CHAPTER 12

12.1. Show that E,, = Ae?*0*+% is a solution to the vector Helmholtz equation, Sec. 12.1, Eq. (30),
for kg = wy/po€g and any ¢ and A: We take

2
% Acihor+e — (jro)2 Aeiborte — _2p
z

12.2. A 100-MHz uniform plane wave propagates in a lossless medium for which ¢, =5 and u, = 1.
Find:

a) vyt vy = ¢/ /& = 3 x 108/3/5 = 1.34 x 10® m/s.

b) B: B=w/v, = (2 x 10%)/(1.34 x 10%) = 4.69 m~".

c) At A=2n/f =1.34 m.
)

d) E,: Assume real amplitude Ej, forward z travel, and x polarization, and write

E; = Eyexp(—jfz)a, = Epexp(—j4.69z) a, V/m.

e) H,: First, the intrinsic impedance of the medium is n = n9/\/e, = 377/v/5 = 169 Q.
Then H, = (Eo/n) exp(—jfz)a, = (Ey/169) exp(—j4.69z) a, A/m.

f) <S>=(1/2)Re{Es, x H:} = (E3/337)a, W/m?

12.3. An H field in free space is given as H(z,t) = 10 cos(10%¢ — Bz)a, A/m. Find

a) (3: Since we have a uniform plane wave, 3 = w/c, where we identify w = 10® sec™!. Thus
B =10%/(3 x 108) = 0.33 rad/m.

b) A\: We know \ = 27/3 = 18.9 m.

c) E(z,t) at P(0.1,0.2,0.3) at t = 1 ns: Use E(z,t) = —noH (z,t) = —(377)(10) cos(10%¢ —
Br) = —3.77 x 102 cos(103¢ — Bz). The vector direction of E will be —a., since we require
that S = E x H, where S is z-directed. At the given point, the relevant coordinate is
x = 0.1. Using this, along with t = 10~? sec, we finally obtain

E(x,t) = —3.77 x 10% cos[(10%)(10™?) — (0.33)(0.1)]a, = —3.77 x 10% cos(6.7 x 10" %)a,
= —3.76 x 10%a, V/m

12.4. Given &(z,t) = Eye™“* sin(wt — ($2)a,, and 1 = |n|e’?, find:
a) E;: Using the Euler identity for the sine, we can write the given field in the form:
ej(wt_ﬁz) — e_j(wt_ﬂz)

5 '
E(z,t) = Eye ** 57 a, = —J—Oe_o‘zej(“’t_ﬂz)ax + c.c.
J

We therefore identify the phasor form as E,(z) = —jFEoe~**e¢ 5% a, V/m.

b) Hg: With positive z travel, and with E4 along positive x, Hy will lie along positive y.
Therefore Hy = —jEy/|n| e~ e 7P*e~%a, A/m.

c) <S>:
2

E
<8 >= (1/2)Re{E; x H;} = ﬁ e 2% cos pa, W/m?




12.5. A 150-MHz uniform plane wave in free space is described by Hy = (4 + j10)(2a, + ja,)e 7>
A/m.

a) Find numerical values for w, A, and 3: First, w = 2mrx150x10% = 37 x 10® sec”!. Second,
for a uniform plane wave in free space, A = 2rc/w = ¢/f = (3 x 10%)/(1.5 x 108) = 2m.
Third, f = 27/\ = wrad/m.

b) Find H(z,t) at t = 1.5 ns, z = 20 cm: Use

H(z,t) = Re{Hse/*'} = Re{(4 + j10)(2a, + ja,)(cos(wt — Bz) + jsin(wt — Bz)}
= [8cos(wt — Bz) — 20sin(wt — Bz)] a; — [10 cos(wt — [z) + 4sin(wt — [z)] a,

. Now at the given position and time, wt — 3z = (37 x 108)(1.5 x 107%) — 7(0.20) = 7 /4.
And cos(7/4) = sin(r/4) = 1/+/2. So finally,

1
H(z = 20cm, t = 1.5ns) = % (12a, + 14a,) = —8.5a, — 9.9a, A/m

¢) What is |E|nme? Have |E|maz = n0|H |maz, Where

|Hmaz = vVH, - Hz = [4(4 + j10)(4 — 10) + (5)(—7) (4 + 510)(4 — j10)]"/* = 24.1 A/m
Then |E| e = 377(24.1) = 9.08 kV/m.

12.6. A linearly-polarized plane wave in free space has electric field given by
E(z,t) = (25a, — 30a,) cos(wt — 50y) V/m. Find:
a) w: In free space, 8 = kg = w/c = w =50c =50 x 3 x 10% = 1.5 x 100 rad/s.
b) Eg = (25a, — 30a,) exp(—;j50y) V/m.
c) Hy: We use the fact that each to component of Eg, there will be an orthogonal H

component, oriented such that the cross product of E; with H, gives the propagation
direction. We obtain

1 .
H, = —— (25a, + 30a,) e 7°%
Mo

1 1
d) <S>-= 3 Re{Es x H:} = %Re{(%ax —30a,) x (—25a, — 30a,)}
0

= ———[(25)* + (30)%] a, = 2.0a, W/m?

