
CHAPTER 4

4.1. The value of E at P (ρ = 2, φ = 40◦, z = 3) is given as E = 100aρ − 200aφ + 300az V/m.
Determine the incremental work required to move a 20µC charge a distance of 6 µm:

a) in the direction of aρ: The incremental work is given by dW = −q E · dL, where in this
case, dL = dρaρ = 6 × 10−6 aρ. Thus

dW = −(20 × 10−6 C)(100 V/m)(6 × 10−6 m) = −12 × 10−9 J = −12 nJ

b) in the direction of aφ: In this case dL = 2 dφaφ = 6 × 10−6 aφ, and so

dW = −(20 × 10−6)(−200)(6 × 10−6) = 2.4 × 10−8 J = 24 nJ

c) in the direction of az: Here, dL = dz az = 6 × 10−6 az, and so

dW = −(20 × 10−6)(300)(6 × 10−6) = −3.6 × 10−8 J = −36 nJ

d) in the direction of E: Here, dL = 6 × 10−6 aE , where

aE =
100aρ − 200aφ + 300az

[1002 + 2002 + 3002]1/2
= 0.267aρ − 0.535aφ + 0.802az

Thus

dW = −(20 × 10−6)[100aρ − 200aφ + 300az] · [0.267aρ − 0.535aφ + 0.802az](6 × 10−6)
= −44.9 nJ

e) In the direction of G = 2ax − 3ay + 4az: In this case, dL = 6 × 10−6 aG, where

aG =
2ax − 3ay + 4az

[22 + 32 + 42]1/2
= 0.371ax − 0.557ay + 0.743az

So now

dW = −(20 × 10−6)[100aρ − 200aφ + 300az] · [0.371ax − 0.557ay + 0.743az](6 × 10−6)

= −(20 × 10−6) [37.1(aρ · ax) − 55.7(aρ · ay) − 74.2(aφ · ax) + 111.4(aφ · ay)

+ 222.9] (6 × 10−6)

where, at P , (aρ · ax) = (aφ · ay) = cos(40◦) = 0.766, (aρ · ay) = sin(40◦) = 0.643, and
(aφ · ax) = − sin(40◦) = −0.643. Substituting these results in

dW = −(20 × 10−6)[28.4 − 35.8 + 47.7 + 85.3 + 222.9](6 × 10−6) = −41.8 nJ
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4.2. An electric field is given as E = −10ey(sin 2z ax + x sin 2z ay + 2x cos 2z az) V/m.
a) Find E at P (5, 0, π/12): Substituting this point into the given field produces

EP = −10 [sin(π/6)ax + 5 sin(π/6)ay + 10 cos(π/6)az] = −
[
5ax + 25ay + 50

√
3az

]

b) How much work is done in moving a charge of 2 nC an incremental distance of 1 mm
from P in the direction of ax? This will be

dWx = −qE · dLax = −2 × 10−9(−5)(10−3) = 10−11 J = 10 pJ

c) of ay?
dWy = −qE · dLay = −2 × 10−9(−25)(10−3) = 50−11 J = 50 pJ

d) of az?
dWz = −qE · dLaz = −2 × 10−9(−50

√
3)(10−3) = 100

√
3 pJ

e) of (ax + ay + az)?

dWxyz = −qE · dL
ax + ay + az)√

3
=

10 + 50 + 100
√

3√
3

= 135 pJ

4.3. If E = 120aρ V/m, find the incremental amount of work done in moving a 50µm charge a
distance of 2 mm from:

a) P (1, 2, 3) toward Q(2, 1, 4): The vector along this direction will be Q − P = (1,−1, 1)
from which aPQ = [ax − ay + az]/

√
3. We now write

dW = −qE · dL = −(50 × 10−6)
[
120aρ · (ax − ay + az√

3

]
(2 × 10−3)

= −(50 × 10−6)(120) [(aρ · ax) − (aρ · ay)]
1√
3
(2 × 10−3)

At P , φ = tan−1(2/1) = 63.4◦. Thus (aρ · ax) = cos(63.4) = 0.447 and (aρ · ay) =
sin(63.4) = 0.894. Substituting these, we obtain dW = 3.1 µJ.

b) Q(2, 1, 4) toward P (1, 2, 3): A little thought is in order here: Note that the field has only
a radial component and does not depend on φ or z. Note also that P and Q are at the
same radius (

√
5) from the z axis, but have different φ and z coordinates. We could just

as well position the two points at the same z location and the problem would not change.
If this were so, then moving along a straight line between P and Q would thus involve
moving along a chord of a circle whose radius is

√
5. Halfway along this line is a point of

symmetry in the field (make a sketch to see this). This means that when starting from
either point, the initial force will be the same. Thus the answer is dW = 3.1 µJ as in part
a. This is also found by going through the same procedure as in part a, but with the
direction (roles of P and Q) reversed.
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4.4. It is found that the energy expended in carrying a charge of 4 µC from the origin to (x,0,0)
along the x axis is directly proportional to the square of the path length. If Ex = 7 V/m at
(1,0,0), determine Ex on the x axis as a function of x.

