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Preface

This book is dedicated to various aspects of electromagnetic wave theory and its
applications in science and technology. The covered topics include the fundamental
physics of electromagnetic waves, theory of electromagnetic wave propagation and
scattering, methods of computational analysis, material characterization,
electromagnetic properties of plasma, analysis and applications of periodic structures
and waveguide components, and finally, the biological effects and medical
applications of electromagnetic fields. Even though the classical electromagnetic
theory is well-established and experimentally verified, it is far from being a closed
subject. In spite of the fact that the theory is capable of providing explanations for all
(classical) electromagnetic effects, there are several fundamental problems that remain
open. These problems mainly concern the electromagnetic waves behaving like
quantum particles. In order to complete the theory of electromagnetic waves, a new
fundamental physics emerged suggesting novel concepts to explain observed physical
phenomena. The first part of this book is dedicated to the research in this field
including various aspects of vacuum field theory, electromagnetic wave contribution
to the quantum structure of matter, and matter waves.

Modelling and computations in electromagnetics is a fast-growing research area. The
general interest in this field is driven by the increased demand for analysis and design
of non-canonical electromagnetic structures and rapid increase in computational
power for calculation of complex electromagnetic problems. The second part of this
book is devoted to the advances in the analysis techniques such as the method of exact
absorbing boundary conditions, fractional operator approach, and fractional boundary
conditions. The problems of diffraction on infinitely thin surfaces are considered, and
the difficulties in the analysis of axially-symmetrical open resonators are addressed.

The third part of the book deals with electromagnetic wave propagation and scattering
effects. The main focus is made on atmospheric refraction and propagation in the
lower troposphere, atmospheric attenuation due to the humidity, interaction of
electromagnetic waves with inhomogeneous media composed of complex particles,
modelling of scattering from random rough surfaces, and the problems of propagation
in waveguides with imperfectly reflecting boundaries.



Preface

Waveguides are essential parts of millimetre and submillimetre-wave devices and
systems. They are used for guiding electromagnetic energy between the components
of the system. In the mentioned frequency band, periodic structures are also often
used for wave guiding as well as for realization of delay lines, filter elements, and
interaction structures in vacuum electron devices. The fourth part of the book starts
with the description of the method of matrix formalism and its application to the
analysis of planar waveguides and periodic structures. Then, the open resonators and
open waveguides employing periodic structures and their implementation in vacuum
electron devices are considered. The fourth part concludes with a chapter on
waveguide mode converters.

The fifth part of the book is dedicated to interaction of electromagnetic waves with
materials and implementation of electromagnetic methods for material analysis and
characterisation. This includes scattering and generation of waves on cubically
polarisable dielectrics, electromagnetic properties of elastomers, temperature
behaviour of microwave absorption in ferrites and permittivity of soil. Time and
frequency domain measurement techniques are also considered here.

Plasma technology is becoming increasingly attractive for radio communications,
radio astronomy and military (stealth) applications due to electromagnetic properties
of plasma medium. The shielding properties of plasma are investigated in the sixth
part of this book. The final (seventh) part of this book deals with biological effects of
electromagnetic radiation and its implementation to medical imaging, particularly,
sensitivity and resolution improvement of molecular imaging using magnetic
nanoparticles.

The presented material in this book is based on recent research work conducted by the
authors working within the covered topics, who deserve all the credits for the
presented scientific results.

Vitaliy Zhurbenko
Technical University of Denmark,
Denmark
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The Fundamental Physics of
Electromagnetic Waves

Juliana H. ]J. Mortenson

General Resonance, LLC
USA

1. Introduction

A new foundational physics is emerging which radically changes our concepts of
electromagnetic waves. The original quantum ideas of Max Planck and Albert Einstein from
the turn of the twentieth century, are undergoing an impressive renaissance now at the turn
of the twenty-first century. The result is a fundamental physics of electromagnetic waves
that is both new and classical. Einstein’s insistence that quantum mechanics was incomplete
- that “hidden variables” were yet to be discovered - was correct. The recent discovery of
those variables is the driving force behind this rebirth of the foundations of quantum
mechanics and the fundamental physics of electromagnetic (“EM”) waves.

The new quantum variables have led to the discovery of new universal constants for EM
waves. The new constants have revealed an elegant simplicity in quantum concepts, that
requires no paradoxical explanations and imposes no uncertainties or limits. Instead, the
new physics provides a more realistic understanding of physical concepts related to EM
waves. The old paradigm is disappearing, and yielding to a new paradigm which is both
more understandable and more powerful.

2. Background

It is often said that to successfully navigate the future one must understand the past. The
fundamental physics of electromagnetic waves are no exception to this wisdom. In fact, an
understanding of the origins of 20th century physics regarding electromagnetic waves is of
vital importance to understanding the scientific revolution that is currently taking place.

2.1 Physics in the ages of reason and enlightenment

Galileo Galilei (1564 - 1642) was one of the most influential scientists of the millennium,
however he lived during a time when the protestant reformation was gaining momentum and
Europe was in turmoil. The Catholic Church was losing its hold on much of northern Europe
and the Thirty Years” War raged. Galileo resided on the Italian peninsula, where the Church
maintained a strong hold, and he could not rely on the protection of reformers in other parts of
Europe. None-the-less, even though “pagan” beliefs associated with frequency and resonance-
related phenomena had been banned by the Church for centuries, Galileo performed research
on natural resonant frequencies in a pendulum system. (Mortenson, 2010b).
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In 1632, Galileo published his “Dialogue” and in a daring move described the mechanics of
natural resonant frequencies writing, “the Pendulum makes its vibrations with one and the same
frequency” and “every Pendulum hath the Time of its Vibrations...pre-fixed...[and] it is impossible
to make it move under any other Period, than that ...which is natural unto it.” (Galilei, 1632) He
described the resonant accelerating forces produced by precisely time puffs of his breath
stating, “by blowing upon [the Pendulum one may] confer a Motion, and a Motion considerably
great by reiterating the blasts, but only under the Time properly belonging to its Vibrations”.
Galileo thus provided one of the first documented descriptions of resonance, namely the
increase in amplitude and energy of a system’s vibrations when an applied vibration,
motion or energy matches the natural frequency of the system. Unfortunately, the Church
was less accommodating than Galileo had anticipated. He was convicted of heresy and
placed under house arrest for the rest of his life.

Pierre de Fermat (1601 - 1665) was a French attorney who was in his mid-thirties when
Galileo was accused of heresy. Although Fermat’s personal passion was mathematics, he
was well aware that pursuit of certain mathematical subjects could be very dangerous. Thus
Fermat engaged in his passion in secret, scribbling notes in the margins of books in his
private library. One set of notes was a resonance equation, demonstrating that as the rate of
a mechanical vibration (e.g., a puff of breath) neared the natural vibratory rate of a body
(e.g., the swing of a pendulum), the amplitude of vibrations in the body increased (also see
Figure 1., below):

y=1/(1+) (1)

Amplitude —

Frequency —_—

Fig. 1. Fermat’s resonance curve showing an increase in vibration amplitude when forces are
applied at natural resonant frequencies (“v;”).

The brilliant young Isaac Newton (1643 - 1727) wrote his famous Principia, describing his
three (3) laws of motion around the time of Fermat’s death. (Newton, 1898) The religious
climate in England was quite chaotic at the time, and Newton waited another twenty (20)
years to actually publish his Principia. His second law (force equals mass times acceleration)
provided the basis for yet another resonance equation:

A= ®)
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“_

where “A” is the amplitude of the system’s oscillations, “a” is the acceleration in the
system’s oscillation (caused in Galileo’s case by the force of his small puffs of breath), “v,” is
the resonant or natural frequency of the system, and “v,” is the frequency of the outside
force applied to the system. As this second resonance equation shows, an outside force
applied at a frequency which is either much higher or much lower than the natural resonant
frequency of the system, produces a large denominator and hence a small amplitude.
Conversely, the closer the frequency of the outside force is to the resonant natural
frequency, the smaller the denominator becomes. Very large amplitudes are produced.
When the outside frequency exactly matches the resonant frequency of the system the

amplitude is theoretically infinite (Figure 2.).

Amplitude

Uy S4—— Vo —»
Frequency

Fig. 2. Graphical representation of resonant amplitude equation (Eq. 2). The resonant
frequency “v,” is at the origin, and input frequency of the outside force “v,” varies. As the
input frequency approaches the resonant frequency, amplitude approaches infinity.

Newton distinguished the force exerted by an accelerating body, from the energy of a body
simply in motion (which he referred to as vis viva) the product of mass and velocity:

vis viva= mv 3)

“__r

where “m” is mass and “v” is velocity. This led to the great vis viva controversy several
decades later (see below). By 1704 Newton had published his treatise “Opticks” in which he
proposed the corpuscular theory of light, namely that light is composed of tiny particles
that travel in straight lines. In a foreshadowing of Einstein’s later work, Newton stated,
"Are not gross Bodies and Light convertible into one another, ...and may not Bodies receive much of
their Activity from the Particles of Light which enter their Composition?"

A few decades later the great vis viva controversy erupted with Giovanni Poleni’s (1683~
1761) proposal that vis viva energy was proportional to the product of mass and velocity
squared, putting him at odds with Newton. The debate was soon joined by Leibnitz,
Huygens, and others. Dutch physicist Willem Gravesande (1688 -1742) performed
meticulous experiments and concluded that energy of motion, “follow[s] the Ratio compounded
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of the Masses, and the Squares of the Velocities” (underline added). (Gravesande, 1747) The
noted French Newtonian scholar, Emilie du Chatelet (1706 - 1749) in her 1740 book,
“Institutions Physiques” asserted that vis viva energy is proportional to the product of mass
and velocity squared, based on Gravesand’s painstaking experiments.

While the vis viva debate raged, the Italian mathematical prodigy Maria Gaetana Agnesi
(1718-1799), published her 1748 book on calculus and differential equations, organizing the
work of Fermat, Newton, Leibnitz and others. (Agnesi, 1748) She expanded on Fermat’s
resonance curve, providing a detailed geometric proof and a third resonance equation:

y= ha®/ a’+ x* 4)

where “h” is the height of the curve and “a” the half-width at half-maximum. Her book was
an immediate sensation throughout Europe, and resonance began to become a well known
scientific principle, in spite of the English translation error that resulted in the resonance
curve being known as the “Witch of Agnesi”. (Spencer, 1940)

2.2 Nineteenth century physics

By the nineteenth century, the brilliant Joseph Louis Lagrange (1736 - 1813) had organized
the works of nearly every known scientist on matters of velocity, inertia, force, energy, and
dynamics into his “Méchanique Analytique”. (Lagrange, 1811) Lagrange declared that for a
body at constant velocity, its energy (vis viva) was equal to “mv?2”, resulting “solely from the
inertia forces of the bodies”. Conversely, the energy required to accelerate a body was a
function of the distance over which a force acted “F 6s”. Lagrange explained that all systems
exhibited a dynamic equilibrium between the vis viva of constant velocity and the forces of
acceleration, “The sum of these two quantities, when equated to zero, constitutes the general formula
of dynamics... when the equilibrium does not hold, the bodies must necessarily move due to all or
some of the forces which act on them.” For purposes of systematically explaining analytic
mechanics Lagrange stated that he had assumed that an acceleration always occurs in a time
period at least as long as the unit time for velocity. His assumption effectively fixed the
acceleration time interval at “one second” and excluded accelerations taking place in less
than one second.

Lagrange also addressed resonance dynamics using a mathematical function: “in the case
where the same function is a maximum, the equilibrium will not be stable and once disturbed the
system will begin by performing fairly small oscillations but the amplitude of the [resonant]
oscillation will continually grow larger.” He included additional sections on “harmonics [at the]
nodes of vibration”, “the resonance of a sonorous body”, and the resonance dynamics of
pendulum oscillations.

Forty years later, Gaspard-Gustave de Coriolis (1792-1843) borrowed heavily from
Lagrange’s work in his popular engineering textbook. (Coriolis, 1829) Coriolis adopted
Lagrange’s assumption regarding the acceleration time interval for simplicity’s sake, and
explicitly explained that this assumption excluded consideration of “instantaneous” effects.
Without the assumption, separate time variables for velocity and acceleration would have
been required. Coriolis also introduced the concept of kinetic energy as a convenience in
engineering applications involving gravitational effects: “the mass times one-half the square of
the speed [Vomv?]...will introduce more simplicity...since the factor “V2(v¥/g)” is nothing more than
the height from which a heavy body...must fall so that it may acquire the speed ‘v’”. Acutely aware
that his kinetic energy formula did not apply to objects moving at constant velocity, Coriolis
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wrote that when “the speeds have become the same... [the kinetic energy] becomles] zero”.
Coriolis’ caveats were soon forgotten, however. By the time James Clerk Maxwell (1831-
1879) later wrote his basic physics textbook, he errantly summarized, “The kinetic energy of a
body is the energy it has in virtue of being in motion...”

Meanwhile, the interdisciplinary scientist Thomas Young, M.D., (1773 - 1829) began
publishing physics articles anonymously (to protect the reputation of his medical practice).
He eventually went public, and according to Young his greatest scientific achievement was
establishment of the wave theory of light, based on his double slit experiment. Published
exactly 100 years after Newton’s Opticks, Young’s reports on the wave-like interference of
light eventually resulted in abandonment of Newton’s light corpuscle theory. This led to
development of the belief that matter was composed of small particles, and light composed
of continuous waves.

Another interdisciplinary scientist - Hermann von Helmholtz, M.D., (1821 - 1894) - was an
army surgeon who set up energy-related experiments on frogs in his army barracks. Those
same biomechanical experiments led to his great treatise on the transformation and
conservation of energy. (Helmholtz, 1889) Helmholtz’s work on conservation of energy
became the first law of thermodynamics, namely that energy is neither created nor
destroyed, but is instead conserved and transformed from one form to another, “...heat,
electricity, magnetism, light, and chemical affinity ... from each of these different manifestations of
[energy] we can set every other [manifestation] in motion”. Helmholtz carefully differentiated
between orderly work energy and disorderly thermal energy, and taught that the total
energy of a system was their sum:

U=A+TS ®)

where “U” is the internal energy of a system, “A” the work (Helmholtz) energy, “T”
temperature, “S” entropy, and the product “TS” thermal energy.

Helmholtz also wrote extensively about resonance which is, “always found in those bodies
which when once set in motion by any impulse, continue to perform a long series of vibrations before
they come to rest ... provided the periodic time of the gentle blows is precisely the same as the periodic
time of the body’s own vibrations, very large and powerful oscillations may result. But if the periodic
time of the reqular blows is different from the periodic time of the oscillations, the resulting motion
will be weak or quite insensible.” (Helmholtz, 1862) He also described resonant coupling as
“sympathetic resonance”. Helmholtz eventually rose to the highest physics position in
Germany at the University of Berlin, where he influenced many young students including
Max Planck (1858 - 1947) and Heinrich Hertz (1857 - 1894). (Helmholtz, 1896 and 1904)
After Helmholtz challenged Hertz to prove the existence of Maxwell’s theoretical EM
waves, Hertz succeeded brilliantly. The new EM waves were called “resonant Hertzian
waves”, based on the resonant electrical processes Hertz used to transmit and receive them.

2.3 The quantum revolution

By the late 1800’s, the young Max Planck was himself a professor at the University of Berlin
and was doing theoretical work on Hertz’s electromagnetic waves. (Planck 1896 and 1897)
Planck modeled the EM waves on the one hand as resonant waves capable of producing
orderly work energy “A”, and on the other hand as EM waves produced by random chaotic
motions based solely on temperature “TS” (blackbody radiation). (Planck, 1900) Late in
1900 Planck met with success regarding the random thermal EM waves when he empirically
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determined the correct formula for blackbody radiation. A proper derivation of that
empirical equation, however, was another matter altogether and according to Planck was
the hardest work of his life. (Planck, 1901 and 1920)

Planck started with the Helmholtz equation (U = A + TS) and then introduced his non-
controversial resonance hypothesis: EM “resonant Hertzian waves” are orderly and are thus
completely free to be converted into work, and thereby constitute work energy, “A”. Planck
next explained that, because the blackbody apparatus used in the laboratory had been
specifically designed to exclude all resonant EM waves, he could assume there was no work
energy in the blackbody device. According to Planck, “A” equaled zero, and thus “the entire
problem is reduced to determining S as a function of U”. He borrowed Wilhelm Wien’s method
of solving for energy density (which eliminated a time variable) and also eventually resorted
to the statistical methods of his arch nemesis, Ludwig Boltzmann (1844 - 1906).

Boltzmann’s kinetic mechanics were based on the limiting assumption that all the elements
(e.g., molecules or atoms) in a system were moving randomly, in a completely disordered
manner. Boltzmann’s mechanics were restricted to the thermal energy portion, “TS”, of
Helmholtz’s energy equation and could not be applied to orderly work energy, “A”. The
blackbody device and experiments were deliberately designed to exclude work energy and
measure only disorderly, chaotic thermal energy, however. This fact allowed Planck to use
Boltzmann'’s statistical methods in his blackbody derivation, and “determinfe] S [solely] as a
function of U”. It also required however, that Planck introduce his quantum hypothesis -
namely, that energy is quantized in small uniform amounts. Significantly, Planck assumed
that those small uniform amounts of energy were different for each frequency, creating an a
priori limitation which excluded consideration of a unit of energy for EM waves, analogous
to the unit of charge for electrons. Mathematically Planck’s quantum hypothesis took the
form of the quantum formula which Planck assumed as a given:

E = hv (6)

where “h” is Planck’s action constant, 6.626 X 10-34 Joule seconds.
Planck also calculated a thermodynamic constant, now called the Boltzmann constant:

E = kgT @)

where “E” is the energy of a single element (e.g., a single atom or molecule) based solely on
its temperature “T”, and “kg” is the Boltzmann constant, 1.38 x10-2 Joules per degree K per
element. Just as Helmholtz’s equation provided the energy of a macroscale system based on
its temperature (“TS”), Planck’s thermodynamic equation provided the energy of an
individual microscale element based on its temperature (“kgT”). Thus, the Boltzmann
constant is the microscale equivalent of entropy. Planck never introduced a microscale
equivalent of the work energy “A”, however: the blackbody experiments excluded work
energy. This resulted in a microscale energy formula which was necessarily incomplete for
any system in which work energy was present.

While some scientists used Planck’s blackbody equation for practical applications, his
revolutionary quantum hypothesis received little attention - until, that is, Albert Einstein’s
(1879 - 1955) own revolutionary papers were published in 1905. (Einstein, 1905) Einstein had
seized on Planck’s quantum hypothesis and used it to provide explanations for a number of
unexplained phenomena such as the photoelectric effect and ionization of gases. The
interactions of EM waves and matter, he proposed, “appear more readily understood if one assumes
that the energy of light is discontinuously distributed in space”, e.g., in small particles or packets
along the lines of Newton's “light corpuscles”, and is absorbed in “complete units” or “quanta”.
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Although highly controversial, Einstein’s papers brought attention to Planck’s quantum
hypothesis and formula. A few years later, Niels Bohr (1885 - 1962) adopted Planck’s
quantum formula in his theory of the hydrogen atom. (Bohr, 1913) Controversy still raged
however, and Robert Millikan (1858 - 1963) undertook a series of meticulous experiments
testing the validity of Planck’s constant and what he described as Einstein’s “reckless”
theories regarding energy quanta and photoelectric phenomena. (Millikan, 1916)

Millikan, well familiar with Planck’s accepted resonance hypothesis distinguished the
photoelectric effect as an ordered work function and not a thermal effect: “photoelectrons do
not share in the energies of thermal agitation...absorption [of EM waves] is due to resonance (and we
know of no other way in which to conceive it...)”. Echoing Galileo, Millikan stated, “the
phenomena of absorption and of emission show that...oscillators possess natural frequencies...and the
characteristic waves which they emit are of these frequencies...if any particular frequency is incident
upon such a substance the oscillators in it which are in tune with the impressed waves may be
assumed to absorb the incident waves”. Regarding the resonant work nature of the photoelectric
effect he stated, “emission of [electrons] from the atom...takes place especially copiously when the
impressed frequency coincides with a ‘natural frequency’... [It] furnishes a proof which is quite
independent of the facts of black-body [thermal] radiation, of the correctness of the fundamental
assumption of the quantum theory, namely, the assumption of a discontinuous...energy absorbed by
the electronic constituents of atoms from [EM] waves”. (Underline added)

The quantum revolution begun by Planck and Einstein was taking hold.

2.4 The quantum paradox

As the quantum revolution began to gain momentum, paradoxes and puzzles began cropping
up. The simple model of light waves and matter particles had been disrupted. Louis de
Broglie (1892 - 1987) added to the confusion in the early 1920's when he proposed that if light
could be both a wave and a particle, then so could matter. (de Broglie, 1924) Pursuing that line
of reasoning, de Broglie found the lack of a unit of energy for EM waves, ie., “an isolated
quantity of energy” particularly troublesome. Without an energy constant for light (i.e., an
isolated quantity of energy), de Broglie was unable to determine the fundamental mass of light
using Einstein’s energy-mass equivalence equation, “E = mc?”. Instead, the energy of light
paradoxically depended on its frequency. De Broglie made the best of a conceptually difficult
situation, and instead set Einstein’s mass equivalence equation equal to Planck’s quantum
formula and solved for the rest mass of light at a particular frequency:

myc? = ho, , therefore m; = ho, / ¢* ®)

where “my” is the rest mass of light, and “c” the speed of light in vacuo. Since the number of
different frequencies of EM waves are theoretically infinite, this approach produced a
paradoxically infinite number of values for the rest mass of light. Unlike other particles
such as the electron or proton, de Broglie could find no constant rest mass associated with
light particles.

