
CHAPTER 7

7.1. Let V = 2xy2z3 and ε = ε0. Given point P (1, 2,−1), find:
a) V at P : Substituting the coordinates into V , find VP = −8 V.

b) E at P : We use E = −∇V = −2y2z3ax − 4xyz3ay − 6xy2z2az, which, when evaluated
at P , becomes EP = 8ax + 8ay − 24az V/m

c) ρv at P : This is ρv = ∇ · D = −ε0∇2V = −4xz(z2 + 3y2) C/m3

d) the equation of the equipotential surface passing through P : At P , we know V = −8 V,
so the equation will be xy2z3 = −4.

e) the equation of the streamline passing through P : First,

Ey

Ex
=

dy

dx
=

4xyz3

2y2z3
=

2x

y

Thus
ydy = 2xdx, and so

1
2
y2 = x2 + C1

Evaluating at P , we find C1 = 1. Next,

Ez

Ex
=

dz

dx
=

6xy2z2

2y2z3
=

3x

z

Thus
3xdx = zdz, and so

3
2
x2 =

1
2
z2 + C2

Evaluating at P , we find C2 = 1. The streamline is now specified by the equations:

y2 − 2x2 = 2 and 3x2 − z2 = 2

f) Does V satisfy Laplace’s equation? No, since the charge density is not zero.

7.2. Given the spherically-symmetric potential field in free space, V = V0e
−r/a, find:

a) ρv at r = a; Use Poisson’s equation, ∇2V = −ρv/ε, which in this case becomes

−ρv

ε0
=

1
r2

d

dr

(
r2 dV

dr

)
=

−V0

ar2

d

dr

(
r2e−r/a

)
=

−V0

ar

(
2 − r

a

)
e−r/a

from which

ρv(r) =
ε0V0

ar

(
2 − r

a

)
e−r/a ⇒ ρv(a) =

ε0V0

a2
e−1 C/m3

b) the electric field at r = a; this we find through the negative gradient:

E(r) = −∇V = −dV

dr
ar =

V0

a
e−r/a ar ⇒ E(a) =

V0

a
e−1ar V/m
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7.2c) the total charge: The easiest way is to first find the electric flux density, which from part b is
D = ε0E = (ε0V0/a)e−r/a ar. Then the net outward flux of D through a sphere of radius r
would be

Φ(r) = Qencl(r) = 4πr2D = 4πε0V0r
2e−r/a C

As r → ∞, this result approaches zero, so the total charge is therefore Qnet = 0.

7.3. Let V (x, y) = 4e2x + f(x)− 3y2 in a region of free space where ρv = 0. It is known that both
Ex and V are zero at the origin. Find f(x) and V (x, y): Since ρv = 0, we know that ∇2V = 0,
and so

∇2V =
∂2V

∂x2
+

∂2V

∂y2
= 16e2x +

d2f

dx2
− 6 = 0

Therefore
d2f

dx2
= −16e2x + 6 ⇒ df

dx
= −8e2x + 6x + C1

Now
Ex =

∂V

∂x
= 8e2x +

df

dx

and at the origin, this becomes

Ex(0) = 8 +
df

dx

∣∣∣
x=0

= 0(as given)

Thus df/dx |x=0 = −8, and so it follows that C1 = 0. Integrating again, we find

f(x, y) = −4e2x + 3x2 + C2

which at the origin becomes f(0, 0) = −4 + C2. However, V (0, 0) = 0 = 4 + f(0, 0). So
f(0, 0) = −4 and C2 = 0. Finally, f(x, y) = −4e2x + 3x2, and V (x, y) = 4e2x − 4e2x + 3x2 −
3y2 = 3(x2 − y2).

7.4. Given the potential field, V (ρ, φ) = (V0ρ/d) cos φ:
a) Show that V (ρ, φ) satisfies Laplace’s equation:

∇2V =
1
ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

1
ρ2

∂2V

∂φ2
=

1
ρ

∂

∂ρ

(
V0ρ

d
cos φ

)
− 1

ρ2

∂

∂φ

(
V0ρ

d
sin φ

)

=
V0ρ

d
cos φ − V0ρ

d
sin φ = 0

b) Describe the constant-potential surfaces: These will be surfaces on which ρ cos φ is a
constant. At this stage, it is helpful to recall that the x coordinate in rectangular co-
ordinates is in fact ρ cos φ, so we identify the surfaces of constant potential as (plane)
surfaces of constant x (parallel to the yz plane).

c) Specifically describe the surfaces on which V = V0 and V = 0: In the first case, we would
have x = 0 (or the yz plane); in the second case, we have the surface x = d.

d) Write the potential expression in rectangular coordinates: Using the argument in part b,
we would have V (x) = V0x/d.
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7.5. Given the potential field V = (Aρ4 + Bρ−4) sin 4φ:
a) Show that ∇2V = 0: In cylindrical coordinates,

∇2V =
1
ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

1
ρ2

∂2V

∂φ2

=
1
ρ

∂

∂ρ

(
ρ(4Aρ3 − 4Bρ−5)

)
sin 4φ − 1

ρ2
16(Aρ4 + Bρ−4) sin 4φ

=
16
ρ

(Aρ3 + Bρ−5) sin 4φ − 16
ρ2

(Aρ4 + Bρ−4) sin 4φ = 0

b) Select A and B so that V = 100 V and |E| = 500 V/m at P (ρ = 1, φ = 22.5◦, z = 2):
First,

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ

= −4
[
(Aρ3 − Bρ−5) sin 4φaρ + (Aρ3 + Bρ−5) cos 4φaφ

]
and at P , EP = −4(A − B)aρ. Thus |EP | = ±4(A − B). Also, VP = A + B. Our two
equations are:

4(A − B) = ±500

and
A + B = 100

We thus have two pairs of values for A and B:

