
CHAPTER 10

10.1. In Fig. 10.4, let B = 0.2 cos 120πt T, and assume that the conductor joining the two ends

of the resistor is perfect. It may be assumed that the magnetic field produced by I(t) is

negligible. Find:

a) Vab(t): Since B is constant over the loop area, the flux is Φ = π(0.15)2B = 1.41 ×
10−2 cos 120πt Wb. Now, emf = Vba(t) = −dΦ/dt = (120π)(1.41 × 10−2) sin 120πt.

Then Vab(t) = −Vba(t) = −5.33 sin 120πt V.

b) I(t) = Vba(t)/R = 5.33 sin(120πt)/250 = 21.3 sin(120πt) mA

10.2. In Fig. 10.1, replace the voltmeter with a resistance, R.

a) Find the current I that flows as a result of the motion of the sliding bar: The current is

found through

I =
1
R

∮
E · dL = − 1

R

dΦm

dt

Taking the normal to the path integral as az, the path direction will be counter-clockwise

when viewed from above (in the −az direction). The minus sign in the equation indicates

that the current will therefore flow clockwise, since the magnetic flux is increasing with

time. The flux of B is Φm = Bdvt, and so

|I| =
1
R

dΦm

dt
=

Bdv

R
(clockwise)

b) The bar current results in a force exerted on the bar as it moves. Determine this force:

F =
∫

IdL × B =
∫ d

0

Idxax × Baz =
∫ d

0

Bdv

R
ax × Baz = −B2d2v

R
ay N

c) Determine the mechanical power required to maintain a constant velocity v and show

that this power is equal to the power absorbed by R. The mechanical power is

Pm = Fv =
(Bdv)2

R
W

The electrical power is

Pe = I2R =
(Bdv)2

R
= Pm



10.3. Given H = 300az cos(3 × 108t − y) A/m in free space, find the emf developed in the general

aφ direction about the closed path having corners at

a) (0,0,0), (1,0,0), (1,1,0), and (0,1,0): The magnetic flux will be:

Φ =
∫ 1

0

∫ 1

0

300µ0 cos(3 × 108t − y) dx dy = 300µ0 sin(3 × 108t − y)|10
= 300µ0

[
sin(3 × 108t − 1) − sin(3 × 108t)

]
Wb

Then

emf = −dΦ
dt

= −300(3 × 108)(4π × 10−7)
[
cos(3 × 108t − 1) − cos(3 × 108t)

]
= −1.13 × 105

[
cos(3 × 108t − 1) − cos(3 × 108t)

]
V

b) corners at (0,0,0), (2π,0,0), (2π,2π,0), (0,2π,0): In this case, the flux is

Φ = 2π × 300µ0 sin(3 × 108t − y)|2π
0 = 0

The emf is therefore 0.

10.4. Conductor surfaces are located at ρ = 1cm and ρ = 2cm in free space. The volume 1 cm <

ρ < 2 cm contains the fields Hφ = (2/ρ) cos(6× 108πt− 2πz) A/m and Eρ = (240π/ρ) cos(6×
108πt − 2πz) V/m.

a) Show that these two fields satisfy Eq. (6), Sec. 10.1: Have

∇× E =
∂Eρ

∂z
aφ =

2π(240π)
ρ

sin(6 × 108πt − 2πz)aφ =
480π2

ρ
sin(6 × 108πt − 2πz)aφ

Then

−∂B
∂t

=
2µ0(6 × 108)π

ρ
sin(6 × 108πt − 2πz)aφ

=
(8π × 10−7)(6 × 108)π

ρ
sin(6 × 108πt − 2πz) =

480π2

ρ
sin(6 × 108πt − 2πz)aφ

b) Evaluate both integrals in Eq. (4) for the planar surface defined by φ = 0, 1cm < ρ < 2cm,

0 < z < 0.1m, and its perimeter, and show that the same results are obtained: we take

the normal to the surface as positive aφ, so the the loop surrounding the surface (by the

right hand rule) is in the negative aρ direction at z = 0, and is in the positive aρ direction

at z = 0.1. Taking the left hand side first, we find∮
E · dL =

∫ .01

.02

240π

ρ
cos(6 × 108πt)aρ · aρ dρ

+
∫ .02

.01

240π

ρ
cos(6 × 108πt − 2π(0.1))aρ · aρ dρ

= 240π cos(6 × 108πt) ln
(

1
2

)
+ 240π cos(6 × 108πt − 0.2π) ln

(
2
1

)
= 240(ln 2)

