
CHAPTER 3

3.1. An empty metal paint can is placed on a marble table, the lid is removed, and both parts are
discharged (honorably) by touching them to ground. An insulating nylon thread is glued to
the center of the lid, and a penny, a nickel, and a dime are glued to the thread so that they
are not touching each other. The penny is given a charge of +5 nC, and the nickel and dime
are discharged. The assembly is lowered into the can so that the coins hang clear of all walls,
and the lid is secured. The outside of the can is again touched momentarily to ground. The
device is carefully disassembled with insulating gloves and tools.

a) What charges are found on each of the five metallic pieces? All coins were insulated
during the entire procedure, so they will retain their original charges: Penny: +5nC;
nickel: 0; dime: 0. The penny’s charge will have induced an equal and opposite negative
charge (-5 nC) on the inside wall of the can and lid. This left a charge layer of +5 nC on
the outside surface which was neutralized by the ground connection. Therefore, the can
retained a net charge of −5 nC after disassembly.

b) If the penny had been given a charge of +5 nC, the dime a charge of −2 nC, and the nickel
a charge of −1 nC, what would the final charge arrangement have been? Again, since the
coins are insulated, they retain their original charges. The charge induced on the inside
wall of the can and lid is equal to negative the sum of the coin charges, or −2 nC. This
is the charge that the can/lid contraption retains after grounding and disassembly.

3.2. A point charge of 20 nC is located at (4,-1,3), and a uniform line charge of -25 nC/m is lies
along the intersection of the planes x = −4 and z = 6.

a) Calculate D at (3,-1,0):

The total flux density at the desired point is

D(3,−1, 0) =
20 × 10−9

4π(1 + 9)

[−ax − 3az√
1 + 9

]
︸ ︷︷ ︸

point charge

− 25 × 10−9

2π
√

49 + 36

[
7ax − 6az√

49 + 36

]
︸ ︷︷ ︸

line charge

= −0.38ax + 0.13az nC/m2

b) How much electric flux leaves the surface of a sphere of radius 5, centered at the origin?
This will be equivalent to how much charge lies within the sphere. First the point charge is
at distance from the origin given by Rp =

√
16 + 1 + 9 = 5.1, and so it is outside. Second,

the nearest point on the line charge to the origin is at distance R� =
√

16 + 36 = 7.2, and
so the entire line charge is also outside the sphere. Answer: zero.

c) Repeat part b if the radius of the sphere is 10.

First, from part b, the point charge will now lie inside. Second, the length of line
charge that lies inside the sphere will be given by 2y0, where y0 satisfies the equation,√

16 + y2
0 + 36 = 10. Solve to find y0 = 6.93, or 2y0 = 13.86. The total charge within the

sphere (and the net outward flux) is now

Φ = Qencl = [20 − (25 × 13.86)] = −326 nC

.
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3.3. The cylindrical surface ρ = 8 cm contains the surface charge density, ρs = 5e−20|z| nC/m2.
a) What is the total amount of charge present? We integrate over the surface to find:

Q = 2
∫ ∞

0

∫ 2π

0

5e−20z(.08)dφ dz nC = 20π(.08)
(−1

20

)
e−20z

∣∣∣∣∣
∞

0

= 0.25 nC

b) How much flux leaves the surface ρ = 8 cm, 1 cm < z < 5cm, 30◦ < φ < 90◦? We just
integrate the charge density on that surface to find the flux that leaves it.

Φ = Q′ =
∫ .05

.01

∫ 90◦

30◦
5e−20z(.08) dφ dz nC =

(
90 − 30

360

)
2π(5)(.08)

(−1
20

)
e−20z

∣∣∣∣∣
.05

.01

= 9.45 × 10−3 nC = 9.45 pC

3.4. In cylindrical coordinates, let D = (ρaρ + zaz)/
[
4π(ρ2 + z2)1.5

]
. Determine the total flux

leaving:

a) the infinitely-long cylindrical surface ρ = 7: We use

Φa =
∫

D · dS =
∫ ∞

−∞

∫ 2π

0

ρ0 aρ + z az

4π(ρ2
0 + z2)3/2

· aρ ρ0 dφ dz = ρ2
0

∫ ∞

0

dz

(ρ2
0 + z2)3/2

=
z√

ρ2
0 + z2

∣∣∣∞
0

= 1

where ρ0 = 7 (immaterial in this case).

