CHAPTER 9

9.1. A point charge, @ = —0.3 uC and m = 3 x 10716 kg, is moving through the field E = 30a, V/m.
Use Eq. (1) and Newton’s laws to develop the appropriate differential equations and solve them,
subject to the initial conditions at ¢t = 0: v = 3 x 10%a, m/s at the origin. At t = 3 us, find:

2)

)

the position P(z,y, z) of the charge: The force on the charge is given by F = ¢E, and Newton’s
second law becomes:
d’z

F =ma= mos = ¢E = (—0.3x107%)(30a,)

describing motion of the charge in the z direction. The initial velocity in x is constant, and
so no force is applied in that direction. We integrate once:

dz qF
_— = = —t
gt Vy m + 4

The initial velocity along z, v,(0) is zero, and so C; = 0. Integrating a second time yields the

z coordinate: 5
=20,
2m

The charge lies at the origin at ¢ = 0, and so Cy = 0. Introducing the given values, we find
(—0.3 x 1079)(30) ,

— _ 10,2
z= 2 %3 x 1016 t°=-15x10"t"m

At t =3 ps, 2= —(1.5 x 101%)(3 x 1076)2 = —.135cm. Now, considering the initial constant
velocity in x, the charge in 3 us attains an = coordinate of x = vt = (3x10°)(3x107¢) = .90 m.
In summary, at t = 3 us we have P(z,y, z) = (.90,0, —.135).

the velocity, v: After the first integration in part a, we find

)
v, = 9, _ —(3x10')(3 x 107%) = =9 x 10* m/s
m

Including the intial z-directed velocity, we finally obtain v = 3 x 10° a, — 9 x 10*a, m/s.

the kinetic energy of the charge: Have

1
K.E. = 5myv|2 = _(3x10719)(1.13 x 10°)2 = 1.5 x 1075 J

1
2

9.2. A point charge, Q@ = —0.3 uC and m = 3 x 10716 kg, is moving through the field B = 30a, mT.
Make use of Eq. (2) and Newton’s laws to develop the appropriate differential equations, and solve
them, subject to the initial condition at t = 0, v = 3 x 10% m/s at the origin. Solve these equations
(perhaps with the help of an example given in Section 7.5) to evaluate at t = 3us: a) the position
P(z,y, z) of the charge; b) its velocity; ¢) and its kinetic energy:

We begin by visualizing the problem. Using F = ¢v x B, we find that a positive charge moving
along positive a,, would encounter the z-directed B field and be deflected into the negative y
direction.



9.2 (continued) Motion along negative y through the field would cause further deflection into the
negative x direction. We can construct the differential equations for the forces in x and in y as

follows:
dv,
Fpa, = mﬁam = quya, X Ba, = qBvya,
dv,
Fya, = mﬁay = quza, X Ba, = —qBv,a,
or J B
Vg q
. 1
dt m 'Uy ( )
and p B
Uy q
oy 17 2
dt m Ve (2)

To solve these equations, we first differentiate (2) with time and substitute (1), obtaining:

d?v, qB dv, (qB ) 2
_ —(22) ,

m

a2 m dt

Therefore, v, = Asin(¢Bt/m) + A’ cos(¢Bt/m). However, at t =0, v, = 0, and so A’ = 0, leaving
v, = Asin(¢Bt/m). Then, using (2),

qB dt
Now at t = 0, v, = vy0 = 3 x 10°. Therefore A = —v,0, and 80 v, = v,qcos(¢Bt/m), and
vy = —g0sin(gBt/m). The positions are then found by integrating v, and v, over time:

Bt * Bt
z(t) = /'UmOCOS <q_> dt + O = 700 gin (q_) +C
m qB m

where C' = 0, since z(0) = 0. Then

Bt Bt
y(t) = / —Ug0 SIN (q_) dt+D = 20 o <q_> +D
m qB m

We require that y(0) =0, so D = —(mu,o)/(¢B), and finally y(t) = —muv,o/qB [1 — cos (¢Bt/m)].
Summarizing, we have, using ¢ = -3 x 1077 C, m = 3 x 10716 kg, B = 30 x 1073 T, and
vz0 = 3 X 10° m/s:

20 . Bt _9 . _
z(t) = V=0 sin <q_> =—-10 2sm(—3 x 10 7t) m

y(t) = — a0 {1 — cos <q—Bt)] = 1072[1 — cos(—3 x 107t)] m

m
t 5 7
=3 x 10° cos(—3 x 10"t) m/s
) = —3 x 10°sin(—3 x 107t) m/s



9.2 (continued) The answers are now:
a) Att=3x10"%s, =89 mm, y=14.5 mm, and z = 0.
b) At t=3x10"%s, v, =—-1.3x10° m/s, v, = 2.7 x 10° m/s, and so

v(t=3ps) = —1.3 x 10°a, + 2.7 x 10%°a, m/s

whose magnitude is v = 3 x 10° m/s as would be expected.
¢) Kinetic energy is K.E. = (1/2)mv? = 1.35 puJ at all times.
9.3. A point charge for which Q =2 x 1076 C and m = 5 x 10725 kg is moving in the combined fields
E = 100a, — 200a, + 300a, V/m and B = —3a, + 2a, — a, mT. If the charge velocity at ¢t = 0 is
v(0) = (2a, — 3a, — 4a,) x 10° m/s:

a) give the unit vector showing the direction in which the charge is accelerating at ¢t = 0: Use
F(t =0) = q[E + (v(0) x B)], where

v(0) x B = (2a, — 3a, — 4a,)10° x (—3a, + 2a, —a,)10™> = 1100a,, + 1400a, — 500a,
So the force in newtons becomes
F(0) = (2x 107 %)[(100+1100)a, + (1400 —200)a,, + (300 — 500)a,] = 4 x 10~ '*[6a, +6a, —a,]
The unit vector that gives the acceleration direction is found from the force to be

_ ba; +6a, —a,

a =
F \/ﬁ

= .70a; + .70a, — .12a,

b) find the kinetic energy of the charge at ¢t = 0:

1 1
KE. = 5m|v(0)|2 = 5(5x 10720 kg)(5.39 x 10°m/s)? = 7.25 x 10715 J = 7.25 £J

9.4. Show that a charged particle in a uniform magnetic field describes a circular orbit with an orbital
period that is independent of the radius. Find the relationship between the angular velocity and
magnetic flux density for an electron (the cyclotron frequency).