12.7. The phasor magnetic field intensity for a 400-MHz uniform plane wave propagating in a
certain lossless material is (2a, — jba,)e /?** A/m. Knowing that the maximum amplitude
of E is 1500 V/m, find 3, n, A, vp, €, ptr, and H(z,y, z,t): First, from the phasor expression,
we identify 3 = 25 m~! from the argument of the exponential function. Next, we evaluate
Hy = [H| = vVH -H* = /22 + 52 = /29. Then n = Ey/Hy = 1500/+/29 = 278.5 Q. Then
A=2r/F =2mr/25 = .25 m = 25 cm. Next,

27 x 400 x 106
vp:f:WTzl.meSm/s
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12.7. (continued) Now we note that

n=2785=377 " = H _ 0546
€r €
And
v, = 1.01 x 10% = = € = 8.79
P v Hr€r Hr

We solve the above two equations simultaneously to find €, = 4.01 and p, = 2.19. Finally,

H(z,y,2,t) = Re {(Qay — j5az)e_j25mej“’t}
= 2cos(2m x 400 x 10% — 252)a, + 5sin(27m x 400 x 10% — 252)a,
= 2cos(8m x 10%t — 25x)a, + 5sin(87 x 10% — 25x)a, A/m

12.8. Let the fields, £(z,t) = 1800cos(1077wt — Bz)a, V/m and H(z,t) = 3.8 cos(1077t — Bz)a,
A/m, represent a uniform plane wave propagating at a velocity of 1.4 x 10® m/s in a perfect
dielectric. Find:

a) f=w/v=(10"7)/(1.4 x 108) = 0.224m~!.

b) A=2r/3 =2r/.224 = 28.0m.

c) n=|E|/|H| = 1800/3.8 = 474 Q.

d)

wr: Have two equations in the two unknowns, u, and €.: 17 = no\/pr/€, and B =
wy/fir€. /c. Eliminate €, to find

C[Ben]?  [(224)(3 x 10%)(474)]*
fr = Lno} - [ (107m)(377) -2

e) er = pr(no/n)? = (2.69)(377/474)* = L.70.

12.9. A certain lossless material has p, = 4 and €, = 9. A 10-MHz uniform plane wave is propagating
in the a, direction with E;y =400 V/m and E,, = E,o =0 at P(0.6,0.6,0.6) at ¢ = 60 ns.

a) Find (3, A, vy, and n: For a uniform plane wave,

w 21 x 107
= = — r€p = ——5— 4 - 4
B =w\/p c\/u € 3% 10° (4)(9) = 0.47 rad/m

Then A = (27)/8 = (27)/(0.47w) = 5m. Next,

wo 21 x 107
B 4w x 101

r 4
nz\/ﬁzno,/“—z?m\ﬁzm
€ €r 9
3

’Up:

=5x%x10" m/s

Finally,



b) Find E(t) (at P): We are given the amplitude at ¢ = 60 ns and at y = 0.6 m. Let the
maximum amplitude be E,,,., so that in general, E, = E,,4, cos(wt — fy). At the given
position and time,

E, =400 = B4, cos[(2m x 107)(60 x 107%) — (47 x 1071)(0.6)] = Epnaz cos(0.967)
= —0.99E, 4z

S0 Epmasr = (400)/(—0.99) = —403 V/m. Thus at P, E(t) = —403 cos(27 x 107¢) V /m.

c) Find H(t): First, we note that if £ at a given instant points in the negative x direction,
while the wave propagates in the forward y direction, then H at that same position and
time must point in the positive z direction. Since we have a lossless homogeneous medium,
7 is real, and we are allowed to write H(t) = E(t)/n, where 7 is treated as negative and
real. Thus

E,(t) —403

= Toni cos(2m x 1077t) = 1.61 cos(2m x 107 7t) A/m

12.10. In a medium characterized by intrinsic impedance 1 = |n|e’?, a linearly-polarized plane wave
propagates, with magnetic field given as Hy = (Hoy,a, + Hp.a.) e e 7%, Find:

a) E;: Requiring orthogonal components of Eg for each component of Hg, we find
E, = |n|[Ho-a, — Hoya,| e ** e—IBT i

b) E(z,t) = Re{Ese’'} = | [Ho- ay — Hoya:] e % cos(wt — Bz + ¢).
¢) H(z,t) =Re{Hse’*'} = [Hoy,a, + Hy, a,] e cos(wt — Bz).

1 1
d) <S>= 3 Re{E, x H;} = §|77| [Hgy + Hj.] e %" cospa, W/m?