b) the finite cylinder, ρ = 7, |z| ≤ 10:

The total flux through the cylindrical surface and the two end caps are, in this order:

Φb =
∫ z0

−z0

∫ 2π

0

ρ0 aρ · aρ

4π(ρ2
0 + z2)3/2

ρ0 dφ dz

+
∫ 2π

0

∫ ρ0

0

z0 az · az

4π(ρ2 + z2
0)3/2

ρ dρ dφ +
∫ 2π

0

∫ ρ0

0

−z0 az · −az

4π(ρ2 + z2
0)3/2

ρ dρ dφ

where ρ0 = 7 and z0 = 10. Simplifying, this becomes

Φb = ρ2
0

∫ z0

0

dz

(ρ2
0 + z2)3/2

+ z0

∫ ρ0

0

ρ dρ

(ρ2 + z2
0)3/2

=
z√

ρ2
0 + z2

∣∣∣z0

0
− z0√

ρ2 + z2
0

∣∣∣ρ0

0
=

z0√
ρ2
0 + z2

0

+ 1 − z0√
ρ2
0 + z2

0

= 1

where again, the actual values of ρ0 and z0 (7 and 10) did not matter.

3.5. Let D = 4xyax + 2(x2 + z2)ay + 4yzaz C/m2 and evaluate surface integrals to find the total
charge enclosed in the rectangular parallelepiped 0 < x < 2, 0 < y < 3, 0 < z < 5 m: Of the 6
surfaces to consider, only 2 will contribute to the net outward flux. Why? First consider the
planes at y = 0 and 3. The y component of D will penetrate those surfaces, but will be inward
at y = 0 and outward at y = 3, while having the same magnitude in both cases. These fluxes
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will thus cancel. At the x = 0 plane, Dx = 0 and at the z = 0 plane, Dz = 0, so there will be
no flux contributions from these surfaces. This leaves the 2 remaining surfaces at x = 2 and
z = 5. The net outward flux becomes:

Φ =
∫ 5

0

∫ 3

0

D
∣∣
x=2

· ax dy dz +
∫ 3

0

∫ 2

0

D
∣∣
z=5

· az dx dy

= 5
∫ 3

0

4(2)y dy + 2
∫ 3

0

4(5)y dy = 360 C

3.6. In free space, volume charge of constant density ρv = ρ0 exists within the region −∞ < x < ∞,
−∞ < y < ∞, and −d/2 < z < d/2. Find D and E everywhere.

From the symmetry of the configuration, we surmise that the field will be everywhere
z-directed, and will be uniform with x and y at fixed z. For finding the field inside the
charge, an appropriate Gaussian surface will be that which encloses a rectangular region
defined by −1 < x < 1, −1 < y < 1, and |z| < d/2. The outward flux from this surface
will be limited to that through the two parallel surfaces at ±z:

Φin =
∮

D · dS = 2
∫ 1

−1

∫ 1

−1

Dz dxdy = Qencl =
∫ z

−z

∫ 1

−1

∫ 1

−1

ρ0 dxdydz′

where the factor of 2 in the second integral account for the equal fluxes through the
two surfaces. The above readily simplifies, as both Dz and ρ0 are constants, leading to
Din = ρ0z az C/m2 (|z| < d/2), and therefore Ein = (ρ0z/ε0)az V/m (|z| < d/2).

Outside the charge, the Gaussian surface is the same, except that the parallel boundaries
at ±z occur at |z| > d/2. As a result, the calculation is nearly the same as before, with
the only change being the limits on the total charge integral:

Φout =
∮

D · dS = 2
∫ 1

−1

∫ 1

−1

Dz dxdy = Qencl =
∫ d/2

−d/2

∫ 1

−1

∫ 1

−1

ρ0 dxdydz′

Solve for Dz to find the constant values:

Dout =
{

(ρ0d/2)az (z > d/2)
−(ρ0d/2)az (z < d/2)