The lack of any energy or mass constants for light was quite puzzling indeed. Unbeknownst
to de Broglie, Planck’s limiting assumption about different quanta for each frequency
excluded the very unit quantity of energy de Broglie sought. De Broglie could at least
conclude however, that the rest mass of light in the visible region was quite small and in his
Nobel prize speech explained, “The general formulae...may be applied to corpuscles of [visible]
light on the assumption that here the rest mass my is infinitely small... the upper limit of mg ... is
approximately 1024 gram. (de Broglie, 1929)



10 Electromagnetic Waves

De Broglie also used Planck’s quantum formula to derive the momentum for light:
p = myc = hv/c = h/A4 )

finding that the momentum of light appeared to be directly proportional to its frequency,
and thus inversely proportional to its wavelength “A”. Once again, De Broglie obtained a
zoo of values - this time for momentum since the range of frequencies and wavelengths in
the EM spectrum is infinite.

In the meantime, Neils Bohr undertook his ambitious project modeling the hydrogen atom
based on Planck’s quantum formula and constant. Bohr found that he could not calculate
time intervals in regard to the interactions between EM waves and electrons. He was forced
to model instantaneously “jumping electrons” instead. (Bohr, 1913 and 1920) Few (including
Bohr) were satisfied with the jumping electrons however, and in the mid-1920’s two new
approaches to quantum mechanics were introduced. In 1925, Werner Heisenberg,
introduced matrix mechanics. (Heisenberg, 1925) A year later Erwin Schrédinger began
publishing a series of papers on wave equations, intended to represent the real electron
waves suggested by de Broglie. (Schrédinger, 1982)

Even with these two new approaches quantum mechanics still did not make sense to many
early quantum pioneers. It lacked the certainty and definiteness of classical mechanics.
Efforts to compensate for the many paradoxes included additional principles such as
Heisenberg’s uncertainty principle, and Bohr’s complementarity principle. (Heisenberg,
1920 and Bohr, 1928) Additional variables and constants of inexplicable origin were
discovered, such as the dimensionless fine structure constant. Discussion and debates
continued. The Bohr-Heisenberg school of probabilities and uncertainty battled the Einstein
- Schrodinger school of realism and certainty. Without answers for such simple matters as
an energy constant or rest mass for light, the Bohr-Heisenberg school eventually prevailed.
Scientists concluded (over Schrédinger’s strenuous objections) that his wave equations
represented only probabilities, and not real physical waves. The consensus that finally
emerged was that the classical mechanics of our macroscale world simply could not be
applied to the kaleidoscopic microscale world of the quantum. According to Bohr, a
classical limit existed at the very highest electron energy levels in atoms, and below that
limit classical mechanics simply could not be applied.

The iconoclastic brilliance which initially led Einstein to make his “reckless” quantum
proposals, would not allow him to join the quantum crowd and he insisted that something had
been missed. He simply could not believe that God and the universe were so perversely
paradoxical. In 1935, Einstein published his “EPR” paper loudly proclaiming that quantum
mechanics was incomplete due to the existence of “hidden” quantum variables. (Einstein,
1935) Einstein and others such as Bohm and Bell tried to describe the hidden variables, but
such a task was difficult, if not impossible. (Bohm, 1952) How does one describe a quantum
variable mathematically, when the very nature of the variable is unknown? Small groups of
scientists have attempted to keep Einstein’s quest alive, but the scientific community as a
whole abandoned efforts to find any “hidden variables”. Instead, it was generally agreed that
the paradoxical nature of quantum mechanics was an undeniable reality of life. Incredible
efforts then went into developing more quantum models incorporating the paradoxes, such as
theories of strings, super-symmetry, membranes, and the like.

Einstein’s stubborn insistence that something had been missed was correct, however. The
first of his “hidden variables” was discovered nearly a century later, the result of a small
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mathematical thread. (Brooks, 2009,a) Tracing that thread through the historical record, it
led to the discovery that a minor mathematical inadvertence in Planck’s brilliant blackbody
work had induced him to assume an incomplete and abbreviated version of the full quantum
formula. All of quantum physics was based on Planck’s simple quantum formula, and that
assumed formula was incomplete: it was missing a time variable. After restoring the time
variable, Planck’s constant took on new fundamental meaning. The rich quantum tapestry
that emerged, revealed beautifully symmetric quantum principles grounded in reality and
certainty, using the complete quantum formula and a more inclusive or complete
“thermo” dynamic formula. (Brooks, 2009,b)

3. The complete quantum formula

The complete quantum formula is:

E=ht, o (10)

where “h” is the energy constant for light (6.626 X 1034 Joules/ oscillation) and “tn” is the
measurement time variable.

3.1 The time variable

The complete quantum formula is quite similar to an energy relationship found in Planck’s
early theoretical electromagnetic work from the late 1890’s. He converted time-based power
measurements, “E/t”, to total energy values by multiplying by the measurement time, “tn”.
Planck’s EM theory used that simple conversion in a generic relationship in which the
oscillation energy of a system was proportional to the product of a generic constant “a”, the
measurement time variable, and frequency:

sU~aét, v (11)

A few years later, the time variable was lost in Planck’s complicated blackbody derivation.
Instead of multiplying time-based energy measurements by the measurement time, Planck
adopted Wien’s mathematical methods which converted the power measurements into
energy density values by dividing by the speed of light. This caused the measurement time
variable “8ty” to be simultaneously fixed at a value of “one second”, and then “hidden”.
Proof of these facts are found in Planck’s 1901 blackbody paper, in which he described the
experimental data and mathematical methods he used:

“§11. The values of both universal constants h and k may be calculated rather precisely with the aid of
available measurement. F. Kurlbaum, designating the total energy radiating into air from 1 sq cm of
a black body at temperature t° C in 1 sec, by S; found that:

S100 - So=0.0731 watt / cm*=7.31 x 105erg / cm*sec”

Instead of multiplying Kurlbaum’s time-based power measurement by the measurement
time to obtain total energy (as Planck had done in his earlier work), he converted the power
measurement to energy density by dividing by the speed of light “c” (3 X 1010 cm/sec),
according to Wien’s method:

“From this one can obtain the energy density of the total radiation energy in air at the absolute
temperature
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4.7.31x10°
3x10°(373*-273%)"
The time variables in the numerator and denominator cancelled out and Planck was

seemingly able to address energy independent of time. Dividing by the constant speed of
light however, is the same as multiplying by time:

7.031x107% erg / cm? deg*

2
E/ts” _ % L % (12)
c s s s

where “s” is distance. In this case the time value by which the power measurement was
multiplied was the constant “one second” unit time of the constant speed of light. Planck
seems to have been unaware that by using Wien's energy density calculation he was
actually causing the infinitely variable measurement time to be fixed at a constant value of
one second. He also seems to have been unaware that the fixed time variable was
subsequently hidden in the final calculations of his action constant “h”:

h =6.626 X 10*Joule seconds (13)

His action constant is actually the product of a true universal constant - “ h ” - and the fixed,
hidden measurement time variable, “t,”.
h=ht,, where t,=1second (14)

m

3.2 The energy constant

When the missing time variable is restored to the quantum formula, the identity of Planck’s
real universal constant becomes apparent. The hidden constant is, in fact, a universal energy
constant, namely the energy of a single oscillation or EM wave. This universal energy
constant for light is that same “isolated quantity of energy” de Broglie searched for, i.e., the
fundamental small quantum of light’s energy:

h =6.626 X 10>*Joules / oscillation (15)

This fact is easily verified by solving Planck’s incomplete formula for the energy of a single
oscillation of light (see Brooks, 2009a for derivations). The numerical value Planck calculated
for his action constant “h” is actually the numerical value of the mean oscillation energy of
individual EM waves. The “isolated quantity of energy” hoped for by de Broglie, has been
found.

The universal nature of this constant is made clear by consideration of the energy constant
over a wide range of wavelengths, time periods and frequencies. The mean energy of a
single EM wave remains constant regardless of whether it is a radio wave, microwave,
infrared, visible or ultraviolet wave. For low frequency and long wavelength EM waves
such as radio waves, the constant mean oscillation energy is spread out diffusely over a
large volume of space. At higher frequencies and shorter wavelengths, the energy becomes
more concentrated in a smaller volume of space. In the ultraviolet region, the energy of an
oscillation becomes extremely dense, being confined to a very small region of space, around
100 nanometers or so in dimension. The amount of energy in a single oscillation is the same,
however, regardless of the volume or time period it occupies.
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The constancy of the energy of a single EM wave over a variety of wavelengths and time
periods means that the elementary quantum of light is constant over a shift in time or space.
When a property is constant over a shift in time or space, that property is conserved and
represents a universal property. The fundamental relationships are now clear. Just as the
electron has a fundamental unit of charge which is conserved and represents a universal
constant for electrons, light has a fundamental unit of energy, “h”, which is conserved and
represents a universal constant for EM waves.

3.3 The frequency variable

Planck’s quantum formula was incomplete, and as a result did not contain the oscillation
energy constant. This in turn resulted in a quantum formula in which the units did not
balance:

E (Joules) = h (Joule seconds) v(oscillations per second), but Joules #Joules oscillations
(16)

Scientists found they were unable to balance the quantum equations and use complete
mathematical notation for frequency, namely cycles, waves or oscillations per second. As a
result, mathematically incomplete notation, which omitted descriptive units for frequency’s
numerator, was adopted instead. Frequency is currently described in the International
System of Units (“SI”) as “1/sec” or “secl”. This incomplete SI notation for frequency
removes an essential mathematical element of reality in quantum mechanics.

Incomplete mathematical notation for frequency is no longer required to compensate for the
deficiencies of the incomplete quantum formula. With the recognition of the energy
constant - energy per oscillation - frequency can once again be correctly and completely
notated as oscillations per unit time. The use of complete mathematical notation in quantum
mechanics restores a vital aspect of mathematical reality. Recognition of “oscillations” in
the numerator of frequency measurements provides a theoretical element corresponding to
each element of reality in the complete quantum formula. As Einstein argued, such a
correspondence is a critical requirement of a complete quantum mechanics.

3.4 The photon

In 1926, Gilbert Lewis coined the term “photon” for Einstein’s light quantum. The energy of
the photon was calculated with Planck’s (incomplete) quantum formula, “E = hv”.
Questions have been raised from time to time since then, as to whether the “photon” is truly
an indivisible particle of light. The answer to that question is now clearly, “No”. The
photon as previously defined is not an indivisible elementary particle.

The fixed time variable and energy constant had been hidden in Planck’s “action” constant,
and so it was not apparent to Lewis or others that what they were calling the *”photon” was
actually a time-based quantity of light energy, which relied on a fixed and arbitrary one
second measurement time interval. A time-based amount of energy which relies on an
arbitrarily defined time interval cannot be a fundamental or elementary particle of light.
The photon is not an elementary particle of light.

What is the elementary particle of light, then? As identified by the universal energy
constant, the elementary particle of light is the single oscillation of EM energy, i.e., a single
cycle or wave of light. The elementary particle of light possesses the constant energy of
6.626 X 10- Joules. It is the smallest known quantum of energy in the universe. What was
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labeled a “photon” by 20th century physics is actually a collection or ensemble of these small
elementary light particles. Each individual oscillation is a “complete unit” of light and can be
emitted or absorbed as a complete and discreet unit.

The “photon” is not an indivisible particle of light, and is in fact a collection or ensemble of
light oscillations, which can act separately and individually as complete energy units. Upon
absorption by a detector or object, the energy of a collection of discreet oscillations can
spread over several atoms or molecules, resulting in a multi-atom, energy distribution state
known as “entanglement”. (Brooks, 2009, c) This entanglement of EM energy can take place
in different patterns or distributions, depending on the nature of the absorbing or detecting
material. Similarly, emission of light energy can occur from an “entangled” energy state
shared by multiple atoms or molecules in the emitter. An ensemble of EM waves with fewer
than “N” oscillations (where “v = N/sec”) results in a “sub-photonic” collection of EM
waves. The ultimate sub-photonic particle is the elementary particle of light, the single EM
oscillation.

3.5 The mass of light

De Broglie bemoaned the absence of “an isolated quantity of energy” with which he could
calculate the constant rest mass of light. Using the energy constant for light, it is now
possible to complete de Broglie’s calculations and determine the rest mass of a single
quantum of light. Under de Broglie’s original formulation using Einstein’s energy-mass
equivalence equation of “E = mc?”, the rest mass of light is readily determined:

my= 7.372 X 10 kg / oscillation (17)

This value is within the same order of magnitude as the most recent and reliable estimates
for the upper limits of the rest mass of light. Since the energy of a single oscillation of light
is constant, regardless of its wavelength, time period or frequency, its mass is also constant
regardless of its wavelength, time period or frequency. Hence, the mass of light is constant
over a shift in time or space. The mass of light is thus conserved and represents another
universal constant for light (Mortenson, 2011).

Just as the density of light's constant wave energy varies with the length and volume the wave
occupies, the density of its mass varies as well. The mass of long EM radio waves, spread over
a distance and volume of hundreds of meters, is low in density. The identical mass, when
confined to the small wavelength and volume of an X-ray oscillation (on the order of 108 to 10-
11 meters) is trillions of times more dense. High density X-ray oscillations, with their intensely
concentrated mass and energy, can create interactions not typically seen with low density
radio waves, and give rise to effects such as X-ray scattering and particle-like properties.

3.6 The momentum of light

Momentum is classically calculated as the product of an object’s mass and its speed. Using
the constant mass of an EM oscillation as calculated above, and the constant speed of light
(2.99 X 108 m/sec), De Broglie’s calculation for the momentum of light can be completed:

p=myc=2.21 X 10"+ kg m / sec per osc (18)

As with mass, the momentum of a single oscillation of light is constant, rather than being
infinitely variable. The momentum of an EM wave is constant regardless of its wavelength,
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time period or frequency. Thus the momentum of light is constant over a shift in time or
space, and is a conserved property.

In terms of de Broglie’s earlier calculations for the masses and momenta of photons, the mass
and momentum constants for EM waves are not contradictory or confounding. It should be
remembered that the photon of 20th century concepts was actually a collection of elementary
light particles, i.e.,, EM oscillations. Collections of masses and momenta can be additive.
Summation of the constant mass and momentum of single oscillations (based on the number
of oscillations “N” in a one second “photon”) yields the same collective mass and momentum
that de Broglie obtained with his photon-based calculations. Although de Broglie’s mass and
momentum calculations provided infinitely variable results, it is now recognized that his
variable results were an artifact of the missing energy, mass and momentum constants. A
previously unrecognized symmetry for conservation becomes apparent. Energy, mass and
momentum are all conserved for both light and matter, completing the triad of conservation
relationships outlined earlier by Helmholtz, Einstein and de Broglie.

3.7 The force of light

Energy, mass and momentum are all constant and conserved for light. Using classical
mechanics, however, it is easily discerned that the force exerted by light is not constant.
According to Lagrange, force is the product of mass and the change in velocity “during the
instant dt” when the velocity changes:

F=mv/dt (19)

For changes in velocity occurring in an interval of time equal to or greater then the velocity
unit time, the same time variable for both velocity and acceleration can be used. If, on the
other hand, the acceleration (or deceleration) occurs in a time interval much smaller than the
velocity unit time (i.e., an “instantaneous” event), a second time variable, “t,”, must be used
for the acceleration time interval. When an EM oscillation is emitted by an object, a small bit
of mass of 7.372 X 1051 kg is instantaneously accelerated to the speed of light, “c”. Likewise,
when a light wave is absorbed by an object, its mass is instantaneously decelerated. The
acceleration or deceleration occurs “during the instant dt” which is the time period “1” of the
EM wave. The force that accelerates an EM oscillation at its emission (or that is exerted by
an oscillation when it is absorbed) is thus:

F=mc/t, wheret,= 7 (20)

The time periods of EM waves are infinitely variable, as are their frequencies (t = 1/v).
Thus, although the mass and velocity of EM waves are constant, the forces which they exert
are not. The forces associated with light oscillations vary inversely with their time periods,
and directly with their frequencies (“F = m c v”).

The energy and mass of a radio wave, distributed over a comparatively long period of time,
exert relatively little force on an absorbing detector. The energy and mass of an X-ray or
gamma ray oscillation, on the other hand, are concentrated in a minute period of time and
exert tremendously large forces on an absorbing object.

These EM light forces are additive, and given sufficient accumulation the forces can be quite
large and result in the physical acceleration of absorbing matter. (Liu et al, 2010) The force
of light is the operative mechanism behind “space sails” which are now being employed on



16 Electromagnetic Waves

space craft. The sails of the ancient mariners were pushed by the forces of the wind which
filled them. The sails of modern space explorers are now filled by the forces of light which
impinge on them. Likewise, an object emitting light experiences a recoil force proportional
to the emission force of the EM waves. (She et al, 2008)

3.8 Classical limit

The quantum pioneers anticipated that classical mechanics would be used to provide a
description of physical processes at very small length and energy scales. Numerous
roadblocks were encountered, however, due to the hidden quantum variables and
constants. The quantum mechanics developed by Heisenberg and Schrodinger provided a
mathematical framework for low energy kinetics, however they were unable to obtain the
certainty and definitiveness provided by classical mechanics. Without the mass constant for
EM waves, it was impossible to use classical properties of position, time, and mass in any
meaningful way. Heisenberg and Bohr found that they were limited to finding just
probabilities, and that they could apply classical mechanics only at very high electron
energy levels. The region where the classical and quantum mechanics formed a boundary
zone, was deemed the “classical limit” by Bohr. (Bohr, 1920) Above the limit, classical
mechanics could be applied with reality and certainty, while below the limit all was
uncertain and only quantum mechanics could be applied.

Using the new quantum variables and constants, the classical limit/boundary zone between
quantum and classical mechanics is disappearing. (Mortenson, 2010,a) It is now possible to
use classical mechanics at the smallest possible energy levels for light, equivalent to
fractions of a percentage of the lowest known electron energy levels. The kinetics of energy
absorption for a single EM oscillation, namely 6.626 X 1034 Joules, are now fully describable
using classical mechanics. In this regard, the classical limit previously theorized by Bohr, is
being recognized as an artifact of the missing quantum variables and constants.

The application of classical physics at the smallest known energy levels, is made possible
with the use of the second hidden time variable, Lagrange’s acceleration time variable, “t.”.
The absorption or emission of an EM oscillation in the visible light region takes place in 10-10
seconds. This results in a near instantaneous deceleration or acceleration of light’s mass.
The energy required to accelerate a body is a function of the distance over which the force
acts, “F 0s”. In the case of an individual EM oscillation, the distance over which the force
acts is the wavelength, “A” of the oscillation. Multiplying the variable force for light by its
wavelength, i.e., “F0s = (m c v) \”, results in constant energy of “mc2”, or in other words
6.626 X 1034 Joules/osc. The energy constant for light is thus quickly derived from first
principles of position, time and mass.

Lack of appreciation, for the caveats of Lagrange and Coriolis regarding acceleration time
intervals and instantaneous events, contributed to the perception that a barrier or limit
existed between classical and quantum mechanics. The new fundamental physics of EM
waves reveals that particle mechanics can be described at both the macroscale and
microscale levels using the certainty, realism and determinism of classical mechanics.

3.9 The uncertainty principle

Heisenberg suggested the uncertainty principle as a response to the inability of early
quantum pioneers to determine quantum properties related to time or energy with any
certainty. He proposed that changes in energy and time are uncertain to the extent that their
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product must always be greater than or equal to Planck’s constant (AE At > h). That
principle included, of course, the incomplete quantum constant “h”, which hid an energy
constant and a fixed time variable. Heisenberg’s uncertainty principle cured a multitude of
quantum paradoxes, and as David Bohm wrote a generation later, “the physical interpretation
of the quantum theory centers around the uncertainty principle”. When “h” is properly replaced
with the energy constant and measurement time however, the physical interpretation of
quantum theory is changed dramatically and centers around certainty and constancy, where
the change in energy is the energy of a single EM wave, and the change in time “At” and

“_r

measurement time “t,” are equal to the time period “1” for the oscillation.:

AEAt>ht, and AE >h (1)

The smallest possible change in energy is the energy of a single wave of light.

This concept was obscured in the past due to the absence of a separate energy constant and
time variable in Planck’s quantum formula. Under the circumstances, it was inevitable that
calculations of quantities involving time and energy, would yield uncertain results. The
uncertainty is now gone, replaced by a quantum mechanics that accommodates a more
certain and realistic physical interpretation.

3.10 The fine structure constant

The fine-structure constant “has been a mystery every since it was discovered more than fifty years
ago, and all good theoretical physicists put this number up on their wall and worry about it....It’s one
of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by
man...” (Feinman, 1988)

Using the newly discovered quantum constants and variables, the fine structure constant
“a” is far less of a mystery. Examination of the fine structure constant in relation to light’s
action “S” and Planck’s constant “h” (i.e.,, “o h = S”), and substitution of “h” with the

energy constant “ h ” one finds:

a=8% , or in other words a=(E t)% and a=osct (22)

The fine structure constant is not dimensionless. It represents a scaling constant between
time and a single oscillation of EM energy, i.e.,, “osc t”. As such, a theoretical element
corresponding to an element of reality is now provided for the fine structure constant. This
is a critical requirement for a complete quantum mechanics.

3.11 Wave - Particle duality

Two opposing models of light - particles and waves - have been debated for centuries. Some
investigations suggest light is composed of waves, while others suggest particles.  This
conundrum led Einstein to object, ““But what is light really? Is it a wave or a shower of photons?
There seems no likelihood for forming a consistent description of the phenomena of light...we must use
sometimes the one theory and sometimes the other...”. (Einstein, 1938) Bohr responded to these two
contradictory pictures of reality with his complementarity principle, asserting that certain
aspects of light could be viewed one way or another, but never both at the same time.

