be

the AQS after the re-election, therefore there are no succession issues. All tasks handled by node

AQS(t−δ) before the re-election are automatically transferred to the new AQS, AQS(t+δ).

Case 2. |X| = 1, X ∩ {AQS(t−δ)} = ∅. In this case, the re-election results in the selection of

a single adjacent AQS that is distinct from AQS(t−δ). After the completion of the re-election,

AQS(t−δ) begins to transfer all its task information to the new AQS. For the most part, the new

AQS accepts to take over the co-ordination for the set of currently executing tasks. However, the

new AQS may be asked to manage a task for a node that is adjacent to AQS(t−δ) but is not adjacent

to itself. Figure 4.12 proposes a scheme that can be used to address this eventuality. Figure 4.12

(a) shows the AQS before the re-election, AQS(t−δ), and the new AQS after the election, AQS(t+δ).

Consider the node si, which intersects with AQS(t−δ) but does not intersect with AQS(t+δ). In

Figure 4.12 (b), AQS(t−δ) broadcasts the tasking information pertaining to node si. AQS(t+δ)

cannot accept to co-ordinate this task because it does not intersect with si. Therefore, it sends a

negative reply back to AQS(t−δ) (Figure 4.12 (c)). At this point, AQS(t−δ) knows the new AQS

cannot be delegated this task so it re-directs this tasking information to the node that it pertains

to, namely, node si (Figure 4.12 (d)). Finally, node si broadcasts this tasking information and
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Figure 4.12: Transferring information to a new AQS following a re-election.
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waits for any neighboring AQS to agree to manage this task (Figure 4.12 (e)). It is guaranteed

that at least one such neighboring AQS exists; if not, then node si is necessarily an AQS and must

co-ordinate its own task. In the worst case scenario the number of extra messages generated for

this scheme is 4× |Q|, where Q is the set of queries/tasks overseen by AQS(t−δ). Note that all the

communication in this case is nearest neighbor, and assumes a broadcast medium.

Case 3. |X| > 1. In this case, AQS(t−δ) is replaced by at least two new AQSs that are adjacent

to it. The selection of these multiple AQSs does not pose any new succession problems. If there

exists a node that was tasked by AQS(t−δ) but does not lie in the region of the new AQSs, a scheme

similar to the one proposed for Case 2 may be employed. In contrast, if multiple AQSs try to

manage the same task at a node, the node can send refusals to all those AQSs except one.

4.5 Summary

This chapter introduces the second stage of the distributed tasking algorithm, i.e., the assignment

of tasks to individual nodes by the elected AQSs. This discussion is prefaced with a definition

of the various operating states of a node. An algorithm is proposed for AQSs to assign tasks by

constructing by a grid map of their region. For each user query, the AQS tries to task a minimal

subset of nodes in its region by using this grid map. The algorithm is also analyzed in the context

of the factors affecting the quality of sensor coverage for user queries. Potential inefficiencies in

task assignment arising mainly due to boundary conflicts are discussed; methods are proposed to

address them using single-hop and multi-hop communication. Finally, the chapter addresses the

succession issue arising out of re-electing a new set of AQSs to replace the original AQS for a region.



Chapter 5

Simulation Framework

Analytical methods for investigating these distributed tasking algorithms provide a starting point

in characterizing some properties such as the theoretical execution time of an election. However,

other properties such as network lifetime and energy consumption do not yield to simple mathe-

matical formulations. This is because the scope and complexity of such a sensor network is fairly

large - a large number of nodes interact with each other in the presence of multiple queries and

intermittent faults. Simulation methods are required to effectively study such a system and gauge

the performance of the tasking algorithms.

This chapter provides an overview of the simulation environment and the models used to study the

behavior of the distributed tasking algorithms. It begins with a description of the simulation tool

used to construct and execute these simulations. Subsequent sections expand on the design and

development of simulation models of the sensor network.

5.1 Simulation Tool - Opnet

Opnet is a commercial network simulation tool for modeling and analyzing various aspects of

communication systems [53]. The choice of Opnet as a simulation tool is basically due to its

modular design methodology, its support for modeling radio communication, and its extensive

49
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Figure 5.1: The three level hierarchy for an Opnet simulation.

documentation and technical support. A simulation in Opnet consists of a hierarchical structure.

This hierarchy is depicted in Figure 5.1 as described in the Opnet documentation [53]. At the top

most level, a network model describes the positions of the network components and the linkages

between them. For a sensor network, these components are the sensor nodes. The next level in the

hierarchy is the node model. This node model is essentially a description of how an individual node

is constructed and of its capabilities. It consists of elements such as processors, queues, packet

streams, and radio transceivers. The lowest level of modeling abstraction is the process model.

A process model is a finite state machine that can be embedded inside a processor in the node

model. It specifies the operations of a node as a collection of finite states. These states are entered

and exited in response to various types of input, for example, user-specified interrupts, timers, and

packet arrivals. These models are constructed using Opnet Radio Modeler v6.0.L, which includes

the capability to realistically model radio communication between nodes in the network model.

In simulation terminology, an event is the change in the state of the system being modeled [54].

For a discrete event simulation, the system state is not defined continuously but only at each event.

Opnet is a discrete event simulator. It consists of a simulation kernel that generates events for the
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simulation to progress on the simulation timeline. One of the drawbacks of Opnet is that a packet

transmission at a node generates an event at all other nodes in the network [30]. This causes the

simulation to slow down considerably.

Figure 5.2 presents a high-level block diagram of the model-development and simulation method-

ology used to create and study the sensor network. The node positions and TDMA time slots

for nodes are generated using Matlab v5.3.1 (this is discussed further in Section 5.2). These are

provided as inputs to the simulation kernel. The set of user queries and the simulation models

(network, node, and process models) are the other inputs provided to the simulation kernel, which

combines these resources and executes the simulation. Finally, results are extracted using the Ex-

ternal Model Access (EMA) feature of Opnet and analyzed using Matlab. The following section

details the construction of the simulation models and the other components shown in Figure 5.2 .

5.2 Simulation Models

5.2.1 Network Model

As explained earlier, the network model contains a top-level description of all the nodes in the

network. This includes their positions and the node models associated with them. The placement

of nodes in the network is a topic that has been briefly touched upon in Chapter 2. In determining

these placements, one must ensure that enough redundant nodes exist in the network. For these

experiments, different sets of positions are generated to gauge the effect of node density and place-

ment on the performance of the tasking algorithms. Figure 5.3(a) shows the placement of nodes in

a 2-D hexagonal grid structure such that all nodes are equidistant from each other, thereby creating

equal sensor coverage overlap in all directions. Simulations are also conducted by placing nodes

randomly in a given area, this is shown in Figure 5.3(b)

A Time Division Multiple Access (TDMA) scheme is chosen for controlling access to the radio

medium [6]. This scheme has the advantage of avoiding collisions and contention for the medium.

A localized scheme for assigning TDMA-like time slots for sensor nodes is described in [29]. For these
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Figure 5.2: High-level block diagram of the model development and simulation methodology.



Chapter 5. Simulation Framework 53

Figure 5.3: Network model of a distributed sensor network.

experiments time slots are assigned centrally. The radio connectivity graph is used to calculate the

set of nodes that are at a distance of more than 2 hops from each other. These nodes can be colored

with the same color (or have the same time slot) because their transmissions will not interfere with

each other. This can be seen from Figure 5.4 where two nodes si and sj that are more than two

radio hops apart can be assigned the same time slot. This is because a transmission from node si

cannot be heard by node sh, and a transmission from node sj cannot be heard by node sg. A vertex

coloring obtained using this scheme yields the time slot schedule for the nodes. This schedule is

provided as an input to the nodes in the network model.

5.2.2 Node Model

The node model of a sensor node is shown in Figure 5.5. A node consists of a processor, a queue,

and transmitter/receiver modules. The processor contains the finite state machine used to control

all the operations of the node. The queue is used to synchronize and schedule packet transmissions

for the TDMA scheme. The radio transmitter/receiver modules support a bit-rate of 2.4 Kbps
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Figure 5.4: Assignment of time slots to two nodes that are more than 2 hops apart. (a) Radio

connectivity graph for a set of nodes. (b) Nodes si and sj can be assigned the same time slot.

Rr(si) represents the radio range of a node.

over a 25m range and operate in the 915 MHz range. The radio has two modes of operation; it

can be configured such that communication between nodes is purely nearest neighbor or single

hop. Alternatively, it can be used such that packets are forwarded over multiple hops. Multi-hop

communication is described in more detail in Section 5.5. In addition to its radio capabilities, each

node has two sensing elements; a seismic sensor capable of detecting activity at 10m, and a acoustic

sensor with a range of 30m. Note that the range of the seismic sensor is smaller than the radio

range whereas the range of the acoustic sensor is larger than the radio range. The seismic and

acoustic sensing applications are used to demonstrate the effect of using connectivity graphs based

on radio and sensor ranges respectively.

For nodes equipped with radio transmitters and receivers, Opnet executes the initial stage of a

radio transceiver pipeline to determine the set of transmitters and receivers in the network that are

capable of communicating with each other. The initial stage of the pipeline is executed only once

at the beginning of each simulation run. Subsequent stages of the pipeline are executed once for

each transmission to ascertain properties such as SNR, transmission delay, bit error rate, and other

statistics.

The node energy model is based on the work of Stemm and Katz [23] and Srivastava, et. al. [24].