The work done is in general given by

W = −q

∫ x

0

Ex dx = Ax2

where A is a constant. Therefore Ex must be of the form Ex = E0x. At x = 1, Ex = 7,
so E0 = 7. Therefore Ex = 7x V/m. Note that with the positive-x-directed field, the
expended energy in moving the charge from 0 to x would be negative.

4.5. Compute the value of
∫ P

A
G · dL for G = 2yax with A(1,−1, 2) and P (2, 1, 2) using the path:

a) straight-line segments A(1,−1, 2) to B(1, 1, 2) to P (2, 1, 2): In general we would have∫ P

A

G · dL =
∫ P

A

2y dx

The change in x occurs when moving between B and P , during which y = 1. Thus∫ P

A

G · dL =
∫ P

B

2y dx =
∫ 2

1

2(1)dx = 2

b) straight-line segments A(1,−1, 2) to C(2,−1, 2) to P (2, 1, 2): In this case the change in
x occurs when moving from A to C, during which y = −1. Thus∫ P

A

G · dL =
∫ C

A

2y dx =
∫ 2

1

2(−1)dx = −2

4.6. Determine the work done in carrying a 2-µC charge from (2,1,-1) to (8,2,-1) in the field
E = yax + xay along
a) the parabola x = 2y2: As a look ahead, we can show (by taking its curl) that E is

conservative. We therefore expect the same answer for all three paths. The general
expression for the work is

W = −q

∫ B

A

E · dL = −q

[∫ 8

2

y dx +
∫ 2

1

x dy

]

In the present case, x = 2y2, and so y =
√

x/2. Substituting these and the charge, we
get

W1 = −2×10−6

[∫ 8

2

√
x/2 dx +

∫ 2

1

2y2 dy

]
= −2×10−6

[√
2

3
x3/2

∣∣∣8
2

+
2
3
y3

∣∣∣2
1

]
= −28 µJ

b) the hyperbola x = 8/(7 − 3y): We find y = 7/3 − 8/3x, and the work is

W2 = −2 × 10−6

[∫ 8

2

(
7
3
− 8

3x

)
dx +

∫ 2

1

8
7 − 3y

dy

]

= −2 × 10−6

[
7
3
(8 − 2) − 8

3
ln

(
8
2

)
− 8

3
ln(7 − 3y)

∣∣∣2
1

]
= −28 µJ
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4.6c. the straight line x = 6y − 4: Here, y = x/6 + 2/3, and the work is

W3 = −2 × 10−6

[∫ 8

2

(
x

6
+

2
3

)
dx +

∫ 2

1

(6y − 4) dy

]
= −28 µJ

4.7. Let G = 3xy3ax + 2zay. Given an initial point P (2, 1, 1) and a final point Q(4, 3, 1), find∫
G · dL using the path:

a) straight line: y = x − 1, z = 1: We obtain:∫
G · dL =

∫ 4

2

3xy2 dx +
∫ 3

1

2z dy =
∫ 4

2

3x(x − 1)2 dx +
∫ 3

1

2(1) dy = 90

b) parabola: 6y = x2 + 2, z = 1: We obtain:∫
G · dL =

∫ 4

2

3xy2 dx +
∫ 3

1

2z dy =
∫ 4

2

1
12

x(x2 + 2)2 dx +
∫ 3

1

2(1) dy = 82

4.8. Given E = −xax + yay, find the work involved in moving a unit positive charge on a circular
arc, the circle centered at the origin, from x = a to x = y = a/

√
2.

In moving along the arc, we start at φ = 0 and move to φ = π/4. The setup is

W = −q

∫
E · dL = −

∫ π/4

0

E · adφaφ = −
∫ π/4

0

(−x ax · aφ︸ ︷︷ ︸
− sin φ

+ y ay · aφ︸ ︷︷ ︸
cos φ

)a dφ

= −
∫ π/4

0

2a2 sinφ cos φ dφ = −
∫ π/4

0

a2 sin(2φ) dφ = −a2/2

where q = 1, x = a cos φ, and y = a sin φ.