We are now presented with a picture of reality which demands that we view light
simultaneously as a wave and a particle. The elementary “particle” of light is the single EM
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oscillation or “wave”. Although the time and space the wave occupies may vary, that
variance is according to the constant ratio “c”, and the elementary particle’s energy, mass
and momentum remain constant as well.

The divergent pictures of the past resulted from relative size differences between the EM
waves and the matter with which they interacted. For example, scattering studies were first
performed using soft X-rays with wavelengths larger than atoms, and no clear-cut particle
properties were detected. When Arthur Compton used ultra-short hard X-rays and gamma
rays, however (up to two orders of magnitude smaller than an atom) he observed particle-like
properties. (Compton, 1923) The concentrated energy and mass of the X-ray and gamma ray
waves appeared as small points relative to the size of the atoms in the irradiated materials.

On the other hand, one and two-slit experiments demonstrate wave-like properties for light
via interference bands. These wave-like properties are also relative, however, to the sizes of
the light oscillations and the matter with which they interact. For a slit whose width is equal
to the wavelength of the light, o interference bands are observed and particle-like behavior
is seen. It is only when the width of the slit is increased relative to the wavelength of the
light that interference bands and wave-like properties begin to appear.

Recent experiments with light slits and “single photons” reveal as much about the detecting
material as they do about the light itself. A “photon” is merely a collection of individual EM
quanta. When visible light waves (which are much larger in size (400 - 800 nm) relative to
the individual atoms in the detector (0.1 - 0.5 nm)), strike a detector the energy of the light
wave ensemble impinges on multiple detector atoms simultaneously. This produces an
energy entanglement state in several of the detector atoms. (Brooks, 2009, c) Distribution of
the light energy over several atoms excites a small point-like portion of the detector material
resulting in a photonic reaction, and produces a particle-like pattern in the detector.
(Roychouhuri, 2009) Although the resulting detector imaging appears to show the buildup
over time of “photon” collisions, they actually show the buildup of energy entanglement
states in the detector itself, which are subject to positive and negative interference within
and between groups of entangled atoms.

4. Energy dynamics

The experimental data Planck used to derive the blackbody equation and thermodynamic
formula did not include any measurements arising from orderly work energy. Hence,
Planck did not include work energy in his thermodynamic formula, “E = kg T”. Instead,
Planck’s formulation was limited exclusively to the energy of a small system element (e.g.,
an atom, molecule or ion) based only on its temperature and random chaotic motion.

When orderly work energy is present in a system, more inclusive formulae must be used to
represent the total energy of a system or its elements. (Brooks, 2009b and Mortenson, 2010b)
Helmholtz’s energy equation, “E = A + TS”, embodies once such inclusive formula on the
macroscale, and represents the total energy of a system as the sum of its work and thermal
energies. This more complete formula encompasses significantly more than simple
thermodynamics, and is more appropriately referred to as an energy dynamics formula.

4.1 Energy dynamics formula

A complete energy dynamic formula for an entire system is given by Helmholtz’s energy
equation, “E = A + TS”, (Equation 4., above). While calculation of the thermal energy of a
system is relatively simple and straightforward, determination of the total work energy can
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be considerably more involved. Work energies come in many forms, including mechanical,
chemical, gravitational and resonant energies. Resonance work energy is a broad category
encompassing time-varying forces and fields such as sound waves, electric or magnetic
fields, and light waves. These resonant energies couple to matter via “sympathetic resonance”
and are denoted in the fundamental energy dynamics formula as, “A,”:

E=A +TS (23)

The fundamental principle described by Galileo in his pendulum studies holds true for
resonant work energies, i.e., “by [providing a time-varying energy one may] confer a Motion, and a
Motion considerably great by reiterating...but only under the Time properly belonging to its
Vibrations”. Anyone who has pushed a child on a swing has applied a resonant mechanical
energy to the child/swing system. Pushing the child at just the right time (i.e., the resonant
frequency for the child/swing ensemble) increases the speed, height and excitement of the
child’s ride. Pushing at the wrong time, when the child is a few meters away, produces no
effect on the system and may detract from the excitement of the child’s ride.

In the same way, electromagnetic waves impinging on a material transfer resonant EM
energy to the absorbing matter via their momentum, force, speed and mass. An acceleration
of the oscillating element within the system results from the applied EM force, and an
increase in the oscillation amplitude of that element results (see Fig. 1, above). Thus,
“pushing” the system elements with EM waves at just the right time increases the amplitude
(height) of the system’s oscillations and excites them to higher energy levels. The amount
the system’s oscillation amplitude increases is a function of how close the resonant EM wave
frequency is to the oscillation frequency inside the system (Eq. 2., and Fig. 2, above).

The increased oscillation amplitudes and energy levels in the system can perform work in a
variety of ways, depending on which element or oscillation amplitude is increased. For
example, changes in motion, chemical, material, organizational, or behavioral states may all
result from a resonant energy excitement in the system.

Expressed at the microscale level, a complete energy dynamics formula for the total energy
of an individual element in a system is formulated parallel to Helmholtz’s system formula:

E = W+ kT (24)

where “W.”, is the total microscale work variable representing the total work performed on
an individual element. In the case of resonance work energy, a resonance work variable,
“ra” can be used. This microscale resonance work variable represents the energy gained by
an individual element in a system, as a result of resonance work energy, “A.”, applied to the
system as a whole:

E=r, + kT (25)

4.2 Determination of system resonance work energy “Ar”

The resonance work energy (system/macroscale) and variable (element/microscale) may be
determined experimentally. An aqueous solvent system under resonant conditions was
compared to an identical system under thermal conditions (see Table 1., below):1

1 Experimental Procedure — Distilled water (500 ml at 20° C) was placed in each of two 1,000 ml beakers. One
beaker was irradiated with resonant vibrational electromagnetic frequencies of water for three (3) hours, by a light
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Resonant system Thermal system
Weight Dissolved (g/100ml NaCl) 26.0 23.8
Moles Dissolved (NaCl) 4.65 425
Heat of solution (kJ) 17.4 16.0

Table 1. Resonant vs. Thermal aqueous solvent system

The heat of solution is a measurement of the work performed by the solvent on the
dissolving solute. The work performed by the resonant system was 17.4 kJ, while the
thermal system performed only 16.0 kJ of work on the NaCl solute. The energy dynamics
formulae for both systems are:

Thermal system E; = TS, and 16.0 k] =(274°K) S (26)

Resonant system Ep = A, +TS and 174 k] = A, +(274°K) S (27)

Subtracting, one finds that the resonance work energy, “A;”, in the resonant system is 1.4 kJ
of energy:

A, =14K] (28)

4.3 The resonance factor
The ratio of the total energy in the resonant system to the total energy in the thermal system:

Er / Er=r; (29)

is the resonance factor, “rf “. In the aqueous solvent system described above, the
resonance factor is 1.09. There was 9% more energy available in the resonant system to
perform work on the solute and to dissolve it. This resonance work energy was in
addition to the thermal energy already inherent in the system as a result of its
temperature.

4.4 Determination of element resonance work energy “ra”

The amount of resonance work energy at the microscale is the resonance work variable,
“ra”. In the solvent system example, individual elements in the system irradiated with
resonant EM waves possessed greater energy than the elements in the thermal system.
The value of the microscale resonance work energy can be calculated using Equation 25.,

above:

source using 2.1 kJ total energy. The other beaker was placed in an opaque incubator for three (3) hours. The
water in both beakers at the end of the three (3) hours was 23° C. Sodium chloride (250 g) was added to each
beaker, and the beakers were stored identically in a darkened cabinet. Twenty (20) hours later temperatures of the
solutions were identical (21° C /274° K). The solutions were decanted and the dissolved weight, salinity
and concentration measurements of the resonant and thermal saline solutions were made using standard methods.
(Brooks et al, 2005)
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Thermal element E, =k, T and E;=405 X 10 %] per molecule (30)

Resonant element E, = 1, + kT and E, = 440 X 10*] per molecule (31)

Subtraction shows that each water molecule in the resonant system performed an additional
35 X 10- ] of work on the solute, as a result of absorption of the resonant EM waves.

4.5 Virtual thermal effects of resonant EM waves

When resonant EM waves perform work on a system and increase one or more oscillation
amplitudes within the system, that increased oscillation energy is free to be transformed into
work within the system. In the case of the aqueous solvent system described in the
experimental example above, the vibrational oscillations of the solvent water molecules were
excited. This in turn led to a change in the behavior of the water as a solvent. The resonant
water dissolved 26.0 g/100 ml of NaCl, while the thermal water dissolved only 23.8 g/100 ml.
To what temperature would the thermal system need to be raised, in order to dissolve the
same amount of NaCl that the resonant system dissolved, all else being equal? This is
readily calculated by setting the total element energy in the resonant system equal to the
thermal energy, and solving for temperature “T":

E, =kgT, therefore T = E, / kg (32)

T=319°K (46°C)

In order to dissolve the same amount of NaCl in the thermal system, that the resonant
system had dissolved, the thermal system would have had to be heated to 46 ° C. The water
in the resonant system behaved as though it had been heated to 46 ° C, even though it had
not. The EM waves provided a virtual thermal effect in the resonant solvent system.

4.6 Energy efficiency of resonant EM waves

As Helmholtz described many decades ago, energy can be transformed and converted from
one form to another, “...heat, electricity, magnetism, light, and chemical affinity “. The
efficiencies with which these transformations take place is not uniform across all
conversions of energy. Depending on the process and desired end-result or product, the
energy transformation efficiency can vary widely. For example, in the water solvent
example given above, one would need to heat the water to 46 ° C, in order to dissolve the
same amount of salt that the resonant water system had dissolved. Heating 500 ml of water
to that higher temperature would require at least 52 kJ of energy.

On the other hand, the light source which provided the resonant vibrational EM waves to
the resonant system consumed only 2.1 k] of energy. (Mortenson & George, 2011). The total
additional energy required to achieve the desired end-result or product (i.e., dissolve more
salt), is far less with the resonant EM waves: ninety-six percent (96%) less, in fact.

The total extra heat of dissolution work performed by the resonant water on the solute was
1.4 K]. The energy transformation efficiency for the resonant system was 67%. If one were
to heat the thermal water to increase its temperature by 25°, using the 52 kJ of energy, the
efficiency of the thermal energy conversion into heat of dissolution would be only 3%.
There is more than an order of magnitude difference between the energy conversion
efficiency of the resonant EM system and the thermal system.
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4.7 Boltzmann weighting

Under Boltzmann mechanics for purely random and chaotic thermal systems, the elements
(e.g., molecules) in a system adhere to a thermal distribution curve (Figure 3.a., below). In
general terms, at low temperatures, most of the elements or molecules are at the lowest
possible energy level or ground state. As the temperature in the system increases, the
elements begin to leave the lower energy levels and populate the upper energy levels. At
very high temperatures, several of the upper energy levels may be populated, leaving few
molecules in the lowest ground state. The distribution of elements in the energy levels is
determined with the Boltzmann factor:

o En/ksT

This is a weighting factor that determines the probability that an element will be in the “nth”
energy state when the system is in thermodynamic equilibrium. The Boltzmann factor
excludes consideration of resonant work energies (which are orderly), and assumes
completely random motions in the system. Helmholtz energies are thus typically assumed
to be at a minimum when Boltzmann mechanics are applied.

Cold Hot or Initial Conversion
“Virtual” | | Resonant | | of Energy
State to Work

D

— P = R

Molecular Population ~——

a. Boltzmann thermal distribution

b. Resonant distribution
(Non-Boltzmann)

Fig. 3. Comparison of energy level population states under thermal conditions and resonant
EM conditions. Upper energy level populations are increased as temperature increases.
Absorption of resonant EM waves produces an irregular resonant energy distribution curve.
This can result in system behavior equivalent to a “virtual” thermal distribution curve.

When a system is exposed to resonant EM waves, a “virtual” thermal effect can be
produced, as in the aqueous solvent example above. In such a case, the “virtual” thermal
distribution may be determined using a modification to the Boltzmann weighting factor:
e—En /1ekgT

in which the resonance factor, “r¢” is included. The resulting thermal distribution curve reveals
the energy state distribution curve of the thermodynamic system that would result in the same
desired product or behavior that is produced by the system absorbing resonant energy.

The assumptions of randomness in the Boltzmann mechanics do not apply to resonant EM
systems, with their uniform work energies, and systems exposed to resonant EM waves do
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not follow the smooth thermal distributions curves, however. Individual energy levels in
the system may be selectively populated, changing the shape of the traditional smooth
curve, to a bulging or “lumpy” energy distribution curve. (Figure 3b., above). Absorption of
resonant EM waves initially results in increased population of an upper energy level. As the
energy is converted to work in the system, the energy state devolves and relaxes. When all
of the work energy has been spent, a thermal distribution is once again exhibited.
Depending on which energy level(s) are selectively populated, the work performed will
vary and can include speeding the rate of a reaction in a catalytic manner, e.g., virtual
thermal effects can replace chemical activation energies. (Fukushima J. et al, 2010)

4.8 Equilibrium constant

In chemical and materials systems the work performed by the resonant EM waves can also
shift the equilibrium of the system and produce dramatic changes in its chemical and
material dynamics. In the dynamic equilibrium of chemical and material systems, in which
reactants are transformed into products at the same rate products are transformed back into
reactants, the equilibrium constant “K” indicates the point of dynamic equilibrium (product-
to-reactant concentration ratio). Systems with a large equilibrium constant contain mostly
product, while a low “K” indicates mainly reactants.

Free Free
Energy Energy
Equilibrium >
shift
Reactants T Product Reactants T Product
Equilibrium Equilibrium
Fig. 4. a. Thermal system Fig. 4. b. Resonant system

In statistical thermodynamics the equilibrium constant is proportional to another natural log, K
~ eAE/RT” (where AE is chemical free energy). When resonant EM waves are present in a
system, the resonance factor properly appears in the denominator of the power notation, i.e.,
“riRT” to reflect the total increase in system energy. If the resonant EM waves increase chemical
free energy, “AE”, the ratio of chemical free energy to system energy remains the same. The
equilibrium constant does not change, however the EM waves act as a catalyst and increase the
rate of the reaction. (If the chemical free energy decreases, i.e., the resonance factor is less than
“one”, the EM waves will act as a negative catalyst and slow the rate of reaction.)

When resonant EM waves are absorbed and transformed to something other than chemical
free energy, then AE/rRT < AE/RT, and the equilibrium constant will increase. Resonant
EM waves that perform useful work on a system can thus increase the equilibrium constant,
“K”, and increase the actual concentration of desired products. Resonant EM waves can
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cause a shift of the equilibrium curve. (Figure 4.b., above) In other words, resonant EM
waves can achieve results not obtainable with classical catalysis or thermodynamics. (Brooks
and Abel, 2007, Blum et al, 2003, Fukushima H., 2010, and Roy et al, 2002)

5. Conclusion

The two fundamental formulae which formed the foundations of quantum mechanics and
20th century physics were both incomplete in regard to electromagnetic waves. The quantum
formula was missing a time variable and energy constant, due to a minor inadvertence in
Max Planck’s derivation of the blackbody equation. Unforeseen consequences occurred as a
result. The identity of the true elementary particle of light - the single EM oscillation - was
obscured. Mathematical nomenclature for frequency became incomplete. Calculations of
the mass, momentum, and force of EM waves were made impossible. Paradoxical
principles including the classical limit, the uncertainty principle, and the complementarity
principle were made necessary. Dimensionality of the fine structure constant was hidden,
and great confusion arose over the wave vs. particle nature of light. Use of the complete
quantum formula remedies these difficulties and provides a sound foundation for a certain
and realistic quantum mechanics.

Likewise, the thermodynamic formula derived in Planck’s blackbody work was not an
inclusive or complete formula for energy dynamics. The complete energy dynamics
formulae allow the resonant EM work energies in systems to be accounted for
mathematically, both at the macroscale and microscale. Traditional Boltzmann mechanics
cannot be strictly applied to EM waves, because Boltzmann mechanics assume completely
random motions. Absorption of uniform EM waves requires modifications of Boltzmann
weighting. Resonant EM waves can provide virtual thermal effects, decreased energy
requirements, and increased energy efficiencies. Depending on how their energy is
converted to work, resonant EM waves can act as catalysts - changing chemical or materials
reaction rates - or they can shift reaction equilibria altogether, producing effects and
products not seen or obtainable under typical thermodynamic conditions.

A new and powerful scientific paradigm is being revealed in the fundamental physics of
electromagnetic waves.
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1. Introduction

“A physicist needs his equations should be mathematically sound and that in working with
his equations he should not neglect quantities unless they are small”
P.A. M. Dirac

Classical electrodynamics is nowadays considered [29; 57; 80] the most fundamental physical
theory, largely owing to the depth of its theoretical foundations and wealth of experimental
verifications. Electrodynamics is essentially characterized by its Lorentz invariance from a
theoretical perspective, and this very important property has had a revolutionary influence
[29; 57; 80; 102; 111] on the whole development of physics. In spite of the breadth and
depth of theoretical understanding of electromagnetism, there remain several fundamental
open problems and gaps in comprehension related to the true physical nature of Maxwell’s
theory when it comes to describing electromagnetic waves as quantum photons in a vacuum:
These start with the difficulties in constructing a successful Lagrangian approach to classical
electrodynamics that is free of the Dirac-Fock-Podolsky inconsistency [53; 111; 112], and end
with the problem of devising its true quantization theory without such artificial constructions
as a Fock space with “indefinite” metrics, the Lorentz condition on “average”, and
regularized “infinities”  [102] of S-matrices. Moreover, there are the related problems
of obtaining a complete description of the structure of a vacuum medium carrying the
electromagnetic waves and deriving a theoretically and physically valid Lorentz force
expression for a moving charged point particle interacting with and external electromagnetic
field. To describe the essence of these problems, let us begin with the classical Lorentz force
expression

F:=qE+quXx B, (2.1)

where g € R is a particle electric charge, u € E? is its velocity vector, expressed here in the
light speed ¢ units,
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E:=—3A/dt— Vg 2.2)

is the corresponding external electric field and
B:=VxA (2.3)

is the corresponding external magnetic field, acting on the charged particle, expressed in terms
of suitable vector A : M* — 3 and scalar ¢ : M* — R potentials. Here “V” is the standard
gradient operator with respect to the spatial variable r € IE3, “x” is the usual vector product in
three-dimensional Euclidean vector space E3, which is naturally endowed with the classical
scalar product < -, - >. These potentials are defined on the Minkowski space M* := R x E?,
which models a chosen laboratory reference system K. Now, it is a well-known fact [56; 57; 70;
80] that the force expression (2.1) does not take into account the dual influence of the charged
particle on the electromagnetic field and should be considered valid only if the particle charge
g — 0. This also means that expression (2.1) cannot be used for studying the interaction
between two different moving charged point particles, as was pedagogically demonstrated in
[57].

Other questionable inferences, which strongly motivated the analysis in this work, are related
both to an alternative interpretation of the well-known Lorentz condition, imposed on the
four-vector of electromagnetic potentials (¢, A) : M* — R x [E3 and the classical Lagrangian
formulation [57] of charged particle dynamics under an external electromagnetic field. The
Lagrangian approach is strongly dependent on the important Einsteinian notion of the rest
reference system /C; and the related least action principle, so before explaining it in more
detail, we first analyze the classical Maxwell electromagnetic theory from a strictly dynamical
point of view.

2. Relativistic electrodynamics models revisited: Lagrangian and Hamiltonian
analysis

2.1 The Maxwell equations revisiting
Let us consider the additional Lorentz condition

0¢/dt+ < V,A >=0, (2.4)

imposed a priori on the four-vector of potentials (¢, A) : M* — R x 2, which satisfy the
Lorentz invariant wave field equations

/ot —Vip=p, PA/H —V?A=], (2.5)

where p : M* - Rand | : M* — E3 are, respectively, the charge and current densities of the
ambient matter, which satisfy the charge continuity equation

op/dt+ < V,] >=0. (2.6)
Then the classical electromagnetic Maxwell field equations [56; 57; 70; 80]

VXE+9dB/ot=0, <V,E>=p, (2.7)
V XB—0dE/ot=], <V,B>=0,
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hold for all (t,7) € M* with respect to the chosen reference system K.

Notice here that Maxwell’s equations (2.7) do not directly reduce, via definitions (2.2) and
(2.3), to the wave field equations (2.5) without the Lorentz condition (2.4). This fact is very
important, and suggests that when it comes to a choice of governing equations, it may be
reasonable to replace Maxwell’s equations (2.7) and (2.6) with the Lorentz condition (2.4),
(2.5) and the continuity equation (2.6). From the assumptions formulated above, one infers
the following result.

Proposition 2.1. The Lorentz invariant wave equations (2.5) for the potentials (¢, A) : M* —
R x E3, together with the Lorentz condition (2.4) and the charge continuity relationship (2.5), are
completely equivalent to the Maxwell field equations (2.7).

Proof. Substituting (2.4), into (2.5), one easily obtains
2@/t = — < V,0A/dt >=<V,V¢ > +p, (2.8)
which implies the gradient expression
<V,—0A/dt=V¢ >=p. (2.9)
Taking into account the electric field definition (2.2), expression (2.9) reduces to
<V,E>=p, (2.10)

which is the second of the first pair of Maxwell’s equations (2.7).
Now upon applying V x to definition (2.2), we find, owing to definition (2.3), that

V x E+09B/ot =0, (2.11)

which is the first of the first pair of the Maxwell equations (2.7).
Applying V x to the definition (2.3), one obtains

VxB=Vx(VxA)=V<V,A>-V2A=
= —V(d¢/dt) —*A/dt* + (9*A/t2 — V2A) =
d

= 5;(=Ve—0A/dt) +] = 9E/0t + ], (2.12)

leading to
V xB=0E/dt+],

which is the first of the second pair of the Maxwell equations (2.7). The final “no magnetic
charge” equation
<V,B>=<V,VxA>=0,

in (2.7) follows directly from the elementary identity < V, Vx >= 0, thereby completing the
proof. O

This proposition allows us to consider the potential functions (¢, A) : M* — R x E® as
fundamental ingredients of the ambient vacuum field medium, by means of which we can try to
describe the related physical behavior of charged point particles imbedded in space-time M*.
The following observation provides strong support for this approach:
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Observation. The Lorentz condition (2.4) actually means that the scalar potential field ¢ : M* — R
continuity relationship, whose origin lies in some new field conservation law, characterizes the deep
intrinsic structure of the vacuum field medium.