Nodes contain a battery source that is modeled as a bucket of energy. At the start of the simulation

each node begins with a fixed energy quota of 1 Joule. Energy is drawn from this source based on the

current node state, i.e. asleep, awake, transmit, or receive. Define Tbl to be the lifetime of an awake
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Figure 5.5: Node model of an individual node in the sensor network.

node that does not engage in any sensing or communication task. This value is calculated to be 24

hours based on the measurements conducted by Srivastava, et. al. [24] to gauge the power consump-

tion rates of prototype nodes. The energy depleted in the other operational states is then computed

according to the following ratios (asleep : awake : receive : transmit) (0 : 1 : 1.034 : 1.531). Ad-

ditional energy is consumed by a node if it is engaged in sensing tasks; this extra energy is modeled

as a linearly increasing function of the number of currently active tasks. The rates at which energy

is consumed for each of these individual operations are combined into one equation that is used to

determine the total energy expended by a node over a given period. Some terminology is introduced

prior to introducing this equation.

s = Current operational state of a node, i.e., asleep, awake, transmit, or receive.

nt = Current number of tasks at a node.

rtotal = The rate at which energy is consumed at a node.

rstate(s) = The rate at which energy is consumed in state s.

rtask = The rate at which energy is consumed for one task.

rtotal(s, nt) = rstate(s) + (rtask × nt) (5.1)
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Figure 5.6: Process model of an individual node in the sensor network.

5.2.3 Process Model

The process model is the finite state machine that is used to represent the actual functioning

of a node in the network. The basic process model used to model the operation of a sensor

node is shown in Figure 5.6. Each state is associated with some operation performed by a node.

These operations are implemented in the C programming language using the Opnet Application

Programming Interface (API). Opnet provides extensive libraries to model common communication

and processing operations.

The dark colored states in the state machine are forced states. After a transition to a forced state,

the state machine returns automatically to the state from which the transition was invoked. The

light colored states are unforced states. A node requires an explicit transition to exit from an

unforced state. The unforced states in this state machine are similar to the operational states of
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Figure 5.7: Process model: states that contain logic for the election of AQSs.

a node shown in Figure 4.1. This state machine has two distinct parts that correspond to the two

stages of the distributed tasking algorithm.

The first part contains logic for the election of AQSs using the maximal independent set algorithm.

Figure 5.7 shows the states associated with the election of AQSs. The distributed election algorithm

proceeds as follows. In state init, nodes broadcast an initial message that contains their location

and their r(i) value. This initial message is used to build a list of neighbors at each node. In

state init1, a node compares its r(i) values with each of its neighbors’ to determine if its r(i) is

the largest. If so, it assumes the responsibility of being an AQS; if not, it broadcasts a message

claiming its lack of knowledge about an AQS. Any node that hears a message from a neighbor

claiming to be an AQS knows that it is now managed by that AQS. Therefore, it broadcasts a

message indicating that it does not wish to be an AQS. Nodes enter state init2 periodically at

the expiration of a timer. Each time state init2 is entered, a node checks to see if its r(i) value

is the largest amongst all its neighbors that do not have any knowledge of an AQS; if so, it elects

itself as an AQS and sends out a broadcast message to that effect. As the algorithm iterates, more

and more nodes hear about their neighbors’ inclusion in the set of AQSs, or if the neighbors have
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decided not be AQSs. This causes these nodes to take a decision on whether they wish to continue

being involved in the election process (if they still do not know of an AQS) or wish to drop out (if

a neighbor has advertised itself as an AQS). This iterative process continues until the expiration

of a final timer that causes each node to transition to state init3. In init3, each node checks to

see if it is aware of any neighboring AQS. If not, it elects itself to the set of AQSs. This last step

guarantees that each and every node is aware of at least one AQS.

The second part of the state machine contains logic for AQS nodes to manage and distribute user

queries. It also contains logic for non-AQS nodes to perform sensing tasks or sleep until woken

up by the AQS. Though not strictly required by the tasking approach described in Chapter 4, in

this implementation AQSs remains in the awake state at all times to manage existing tasks and

to assign new tasks. These operations are performed in states maint q and gen q respectively

(Figure 5.6). Each AQS also periodically re-computes the grid map used to assign tasks; this

operation is performed in state redomap. A non-AQS node transitions immediately to the asleep

state after an election if it has not been assigned any tasks. A node transitions from the asleep

state back to the awake state at the receipt of a low-power wakeup signal (described in Section 4.1).

This wakeup signal precedes a request to task that node. A node that has active tasks frequently

updates its task status in state up task and reports its updated battery values to the AQS in

state up batt. All nodes periodically enter the reelect state to begin another round of elections.

Finally, when the battery of a node falls below 10% of the original energy value it transitions to

the dead state.

5.3 Simulation Scenarios

As part of these experiments, realistic scenarios are constructed to represent situations in which

distributed sensor networks may be employed. A scenario contains a set of parameters that define

the purpose of the network, the positions where nodes are placed, and the queries posed to the

network. The following two scenarios are constructed to evaluate performance criteria pertaining

to energy, effective coverage, and network lifetime.
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Figure 5.8: Scenario I: Users traversing a sensor field. The rectangular areas represent the queries

dispatched by users to the sensor network.

5.3.1 Scenario I: User Traversing a Sensor Field

Large sensor networks can monitor vast expanses of territory and be used for providing situational

awareness to users traversing through a region. Such a system may be employed for both military

and civilian applications. In Scenario I, a set of nodes is deployed in a rectangular region. Users

walk through the region along a straight line at a constant speed. The points of entry and egress

into the region are randomly generated for each user. As the user walks through the sensor field,

he generates a query for the area immediately surrounding him such that the nodes in that region

are tasked to return information about the environment. This scenario is represented in Figure 5.8.

The duration of a query is chosen such that multiple queries may be active at any given time along

the straight line path.

Nodes are placed in a 2-D hexagonal grid structure for this scenario. This configuration ensures

constant inter-node separation and sensor coverage overlap for all nodes. Experiments are con-

ducted using this hexagonal structure and also a random placement of nodes. Results presented in

Chapter 6 indicate the former placement scheme to be more efficient.
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Scenario II: Node positions and coverage

Figure 5.9: Scenario II: Monitoring a fixed perimeter. A circle represents the coverage radius of

a sensor. The rectangles represent the four queries along the sides of the perimeter.

5.3.2 Scenario II: Perimeter Monitoring

In Scenario II, the sensor network is employed to detect intrusions across a fixed perimeter. The

sensor network is continuously tasked with the responsibility of detecting intrusions across the

perimeter. The perimeter is configured such that it contains an outer and an inner perimeter. A

breach occurs when the sensor coverage between the outer and inner perimeter degrades to the

point of allowing an entity to cross undetected.

In this case, the sensor nodes are evenly distributed along the sides of the perimeter as shown in

Figure 5.9. Scenario II differs from Scenario I in the volume and nature of queries; it attempts to

load the network with large, continuously operating queries.
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5.4 Communication Faults

One of the goals of these distributed algorithms is to provide a robust, fault-tolerant method for the

election of AQSs. In these simulations, the operation of the algorithm is studied for unreliable links.

This section presents the experimental scheme used to generate and study these communication

faults.

A packet transmitted over a communication link is prone to many types of transmission errors

at various layers in the network protocol stack [55]. For this study, the interest is primarily in

the fact that such errors may cause a packet not to be delivered to its intended recipient. As

discussed in Section 3.2, the election algorithm is structured such that more AQSs may be chosen

if the communication between nodes is unreliable. The election of excess AQSs can be intuitively

seen to impact overall energy savings, and is therefore not a desired result. However, if the link is

unreliable, then electing these extra AQSs may be the only available option. To study the effect

of unreliable links on the election algorithm, packet errors are introduced by dropping the packets

received at a node with a given probability ρ. The decision to drop received packets instead of

transmitted packets allows for at least some nodes in the broadcast neighborhood to receive those

packets. A point to be noted is that packets are dropped only for the stage of the algorithm that

elects AQSs. Experimental results for ρ = 0.05%, 0.5%, 5% , and 50% are given in Chapter 6.

5.5 Multi-Hop Communication Scheme

Radio communication between nodes is only a single hop for the basic mode of operation. In this

section the extension of this single hop scheme to a multi-hop scheme is discussed. This may be

required, for example, to build an intersection graph based on the sensor range vs. an intersection

graph based on radio range (for a related discussion see Section 4.3).

Given that sensor nodes have limited processing capabilities, a scheme to route messages between

nodes needs to be simple and light-weight [56]. One of the ways of allowing messages to propagate

over multiple hops is by flooding packets to neighboring nodes [56, 27]. A major problem with
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routing messages using a flooding scheme that employs broadcasting is that it results in many

redundant transmissions [57]. These redundant transmissions are expensive for sensor nodes that

have constrained energy resources, and may lead to excessive time spent forwarding third-party

messages. In this thesis, a simple forwarding scheme is implemented that operates by selectively

re-broadcasting the messages received at intermediate nodes. A set of rules are devised to suppress

redundant broadcasts at each node and allow data to propagate in the direction of the destination

node. This implementation of this scheme is motivated by and similar to a diffusion routing

approach [28] that allows data to propagate in the direction of greatest gradient.

In these simulations nodes basically send out two types of messages. The first type of message

specifies a destination node for the message, for example, a message sent by a node indicating its

battery status to an AQS. The second type of message does not have a specific destination and is

intended for all nodes, for example, a message sent by a node that claims to be an AQS. While the

first type of message is easy to suppress, the second type is more problematic because it needs to

propagate to all nodes within a given distance of the originating node. The rules to suppress these

redundant broadcasts are now presented.