[
cos(6 × 108πt − 0.2π) − cos(6 × 108πt)

]



10.4b (continued). Now for the right hand side. First,

∫
B · dS =

∫ 0.1

0

∫ .02

.01

8π × 10−7

ρ
cos(6 × 108πt − 2πz)aφ · aφ dρ dz

=
∫ 0.1

0

(8π × 10−7) ln 2 cos(6 × 108πt − 2πz) dz

= −4 × 10−7 ln 2
[
sin(6 × 108πt − 0.2π) − sin(6 × 108πt)

]
Then

− d

dt

∫
B · dS = 240π(ln 2)

[
cos(6 × 108πt − 0.2π) − cos(6 × 108πt)

]
(check)

10.5. The location of the sliding bar in Fig. 10.5 is given by x = 5t + 2t3, and the separation of the

two rails is 20 cm. Let B = 0.8x2az T. Find the voltmeter reading at:

a) t = 0.4 s: The flux through the loop will be

Φ =
∫ 0.2

0

∫ x

0

0.8(x′)2 dx′ dy =
0.16
3

x3 =
0.16
3

(5t + 2t3)3 Wb

Then

emf = −dΦ
dt

=
0.16
3

(3)(5t+2t3)2(5+6t2) = −(0.16)[5(.4)+2(.4)3]2[5+6(.4)2] = −4.32 V

b) x = 0.6 m: Have 0.6 = 5t + 2t3, from which we find t = 0.1193. Thus

emf = −(0.16)[5(.1193) + 2(.1193)3]2[5 + 6(.1193)2] = −.293 V

10.6. A perfectly conducting filament containing a small 500-Ω resistor is formed into a square, as

illustrated in Fig. 10.6. Find I(t) if

a) B = 0.3 cos(120πt − 30◦)az T: First the flux through the loop is evaluated, where the

unit normal to the loop is az. We find

Φ =
∫

loop

B · dS = (0.3)(0.5)2 cos(120πt − 30◦) Wb

Then the current will be

I(t) =
emf
R

= − 1
R

dΦ
dt

=
(120π)(0.3)(0.25)

500
sin(120πt − 30◦) = 57 sin(120πt − 30◦) mA



b) B = 0.4 cos[π(ct− y)]az µT where c = 3× 108 m/s: Since the field varies with y, the flux

is now

Φ =
∫

loop

B · dS = (0.5)(0.4)
∫ .5

0

cos(πy − πct) dy =
0.2
π

[sin(πct − π/2) − sin(πct)] µWb

The current is then

I(t) =
emf
R

= − 1
R

dΦ
dt

=
−0.2c

500
[cos(πct − π/2) − cos(πct)] µA

=
−0.2(3 × 108)

500
[sin(πct) − cos(πct)] µA = 120 [cos(πct) − sin(πct)] mA

10.7. The rails in Fig. 10.7 each have a resistance of 2.2 Ω/m. The bar moves to the right at a

constant speed of 9 m/s in a uniform magnetic field of 0.8 T. Find I(t), 0 < t < 1 s, if the bar

is at x = 2 m at t = 0 and

a) a 0.3 Ω resistor is present across the left end with the right end open-circuited: The flux

in the left-hand closed loop is

Φl = B × area = (0.8)(0.2)(2 + 9t)

Then, emf l = −dΦl/dt = −(0.16)(9) = −1.44 V. With the bar in motion, the loop

resistance is increasing with time, and is given by Rl(t) = 0.3+2[2.2(2+9t)]. The current

is now

Il(t) =
emf l

Rl(t)
=

−1.44
9.1 + 39.6t

A

Note that the sign of the current indicates that it is flowing in the direction opposite that

shown in the figure.