A = 112.5, B = −12.5 or A = −12.5, B = 112.5

7.6. A parallel-plate capacitor has plates located at z = 0 and z = d. The region between plates
is filled with a material containing volume charge of uniform density ρ0 C/m3, and which has
permittivity ε. Both plates are held at ground potential.
a) Determine the potential field between plates: We solve Poisson’s equation, under the

assumption that V varies only with z:

∇2V =
d2V

dz2
= −ρ0

ε
⇒ V =

−ρ0z
2

2ε
+ C1z + C2

At z = 0, V = 0, and so C2 = 0. Then, at z = d, V = 0 as well, so we find C1 = ρ0d/2ε.
Finally, V (z) = (ρ0z/2ε)[d − z].

b) Determine the electric field intensity, E between plates: Taking the answer to part a, we
find E through

E = −∇V = −dV

dz
az = − d

dz

[ρ0z

2ε
(d − z)

]
=

ρ0

2ε
(2z − d)az V/m
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7.6c) Repeat a and b for the case of the plate at z = d raised to potential V0, with the z = 0 plate
grounded: Begin with

V (z) =
−ρ0z

2

2ε
+ C1z + C2

with C2 = 0 as before, since V (z = 0) = 0. Then

V (z = d) = V0 =
−ρ0d

2

2ε
+ C1d ⇒ C1 =

V0

d
+

ρ0d

2ε

So that
V (z) =

V0

d
z +

ρ0z

2ε
(d − z)

We recognize this as the simple superposition of the voltage as found in part a and the voltage
of a capacitor carrying voltage V0, but without the charged dielectric. The electric field is now

E = −dV

dz
az =

−V0

d
az +

ρ0

2ε
(2z − d)az V/m

7.7. Let V = (cos 2φ)/ρ in free space.
a) Find the volume charge density at point A(0.5, 60◦, 1): Use Poisson’s equation:

ρv = −ε0∇2V = −ε0

(
1
ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

1
ρ2

∂2V

∂φ2

)

= −ε0

(
1
ρ

∂

∂ρ

(− cos 2φ

ρ

)
− 4

ρ2

cos 2φ

ρ

)
=

3ε0 cos 2φ

ρ3

So at A we find:

ρvA =
3ε0 cos(120◦)

0.53
= −12ε0 = −106 pC/m3

b) Find the surface charge density on a conductor surface passing through B(2, 30◦, 1): First,
we find E:

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ

=
cos 2φ

ρ2
aρ +

2 sin 2φ

ρ2
aφ

At point B the field becomes

EB =
cos 60◦

4
aρ +

2 sin 60◦

4
aφ = 0.125aρ + 0.433aφ

The surface charge density will now be

ρsB = ±|DB | = ±ε0|EB | = ±0.451ε0 = ±0.399 pC/m2

The charge is positive or negative depending on which side of the surface we are consid-
ering. The problem did not provide information necessary to determine this.
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7.8. A uniform volume charge has constant density ρv = ρ0 C/m3, and fills the region r < a, in
which permittivity ε as assumed. A conducting spherical shell is located at r = a, and is held
at ground potential. Find:
a) the potential everywhere: Inside the sphere, we solve Poisson’s equation, assuming radial

variation only:

∇2V =
1
r2

d

dr

(
r2 dV

dr

)
=

−ρ0

ε
⇒ V (r) =

−ρ0r
2

6ε0
+

C1

r
+ C2

We require that V is finite at the orgin (or as r → 0), and so therefore C1 = 0. Next,
V = 0 at r = a, which gives C2 = ρ0a

2/6ε. Outside, r > a, we know the potential must
be zero, since the sphere is grounded. To show this, solve Laplace’s equation:

∇2V =
1
r2

d

dr

(
r2 dV

dr

)
= 0 ⇒ V (r) =

C1

r
+ C2

Requiring V = 0 at both r = a and at infinity leads to C1 = C2 = 0. To summarize

V (r) =
{ ρ0

6ε (a2 − r2) r < a

0 r > a

b) the electric field intensity, E, everywhere: Use

E = −∇V =
−dV

dr
ar =

ρ0r

3ε
ar r < a

Outside (r > a), the potential is zero, and so E = 0 there as well.

7.9. The functions V1(ρ, φ, z) and V2(ρ, φ, z) both satisfy Laplace’s equation in the region a < ρ < b,
0 ≤ φ < 2π, −L < z < L; each is zero on the surfaces ρ = b for −L < z < L; z = −L for
a < ρ < b; and z = L for a < ρ < b; and each is 100 V on the surface ρ = a for −L < z < L.
a) In the region specified above, is Laplace’s equation satisfied by the functions V1 + V2,

V1 − V2, V1 + 3, and V1V2? Yes for the first three, since Laplace’s equation is linear. No
for V1V2.

b) On the boundary surfaces specified, are the potential values given above obtained from
the functions V1 +V2, V1−V2, V1 +3, and V1V2? At the 100 V surface (ρ = a), No for all.
At the 0 V surfaces, yes, except for V1 + 3.

c) Are the functions V1 + V2, V1 − V2, V1 + 3, and V1V2 identical with V1? Only V2 is,
since it is given as satisfying all the boundary conditions that V1 does. Therefore, by the
uniqueness theorem, V2 = V1. The others, not satisfying the boundary conditions, are
not the same as V1.
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7.10. Consider the parallel-plate capacitor of Problem 7.6, but this time the charged dielectric exists
only between z = 0 and z = b, where b < d. Free space fills the region b < z < d. Both
plates are at ground potential. No surface charge exists at z = b, so that both V and D are
continuous there. By solving Laplace’s and Poisson’s equations, find:
a) V (z) for 0 < z < d: In Region 1 (z < b), we solve Poisson’s equation, assuming z variation

only:
d2V1

dz2
=

−ρ0

ε
⇒ dV1

dz
=

−ρ0z

ε
+ C1 (z < b)