A circular orbit can be established if the magnetic force on the particle is balanced by the
centripital force associated with the circular path. We assume a circular path of radius R, in
which B = By a, is normal to the plane of the path. Then, with particle angular velocity 2, the
velocity is v = Rl as. The magnetic force is then F,,, = qvxB = qRQayx Bya, = qRQBj a,,.
This force will be negative (pulling the particle toward the center of the path) if the charge
is positive and motion is in the —ay direction, or if the charge is negative, and motion is in
positive a,. In either case, the centripital force must counteract the magnetic force. Assuming
particle mass m, the force balance equation is gRQ2By = mQ2R, from which Q = ¢By/m. The
revolution period is T' = 27/Q = 27m/(qBy), which is independent of R. For an electron, we
have ¢ = 1.6 x 1072 C, and m = 9.1 x 103! kg. The cyclotron frequency is therefore

0, = LB, =176 x10"'B, s!

c =
m



9.5. A rectangular loop of wire in free space joins points A(1,0,1) to B(3,0,1) to C(3,0,4) to D(1,0,4)
to A. The wire carries a current of 6 mA, flowing in the a, direction from B to C. A filamentary

current of 15 A flows along the entire z axis in the a, direction.
a) Find F on side BC:

C
Fpc = / Iloode X Birom wire at BC
B

Thus
! 1549
Fpc = /1 (6 x107%)dza, x 2n(3) 2 = ~1.8 x 10~ %a, N = —18a, nN

b) Find F on side AB: The field from the long wire now varies with position along the loop
segment. We include that dependence and write

1 4 1073
;;’lf a, = 0 XW 0 polnd a, =19.8a, nN

3
Fap :/ (6 x 1073) dz a, x
1

¢) Find Fyota on the loop: This will be the vector sum of the forces on the four sides. Note that
by symmetry, the forces on sides AB and C'D will be equal and opposite, and so will cancel.
This leaves the sum of forces on sides BC' (part a) and DA, where

4
1
FDA:/1 —(6x107%)dza, x %ay:Maan

The total force is then Fiota1 = Fpa + Fpe = (54 — 18)a, = 36a, nN

9.6 The magnetic flux density in a region of free space is given by B = —3za, + 5ya, — 2za, T. Find
the total force on the rectangular loop shown in Fig. 9.15 if it lies in the plane z = 0 and is
bounded by x = 1, x = 3, y = 2, and y = 5, all dimensions in cm: First, note that in the plane
z = 0, the z component of the given field is zero, so will not contribute to the force. We use

F:/ IdL x B
loop

which in our case becomes, with I = 30 A:

.03 .05
F = / 30dza, x (—3zag; + 5y|y—.02 ay) —I—/ 30dya, x (—3z|z=.03 a; + Syay)
.01 .02

.01 .02
+/ 30dza, x (—3za, + 5y|y=.05 ay) +/ 30dya, x (—3z|z=.01 a; + Syay)
.03 .05



9.6.

9.7.

9.8.

(continued) Simplifying, this becomes

F = /’03 30(5)(.02) a, dz + /'05 ~30(3)(.03)(~a.) dy

.01 .02
.01 .02
+ / 30(5)(.05) a, dz + / —30(3)(.01)(—a,) dy = (.060 + .081 — .150 — .027)a, N
.03 .05
— —36a, mN

Uniform current sheets are located in free space as follows: 8a, A/m at y =0, —4a, A/m at y = 1,
and —4a, A/m at y = —1. Find the vector force per meter length exerted on a current filament
carrying 7 mA in the ay, direction if the filament is located at:

a) x =0,y =0.5, and a;, = a,: We first note that within the region —1 < y < 1, the magnetic
fields from the two outer sheets (carrying —4a, A/m) cancel, leaving only the field from the
center sheet. Therefore, H = —4a, A/m (0 < y < 1) and H = 4a, A/m (-1 < y < 0).
Outside (y > 1 and y < —1) the fields from all three sheets cancel, leaving H = 0 (y > 1,
y < —1). Soat x =0, y = .5, the force per meter length will be

F/m = Ia, x B = (7x 10"%)a, x —4upa, = —35.2a, nN/m

b.) y=0.5,2=0, and a = a,: F/m = Ta, x —4ppa, = 0.

c) =0,y =15,a; =a,: Since y = 1.5, we are in the region in which B = 0, and so the force
is zero.

Filamentary currents of —25a, and 25a, A are located in the x = 0 plane in free space at y = —1
and y = 1m respectively. A third filamentary current of 10~3a, A is located at x = k, y = 0. Find
the vector force on a 1-m length of the 1-mA filament and plot |F| versus k: The total B field
arising from the two 25A filaments evaluated at the location of the 1-mA filament is, in cartesian
components:

2510 25110 25408,
=———(k " ——(—k z) =
o1+ ) R+ ae) oy (Thay +as) = Sam
line at y=+1 line at y=—1

The force on the 1m length of 1-mA line is now

_ 2502, (2.5 x 1072)(4 x 1077) 10~%a 10a
F =10"3(1)a, x — _ Vo N 0% N
(Daz > 29 1+ k2) BT AT T Ak Y
Problem 9.8
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9.9.

9.10.

9.11.

A current of —100a, A/m flows on the conducting cylinder p = 5 mm and +500a, A/m is present
on the conducting cylinder p = 1 mm. Find the magnitude of the total force acting to split the
outer cylinder apart along its length: The differential force acting on the outer cylinder arising
from the field of the inner cylinder is dF = Kguter X B, where B is the field from the inner cylinder,
evaluated at the outer cylinder location:

27 (1)(500) o

B= =05

agp = 100/1,0 ay T

Thus dF = —100a, x 100ppas = 104/map N/m?2. We wish to find the force acting to split the outer
cylinder, which means we need to evaluate the net force in one cartesian direction on one half of
the cylinder. We choose the “upper” half (0 < ¢ < 7), and integrate the y component of dF over
this range, and over a unit length in the z direction:

1 ™ ™
F, = /O /O 104,u,oap ay (5 x 1073 dpdz = /0 5010 sin ¢ dp = 100pg = 47 x 107° N/m

Note that we did not include the “self force” arising from the outer cylinder’s B field on itself.
Since the outer cylinder is a two-dimensional current sheet, its field exists only just outside the
cylinder, and so no force exists. If this cylinder possessed a finite thickness, then we would need
to include its self-force, since there would be an interior field and a volume current density that
would spatially overlap.

A planar transmission line consists of two conducting planes of width b separated d m in air,
carrying equal and opposite currents of I A. If b >> d, find the force of repulsion per meter of
length between the two conductors.

Take the current in the top plate in the positive z direction, and so the bottom plate current
is directed along negative z. Furthermore, the bottom plate is at y = 0, and the top plate is
at y = d. The magnetic field stength at the bottom plate arising from the current in the top
plate is H = K/2a, A/m, where the top plate surface current density is K = I/ba, A/m.
Now the force per unit length on the bottom plate is

1 rb
F://KbXBde
0 JO

where Kp is the surface current density on the bottom plate, and B is the magnetic flux
density arising from the top plate current, evaluated at the bottom plate location. We obtain

1 b 2
I ol pol
F = —Cax B a,ds = — N
/0/0 ;X o2 S 5y 2 /m

a) Use Eq. (14), Sec. 9.3, to show that the force of attraction per unit length between two
filamentary conductors in free space with currents l1a, at x = 0, y = d/2, and lra, at © = 0,
y = —d/2, is polil2/(2wd): The force on I is given by

11[2 %ang X dL1
Fo = pug—— —_— dL
2 = Mo e [ R%Q X dlg

6



9.11a. (continued). Let z; indicate the z coordinate along I, and z5 indicate the z coordinate along Is.

