CHAPTER 4

4.1. The value of E at P(p = 2, ¢ = 40°, z = 3) is given as E = 100a, — 200a, + 300a, V/m.

Determine the incremental work required to move a 20 4C charge a distance of 6 pm:

a) in the direction of a,: The incremental work is given by dW = —qE - dL, where in this

case, dL = dpa, = 6 x 10" %a,. Thus

dW = —(20 x 107°C)(100 V/m)(6 x 107 %m) = 12 x 107 J = —12nJ

b) in the direction of as: In this case dL = 2dgas =6 x 107 %a,, and so

dW = —(20 x 107)(—200)(6 x 1075) =24 x 1078 =24 nJ

c) in the direction of a,: Here, dL = dza, = 6 x 10~%a_, and so

dW = —(20 x 107%)(300)(6 x 107%) = —3.6 x 107 J = —36 nJ

d) in the direction of E: Here, dL = 6 x 107%ap, where

an 100a, — 200ay + 300a,
P 711002 + 2002 + 3002]1/2

—0.267a, —0.535a, 4+ 0.802a,

Thus

dW = —(20 x 10~%)[100a, — 200a4 + 300a,] - [0.267a, — 0.535a, + 0.802a,](6 x 10~°)

= —44.9nJ

e) In the direction of G =2a, — 3a, +4a,: In this case, dL = 6 x 10~%ag, where

2a, — 3a, +4a,
[22 + 32 + 42]1/2

ag = =0.371a, — 0.557a, +0.743 a,

So now

dW = —(20 x 107%)[100a, — 200a, + 300a.] - [0.371a, — 0.557 a, + 0.743a.](6 x 10~°)

=—(20x 107%)[37.1(a, - a,) — 55.7(a, - a,) — 74.2(a, - a,) + 111.4(a, - a,)
+ 222.9] (6 x 107%)

where, at P, (a, -a;) = (a4 - a,) = cos(40°) = 0.766, (a, - a,) = sin(40°) = 0.643, and

ay - a,) = —sin(40°) = —0.643. Substituting these results in
¢

dW = —(20 x 107°)[28.4 — 35.8 +47.7 + 85.3 + 222.9](6 x 10°%) = —41.8nJ
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4.2. An electric field is given as E = —10eY(sin 2z a, + xsin2za, + 2x cos2za,) V/m.
a) Find E at P(5,0,7/12): Substituting this point into the given field produces

Ep = —10 [sin(7/6) a, + 5sin(r/6) a, + 10 cos(7/6) a,] = — [5 a, +25a, +50v/3 az}

b) How much work is done in moving a charge of 2 nC an incremental distance of 1 mm
from P in the direction of a,? This will be

dW, = —qE -dLa, = —2 x 107%(=5)(107%) = 107" J =10 pJ

c) of a,?
dW, = —qE-dLa, = —2 x 107?(=25)(107?) = 50~!* J = 50 pJ

d) ofa,?
dW, = —qE -dLa, = —2 x 107%(=50v/3)(107%) = 100v/3 pJ

e) of (a, +a, +a,)?

a, +a,+a.) 10450+ 100v/3
V3 V3

AWy, = —qE - dL =135 pJ

4.3. If E = 120a, V/m, find the incremental amount of work done in moving a 50 ym charge a
distance of 2 mm from:

a) P(1,2,3) toward Q(2,1,4): The vector along this direction will be @ — P = (1,—1,1)
from which apg = [a, — a, + a,]/v3. We now write

(ay —a, +a,
V3
1

V3

At P, ¢ = tan™(2/1) = 63.4°. Thus (a, - a,) = cos(63.4) = 0.447 and (a, - a,) =
sin(63.4) = 0.894. Substituting these, we obtain dW = 3.1 uJ.

b) Q(2,1,4) toward P(1,2,3): A little thought is in order here: Note that the field has only
a radial component and does not depend on ¢ or z. Note also that P and () are at the
same radius (v/5) from the z axis, but have different ¢ and z coordinates. We could just
as well position the two points at the same z location and the problem would not change.
If this were so, then moving along a straight line between P and () would thus involve
moving along a chord of a circle whose radius is v/5. Halfway along this line is a point of
symmetry in the field (make a sketch to see this). This means that when starting from
either point, the initial force will be the same. Thus the answer is dW = 3.1 uJ as in part
a. This is also found by going through the same procedure as in part a, but with the
direction (roles of P and @) reversed.

