
CHAPTER 12

12.1. Show that Exs = Aejk0z+φ is a solution to the vector Helmholtz equation, Sec. 12.1, Eq. (30),
for k0 = ω

√
µ0ε0 and any φ and A: We take

d2

dz2
Aejk0z+φ = (jk0)2Aejk0z+φ = −k2

0Exs

12.2. A 100-MHz uniform plane wave propagates in a lossless medium for which εr = 5 and µr = 1.
Find:

a) vp: vp = c/
√

εr = 3 × 108/
√

5 = 1.34 × 108 m/s.

b) β: β = ω/vp = (2π × 108)/(1.34 × 108) = 4.69 m−1.

c) λ: λ = 2π/β = 1.34 m.

d) Es: Assume real amplitude E0, forward z travel, and x polarization, and write
Es = E0 exp(−jβz)ax = E0 exp(−j4.69z)ax V/m.

e) Hs: First, the intrinsic impedance of the medium is η = η0/
√

εr = 377/
√

5 = 169 Ω.
Then Hs = (E0/η) exp(−jβz)ay = (E0/169) exp(−j4.69z)ay A/m.

f) < S >= (1/2)Re {Es × H∗
s} = (E2

0/337)az W/m2

12.3. An H field in free space is given as H(x, t) = 10 cos(108t − βx)ay A/m. Find
a) β: Since we have a uniform plane wave, β = ω/c, where we identify ω = 108 sec−1. Thus

β = 108/(3 × 108) = 0.33 rad/m.

b) λ: We know λ = 2π/β = 18.9 m.

c) E(x, t) at P (0.1, 0.2, 0.3) at t = 1 ns: Use E(x, t) = −η0H(x, t) = −(377)(10) cos(108t −
βx) = −3.77×103 cos(108t−βx). The vector direction of E will be −az, since we require
that S = E × H, where S is x-directed. At the given point, the relevant coordinate is
x = 0.1. Using this, along with t = 10−9 sec, we finally obtain

E(x, t) = −3.77 × 103 cos[(108)(10−9) − (0.33)(0.1)]az = −3.77 × 103 cos(6.7 × 10−2)az

= −3.76 × 103az V/m

12.4. Given E(z, t) = E0e
−αz sin(ωt − βz)ax, and η = |η|ejφ, find:

a) Es: Using the Euler identity for the sine, we can write the given field in the form:

E(z, t) = E0 e−αz

[
ej(ωt−βz) − e−j(ωt−βz)

2j

]
ax = −jE0

2
e−αzej(ωt−βz)ax + c.c.

We therefore identify the phasor form as Es(z) = −jE0e
−αze−jβz ax V/m.

b) Hs: With positive z travel, and with Es along positive x, Hs will lie along positive y.
Therefore Hs = −jE0/|η| e−αze−jβze−jφ ay A/m.

c) < S >:

< S >= (1/2)Re{Es × H∗
s} =

E2
0

2|η| e−2αz cos φaz W/m2
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12.5. A 150-MHz uniform plane wave in free space is described by Hs = (4 + j10)(2ax + jay)e−jβz

A/m.

a) Find numerical values for ω, λ, and β: First, ω = 2π×150×106 = 3π × 108 sec−1. Second,
for a uniform plane wave in free space, λ = 2πc/ω = c/f = (3 × 108)/(1.5 × 108) = 2 m.
Third, β = 2π/λ = π rad/m.

b) Find H(z, t) at t = 1.5 ns, z = 20 cm: Use

H(z, t) = Re{Hse
jωt} = Re{(4 + j10)(2ax + jay)(cos(ωt − βz) + j sin(ωt − βz)}

= [8 cos(ωt − βz) − 20 sin(ωt − βz)]ax − [10 cos(ωt − βz) + 4 sin(ωt − βz)]ay

. Now at the given position and time, ωt− βz = (3π × 108)(1.5× 10−9)− π(0.20) = π/4.
And cos(π/4) = sin(π/4) = 1/

√
2. So finally,

H(z = 20cm, t = 1.5ns) = − 1√
2

(12ax + 14ay) = −8.5ax − 9.9ay A/m

c) What is |E|max? Have |E|max = η0|H|max, where

|H|max =
√

Hs · H∗
s = [4(4 + j10)(4 − j10) + (j)(−j)(4 + j10)(4 − j10)]1/2 = 24.1 A/m

Then |E|max = 377(24.1) = 9.08 kV/m.

12.6. A linearly-polarized plane wave in free space has electric field given by
E(z, t) = (25ax − 30az) cos(ωt − 50y) V/m. Find:

a) ω: In free space, β = k0 = ω/c ⇒ ω = 50c = 50 × 3 × 108 = 1.5 × 1010 rad/s.

b) Es = (25ax − 30az) exp(−j50y) V/m.

c) Hs: We use the fact that each to component of Es, there will be an orthogonal Hs

component, oriented such that the cross product of Es with Hs gives the propagation
direction. We obtain

Hs = − 1
η0

(25az + 30ax) e−j50y

d) < S > =
1
2
Re{Es × H∗

s} =
1

2η0
Re {(25ax − 30az) × (−25az − 30ax)}

=
1

2(377)
[
(25)2 + (30)2

]
ay = 2.0ay W/m2

12.7. The phasor magnetic field intensity for a 400-MHz uniform plane wave propagating in a
certain lossless material is (2ay − j5az)e−j25x A/m. Knowing that the maximum amplitude
of E is 1500 V/m, find β, η, λ, vp, εr, µr, and H(x, y, z, t): First, from the phasor expression,
we identify β = 25 m−1 from the argument of the exponential function. Next, we evaluate
H0 = |H| =

