
CHAPTER 9

9.1. A point charge, Q = −0.3 µC and m = 3 × 10−16 kg, is moving through the field E = 30az V/m.
Use Eq. (1) and Newton’s laws to develop the appropriate differential equations and solve them,
subject to the initial conditions at t = 0: v = 3 × 105 ax m/s at the origin. At t = 3µs, find:
a) the position P (x, y, z) of the charge: The force on the charge is given by F = qE, and Newton’s

second law becomes:

F = ma = m
d2z
dt2

= qE = (−0.3 × 10−6)(30az)

describing motion of the charge in the z direction. The initial velocity in x is constant, and
so no force is applied in that direction. We integrate once:

dz

dt
= vz =

qE

m
t + C1

The initial velocity along z, vz(0) is zero, and so C1 = 0. Integrating a second time yields the
z coordinate:

z =
qE

2m
t2 + C2

The charge lies at the origin at t = 0, and so C2 = 0. Introducing the given values, we find

z =
(−0.3 × 10−6)(30)

2 × 3 × 10−16
t2 = −1.5 × 1010t2 m

At t = 3 µs, z = −(1.5 × 1010)(3 × 10−6)2 = −.135 cm. Now, considering the initial constant
velocity in x, the charge in 3 µs attains an x coordinate of x = vt = (3×105)(3×10−6) = .90 m.
In summary, at t = 3 µs we have P (x, y, z) = (.90, 0,−.135).

b) the velocity, v: After the first integration in part a, we find

vz =
qE

m
t = −(3 × 1010)(3 × 10−6) = −9 × 104 m/s

Including the intial x-directed velocity, we finally obtain v = 3 × 105 ax − 9 × 104az m/s.

c) the kinetic energy of the charge: Have

K.E. =
1
2
m|v|2 =

1
2
(3 × 10−16)(1.13 × 105)2 = 1.5 × 10−5 J

9.2. A point charge, Q = −0.3 µC and m = 3 × 10−16 kg, is moving through the field B = 30az mT.
Make use of Eq. (2) and Newton’s laws to develop the appropriate differential equations, and solve
them, subject to the initial condition at t = 0, v = 3×105 m/s at the origin. Solve these equations
(perhaps with the help of an example given in Section 7.5) to evaluate at t = 3µs: a) the position
P (x, y, z) of the charge; b) its velocity; c) and its kinetic energy:

We begin by visualizing the problem. Using F = qv × B, we find that a positive charge moving
along positive ax, would encounter the z-directed B field and be deflected into the negative y
direction.
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9.2 (continued) Motion along negative y through the field would cause further deflection into the
negative x direction. We can construct the differential equations for the forces in x and in y as
follows:

Fxax = m
dvx

dt
ax = qvyay × Baz = qBvyax

Fyay = m
dvy

dt
ay = qvxax × Baz = −qBvxay

or
dvx

dt
=

qB

m
vy (1)

and
dvy

dt
= −qB

m
vx (2)

To solve these equations, we first differentiate (2) with time and substitute (1), obtaining:

d2vy

dt2
= −qB

m

dvx

dt
= −

(
qB

m

)2

vy

Therefore, vy = A sin(qBt/m) + A′ cos(qBt/m). However, at t = 0, vy = 0, and so A′ = 0, leaving
vy = A sin(qBt/m). Then, using (2),

vx = − m

qB

dvy

dt
= −A cos

(
qBt

m

)

Now at t = 0, vx = vx0 = 3 × 105. Therefore A = −vx0, and so vx = vx0 cos(qBt/m), and
vy = −vx0 sin(qBt/m). The positions are then found by integrating vx and vy over time:

x(t) =
∫

vx0 cos
(

qBt

m

)
dt + C =

mvx0

qB
sin

(
qBt

m

)
+ C

where C = 0, since x(0) = 0. Then

y(t) =
∫

−vx0 sin
(

qBt

m

)
dt + D =

mvx0

qB
cos

(
qBt

m

)
+ D

We require that y(0) = 0, so D = −(mvx0)/(qB), and finally y(t) = −mvx0/qB [1 − cos (qBt/m)].
Summarizing, we have, using q = −3 × 10−7 C, m = 3 × 10−16 kg, B = 30 × 10−3 T, and
vx0 = 3 × 105 m/s:

x(t) =
mvx0

qB
sin

(
qBt

m

)
= −10−2 sin(−3 × 10−7t) m

y(t) = −mvx0

qB

[
1 − cos

(
qBt

m

)]
= 10−2[1 − cos(−3 × 107t)] m

vx(t) = vx0 cos
(

qBt

m

)
= 3 × 105 cos(−3 × 107t) m/s

vy(t) = −vx0 sin
(

qBt

m

)
= −3 × 105 sin(−3 × 107t) m/s
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9.2 (continued) The answers are now:

a) At t = 3 × 10−6 s, x = 8.9 mm, y = 14.5 mm, and z = 0.

b) At t = 3 × 10−6 s, vx = −1.3 × 105 m/s, vy = 2.7 × 105 m/s, and so

v(t = 3µs) = −1.3 × 105ax + 2.7 × 105ay m/s

whose magnitude is v = 3 × 105 m/s as would be expected.

c) Kinetic energy is K.E. = (1/2)mv2 = 1.35 µJ at all times.

9.3. A point charge for which Q = 2× 10−16 C and m = 5× 10−26 kg is moving in the combined fields
E = 100ax − 200ay + 300az V/m and B = −3ax + 2ay − az mT. If the charge velocity at t = 0 is
v(0) = (2ax − 3ay − 4az) × 105 m/s:
a) give the unit vector showing the direction in which the charge is accelerating at t = 0: Use

F(t = 0) = q[E + (v(0) × B)], where

v(0) × B = (2ax − 3ay − 4az)105 × (−3ax + 2ay − az)10−3 = 1100ax + 1400ay − 500az

So the force in newtons becomes

F(0) = (2×10−16)[(100+1100)ax+(1400−200)ay +(300−500)az] = 4×10−14[6ax+6ay−az]

The unit vector that gives the acceleration direction is found from the force to be

aF =
6ax + 6ay − az√

73
= .70ax + .70ay − .12az

b) find the kinetic energy of the charge at t = 0:

K.E. =
1
2
m|v(0)|2 =

1
2
(5 × 10−26 kg)(5.39 × 105 m/s)2 = 7.25 × 10−15 J = 7.25 fJ

9.4. Show that a charged particle in a uniform magnetic field describes a circular orbit with an orbital
period that is independent of the radius. Find the relationship between the angular velocity and
magnetic flux density for an electron (the cyclotron frequency).

A circular orbit can be established if the magnetic force on the particle is balanced by the
centripital force associated with the circular path. We assume a circular path of radius R, in
which B = B0 az is normal to the plane of the path. Then, with particle angular velocity Ω, the
velocity is v = RΩaφ. The magnetic force is then Fm = qv×B = qRΩaφ×B0 az = qRΩB0 aρ.
This force will be negative (pulling the particle toward the center of the path) if the charge
is positive and motion is in the −aφ direction, or if the charge is negative, and motion is in
positive aφ. In either case, the centripital force must counteract the magnetic force. Assuming
particle mass m, the force balance equation is qRΩB0 = mΩ2R, from which Ω = qB0/m. The
revolution period is T = 2π/Ω = 2πm/(qB0), which is independent of R. For an electron, we
have q = 1.6 × 10−9 C, and m = 9.1 × 1031 kg. The cyclotron frequency is therefore

Ωc =
q

m
B0 = 1.76 × 1011B0 s−1
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9.5. A rectangular loop of wire in free space joins points A(1, 0, 1) to B(3, 0, 1) to C(3, 0, 4) to D(1, 0, 4)
to A. The wire carries a current of 6 mA, flowing in the az direction from B to C. A filamentary
current of 15 A flows along the entire z axis in the az direction.
a) Find F on side BC:

FBC =
∫ C

B

IloopdL × Bfrom wire at BC

Thus

FBC =
∫ 4

1

(6 × 10−3) dz az ×
15µ0

2π(3)
ay = −1.8 × 10−8ax N = −18ax nN

b) Find F on side AB: The field from the long wire now varies with position along the loop
segment. We include that dependence and write

FAB =
∫ 3

1

(6 × 10−3) dxax × 15µ0

2πx
ay =

45 × 10−3

π
µ0 ln 3 az = 19.8az nN

c) Find Ftotal on the loop: This will be the vector sum of the forces on the four sides. Note that
by symmetry, the forces on sides AB and CD will be equal and opposite, and so will cancel.
This leaves the sum of forces on sides BC (part a) and DA, where

FDA =
∫ 4

1

−(6 × 10−3) dz az ×
15µ0

2π(1)
ay = 54ax nN

The total force is then Ftotal = FDA + FBC = (54 − 18)ax = 36ax nN

9.6 The magnetic flux density in a region of free space is given by B = −3xax + 5yay − 2zaz T. Find
the total force on the rectangular loop shown in Fig. 9.15 if it lies in the plane z = 0 and is
bounded by x = 1, x = 3, y = 2, and y = 5, all dimensions in cm: First, note that in the plane
z = 0, the z component of the given field is zero, so will not contribute to the force. We use

F =
∫

loop

IdL × B

which in our case becomes, with I = 30 A:

F =
∫ .03

.01

30dxax × (−3xax + 5y|y=.02 ay) +
∫ .05

.02

30dyay × (−3x|x=.03 ax + 5yay)

+
∫ .01

.03

30dxax × (−3xax + 5y|y=.05 ay) +
∫ .02

.05

30dyay × (−3x|x=.01 ax + 5yay)
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9.6. (continued) Simplifying, this becomes

F =
∫ .03

.01

30(5)(.02)az dx +
∫ .05

.02

−30(3)(.03)(−az) dy

+
∫ .01

.03

30(5)(.05)az dx +
∫ .02

.05

−30(3)(.01)(−az) dy = (.060 + .081 − .150 − .027)az N

= −36az mN

9.7. Uniform current sheets are located in free space as follows: 8az A/m at y = 0, −4az A/m at y = 1,
and −4az A/m at y = −1. Find the vector force per meter length exerted on a current filament
carrying 7 mA in the aL direction if the filament is located at:
a) x = 0, y = 0.5, and aL = az: We first note that within the region −1 < y < 1, the magnetic

fields from the two outer sheets (carrying −4az A/m) cancel, leaving only the field from the
center sheet. Therefore, H = −4ax A/m (0 < y < 1) and H = 4ax A/m (−1 < y < 0).
Outside (y > 1 and y < −1) the fields from all three sheets cancel, leaving H = 0 (y > 1,
y < −1). So at x = 0, y = .5, the force per meter length will be

F/m = Iaz × B = (7 × 10−3)az ×−4µ0ax = −35.2ay nN/m

b.) y = 0.5, z = 0, and aL = ax: F/m = Iax ×−4µ0ax = 0.

c) x = 0, y = 1.5, aL = az: Since y = 1.5, we are in the region in which B = 0, and so the force
is zero.

9.8. Filamentary currents of −25az and 25az A are located in the x = 0 plane in free space at y = −1
and y = 1m respectively. A third filamentary current of 10−3az A is located at x = k, y = 0. Find
the vector force on a 1-m length of the 1-mA filament and plot |F| versus k: The total B field
arising from the two 25A filaments evaluated at the location of the 1-mA filament is, in cartesian
components:

B =
25µ0

2π(1 + k2)
(kay + ax)︸ ︷︷ ︸

line at y=+1

+
25µ0

2π(1 + k2)
(−kay + ax)︸ ︷︷ ︸

line at y=−1

=
25µ0ax

π(1 + k2)

The force on the 1m length of 1-mA line is now

F = 10−3(1)az ×
25µ0ax

π(1 + k2)
=

(2.5 × 10−2)(4 × 10−7)
(1 + k2)

ay =
10−8ay

(1 + k2)
ay N =

10ay

(1 + k2)
nN
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9.9. A current of −100az A/m flows on the conducting cylinder ρ = 5 mm and +500az A/m is present
on the conducting cylinder ρ = 1 mm. Find the magnitude of the total force acting to split the
outer cylinder apart along its length: The differential force acting on the outer cylinder arising
from the field of the inner cylinder is dF = Kouter×B, where B is the field from the inner cylinder,
evaluated at the outer cylinder location:

B =
2π(1)(500)µ0

2π(5)
aφ = 100µ0 aφ T

Thus dF = −100az ×100µ0aφ = 104µ0aρ N/m2. We wish to find the force acting to split the outer
cylinder, which means we need to evaluate the net force in one cartesian direction on one half of
the cylinder. We choose the “upper” half (0 < φ < π), and integrate the y component of dF over
this range, and over a unit length in the z direction:

Fy =
∫ 1

0

∫ π

0

104µ0aρ · ay(5 × 10−3) dφ dz =
∫ π

0

50µ0 sin φ dφ = 100µ0 = 4π × 10−5 N/m

Note that we did not include the “self force” arising from the outer cylinder’s B field on itself.
Since the outer cylinder is a two-dimensional current sheet, its field exists only just outside the
cylinder, and so no force exists. If this cylinder possessed a finite thickness, then we would need
to include its self-force, since there would be an interior field and a volume current density that
would spatially overlap.

9.10. A planar transmission line consists of two conducting planes of width b separated d m in air,
carrying equal and opposite currents of I A. If b >> d, find the force of repulsion per meter of
length between the two conductors.

Take the current in the top plate in the positive z direction, and so the bottom plate current
is directed along negative z. Furthermore, the bottom plate is at y = 0, and the top plate is
at y = d. The magnetic field stength at the bottom plate arising from the current in the top
plate is H = K/2ax A/m, where the top plate surface current density is K = I/baz A/m.
Now the force per unit length on the bottom plate is

F =
∫ 1

0

∫ b

0

Kb × Bb dS

where Kb is the surface current density on the bottom plate, and Bb is the magnetic flux
density arising from the top plate current, evaluated at the bottom plate location. We obtain

F =
∫ 1

0

∫ b

0

−I

b
az ×

µ0I

2b
ax dS = −µ0I

2

2b
ay N/m

9.11. a) Use Eq. (14), Sec. 9.3, to show that the force of attraction per unit length between two
filamentary conductors in free space with currents I1az at x = 0, y = d/2, and I2az at x = 0,
y = −d/2, is µ0I1I2/(2πd): The force on I2 is given by

F2 = µ0
I1I2

4π

∮ [∮
aR12 × dL1

R2
12

]
× dL2

6



9.11a. (continued). Let z1 indicate the z coordinate along I1, and z2 indicate the z coordinate along I2.
We then have R12 =

√
(z2 − z1)2 + d2 and

aR12 =
(z2 − z1)az − day√

(z2 − z1)2 + d2

Also, dL1 = dz1az and dL2 = dz2az The “inside” integral becomes:∮
aR12 × dL1

R2
12

=
∮

[(z2 − z1)az − day] × dz1az

[(z2 − z1)2 + d2]1.5
=

∫ ∞

−∞

−d dz1 ax

[(z2 − z1)2 + d2]1.5

The force expression now becomes

F2 = µ0
I1I2

4π

∮ [∫ ∞

−∞

−d dz1 ax

[(z2 − z1)2 + d2]1.5
× dz2az

]
= µ0

I1I2

4π

∫ 1

0

∫ ∞

−∞

d dz1 dz2 ay

[(z2 − z1)2 + d2]1.5

Note that the “outside” integral is taken over a unit length of current I2. Evaluating, obtain,

F2 = µ0
I1I2day

4πd2
(2)

∫ 1

0

dz2 =
µ0I1I2

2πd
ay N/m

as expected.

b) Show how a simpler method can be used to check your result: We use dF2 = I2dL2 × B12,
where the field from current 1 at the location of current 2 is

B12 =
µ0I1

2πd
ax T

so over a unit length of I2, we obtain

F2 = I2az ×
µ0I1

2πd
ax = µ0

I1I2

2πd
ay N/m

This second method is really just the first over again, since we recognize the inside integral of
the first method as the Biot-Savart law, used to find the field from current 1 at the current 2
location.