dW = —gE - dL = —(50 x 10~%) [120a,, - (2x107%)

= —(50 x 107°)(120) [(a, - a;) — (a, - a,)] —=(2 x 107?)
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4.4. Tt is found that the energy expended in carrying a charge of 4 uC from the origin to (x,0,0)
along the x axis is directly proportional to the square of the path length. If E, =7 V/m at
(1,0,0), determine E, on the z axis as a function of x.

The work done is in general given by
xT
W = —q/ E,dx = Az?
0

where A is a constant. Therefore E, must be of the form E, = Fgx. At e =1, E, =7,
so Fy = 7. Therefore E, = 7Tx V/m. Note that with the positive-z-directed field, the
expended energy in moving the charge from 0 to x would be negative.

4.5. Compute the value of f: G - dL for G = 2ya, with A(1,—1,2) and P(2,1,2) using the path:
a) straight-line segments A(1, —1,2) to B(1,1,2) to P(2,1,2): In general we would have

P P
/ G‘dL:/ 2y dx
A A

The change in x occurs when moving between B and P, during which y = 1. Thus

P P 2
/ G-dL = / 2ydr = / 2(1)dz =2
A B 1

b) straight-line segments A(1,—1,2) to C(2,—1,2) to P(2,1,2): In this case the change in
x occurs when moving from A to C, during which y = —1. Thus

P c 2
/ G'sz/ 2ydx:/ 2(-1)dx = -2
A A 1

4.6. Determine the work done in carrying a 2-uC charge from (2,1,-1) to (8,2,-1) in the field
E = ya, + ra, along
a) the parabola x = 2y%: As a look ahead, we can show (by taking its curl) that E is
conservative. We therefore expect the same answer for all three paths. The general
expression for the work is

B 8 2
W:—q/ E-dL:—q[/ ydaz—i—/ xdy}
A 2 1

In the present case, r = 2y, and so y = y/x/2. Substituting these and the charge, we
get

8 2
2 8 2 42
Wy = —2x10"° [/ \/w/2daz+/ 2y dy] = —2x107° !gaf”/?‘z + 53’3‘1] = —28 uJ
2 1

b) the hyperbola z = 8/(7 — 3y): We find y = 7/3 — 8/3z, and the work is

8 2
78 8
Wy =-2x10"° -——1d d
’ ) UQ (3 3w> $+/1 7—3y y}

7 8 8 8

2
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4.6c. the straight line = 6y — 4: Here, y = /6 + 2/3, and the work is
8 T 9 2
W3:—2><10_6[/ <6+§> dx—i—/ (6y—4)dy]:—28,uJ
2 1

4.7. Let G = 3zy®a, + 2za,. Given an initial point P(2,1,1) and a final point Q(4,3,1), find
J G - dL using the path:

a) straight line: y =z — 1, z = 1: We obtain:

4 3 4 3
/G-dL:/ 3:Uy2d:n+/ 22dy:/ 336(1:—1)2d3:+/ 2(1)dy =90
2 1 2 1

b) parabola: 6y = 22 + 2, z = 1: We obtain:
4 3 44 3
/G-dL:/ 3xy2dx+/ QZdy:/ E:c(:v2+2)2dx+/ 2(1)dy = 82
2 1 2 1

4.8. Given E = —za, + ya,, find the work involved in moving a unit positive charge on a circular
arc, the circle centered at the origin, from z = a to x = y = a/v/2.

In moving along the arc, we start at ¢ = 0 and move to ¢ = w/4. The setup is

/4 w/4
W:—q/E-dL:—/ E-ad¢a¢:—/ (_mam-a¢+yay-a¢)ad¢
0 0 ~—— ~——

—sin ¢ cos ¢

/4 /4
= —/ 2a?%sin ¢ cos pdo = —/ a?sin(2¢) dp = —a?/2
0 0

where g =1, x = acos ¢, and y = asin ¢.