12.11. A 2-GHz uniform plane wave has an amplitude of E,y = 1.4 kV/m at (0,0,0,¢ = 0) and is
propagating in the a, direction in a medium where ¢’ = 1.6 x 107! F/m, ¢ = 3.0 x 10711
F/m, and g = 2.5 uH/m. Find:

a) E, at P(0,0,1.8cm) at 0.2 ns: To begin, we have the ratio, €’/¢ = 1.6/3.0 = 0.533. So

! 1 2
a=w % 1—|—(€€—,> -1
2.5 x 10-6)(3.0 x 1011 1/2
:(gﬁxzxm%\/( 5 x 10 >§3OX 0 )[\/1+(.533)2—1} = 28.1 Np/m

Then

1/2

1/2
e e 2 /
0 =wi\] — 1+(— ) +1 =112rad/m
!/
€
Thus in general,

E,(z,t) = Lde 21 cos(4m x 10°t — 112z) kV/m
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2.11a. (continued) Evaluating this at ¢ = 0.2 ns and z = 1.8 cm, find

E,(1.8cm,0.2ns) = 0.74 kV/m

b) H, at P at 0.2 ns: We use the phasor relation, H,s = —FE,,/n where

1 2.5 x 106 1
Y L S— ke : — 263 + j65.7 = 271/ 14°
€ /1 —j(e"/e) 3.0 x 1075 /T — j(.533)
So now
Ey (1.4 x 10%)e= 28 12g 71122 9281z —j1122_—514°
H,, = T =— 7T 180 = —5.16e e e A/m
Then

H,(z,t) = —5.16e" 2812 cos(4m x 107t — 1122 — 14°)
This, when evaluated at t = 0.2 ns and z = 1.8 cm, yields

H,(1.8cm,0.2ns) = —3.0A/m

12.12. The plane wave E; = 300e~7%%a, V/m is propagating in a material for which y = 2.25 uH/m,
¢/ =9 pF/m, and €’ = 7.8 pF/m. If w = 64 Mrad/s, find:
a) a: We use the general formula, Eq. (35):

L€’ AN
o B (S) -1
oa=w 5 + (e’)
2.25 x 10-6)(9 x 1012 1/2
— (64 x 106)\/( . 2)( x ) [\/1 +(867)2 — 1] — 0.116 Np/m

b) (: Using (36), we write

1/2

1/2
/J:El E// 2
B =w\/— 1—}—(?) +1 = .311 rad/m
¢) v, =w/B = (64 x 10°)/(.311) = 2.06 x 10® m/s.
d) A=2n/p=2n/(.311) = 20.2 m.
e) n: Using (39):
Kk 1 ~]2.25x 1076 1

T=NVe —j(€"/€) 9 x10-12 /1 —4(.867)

f) H,: With E; in the positive y direction (at a given time) and propagating in the positive

x direction, we would have a positive z component of Hg, at the same time. We write
(with jk = a + jB):

= 407 + j152 = 434.5¢73% O

300
 434.5¢3-36

— 0'696—.116‘16—].3111‘6—]~36az A/m

H,=—"a, e IFq, = (.69 T 10T T30,
n
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2.12g)

12.13.

£(3,2,4,10ns): The real instantaneous form of E will be
E(z,y,2,t) = Re {E,e’*'} = 300e** cos(wt — Bz)a,

Therefore

E(3,2,4,10ns) = 300e116®) cos[(64 x 10°)(107%) — .311(3)]a, = 203 V/m

Let jk = 0.2+ j1.5m~! and n = 450 + j60 Q for a uniform plane wave propagating in the a,

direction. If w = 300 Mrad/s, find y, €/, and €”: We begin with

L 1 .
=4/ ————— =450+ 560
TN ’
and
gk = jw\/pue /1 —j(e"/e') = 0.2+ j1.5
Then )
.M : : 5
=— ——— = (450 + 560)(450 — 760) = 2.06 x 10
m=g NiECITIE ( 760)( Jj60)
and

(jk)(jE)* = w?pe’ /14 (¢"/€)? = (0.2 4+ j1.5)(0.2 — j1.5) = 2.29
Taking the ratio of (2) to (1),

(]k)(]k)* 27 I\2 17 I\2 2.29 -5
NAACYa. 1 =" —111x10
- WA (/) = 356 % 108 .
Then with w = 3 x 108,
1.11 x 1075 1.23 x 1022

= BxE A+ @7 ~ 0+ (@)D

Now, we use Egs. (35) and (36). Squaring these and taking their ratio gives

a? 1+ (/€)2  (0.2)?

BTt (@R (L5)?

We solve this to find €”/¢/ = 0.271. Substituting this result into (3) gives ¢ = 1.07 x 107!
F/m. Since ¢’ /¢’ = 0.271, we then find €’ = 2.90 x 1072 F/m. Finally, using these results in

either (1) or (2) we find u = 2.28 x 107% H/m. Summary: p = 2.28 x 1076 H/m,

¢ =1.07x 107" F/m, and €’ = 2.90 x 10712 F /m.