9.12. A conducting current strip carrying K = 12az A/m lies in the x = 0 plane between y = 0.5 and
y = 1.5 m. There is also a current filament of I = 5 A in the az direction on the z axis. Find the
force exerted on the:
a) filament by the current strip: We first need to find the field from the current strip at the

filament location. Consider the strip as made up of many adjacent strips of width dy, each
carrying current dIaz = Kdy. The field along the z axis from each differential strip will
be dB = [(Kdyµ0)/(2πy)]ax. The total B field from the strip evaluated along the z axis is
therefore

B =
∫ 1.5

0.5

12µ0ax

2πy
dy =

6µ0

π
ln

(
1.5
0.5

)
ax = 2.64 × 10−6ax Wb/m2

Now

F =
∫ 1

0

IdL × B =
∫ 1

0

5dz az × 2.64 × 10−6 ax dz = 13.2ay µN/m

b) strip by the filament: In this case we integrate K×B over a unit length in z of the strip area,
where B is the field from the filament evaluated on the strip surface:

F =
∫

Area

K × B da =
∫ 1

0

∫ 1.5

0.5

12az ×
−5µ0ax

2πy
dy =

−30µ0

π
ln(3)ay = −13.2ay µN/m
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9.13. A current of 6A flows from M(2, 0, 5) to N(5, 0, 5) in a straight solid conductor in free space. An
infinite current filament lies along the z axis and carries 50A in the az direction. Compute the
vector torque on the wire segment using:
a) an origin at (0, 0, 5): The B field from the long wire at the short wire is B = (µ0Izay)/(2πx) T.

Then the force acting on a differential length of the wire segment is

dF = IwdL × B = Iwdxax × µ0Iz

2πx
ay =

µ0IwIz

2πx
dxaz N

Now the differential torque about (0, 0, 5) will be

dT = RT × dF = xax × µ0IwIz

2πx
dxaz = −µ0IwIz

2π
dxay

The net torque is now found by integrating the differential torque over the length of the wire
segment:

T =
∫ 5

2

−µ0IwIz

2π
dxay = −3µ0(6)(50)

2π
ay = −1.8 × 10−4 ay N · m

b) an origin at (0, 0, 0): Here, the only modification is in RT , which is now RT = xax + 5az So
now

dT = RT × dF = [xax + 5az] ×
µ0IwIz

2πx
dxaz = −µ0IwIz

2π
dxay

Everything from here is the same as in part a, so again, T = −1.8 × 10−4 ay N · m.

c) an origin at (3, 0, 0): In this case, RT = (x − 3)ax + 5az, and the differential torque is

dT = [(x − 3)ax + 5az] ×
µ0IwIz

2πx
dxaz = −µ0IwIz(x − 3)

2πx
dxay

Thus

T =
∫ 5

2

−µ0IwIz(x − 3)
2πx

dxay = −6.0 × 10−5

[
3 − 3 ln

(
5
2

)]
ay = −1.5 × 10−5 ay N · m

9.14. The rectangular loop of Prob. 6 is now subjected to the B field produced by two current sheets,
K1 = 400ay A/m at z = 2, and K2 = 300az A/m at y = 0 in free space. Find the vector torque
on the loop, referred to an origin:
a) at (0,0,0): The fields from both current sheets, at the loop location, will be negative x-directed.

They will add together to give, in the loop plane:

B = −µ0

(
K1

2
+

K2

2

)
ax = −µ0(200 + 150)ax = −350µ0 ax Wb/m2

With this field, forces will be acting only on the wire segments that are parallel to the y axis.
The force on the segment nearer to the y axis will be

F1 = IL × B = −30(3 × 10−2)ay ×−350µ0ax = −315µ0 az N
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9.14a (continued) The force acting on the segment farther from the y axis will be

F2 = IL × B = 30(3 × 10−2)ay ×−350µ0ax = 315µ0 az N

The torque about the origin is now T = R1×F1+R2×F2, where R1 is the vector directed from the
origin to the midpoint of the nearer y-directed segment, and R2 is the vector joining the origin to
the midpoint of the farther y-directed segment. So R1(cm) = ax+3.5ay and R2(cm) = 3ax+3.5ay.
Therefore

T0,0,0 = [(ax + 3.5ay) × 10−2] ×−315µ0 az + [(3ax + 3.5ay) × 10−2] × 315µ0 az

= −6.30µ0ay = −7.92 × 10−6 ay N−m

b) at the center of the loop: Use T = IS × B where S = (2 × 3) × 10−4 az m2. So

T = 30(6 × 10−4az) × (−350µ0 ax) = −7.92 × 10−6 ay N−m

9.15. A solid conducting filament extends from x = −b to x = b along the line y = 2, z = 0. This
filament carries a current of 3 A in the ax direction. An infinite filament on the z axis carries 5
A in the az direction. Obtain an expression for the torque exerted on the finite conductor about
an origin located at (0, 2, 0): The differential force on the wire segment arising from the field from
the infinite wire is

dF = 3 dxax × 5µ0

2πρ
aφ = −15µ0 cos φ dx

2π
√

x2 + 4
az = − 15µ0x dx

2π(x2 + 4)
az

So now the differential torque about the (0, 2, 0) origin is

dT = RT × dF = xax ×− 15µ0x dx

2π(x2 + 4)
az =

15µ0x
2 dx

2π(x2 + 4)
ay

The torque is then

T =
∫ b

−b

15µ0x
2 dx

2π(x2 + 4)
ay =

15µ0

2π
ay

[
x − 2 tan−1

(x

2

)]b

−b

= (6 × 10−6)
[
b − 2 tan−1

(
b

2

)]
ay N · m

9.16. Assume that an electron is describing a circular orbit of radius a about a positively-charged nucleus.
a) By selecting an appropriate current and area, show that the equivalent orbital dipole moment

is ea2ω/2, where ω is the electron’s angular velocity: The current magnitude will be I = e
T ,

where e is the electron charge and T is the orbital period. The latter is T = 2π/ω, and so
I = eω/(2π). Now the dipole moment magnitude will be m = IA, where A is the loop area.
Thus

m =
eω

2π
πa2 =

1
2
ea2ω //

b) Show that the torque produced by a magnetic field parallel to the plane of the orbit is ea2ωB/2:
With B assumed constant over the loop area, we would have T = m×B. With B parallel to
the loop plane, m and B are orthogonal, and so T = mB. So, using part a, T = ea2ωB/2.
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9.16. (continued)
c) by equating the Coulomb and centrifugal forces, show that ω is (4πε0mea

3/e2)−1/2, where me

is the electron mass: The force balance is written as

e2

4πε0a2
= meω2a ⇒ ω =

(
4πε0mea

3

e2

)−1/2

//

d) Find values for the angular velocity, torque, and the orbital magnetic moment for a hydrogen
atom, where a is about 6 × 10−11 m; let B = 0.5 T: First

ω =
[

(1.60 × 10−19)2

4π(8.85 × 10−12)(9.1 × 10−31)(6 × 10−11)3

]1/2

= 3.42 × 1016 rad/s

T =
1
2
(3.42 × 1016)(1.60 × 10−19)(0.5)(6 × 10−11)2 = 4.93 × 10−24 N · m

Finally,

m =
T

B
= 9.86 × 10−24 A · m2

9.17. The hydrogen atom described in Problem 16 is now subjected to a magnetic field having the same
direction as that of the atom. Show that the forces caused by B result in a decrease of the angular
velocity by eB/(2me) and a decrease in the orbital moment by e2a2B/(4me). What are these
decreases for the hydrogen atom in parts per million for an external magnetic flux density of 0.5
T? We first write down all forces on the electron, in which we equate its coulomb force toward the
nucleus to the sum of the centrifugal force and the force associated with the applied B field. With
the field applied in the same direction as that of the atom, this would yield a Lorentz force that is
radially outward – in the same direction as the centrifugal force.

