
CHAPTER 5

5.1. Given the current density J = −104[sin(2x)e−2yax + cos(2x)e−2yay] kA/m2:

a) Find the total current crossing the plane y = 1 in the ay direction in the region 0 < x < 1,
0 < z < 2: This is found through

I =
∫ ∫

S

J · n
∣∣∣
S
da =

∫ 2

0

∫ 1

0

J · ay

∣∣∣
y=1

dx dz =
∫ 2

0

∫ 1

0

−104 cos(2x)e−2 dx dz

= −104(2)
1
2

sin(2x)
∣∣∣1
0
e−2 = −1.23 MA

b) Find the total current leaving the region 0 < x, x < 1, 2 < z < 3 by integrating J ·dS over
the surface of the cube: Note first that current through the top and bottom surfaces will
not exist, since J has no z component. Also note that there will be no current through the
x = 0 plane, since Jx = 0 there. Current will pass through the three remaining surfaces,
and will be found through

I =
∫ 3

2

∫ 1

0

J · (−ay)
∣∣∣
y=0

dx dz +
∫ 3

2

∫ 1

0

J · (ay)
∣∣∣
y=1

dx dz +
∫ 3

2

∫ 1

0

J · (ax)
∣∣∣
x=1

dy dz

= 104

∫ 3

2

∫ 1

0

[
cos(2x)e−0 − cos(2x)e−2

]
dx dz − 104

∫ 3

2

∫ 1

0

sin(2)e−2y dy dz

= 104

(
1
2

)
sin(2x)

∣∣∣1
0
(3 − 2)

[
1 − e−2

]
+ 104

(
1
2

)
sin(2)e−2y

∣∣∣1
0
(3 − 2) = 0

c) Repeat part b, but use the divergence theorem: We find the net outward current through
the surface of the cube by integrating the divergence of J over the cube volume. We have

∇ · J =
∂Jx

∂x
+

∂Jy

∂y
= −10−4

[
2 cos(2x)e−2y − 2 cos(2x)e−2y

]
= 0 as expected

5.2. A certain current density is given in cylindrical coordinates as J = 100e−2z(ρaρ + az) A/m2.
Find the total current passing through each of these surfaces:
a) z = 0, 0 ≤ ρ ≤ 1, in the az direction:

Ia =
∫

S

J · dS =
∫ 2π

0

∫ 1

0

100e−2(0)(ρaρ + az) · az ρ dρ dφ = 100π

where aρ · az = 0.

b) z = 1, 0 ≤ ρ ≤ 1, in the az direction:

Ib =
∫

S

J · dS =
∫ 2π

0

∫ 1

0

100e−2(1)(ρaρ + az) · az ρ dρ dφ = 100πe−2

c) closed cylinder defined by 0 ≤ z ≤ 1, 0 ≤ ρ ≤ 1, in an outward direction:

IT = Ib−Ia+
∫ 1

0

∫ 2π

0

100e−2z( (1)aρ+az)·aρ (1) dφ dz = 100π(e−2−1)+100π(1−e−2) = 0
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5.3. Let
J =

400 sin θ

r2 + 4
ar A/m2

a) Find the total current flowing through that portion of the spherical surface r = 0.8,
bounded by 0.1π < θ < 0.3π, 0 < φ < 2π: This will be

I =
∫ ∫

J · n
∣∣∣
S

da =
∫ 2π

0

∫ .3π

.1π

400 sin θ

(.8)2 + 4
(.8)2 sin θ dθ dφ =

400(.8)22π

4.64

∫ .3π

.1π

sin2 dθ

= 346.5
∫ .3π

.1π

1
2
[1 − cos(2θ)] dθ = 77.4 A

b) Find the average value of J over the defined area. The area is

Area =
∫ 2π

0

∫ .3π

.1π

(.8)2 sin θ dθ dφ = 1.46 m2

The average current density is thus Javg = (77.4/1.46)ar = 53.0ar A/m2.

5.4. Assume that a uniform electron beam of circular cross-section with radius of 0.2 mm is gen-
erated by a cathode at x = 0 and collected by an anode at x = 20 cm. The velocity of the
electrons varies with x as vx = 108x0.5 m/s, with x in meters. If the current density at the
anode is 104 A/m2, find the volume charge density and the current density as functions of x.