√
H · H∗ =

√
22 + 52 =

√
29. Then η = E0/H0 = 1500/

√
29 = 278.5 Ω. Then

λ = 2π/β = 2π/25 = .25 m = 25 cm. Next,

vp =
ω

β
=

2π × 400 × 106

25
= 1.01 × 108 m/s
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12.7. (continued) Now we note that

η = 278.5 = 377
√

µr

εr
⇒ µr

εr
= 0.546

And
vp = 1.01 × 108 =

c√
µrεr

⇒ µrεr = 8.79

We solve the above two equations simultaneously to find εr = 4.01 and µr = 2.19. Finally,

H(x, y, z, t) = Re
{
(2ay − j5az)e−j25xejωt

}
= 2 cos(2π × 400 × 106t − 25x)ay + 5 sin(2π × 400 × 106t − 25x)az

= 2 cos(8π × 108t − 25x)ay + 5 sin(8π × 108t − 25x)az A/m

12.8. Let the fields, E(z, t) = 1800 cos(107πt − βz)ax V/m and H(z, t) = 3.8 cos(107πt − βz)ay

A/m, represent a uniform plane wave propagating at a velocity of 1.4 × 108 m/s in a perfect
dielectric. Find:
a) β = ω/v = (107π)/(1.4 × 108) = 0.224 m−1.

b) λ = 2π/β = 2π/.224 = 28.0 m.

c) η = |E|/|H| = 1800/3.8 = 474 Ω.

d) µr: Have two equations in the two unknowns, µr and εr: η = η0

√
µr/εr and β =

ω
√

µrεr/c. Eliminate εr to find

µr =
[
βcη

ωη0

]2

=
[
(.224)(3 × 108)(474)

(107π)(377)

]2

= 2.69

e) εr = µr(η0/η)2 = (2.69)(377/474)2 = 1.70.

12.9. A certain lossless material has µr = 4 and εr = 9. A 10-MHz uniform plane wave is propagating
in the ay direction with Ex0 = 400 V/m and Ey0 = Ez0 = 0 at P (0.6, 0.6, 0.6) at t = 60 ns.

a) Find β, λ, vp, and η: For a uniform plane wave,

β = ω
√

µε =
ω

c

√
µrεr =

2π × 107

3 × 108

√
(4)(9) = 0.4π rad/m

Then λ = (2π)/β = (2π)/(0.4π) = 5 m. Next,

vp =
ω

β
=

2π × 107

4π × 10−1
= 5 × 107 m/s

Finally,

η =
√

µ

ε
= η0

√
µr

εr
= 377

√
4
9

= 251 Ω
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b) Find E(t) (at P ): We are given the amplitude at t = 60 ns and at y = 0.6 m. Let the
maximum amplitude be Emax, so that in general, Ex = Emax cos(ωt− βy). At the given
position and time,

Ex = 400 = Emax cos[(2π × 107)(60 × 10−9) − (4π × 10−1)(0.6)] = Emax cos(0.96π)
= −0.99Emax

So Emax = (400)/(−0.99) = −403 V/m. Thus at P, E(t) = −403 cos(2π × 107t) V/m.

c) Find H(t): First, we note that if E at a given instant points in the negative x direction,
while the wave propagates in the forward y direction, then H at that same position and
time must point in the positive z direction. Since we have a lossless homogeneous medium,
η is real, and we are allowed to write H(t) = E(t)/η, where η is treated as negative and
real. Thus

H(t) = Hz(t) =
Ex(t)

η
=

−403
−251

cos(2π × 10−7t) = 1.61 cos(2π × 10−7t) A/m

12.10. In a medium characterized by intrinsic impedance η = |η|ejφ, a linearly-polarized plane wave
propagates, with magnetic field given as Hs = (H0yay + H0zaz) e−αxe−jβx. Find:

a) Es: Requiring orthogonal components of Es for each component of Hs, we find

Es = |η| [H0z ay − H0y az] e−αx e−jβx ejφ

b) E(x, t) = Re {Ese
jωt} = |η| [H0z ay − H0y az] e−αx cos(ωt − βx + φ).

c) H(x, t) = Re {Hse
jωt} = [H0y ay + H0z az] e−αx cos(ωt − βx).

d) < S >=
1
2
Re{Es × H∗

s} =
1
2
|η|

[
H2

0y + H2
0z

]
e−2αx cos φax W/m2

12.11. A 2-GHz uniform plane wave has an amplitude of Ey0 = 1.4 kV/m at (0, 0, 0, t = 0) and is
propagating in the az direction in a medium where ε′′ = 1.6 × 10−11 F/m, ε′ = 3.0 × 10−11

F/m, and µ = 2.5 µH/m. Find:

a) Ey at P (0, 0, 1.8cm) at 0.2 ns: To begin, we have the ratio, ε′′/ε′ = 1.6/3.0 = 0.533. So

α = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

− 1


1/2

= (2π × 2 × 109)

√
(2.5 × 10−6)(3.0 × 10−11)

2

[√
1 + (.533)2 − 1

]1/2

= 28.1 Np/m

Then

β = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

+ 1


1/2

= 112 rad/m

Thus in general,

Ey(z, t) = 1.4e−28.1z cos(4π × 109t − 112z) kV/m
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2.11a. (continued) Evaluating this at t = 0.2 ns and z = 1.8 cm, find

