
CHAPTER 6.

6.1. Atomic hydrogen contains 5.5× 1025 atoms/m3 at a certain temperature and pressure. When
an electric field of 4 kV/m is applied, each dipole formed by the electron and positive nucleus
has an effective length of 7.1 × 10−19 m.
a) Find P: With all identical dipoles, we have

P = Nqd = (5.5× 1025)(1.602× 10−19)(7.1× 10−19) = 6.26× 10−12 C/m2 = 6.26 pC/m2

b) Find εr: We use P = ε0χeE, and so

χe =
P

ε0E
=

6.26 × 10−12

(8.85 × 10−12)(4 × 103)
= 1.76 × 10−4

Then εr = 1 + χe = 1.000176.

6.2. Find the dielectric constant of a material in which the electric flux density is four times the
polarization.

First we use D = ε0E + P = ε0E + (1/4)D. Therefore D = (4/3)ε0E, so we identify
εr = 4/3.

6.3. A coaxial conductor has radii a = 0.8 mm and b = 3 mm and a polystyrene dielectric for
which εr = 2.56. If P = (2/ρ)aρ nC/m2 in the dielectric, find:
a) D and E as functions of ρ: Use

E =
P

ε0(εr − 1)
=

(2/ρ) × 10−9aρ

(8.85 × 10−12)(1.56)
=

144.9
ρ

aρ V/m

Then

D = ε0E + P =
2 × 10−9aρ

ρ

[
1

1.56
+ 1

]
=

3.28 × 10−9aρ

ρ
C/m2 =

3.28aρ

ρ
nC/m2

b) Find Vab and χe: Use

Vab = −
∫ 0.8

3

144.9
ρ

dρ = 144.9 ln
(

3
0.8

)
= 192 V

χe = εr − 1 = 1.56, as found in part a.

c) If there are 4 × 1019 molecules per cubic meter in the dielectric, find p(ρ): Use

p =
P
N

=
(2 × 10−9/ρ)

4 × 1019
aρ =

5.0 × 10−29

ρ
aρ C · m
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6.4. Consider a composite material made up of two species, having number densities N1 and N2

molecules/m3 respectively. The two materials are uniformly mixed, yielding a total number
density of N = N1 + N2. The presence of an electric field E, induces molecular dipole
moments p1 and p2 within the individual species, whether mixed or not. Show that the
dielectric constant of the composite material is given by εr = fεr1 + (1− f)εr2, where f is the
number fraction of species 1 dipoles in the composite, and where εr1 and εr2 are the dielectric
constants that the unmixed species would have if each had number density N .

We may write the total polarization vector as

Ptot = N1p1 + N2p2 = N

(
N1

N
p1 +

N2

N
p2

)
= N [fp1 + (1 − f)p2] = fP1 + (1 − f)P2

In terms of the susceptibilities, this becomes Ptot = ε0 [fχe1 + (1 − f)χe2]E, where χe1

and χe2 are evaluated at the composite number density, N . Now

D = εrε0E = ε0E + Ptot = ε0 [1 + fχe1 + (1 − f)χe2]︸ ︷︷ ︸
εr

E

Identifying εr as shown, we may rewrite it by adding and subracting f :

εr = [1 + f − f + fχe1 + (1 − f)χe2] = [f(1 + χe1) + (1 − f)(1 + χe2)]
= [fεr1 + (1 − f)εr2] Q.E.D.

6.5. The surface x = 0 separates two perfect dielectrics. For x > 0, let εr = εr1 = 3, while εr2 = 5
where x < 0. If E1 = 80ax − 60ay − 30az V/m, find:
a) EN1: This will be E1 · ax = 80 V/m.

b) ET1. This has components of E1 not normal to the surface, or ET1 = −60ay − 30az V/m.

c) ET1 =
√

(60)2 + (30)2 = 67.1 V/m.

d) E1 =
√

(80)2 + (60)2 + (30)2 = 104.4 V/m.

e) The angle θ1 between E1 and a normal to the surface: Use

cos θ1 =
E1 · ax

E1
=

80
104.4

⇒ θ1 = 40.0◦

f) DN2 = DN1 = εr1ε0EN1 = 3(8.85 × 10−12)(80) = 2.12 nC/m2.