Note that the field is conservative, so we would get the same result by integrating along
a two-segment path over x and y as shown:

a/\/§ a/\@
W:—/E~dL:— / (—x)daz—{—/ ydy| = —a*/2
a 0

4.9. A uniform surface charge density of 20 nC/m? is present on the spherical surface r = 0.6 cm
in free space.

a) Find the absolute potential at P(r = 1cm, 8 = 25°, ¢ = 50°): Since the charge density
is uniform and is spherically-symmetric, the angular coordinates do not matter. The
potential function for r > 0.6 cm will be that of a point charge of Q = 4mwa?p, or

47 (0. 1072)2(2 1079 .081
V(r) = (06 x 04 )/(20 x 1077) _ 008 V with r in meters
TeQT T

At r = 1cm, this becomes V(r = 1cm) =8.14 V
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b) Find Vap given points A(r = 2cm, 6 = 30°, ¢ = 60°) and B(r = 3cm, § = 45°, ¢ = 90°):
Again, the angles do not matter because of the spherical symmetry. We use the part a
result to obtain

1 1
Vap =V4 —Vp =0.081 [— - —] =136V

4.10. Express the potential field of an infinite line charge

a) with zero reference at p = pp: We write in general:

w(p):—/ Q:Ei)pdpﬂLCl :_2/7):60 In(p) + C1 =0 at p = po

Therefore

and finally

Velp) = ;T—Leo[ln(po) Ctn(p)] = P (%)

b) with V =V, at p = pg: Using the reasoning of part a, we have

Vi(po) = Vo = 2= In(pg) + Cs = Cs = Vo + 22— In(py)
2meg 2meg

and finally

Vilp) = 5ocn (%) +Vo

c¢) Can the zero reference be placed at infinity? Why? Answer: No, because we would have
a potential that is proportional to the undefined In(oco/p).

4.11. Let a uniform surface charge density of 5nC/m? be present at the z = 0 plane, a uniform line
charge density of 8nC/m be located at x = 0, z = 4, and a point charge of 2 uC be present
at P(2,0,0). If V=0 at M(0,0,5), find V at N(1,2,3): We need to find a potential function
for the combined charges which is zero at M. That for the point charge we know to be

Vo) = 1o

4megr

Potential functions for the sheet and line charges can be found by taking indefinite integrals
of the electric fields for those distributions. For the line charge, we have

pi Pl
Wip) == [ 2dp+ o = —5P (o) + G

For the sheet charge, we have

Vs(z)z—/;fodz+02=—2’foz+cz

46



The total potential function will be the sum of the three. Combining the integration constants,
we obtain: 0

B 260

= C
dregr  2meq at

The terms in this expression are not referenced to a common origin, since the charges are at
different positions. The parameters r, p, and z are scalar distances from the charges, and will
be treated as such here. To evaluate the constant, C, we first look at point M, where Vp = 0.
At M, r=+/224+52=+/29, p=1, and z = 5. We thus have

~2x107% 8x107? _5x107°

= — In(1 54C = C=-193x10°V
AenV/29 27ep )

260

At point N, r =1+ 4+ 9 =+/14, p = /2, and z = 3. The potential at N is thus

2x 1076 1079 1079
A0 S0 3y - X ey 193 % 107 = 1.98 x 108V = 198KV

Vy = -
N 4meg/14 27eg 2e0

4.12. In spherical coordinates, E = 2r/(r? + a?)?a, V/m. Find the potential at any point, using
the reference

a) V =0 at infinity: We write in general
2rdr 1
V(r) = _/4@2%2)2 +O= 4
With a zero reference at r — oo, C' = 0 and therefore V(r) = 1/(r? + a?).
b) V =0 at r = 0: Using the general expression, we find

1 1
VO)=5+0=0 = C=-—

Therefore )
1 1 —r

Virl —— - — —

(r) r2+a? a®  a?(r?+a?)

c¢) V=100V at r = a: Here, we find

1 1
Via) 52 +C 00 = C 00 5
Therefore 5 9
1 1 a“—r
Vir)=——— - — +100= ———— 4+ 100
(r) r2 4+ a2 2q? + 2a2%(r? + a?) +

4.13. Three identical point charges of 4 pC each are located at the corners of an equilateral triangle
0.5 mm on a side in free space. How much work must be done to move one charge to a point
equidistant from the other two and on the line joining them? This will be the magnitude of
the charge times the potential difference between the finishing and starting positions, or