C/m2 and Eout =
{

(ρ0d/2ε0)az (z > d/2)
−(ρ0d/2ε0)az (z < d/2)

V/m

3.7. Volume charge density is located in free space as ρv = 2e−1000r nC/m3 for 0 < r < 1 mm, and
ρv = 0 elsewhere.
a) Find the total charge enclosed by the spherical surface r = 1 mm: To find the charge we

integrate:

Q =
∫ 2π

0

∫ π

0

∫ .001

0

2e−1000rr2 sin θ dr dθ dφ

Integration over the angles gives a factor of 4π. The radial integration we evaluate using
tables; we obtain

Q = 8π

[−r2e−1000r

1000

∣∣∣.001
0

+
2

1000
e−1000r

(1000)2
(−1000r − 1)

∣∣∣.001
0

]
= 4.0 × 10−9 nC
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b) By using Gauss’s law, calculate the value of Dr on the surface r = 1 mm: The gaussian
surface is a spherical shell of radius 1 mm. The enclosed charge is the result of part a.
We thus write 4πr2Dr = Q, or

Dr =
Q

4πr2
=

4.0 × 10−9

4π(.001)2
= 3.2 × 10−4 nC/m2

3.8. Use Gauss’s law in integral form to show that an inverse distance field in spherical coordinates,
D = Aar/r, where A is a constant, requires every spherical shell of 1 m thickness to contain
4πA coulombs of charge. Does this indicate a continuous charge distribution? If so, find the
charge density variation with r.

The net outward flux of this field through a spherical surface of radius r is

Φ =
∮

D · dS =
∫ 2π

0

∫ π

0

A

r
ar · ar r2 sin θ dθ dφ = 4πAr = Qencl

We see from this that with every increase in r by one m, the enclosed charge increases
by 4πA (done). It is evident that the charge density is continuous, and we can find the
density indirectly by constructing the integral for the enclosed charge, in which we already
found the latter from Gauss’s law:

Qencl = 4πAr =
∫ 2π

0

∫ π

0

∫ r

0

ρ(r′) (r′)2 sin θ dr′ dθ dφ = 4π

∫ r

0

ρ(r′) (r′)2 dr′

To obtain the correct enclosed charge, the integrand must be ρ(r) = A/r2.

3.9. A uniform volume charge density of 80µC/m3 is present throughout the region 8 mm < r <
10 mm. Let ρv = 0 for 0 < r < 8 mm.
a) Find the total charge inside the spherical surface r = 10 mm: This will be

Q =
∫ 2π

0

∫ π

0

∫ .010

.008

(80 × 10−6)r2 sin θ dr dθ dφ = 4π × (80 × 10−6)
r3

3

∣∣∣.010
.008

= 1.64 × 10−10 C = 164 pC

b) Find Dr at r = 10 mm: Using a spherical gaussian surface at r = 10, Gauss’ law is
written as 4πr2Dr = Q = 164 × 10−12, or

Dr(10 mm) =
164 × 10−12

4π(.01)2
= 1.30 × 10−7 C/m2 = 130 nC/m2

c) If there is no charge for r > 10 mm, find Dr at r = 20 mm: This will be the same
computation as in part b, except the gaussian surface now lies at 20 mm. Thus

Dr(20 mm) =
164 × 10−12

4π(.02)2
= 3.25 × 10−8 C/m2 = 32.5 nC/m2

3.10. Volume charge density varies in spherical coordinates as ρv = (ρ0 sin πr)/r2, where ρ0 is a
constant. Find the surfaces on which D = 0.
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3.11. In cylindrical coordinates, let ρv = 0 for ρ < 1 mm, ρv = 2 sin(2000πρ) nC/m3 for 1 mm <
ρ < 1.5 mm, and ρv = 0 for ρ > 1.5 mm. Find D everywhere: Since the charge varies only
with radius, and is in the form of a cylinder, symmetry tells us that the flux density will be
radially-directed and will be constant over a cylindrical surface of a fixed radius. Gauss’ law
applied to such a surface of unit length in z gives:
a) for ρ < 1 mm, Dρ = 0, since no charge is enclosed by a cylindrical surface whose radius

lies within this range.

