
CHAPTER 11

11.1. The parameters of a certain transmission line operating at 6 × 108 rad/s are L = 0.4 µH/m,
C = 40 pF/m, G = 80 µS/m, and R = 20 Ω/m.
a) Find γ, α, β, λ, and Z0: We use

γ =
√

ZY =
√

(R + jωL)(G + jωC)

=
√

[20 + j(6 × 108)(0.4 × 10−6)][80 × 10−6 + j(6 × 108)(40 × 10−12)]

= 0.10 + j2.4 m−1 = α + jβ

Therefore, α = 0.10 Np/m, β = 2.4 rad/m, and λ = 2π/β = 2.6 m. Finally,

Z0 =

√
Z

Y
=

√
R + jωL

G + jωC
=

√
20 + j2.4 × 102

80 × 10−6 + j2.4 × 10−2
= 100 − j4.0 Ω

b) If a voltage wave travels 20 m down the line, what percentage of the original amplitude
remains, and by how many degrees is it phase shifted? First,

V20

V0
= e−αL = e−(0.10)(20) = 0.13 or 13 percent

Then the phase shift is given by βL, which in degrees becomes

φ = βL

(
360
2π

)
= (2.4)(20)

(
360
2π

)
= 2.7 × 103 degrees

11.2. A lossless transmission line with Z0 = 60 Ω is being operated at 60 MHz. The velocity on the
line is 3 × 108 m/s. If the line is short-circuited at z = 0, find Zin at:
a) z = −1m: We use the expression for input impedance (Eq. 12), under the conditions

Z2 = 60 and Z3 = 0:

Zin = Z2

[
Z3 cos(βl) + jZ2 sin(βl)
Z2 cos(βl) + jZ3 sin(βl)

]
= j60 tan(βl)

where l = −z, and where the phase constant is β = 2πc/f = 2π(3 × 108)/(6 × 107) =
(2/5)π rad/m. Now, with z = −1 (l = 1), we find Zin = j60 tan(2π/5) = j184.6 Ω.

b) z = −2 m: Zin = j60 tan(4π/5) = −j43.6 Ω

c) z = −2.5 m: Zin = j60 tan(5π/5) = 0

d) z = −1.25 m: Zin = j60 tan(π/2) = j∞ Ω (open circuit)

11.3. The characteristic impedance of a certain lossless transmission line is 72 Ω. If L = 0.5 µH/m,
find:
a) C: Use Z0 =

√
L/C, or

C =
L

Z2
0

=
5 × 10−7

(72)2
= 9.6 × 10−11 F/m = 96 pF/m
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11.3b) vp:

vp =
1√
LC

=
1√

(5 × 10−7)(9.6 × 10−11)
= 1.44 × 108 m/s

c) β if f = 80 MHz:

β = ω
√

LC =
2π × 80 × 106

1.44 × 108
= 3.5 rad/m

d) The line is terminated with a load of 60 Ω. Find Γ and s:

Γ =
60 − 72
60 + 72

= −0.09 s =
1 + |Γ|
1 − |Γ| =

1 + .09
1 − .09

= 1.2

11.4. A lossless transmission line having Z0 = 120Ω is operating at ω = 5×108 rad/s. If the velocity
on the line is 2.4 × 108 m/s, find:
a) L: With Z0 =

√
L/C and v = 1/

√
LC, we find L = Z0/v = 120/2.4× 108 = 0.50 µH/m.

b) C: Use Z0v =
√

L/C/
√

LC ⇒ C = 1/(Z0v) = [120(2.4 × 108)]−1 = 35 pF/m.

c) Let ZL be represented by an inductance of 0.6 µH in series with a 100-Ω resistance. Find
Γ and s: The inductive impedance is jωL = j(5 × 108)(0.6 × 10−6) = j300. So the load
impedance is ZL = 100 + j300 Ω. Now

Γ =
ZL − Z0

ZL + Z0
=

100 + j300 − 120
100 + j300 + 120

= 0.62 + j0.52 = 0.808 � 40◦

Then

s =
1 + |Γ|
1 − |Γ| =

1 + 0.808
1 − 0.808

= 9.4

11.5. Two characteristics of a certain lossless transmission line are Z0 = 50 Ω and γ = 0+j0.2π m−1

at f = 60 MHz.
a) Find L and C for the line: We have β = 0.2π = ω

√
LC and Z0 = 50 =

√
L/C. Thus

β

Z0
= ωC ⇒ C =

β

ωZ0
=

0.2π

(2π × 60 × 106)(50)
=

1
3
× 1010 = 33.3 pF/m

Then L = CZ2
0 = (33.3 × 10−12)(50)2 = 8.33 × 10−8 H/m = 83.3 nH/m.

b) A load, ZL = 60 + j80 Ω is located at z = 0. What is the shortest distance from the load
to a point at which Zin = Rin + j0? I will do this using two different methods:

The Hard Way: We use the general expression

Zin = Z0

[
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

]

We can then normalize the impedances with respect to Z0 and write

zin =
Zin

Z0
=

[
(ZL/Z0) + j tan(βl)
1 + j(ZL/Z0) tan(βl)

]
=

[
zL + j tan(βl)
1 + jzL tan(βl)

]

where zL = (60 + j80)/50 = 1.2 + j1.6.
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11.5b. (continued) Using this, and defining x = tan(βl), we find

zin =
[

1.2 + j(1.6 + x)
(1 − 1.6x) + j1.2x

] [
(1 − 1.6x) − j1.2x

(1 − 1.6x) − j1.2x

]

The second bracketed term is a factor of one, composed of the complex conjugate of the
denominator of the first term, divided by itself. Carrying out this product, we find

zin =
[
1.2(1 − 1.6x) + 1.2x(1.6 + x) − j[(1.2)2x − (1.6 + x)(1 − 1.6x)]

(1 − 1.6x)2 + (1.2)2x2

]

We require the imaginary part to be zero. Thus

(1.2)2x − (1.6 + x)(1 − 1.6x) = 0 ⇒ 1.6x2 + 3x − 1.6 = 0

So

x = tan(βl) =
−3 ±

√
9 + 4(1.6)2

2(1.6)
= (.433,−2.31)

We take the positive root, and find

βl = tan−1(.433) = 0.409 ⇒ l =
0.409
0.2π

= 0.65 m = 65 cm

The Easy Way: We find

Γ =
60 + j80 − 50
60 + j80 + 50

= 0.405 + j0.432 = 0.59 � 0.818

Thus φ = 0.818 rad, and we use the fact that the input impedance will be purely real at
the location of a voltage minimum or maximum. The first voltage maximum will occur
at a distance in front of the load given by

zmax =
φ

2β
=

0.818
2(0.2π)

= 0.65 m

11.6. The propagation constant of a lossy transmission line is 1 + j2 m−1, and its characteristic
impedance is 20 + j0 Ω at ω = 1 Mrad/s. Find L, C, R, and G for the line: Begin with

Z0 =

√
R + jωL

G + jωL
= 20 ⇒ R + jωL = 400(G + jωC) (1)

Then
γ2 = (R + jωL)(G + jωC) = (1 + j2)2 ⇒ 400(G + jωC)2 = (1 + j2)2 (2)

where (1) has been used. Eq. 2 now becomes G + jωC = (1 + j2)/20. Equating real and
imaginary parts leads to G = .05 S/m and C = 1/(10ω) = 10−7 = 0.1 µF/m.

3



11.6. (continued) Now, (1) becomes

20 =

√
R + jωL

1 + j2

√
20 ⇒ 20 =

R + jωL

1 + j2
⇒ 20 + j40 = R + jωL

Again, equating real and imaginary parts leads to R = 20 Ω/m and L = 40/ω = 40µH/m.