To make this observation more transparent and precise, let us recall the definition [56; 57; 70;
80] of the electric current | : M* — [E® in the dynamical form

= po, (2.13)

where the vector v : M* — E?® is the corresponding charge velocity. Thus, the following
continuity relationship
op/ot+ < V,pv >=0 (2.14)

holds, which can easily be recast [122] as the integral conservation law
d
| pdr=0 2.15
g et (2.15)

for the charge inside of any bounded domain Q; C E3 moving in the space-time M* with
respect to the natural evolution equation

dr/dt := v. (2.16)

Following the above reasoning, we are led to the following result.

Proposition 2.2. The Lorentz condition (2.4) is equivalent to the integral conservation law
d
| edr=0, 217
i ot 17)

where QO C E3 is any bounded domain moving with respect to the evolution equation
dr/dt :=v, (2.18)

which represents the velocity vector of local potential field changes propagating in the Minkowski
space-time M*.

Proof. Consider first the corresponding solutions to the potential field equations (2.5), taking
into account condition (2.13). Owing to the results from [57; 70], one finds that

A= ¢v, (2.19)
which gives rise to the following form of the Lorentz condition (2.4):
0¢/dt+ < V,pv >=0. (2.20)

This obviously can be rewritten [122] as the integral conservation law (2.17), so the proof is
complete. O

The above proposition suggests a physically motivated interpretation of electrodynamic
phenomena in terms of what should naturally be called the vacuum potential field, which
determines the observable interactions between charged point particles. More precisely,
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we can a priori endow the ambient vacuum medium with a scalar potential field function
W :=q¢: M* — R, satisfying the governing vacuum field equations

PW/o2 —V2W =0, daW/dt+ <V, Wo >=0, (2.21)

taking into account that there are no external sources besides material particles possessing
only a virtual capability for disturbing the vacuum field medium. Moreover, this vacuum
potential field function W : M* — R allows the natural potential energy interpretation,
whose origin should be assigned not only to the charged interacting medium, but also to any
other medium possessing interaction capabilities, including for instance, material particles
interacting through the gravity.

This leads naturally to the next important step, which consists in deriving the equation
governing the corresponding potential field W : M* — R, assigned to the vacuum field
medium in a neighborhood of any spatial point moving with velocity u € E3 and located
at R(t) € E2 at time t € R. As can be readily shown [53; 54], the corresponding evolution
equation governing the related potential field function W : M* — R has the form

() = VW, 222)

where W := W(r,t)|,_,g(y), # := dR(t)/dt at point particle location (R(t),t) € M*.

Similarly, if there are two interacting point particles, located at points R(f) and R¢(t) € E3 at
time ¢ € R and moving, respectively, with velocities u := dR(t)/dt and uy := dRy(t)/dt, the
corresponding potential field function W : M* — TR for the particle located at point R(t) € E>

should satisfy

%[—W(u —ug)] = -VW. (2.23)
The dynamical potential field equations (2.22) and (2.23) appear to have important properties
and can be used as a means for representing classical electrodynamics. Consequently, we
shall proceed to investigate their physical properties in more detail and compare them with
classical results for Lorentz type forces arising in the electrodynamics of moving charged point
particles in an external electromagnetic field.
In this investigation, we were strongly inspired by the works [81; 82; 89; 91; 93]; especially
by the interesting studies [87; 88] devoted to solving the classical problem of reconciling
gravitational and electrodynamical charges within the Mach-Einstein ether paradigm. First,
we revisit the classical Mach-Einstein relativistic electrodynamics of a moving charged point
particle, and second, we study the resulting electrodynamic theories associated with our
vacuum potential field dynamical equations (2.22) and (2.23), making use of the fundamental
Lagrangian and Hamiltonian formalisms which were specially devised for this in [52; 55].
The results obtained are used to apply the canonical Dirac quantization procedure to the
corresponding energy conservation laws associated to the electrodynamic models considered.

2.2 Classical relativistic electrodynamics revisited
The classical relativistic electrodynamics of a freely moving charged point particle in the
Minkowski space-time M* := R x [E3 is based on the Lagrangian approach [56; 57; 70; 80]
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with Lagrangian function
L= —mp(1—u?)1/?, (2.24)
where my € Ry is the so-called particle rest mass and u € E? is its spatial velocity in the

Euclidean space [E3, expressed here and in the sequel in light speed units (with light speed c).
The least action principle in the form

t
55=0, S:=— / (1 — u?)V2at (2.25)
f

for any fixed temporal interval [f1,f;] C R gives rise to the well-known relativistic
relationships for the mass of the particle

m = mo(1—u?)"12, (2.26)

the momentum of the particle
p = mu = mou(l— uz)*l/2 (2.27)

and the energy of the particle
Eo=m =my(1—u?)"12, (2.28)

It follows from [57; 80], that the origin of the Lagrangian (2.24) can be extracted from the action
S— f/mo(l )2 = /modr (2.29)

on the suitable temporal interval [TLTZ} C R, where, by definition,
dt = dt(1 — u?)1/? (2.30)

and T € R is the so-called proper temporal parameter assigned to a freely moving particle
with respect to the rest reference system /C;. The action (2.29) is rather questionable from
the dynamical point of view, since it is physically defined with respect to the rest reference
system K, giving rise to the constant action S = —my(1y — 71), as the limits of integrations
71 < T2 € R were taken to be fixed from the very beginning. Moreover, considering this
particle to have charge 4 € R and be moving in the Minkowski space-time M* under action
of an electromagnetic field (¢, A) € R x E?, the corresponding classical (relativistic) action
functional is chosen (see [52; 55-57; 70; 80]) as follows:

T
5= /[—mOdT—i— g < Aji>dt—qe(1—u?)"V2d7), 2.31)
T
with respect to the rest reference system, parameterized by the Euclidean space-time variables

(t,7) € E* where we have denoted 7 := dr/dt in contrast to the definition u := dr/dt. The
action (2.31) can be rewritten with respect to the laboratory reference system K moving with
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velocity vector u € E3 as

b
S= /Edt, L= —my(1—u®)V2 45 < Au>—qo, (2.32)
a

on the temporal interval [t1,1;] C [, which gives rise to the following [56; 57; 70; 80]

dynamical expressions
P=p+qA, p=mu, m=my(l— u?)=1/2, (2.33)
for the particle momentum and
& = [m5+ (P —qA)""? +4¢ (2.34)

for the particle energy, where, by definition, P € IE3 is the common momentum of the particle
and the ambient electromagnetic field at a space-time point (t,7) € M*.
The expression (2.34) for the particle energy & also appears open to question, since the
potential energy q¢, entering additively, has no affect on the particle mass m = mg(1 —
u?)~1/2_ This was noticed by L. Brillouin [59], who remarked that since the potential energy
has no affect on the particle mass, this tells us that “... any possibility of existence of a
particle mass related with an external potential energy, is completely excluded”. Moreover,
it is necessary to stress here that the least action principle (2.32), formulated with respect to
the laboratory reference system K time parameter t € R, appears logically inadequate, for
there is a strong physical inconsistency with other time parameters of the Lorentz equivalent
reference systems. This was first mentioned by R. Feynman in [29], in his efforts to rewrite the
Lorentz force expression with respect to the rest reference system ;. This and other special
relativity theory and electrodynamics problems induced many prominent physicists of the
past [29; 59; 61; 64; 80] and present [4; 5; 60; 65; 66; 68; 69; 81; 82; 87; 89; 90; 93] to try to develop
alternative relativity theories based on completely different space-time and matter structure
principles.
There also is another controversial inference from the action expression (2.32). As one can
easily show [56; 57; 70; 80], the corresponding dynamical equation for the Lorentz force is
given as

dp/dt = F := qE + qu x B. (2.35)

We have defined here, as before,
E:=—0A/ot— Vg (2.36)
for the corresponding electric field and
B:=VxA (2.37)

for the related magnetic field, acting on the charged point particle 4. The expression (2.35)
means, in particular, that the Lorentz force F depends linearly on the particle velocity vector
u € 3, and so there is a strong dependence on the reference system with respect to which the
charged particle 4 moves. Attempts to reconcile this and some related controversies [29; 59;
60; 63] forced Einstein to devise his special relativity theory and proceed further to creating his
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general relativity theory trying to explain gravity by means of geometrization of space-time
and matter in the Universe. Here we must mention that the classical Lagrangian function £ in
(2.32) is written in terms of a combination of terms expressed by means of both the Euclidean
rest reference system variables (t,7) € E* and arbitrarily chosen Minkowski reference system
variables (t,7) € M*.

These problems were recently analyzed using a completely different “no-geometry” approach
[6; 53; 54; 60], where new dynamical equations were derived, which were free of the
controversial elements mentioned above. Moreover, this approach avoided the introduction
of the well-known Lorentz transformations of the space-time reference systems with respect
to which the action functional (2.32) is invariant. From this point of view, there are
interesting conclusions in [83] in which Galilean invariant Lagrangians possessing intrinsic
Poincaré-Lorentz symmetry are reanalyzed. Next, we revisit the results obtained in [53; 54]
from the classical Lagrangian and Hamiltonian formalisms [52] in order to shed new light
on the physical underpinnings of the vacuum field theory approach to the investigation of
combined electromagnetic and gravitational effects.

2.3 The vacuum field theory electrodynamics equations: Lagrangian analysis

2.3.1 A point particle moving in a vacuum - an alternative electrodynamic model

In the vacuum field theory approach to combining electromagnetism and the gravity devised
in [53; 54], the main vacuum potential field function W : M*— R related to a charged point
particle g satisfies the dynamical equation (2.21), namely

(W) = W (238)

in the case when the external charged particles are at rest, where, as above, 1 := dr/dt is the
particle velocity with respect to some reference system.

To analyze the dynamical equation (2.38) from the Lagrangian point of view, we write the
corresponding action functional as

T
5= f/Vth - f/v‘v(1+r'2)1/2 dr, (2.39)
T
expressed with respect to the rest reference system K,. Fixing the proper temporal parameters

71 < T2 € R, one finds from the least action principle ( S = 0) that

pi=0L/dF = —Wi(1+i*) 2 = —Wu, (2.40)
pi=dp/dt =3L/or = —VW(1+#)2,

where, owing to (2.39), the corresponding Lagrangian function is
L:=—-W(1+)2 (2.41)
Recalling now the definition of the particle mass

m:=—-W (2.42)
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and the relationships
dt = dt(1 — u®)V?, #dt = udt, (2.43)

from (2.40) we easily obtain the dynamical equation (2.38). Moreover, one now readily finds
that the dynamical mass, defined by means of expression (2.42), is given as

m=mgp(1l— uz)fl/z,

which coincides with the equation (2.26) of the preceding section. Now one can formulate the
following proposition using the above results

Proposition 2.3. The alternative freely moving point particle electrodynamic model (2.38) allows
the least action formulation (2.39) with respect to the “rest” reference system variables, where the
Lagrangian function is given by expression (2.41). Its electrodynamics is completely equivalent to that
of a classical relativistic freely moving point particle, described in Section 2.

2.3.2 An interacting two charge system moving in a vacuum - an alternative electrodynamic
model

We proceed now to the case when our charged point particle 4 moves in the space-time with

velocity vector u € IE® and interacts with another external charged point particle, moving

with velocity vector u € E? in a common reference system K. As shown in [53; 54], the

corresponding dynamical equation for the vacuum potential field function W : M*— R is
given as

d,. _

E[—W(u —us)] =-VW. (2.44)
As the external charged particle moves in the space-time, it generates the related magnetic
field B := V x A, whose magnetic vector potential A : M*— B3 is defined, owing to the
results of [53; 54; 60], as

qA := Wuy. (2.45)
Whence, it follows from (2.40) that the particle momentum p = —Wu equation (2.44) is
equivalent to
d -
Z(p+qgA) =—VW. (2.46)

dt

To represent the dynamical equation (2.46) in the classical Lagrangian formalism, we start
from the following action functional, which naturally generalizes the functional (2.39):

5= —/W(l + 7 — E2)12 dr, (2.47)

T

where & = ugdt/dt, dt = dt(1 — (u— uf)z)l/z, which takes into account the relative velocity
of the charged point particle g with respect to the reference system K’, moving with velocity
us € IE3 in the reference system K. It is clear in this case that the charged point particle q

moves with velocity u — u IS E3 with respect to the reference system K’ in which the external
charged particle is at rest.



36 Electromagnetic Waves

Now we compute the least action variational condition §S = 0 taking into account that, owing
to (2.47), the corresponding Lagrangian function is given as

L= W1+ (- §2)V2 (2.48)
Hence, the common momentum of the particles is

P:=0L/d = —W(i — &)1+ (F - &)?) V2 = (2.49)
= —Wi(l+ (7= &)H) V2+ W1+ (71 - §)?) V2 =
=mu+qA:=p+q4a,

and the dynamical equation is given as

d _ L

T(paA) = —VW(1+ i — EH)12. (2.50)
Asdt =dt(1 — (u — uf)2)1/2 and (1+ (F—&H)V2 = (1 - (u— uf)z)*l/z, we obtain finally
from (2.50) the dynamical equation (2.46), which leads to the next proposition.

Proposition 2.4. The alternative classical relativistic electrodynamic model (2.44) allows the least

action formulation (2.47) with respect to the “rest” reference system variables, where the Lagrangian
function is given by expression (2.48).

2.3.3 A moving charged point particle formulation dual to the classical alternative
electrodynamic model

It is easy to see that the action functional (2.47) is written utilizing the classical Galilean

transformations of reference systems. If we now consider the action functional (2.39) for a

charged point particle moving with respect the reference system K,, and take into account its

interaction with an external magnetic field generated by the vector potential A : M* — I3, it

can be naturally generalized as

tz T
5= /(—Wdt Yg< Adr>) = /[-Vvu FOV2 g < A ST (2.51)

ty T

where dt = dt(1 — u?)1/2,
Thus, the corresponding common particle-field momentum takes the form

P:=03L/dF = —Wi(1+*) V2 +qA = (2.52)
=mu—+qgA:=p+qA,
and satisfies
P:=dP/dt =dL/or = —VW(1+i)2 41 qV < A, >= (2.53)
= VWA —u?)V24qV < Au>(1-u?)"V2

where
L:=—WA+2)Y2 15<Aji> (2.54)
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is the corresponding Lagrangian function. Since dt = dt(1 — u?)!/2

(2.53) that

, one easily finds from
dP/dt = —=VW +qV < A,u > . (2.55)
Upon substituting (2.52) into (2.55) and making use of the well-known [57] identity

V<ab>=<a,V>b+<bV>a+bx(Vxa)+ax(VxDb), (2.56)

where a,b € E? are arbitrary vector functions, we obtain the classical expression for the
Lorentz force F acting on the moving charged point particle g :

dp/dt :=F = qE+qu x B, (2.57)

where, by definition,
E:=—-VWq ! —0A/ot (2.58)

is its associated electric field and
B:=VxA (2.59)

is the corresponding magnetic field. This result can be summarized as follows:

Proposition 2.5. The classical relativistic Lorentz force (2.57) allows the least action formulation
(2.51) with respect to the rest reference system variables, where the Lagrangian function is given by
formula (2.54). Its electrodynamics described by the Lorentz force (2.57) is completely equivalent to the
classical relativistic moving point particle electrodynamics characterized by the Lorentz force (2.35) in
Section 2.

As for the dynamical equation (2.50), it is easy to see that it is equivalent to

dp/dt = (-VW —qdA/dt +qV < A,u >)—qV < A,u >, (2.60)

which, owing to (2.55) and (2.57), takes the following Lorentz type force form
dp/dt =qE+quxB—gV < A,u >, (2.61)

that can be found in [53; 54; 60].

Expressions (2.57) and (2.61) are equal to up to the gradient term F. := —gV < A, u >, which
reconciles the Lorentz forces acting on a charged moving particle g4 with respect to different
reference systems. This fact is important for our vacuum field theory approach since it uses
no special geometry and makes it possible to analyze both electromagnetic and gravitational
fields simultaneously by employing the new definition of the dynamical mass by means of
expression (2.42).

2.4 The vacuum field theory electrodynamics equations: Hamiltonian analysis

Any Lagrangian theory has an equivalent canonical Hamiltonian representation via the
classical Legendre transformation[1; 2; 46; 56; 104]. As we have already formulated our
vacuum field theory of a moving charged particle 4 in Lagrangian form, we proceed now
to its Hamiltonian analysis making use of the action functionals (2.39), (2.48) and (2.51).
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Take, first, the Lagrangian function (2.41) and the momentum expression (2.40) for defining
the corresponding Hamiltonian function

H:=<pi>—-L=
=—<pp> W‘l(l _ pz/wz)—l/z + W1 - pz/wz)—l/z _
= W1 - p2/WA) V2 L WRW L1 — R/ WR) L2 = 2.62)
= — (W2 — p?)(W? - pz)—l/z = (W2 - p2)1/2.

Consequently, it is easy to show [1; 2; 56; 104] that the Hamiltonian function (2.62) is a
conservation law of the dynamical field equation (2.38); that is, for all 7, € R

dH/dt = 0 = dH /d, (2.63)

which naturally leads to an energy interpretation of H. Thus, we can represent the particle
energy as
£ =(W2—p?)l/2, (2.64)
Accordingly the Hamiltonian equivalent to the vacuum field equation (2.38) can be written as
i:=dr/dt = dH/dp = p(W?* — p*)~1/2 (2.65)
pi=dp/dt = —0H/dr = WWW(W? — p?)~1/2,
and we have the following result.

Proposition 2.6. The alternative freely moving point particle electrodynamic model (2.38) allows the
canonical Hamiltonian formulation (2.65) with respect to the “rest” reference system variables, where
the Hamiltonian function is given by expression (2.62). Its electrodynamics is completely equivalent to
the classical relativistic freely moving point particle electrodynamics described in Section 2.

In an analogous manner, one can now use the Lagrangian (2.48) to construct the Hamiltonian
function for the dynamical field equation (2.46) describing the motion of charged particle g in
an external electromagnetic field in the canonical Hamiltonian form:

f:=dr/dt =0H/oP, P:=dP/dt=—0H/dr, (2.66)
where
H:=<P,i>—-L=
=< P,(f — PW*l(l — PZ/WZ)*UZ > +VV[W2(W2 _ P2)71]1/2 _
— < P,¢ > +P2(W2 — P2)~V/2 _ W2(W2 — p2)1/2 —
= (W= P)(W2 — P2) /24 < P, > .

7(W2 _ PZ)l/Z —q < A,P > (WZ o PZ)—l/Z.
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Here we took into account that, owing to definitions (2.45) and (2.49),

qA = Wuy = Wd¢/dt = (2.68)

_d d .
:W£~d—::W§(1—(u—v))1/2:

= WE(1L+ (=) /2 =
— “WE(W? — P)1/2—1 = _§(W? — p2)1/2,

or
§ = —qA(W?*—P*) 712, (2.69)

where A : M*— R? is the related magnetic vector potential generated by the moving external
charged particle. Equations (2.67) can be rewritten with respect to the laboratory reference
system K in the form

dr/dt =u, dp/dt =qE+quxB—qgV < A,u>, (2.70)

which coincides with the result (2.61).
Whence, we see that the Hamiltonian function (2.67) satisfies the energy conservation
conditions

dH/dt =0=dH/dr, (2.71)

forall 7,t € R, and that the suitable energy expression is
E=W?2-P)2 1 5< A P> (W?-P?)~1/2 (2.72)

where the generalized momentum P = p + gA. The result (2.72) differs in an essential way
from that obtained in [57], which makes use of the Einsteinian Lagrangian for a moving
charged point particle g in an external electromagnetic field. Thus, we obtain the following
result:

Proposition 2.7. The alternative classical relativistic electrodynamic model (2.70), which is
intrinsically compatible with the classical Maxwell equations (2.7), allows the Hamiltonian
formulation (2.66) with respect to the rest reference system variables, where the Hamiltonian function
is given by expression (2.67).

The inference above is a natural candidate for experimental validation of our theory. It is
strongly motivated by the following remark.

Remark 2.8. It is necessary to mention here that the Lorentz force expression (2.70) uses the particle
momentum p = mu, where the dynamical “mass” m := —W satisfies condition (2.72). The latter
gives rise to the following crucial relationship between the particle energy &y and its rest mass myg (at
the velocity u := 0 at the initial time moment t =0 € R) :

2
o =mo(1— T A2)7172, (2.73)
mg

or, equivalently,

1 1
my = 50(§ + E‘/l — 442 A2), (2.74)
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where Ay = Ali—g € I3, which strongly differs from the classical formulation
(2.34).