(4 x 10712)2

W =
2meq

1 1 4 —10 v _
[2'5 5} % 10% = 5.76 x 10710 = 576 pJ
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4.14. Given the electric field E = (y + 1)a, + (z — 1)a, + 2a., find the potential difference between
the points
a) (2,-2,-1) and (0,0,0): We choose a path along which motion occurs in one coordinate
direction at a time. Starting at the origin, first move along = from 0 to 2, where y = 0;
then along y from 0 to —2, where x is 2; then along z from 0 to —1. The setup is

2 -2 1
%_Va:_/(y"'l)‘ dx—/ (x—1) dy—/ 2dz=2
0 y=0 0 =2 0

b) (3,2,-1) and (-2,-3,4): Following similar reasoning,

3 2 —1
Vb—Va:—/ (y+1)( dm—/(m—l) dy—/ 2dz =10
y=-—3 r=3 4

—2 -3

4.15. Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at z = —1, y = 2
in free space. If the potential at the origin is 100 V, find V' at P(4,1,3): The net potential
function for the two charges would in general be:

V=—Ll IR - LRy +C

2meq 2meg

At the origin, Ry = Ry = /5, and V = 100 V. Thus, with p; = 8 x 1079,

8 x 107?)

100 = —2. In(vV5)+C = C=3316V

2meg
At P(4,1,3), Ry = [(4,1,3)—(1,1,2)| = V10 and Ry = |(4,1,3)—(—1,2,3)| = v/26. Therefore

(8 x 107?)

Vp =—
P 2meg

In(v10) + In(v/26) | + 331.6 = —68.4 V

4.16. The potential at any point in space is given in cylindrical coordinates by V = (k/p?) cos(bo)
V/m, where k and b are constants.

a) Where is the zero reference for potential? This will occur at p — oo, or whenever
cos(bg) = 0, which gives ¢ = (2m — 1)7/2b, where m = 1,2,3...

b) Find the vector electric field intensity at any point (p, ¢, z). We use

oV 19V k
E = — = - — _—— = — 2 i
(p, @, 2) VV a5 a, > 90 ag = [2cos(bg) a, + b sin(bg) ay)

4.17. Uniform surface charge densities of 6 and 2 nC/m? are present at p = 2 and 6 cm respectively,
in free space. Assume V =0 at p =4 cm, and calculate V at:

a) p=>5 cm: Since V = 0 at 4 cm, the potential at 5 cm will be the potential difference
between points 5 and 4:

5 5 -9
» 02)(6 x 1
1/5:_/ E.dL:_/ Wsa g, (02)(6x10 )1n<§):—3.026v
4 4 €op €o 4

48



b) p =7 cm: Here we integrate piecewise from p =4 to p =T7:

6 7
sa sa bS
V7:_/ ap dp_/ (apsa +bpsn)
4 6

€0p €0p

With the given values, this becomes

Ve— _ [(.02)(6 X 109)] I (g) B [(.02)(6 x 1079) + (.06)(2 x 109)} I (z)

€0 4 €0 6

=—-9.678V

4.18. Find the potential at the origin produced by a line charge p;, = kz /(2% + a?) extending along
the x axis from x = a to +00, where a > 0. Assume a zero reference at infinity.

Think of the line charge as an array of point charges, each of charge dq = prdx, and each
having potential at the origin of dV = prdxz/(4mepx). The total potential at the origin is
then the sum of all these potentials, or

/°° pr dx /00 kdx k 1 [T\ k T om k
o Ameqx o Admeg(2?2 4 a?) dmepa a’a drepa L2 4 16¢ega

4.19. The annular surface, 1cm < p < 3cm, z = 0, carries the nonuniform surface charge density
ps = 5pnC/m?. Find V at P(0,0,2cm) if V = 0 at infinity: We use the superposition integral

form: J
ps da
Ve —
P //47160\r—r’|

where r = za, and r’ = pa,. We integrate over the surface of the annular region, with
da = pdpd¢. Substituting the given values, we find

/2”/ (5% 1079)p2 dp de
Vp =

01 4megr/p? + 22
Substituting z = .02, and using tables, the integral evaluates as

e = [M} {g 02 + (02)2 — ('022)2 In(p+ /77 + (02)7)| = .081V

260 .01

4.20. A point charge @ is located at the origin. Express the potential in both rectangular and
cylindrical coordinates, and use the gradient operation in that coordinate system to find the
electric field intensity. The result may be checked by conversion to spherical coordinates.