The requirement is that we have constant current throughout the beam path. Since the
beam is of constant radius, this means that current density must also be constant, and
will have the value J = 104 ax A/m2. Now J = ρvv ⇒ ρv = J/v = 10−4x−0.5 C/m3.

5.5. Let
J =

25
ρ

aρ − 20
ρ2 + 0.01

az A/m2

a) Find the total current crossing the plane z = 0.2 in the az direction for ρ < 0.4: Use

I =
∫ ∫

S

J · n
∣∣∣
z=.2

da =
∫ 2π

0

∫ .4

0

−20
ρ2 + .01

ρ dρ dφ

= −
(

1
2

)
20 ln(.01 + ρ2)

∣∣∣.4
0

(2π) = −20π ln(17) = −178.0 A

b) Calculate ∂ρv/∂t: This is found using the equation of continuity:

∂ρv

∂t
= −∇ · J =

1
ρ

∂

∂ρ
(ρJρ) +

∂Jz

∂z
=

1
ρ

∂

∂ρ
(25) +

∂

∂z

( −20
ρ2 + .01

)
= 0

c) Find the outward current crossing the closed surface defined by ρ = 0.01, ρ = 0.4, z = 0,
and z = 0.2: This will be

I =
∫ .2

0

∫ 2π

0

25
.01

aρ · (−aρ)(.01) dφ dz +
∫ .2

0

∫ 2π

0

25
.4

aρ · (aρ)(.4) dφ dz

+
∫ 2π

0

∫ .4

0

−20
ρ2 + .01

az · (−az) ρ dρ dφ +
∫ 2π

0

∫ .4

0

−20
ρ2 + .01

az · (az) ρ dρ dφ = 0
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since the integrals will cancel each other.

d) Show that the divergence theorem is satisfied for J and the surface specified in part b.
In part c, the net outward flux was found to be zero, and in part b, the divergence of J
was found to be zero (as will be its volume integral). Therefore, the divergence theorem
is satisfied.

5.6. The current density in a certain region is approximated by J = (0.1/r) exp
(
−106t

)
ar A/m2

in spherical coordinates.
a) At t = 1 µs, how much current is crossing the surface r = 5? At the given time,

Ia = 4π(5)2(0.1/5)e−1 = 2πe−1 = 2.31 A.

b) Repeat for r = 6: Again, at 1 µs, Ib = 4π(6)2(0.1/6)e−1 = 2.4πe−1 = 2.77 A.

c) Use the continuity equation to find ρv(r, t), under the assumption that ρv → 0 as t → ∞:

∇ · J =
1
r2

∂

∂r

(
r2 0.1

r
e−106t

)
=

0.1
r2

e−106t = −∂ρv

∂t

Then

ρv(r, t) = −
∫

0.1
r2

e−106t dt + f(r) =
10−7

r2
e−106t + f(r)

Now, ρv → 0 as t → ∞; thus f(r) = 0. Final answer: ρv(r, t) = (10−7/r2)e−106t C/m3.

d) Find an expression for the velocity of the charge density.

v =
J
ρv

=
(0.1/r)e−106t ar

(10−7/r2)e−106t
= 106r ar m/s

5.7. Assuming that there is no transformation of mass to energy or vice-versa, it is possible to
write a continuity equation for mass.

a) If we use the continuity equation for charge as our model, what quantities correspond to J
and ρv? These would be, respectively, mass flux density in (kg/m2 − s) and mass density
in (kg/m3).

b) Given a cube 1 cm on a side, experimental data show that the rates at which mass is
leaving each of the six faces are 10.25, -9.85, 1.75, -2.00, -4.05, and 4.45 mg/s. If we
assume that the cube is an incremental volume element, determine an approximate value
for the time rate of change of density at its center. We may write the continuity equation
for mass as follows, also invoking the divergence theorem:∫

v

∂ρm

∂t
dv = −

∫
v

∇ · Jm dv = −
∮

s

Jm · dS

where ∮
s

Jm · dS = 10.25 − 9.85 + 1.75 − 2.00 − 4.05 + 4.45 = 0.550 mg/s

Treating our 1 cm3 volume as differential, we find

∂ρm

∂t

.= −0.550 × 10−3 g/s
10−6 m3

= −550 g/m3 − s
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5.8. The conductivity of carbon is about 3 × 104 S/m.
a) What size and shape sample of carbon has a conductance of 3 × 104 S? We know that

the conductance is G = σA/�, where A is the cross-sectional area and � is the length. To
make G = σ, we may use any regular shape whose length is equal to its area. Examples
include a square sheet of dimensions � × �, and of unit thickness (where conductance is
measured end-to-end), a block of square cross-section, having length �, and with cross-
section dimensions