11.7. A transmitter and receiver are connected using a cascaded pair of transmission lines. At the
operating frequency, Line 1 has a measured loss of 0.1 dB/m, and Line 2 is rated at 0.2 dB/m.
The link is composed of 40m of Line 1, joined to 25m of Line 2. At the joint, a splice loss of
2 dB is measured. If the transmitted power is 100mW, what is the received power?

The total loss in the link in dB is 40(0.1)+25(0.2)+2 = 11 dB. Then the received power
is Pr = 100mW × 10−0.1(11) = 7.9 mW.

11.8. A measure of absolute power is the dBm scale, in which power is specified in decibels relative
to 1 milliwatt. Specifically, P (dBm) = 10 log10 [P (mW)/1mW]. Suppose a receiver is rated as
having a sensitivity of -5 dBm – indicating the minimum power that it must receive in order
to adequately interpret the transmitted data. Consider a transmitter having an output of 100
mW connected to this receiver through a length of transmission line whose loss is 0.1 dB/m.
What is the maximum length of line that can be used?

First we find the transmitted power in dBm: Pt(dBm) = 10 log10(100/1) = 20 dBm.
From this result, we subtract the maximum dB loss to obtain the receiver sensitivity:

20 dBm − loss (dB) = −5 dBm ⇒ loss (dB) = 0.1Lmax = 25 dB

Therefore, the maximum distance is Lmax = 250 m.

11.9. A sinusoidal voltage source drives the series combination of an impedance, Zg = 50 − j50 Ω,
and a lossless transmission line of length L, shorted at the load end. The line characteristic
impedance is 50 Ω, and wavelength λ is measured on the line.

a) Determine, in terms of wavelength, the shortest line length that will result in the voltage
source driving a total impedance of 50 Ω: Using Eq. (98), with ZL = 0, we find the input
impedance, Zin = jZ0 tan(βL), where Z0 = 50 ohms. This input inpedance is in series
with the generator impedance, giving a total of Ztot = 50 − j50 + j50 tan(βL). For this
impedance to equal 50 ohms, the imaginary parts must cancel. Therefore, tan(βL) = 1,
or βL = π/4, at minimum. So L = π/(4β) = π/(4 × 2π/λ) = λ/8.

b) Will other line lengths meet the requirements of part a? If so what are they? Yes, the
requirement being βL = π/4 + mπ, where m is an integer. Therefore

L =
π/4 + mπ

β
=

π(1 + 4m)
4 × 2π/λ

=
λ

8
+ m

λ

2
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11.10. A 100 MHz voltage source drives the series combination of an impedance, Zg = 25 + j25 Ω
and a lossless transmission line of length λ/4, terminated by a load impedance, ZL. The line
characteristic impedance is 50 Ω.

a) Determine the load impedance value required to achieve a net impedance (seen by the
voltage source) of 50 Ω: From Eq. (98), the input impedance for a quarter-wave line is
Zin = Z2

0/ZL, and the net impedance seen by the voltage source is now

Ztot = 25 + j25 +
(50)2

ZL
= 50 as requested

Solving for ZL, obtain

ZL =
(50)2

25 − j25
= 50 + j50 ohms

b) If the inductance of the line is L = 1 µH/m, determine the line length in meters: We
know that Z0 =

√
L/C = 50, so that C = L/(50)2 = 10−6/2500 = 4.0 × 10−10 F. Next,

the line phase velocity is vp = 1/
√

LC = 1/
√

(10−6)(4.0 × 10−10) = 5.0× 107 m/s. Then
the wavelength in the line is λ = vp/f = 5.0 × 107/108 = 0.5 m. Finally the line length
is L = λ/4 = 0.125 m.

11.11. A transmission line having primary constants L, C, R, and G, has length � and is terminated
by a load having complex impedance RL + jXL. At the input end of the line, a DC voltage
source, V0, is connected. Assuming all parameters are known at zero frequency, find the steady
state power dissipated by the load if

a) R = G = 0: Here, the line just acts as a pair of lossless leads to the impedance. At zero
frequency, the dissipated power is just Pd = V 2

0 /RL.

b) R �= 0, G = 0: In this case, the load is effectively in series with a resistance of value R�.
The voltage at the load is therefore VL = V0RL/(R� + RL), and the dissipated power is
Pd = V 2

L/RL = V 2
0 RL/(R� + RL)2.

c) R = 0, G �= 0: Now, the load is in parallel with a resistance, 1/(G�), but the voltage at
the load is still V0. Dissipated power by the load is Pd = V 2

0 /RL.

d) R �= 0, G �= 0: One way to approach this problem is to think of the power at the load
as arising from an incident voltage wave of vanishingly small frequency, and to assume
that losses in the line are sufficient to allow steady state conditions to be reached after
a single reflection from the load. The “forward-traveling” voltage as a function of z is
given by V (z) = V0 exp (−γz), where γ =

√
(R + jωL)(G + jωC) →

√
RG as frequency

approaches zero. Considering a single reflection only, the voltage at the load is then
VL = (1 + Γ)V0 exp

(
−
√

RG �
)
. The reflection coefficient requires the line characteristic

impedance, given by Z0 = [(R + jωL)/(G + jωC)]1/2 →
√

R/G as ω → 0. The reflection
coefficient is then Γ = (RL −

√
R/G)/(RL +

√
R/G), and so the load voltage becomes:

VL =
2RL

RL +
√

R/G
exp

(
−
√

RG �
)

The dissipated power is then

Pd =
V 2

L

RL
=

4RLV 2
0(

RL +
√

R/G
)2 exp

(
−2

√
RG �

)
W
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11.12. In a circuit in which a sinusoidal voltage source drives its internal impedance in series with a
load impedance, it is known that maximum power transfer to the load occurs when the source
and load impedances form a complex conjugate pair. Suppose the source (with its internal
impedance) now drives a complex load of impedance ZL = RL + jXL that has been moved to
the end of a lossless transmission line of length � having characteristic impedance Z0. If the
source impedance is Zg = Rg + jXg, write an equation that can be solved for the required
line length, �, such that the displaced load will receive the maximum power.

The condition of maximum power transfer will be met if the input impedance to the line
is the conjugate of the internal impedance. Using Eq. (98), we write

Zin = Z0

[
(RL + jXL) cos(β�) + jZ0 sin(β�)
Z0 cos(β�) + j(RL + jXL) sin(β�)

]
= Rg − jXg

This is the equation that we have to solve for � – assuming that such a solution exists.
To find out, we need to work with the equation a little. Multiplying both sides by the
denominator of the left side gives

Z0(RL + jXL) cos(β�) + jZ2
0 sin(β�) = (Rg − jXg)[Z0 cos(β�) + j(RL + jXL) sin(β�)]

We next separate the equation by equating the real parts of both sides and the imaginary
parts of both sides, giving

(RL − Rg) cos(β�) =
XLXg

Z0
sin(β�) (real parts)

and

(XL + Xg) cos(β�) =
RgRL − Z2

0

Z0
sin(β�) (imaginary parts)

Using the two equations, we find two conditions on the tangent of β�:

tan(β�) =
Z0(RL − Rg)

XgXL
=

Z0(XL + Xg)
RgRL − Z2

0

For a viable solution to exist for �, both equalities must be satisfied, thus limiting the
possible choices of the two impedances.