b) Repeat part a, but with a resistor of 0.3 Ω across each end: In this case, there will be

a contribution to the current from the right loop, which is now closed. The flux in the

right loop, whose area decreases with time, is

Φr = (0.8)(0.2)[(16 − 2) − 9t]

and emfr = −dΦr/dt = (0.16)(9) = 1.44 V. The resistance of the right loop is Rr(t) =

0.3 + 2[2.2(14 − 9t)], and so the contribution to the current from the right loop will be

Ir(t) =
−1.44

61.9 − 39.6t
A



10.7b (continued). The minus sign has been inserted because again the current must flow in the

opposite direction as that indicated in the figure, with the flux decreasing with time. The

total current is found by adding the part a result, or

IT (t) = −1.44
[

1
61.9 − 39.6t

+
1

9.1 + 39.6t

]
A

10.8. Fig. 10.1 is modified to show that the rail separation is larger when y is larger. Specifically, let

the separation d = 0.2 + 0.02y. Given a uniform velocity vy = 8 m/s and a uniform magnetic

flux density Bz = 1.1 T, find V12 as a function of time if the bar is located at y = 0 at t = 0:

The flux through the loop as a function of y can be written as

Φ =
∫

B · dS =
∫ y

0

∫ .2+.02y′

0

1.1 dx dy′ =
∫ y

0

1.1(.2 + .02y′) dy′ = 0.22y(1 + .05y)

Now, with y = vt = 8t, the above becomes Φ = 1.76t(1 + .40t). Finally,

V12 = −dΦ
dt

= −1.76(1 + .80t) V

10.9. A square filamentary loop of wire is 25 cm on a side and has a resistance of 125 Ω per meter

length. The loop lies in the z = 0 plane with its corners at (0, 0, 0), (0.25, 0, 0), (0.25, 0.25, 0),

and (0, 0.25, 0) at t = 0. The loop is moving with velocity vy = 50 m/s in the field Bz =

8 cos(1.5×108t−0.5x) µT. Develop a function of time which expresses the ohmic power being

delivered to the loop: First, since the field does not vary with y, the loop motion in the y

direction does not produce any time-varying flux, and so this motion is immaterial. We can

evaluate the flux at the original loop position to obtain:

Φ(t) =
∫ .25

0

∫ .25

0

8 × 10−6 cos(1.5 × 108t − 0.5x) dx dy

= −(4 × 10−6)
[
sin(1.5 × 108t − 0.13x) − sin(1.5 × 108t)

]
Wb

Now, emf = V (t) = −dΦ/dt = 6.0×102
[
cos(1.5 × 108t − 0.13x) − cos(1.5 × 108t)

]
, The total

loop resistance is R = 125(0.25 + 0.25 + 0.25 + 0.25) = 125 Ω. Then the ohmic power is

P (t) =
V 2(t)

R
= 2.9 × 103

[
cos(1.5 × 108t − 0.13x) − cos(1.5 × 108t)

]
Watts



10.10a. Show that the ratio of the amplitudes of the conduction current density and the displacement

current density is σ/ωε for the applied field E = Em cos ωt. Assume µ = µ0. First, D =

εE = εEm cos ωt. Then the displacement current density is ∂D/∂t = −ωεEm sin ωt. Second,

Jc = σE = σEm cos ωt. Using these results we find |Jc|/|Jd| = σ/ωε.

b. What is the amplitude ratio if the applied field is E = Eme−t/τ , where τ is real? As before,

find D = εE = εEme−t/τ , and so Jd = ∂D/∂t = −(ε/τ)Eme−t/τ . Also, Jc = σEme−t/τ .

Finally, |Jc|/|Jd| = στ/ε.