Note that the field is conservative, so we would get the same result by integrating along
a two-segment path over x and y as shown:

W = −
∫

E · dL = −
[∫ a/

√
2

a

(−x) dx +
∫ a/

√
2

0

y dy

]
= −a2/2

4.9. A uniform surface charge density of 20 nC/m2 is present on the spherical surface r = 0.6 cm
in free space.

a) Find the absolute potential at P (r = 1 cm, θ = 25◦, φ = 50◦): Since the charge density
is uniform and is spherically-symmetric, the angular coordinates do not matter. The
potential function for r > 0.6 cm will be that of a point charge of Q = 4πa2ρs, or

V (r) =
4π(0.6 × 10−2)2(20 × 10−9)

4πε0r
=

0.081
r

V with r in meters

At r = 1 cm, this becomes V (r = 1 cm) = 8.14 V
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b) Find VAB given points A(r = 2 cm, θ = 30◦, φ = 60◦) and B(r = 3 cm, θ = 45◦, φ = 90◦):
Again, the angles do not matter because of the spherical symmetry. We use the part a
result to obtain

VAB = VA − VB = 0.081
[

1
0.02

− 1
0.03

]
= 1.36 V

4.10. Express the potential field of an infinite line charge

a) with zero reference at ρ = ρ0: We write in general:

V�(ρ) = −
∫

ρL

2πε0ρ
dρ + C1 = − ρL

2πε0
ln(ρ) + C1 = 0 at ρ = ρ0

Therefore
C1 =

ρL

2πε0
ln(ρ0)

and finally

V�(ρ) =
ρL

2πε0
[ln(ρ0) − ln(ρ)] =

ρL

2πε0
ln

(
ρ0

ρ

)

b) with V = V0 at ρ = ρ0: Using the reasoning of part a, we have

V�(ρ0) = V0 =
ρL

2πε0
ln(ρ0) + C2 ⇒ C2 = V0 +

ρL

2πε0
ln(ρ0)

and finally

V�(ρ) =
ρL

2πε0
ln

(
ρ0

ρ

)
+ V0

c) Can the zero reference be placed at infinity? Why? Answer: No, because we would have
a potential that is proportional to the undefined ln(∞/ρ).

4.11. Let a uniform surface charge density of 5 nC/m2 be present at the z = 0 plane, a uniform line
charge density of 8 nC/m be located at x = 0, z = 4, and a point charge of 2µC be present
at P (2, 0, 0). If V = 0 at M(0, 0, 5), find V at N(1, 2, 3): We need to find a potential function
for the combined charges which is zero at M . That for the point charge we know to be

Vp(r) =
Q

4πε0r

Potential functions for the sheet and line charges can be found by taking indefinite integrals
of the electric fields for those distributions. For the line charge, we have

Vl(ρ) = −
∫

ρl

2πε0ρ
dρ + C1 = − ρl

2πε0
ln(ρ) + C1

For the sheet charge, we have

Vs(z) = −
∫

ρs

2ε0
dz + C2 = − ρs

2ε0
z + C2
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The total potential function will be the sum of the three. Combining the integration constants,
we obtain:

V =
Q

4πε0r
− ρl

2πε0
ln(ρ) − ρs

2ε0
z + C

The terms in this expression are not referenced to a common origin, since the charges are at
different positions. The parameters r, ρ, and z are scalar distances from the charges, and will
be treated as such here. To evaluate the constant, C, we first look at point M , where VT = 0.
At M , r =

√
22 + 52 =

√
29, ρ = 1, and z = 5. We thus have

0 =
2 × 10−6

4πε0
√

29
− 8 × 10−9

2πε0
ln(1) − 5 × 10−9

2ε0
5 + C ⇒ C = −1.93 × 103 V

At point N , r =
√

1 + 4 + 9 =
√

14, ρ =
√

2, and z = 3. The potential at N is thus

VN =
2 × 10−6

4πε0
√

14
− 8 × 10−9

2πε0
ln(

√
2) − 5 × 10−9

2ε0
(3) − 1.93 × 103 = 1.98 × 103 V = 1.98 kV

4.12. In spherical coordinates, E = 2r/(r2 + a2)2 ar V/m. Find the potential at any point, using
the reference

a) V = 0 at infinity: We write in general

V (r) = −
∫

2r dr

(r2 + a2)2
+ C =

1
r2 + a2

+ C

With a zero reference at r → ∞, C = 0 and therefore V (r) = 1/(r2 + a2).

b) V = 0 at r = 0: Using the general expression, we find

V (0) =
1
a2

+ C = 0 ⇒ C = − 1
a2

Therefore

V (r) =
1

r2 + a2
− 1

a2
=

−r2

a2(r2 + a2)

c) V = 100V at r = a: Here, we find

V (a) =
1

2a2
+ C = 100 ⇒ C = 100 − 1

2a2

Therefore

V (r) =
1

r2 + a2
− 1

2a2
+ 100 =

a2 − r2

2a2(r2 + a2)
+ 100

4.13. Three identical point charges of 4 pC each are located at the corners of an equilateral triangle
0.5 mm on a side in free space. How much work must be done to move one charge to a point
equidistant from the other two and on the line joining them? This will be the magnitude of
the charge times the potential difference between the finishing and starting positions, or