11.13. The incident voltage wave on a certain lossless transmission line for which Z0 = 50 Ω and
vp = 2 × 108 m/s is V +(z, t) = 200 cos(ωt − πz) V.
a) Find ω: We know β = π = ω/vp, so ω = π(2 × 108) = 6.28 × 108 rad/s.
b) Find I+(z, t): Since Z0 is real, we may write

I+(z, t) =
V +(z, t)

Z0
= 4 cos(ωt − πz) A

The section of line for which z > 0 is replaced by a load ZL = 50 + j30 Ω at z = 0. Find
c) ΓL: This will be

ΓL =
50 + j30 − 50
50 + j30 + 50

= .0825 + j0.275 = 0.287 � 1.28 rad
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d) V −
s (z) = ΓLV +

s (z)ej2βz = 0.287(200)ejπzej1.28 = 57.5ej(πz+1.28)

e) Vs at z = −2.2 m:

Vs(−2.2) = V +
s (−2.2) + V −

s (−2.2) = 200ej2.2π + 57.5e−j(2.2π−1.28) = 257.5ej0.63

= 257.5 � 36◦

11.14. A 50-Ω lossless line is terminated with 60- and 30-Ω resistors in parallel. The voltage at the
input to the line is V(t) = 100 cos(5× 109t) and the line is three-eighths of a wavelength long.
What average power is delivered to each load resistor?

First, we need the input impedance. The parallel resistors give a net load impedance of
20 ohms. The line length of 3λ/8 gives β� = (2π/λ)(3λ/8) = (3/4)π. Eq. (98) then
yields:

Zin = 50
[
20 cos(3π/4) + j50 sin(3π/4)
50 cos(3π/4) + j20 sin(3π/4)

]
= 50

[
−20/

√
2 + j50/

√
2

−50/
√

2 + j20/
√

2

]
= 34.5 − j36.2 Ω

Now, the power delivered to the load is the power delivered to the input impedance. This
is

P =
1
2
Re

{ |V |2
Z∗

in

}
=

1
2
Re

{
104

34.5 + j36.2

}
= 69 W

The load resistors, 30 and 60 ohms, will divide the power, with the 30-ohm resistor
dissipating twice the power of the 60-ohm. Therefore, the power divides as 23 W (60Ω)
and 46 W (30Ω).

11.15. For the transmission line represented in Fig. 11.29, find Vs,out if f =:
a) 60 Hz: At this frequency,

β =
ω

vp
=

2π × 60
(2/3)(3 × 108)

= 1.9×10−6 rad/m So βl = (1.9×10−6)(80) = 1.5×10−4 << 1

The line is thus essentially a lumped circuit, where Zin
.= ZL = 80 Ω. Therefore

Vs,out = 120
[

80
12 + 80

]
= 104 V

b) 500 kHz: In this case

β =
2π × 5 × 105

2 × 108
= 1.57 × 10−2 rad/s So βl = 1.57 × 10−2(80) = 1.26 rad

Now

Zin = 50
[
80 cos(1.26) + j50 sin(1.26)
50 cos(1.26) + j80 sin(1.26)

]
= 33.17 − j9.57 = 34.5 � − .28

The equivalent circuit is now the voltage source driving the series combination of Zin and
the 12 ohm resistor. The voltage across Zin is thus

Vin = 120
[

Zin

12 + Zin

]
= 120

[
33.17 − j9.57

12 + 33.17 − j9.57

]
= 89.5 − j6.46 = 89.7 � − .071
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11.15. (continued) The voltage at the line input is now the sum of the forward and backward-
propagating waves just to the right of the input. We reference the load at z = 0, and so the
input is located at z = −80 m. In general we write Vin = V +

0 e−jβz + V −
0 ejβz, where

V −
0 = ΓLV +

0 =
80 − 50
80 + 50

V +
0 =

3
13

V +
0

At z = −80 m we thus have

Vin = V +
0

[
ej1.26 +

3
13

e−j1.26

]
⇒ V +

0 =
89.5 − j6.46

ej1.26 + (3/13)e−j1.26
= 42.7 − j100 V

Now

Vs,out = V +
0 (1 + ΓL) = (42.7 − j100)(1 + 3/(13)) = 134� − 1.17 rad = 52.6 − j123 V

As a check, we can evaluate the average power reaching the load:

Pavg,L =
1
2
|Vs,out|2

RL
=

1
2

(134)2

80
= 112 W

This must be the same power that occurs at the input impedance:

Pavg,in =
1
2
Re {VinI∗in} =

1
2
Re {(89.5 − j6.46)(2.54 + j0.54)} = 112 W

where Iin = Vin/Zin = (89.5 − j6.46)/(33.17 − j9.57) = 2.54 + j0.54.

11.16. A 300 ohm transmission line is 0.8 m long and is terminated with a short circuit. The line is
operating in air with a wavelength of 0.3 m and is lossless.
a) If the input voltage amplitude is 10V, what is the maximum voltage amplitude at any

point on the line? The net voltage anywhere on the line is the sum of the forward and
backward wave voltages, and is written as V (z) = V +

0 e−jβz + V −
0 ejβz. Since the line is

short-circuited at the load end (z = 0), we have V −
0 = −V +

0 , and so

V (z) = V +
0

(
e−jβz − ejβz

)
= −2jV +

0 sin(jβz)

We now evaluate the voltage at the input, where z = −0.8m, and λ = 0.3m.

Vin = −2jV +
0 sin

(
2π(−0.8)

0.3

)
= −j1.73V +

0

The magnitude of Vin is given as 10V, so we find V +
0 = 10/1.73 = 5.78V. The maximum

voltage amplitude on the line will be twice this value (where the sine function is unity),
so |V |max = 2(5.78) = 11.56 V.

b) What is the current amplitude in the short circuit? At the shorted end, the current will
be

IL =
V +

0

Z0
− V −

0

Z0
=

2V +
0

Z0
=

11.56
300

= 0.039A = 39 mA

11.17. Determine the average power absorbed by each resistor in Fig. 11.30: The problem is made
easier by first converting the current source/100 ohm resistor combination to its Thevenin
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equivalent. This is a 50� 0 V voltage source in series with the 100 ohm resistor. The next
step is to determine the input impedance of the 2.6λ length line, terminated by the 25 ohm
resistor: We use βl = (2π/λ)(2.6λ) = 16.33 rad. This value, modulo 2π is (by subtracting 2π
twice) 3.77 rad. Now

Zin = 50
[
25 cos(3.77) + j50 sin(3.77)
50 cos(3.77) + j25 sin(3.77)

]
= 33.7 + j24.0

The equivalent circuit now consists of the series combination of 50 V source, 100 ohm resistor,
and Zin, as calculated above. The current in this circuit will be

I =
50

100 + 33.7 + j24.0
= 0.368 � − .178

The power dissipated by the 25 ohm resistor is the same as the power dissipated by the real
part of Zin, or

P25 = P33.7 =
1
2
|I|2R =

1
2
(.368)2(33.7) = 2.28 W

To find the power dissipated by the 100 ohm resistor, we need to return to the Norton config-
uration, with the original current source in parallel with the 100 ohm resistor, and in parallel
with Zin. The voltage across the 100 ohm resistor will be the same as that across Zin, or
V = IZin = (.368 � − .178)(33.7 + j24.0) = 15.2 � 0.44. The power dissipated by the 100 ohm
resistor is now

P100 =
1
2
|V |2
R

=
1
2

(15.2)2

100
= 1.16 W

11.18 The line shown in Fig. 11.31 is lossless. Find s on both sections 1 and 2: For section 2, we
consider the propagation of one forward and one backward wave, comprising the superposition
of all reflected waves from both ends of the section. The ratio of the backward to the forward
wave amplitude is given by the reflection coefficient at the load, which is

ΓL =
50 − j100 − 50
50 − j100 + 50

=
−j

1 − j
=

1
2
(1 − j)

Then |ΓL| = (1/2)
√

(1 − j)(1 + j) = 1/
√

2. Finally

s2 =
1 + |ΓL|
1 − |ΓL|

=
1 + 1/

√
2

1 − 1/
√

2
= 5.83

For section 1, we need the reflection coefficient at the junction (location of the 100 Ω resistor)
seen by waves incident from section 1: We first need the input impedance of the .2λ length of
section 2:

Zin2 = 50
[
(50 − j100) cos(β2l) + j50 sin(β2l)
50 cos(β2l) + j(50 − j100) sin(β2l)

]
= 50

[
(1 − j2)(0.309) + j0.951
0.309 + j(1 − j2)(0.951)

]
= 8.63 + j3.82 = 9.44 � 0.42 rad

11.18. (continued) Now, this impedance is in parallel with the 100Ω resistor, leading to a net junction
impedance found by

1
ZinT

=
1

100
+

1
8.63 + j3.82

⇒ ZinT = 8.06 + j3.23 = 8.69 � 0.38 rad
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The reflection coefficient will be

Γj =
ZinT − 50
ZinT + 50

= −0.717 + j0.096 = 0.723 � 3.0 rad

and the standing wave ratio is s1 = (1 + 0.723)/(1 − 0.723) = 6.22.