Ey(1.8 cm, 0.2 ns) = 0.74 kV/m

b) Hx at P at 0.2 ns: We use the phasor relation, Hxs = −Eys/η where

η =
√

µ

ε′
1√

1 − j(ε′′/ε′)
=

√
2.5 × 10−6

3.0 × 10−11

1√
1 − j(.533)

= 263 + j65.7 = 271 � 14◦ Ω

So now

Hxs = −Eys

η
= − (1.4 × 103)e−28.1ze−j112z

271ej14◦ = −5.16e−28.1ze−j112ze−j14◦
A/m

Then
Hx(z, t) = −5.16e−28.1z cos(4π × 10−9t − 112z − 14◦)

This, when evaluated at t = 0.2 ns and z = 1.8 cm, yields

Hx(1.8 cm, 0.2 ns) = −3.0 A/m

12.12. The plane wave Es = 300e−jkxay V/m is propagating in a material for which µ = 2.25 µH/m,
ε′ = 9 pF/m, and ε′′ = 7.8 pF/m. If ω = 64 Mrad/s, find:
a) α: We use the general formula, Eq. (35):

α = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

− 1


1/2

= (64 × 106)

√
(2.25 × 10−6)(9 × 10−12)

2

[√
1 + (.867)2 − 1

]1/2

= 0.116 Np/m

b) β: Using (36), we write

β = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

+ 1


1/2

= .311 rad/m

c) vp = ω/β = (64 × 106)/(.311) = 2.06 × 108 m/s.

d) λ = 2π/β = 2π/(.311) = 20.2 m.

e) η: Using (39):

η =
√

µ

ε′
1√

1 − j(ε′′/ε′)
=

√
2.25 × 10−6

9 × 10−12

1√
1 − j(.867)

= 407 + j152 = 434.5ej.36 Ω

f) Hs: With Es in the positive y direction (at a given time) and propagating in the positive
x direction, we would have a positive z component of Hs, at the same time. We write
(with jk = α + jβ):

Hs =
Es

η
az =

300
434.5ej.36

e−jkxaz = 0.69e−αxe−jβxe−j.36az

= 0.69e−.116xe−j.311xe−j.36az A/m
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2.12g) E(3, 2, 4, 10ns): The real instantaneous form of E will be

E(x, y, z, t) = Re
{
Ese

jωt
}

= 300e−αx cos(ωt − βx)ay

Therefore

E(3, 2, 4, 10ns) = 300e−.116(3) cos[(64 × 106)(10−8) − .311(3)]ay = 203 V/m

12.13. Let jk = 0.2 + j1.5 m−1 and η = 450 + j60 Ω for a uniform plane wave propagating in the az

direction. If ω = 300 Mrad/s, find µ, ε′, and ε′′: We begin with

η =
√

µ

ε′
1√

1 − j(ε′′/ε′)
= 450 + j60

and
jk = jω

√
µε′

√
1 − j(ε′′/ε′) = 0.2 + j1.5

Then
ηη∗ =

µ

ε′
1√

1 + (ε′′/ε′)2
= (450 + j60)(450 − j60) = 2.06 × 105 (1)

and
(jk)(jk)∗ = ω2µε′

√
1 + (ε′′/ε′)2 = (0.2 + j1.5)(0.2 − j1.5) = 2.29 (2)

Taking the ratio of (2) to (1),

(jk)(jk)∗

ηη∗ = ω2(ε′)2
(
1 + (ε′′/ε′)2

)
=

2.29
2.06 × 105

= 1.11 × 10−5

Then with ω = 3 × 108,

(ε′)2 =
1.11 × 10−5

(3 × 108)2 (1 + (ε′′/ε′)2)
=

1.23 × 10−22

(1 + (ε′′/ε′)2)
(3)

Now, we use Eqs. (35) and (36). Squaring these and taking their ratio gives

α2

β2
=

√
1 + (ε′′/ε′)2√
1 + (ε′′/ε′)2

=
(0.2)2

(1.5)2

We solve this to find ε′′/ε′ = 0.271. Substituting this result into (3) gives ε′ = 1.07 × 10−11

F/m. Since ε′′/ε′ = 0.271, we then find ε′′ = 2.90× 10−12 F/m. Finally, using these results in
either (1) or (2) we find µ = 2.28 × 10−6 H/m. Summary: µ = 2.28 × 10−6 H/m,
ε′ = 1.07 × 10−11 F/m, and ε′′ = 2.90 × 10−12 F/m.
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12.14. A certain nonmagnetic material has the material constants ε′r = 2 and ε′′/ε′ = 4 × 10−4 at
ω = 1.5 Grad/s. Find the distance a uniform plane wave can propagate through the material
before:
a) it is attenuated by 1 Np: First, ε′′ = (4 × 104)(2)(8.854 × 10−12) = 7.1 × 10−15 F/m.

Then, since ε′′/ε′ << 1, we use the approximate form for α, given by Eq. (51) (written
in terms of ε′′):

α
.=

ωε′′

2

√
µ

ε′
=

(1.5 × 109)(7.1 × 10−15)
2

377√
2

= 1.42 × 10−3 Np/m

The required distance is now z1 = (1.42 × 10−3)−1 = 706 m

b) the power level is reduced by one-half: The governing relation is e−2αz1/2 = 1/2, or
z1/2 = ln 2/2α = ln 2/2(1.42 × 10−3) = 244 m.

c) the phase shifts 360◦: This distance is defined as one wavelength, where λ = 2π/β
= (2πc)/(ω

√
ε′r) = [2π(3 × 108)]/[(1.5 × 109)

√
2] = 0.89 m.