10.11. Let the internal dimension of a coaxial capacitor be a = 1.2 cm, b = 4 cm, and l = 40 cm.

The homogeneous material inside the capacitor has the parameters ε = 10−11 F/m, µ = 10−5

H/m, and σ = 10−5 S/m. If the electric field intensity is E = (106/ρ) cos(105t)aρ V/m, find:

a) J: Use

J = σE =
(

10
ρ

)
cos(105t)aρ A/m2

b) the total conduction current, Ic, through the capacitor: Have

Ic =
∫ ∫

J · dS = 2πρlJ = 20πl cos(105t) = 8π cos(105t) A

c) the total displacement current, Id, through the capacitor: First find

Jd =
∂D
∂t

=
∂

∂t
(εE) = − (105)(10−11)(106)

ρ
sin(105t)aρ = −1

ρ
sin(105t) A/m

Now

Id = 2πρlJd = −2πl sin(105t) = −0.8π sin(105t) A

d) the ratio of the amplitude of Id to that of Ic, the quality factor of the capacitor: This will

be
|Id|
|Ic|

=
0.8
8

= 0.1



10.12. Show that the displacement current flowing between the two conducting cylinders in a lossless

coaxial capacitor is exactly the same as the conduction current flowing in the external circuit

if the applied voltage between conductors is V0 cos ωt volts.

From Chapter 7, we know that for a given applied voltage between the cylinders, the

electric field is

E =
V0 cos ωt

ρ ln(b/a)
aρ V/m ⇒ D =

εV0 cos ωt

ρ ln(b/a)
aρ C/m2

Then the displacement current density is

∂D
∂t

=
−ωεV0 sin ωt

ρ ln(b/a)
aρ

Over a length 	, the displacement current will be

Id =
∫ ∫

∂D
∂t

· dS = 2πρ	
∂D
∂t

=
2π	ωεV0 sin ωt

ln(b/a)
= C

dV

dt
= Ic

where we recall that the capacitance is given by C = 2πε	/ ln(b/a).

10.13. Consider the region defined by |x|, |y|, and |z| < 1. Let εr = 5, µr = 4, and σ = 0. If

Jd = 20 cos(1.5 × 108t − bx)ay µA/m2;

a) find D and E: Since Jd = ∂D/∂t, we write

D =
∫

Jddt + C =
20 × 10−6

1.5 × 108
sin(1.5 × 108 − bx)ay

= 1.33 × 10−13 sin(1.5 × 108t − bx)ay C/m2

where the integration constant is set to zero (assuming no dc fields are present). Then

E =
D
ε

=
1.33 × 10−13

(5 × 8.85 × 10−12)
sin(1.5 × 108t − bx)ay

= 3.0 × 10−3 sin(1.5 × 108t − bx)ay V/m

b) use the point form of Faraday’s law and an integration with respect to time to find B and

H: In this case,

∇× E =
∂Ey

∂x
az = −b(3.0 × 10−3) cos(1.5 × 108t − bx)az = −∂B

∂t

Solve for B by integrating over time:

B =
b(3.0 × 10−3)

1.5 × 108
sin(1.5 × 108t − bx)az = (2.0)b × 10−11 sin(1.5 × 108t − bx)az T



10.13b (continued). Now

H =
B
µ

=
(2.0)b × 10−11

4 × 4π × 10−7
sin(1.5 × 108t − bx)az

= (4.0 × 10−6)b sin(1.5 × 108t − bx)az A/m

c) use ∇ × H = Jd + J to find Jd: Since σ = 0, there is no conduction current, so in this

case

∇× H = −∂Hz

∂x
ay = 4.0 × 10−6b2 cos(1.5 × 108t − bx)ay A/m2 = Jd

d) What is the numerical value of b? We set the given expression for Jd equal to the result

of part c to obtain:

20 × 10−6 = 4.0 × 10−6b2 ⇒ b =
√

5.0 m−1

10.14. A voltage source, V0 sinωt, is connected between two concentric conducting spheres, r = a

and r = b, b > a, where the region between them is a material for which ε = εrε0, µ = µ0, and

σ = 0. Find the total displacement current through the dielectric and compare it with the

source current as determined from the capacitance (Sec. 5.10) and circuit analysis methods:

First, solving Laplace’s equation, we find the voltage between spheres (see Eq. 20, Chapter

7):

V (t) =
(1/r) − (1/b)
(1/a) − (1/b)

V0 sinωt

Then

E = −∇V =
V0 sin ωt

r2(1/a − 1/b)
ar ⇒ D =

εrε0V0 sin ωt

r2(1/a − 1/b)
ar

Now

Jd =
∂D
∂t

=
εrε0ωV0 cos ωt

r2(1/a − 1/b)
ar

The displacement current is then

Id = 4πr2Jd =
4πεrε0ωV0 cos ωt

(1/a − 1/b)
= C

dV

dt

where, from Eq. 47, Chapter 5,

C =
4πεrε0

(1/a − 1/b)

The results are consistent.