11.19. A lossless transmission line is 50 cm in length and operating at a frequency of 100 MHz. The
line parameters are L = 0.2 µH/m and C = 80 pF/m. The line is terminated by a short
circuit at z = 0, and there is a load, ZL = 50 + j20 ohms across the line at location z = −20
cm. What average power is delivered to ZL if the input voltage is 100� 0 V? With the given
capacitance and inductance, we find

Z0 =

√
L

C
=

√
2 × 10−7

8 × 10−11
= 50 Ω

and
vp =

1√
LC

=
1√

(2 × 10−7)(9 × 10−11)
= 2.5 × 108 m/s

Now β = ω/vp = (2π × 108)/(2.5 × 108) = 2.5 rad/s. We then find the input impedance to
the shorted line section of length 20 cm (putting this impedance at the location of ZL, so
we can combine them): We have βl = (2.5)(0.2) = 0.50, and so, using the input impedance
formula with a zero load impedance, we find Zin1 = j50 tan(0.50) = j27.4 ohms. Now, at
the location of ZL, the net impedance there is the parallel combination of ZL and Zin1:
Znet = (50+ j20)||(j27.4) = 7.93+ j19.9. We now transform this impedance to the line input,
30 cm to the left, obtaining (with βl = (2.5)(.3) = 0.75):

Zin2 = 50
[
(7.93 + j19.9) cos(.75) + j50 sin(.75)
50 cos(.75) + j(7.93 + j19.9) sin(.75)

]
= 35.9 + j98.0 = 104.3 � 1.22

The power delivered to ZL is the same as the power delivered to Zin2: The current magnitude
is |I| = (100)/(104.3) = 0.96 A. So finally,

P =
1
2
|I|2R =

1
2
(0.96)2(35.9) = 16.5 W

10



11.20a. Determine s on the transmission line of Fig. 11.32. Note that the dielectric is air: The
reflection coefficient at the load is

ΓL =
40 + j30 − 50
40 + j30 + 50

= j0.333 = 0.333 � 1.57 rad Then s =
1 + .333
1 − .333

= 2.0

b) Find the input impedance: With the length of the line at 2.7λ, we have βl = (2π)(2.7) = 16.96
rad. The input impedance is then

Zin = 50
[
(40 + j30) cos(16.96) + j50 sin(16.96)
50 cos(16.96) + j(40 + j30) sin(16.96)

]
= 50

[−1.236 − j5.682
1.308 − j3.804

]
= 61.8 − j37.5 Ω

c) If ωL = 10 Ω, find Is: The source drives a total impedance given by Znet = 20 + jωL + Zin =
20 + j10 + 61.8 − j37.5 = 81.8 − j27.5. The current is now Is = 100/(81.8 − j27.5) =
1.10 + j0.37 A.

d) What value of L will produce a maximum value for |Is| at ω = 1 Grad/s? To achieve this,
the imaginary part of the total impedance of part c must be reduced to zero (so we need an
inductor). The inductor impedance must be equal to negative the imaginary part of the line
input impedance, or ωL = 37.5, so that L = 37.5/ω = 37.5 nH. Continuing, for this value of
L, calculate the average power:

e) supplied by the source: Ps = (1/2)Re{VsI
∗
s } = (1/2)(100)(1.10) = 55.0 W.

f) delivered to ZL = 40 + j30 Ω: The power delivered to the load will be the same as the power
delivered to the input impedance. We write

PL =
1
2
Re{Zin}|Is|2 =

1
2
(61.8)[(1.10 + j.37)(1.10 − j.37)] = 41.6 W

11.21. A lossless line having an air dielectric has a characteristic impedance of 400 Ω. The line is
operating at 200 MHz and Zin = 200 − j200 Ω. Use analytic methods or the Smith chart (or
both) to find: (a) s; (b) ZL if the line is 1 m long; (c) the distance from the load to the nearest
voltage maximum: I will first use the analytic approach. Using normalized impedances, Eq.
(13) becomes

zin =
Zin

Z0
=

[
zL cos(βL) + j sin(βL)
cos(βL) + jzL sin(βL)

]
=

[
zL + j tan(βL)
1 + jzL tan(βL)

]

Solve for zL:

zL =
[

zin − j tan(βL)
1 − jzin tan(βL)

]

where, with λ = c/f = 3× 108/2× 108 = 1.50 m, we find βL = (2π)(1)/(1.50) = 4.19, and so
tan(βL) = 1.73. Also, zin = (200 − j200)/400 = 0.5 − j0.5. So

zL =
0.5 − j0.5 − j1.73

1 − j(0.5 − j0.5)(1.73)
= 2.61 + j0.174

Finally, ZL = zL(400) = 1.04 × 103 + j69.8 Ω. Next

Γ =
ZL − Z0

ZL + Z0
=

6.42 × 102 + j69.8
1.44 × 103 + j69.8

= .446 + j2.68 × 10−2 = .447 � 6.0 × 10−2 rad

11



11.21. (continued) Now

s =
1 + |Γ|
1 − |Γ| =

1 + .447
1 − .447

= 2.62

Finally

zmax = − φ

2β
= −λφ

4π
= − (6.0 × 10−2)(1.50)

4π
= −7.2 × 10−3 m = −7.2 mm

We next solve the problem using the Smith chart. Referring to the figure below, we first
locate and mark the normalized input impedance, zin = 0.5 − j0.5. A line drawn from the
origin through this point intersects the outer chart boundary at the position 0.0881 λ on the
wavelengths toward load (WTL) scale. With a wavelength of 1.5 m, the 1 meter line is 0.6667
wavelengths long. On the WTL scale, we add 0.6667λ, or equivalently, 0.1667λ (since 0.5λ is
once around the chart), obtaining (0.0881 + 0.1667)λ) = 0.2548λ, which is the position of the
load. A straight line is now drawn from the origin though the 0.2548λ position. A compass
is then used to measure the distance between the origin and zin. With this distance set, the
compass is then used to scribe off the same distance from the origin to the load impedance,
along the line between the origin and the 0.2548λ position. That point is the normalized load
impedance, which is read to be zL = 2.6 + j0.18. Thus ZL = zL(400) = 1040 + j72. This is
in reasonable agreement with the analytic result of 1040 + j69.8. The difference in imaginary
parts arises from uncertainty in reading the chart in that region.

In transforming from the input to the load positions, we cross the r > 1 real axis of the chart at
r=2.6. This is close to the value of the VSWR, as we found earlier. We also see that the r > 1
real axis (at which the first Vmax occurs) is a distance of 0.0048λ (marked as .005λ on the chart)
in front of the load. The actual distance is zmax = −0.0048(1.5) m = −0.0072 m = −7.2 mm.