√
� ×

√
�, or a solid cylinder of length � and radius a =

√
�/π.

b) What is the conductance if every dimension of the sample found in part a is halved?
In all three cases mentioned in part a, the conductance is one-half the original value if
all dimensions are reduced by one-half. This is easily shown using the given formula for
conductance.

5.9a. Using data tabulated in Appendix C, calculate the required diameter for a 2-m long nichrome
wire that will dissipate an average power of 450 W when 120 V rms at 60 Hz is applied to it:

The required resistance will be

R =
V 2

P
=

l

σ(πa2)

Thus the diameter will be

d = 2a = 2

√
lP

σπV 2
= 2

√
2(450)

(106)π(120)2
= 2.8 × 10−4 m = 0.28 mm

b) Calculate the rms current density in the wire: The rms current will be I = 450/120 =
3.75 A. Thus

J =
3.75

π (2.8 × 10−4/2)2
= 6.0 × 107 A/m2

5.10. A solid wire of conductivity σ1 and radius a has a jacket of material having conductivity σ2,
and whose inner radius is a and outer radius is b. Show that the ratio of the current densities
in the two materials is independent of a and b.

A constant voltage between the two ends of the wire means that the field within must be
constant throughout the wire cross-section. Calling this field E, we have

E =
J1

σ1
=

J2

σ2
⇒ J1

J2
=

σ1

σ2

which is independent of the dimensions.

5.11. Two perfectly-conducting cylindrical surfaces of length l are located at ρ = 3 and ρ = 5 cm.
The total current passing radially outward through the medium between the cylinders is 3 A
dc.

a) Find the voltage and resistance between the cylinders, and E in the region between the
cylinders, if a conducting material having σ = 0.05 S/m is present for 3 < ρ < 5 cm:
Given the current, and knowing that it is radially-directed, we find the current density
by dividing it by the area of a cylinder of radius ρ and length l:

J =
3

2πρl
aρ A/m2
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5.11a. (continued)
Then the electric field is found by dividing this result by σ:

E =
3

2πσρl
aρ =

9.55
ρl

aρ V/m

The voltage between cylinders is now:

V = −
∫ 3

5

E · dL =
∫ 5

3

9.55
ρl

aρ · aρdρ =
9.55

l
ln

(
5
3

)
=

4.88
l

V

Now, the resistance will be

R =
V

I
=

4.88
3l

=
1.63

l
Ω

b) Show that integrating the power dissipated per unit volume over the volume gives the
total dissipated power: We calculate

P =
∫

v

E · J dv =
∫ l

0

∫ 2π

0

∫ .05

.03

32

(2π)2ρ2(.05)l2
ρ dρ dφ dz =

32

2π(.05)l
ln

(
5
3

)
=

14.64
l

W

We also find the power by taking the product of voltage and current:

P = V I =
4.88

l
(3) =

14.64
l

W

which is in agreement with the power density integration.

5.12. Two identical conducting plates, each having area A, are located at z = 0 and z = d. The re-
gion between plates is filled with a material having z-dependent conductivity, σ(z) = σ0e

−z/d,
where σ0 is a constant. Voltage V0 is applied to the plate at z = d; the plate at z = 0 is at
zero potential. Find, in terms of the given parameters:
a) the resistance of the material: We start with the differential resistance of a thin slab of

the material of thickness dz, which is

dR =
dz

σA
=

ez/ddz

σ0A
so that R =

∫
dR =

∫ d

0

ez/ddz

σ0A
=

d

σ0A
(e − 1) =

1.72d

σ0A
Ω

b) the total current flowing between plates: We use

I =
V0

R
=

σ0AV0

1.72 d

c) the electric field intensity E within the material: First the current density is

J = − I

A
az =

−σ0V0

1.72 d
az so that E =

J
σ(z)