12.14. A certain nonmagnetic material has the material constants ¢, = 2 and €’/e’ = 4 x 107% at
w = 1.5 Grad/s. Find the distance a uniform plane wave can propagate through the material
before:

a) it is attenuated by 1 Np: First, ¢’ = (4 x 10%)(2)(8.854 x 107!2) = 7.1 x 10715 F/m.
Then, since € /¢’ << 1, we use the approximate form for «, given by Eq. (51) (written
in terms of €”):

Cwe’ [ (1.5 x10%)(7.1 x 1071%) 377

2 Ve o 2

=1.42 x 107® Np/m

Lo
o N

6 m

The required distance is now z; = (1.42 x 1073)7! =

b) the power level is reduced by one-half: The governing relation is e=2%*1/2 = 1/2, or
21/ = In2/2a = In2/2(1.42 x 1073) = 244 m.

c) the phase shifts 360°: This distance is defined as one wavelength, where A\ = 27/
(2me) /(wy/€)) = [2m(3 x 10%)]/[(1.5 x 10°)v/2] = 0.89 m.

12.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small
region. Calculate the wavelength in centimeters and the attenuation in nepers per meter if
the wave is propagating in a non-magnetic material for which

a) €. =1 and €/ = 0: In a non-magnetic material, we would have:

- 5 12
€ 6/ 6//
and
- 11/2
HOEQEL e 2
ﬂ:w 5 1+ - —|-1

With the given values of €. and €, it is clear that 8 = w,/ugey = w/c, and so

A=27/3=2nc/w =3 x 1019/101° = 3 cm. It is also clear that o = 0.

b) €. =1.04 and € = 9.00x 10~%: In this case €/ /e!. << 1, and so 8 = w/e./c = 2.13 cm ™!
Thus A = 27/ = 2.95 cm. Then

fo€o  w € 271 x 1019 (9.00 x 107%)

Ve 2\/d 2x3x105 /104

=9.24 x 1072 Np/m




2.15¢)

12.16.

12.17.

e, = 2.5 and €/ = 7.2: Using the above formulas, we obtain

1/2

27 x 10104/2. 2\?

LS 1+<7—> +1| =471 cm™?

(3 x 1010)/2 2.5

and so A = 27/ = 1.33 cm. Then
. 1/2

21 x 1019y/2.5 7.2
=X T Vi 1+(—> ~1| =335 Np/m
(3 x 108)/2 2.5 A

The power factor of a capacitor is defined as the cosine of the impedance phase angle, and
its Q is wCR, where R is the parallel resistance. Assume an idealized parallel plate capacitor
having a dielecric characterized by o, €, and u,.. Find both the power factor and @ in terms
of the loss tangent: First, the impedance will be:

, R () _ ploiReC _ 1-4Q

_R+(j%c> T+ (RwC)2 14 Q2

Now R = d/(cA) and C = €A/d, and so Q = we'/o = 1/l.t. Then the power factor is
P.F = cosftan™!(—Q)] = 1/+4/1 + Q2.

Let n = 250 4+ j30Q and jk = 0.2 4+ j2m~*! for a uniform plane wave propagating in the a,
direction in a dielectric having some finite conductivity. If |E| = 400 V/m at z = 0, find:
a) <S> at z=0and z =60 cm: Assume z-polarization for the electric field. Then

1 1 . 4 .

<S>= §Re {E; xH} = §Re {4006_aze_]ﬂzax X i*oe_o‘zefﬂzay}
n

= 1(400)2@—2‘12}@ Il —soxi0te202 e d L1,
2 T 250 — 530 | °*

= 31572022 5, W/m?

Evaluating at z = 0, obtain < S > (2 = 0) = 315a, W/m?,
and at z = 60 cm, P, 4,(z = 0.6) = 31567 2(02)(0.6)5  — 248 a, W/mz.

b) the average ohmic power dissipation in watts per cubic meter at z = 60 cm: At this point
a flaw becomes evident in the problem statement, since solving this part in two different
ways gives results that are not the same. I will demonstrate: In the first method, we use

Poynting’s theorem in point form (first equation at the top of p. 366), which we modify
for the case of time-average fields to read:

V- <S>=<J-E>

where the right hand side is the average power dissipation per volume. Note that the
additional right-hand-side terms in Poynting’s theorem that describe changes in energy
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stored in the fields will both be zero in steady state. We apply our equation to the result
of part a:

d
<J-E>=-V-<8>=-—-315 e200-22 — (0.4)(315)e2(0-2* = 126704 W/m?
z

At 2z = 60 cm, this becomes < J - E >=99.1 W/m3. In the second method, we solve for
the conductivity and evaluate < J-E >= 0 < E? >. We use

ik = jwn e /T = (@)

and

YN S—
e

k 1
I Jwe [1 —J (6—/>] = jwe' + we”’
n €

Identifying o0 = we”, we find

ik 0.2+ j2 »
—Red "V —Rel 2272 L 17451073 S
7 e{n} e{Q50+j3O % /m

We take the ratio,

Now we find the dissipated power per volume:
1
o< E?>=1.74x10"3 <§> (400670.2z)2

At 2z = 60 cm, this evaluates as 109 W/m3. One can show that consistency between the
two methods requires that
1
Ref oh =17
n* 2a

This relation does not hold using the numbers as given in the problem statement and the
value of o found above. Note that in Problem 12.13, where all values are worked out, the
relation does hold and consistent results are obtained using both methods.