Problem 11.21
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11.22. A lossless two-wire line has a characteristic impedance of 300 Ω and a capacitance of 15 pF/m.
The load at z = 0 consists of a 600-Ω resistor in parallel with a 10-pF capacitor. If ω = 108

rad/s and the line is 20m long, use the Smith chart to find a) |ΓL|; b) s; c) Zin. First, the
wavelength on the line is found using λ = 2πvp/ω, where vp = 1/(CZ0). Assuming higher
accuracy in the given values than originally stated, we obtain

λ =
2π

ωCZ0
=

2π

(108)(15 × 10−12)(300)
= 13.96 m

The line length in wavelengths is therefore 20/13.96 = 1.433λ. The normalized load admittance
is now

yL = YLZ0 = Z0

[
1

RL
+ jωC

]
= 300

[
1

600
+ j(108)(10−11)

]
= 0.50 + j0.30

Problem 11.22

The yL value is plotted on the chart and labeled as yL. Next, yL is inverted to find zL by
transforming the point halfway around the chart, using the compass and a straight edge. The
result, labeled zL on the chart is read to be zL = 1.5 − j0.87. This is close to the computed
inverse of yL, which is 1.47 − j0.88. Scribing the compass arc length along the bottom scale
for reflection coefficient yields |ΓL| = 0.38. The VSWR is found by scribing the compass arc
length either along the bottom SWR scale or along the positive real axis of the chart, both
methods yielding s = 2.2. Now, the position of zL is read on the outer edge of the chart as
0.308λ on the WTG scale. The point is now transformed through the line length distance of
1.433λ toward the generator (the net chart distance will be 0.433λ, since a full wavelength is
two complete revolutions). The final reading on the WTG scale after the transformation is
found through (0.308 + 0.433 − 0.500)λ = 0.241λ. Drawing a line between this mark on the
WTG scale and the chart center, and scribing the compass arc length on this line, yields the
normalized input impedance. This is read as zin = 2.2 + j0.21 (the computed value found
through the analytic solution is zin = 2.21 + j0.219. The input impedance is now found by
multiplying the chart reading by 300, or Zin = 660 + j63 Ω.
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11.23. The normalized load on a lossless transmission line is zL = 2 + j1. Let λ = 20 m Make use of
the Smith chart to find:
a) the shortest distance from the load to the point at which zin = rin + j0, where rin > 1

(not greater than 0 as stated): Referring to the figure below, we start by marking the
given zL on the chart and drawing a line from the origin through this point to the outer
boundary. On the WTG scale, we read the zL location as 0.213λ. Moving from here
toward the generator, we cross the positive ΓR axis (at which the impedance is purely
real and greater than 1) at 0.250λ. The distance is then (0.250 − 0.213)λ = 0.037λ from
the load. With λ = 20 m, the actual distance is 20(0.037) = 0.74 m.

b) Find zin at the point found in part a: Using a compass, we set its radius at the distance
between the origin and zL. We then scribe this distance along the real axis to find
zin = rin = 2.61.

Problem 11.23

c) The line is cut at this point and the portion containing zL is thrown away. A resistor
r = rin of part a is connected across the line. What is s on the remainder of the line?
This will be just s for the line as it was before. As we know, s will be the positive real
axis value of the normalized impedance, or s = 2.61.

d) What is the shortest distance from this resistor to a point at which zin = 2 + j1? This
would return us to the original point, requiring a complete circle around the chart (one-
half wavelength distance). The distance from the resistor will therefore be: d = 0.500 λ−
0.037 λ = 0.463 λ. With λ = 20 m, the actual distance would be 20(0.463) = 9.26 m.

14



11.24. With the aid of the Smith chart, plot a curve of |Zin| vs. l for the transmission line shown
in Fig. 11.33. Cover the range 0 < l/λ < 0.25. The required input impedance is that at the
actual line input (to the left of the two 20Ω resistors. The input to the line section occurs just
to the right of the 20Ω resistors, and the input impedance there we first find with the Smith
chart. This impedance is in series with the two 20Ω resistors, so we add 40Ω to the calculated
impedance from the Smith chart to find the net line input impedance. To begin, the 20Ω
load resistor represents a normalized impedance of zl = 0.4, which we mark on the chart (see
below). Then, using a compass, draw a circle beginning at zL and progressing clockwise to
the positive real axis. The circle traces the locus of zin values for line lengths over the range
0 < l < λ/4.

Problem 11.24

On the chart, radial lines are drawn at positions corresponding to .025λ increments on the
WTG scale. The intersections of the lines and the circle give a total of 11 zin values. To these
we add normalized impedance of 40/50 = 0.8 to add the effect of the 40Ω resistors and obtain
the normalized impedance at the line input. The magnitudes of these values are then found,
and the results are multiplied by 50Ω. The table below summarizes the results.

l/λ zinl (to right of 40Ω) zin = zinl + 0.8 |Zin| = 50|zin|
0 0.40 1.20 60

.025 0.41 + j.13 1.21 + j.13 61

.050 0.43 + j.27 1.23 + j.27 63

.075 0.48 + j.41 1.28 + j.41 67

.100 0.56 + j.57 1.36 + j.57 74

.125 0.68 + j.73 1.48 + j.73 83

.150 0.90 + j.90 1.70 + j.90 96

.175 1.20 + j1.05 2.00 + j1.05 113

.200 1.65 + j1.05 2.45 + j1.05 134

.225 2.2 + j.7 3.0 + j.7 154

.250 2.5 3.3 165

15



11.24. (continued) As a check, the line input input impedance can be found analytically through

Zin = 40 + 50
[
20 cos(2πl/λ) + j50 sin(2πl/λ)
50 cos(2πl/λ) + j20 sin(2πl/λ)

]
= 50

[
60 cos(2πl/λ) + j66 sin(2πl/λ)
50 cos(2πl/λ) + j20 sin(2πl/λ)

]

from which

|Zin| = 50
[
36 cos2(2πl/λ) + 43.6 sin2(2πl/λ)
25 cos2(2πl/λ) + 4 sin2(2πl/λ)

]1/2

This function is plotted below along with the results obtained from the Smith chart. A fairly
good comparison is obtained.

Problem 11.24
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11.25. A 300-ohm transmission line is short-circuited at z = 0. A voltage maximum, |V |max = 10 V,
is found at z = −25 cm, and the minimum voltage, |V |min = 0, is found at z = −50 cm. Use
the Smith chart to find ZL (with the short circuit replaced by the load) if the voltage readings
are:

a) |V |max = 12 V at z = −5 cm, and vertV |min = 5 V: First, we know that the maximum
and minimum voltages are spaced by λ/4. Since this distance is given as 25 cm, we see
that λ = 100 cm = 1 m. Thus the maximum voltage location is 5/100 = 0.05λ in front
of the load. The standing wave ratio is s = |V |max/|V |min = 12/5 = 2.4. We mark
this on the positive real axis of the chart (see next page). The load position is now 0.05
wavelengths toward the load from the |V |max position, or at 0.30 λ on the WTL scale.
A line is drawn from the origin through this point on the chart, as shown. We next set
the compass to the distance between the origin and the z = r = 2.4 point on the real
axis. We then scribe this same distance along the line drawn through the .30 λ position.
The intersection is the value of zL, which we read as zL = 1.65 + j.97. The actual load
impedance is then ZL = 300zL = 495 + j290 Ω.

b) |V |max = 17 V at z = −20 cm, and |V |min = 0. In this case the standing wave ratio is
infinite, which puts the starting point on the r → ∞ point on the chart. The distance of
20 cm corresponds to 20/100 = 0.20 λ, placing the load position at 0.45 λ on the WTL
scale. A line is drawn from the origin through this location on the chart. An infinite
standing wave ratio places us on the outer boundary of the chart, so we read zL = j0.327
at the 0.45 λ WTL position. Thus ZL = j300(0.327) .= j98 Ω.