=
−V0e

z/d

1.72 d
az V/m
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5.13. A hollow cylindrical tube with a rectangular cross-section has external dimensions of 0.5 in by
1 in and a wall thickness of 0.05 in. Assume that the material is brass, for which σ = 1.5×107

S/m. A current of 200 A dc is flowing down the tube.

a) What voltage drop is present across a 1m length of the tube? Converting all measurements
to meters, the tube resistance over a 1 m length will be:

R1 =
1

(1.5 × 107) [(2.54)(2.54/2) × 10−4 − 2.54(1 − .1)(2.54/2)(1 − .2) × 10−4]
= 7.38 × 10−4 Ω

The voltage drop is now V = IR1 = 200(7.38 × 10−4 = 0.147 V.

b) Find the voltage drop if the interior of the tube is filled with a conducting material for
which σ = 1.5 × 105 S/m: The resistance of the filling will be:

R2 =
1

(1.5 × 105)(1/2)(2.54)2 × 10−4(.9)(.8)
= 2.87 × 10−2 Ω

The total resistance is now the parallel combination of R1 and R2:
RT = R1R2/(R1 + R2) = 7.19×10−4 Ω, and the voltage drop is now V = 200RT = .144 V.

5.14. A rectangular conducting plate lies in the xy plane, occupying the region 0 < x < a, 0 < y < b.
An identical conducting plate is positioned directly above and parallel to the first, at z = d.
The region between plates is filled with material having conductivity σ(x) = σ0e

−x/a, where
σ0 is a constant. Voltage V0 is applied to the plate at z = d; the plate at z = 0 is at zero
potential. Find, in terms of the given parameters:
a) the electric field intensity E within the material: We know that E will be z-directed,

but the conductivity varies with x. We therefore expect no z variation in E, and also
note that the line integral of E between the bottom and top plates must always give V0.
Therefore E = −V0/daz V/m.

b) the total current flowing between plates: We have

J = σ(x)E =
−σ0e

−x/aV0

d
az

Using this, we find

I =
∫

J · dS =
∫ b

0

∫ a

0

−σ0e
−x/aV0

d
az · (−az) dx dy =

σ0abV0

d
(1 − e−1) =

0.63abσ0V0

d
A

c) the resistance of the material: We use

R =
V0

I
=

d

0.63 ab σ0
Ω
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5.15. Let V = 10(ρ + 1)z2 cos φV in free space.

a) Let the equipotential surface V = 20 V define a conductor surface. Find the equation of
the conductor surface: Set the given potential function equal to 20, to find:

(ρ + 1)z2 cos φ = 2

b) Find ρ and E at that point on the conductor surface where φ = 0.2π and z = 1.5: At
the given values of φ and z, we solve the equation of the surface found in part a for ρ,
obtaining ρ = .10. Then

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ − ∂V

∂z
az

= −10z2 cos φaρ + 10
ρ + 1

ρ
z2 sin φaφ − 20(ρ + 1)z cos φaz

Then
E(.10, .2π, 1.5) = −18.2aρ + 145aφ − 26.7az V/m

c) Find |ρs| at that point: Since E is at the perfectly-conducting surface, it will be normal
to the surface, so we may write:

ρs = ε0E ·n
∣∣∣
surface

= ε0
E · E
|E| = ε0

√
E · E = ε0

√
(18.2)2 + (145)2 + (26.7)2 = 1.32 nC/m2

5.16. In cylindrical coordinates, V = 1000ρ2.

a) If the region 0.1 < ρ < 0.3 m is free space while the surfaces ρ = 0.1 and ρ = 0.3 m
are conductors, specify the surface charge density on each conductor: First, we find the
electric field through

E = −∇V = −∂V

∂ρ
aρ = −2000ρaρ so that D = ε0E = −2000ε0ρaρ C/m2

Then the charge densities will be

inner conductor : ρs1 = D · aρ

∣∣∣
ρ=0.1

= −200ε0 C/m2

outer conductor : ρs2 = D · (−aρ)
∣∣∣
ρ=0.3

= 600ε0 C/m2

b) What is the total charge in a 1-m length of the free space region, 0.1 < ρ < 0.3 (not
including the conductors)? The charge density in the free space region is

ρv = ∇ · D =
1
ρ

∂

∂ρ
(ρDρ) = −4000ε0 C/m3

Then the charge in the volume is

Qv =
∫ 1

0

∫ 2π

0

∫ 0.3

0.1

−4000ε0 ρ dρ dφ dz = −2π(4000)ε0
1
2

[
(0.3)2 − (0.1)2

]
= −320πε0 C
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5.16c What is the total charge in a 1-m length, including both surface charges?