b) for 1 mm < ρ < 1.5 mm, we have

2πρDρ = 2π

∫ ρ

.001

2 × 10−9 sin(2000πρ′)ρ′ dρ′

= 4π × 10−9

[
1

(2000π)2
sin(2000πρ) − ρ

2000π
cos(2000πρ)

]ρ

.001

or finally,

Dρ =
10−15

2π2ρ

[
sin(2000πρ) + 2π

[
1 − 103ρ cos(2000πρ)

] ]
C/m2 (1 mm < ρ < 1.5 mm)
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3.11. (continued)
c) for ρ > 1.5 mm, the gaussian cylinder now lies at radius ρ outside the charge distribution,

so the integral that evaluates the enclosed charge now includes the entire charge distri-
bution. To accomplish this, we change the upper limit of the integral of part b from ρ to
1.5 mm, finally obtaining:

Dρ =
2.5 × 10−15

πρ
C/m2 (ρ > 1.5 mm)

3.12. The sun radiates a total power of about 2 × 1026 watts (W). If we imagine the sun’s surface
to be marked off in latitude and longitude and assume uniform radiation, (a) what power is
radiated by the region lying between latitude 50◦ N and 60◦ N and longitude 12◦ W and 27◦

W? (b) What is the power density on a spherical surface 93,000,000 miles from the sun in
W/m2?

3.13. Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge densities of 20 nC/m2,
−4 nC/m2, and ρs0, respectively.
a) Find D at r = 1, 3 and 5 m: Noting that the charges are spherically-symmetric, we

ascertain that D will be radially-directed and will vary only with radius. Thus, we apply
Gauss’ law to spherical shells in the following regions: r < 2: Here, no charge is enclosed,
and so Dr = 0.

2 < r < 4 : 4πr2Dr = 4π(2)2(20 × 10−9) ⇒ Dr =
80 × 10−9

r2
C/m2

So Dr(r = 3) = 8.9 × 10−9 C/m2.

4 < r < 6 : 4πr2Dr = 4π(2)2(20 × 10−9) + 4π(4)2(−4 × 10−9) ⇒ Dr =
16 × 10−9

r2

So Dr(r = 5) = 6.4 × 10−10 C/m2.

b) Determine ρs0 such that D = 0 at r = 7 m. Since fields will decrease as 1/r2, the question
could be re-phrased to ask for ρs0 such that D = 0 at all points where r > 6 m. In this
region, the total field will be

Dr(r > 6) =
16 × 10−9

r2
+

ρs0(6)2

r2

Requiring this to be zero, we find ρs0 = −(4/9) × 10−9 C/m2.

3.14. The sun radiates a total power of about 2 × 1026 watts (W). If we imagine the sun’s surface
to be marked off in latitude and longitude and assume uniform radiation, (a) what power is
radiated by the region lying between latitude 50◦ N and 60◦ N and longitude 12◦ W and 27◦

W? (b) What is the power density on a spherical surface 93,000,000 miles from the sun in
W/m2?

3.15. Volume charge density is located as follows: ρv = 0 for ρ < 1 mm and for ρ > 2 mm,
ρv = 4ρ µC/m3 for 1 < ρ < 2 mm.
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a) Calculate the total charge in the region 0 < ρ < ρ1, 0 < z < L, where 1 < ρ1 < 2 mm:
We find

Q =
∫ L

0

∫ 2π

0

∫ ρ1

.001

4ρ ρ dρ dφ dz =
8πL

3
[ρ3

1 − 10−9] µC

where ρ1 is in meters.

b) Use Gauss’ law to determine Dρ at ρ = ρ1: Gauss’ law states that 2πρ1LDρ = Q, where
Q is the result of part a. Thus

Dρ(ρ1) =
4(ρ3

1 − 10−9)
3ρ1

µC/m2

where ρ1 is in meters.

c) Evaluate Dρ at ρ = 0.8 mm, 1.6 mm, and 2.4 mm: At ρ = 0.8 mm, no charge is enclosed
by a cylindrical gaussian surface of that radius, so Dρ(0.8mm) = 0. At ρ = 1.6 mm, we
evaluate the part b result at ρ1 = 1.6 to obtain:

Dρ(1.6mm) =
4[(.0016)3 − (.0010)3]

3(.0016)
= 3.6 × 10−6 µC/m2

At ρ = 2.4, we evaluate the charge integral of part a from .001 to .002, and Gauss’ law is
written as

2πρLDρ =
8πL

3
[(.002)2 − (.001)2] µC

from which Dρ(2.4mm) = 3.9 × 10−6 µC/m2.