Problem 11.25
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11.26. A lossless 50Ω transmission line operates with a velocity that is 3/4c. A load, ZL = 60+j30 Ω
is located at z = 0. Use the Smith chart to find:
a) s: First we find the normalized load impedance, zL = (60 + j30)/50 = 1.2 + j0.6, which

is then marked on the chart (see below). Drawing a line from the chart center through
this point yields its location at 0.328λ on the WTL scale. The distance from the origin
to the load impedance point is now set on the compass; the standing wave ratio is then
found by scribing this distance along the positive real axis, yielding s = 1.76, as shown.
Alternately, use the s scale at the bottom of the chart, setting the compass point at the
center, and scribing the distance on the scale to the left.

Problem 11.26

b) the distance from the load to the nearest voltage minimum if f = 300 MHz: This distance
is found by transforming the load impedance clockwise around the chart until the negative
real axis is reached. This distance in wavelengths is just the load position on the WTL
scale, since the starting point for this scale is the negative real axis. So the distance is
0.328λ. The wavelength is

λ =
v

f
=

(3/4)c
300MHz

=
3(3 × 108)
4(3 × 108)

= 0.75 m

So the actual distance to the first voltage minimum is dmin = 0.328(0.75) m = 24.6 cm.

c) the input impedance if f = 200 MHz and the input is at z = −110cm: The wavelength
at this frequency is λ = (3/4)(3× 108)/(2× 108) = 1.125 m. The distance to the input in
wavelengths is then din = (1.10)/(1.125) = 0.9778λ. Transforming the load through this
distance toward the generator involves revolution once around the chart (0.500λ) plus the
remainder of 0.4778λ, which leads to a final position of 0.1498λ

.= 0.150λ on the WTG
scale, or 0.350λ on the WTL scale. A line is drawn between this point and the chart center.
Scribing the compass arc length through this line yields the normalized input impedance,
read as zin = 1.03+j0.56. The actual input impedance is Zin = zin×50 = 51.5 + j28.0 Ω.

18



11.27. The characteristic admittance (Y0 = 1/Z0) of a lossless transmission line is 20 mS. The line is
terminated in a load YL = 40 − j20 mS. Make use of the Smith chart to find:
a) s: We first find the normalized load admittance, which is yL = YL/Y0 = 2 − j1. This is

plotted on the Smith chart below. We then set on the compass the distance between yL

and the origin. The same distance is then scribed along the positive real axis, and the
value of s is read as 2.6.

b) Yin if l = 0.15 λ: First we draw a line from the origin through zL and note its intersection
with the WTG scale on the chart outer boundary. We note a reading on that scale of
about 0.287 λ. To this we add 0.15 λ, obtaining about 0.437 λ, which we then mark on
the chart (0.287 λ is not the precise value, but I have added 0.15 λ to that mark to obtain
the point shown on the chart that is near to 0.437 λ. This “eyeballing” method increases
the accuracy a little). A line drawn from the 0.437 λ position on the WTG scale to the
origin passes through the input admittance. Using the compass, we scribe the distance
found in part a across this line to find yin = 0.56− j0.35, or Yin = 20yin = 11 − j7.0 mS.

c) the distance in wavelengths from YL to the nearest voltage maximum: On the admittance
chart, the Vmax position is on the negative Γr axis. This is at the zero position on the
WTL scale. The load is at the approximate 0.213 λ point on the WTL scale, so this
distance is the one we want.

Problem 11.27
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11.28. The wavelength on a certain lossless line is 10cm. If the normalized input impedance is
zin = 1 + j2, use the Smith chart to determine:

a) s: We begin by marking zin on the chart (see below), and setting the compass at its
distance from the origin. We then use the compass at that setting to scribe a mark on
the positive real axis, noting the value there of s = 5.8.

b) zL, if the length of the line is 12 cm: First, use a straight edge to draw a line from the origin
through zin, and through the outer scale. We read the input location as slightly more than
0.312λ on the WTL scale (this additional distance beyond the .312 mark is not measured,
but is instead used to add a similar distance when the impedance is transformed). The
line length of 12cm corresponds to 1.2 wavelengths. Thus, to transform to the load, we
go counter-clockwise twice around the chart, plus 0.2λ, finally arriving at (again) slightly
more than 0.012λ on the WTL scale. A line is drawn to the origin from that position,
and the compass (with its previous setting) is scribed through the line. The intersection
is the normalized load impedance, which we read as zL = 0.173 − j0.078.

c) xL, if zL = 2 + jxL, where xL > 0. For this, use the compass at its original setting to
scribe through the r = 2 circle in the upper half plane. At that point we read xL = 2.62.

Problem 11.28
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11.29. A standing wave ratio of 2.5 exists on a lossless 60 Ω line. Probe measurements locate a voltage
minimum on the line whose location is marked by a small scratch on the line. When the load
is replaced by a short circuit, the minima are 25 cm apart, and one minimum is located at
a point 7 cm toward the source from the scratch. Find ZL: We note first that the 25 cm
separation between minima imply a wavelength of twice that, or λ = 50 cm. Suppose that the
scratch locates the first voltage minimum. With the short in place, the first minimum occurs
at the load, and the second at 25 cm in front of the load. The effect of replacing the short
with the load is to move the minimum at 25 cm to a new location 7 cm toward the load, or at
18 cm. This is a possible location for the scratch, which would otherwise occur at multiples of
a half-wavelength farther away from that point, toward the generator. Our assumed scratch
position will be 18 cm or 18/50 = 0.36 wavelengths from the load. Using the Smith chart (see
below) we first draw a line from the origin through the 0.36λ point on the wavelengths toward
load scale. We set the compass to the length corresponding to the s = r = 2.5 point on the
chart, and then scribe this distance through the straight line. We read zL = 0.79 + j0.825,
from which ZL = 47.4 + j49.5 Ω. As a check, I will do the problem analytically. First, we use

zmin = −18 cm = − 1
2β

(φ + π) ⇒ φ =
[
4(18)
50

− 1
]

π = 1.382 rad = 79.2◦

Now
|ΓL| =

s − 1
s + 1

=
2.5 − 1
2.5 + 1

= 0.4286

and so ΓL = 0.4286 � 1.382. Using this, we find

zL =
1 + ΓL

1 − ΓL
= 0.798 + j0.823

and thus ZL = zL(60) = 47.8 + j49.3 Ω.

Problem 11.29
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11.30. A 2-wire line, constructed of lossless wire of circular cross-section is gradually flared into a
coupling loop that looks like an egg beater. At the point X, indicated by the arrow in Fig.
11.34, a short circuit is placed across the line. A probe is moved along the line and indicates
that the first voltage minimum to the left of X is 16cm from X. With the short circuit
removed, a voltage minimum is found 5cm to the left of X, and a voltage maximum is located
that is 3 times voltage of the minimum. Use the Smith chart to determine:

a) f : No Smith chart is needed to find f , since we know that the first voltage minimum in
front of a short circuit is one-half wavelength away. Therefore, λ = 2(16) = 32cm, and
(assuming an air-filled line), f = c/λ = 3 × 108/0.32 = 0.938 GHz.

b) s: Again, no Smith chart is needed, since s is the ratio of the maximum to the minimum
voltage amplitudes. Since we are given that Vmax = 3Vmin, we find s = 3.

c) the normalized input impedance of the egg beater as seen looking the right at point
X: Now we need the chart. From the figure below, s = 3 is marked on the positive
real axis, which determines the compass radius setting. This point is then transformed,
using the compass, to the negative real axis, which corresponds to the location of a voltage
minimum. Since the first Vmin is 5cm in front of X, this corresponds to (5/32)λ = 0.1563λ
to the left of X. On the chart, we now move this distance from the Vmin location toward
the load, using the WTL scale. A line is drawn from the origin through the 0.1563λ mark
on the WTL scale, and the compass is used to scribe the original radius through this line.
The intersection is the normalized input impedance, which is read as zin = 0.86 − j1.06.