W =
(4 × 10−12)2

2πε0

[
1

2.5
− 1

5

]
× 104 = 5.76 × 10−10 J = 576 pJ
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4.14. Given the electric field E = (y + 1)ax + (x− 1)ay + 2az, find the potential difference between
the points
a) (2,-2,-1) and (0,0,0): We choose a path along which motion occurs in one coordinate

direction at a time. Starting at the origin, first move along x from 0 to 2, where y = 0;
then along y from 0 to −2, where x is 2; then along z from 0 to −1. The setup is

Vb − Va = −
∫ 2

0

(y + 1)
∣∣∣
y=0

dx −
∫ −2

0

(x − 1)
∣∣∣
x=2

dy −
∫ −1

0

2 dz = 2

b) (3,2,-1) and (-2,-3,4): Following similar reasoning,

Vb − Va = −
∫ 3

−2

(y + 1)
∣∣∣
y=−3

dx −
∫ 2

−3

(x − 1)
∣∣∣
x=3

dy −
∫ −1

4

2 dz = 10

4.15. Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at x = −1, y = 2
in free space. If the potential at the origin is 100 V, find V at P (4, 1, 3): The net potential
function for the two charges would in general be:

V = − ρl

2πε0
ln(R1) −

ρl

2πε0
ln(R2) + C

At the origin, R1 = R2 =
√

5, and V = 100 V. Thus, with ρl = 8 × 10−9,

100 = −2
(8 × 10−9)

2πε0
ln(

√
5) + C ⇒ C = 331.6 V

At P (4, 1, 3), R1 = |(4, 1, 3)−(1, 1, 2)| =
√

10 and R2 = |(4, 1, 3)−(−1, 2, 3)| =
√

26. Therefore

VP = − (8 × 10−9)
2πε0

[
ln(

√
10) + ln(

√
26)

]
+ 331.6 = −68.4 V

4.16. The potential at any point in space is given in cylindrical coordinates by V = (k/ρ2) cos(bφ)
V/m, where k and b are constants.

a) Where is the zero reference for potential? This will occur at ρ → ∞, or whenever
cos(bφ) = 0, which gives φ = (2m − 1)π/2b, where m = 1, 2, 3...

b) Find the vector electric field intensity at any point (ρ, φ, z). We use

E(ρ, φ, z) = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ =

k

ρ3
[2 cos(bφ)aρ + b sin(bφ)aφ]

4.17. Uniform surface charge densities of 6 and 2 nC/m2 are present at ρ = 2 and 6 cm respectively,
in free space. Assume V = 0 at ρ = 4 cm, and calculate V at:

a) ρ = 5 cm: Since V = 0 at 4 cm, the potential at 5 cm will be the potential difference
between points 5 and 4:

V5 = −
∫ 5

4

E · dL = −
∫ 5

4

aρsa

ε0ρ
dρ = − (.02)(6 × 10−9)

ε0
ln

(
5
4

)
= −3.026 V
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b) ρ = 7 cm: Here we integrate piecewise from ρ = 4 to ρ = 7:

V7 = −
∫ 6

4

aρsa

ε0ρ
dρ −

∫ 7

6

(aρsa + bρsb)
ε0ρ

dρ

With the given values, this becomes

V7 = −
[
(.02)(6 × 10−9)

ε0

]
ln

(
6
4

)
−

[
(.02)(6 × 10−9) + (.06)(2 × 10−9)

ε0

]
ln

(
7
6

)
= −9.678 V

4.18. Find the potential at the origin produced by a line charge ρL = kx/(x2 + a2) extending along
the x axis from x = a to +∞, where a > 0. Assume a zero reference at infinity.

Think of the line charge as an array of point charges, each of charge dq = ρLdx, and each
having potential at the origin of dV = ρLdx/(4πε0x). The total potential at the origin is
then the sum of all these potentials, or

V =
∫ ∞

a

ρL dx

4πε0x
=

∫ ∞

a

k dx

4πε0(x2 + a2)
=

k

4πε0a
tan−1

(x

a

)∞

a
=

k

4πε0a

[π

2
− π

4

]
=

k

16ε0a

4.19. The annular surface, 1 cm < ρ < 3 cm, z = 0, carries the nonuniform surface charge density
ρs = 5ρ nC/m2. Find V at P (0, 0, 2 cm) if V = 0 at infinity: We use the superposition integral
form:

VP =
∫ ∫

ρs da

4πε0|r − r′|
where r = zaz and r′ = ρaρ. We integrate over the surface of the annular region, with
da = ρ dρ dφ. Substituting the given values, we find

VP =
∫ 2π

0

∫ .03

.01

(5 × 10−9)ρ2 dρ dφ

4πε0
√

ρ2 + z2

Substituting z = .02, and using tables, the integral evaluates as

VP =
[
(5 × 10−9)

2ε0

] [
ρ

2

√
ρ2 + (.02)2 − (.02)2

2
ln(ρ +

√
ρ2 + (.02)2)

].03

.01

= .081 V

4.20. A point charge Q is located at the origin. Express the potential in both rectangular and
cylindrical coordinates, and use the gradient operation in that coordinate system to find the
electric field intensity. The result may be checked by conversion to spherical coordinates.