In Region 2 (z > b), we solve Laplace’s equation, assuming z variation only:

d2V2

dz2
= 0 ⇒ dV2

dz
= C ′

1 (z > b)

At this stage we apply the first boundary condition, which is continuity of D across the
interface at z = b. Knowing that the electric field magnitude is given by dV/dz, we write

ε
dV1

dz

∣∣∣
z=b

= ε0
dV2

dz

∣∣∣
z=b

⇒ −ρ0b + εC1 = ε0C
′
1 ⇒ C ′

1 =
−ρ0b

ε0
+

ε

ε0
C1

Substituting the above expression for C ′
1, and performing a second integration on the

Poisson and Laplace equations, we find

V1(z) = −ρ0z
2

2ε
+ C1z + C2 (z < b)

and
V2(z) = −ρ0bz

2ε0
+

ε

ε0
C1z + C ′

2 (z > b)

Next, requiring V1 = 0 at z = 0 leads to C2 = 0. Then, the requirement that V2 = 0 at
z = d leads to

0 = −ρ0bd

ε0
+

ε

ε0
C1d + C ′

2 ⇒ C ′
2 =

ρ0bd

ε0
− ε

ε0
C1d

With C2 and C ′
2 known, the voltages now become

V1(z) = −ρ0z
2

2ε
+ C1z and V2(z) =

ρ0b

ε0
(d − z) − ε

ε0
C1(d − z)

Finally, to evaluate C1, we equate the two voltage expressions at z = b:

V1|z=b = V2|z=b ⇒ C1 =
ρ0b

2ε

[
b + 2εr(d − b)
b + εr(d − b)

]

where εr = ε/ε0. Substituting C1 as found above into V1 and V2 leads to the final
expressions for the voltages:

V1(z) =
ρ0bz

2ε

[(
b + 2εr(d − b)
b + εr(d − b)

)
− z

b

]
(z < b)

V2(z) =
ρ0b

2

2ε0

[
d − z

b + εr(d − b)

]
(z > b)
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7.10b) the electric field intensity for 0 < z < d: This involves taking the negative gradient of the final
voltage expressions of part a. We find

E1 = −dV1

dz
az =

ρ0

ε

[
z − b

2

(
b + 2εr(d − b)
b + εr(d − b)

)]
az V/m (z < b)

E2 = −dV2

dz
az =

ρ0b
2

2ε0

[
1

b + εr(d − b)

]
az V/m (z > b)

7.11. The conducting planes 2x + 3y = 12 and 2x + 3y = 18 are at potentials of 100 V and 0,
respectively. Let ε = ε0 and find:
a) V at P (5, 2, 6): The planes are parallel, and so we expect variation in potential in the

direction normal to them. Using the two boundary condtions, our general potential
function can be written:

V (x, y) = A(2x + 3y − 12) + 100 = A(2x + 3y − 18) + 0

and so A = −100/6. We then write

V (x, y) = −100
6

(2x + 3y − 18) = −100
3

x − 50y + 300

and VP = − 100
3 (5) − 100 + 300 = 33.33 V.

b) Find E at P : Use

E = −∇V =
100
3

ax + 50ay V/m

7.12. The derivation of Laplace’s and Poisson’s equations assumed constant permittivity, but there
are cases of spatially-varying permittivity in which the equations will still apply. Consider the
vector identity, ∇ · (ψG) = G · ∇ψ + ψ∇ ·G, where ψ and G are scalar and vector functions,
respectively. Determine a general rule on the allowed directions in which ε may vary with
respect to the electric field.

In the original derivation of Poisson’s equation, we started with ∇·D = ρv, where D = εE.
Therefore

∇ · D = ∇ · (εE) = −∇ · (ε∇V ) = −∇V · ∇ε − ε∇2V = ρv

We see from this that Poisson’s equation, ∇2V = −ρv/ε, results when ∇V · ∇ε = 0. In
words, ε is allowed to vary, provided it does so in directions that are normal to the local
electric field.

7.13. Coaxial conducting cylinders are located at ρ = 0.5 cm and ρ = 1.2 cm. The region between
the cylinders is filled with a homogeneous perfect dielectric. If the inner cylinder is at 100V
and the outer at 0V, find:
a) the location of the 20V equipotential surface: From Eq. (16) we have

V (ρ) = 100
ln(.012/ρ)

ln(.012/.005)
V
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We seek ρ at which V = 20 V, and thus we need to solve:

20 = 100
ln(.012/ρ)

ln(2.4)
⇒ ρ =

.012
(2.4)0.2

= 1.01 cm

b) Eρ max: We have

Eρ = −∂V

∂ρ
= −dV

dρ
=

100
ρ ln(2.4)

whose maximum value will occur at the inner cylinder, or at ρ = .5 cm:

Eρ max =
100

.005 ln(2.4)
= 2.28 × 104 V/m = 22.8 kV/m

c) εr if the charge per meter length on the inner cylinder is 20 nC/m: The capacitance per
meter length is

C =
2πε0εr

ln(2.4)
=

Q

V0

We solve for εr:

εr =
(20 × 10−9) ln(2.4)

2πε0(100)
= 3.15

7.14. Repeat Problem 7.13, but with the dielectric only partially filling the volume, within 0 < φ <
π, and with free space in the remaining volume.

We note that the dielectric changes with φ, and not with ρ. Also, since E is radially-
directed and varies only with radius, Laplace’s equation for this case is valid (see Problem
7.12) and is the same as that which led to the potential and field in Problem 7.13.
Therefore, the solutions to parts a and b are unchanged from Problem 7.13. Part c,
however, is different. We write the charge per unit length as the sum of the charges along
each half of the center conductor (of radius a)

Q = εrε0Eρ,max(πa) + ε0Eρ,max(πa) = ε0Eρ,max(πa)(1 + εr) C/m

Using the numbers given or found in Problem 7.13, we obtain

1 + εr =
20 × 10−9 C/m

(8.852 × 10−12)(22.8 × 103 V/m)(0.5 × 10−2 m)π
= 6.31 ⇒ εr = 5.31

We may also note that the average dielectric constant in this problem, (εr + 1)/2, is the
same as that of the uniform dielectric constant found in Problem 7.13.