12.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small
region. Calculate the wavelength in centimeters and the attenuation in nepers per meter if
the wave is propagating in a non-magnetic material for which
a) ε′r = 1 and ε′′r = 0: In a non-magnetic material, we would have:

α = ω

√
µ0ε0ε′r

2




√
1 +

(
ε′′r
ε′r

)2

− 1


1/2

and

β = ω

√
µ0ε0ε′r

2




√
1 +

(
ε′′r
ε′r

)2

+ 1


1/2

With the given values of ε′r and ε′′r , it is clear that β = ω
√

µ0ε0 = ω/c, and so

λ = 2π/β = 2πc/ω = 3 × 1010/1010 = 3 cm. It is also clear that α = 0.

b) ε′r = 1.04 and ε′′r = 9.00×10−4: In this case ε′′r/ε′r << 1, and so β
.= ω

√
ε′r/c = 2.13 cm−1.

Thus λ = 2π/β = 2.95 cm. Then

α
.=

ωε′′

2

√
µ

ε′
=

ωε′′r
2

√
µ0ε0√
ε′r

=
ω

2c

ε′′r√
ε′r

=
2π × 1010

2 × 3 × 108

(9.00 × 10−4)√
1.04

= 9.24 × 10−2 Np/m
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2.15c) ε′r = 2.5 and ε′′r = 7.2: Using the above formulas, we obtain

β =
2π × 1010

√
2.5

(3 × 1010)
√

2




√
1 +

(
7.2
2.5

)2

+ 1


1/2

= 4.71 cm−1

and so λ = 2π/β = 1.33 cm. Then

α =
2π × 1010

√
2.5

(3 × 108)
√

2




√
1 +

(
7.2
2.5

)2

− 1


1/2

= 335 Np/m

12.16. The power factor of a capacitor is defined as the cosine of the impedance phase angle, and
its Q is ωCR, where R is the parallel resistance. Assume an idealized parallel plate capacitor
having a dielecric characterized by σ, ε′, and µr. Find both the power factor and Q in terms
of the loss tangent: First, the impedance will be:

Z =
R

(
1

jωC

)
R +

(
1

jωC

) = R
1 − jRωC

1 + (RωC)2
= R

1 − jQ

1 + Q2

Now R = d/(σA) and C = ε′A/d, and so Q = ωε′/σ = 1/l.t. Then the power factor is
P.F = cos[tan−1(−Q)] = 1/

√
1 + Q2.

12.17. Let η = 250 + j30 Ω and jk = 0.2 + j2 m−1 for a uniform plane wave propagating in the az

direction in a dielectric having some finite conductivity. If |Es| = 400 V/m at z = 0, find:
a) < S > at z = 0 and z = 60 cm: Assume x-polarization for the electric field. Then

< S > =
1
2
Re {Es × H∗

s} =
1
2
Re

{
400e−αze−jβzax × 400

η∗ e−αzejβzay

}

=
1
2
(400)2e−2αzRe

{
1
η∗

}
az = 8.0 × 104e−2(0.2)zRe

{
1

250 − j30

}
az

= 315 e−2(0.2)z az W/m2

Evaluating at z = 0, obtain < S > (z = 0) = 315az W/m2,
and at z = 60 cm, Pz,av(z = 0.6) = 315e−2(0.2)(0.6)az = 248az W/m2.

b) the average ohmic power dissipation in watts per cubic meter at z = 60 cm: At this point
a flaw becomes evident in the problem statement, since solving this part in two different
ways gives results that are not the same. I will demonstrate: In the first method, we use
Poynting’s theorem in point form (first equation at the top of p. 366), which we modify
for the case of time-average fields to read:

−∇· < S >=< J · E >

where the right hand side is the average power dissipation per volume. Note that the
additional right-hand-side terms in Poynting’s theorem that describe changes in energy
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stored in the fields will both be zero in steady state. We apply our equation to the result
of part a:

< J · E >= −∇· < S >= − d

dz
315 e−2(0.2)z = (0.4)(315)e−2(0.2)z = 126e−0.4z W/m3

At z = 60 cm, this becomes < J · E >= 99.1 W/m3. In the second method, we solve for
the conductivity and evaluate < J · E >= σ < E2 >. We use

jk = jω
√

µε′
√

1 − j(ε′′/ε′)

and

η =
√

µ

ε′
1√

1 − j(ε′′/ε′)

We take the ratio,
jk

η
= jωε′

[
1 − j

(
ε′′

ε′

)]
= jωε′ + ωε′′

Identifying σ = ωε′′, we find

σ = Re
{

jk

η

}
= Re

{
0.2 + j2

250 + j30

}
= 1.74 × 10−3 S/m

Now we find the dissipated power per volume:

σ < E2 >= 1.74 × 10−3

(
1
2

) (
400e−0.2z

)2

At z = 60 cm, this evaluates as 109 W/m3. One can show that consistency between the
two methods requires that

Re
{

1
η∗

}
=

σ

2α

This relation does not hold using the numbers as given in the problem statement and the
value of σ found above. Note that in Problem 12.13, where all values are worked out, the
relation does hold and consistent results are obtained using both methods.