The potential is expressed in spherical, rectangular, and cylindrical coordinates respec-
tively as:

V =
Q

4πε0r2
=

Q

4πε0(x2 + y2 + z2)1/2
=

Q

4πε0(ρ2 + z2)1/2

Now, working with rectangular coordinates

E = −∇V = −∂V

∂x
ax − ∂V

∂y
ay − ∂V

∂z
az =

Q

4πε0

[
xax + y ay + z az

(x2 + y2 + z2)3/2

]
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4.20. (continued)
Now, converting this field to spherical components, we find

Er = E · ar =
Q

4πε0

[
r sin θ cos φ(ax · ar) + r sin θ sin φ(ay · ar) + r cos θ(az · ar)

r3

]

=
Q

4πε0

[
sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ

r2

]
=

Q

4πε0r2

Continuing:

Eθ = E · aθ =
Q

4πε0

[
r sin θ cos φ(ax · aθ) + r sin θ sin φ(ay · aθ) + r cos θ(az · aθ)

r3

]

=
Q

4πε0

[
sin θ cos θ cos2 φ + sin θ cos θ sin2 φ − cos θ sin θ

r2

]
= 0

Finally

Eφ = E · aφ =
Q

4πε0

[
r sin θ cos φ(ax · aφ) + r sin θ sin φ(ay · aφ) + r cos θ(az · aφ)

r3

]

=
Q

4πε0

[
sin θ cos φ(− sin φ) + sin θ sin φ cos φ + 0

r2

]
= 0 check

Now, in cylindrical we have in this case

E = −∇V = −∂V

∂ρ
aρ − ∂V

∂z
az =

Q

4πε0

[
ρaρ + z az

(ρ2 + z2)3/2

]
Converting to spherical components, we find

Er =
Q

4πε0

[
r sin θ(aρ · ar) + r cos θ(az · ar)

r3

]
=

Q

4πε0

[
sin2 θ + cos2 θ

r2

]
=

Q

4πε0r2

Eθ =
Q

4πε0

[
r sin θ(aρ · aθ) + r cos θ(az · aθ)

r3

]
=

Q

4πε0

[
sin θ cos θ + cos θ(− sin θ)

r2

]
= 0

Eφ =
Q

4πε0

[
r sin θ(aρ · aφ) + r cos θ(az · aφ)

r3

]
= 0 check

4.21. Let V = 2xy2z3+3 ln(x2+2y2+3z2) V in free space. Evaluate each of the following quantities
at P (3, 2,−1):

a) V : Substitute P directly to obtain: V = −15.0 V
b) |V |. This will be just 15.0 V.
c) E: We have

E
∣∣∣
P

= −∇V
∣∣∣
P

= −
[(

2y2z3 +
6x

x2 + 2y2 + 3z2

)
ax +

(
4xyz3 +

12y

x2 + 2y2 + 3z2

)
ay

+
(

6xy2z2 +
18z

x2 + 2y2 + 3z2

)
az

]
P

= 7.1ax + 22.8ay − 71.1az V/m
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4.21d) |E|P : taking the magnitude of the part c result, we find |E|P = 75.0 V/m.

e) aN : By definition, this will be

aN

∣∣∣
P

= − E
|E| = −0.095ax − 0.304ay + 0.948az

f) D: This is D
∣∣∣
P

= ε0E
∣∣∣
P

= 62.8ax + 202ay − 629az pC/m2.

4.22. A certain potential field is given in spherical coordinates by V = V0(r/a) sin θ. Find the total
charge contained within the region r < a: We first find the electric field through

E = −∇V = −∂V

∂r
ar −

1
r

∂V

∂θ
= −V0

a
[sin θ ar + cos θ aθ]

The requested charge is now the net outward flux of D = ε0E through the spherical shell of
radius a (with outward normal ar):

Q =
∫

S

D · dS =
∫ 2π

0

∫ π

0

ε0E · ar a2 sin θ dθ dφ = −2πaV0ε0

∫ π

0

sin2 θ dθ = −π2aε0V0 C

The same result can be found (as expected) by taking the divergence of D and integrating
over the spherical volume:

∇ · D = − 1
r2

∂

∂r

(
r2 ε0V0

a
sin θ

)
− 1

r sin θ

∂

∂θ

(
ε0V0

a
cos θ sin θ

)
= −ε0V0

ra

[
2 sin θ +

cos(2θ)
sin θ

]