We then have Ris = /(22 — 21)? + d? and

(22 — z1)a, — da,
(22 — 21)% + d?

aRr12 =

Also, dLy = dz1a, and dLs = dzza, The “inside” integral becomes:

% apri2 X dL1 . % [(22 — zl)az — day] X dzlaz . /oo —dle Ay
B moarrdls el

The force expression now becomes

F., — ﬂ?{ /OO —ddzlax % dzoa 11[2/ / ddzldzzay
2= 0y o (2= )2 s 20 (22 — 21)% + 2]15

Note that the “outside” integral is taken over a unit length of current I5. Evaluating, obtain,

Illgda . /L()IlIQ
FQZMOW(2)/O dZQZ od ay N/m

as expected.

b)

Show how a simpler method can be used to check your result: We use dFy = I2dLy X Bis,
where the field from current 1 at the location of current 2 is

ol

By = ond a; T
so over a unit length of I, we obtain
tolr L,
Fy=1la, x —a, = N
2 = Daas X 58 = Hog g2y N/m

This second method is really just the first over again, since we recognize the inside integral of
the first method as the Biot-Savart law, used to find the field from current 1 at the current 2
location.

9.12. A conducting current strip carrying K = 12a, A/m lies in the z = 0 plane between y = 0.5 and
y = 1.5 m. There is also a current filament of I =5 A in the a, direction on the z axis. Find the
force exerted on the:

a)

filament by the current strip: We first need to find the field from the current strip at the
filament location. Consider the strip as made up of many adjacent strips of width dy, each
carrying current dla, = Kdy. The field along the z axis from each differential strip will
be dB = [(Kdyuo)/(2my)]a,. The total B field from the strip evaluated along the z axis is

therefore
1.5 1 2,UIOaa:

1.
B= dy = M0 (—5) a, = 2.64 x 10~%a, Wh/m?

0.5 2Ty m 0.5
Now

1 1
F = / IdL x B = / 5dza, x 2.64 x 107%a, dz = 13.2a, uN/m
0 0 -

strip by the filament: In this case we integrate K x B over a unit length in z of the strip area,
where B is the field from the filament evaluated on the strip surface:

-5 ~30
F = K x Bda = / / 12a, x —H0%2 g, = 20 10 (3)a, = —13.2a, uN/m
Area 0.5 7Ty ™




9.13. A current of 6A flows from M (2,0,5) to N(5,0,5) in a straight solid conductor in free space. An
infinite current filament lies along the z axis and carries 50A in the a, direction. Compute the
vector torque on the wire segment using:

a) an origin at (0,0,5): The B field from the long wire at the short wire is B = (uol,ay)/(2mx) T.
Then the force acting on a differential length of the wire segment is

MOIz _ ,U/OIwIz
a, =

dF = I,dL x B = Idra, x o >a, ="

dra, N

Now the differential torque about (0,0,5) will be

MOIwI _,UfOIwIz

dT =Ry X dF =za, x — = Z2dzra, = dr a,
2wx 27
The net torque is now found by integrating the differential torque over the length of the wire
segment:
5
1,1, 3up(6)(50 _
T:/ _Ho dxay:—May:—IBXN 4ay N-m
9 27 27

b) an origin at (0,0,0): Here, the only modification is in Ry, which is now Ry = za, + 5a, So

now
L1 )
dT = Ry x dF = [za, + Ha,] X Mdmaz — _Hocwe dza,
2x 27
Everything from here is the same as in part a, so again, T = —1.8 x 107%*a, N-m.

¢) an origin at (3,0,0): In this case, Ry = (z — 3)a, + ba,, and the differential torque is

dT = [(z — 3)a, + Ha,] x %dmz - —“OT(;”) dza,
Thus
5
Il (z —
T = / _Holul(@=3) 6.0 x 1077 [3 — 3 <§>] a,=—15x10"%a, N-m
9 2rx 2

9.14. The rectangular loop of Prob. 6 is now subjected to the B field produced by two current sheets,
K; =400a, A/m at z =2, and Ky =300a, A/m at y = 0 in free space. Find the vector torque
on the loop, referred to an origin:

a) at (0,0,0): The fields from both current sheets, at the loop location, will be negative z-directed.
They will add together to give, in the loop plane:

K, K
B = —uo (71 + 72> a, = —10(200 + 150) a, = —35040 a, Wh/m?

With this field, forces will be acting only on the wire segments that are parallel to the y axis.
The force on the segment nearer to the y axis will be

F; = IL x B = —30(3 x 10" %)a, x —350upa, = —315upa, N



9.14a (continued) The force acting on the segment farther from the y axis will be

9.15.

9.16.

Fy = IL x B =30(3 x 10" ?)a, x —350p0a, = 315upa, N

The torque about the origin is now T = R; xF;+Ro x Fo, where R is the vector directed from the
origin to the midpoint of the nearer y-directed segment, and Ry is the vector joining the origin to
the midpoint of the farther y-directed segment. So R;(cm) = a,+3.5a, and Ro(cm) = 3a,+3.5a,.
Therefore

To.0.0 = [(az + 3.5a,) x 107%] x —315u0 a, + [(3a, + 3.5a,) x 107%] x 315u0 a,
= —6.30poa, = —7.92 x 107 %a, N—m

b) at the center of the loop: Use T = IS x B where S = (2 x 3) x 10~*a, m?2. So

T =30(6 x 10" *a,) x (—350ppa,) = —7.92 x 10~%a, N—m

A solid conducting filament extends from x = —b to x = b along the line y = 2, z = 0. This
filament carries a current of 3 A in the a, direction. An infinite filament on the z axis carries 5
A in the a, direction. Obtain an expression for the torque exerted on the finite conductor about
an origin located at (0,2,0): The differential force on the wire segment arising from the field from
the infinite wire is

0 15 d 154102 d
0F = 3dza, x 10 a, = 1oM0cosddr, - Loprdr
2mp 2mV/aZ + 4 om(a? + 4)
So now the differential torque about the (0,2, 0) origin is

15upx dx 15022 dx
dT =Rr xdF =za, x — L =
T X Tar X 2r(x? +4) a 27 (z? + 4) Ay

The torque is then

15022 dx 15,u0 1 /T\1°
T [z =207 (3))
/ @+ 4) T o [T )],

= (6 x 1079) [b— 2tan” <g>} a, N-m

Assume that an electron is describing a circular orbit of radius a about a positively-charged nucleus.

a) By Selecting an appropriate current and area, show that the equivalent orbital dipole moment

is ea’w/2, where w is the electron’s angular velocity: The current magnitude will be I = L

where e is the electron charge and T is the orbital period. The latter is 7' = 27/w, and so

I = ew/(27). Now the dipole moment magnitude will be m = I'A, where A is the loop area.
Thus

b) Show that the torque produced by a magnetic field parallel to the plane of the orbit is ea?w B /2:
With B assumed constant over the loop area, we would have T = m x B. With B parallel to
the loop plane, m and B are orthogonal, and so T' = mB. So, using part a, T = ea’wB/2.