10.15. Let µ = 3×10−5 H/m, ε = 1.2×10−10 F/m, and σ = 0 everywhere. If H = 2 cos(1010t−βx)az

A/m, use Maxwell’s equations to obtain expressions for B, D, E, and β: First, B = µH =

6 × 10−5 cos(1010t − βx)az T. Next we use

∇× H = −∂H
∂x

ay = 2β sin(1010t − βx)ay =
∂D
∂t

from which

D =
∫

2β sin(1010t − βx) dt + C = − 2β

1010
cos(1010t − βx)ay C/m2

where the integration constant is set to zero, since no dc fields are presumed to exist. Next,

E =
D
ε

= − 2β

(1.2 × 10−10)(1010)
cos(1010t − βx)ay = −1.67β cos(1010t − βx)ay V/m

Now

∇× E =
∂Ey

∂x
az = 1.67β2 sin(1010t − βx)az = −∂B

∂t

So

B = −
∫

1.67β2 sin(1010t − βx)azdt = (1.67 × 10−10)β2 cos(1010t − βx)az

We require this result to be consistent with the expression for B originally found. So

(1.67 × 10−10)β2 = 6 × 10−5 ⇒ β = ±600 rad/m

10.16. Derive the continuity equation from Maxwell’s equations: First, take the divergence of both

sides of Ampere’s circuital law:

∇ · ∇ × H︸ ︷︷ ︸
0

= ∇ · J +
∂

∂t
∇ · D = ∇ · J +

∂ρv

∂t
= 0

where we have used ∇ · D = ρv, another Maxwell equation.

10.17. The electric field intensity in the region 0 < x < 5, 0 < y < π/12, 0 < z < 0.06 m in free

space is given by E = C sin(12y) sin(az) cos(2 × 1010t)ax V/m. Beginning with the ∇ × E

relationship, use Maxwell’s equations to find a numerical value for a, if it is known that a is

greater than zero: In this case we find

∇× E =
∂Ex

∂z
ay − ∂Ez

∂y
az

= C [a sin(12y) cos(az)ay − 12 cos(12y) sin(az)az] cos(2 × 1010t) = −∂B
∂t



10.17 (continued). Then

H = − 1
µ0

∫
∇× E dt + C1

= − C

µ0(2 × 1010
[a sin(12y) cos(az)ay − 12 cos(12y) sin(az)az] sin(2 × 1010t) A/m

where the integration constant, C1 = 0, since there are no initial conditions. Using this result,

we now find

∇× H =
[
∂Hz

∂y
− ∂Hy

∂z

]
ax = −C(144 + a2)

µ0(2 × 1010)
sin(12y) sin(az) sin(2 × 1010t)ax =

∂D
∂t

Now

E =
D
ε0

=
∫

1
ε0
∇× H dt + C2 =

C(144 + a2)
µ0ε0(2 × 1010)2

sin(12y) sin(az) cos(2 × 1010t)ax

where C2 = 0. This field must be the same as the original field as stated, and so we require

that
C(144 + a2)

µ0ε0(2 × 1010)2
= 1

Using µ0ε0 = (3 × 108)−2, we find

a =
[
(2 × 1010)2

(3 × 108)2
− 144

]1/2

= 66 m−1

10.18. The parallel plate transmission line shown in Fig. 10.8 has dimensions b = 4 cm and d = 8

mm, while the medium between plates is characterized by µr = 1, εr = 20, and σ = 0. Neglect

fields outside the dielectric. Given the field H = 5 cos(109t − βz)ay A/m, use Maxwell’s

equations to help find:

a) β, if β > 0: Take

∇× H = −∂Hy

∂z
ax = −5β sin(109t − βz)ax = 20ε0

∂E
∂t

So

E =
∫ −5β

20ε0
sin(109t − βz)ax dt =

β

(4 × 109)ε0
cos(109t − βz)ax

Then

∇× E =
∂Ex

∂z
ay =

β2

(4 × 109)ε0
sin(109t − βz)ay = −µ0

∂H
∂t

So that

H =
∫ −β2

(4 × 109)µ0ε0
sin(109t − βz)ax dt =

β2

(4 × 1018)µ0ε0
cos(109t − βz)