Rule 5.1 Suppression based on the distance travelled by a message. For building intersection

graphs based on the sensor range it is required that two nodes with overlapping sensor coverage

communicate with each other. In Figure 5.10, consider the node si that broadcasts a message.

If the distance of an intermediate node sj from node si is less than twice the effective coverage

range of sensor, 2 × Rs((si)k), then the message is re-broadcast otherwise it is dropped. It can

be seen from Figure 5.10 that re-broadcasting this message for a node that is beyond a distance

of 2 × Rs((si)k) from the original sender serves no purpose. This may not always be the case. A

message may need to reach its destination by being re-broadcast from a node that is at a distance

greater than 2×Rs((si)k). However, this case may not occur very often given the density of such

a network.

Rule 5.2 Suppression based on the number of hops travelled by a message. A limit on the number

of hops can be used to aggressively limit the actual number of re-transmissions. This is so because

enforcing Rule 5.1 may still allow a message bound for all nodes to propagate over a fairly large
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Figure 5.10: Suppression of broadcasts based on the distance travelled by a message. The circle

with the broken line represents the sensor range whereas the circle with the unbroken line represents

the radio range.

distance, thereby causing an unacceptable number of re-transmissions. The number of hops a

message can travel is a parameter for these simulation experiments. The performance of the AQS

election algorithm is evaluated as a function of this parameter and is presented in Chapter 6.

Rule 5.3 Suppression based on the sequence numbers. The use of sequence numbers allows the

detection of duplicate messages. Each message carries the identifier of the node that originated

the message and a unique sequence number for that particular message. Each node that receives

this message updates the {source identifier, sequence number} tuple it maintains for the node that

sent the message. Any copy of this message received subsequently, i.e., any message that carries a

sequence number lower than the one currently stored is dropped.

Rule 5.4 Suppression of a message to the north/south plane of propagation. Consider Figure 5.11(a).

The north plane of propagation with respect to a node si is defined to be quadrants I and II. Sim-

ilarly, the south plane of propagation is defined to be quadrants III and IV. In Figure 5.11(b),
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Figure 5.11: Suppression of a message to the north/south plane of propagation. The circle with

the broken line represents the sensor range whereas the circle with the unbroken line represents the

radio range.

a node si broadcasts a message that is intended for node sj in its south plane. A node sh may

re-broadcast this message because it can hear the original transmission from node si. However,

for this configuration this transmission by sh serves no purpose because it is in the north plane.

Therefore, node sh drops the message unless it is in the same plane of propagation. It is possible,

though rare given the density of such a network, that a message bound for a node in one plane

needs to travel to its destination via the other plane. This potential drawback is accepted given

that this rule offers the opportunity to reduce the re-transmissions by nearly half (assuming an

equal number of nodes in the north and south planes).

Rule 5.5 Suppression of a message if the distance between the source node and the destination node

is less than the distance between source node and the intermediate node. Consider the situation

illustrated in Figure 5.12. A node si is sending a message to node sj . This message also propagates

to node sh because it does not contradict any of the other rules. A re-broadcast by node sh is

not required because its distance from the source, dih, is larger than the distance of the source

from the destination, dij . This rules makes the assumption that if the destination is closer to the
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Figure 5.12: Suppression of a message if dih > dij . The circle with the broken line represents the

sensor range whereas the circle with the unbroken line represents the radio range.

source than the intermediate node then the destination has already received the message via an

alternative route. Enforcing this rule may lead to a situation where an intermediate node that is

essential to the forwarding process drops the message. Nevertheless, as for Rules 5.4 and 5.1 this

may not occur often for a redundant sensor field and is accepted as a potential drawback.

A point to be noted is that the rules described above are not meant to replace or provide an

alternative routing scheme for sensor networks; they are heuristics meant to suppress the excess

traffic in the network for a scenario in which messages must propagate over multiple hops. They

are implemented primarily to study the effect of constructing different types of intersection graphs

on the performance of the election algorithm.

5.6 Summary

This chapter discusses the simulation environment and the models that are used to study the

operation of the sensor network. An overview of the simulation tool, Opnet, is presented. A
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hierarchical model of the sensor network is constructed by using network, node, and process models.

A description of two scenarios where such networks may be utilized is presented. Simulation models

are constructed based on these scenarios; the results obtained from these models are presented

in Chapter 6. Communication faults such as packet losses and link failures are introduced in

the models to understand the effect of such faults on network lifetime and energy consumption.

Finally, the implementation of multi-hop communication between nodes is discussed. As a part of

this discussion, rules to suppress redundant message transmissions are formulated.



Chapter 6

Results

This chapter presents the results obtained by simulating the sensor network for the two scenarios

previously described in Chapter 5. These simulations are executed on a machine with a 1 GHz

Pentium III processor and 1536 MB of RAM. The operating system used is Windows Advanced

Server 2000. The simulation experiments are organized as follows. A group of individual simulations

that share a common characteristic but differ in one simulation parameter are logically grouped

together as a simulation set for ease of presentation. Such a set could be, for example, the set of

all simulations with n nodes placed in an area of size (lx × ly) m2, where each simulation differs in

the value of the redundancy index, RI.

Prior to presenting the results for these simulation sets, a group of metrics for energy usage and

quality of sensor coverage are defined. Simulation sets are evaluated individually with respect to

these metrics. Different simulation sets are also compared with each other to demonstrate the

sensitivity of a simulation parameter for a particular configuration of the network.

67
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6.1 Definition of Metrics

6.1.1 Metrics for Energy Usage and Characterization

Metric 1 Average energy value of all the nodes in the network. This measure is a simple expression

of the total energy content of the network at a given time. When plotted against time it gives an

indication of the lifetime of the network.

Metric 2 Minimum energy of all the nodes in the network. One of the attempts of the tasking

algorithm is to balance power consumption across all nodes. The minimum energy value indicates

how well that objective is achieved. If the tasking algorithm is able to appreciably prolong the life

of the node with the least energy, then this objective is attained.

Metric 3 Total energy consumed in the awake, transmit and receive states for each node. The

breakup of the energy consumed in each of these states provides insight into the modes of operation

of individual nodes. Efforts to further reduce the energy consumption need to be aware of these

statistics to target states with the greatest potential for energy savings.

Metric 4 Maximum time spent by any node in electing a new AQS. As the network size increases,

the scalability and running time of the distributed election algorithm is tested by calculating how

much time is spent in choosing AQSs. This value of this statistic is computed to be the maximum

time taken by any node to determine an AQS. This is because the election terminates only when

each and every node knows of an AQS.

Metric 5 Number of elected AQSs. As explained in Chapter 3, extra elected AQSs may be ineffi-

cient but essential if there are too many errors in the packets being transmitted or received. This

metric is used to gauge how many extra AQSs are elected for one election if the links between nodes

are unreliable, thereby causing packet loss.

Besides the basic metrics defined above, additional metrics for measuring the performance of a

multi-hop communication scheme are also defined (multi-hop communication is employed to con-
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struct an intersection graph based on sensor range as explained in Chapter 4). As the number of

hops that messages can travel increases more nodes hear of each others’ messages. This leads to

the creation of a denser intersection graph. Though this may be beneficial in selecting fewer AQSs,

it enlarges the neighbor set thereby increasing inter-node communication. These additional metrics

attempt to evaluate the operation of the distributed algorithms as a function the maximum number

of hops that a message can travel.

Metric 6 Maximum number of packets received at any node for one round of AQS elections. The

number of packets received by a node that relate to an election is an indicator of the time and

energy spent by the node in the election process. Simulations are evaluated using this metric to

understand the energy consumption pattern for elections as a function of the number of hops.

Metric 7 Maximum ratio of (the network traffic at any node exclusive to one election) and (the

total network traffic at any node over a fixed time interval). This ratio indicates the relative amount

of energy spent by a node for an election vs. the amount of energy consumed for other types of

communication, such as tasking requests and periodic battery updates. This metric is significant

because the network traffic for elections may increase at a faster rate than the network traffic for

other types of activities as the number of hops increases. This may negatively impact the overall

life of the network if excessive energy is being spent in electing AQSs.

6.1.2 Metrics for Quality of Sensor Coverage

Along with extending the lifetime of the network, it is important to ensure that the network is

delivering on its overall objective, i.e. good sensor coverage throughout the lifetime of the network.

Two measures are defined to gauge the current sensor coverage in the network.

Metric 8 % of uncovered area in the region. This metric is defined as the percentage of area over

the entire region not covered by any sensor at a given time. When plotted against time, it gives an

assessment of how long the network is able to achieve acceptable levels of coverage.
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Metric 9 Time at which the first breach occurs. For Scenario II, an obvious quality measure is

how long the integrity of the perimeter being sensed is maintained. When enough nodes have died

so as to enable an entity to cross the perimeter without detection, a breach occurs and the sensor

network effectively fails.

6.2 Scenario I

6.2.1 Experiments with Constant Node Density

Tables 6.1 and 6.2 list the parameters that define simulation sets #1 and #2 respectively. In Set

#1, different numbers of nodes are placed in a regular 2-D hexagonal grid structure. These nodes

are placed such that the node density or the inter-node separation is constant. In contrast, in Set

#2 different numbers of nodes are placed randomly in a rectangular area. Because nodes are placed

randomly for Set #2, the node density is defined as the ratio of the number of nodes and the total

area in which these nodes are placed. For each Simulation ID in a set, simulations are conducted

using Approach I and Approach II. As explained earlier in Chapter 4, Approach I is the simplistic

tasking approach that is used to benchmark the distributed tasking approach, i.e., Approach II.