9



9.16. (continued)
c) by equating the Coulomb and centrifugal forces, show that w is (4megmea®/e?)
is the electron mass: The force balance is written as

—1/2 where m.

2

—1/2
e dregmea®
7e> //

=mwla = w:<
o2

4dmega’

d) Find values for the angular velocity, torque, and the orbital magnetic moment for a hydrogen
atom, where a is about 6 x 107! m; let B = 0.5 T: First

B (1.60 x 1019)2 1/2
| 47(8.85 x 10-12)(9.1 x 10-31)(6 x 10-11)3

w = 3.42 x 10'® rad/s

1
T = 5(3.42 x 10%6)(1.60 x 1079)(0.5)(6 x 107*)2 =4.93 x 107%* N-m

Finally,

T
m:E:9.86x10*24A-m2

9.17. The hydrogen atom described in Problem 16 is now subjected to a magnetic field having the same
direction as that of the atom. Show that the forces caused by B result in a decrease of the angular
velocity by eB/(2m.) and a decrease in the orbital moment by e?a?B/(4m.). What are these
decreases for the hydrogen atom in parts per million for an external magnetic flux density of 0.5
T? We first write down all forces on the electron, in which we equate its coulomb force toward the
nucleus to the sum of the centrifugal force and the force associated with the applied B field. With
the field applied in the same direction as that of the atom, this would yield a Lorentz force that is
radially outward — in the same direction as the centrifugal force.

2

e

F.,=F, +Fg = ——— =m.w?a+ ewaB

e cent B 471'6(]&2 e ??
v

With B = 0, we solve for w to find:

e
W = Wo
dmegmea’
Then with B present, we find
9 e? ewB 9 ewB
= = wo —_
dregmea’ Me Me

Therefore

But w = wp, and so




9.17. (continued) As for the magnetic moment, we have

Finally, for a = 6 x 107 m, B = 0.5 T, we have

&_ eBl; eB i_ 1.60 x 10719 % 0.5
w o 2mew  2mewp 2% 9.1 x 10731 x 3.4 x 1016

=1.3x10°°

where wg = 3.4 x 10'¢ sec™! is found from Problem 16. Finally,

A 2a’B 2 B
m_eas = P _13x10°°
m 4m, wea?  2mewy T

9.18. Calculate the vector torque on the square loop shown in Fig. 9.16 about an origin at A in the field
B, given:

a)

b)

A(0,0,0) and B = 100a, mT: The field is uniform and so does not produce any translation
of the loop. Therefore, we may use T = IS x B about any origin, where I = 0.6 A and
S = 16a, m?. We find T = 0.6(16)a, x 0.100a, = —0.96a, N—m.

A(0,0,0) and B = 200a, + 100a, mT: Using the same reasoning as in part a, we find

T = 0.6(16)a, x (0.200a, + 0.100a,) = —0.96a, + 1.92a, N—m

A(1,2,3) and B = 200a, + 100a, — 300a, mT: We observe two things here: 1) The field is
again uniform and so again the torque is independent of the origin chosen, and 2) The field
differs from that of part b only by the addition of a z component. With S in the z direction,
this new component of B will produce no torque, so the answer is the same as part b, or
T = —0.96a, + 1.92a, N—m.

A(1,2,3) and B = 200a, + 100a, — 300a, mT for z > 2 and B = 0 elsewhere: Now, force is
acting only on the y-directed segment at x = +2, so we need to be careful, since translation
will occur. So we must use the given origin. The differential torque acting on the differential
wire segment at location (2,y) is dT = R(y) x dF, where

dF = IdL x B =0.6dya, x [0.2a, + 0.1a, — 0.3a.] = [-0.18a, — 0.12a.]dy
and R(y) = (2,v,0) — (1,2,3) = a, + (y — 2)a, — 3a,. We thus find

dT = R(y) x dF = [a, + (y — 2)a, — 3a.] x [-0.18a, — 0.12a.] dy
= [~0.12(y — 2)a, + 0.66a, + 0.18(y — 2)a.] dy

The net torque is now

2
T = / [—0.12(y — 2)a, + 0.66a, + 0.18(y — 2)a,] dy = 0.96a, + 2.64a, — 1.44a, N—m
-2
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9.19. Given a material for which x,,, = 3.1 and within which B = 0.4ya, T, find:
a) H: We use B = 1o(1 4+ xm)H, or

b

C

e

f

)
)
d)
)
)
)

0.4ya
H=—"Y  —776ya, kA
530y — [LOya: ki/m

=(1+3.1)uo =5.15x 1075 H/m.
= (1+3.1)=4.1.
M = x,,H = (3.1)(77.6ya,) = 241ya, kA/m

J=V x H=(dH,)/(dy) a, = T7.6a, kA /m>.
Jy, =V x M = (dM,)/(dy) a, = 241 a, kA /m?.

g) Jr =V x B/up = 318a, kA /m?2.

9.20. Find H in a material where:
a) p, = 4.2, there are 2.7 x 10?Y atoms/m3, and each atom has a dipole moment of 2.6 x 10~3° a,

A -m?. Since all dipoles are identical, we may write M = Nm = (2.7 x 10%?)(2.6 x 10~*a,)) =
0.70a, A/m. Then
M  070a,

H= -
nr—1 42-1

—0.22a, A/m

b) M =270a, A/m and p = 2 pH/m: Have p, = pu/po = (2 x 1076) /(47 x 10~7) = 1.59. Then
H = 270a,/(1.59 — 1) = 456a, A/m.
¢) xm =0.7and B =2a, T: Use
B 2a
H= = z =936a, kA
po(l o)~ (m = 10-7)(17) ~ 202 kA/m
d) Find M in a material where bound surface current densities of 12a, A/m and —9a, A/m

exist at p = 0.3 m and p = 0.4 m, respectively: We use § M - dL = [,, where, since currents
are in the z direction and are symmetric about the z axis, we chose the path integrals to be
circular loops centered on and normal to z. From the symmetry, M will be ¢-directed and
will vary only with radius. Note first that for p < 0.3 m, no bound current will be enclosed
by a path integral, so we conclude that M = 0 for p < 0.3m. At radii between the currents
the path integral will enclose only the inner current so,

3.6
%M -dL =2mpMy =2m(0.3)12 = M= —ag A/m (0.3 < p <0.4m)
p

Finally, for p > 0.4 m, the total enclosed bound current is I, 1o+ = 27(0.3)(12)—27(0.4)(9) = 0,
so therefore M =0 (p > 0.4m).