3.16. In spherical coordinates, a volume charge density ρv = 10e−2r C/m3 is present. (a) Determine
D. (b) Check your result of part a by evaluating ∇ · D.

3.17. A cube is defined by 1 < x, y, z < 1.2. If D = 2x2yax + 3x2y2ay C/m2:

a) apply Gauss’ law to find the total flux leaving the closed surface of the cube. We call the
surfaces at x = 1.2 and x = 1 the front and back surfaces respectively, those at y = 1.2
and y = 1 the right and left surfaces, and those at z = 1.2 and z = 1 the top and bottom
surfaces. To evaluate the total charge, we integrate D · n over all six surfaces and sum
the results. We note that there is no z component of D, so there will be no outward flux
contributions from the top and bottom surfaces. The fluxes through the remaining four
are

Φ = Q =
∮

D · n da =
∫ 1.2

1

∫ 1.2

1

2(1.2)2y dy dz︸ ︷︷ ︸
front

+
∫ 1.2

1

∫ 1.2

1

−2(1)2y dy dz︸ ︷︷ ︸
back

+
∫ 1.2

1

∫ 1.2

1

−3x2(1)2 dx dz︸ ︷︷ ︸
left

+
∫ 1.2

1

∫ 1.2

1

3x2(1.2)2 dx dz︸ ︷︷ ︸
right

= 0.1028 C

b) evaluate ∇ · D at the center of the cube: This is

∇ · D =
[
4xy + 6x2y

]
(1.1,1.1)

= 4(1.1)2 + 6(1.1)3 = 12.83
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c) Estimate the total charge enclosed within the cube by using Eq. (8): This is

Q
.= ∇ · D

∣∣
center

× ∆v = 12.83 × (0.2)3 = 0.1026 Close!

3.18. State whether the divergence of the following vector fields is positive, negative, or zero: (a) the
thermal energy flow in J/(m2 − s) at any point in a freezing ice cube; (b) the current density
in A/m2 in a bus bar carrying direct current; (c) the mass flow rate in kg/(m2 − s) below the
surface of water in a basin, in which the water is circulating clockwise as viewed from above.

3.19. A spherical surface of radius 3 mm is centered at P (4, 1, 5) in free space. Let D = xax C/m2.
Use the results of Sec. 3.4 to estimate the net electric flux leaving the spherical surface: We
use Φ .= ∇ · D∆v, where in this case ∇ · D = (∂/∂x)x = 1 C/m3. Thus

Φ .=
4
3
π(.003)3(1) = 1.13 × 10−7 C = 113 nC

3.20. Suppose that an electric flux density in cylindrical coordinates is of the form D = Dρ aρ.
Describe the dependence of the charge density ρv on coordinates ρ, φ, and z if (a) Dρ = f(φ, z);
(b) Dρ = (1/ρ)f(φ, z); (c) Dρ = f(ρ).

3.21. Calculate the divergence of D at the point specified if
a) D = (1/z2)

[
10xyz ax + 5x2z ay + (2z3 − 5x2y)az

]
at P (−2, 3, 5): We find

∇ · D =
[
10y

z
+ 0 + 2 +

10x2y

z3

]
(−2,3,5)

= 8.96

b) D = 5z2aρ + 10ρz az at P (3,−45◦, 5): In cylindrical coordinates, we have

∇ · D =
1
ρ

∂

∂ρ
(ρDρ) +

1
ρ

∂Dφ

∂φ
+

∂Dz

∂z
=

[
5z2

ρ
+ 10ρ

]
(3,−45◦,5)

= 71.67

c) D = 2r sin θ sinφar + r cos θ sin φaθ + r cos φaφ at P (3, 45◦,−45◦): In spherical coordi-
nates, we have