12.18. Given, a 100MHz uniform plane wave in a medium known to be a good dielectric. The phasor
electric field is E; = 4e7%%%¢77292a, V/m. Not stated in the problem is the permeabil-
ity, which we take to be pg. Also, the specified distance in part f should be 10m, not 1km.
Determine:

a) €: As a first step, it is useful to see just how much of a good dielectric we have. We use
the good dielectric approximations, Egs. (60a) and (60b), with o = we”’. Using these, we
take the ratio, #/a, to find

B _ 20 _wVid [L+(1/8)(/e)] <e> ! <6>

a 05 (we"/2)\/ 1€

This becomes the quadratic equation:

"\ 2 7
(%) —~ 160 <€—/> +8=0
€ €

9
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12.18a (continued) The solution to the quadratic is (¢”/€’) = 0.05, which means that we can neglect
the second term in Eq. (60b), so that 8 = wy/u€e’ = (w/c)\/e.. With the given frequency of
100 MHz, and with g = po, we find /e, = 20(3/27) = 9.55, so that €, = 91.3, and finally
€ =€e=81x10"1 F/m.

b) €”’: Using Eq. (60a), the set up is

we”’ / 2(0.5) /¢ 1078 _11
; = X105\ 5~ 2@y VOIS T A0 10T F/m

c) n: Using Eq. (62b), we find

- K 1 /e 377 , ,
n \/6,[ +]2<6,>} o5 (1+7025) = (395+j0.99) ohms

d) Hg: This will be a y-directed field, and will be

E, 4 , ) )
HS =—a,= (39 = - 5 99) —0.526—]202 ay — O.1016—0.526—]2026—]0025 ay A/Il’l
. 70.

e) < S >: Using the given field and the result of part d, obtain

1 0.101)(4

<8 >= JRe{E, x H{} = %6_2(0'5” 0s(0.025) a, = 0.202¢ " a, W /m?

f) the power in watts that is incident on a rectangular surface measuring 20m x 30m at
z = 10m (not 1km): At 10m, the power density is < S >= 0.202¢ 71 = 9.2x 1075 W/m?.
The incident power on the given area is then P = 9.2 x 107 x (20)(30) = 5.5 mW.

12.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between
the cylinders is filled with a perfect dielectric for which e = 1079 /47 F/m and p, = 1. If E in
this region is (500/p) cos(wt — 4z)a, V/m, find:

a) w, with the help of Maxwell’s equations in cylindrical coordinates: We use the two curl
equations, beginning with V x E = —0B/0t, where in this case,

oE, 2000 83
VxE= W = sin(wt — 4z)a, = 8t¢ a
So 2000 2000
By = / sin(wt — 4z)dt = cos(wt —4z) T
p wp
Then

By 2000

po (4 x 107 7)wp
We next use V x H = 9D /0t, where in this case
OHy — 10(pHy)

H, = cos(wt —4z) A/m

VxH=—-—— a,
X 92 oF t p  Op
where the second term on the right hand side becomes zero when substituting our H.
So
O0Hy 8000 . oD,
VXH——Wap——msm(wt—élz) p = 8t ap
And
8000 8000
D,= | ——————sin(wt — 4z)dt = t—4 2
o / (I % 10-T)wp sin(w z) (dm x 107w cos(w z) C/m

10



12.19a. (continued) Finally, using the given e,

D, 8000

— = t—4z) V
; (10_16)w2pcos(w z) V/m

E,=

This must be the same as the given field, so we require

8000 500
—(10_16) s =— = w=4X 10® rad/s
wep p -

b) H(p, z,t): From part a, we have

2000

H - =Y
(028 = s 10Twp

4.0
cos(wt — 42)a, = — cos(4 x 10% — 42)a, A/m
p

c) S(p, ¢, z): This will be

500 4.0
S(p, ¢, 2) = E x H =~ cos(4 x 10% — 42)a, x — cos(4 x 105t — 4z)a,
p p

_20x107?

cos?(4 x 108t — 42)a, W/m?
2
p

d) the average power passing through every cross-section 8 < p < 20 mm, 0 < ¢ < 2.
Using the result of part ¢, we find < S >= (1.0 x 10%)/p?a, W/m?. The power through
the given cross-section is now

27 .020 3
1.0x1 2
/ / OX 0 dd¢_27r><1031n(80>:5.7kw
008

12.20. If E5 = (60/r)sinf e 72" ap V/m, and Hy = (1/47r)sinf e 72" a, A/m in free space, find the
average power passing outward through the surface r = 10°, 0 < § < /3, and 0 < ¢ < 2.