First, the net surface charges over a unit length will be

Qs1(ρ = 0.1) = −200ε0[2π(0.1)](1) = −40πε0 C

and
Qs2(ρ = 0.3) = 600ε0[2π(0.3)](1) = 360πε0 C

The total charge is now Qtot = Qs1 + Qs2 + Qv = 0.

5.17. Given the potential field V = 100xz/(x2 + 4) V. in free space:
a) Find D at the surface z = 0: Use

E = −∇V = −100z
∂

∂x

(
x

x2 + 4

)
ax − 0ay − 100x

x2 + 4
az V/m

At z = 0, we use this to find D(z = 0) = ε0E(z = 0) = −100ε0x/(x2 + 4)az C/m2.

b) Show that the z = 0 surface is an equipotential surface: There are two reasons for this:
1) E at z = 0 is everywhere z-directed, and so moving a charge around on the surface
involves doing no work; 2) When evaluating the given potential function at z = 0, the
result is 0 for all x and y.

c) Assume that the z = 0 surface is a conductor and find the total charge on that portion
of the conductor defined by 0 < x < 2, −3 < y < 0: We have

ρs = D · az

∣∣∣
z=0

= −100ε0x

x2 + 4
C/m2

So

Q =
∫ 0

−3

∫ 2

0

−100ε0x

x2 + 4
dx dy = −(3)(100)ε0

(
1
2

)
ln(x2 + 4)

∣∣∣2
0

= −150ε0 ln 2 = −0.92 nC

5.18. A potential field is given as V = 100 ln
{
[(x + 1)2 + y2]/[(x − 1)2 + y2]

}
V. It is known that

point P (2, 1, 1) is on a conductor surface and that the conductor lies in free space. At P , find
a unit vector normal to the surface and also the value of the surface charge density on the
conductor.

A normal vector is the electric field vector, found (after a little algebra) to be

E = −∇V = −200
[
(x + 1)(x − 1)[(x − 1) − (x + 1)] + 2y2

[(x + 1)2 + y2][(x − 1)2 + y2]

]
ax

− 200
[

y[(x − 1)2 − (x + 1)2]
[(x + 1)2 + y2][(x − 1)2 + y2]

]
ay V/m

At the specified point (2,1,1) the field evaluates as EP = 40ax + 80ay, whose magnitude
is 89.44 V/m. The unit normal vector is therefore n = E/|E| = 0.447ax + 0.894ay. Now

ρs = D ·n
∣∣∣
P

= 89.44ε0 = 792 pC/m2. This could be positive or negative, since we do not
know which side of the surface the free space region exists.
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5.19. Let V = 20x2yz − 10z2 V in free space.

a) Determine the equations of the equipotential surfaces on which V = 0 and 60 V: Setting the
given potential function equal to 0 and 60 and simplifying results in:

At 0 V : 2x2y − z = 0

At 60 V : 2x2y − z =
6
z

b) Assume these are conducting surfaces and find the surface charge density at that point
on the V = 60 V surface where x = 2 and z = 1. It is known that 0 ≤ V ≤ 60 V is the
field-containing region: First, on the 60 V surface, we have

2x2y − z − 6
z

= 0 ⇒ 2(2)2y(1) − 1 − 6 = 0 ⇒ y =
7
8

Now
E = −∇V = −40xyz ax − 20x2z ay − [20xy − 20z]az

Then, at the given point, we have

D(2, 7/8, 1) = ε0E(2, 7/8, 1) = −ε0[70ax + 80ay + 50az] C/m2

We know that since this is the higher potential surface, D must be directed away from
it, and so the charge density would be positive. Thus

ρs =
√

D · D = 10ε0
√

72 + 82 + 52 = 1.04 nC/m2

c) Give the unit vector at this point that is normal to the conducting surface and directed
toward the V = 0 surface: This will be in the direction of E and D as found in part b, or

an = −
[
7ax + 8ay + 5az√

72 + 82 + 52

]
= −[0.60ax + 0.68ay + 0.43az]