Fe = Fcent + FB ⇒ e2

4πε0a2
= meω

2a + eωaB︸ ︷︷ ︸
QvB

With B = 0, we solve for ω to find:

ω = ω0 =

√
e2

4πε0mea3

Then with B present, we find

ω2 =
e2

4πε0mea3
− eωB

me
= ω2

0 − eωB

me

Therefore

ω = ω0

√
1 − eωB

ω2
0me

.= ω0

(
1 − eωB

2ω2
0me

)

But ω
.= ω0, and so

ω
.= ω0

(
1 − eB

2ω0me

)
= ω0 −

eB

2me
//
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9.17. (continued) As for the magnetic moment, we have

m = IS =
eω

2π
πa2 =

1
2
ωea2 .=

1
2
ea2

(
ω0 −

eB

2me

)
=

1
2
ω0ea

2 − 1
4

e2a2B

me
//

Finally, for a = 6 × 10−11 m, B = 0.5 T, we have

∆ω

ω
=

eB

2me

1
ω

.=
eB

2me

1
ω0

=
1.60 × 10−19 × 0.5

2 × 9.1 × 10−31 × 3.4 × 1016
= 1.3 × 10−6

where ω0 = 3.4 × 1016 sec−1 is found from Problem 16. Finally,

∆m

m
=

e2a2B

4me
× 2

ωea2

.=
eB

2meω0
= 1.3 × 10−6

9.18. Calculate the vector torque on the square loop shown in Fig. 9.16 about an origin at A in the field
B, given:
a) A(0, 0, 0) and B = 100ay mT: The field is uniform and so does not produce any translation

of the loop. Therefore, we may use T = IS × B about any origin, where I = 0.6 A and
S = 16az m2. We find T = 0.6(16)az × 0.100ay = −0.96ax N−m.

b) A(0, 0, 0) and B = 200ax + 100ay mT: Using the same reasoning as in part a, we find

T = 0.6(16)az × (0.200ax + 0.100ay) = −0.96ax + 1.92ay N−m

c) A(1, 2, 3) and B = 200ax + 100ay − 300az mT: We observe two things here: 1) The field is
again uniform and so again the torque is independent of the origin chosen, and 2) The field
differs from that of part b only by the addition of a z component. With S in the z direction,
this new component of B will produce no torque, so the answer is the same as part b, or
T = −0.96ax + 1.92ay N−m.

d) A(1, 2, 3) and B = 200ax + 100ay − 300az mT for x ≥ 2 and B = 0 elsewhere: Now, force is
acting only on the y-directed segment at x = +2, so we need to be careful, since translation
will occur. So we must use the given origin. The differential torque acting on the differential
wire segment at location (2,y) is dT = R(y) × dF, where

dF = IdL × B = 0.6 dy ay × [0.2ax + 0.1ay − 0.3az] = [−0.18ax − 0.12az] dy

and R(y) = (2, y, 0) − (1, 2, 3) = ax + (y − 2)ay − 3az. We thus find

dT = R(y) × dF = [ax + (y − 2)ay − 3az] × [−0.18ax − 0.12az] dy

= [−0.12(y − 2)ax + 0.66ay + 0.18(y − 2)az] dy

The net torque is now

T =
∫ 2

−2

[−0.12(y − 2)ax + 0.66ay + 0.18(y − 2)az] dy = 0.96ax + 2.64ay − 1.44az N−m

11



9.19. Given a material for which χm = 3.1 and within which B = 0.4yaz T, find:
a) H: We use B = µ0(1 + χm)H, or

H =
0.4yay

(1 + 3.1)µ0
= 77.6yaz kA/m

b) µ = (1 + 3.1)µ0 = 5.15 × 10−6 H/m.

c) µr = (1 + 3.1) = 4.1.

d) M = χmH = (3.1)(77.6yay) = 241yaz kA/m

e) J = ∇× H = (dHz)/(dy)ax = 77.6ax kA/m2.

f) Jb = ∇× M = (dMz)/(dy)ax = 241ax kA/m2.

g) JT = ∇× B/µ0 = 318ax kA/m2.

9.20. Find H in a material where:
a) µr = 4.2, there are 2.7×1029 atoms/m3, and each atom has a dipole moment of 2.6×10−30 ay

A · m2. Since all dipoles are identical, we may write M = Nm = (2.7×1029)(2.6×10−30ay) =
0.70ay A/m. Then

H =
M

µr − 1
=

0.70ay

4.2 − 1
= 0.22ay A/m

b) M = 270az A/m and µ = 2 µH/m: Have µr = µ/µ0 = (2 × 10−6)/(4π × 10−7) = 1.59. Then
H = 270az/(1.59 − 1) = 456az A/m.

c) χm = 0.7 and B = 2az T: Use

H =
B

µ0(1 + χm)
=

2az

(4π × 10−7)(1.7)
= 936az kA/m

d) Find M in a material where bound surface current densities of 12az A/m and −9az A/m
exist at ρ = 0.3 m and ρ = 0.4 m, respectively: We use

∮
M · dL = Ib, where, since currents

are in the z direction and are symmetric about the z axis, we chose the path integrals to be
circular loops centered on and normal to z. From the symmetry, M will be φ-directed and
will vary only with radius. Note first that for ρ < 0.3 m, no bound current will be enclosed
by a path integral, so we conclude that M = 0 for ρ < 0.3m. At radii between the currents
the path integral will enclose only the inner current so,∮

M · dL = 2πρMφ = 2π(0.3)12 ⇒ M =
3.6
ρ

aφ A/m (0.3 < ρ < 0.4m)

Finally, for ρ > 0.4 m, the total enclosed bound current is Ib,tot = 2π(0.3)(12)−2π(0.4)(9) = 0,
so therefore M = 0 (ρ > 0.4m).

9.21. Find the magnitude of the magnetization in a material for which:
a) the magnetic flux density is 0.02 Wb/m2 and the magnetic susceptibility is 0.003 (note that

this latter quantity is missing in the original problem statement): From B = µ0(H + M) and
from M = χmH, we write

M =
B

µ0

(
1

χm
+ 1

)−1

=
B

µ0(334)
=

0.02
(4π × 10−7)(334)

= 47.7 A/m

12



9.21b) the magnetic field intensity is 1200 A/m and the relative permeability is 1.005: From B = µ0(H+
M) = µ0µrH, we write

M = (µr − 1)H = (.005)(1200) = 6.0 A/m

c) there are 7.2× 1028 atoms per cubic meter, each having a dipole moment of 4× 10−30 A · m2

in the same direction, and the magnetic susceptibility is 0.0003: With all dipoles identical the
dipole moment density becomes

M = n m = (7.2 × 1028)(4 × 10−30) = 0.288 A/m

9.22. Under some conditions, it is possible to approximate the effects of ferromagnetic materials by
assuming linearity in the relationship of B and H. Let µr = 1000 for a certain material of which
a cylindrical wire of radius 1mm is made. If I = 1 A and the current distribution is uniform, find
a) B: We apply Ampere’s circuital law to a circular path of radius ρ around the wire axis, and

where ρ < a:

2πρH =
πρ2

πa2
I ⇒ H =

Iρ

2πa2
⇒ B =

1000µ0Iρ

2πa2
aφ =

(103)4π × 10−7(1)ρ
2π × 10−6

aφ

= 200ρaφ Wb/m2

b) H: Using part a, H = B/µrµ0 = ρ/(2π) × 106 aφ A/m.

c) M:

M = B/µ0 − H =
(2000 − 2)ρ

4π
× 106 aφ = 1.59 × 108ρaφ A/m

d) J:

J = ∇× H =
1
ρ

d(ρHφ)
dρ

az = 3.18 × 105 az A/m

e) Jb within the wire:

Jb = ∇× M =
1
ρ

d(ρMφ)
dρ

az = 3.18 × 108 az A/m2

9.23. Calculate values for Hφ, Bφ, and Mφ at ρ = c for a coaxial cable with a = 2.5 mm and b = 6 mm
if it carries current I = 12 A in the center conductor, and µ = 3 µH/m for 2.5 < ρ < 3.5 mm,
µ = 5 µH/m for 3.5 < ρ < 4.5 mm, and µ = 10 µH/m for 4.5 < ρ < 6 mm. Compute for:
a) c = 3 mm: Have

Hφ =
I

2πρ
=

12
2π(3 × 10−3)

= 637 A/m

Then Bφ = µHφ = (3 × 10−6)(637) = 1.91 × 10−3 Wb/m2.

Finally, Mφ = (1/µ0)Bφ − Hφ = 884 A/m.
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9.23b. c = 4 mm: Have
Hφ =

I

2πρ
=

12
2π(4 × 10−3)

= 478 A/m

Then Bφ = µHφ = (5 × 10−6)(478) = 2.39 × 10−3 Wb/m2.

Finally, Mφ = (1/µ0)Bφ − Hφ = 1.42 × 103 A/m.

c) c = 5 mm: Have

Hφ =
I

2πρ
=

12
2π(5 × 10−3)

= 382 A/m

Then Bφ = µHφ = (10 × 10−6)(382) = 3.82 × 10−3 Wb/m2.
Finally, Mφ = (1/µ0)Bφ − Hφ = 2.66 × 103 A/m.

9.24. A coaxial transmission line has a = 5 mm and b = 20 mm. Let its center lie on the z axis and let a
dc current I flow in the az direction in the center conductor. The volume between the conductors
contains a magnetic material for which µr = 2.5, as well as air. Find H, B, and M everywhere
between conductors if Hφ = 600/π A/m at ρ = 10 mm, φ = π/2, and the magnetic material is
located where:
a) a < ρ < 3a; First, we know that Hφ = I/2πρ, from which we construct:

I

2π(10−2)
=

600
π

⇒ I = 12 A

Since the interface between the two media lies in the aφ direction, we use the boundary
condition of continuity of tangential H and write

H(5 < ρ < 20) =
12
2πρ

aφ =
6
πρ

aφ A/m

In the magnetic material, we find

B(5 < ρ < 15) = µH =
(2.5)(4π × 10−7)(12)

2πρ
aφ = (6/ρ)aφ µT

Then, in the free space region, B(15 < ρ < 20) = µ0H = (2.4/ρ)aφ µT.

b) 0 < φ < π; Again, we are given H = 600/π aφ A/m at ρ = 10 and at φ = π/2. Now, since
the interface between media lies in the aρ direction, and noting that magnetic field will be
normal to this (aφ directed), we use the boundary condition of continuity of B normal to an
interface, and write B(0 < φ < π) = B1 = B(π < φ < 2π) = B2, or 2.5µ0H1 = µ0H2. Now,
using Ampere’s circuital law, we write∮

H · dL = πρH1 + πρH2 = 3.5πρH1 = I

Using the given value for H1 at ρ = 10 mm, I = 3.5(600/π)(π × 10−2) = 21 A. Therefore,
H1 = 21/(3.5πρ) = 6/(πρ), or H(0 < φ < π) = 6/(πρ)aφ A/m. Then H2 = 2.5H1, or
H(π < φ < 2π) = 15/(πρ)aφ A/m. Now B(0 < φ < 2π) = 2.5µ0(6/(πρ))aφ = 6/ρaφ µT.
Now, in general, M = (µr −1)H, and so M(0 < φ < π) = (2.5−1)6/(πρ)aφ = 9/(πρ)aφ A/m
and M(π < φ < 2π) = 0.
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9.25. A conducting filament at z = 0 carries 12 A in the az direction. Let µr = 1 for ρ < 1 cm, µr = 6
for 1 < ρ < 2 cm, and µr = 1 for ρ > 2 cm. Find
a) H everywhere: This result will depend on the current and not the materials, and is:

H =
I

2πρ
aφ =

1.91
ρ

A/m (0 < ρ < ∞)

b) B everywhere: We use B = µrµ0H to find:

B(ρ < 1 cm) = (1)µ0(1.91/ρ) = (2.4 × 10−6/ρ)aφ T
B(1 < ρ < 2 cm) = (6)µ0(1.91/ρ) = (1.4 × 10−5/ρ)aφ T
B(ρ > 2 cm) = (1)µ0(1.91/ρ) = (2.4 × 10−6/ρ)aφ T where ρ is in meters.

9.26. Two current sheets, K0ay A/m at z = 0, and −K0ay A/m at z = d are separated by two slabs of
magnetic material, µr1 for 0 < z < a, and µr2 for a < z < d. If µr2 = 3µr1, find the ratio, a/d,
such that ten percent of the total magnetic flux is in the region 0 < z < a.

The magnetic flux densities in the two regions are B1 = µr1µ0K0 ax Wb/m2 and B2 =
µr2µ0K0 ax Wb/m2. The total flux per unit length of line is then

Φm = a(1)B1 + (d − a)(1)B2 = aµr1µ0K0︸ ︷︷ ︸
Φ1

+ (d − a)µr2µ0K0︸ ︷︷ ︸
Φ2

= µ0K0µr1[a + 3(d − a)]

The ratio of the two fluxes is then found, and set equal to 0.1:

Φ1

Φ2
=

a

3(d − a)
= 0.1 ⇒ a

d
= 0.23

9.27. Let µr1 = 2 in region 1, defined by 2x+3y−4z > 1, while µr2 = 5 in region 2 where 2x+3y−4z < 1.
In region 1, H1 = 50ax − 30ay + 20az A/m. Find:
a) HN1 (normal component of H1 at the boundary): We first need a unit vector normal to the

surface, found through

aN =
∇ (2x + 3y − 4z)
|∇ (2x + 3y − 4z)| =

2ax + 3ay − 4az√
29

= .37ax + .56ay − .74az

Since this vector is found through the gradient, it will point in the direction of increasing
values of 2x + 3y − 4z, and so will be directed into region 1. Thus we write aN = aN21. The
normal component of H1 will now be:

HN1 = (H1 · aN21)aN21

= [(50ax − 30ay + 20az) · (.37ax + .56ay − .74az)] (.37ax + .56ay − .74az)
= −4.83ax − 7.24ay + 9.66az A/m

b) HT1 (tangential component of H1 at the boundary):

HT1 = H1 − HN1

= (50ax − 30ay + 20az) − (−4.83ax − 7.24ay + 9.66az)
= 54.83ax − 22.76ay + 10.34az A/m
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9.27c. HT2 (tangential component of H2 at the boundary): Since tangential components of H are con-
tinuous across a boundary between two media of different permeabilities, we have

HT2 = HT1 = 54.83ax − 22.76ay + 10.34az A/m

d) HN2 (normal component of H2 at the boundary): Since normal components of B are contin-
uous across a boundary between media of different permeabilities, we write µ1HN1 = µ2HN2

or

HN2 =
µr1

µR2
HN1 =

2
5
(−4.83ax − 7.24ay + 9.66az) = −1.93ax − 2.90ay + 3.86az A/m

e) θ1, the angle between H1 and aN21: This will be

cos θ1 =
H1

|H1|
· aN21 =

[
50ax − 30ay + 20az

(502 + 302 + 202)1/2

]
· (.37ax + .56ay − .74az) = −0.21

Therefore θ1 = cos−1(−.21) = 102◦.

f) θ2, the angle between H2 and aN21: First,

H2 = HT2 + HN2 = (54.83ax − 22.76ay + 10.34az) + (−1.93ax − 2.90ay + 3.86az)
= 52.90ax − 25.66ay + 14.20az A/m

Now

cos θ2 =
H2

|H2|
· aN21 =

[
52.90ax − 25.66ay + 14.20az

60.49

]
· (.37ax + .56ay − .74az) = −0.09

Therefore θ2 = cos−1(−.09) = 95◦.