To make this difference more clear, we now analyze the Lorentz force (2.57) from the
Hamiltonian point of view based on the Lagrangian function (2.54). Thus, we obtain that
the corresponding Hamiltonian function
H:=<P,i>-L=<Pi>+WA+*)2—g<Ai>= (2.75)
=< P—qA#>+W(1+*)2 =
=—<pp> W71(1 _ p2/w2)71/2 + W(1 _ pZ/WZ)fl/Z _
_ _(WZ _ pZ)(WZ _ p2)71/2 _ _(WZ _ p2)1/2.
Since p = P — g A, expression (2.75) assumes the final “no interaction” [12; 57; 67; 80] form
H=—[W?— (P—qA)*)'/?, (2.76)
which is conserved with respect to the evolution equations (2.52) and (2.53), that is
dH/dt =0=dH/dt (2.77)

for all 7,t € R. These equations latter are equivalent to the following Hamiltonian system

F=09H/aP = (P — qA)[W? — (P — qA)?| 712, (2.78)
P=—9H/dr = (WYW =V < gA, (P — gA) >)[W? — (P —qA)?|71/2,

as one can readily check by direct calculations. Actually, the first equation

P = (P—qA)[W? — (P —qA))|7V/? = p(W? — p?) /% = 2.79)
_ mu(wz - pZ)—l/Z _ 7WM(W2 - pZ)—l/Z _ M(l - MZ)—l/Z,
holds, owing to the condition dt = dt(1 — uz)l/ 2 and definitions p = mu,m = —W,
postulated from the very beginning. Similarly we obtain that
P=-VW(1-pP?/WH V24V <gAu>(1-p?/WH12 = (2.80)
= VW1 —u?) V24V <gAu>(1-u?)"V2
coincides with equation (2.55) in the evolution parameter ¢ € IR. This can be formulated as the
next result.

Proposition 2.9. The dual to the classical relativistic electrodynamic model (2.57) allows the
canonical Hamiltonian formulation (2.78) with respect to the rest reference system variables, where
the Hamiltonian function is given by expression (2.76). Moreover, this formulation circumvents the
“mass-potential energy” controversy associated with the classical electrodynamical model (2.32).

The modified Lorentz force expression (2.57) and the related rest energy relationship are
characterized by the following remark.

Remark 2.10. If we make use of the modified relativistic Lorentz force expression (2.57) as an
alternative to the classical one of (2.35), the corresponding particle energy expression (2.76) also gives
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rise to a different energy expression (at the velocity u := 0 € > at the initial time t = 0) corresponding
to the classical case (2.34); namely, &y = my instead of Eg = my + q@o, where ¢y := @|i—o.

2.5 Concluding remarks

All of dynamical field equations discussed above are canonical Hamiltonian systems with
respect to the corresponding proper rest reference systems K, parameterized by suitable
time parameters T € IR. Upon passing to the basic laboratory reference system K with the
time parameter { € R naturally the related Hamiltonian structure is lost, giving rise to a
new interpretation of the real particle motion. Namely, one that has an absolute sense only
with respect to the proper rest reference system, and otherwise completely relative with
respect to all other reference systems. As for the Hamiltonian expressions (2.62), (2.67) and
(2.76), one observes that they all depend strongly on the vacuum potential field function
W : M*— R, thereby avoiding the mass problem of the classical energy expression pointed
out by L. Brillouin [59]. It should be noted that the canonical Dirac quantization procedure
can be applied only to the corresponding dynamical field systems considered with respect to
their proper rest reference systems.

Remark 2.11. Some comments are in order concerning the classical relativity principle. We have
obtained our results without using the Lorentz transformations of reference systems - relying only on
the natural notion of the rest reference system and its suitable parametrization with respect to any
other moving reference systems. It seems reasonable then that the true state changes of a moving
charged particle q are exactly realized only with respect to its proper rest reference system. Then the
only remaining question would be about the physical justification of the corresponding relationship
between time parameters of moving and rest reference systems.

The relationship between reference frames that we have used through is expressed as
dt = dt(1 — u?)'/?, (2.81)

where u := dr/dt € E? is the velocity with which the rest reference system K, moves
with respect to another arbitrarily chosen reference system K. Expression (2.81) implies, in
particular, that

af?> — dr* = d7?, (2.82)
which is identical to the classical infinitesimal Lorentz invariant. This is not a coincidence,

since all our dynamical vacuum field equations were derived in turn [53; 54] from the
governing equations of the vacuum potential field function W : M*— R in the form

*W /ot — VW = p, W /at + V(vW) = 0, dp/dt + V(vp) =0, (2.83)

which is a priori Lorentz invariant. Here p € R is the charge density and v := dr/dt the
associated local velocity of the vacuum field potential evolution. Consequently, the dynamical
infinitesimal Lorentz invariant (2.82) reflects this intrinsic structure of equations (2.83). If it is
rewritten in the nonstandard Euclidean form:

dt? = d7® + dr? (2.84)

it gives rise to a completely different relationship between the reference systems K and ;,
namely
dt = dt(1+#)'/?, (2.85)
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where 7 := dr/dt is the related particle velocity with respect to the rest reference system.
Thus, we observe that all our Lagrangian analysis in Section 2 is based on the corresponding
functional expressions written in these “Euclidean” space-time coordinates and with respect
to which the least action principle was applied. So we see that there are two alternatives - the
first is to apply the least action principle to the corresponding Lagrangian functions expressed
in the Minkowski space-time variables with respect to an arbitrarily chosen reference system
K, and the second is to apply the least action principle to the corresponding Lagrangian
functions expressed in Euclidean space-time variables with respect to the rest reference system
Ky

This leads us to a slightly amusing but thought-provoking observation: It follows from our
analysis that all of the results of classical special relativity related to the electrodynamics
of charged point particles can be obtained (in a one-to-one correspondence) using our new
definitions of the dynamical particle mass and the least action principle with respect to the
associated Euclidean space-time variables in the rest reference system.

An additional remark concerning the quantization procedure of the proposed electrodynamics
models is in order: If the dynamical vacuum field equations are expressed in canonical
Hamiltonian form, as we have done here, only straightforward technical details are required
to quantize the equations and obtain the corresponding Schrodinger evolution equations in
suitable Hilbert spaces of quantum states. There is another striking implication from our
approach: the Einsteinian equivalence principle [29; 57; 63; 70; 80] is rendered superfluous for
our vacuum field theory of electromagnetism and gravity.

Using the canonical Hamiltonian formalism devised here for the alternative charged point
particle electrodynamics models, we found it rather easy to treat the Dirac quantization. The
results obtained compared favorably with classical quantization, but it must be admitted
that we still have not given a compelling physical motivation for our new models.
This is something that we plan to revisit in future investigations. ~Another important
aspect of our vacuum field theory no-geometry (geometry-free) approach to combining the
electrodynamics with the gravity, is the manner in which it singles out the decisive role of the
rest reference system K,. More precisely, all of our electrodynamics models allow both the
Lagrangian and Hamiltonian formulations with respect to the rest reference system evolution
parameter T € R, which are well suited the to canonical quantization. The physical nature of
this fact still remains somewhat unclear. In fact, as far as we know [4; 5; 57; 63; 80], there is no
physically reasonable explanation of this decisive role of the rest reference system, except for
that given by R. Feynman who argued in [70] that the relativistic expression for the classical
Lorentz force (2.35) has physical sense only with respect to the rest reference system variables
(t,r) € E* In future research we plan to analyze the quantization scheme in more detail
and begin work on formulating a vacuum quantum field theory of infinitely many particle
systems.

3. The modified Lorentz force and the radiation theory

3.1 Introductory setting

Maxwell’s equations may be represented by means of the electric and magnetic fields or by the
electric and magnetic potentials. The latter were once considered as a purely mathematically
motivated representation, having no physical significance.

The situation is actually not so simple now that evidence of the physical properties of the
magnetic potential was demonstrated by Y. Aharonov and D. Bohm [92] in the formulation
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their “paradox” concerning the measurement of a magnetic field outside a separated region
where it is vanishes. Later, similar effects were also revealed in the superconductivity theory
of Josephson media. As the existence of any electromagnetic field in an ambient space can
be tested only by its interaction with electric charges, the dynamics of the charged particles
is very important. Charged particle dynamics was studied in detail by M. Faraday, A.
Ampere and H. Lorentz using Newton’s second law. These investigations led to the following
representation for the Lorentz force

dp/dt = gE + q% x B, (2.86)

where E and B € E? are, respectively, electric and magnetic fields, acting on a point charged
particle ¢ € R having momentum p = mu. Here m € R is the particle mass and u € T(IR?)
is its velocity, measured with respect to a suitably chosen laboratory reference frame.

That the Lorentz force (2.86) is not completely correct was known to Lorentz. The defect
can be seen from the nonuniform Maxwell equations for electromagnetic fields radiated by
any accelerated charged particle, as easily seen from the well-known expressions for the
Lienard-Wiechert potentials.

This fact inspired many physicists to “improve” the classical Lorentz force expression (2.86),
and its modification was soon suggested by M. Abraham and P.A.M. Dirac, who found the
so-called “radiation reaction” force induced by the self-interaction of a point charged particle:

dp u 2¢% d’u
The additional force expression
. Zqz d%u

depending on the particle acceleration, immediately raised many questions concerning its
physical meaning. For instance, a uniformly accelerated charged particle, owing to the
expression (2.88) , experiences no radiation reaction, contradicting the fact that any accelerated
charged particle always radiates electromagnetic waves. This “paradox” was a challenging
problem during the 20th century [96-98; 100; 102] and still has not been completely explained
[101]. As there exist different approaches to explanation this reaction radiation phenomenon,
we mention here only some of the more popular ones such as the Wheeler-Feynman [99]
“absorber radiation” theory, based on a very sophisticated elaboration of the retarded and
advanced solutions to the nonuniform Maxwell equations, and Teitelbom’s [95] approach
which exploits the intrinsic structure of the electromagnetic energy tensor subject to the
advanced and retarded solutions to the nonuniform Maxwell equations. It is also worth
mentioning the very nontrivial development of Teitelbom’s theory devised recently by [94]
and applied to the non-abelian Yang-Mills equations, which naturally generalize the classical
Maxwell equations.

3.2 Radiation reaction force: the vacuum-field theory approach

In the Section, we shall develop our vacuum field theory approach [6; 52-55] to the
electromagnetic Maxwell and Lorentz theories in more detail and show that it is in complete
agreement with the classical results. Moreover, it allows some nontrivial generalizations,
which may have physical applications.
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For the radiation reaction force in the vacuum field theory approach, the modified Lorentz
force, which was derived in Section 1, acting on a charged point particle g, is

dp/dt:f(li;?JrV(p)Jrq x (VxA)— qV<%,A> (2.89)

where (¢, A) € R x IE3 is the extended electromagnetic 4-vector potential. To take into
account the self-interaction of this particle, we make use of the distributed charge density
p: M* — R satisfying the condition

q= /p(t,r)d3r (2.90)
R3

for all + € R in a laboratory reference frame K with coordinates (t,7) € M*. Then, owing to
2.89 and results in [96], the self-interaction force can be expressed as

Fo=qVs + gaAs/BH- < %,v > Ay =
=qVs+dAs(t,r)/dt, (2.91)
where

=

1 ot v u(t)dr
At 292
R3

3.,/
@s(t,r) = /p Ndr , As(tr) =

are the well-known Lienard-Wiechert potentials, which are calculated at the retarded time
parameter t' := t — |r — #'| /¢ € R. Then, taking into account the continuity equation

op/ot+ < V,pu >=0, (2.93)

for the charge g, from (2.91) one finds using calculations similar to those in [96] that

Nii 3.,/ 3 / I
R ol [0 [u@drp(t () /1r =1 (.94
R? R3
2 d%u [ 4, [ ,
- ﬁd?/d r /d ro(t,r)p(t,r')+
R} R
u 1du (53,4 (r—r") B
+H<Pes,;2> 23 dt a’r /drptrp(tr) m,u>_
R R
4.d Wi 292 d*u

3dt[c2 u(t)l - 33 dr2 + AR,

where we defined, respectively, the positive electrostatic self-interaction repulsive energy and
force as
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/ﬁ(/f’p‘r_r plt et 1) (2.95)
R3 R3
4l
Fos := /d3r/d3r’p(t,r)p(t, r,)(rir/)y (2.96)
IS [r — 7]

and the force component corresponding to the term < %,V > A in (2.91) by AF;. Assuming
now that the external electromagnetic field vanishes, from (2.89) one obtains that

d 207 dPu  4d
gy () = *%W + 5 g (msu) + A, (2.97)

where we have made use of the inertial mass definitions
mi=—W/c%, ms:=Ws/c?, (2.98)

following from the vacuum field theory approach. From (2.97) one computes that the
additional force term is o
d 4 2¢° d“u
AFs = 2 [(m — ms)u ]Jr?ﬁ (2.99)
Then we readily infer from (2.97) that the observed charged particle mass satisfies at rest the
inequality
m # ms. (2.100)
This expression means that the real physically observed mass strongly depends both on the
intrinsic geometric structure of the particle charge distribution and on the external physical
interaction with the ambient vacuum medium.

3.3 Conclusion

The charged particle radiation problem, revisited in this section, allows the explanation of
the point charged particle mass as that of a compact and stable object, which should have
a negative vacuum interaction potential W € R3 owing to (2.98). This negativity can be
satisfied if and only if the quantity (2.99) holds, thereby imposing certain nontrivial geometric
constraints on the intrinsic charged particle structure [103]. Moreover, as follows from
the physically observed particle mass expressions (2.98), the electrostatic potential energy
comprises the main portion of the full mass.

There exist different relativistic generalizations of the force expression (2.97), all of which
suffer the same common physical inconsistency related to the no radiation effect of a charged
point particle in uniform motion.

Another problem closely related to the radiation reaction force analyzed above is the search
for an explanation to the Wheeler and Feynman reaction radiation mechanism, which is called
the absorption radiation theory. This mechanism is strongly dependent upon the Mach type
interaction of a charged point particle in an ambient vacuum electromagnetic medium. It is
also interesting to observe some of the relationships between this problem and the one devised
above in the context of the vacuum field theory approach, but more detailed and extended
analyzes will be required to explain the connections.
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4. Maxwell’s equations and the Lorentz force derivation - the legacy of Feynman’s
approach

4.1 Poissonian analysis preliminaries

In 1948 R. Feynman presented but did not published [127; 128] a very interesting, in some
respects “heretical”, quantum-mechanical derivation of the classical Lorentz force acting on
a charged particle under the influence of an external electromagnetic field. His result was
analyzed by many authors [129-137] from different points of view, including its relativistic
generalization [138]. As this problem is completely classical, we reanalyze the Feynman’s
derivation from the classical Hamiltonian dynamics point of view on the coadjoint space
T*(N),N C R3, and construct its nontrivial generalization compatible with results [6; 52; 53]
of Section 1, based on a recently devised vacuum field theory approach [52; 55]. Upon
obtaining the classical Maxwell electromagnetic equations, we supply the complete legacy
of Feynman’s approach to the Lorentz force and demonstrate its compatibility with the
relativistic generalization presented in [52-55; 72].

Consider the motion of a charged point particle { € R under the influence of an external
electromagnetic field. For its description, following [114; 123; 124], it is convenient to
introduce a trivial fiber bundle structure m: M — N, M = N x G, N C R3, with the
abelian structure group G := R\{0} equivariantly acting [1] on the canonically symplectic
coadjoint space T*(M). Then we endow the bundle with a connection one-form A
M—AY(M) x G defined as

A(g:8) :=<8(q),& >g +g 'dg (2.101)

on the phase space M, whereq € N and ¢ € Gand &« : N — A!(N) is a differential form,
constructed from the magnetic potential A : N —B> as 9(q) :=<A(q),dg >gs € T;(N).

If | : T*(M) — G* is the related momentum mapping, one can construct the reduced phase
space Mg:= I71(&)/G ~ T*(N), where ¢ € G ~R is taken to be fixed. This reduced space
has the symplectic structure

“’g)(w) =<dp,Ndg > +3d <A(q),dq >, (2.102)

where we taken in to account that §(q)=<A(g),dq >gs € T§(N). From (2.102), one readily
computes the respective reduced Poisson brackets on T*(N):

{qi, qf}wéz) =0, {p]"qi}wéz) = (5]1:, {pi, pj}wéz) = CF]l(q) (2.103)

for i,j = 1,3 with respect to the reference frame K (t,q), characterized by the phase space
coordinates (q,p) € T*(N). If one introduces a new momentum variable p := p + A(q)
on T*(N) > (q,p), it is easy to verify that wéz) — (Zzéz) =< dp,Adq >, giving rise to the

following “minimal coupling” canonical Poisson brackets [12; 123; 124]:

{00 =0 {Pndlop =0 {PiPilep =0 (2.104)
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fori,j = 1,3 with respect to the reference frame X #(t,q—qy), characterized by the phase space
coordinates (g, p) € T*(N), if and only if the Maxwell field equations

OF;j/0qx + 0F;/9q; + 0Fy;/9q; = 0 (2.105)

are satisfied on N for all i, ],k = 1,3 for the curvature tensor Fij(q) = aAj/ aqi —0A;/ 8qf,
i,j=1,3,9 € N.

4.2 The Lorentz force and Maxwell electromagnetic field equations - Lagrangian analysis
The Poisson structure (2.104) makes it possible to describe a charged particle ¢ € IR, located at
point g € N C R?, moving with a velocity ¢’ := u € T;(N) with respect to the reference frame
K(t,q).The particle is under the electromagnetic influence of an external charged particle
{f € R located at point gy € N C R3 and moving with respect to the same reference
frame KC(t,q) with a velocity q’f == uy € Ty (N), where %() := (...) is the temporal
derivative with respect to the temporal parameter t € RR. More precisely, consider a new
reference frame K¢ (t, g — q¢) moving with respect to the reference frame K(t,q) with velocity
uy. With respect to the reference frame K¢ (t,q — q¢), the charged particle ¢ moves with the
velocity u — uy € Tg—q,(N) and, respectively, the charged particle ¢ stays in rest. Then one
can write the standard classical Lagrangian function of the charged particle ¢ with a constant
mass m € Ry subject to the reference frame Kr(t,q — q¢) as

m
Lr(a.q) = 519 — a5 o, (2.106)

and the scalar potential ¢ € C?(N;R) is the corresponding potential energy. On the other
hand, owing to (2.106) and the Poisson brackets (2.104), the following equation for the charged
particle ¢ canonical momentum with respect to the reference frame Kr(t,q — q5) holds:

pi=p+¢Aq) =0Ls(q,9')/54, (2.107)

or, equivalently,
p+EA(q) =m(q' —qf), (2.108)

expressed in the units when the light speed ¢ = 1. Taking into account that the charged
particle { momentum with respect to the reference frame K(t,¢) equals p := mu € T;(N),
one computes from (2.108) that

GA(q) = —muy (2.109)

for the magnetic vector potential A € C2(N ; ]R3), which was obtained in [54; 55; 126] using
a vacuum field theory approach. Now, it follows from (2.106) and (2.109) one has the
Lagrangian equations,

d
5P+ EAW@)] =9L¢(9,4') /99 = —EV g, (2.110)

which induce the charged particle ¢ dynamics

dp/dt = —C0A/ot —¢Ve—¢ <u,V>A=
= —C0A/t—CVe—C<u,V>A+CIV<uA>—-CV<uA>= (2.111)
=—C(0A/t+Veo)+lux (VxA) =V <uA>.
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As aresult of (2.111), we obtain the modified Lorentz type force
dp/dt = FE+Fux B— &V <u, A >, (2.112)
obtained in [54; 55], where
E:=—-0A/0t—V¢, B:=V xA. (2.113)
This differs from the classical Lorentz force expression
dp/dt =CE+CuxB (2.114)

by the gradient component
Foi= -V <uA>. (2.115)

Remark now that the Lorentz type force expression (2.112) can be naturally generalized to the
relativistic case if to take into account that the Lorentz condition

d@/ot+ < V,A>=0 (2.116)

imposed on the electromagnetic potential (¢, A) € C2(N; R x R?).
Indeed, from (2.113) one obtains the Lorentz invariant field equation

P/t — Ap = py, (2.117)

where A :=<V,V > and pf: N — D’'(N) is the generalized density function of the external
charge distribution ¢ . Employing calculations from [54; 55], derive readily from (2.117) and
the charge conservation law

Js/dt+ < V,Jf>=0 (2.118)

the Lorentz invariant equation on the magnetic vector potential A € C?(N;R3) :
PA/IH — AA =], (2.119)
Moreover, relationships (2.113), (2.117) and (2.119) imply the true classical Maxwell equations

V x E=—3B/dt, V x B=3E/at + ], (2.120)
<V,E>=ps;, <V,B>=0
on the electromagnetic field (E, B) € C2(N;R®xR?).

Consider now the Lorentz condition (2.116) and observe that it is equivalent to the following
local conservation law:

d

— | edg=0. 2.121

5 9 @121)
This gives rise to the important relationship for the magnetic potential A € C?(N;RR?)

A=qp (2.122)

with respect to the reference frame K(t,¢q), where )y C N is any open domain with a smooth
boundary 0Q);, moving together with the charge distribution ¢ in the region N C R® with
velocity q’f. Taking into account relationship (2.109), one obtains the expression for the charged
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particle ¢ ‘inertial’ mass as
m=—W, W:= lim ¢o, 2.123
Jm G (2.123)
coinciding with that obtained in [54; 55; 126]. Her we denoted the corresponding potential
energy of the charged particle & by W € C2(N;R).

4.3 The modified least action principle and its Hamiltonian analysis
Using the representations (2.122) and (2.123), one can rewrite the determining Lagrangian
equation (2.110) as

%[fW(u —up)]) = VW, (2.124)

which is completely equivalent to the Lorentz type force expression (2.112) calculated with
respect to the reference frame KC(t,g).

Remark 4.1. It is interesting to remark here that equation (2.124) does not allow the Lagrangian
representation with respect to the reference frame K(t, q) in contrast to that of equation (2.110).

The remark above is a challenging source of our further analysis concerning the relativistic
generalization of the Lorentz type force (2.112). Namely, the following proposition holds.