= − ε0V0

ra sin θ

[
2 sin2 θ + 1 − 2 sin2 θ

]
=

−ε0V0

ra sin θ
= ρv

Now

Q =
∫ 2π

0

∫ π

0

∫ a

0

−ε0V0

ra sin θ
r2 sin θ dr dθ dφ =

−2π2ε0V0

a

∫ a

0

r dr = −π2aε0V0 C

4.23. It is known that the potential is given as V = 80ρ.6 V. Assuming free space conditions, find:

a) E: We find this through

E = −∇V = −dV

dρ
aρ = −48ρ−.4 V/m

b) the volume charge density at ρ = .5 m: Using D = ε0E, we find the charge density
through

ρv

∣∣∣
.5

= [∇ · D].5 =
(

1
ρ

)
d

dρ
(ρDρ)

∣∣∣
.5

= −28.8ε0ρ
−1.4

∣∣∣
.5

= −673 pC/m3

c) the total charge lying within the closed surface ρ = .6, 0 < z < 1: The easiest way to do
this calculation is to evaluate Dρ at ρ = .6 (noting that it is constant), and then multiply
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by the cylinder area: Using part a, we have Dρ

∣∣∣
.6

= −48ε0(.6)−.4 = −521 pC/m2. Thus

Q = −2π(.6)(1)521 × 10−12 C = −1.96 nC.

4.24. The surface defined by the equation x3 + y2 + z = 1000, where x, y, and z are positive, is an
equipotential surface on which the potential is 200 V. If |E| = 50 V/m at the point P (7, 25, 32)
on the surface, find E there:

First, the potential function will be of the form V (x, y, z) = C1(x3 + y2 + z) + C2, where
C1 and C2 are constants to be determined (C2 is in fact irrelevant for our purposes). The
electric field is now

E = −∇V = −C1(3x2 ax + 2y ay + az)

And the magnitude of E is |E| = C1

√
9x4 + 4y2 + 1, which at the given point will be

|E|P = C1

√
9(7)4 + 4(25)2 + 1 = 155.27C1 = 50 ⇒ C1 = 0.322

Now substitute C1 and the given point into the expression for E to obtain

EP = −(47.34ax + 16.10ay + 0.32az)

The other constant, C2, is needed to assure a potential of 200 V at the given point.

4.25. Within the cylinder ρ = 2, 0 < z < 1, the potential is given by V = 100 + 50ρ + 150ρ sinφ V.
a) Find V , E, D, and ρv at P (1, 60◦, 0.5) in free space: First, substituting the given point,

we find VP = 279.9 V. Then,

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ = − [50 + 150 sinφ]aρ − [150 cos φ]aφ

Evaluate the above at P to find EP = −179.9aρ − 75.0aφ V/m

Now D = ε0E, so DP = −1.59aρ − .664aφ nC/m2. Then

ρv = ∇·D =
(

1
ρ

)
d

dρ
(ρDρ)+

1
ρ

∂Dφ

∂φ
=

[
−1

ρ
(50 + 150 sinφ) +

1
ρ
150 sinφ

]
ε0 = −50

ρ
ε0 C

At P , this is ρvP = −443 pC/m3.

b) How much charge lies within the cylinder? We will integrate ρv over the volume to obtain:

Q =
∫ 1

0

∫ 2π

0

∫ 2

0

−50ε0
ρ

ρ dρ dφ dz = −2π(50)ε0(2) = −5.56 nC
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4.26. Let us assume that we have a very thin, square, imperfectly conducting plate 2m on a side,
located in the plane z = 0 with one corner at the origin such that it lies entirely within the
first quadrant. The potential at any point in the plate is given as V = −e−x sin y.

a) An electron enters the plate at x = 0, y = π/3 with zero initial velocity; in what direction
is its initial movement? We first find the electric field associated with the given potential:

E = −∇V = −e−x[sin y ax − cos y ay]

Since we have an electron, its motion is opposite that of the field, so the direction on
entry is that of −E at (0, π/3), or

√
3/2ax − 1/2ay.

b) Because of collisions with the particles in the plate, the electron achieves a relatively low
velocity and little acceleration (the work that the field does on it is converted largely into
heat). The electron therefore moves approximately along a streamline. Where does it
leave the plate and in what direction is it moving at the time? Considering the result
of part a, we would expect the exit to occur along the bottom edge of the plate. The
equation of the streamline is found through

Ey

Ex
=

dy

dx
= −cos y

sin y
⇒ x = −

∫
tan y dy + C = ln(cos y) + C

At the entry point (0, π/3), we have 0 = ln[cos(π/3)] + C, from which C = 0.69. Now,
along the bottom edge (y = 0), we find x = 0.69, and so the exit point is (0.69, 0). From
the field expression evaluated at the exit point, we find the direction on exit to be −ay.