15sin’ 0

1
S >=— E, xH} =
<S> 2Re{ x H:} 52

a, W/m?

Then, the requested power will be

27 pm/3 15 9 /3
/ / sin a, -a, r’sin 0dode = 15/ sin® 0 df
0

S omr?

/3 2
=15 <_§ cos f(sin? 6 + 2)) . = % 3.13 W

8

Note that the radial distance at the surface, r = 10° m, makes no difference, since the power
density dimishes as 1/r2.
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12.21. The cylindrical shell, 1 cm j p j 1.2 cm, is composed of a conducting material for which o = 10°
S/m. The external and internal regions are non-conducting. Let H, = 2000 A/m at p = 1.2
cm.

a) Find H everywhere: Use Ampere’s circuital law, which states:
yf H - dL = 27p(2000) = 27(1.2 x 10~2)(2000) = 487 A = L

Then in this case

3 I 48
= a, = a;
Area (1.44 — 1.00) x 10—4

=1.09 x 10°a, A/m?

With this result we again use Ampere’s circuital law to find H everywhere within the
shell as a function of p (in meters):

1 2m

p 54.5
Hyi(p) = — / 1.09 x 10% pdpde = —=(10*p*> — 1) A/m (.01 < p < .012)
2mp Jo .01 P

Outside the shell, we would have

48T
Hga(p) = mp 24/p A/m (p>.012)

Inside the shell (p < .01m), Hy = 0 since there is no enclosed current.
b) Find E everywhere: We use

J 1.09 x10°

E-="
o 106

a,=1.09a, V/m

which is valid, presumeably, outside as well as inside the shell.

c) Find S everywhere: Use

54.5
P=ExH=109a, x —(10*p? — 1) a,
P

59.4
=-———(10"p* - 1)a, W/m? (.01 <p<.012m)
P

Outside the shell,

24 26
S=1.09a, x —a,=—-—a, W/m? (p>.012m)
p P
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12.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm, respec-
tively. Both conductors have thicknesses much greater than §. The dielectric is lossless and
the operating frequency is 400 MHz. Calculate the resistance per meter length of the:

a) inner conductor: First

1 1

0= VT fuo - V(4 x 108)(4m x 10-7)(5.8 x 107)

=33x10"%m = 3.3um

Now, using (70) with a unit length, we find

1 1
2macd  2m(2 x 1073)(5.8 x 107)(3.3 x 10-6)

R, = = 0.42 ohms/m

b) outer conductor: Again, (70) applies but with a different conductor radius. Thus

2
Ry = ~(042) = 0.12 ohms/m

Rout = b

¢) transmission line: Since the two resistances found above are in series, the line resistance
is their sum, or R = R;,, + Ryt = 0.54 ohms/m.

12.23. A hollow tubular conductor is constructed from a type of brass having a conductivity of
1.2 x 107 S/m. The inner and outer radii are 9 mm and 10 mm respectively. Calculate the
resistance per meter length at a frequency of

a) dc: In this case the current density is uniform over the entire tube cross-section. We

write: I .
R(dc) = = = =14x1073Q
(o) = 73 = T2 x 1077 (012 — 0097 . /m

b) 20 MHz: Now the skin effect will limit the effective cross-section. At 20 MHz, the skin
depth is

§(20MHz) = |7 fuoo] ™% = [7(20 x 10%) (47 x 1077)(1.2 x 107)]71/2 =3.25 x 107° m

This is much less than the outer radius of the tube. Therefore we can approximate the
resistance using the formula:

L 1 1 s
ROMHz) =20 = 5005 = (1.2 x 107)(27(.01))(3.25 x 10-5) 41 % 1077 $Y/m

¢) 2 GHz: Using the same formula as in part b, we find the skin depth at 2 GHz to be § =
3.25 x 107% m. The resistance (using the other formula) is R(2GHz) = 4.1 x 10~ Q/m.
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12.24a. Most microwave ovens operate at 2.45 GHz. Assume that o = 1.2 x 10° S/m and p, = 500
for the stainless steel interior, and find the depth of penetration:

1 1

O= Frfae /(245 x 109) (47 x 10-7)(1.2 x 105

=9.28 x 107 %m = 9.28um

b) Let Es =50/ 0° V/m at the surface of the conductor, and plot a curve of the amplitude
of E, vs. the angle of F, as the field propagates into the stainless steel: Since the
conductivity is high, we use (62) to write a = § = /wfuo = 1/§. So, assuming that the
direction into the conductor is z, the depth-dependent field is written as

Ey(z) = 50e~ e ™97 = 50e*/%e77%/% = 50 exp(—2/9.28) exp(—j 2/9.28)
——

amplitude angle

where z is in microns. Therefore, the plot of amplitude versus angle is simply a plot of
e~ " versus z, where x = 2/9.28; the starting amplitude is 50 and the 1/e amplitude (at
z=19.28 pm) is 18.4.