= 5 cos(109t − βz)ay



10.18a (continued) where the last equality is required to maintain consistency. Therefore

β2

(4 × 1018)µ0ε0
= 5 ⇒ β = 14.9 m−1

b) the displacement current density at z = 0: Since σ = 0, we have

∇× H = Jd = −5β sin(109t − βz) = −74.5 sin(109t − 14.9z)ax

= −74.5 sin(109t)ax A/m at z = 0

c) the total displacement current crossing the surface x = 0.5d, 0 < y < b, and 0 < z < 0.1

m in the ax direction. We evaluate the flux integral of Jd over the given cross section:

Id = −74.5b

∫ 0.1

0

sin(109t − 14.9z)ax · ax dz = 0.20
[
cos(109t − 1.49) − cos(109t)

]
A

10.19. In the first section of this chapter, Faraday’s law was used to show that the field E =

− 1
2kB0ρektaφ results from the changing magnetic field B = B0e

ktaz.

a) Show that these fields do not satisfy Maxwell’s other curl equation: Note that B as stated

is constant with position, and so will have zero curl. The electric field, however, varies

with time, and so ∇×H = ∂D
∂t would have a zero left-hand side and a non-zero right-hand

side. The equation is thus not valid with these fields.

b) If we let B0 = 1 T and k = 106 s−1, we are establishing a fairly large magnetic flux

density in 1 µs. Use the ∇× H equation to show that the rate at which Bz should (but

does not) change with ρ is only about 5 × 10−6 T/m in free space at t = 0: Assuming

that B varies with ρ, we write

∇× H = −∂Hz

∂ρ
aφ = − 1

µ0

dB0

dρ
ekt = ε0

∂E
∂t

= −1
2
ε0k

2B0ρekt

Thus
dB0

dρ
=

1
2
µ0ε0k

2ρB0 =
1012(1)ρ

2(3 × 108)2
= 5.6 × 10−6ρ

which is near the stated value if ρ is on the order of 1m.



10.20. Point C(−0.1,−0.2, 0.3) lies on the surface of a perfect conductor. The electric field intensity

at C is (500ax − 300ay + 600az) cos 107t V/m, and the medium surrounding the conductor is

characterized by µr = 5, εr = 10, and σ = 0.

a) Find a unit vector normal to the conductor surface at C, if the origin lies within the

conductor: At t = 0, the field must be directed out of the surface, and will be normal to

it, since we have a perfect conductor. Therefore

n =
+E(t = 0)
|E(t = 0)| =

5ax − 3ay + 6az√
25 + 9 + 36

= 0.60ax − 0.36ay + 0.72az

b) Find the surface charge density at C: Use

ρs = D · n|surface = 10ε0 [500ax − 300ay + 600az] cos(107t) · [.60ax − .36ay + .72az]

= 10ε0 [300 + 108 + 432] cos(107t) = 7.4 × 10−8 cos(107t) C/m2

= 74 cos(107t) nC/m2

10.21. a) Show that under static field conditions, Eq. (55) reduces to Ampere’s circuital law. First

use the definition of the vector Laplacian:

∇2A = −∇×∇× A + ∇(∇ · A) = −µJ

which is Eq. (55) with the time derivative set to zero. We also note that ∇ ·A = 0 in steady

state (from Eq. (54)). Now, since B = ∇× A, (55) becomes

−∇× B = −µJ ⇒ ∇× H = J

b) Show that Eq. (51) becomes Faraday’s law when taking the curl: Doing this gives

∇× E = −∇×∇V − ∂

∂t
∇× A

The curl of the gradient is identially zero, and ∇× A = B. We are left with

∇× E = −∂B/∂t



10.22. In a sourceless medium, in which J = 0 and ρv = 0, assume a rectangular coordinate system in

which E and H are functions only of z and t. The medium has permittivity ε and permeability

µ. (a) If E = Exax and H = Hyay, begin with Maxwell’s equations and determine the second

order partial differential equation that Ex must satisfy.