The potential is expressed in spherical, rectangular, and cylindrical coordinates respec-

tively as:
Q Q Q

dmegr? dmeg (22 + Y2 + 22)1/2 N dmeg(p? + 22)1/2

Now, working with rectangular coordinates

ov oV oV Q |ra,+ya,+za,
E = — V = — T - z = .
v @ oy A drey | (a2 +y2 + 22)3/2

ox
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4.20. (continued)
Now, converting this field to spherical components, we find

E_B.a — Q [rsinfcos¢(a, -a,)+ rsinfsing(a, -a,) +rcosf(a; - a,)
" " d7e rs
. Q sin? 0 cos? ¢ + sin? A sin? ¢ + cos? 6 o Q
 dreg 72  dwegr?
Continuing;:
BB a— Q) [rsinfcosp(a, -ag)+ rsinfsing(a, - ag) + rcosb(a, - ag)
0= "7 dreo 3
. Q sin 6 cos 0 cos? ¢ + sin 6 cos 0 sin? ¢ — cos 0 sin @ B
e r2 N
Finally
E —E Q [rsinfcos¢(a, -as)+rsinfsing(a, -a,) +rcosb(a, - a,)
pr -a pr
¢ ¢ 4dmeg 73
_ Q [sin@cosqﬁ(—sin@ —i;sin@sin¢cos¢+0} — 0 check
4meg T

Now, in cylindrical we have in this case

ov ov Q [pap—l-zaz]

E= vW=-2"a  a =
op 70 T A (p? 4 22)3/2

Converting to spherical components, we find

Q [Tsinﬁ(ap-ar)+rcosﬁ(az-ar)]_ Q [sin29+cos29]_ Q

FE. = —
" r3 47eq r2

4reg

B — Q [Tsinﬂ(ap-ag)+rcos9(az~a9)]_ Q [sin@cos@—l—cosﬂ(—sin@)]_o

6 —_ —_
4d7eg 73 4d1eq 72

Q
E, =
¢ 4meg

rsinf(a, -as) +rcosf(a, -ay)

] =0 check

73

4.21. Let V = 229?23+ 3 In(a? +2y? +322) V in free space. Evaluate each of the following quantities
at P(3,2,—1):

a) V: Substitute P directly to obtain: V = —=15.0V
b) |V|. This will be just 15.0 V.

c) E: We have
6x 12y
E‘ = —VV’ = — 2 2.3 _ 4 3
P P [(yz +x2~|—2y2—|—3z2 e | vz +1‘2—|—2y2+3z2 Ay
182
+ <6xy222 + m) az] B =T7.l1a, + 22.8ay —T71l.1a, V/m
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4.21d) |E|p: taking the magnitude of the part ¢ result, we find |E|p = 75.0 V/m.
e) ay: By definition, this will be

E
aN’ — = —0.095a, — 0.304a, + 0.948 a,
P |E|

f) D: This is D‘P - EOE‘P = 62.8a, +202a, — 629a, pC/m?.

4.22. A certain potential field is given in spherical coordinates by V' = Vj(r/a)sin . Find the total
charge contained within the region r < a: We first find the electric field through

ov 10V Vo
E=-VV = T T e T o [sinf a, + cos 0 ag]

The requested charge is now the net outward flux of D = ¢yE through the spherical shell of
radius a (with outward normal a,.):

27 T T
Q—/D-dS—/ / cE - a, a® sin9d6d¢——27ravoeo/ sin?0do = —n2aeyVy C
S 0 0 0

The same result can be found (as expected) by taking the divergence of D and integrating
over the spherical volume:

V-D= _ig (7260‘/0 sin9> 1 g <60V0 cos&gin&) = —% [QSinéH— co§(29)}
a

r2 Or a rsin@ 00 sin
1%, —eo Vi
00 [2in® 0+ 1 —2sin%6] = — =% —p,
rasin 0 rasin 6