12.18. Given, a 100MHz uniform plane wave in a medium known to be a good dielectric. The phasor
electric field is Es = 4e−0.5ze−j20zax V/m. Not stated in the problem is the permeabil-
ity, which we take to be µ0. Also, the specified distance in part f should be 10m, not 1km.
Determine:

a) ε′: As a first step, it is useful to see just how much of a good dielectric we have. We use
the good dielectric approximations, Eqs. (60a) and (60b), with σ = ωε′′. Using these, we
take the ratio, β/α, to find

β

α
=

20
0.5

=
ω
√

µε′
[
1 + (1/8)(ε′′/ε′)2

]
(ωε′′/2)

√
µ/ε′

= 2
(

ε′

ε′′

)
+

1
4

(
ε′′

ε′

)

This becomes the quadratic equation:(
ε′′

ε′

)2

− 160
(

ε′′

ε′

)
+ 8 = 0
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12.18a (continued) The solution to the quadratic is (ε′′/ε′) = 0.05, which means that we can neglect
the second term in Eq. (60b), so that β

.= ω
√

µε′ = (ω/c)
√

ε′r. With the given frequency of
100 MHz, and with µ = µ0, we find

√
ε′r = 20(3/2π) = 9.55, so that ε′r = 91.3, and finally

ε′ = ε′rε0 = 8.1 × 10−10 F/m.

b) ε′′: Using Eq. (60a), the set up is

α = 0.5 =
ωε′′

2

√
µ

ε′
⇒ ε′′ =

2(0.5)
2π × 108

√
ε′

µ
=

10−8

2π(377)

√
91.3 = 4.0 × 10−11 F/m

c) η: Using Eq. (62b), we find

η
.=

√
µ

ε′

[
1 + j

1
2

(
ε′′

ε′

)]
=

377√
91.3

(1 + j.025) = (39.5 + j0.99) ohms

d) Hs: This will be a y-directed field, and will be

Hs =
Es

η
ay =

4
(39.5 + j0.99)

e−0.5ze−j20z ay = 0.101e−0.5ze−j20ze−j0.025 ay A/m

e) < S >: Using the given field and the result of part d, obtain

< S >=
1
2
Re{Es × H∗

s} =
(0.101)(4)

2
e−2(0.5)z cos(0.025)az = 0.202e−z az W/m2

f) the power in watts that is incident on a rectangular surface measuring 20m x 30m at
z = 10m (not 1km): At 10m, the power density is < S >= 0.202e−10 = 9.2×10−6 W/m2.
The incident power on the given area is then P = 9.2 × 10−6 × (20)(30) = 5.5 mW.

12.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between
the cylinders is filled with a perfect dielectric for which ε = 10−9/4π F/m and µr = 1. If E in
this region is (500/ρ) cos(ωt − 4z)aρ V/m, find:

a) ω, with the help of Maxwell’s equations in cylindrical coordinates: We use the two curl
equations, beginning with ∇× E = −∂B/∂t, where in this case,

∇× E =
∂Eρ

∂z
aφ =

2000
ρ

sin(ωt − 4z)aφ = −∂Bφ

∂t
aφ

So
Bφ =

∫
2000

ρ
sin(ωt − 4z)dt =

2000
ωρ

cos(ωt − 4z) T

Then
Hφ =

Bφ

µ0
=

2000
(4π × 10−7)ωρ

cos(ωt − 4z) A/m

We next use ∇× H = ∂D/∂t, where in this case

∇× H = −∂Hφ

∂z
aρ +

1
ρ

∂(ρHφ)
∂ρ

az

where the second term on the right hand side becomes zero when substituting our Hφ.
So

∇× H = −∂Hφ

∂z
aρ = − 8000

(4π × 10−7)ωρ
sin(ωt − 4z)aρ =

∂Dρ

∂t
aρ

And

Dρ =
∫

− 8000
(4π × 10−7)ωρ

sin(ωt − 4z)dt =
8000

(4π × 10−7)ω2ρ
cos(ωt − 4z) C/m2
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12.19a. (continued) Finally, using the given ε,

Eρ =
Dρ

ε
=

8000
(10−16)ω2ρ

cos(ωt − 4z) V/m

This must be the same as the given field, so we require

8000
(10−16)ω2ρ

=
500
ρ

⇒ ω = 4 × 108 rad/s

b) H(ρ, z, t): From part a, we have

H(ρ, z, t) =
2000

(4π × 10−7)ωρ
cos(ωt − 4z)aφ =

4.0
ρ

cos(4 × 108t − 4z)aφ A/m

c) S(ρ, φ, z): This will be

S(ρ, φ, z) = E × H =
500
ρ

cos(4 × 108t − 4z)aρ × 4.0
ρ

cos(4 × 108t − 4z)aφ

=
2.0 × 10−3

ρ2
cos2(4 × 108t − 4z)az W/m2

d) the average power passing through every cross-section 8 < ρ < 20 mm, 0 < φ < 2π.
Using the result of part c, we find < S >= (1.0 × 103)/ρ2az W/m2. The power through
the given cross-section is now

P =
∫ 2π

0

∫ .020

.008

1.0 × 103

ρ2
ρ dρ dφ = 2π × 103 ln

(
20
8

)
= 5.7 kW

12.20. If Es = (60/r) sin θ e−j2r aθ V/m, and Hs = (1/4πr) sin θ e−j2r aφ A/m in free space, find the
average power passing outward through the surface r = 106, 0 < θ < π/3, and 0 < φ < 2π.