g) DT2 = εr2ε0ET1 = 5(8.85 × 10−12)(67.1) = 2.97 nC/m2.

h) D2 = εr1ε0EN1ax + εr2ε0ET1 = 2.12ax − 2.66ay − 1.33az nC/m2.

i) P2 = D2 − ε0E2 = D2 [1 − (1/εr2)] = (4/5)D2 = 1.70ax − 2.13ay − 1.06az nC/m2.

j) the angle θ2 between E2 and a normal to the surface: Use

cos θ2 =
E2 · ax

E2
=

D2 · ax

D2
=

2.12√
(2.12)2 = (2.66)2 + (1.33)2

= .581

Thus θ2 = cos−1(.581) = 54.5◦.

2



6.6. The potential field in a slab of dielectric material for which εr = 1.6 is given by V = −5000x.
a) Find D, E, and P in the material.

First, E = −∇V = 5000ax V/m. Then D = εrε0E = 1.6ε0(5000)ax = 70.8ax nC/m2.
Then, χe = εr − 1 = 0.6, and so P = ε0χeE = 0.6ε0(5000)ax = 26.6ax nC/m2.

b) Evaluate ρv, ρb, and ρt in the material. Using the results in part a, we find ρv = ∇·D = 0,
ρb = −∇ · P = 0, and ρt = ∇ · ε0E = 0.

6.7. Two perfect dielectrics have relative permittivities εr1 = 2 and εr2 = 8. The planar interface
between them is the surface x−y+2z = 5. The origin lies in region 1. If E1 = 100ax+200ay−
50az V/m, find E2: We need to find the components of E1 that are normal and tangent to
the boundary, and then apply the appropriate boundary conditions. The normal component
will be EN1 = E1 · n. Taking f = x − y + 2z, the unit vector that is normal to the surface is

n =
∇f

|∇f | =
1√
6

[ax − ay + 2az]

This normal will point in the direction of increasing f , which will be away from the origin, or
into region 2 (you can visualize a portion of the surface as a triangle whose vertices are on the
three coordinate axes at x = 5, y = −5, and z = 2.5). So EN1 = (1/

√
6)[100 − 200 − 100] =

−81.7 V/m. Since the magnitude is negative, the normal component points into region 1 from
the surface. Then

EN1 = −81.65
(

1√
6

)
[ax − ay + 2az] = −33.33ax + 33.33ay − 66.67az V/m

Now, the tangential component will be ET1 = E1 −EN1 = 133.3ax + 166.7ay + 16.67az. Our
boundary conditions state that ET2 = ET1 and EN2 = (εr1/εr2)EN1 = (1/4)EN1. Thus

E2 = ET2 + EN2 = ET1 +
1
4
EN1 = 133.3ax + 166.7ay + 16.67az − 8.3ax + 8.3ay − 16.67az

= 125ax + 175ay V/m

6.8. Region 1 (x ≥ 0) is a dielectric with εr1 = 2, while region 2 (x < 0) has εr2 = 5. Let
E1 = 20ax − 10ay + 50az V/m.

a) Find D2: One approach is to first find E2. This will have the same y and z (tangential)
components as E1, but the normal component, Ex, will differ by the ratio εr1/εr2; this
arises from Dx1 = Dx2 (normal component of D is continuous across a non-charged
interface). Therefore E2 = 20(εr1/εr2)ax − 10ay + 50az = 8ax − 10ay + 50az. The flux
density is then

D2 = εr2ε0E2 = 40ε0 ax − 50ε0 ay + 250ε0 az = 0.35ax − 0.44ay + 2.21az nC/m2

b) Find the energy density in both regions: These will be

we1 =
1
2
εr1ε0E1 · E1 =

1
2
(2)ε0

[
(20)2 + (10)2 + (50)2

]
= 3000ε0 = 26.6 nJ/m3

we2 =
1
2
εr2ε0E2 · E2 =

1
2
(5)ε0

[
(8)2 + (10)2 + (50)2

]
= 6660ε0 = 59.0 nJ/m3
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6.9. Let the cylindrical surfaces ρ = 4 cm and ρ = 9 cm enclose two wedges of perfect dielectrics,
εr1 = 2 for 0 < φ < π/2, and εr2 = 5 for π/2 < φ < 2π. If E1 = (2000/ρ)aρ V/m, find:
a) E2: The interfaces between the two media will lie on planes of constant φ, to which E1

is parallel. Thus the field is the same on either side of the boundaries, and so E2 = E1.