7.15. The two conducting planes illustrated in Fig. 7.8 are defined by 0.001 < ρ < 0.120 m,
0 < z < 0.1 m, φ = 0.179 and 0.188 rad. The medium surrounding the planes is air. For
region 1, 0.179 < φ < 0.188, neglect fringing and find:
a) V (φ): The general solution to Laplace’s equation will be V = C1φ + C2, and so

20 = C1(.188) + C2 and 200 = C1(.179) + C2
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Subtracting one equation from the other, we find

−180 = C1(.188 − .179) ⇒ C1 = −2.00 × 104

Then
20 = −2.00 × 104(.188) + C2 ⇒ C2 = 3.78 × 103

Finally, V (φ) = (−2.00 × 104)φ + 3.78 × 103 V.

b) E(ρ): Use

E(ρ) = −∇V = −1
ρ

dV

dφ
=

2.00 × 104

ρ
aφ V/m

c) D(ρ) = ε0E(ρ) = (2.00 × 104ε0/ρ)aφ C/m2.

d) ρs on the upper surface of the lower plane: We use

ρs = D · n
∣∣∣
surface

=
2.00 × 104

ρ
aφ · aφ =

2.00 × 104

ρ
C/m2

e) Q on the upper surface of the lower plane: This will be

Qt =
∫ .1

0

∫ .120

.001

2.00 × 104ε0
ρ

dρ dz = 2.00 × 104ε0(.1) ln(120) = 8.47 × 10−8 C = 84.7 nC

f) Repeat a) to c) for region 2 by letting the location of the upper plane be φ = .188 − 2π,
and then find ρs and Q on the lower surface of the lower plane. Back to the beginning,
we use

20 = C ′
1(.188 − 2π) + C ′

2 and 200 = C ′
1(.179) + C ′

2
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7.15f (continued) Subtracting one from the other, we find

−180 = C ′
1(.009 − 2π) ⇒ C ′

1 = 28.7

Then 200 = 28.7(.179) + C ′
2 ⇒ C ′

2 = 194.9. Thus V (φ) = 28.7φ + 194.9 in region 2. Then

E = −28.7
ρ

aφ V/m and D = −28.7ε0
ρ

aφ C/m2

ρs on the lower surface of the lower plane will now be

ρs = −28.7ε0
ρ

aφ · (−aφ) =
28.7ε0

ρ
C/m2

The charge on that surface will then be Qb = 28.7ε0(.1) ln(120) = 122 pC.

g) Find the total charge on the lower plane and the capacitance between the planes: Total
charge will be Qnet = Qt + Qb = 84.7 nC + 0.122 nC = 84.8 nC. The capacitance will be

C =
Qnet

∆V
=

84.8
200 − 20

= 0.471 nF = 471 pF

7.16. A parallel-plate capacitor is made using two circular plates of radius a, with the bottom plate
on the xy plane, centered at the origin. The top plate is located at z = d, with its center on
the z axis. Potential V0 is on the top plate; the bottom plate is grounded. Dielectric having
radially-dependent permittivity fills the region between plates. The permittivity is given by
ε(ρ) = ε0(1 + ρ/a). Find:

a) V (z): Since ε varies in the direction normal to E, Laplace’s equation applies, and we
write

∇2V =
d2V

dz2
= 0 ⇒ V (z) = C1z + C2

With the given boundary conditions, C2 = 0, and C1 = V0/d. Therefore V (z) = V0z/d V.

b) E: This will be E = −∇V = −dV/dz az = −(V0/d)az V/m.

c) Q: First we find the electric flux density: D = εE = −ε0(1 + ρ/a)(V0/d)az C/m2. The
charge density on the top plate is then ρs = D · −az = ε0(1 + ρ/a)(V0/d) C/m2. From
this we find the charge on the top plate:

Q =
∫ 2π

0

∫ a

0

ε0(1 + ρ/a)(V0/d) ρ dρ dφ =
5πa2ε0V0

3d
C

d) C. The capacitance is C = Q/V0 = 5πa2ε0/(3d) F.

7.17. Concentric conducting spheres are located at r = 5 mm and r = 20 mm. The region between
the spheres is filled with a perfect dielectric. If the inner sphere is at 100 V and the outer
sphere at 0 V:
a) Find the location of the 20 V equipotential surface: Solving Laplace’s equation gives us

V (r) = V0

1
r − 1

b
1
a − 1

b
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where V0 = 100, a = 5 and b = 20. Setting V (r) = 20, and solving for r produces
r = 12.5 mm.

b) Find Er,max: Use

E = −∇V = −dV

dr
ar =

V0 ar

r2
(

1
a − 1

b

)
Er,max = E(r = a) =

V0

a(1 − (a/b))
=

100
5(1 − (5/20))

= 26.7 V/mm = 26.7 kV/m

c) Find εr if the surface charge density on the inner sphere is 1.0 µC/m2: ρs will be equal
in magnitude to the electric flux density at r = a. So ρs = (2.67 × 104 V/m)εrε0 =
10−6 C/m2. Thus εr = 4.23. Note, in the first printing, the given charge density was
100 µC/m2, leading to a ridiculous answer of εr = 423.

7.18. The hemisphere 0 < r < a, 0 < θ < π/2, is composed of homogeneous conducting material of
conductivity σ. The flat side of the hemisphere rests on a perfectly-conducting plane. Now,
the material within the conical region 0 < θ < α, 0 < r < a, is drilled out, and replaced with
material that is perfectly-conducting. An air gap is maintained between the r = 0 tip of this
new material and the plane. What resistance is measured between the two perfect conductors?
Neglect fringing fields.