9.21. Find the magnitude of the magnetization in a material for which:

a)

the magnetic flux density is 0.02 Wh/m? and the magnetic susceptibility is 0.003 (note that
this latter quantity is missing in the original problem statement): From B = po(H 4+ M) and
from M = x,,H, we write

B /1 -t B 0.02
10 (Xm * ) 0330 rx10-T)@30) _ ATTA/m
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9.21b) the magnetic field intensity is 1200 A/m and the relative permeability is 1.005: From B = po(H+
M) = pour-H, we write

M = (p, — 1)H = (.005)(1200) = 6.0 A/m

c) there are 7.2 x 102® atoms per cubic meter, each having a dipole moment of 4 x 1073% A - m?
in the same direction, and the magnetic susceptibility is 0.0003: With all dipoles identical the
dipole moment density becomes

M =nm=(72x10%®)(4 x 107%°) = 0.288 A/m

9.22. Under some conditions, it is possible to approximate the effects of ferromagnetic materials by
assuming linearity in the relationship of B and H. Let p, = 1000 for a certain material of which
a cylindrical wire of radius 1mm is made. If I =1 A and the current distribution is uniform, find
a) B: We apply Ampere’s circuital law to a circular path of radius p around the wire axis, and
where p < a:
7p? Ip 100001 p (10%)47 x 10~7(1)p
= pl = H=g n =B="g 2 2= 5 g6
=200pas Wh/m?

b) H: Using part a, H = B/u,uo = p/(27) x 10°a, A/m.

c) M:
2 —2
M=B/u-H= (0024”’ x 10%a, = 1.59 x 10%pags A/m
7
d) J:
1 H
J=VxH-= —Mazz?y.léﬂx 10°a, A/m
p dp
e) Jp within the wire:
1 M,
Jy=VxM= —Waz =3.18 x10%a, A/m?
p P

9.23. Calculate values for Hy, By, and My at p = c for a coaxial cable with @ = 2.5 mm and b = 6 mm
if it carries current I = 12 A in the center conductor, and p = 3 pH/m for 2.5 < p < 3.5 mm,

w=>5pH/m for 3.5 < p < 4.5 mm, and g = 10 pH/m for 4.5 < p < 6 mm. Compute for:
a) ¢ =3 mm: Have
1 12

27p B 27(3 x 1073)
Then By = puHy = (3 x 1076)(637) = 1.91 x 1073 Wb/m?.
Finally, My = (1/po)By — Hy = 884 A/m.

Hy = =637 A/m

13



9.23b. ¢ =4 mm: Have

c)

H¢:%:W:478A/m
Then By = uHy = (5 x 1076)(478) = 2.39 x 1073 Wb/m?.
Finally, My = (1/p0)By — Hpy = 1.42 x 10*> A/m.
¢ =5 mm: Have
Hy = d = 12 =382 A/m

2rp  27w(5 x 1073)

Then By = puHy = (10 x 1079)(382) = 3.82 x 1072 Wb/m?.
Finally, My = (1/p0)By — Hy = 2.66 x 10*> A/m.

9.24. A coaxial transmission line has a = 5 mm and b = 20 mm. Let its center lie on the z axis and let a
dc current I flow in the a, direction in the center conductor. The volume between the conductors
contains a magnetic material for which u, = 2.5, as well as air. Find H, B, and M everywhere
between conductors if H, = 600/7 A/m at p = 10 mm, ¢ = 7/2, and the magnetic material is
located where:

a)

a < p < 3a; First, we know that Hy, = I/2mp, from which we construct:

1 600
— = — = [=12A
27(1072) ™

Since the interface between the two media lies in the a4 direction, we use the boundary
condition of continuity of tangential H and write

12 6
H(b < p<20)= %a¢ = W—pa¢ A/m

In the magnetic material, we find

(2.5)(47 x 1077)(12)
2mp

B(b<p<15)=pH= ag = (6/p)ag pT

Then, in the free space region, B(15 < p < 20) = poH = (2.4/p)ay uT.

0 < ¢ <m Again, we are given H = 600/7a, A/m at p = 10 and at ¢ = 7/2. Now, since
the interface between media lies in the a, direction, and noting that magnetic field will be
normal to this (a, directed), we use the boundary condition of continuity of B normal to an
interface, and write B(0 < ¢ < ) = B; = B(7w < ¢ < 27) = Bo, or 2.5u0H; = poHs. Now,
using Ampere’s circuital law, we write

j{H -dL =mpHy + mpHy = 3.5mpH; =1

Using the given value for H; at p = 10 mm, I = 3.5(600/7)(7 x 10~2) = 21 A. Therefore,
H, = 21/(3.5mp) = 6/(mp), or HO < ¢ < m) = 6/(mp)ay A/m. Then Hy = 2.5H;, or
H(m < ¢ < 2m) = 15/(mp)ay, A/m. Now B(0 < ¢ < 2m) = 2.5u0(6/(7p))ay = 6/pay uT.
Now, in general, M = (u, —1)H, and so M(0 < ¢ < ) = (2.5—-1)6/(mp)a, = 9/(mp)a, A/m
and M(m < ¢ < 2m) = 0.

14



9.25. A conducting filament at z = 0 carries 12 A in the a, direction. Let pu,. = 1 for p < 1 cm, p, = 6
for 1 < p<2cm, and p,. =1 for p > 2 cm. Find
a) H everywhere: This result will depend on the current and not the materials, and is:

b) B everywhere: We use B = p,.10H to find:
B(p <lcm) = (1)uo(1.91/p) = (2.4 x 107%/p)a, T

B(l1 <p<2cm)=(6)uo(1.91/p) = (1.4 x 1075 /p)a, T
B(p>2cm) = (1)uo(1.91/p) = (2.4 x 107%/p)a, T where p is in meters.

9.26. Two current sheets, Kpa, A/m at z =0, and —Kopa, A/m at z = d are separated by two slabs of
magnetic material, p,1 for 0 < z < a, and p,o for a < z < d. If g0 = 3u,1, find the ratio, a/d,
such that ten percent of the total magnetic flux is in the region 0 < z < a.

The magnetic flux densities in the two regions are By = p,qu0Koa, VVb/m2 and By =
proptoKoa, Wb/m2. The total flux per unit length of line is then

O, = a(1)By + (d — a)(1) B2 = apir1p0Ko + (d — a) propo Ko = poKopr[a + 3(d — a)]

<I)1 ‘1>2

The ratio of the two fluxes is then found, and set equal to 0.1:

g a

= — =0.23
q)g 3(d - a)

=01 =

ISHRS

9.27. Let pr1 = 2 in region 1, defined by 2x+3y—4z > 1, while p,.o = 5 in region 2 where 22+3y—42z < 1.
In region 1, H; = 50a, — 30a, + 20a, A/m. Find:
a) Hy1 (normal component of H; at the boundary): We first need a unit vector normal to the
surface, found through

an — V(2x +3y—4z)  2a,+3a, —4a
N IV (22 + 3y — 42)| V29

= = 37a, + .56a, — .74a,

Since this vector is found through the gradient, it will point in the direction of increasing
values of 2x 4+ 3y — 4z, and so will be directed into region 1. Thus we write ay = ayo1. The
normal component of H; will now be:

Hy = (H; - an21)anar
= [(50a, — 30a, + 20a,) - (.37a, + .56a, — .74a,)] (.37a, + .56a, — .74a.)
= —4.83a, — 7.24a, + 9.66a, A/m

b) Hpp (tangential component of H; at the boundary):