< S >=
1
2
Re {Es × H∗

s} =
15 sin2 θ

2πr2
ar W/m2

Then, the requested power will be

Φ =
∫ 2π

0

∫ π/3

0

15 sin2 θ

2πr2
ar · ar r2 sin θdθdφ = 15

∫ π/3

0

sin3 θ dθ

= 15
(
−1

3
cos θ(sin2 θ + 2)

) ∣∣∣π/3

0
=

25
8

= 3.13 W

Note that the radial distance at the surface, r = 106 m, makes no difference, since the power
density dimishes as 1/r2.
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12.21. The cylindrical shell, 1 cm ¡ ρ ¡ 1.2 cm, is composed of a conducting material for which σ = 106

S/m. The external and internal regions are non-conducting. Let Hφ = 2000 A/m at ρ = 1.2
cm.

a) Find H everywhere: Use Ampere’s circuital law, which states:∮
H · dL = 2πρ(2000) = 2π(1.2 × 10−2)(2000) = 48π A = Iencl

Then in this case

J =
I

Area
az =

48
(1.44 − 1.00) × 10−4

az = 1.09 × 106 az A/m2

With this result we again use Ampere’s circuital law to find H everywhere within the
shell as a function of ρ (in meters):

Hφ1(ρ) =
1

2πρ

∫ 2π

0

∫ ρ

.01

1.09 × 106 ρ dρ dφ =
54.5
ρ

(104ρ2 − 1) A/m (.01 < ρ < .012)

Outside the shell, we would have

Hφ2(ρ) =
48π

2πρ
= 24/ρ A/m (ρ > .012)

Inside the shell (ρ < .01 m), Hφ = 0 since there is no enclosed current.

b) Find E everywhere: We use

E =
J
σ

=
1.09 × 106

106
az = 1.09az V/m

which is valid, presumeably, outside as well as inside the shell.

c) Find S everywhere: Use

P = E × H = 1.09az ×
54.5
ρ

(104ρ2 − 1)aφ

= −59.4
ρ

(104ρ2 − 1)aρ W/m2 (.01 < ρ < .012 m)

Outside the shell,

S = 1.09az ×
24
ρ

aφ = −26
ρ

aρ W/m2 (ρ > .012 m)
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12.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm, respec-
tively. Both conductors have thicknesses much greater than δ. The dielectric is lossless and
the operating frequency is 400 MHz. Calculate the resistance per meter length of the:
a) inner conductor: First

δ =
1√

πfµσ
=

1√
π(4 × 108)(4π × 10−7)(5.8 × 107)

= 3.3 × 10−6m = 3.3µm

Now, using (70) with a unit length, we find

Rin =
1

2πaσδ
=

1
2π(2 × 10−3)(5.8 × 107)(3.3 × 10−6)

= 0.42 ohms/m

b) outer conductor: Again, (70) applies but with a different conductor radius. Thus

Rout =
a

b
Rin =

2
7
(0.42) = 0.12 ohms/m

c) transmission line: Since the two resistances found above are in series, the line resistance
is their sum, or R = Rin + Rout = 0.54 ohms/m.

12.23. A hollow tubular conductor is constructed from a type of brass having a conductivity of
1.2 × 107 S/m. The inner and outer radii are 9 mm and 10 mm respectively. Calculate the
resistance per meter length at a frequency of
a) dc: In this case the current density is uniform over the entire tube cross-section. We

write:
R(dc) =

L

σA
=

1
(1.2 × 107)π(.012 − .0092)

= 1.4 × 10−3 Ω/m

b) 20 MHz: Now the skin effect will limit the effective cross-section. At 20 MHz, the skin
depth is

δ(20MHz) = [πfµ0σ]−1/2 = [π(20 × 106)(4π × 10−7)(1.2 × 107)]−1/2 = 3.25 × 10−5 m

This is much less than the outer radius of the tube. Therefore we can approximate the
resistance using the formula:

R(20MHz) =
L

σA
=

1
2πbδ

=
1

(1.2 × 107)(2π(.01))(3.25 × 10−5)
= 4.1 × 10−2 Ω/m

c) 2 GHz: Using the same formula as in part b, we find the skin depth at 2 GHz to be δ =
3.25 × 10−6 m. The resistance (using the other formula) is R(2GHz) = 4.1 × 10−1 Ω/m.
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12.24a. Most microwave ovens operate at 2.45 GHz. Assume that σ = 1.2 × 106 S/m and µr = 500
for the stainless steel interior, and find the depth of penetration:

δ =
1√

πfµσ
=

1√
π(2.45 × 109)(4π × 10−7)(1.2 × 106)

= 9.28 × 10−6m = 9.28µm

b) Let Es = 50� 0◦ V/m at the surface of the conductor, and plot a curve of the amplitude
of Es vs. the angle of Es as the field propagates into the stainless steel: Since the
conductivity is high, we use (62) to write α

.= β
.=
√

πfµσ = 1/δ. So, assuming that the
direction into the conductor is z, the depth-dependent field is written as

Es(z) = 50e−αze−jβz = 50e−z/δe−jz/δ = 50 exp(−z/9.28)︸ ︷︷ ︸
amplitude

exp(−j z/9.28︸ ︷︷ ︸
angle

)

where z is in microns. Therefore, the plot of amplitude versus angle is simply a plot of
e−x versus x, where x = z/9.28; the starting amplitude is 50 and the 1/e amplitude (at
z = 9.28 µm) is 18.4.