b) the total electrostatic energy stored in a 1m length of each region: In general we have
wE = (1/2)εrε0E

2. So in region 1:

WE1 =
∫ 1

0

∫ π/2

0

∫ 9

4

1
2
(2)ε0

(2000)2

ρ2
ρ dρ dφ dz =

π

2
ε0(2000)2 ln

(
9
4

)
= 45.1 µJ

In region 2, we have

WE2 =
∫ 1

0

∫ 2π

π/2

∫ 9

4

1
2
(5)ε0

(2000)2

ρ2
ρ dρ dφ dz =

15π

4
ε0(2000)2 ln

(
9
4

)
= 338 µJ

6.10. Let S = 100 mm2, d = 3 mm, and εr = 12 for a parallel-plate capacitor.
a) Calculate the capacitance:

C =
εrε0A

d
=

12ε0(100 × 10−6)
3 × 10−3

= 0.4ε0 = 3.54 pf

b) After connecting a 6 V battery across the capacitor, calculate E, D, Q, and the total
stored electrostatic energy: First,

E = V0/d = 6/(3 × 10−3) = 2000 V/m, then D = εrε0E = 2.4 × 104ε0 = 0.21 µC/m2

The charge in this case is

Q = D · n|s = DA = 0.21 × (100 × 10−6) = 0.21 × 10−4 µC = 21 pC

Finally, We = (1/2)QV0 = 0.5(21)(6) = 63 pJ.

c) With the source still connected, the dielectric is carefully withdrawn from between the
plates. With the dielectric gone, re-calculate E, D, Q, and the energy stored in the
capacitor.

E = V0/d = 6/(3 × 10−3) = 2000 V/m, as before. D = ε0E = 2000ε0 = 17.7 nC/m2

The charge is now Q = DA = 17.7 × (100 × 10−6) nC = 1.8 pC.

Finally, We = (1/2)QV0 = 0.5(1.8)(6) = 5.4 pJ.

d) If the charge and energy found in (c) are less than that found in (b) (which you should
have discovered), what became of the missing charge and energy? In the absence of
friction in removing the dielectric, the charge and energy have returned to the battery
that gave it.
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6.11. Capacitors tend to be more expensive as their capacitance and maximum voltage, Vmax,
increase. The voltage Vmax is limited by the field strength at which the dielectric breaks
down, EBD. Which of these dielectrics will give the largest CVmax product for equal plate
areas: (a) air: εr = 1, EBD = 3 MV/m; (b) barium titanate: εr = 1200, EBD = 3 MV/m;
(c) silicon dioxide: εr = 3.78, EBD = 16 MV/m; (d) polyethylene: εr = 2.26, EBD = 4.7
MV/m? Note that Vmax = EBDd, where d is the plate separation. Also, C = εrε0A/d, and
so VmaxC = εrε0AEBD, where A is the plate area. The maximum CVmax product is found
through the maximum εrEBD product. Trying this with the given materials yields the winner,
which is barium titanate.

6.12. An air-filled parallel-plate capacitor with plate separation d and plate area A is connected to
a battery which applies a voltage V0 between plates. With the battery left connected, the
plates are moved apart to a distance of 10d. Determine by what factor each of the following
quantities changes:
a) V0: Remains the same, since the battery is left connected.

b) C: As C = ε0A/d, increasing d by a factor of ten decreases C by a factor of 0.1.

c) E: We require E × d = V0, where V0 has not changed. Therefore, E has decreased by a
factor of 0.1.

d) D: As D = ε0E, and since E has decreased by 0.1, D decreases by 0.1.

e) Q: Since Q = CV0, and as C is down by 0.1, Q also decreases by 0.1.

f) ρS : As Q is reduced by 0.1, ρS reduces by 0.1. This is also consistent with D having been
reduced by 0.1.

g) We: Use We = 1/2 CV 2
0 , to observe its reduction by 0.1, since C is reduced by that factor.