First use

∇× E = −∂B
∂t

⇒ ∂Ex

∂z
ay = −µ

∂Hy

∂t
ay

in which case, the curl has dictated the direction that H must lie in. Similarly, use the

other Maxwell curl equation to find

∇× H =
∂D
∂t

⇒ −∂Hy

∂z
ax = ε

∂Ex

∂t
ax

Now, differentiate the first equation with respect to z, and the second equation with

respect to t:
∂2Ex

∂z2
= −µ

∂2Hy

∂t∂z
and

∂2Hy

∂z∂t
= −ε

∂2Ex

∂t2

Combining these two, we find
∂2Ex

∂z2
= µε

∂2Ex

∂t2

b) Show that Ex = E0 cos(ωt− βz) is a solution of that equation for a particular value of β:

Substituting, we find

∂2Ex

∂z2
= −β2E0 cos(ωt − βz) and µε

∂2Ex

∂t2
= −ω2µεE0 cos(ωt − βz)

These two will be equal provided the constant multipliers of cos(ωt − βz) are equal.

c) Find β as a function of given parameters. Equating the two constants in part b, we find

β = ω
√

µε.

10.23. In region 1, z < 0, ε1 = 2 × 10−11 F/m, µ1 = 2 × 10−6 H/m, and σ1 = 4 × 10−3 S/m; in

region 2, z > 0, ε2 = ε1/2, µ2 = 2µ1, and σ2 = σ1/4. It is known that E1 = (30ax + 20ay +

10az) cos(109t) V/m at P1(0, 0, 0−).

a) Find EN1, Et1, DN1, and Dt1: These will be

EN1 = 10 cos(109t)az V/m Et1 = (30ax + 20ay) cos(109t) V/m

DN1 = ε1EN1 = (2 × 10−11)(10) cos(109t)az C/m2 = 200 cos(109t)az pC/m2



10.23a (continued).

Dt1 = ε1Et1 = (2 × 10−11)(30ax + 20ay) cos(109t) = (600ax + 400ay) cos(109t) pC/m2

b) Find JN1 and Jt1 at P1:

JN1 = σ1EN1 = (4 × 10−3)(10 cos(109t))az = 40 cos(109t)az mA/m2

Jt1 = σ1Et1 = (4 × 10−3)(30ax + 20ay) cos(109t) = (120ax + 80ay) cos(109t) mA/m2

c) Find Et2, Dt2, and Jt2 at P1: By continuity of tangential E,

Et2 = Et1 = (30ax + 20ay) cos(109t) V/m

Then

Dt2 = ε2Et2 = (10−11)(30ax + 20ay) cos(109t) = (300ax + 200ay) cos(109t) pC/m2

Jt2 = σ2Et2 = (10−3)(30ax + 20ay) cos(109t) = (30ax + 20ay) cos(109t) mA/m2

d) (Harder) Use the continuity equation to help show that JN1 − JN2 = ∂DN2/∂t − ∂DN1/∂t

and then determine EN2, DN2, and JN2: We assume the existence of a surface charge layer

at the boundary having density ρs C/m2. If we draw a cylindrical “pillbox” whose top and

bottom surfaces (each of area ∆a) are on either side of the interface, we may use the continuity

condition to write

(JN2 − JN1)∆a = −∂ρs

∂t
∆a

where ρs = DN2 − DN1. Therefore,

JN1 − JN2 =
∂

∂t
(DN2 − DN1)

In terms of the normal electric field components, this becomes

σ1EN1 − σ2EN2 =
∂

∂t
(ε2EN2 − ε1EN1)

Now let EN2 = A cos(109t) + B sin(109t), while from before, EN1 = 10 cos(109t).