With no fringing fields, we have θ-variation only in the potential. Laplace’s equation is
therefore:

∇2V =
1

r2 sin θ

d

dθ

(
sin θ

dV

dθ

)
= 0

This reduces to
dV

dθ
=

C1

sin θ
⇒ V (θ) = C1 ln tan (θ/2) + C2

We assume zero potential on the plane (at θ = π/2), which means that C2 = 0. On the
cone (at θ = α), we assume potential V0, and so V0 = C1 ln tan(α/2)
⇒ C1 = V0/ ln tan(α/2) The potential function is now

V (θ) = V0
ln tan(θ/2)
ln tan(α/2)

α < θ < π/2

The electric field is then

E = −∇V = −1
r

dV

dθ
aθ = − V0

r sin θ ln tan(α/2)
aθ V/m

The total current can now be found by integrating the current density, J = σE, over any
cross-section. Choosing the lower plane at θ = π/2, this becomes

I =
∫ 2π

0

∫ a

0

− σV0

r sin(π/2) ln tan(α/2)
aθ · aθ r dr dφ = − 2πaσV0

ln tan(α/2)
A

The resistance is finally

R =
V0

I
= − ln tan(α/2)

2πaσ
ohms

Note that R is in fact positive (despite the minus sign) since ln tan(α/2) is negative when
α < π/2 (which it must be).
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7.19. Two coaxial conducting cones have their vertices at the origin and the z axis as their axis.
Cone A has the point A(1, 0, 2) on its surface, while cone B has the point B(0, 3, 2) on its
surface. Let VA = 100 V and VB = 20 V. Find:

a) α for each cone: Have αA = tan−1(1/2) = 26.57◦ and αB = tan−1(3/2) = 56.31◦.

b) V at P (1, 1, 1): The potential function between cones can be written as

V (θ) = C1 ln tan(θ/2) + C2

Then
20 = C1 ln tan(56.31/2) + C2 and 100 = C1 ln tan(26.57/2) + C2

Solving these two equations, we find C1 = −97.7 and C2 = −41.1. Now at P , θ =
tan−1(

√
2) = 54.7◦. Thus

VP = −97.7 ln tan(54.7/2) − 41.1 = 23.3 V

7.20. A potential field in free space is given as V = 100 ln tan(θ/2) + 50 V.
a) Find the maximum value of |Eθ| on the surface θ = 40◦ for 0.1 < r < 0.8 m, 60◦ < φ <

90◦. First

E = −1
r

dV

dθ
aθ = − 100

2r tan(θ/2) cos2(θ/2)
aθ = − 100

2r sin(θ/2) cos(θ/2)
aθ = − 100

r sin θ
aθ

This will maximize at the smallest value of r, or 0.1:

Emax(θ = 40◦) = E(r = 0.1, θ = 40◦) = − 100
0.1 sin(40)

aθ = 1.56aθ kV/m

b) Describe the surface V = 80 V: Set 100 ln tan θ/2 + 50 = 80 and solve for θ: Obtain
ln tan θ/2 = 0.3 ⇒ tan θ/2 = e.3 = 1.35 ⇒ θ = 107◦ (the cone surface at θ = 107
degrees).
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7.21. In free space, let ρv = 200ε0/r2.4.

a) Use Poisson’s equation to find V (r) if it is assumed that r2Er → 0 when r → 0, and also
that V → 0 as r → ∞: With r variation only, we have

∇2V =
1
r2

d

dr

(
r2 dV

dr

)
= −ρv

ε
= −200r−2.4

or
d

dr

(
r2 dV

dr

)
= −200r−.4

Integrate once: (
r2 dV

dr

)
= −200

.6
r.6 + C1 = −333.3r.6 + C1

or
dV

dr
= −333.3r−1.4 +

C1

r2
= ∇V (in this case) = −Er

Our first boundary condition states that r2Er → 0 when r → 0 Therefore C1 = 0.
Integrate again to find:

V (r) =
333.3

.4
r−.4 + C2

From our second boundary condition, V → 0 as r → ∞, we see that C2 = 0. Finally,

V (r) = 833.3r−.4 V

b) Now find V (r) by using Gauss’ Law and a line integral: Gauss’ law applied to a spherical
surface of radius r gives:

4πr2Dr = 4π

∫ r

0

200ε0
(r′)2.4

(r′)2dr = 800πε0
r.6

.6

Thus

Er =
Dr

ε0
=

800πε0r
.6

.6(4π)ε0r2
= 333.3r−1.4 V/m

Now
V (r) = −

∫ r

∞
333.3(r′)−1.4dr′ = 833.3r−.4 V

13



7.22. By appropriate solution of Laplace’s and Poisson’s equations, determine the absolute potential
at the center of a sphere of radius a, containing uniform volume charge of density ρ0. Assume
permittivity ε0 everywhere. HINT: What must be true about the potential and the electric
field at r = 0 and at r = a?

With radial dependence only, Poisson’s equation (applicable to r ≤ a) becomes

∇2V1 =
1
r2

d

dr

(
r2 dV1

dr

)
= −ρ0

ε0
⇒ V1(r) = −ρ0r

2

6ε0
+

C1

r
+ C2 (r ≤ a)

For region 2 (r ≥ a) there is no charge and so Laplace’s equation becomes

∇2V2 =
1
r2

d

dr

(
r2 dV2

dr

)
= 0 ⇒ V2(r) =

C3

r
+ C4 (r ≥ a)

Now, as r → ∞, V2 → 0, so therefore C4 = 0. Also, as r → 0, V1 must be finite, so
therefore C1 = 0. Then, V must be continuous across the boundary, r = a:

V1

∣∣
r=a

= V2

∣∣
r=a

⇒ −ρ0a
2

6ε0
+ C2 =

C3

a
⇒ C2 =

C3

a
+

ρ0a
2

6ε0
So now

V1(r) =
ρ0

6ε0
(a2 − r2) +

C3

a
and V2(r) =

C3

r

Finally, since the permittivity is ε0 everywhere, the electric field will be continuous at
r = a. This is equivalent to the continuity of the voltage derivatives:

dV1

dr

∣∣∣
r=a

=
dV2

dr

∣∣∣
r=a

⇒ −ρ0a

3ε0
= −C3

a2
⇒ C3 =

ρ0a
3

3ε0
So the potentials in their final forms are

V1(r) =
ρ0

6ε0
(3a2 − r2) and V2(r) =

ρ0a
3

3ε0r

The requested absolute potential at the origin is now V1(r = 0) = ρ0a
2/(2ε0) V.