Table 6.1: Set #1 (Scenario I, Constant Node Density, Hexagonal Node Placements)

Sim ID # of Nodes RI Area

CDH100 100 0.90 100m x 100m

CDH256 256 0.90 160m x 150m

CDH400 400 0.90 200m x 185m

CDH900 900 0.90 300m x 275m

Results for Metric 1 (average energy) and Metric 2 (minimum energy) are shown in Figure 6.1

and Figure 6.2 respectively. The metrics are plotted as follows; the time taken in hours for the

average/minimum energy to fall to 50% of the original is plotted on the Y axis vs. the Simulation

ID that is plotted on the X axis. From Figure 6.1 it can be seen that Approach II shows a marked
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Table 6.2: Set #2 (Scenario I, Constant Node Density, Random Node Placements)

Sim ID # of Nodes RI Area

CDR100 100 0.90 100m x 100m

CDR256 256 0.90 160m x 150m

CDR400 400 0.90 200m x 185m

CDR900 900 0.90 300m x 275m
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Figure 6.1: Sets #1 and #2: Metric 1, Time taken for the average energy of all nodes to fall to

50% of its original value.
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Figure 6.2: Sets #1 and #2: Metric 2, Time taken for the minimum energy of all the nodes to

fall to 50% of its original value.

improvement over Approach I in extending the lifetime of the network. Similarly, the minimum

energy plot shown in Figure 6.2 indicates the extent to which battery of weakest node in the network

is protected. This is also shown to improve for Approach II over Approach I.

From these figures it is observed that a comparison of Set #1 and Set #2 with respect to Metric 1

indicates very similar results. However, the hexagonal placement (Set #1) yields better results if we

consider Metric 2. This leads to the conclusion that whereas the average energy is largely unaffected

by the random placement (as opposed to the hexagonal placement), the effect on the minimum

energy is distinctly visible. Notwithstanding this observation, observe that the minimum energy

statistic for the random placement does not show a well defined trend. This may be due to areas in

the network that are covered only by a single node. If this node is tasked excessively its energy is

depleted rapidly. In contrast, if it is not tasked as often the minimum energy statistic may actually

improve as can be seen from Figure 6.2. Therefore, it may not be possible to adequately predict

the minimum energy value for different random node placements. This a potential drawback for a

random placement because the minimum energy value represents the first failure in the network.
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6.2.2 Experiments with Varying Node Density

Tables 6.3 and 6.4 list the parameters that define simulation sets #3 and #4 respectively. In Set

#3, a fixed number of nodes is placed in different size areas. In contrast, Set #4 contains a group

of simulations where different numbers of nodes are placed in a fixed area size. The purpose of

these experiments is to evaluate the performance of the system as a function of the node density.

Table 6.3: Set #3 (Scenario I, Varying Node Density, Hexagonal Node Placements)

Sim ID # of Nodes RI Area

VDH256a 256 0.90 100m x 100m

VDH256b 256 0.90 160m x 150m

VDH256c 256 0.90 200m x 185m

VDH256d 256 0.90 300m x 275m

Table 6.4: Set #4 (Scenario I, Varying Node Density, Hexagonal Node Placements)

Sim ID # of Nodes RI Area

VDH100e 100 0.90 100m x 100m

VDH256f 256 0.90 100m x 100m

VDH400g 400 0.90 100m x 100m

VDH900h 900 0.90 100m x 100m

Figure 6.3 shows the performance of both sets with respect to Metric 1. For Set #3, consider

the average energy plots for Approach II and Approach I. As the distribution of nodes in an area

becomes more sparse, the performance of Approach II begins to approach that of Approach I. In

contrast, the average energy plots for Set #4 indicate that an increase in node density leads to an

appreciable increase in the life of the network.

Figure 6.4 shows the performance of both sets with respect to Metric 2. The trend observed is
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Figure 6.3: Sets #3 and #4: Metric 1, Time taken for the average energy of all nodes to fall to

50% of its original value.

nearly identical to that for Metric 1. A decrease in the node density for the simulations in Set #3

leads to decreased performance. On the contrary, an increase in node density for simulations in Set

#4 leads to a marked improvement for the minimum energy metric.

The results obtained from these experiments with node density are expected because Approach II

inherently relies on node redundancy to achieve energy savings. As the node density decreases, the

tasking algorithm cannot utilize redundancy to rotate task assignments between nodes. On the

other hand, as the node density increases substantial energy savings are achieved.

6.2.3 Experiments with Varying Redundancy Index

Tables 6.5 and 6.6 list the parameters that define simulation sets #5 and #6 respectively. The

effect of varying the redundancy index (RI) is studied in these sets. In Set #5, nodes are placed

in a hexagonal formation; the density and area of the network are constants. In Set #6, nodes are

placed randomly; the density and area of the network are constants. For both sets the only variable

parameter is the RI.
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Figure 6.4: Sets #3 and #4: Metric 2, Time taken for the minimum energy of all the nodes to

fall to 50% of its original value.

Figure 6.5 shows the performance of both sets with respect to Metric 1. The life of the network

does not show any appreciable connection with the RI for either the hexagonal (Set #5) or the

random (Set #6) placement of nodes. Likewise, the results for Metric 2 shown in Figure 6.6 also

do not display any significant trend. Hence, one can conclude that varying the RI does not lead to

significant increase in performance. This result is somewhat counter-intuitive. It is expected that

lower values of RI should lead to appreciable increases in the network life.

A possible explanation for this result may be the following. Consider the operation of the tasking

algorithm in Figure 4.4. A low value of RI may lead to a larger number of redundant nodes. Each

time the grid map is redrawn these nodes are replaced with each other. Therefore, nodes may be

placed and removed from the grid map much faster for lower values of RI as compared to higher

values. Depending on how quickly the grid map is recomputed this may cause a larger number of

nodes overall to transition to the awake state and then back to the asleep state. Because the energy

consumption is dominated by the awake state this may lead to a faster decrease in the energy level.

The above hypothesis is tested using Set #5a and Set #5b which are summarized in Tables 6.7 and



Chapter 6. Results 76

Table 6.5: Set #5 (Scenario I, Varying Redundancy Index, Hexagonal Node Placements)

Sim ID # of Nodes RI Area

VRH256a 256 0.90 160m x 150m

VRH256b 256 0.70 160m x 150m

VRH256c 256 0.50 160m x 150m

VRH256d 256 0.30 160m x 150m

Table 6.6: Set #6 (Scenario I, Varying Redundancy Index, Random Node Placements)

Sim ID # of Nodes RI Area

VRR256a 256 0.90 160m x 150m

VRR256b 256 0.70 160m x 150m

VRR256c 256 0.50 160m x 150m

VRR256d 256 0.30 160m x 150m

6.8. In Set #5a, both the RI and re-draw period of the grid map are increased. In Set #5b, the

RI is constant and the redraw period is increased; this ensures that any performance gains are not

derived solely from increasing the redraw period. Figures 6.7 and 6.8 depict the average energy

value plots for these sets. The results indicate that increasing the grid map re-draw period and the

RI have a positive effect on the average battery life as was expected.
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Figure 6.5: Sets #5 and #6: Metric 1, Time taken for the average energy of all nodes to fall to
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Table 6.7: Set #5a (Scenario I, Varying Redundancy Index, Hexagonal Node Placements)

Sim ID # of Nodes RI, Re-draw time(mins) Area

VRH100e 100 0.90, 150 100m x 100m

VRH100f 100 0.70, 300 100m x 100m

VRH100g 100 0.50, 450 100m x 100m

VRH100h 100 0.30, 600 100m x 100m

Table 6.8: Set #5b (Scenario I, Varying Redundancy Index, Hexagonal Node Placements)

Sim ID # of Nodes RI, Re-draw time(mins) Area

VRH100i 100 0.50, 150 100m x 100m

VRH100j 100 0.50, 300 100m x 100m

VRH100k 100 0.50, 450 100m x 100m

VRH100` 100 0.50, 600 100m x 100m
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Figure 6.7: Set #5a, average energy values vs. time.
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6.2.4 Energy Consumption for a Single Node

Table 6.9 displays the results for the individual energy consumption of a node in the awake, transmit,

and receive states for Set #1. Only a small fraction of the total energy is consumed in communi-

cation with the balance being consumed in the awake state. Observe that nodes spend more time

receiving messages in Approach I than in Approach II. This is an expected result, primarily because

in Approach I all nodes in a region are woken up for each task thereby causing them to listen over

the radio channel for longer periods.

Table 6.9: Average % energy consumed in the awake, transmit, and receive states

Set #1: Approach I Set #1: Approach II

Sim ID awake transmit receive Sim ID awake transmit receive

CDH100 99.939 0.013 0.048 CDH100 99.506 0.081 0.413

CDH256 98.765 0.039 1.196 CDH256 99.437 0.087 0.477

CDH400 98.806 0.039 1.155 CDH400 99.416 0.086 0.499

CDH100 98.803 0.037 1.161 CDH900 99.404 0.082 0.515

6.2.5 Scalability of the AQS Election Algorithm

The time taken by nodes to elect AQSs is collected to demonstrate that the execution time of the

algorithm is scalable as the number of nodes increases as well as to show the effect of node density

on the execution time. Figure 6.9 shows the times taken to elect AQS for Set #1 and Set #4. For

Set #1, the election time remains nearly constant as the number of nodes increases. This is because

the density of nodes is constant. The effect of increasing the node density (Set #4) is to increase

the time taken to elect AQSs. This is because the running time of the algorithm is affected by the

number of neighbors for each node.