Hpr =H; —Hm
= (50a, — 30a, + 20a,) — (—4.83a, — 7.24a, + 9.66a.)
= 54.83a, — 22.76a, + 10.34a, A/m
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9.27c. Hpo (tangential component of Hy at the boundary): Since tangential components of H are con-
tinuous across a boundary between two media of different permeabilities, we have

Hpo = Hp = 54.83a, — 22.76a, + 10.34a, A/m

d) Hys (normal component of Hy at the boundary): Since normal components of B are contin-
uous across a boundary between media of different permeabilities, we write 1 Hy1 = puoHpyo
or

Hr1

Hyo =
° 7 LR2

2
Hy, = g(—4.83am — 7.24a, +9.66a,) = —1.93a, — 2.90a, + 3.86a, A/m

e) 01, the angle between H; and ap2;: This will be

H; a _ | 50a, — 30a, + 20a,
B[ VT [(502 4 302 + 202)1/2

cosfy = - (.37a, + .56a, — .74a,) = —0.21

Therefore 6; = cos™!(—.21) = 102°.

f) 0o, the angle between Hy and ayg;: First,

H, = Hyy + Hyo = (54.83a, — 22.76a, 4 10.34a.) + (—1.93a, — 2.90a, + 3.86a.)
= 52.90a, — 25.66a, + 14.20a, A/m

Now

H, 52.90a, — 25.66a, + 14.20a,
2 e = - (37a, + 56a, — .74a.) = —0.09
Hy| N 60.49 (:37a, + 562, — T4a.)

cos 0y =

Therefore 3 = cos™1(—.09) = 95°.

9.28. For values of B below the knee on the magnetization curve for silicon steel, approximate the curve
by a straight line with g = 5 mH/m. The core shown in Fig. 9.17 has areas of 1.6 cm? and lengths
of 10 cm in each outer leg, and an area of 2.5 cm? and a length of 3 cm in the central leg. A coil
of 1200 turns carrying 12 mA is placed around the central leg. Find B in the:

a) center leg: We use mmf = ®R, where, in the central leg,

L; 3 x 1072
R, = —" = =24x10*H
pAm (5% 10-3)(2.5 x 10-4) x

In each outer leg, the reluctance is

po_ Lou _ 10 x 1072

— - =125x10° H
1A (5 x 10-3)(1.6 x 10-1) x

The magnetic circuit is formed by the center leg in series with the parallel combination of the
two outer legs. The total reluctance seen at the coil location is Ry = R.+(1/2)R, = 8.65 x 10*

H. We now have
mmf 14.4

b — —
Ry 8.65 x 10

- =1.66x10"* Wb
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9.28a. (continued) The flux density in the center leg is now

® 1.66 x 10~*
B=>=2%

A~ 25x10-1  2006T

b) center leg, if a 0.3-mm air gap is present in the center leg: The air gap reluctance adds to the
total reluctance already calculated, where

0.3 x 1073

=9. 10° H
(dr x 10725 x 104 — 00 * 10

Rair =

Now the total reluctance is Rpet = R + Rgir = 8.56 x 10* 4+ 9.55 x 10° = 1.04 x 10°. The
flux in the center leg is now

14.4
% 138x 1070
104 x 106~ 38 <1077 Wh
and 5
1.38 x 10~
= 20X 553 mT
55 x10-1 ~ 203ml

9.29. In Problem 9.28, the linear approximation suggested in the statement of the problem leads to a flux
density of 0.666 T in the center leg. Using this value of B and the magnetization curve for silicon
steel, what current is required in the 1200-turn coil? With B = 0.666 T, we read H;,, = 120 A - t/m
in Fig. 9.11. The flux in the center leg is ® = 0.666(2.5 x 107%) = 1.66 x 10~* Wb. This divides
equally in the two outer legs, so that the flux density in each outer leg is

1\ 1.66 x 1074 5
an_.<§>-EI;236;Z._052VVbAn

Using Fig. 9.11 with this result, we find Hy,: = 90 A - t/m We now use
%H -dL = NI

to find

120)(3 x 1072) + (90)(10 x 10~2)

1200 = 10.5 mA

1 (
I=— Hanzn Hou Lou =
N ( + tLout)

9.30. A toroidal core has a circular cross section of 4 cm? area. The mean radius of the toroid is 6 cm.
The core is composed of two semi-circular segments, one of silicon steel and the other of a linear
material with p, = 200. There is a 4mm air gap at each of the two joints, and the core is wrapped
by a 4000-turn coil carrying a dc current I;.

a) Find I; if the flux density in the core is 1.2 T: I will use the reluctance method here. Reluc-
tances of the steel and linear materials are respectively,

(6 x 1072)

= 1. 105 H!
B.0x 10 3)@dx 104 o7 x10

Ry =
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9.30a. (continued)
7(6 x 1072)
(200)(47 x 10~7)(4 x 10—4)

where i is found from Fig. 9.11, using B = 1.2, from which H = 400, and so B/H = 3.0 mH/m.
The reluctance of each gap is now

R, = =1.88 x 10 H™!

R 0.4 x 1073
7 (4m x 1077)(4 x 10—4)

=17.96 x 10° H™!

We now construct
NI} =®R=1.2(4 x 107*) [Rs + R; + 2R,] = 1.74 x 10®

Thus I; = (1.74 x 103)/4000 = 435 mA.

b) Find the flux density in the core if I; = 0.3 A: We are not sure what to use for the permittivity
of steel in this case, so we use the iterative approach. Since the current is down from the value
obtained in part a, we can try B = 1.0 T and see what happens. From Fig. 9.11, we find
H =200 A/m. Then, in the linear material,

1.0
H, = = 3. 10° A
L= S00(an x 10-7) ~ S98 X 107 Afm
and in each gap,
1.0 5

Now Ampere’s circuital law around the toroid becomes
NI, = 7(.06)(200 4 3.98 x 10%) + 2(7.96 x 10°)(4 x 107%) = 1.42 x 10*> A—t

Then I; = (1.42 x 10%)/4000 = .356 A. This is still larger than the given value of .3A, so we
can extrapolate down to find a better value for B:

=0.86T

.356 — .300

Using this value in the procedure above to evaluate Ampere’s circuital law leads to a value of
17 of 0.306 A. The result of 0.86 T for B is probably good enough for this problem, considering
the limited resolution of Fig. 9.11.
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9.31. A toroid is constructed of a magnetic material having a cross-sectional area of 2.5 cm? and an
effective length of 8 cm. There is also a short air gap 0.25 mm length and an effective area of 2.8
cm?. An mmf of 200 A - t is applied to the magnetic circuit. Calculate the total flux in the toroid

if:
a)

the magnetic material is assumed to have infinite permeability: In this case the core reluctance,
R. =1/(nA), is zero, leaving only the gap reluctance. This is

d 0.25 x 1073
— — =71x10°H
Ro = oA, = (G x 107)(25 x 10°9) x 10

Now
mmf 200

R,  T1x10°

o = =28 x10"* Wb

the magnetic material is assumed to be linear with p,, = 1000: Now the core reluctance is no
longer zero, but