Now

2 —60 0 2’/’1’260‘/0 @
Q= / / / r? sin @ drd@dqﬁ—i/ rdr = —m2aegVy C
o Tasinf a 0 e

4.23. It is known that the potential is given as V = 80p'° V. Assuming free space conditions, find:
a) E: We find this through

dv
E=-VV = = —48p~*V/m

b) the volume charge density at p = .5m: Using D = ¢E, we find the charge density
through

1\ d
v frng -D — — _D ‘ :—2 . —1.4 —_ — 3
po|  =[V-Dls ( )dp (pD,) | 8.8¢op™ *| = —673pC/m

c¢) the total charge lying within the closed surface p = .6, 0 < z < 1: The easiest way to do
this calculation is to evaluate D, at p = .6 (noting that it is constant), and then multiply
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by the cylinder area: Using part a, we have D, 0= —48¢¢(.6)~* = =521 pC/m?. Thus
Q = —2m(.6)(1)521 x 10712C = —1.96 nC. '

4.24. The surface defined by the equation 2> + y? + z = 1000, where z, y, and z are positive, is an
equipotential surface on which the potential is 200 V. If |E| = 50 V/m at the point P(7,25, 32)
on the surface, find E there:

First, the potential function will be of the form V(x,y, 2) = C;1 (23 + y* + 2) + Ca, where
C4 and C; are constants to be determined (C is in fact irrelevant for our purposes). The
electric field is now

E=-VV=-0C32%a, + 2ya, +a,)

And the magnitude of E is |E| = C1+/92% 4+ 4y? + 1, which at the given point will be

|E|lp = C1/9(7T)4 +4(25)2 4+ 1 =155.27C; =50 = () =0.322
Now substitute C'; and the given point into the expression for E to obtain

Ep = —(47.34a, + 16.10a, + 0.32a.)

The other constant, Cs, is needed to assure a potential of 200 V at the given point.

4.25. Within the cylinder p = 2, 0 < z < 1, the potential is given by V = 100 + 50p + 150psin¢ V.
a) Find V, E, D, and p, at P(1,60°,0.5) in free space: First, substituting the given point,
we find Vp = 279.9V. Then,

ov 10V :
E=-VV = _8—pap - ;8—¢a¢ = — [50 + 150 sin ¢] a, — [150 cos ¢] a,

Evaluate the above at P to find Ep = —179.9a, — 75.0a4 V/m
Now D = ¢E, so Dp = —1.59a, — .664a, nC/m?. Then

1\ d 10D, { 1 ) 1 ) 50
w=V-D= D,)+———=|——(50+ 150sin ¢) + —150sin¢| g = ——¢x C
( >dp( 2 p 9¢ p( ) p ’ pl

At P, this is p,p = —443 pC/m3.

b) How much charge lies within the cylinder? We will integrate p, over the volume to obtain:

o 50€0 B -
Q= // /——pdpd(bdz —27(50)e0(2) = —5.56 nC
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4.26. Let us assume that we have a very thin, square, imperfectly conducting plate 2m on a side,
located in the plane z = 0 with one corner at the origin such that it lies entirely within the
first quadrant. The potential at any point in the plate is given as V = —e % siny.

a)

An electron enters the plate at x = 0, y = w/3 with zero initial velocity; in what direction
is its initial movement? We first find the electric field associated with the given potential:

E=-VV =—e “[sinya, — cosya,]

Since we have an electron, its motion is opposite that of the field, so the direction on
entry is that of —E at (0,7/3), or v3/2a, — 1/2a,,.

Because of collisions with the particles in the plate, the electron achieves a relatively low
velocity and little acceleration (the work that the field does on it is converted largely into
heat). The electron therefore moves approximately along a streamline. Where does it
leave the plate and in what direction is it moving at the time? Considering the result
of part a, we would expect the exit to occur along the bottom edge of the plate. The
equation of the streamline is found through

E, dy  cosy

E, dx siny

T = —/tanydy—l—C’:ln(cosy) +C

At the entry point (0,7/3), we have 0 = In[cos(7/3)] + C, from which C = 0.69. Now,
along the bottom edge (y = 0), we find z = 0.69, and so the exit point is (0.69,0). From
the field expression evaluated at the exit point, we find the direction on exit to be —a,,.