As explained in Section 3.3, the r(i) values used in the election of nodes can be defined as r(i) = a,

where a is a random number between 0 and 1. Alternatively, the algorithm can be modified to
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Figure 6.9: Sets #1 and #4: Metric 4, Maximum time spent by any node in electing a new AQS.

use the following definition: r(i) = x + a, where x is the remaining battery life and a is a random

number between 0 and 1. The latter case allows AQSs to be chosen based on the remaining battery

life of a node. The times taken for the AQS election algorithm are compared for both these cases

to show that execution times remain bounded in each case. Figure 6.10 presents these results for

different numbers of nodes.

6.2.6 Experiments with Varying Packet Error Rates

Tables 6.10, 6.11, 6.12, and 6.13 list the parameters for simulation sets #7, #8, #9 and #10

respectively. These experiments explore the effect of varying the Packet Error Rate (PER) on the

performance of the election algorithm as also the overall energy consumption pattern. For each of

the sets #7, #8, #9 and #10, experiments are conducted using PER = 0.05 %, 0.5 %, 5.0 %, and

50.0 %. The nodes are placed in a regular hexagonal formation for all the sets.

Figure 6.11 shows the performance of sets #7, #8, #9 and #10 with respect to Metric 5, i.e., the

number of AQSs chosen globally for an election. The PER is plotted on a logarithmic scale on

the Y axis, whereas the number of elected AQSs is plotted on the X axis. It is observed that the
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Figure 6.10: Extensions to the basic election algorithm, r(i) = x + a: Metric 4, Maximum time

spent by any node in electing a new AQS.

number of AQS increases very slowly with increasing packet losses. Only when the packet error

rate climbs to 50 % does the number of elected AQSs show a significant increase.

Figure 6.12 shows a comparison of average energy for the simulations with 256 nodes by varying

PER (Set #8) vs. a simulation for 256 nodes with no packet errors (Set #1: VDH256). The

average energy of all the nodes is plotted on the X axis vs. time on the Y axis. It can be seen that

the average energy characteristic deteriorates slowly for increasing values of PER.

Figure 6.13 shows a comparison of minimum energy for the simulations with 256 nodes by varying

PER (Set #8) vs. a simulation for 256 nodes with no packet errors (Set #1: VDH256). The

minimum energy of all the nodes is plotted on the X axis vs. time on the Y axis. The minimum

energy metric shows a trend similar to the average energy metric.

The results obtained by varying the PER indicate that the AQS election algorithm is tolerant to

packet losses. Its performance is shown to degrade gracefully in the presence of such losses. As

mentioned in Chapter 5, packet losses are introduced only for the election phase of the algorithm.

Packets that contain tasking information and battery updates are not dropped.
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Table 6.10: Set #7 (Scenario I, Varying Packet Error Rates)

Sim ID # of Nodes PER Area

VPE100a 100 0.05 % 100m x 100m

VPE100b 100 0.5 % 100m x 100m

VPE100c 100 5.0 % 100m x 100m

VPE100d 100 50.0 % 100m x 100m

Table 6.11: Set #8 (Scenario I, Varying Packet Error Rates)

Sim ID # of Nodes PER Area

VPE256a 256 0.05 % 160m x 150m

VPE256b 256 0.5 % 160m x 150m

VPE256c 256 5.0 % 160m x 150m

VPE256d 256 50.0 % 160m x 150m

Table 6.12: Set #9 (Scenario I, Varying Packet Error Rates)

Sim ID # of Nodes PER Area

VPE400a 400 0.05 % 200m x 185m

VPE400b 400 0.5 % 200m x 185m

VPE400c 400 5.0 % 200m x 185m

VPE400d 400 50.0 % 200m x 185m
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Table 6.13: Set #10 (Scenario I, Varying Packet Error Rates)

Sim ID # of Nodes PER Area

VPE900a 900 0.05 % 300m x 275m

VPE900b 900 0.5 % 300m x 275m

VPE900c 900 5.0 % 300m x 275m

VPE900d 900 50.0 % 300m x 275m
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Figure 6.11: Sets #7, #8, #9 and #10: Metric 5, Number of elected AQSs.
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6.2.7 Experiments with a Multi-Hop Communication Scheme

Tables 6.14, 6.15, 6.16, and 6.17 list the parameters for simulation sets #11, #12, #13 and #14

respectively. These sets are used to study the effect of limiting the number of hops on the election

algorithm and the overall energy consumption. For each of the sets #11, #12, #13 and #14,

experiments are conducted by limiting the number of hops to 1, 2, 3, and 4. The nodes are placed

in a regular hexagonal formation. The results obtained from these simulations are evaluated using

metrics 4, 5, 6, and 7.

Table 6.14: Set #11 (Scenario I, Varying Number of Hops)

Sim ID # of Nodes # of Hops Area

VNH100a 100 1 100m x 100m

VNH100b 100 2 100m x 100m

VNH100c 100 3 100m x 100m

VNH100d 100 4 100m x 100m

Table 6.15: Set #12 (Scenario I, Varying Number of Hops)

Sim ID # of Nodes # of Hops Area

VNH256a 256 1 160m x 150m

VNH256b 256 2 160m x 150m

VNH256c 256 3 160m x 150m

VNH256d 256 4 160m x 150m

Figure 6.14 presents the results for sets #11, #12, #13 and #14 with respect to Metric 5, i.e.,

Number of elected AQSs. As the limit on the number of hops travelled by messages is increased

the number of AQSs chosen decreases substantially. This is because, as explained in Chapter 5,

a larger number of hops leads to the creation of a denser intersection graph. A smaller number

of AQSs is beneficial because it decreases the chances for boundary conflicts and inefficient task
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Table 6.16: Set #13 (Scenario I, Varying Number of Hops)

Sim ID # of Nodes # of Hops Area

VNH400a 400 1 200m x 185m

VNH400b 400 2 200m x 185m

VNH400c 400 3 200m x 185m

VNH400d 400 4 200m x 185m

Table 6.17: Set #14 (Scenario I, Varying Number of Hops)

Sim ID # of Nodes # of Hops Area

VNH900a 900 1 300m x 275m

VNH900b 900 2 300m x 275m

VNH900c 900 3 300m x 275m

VNH900d 900 4 300m x 275m

assignments (discussed in Chapter 4).

Figure 6.15 presents the results for sets #11, #12, #13 and #14 with respect to Metric 6, i.e.,

Maximum number of packets received at any node for one round of AQS elections. For all sets, the

number of packets received during the course of an election increases by several orders of magnitude

as the number of hops are increased. Because communication costs for sensor nodes are high, an

excessive number of messages transmitted and received during an election may negatively impact

the overall life of a node. As an example, consider that increasing the number of hops from 3 to 4

results in nearly doubling of the election traffic but only a small decrease in the number of AQSs

chosen. This may not be an acceptable tradeoff. The results obtained for this metric indicate that

the network traffic and energy consumption are sensitive to the limit on the number of hops.

Figure 6.16 presents the results for sets #11, #12, #13 and #14 with respect to Metric 7, i.e.,

Maximum ratio of (the network traffic at a node exclusive to one election) and (the total network
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Figure 6.14: Sets #11, #12, #13 and #14: Metric 5, Number of elected AQSs vs. Number of

hops.

traffic at a node over a fixed time interval). This metric essentially conveys the tradeoffs between

a larger limit on the number of hops and the energy consumption for an election relative to the

total energy consumption. With an increase in the number of hops the portion of the network

traffic related to an election dominates the total network traffic. This leads to the conclusion that

variables such as the frequency of re-elections, the frequency of other types of communication (for

example, periodic battery updates), and the number of hops are factors that impact the overall

energy consumption. The relationship between these quantities can be empirically expressed by an

equation. Before doing so, the following nomenclature is introduced.

r = rate at which energy is consumed in the network

nh = limit on the number of hops travelled by a message

fe = frequency of elections

fc = frequency of other types of periodic communications

k, p = constants
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Figure 6.15: Sets #11, #12, #13 and #14: Metric 5, Maximum number of packets received at

any node for one round of AQS elections. vs. Number of hops.

r = k × (nh)p × fe × fc (6.1)

This equation basically expresses the proportionality relationships between r and the variables nh,

fe, and fc. These relationships are briefly outlined. It can be seen from Figure 6.15 that rate of

energy consumption, r, increases non-linearly with the number of hops, nh. Because the number of

neighbors is fixed for given number of hops, the rate of energy consumption increases linearly with

the frequency of elections (fe) or other periodic communications (fc).
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6.2.8 Experiments to Determine Quality of Sensor Coverage

Results are collected for Metric 8 and Metric 9 to determine the quality of sensor coverage for a

user of the network. Figure 6.17 shows the plot of the time at which the first uncovered area is

recorded for Set #1 using Approach II and Approach I. It is observed that Approach II achieves

significantly better performance over Approach I.

Figure 6.18 displays a plot of the % uncovered area vs. time for 256 and 900 nodes placed in a

hexagonal formation (Set #1) using Approach II and Approach I. This plot shows the coverage

characteristic over the entire simulated time. Approach II is seen to be more effective in prolonging

the time for which a user is guaranteed good quality sensor coverage. Note that both Approach II

and Approach I start with 0 % uncovered area.