10.23d (continued)

These, along with the permittivities and conductivities, are substituted to obtain

(4 × 10−3)(10) cos(109t) − 10−3[A cos(109t) + B sin(109t)]

=
∂

∂t

[
10−11[A cos(109t) + B sin(109t)] − (2 × 10−11)(10) cos(109t)

]
= −(10−2A sin(109t) + 10−2B cos(109t) + (2 × 10−1) sin(109t)

We now equate coefficients of the sin and cos terms to obtain two equations:

4 × 10−2 − 10−3A = 10−2B

−10−3B = −10−2A + 2 × 10−1

These are solved together to find A = 20.2 and B = 2.0. Thus

EN2 =
[
20.2 cos(109t) + 2.0 sin(109t)

]
az = 20.3 cos(109t + 5.6◦)az V/m

Then

DN2 = ε2EN2 = 203 cos(109t + 5.6◦)az pC/m2

and

JN2 = σ2EN2 = 20.3 cos(109t + 5.6◦)az mA/m2

10.24. In a medium in which ρv = 0, but in which the permittivity is a function of position, determine

the conditions on the permittivity variation such that

a) ∇ · E = 0: We first note that ∇ · D = 0 if ρv = 0, where D = εE. Now

∇ · D = ∇ · (εE) = E · ∇ε + ε∇ · E = 0

or

∇ · E + E · ∇ε

ε
= 0

We see that ∇ · E = 0 if ∇ε = 0.

b) ∇ · E .= 0: From the development in part a, ∇ · E will be approximately zero if ∇ε/ε is

negligible.



10.25. In a region where µr = εr = 1 and σ = 0, the retarded potentials are given by V = x(z − ct)

V and A = x[(z/c) − t]az Wb/m, where c = 1/
√

µ0ε0.

a) Show that ∇ · A = −µε(∂V/∂t):

First,

∇ · A =
∂Az

∂z
=

x

c
= x

√
µ0ε0

Second,
∂V

∂t
= −cx = − x√

µ0ε0

so we observe that ∇·A = −µ0ε0(∂V/∂t) in free space, implying that the given statement

would hold true in general media.

b) Find B, H, E, and D:

Use

B = ∇× A = −∂Ax

∂x
ay =

(
t − z

c

)
ay T

Then

H =
B
µ0

=
1
µ0

(
t − z

c

)
ay A/m

Now,

E = −∇V − ∂A
∂t

= −(z − ct)ax − xaz + xaz = (ct − z)ax V/m

Then

D = ε0E = ε0(ct − z)ax C/m2

c) Show that these results satisfy Maxwell’s equations if J and ρv are zero:

i. ∇ · D = ∇ · ε0(ct − z)ax = 0

ii. ∇ · B = ∇ · (t − z/c)ay = 0

iii.

∇× H = −∂Hy

∂z
ax =

1
µ0c

ax =
√

ε0
µ0

ax

which we require to equal ∂D/∂t:

∂D
∂t

= ε0cax =
√

ε0
µ0

ax



10.25c (continued).

iv.

∇× E =
∂Ex

∂z
ay = −ay

which we require to equal −∂B/∂t:

∂B
∂t

= ay

So all four Maxwell equations are satisfied.

10.26. Let the current I = 80t A be present in the az direction on the z axis in free space within the

interval −0.1 < z < 0.1 m.

a) Find Az at P (0, 2, 0): The integral for the retarded vector potential will in this case assume

the form

A =
∫ .1

−.1

µ080(t − R/c)
4πR

az dz

where R =
√

z2 + 4 and c = 3 × 108 m/s. We obtain

Az =
80µ0

4π

[∫ .1

−.1

t√
z2 + 4

dz −
∫ .1

−.1

1
c

dz

]
= 8 × 10−6t ln(z +

√
z2 + 4)

∣∣∣.1
−.1

− 8 × 10−6

3 × 108
z
∣∣∣.1
−.1

= 8 × 10−6 ln

(
.1 +

√
4.01

−.1 +
√

4.01

)
− 0.53 × 10−14 = 8.0 × 10−7t − 0.53 × 10−14

So finally, A =
[
8.0 × 10−7t − 5.3 × 10−15

]
az Wb/m.

b) Sketch Az versus t over the time interval −0.1 < t < 0.1 µs: The sketch is linearly increasing

with time, beginning with Az = −8.53 × 10−14 Wb/m at t = −0.1 µs, crossing the time axis

and going positive at t = 6.6 ns, and reaching a maximum value of 7.46 × 10−14 Wb/m at

t = 0.1 µs.