9.28. For values of B below the knee on the magnetization curve for silicon steel, approximate the curve
by a straight line with µ = 5 mH/m. The core shown in Fig. 9.17 has areas of 1.6 cm2 and lengths
of 10 cm in each outer leg, and an area of 2.5 cm2 and a length of 3 cm in the central leg. A coil
of 1200 turns carrying 12 mA is placed around the central leg. Find B in the:
a) center leg: We use mmf = ΦR, where, in the central leg,

Rc =
Lin

µAin
=

3 × 10−2

(5 × 10−3)(2.5 × 10−4)
= 2.4 × 104 H

In each outer leg, the reluctance is

Ro =
Lout

µAout
=

10 × 10−2

(5 × 10−3)(1.6 × 10−4)
= 1.25 × 105 H

The magnetic circuit is formed by the center leg in series with the parallel combination of the
two outer legs. The total reluctance seen at the coil location is RT = Rc+(1/2)Ro = 8.65×104

H. We now have
Φ =

mmf

RT
=

14.4
8.65 × 104

= 1.66 × 10−4 Wb
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9.28a. (continued) The flux density in the center leg is now

B =
Φ
A

=
1.66 × 10−4

2.5 × 10−4
= 0.666 T

b) center leg, if a 0.3-mm air gap is present in the center leg: The air gap reluctance adds to the
total reluctance already calculated, where

Rair =
0.3 × 10−3

(4π × 10−7)(2.5 × 10−4)
= 9.55 × 105 H

Now the total reluctance is Rnet = RT + Rair = 8.56 × 104 + 9.55 × 105 = 1.04 × 106. The
flux in the center leg is now

Φ =
14.4

1.04 × 106
= 1.38 × 10−5 Wb

and

B =
1.38 × 10−5

2.5 × 10−4
= 55.3 mT

9.29. In Problem 9.28, the linear approximation suggested in the statement of the problem leads to a flux
density of 0.666 T in the center leg. Using this value of B and the magnetization curve for silicon
steel, what current is required in the 1200-turn coil? With B = 0.666 T, we read Hin

.= 120 A · t/m
in Fig. 9.11. The flux in the center leg is Φ = 0.666(2.5 × 10−4) = 1.66 × 10−4 Wb. This divides
equally in the two outer legs, so that the flux density in each outer leg is

Bout =
(

1
2

)
1.66 × 10−4

1.6 × 10−4
= 0.52 Wb/m2

Using Fig. 9.11 with this result, we find Hout
.= 90 A · t/m We now use∮

H · dL = NI

to find

I =
1
N

(HinLin + HoutLout) =
(120)(3 × 10−2) + (90)(10 × 10−2)

1200
= 10.5 mA

9.30. A toroidal core has a circular cross section of 4 cm2 area. The mean radius of the toroid is 6 cm.
The core is composed of two semi-circular segments, one of silicon steel and the other of a linear
material with µr = 200. There is a 4mm air gap at each of the two joints, and the core is wrapped
by a 4000-turn coil carrying a dc current I1.

a) Find I1 if the flux density in the core is 1.2 T: I will use the reluctance method here. Reluc-
tances of the steel and linear materials are respectively,

Rs =
π(6 × 10−2)

(3.0 × 10−3)(4 × 10−4)
= 1.57 × 105 H−1
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9.30a. (continued)

Rl =
π(6 × 10−2)

(200)(4π × 10−7)(4 × 10−4)
= 1.88 × 106 H−1

where µs is found from Fig. 9.11, using B = 1.2, from which H = 400, and so B/H = 3.0 mH/m.
The reluctance of each gap is now

Rg =
0.4 × 10−3

(4π × 10−7)(4 × 10−4)
= 7.96 × 105 H−1

We now construct

NI1 = ΦR = 1.2(4 × 10−4) [Rs + Rl + 2Rg] = 1.74 × 103

Thus I1 = (1.74 × 103)/4000 = 435 mA.

b) Find the flux density in the core if I1 = 0.3 A: We are not sure what to use for the permittivity
of steel in this case, so we use the iterative approach. Since the current is down from the value
obtained in part a, we can try B = 1.0 T and see what happens. From Fig. 9.11, we find
H = 200 A/m. Then, in the linear material,

Hl =
1.0

200(4π × 10−7)
= 3.98 × 103 A/m

and in each gap,

Hg =
1.0

4π × 10−7
= 7.96 × 105 A/m

Now Ampere’s circuital law around the toroid becomes

NI1 = π(.06)(200 + 3.98 × 103) + 2(7.96 × 105)(4 × 10−4) = 1.42 × 103 A−t

Then I1 = (1.42 × 103)/4000 = .356 A. This is still larger than the given value of .3A, so we
can extrapolate down to find a better value for B:

B = 1.0 − (1.2 − 1.0)
[
.356 − .300
.435 − .356

]
= 0.86 T

Using this value in the procedure above to evaluate Ampere’s circuital law leads to a value of
I1 of 0.306 A. The result of 0.86 T for B is probably good enough for this problem, considering
the limited resolution of Fig. 9.11.
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9.31. A toroid is constructed of a magnetic material having a cross-sectional area of 2.5 cm2 and an
effective length of 8 cm. There is also a short air gap 0.25 mm length and an effective area of 2.8
cm2. An mmf of 200 A · t is applied to the magnetic circuit. Calculate the total flux in the toroid
if:
a) the magnetic material is assumed to have infinite permeability: In this case the core reluctance,

Rc = l/(µA), is zero, leaving only the gap reluctance. This is

Rg =
d

µ0Ag
=

0.25 × 10−3

(4π × 10−7)(2.5 × 10−4)
= 7.1 × 105 H

Now
Φ =

mmf

Rg
=

200
7.1 × 105

= 2.8 × 10−4 Wb

b) the magnetic material is assumed to be linear with µr = 1000: Now the core reluctance is no
longer zero, but

Rc =
8 × 10−2

(1000)(4π × 10−7)(2.5 × 10−4)
= 2.6 × 105 H

The flux is then
Φ =

mmf

Rc + Rg
=

200
9.7 × 105

= 2.1 × 10−4 Wb

c) the magnetic material is silicon steel: In this case we use the magnetization curve, Fig. 9.11,
and employ an iterative process to arrive at the final answer. We can begin with the value of
Φ found in part a, assuming infinite permeability: Φ(1) = 2.8 × 10−4 Wb. The flux density
in the core is then B

(1)
c = (2.8 × 10−4)/(2.5 × 10−4) = 1.1 Wb/m2. From Fig. 9.11, this

corresponds to magnetic field strength H
(1)
c

.= 270 A/m. We check this by applying Ampere’s
circuital law to the magnetic circuit:∮

H · dL = H(1)
c Lc + H(1)

g d

where H
(1)
c Lc = (270)(8×10−2) = 22, and where H

(1)
g d = Φ(1)Rg = (2.8×10−4)(7.1×105) =

199. But we require that ∮
H · dL = 200 A · t

whereas the actual result in this first calculation is 199 + 22 = 221, which is too high. So, for
a second trial, we reduce B to B