5.20. Two point charges of −100π µC are located at (2,-1,0) and (2,1,0). The surface x = 0 is a
conducting plane.
a) Determine the surface charge density at the origin. I will solve the general case first, in

which we find the charge density anywhere on the y axis. With the conducting plane in
the yz plane, we will have two image charges, each of +100π µC, located at (-2, -1, 0)
and (-2, 1, 0). The electric flux density on the y axis from these four charges will be

D(y) =
−100π

4π


 [(y − 1)ay − 2ax]

[(y − 1)2 + 4]3/2
+

[(y + 1)ay − 2ax]
[(y + 1)2 + 4]3/2︸ ︷︷ ︸

given charges

− [(y − 1)ay + 2ax]
[(y − 1)2 + 4]3/2

− [(y + 1)ay + 2ax]
[(y + 1)2 + 4]3/2︸ ︷︷ ︸

image charges


 µC/m2
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5.20a. (continued)
In the expression, all y components cancel, and we are left with

D(y) = 100
[

1
[(y − 1)2 + 4]3/2

+
1

[(y + 1)2 + 4]3/2

]
ax µC/m2

We now find the charge density at the origin:

ρs(0, 0, 0) = D · ax

∣∣∣
y=0

= 17.9 µC/m2

b) Determine ρS at P (0, h, 0). This will be

ρs(0, h, 0) = D · ax

∣∣∣
y=h

= 100
[

1
[(h − 1)2 + 4]3/2

+
1

[(h + 1)2 + 4]3/2

]
µC/m2

5.21. Let the surface y = 0 be a perfect conductor in free space. Two uniform infinite line charges
of 30 nC/m each are located at x = 0, y = 1, and x = 0, y = 2.
a) Let V = 0 at the plane y = 0, and find V at P (1, 2, 0): The line charges will image across

the plane, producing image line charges of -30 nC/m each at x = 0, y = −1, and x = 0,
y = −2. We find the potential at P by evaluating the work done in moving a unit positive
charge from the y = 0 plane (we choose the origin) to P : For each line charge, this will
be:

VP − V0,0,0 = − ρl

2πε0
ln

[
final distance from charge

initial distance from charge

]
where V0,0,0 = 0. Considering the four charges, we thus have

VP = − ρl

2πε0

[
ln

(
1
2

)
+ ln

(√
2

1

)
− ln

(√
10
1

)
− ln

(√
17
2

)]

=
ρl

2πε0

[
ln (2) + ln

(
1√
2

)
+ ln

(√
10

)
+ ln

(√
17
2

)]
=

30 × 10−9

2πε0
ln

[√
10
√

17√
2

]

= 1.20 kV

b) Find E at P : Use

EP =
ρl

2πε0

[
(1, 2, 0) − (0, 1, 0)

|(1, 1, 0)|2 +
(1, 2, 0) − (0, 2, 0)

|(1, 0, 0)|2

− (1, 2, 0) − (0,−1, 0)
|(1, 3, 0)|2 − (1, 2, 0) − (0,−2, 0)

|(1, 4, 0)|2
]

=
ρl

2πε0

[
(1, 1, 0)

2
+

(1, 0, 0)
1

− (1, 3, 0)
10

− (1, 4, 0)
17

]
= 723ax − 18.9ay V/m
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5.22. The line segment x = 0, −1 ≤ y ≤ 1, z = 1, carries a linear charge density ρL = π|y| µC/m.
Let z = 0 be a conducting plane and determine the surface charge density at: (a) (0,0,0); (b)
(0,1,0).

We consider the line charge to be made up of a string of differential segments of length, dy′,
and of charge dq = ρL dy′. A given segment at location (0, y′, 1) will have a corresponding
image charge segment at location (0, y′,−1). The differential flux density on the y axis
that is associated with the segment-image pair will be

dD =
ρL dy′[(y − y′)ay − az]

4π[(y − y′)2 + 1]3/2
− ρL dy′[(y − y′)ay + az]

4π[(y − y′)2 + 1]3/2
=

−ρL dy′ az

2π[(y − y′)2 + 1]3/2

In other words, each charge segment and its image produce a net field in which the y
components have cancelled. The total flux density from the line charge and its image is
now