7.23. A rectangular trough is formed by four conducting planes located at x = 0 and 8 cm and y = 0
and 5 cm in air. The surface at y = 5 cm is at a potential of 100 V, the other three are at
zero potential, and the necessary gaps are placed at two corners. Find the potential at x = 3
cm, y = 4 cm: This situation is the same as that of Fig. 7.6, except the non-zero boundary
potential appears on the top surface, rather than the right side. The solution is found from
Eq. (39) by simply interchanging x and y, and b and d, obtaining:

V (x, y) =
4V0

π

∞∑
1,odd

1
m

sinh(mπy/d)
sinh(mπb/d)

sin
mπx

d

where V0 = 100 V, d = 8 cm, and b = 5 cm. We will use the first three terms to evaluate the
potential at (3,4):

V (3, 4) .=
400
π

[
sinh(π/2)
sinh(5π/8)

sin(3π/8) +
1
3

sinh(3π/2)
sinh(15π/8)

sin(9π/8) +
1
5

sinh(5π/2)
sinh(25π/8)

sin(15π/8)
]

=
400
π

[.609 − .040 − .011] = 71.1 V

Additional accuracy is found by including more terms in the expansion. Using thirteen terms,
and using six significant figure accuracy, the result becomes V (3, 4) .= 71.9173 V. The series
converges rapidly enough so that terms after the sixth one produce no change in the third
digit. Thus, quoting three significant figures, 71.9 V requires six terms, with subsequent terms
having no effect.
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7.24. The four sides of a square trough are held at potentials of 0, 20, -30, and 60 V; the highest
and lowest potentials are on opposite sides. Find the potential at the center of the trough:
Here we can make good use of symmetry. The solution for a single potential on the right side,
for example, with all other sides at 0V is given by Eq. (39):

V (x, y) =
4V0

π

∞∑
1,odd

1
m

sinh(mπx/b)
sinh(mπd/b)

sin
(mπy

b

)

In the current problem, we can account for the three voltages by superposing three solutions
of the above form, suitably modified to account for the different locations of the boundary
potentials. Since we want V at the center of a square trough, it no longer matters on what
boundary each of the given potentials is, and we can simply write:

V (center) =
4(0 + 20 − 30 + 60)

π

∞∑
1,odd

1
m

sinh(mπ/2)
sinh(mπ)

sin(mπ/2) = 12.5 V

The series converges to this value in three terms.

7.25. In Fig. 7.7, change the right side so that the potential varies linearly from 0 at the bottom of
that side to 100 V at the top. Solve for the potential at the center of the trough: Since the
potential reaches zero periodically in y and also is zero at x = 0, we use the form:

V (x, y) =
∞∑

m=1

Vm sinh
(mπx

b

)
sin

(mπy

b

)

Now, at x = d, V = 100(y/b). Thus

100
y

b
=

∞∑
m=1

Vm sinh
(

mπd

b

)
sin

(mπy

b

)

We then multiply by sin(nπy/b), where n is a fixed integer, and integrate over y from 0 to b:

∫ b

0

100
y

b
sin

(nπy

b

)
dy =

∞∑
m=1

Vm sinh
(

mπd

b

) ∫ b

0

sin
(mπy

b

)
sin

(nπy

b

)
dy︸ ︷︷ ︸

=b/2 if m=n, zero if m�=n

The integral on the right hand side picks the nth term out of the series, enabling the coefficients,
Vn, to be solved for individually as we vary n. We find in general,

Vm =
2

b sinh(mπ/d)

∫ b

0

100
y

b
sin

(nπy

b

)
dy

The integral evaluates as

∫ b

0

100
y

b
sin

(nπy

b

)
dy =

{−100/mπ (m even)
100/mπ (m odd)

}
= (−1)m+1 100

mπ
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7.25 (continued) Thus

Vm =
200(−1)m+1

mπb sinh(mπd/b)

So that finally,

V (x, y) =
200
πb

∞∑
m=1

(−1)m+1

m

sinh (mπx/b)
sinh (mπd/b)

sin
(mπy

b

)

Now, with a square trough, set b = d = 1, and so 0 < x < 1 and 0 < y < 1. The potential
becomes

V (x, y) =
200
π

∞∑
m=1

(−1)m+1

m

sinh (mπx)
sinh (mπ)

sin (mπy)

Now at the center of the trough, x = y = 0.5, and, using four terms, we have

V (.5, .5) .=
200
π

[
sinh(π/2)
sinh(π)

− 1
3

sinh(3π/2)
sinh(3π)

+
1
5

sinh(5π/2)
sinh(5π)

− 1
7

sinh(7π/2)
sinh(7π)

]
= 12.5 V

where additional terms do not affect the three-significant-figure answer.