(2)
c = 1 Wb/m2. This yields H

(2)
c = 200 A/m from Fig. 9.11,

and thus Φ(2) = 2.5 × 10−4 Wb. Now∮
H · dL = H(2)

c Lc + Φ(2)Rg = 200(8 × 10−2) + (2.5 × 10−4)(7.1 × 105) = 194

This is less than 200, meaning that the actual flux is slightly higher than 2.5 × 10−4 Wb.
I will leave the answer at that, considering the lack of fine resolution in Fig. 9.11.
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9.32. Determine the total energy stored in a spherical region 1cm in radius, centered at the origin in free
space, in the uniform field:
a) H1 = −600ay A/m: First we find the energy density:

wm1 =
1
2
B1 · H1 =

1
2
µ0H

2
1 =

1
2
(4π × 10−7)(600)2 = 0.226 J/m3

The energy within the sphere is then

Wm1 = wm1

(
4
3
πa3

)
= 0.226

(
4
3
π × 10−6

)
= 0.947 µJ

b) H2 = 600ax + 1200ay A/m: In this case the energy density is

wm2 =
1
2
µ0

[
(600)2 + (1200)2

]
=

5
2
µ0(600)2

or five times the energy density that was found in part a. Therefore, the stored energy in this
field is five times the amount in part a, or Wm2 = 4.74 µJ.

c) H3 = −600ax + 1200ay. This field differs from H2 only by the negative x component, which
is a non-issue since the component is squared when finding the energy density. Therefore, the
stored energy will be the same as that in part b, or Wm3 = 4.74 µJ.

d) H4 = H2 + H3, or 2400ay A/m: The energy density is now wm4 = (1/2)µ0(2400)2 =
(1/2)µ0(16)(600)2 J/m3, which is sixteen times the energy density in part a. The stored
energy is therefore sixteen times that result, or Wm4 = 16(0.947) = 15.2 µJ.

e) 1000ax A/m+0.001ax T: The energy density is wm5 = (1/2)µ0[1000+ .001/µ0]2 = 2.03 J/m3.
Then Wm5 = 2.03[(4/3)π × 10−6] = 8.49 µJ.

9.33. A toroidal core has a square cross section, 2.5 cm < ρ < 3.5 cm, −0.5 cm < z < 0.5 cm. The
upper half of the toroid, 0 < z < 0.5 cm, is constructed of a linear material for which µr = 10,
while the lower half, −0.5 cm < z < 0, has µr = 20. An mmf of 150 A · t establishes a flux in the
aφ direction. For z > 0, find:
a) Hφ(ρ): Ampere’s circuital law gives:

2πρHφ = NI = 150 ⇒ Hφ =
150
2πρ

= 23.9/ρ A/m

b) Bφ(ρ): We use Bφ = µrµ0Hφ = (10)(4π × 10−7)(23.9/ρ) = 3.0 × 10−4/ρ Wb/m2.

c) Φz>0: This will be

Φz>0 =
∫ ∫

B · dS =
∫ .005

0

∫ .035

.025

3.0 × 10−4

ρ
dρdz = (.005)(3.0 × 10−4) ln

(
.035
.025

)
= 5.0 × 10−7 Wb

d) Repeat for z < 0: First, the magnetic field strength will be the same as in part a, since the
calculation is material-independent. Thus Hφ = 23.9/ρ A/m. Next, Bφ is modified only by the
new permeability, which is twice the value used in part a: Thus Bφ = 6.0 × 10−4/ρ Wb/m2.
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9.33d. (continued) Finally, since Bφ is twice that of part a, the flux will be increased by the same factor,
since the area of integration for z < 0 is the same. Thus Φz<0 = 1.0 × 10−6 Wb.

e) Find Φtotal: This will be the sum of the values found for z < 0 and z > 0, or Φtotal =
1.5 × 10−6 Wb.

9.34. Determine the energy stored per unit length in the internal magnetic field of an infinitely-long
straight wire of radius a, carrying uniform current I.

We begin with H = Iρ/(2πa2)aφ, and find the integral of the energy density over the unit
length in z:

We =
∫

vol

1
2
µ0H

2 dv =
∫ 1

0

∫ 2π

0

∫ a

0

µ0ρ
2I2

8π2a4
ρ dρ dφ dz =

µ0I
2

16π
J/m

9.35. The cones θ = 21◦ and θ = 159◦ are conducting surfaces and carry total currents of 40 A, as shown
in Fig. 9.18. The currents return on a spherical conducting surface of 0.25 m radius.
a) Find H in the region 0 < r < 0.25, 21◦ < θ < 159◦, 0 < φ < 2π: We can apply Ampere’s

circuital law and take advantage of symmetry. We expect to see H in the aφ direction and it
would be constant at a given distance from the z axis. We thus perform the line integral of
H over a circle, centered on the z axis, and parallel to the xy plane:

∮
H · dL =

∫ 2π

0

Hφaφ · r sin θaφ dφ = Iencl. = 40 A

Assuming that Hφ is constant over the integration path, we take it outside the integral and
solve:

Hφ =
40

2πr sin θ
⇒ H =

20
πr sin θ

aφ A/m

b) How much energy is stored in this region? This will be

WH =
∫

v

1
2
µ0H

2
φ =

∫ 2π

0

∫ 159◦

21◦

∫ .25

0

200µ0

π2r2 sin2 θ
r2 sin θ dr dθ dφ =

100µ0

π

∫ 159◦

21◦

dθ

sin θ

=
100µ0

π
ln

[
tan(159/2)
tan(21/2)

]
= 1.35 × 10−4 J

9.36. The dimensions of the outer conductor of a coaxial cable are b and c, where c > b. Assuming µ = µ0,
find the magnetic energy stored per unit length in the region b < ρ < c for a uniformly-distributed
total current I flowing in opposite directions in the inner and outer conductors.

We first need to find the magnetic field inside the outer conductor volume. Ampere’s circuital
law is applied to a circular path of radius ρ, where b < ρ < c. This encloses the entire center
conductor current (assumed in the positive z direction), plus that part of the −z-directed
outer conductor current that lies inside ρ. We obtain:

2πρH = I − I

[
ρ2 − b2

c2 − b2

]
= I

[
c2 − ρ2

c2 − b2

]
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9.36. (continued) So that

H =
I

2πρ

[
c2 − ρ2

c2 − b2

]
aφ A/m (b < ρ < c)

The energy within the outer conductor is now

Wm =
∫

vol

1
2
µ0H

2 dv =
∫ 1

0

∫ 2π

0

∫ c

b

µ0I
2

8π2(c2 − b2)2

[
c2

ρ2
− 2c2 + ρ2

]
ρ dρ dφ, dz

=
µ0I

2

4π(1 − b2/c2)2

[
ln(c/b) − (1 − b2/c2) +

1
4
(1 − b4/c4)

]
J

9.37. Find the inductance of the cone-sphere configuration described in Problem 9.35 and Fig. 9.18.
The inductance is that offered at the origin between the vertices of the cone: From Problem 9.35,
the magnetic flux density is Bφ = 20µ0/(πr sin θ). We integrate this over the crossectional area
defined by 0 < r < 0.25 and 21◦ < θ < 159◦, to find the total flux:

Φ =
∫ 159◦

21◦

∫ 0.25

0

20µ0

πr sin θ
r dr dθ =

5µ0

π
ln

[
tan(159/2)
tan(21/2)

]
=

5µ0

π
(3.37) = 6.74 × 10−6 Wb

Now L = Φ/I = 6.74 × 10−6/40 = 0.17 µH.
Second method: Use the energy computation of Problem 9.35, and write