D(y) =
∫

dD =
∫ 1

−1

−π|y′|az dy′

2π[(y − y′)2 + 1]3/2

= −az

2

∫ 1

0

[
y′

[(y − y′)2 + 1]3/2
+

y′

[(y + y′)2 + 1]3/2

]
dy′

=
az

2

[
y(y − y′) + 1

[(y − y′)2 + 1]1/2
+

y(y + y′) + 1
[(y + y′)2 + 1]1/2

]1

0

=
az

2

[
y(y − 1) + 1

[(y − 1)2 + 1]1/2
+

y(y + 1) + 1
[(y + 1)2 + 1]1/2

− 2(y2 + 1)1/2

]
Now, at the origin (part a), we find the charge density through

ρs(0, 0, 0) = D · az

∣∣∣
y=0

=
az

2

[
1√
2

+
1√
2
− 2

]
= −0.29 µC/m2

Then, at (0,1,0) (part b), the charge density is

ρs(0, 1, 0) = D · az

∣∣∣
y=1

=
az

2

[
1 +

3√
5
− 2

]
= −0.24 µC/m2

5.23. A dipole with p = 0.1az µC · m is located at A(1, 0, 0) in free space, and the x = 0 plane is
perfectly-conducting.

a) Find V at P (2, 0, 1). We use the far-field potential for a z-directed dipole:

V =
p cos θ

4πε0r2
=

p

4πε0

z

[x2 + y2 + z2]1.5

The dipole at x = 1 will image in the plane to produce a second dipole of the opposite
orientation at x = −1. The potential at any point is now:

V =
p

4πε0

[
z

[(x − 1)2 + y2 + z2]1.5
− z

[(x + 1)2 + y2 + z2]1.5

]
Substituting P (2, 0, 1), we find

V =
.1 × 106

4πε0

[
1

2
√

2
− 1

10
√

10

]
= 289.5 V
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5.23b) Find the equation of the 200-V equipotential surface in cartesian coordinates: We just set the
potential exression of part a equal to 200 V to obtain:[

z

[(x − 1)2 + y2 + z2]1.5
− z

[(x + 1)2 + y2 + z2]1.5

]
= 0.222

5.24. At a certain temperature, the electron and hole mobilities in intrinsic germanium are given as
0.43 and 0.21 m2/V · s, respectively. If the electron and hole concentrations are both 2.3×1019

m−3, find the conductivity at this temperature.

With the electron and hole charge magnitude of 1.6 × 10−19 C, the conductivity in this
case can be written:

σ = |ρe|µe + ρhµh = (1.6 × 10−19)(2.3 × 1019)(0.43 + 0.21) = 2.36 S/m

5.25. Electron and hole concentrations increase with temperature. For pure silicon, suitable expres-
sions are ρh = −ρe = 6200T 1.5e−7000/T C/m3. The functional dependence of the mobilities
on temperature is given by µh = 2.3 × 105T−2.7 m2/V · s and µe = 2.1 × 105T−2.5 m2/V · s,
where the temperature, T , is in degrees Kelvin. The conductivity will thus be

σ = −ρeµe + ρhµh = 6200T 1.5e−7000/T
[
2.1 × 105T−2.5 + 2.3 × 105T−2.7

]
=

1.30 × 109

T
e−7000/T

[
1 + 1.095T−.2

]
S/m

Find σ at:
a) 0◦ C: With T = 273◦K, the expression evaluates as σ(0) = 4.7 × 10−5 S/m.

b) 40◦ C: With T = 273 + 40 = 313, we obtain σ(40) = 1.1 × 10−3 S/m.

c) 80◦ C: With T = 273 + 80 = 353, we obtain σ(80) = 1.2 × 10−2 S/m.

5.26. A semiconductor sample has a rectangular cross-section 1.5 by 2.0 mm, and a length of 11.0
mm. The material has electron and hole densities of 1.8×1018 and 3.0×1015 m−3, respectively.
If µe = 0.082 m2/V · s and µh = 0.0021 m2/V · s, find the resistance offered between the end
faces of the sample.

Using the given values along with the electron charge, the conductivity is

σ = (1.6 × 10−19)
[
(1.8 × 1018)(0.082) + (3.0 × 1015)(0.0021)

]
= 0.0236 S/m

The resistance is then

R =
�

σA
=

0.011
(0.0236)(0.002)(0.0015)

= 155 kΩ
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