10

20

30

40

50

60

70

80

90

Ti
m

e 
at

 w
hi

ch
 th

e 
fir

st
 u

nc
ov

er
ed

 a
re

a 
is

 re
co

rd
ed

 (h
ou

rs
)

CDH100/100 nodes CDH256/256 nodes CDH400/400 nodes CDH900/900 nodes

Simulation ID/Number of nodes

Approach II
Approach I 

Figure 6.17: Set #1: Metric 8, Time at which first uncovered area is recorded.
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Figure 6.18: Set #1: Metric 8, Plot of % uncovered area vs. time.

6.3 Scenario II

6.3.1 Experiments with Varying Redundancy Index

Table 6.18 lists the parameters that define Set #15. For this set, nodes are placed around a

rectangular perimeter for the perimeter monitoring application described in Chapter 5. The energy

consumption behavior for this scenario is analyzed using Metric 1 (average energy) and Metric 2

(minimum energy). Experiments conducted for this scenario assume that the placement and density

of nodes around the perimeter is fixed. The value of the RI is varied to gauge its effect on these

metrics.

Figure 6.19 shows the performance with respect to the average energy metric. Approach II is seen to

achieve significant energy savings over Approach I. Figure 6.20 shows the performance with respect

to the minimum energy metric. Observe that decreasing the RI impacts the lifetime of the network

negatively whereas the minimum energy characteristic shows some improvement with lower values

of RI. This can be explained using an argument similar to that used for the hexagonal and random

placement of nodes. The negative impact of the RI on the average energy is most likely due to
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Table 6.18: Set #15 (Scenario II, Varying Redundancy Index, Perimeter Node Placements)

Sim ID # of Nodes RI Area

VRP200a 200 0.90 200m x 200m

VRP200b 200 0.70 200m x 200m

VRP200c 200 0.50 200m x 200m

VRP200d 200 0.30 200m x 200m

excessive replacements of redundant nodes in the grid map. This effect is more pronounced for

Scenario II because the inter-node separation in this case is smaller than for the experiment with

varying RI for Scenario I.
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6.3.2 Experiments to Determine Quality of Sensor Coverage

Figure 6.21 shows a plot of the time at which the first uncovered area is recorded for Set #15

using Approach II and Approach I. Figure 6.22 shows a plot of the % uncovered area vs. time for

RI values of 0.70 and 0.30. A comparison of these two figures leads to the following conclusion.

Though the first uncovered area is recorded at a later time for lower values of RI, the overall

coverage deteriorates much more rapidly that for higher values of RI.

Figure 6.23 shows a plot of the time at which the first breach across the perimeter is recorded

(Metric 9). For lower values of RI, a breach is observed earlier in the network.

The evaluation of these metrics for quality of sensor coverage indicates the following. While lower

values of RI cause the node with minimum energy to be protected, the overall coverage characteris-

tic may not necessarily improve over time. However, in all cases Approach II exhibits performance

superior to that of Approach I.
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Figure 6.21: Set #15: Metric 8, Time at which first uncovered area is recorded.
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Figure 6.23: Set #15: Metric 9, Time at which the first breach is recorded.

6.4 Summary

This chapter presents and discusses the results collected from simulations of the sensor network.

Various metrics pertaining to energy consumption of individual nodes and of the entire network

are introduced. Additional metrics are presented to characterize the effect of using a multi-hop

communication scheme, and to ascertain the quality of sensor coverage for users of the network.

Simulations are analyzed using all these metrics.

One of the major findings from this analysis is that Approach II achieves significantly better

performance over Approach I for a redundant sensor network. The algorithms are also shown

to scale efficiently to a large network size. Another aspect explored is the effect of packet losses

on the execution of the AQS election algorithm; the algorithm is shown to be tolerant to packet

errors. Finally, the multi-hop communication scheme is shown to achieve its objective of creating

intersection graphs based on sensor coverage leading to the election of fewer AQSs. However, this

approach leads to rapidly increasing communication costs as the number of hops is increased.



Chapter 7

Validation and Verification

Simulation models that are built to represent any system must be credible, i.e., there must be a

degree of confidence in the results and conclusions that can be drawn from them [54]. Achieving

this level of confidence is a two step process that consists of validating and verifying the simulation

model. Jain defines validation as the process of determining if the simulation model is a correct and

reasonable representation of the real system under study [54]. In contrast, verification is defined as

the process of determining if the model implements those assumptions correctly.

This chapter outlines the approaches used to validate and verify the model of a sensor network.

Some representative results are presented to demonstrate the credibility of the constructed models.

7.1 Validation

Validation can be performed by comparing the models with one or more of the following - results

obtained from intuition or a common sense approach, real system measurements, and theoretically

generated results. The model of a distributed sensor network is validated with respect to the

assumptions used in building the models and the outputs obtained from the simulations.

97
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7.1.1 Assumptions in Model Construction

The assumptions used in building the model of a node are based primarily on the real system

measurements obtained from studies of prototype sensor nodes (research in this area is summarized

in Section 2.1).

1. Energy model of a node. The battery source for a node is modeled using power consumption

measurements conducted by Srivastava, et. al. [24]. The battery is considered to be a bucket of

energy from which energy is drawn linearly by various sources, such as the processor, radio, and

sensing elements. The relative energy drawn by the battery in various states, i.e., asleep, awake,

transmit, or receive is computed using measurements conducted by Stemm and Katz [23]. The

effective life of the battery for a node that is continuously awake (Tbl) is modeled using measurements

obtained for prototype nodes [24].

2. Radio model of a node. The radio capabilities of a node are modeled based on the specifications

of a prototype sensor node developed by the University of California at Berkeley [14] that is studied

by Srivastava, et. al. [24]. Other nodes studied as part of the model building process include the

sensor node built by Rockwell [22], and the WINS node [13] developed by Sensoria Corporation.

The radio propagation models used are part of the Opnet simulation environment.

3. Sensing elements of a node. The sensing capabilities of a node are modeled based on the

specifications of the acoustic and seismic sensors that are part of the WINS node [13, 58]. The

seismic sensor is capable of detecting personnel at 10m while the acoustic sensor has a range of

30m for detecting vehicles.

The scenarios or network models for these simulations are based primarily on the expectation of

how such a network should operate and the situations in which is employed. The two scenarios

constructed as part of this process, i.e. Scenario I (a user traversing a sensor field) and Scenario II

(monitoring a perimeter), are constructed based on this intuition.

Simulation parameters related to user queries, for example the volume and duration of queries are

also intuitively chosen to reflect the function of the network. As an example consider Scenario II;

the user queries to the system consist of long running queries around the monitored perimeter. The
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position and the number of nodes for these scenarios are parameters that are varied to study the

behavior of the network for different configurations.

7.1.2 Output and Results

The outputs obtained from simulation experiments are analyzed using the metrics defined in Sec-

tion 6.1. Real system measurements or theoretical results for such networks are not available for

most of these metrics. The only exception is the AQS election for which a theoretical expected

execution time exists.

The expected execution time of the AQS algorithm is shown to be EO(log(|S|)/ log log(|S|)) (Sec-

tion 3.2) for a case when the number of neighbors of each node is bounded. Results obtained using

Metric 4, which is the maximum time spent by any node in electing an AQS indicate that AQS

election algorithm scales to different numbers of nodes. These results are outlined in Figure 6.9.

These experimental results show a behavior consistent with the theoretical result.

7.2 Verification

Verification is fundamentally the process of analyzing the models to see if they conform to the

assumptions that were made in building them. This process can also be visualized as one of

debugging the models so that they accurately represent the system under study. The methods and

techniques used to verify these models of the sensor network are those proposed by Jain [54].

7.2.1 Simulation Traces

A trace is a listing of the state variables associated with a model at a given point in the simulation.

Trace outputs at various levels of detail are used to analyze the operation of various aspects of

the simulation as it progresses on the simulation timeline. Opnet provides functionality for con-

figuring traces to estimate the states of various simulation objects such as nodes, links, packets,

and processes. This capability is used to debug the models. Traces of memory statistics for packet
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allocations (Appendix A.1) and packet de-allocations (Appendix A.2) were used to isolate bugs

in the finite state machine that lead to a mismatch in the number of packets created and packets

destroyed. Traces of individual packet contents (Appendix A.3) were employed to verify the trans-

mission and receipt of packets at the appropriate nodes for different message types, for example,

periodic battery updates and task assignments. In conclusion, the trace capability offered by the

Opnet Simulation Debugger (ODB) was seen to be an effective tool to verify the proper functioning

of the simulation models.

7.2.2 Simplified Test Cases

Another method to determine the correctness of a simulation model is to verify its working by using

trivial test cases that can be manually verified. A simple test case is chosen to verify the operation

of the AQS election algorithm using the distributed algorithm described in Section 5.2.

Figures 7.1 shows a simple network configuration of 6 nodes that is used to verify the proper

functioning of the election algorithm. For this configuration all the actual message transmissions

between nodes are recorded and verified with the expected message transmissions.

Figure 7.1: Test case for verifying the operation of the AQS election algorithm.

In the first step of the algorithm all neighboring nodes communicate their r(si) values to each other.