4.27. Two point charges, 1 nC at (0, 0, 0.1) and −1 nC at (0, 0,−0.1), are in free space.
a) Calculate V at P (0.3, 0, 0.4): Use

VP =
q

4πε0|R+| −
q

4πε0|R−|

where R+ = (.3, 0, .3) and R− = (.3, 0, .5), so that |R+| = 0.424 and |R−| = 0.583. Thus

VP =
10−9

4πε0

[
1

.424
− 1

.583

]
= 5.78 V

b) Calculate |E| at P : Use

EP =
q(.3ax + .3az)
4πε0(.424)3

− q(.3ax + .5az)
4πε0(.583)3

=
10−9

4πε0
[2.42ax + 1.41az] V/m

Taking the magnitude of the above, we find |EP | = 25.2 V/m.

c) Now treat the two charges as a dipole at the origin and find V at P : In spherical coor-
dinates, P is located at r =

√
.32 + .42 = .5 and θ = sin−1(.3/.5) = 36.9◦. Assuming a

dipole in far-field, we have

VP =
qd cos θ

4πε0r2
=

10−9(.2) cos(36.9◦)
4πε0(.5)2

= 5.76 V
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4.28. Use the electric field intensity of the dipole (Sec. 4.7, Eq. (36)) to find the difference in
potential between points at θa and θb, each point having the same r and φ coordinates. Under
what conditions does the answer agree with Eq. (34), for the potential at θa?

We perform a line integral of Eq. (36) along an arc of constant r and φ:

Vab = −
∫ θa

θb

qd

4πε0r3
[2 cos θ ar + sin θ aθ] · aθ r dθ = −

∫ θa

θb

qd

4πε0r2
sin θ dθ

=
qd

4πε0r2
[cos θa − cos θb]

This result agrees with Eq. (34) if θa (the ending point in the path) is 90◦ (the xy plane).
Under this condition, we note that if θb > 90◦, positive work is done when moving (against
the field) to the xy plane; if θb < 90◦, negative work is done since we move with the field.

4.29. A dipole having a moment p = 3ax −5ay +10az nC · m is located at Q(1, 2,−4) in free space.
Find V at P (2, 3, 4): We use the general expression for the potential in the far field:

V =
p · (r − r′)

4πε0|r − r′|3

where r − r′ = P − Q = (1, 1, 8). So

VP =
(3ax − 5ay + 10az) · (ax + ay + 8az) × 10−9

4πε0[12 + 12 + 82]1.5
= 1.31 V

4.30. A dipole for which p = 10ε0 az C · m is located at the origin. What is the equation of the
surface on which Ez = 0 but E �= 0?

First we find the z component:

Ez = E · az =
10

4πr3
[2 cos θ (ar · az) + sin θ (aθ · az)] =

5
2πr3

[
2 cos2 θ − sin2 θ

]
This will be zero when

[
2 cos2 θ − sin2 θ

]
= 0. Using identities, we write

2 cos2 θ − sin2 θ =
1
2
[1 + 3 cos(2θ)]

The above becomes zero on the cone surfaces, θ = 54.7◦ and θ = 125.3◦.

4.31. A potential field in free space is expressed as V = 20/(xyz) V.

a) Find the total energy stored within the cube 1 < x, y, z < 2. We integrate the energy
density over the cube volume, where wE = (1/2)ε0E · E, and where

E = −∇V = 20
[

1
x2yz

ax +
1

xy2z
ay +

1
xyz2

az

]
V/m

The energy is now

WE = 200ε0

∫ 2

1

∫ 2

1

∫ 2

1

[
1

x4y2z2
+

1
x2y4z2

+
1

x2y2z4

]
dx dy dz
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4.31a. (continued)

The integral evaluates as follows:

WE = 200ε0

∫ 2

1

∫ 2

1

[
−

(
1
3

)
1

x3y2z2
− 1

xy4z2
− 1

xy2z4

]2

1

dy dz

= 200ε0

∫ 2

1

∫ 2

1

[(
7
24

)
1

y2z2
+

(
1
2

)
1

y4z2
+

(
1
2

)
1

y2z4

]
dy dz

= 200ε0

∫ 2

1

[
−

(
7
24

)
1

yz2
−

(
1
6

)
1

y3z2
−

(
1
2

)
1

yz4

]2

1

dz

= 200ε0

∫ 2

1

[(
7
48

)
1
z2

+
(

7
48

)
1
z2

+
(

1
4

)
1
z4

]
dz

= 200ε0(3)
[

7
96

]
= 387 pJ

b) What value would be obtained by assuming a uniform energy density equal to the value
at the center of the cube? At C(1.5, 1.5, 1.5) the energy density is

wE = 200ε0(3)
[

1
(1.5)4(1.5)2(1.5)2

]
= 2.07 × 10−10 J/m3

This, multiplied by a cube volume of 1, produces an energy value of 207 pJ.