L =
2WH

I2
=

2(1.35 × 10−4)
(40)2

= 0.17 µH

9.38. A toroidal core has a rectangular cross section defined by the surfaces ρ = 2 cm, ρ = 3 cm, z = 4
cm, and z = 4.5 cm. The core material has a relative permeability of 80. If the core is wound with
a coil containing 8000 turns of wire, find its inductance: First we apply Ampere’s circuital law to
a circular loop of radius ρ in the interior of the toroid, and in the aφ direction.∮

H · dL = 2πρHφ = NI ⇒ Hφ =
NI

2πρ

The flux in the toroid is then the integral over the cross section of B:

Φ =
∫ ∫

B · dL =
∫ .045

.04

∫ .03

.02

µrµ0NI

2πρ
dρ dz = (.005)

µrµ0NI

2π
ln

(
.03
.02

)

The flux linkage is then given by NΦ, and the inductance is

L =
NΦ
I

=
(.005)(80)(4π × 10−7)(8000)2

2π
ln(1.5) = 2.08 H
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9.39. Conducting planes in air at z = 0 and z = d carry surface currents of ±K0ax A/m.
a) Find the energy stored in the magnetic field per unit length (0 < x < 1) in a width w (0 <

y < w): First, assuming current flows in the +ax direction in the sheet at z = d, and in −ax

in the sheet at z = 0, we find that both currents together yield H = K0ay for 0 < z < d and
zero elsewhere. The stored energy within the specified volume will be:

WH =
∫

v

1
2
µ0H

2dv =
∫ d

0

∫ w

0

∫ 1

0

1
2
µ0K

2
0 dx dy dz =

1
2
wdµ0K

2
0 J/m

b) Calculate the inductance per unit length of this transmission line from WH = (1/2)LI2, where
I is the total current in a width w in either conductor: We have I = wK0, and so

L =
2
I2

wd

2
µ0K

2
0 =

2
w2K2

0

dw

2
µ0K

2
0 =

µ0d

w
H/m

c) Calculate the total flux passing through the rectangle 0 < x < 1, 0 < z < d, in the plane
y = 0, and from this result again find the inductance per unit length:

Φ =
∫ d

0

∫ 1

0

µ0Hay · ay dx dz =
∫ d

0

∫ 1

0

µ0K0dx dy = µ0dK0

Then
L =

Φ
I

=
µ0dK0

wK0
=

µ0d

w
H/m

9.40. A coaxial cable has conductor dimensions of 1 and 5 mm. The region between conductors is air
for 0 < φ < π/2 and π < φ < 3π/2, and a non-conducting material having µr = 8 for π/2 < φ < π
and 3π/2 < φ < 2π. Find the inductance per meter length: The interfaces between media all occur
along radial lines, normal to the direction of B and H in the coax line. B is therefore continuous
(and constant at constant radius) around a circular loop centered on the z axis. Ampere’s circuital
law can thus be written in this form:∮

H · dL =
B

µ0

(π

2
ρ
)

+
B

µrµ0

(π

2
ρ
)

+
B

µ0

(π

2
ρ
)

+
B

µrµ0

(π

2
ρ
)

=
πρB

µrµ0
(µr + 1) = I

and so
B =

µrµ0I

πρ(1 + µr)
aφ

The flux in the line per meter length in z is now

Φ =
∫ 1

0

∫ .005

.001

µrµ0I

πρ(1 + µr)
dρ dz =

µrµ0I

π(1 + µr)
ln(5)

And the inductance per unit length is:

L =
Φ
I

=
µrµ0

π(1 + µr)
ln(5) =

8(4π × 10−7)
π(9)

ln(5) = 572 nH/m
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9.41. A rectangular coil is composed of 150 turns of a filamentary conductor. Find the mutual inductance
in free space between this coil and an infinite straight filament on the z axis if the four corners of
the coil are located at
a) (0,1,0), (0,3,0), (0,3,1), and (0,1,1): In this case the coil lies in the yz plane. If we assume that

the filament current is in the +az direction, then the B field from the filament penetrates the
coil in the −ax direction (normal to the loop plane). The flux through the loop will thus be

Φ =
∫ 1

0

∫ 3

1

−µ0I

2πy
ax · (−ax) dy dz =

µ0I

2π
ln 3

The mutual inductance is then

M =
NΦ
I

=
150µ0

2π
ln 3 = 33 µH

b) (1,1,0), (1,3,0), (1,3,1), and (1,1,1): Now the coil lies in the x = 1 plane, and the field from
the filament penetrates in a direction that is not normal to the plane of the coil. We write the
B field from the filament at the coil location as

B =
µ0Iaφ

2π
√

y2 + 1

The flux through the coil is now

Φ =
∫ 1

0

∫ 3

1

µ0Iaφ

2π
√

y2 + 1
· (−ax) dy dz =

∫ 1

0

∫ 3

1

µ0I sin φ

2π
√

y2 + 1
dy dz

=
∫ 1

0

∫ 3

1

µ0Iy

2π(y2 + 1)
dy dz =

µ0I

2π
ln(y2 + 1)

∣∣∣3
1

= (1.6 × 10−7)I

The mutual inductance is then

M =
NΦ
I

= (150)(1.6 × 10−7) = 24 µH

9.42. Find the mutual inductance between two filaments forming circular rings of radii a and ∆a, where
∆a << a. The field should be determined by approximate methods. The rings are coplanar and
concentric.

We use the result of Problem 8.4, which asks for the magnetic field at the origin, arising from
a circular current loop of radius a. That solution is reproduced below: Using the Biot-Savart
law, we have IdL = Iadπ aφ, R = a, and aR = −aρ. The field at the center of the circle is
then

Hcirc =
∫ 2π

0

Iadφaφ × (−aρ)
4πa2

=
∫ 2π

0

Idφaz

4πa
=

I

2a
az A/m

We now approximate that field as constant over a circular area of radius ∆a, and write the
flux linkage (for the single turn) as

Φm
.= π(∆a)2Bouter =

µ0Iπ(∆a)2

2a
⇒ M =

Φm

I
=

µ0π(∆a)2

2a
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9.43. a) Use energy relationships to show that the internal inductance of a nonmagnetic cylindrical wire
of radius a carrying a uniformly-distributed current I is µ0/(8π) H/m. We first find the magnetic
field inside the conductor, then calculate the energy stored there. From Ampere’s circuital law:

2πρHφ =
πρ2

πa2
I ⇒ Hφ =

Iρ

2πa2
A/m

Now

WH =
∫

v

1
2
µ0H

2
φ dv =

∫ 1

0

∫ 2π

0

∫ a

0

µ0I
2ρ2

8π2a4
ρ dρ dφ dz =

µ0I
2

16π
J/m

Now, with WH = (1/2)LI2, we find Lint = µ0/(8π) as expected.

b) Find the internal inductance if the portion of the conductor for which ρ < c < a is removed: The
hollowed-out conductor still carries current I, so Ampere’s circuital law now reads:

2πρHφ =
π(ρ2 − c2)
π(a2 − c2)

⇒ Hφ =
I

2πρ

[
ρ2 − c2

a2 − c2

]
A/m

and the energy is now

WH =
∫ 1

0

∫ 2π

0

∫ a

c

µ0I
2(ρ2 − c2)2

8π2ρ2(a2 − c2)2
ρ dρ dφ dz =

µ0I
2

4π(a2 − c2)2

∫ a

c

[
ρ3 − 2c2ρ +

C4

ρ

]
dρ

=
µ0I

2

4π(a2 − c2)2

[
1
4
(a4 − c4) − c2(a2 − c2) + c4 ln

(a

c

)]
J/m

The internal inductance is then

Lint =
2WH

I2
=

µ0

8π

[
a4 − 4a2c2 + 3c4 + 4c4 ln(a/c)

(a2 − c2)2

]
H/m
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