Proposition 4.2. The Lorentz type force (2.112), in the case when the charged particle ¢ momentum is
defined as p = —Wu, according to (2.123), is the exact relativistic expression allowing the Lagrangian
representation with respect to the charged particle g rest reference frame ICr (T, q — q5), connected with
the reference frame IC(t, q) by means of the classical relativistic proper time relationship:

dt =dt(1+ |4 —gs*)"2 (2.125)

Here T € R is the proper time parameter in the rest reference frame K, (t,q — qf) and, by definition,
the derivative d /dt(...) := (...).

Proof. Take the following action functional with respect to the charged particle ¢ rest reference
frame ;- (7,9 — qf) :

h(n) _ o

s .= 7/2 Y Wt = 7/ TW(+ |4 — 4 ) 2, (2.126)
fl (Tl) gs|

where the proper temporal values 77,72 € R are considered to be fixed. In contrast, the

temporal parameters t>(12), t2(72) € R depend, owing to (2.125), on the charged particle ¢

trajectory in the phase space. The least action condition

65 = 0,69(11) = 0 = 89(12), (2.127)

applied to (2.126) yields the dynamical equation (2.124), which is also equivalent to the
relativistic Lorentz type force expression (2.112). This completes the proof. O

Making use of the relationships between the reference frames K(t,¢) and K, (7,9 — g¢) in the
case when the external charge particle velocity u = 0, we can easily deduce the following
result.
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Corollary 4.3. Let the external charge distribution Gy be at rest, that is the velocity uy = 0. Then
equation (2.124) reduces to
d, - _

5 (W) =~ VW, (2.128)
which implies the following conservation law:
Hy = W(1 —u?)V/2 = —(W? - p?)V/2, (2.129)

Moreover, equation (2.128) is Hamiltonian with respect to the canonical Poisson structure (2.104) with
Hamiltonian function (2.129) and the rest reference frame IC, (T, q) :

dq/dt:=0Hy/dp = p(W* — p*)~ 1/ dq/dt = —pW—1, (2.130)
dp/dt := —9Hy/dq = —W(W? — p2)~1/2UyW dp/dt = —VW [~ '
In addition, if the rest particle mass is defined as mo := —Ho|,—o, the “inertial” particle mass quantity
m € R has the well-known classical relativistic form
m=—W=mg(1—u?)"12, (2.131)

which depends on the particle velocity u € R3.

As for the general case of equation (2.124), analogous results to those above hold as described
in detail in [52-55]. We need only mention that the Hamiltonian structure of the general
equation (2.124) results naturally from its least action representation (2.126) and (2.127) with
respect to the rest reference frame K, (7, q).

4.4 Conclusion

We have demonstrated the complete legacy of the Feynman’s approach to the Lorentz force
based derivation of Maxwell’s electromagnetic field equations. Moreover, we have succeeded
in finding the exact relationship between Feynman’s approach and the vacuum field approach
devised in [54; 55]. Thus, the results obtained provide deep physical backgrounds lying in the
vacuum field theory approach. Consequently, one can simultaneously describe the origins of
the physical phenomena of electromagnetic forces and gravity. Gravity is physically based on
the particle “inertial” mass expression (2.123), which follows naturally from both the Feynman
approach to the Lorentz type force derivation and the vacuum field approach.
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1. Introduction

The quantum theory of matter does not describe real matter until electromagnetic theory is
used to account for such diverse radiative phenomena as spontaneous emission and the shift
of quantum energy levels. Classical electrodynamics fails to account quantitatively for these
radiative effects in the structure of matter. Quantum electrodynamics (QED) does
successfully account for radiative effects in the structure of matter once an infinite
contribution to the energy, which diverges linearly with electromagnetic-wave frequency, is
subtracted from the theory based on physical argument that such contribution is already
included, to zeroth order in perturbation theory, in the description of a radiative as opposed
to a nonradiative or bare electron. This mathematical procedure is known as mass
renormalization and introduces the concept that total mass comprises both material and
electromagnetic contributions, neither of which is observable by itself.

In Section II of this paper a theory is presented which describes both the material and
radiative properties of matter in a single, inseparable form. We show that the time-domain
relativistic-wave equation of Paul Dirac can be inferred from the Lorentz invariant obtained
from the scalar product of the electron’s four-momentum and an electromagnetic four-
potential, once an electromagnetic carrier-wave frequency is formally identified with the

0

rest-mass energy of the electron divided by 7 , namely o = % . (The scalar product of two

four-vectors always gives a Lorentz invariant such that the present derivation proves the
Lorentz invariance of Dirac’s equation in a single step. In the standard treatment [1], in
which the Dirac Hamiltonian is the scalar product of two operator four-vectors, a second
step is required to prove the Lorentz invariance of the wave equation itself.) Our derivation
elucidates a long-studied problem in the literature of the identity of Dirac’s equation with
the spinorial form of Maxwell’s equation [2-5]. The value of @ given above is just the cut
off of the electromagnetic frequency used in QED to insure the finite value of the
logarithmically-divergent contribution to the energy, which is the only divergent term
remaining after the term linearly divergent in the frequency has been removed by mass
renormalization. In summary Dirac’s time-domain relativistic wave equation is
reinterpreted to be an equation which accounts for both the material and radiative
properties of matter.

In Section III we provide an analytic proof that Dirac’s temporally harmonic solution of his
equationis equivalent to solving temporally coupled equations by adiabatic elimination, which
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is a widely-used approximation method to solve temporally coupled equations in the optical-
physics literature. In a wordDirac’s temporally harmonic solution is approximate, but his
solution ofthe resulting time-independent or energy-domain equation, which is astaple of the
relativistic quantum mechanics literature, is exact.The current interpretation of Dirac’s theory
as describing only the material properties of matter derives from Dirac’s solution of his time-

it
domain equation using the harmonic substitution, W (7,t)=e " ¥ (), albeit this form,

since it constrains all four components of his energy-domain vector wave function ¥'p, z(7) to

oscillate in time at a single frequency @ = P is obviously not the general solution. The same

harmonic form however exactly solves Schroedinger’s time-domain equation and thus gives a
result which is compatible with the way quantum theory evolved as a matter-only theory
without radiative effects until augmented by QED.

In Section IV numerical results are presented for the general solution of Dirac’s time-dependent
equation. Fourier analysis of the generaltime-dependent solution shows that the spectrum of
quantum states for the Coulomb problem comprises coupled positive- and negative-energy
states. The wave function is a mixture of bound and continuum states, with an unbound
component propagating away from the atom in a manner which satisfies the Lorentz-invariant
relationship or causality between position and time, 1**2 - (ct)**2 = 0. The unbound behavior
has long been known as Zitterbewegung for a free electron, and here we show its counterpart
for the Coulomb problem. In view of the Dirac-Maxwell relationship elucidated in Section Il we
postulate that the physical interpretation of Zitterbewegung is the emission of a photon with
energy of order 2mc**2 due to the presence of empty negative-energy states in the general time-
dependent solution. Dirac's artifice of filling up the negative-energy levels with electrons to
stabilize the atom is not available in the general time-dependent solution.

In Section V equations of motion for the photon are given. In Section VI subatomic bound
solutions are discovered which are expected due to the temporally second-order nature of
the time-domain Dirac equation. Subatomic bound solutions do not exist for Dirac’s time-
independent equation (hereafter called standard Dirac theory) due to his use of the single-
frequency temporally harmonic form discussed in Section IIl. Thus the existence of a
complex neutron cannot be ruled out in the case of the general time-dependent solution as it
was earlier in the case of standard Dirac theory [6]. These solutions resemble known Dirac
energy-domain functions for Z > 137. The spectral content of these solutions comprises a
spectral peak at -mc**2 for an electron and a spectral peak at +mc**2 for a positron - yes this
state exists for a positive Coulomb potential. An electron can thus make an upward
transition into the positive-energy continuum with transition energy 2mc**2, as in standard
Dirac theory, while a positron can make a downward transition into the negative-energy
continuum with transition energy -2mc**2. The upward transition is considered to be a
matter transition, while the downward transition is considered to be an anti-matter
transition.

2. Maxwell-Dirac equivalency

There exists a physical equivalency between Dirac and Maxwell theories which can be
stated as follows. It is well known that Lorentz” equation is the Lorentz invariant formed by
taking the scalar product of the four-gradient and the electromagnetic four-potential,
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( V-A=0 (1)
Recall that the scalar product of four-vectors is always a Lorentz Invariant. One may
postulate that a four-potential exists for the electron, such that an electron equation of
motion can be written as the Lorentz invariant formed by taking the scalar product of the
electron's four-momentum and the electron's four-potential,

M2 L in+ed). (@, 4) = ("L Loy, + (9 +LA)- A, =0 ©
cot ¢ cot ¢ c
The electron scalar and vector potentials can be written in the form of carrier-wave
expansions,

O, =0, %+ @, (3a)

e

A=A, e 4 A, e (3b)

from which on substituting Eqgs. (3) into Eq. (2) and separately setting the coefficients of the
exponential factors equal to zero, we obtain,

o 0 o= oy
(1h5— ed —hw,)D,, +(ihcV +eA)-A,, =0 (4a)

(ih% —e® + )0, +(ihcV +eA)-A, =0 (4b)

On setting ®,, =y, A,, =0y, ®,_=y, A,_ =0y we obtain Dirac’s equation

Identically if the carrier-wave energy is equal to the rest-mass energy haw, = m,c,

(ih%—e@—ha)e)w&-(ihcmeix)z:0 (5a)

., 0 L o S
(lha—ed)+ha)€);(+a-(zhcv+eA)x//:0, (5b)

where @ is Pauli’s vector. Unlike the classical electromagnetic potentials, which are real,
the electron’s potentials are complex. This is obvious when we notice that the + and -
envelopes are not complex or Hermitian conjugates of one another.

An electromagnetic contribution to the mass of the electron due to the quantum radiation
field associated with its motion is a well known concept in QED. Indeed the carrier-wave
frequency of the electron's four-potential [Egs. (3)] is equal to mc**2/hbar, which is the high-
frequency cut off for the quantum radiation field assumed in QED atomic structure
calculations. The present derivation of Dirac’s equation suggests thatthe total mass of the
electron is electromagnetic in nature. This result is consistent with a previous result in
which the charge of the electron was derived from Maxwell’s equations [7].
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3. Adiabatic nature of Dirac’s solution of his equation

Although the time-dependent Dirac equation can be written in the Schroedinger form,

o Y
ih=—2=Hpp , (©6)
where HD is the Dirac Hamiltonian and ¥P (7/1) is Dirac’s four-component vector wave

function, it does not follow that the energy-domain
equation can be written in the Schroedinger form,

Eype=Hpypr / @)

unless one requires that all components of y,(7,t) oscillate in time at a single frequency

,'7[
w:%, such that wp(7,t) has the harmonic form y(7,t)=e " wpe(f). The requirement

does not hold in the general time-dependent solution of a vector wave function whose
components are temporally coupled.
Egs. (5) are rewritten in the standard Dirac form,

(ih%—ed)—mcz)(//+6~(ihc§+eA);(:0 (8a)

(ih%—e®+mc2)g+&.(ihﬁ+eA)y/:o, (8b)

where & is Pauli’s vector and y, y are the large, small components of Dirac’s four-
component wave function w,. Eq. (8b) can be eliminated exactly in favor of Eq. (8a) as
follows,

L0 R s S
(1hE—e<D—mcz)l//(r,t):zhc20~VJdt'eh G-Vy(r,t), ©)
0

where we have specialized to an electromagnetic field free problem by setting A=0.

Dirac’s energy-domain solution is obtained by substituting w(7,t)= e_lgty/E(?,t) and
assuming that y(7,t) is slowly varying in the time compared to the exponential factor such
that the integral is evaluated approximately by holding w(7,t') constant at t’=t. Then the
integration is performed, and the rapidly oscillating lower-limit contribution is dropped as
small compared to the stationary upper-limit contribution. Such approximations to solve

coupled time-dependent equations are known in the optical-physics literature as adiabatic
elimination. Dirac’s second-order equation for the large component follows immediately,

! S[(Ve®)-V +i5 - (Ved x V) |y (F)  (10)

[(E - e@)? —(me”) e () = ~(he) [V + ————
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where we have used the identity, (6-A)G-B)=A-B+iG-(AxB) and the time has been
dropped from the argument list since the approximations to the t" integral render the wave
p( t)=e "yp(r)

function stationary. Clearly Dirac’s use of the Schroedinger forms and

E

~ivt
2(Ft)=e " 7p(F) to write the energy-domain form of his coupled time-dependent
equations [Egs. (8)] rests on an implicit assumption that adiabatic elimination of one of these
equations in favor of the other is an accurate approximation. On other words the
Schroedinger form does not hold exactly in the case of a vector wave function whose
components are temporally coupled.

Dirac’s harmonic ansatz for his time-dependent equation gives him aenergy-domain
equation which is exactly solvable for the free-electron and Coulomb problems. The
Schroedinger form of the temporal solution, which is exact for Schroedinger’s scalar wave
equation but not for Dirac’s vector wave equation, is in effect a form of calibration of Dirac
theory to Schroedinger theory and has cast Dirac theory in the limited role of “correcting”
Schroedinger theory primarily for relativistic effects in atomic structure. Probably as a
result of its restricted use in electron physics, time-domain Dirac theory until recently had
not been used to discover the a priori physical basis for Fermi-Dirac statistics [8], which is a
spin-dependent phenomenon. The history of quantum mechanics instead followed a path
of ensuring that Schroedinger wave functions satisfy Fermi-Dirac statistics on the basis of
experimental observation and not a priori theory by using the Slater determinantal wave
function to solve Schroedinger’s wave equation for many electrons, even though
Schroedinger theory, in which particle spin is absent, contains no physical basis for Fermi-
Dirac statistics. One must instead turn to time-domain Dirac theory and the Dirac current to
discover the physical basis for Fermi-Dirac statistics, which is elucidated using spin-
dependent quantum trajectories [8]. Richard Feynman [9] once asked if spin is a relativistic
requirement and then answered in the negative because the Klein-Gordon equation is a
valid relativistic equation for a spin-0 particle. The correct answer is thatspin is a relativistic
requirement to insure Lorentz invariance in a vector-wave theory such as the Dirac or
Maxwell theories. In the sense that Fermi-Dirac statistics depends critically on spin and yet
is a phenomenonof order (Zc)Y, where c is the speed of light and Z is the atomic number, it
would appear that authors [10] are misguided who present the quantum theory of matter as
fundamentally based on Schroedinger theory as augmented by Dirac theory for “relativistic
corrections” of order Z4c2 due to the acceleration of an electron moving near a nucleus with
atomic number Z.

4. Genera solution of Dirac’s time-domain wave equation

In this section the general time-dependent solution is presented free of any harmonic bias.
2

Solving the Coulomb problem (e® =V = _zL ) the radial form of Eq. (9),
r

0 h Loyt
(112~ V = me)G, (1) = inc? (- - =) [gpren (2 (D)
ot o roy

7
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follows from the well-known substitutions,

l//(?/t) = GK(r/t)ZK/J(H/¢) (12a)

5.V-6-#2-L5.) (12b)
or r

G- ?ll(‘u = _Z—K/u (12C)

& Loy =~k +1) 1, (12d)

where the angular functions are Dirac’s two-component spinors.Eq. (11) is solved
numerically in the variables r and ct for the hydrogen-like ground state (x =—-1) with Z=70,
starting for mathematical convenience with a Schroedinger wave function at initial time
and using the trapezoid rule to evaluate the integral. It is found that the evolved wave
function is insensitive to the starting function at initial time.

At the point t=t" the Crank-Nicolson implicit integration procedure is used in order to
insure that the time integration of the equation itself is unconditionally stable. Fig. 1 shows
the spectrum of states calculated from the inverse temporal Fourier transform of the wave
function [11-12]. The spectrum has a strong peak in the positive-energy regime and a weak
peak in the negative-energy regime, which lies in the negative-energy continuum and thus
accounts for the unbound tail (Fig. 2). This temporally expanding tail appears to be the
Coulomb counterpart of the Zitterbewegung solution calculated by Schroedinger [13] using
the time-dependent Dirac equation for a free electron.

Fig. 2 shows the real part of radial wave function times r. Notice that the wave function is
unusual in that it behaves like a bound state close to the nucleus but yet is unbound with a
small-amplitude tail along the r axis whose length is equal to ct. In other words the tail
propagates away from the nucleus at the speed of light. Nevertheless I have normalized the
wave function for unit probability of finding the electron within a sphere of radius rmax. The
amplitude of the interior portion flows with time between the real part (Fig. 2) and
imaginary part of the wave function such that the probability density is steady within the
radius of the atom. (ct)max is chosen to be three-fourths of rmax in order that the propagating
piece of the wave function stays well away from the grid boundary at rmax. Calculations
show that the results are Insensitive to rmax and therefore to (ct)max as long as rmax is well
outside the region represented by the bound piece of the wave function, that is well outside
of the radius of the atom as represented by standard Dirac theory. Notice that if the
dynamical calculation were extended to very large times, then the wave function would fill
a verylarge volume. In principle after a sufficient time the wave function could fill a volume
the size of the universe although its interior part would remain the size of an atom.

What is the physical interpretation of Zitterbewegung? In view of theMaxwell-Dirac
equivalency elucidated in Section II, we postulate here thatit is a photonic energy of order
2mc**2, which is the energy gap betweenthe positive- and negative-energy electron continua
and which was identified in Section II as an electromagnetic carrier-wave energy equal to
2hw . This amount of energy must be carried away from the atom in a continuous sense
since there is no net loss of interior probability densityover time. The energy originates
from the electron’s simulta-neous double occupancy of both positive- and negative-energy
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states(Fig. 4) whose energy difference is of order 2mc**2. In standard Diractheory the
positive- and negative-energy levels are dynamically uncoupledsuch that Dirac assumed
that electrons exclusively occupy the positive-energy levels and that the atom was stabilized
by a set of negative-energy levels - the negative-energy sea - which are totally filledwith
electrons such that the Pauli Exclusion Principle forbad thedownward fall of an electron
from positive- to negative-energy levelsaccompanied by the emission of a photon with
energy of order 2mc**2.

L1 e T
0.10 :
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Spectrum(au) g — ﬂﬂ

o
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Fig. 1. Spectrum showing weak coupling of the positive- and negative-energy regions. The
continuum edges are at E /¢ =+mc au. The energy is obtained by multiplying the graphical
numbers by c. A blow up of the positive energy peek shows good agreement with the
eigenvalue at 17474.349, although the spectral calculation, because of the nature of the
spectral determination of the eigenenergy, is not good to the number of significant figures
shown.
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L

Fig. 2. Solid: imaginary part of the solution of Eq. (6) times r for Z=50.(ct)max=0.75rmax=0.75
au. The number of ct, r grid points is 20K, 20K. Dotted: radial solution of Eq. (5) times r.
The eigenvalue is found from the zero wronskian of forward and backward integrations and
is equal to 17474.349 au to the number of significant figures shown in agreement with the

mCZ 2

S e . .
analytic Dirac energy & =—————— where a =— is the fine structure constant.
al 2 hc
1+ [———]
1-(aZ)’
Dotted: wave function calculated from the radial equation inferred from Eq. (5).

In the general time-domain solution presented here it appears that theatom is self-stabilizing
due to the mixed material-electromagnetic natureof the electron. Recall that in Section II we
postulated that the electron’sequation of motion should be the scalar product of its material
four-momentum and its electromagnetic four potential. The solution of the equation of
motion shows that the electron can share two ground-state material energy levels with
energy conservation and without temporal decay of its quantum state as long as the energy
difference between the two ground-state levels is converted to the energy of a continuously-
emitted photon.
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5. Photon equations of motion

In this section equations of motion for the photon are given and used to calculate a
divergence-free Lamb shift [14-15]. As in the case of the electron in Section II we assume
that a complex four-potential exists for the photon such that a photon EOM can be written
as the Lorentz invariant formed by taking the scalar product of the photon's four-
momentum and the photon's four-potential,

(Eé w-ﬂE JH)- (cDV,AV)Jicpﬁ(hv—e—’zé,ﬁ)-ixv=o, (13)
c ot me? cot mc

for either electric or magnetic fields E,H . The photon four-momentum was found in [14]
from 7 times a form of the four-gradient whose scalar product with the four-electromagnetic-
energy density gives the electromagnetic continuity equation. This is simply the
electromagnetic analog of writing the material continuity equation as the scalar product of the
four-gradient and the material four-density.
The electron scalar and vector potentials can be written in the form of carrier-wave expansions,

D, =0, e LD, (14a)

A=A, e LA o, (14b)

from which on substituting Eqs. (14) into Eq. (13) and separately setting the coefficients of
the exponential factors equal to zero, we obtain,

A2 %, +(V-—SE)-A,, =0 (15a)
c ot c mc
(f——i—)q) +(V——E H) A _=0. (15b)
c ot c mc

On setting @, =&y, A, = 0Cey, ®,_=CEy., A, = 6&p y we obtain the Dirac form for
the photon EOM presented previously assuming zero photon mass (7@, =0),

a - - -
CEH +i&§E,H L6V _%E/H)é,E,H -0 (16a)
cot c mc
124 10) -5 € = o=
EH % o 46 (V——E H)E g =0 (16b)
cot c mc

Writing & ,; =e 'y and ¢p =€y in Eqs. (16) we derive stationary equations

forypy and yp g then we eliminate the equation for yr, in favor of a second-order
equation for wp ;; ,obtaining equations for the electric and magnetic photon wave functions
which have the Helmholtz form,

2
o —o,

- - e
{V2+ —Z[V~E+2E~V+za~(VXE)—WEZ]}‘//E:0 (17a)

Cc mc
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2 2

@ — e
(Ve—t-—
C

T S = e
mcz[v.H+2H-V+za~(va)—EH2]}y/H:0, (17b)
where we have used the identity, (6-A)(G-B)=A-B+i5-(AxB).Eq. (17b) for hw, =0 was
used in previous work to calculate the Lamb shift [14] and anomalous magnetic moment
[16].