4.32. Using Eq. (36), a) find the energy stored in the dipole field in the region r > a:

We start with
E(r, θ) =

qd

4πε0r3
[2 cos θ ar + sin θ aθ]

Then the energy will be

We =
∫

vol

1
2
ε0E · E dv =

∫ 2π

0

∫ π

0

∫ ∞

a

(qd)2

32π2ε0r6

[
4 cos2 θ + sin2 θ

]︸ ︷︷ ︸
3 cos2 θ+1

r2 sin θ dr dθ dφ

=
−2π(qd)2

32π2ε0

1
3r3

∣∣∣∞
a

∫ π

0

[
3 cos2 θ + 1

]
sin θ dθ =

(qd)2

48π2ε0a3

[
− cos3 θ − cos θ

]π

0︸ ︷︷ ︸
4

=
(qd)2

12πε0a3
J

b) Why can we not let a approach zero as a limit? From the above result, a singularity in the
energy occurs as a → 0. More importantly, a cannot be too small, or the original far-field
assumption used to derive Eq. (36) (a >> d) will not hold, and so the field expression
will not be valid.

4.33. A copper sphere of radius 4 cm carries a uniformly-distributed total charge of 5µC in free
space.
a) Use Gauss’ law to find D external to the sphere: with a spherical Gaussian surface at

radius r, D will be the total charge divided by the area of this sphere, and will be ar-
directed. Thus

D =
Q

4πr2
ar =

5 × 10−6

4πr2
ar C/m2
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4.33b) Calculate the total energy stored in the electrostatic field: Use

WE =
∫

vol

1
2
D · E dv =

∫ 2π

0

∫ π

0

∫ ∞

.04

1
2

(5 × 10−6)2

16π2ε0r4
r2 sin θ dr dθ dφ

= (4π)
(

1
2

)
(5 × 10−6)2

16π2ε0

∫ ∞

.04

dr

r2
=

25 × 10−12

8πε0

1
.04

= 2.81 J

c) Use WE = Q2/(2C) to calculate the capacitance of the isolated sphere: We have

C =
Q2

2WE
=

(5 × 10−6)2

2(2.81)
= 4.45 × 10−12 F = 4.45 pF

4.34. A sphere of radius a contains volume charge of uniform density ρ0 C/m3. Find the total stored
energy by applying

a) Eq. (43): We first need the potential everywhere inside the sphere. The electric field
inside and outside is readily found from Gauss’s law:

E1 =
ρ0r

3ε0
ar r ≤ a and E2 =

ρ0a
3

3ε0r2
ar r ≥ a

The potential at position r inside the sphere is now the work done in moving a unit
positive point charge from infinity to position r:

V (r) = −
∫ a

∞
E2 · ar dr −

∫ r

a

E1 · ar dr′ = −
∫ a

∞

ρ0a
3

3ε0r2
dr −

∫ r

a

ρ0r
′

3ε0
dr′ =

ρ0

6ε0

(
3a2 − r2

)
Now, using this result in (43) leads to the energy associated with the charge in the sphere:

We =
1
2

∫ 2π

0

∫ π

0

∫ a

0

ρ2
0

6ε0

(
3a2 − r2

)
r2 sin θ dr dθ dφ =

πρ0

3ε0

∫ a

0

(
3a2r2 − r4

)
dr =

4πa5ρ2
0

15ε0

b) Eq. (45): Using the given fields we find the energy densities

we1 =
1
2
ε0E1 · E1 =

ρ2
0r

2

18ε0
r ≤ a and we2 =

1
2
ε0E2 · E2 =

ρ2
0a

6

18ε0r4
r ≥ a

We now integrate these over their respective volumes to find the total energy:

We =
∫ 2π

0

∫ π

0

∫ a

0

ρ2
0r

2

18ε0
r2 sin θ dr dθ dφ +

∫ 2π

0

∫ π

0

∫ ∞

a

ρ2
0a

6

18ε0r4
r2 sin θ dr dθ dφ =

4πa5ρ2
0

15ε0
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4.35. Four 0.8 nC point charges are located in free space at the corners of a square 4 cm on a side.
a) Find the total potential energy stored: This will be given by

WE =
1
2

4∑
n=1

qnVn

where Vn in this case is the potential at the location of any one of the point charges that
arises from the other three. This will be (for charge 1)

V1 = V21 + V31 + V41 =
q

4πε0

[
1

.04
+

1
.04

+
1

.04
√

2

]

Taking the summation produces a factor of 4, since the situation is the same at all four
points. Consequently,

WE =
1
2
(4)q1V1 =

(.8 × 10−9)2

2πε0(.04)

[
2 +

1√
2

]
= 7.79 × 10−7 J = 0.779 µJ

b) A fifth 0.8 nC charge is installed at the center of the square. Again find the total stored
energy: This will be the energy found in part a plus the amount of work done in moving
the fifth charge into position from infinity. The latter is just the potential at the square
center arising from the original four charges, times the new charge value, or

∆WE =
4(.8 × 10−9)2

4πε0(.04
√

2/2)
= .813 µJ

The total energy is now

WE net = WE(part a) + ∆WE = .779 + .813 = 1.59 µJ

57