6.13. A parallel plate capacitor is filled with a nonuniform dielectric characterized by εr = 2 + 2 ×
106x2, where x is the distance from one plate. If S = 0.02 m2, and d = 1 mm, find C: Start by
assuming charge density ρs on the top plate. D will, as usual, be x-directed, originating at the
top plate and terminating on the bottom plate. The key here is that D will be constant over
the distance between plates. This can be understood by considering the x-varying dielectric as
constructed of many thin layers, each having constant permittivity. The permittivity changes
from layer to layer to approximate the given function of x. The approximation becomes exact
as the layer thicknesses approach zero. We know that D, which is normal to the layers, will
be continuous across each boundary, and so D is constant over the plate separation distance,
and will be given in magnitude by ρs. The electric field magnitude is now

E =
D

ε0εr
=

ρs

ε0(2 + 2 × 106x2)

The voltage beween plates is then

V0 =
∫ 10−3

0

ρs dx

ε0(2 + 2 × 106x2)
=

ρs

ε0

1√
4 × 106

tan−1

(
x
√

4 × 106

2

)∣∣∣10−3

0
=

ρs

ε0

1
2 × 103

(π

4

)

Now Q = ρs(.02), and so

C =
Q

V0
=

ρs(.02)ε0(2 × 103)(4)
ρsπ

= 4.51 × 10−10 F = 451 pF
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6.14. Repeat Problem 6.12 assuming the battery is disconnected before the plate separation is
increased: The ordering of parameters is changed over that in Problem 6.12, as the progression
of thought on the matter is different.

a) Q: Remains the same, since with the battery disconnected, the charge has nowhere to go.

b) ρS : As Q is unchanged, ρS is also unchanged, since the plate area is the same.

c) D: As D = ρS , it will remain the same also.

d) E: Since E = D/ε0, and as D is not changed, E will also remain the same.

e) V0: We require E × d = V0, where E has not changed. Therefore, V0 has increased by a
factor of 10.

f) C: As C = ε0A/d, increasing d by a factor of ten decreases C by a factor of 0.1. The
same result occurs because C = Q/V0, where V0 is increased by 10, whereas Q has not
changed.

g) We: Use We = 1/2 CV 2
0 = 1/2 QV0, to observe its increase by a factor of 10.

6.15. Let εr1 = 2.5 for 0 < y < 1 mm, εr2 = 4 for 1 < y < 3 mm, and εr3 for 3 < y < 5 mm.
Conducting surfaces are present at y = 0 and y = 5 mm. Calculate the capacitance per square
meter of surface area if: a) εr3 is that of air; b) εr3 = εr1; c) εr3 = εr2; d) region 3 is silver:
The combination will be three capacitors in series, for which

1
C

=
1
C1

+
1
C2

+
1
C3

=
d1

εr1ε0(1)
+

d2

εr2ε0(1)
+

d3

εr3ε0(1)
=

10−3

ε0

[
1

2.5
+

2
4

+
2

εr3

]

So that

C =
(5 × 10−3)ε0εr3

10 + 4.5εr3

Evaluating this for the four cases, we find a) C = 3.05 nF for εr3 = 1, b) C = 5.21 nF for
εr3 = 2.5, c) C = 6.32 nF for εr3 = 4, and d) C = 9.83 nF if silver (taken as a perfect
conductor) forms region 3; this has the effect of removing the term involving εr3 from the
original formula (first equation line), or equivalently, allowing εr3 to approach infinity.

6.16. A parallel-plate capacitor is made using two circular plates of radius a, with the bottom plate
on the xy plane, centered at the origin. The top plate is located at z = d, with its center on
the z axis. Potential V0 is on the top plate; the bottom plate is grounded. Dielectric having
radially-dependent permittivity fills the region between plates. The permittivity is given by
ε(ρ) = ε0(1 + ρ/a). Find:
a) E: Since ε does not vary in the z direction, and since we must always obtain V0 when

integrating E between plates, it must follow that E = −V0/daz V/m.

b) D: D = εE = −[ε0(1 + ρ/a)V0/d] az C/m2.

c) Q: Here we find the integral of the surface charge density over the top plate:

Q =
∫

S

D · dS =
∫ 2π

0

∫ a

0

−ε0(1 + ρ/a)V0

d
az · (−az) ρ dρ dφ =

2πε0V0

d

∫ a

0

(ρ + ρ2/a) dρ

=
5πε0a

2

3d
V0

d) C: We use C = Q/V0 and our previous result to find C = 5ε0(πa2)/(3d) F.
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6.17. Two coaxial conducting cylinders of radius 2 cm and 4 cm have a length of 1m. The region
between the cylinders contains a layer of dielectric from ρ = c to ρ = d with εr = 4. Find the
capacitance if
a) c = 2 cm, d = 3 cm: This is two capacitors in series, and so

1
C

=
1
C1

+
1
C2

=
1

2πε0

[
1
4

ln
(

3
2

)
+ ln

(
4
3

)]
⇒ C = 143 pF

b) d = 4 cm, and the volume of the dielectric is the same as in part a: Having equal volumes
requires that 32 − 22 = 42 − c2, from which c = 3.32 cm. Now

1
C

=
1
C1

+
1
C2

=
1

2πε0

[
ln

(
3.32
2

)
+

1
4

ln
(

4
3.32

)]
⇒ C = 101 pF

6.18. (a) If we could specify a material to be used as the dielectric in a coaxial capacitor for which
the permittivity varied continuously with radius, what variation with ρ should be used in order
to maintain a uniform value of the electric field intensity?

Gauss’s law tells us that regardless of the radially-varying permittivity, D = (aρs/ρ)aρ,
where a is the inner radius and ρs is the presumed surface charge density on the inner
cylinder. Now

E =
D
ε

=
aρs

ερ
aρ

which indicates that ε must have a 1/ρ dependence if E is to be constant with radius.

b) Under the conditions of part a, how do the inner and outer radii appear in the expression
for the capacitance per unit distance? Let ε = g/ρ where g is a constant. Then E =
aρs/g aρ and the voltage between cylinders will be

V0 = −
∫ a

b

aρs

g
aρ · aρ dρ =

aρs

g
(b − a)

where b is the outer radius. The capacitance per unit length is then C = 2πaρs/V0 =
2πg/(b − a), or a simple inverse-distance relation.

6.19. Two conducting spherical shells have radii a = 3 cm and b = 6 cm. The interior is a perfect
dielectric for which εr = 8.

a) Find C: For a spherical capacitor, we know that:

C =
4πεrε0
1
a − 1

b

=
4π(8)ε0(

1
3 − 1

6

)
(100)

= 1.92πε0 = 53.3 pF

b) A portion of the dielectric is now removed so that εr = 1.0, 0 < φ < π/2, and εr = 8,
π/2 < φ < 2π. Again, find C: We recognize here that removing that portion leaves
us with two capacitors in parallel (whose C’s will add). We use the fact that with the
dielectric completely removed, the capacitance would be C(εr = 1) = 53.3/8 = 6.67 pF.
With one-fourth the dielectric removed, the total capacitance will be

C =
1
4
(6.67) +

3
4
(53.4) = 41.7 pF
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6.20. Show that the capacitance per unit length of a cylinder of radius a is zero: Let ρs be the
surface charge density on the surface at ρ = a. Then the charge per unit length is Q = 2πaρs.
The electric field (assuming free space) is E = (aρs)/(ε0ρ)aρ. The potential difference is
evaluated between radius a and infinite radius, and is

V0 = −
∫ a

∞

aρs

ε0ρ
aρ · aρ dρ → ∞

The capacitance, equal to Q/V0, is therefore zero.

6.21. With reference to Fig. 6.9, let b = 6 m, h = 15 m, and the conductor potential be 250 V.
Take ε = ε0. Find values for K1, ρL, a, and C: We have

K1 =

[
h +

√
h2 + b2

b

]2

=

[
15 +

√
(15)2 + (6)2

6

]2

= 23.0

We then have

ρL =
4πε0V0

lnK1
=

4πε0(250)
ln(23)

= 8.87 nC/m

Next, a =
√

h2 − b2 =
√

(15)2 − (6)2 = 13.8 m. Finally,

C =
2πε

cosh−1(h/b)
=

2πε0

cosh−1(15/6)
= 35.5 pF

6.22. Two #16 copper conductors (1.29-mm diameter) are parallel with a separation d between
axes. Determine d so that the capacitance between wires in air is 30 pF/m.