4.27. Two point charges, 1nC at (0,0,0.1) and —1nC at (0,0,—0.1), are in free space.

a)

b)

c)

Calculate V' at P(0.3,0,0.4): Use

a4  q
dreg|RT|  4dmweg| R|

Vp

where R = (.3,0,.3) and R~ = (.3,0,.5), so that |R"| = 0.424 and |[R~| = 0.583. Thus

1079 1 1
VP = e [.424 _’.583} =018V

Calculate |E| at P: Use

q(.3a, +.3a,) q(3a, +.5a,) 107°
Ep = - = 2.42a, + 1.41a,
P dmeo(424)3 4en(.583)3 4req [2.422; +141a;] V/m

Taking the magnitude of the above, we find |[Ep| = 25.2V/m.

Now treat the two charges as a dipole at the origin and find V' at P: In spherical coor-
dinates, P is located at 7 = v/.32 + .42 = .5 and § = sin"'(.3/.5) = 36.9°. Assuming a
dipole in far-field, we have

_qdcosf  1079(.2) cos(36.9°) 576V

Ve = dmeqr? 4ren(.5)? -
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4.28. Use the electric field intensity of the dipole (Sec. 4.7, Eq. (36)) to find the difference in
potential between points at 6, and 6, each point having the same r and ¢ coordinates. Under
what conditions does the answer agree with Eq. (34), for the potential at 6,7

We perform a line integral of Eq. (36) along an arc of constant r and ¢:

0 9
a d a
Vab——/ 9 3[2COSQaT+sin0ag]-agrdH——/ 5 sin 6 do
0. Amegr 0, 4meor
d
= 47Tq€07"2 [cos O, — cos 6y

This result agrees with Eq. (34) if 6, (the ending point in the path) is 90° (the zy plane).
Under this condition, we note that if 6, > 90°, positive work is done when moving (against
the field) to the xy plane; if 8, < 90°, negative work is done since we move with the field.

4.29. A dipole having a moment p = 3a, — 5a, +10a, nC - m is located at (1,2, —4) in free space.
Find V at P(2,3,4): We use the general expression for the potential in the far field:

_ p(r—1)
 A4meglr — /)3

wherer —1v' =P —Q = (1,1,8). So

(3a, — ba, + 10a,) - (a, +a, + 8a,) x 107°
Ve Ameg12 + 12 + 8215 LY

4.30. A dipole for which p = 10¢pa, C-m is located at the origin. What is the equation of the
surface on which £, = 0 but E # 07

First we find the z component:

10 . 5 2 .2
Ez:E-az:W[QCOSO(ar'az)—i-sm€(a9'az)]: 513 [2cos® § — sin” 0]

This will be zero when [2 cos? § — sin® 0] = 0. Using identities, we write

2cos? 0 —sin?§ = —[1 + 3 cos(26)]

N | =

The above becomes zero on the cone surfaces, § = 54.7° and § = 125.3°.

4.31. A potential field in free space is expressed as V = 20/(zyz) V.

a) Find the total energy stored within the cube 1 < x,y,z < 2. We integrate the energy
density over the cube volume, where wg = (1/2)¢oE - E, and where

1 1 1
E=-VV =20 |:x2—yzam + @ay + waz] V/m

The energy is now

2 2 2 1 1 1
Wg = 200 drdyd
E 60/1 /1 /1 [m4y2z2 + 22yt 22 + x2y2z4] T ayaz

o4




4.31a. (continued)

The integral evaluates as follows:

E_QOOEO// [ <_> 3y’ zz_wyiz?_wyif*]jdydz
o [ G (e (e
~me [ () 3~ (8) = ()5
o (G)3 (2] )8

7
= 200¢0(3) {%} = 387pJ

b) What value would be obtained by assuming a uniform energy density equal to the value
at the center of the cube? At C(1.5,1.5,1.5) the energy density is

1
(1.5)4(1.5)2(1.5)2

This, multiplied by a cube volume of 1, produces an energy value of 207 pJ.

wg = 200e0(3) [ ] =2.07x 1071 J/m3

4.32. Using Eq. (36), a) find the energy stored in the dipole field in the region r > a:
We start with

d .
E(r,0) = 47Tq€07‘3 [2cosfa, + sinf ag]