7.26. If X is a function of x and X ′′ + (x − 1)X − 2X = 0, assume a solution in the form of an
infinite power series and determine numerical values for a2 to a8 if a0 = 1 and a1 = −1: The
series solution will be of the form:

X =
∞∑

m=0

amxm

The first 8 terms of this are substituted into the given equation to give:

(2a2 − a1 − 2a0) + (6a3 + a1 − 2a2 − 2a1)x + (12a4 + 2a2 − 3a3 − 2a2)x2

+ (3a3 − 4a4 − 2a3 + 20a5)x3 + (30a6 + 4a4 − 5a5 − 2a4)x4 + (42a7 + 5a5 − 6a6 − 2a5)x5

+ (56a8 + 6a6 − 7a7 − 2a6)x6 + (7a7 − 8a8 − 2a7)x7 + (8a8 − 2a8)x8 = 0

For this equation to be zero, each coefficient term (in parenthesis) must be zero. The first of
these is

2a2 − a1 − 2a0 = 2a2 + 1 − 2 = 0 ⇒ a2 = 1/2

The second coefficient is

6a3 + a1 − 2a2 − 2a1 = 6a3 − 1 − 1 + 2 = 0 ⇒ a3 = 0

Third coefficient:

12a4 + 2a2 − 3a3 − 2a2 = 12a4 + 1 − 0 − 1 = 0 ⇒ a4 = 0

Fourth coefficient:

3a3 − 4a4 − 2a3 + 20a5 = 0 − 0 − 0 + 20a5 = 0 ⇒ a5 = 0

In a similar manner, we find a6 = a7 = a8 = 0.
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7.27. It is known that V = XY is a solution of Laplace’s equation, where X is a function of x alone,
and Y is a function of y alone. Determine which of the following potential function are also
solutions of Laplace’s equation:
a) V = 100X: We know that ∇2XY = 0, or

∂2

∂x2
XY +

∂2

∂y2
XY = 0 ⇒ Y X ′′ + XY ′′ = 0 ⇒ X ′′

X
= −Y ′′

Y
= α2

Therefore, ∇2X = 100X ′′ �= 0 – No.

b) V = 50XY : Would have ∇2V = 50∇2XY = 0 – Yes.

c) V = 2XY + x − 3y: ∇2V = 2∇2XY + 0 − 0 = 0 − Yes

d) V = xXY :

∇2V =
∂2xXY

∂x2
+

∂2xXY

∂y2
=

∂

∂x
[XY + xX ′Y ] +

∂

∂y
[xXY ′]

= 2X ′Y + x [X ′′Y + XY ′′]︸ ︷︷ ︸
∇2XY

�= 0 − No

.

e) V = X2Y : ∇2V = X∇2XY + XY ∇2X = 0 + XY ∇2X – No.

7.28. Assume a product solution of Laplace’s equation in cylindrical coordinates, V = PF , where
V is not a function of z, P is a function only of ρ, and F is a function only of φ.
a) Obtain the two separated equations if the separation constant is n2. Select the sign of

n2 so that the solution of the φ equation leads to trigonometric functions: Begin with
Laplace’s equation in cylindrical coordinates, in which there is no z variation:

∇2V =
1
ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

1
ρ2

∂2V

∂φ2
= 0

We substitute the product solution V = PF to obtain:

F

ρ

d

dρ

(
ρ
dP

dρ

)
+

P

ρ2

d2F

dφ2
=

F

ρ

dP

dρ
+ F

d2P

dρ2
+

P

ρ2

d2F

dφ2
= 0

Next, multiply by ρ2 and divide by FP to obtain

ρ

P

dP

dρ
+

ρ2

P

d2P

dρ2︸ ︷︷ ︸
n2

+
1
F

d2F

dφ2︸ ︷︷ ︸
−n2

= 0

The equation is now grouped into two parts as shown, each a function of only one of the
two variables; each is set equal to plus or minus n2, as indicated. The φ equation now
becomes

d2F

dφ2
+ n2F = 0 ⇒ F = Cn cos(nφ) + Dn sin(nφ) (n ≥ 1)

Note that n is required to be an integer, since physically, the solution must repeat itself
every 2π radians in φ. If n = 0, then

d2F

dφ2
= 0 ⇒ F = C0φ + D0
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7.28b. Show that P = Aρn + Bρ−n satisfies the ρ equation: From part a, the radial equation is:

ρ2 d2P

dρ2
+ ρ

dP

dρ
− n2P = 0

Substituting Aρn, we find

ρ2n(n − 1)ρn−2 + ρnρn−1 − n2ρn = n2ρn − nρn + nρn − n2ρn = 0

Substituting Bρ−n:

ρ2n(n + 1)ρ−(n+2) − ρnρ−(n+1) − n2ρ−n = n2ρ−n + nρ−n − nρ−n − n2ρ−n = 0

So it works.

c) Construct the solution V (ρ, φ). Functions of this form are called circular harmonics. To
assemble the complete solution, we need the radial solution for the case in which n = 0.
The equation to solve is

ρ
d2P

dρ2
+

dP

dρ
= 0

Let S = dP/dρ, and so dS/dρ = d2P/dρ2. The equation becomes

ρ
dS

dρ
+ S = 0 ⇒ −dρ

ρ
=

dS

S

Integrating, find

− ln ρ + lnA0 = lnS ⇒ lnS = ln
(

A0

ρ

)
⇒ S =

A0

ρ
=

dP

dρ

where A0 is a constant. So now

dρ

ρ
=

dP

A0
⇒ Pn=0 = A0 ln ρ + B0

We may now construct the solution in its complete form, encompassing n ≥ 0:

V (ρ, φ) = (A0 ln ρ + B0)(C0φ + D0)︸ ︷︷ ︸
n=0 solution

+
∞∑

n=1

[Anρn + Bnρ−n][Cn cos(nφ) + Dn sin(nφ)]
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7.29. Referring to Chapter 6, Fig. 6.14, let the inner conductor of the transmission line be at a
potential of 100V, while the outer is at zero potential. Construct a grid, 0.5a on a side, and
use iteration to find V at a point that is a units above the upper right corner of the inner
conductor. Work to the nearest volt:

The drawing is shown below, and we identify the requested voltage as 38 V.
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7.30. Use the iteration method to estimate the potentials at points x and y in the triangular trough
of Fig. 7.14. Work only to the nearest volt: The result is shown below. The mirror image of
the values shown occur at the points on the other side of the line of symmetry (dashed line).
Note that Vx = 78 V and Vy = 26 V.