12.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength
of 0.3 mm and a velocity of 3 x 10° m/s. Assuming the conductor is non-magnetic, determine
the frequency and the conductivity: First, we use

v 3x10°
=—=—"_"_—10°Hz=1GH
f=3=3xq0a =10 He=1CHz
Next, for a good conductor,
A 1 41 47

S - - =1.1x10°S
o 2r mfpo - AN2fu (9 x1078)(107)(4m x 1077) L1x 107 $/m

12.26. The dimensions of a certain coaxial transmission line are a = 0.8mm and b = 4mm. The outer
conductor thickness is 0.6mm, and all conductors have o = 1.6 x 107 S/m.
a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz: First

1 1

0= Valuo  \/m(24 x 108)(dx x 10-7)(1.6 x 107)

=2.57 x 107 %m = 2.57um

Then, using (70) with a unit length, we find

1 1
- 2macs  27(0.8 x 1073)(1.6 x 107)(2.57 x 10-9)

R, = 4.84 ohms/m

The outer conductor resistance is then found from the inner through

Y Rin = %(4.84) = 0.97 ohms/m

Rout = b

The net resistance per length is then the sum, R = R;;, + Ryt = 5.81 ohms/m.
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12.26b. Use information from Secs. 6.4 and 9.10 to find C' and L, the capacitance and inductance per
unit length, respectively. The coax is air-filled. From those sections, we find (in free space)

2meg  2m(8.854 x 10712)

C= =3.46 x 107" F/m

In(b/a) In(4/.8)
In(b/a) = 47”;7;07 In(4/.8) = 3.22 x 10~7 H/m

¢) Find o and ( if « —|—]B = /jwC(R + jwL): Taking real and imaginary parts of the given
expression, we find

- 11/2
VILC R\’
a:Re{ ij’(R—i—ij)}:w\/5 1+<E> -1
and i e
: , wVLC R\’
5:Im{ ij(R—l—]wL)}: NG 1+(E> +1

These can be found by writing out « = Re { JwC(R + ij)} = (1/2)y/jwC(R + ij)+I
c.c., where c.c denotes the complex conjugate. The result is squared, terms collected, and

the square root taken. Now, using the values of R, C, and L found in parts a and b, we
find o = 3.0 x 1072 Np/m and 3 = 50.3 rad/m.

12.27. The planar surface at z = 0 is a brass-Teflon interface. Use data available in Appendix C to
evaluate the following ratios for a uniform plane wave having w = 4 x 10 rad/s:

a) QTef/Qbrass: From the appendix we find €’ /¢’ = .0003 for Teflon, making the material a

good dielectric. Also, for Teflon, €. = 2.1. For brass, we find o = 1.5 x 107 S/m, making

brass a good conductor at the stated frequency. For a good dielectric (Teflon) we use the

approximations:
Lo | €’ 1 1/e"\ w
“73 ?:<?>(§>w ne=g\a)eve

ety (5] o2

For brass (good conductor) we have

Q=B = \/Tfl0brass = \/ (4 x 1019) (47 x 10~7)(1.5 x 107) = 6.14 x 10° m™*

Now
atet  1/2("/€) (w/c)\/e.  (1/2)(.0003)(4 x 101°/3 x 108)v/2.1 s
= = = =4.7x 10"
(brass RV 7TfILLO'braSS 6.14 x 10
b)
)\Tef o (27T/6Tef) . ﬁbrass _ Cy/ qua—brass _ (3 X 108)(614 X 105) —392x 103

Morass  (27/Bbrass)  BTet W\/€ Tes (4 x 1010)y/2.1
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12.27. (continued)

c)

UTef (w/ﬁTef) . ﬁbrass

Ubrass (w/ﬂbrass) B 6Tef

=3.2x 103 as before

12.28. A uniform plane wave in free space has electric field given by E, = 10e=77%a, + 15e_jﬁ“"ay
V/m.

a) Describe the wave polarization: Since the two components have a fixed phase difference
(in this case zero) with respect to time and position, the wave has linear polarization,

with the field vector in the yz plane at angle ¢ = tan=1(10/15) = 33.7° to the y axis.

b) Find H: With propagation in forward x, we would have

~10 . 1 . . ,
¢ = F?e_]ﬁmay + 3—7576_761"::12 A/m = —26.56_m‘”ay +39.8¢ 757, mA/m

c¢) determine the average power density in the wave in W/m?: Use

1 . 1[(10)? (15)2
Poug = 5Re {E, xH!} = 5| For e T oA = 0.43a, W/m? or P,,, = 0.43 W/m?