12.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength
of 0.3 mm and a velocity of 3× 105 m/s. Assuming the conductor is non-magnetic, determine
the frequency and the conductivity: First, we use

f =
v

λ
=

3 × 105

3 × 10−4
= 109 Hz = 1 GHz

Next, for a good conductor,

δ =
λ

2π
=

1√
πfµσ

⇒ σ =
4π

λ2fµ
=

4π

(9 × 10−8)(109)(4π × 10−7)
= 1.1 × 105 S/m

12.26. The dimensions of a certain coaxial transmission line are a = 0.8mm and b = 4mm. The outer
conductor thickness is 0.6mm, and all conductors have σ = 1.6 × 107 S/m.
a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz: First

δ =
1√

πfµσ
=

1√
π(2.4 × 108)(4π × 10−7)(1.6 × 107)

= 2.57 × 10−6m = 2.57µm

Then, using (70) with a unit length, we find

Rin =
1

2πaσδ
=

1
2π(0.8 × 10−3)(1.6 × 107)(2.57 × 10−6)

= 4.84 ohms/m

The outer conductor resistance is then found from the inner through

Rout =
a

b
Rin =

0.8
4

(4.84) = 0.97 ohms/m

The net resistance per length is then the sum, R = Rin + Rout = 5.81 ohms/m.
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12.26b. Use information from Secs. 6.4 and 9.10 to find C and L, the capacitance and inductance per
unit length, respectively. The coax is air-filled. From those sections, we find (in free space)

C =
2πε0

ln(b/a)
=

2π(8.854 × 10−12)
ln(4/.8)

= 3.46 × 10−11 F/m

L =
µ0

2π
ln(b/a) =

4π × 10−7

2π
ln(4/.8) = 3.22 × 10−7 H/m

c) Find α and β if α+ jβ =
√

jωC(R + jωL): Taking real and imaginary parts of the given
expression, we find

α = Re
{√

jωC(R + jωL)
}

=
ω
√

LC√
2




√
1 +

(
R

ωL

)2

− 1


1/2

and

β = Im
{√

jωC(R + jωL)
}

=
ω
√

LC√
2




√
1 +

(
R

ωL

)2

+ 1


1/2

These can be found by writing out α = Re
{√

jωC(R + jωL)
}

= (1/2)
√

jωC(R + jωL)+
c.c., where c.c denotes the complex conjugate. The result is squared, terms collected, and
the square root taken. Now, using the values of R, C, and L found in parts a and b, we
find α = 3.0 × 10−2 Np/m and β = 50.3 rad/m.

12.27. The planar surface at z = 0 is a brass-Teflon interface. Use data available in Appendix C to
evaluate the following ratios for a uniform plane wave having ω = 4 × 1010 rad/s:
a) αTef/αbrass: From the appendix we find ε′′/ε′ = .0003 for Teflon, making the material a

good dielectric. Also, for Teflon, ε′r = 2.1. For brass, we find σ = 1.5 × 107 S/m, making
brass a good conductor at the stated frequency. For a good dielectric (Teflon) we use the
approximations:

α
.=

σ

2

√
µ

ε′
=

(
ε′′

ε′

) (
1
2

)
ω
√

µε′ =
1
2

(
ε′′

ε′

)
ω

c

√
ε′r

β
.= ω

√
µε′

[
1 +

1
8

(
ε′′

ε′

)]
.= ω

√
µε′ =

ω

c

√
ε′r

For brass (good conductor) we have

α
.= β

.=
√

πfµσbrass =

√
π

(
1
2π

)
(4 × 1010)(4π × 10−7)(1.5 × 107) = 6.14 × 105 m−1

Now

αTef

αbrass
=

1/2 (ε′′/ε′) (ω/c)
√

ε′r√
πfµσbrass

=
(1/2)(.0003)(4 × 1010/3 × 108)

√
2.1

6.14 × 105
= 4.7 × 10−8

b)

λTef

λbrass
=

(2π/βTef)
(2π/βbrass)

=
βbrass

βTef
=

c
√

πfµσbrass

ω
√

ε′r Tef

=
(3 × 108)(6.14 × 105)

(4 × 1010)
√

2.1
= 3.2 × 103
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12.27. (continued)

c)
vTef

vbrass
=

(ω/βTef)
(ω/βbrass)

=
βbrass

βTef
= 3.2 × 103 as before

12.28. A uniform plane wave in free space has electric field given by Es = 10e−jβxaz + 15e−jβxay

V/m.

a) Describe the wave polarization: Since the two components have a fixed phase difference
(in this case zero) with respect to time and position, the wave has linear polarization,
with the field vector in the yz plane at angle φ = tan−1(10/15) = 33.7◦ to the y axis.

b) Find Hs: With propagation in forward x, we would have

Hs =
−10
377

e−jβxay +
15
377

e−jβxaz A/m = −26.5e−jβxay + 39.8e−jβxaz mA/m

c) determine the average power density in the wave in W/m2: Use

Pavg =
1
2
Re {Es × H∗

s} =
1
2

[
(10)2

377
ax +

(15)2

377
ax

]
= 0.43ax W/m2 or Pavg = 0.43 W/m2

12.29. Consider a left-circularly polarized wave in free space that propagates in the forward z direc-
tion. The electric field is given by the appropriate form of Eq. (100).
a) Determine the magnetic field phasor, Hs:

We begin, using (100), with Es = E0(ax + jay)e−jβz. We find the two components of
Hs separately, using the two components of Es. Specifically, the x component of Es is
associated with a y component of Hs, and the y component of Es is associated with a
negative x component of Hs. The result is

Hs =
E0

η0
(ay − jax) e−jβz

b) Determine an expression for the average power density in the wave in W/m2 by direct
application of Eq. (77): We have

Pz,avg =
1
2
Re(Es × H∗

s) =
1
2
Re

(
E0(ax + jay)e−jβz × E0

η0
(ay − jax)e+jβz

)

=
E2

0

η0
az W/m2 (assuming E0 is real)

16



12.30. The electric field of a uniform plane wave in free space is given by Es = 10(az + jax)e−j50y.
Determine:

a) f : From the given field, we identify β = 50 = ω/c (in free space), so that f = ω/2π =
50c/2π = 2.39 GHz.

b) Hs: Each of the two components of Es must pair with a magnetic field vector, such that
the cross product of electric with magnetic field gives a vector in the positive y direction.
The overall magnitude is the electric field magnitude divided by the free space intrinsic
impedance. Thus

Hs =
10
377

(ax − jaz) e−j50y

c) < S >=
1
2
Re{Es × H∗

s} =
50
377

[(az × ax) − (ax × az)] =
100
377

ay = 0.27ay W/m2

d) Describe the polarization of the wave: This can be seen by writing the electric field in
real instantaneous form, and then evaluating the result at y = 0:

E(0, t) = 10 [cos(ωt)az − sin(ωt)ax]

At t = 0, the field is entirely along z, and then acquires an increasing negative x com-
ponent as t increases. The field therefore rotates clockwise in the y = 0 plane when
looking back toward the plane from positive y. Since the wave propagates in the positive
y direction and has equal x and z amplitudes, we identify the polarization as left circular.

12.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, is input to a
lossless anisotropic material, in which the dielectric constant encountered by waves polarized
along y (εry) differs from that seen by waves polarized along x (εrx). Suppose εrx = 2.15,
εry = 2.10, and the wave electric field at input is polarized at 45◦ to the positive x and y axes.
Assume free space wavelength λ.
a) Determine the shortest length of the material such that the wave as it emerges from the

output end is circularly polarized: With the input field at 45◦, the x and y components are
of equal magnitude, and circular polarization will result if the phase difference between
the components is π/2. Our requirement over length L is thus βxL − βyL = π/2, or

L =
π

2(βx − βy)
=

πc

2ω(
√

εrx −√
εry)

With the given values, we find,

L =
(58.3)πc

2ω
= 58.3

λ

4
= 14.6 λ

b) Will the output wave be right- or left-circularly-polarized? With the dielectric constant
greater for x-polarized waves, the x component will lag the y component in time at the out-
put. The field can thus be written as E = E0(ay−jax), which is left circular polarization.
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12.32. Suppose that the length of the medium of Problem 12.31 is made to be twice that as determined
in the problem. Describe the polarization of the output wave in this case: With the length
doubled, a phase shift of π radians develops between the two components. At the input, we
can write the field as Es(0) = E0(ax + ay). After propagating through length L, we would
have,

Es(L) = E0[e−jβxLax + e−jβyLay] = E0e
−jβxL[ax + e−j(βy−βx)Lay]

where (βy −βx)L = −π (since βx > βy), and so Es(L) = E0e
−jβxL[ax−ay]. With the reversal

of the y component, the wave polarization is rotated by 90◦, but is still linear polarization.

12.33. Given a wave for which Es = 15e−jβzax + 18e−jβzejφay V/m, propagating in a medium
characterized by complex intrinsic impedance, η.

a) Find Hs: With the wave propagating in the forward z direction, we find:

Hs =
1
η

[
−18ejφax + 15ay

]
e−jβz A/m

b) Determine the average power density in W/m2: We find

Pz,avg =
1
2
Re {Es × H∗

s} =
1
2
Re

{
(15)2

η∗ +
(18)2

η∗

}
= 275 Re

{
1
η∗

}
W/m2

12.34. Given the general elliptically-polarized wave as per Eq. (93):

Es = [Ex0ax + Ey0e
jφay]e−jβz

a) Show, using methods similar to those of Example 12.7, that a linearly polarized wave
results when superimposing the given field and a phase-shifted field of the form:

Es = [Ex0ax + Ey0e
−jφay]e−jβzejδ

where δ is a constant: Adding the two fields gives

Es,tot =
[
Ex0

(
1 + ejδ

)
ax + Ey0

(
ejφ + e−jφejδ

)
ay

]
e−jβz

=


Ex0e

jδ/2
(
e−jδ/2 + ejδ/2

)
︸ ︷︷ ︸

2 cos(δ/2)

ax + Ey0e
jδ/2

(
e−jδ/2ejφ + e−jφejδ/2

)
︸ ︷︷ ︸

2 cos(φ−δ/2)

ay


 e−jβz

This simplifies to Es,tot = 2 [Ex0 cos(δ/2)ax + Ey0 cos(φ − δ/2)ay] ejδ/2e−jβz, which is
linearly polarized.

b) Find δ in terms of φ such that the resultant wave is polarized along x: By inspecting the
part a result, we achieve a zero y component when 2φ − δ = π (or odd multiples of π).
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