6. Subatomic bound states

Dirac’s time-domain equation can be cast in the form of an equationsecond order in space
and time; thus we should expect a second spatial-temporal solution to exist which is
independent of the first spatial-temporal solution which we have elucidated in Section IV. 1
show that a regime exists in which an adiabatic solution to the time-dependent Dirac
equation is not justified even in an approximate sense. The existence of the regime is easily
recognized by writing Dirac equations in the form given by Eq. (11) for the large component
with a reversal of charge and for the small component with no reversal of charge and then
seeking solutions for which the phase in the exponential factor vanishes for all times. These
equations are,

x £ ,i me? —|V|)(t—t' +
(1125 1V 1wme () =ine (5 EF D fap e T L CE Dy gy o)
ot or ro or r

Egs. (21) are solved numerically for Z=1 and « =*1 using the same techniques used to solve
Eq. (11). The two equations for positronic or electronic binding are solved for a wave

function or its complex conjugate respectively. The spectrum is found to be given simply by

2

E, =+mc” (Fig. 3). The real part of the wave function is shown in Fig. 4. Notice that if a

bound state exists for one charge, then a bound state must also exist for the other charge by
the charge-conjugation symmetry of Dirac’s equation. Charge-conjugation symmetry is well
known in standard time-independent Dirac theory, whose adiabatic regime does not
support positronic-electronic bound states, and arises in Dirac’s interpretation of the
negative-energy states in which a hole or absence of an electron registers the existence of a
positron or conversely in a positron world the absence of a positron would signal the
existence of an electron.

Although the wave function is pulled inward toward the origin, its extent is still large
compared to the radius of the proton r,=1.3x1013cm = 2.46x10- au.

The spectral energies are those which cancel the terms Fmc® on the left side of Egs. (21) and

for which the stationary phases on the right side occur at 2mc2-|V| = 0. For the unit-
strength Coulomb potential the radius at which the stationary-phases occur is given by
2
Ty = 2672 , which is roughly the radius of the proton.
mc

The bound behavior of the positronic-electronic wave function shown in Fig. 4 can be
understood as follows. Recognizing that the first and third terms on the left side of Eq. (21)

cancel from the spectral values E, =+mc* (Fig. 3), one may write an equation in which zero

phase of the integration factor is assumed and which is the time derivative of both sides of
Eq. (21) with zero phase,
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_ o”f azf 20f 2
FVI— l?'w(ﬁ2 o rzf), 22)

A solution to Eq. (22) is sought in the form f(r,t)=¢”g(r) for the complex separation
constant o, +iw;, giving the equation for g,

g 208 2 L IVI@ tio)

=0. 23
orr ror r? hc? g (@3)

0.5
Spectrum(au)
0.4
0.3
0.2

0.1

s
0 .........

-1. 00e+03 =5. 00e+02 0. 00e+00 5. OOe+02 1. 00e+03
£ (au)

Fig. 3. Spectra from the solution of Eq. (21) using rmax=0.1 au. Solid: positive charge.
Dashed: negative charge. The continuum edges are at E /c =+mc au. The energy is
obtained by multiplying the graphical numbers by c.
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50 '

B0 A i
0.00e+00 5.00e—04 1.00e—03 1.50e—03 2.00e—03

r(au)

Fig. 4. Real part of the positronic or electronic solution of Eq. (21) times r at ct=0.0375 (solid),
0.0750 (dashed), and 0.1125 (dotted) au showing the convergence to a stationary solution.
The initial wave function, which s hydrogenic and spread out in the domain 0.25x105<r<0.2
au, is pulled into the origin as shown in the figure.

Figs. 5-6 show plots of the real part of f and of the real and imaginary parts of g respectively
2 2
for r=ct and o, = —92% ,and o; = 35% . Except for the behavior near the origin the

unnormalized solution of Eq. (23) is a good mimic of the solution of Eq. (21) shown in Fig. 3.
Remarkably the bound positronic-electronic states in the nonadiabatic regime (Fig. 4) exhibit
an altogether different form of binding than that of Schroedinger or time-independent Dirac
theory. This is obvious from the spectrum (Fig. 3), in which the energies lie at the edges of
the positive-and negative-energy continua. One may understand this form of binding as

binding which satisfies the four-space Lorentz-invariant relationship r* —(ct)’ =0 between

position and time . In other words the binding can occur as a temporal exponential decay in
which ct = r rather than as a spatial exponential decay requiring eigenvalues which fall
somewhere in the gap between the two continua. This point is clear fromFigs. 5-6 in which
binding occurs in the temporal part of the function f(r,t) (Fig. 5) while the radial function
g(r) is unbound (Fig. 6).
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Fig. 5. Simulation using Egs. (22)-(23) of the wave function shown in Fig. 4. The simulated
wave function is unnormalized.

2.00e+04 ]
1.00e+04 :-
0.00e+004~=
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-1 .00e+o4—§
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Fig. 6. Unnormalized wave function obtained from Eq. (23) by outward integration. Solid:
real part. Dashed: imaginary part.
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1. Introduction

Schrodinger conceived his wave equation having in mind de Broglie’s famous relation from
which we learnt to attribute complementary behavior to quantum objects depending on
the experimental situation in question. He also thought of a wave in the sense of classical
waves, like electromagnetic waves and others. However, the space-time asymmetry of the
equation with governs quantum phenomena lead the scientific community to investigate the
new physics this specific wave was about to unveil. It turns out that in certain experimental
condition classical light has its behavior dictated by a bidimensional Schrédinger equation for
a free particle. This fact is well known for several years (Yariv, 1991; Snyder & Love, 1991;
Berman, 1997; Marte & Stenholm, 1997). For this special kind of waves it is possible to define
the analog of a Hilbert space and operators which do not commute (as reviewed in section 2)
in such a way that the mathematical analogy becomes perfect. A natural question emerging
in this context, and the case of the present investigation is the following: how far, in the sense
of leaning new physics, can we take this analogy ?

We have been able to show that the generalized uncertainty relation by Robertson and
Schrodinger, naturally valid for paraxial waves, can shed new light on the physical context of
a beautiful phenomenon, long discovered by Gouy (Gouy, 1890; 1891) which is an anomalous
phase that light waves suffer in their passage by spatial confinement. This famous phase
is directly related to the covariance between momentum and position and since for the “free
particles” we are considering yxx0pp — (7,%,, = constant we see that Gouy phase can be indirectly
measured from the coordinate and momentum variances, quantities a lot easier to measure
than covariance between x and p. On the other hand, as far as free atomic particles are
concerned, experiments elaborated to test the uncertainty relation (Nairz et al., 2002) will
reveal to us the matter wave equivalence of Gouy phase. Unfortunately the above quoted
experiment was not designed to determine the phase and that is the reason why, so far, we
have only an indirect evidence of the compatibility of theory and experiment. The last aim
of our research is to try to encourage laboratories with facilities involving microwave cavities
and atomic beams to perform an experiment to obtain the Gouy phase for matter waves.

We believe that Gouy phase for matter waves could have important applications in the field of
quantum information. The transversal wavefunction of an atom in a beam state can be treated
not only as a continuous variable system, but also as an infinite-dimensional discrete system.
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The atomic wavefunction can be decomposed in Hermite-Gaussian or Laguerre-Gaussian
modes in the same way as an optical beam (Saleh & Teich, 1991), which form an infinite
discrete basis. This basis was used, for instance, to demonstrate entanglement in a two-photon
system (Mair et al., 2001). However, it is essential for realizing quantum information tasks that
we have the ability to transform the states from one mode to another, making rotations in the
quantum state. This can be done using the Gouy phase, constructing mode converters in the
same way as for light beams (Allen et al., 1992; Beijersbergen et al., 1993). In a recent paper is
discussed how to improved electron microscopy of magnetic and biological specimens using
a Laguere-Gauss beam of electron waves which contains a Gouy phase term (McMorran et al.,
2011).

2. Analogy between paraxial equation and Schrédinger equation

One of the main differences in the dynamical behavior of electromagnetic and matter
waves relies in their dispersion relations. Free electromagnetic wave packets in vacuum
propagate without distortions while, e.g., an initially narrow gaussian wave function of a free
particle tends to increase its width indefinitely. However, the paraxial approximation to the
propagation of a light wave in vacuum is formally identical to Schrédinger’s equation. In this
case they are bound to yield identical results.

We start our analysis by taking the simple route of a direct comparison between the Gaussian
solutions of the paraxial wave equation and the two-dimensional Schrédinger equation.
Consider a stationary electric field in vacuum

E(7) = A(7) exp(ikz). 1)

The paraxial approximation consists in assuming that the complex envelope function A(7)
varies slowly with z such that 3> A/9z> may be disregarded when compared to kdA/9dz. In
this condition, the approximate wave equation can be immediately obtained and reads (Saleh
& Teich, 1991)

2 2 19
(5 * a2 + #4752 ) Alown) =0 @

where Ap is the light wavelength.
Consider now the two-dimensional Schrédinger equation for a free particle of mass m

2 92 .m0
(W+@+21ﬁ§) P(x,y,t) =0. (3)

Here, ¥(x,y,t) stands for the wave function of the particle in time . Assuming that the
longitudinal momentum component p, is well-defined (Viale et al., 2003), i.e., Ap, < p,, we
can consider that the particle’s movement in the z direction is classical and its velocity in this
direction remains constant. In this case one can interpret the time variation At as proportional
to Az, according to the relation t = z/v,. Now using the fact that Ap = I/ p, and substituting
in Equation (3) we get

(— + +i4n—3) p(xyt=2/v:) =0, @
y POz

where Ap is the wavelength of particle. As we can see the Equations (2) and (4) are formally
identical.
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The analogy between classical light waves and matter waves is more apparent if we use the
formalism of operators in the classical approach introduced by Stoler (Stoler, 1981). In this
formalism, the function A(x,y, z) is represented by the ket vector |A(z)). If we take the inner
product with the basis vectors |x,y), we obtain A(x,y,z) = (x,y|A(z)). The differential
operators —i(d/dx) and —i(d/dy) acting on the space of functions containing A(x,y,z) are
represented in the space of abstract ket by the operators ky and IAcy. The algebraic structure of
operators ky, lAcy, % and 7 is specified by the following commutation relations

~ A

(& k) = ke — ket =i, [0k =i, [89]=[2k]=[0k]=0 ®)

2.1 The generalized uncertainty relation for light waves

The analogy between the above equations in what concerns the uncertainty relation can be
immediately constructed given the formal analogy between the equations.

Consider the plane wave expansion of the normalized wave u(x, t) in one dimension (Jackson,
1999)

/dk Alky)ellex—w k] ©)
The amplitudes A(ky) are determmed by the Fourier transform of the u(x,0) (¢t = 0 for
simplicity)
1 ,
= —— [ dxu(x,0)e ke, 7
Sy 0

The averages of functions f(x, k) of x and ky are evaluated as (Stoler, 1981)

fx, ky)) /dxu (x,0)f. ( aa) u(x,0), 8)

in complete analogy with quantum mechanics. The function fs (x, —i %) is obtained from
f(x,ky) substituting the c-number variable k, by the operator —i% followed by symmetric
ordering. For example, if f(x,ky) = xky, then f(x, —ia%) = —é (x% + %x). Thus, we can
write the variances

©)

Ok, = (K3) — (kx)?, (10)
and the covariance
Ok, = L /dx u*(x) xi + ix u(x) — (£) (ky) (11)
Y T 7o ox = ox x
and get
1
Oxx 0%k, — Uka > T (12)

Equation (12) is the equivalent of generalized Schrodinger-Robertson uncertainty relation but
for paraxial waves. It is also true in this context that the evolution given by Equation (2)
preserves this quantity. This fact allows us to experimentally assess the covariance oy, by
the measurements of oy and ok, which are quite simple to perform. Moreover, as we show
next, oy is directly related to the Rayleigh length and Gouy phase.
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Next, we show one important result which is a consequence of this analogy - the Gouy phase
for matter waves. The free time evolution of an initially Gaussian wave packet

1 2 2
v 90 = (= e (—’“ 7 ) , )

according to Schrodinger’s equation is given by (da Paz, 2006)

x2 +y2

veud = 5] o ()
X exp {i m (4 v7) } : (14)

— t
R W
The comparison with the solution of the wave equation in the paraxial approximation with
the same condition at z = 0 yields
1
£\ 2]2
1 — 1
- <To) } ' (4%

w(z) — B(t) = by

R(z) — R(t) =t {1+ (?)2} , (16)
{(z) — p (t) = —arctan i) , (17)
T
and 5
zZo — Tp = m7b0 (18)

The parameter B(t) (w(z)) is the width of the particle beam (of light beam), the parameter R(f)
(R(z)) is the radius of curvature of matter wavefronts (wavefront of light), j(t) (¢(z)) is the
Gouy phase for matter waves (for light waves). The parameter 19 is only related to the initial
condition and is responsible for two regimes of growth of the beam width B(t) (da Paz, 2006;
Piza, 2001), in complete analogy with the Rayleigh length which separates the growth of the
beam width w(z) in two different regimes as is well known in optics (Saleh & Teich, 1991).
The above equations show that the matter wave propagating in time with fixed velocity in
the propagation direction and the stationary electric field in the paraxial approximation are
formally identical [if one replaces t = z/v, in the Equations (15-17)].

Next we show that u(t) is directly related to the Schrodinger-Robertson generalized
uncertainty relation. For quadratic unitary evolutions (as the free evolution in the present
case) the determinant of the covariance matrix is time independent and for pure Gaussian
states saturates to its minimum value,

2
det <‘7“ ‘TXP) _ " (19)
Oxp Opp 4
where 5 5
B(t h
Oxx = ( ) (20)
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and b 5
= — = —_tan2u(t). 21
G = 5 =~ a2 (1) 1)
Since the covariance oy is non-null if the Gaussian state exhibits squeezing (Souza et al.,
2008), if one measures 0yp, from the above relation it is possible to infer the Gouy phase for
a matter wave which can be described by an evolving coherent wave packet. For light waves

this is a simple task as can be seen below.

2.2 The Gouy phase for light waves
The generalized uncertainty relation for the Gaussian light field can be immediately obtained.
Indeed the variances

2

w* (z
Oxx = %/ (22)

k
Okyky = 220 (23)
T 1 tan2((z) (24)

e Tz T2 '
satisfy the equality
1

Cexlik, — ok, = - (25)

Analogue expressions can be found for the second moments of the y transverse component.
The saturation at the value 1/4 allows for the determination of the covariance oy . From
Equation (25) and using the expressions (22) and (23) we get

2
kax(Z):i% [%z)] -1, (26)

which is a function of z/zg just like expression (17) for the Gouy phase.

The connection between the Gouy phase and the covariance oy is of purely kinematical
nature. As pointed by Simon and Mukunda (Simon & Mukunda, 1993), the parameter space
of the gaussian states has a hyperbolic geometry, and the Gouy phase has a geometrical
interpretation related to this geometry.

Note that oy can be positive or negative according to the Equation (26). However, the
Equation (26) was deduced assuming that the focus of the beam is z = 0. If we shift the
focus to any position z,, as in the experiment, we must take this into account. The plus and
minus sign in Equation (26) can be better understood if we look at the Equation (24)

Z—2Zc

z
Oxk, = 220 — Oxk, = 2 (27)

which agrees with the experimental data as we show in what follows. Here we can see that
for light waves propagating in the direction of focus (z < z) the covariance is negative, on
the other hand, for light waves propagating after focus (z > z.) the covariance is positive.

Now note Equation (26) suggests that by measuring the beam width w(z) we can indirectly
infer the value of oy, and thus the value of the Gouy phase by Equation (24). Next, we
describe a simple experiment to measure w(z). To experimentally obtain the beam width as a
function of the propagation distance, we use the following experimental arrangement shown
in Figure 1 (Laboratory of Quantum Optics at UFMG), where L; represents a divergent lens,
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Ly a convergent lens and D is a light detector. With this arrangement we can measure the
width of the beam as a function of z. The width of the beam in position z is the width of the
intensity curve, adjusted by a Gaussian function. In Figure 2, we show the width of the beam
for different distances z, along with the corresponding result for oy .

Ly L2 D
ol | H.

Fig. 1. Sketch of experimental arrangement used to indirectly measure the Gouy phase of a
focused light beam.

beam width w (mm)
o -
e B

.
covariance

o
EN
"

200 400 600 800 -400 200 0 200 400

distance z (mm) distance (z-z)) (mm)

Fig. 2. On the left, the width of Gaussian beam w(z) as a function of propagation direction z.
Solid curve corresponds to the Equation (15) and the points were obtained of experiment. On
the right, covariance oy as a function of z — z.. Solid curve corresponds to the Equation (27)
and the points were obtained of experiment through the equation (26).

The determination of o, or w(z) allows us to determine ¢(z) (see Figure 3).

3. Macromolecules diffraction and indirect evidence for the Gouy phase for matter
waves

Recent experiments involving the diffraction of fullerene molecules and the uncertainty
relation are shown to be quantitatively consistent with the existence of a Gouy phase for
matter waves (da Paz et al., 2010). In Ref. (Nairz et al., 2002) an experimental investigation
of the uncertainty relation in the diffraction of fullerene molecules is presented. In that
experiment, a collimated molecular beam crosses a variable aperture slit and its width is
measured as a function of the slit width. Before reaching the slit diffraction the molecular
beam passes through a collimating slit whose width is fixed at 0y = 10 um, producing a
correlated beam (see Figures 1 and 3 in Ref. (Nairz et al., 2002)).

The wave function of the fullerene molecules that leave the slit of width by, in the transverse

direction, is given by
2

VR SR S
l/JkX(x,O)—\/mexp( Zb%—&-zkxx), (28)
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Fig. 3. Gouy phase for Gaussian light beam as a function of propagation direction z — z,.
Solid curve corresponds to the Equation (17) and the points were obtained of experiment
through the Equation (24).

where ky is the transverse wave number. The wave function on the screen is given by

Y (xt) = [ d5G(x, 15,04, (,0), 29)
where . )
6l 155,0) = ()" exp [ e (6= 7], 60

and f = z/v, is the propagation time from slit to detector, v, is the most probable speed on the
z direction. After some algebraic manipulations we obtain, for the normalized wave function
at the detector, the following result

1 1 e\’
Pr (x, ) = %exp [232“) (x _L%kx) ]

iu(t) _im 2 a2 2mbg
X exp[ > +2hR(t) (x boky + o xky ||, (31)

where B(t), R(t) and p(t) are given by the Equations (15), (16) and (17), respectively.

As discussed in Ref. (Viale et al., 2003), given the way the fullerene molecules are
produced, it is reasonable to assume that the outgoing beam after the diffraction slit has a
random transverse momentum. Due to the thermal production the beam contains different
components ky, although it has been collimated (Viale et al.,, 2003). The beam is an
incoherent mixture of wave functions with wavenumber k, randomly distributed according to
probability distribution g(%) (k). This distribution depends on the geometry of the collimator,
secondary source, which reduces the beam width in the direction x. The index 0 represents
the plane of the secondary source (the plane of the collimator), which means that the loss
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of coherence of the beam is due to the production mechanism only. It is not physically
reasonable to assume that a coherent wave packet leaves the diffraction slit due to the thermal
production of the fullerene molecules as discussed above. Therefore, in order to introduce
some incoherence along the spatial transverse direction, where the quantum effects occur, we
use the formalism of density matrices (Gase, 1994; Ballentine, 1998; Scully & Zubairy, 1997;
Fano, 1957). The density matrix of the beam at time ¢ is given by

o) = [ kg (), (x, DY, (¥, ) (2

For simplicity, let us take a probability distribution of wave number ky be a Gaussian function
centered at ky = 0 and width Aky = J, /V2, e,

50 (k) = — L exp BN (33)
N 5.

This allows us to obtain for the density matrix Equation (32), the following result

| (x+x")% + Mb(x —x')? im ,
plx, x',t) = NG00 exp |— 432(;; ] p {2?11_{(1‘) (x? — x2)] , (34)
where .
2712 _\2
B(t)=b |1+ (%) ,R(H) =t]1+ (?) ] , (35)

T = MpP1, Mp = \/1+b362 . (36)

We observe that the density matrix Equation (34) is a mixed state due to the incoherence of
the source. The bar has been used to differentiate the parameters of the pure Gaussian state of
matter waves of the respective parameters from a mixed Gaussian state. The quantity M%, is
the quality factor of the particle beam. The quantity T is a generalization of the definition of
time aging (Piza, 2001) (timescale) for partially coherent Gaussian state of matter waves. We
see that this quantity is always smaller than the aging time of Gaussian pure states, 1, and in
this case, a mixed Gaussian state will spread faster with time than the pure Gaussian states.
In the coherent limit 6 — 0 (ideal collimation), we obtain the parameters of pure Gaussian
state, Equations (15), (16) and (17).

In the limit + — 0O (the plane of source), we have

1 { (x% +x'%)
———exp |
V/7thg 2b;
where the last exponential term of this equation make the role of the spectral degree of
coherence defined in the theory of optical coherence (Mandel & Wolf, 1995). We see that the
dependence of this term with the transverse position appears as the difference between the
positions and, in this case, the source of fullerenes is a source of type Schell (Mandel & Wolf,
1995). Again, the source of fullerenes we refer to here is the collimation slit and not the oven.
With the density matrix, we obtain the intensity at the detector by using x = x’ e t = z/v;,
ie.,

p(x,x') =

(52
exp {— Z’* (x — x’)ﬂ , (37)

1 x2
7750 P B 9

I(x,t) = p(x,x,t) =
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Next, we calculate the new elements of the covariance matrix and obtain the following results

o = (%) = /dxxzp(x,x,t)

- 20 )
ow =0 = [ [ i, 6 0 D )] 8O0 ki,
_ hz”b?v (40)
and
oy = (L2 = [ | [y 6 0stin e ()| 50 kojaks
= ng% (Tio) . (41)

With these new elements, we obtain the following result for the determinant of covariance
matrix
Oxx Oxp 72
Txp Tpp
This result shows that the determinant of the covariance matrix remains time independent,

(42)

but has a different value from %, because now we have an incoherent state.