In the second step, node s2 elects itself as an AQS because it has the largest r(si) values of any of

its neighbors. None of the other nodes can determine their AQS at the second iteration, therefore
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they broadcast a message expressing the lack of knowledge about an AQS. In the third step, Node

s1 broadcasts a message declaring its intent not to be an AQS because it has heard from an AQS

(node s2). In the fourth iteration, node s3 elects itself as an AQS because its r(i) value is the

largest of all the nodes that do not know of an AQS (nodes s4 and s5). Note that even though the

r(si) value of node s1 is larger than node s3 it is not considered because it has already declared its

intent not to be an AQS. In the fifth iteration, nodes s4 and s5 broadcast messages indicating that

they have dropped out of the election process because they know of an AQS (node s3). In the sixth

and final iteration, node s6 elects itself as an AQS because all its neighbors have indicated that

they are not AQSs. Therefore, at the end of the election nodes s2, s3 and s6 are elected as AQS.

It can be easily verified that these nodes constitute a maximal independent set for this network

configuration. The progression of the election as outlined above is verified by accounting for the

message transmissions at each iteration.

A slightly different approach is used to verify that the election algorithm actually produce a MIS of

nodes that constitute the AQSs for the network. Figure 7.2 shows the intersection graph for 100

nodes placed in a hexagonal configuration and the elected AQSs for this configuration. This graph

is analyzed using Matlab to verify that these AQSs do indeed constitute a maximal independent

set.

7.2.3 Continuity Tests

The sensor network is subjected to continuity tests that attempt to vary an input parameter by

small increments. As a consequence of this small variation, the system should ideally produce only

a small variation in the output value being monitored. Sudden changes in the output may be

indicative of modeling errors.

A continuity test is performed to determine the effect of varying the volume of queries on the

average energy (Metric 1) and the minimum energy (Metric 2). Table 7.1 lists the parameters for

simulation set #16 that constitute the test suite for a continuity test. Nodes are placed in the 2-D

hexagonal formation for this set. The query volume parameter refers to the time period between

two new queries dispatched to the network.
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Figure 7.2: Test case for verifying that the election algorithm produces a MIS. The circles around

the node positions represent AQSs. The lines represent the intersection graph.

Figure 7.3 shows the plot of average energy vs. time for Set #16. The average energy characteristic

shows only minor deviations for the variation of the input parameter. Figure 7.4 shows the plot of

minimum energy vs. time for Set #16. This plot shows slightly more variation because it plots the

energy life of a single node (as opposed to Figure 7.3 which plots the average energy of all nodes).
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Table 7.1: Set #16 Scenario I, (Query Volume Continuity Test)

Sim ID # of Nodes Query Volume (minutes) Area

QCT100a 100 6 100m x 100m

QCT100b 100 7.5 100m x 100m

QCT100c 100 9 100m x 100m

QCT100d 100 10.5 100m x 100m

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (hours)

En
er

gy
 (J

ou
le

s)

QCT100a
QCT100b
QCT100c
QCT100d

Figure 7.3: Set #16: Metric 1, average energy of all the nodes vs. the simulated time.
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Figure 7.4: Set #16: Metric 2, minimum energy of all the nodes vs. the simulated time.



Chapter 7. Validation and Verification 105

7.2.4 Degeneracy Tests

As opposed to a continuity test, a degeneracy test consists of inspecting the simulation model for

extreme values of the input parameters. Though these extreme cases may not represent typical

inputs to the system, the response of the system for these parameters is useful in determining if

the behavior of the system obeys boundary conditions.

Table 7.2 lists the parameters for simulation set #17 that constitutes the test suite for a degeneracy

test using query volumes as the input parameter. Nodes are placed in the 2-D hexagonal formation

for this set. Simulation ID: QDT100a corresponds to a case with no user queries whereas Simulation

ID: QDT100b corresponds to a case where a query lasts for ever once it is dispatched to the network;

new queries arrive once every 6 minutes.

Table 7.2: Set #17 Scenario I, (Query Volume Degeneracy Test)

Sim ID # of Nodes Query Duration (minutes) Area

QDT100a 100 0 100m x 100m

QDT100b 100 ∞ 100m x 100m

Figure 7.3 shows the plot of average energy vs. time for Set #17. The average energy of all nodes

decreases slowly for QDT100a while it drops fairly quickly for QDT100b. This is an expected result

given the volume and duration of user queries for each case. In fact, the only energy consumption

in the absence of any queries would be for periodic elections of AQS. An increase in the time

period between elections will lead to even slower energy consumption as indicated by Equation 5.1.

Figure 7.4 shows the plot of minimum energy vs. time for Set #17. The trend observed is similar

to that observed for Figure 7.3.

From both these figures we conclude that the implementation of the tasking algorithm lies within

the expected bounds of operation.
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Figure 7.5: Set #17: Metric 1, average energy of all the nodes vs. the simulated time.
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Figure 7.6: Set #17: Metric 2, minimum energy of all the nodes vs. the simulated time.
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7.3 Summary

This chapter introduces the techniques used to perform to validation and verification of the model of

the sensor network. These checks are necessary to ensure that the model is an accurate and precise

representation of the system under study. Validation is performed by testing the assumptions used

in creating the model with real system measurements, theoretical analysis or intuition. Verification

is performed by examining the model for a series of test cases and confirming that the output

conforms to expected norms. Representative results are presented to demonstrate these approaches.



Chapter 8

Conclusions

This chapter presents a summary of the efforts undertaken as regards the design, implementation,

and verification of the distributed algorithms by outlining the various chapters of this document.

Conclusions and observations from this study are presented. A discussion of future work to enhance

these algorithms is also presented along with a discussion of lateral areas of research.

8.1 Summary

Chapter 1 introduced the concept of a distributed sensor network - a system composed of multiple

sensor nodes that combine sensing and communication capabilities on a single platform and col-

laborate their efforts towards a common goal. The defining characteristics of such a network were

discussed and contrasted with other types of communication networks. An example was presented

for the operation of the network where a user sends a request for information, or query, to a ge-

ographical region in the network. A distributed approach for assigning work to individual nodes

was shown to be more desirable than the use of a centralized approach.

Related work on distributed sensor networks was presented in Chapter 2. Efforts towards build-

ing compact and energy efficient sensor nodes were summarized. Other work reviewed consisted

of the communication protocols for inter-node communication, algorithms and architectures for
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collaborative processing of sensor data, and the problem of optimal sensor node location for such

networks. A key factor in the development of designs for sensor networks is energy efficiency; nodes

are typically endowed with only a small and limited energy source that is not easily replenished.

Many of the ideas and measurements obtained from these related studies were used in this thesis

to construct simulation models and develop intuition regarding the operation of sensor networks.

Chapter 3 presented the first stage of the distributed tasking algorithms, i.e. the distributed election

of an application query server (AQS) from among the nodes in the network. An AQS is a node in

the network that oversees the assignment and management of user queries for other nodes. The

set of AQSs can be visualized as a maximal independent set (MIS) of the nodes in the network.

Existing sequential and parallel algorithms for the selection of a MIS were characterized. One such

algorithm for selecting a MIS in a distributed fashion was extended to an algorithm for the selection

of AQSs for the network. This algorithm was theoretically shown to be fault-tolerant and scalable;

this was confirmed by results presented in Chapter 6

The second stage of the distributed algorithm consists of AQSs allocating tasks to nodes in the

network. This concept was developed in Chapter 4. The allocation of tasks to the network must

be performed in a manner that conserves energy by rotating tasks among nodes. Additionally,

the selection of nodes that are tasked for a particular query must ensure that a desired level of

sensor coverage is available to the query. These requirements motivated an approach that employs

a rectangular grid map to represent sensor coverage. This grid map is used by AQSs to assign

and manage node-level tasks. Algorithms that construct such a grid map and use it for assigning

tasks were presented. Also included was a discussion of how the algorithms may use a connectivity

graph based on sensor coverage overlap rather than radio coverage to enable more efficient tasking

of nodes. This modification, however, leads to the additional requirement that nodes be able to

communicate messages over multiple hops.

The simulation environment and models constructed to study the execution of these algorithms

were presented in Chapter 5. These models were built using the Opnet simulation tool. A descrip-

tion of these models and the interactions between them were presented. A scheme for multi-hop

communication between nodes was also developed. This scheme relies on the re-broadcasting of
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messages at intermediate nodes along the path between the sender and destination nodes. Rules

were proposed to suppress redundant broadcasts in this scheme. Two scenarios were constructed

to demonstrate the operation of the sensor network; these scenarios were used in simulations. Each

scenario consists of parameters that define the placement of nodes, the purpose of the network, and

the volume and nature of user queries.

Simulation results for the two scenarios introduced in Chapter 5 were presented in Chapter 6.

A discussion of these results was prefaced with the definition of various metrics. These metrics

characterize aspects such as the life of the network, energy consumption of nodes, scalability of the

algorithms and quality of sensor coverage provided to a user. Using these metrics, the algorithms

were shown to achieve significant energy savings and balance the total energy consumption among

nodes. The performance of the distributed election algorithm was seen to scale to a large number

of nodes as expected by the theoretical bounds. The algorithm was also seen to be fairly robust to

faults introduced by packet losses.

The simulation models constructed as part of the experimental process were validated and verified

to ensure that they produced reliable and credible results. These efforts were summarized in

Chapter 7. The assumptions on which the models are constructed were summarized. Verification

of the simulations was performed by subjecting the models to various tests. These tests verified

that the models behave as expected for different work loads. It was also verified that the AQS

election algorithm does indeed result in the creation of a MIS of nodes in the network.