8 x 102
R. = =26x10° H
(1000) (47 x 10-7)(2.5 x 10—4) x
The flux is then 500
mmf —21x10~* Wb

" R.+R, 97x10°

the magnetic material is silicon steel: In this case we use the magnetization curve, Fig. 9.11,
and employ an iterative process to arrive at the final answer. We can begin with the value of
® found in part a, assuming infinite permeability: ®() = 2.8 x 10~* Wb. The flux density

in the core is then BSY = (2.8 x 104)/(2.5 x 1074) = 1.1 Wb/m2. From Fig. 9.11, this

corresponds to magnetic field strength Hc(l) = 270 A/m. We check this by applying Ampere’s
circuital law to the magnetic circuit:

7{H dL=H" L.+ HMd

where H{" L, = (270)(8 x 10~2) = 22, and where H{Vd = IR, = (2.8 x 1074)(7.1 x 10°) =
199. But we require that

fH-szQOOA”c
whereas the actual result in this first calculation is 199 + 22 = 221, which is too high. So, for

a second trial, we reduce B to BY =1 Whb/m?2. This yields 7% =200 A/m from Fig. 9.11,
and thus ®? = 2.5 x 10~* Wb. Now

fH dL = HP L, + PR, = 200(8 x 1072) + (2.5 x 107%)(7.1 x 10°) = 194

This is less than 200, meaning that the actual flux is slightly higher than 2.5 x 10~ Whb.
I will leave the answer at that, considering the lack of fine resolution in Fig. 9.11.
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9.32. Determine the total energy stored in a spherical region lem in radius, centered at the origin in free
space, in the uniform field:
a) Hy = —600a, A/m: First we find the energy density:

1 1 1
w1 = 5By - Hy = §MOH12 = 5 (47 x 1077)(600)? = 0.226 J/m?

The energy within the sphere is then
4
Wint = w1 <§7ra ) — 0.226 ( T x 10~ ) — 0.947 uJ
b) Hy = 600a, + 1200a, A/m: In this case the energy density is

1 5
W = 5#0 [(600)2 + (1200)2] = 5#0(600)2

or five times the energy density that was found in part a. Therefore, the stored energy in this
field is five times the amount in part a, or W0 = 4.74 uJ.

c) H3z = —600a, + 1200a,. This field differs from Hs only by the negative z component, which
is a non-issue since the component is squared when finding the energy density. Therefore, the
stored energy will be the same as that in part b, or Wy,3 = 4.74 puJ.

d) Hy = Hy + Hj, or 2400a, A/m: The energy density is now wpma = (1/2)po(2400)% =
(1/2)10(16)(600)* J/m3, which is sixteen times the energy density in part a. The stored
energy is therefore sixteen times that result, or W4 = 16(0.947) = 15.2 puJ.

e) 1000a, A/m+0.001a, T: The energy density is w5 = (1/2)10[1000+.001/p0]? = 2.03 J/m?3.
Then W,,5 = 2.03[(4/3)7 x 107¢] = 8.49 uJ.

9.33. A toroidal core has a square cross section, 2.5 cm < p < 3.5 ¢cm, —0.5 cm < z < 0.5 cm. The
upper half of the toroid, 0 < z < 0.5 cm, is constructed of a linear material for which u, = 10,
while the lower half, —0.5 cm < z < 0, has u,» = 20. An mmf of 150 A - t establishes a flux in the
a, direction. For z > 0, find:

a) Hy(p): Ampere’s circuital law gives:
150
2npHy = NI =150 = Hy = 3 =23.9/p A/m

b) By(p): We use By = prpoHg = (10) (47 x 1077)(23.9/p) = 3.0 x 107*/p Wh/m?.
c) ®,50: This will be

.005 .035 1 4 .
Doy = // LdS = / / SO0 s = (005)(3.0 x 10~ In <%)
0 .

=5.0x 10" Wb

d) Repeat for z < 0: First, the magnetic field strength will be the same as in part a, since the
calculation is material-independent. Thus Hy, = 23.9/p A/m. Next, By is modified only by the

new permeability, which is twice the value used in part a: Thus By, = 6.0 x 107*/p Wb/m?.
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9.33d. (continued) Finally, since By is twice that of part a, the flux will be increased by the same factor,
since the area of integration for z < 0 is the same. Thus ®,o = 1.0 x 10~° Whb.

e) Find ®yota: This will be the sum of the values found for z < 0 and z > 0, or Piotar =
1.5 x 10~% Wh.

9.34. Determine the energy stored per unit length in the internal magnetic field of an infinitely-long
straight wire of radius a, carrying uniform current 1.

We begin with H = Ip/(27a?) ay, and find the integral of the energy density over the unit

length in z:
2T pop?
W, = /—NQHQdU—// / 8024pd dpdz =

9.35. The cones = 21° and 6 = 159° are conducting surfaces and carry total currents of 40 A, as shown
in Fig. 9.18. The currents return on a spherical conducting surface of 0.25 m radius.

a) Find H in the region 0 < r < 0.25, 21° < 6 < 159°, 0 < ¢ < 2m: We can apply Ampere’s
circuital law and take advantage of symmetry. We expect to see H in the a4 direction and it
would be constant at a given distance from the z axis. We thus perform the line integral of
H over a circle, centered on the z axis, and parallel to the zy plane:

12
Ho J/m
™

2T
fHdL: H¢a¢TS1nea¢d¢:Iencl:4OA
0

Assuming that H, is constant over the integration path, we take it outside the integral and

solve: 40 50
Hy=—"— = H= A
®~ 2nrsind mrsin 6 ag A/m

b) How much energy is stored in this region? This will be

27 159° .25 159°
200 100 d
WH—/ M0H¢_/ / / gy sin0dr d dg = “0/ ,
21 722 sin2 T Joro sind

~ 100u0 tan(159/2)
B [ tan(21/2)

] =1.35x107%J

™

9.36. The dimensions of the outer conductor of a coaxial cable are b and ¢, where ¢ > b. Assuming p = po,
find the magnetic energy stored per unit length in the region b < p < ¢ for a uniformly-distributed
total current I flowing in opposite directions in the inner and outer conductors.