Problem 11.30
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11.31. In order to compare the relative sharpness of the maxima and minima of a standing wave,
assume a load zL = 4 + j0 is located at z = 0. Let |V |min = 1 and λ = 1 m. Determine the
width of the
a) minimum, where |V | < 1.1: We begin with the general phasor voltage in the line:

V (z) = V +(e−jβz + Γejβz)

With zL = 4 + j0, we recognize the real part as the standing wave ratio. Since the load
impedance is real, the reflection coefficient is also real, and so we write

Γ = |Γ| =
s − 1
s + 1

=
4 − 1
4 + 1

= 0.6

The voltage magnitude is then

|V (z)| =
√

V (z)V ∗(z) = V +
[
(e−jβz + Γejβz)(ejβz + Γe−jβz)

]1/2

= V +
[
1 + 2Γ cos(2βz) + Γ2

]1/2

Note that with cos(2βz) = ±1, we obtain |V | = V +(1 ± Γ) as expected. With s = 4 and
with |V |min = 1, we find |V |max = 4. Then with Γ = 0.6, it follows that V + = 2.5. The
net expression for |V (z)| is then

V (z) = 2.5
√

1.36 + 1.2 cos(2βz)

To find the width in z of the voltage minimum, defined as |V | < 1.1, we set |V (z)| = 1.1
and solve for z: We find

(
1.1
2.5

)2

= 1.36 + 1.2 cos(2βz) ⇒ 2βz = cos−1(−0.9726)

Thus 2βz = 2.904. At this stage, we note the the |V |min point will occur at 2βz = π. We
therefore compute the range, ∆z, over which |V | < 1.1 through the equation:

2β(∆z) = 2(π − 2.904) ⇒ ∆z =
π − 2.904

2π/1
= 0.0378 m = 3.8 cm

where λ = 1 m has been used.

b) Determine the width of the maximum, where |V | > 4/1.1: We use the same equation for
|V (z)|, which in this case reads:

4/1.1 = 2.5
√

1.36 + 1.2 cos(2βz) ⇒ cos(2βz) = 0.6298

Since the maximum corresponds to 2βz = 0, we find the range through

2β∆z = 2 cos−1(0.6298) ⇒ ∆z =
0.8896
2π/1

= 0.142 m = 14.2 cm
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11.32. A lossless line is operating with Z0 = 40 Ω, f = 20 MHz, and β = 7.5π rad/m. With a short
circuit replacing the load, a minimum is found at a point on the line marked by a small spot
of puce paint. With the load installed, it is found that s = 1.5 and a voltage minimum is
located 1m toward the source from the puce dot.

a) Find ZL: First, the wavelength is given by λ = 2π/β = 2/7.5 = 0.2667m. The 1m distance
is therefore 3.75λ. With the short installed, the Vmin positions will be at multiples of λ/2
to the left of the short. Therefore, with the actual load installed, the Vmin position as
stated would be 3.75λ + nλ/2, which means that a maximum voltage occurs at the load.
This being the case, the normalized load impedance will lie on the positive real axis of the
Smith chart, and will be equal to the standing wave ratio. Therefore, ZL = 40(1.5) = 60 Ω.

b) What load would produce s = 1.5 with |V |max at the paint spot? With |V |max at the
paint spot and with the spot an integer multiple of λ/2 to the left of the load, |V |max

must also occur at the load. The answer is therefore the same as part a, or ZL = 60 Ω.

11.33. In Fig. 11.17, let ZL = 40 − j10 Ω, Z0 = 50 Ω, f = 800 MHz, and v = c.

a) Find the shortest length, d1, of a short-circuited stub, and the shortest distance d that
it may be located from the load to provide a perfect match on the main line to the left
of the stub: The Smith chart construction is shown on the next page. First we find
zL = (40 − j10)/50 = 0.8 − j0.2 and plot it on the chart. Next, we find yL = 1/zL by
transforming this point halfway around the chart, where we read yL = 1.17 + j0.30. This
point is to be transformed to a location at which the real part of the normalized admittance
is unity. The g = 1 circle is highlighted on the chart; yL transforms to two locations on it:
yin1 = 1− j0.32 and yin2 = 1+ j0.32. The stub is connected at either of these two points.
The stub input admittance must cancel the imaginary part of the line admittance at that
point. If yin2 is chosen, the stub must have input admittance of −j0.32. This point is
marked on the outer circle and occurs at 0.452 λ on the WTG scale. The length of the stub
is found by computing the distance between its input, found above, and the short-circuit
position (stub load end), marked as Psc. This distance is d1 = (0.452−0.250)λ = 0.202 λ.
With f = 800 MHz and v = c, the wavelength is λ = (3 × 108)/(8 × 108) = 0.375 m.
The distance is thus d1 = (0.202)(0.375) = 0.758 m = 7.6 cm. This is the shortest of
the two possible stub lengths, since if we had used yin1, we would have needed a stub
input admittance of +j0.32, which would have required a longer stub length to realize.
The length of the main line between its load and the stub attachment point is found on
the chart by measuring the distance between yL and yin2, in moving clockwise (toward
generator). This distance will be d = [0.500 − (0.178 − 0.138)]λ = 0.46 λ. The actual
length is then d = (0.46)(0.375) = 0.173m = 17.3 cm.
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11.33b) Repeat for an open-circuited stub: In this case, everything is the same, except for the load-
end position of the stub, which now occurs at the Poc point on the chart. To use the shortest
possible stub, we need to use yin1 = 1− j0.32, requiring ys = +j0.32. We find the stub length
by moving from Poc to the point at which the admittance is j0.32. This occurs at 0.048 λ on
the WTG scale, which thus determines the required stub length. Now d1 = (0.048)(0.375) =
0.18 m = 1.8 cm. The attachment point is found by transforming yL to yin1, where the
former point is located at 0.178 λ on the WTG scale, and the latter is at 0.362 λ on the
same scale. The distance is then d = (0.362 − 0.178)λ = 0.184λ. The actual length is
d = (0.184)(0.375) = 0.069 m = 6.9 cm.

Problem 11.33
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11.34. The lossless line shown in Fig. 11.35 is operating with λ = 100cm. If d1 = 10cm, d = 25cm,
and the line is matched to the left of the stub, what is ZL? For the line to be matched, it
is required that the sum of the normalized input admittances of the shorted stub and the
main line at the point where the stub is connected be unity. So the input susceptances of the
two lines must cancel. To find the stub input susceptance, use the Smith chart to transform
the short circuit point 0.1λ toward the generator, and read the input value as bs = −1.37
(note that the stub length is one-tenth of a wavelength). The main line input admittance
must now be yin = 1 + j1.37. This line is one-quarter wavelength long, so the normalized
load impedance is equal to the normalized input admittance. Thus zL = 1 + j1.37, so that
ZL = 300zL = 300 + j411 Ω.