12.29. Consider a left-circularly polarized wave in free space that propagates in the forward z direc-
tion. The electric field is given by the appropriate form of Eq. (100).
a) Determine the magnetic field phasor, Hy:
We begin, using (100), with E; = Ey(a, + ja,)e 7%*. We find the two components of
H, separately, using the two components of E;. Specifically, the x component of E; is
associated with a y component of H,, and the y component of E, is associated with a
negative z component of Hy. The result is

Mo

H, (ay — jag) e~ IP%

b) Determine an expression for the average power density in the wave in W/m? by direct
application of Eq. (77): We have

1 * 1 . —jiBz E . Bz
P, o= QRe(ES x HY) = iRe <E0(aw + jay)e 3Bz n—;)(ay — jag)etiP )
Eg 5 . .
= —a, W/m* (assuming Ej is real)
"o
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12.30. The electric field of a uniform plane wave in free space is given by E; = 10(a, + ja,)e 75%.
Determine:

a)

b)

f: From the given field, we identify § = 50 = w/c (in free space), so that f = w/27 =
50c/2m = 2.39 GHz.

H,: Each of the two components of E; must pair with a magnetic field vector, such that
the cross product of electric with magnetic field gives a vector in the positive y direction.
The overall magnitude is the electric field magnitude divided by the free space intrinsic
impedance. Thus

10 ;
= — —550y
s 377 (az ]az)e
1 1
<8 >= §R6{Es xH:} = % [(a, X a;) — (a, x a,)] = % a, = 0.27a, W/m?

Describe the polarization of the wave: This can be seen by writing the electric field in
real instantaneous form, and then evaluating the result at y = O:

£(0,t) = 10[cos(wt) a, — sin(wt) a,]

At t = 0, the field is entirely along z, and then acquires an increasing negative x com-
ponent as t increases. The field therefore rotates clockwise in the y = 0 plane when
looking back toward the plane from positive y. Since the wave propagates in the positive
y direction and has equal x and z amplitudes, we identify the polarization as left circular.

12.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, is input to a
lossless anisotropic material, in which the dielectric constant encountered by waves polarized
along y (er,) differs from that seen by waves polarized along x (€,5). Suppose €., = 2.15,
€ry = 2.10, and the wave electric field at input is polarized at 45° to the positive x and y axes.
Assume free space wavelength .

a)

Determine the shortest length of the material such that the wave as it emerges from the
output end is circularly polarized: With the input field at 45°, the  and y components are
of equal magnitude, and circular polarization will result if the phase difference between
the components is 7/2. Our requirement over length L is thus 8,L — §,L = /2, or

™ e
L: =

206: — By)  20(v/ers — Jery)

With the given values, we find,

(58.3)mc
2w

L= 58.3

A
1= 14.6 A

Will the output wave be right- or left-circularly-polarized? With the dielectric constant
greater for x-polarized waves, the x component will lag the y component in time at the out-
put. The field can thus be written as E = Ey(a, —ja,), which is left circular polarization.
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12.32. Suppose that the length of the medium of Problem 12.31 is made to be twice that as determined
in the problem. Describe the polarization of the output wave in this case: With the length
doubled, a phase shift of 7w radians develops between the two components. At the input, we
can write the field as E4(0) = Ey(a, + a,). After propagating through length L, we would
have,

ES(L) — Eo[e_jﬂzLam + e_jﬁyLay] — Eoe_jﬂzL[ax + e_j(ﬁy_ﬁw)Lay]

where (8, — 3;)L = — (since 3, > 3,), and so E4(L) = Ege 7%:L[a, —a,]. With the reversal
of the y component, the wave polarization is rotated by 90°, but is still linear polarization.
12.33. Given a wave for which E;, = 15e=7%%a, + 186‘jﬁzej¢ay V/m, propagating in a medium
characterized by complex intrinsic impedance, 7.
a) Find H,: With the wave propagating in the forward z direction, we find:

1 , .
H, = — [-18¢/%a, + 15a,] e 7% A/m
U]

b) Determine the average power density in W/m?: We find

1 1 15)2 18)2 1
Pz,avgzgRe{ESXH:}:§R6{(T]*) +(?7*) }:275];{6{;} W/Hl2

12.34. Given the general elliptically-polarized wave as per Eq. (93):
E; = [Eyoa, + Eyoej‘z’ay]e_jﬁz

a) Show, using methods similar to those of Example 12.7, that a linearly polarized wave
results when superimposing the given field and a phase-shifted field of the form:

E; = [Eyoa, + Eyoe_j¢ay]e_jﬁZ676
where ¢ is a constant: Adding the two fields gives

Es ot = [Ewo (1 +€7°) a, + Ey (e7? + e77%7%) a,] e 7772

= | E,pei/? (6—j6/2 i 616/2> a, + B el (e—jé/zem i e—jqbejé/z) a, | e 70"

2cos(6/2) 2cos(¢p—48/2)

This simplifies to Eg o = 2 [Eyocos(d/2)a, + Eyocos(¢ —6/2)a,] e1%/2¢=3P% which is
linearly polarized.

b) Find ¢ in terms of ¢ such that the resultant wave is polarized along z: By inspecting the
part a result, we achieve a zero y component when 2¢ — § = w (or odd multiples of ).
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