We first need to find the magnetic field inside the outer conductor volume. Ampere’s circuital
law is applied to a circular path of radius p, where b < p < ¢. This encloses the entire center
conductor current (assumed in the positive z direction), plus that part of the —z-directed
outer conductor current that lies inside p. We obtain:

2 2 2 2
p-—b c—p
QWPH:I—I[W} Zf[f]
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9.36. (continued) So that

I |cc—p
H-= 27?,0[ bz} ag A/m (b<p<ec)

The energy within the outer conductor is now

W,, — H?d //%/ pol” PR dpde,d
m 'uol 'U“O v = {72 C2—b2 pg c p | pap , Az

ol [ ey L
T 4n(1—b2/c2)2 [l(/b) (1-1b%/ )+4(1 b/ )]J

9.37. Find the inductance of the cone-sphere configuration described in Problem 9.35 and Fig. 9.18.
The inductance is that offered at the origin between the vertices of the cone: From Problem 9.35,
the magnetic flux density is By = 20uo/(7mrsin@). We integrate this over the crossectional area
defined by 0 < r < 0.25 and 21° < 6 < 159°, to find the total flux:

1597 0025 90, Spo . [tan(159/2) 5410
drdf = "Z1In |——2| = L2(3.37) =6.74 x 107° Wb
/2 / 77 sin rar T n |: tan(21/2) ] T (3 37) 6.74 x 10 W

Now L =®/I =6.74 x 1075/40 = 0.17 uH.
Second method: Use the energy computation of Problem 9.35, and write

2Wy  2(1.35x107*

)
= (1072 =0.17 uH

L=

9.38. A toroidal core has a rectangular cross section defined by the surfaces p =2 cm, p =3 cm, z =4
cm, and z = 4.5 cm. The core material has a relative permeability of 80. If the core is wound with
a coil containing 8000 turns of wire, find its inductance: First we apply Ampere’s circuital law to
a circular loop of radius p in the interior of the toroid, and in the a4 direction.

NI

fH dL=2mpHy, = NI = Hy=
™

The flux in the toroid is then the integral over the cross section of B:

.045
rioN 1 o NT )
// +dL = / / petoNL 4 g — (oos)letoN Ly (03
04 02 2mp 2m .02

The flux linkage is then given by N®, and the inductance is

N®  (.005)(80)(4m x 10~7)(8000)>
I 27

L= In(1.5) = 2.08 H

22



9.39. Conducting planes in air at z = 0 and z = d carry surface currents of £Kpa, A/m.

a)

Find the energy stored in the magnetic field per unit length (0 < z < 1) in a width w (0 <
y < w): First, assuming current flows in the +a, direction in the sheet at z = d, and in —a,
in the sheet at z = 0, we find that both currents together yield H = Kpa, for 0 < z < d and
zero elsewhere. The stored energy within the specified volume will be:

1 1 1
Wy = / —puoH?dv :/ / / —,LLOKS dxdydz = —wd,ung J/m
v 2 o Jo Jo 2 2

Calculate the inductance per unit length of this transmission line from Wy = (1/2)LI?, where
I is the total current in a width w in either conductor: We have I = wKj, and so

2 wd 9 2 dw 9  Mod

“pg K= gt

Calculate the total flux passing through the rectangle 0 < =z < 1, 0 < z < d, in the plane
y = 0, and from this result again find the inductance per unit length:

d 1 d 1
= / / noHay -a,drdz = / / poKodx dy = podKy
o Jo o Jo

¢ podKo _ pod
L=2— H
I wKy w /m

Then

9.40. A coaxial cable has conductor dimensions of 1 and 5 mm. The region between conductors is air
for 0 < ¢ < m/2 and ™ < ¢ < 37/2, and a non-conducting material having pu, =8 for 7/2 < ¢ < 7
and 37/2 < ¢ < 27. Find the inductance per meter length: The interfaces between media all occur
along radial lines, normal to the direction of B and H in the coax line. B is therefore continuous
(and constant at constant radius) around a circular loop centered on the z axis. Ampere’s circuital
law can thus be written in this form:

B B B B B
fraem 2 (50) o (o) 2 (50) +500 (o) - o=
fo \2 Hrfho N2 fo \2 Hrfho N2 o fho

and so

/‘LTMOI
= —a¢
Tp(1 + pr)

The flux in the line per meter length in z is now

005
T T I
/ / ol dpdz = Mol In(5)
001 7Tp 1 + NT) 7T<1 + NT)

And the inductance per unit length is:

o L b0 8(4m x 1077)
L=—=—""" In5)=——""""_21n(5) =572 nH
T~ ni+ ) O =) n(5) =572 nH/m
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9.41. A rectangular coil is composed of 150 turns of a filamentary conductor. Find the mutual inductance
in free space between this coil and an infinite straight filament on the z axis if the four corners of
the coil are located at

a)

(0,1,0), (0,3,0), (0,3,1), and (0,1,1): In this case the coil lies in the yz plane. If we assume that
the filament current is in the +a, direction, then the B field from the filament penetrates the
coil in the —a, direction (normal to the loop plane). The flux through the loop will thus be

1 3
—uol 1
<I>:/ / Ho az-(—aw)dydz:&ln?)
0 27

The mutual inductance is then

NO 150
M= =5

In3 =33 uH

(1,1,0), (1,3,0), (1,3,1), and (1,1,1): Now the coil lies in the x = 1 plane, and the field from
the filament penetrates in a direction that is not normal to the plane of the coil. We write the
B field from the filament at the coil location as

polag

2my/y? + 1

B=

The flux through the coil is now

1 1
/ / Ho a¢> ( a, dy dz = / / MO sin (b y dz
27 y +1 2 y +1

_ poly pol ‘ 7
dz = 2271 1 1. 1 I
/ / y i 2 n( + ) 1 ( 6 % 0 )

2n(y? +1)

The mutual inductance is then

N®
M =~ = (150)(1.6 x 10 ™) =24 uH

9.42. Find the mutual inductance between two filaments forming circular rings of radii @ and Aa, where
Aa << a. The field should be determined by approximate methods. The rings are coplanar and
concentric.

We use the result of Problem 8.4, which asks for the magnetic field at the origin, arising from
a circular current loop of radius a. That solution is reproduced below: Using the Biot-Savart

law, we have IdL = ladmay, R = a, and agp = —a,. The field at the center of the circle is
then ) )
H,. :/ Tadpay, x (—a,) :/ Idpa, I a. A/m
0 4ma? 0 dra 2a°

We now approximate that field as constant over a circular area of radius Aa, and write the
flux linkage (for the single turn) as

Im(Aa)? ®,, Aa)2
(I)m = 7T(Aa)zBouter = m = M= — = M
2a I 2
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9.43. a) Use energy relationships to show that the internal inductance of a nonmagnetic cylindrical wire
of radius a carrying a uniformly-distributed current I is po/(87) H/m. We first find the magnetic
field inside the conductor, then calculate the energy stored there. From Ampere’s circuital law:

7p? Ip

271',0H¢ = @I = H¢ = 27’[‘a2 A/m

27 0[2 2 NOIZ
WH/ u0H¢dv/ / / - pdpdpdz = T6n J/m

Now, with Wy = (1/2)LI1?, we find L;,; = p0/(87) as expected.

b) Find the internal inductance if the portion of the conductor for which p < ¢ < a is removed: The
hollowed-out conductor still carries current I, so Ampere’s circuital law now reads:

7(p? — c?) N I [p —c

2npH, = Hy=— A
mpHy = — = 2mp C] /m

and the energy is now

2m 2 2 2 a 4

pol*( P *C) ol / 3 2 c
W = dpdpdz = ————= —2 d
" / / / 812 p? )2p pdodz 4m(a® — c?)? /. P crt p P

= m E(a4 —M =A@ =)+t (%)] J/m

The internal inductance is then

Lint =

4 4,202 4 4
2Wh _ po [a” —4ac” + 3¢ +4c In(a/c) H/m
I? 8w (a? — ¢2)?
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