∇ · D =
1
r2

∂

∂r
(r2Dr) +

1
r sin θ

∂

∂θ
(sin θDθ) +

1
r sin θ

∂Dφ

∂φ

=
[
6 sin θ sin φ +

cos 2θ sinφ

sin θ
− sin φ

sin θ

]
(3,45◦,−45◦)

= −2

3.22. (a) A flux density field is given as F1 = 5az. Evaluate the outward flux of F1 through the
hemispherical surface, r = a, 0 < θ < π/2, 0 < φ < 2π. (b) What simple observation would
have saved a lot of work in part a? (c) Now suppose the field is given by F2 = 5zaz. Using the
appropriate surface integrals, evaluate the net outward flux of F2 through the closed surface
consisting of the hemisphere of part a and its circular base in the xy plane. (d) Repeat part
c by using the divergence theorem and an appropriate volume integral.
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3.23. a) A point charge Q lies at the origin. Show that div D is zero everywhere except at the
origin. For a point charge at the origin we know that D = Q/(4πr2)ar. Using the formula
for divergence in spherical coordinates (see problem 3.21 solution), we find in this case that

∇ · D =
1
r2

d

dr

(
r2 Q

4πr2

)
= 0

The above is true provided r > 0. When r = 0, we have a singularity in D, so its divergence
is not defined.

b) Replace the point charge with a uniform volume charge density ρv0 for 0 < r < a. Relate
ρv0 to Q and a so that the total charge is the same. Find div D everywhere: To achieve
the same net charge, we require that (4/3)πa3ρv0 = Q, so ρv0 = 3Q/(4πa3) C/m3. Gauss’
law tells us that inside the charged sphere

4πr2Dr =
4
3
πr3ρv0 =

Qr3

a3

Thus

Dr =
Qr

4πa3
C/m2 and ∇ · D =

1
r2

d

dr

(
Qr3

4πa3

)
=

3Q

4πa3

as expected. Outside the charged sphere, D = Q/(4πr2)ar as before, and the divergence
is zero.

3.24. (a) A uniform line charge density ρL lies along the z axis. Show that ∇ · D = 0 everywhere
except on the line charge. (b) Replace the line charge with a uniform volume charge density
ρ0 for 0 < ρ < a. Relate ρ0 to ρL so that the charge per unit length is the same. Then find
∇ · D everywhere.

3.25. Within the spherical shell, 3 < r < 4 m, the electric flux density is given as

D = 5(r − 3)3 ar C/m2

a) What is the volume charge density at r = 4? In this case we have

ρv = ∇ · D =
1
r2

d

dr
(r2Dr) =

5
r
(r − 3)2(5r − 6) C/m3

which we evaluate at r = 4 to find ρv(r = 4) = 17.50 C/m3.

b) What is the electric flux density at r = 4? Substitute r = 4 into the given expression to
find D(4) = 5ar C/m2

c) How much electric flux leaves the sphere r = 4? Using the result of part b, this will be
Φ = 4π(4)2(5) = 320π C

d) How much charge is contained within the sphere, r = 4? From Gauss’ law, this will be
the same as the outward flux, or again, Q = 320π C.

3.26. If we have a perfect gas of mass density ρm kg/m3, and assign a velocity U m/s to each
differential element, then the mass flow rate is ρmU kg/(m2 − s). Physical reasoning then
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leads to the continuity equation, ∇ · (ρmU) = −∂ρm/∂t. (a) Explain in words the physical
interpretation of this equation. (b) Show that

∮
s
ρmU · dS = −dM/dt, where M is the total

mass of the gas within the constant closed surface, S, and explain the physical significance of
the equation.

3.27. Let D = 5.00r2ar mC/m2 for r ≤ 0.08 m and D = 0.205ar/r2 µC/m2 for r ≥ 0.08 m (note
error in problem statement).
a) Find ρv for r = 0.06 m: This radius lies within the first region, and so

ρv = ∇ · D =
1
r2

d

dr
(r2Dr) =

1
r2

d

dr
(5.00r4) = 20r mC/m3

which when evaluated at r = 0.06 yields ρv(r = .06) = 1.20 mC/m3.

b) Find ρv for r = 0.1 m: This is in the region where the second field expression is valid.
The 1/r2 dependence of this field yields a zero divergence (shown in Problem 3.23), and
so the volume charge density is zero at 0.1 m.