7.31. Use iteration methods to estimate the potential at point x in the trough shown in Fig. 7.15.
Working to the nearest volt is sufficient. The result is shown below, where we identify the
voltage at x to be 40 V. Note that the potentials in the gaps are 50 V.
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7.32. Using the grid indicated in Fig. 7.16, work to the nearest volt to estimate the potential at
point A: The voltages at the grid points are shown below, where VA is found to be 19 V. Half
the figure is drawn since mirror images of all values occur across the line of symmetry (dashed
line).
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7.33. Conductors having boundaries that are curved or skewed usually do not permit every grid
point to coincide with the actual boundary. Figure 6.16a illustrates the situation where the
potential at V0 is to be estimated in terms of V1, V2, V3, and V4, and the unequal distances
h1, h2, h3, and h4.
a) Show that

V0
.=

V1(
1 + h1

h3

) (
1 + h1h3

h4h2

) +
V2(

1 + h2
h4

) (
1 + h2h4

h1h3

) +
V3(

1 + h3
h1

) (
1 + h1h3

h4h2

)

+
V4(

1 + h4
h2

) (
1 + h4h2

h3h1

) note error, corrected here, in the equation (second term)

Referring to the figure, we write:

∂V

∂x

∣∣∣
M1

.=
V1 − V0

h1

∂V

∂x

∣∣∣
M3

.=
V0 − V3

h3

Then

∂2V

∂x2

∣∣∣
V0

.=
(V1 − V0)/h1 − (V0 − V3)/h3

(h1 + h3)/2
=

2V1

h1(h1 + h3)
+

2V3

h3(h1 + h3)
− 2V0

h1h3

We perform the same procedure along the y axis to obtain:

∂2V

∂y2

∣∣∣
V0

.=
(V2 − V0)/h2 − (V0 − V4)/h4

(h2 + h4)/2
=

2V2

h2(h2 + h4)
+

2V4

h4(h2 + h4)
− 2V0

h2h4

Then, knowing that
∂2V

∂x2

∣∣∣
V0

+
∂2V

∂y2

∣∣∣
V0

= 0

the two equations for the second derivatives are added to give

2V1

h1(h1 + h3)
+

2V2

h2(h2 + h4)
+

2V3

h3(h1 + h3)
+

2V4

h4(h2 + h4)
= V0

(
h1h3 + h2h4

h1h2h3h4

)

Solve for V0 to obtain the given equation.

b) Determine V0 in Fig. 6.16b: Referring to the figure, we note that h1 = h2 = a. The other
two distances are found by writing equations for the circles:

(0.5a + h3)2 + a2 = (1.5a)2 and (a + h4)2 + (0.5a)2 = (1.5a)2

These are solved to find h3 = 0.618a and h4 = 0.414a. The four distances and potentials
are now substituted into the given equation:

V0
.=

80(
1 + 1

.618

) (
1 + .618

.414

) +
60(

1 + 1
.414

) (
1 + .414

.618

) +
100

(1 + .618)
(
1 + .618

.414

)
+

100
(1 + .414)

(
1 + .414

.618

) = 90 V
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7.34. Consider the configuration of conductors and potentials shown in Fig. 7.18. Using the method
described in Problem 7.33, write an expression for Vx (not V0): The result is shown below,
where Vx = 70 V.

7.35a) After estimating potentials for the configuation of Fig. 7.19, use the iteration method with
a square grid 1 cm on a side to find better estimates at the seven grid points. Work to the
nearest volt:

25 50 75 50 25

0 48 100 48 0

0 42 100 42 0

0 19 34 19 0

0 0 0 0 0

b) Construct a 0.5 cm grid, establish new rough estimates, and then use the iteration method
on the 0.5 cm grid. Again, work to the nearest volt: The result is shown below, with
values for the original grid points underlined:

25 50 50 50 75 50 50 50 25

0 32 50 68 100 68 50 32 0

0 26 48 72 100 72 48 26 0

0 23 45 70 100 70 45 23 0

0 20 40 64 100 64 40 20 0

0 15 30 44 54 44 30 15 0

0 10 19 26 30 26 19 10 0

0 5 9 12 14 12 9 5 0

0 0 0 0 0 0 0 0 0
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7.35c. Use a computer to obtain values for a 0.25 cm grid. Work to the nearest 0.1 V: Values for the
left half of the configuration are shown in the table below. Values along the vertical line of
symmetry are included, and the original grid values are underlined.

25 50 50 50 50 50 50 50 75

0 26.5 38.0 44.6 49.6 54.6 61.4 73.2 100

0 18.0 31.0 40.7 49.0 57.5 67.7 81.3 100

0 14.5 27.1 38.1 48.3 58.8 70.6 84.3 100

0 12.8 24.8 36.2 47.3 58.8 71.4 85.2 100

0 11.7 23.1 34.4 45.8 57.8 70.8 85.0 100

0 10.8 21.6 32.5 43.8 55.8 69.0 83.8 100

0 10.0 20.0 30.2 40.9 52.5 65.6 81.2 100

0 9.0 18.1 27.4 37.1 47.6 59.7 75.2 100

0 7.9 15.9 24.0 32.4 41.2 50.4 59.8 67.2

0 6.8 13.6 20.4 27.3 34.2 40.7 46.3 49.2

0 5.6 11.2 16.8 22.2 27.4 32.0 35.4 36.8

0 4.4 8.8 13.2 17.4 21.2 24.4 26.6 27.4

0 3.3 6.6 9.8 12.8 15.4 17.6 19.0 19.5

0 2.2 4.4 6.4 8.4 10.0 11.4 12.2 12.5

0 1.1 2.2 3.2 4.2 5.0 5.6 6.0 6.1

0 0 0 0 0 0 0 0 0
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