We use
C

L
= 60 pF/m =

2πε0

cosh−1(h/b)

The above expression evaluates the capacitance of one of the wires suspended over a plane
at mid-span, h = d/2. Therefore the capacitance of that structure is doubled over that
required (from 30 to 60 pF/m). Using this,

h

b
= cosh

(
2πε0
C/L

)
= cosh

(
2π × 8.854

60

)
= 1.46

Therefore, d = 2h = 2b(1.46) = 2(1.29/2)(1.46) = 1.88 mm.

6.23. A 2 cm diameter conductor is suspended in air with its axis 5 cm from a conducting plane.
Let the potential of the cylinder be 100 V and that of the plane be 0 V. Find the surface
charge density on the:

a) cylinder at a point nearest the plane: The cylinder will image across the plane, producing
an equivalent two-cylinder problem, with the second one at location 5 cm below the
plane. We will take the plane as the zy plane, with the cylinder positions at x = ±5.
Now b = 1 cm, h = 5 cm, and V0 = 100 V. Thus a =

√
h2 − b2 = 4.90 cm. Then

K1 = [(h + a)/b]2 = 98.0, and ρL = (4πε0V0)/ lnK1 = 2.43 nC/m. Now

D = ε0E = −ρL

2π

[
(x + a)ax + yay

(x + a)2 + y2
− (x − a)ax + yay

(x − a)2 + y2

]
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6.23a. (continued)
and

ρs, max = D · (−ax)
∣∣∣
x=h−b,y=0

=
ρL

2π

[
h − b + a

(h − b + a)2
− h − b − a

(h − b − a)2

]
= 473 nC/m2

b) plane at a point nearest the cylinder: At x = y = 0,

D(0, 0) = −ρL

2π

[
aax

a2
− −aax

a2

]
= −ρL

2π

2
a
ax

from which
ρs = D(0, 0) · ax = −ρL

πa
= −15.8 nC/m2

6.24. For the conductor configuration of Problem 6.23, determine the capacitance per unit length.
This is a quick one if we have already solved 6.23. The capacitance per unit length will be
C = ρL/V0 = 2.43 [nC/m]/100 = 24.3 pF/m.

6.25 Construct a curvilinear square map for a coaxial capacitor of 3-cm inner radius and 8-cm outer
radius. These dimensions are suitable for the drawing.
a) Use your sketch to calculate the capacitance per meter length, assuming εR = 1: The

sketch is shown below. Note that only a 9◦ sector was drawn, since this would then be
duplicated 40 times around the circumference to complete the drawing. The capacitance
is thus

C
.= ε0

NQ

NV
= ε0

40
6

= 59 pF/m

b) Calculate an exact value for the capacitance per unit length: This will be

C =
2πε0

ln(8/3)
= 57 pF/m
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6.26 Construct a curvilinear-square map of the potential field about two parallel circular cylinders,
each of 2.5 cm radius, separated by a center-to-center distance of 13cm. These dimensions are
suitable for the actual sketch if symmetry is considered. As a check, compute the capacitance
per meter both from your sketch and from the exact formula. Assume εR = 1.

Symmetry allows us to plot the field lines and equipotentials over just the first quadrant, as
is done in the sketch below (shown to one-half scale). The capacitance is found from the
formula C = (NQ/NV )ε0, where NQ is twice the number of squares around the perimeter
of the half-circle and NV is twice the number of squares between the half-circle and the left
vertical plane. The result is

C =
NQ

NV
ε0 =

32
16

ε0 = 2ε0 = 17.7 pF/m

We check this result with that using the exact formula:

C =
πε0

cosh−1(d/2a)
=

πε0

cosh−1(13/5)
= 1.95ε0 = 17.3 pF/m
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6.27. Construct a curvilinear square map of the potential field between two parallel circular cylin-
ders, one of 4-cm radius inside one of 8-cm radius. The two axes are displaced by 2.5 cm.
These dimensions are suitable for the drawing. As a check on the accuracy, compute the
capacitance per meter from the sketch and from the exact expression:

C =
2πε

cosh−1 [(a2 + b2 − D2)/(2ab)]

where a and b are the conductor radii and D is the axis separation.