c) What surface charge density could be located at r = 0.08 m to cause D = 0 for r > 0.08
m? The total surface charge should be equal and opposite to the total volume charge.
The latter is

Q =
∫ 2π

0

∫ π

0

∫ .08

0

20r(mC/m3) r2 sin θ dr dθ dφ = 2.57 × 10−3 mC = 2.57 µC

So now

ρs = −
[

2.57
4π(.08)2

]
= −32 µC/m2

3.28. Repeat Problem 3.8, but use ∇ · D = ρv and take an appropriate volume integral.

3.29. In the region of free space that includes the volume 2 < x, y, z < 3,

D =
2
z2

(yz ax + xz ay − 2xy az) C/m2

a) Evaluate the volume integral side of the divergence theorem for the volume defined above:
In cartesian, we find ∇ · D = 8xy/z3. The volume integral side is now

∫
vol

∇ · D dv =
∫ 3

2

∫ 3

2

∫ 3

2

8xy

z3
dxdydz = (9 − 4)(9 − 4)

(
1
4
− 1

9

)
= 3.47 C

b. Evaluate the surface integral side for the corresponding closed surface: We call the surfaces
at x = 3 and x = 2 the front and back surfaces respectively, those at y = 3 and y = 2
the right and left surfaces, and those at z = 3 and z = 2 the top and bottom surfaces.
To evaluate the surface integral side, we integrate D · n over all six surfaces and sum the
results. Note that since the x component of D does not vary with x, the outward fluxes
from the front and back surfaces will cancel each other. The same is true for the left
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and right surfaces, since Dy does not vary with y. This leaves only the top and bottom
surfaces, where the fluxes are:

∮
D · dS =

∫ 3

2

∫ 3

2

−4xy

32
dxdy︸ ︷︷ ︸

top

−
∫ 3

2

∫ 3

2

−4xy

22
dxdy︸ ︷︷ ︸

bottom

= (9 − 4)(9 − 4)
(

1
4
− 1

9

)
= 3.47 C

3.30. Let D = 20ρ2 aρ C/m2. (a) What is the volume charge density at the point P (0.5, 60◦, 2)?
(b) Use two different methods to find the amount of charge lying within the closed surface
bounded by ρ = 3, 0 ≤ z ≤ 2.

3.31. Given the flux density

D =
16
r

cos(2θ)aθ C/m2,

use two different methods to find the total charge within the region 1 < r < 2 m, 1 < θ < 2
rad, 1 < φ < 2 rad: We use the divergence theorem and first evaluate the surface integral
side. We are evaluating the net outward flux through a curvilinear “cube”, whose boundaries
are defined by the specified ranges. The flux contributions will be only through the surfaces
of constant θ, however, since D has only a θ component. On a constant-theta surface, the
differential area is da = r sin θdrdφ, where θ is fixed at the surface location. Our flux integral
becomes

∮
D · dS = −

∫ 2

1

∫ 2

1

16
r

cos(2) r sin(1) drdφ︸ ︷︷ ︸
θ=1

+
∫ 2

1

∫ 2

1

16
r

cos(4) r sin(2) drdφ︸ ︷︷ ︸
θ=2

= −16 [cos(2) sin(1) − cos(4) sin(2)] = −3.91 C

We next evaluate the volume integral side of the divergence theorem, where in this case,

∇ · D =
1

r sin θ

d

dθ
(sin θ Dθ) =

1
r sin θ

d

dθ

[
16
r

cos 2θ sin θ

]
=

16
r2

[
cos 2θ cos θ

sin θ
− 2 sin 2θ

]

We now evaluate:
∫

vol

∇ · D dv =
∫ 2

1

∫ 2

1

∫ 2

1

16
r2

[
cos 2θ cos θ

sin θ
− 2 sin 2θ

]
r2 sin θ drdθdφ

The integral simplifies to

∫ 2

1

∫ 2

1

∫ 2

1

16[cos 2θ cos θ − 2 sin 2θ sin θ] drdθdφ = 8
∫ 2

1

[3 cos 3θ − cos θ] dθ = −3.91 C
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