Problem 11.34

26



11.35. A load, ZL = 25 + j75 Ω, is located at z = 0 on a lossless two-wire line for which Z0 = 50 Ω
and v = c.
a) If f = 300 MHz, find the shortest distance d (z = −d) at which the input impedance has

a real part equal to 1/Z0 and a negative imaginary part: The Smith chart construction
is shown below. We begin by calculating zL = (25 + j75)/50 = 0.5 + j1.5, which we then
locate on the chart. Next, this point is transformed by rotation halfway around the chart
to find yL = 1/zL = 0.20 − j0.60, which is located at 0.088 λ on the WTL scale. This
point is then transformed toward the generator until it intersects the g = 1 circle (shown
highlighted) with a negative imaginary part. This occurs at point yin = 1.0 − j2.23,
located at 0.308 λ on the WTG scale. The total distance between load and input is then
d = (0.088 + 0.308)λ = 0.396λ. At 300 MHz, and with v = c, the wavelength is λ = 1 m.
Thus the distance is d = 0.396 m = 39.6 cm.

b) What value of capacitance C should be connected across the line at that point to provide
unity standing wave ratio on the remaining portion of the line? To cancel the input
normalized susceptance of -2.23, we need a capacitive normalized susceptance of +2.23.
We therefore write

ωC =
2.23
Z0

⇒ C =
2.23

(50)(2π × 3 × 108)
= 2.4 × 10−11 F = 24 pF

Problem 11.35
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11.36. The two-wire lines shown in Fig. 11.36 are all lossless and have Z0 = 200 Ω. Find d and the
shortest possible value for d1 to provide a matched load if λ = 100cm. In this case, we have
a series combination of the loaded line section and the shorted stub, so we use impedances
and the Smith chart as an impedance diagram. The requirement for matching is that the
total normalized impedance at the junction (consisting of the sum of the input impedances
to the stub and main loaded section) is unity. First, we find zL = 100/200 = 0.5 and mark
this on the chart (see below). We then transform this point toward the generator until we
reach the r = 1 circle. This happens at two possible points, indicated as zin1 = 1 + j.71 and
zin2 = 1 − j.71. The stub input impedance must cancel the imaginary part of the loaded
section input impedance, or zins = ±j.71. The shortest stub length that accomplishes this is
found by transforming the short circuit point on the chart to the point zins = +j0.71, which
yields a stub length of d1 = .098λ = 9.8 cm. The length of the loaded section is then found by
transforming zL = 0.5 to the point zin2 = 1 − j.71, so that zins + zin2 = 1, as required. This
transformation distance is d = 0.347λ = 37.7 cm.

Problem 11.36
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11.37. In the transmission line of Fig. 11.20, RL = Z0 = 50 Ω. Determine and plot the voltage at the
load resistor and the current in the battery as functions of time by constructing appropriate
voltage and current reflection diagrams: Referring to the figure, closing the switch launches a
voltage wave whose value is given by Eq. (50):

V +
1 =

V0Z0

Rg + Z0
=

50
75

V0 =
2
3
V0

We note that ΓL = 0, since the load impedance is matched to that of the line. So the voltage
wave traverses the line and does not reflect. The voltage reflection diagram would be that
shown in Fig. 11.21a, except that no waves are present after time t = l/v. Likewise, the
current reflection diagram is that of Fig. 11.22a, except, again, no waves exist after t = l/v.
The voltage at the load will be just V +

1 = (2/3)V0 for times beyond l/v. The current through
the battery is found through

I+
1 =

V +
1

Z0
=

V0

75
A

This current initiates at t = 0, and continues indefinitely.

11.38. Repeat Problem 37, with Z0 = 50Ω, and RL = Rg = 25Ω. Carry out the analysis for the time
period 0 < t < 8l/v. At the generator end, we have Γg = −1/3, as before. The difference is
at the load end, where ΓL = −1/3, whereas in Problem 37, the load was matched. The initial
wave, as in the last problem, is of magnitude V + = (2/3)V0. Using these values, voltage and
current reflection diagrams are constructed, and are shown below:
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11.38. (continued) From the diagrams, voltage and current plots are constructed. First, the load
voltage is found by adding voltages along the right side of the voltage diagram at the indicated
times. Second, the current through the battery is found by adding currents along the left side
of the current reflection diagram. Both plots are shown below, where currents and voltages
are expressed to three significant figures. The steady state values, VL = 0.5V and IB = 0.02A,
are expected as t → ∞.

11.39. In the transmission line of Fig. 11.20, Z0 = 50 Ω and RL = Rg = 25 Ω. The switch is closed
at t = 0 and is opened again at time t = l/4v, thus creating a rectangular voltage pulse in
the line. Construct an appropriate voltage reflection diagram for this case and use it to make
a plot of the voltage at the load resistor as a function of time for 0 < t < 8l/v (note that
the effect of opening the switch is to initiate a second voltage wave, whose value is such that
it leaves a net current of zero in its wake): The value of the initial voltage wave, formed by
closing the switch, will be

V + =
Z0

Rg + Z0
V0 =

50
25 + 50

V0 =
2
3
V0

On opening the switch, a second wave, V +′, is generated which leaves a net current behind
it of zero. This means that V +′ = −V + = −(2/3)V0. Note also that when the switch is
opened, the reflection coefficient at the generator end of the line becomes unity. The reflection
coefficient at the load end is ΓL = (25 − 50)/(25 + 50) = −(1/3). The reflection diagram is
now constructed in the usual manner, and is shown on the next page. The path of the second
wave as it reflects from either end is shown in dashed lines, and is a replica of the first wave
path, displaced later in time by l/(4v).a All values for the second wave after each reflection are
equal but of opposite sign to the immediately preceding first wave values. The load voltage as
a function of time is found by accumulating voltage values as they are read moving up along
the right hand boundary of the chart. The resulting function, plotted just below the reflection
diagram, is found to be a sequence of pulses that alternate signs. The pulse amplitudes are
calculated as follows:
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11.39. (continued)

l

v
< t <

5l

4v
: V1 =

(
1 − 1

3

)
V + = 0.44 V0

3l

v
< t <

13l

4v
: V2 = −1

3

(
1 − 1

3

)
V + = −0.15 V0

5l

v
< t <

21l

4v
: V3 =

(
1
3

)2 (
1 − 1

3

)
V + = 0.049 V0

7l

v
< t <

29l

4v
: V4 = −

(
1
3

)3 (
1 − 1

3

)
V + = −0.017 V0
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11.40. In the charged line of Fig. 11.25, the characteristic impedance is Z0 = 100Ω, and Rg = 300Ω.
The line is charged to initial voltage V0 = 160 V, and the switch is closed at t = 0. Determine
and plot the voltage and current through the resistor for time 0 < t < 8l/v (four round trips).
This problem accompanies Example 13.6 as the other special case of the basic charged line
problem, in which now Rg > Z0. On closing the switch, the initial voltage wave is

V + = −V0
Z0

Rg + Z0
= −160

100
400

= −40 V

Now, with Γg = 1/2 and ΓL = 1, the voltage and current reflection diagrams are constructed as
shown below. Plots of the voltage and current at the resistor are then found by accumulating
values from the left sides of the two charts, producing the plots as shown.
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11.41. In the transmission line of Fig. 11.37, the switch is located midway down the line, and is
closed at t = 0. Construct a voltage reflection diagram for this case, where RL = Z0. Plot
the load resistor voltage as a function of time: With the left half of the line charged to V0,
closing the switch initiates (at the switch location) two voltage waves: The first is of value
−V0/2 and propagates toward the left; the second is of value V0/2 and propagates toward the
right. The backward wave reflects at the battery with Γg = −1. No reflection occurs at the
load end, since the load is matched to the line. The reflection diagram and load voltage plot
are shown below. The results are summarized as follows:

0 < t <
l

2v
: VL = 0

l

2v
< t <

3l

2v
: VL =

V0

2

t >
3l

2v
: VL = V0
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11.42. A simple frozen wave generator is shown in Fig. 11.38. Both switches are closed simultaneously
at t = 0. Construct an appropriate voltage reflection diagram for the case in which RL = Z0.
Determine and plot the load voltage as a function of time: Closing the switches sets up a total
of four voltage waves as shown in the diagram below. Note that the first and second waves
from the left are of magnitude V0, since in fact we are superimposing voltage waves from the
−V0 and +V0 charged sections acting alone. The reflection diagram is drawn and is used to
construct the load voltage with time by accumulating voltages up the right hand vertical axis.
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