The drawing is shown below. Use of the exact expression above yields a capacitance value of
C = 11.5ε0 F/m. Use of the drawing produces:

C
.=

22 × 2
4

ε0 = 11ε0 F/m
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6.28. A solid conducting cylinder of 4-cm radius is centered within a rectangular conducting cylinder
with a 12-cm by 20-cm cross-section.

a) Make a full-size sketch of one quadrant of this configuration and construct a curvilinear-
square map for its interior: The result below could still be improved a little, but is
nevertheless sufficient for a reasonable capacitance estimate. Note that the five-sided
region in the upper right corner has been partially subdivided (dashed line) in anticipation
of how it would look when the next-level subdivision is done (doubling the number of field
lines and equipotentials).

b) Assume ε = ε0 and estimate C per meter length: In this case NQ is the number of squares
around the full perimeter of the circular conductor, or four times the number of squares
shown in the drawing. NV is the number of squares between the circle and the rectangle,
or 5. The capacitance is estimated to be

C =
NQ

NV
ε0 =

4 × 13
5

ε0 = 10.4ε0
.= 90 pF/m
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6.29. The inner conductor of the transmission line shown in Fig. 6.14 has a square cross-section
2a × 2a, while the outer square is 5a × 5a. The axes are displaced as shown. (a) Construct
a good-sized drawing of the transmission line, say with a = 2.5 cm, and then prepare a
curvilinear-square plot of the electrostatic field between the conductors. (b) Use the map to
calculate the capacitance per meter length if ε = 1.6ε0. (c) How would your result to part b
change if a = 0.6 cm?

a) The plot is shown below. Some improvement is possible, depending on how much time
one wishes to spend.

b) From the plot, the capacitance is found to be

C
.=

16 × 2
4

(1.6)ε0 = 12.8ε0
.= 110 pF/m

c) If a is changed, the result of part b would not change, since all dimensions retain the same
relative scale.

6.30. For the coaxial capacitor of Problem 6.18, suppose that the dielectric is leaky, allowing current
to flow between the inner and outer conductors, while the electric field is still uniform with
radius.

a) What functional form must the dielectric conductivity assume? We must have constant
current through any cross-section, which means that J = I/(2πρ)aρ A/m2, where I is
the radial current per unit length. Then, from J = σE, where E is constant, we require
a 1/ρ dependence on σ, or let σ = σ0/ρ, where σ0 is a constant.

b) What is the basic functional form of the resistance per unit distance, R? From Problem
6.18, we had E = aρs/g aρ V/m, where ρs is the surface charge density on the inner con-
ductor, and g is the constant parameter in the permittivity, ε = g/ρ. Now, I = 2πρσE =
2πaρsσ0/g, and V0 = aρs(b − a)/g (from 6.18). Then R = V0/I = (b − a)/(2πσ0).
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6.30c) What parameters remain in the product, RC, where the form of C, the capacitance per unit
distance, has been determined in Problem 6.18? With C = 2πg/(b − a) (from 6.18), we have
RC = g/σ0.

6.31. A two-wire transmission line consists of two parallel perfectly-conducting cylinders, each hav-
ing a radius of 0.2 mm, separated by center-to-center distance of 2 mm. The medium sur-
rounding the wires has εr = 3 and σ = 1.5 mS/m. A 100-V battery is connected between the
wires. Calculate:
a) the magnitude of the charge per meter length on each wire: Use

C =
πε

cosh−1(h/b)
=

π × 3 × 8.85 × 10−12

cosh−1 (1/0.2)
= 3.64 × 10−9 C/m

Then the charge per unit length will be

Q = CV0 = (3.64 × 10−11)(100) = 3.64 × 10−9 C/m = 3.64 nC/m

b) the battery current: Use

RC =
ε

σ
⇒ R =

3 × 8.85 × 10−12

(1.5 × 10−3)(3.64 × 10−11)
= 486 Ω

Then
I =

V0

R
=

100
486

= 0.206 A = 206 mA
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