Then the energy will be

27
W, = / —€0E Edv = / / / 4c0529+sin2 9] r? sin @ dr df d¢
vol 327r 607‘6 -

3 cos? 0+1
“2n(gd)? 1= (" 2 ; (¢d)? 3 w
= “S2n%es 33l /o [3cos® 6 + 1] sinfdf = Brled [~ cos® 6 —COSH]O
4
_ (qd)?
12mwega’

b) Why can we not let a approach zero as a limit? From the above result, a singularity in the
energy occurs as a — (. More importantly, a cannot be too small, or the original far-field
assumption used to derive Eq. (36) (a >> d) will not hold, and so the field expression
will not be valid.

4.33. A copper sphere of radius 4 cm carries a uniformly-distributed total charge of 5uC in free
space.
a) Use Gauss’ law to find D external to the sphere: with a spherical Gaussian surface at
radius r, D will be the total charge divided by the area of this sphere, and will be a,.-
directed. Thus
Q 5x 1076

D— =
472 a 472

a, C/m?
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4.33b) Calculate the total energy stored in the electrostatic field: Use

27
(5 x 10~ ) .
WE—/ -D- Edv—/ / / 3 167T2607“4 r2 sin @ dr d d¢

1 1 d 25 x 10712 1
_ (4 (L) G 1070F / dr _Bx1077 1,815
2 1672¢ 04 T2 8meg .04

c) Use Wg = Q?/(2C) to calculate the capacitance of the isolated sphere: We have

Q2 (5x1076)

) 12
_ _ — 445 x 10712 F = 4.45pF
T S TOXT) 510 45pF

4.34. A sphere of radius a contains volume charge of uniform density pg C/m?. Find the total stored
energy by applying
a) Eq. (43): We first need the potential everywhere inside the sphere. The electric field
inside and outside is readily found from Gauss’s law:

3

r a
por a, r<a and E; = Po

——a, r>a
3eo 3eor2 T

E, =

The potential at position r inside the sphere is now the work done in moving a unit
positive point charge from infinity to position r:

a T a 3 T /
Poa PoT / Po 2 2
Vir)=— E;-a,.dr — E, -a,dr =— dr — = dr’ = = (3a® —
(r) / 5 -a,dr /a 1-adr /OO 3eqr? r /a 3 r 6eq ( a r )

o0

Now, using this result in (43) leads to the energy associated with the charge in the sphere:

27 a 5 .2
2 TPo 2.2 4 dma’ py

Odrdfdp = — 3 — dr =
/ / / 660 )r sin 0 dr ¢ = 36 /0 ( a‘r T ) r 15eq

b) Eq. (45): Using the given fields we find the energy densities

- 26
sRr 1 pa
Wel = §€0E1 By = 18¢g rsa and we = §€0E2 Be = 18207‘4 r=za

We now integrate these over their respective volumes to find the total energy:

4ma® pd

27 o
W, = / // 18601" Slnedrdeqﬁ—i-/ // 1860 ik 2sin@drdf dop = e
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4.35. Four 0.8 nC point charges are located in free space at the corners of a square 4 cm on a side.

a)

Find the total potential energy stored: This will be given by

1 4
WE = §;ann

where V,, in this case is the potential at the location of any one of the point charges that
arises from the other three. This will be (for charge 1)

1 1 1
Vi=Vor + Va1 + Vi = d [

47eg .04 + .04 * 042

Taking the summation produces a factor of 4, since the situation is the same at all four
points. Consequently,

(.8 x 1079)2

1
Wg=-4)quVi =
g 2( Ja Vi 27mep(.04)

1
24— | =779%x10""J=0.779 uJ
[ x/i] S

A fifth 0.8 nC charge is installed at the center of the square. Again find the total stored
energy: This will be the energy found in part a plus the amount of work done in moving
the fifth charge into position from infinity. The latter is just the potential at the square
center arising from the original four charges, times the new charge value, or

4(.8 x 1079)2

AW = e (0av)2)

= .813 uJ

The total energy is now

Wi net = W (parta) + AWg = 779 + .813 = 1.59 1]

o7