This thesis introduced distributed algorithms for large, ad-hoc sensor networks that allocate work

based on user requests to the individual sensor nodes that compose the network. The primary

purpose of these algorithms is to provide robust, scalable, and distributed methods to assign user

defined tasks to nodes in an energy aware fashion. Extensive simulation experiments indicated that

the performance of these algorithms met the objectives defined for the study. They were shown to

achieve a significant increase the effective life of the network. Additionally, these algorithms ensured

a good quality of sensor coverage for user queries that remained nearly constant throughout the

lifetime of the network.
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8.2 Future Work

8.2.1 Enhancements to Existing Models

The algorithms and simulations in this thesis do not involve significant interactions with the un-

derlying network routing scheme. This allows these algorithms to be studied and characterized

independently from any particular routing scheme. However, it may be beneficial to extend these

models such that they interact with the routing protocols. This is a logical next step in the devel-

opment of these algorithms because the routing scheme will have a significant impact on the energy

efficiency. This observation is also motivated by the results obtained for the multi-hop communica-

tion scheme described in Section 5.5. Excessive message transmissions lead to a quick degradation

in the energy levels of nodes. Additionally, routing schemes may incorporate methods to efficiently

route messages for nodes that are critical to the function of the network. An example of such a

node may be one equipped with a long range radio used to communicate with the end user of the

network. It may be desirable for this node not be tasked like any other node.

In this thesis, simple models are used represent the sensor coverage of the sensing elements of a

node. The sensor coverage associated with a sensing element may be a more complex function that

the circular area assumed throughout in this work. Alternatively, the coverage characteristic may

not be a function of only distance. For example, consider the motion detection sensor that forms

a part of the WINS node [13, 58]. This sensor functions like a trip-wire, i.e., it produces a binary

output indicating the absence of presence of movement in a particular direction. The extension of

the simulation models to incorporate different definitions for sensor coverage may provide a more

accurate representation of real world systems. It is believed that the basic algorithms described

in this thesis will continue to be effective in tasking sensors with different coverage characteristics.

However, this needs to be verified in simulation.

Besides sensor coverage, the energy consumption models for individual nodes need to be improved

so that they are more accurate representations of energy usage for sensing tasks. Models used for

these simulations assume a simple linear energy consumption model as described in Equation 5.1.



Chapter 8. Conclusions 112

8.2.2 Lateral Areas of Research

Though the effect of placement on energy consumption or longevity of the network has not been

appreciably studied this is an important direction for future research. The placement of nodes is

briefly discussed in Section 2.5. The deployment of sensor nodes is fundamentally an optimization

problem. Some optimization strategies for the optimal placement of nodes are outlined in Sec-

tion 2.5. Sensor node placement can have a significant impact on the effectiveness of the tasking

algorithms that rely inherently on node redundancy to achieve energy savings. The placement

problem can essentially be visualized for the following three scenarios: (a) placement with random

variance, (b) exact placement, and (c) mixed placement. For all these cases, placement methods

that take tasking into account could possibly achieve further energy savings.

The end users of a sensor network are typically concerned with information regarding a region of

the network as opposed to exact information about a set of nodes [7]. This information could be,

for example, ambient temperature in a given region. Schemes such as directed diffusion [28] have

been proposed to achieve this goal of aggregating and transporting data from a set of nodes to the

user. Similar approaches may be employed for managing and collecting information regarding the

status or health of the overall network. To illustrate this consider the following scenario. Some

nodes in a region of the network die prematurely due to excessive battery usage; this leads to the

creation of a hole in the sensor coverage over this region. The entity managing the network is not

particularly concerned with the exact details of which nodes died and their locations. Rather, it

is in the interest of the managing entity to know of the size and region of this hole so that more

nodes may be deployed to cover that area. Methods employing data aggregation and diffusion

of messages can be developed to provide an efficient solution to such network management and

monitoring problems.
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Appendix A

Simulation Traces

A.1 Memory Allocation Sources for Packets

Stack 1 of 1 - Total object count (1894), call count (1894), assoc call count (0),

time (0.000000)

-------------------------------------------------------------------------------------

m3_main (argc, argv)

sim_main (prog_name, argc, argv, dynamic_sim, def_net_name, num_procs, proc_set_ptr,

num_pk_meths, pk_set_ptr, num_pk_fd_meths, pk_fd_set_ptr)

sim_ev_loop ()

sim_obj_rarxch_complete (ch_ptr, pkptr)

sim_obj_rarxch_end_valid (ch_ptr, pkptr, num_errors, accepted)

sim_strm_send (src_mptr, strm_index, pkptr, delay, method, evhndl_ptr)

sim_ev_force (modptr, pdptr, handler, code, type, exec_proc, state_ptr, value, src_obid)

sim_strm_insert ()

sim_obj_qps_intrpt (simev_ptr)

SensorNode () [recv enter execs]

op_pk_destroy (pkptr)

sim_pk_free (pkptr)

sim_pk_dealloc (pkptr)

Vos_Dealloc_Object (ob_hndl, ob_ptr)

A.2 Memory De-Allocation Sinks for Packets

Stack 1 of 4 - Total object count (1769), call count (1769), assoc call count (0),

time (0.000000)

-------------------------------------------------------------------------------------

m3_main (argc, argv)

sim_main (prog_name, argc, argv, dynamic_sim, def_net_name, num_procs, proc_set_ptr,
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num_pk_meths, pk_set_ptr, num_pk_fd_meths, pk_fd_set_ptr)

sim_ev_loop ()

sim_obj_qps_intrpt (simev_ptr)

SensorNode_acb_fifo () [svc_compl enter execs]

op_pk_send_forced (pkptr, outstrm_index)

sim_strm_send (src_mptr, strm_index, pkptr, delay, method, evhndl_ptr)

sim_ev_force (modptr, pdptr, handler, code, type, exec_proc, state_ptr, value, src_obid)

sim_strm_insert ()

sim_obj_ratx_intrpt (simev_ptr)

sim_obj_ratx_start (ch_ptr, pkptr)

sim_pk_clone (pkptr)

sim_pk_alloc ()

Vos_Alloc_Object (ob_hndl)

Stack 2 of 4 - Total object count (100), call count (100), assoc call count (0),

time (0.000000)

-------------------------------------------------------------------------------------

m3_main (argc, argv)

sim_main (prog_name, argc, argv, dynamic_sim, def_net_name, num_procs, proc_set_ptr,

num_pk_meths, pk_set_ptr, num_pk_fd_meths, pk_fd_set_ptr)

sim_ev_loop ()

sim_obj_qps_intrpt (simev_ptr)

SensorNode () [init enter execs]

op_pk_create_fmt (format_name)

sim_pk_create_named (module_ptr, format_name, bulk_size)

sim_pk_create_formatted (module_ptr, format_ptr, bulk_size)

sim_pk_create_common (owner_id)

sim_pk_alloc ()

Vos_Alloc_Object (ob_hndl)

Stack 3 of 4 - Total object count (100), call count (100), assoc call count (0),

time (0.000000)

-------------------------------------------------------------------------------------

m3_main (argc, argv)

sim_main (prog_name, argc, argv, dynamic_sim, def_net_name, num_procs, proc_set_ptr,

num_pk_meths, pk_set_ptr, num_pk_fd_meths, pk_fd_set_ptr)

sim_ev_loop ()

sim_obj_qps_intrpt (simev_ptr)

SensorNode () [init2 enter execs]

op_pk_create_fmt (format_name)

sim_pk_create_named (module_ptr, format_name, bulk_size)

sim_pk_create_formatted (module_ptr, format_ptr, bulk_size)

sim_pk_create_common (owner_id)

sim_pk_alloc ()

Vos_Alloc_Object (ob_hndl)

Stack 4 of 4 - Total object count (32), call count (32), assoc call count (0),

time (0.000000)

-------------------------------------------------------------------------------------

m3_main (argc, argv)

sim_main (prog_name, argc, argv, dynamic_sim, def_net_name, num_procs, proc_set_ptr,

num_pk_meths, pk_set_ptr, num_pk_fd_meths, pk_fd_set_ptr)
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sim_ev_loop ()

sim_obj_rarxch_complete (ch_ptr, pkptr)

sim_obj_rarxch_end_valid (ch_ptr, pkptr, num_errors, accepted)

sim_strm_send (src_mptr, strm_index, pkptr, delay, method, evhndl_ptr)

sim_ev_force (modptr, pdptr, handler, code, type, exec_proc, state_ptr, value, src_obid)

sim_strm_insert ()

sim_obj_qps_intrpt (simev_ptr)

SensorNode () [recv enter execs]

op_pk_create_fmt (format_name)

sim_pk_create_named (module_ptr, format_name, bulk_size)

sim_pk_create_formatted (module_ptr, format_ptr, bulk_size)

sim_pk_create_common (owner_id)

sim_pk_alloc ()

Vos_Alloc_Object (ob_hndl)

A.3 Packet Trace

* packet contents:

ID : 1996

tree ID : 190

address : 0x328E808

format : SensorNode_packet

creation module : top.Campus Network.node_91.Processor

creation time : 0.127008

stamp module : top.Campus Network.node_91.Processor

stamp time : 0.127008

bulk size : 0

total size : 224

owner : top.Campus Network.node_91.Transmitter

ICI ID : NONE

ID trace : off

tree ID trace : off

encap flags : NONE

Index Name Type Value Size

0 senderID integer 91 16

1 destID integer -1 16

2 msgType integer 11 16

3 qID integer 0 16

4 qBoundary integer 0 32

5 qType double 0.0 32

6 battery double 0.963649108804544 32

7 xPos double 0.0 32

8 yPos double 91.161003112793 32
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