The experimental result for the width Wrw s (full width at half maximum) at the detector,
realized by the group of A. Zeilinger in Ref. (Nairz et al., 2002) is shown in Figure 4 and
compared with our theoretical calculation, Equation (39) (wWhere Wrwpyy = 2v/21n20yy). The
points are experimental data extracted from Ref. (Nairz et al., 2002), the dashed curve is the
beam width with incoherence effect and without convolution with the detector and the solid
curve takes into account both effects. These curves show that to adjust the experimental points
with theoretical model, we take into account the convolution with the detector and the partial
coherence of the fullerenes source. To take into account the convolution with the detector, we
use a detector width FWHM of order of 12 ym, where we took as reference the value quoted
in (Nairz et al., 2002). The parameter that measures the partial coherence in the transverse
direction of the beam that best fits the experimental data is given by J;, = 9.0 x 10°m~1.
With this value of 0y, we calculate the initial transverse coherence length, e, loy = U (t =0)
and we obtain £y, = (J,/ v2)71 2 1.3 x 1077 m. As we do not take into account the coupling
with the environment in our model, the initial coherence length remains constant in time, i.e.,
Uy () = Loy. To compare the value of the coherence length with the value of the wavelength,
we calculate Ap through the equation Ap ~ A, = h/muv, (where v, ~ 200 m/s is the most
probable speed) and we obtain Ap ~ 2.5 pm. Thus, we have {y, > Ap, and the condition
discussed in Ref. (Mandel & Wolf, 1995) for a locally coherent source is guaranteed. Because
the source size is much larger than transverse coherence length, i.e., 0y > {yy, the angle of
beam divergence of fullerenes produced in the secondary source (collimation slit) is given by

Ap\ 1

0y ~ (?) Tox = 6.1 pyrad, (43)
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Fig. 4. Beam width of fullerene molecules Cyj as a function of slit width. Solid and dashed
curves correspond to our calculation, Equation (35), and the points are the experimental
results obtained in Ref. (Nairz et al., 2002). Dashed curve corresponds to the incoherent case
without convolution with the detector and solid curve corresponds to the case where both
effects were taken into account. To adjust the theoretical calculation with the experimental
data we use dky = 9.0 x 10° m~! and t = z/v, = 6.65 ms.

a value consistent with the experimental value quoted in Ref. (Nairz et al., 2000) (2 < 6 <
10 prad).
The range of wavelengths along the direction x is given by

27T

Ay = AR

= 986 nm, (44)

where Ak, = 5kx/\/§ =6.4x10°m 1.

The value obtained for the range of wavelengths is the same order of magnitude of the
transverse coherence length ¢y, what justifies the existence of quantum effects along this
direction. The component of the wave vector in the direction z has the value k, = mv, /I ~
2.24 x 1012 m~!. The values found for k, and Ak, show that k; > Ak, and thus, paraxial
approximation is guaranteed for the partially coherent matter wave beam.

3.1 Covariance oy, and Gouy phase

In this section, we calculate the covariance between position and momentum and the Gouy
phase for fullerenes molecules considering the free Schrodinger equation. We calculate the
phase and show that it is also related to the covariance oy, as well as in the case of pure
Gaussian states.

Starting from the determinant of the covariance matrix for mixed Gaussian state, Equation
(42), we can express 0yp in terms of the beam width, i.e.,

1
hMp ( WEwHM )2 :
Oyp = -1 , 45

w2 [ 2+/1n 2by #5)

where Wrw i is measured in the laboratory. The curve for oy, obtained with experimental
data of the Ref. (Nairz et al., 2002) through the Equation (45), is showed in Figure 5 and
compared with the theoretical value, Equation (41).
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Fig. 5. Covariance 0y, as a function of slit width. Solid curve corresponds to our calculation,
Equation (41), and the points were obtained of experiment reported in Ref. (Nairz et al.,
2002) through the Equation (45). The parameters are the same of Figure 4.

3.1.1 Gouy phase for a mixed Gaussian state

A more recent definition justifies the physical origin of the Gouy phase in terms of space
enlargement, governed by the uncertainty relation, of a beam whose transverse field
distribution is a Gaussian function (or arbitrary) (Feng & Winful, 2001). According to Equation
(11) in Ref. (Feng & Winful, 2001) the Gouy phase () and the beam width B (¢) for a pure
Gaussian state of matter waves are related by the expression

hoortodt
H=—— | —. (46)
Here, we conjecture, based on the obtained results, that this definition holds for partially
coherent Gaussian states since the spread of these states is also governed by the uncertainty
relation. Thus, for a state given by Equation (34), the Gouy phase is

1
2M3,

u(t) = — arctan (%) , (47)

0

where the factor § appears because we are working in one dimension. Note that, again y(t) is
related to Oxp and is affected by the partial coherence of the initial wave packet, i.e.,

2
— % arctan sz . (48)
2M% iM%

In Figure 6, we show the phase extracted from Equation (48). As expected, the variation in
phase is 71/4, because we are dealing with a one-dimensional problem of diffraction and the
propagation of the beam will be from t = 0 to t = z/v, (Feng & Winful, 2001). This result
shows that the existence of a Gouy phase is compatible with the experimental data involving
diffraction of fullerene molecules. It is an indirect evidence of the Gouy phase for matter
waves (da Paz, 2011; da Paz et al., 2010).

u(t) =

4. Quantum lens and Gouy phase for matter waves

In the previous section, we have shown an indirect evidence for the Gouy phase for matter
waves based on the analogy existent between the paraxial equation for wave optics and



82 Electromagnetic Waves

Gouy phase (rad)
s
'

0 5 10 15 20
slit width (um)
Fig. 6. Gouy phase as a function of slit width. Solid curve corresponds to our calculation,

Equation (47), and the points were obtained of experiment reported in Ref. (Nairz et al.,
2002). The parameters are the same of Figure 4.

Schrodinger equation for matter waves (da Paz, 2011; da Paz et al., 2010). Due to this formal
similarity a question which arises naturally is if a similar phase anomaly may occur in the
region around the focus of an atomic beam. In order to answer this question, in this section
we present the evolution of an atomic beam described by a Gaussian wave packet interacting
dispersively with a cavity field (da Paz, 2011; da Paz et al., 2007).

The model we use is the following (Averbukh etal., 1994; Rohwedder & Orszag, 1996; Schleich,
2001): consider two-level atoms moving along the Oz direction and that they penetrate a
region where a stationary electromagnetic field is maintained. The region is the interval
z = —L; until z = 0. The atomic linear moment in this direction is such that the de Broglie
wavelength associated is much smaller than the wavelength of the electromagnetic field.
We assume that the atom moves classically along direction Oz and the atomic transition of
interest is detuned from the mode of the electromagnetic field (dispersive interaction). The
Hamiltonian for this model is given by

HAap = 2= + g(2)a%a (49)

where m is the atom mass, py and £ are the linear momentum and position along the direction
Ox, 4* and 4 are the creation and destruction operators of a photon of the electromagnetic
mode, respectively. The coupling between atom and field is given by the function g(x) =
aE?(x) where a is the atomic linear susceptibility, & = %, where (? is the square of the dipole
moment and A is the detuning. E(x) corresponds to the electric field amplitude in vacuum.
The effective interaction time is t; = ZL)—E, where v, is the longitudinal velocity of the atoms.
The dynamics of the closed system is governed by the Schrodinger equation

. d A
zha\‘ﬂ = Hap|¥). (50)
At t = 0 the state of the system is given by a direct product of the state corresponding to

the transversal component of the atom and a field state, [¥¢p) ® [¥r). The field state can be
expanded in the eigenstates of the number operator 4'a

¥r) =Y wuln), Y |wal* =1. (51)
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When atom and field interact the atomic and field states get entangled. We can then write

+o0
1) = T [ dxguxnlx) @ |n), 2)
where 5 "
ihglpn(x,t) = {f%VZJrg(x)n}zpn(x,t), (53)
or, if one defines
~+o00
) = [ dxpulx i), 4
the Equation (53) takes the form
1) = [ 25+ g(om] a0 69
g T g, T8 g

Next, we will use the harmonic approximation for g(x) which is a fine approximation
provided the dispersion of the wavepacket in the transverse direction by is much smaller than
the wavelength of the electromagnetic field mode A (Schleich, 2001). Taking the main terms of
the Taylor expansion of the function g(x),

2

mgo— S e (v k)’
g(x)~go 29, + 782 (x xf> , (56)
we get
o d N SPC N 2
i 190(0) = | 22 JmO3 8 = x| 10
= Hy|¥a(t)), (57)
where xf = —g1/2¢> and 02 = ngo/m. In order to obtain focalization of the atomic beam

it is crucial that the initial state be compressed in momentum since this initial momentum
compression is transferred dynamically to the x coordinate and a focus can be obtained
(da Paz et al., 2007; Rohwedder & Orszag, 1996). In fact, the momentum compression is a
necessary condition in optics to obtain a well defined focus (Saleh & Teich, 1991).

4.1 Time evolution
According to Bialynicki-Birula (Bialynicki-Birula, 1998), the general form of a Gaussian state
in the position representation, is given by

1 - 2 . _
P(x) = (%)4 exp (fi%) exp {(xx)z(uqtzv) +i% , (58)

where ¥ and p are the coordinates of “center of mass" of the distribution in phase space and u
and v give the form of this distribution.

A dynamic governed by a Hamiltonian quadratic in position and momentum keep the
Gaussian shape of a Gaussian initial state. This is the case of the problem treated here. The
atomic motion can be divided into two stages: the first, the atom undergoes the action of a
harmonic potential when it crosses the region of electromagnetic field while, in the second
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part, the atom evolves freely. In the two stages, the Hamiltonian governing the evolution are
quadratic in atomic position and momentum [cf. Equation (57)]. Since the initial atomic state
is Gaussian, we can consider that throughout evolution, such state will preserve the form
given by Equation (58). In this case, the parameters ¥, §, u and v are functions of time, and
their respective equations of motion can be derived from the Schrédinger equation.

Consider a particle of mass m moving under the action of a harmonic potential. The natural
frequency of this movement is (). The Hamiltonian governing this dynamic is given by

A= 2 + Loz, (59)
2m 2"
In position representation, the evolution of the state ¢ of the particle is governed by the
Schrodinger equation
0 7 G B
zhgtp(x,t) = | " omi + Eanx P(x,t). (60)

Suppose that the initial state of the particle is Gaussian. We obtain the equations of motion for
the parameters ¥, p, u and v by substituting the general form (58) in equation above, grouping
the terms of same power in (x — %), and then separating the real and imaginary parts. This
procedure takes six equations for the four parameters mentioned. The system is therefore,
“super-complete”. Eliminating such redundancy, the equations of motion are the following

i P

X= o (61a)
p=—-mO2x, (61b)
., .omQ2 h o,

K=i 7 —ZEK , (61c)

where we define K = u + iv. Here, the dots indicate time derivation. Note that the equations
of motion for the coordinates of the centroid of the distribution are equivalent to the classical
equations of movement to the position and momentum of a particle moving in a harmonic
potential.

A important observation must be made here. One of the two equations removed is not
consistent with the others in (61). This equation is the following;:

P’ 20
px — px = — Q%+ —u. 62
px — px m+m nx+mu (62)
To see this, just replace the expressions (61a), (61b) in the above equation. We obtain u = 0,
which makes no sense, since u represents the inverse square of the width of the Gaussian
package. The only way to “dribble" this inconvenience is to redefine the general state as

1 == =\2 . =
P(x)= (%>4exp (—i% +i%) exp [—W +i% , (63)

where @ is a real function of time. This global phase, in general neglected (see, e.g.,
(Bialynicki-Birula, 1998; Piza, 2001)), ensures the consistency of the equations of motion
because, in addition to Equations (61), we must have

h

b= - (64)
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@ /2 is known as Gouy phase. Equation (64) relates the Gouy phase with the inverse square of
the beam width . The same result was obtained for light waves transversally confined in Ref.
(Feng & Winful, 2001).

4.2 Focalization of the atomic beam

In Figure 7 we illustrated how the quantum lens work out. We consider that a initial Gaussian
state compressed in the momentum (region I) penetrates in a region where a stationary
electromagnetic field is maintained (region II). The atoms and the field inside the cavity
interact dispersively. Dispersive coupling is actually necessary to produce a quantum lens,
because the transitions cause aberration at the focus (Berman, 1997; Rohwedder & Orszag,
1996; Schleich, 2001). When the atomic beam leaves the region of the electromagnetic field,
the atomic state evolves freely and the compression is transferred to the position (region III).
Let us assume, as an initial atomic state, the compressed vacuum state

1/2 x2
<x|¢n<t:o>>:wn(x,t:o>=( ! ) exp< ) (©5)

bov' 7 22
where by is the initial width of the packet and by > b, = /fi/ (mQ)y,). For the parameters £,
b
A I |

Fig. 7. Initial atomic compressed state in momentum . The evolution inside the cavity rotates
the state and transfer the compression to the position.

p, K and ®, we get
X(t <tp) = —xgcosQpt, (66)
plt <tp)= mQpxssin Qpt, (67)
and
-1
b2 1 1.
K(t<tp) = cos Oyt + i sin Oyt —cos Oyt +i—sinQut |, (68)
b b? b2
0 0 n
for the initial conditions Xy = —xy, o = 0,u = by 2 and v = 0. Also, from Equation (68) we
obtain

-1

4

u(t <tp) = {bg <cos2 Qnt+%sin2 Qnt)] . (69)
0
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Now u~! is the width of the gaussian wavepacket squared. At this stage

q)(f<tL) = —

1 b2
L arctan Lz tan(Qnt)} . (70)

0

When the atomic beam leaves the region of the electromagnetic field, the atomic state evolves
freely. The equations of motion can be obtained analogously and we get for t >t

T(t>tp) = —XfCOS Pn + O, (t— tL)xf sin ¢y, (71)

plt>ty) = anxf sin ¢, (72)
Z—§c05¢n + isin ¢y
0

2 b% . bt b% ..
b3 [Cos<pn+zgsm¢n+z T”L (Ecos¢n+zsm¢n

K(t>t) = (73)

and
-1

2 F—tp . 2 bﬁ . t—tr 2
bgu(t > tr) = |( cos ¢, — ——sin on) + 54 \sin ¢Pn + —— cos o , (74)
0

n n

where ¢, = Qutp and 7, = mbf,/h.

The focus will be located in the atomic beam region where the width of the wavepacket is
minimal. In other words, when u(t > ;) be a maximum there will be the focus. This will
happen when the function

4

t—t; . 2 by (. t—tp g
D(t) = | cos ¢y — . sing, | + > sin ¢y, + oS P (75)
n 0

Tn

attains its minimum value. The time for which its derivative vanishes is given by

b2 .
zf T L, (1 — ﬁ) sin ¢, cos ¢y
tf= —— =t + T 5 (76)
Uz i cos? ¢y + sin” ¢y,
therefore the focus is located at
4

( — %) tan ¢y,

Zf = Z)ZTnﬁ. (77)
% + tan“ ¢,

The width of the Gaussian beam that passed through the lens, B (t) = 1/+/u(t), can be written

as L
t—tr\2]?
f
1+( = )] (78)

by = Mby, (79)
T = M*1, (80)

B(t) = by

where we define
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and 1
M= . (81)

\/ cos? ¢y + z—z’ sin? ¢y,

The line was used here to differentiate the beam parameters after the focalization of their
parameters before the focalization. We see that the waist of the beam is increased by factor M
and the package time aging is increased by the M? (not confuse with the quality factor M p).
In optics, the amount M is known as magnification factor (Saleh & Teich, 1991). If the state is
not initially compressed, i.e., if b, = by, does not exist focalization and in this case b6 = bp and
T} = Ty as we can seen by the Equations (79), (80) and (81).

If we consider an interaction time of atoms with cavity field t; very small, we have the so
called thin lens regime. Because when the interaction time is very small, the movement of
atoms along the transverse direction is also very small, i.e., the average transverse kinetic
energy of atoms is much smaller than the average potential energy (U(x)) produced by field,

% < (U(x)) (Averbukh etal., 1994). The rotation angle of the atomic state caused by the
interaction with the cavity field ¢, = Qt, is directly proportional to the interaction time,
thus, if f; is too small, ¢, will also be very small. If we consider ¢, < 1 and an initial atomic
state compressed in the momentum with b, /by < 1, the expression for the focal distance,
equation (77), acquires the simple form (Schleich, 2001)

mo?

Zf = ngzLC . (82)

4.3 Phase anomaly
If we integrate the equation of motion (64) for ® considering the expression for B () given by
the Equation (78), we obtain

() n ot odt
Mt === = ‘%/tf B2

1 t— tf
=3 arctan( 7 > . (83)

The integration interval is taken from fs to f, because the Gouy phase is the phase of the
Gaussian state relatives to the plane wave at the focus, i.e., at the focus the Gaussian state is
in phase with the plane wave (Saleh & Teich, 1991; Boyd, 1980; Feng & Winful, 2001). At the
focus, u = 0, as expected. Therefore, the Gouy phase of the atomic wave function undergoes
a change of 71/2 near the focus t¢. The fact that this variation is only 77/2, in contrast with the
value of 7 for the light, is due to the fact that the quantum lens focuses the atomic beam in
the Ox direction, keeping the Oy direction unperturbed (i.e., the electromagnetic field acts as
a cylindrical lens).

5. Experimental proposal

Consider a Rydberg atom with a level structure given in Figure 8 (left). Three Rydberg levels
e, g, and i are taken into account. The transition between the states e and g is slightly detuned
with a stationary microwave field stored in two separated cavities with frequency w, C; and
Cy, and completely detuned with the transition g — i. These cavities are placed between two
Ramsey zones, R and Ry, where a microwave mode quasi-resonant with the atomic transition
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g — iis stored (see Figure 8). If the electronic atomic state involve the levels i or g, the field in
both Ramsey zones are adjusted to imprint a 77/2 Rabi pulse on the internal state of the atom.
Then, after the Ramsey zones, the electronic state changes as

i) = 500 +15) (34
and .
g) = \ﬁ(li) —18))- (85)
J2. :
g @
g I A %’ z Rydberg atoms
N Y

Fig. 8. On the left, atomic energy levels compared with the wavelength of the field inside the
cavities C; and Cy. On the right, sketch of the experimental setup to measure the Gouy phase
for matter waves. Rydberg atoms are sent one-by-one with well-defined velocity along the
z-axis. A slit is used to collimate the atomic beam in the x-direction. The Ramsey zones R
and R; are two microwave cavities fed by a common source S, whereas C; and C, are two
high-Q microwave cavities devised to work as thin lenses for the atomic beam. The field
inside these cavities is supplied by common source S’. The state of each atom is detected by
the detector D.

The experimental setup we propose to measure the Gouy phase shift of matter waves is
depicted in Figure 8 (right). This proposal is based on the system of Ref. (Raimond et al.,
2001). Rubidium atoms are excited by laser to a circular Rydberg state with principal quantum
number 49 (Nussenzveig et al., 1993; Gallagher, 1994), that will be called state |i), and their
velocity on the z direction is selected to a fixed value v,. As it was stated before, we will
consider a classical movement of the atoms in this direction, with the time component given by
t = z/v,. Aslitis used to prepare a beam with small width in the x direction, but still without
a significant divergence, such that the consideration that the atomic beam has a plane-wave
behaviour is a good approximation.

If we disregard the cavities C; and Cy, the setup is that of an atomic Ramsey interferometer
(Ramsey, 1985). The cavity R; has a field resonant or quasi resonant with the transition |i) <
|¢) and results in a 71/2 pulse on the atoms, that exit the cavity in the state (|i) + |g))/v/2
(Raimond et al., 2001; Ramsey, 1985; Kim et al., 1999; Gerry & Knight, 2005). After passing
through the cavity Ry, the atoms propagate freely for a time t until the cavity Ry, that also
makes a 77/2 pulse on the atoms. Calling fiwy and fiw; the energy of the internal states |g)
and i) respectively, w; the frequency of the field in the cavities Ry and R; and defining wg; =
wg — wj, the probability that detector D measures each atom in the |g) state is (Raimond et al.,
2001; Ramsey, 1985; Nogues et al., 1999)

P = cos?[(w, — wei)t] - (86)

Upon slightly varying the frequency w; of the fields in cavities Ry and Rj, the interference
fringes can be seen (Raimond et al., 2001; Ramsey, 1985; Nogues et al., 1999).
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5.1 Atom focalization by classical fields
The interaction between a two-level atom and a single mode of the electromagnetic field (EMF)
is governed by the semiclassical hamiltonian

App = —d-E@t). (87)

d = &;p0:%is the dipole moment operator, where €, is the unitary vector along the direction
of quantization, p is the element of the transition matrix between the levels e (excited) and g
(ground state), and 655 = |e)(g| + |g) (e|. Assuming the longwave approximation, the electric
field E is considered in the position 7 of the atomic center of mass (7 is the corresponding
quantum operator). Here, E is treated classically.

Let us suppose that the atom interacts with a stationary electromagnetic wave kept in a cavity.
Moreover, the atom moves along the Oz direction, while the stationary field is formed by two
counterpropagating components along the Ox axis and linearly polarized in the direction Oy.
We have

E(7,t) = &[Ep /=@ 4 Ey o5+t 4 pp ¢, (88)
where Ej is a complex amplitude. Thus, we can write
E(7,t) = &[2Eq '** cos(wt) + h.c]. (89)

Here, k = 27”, where A is the wavelength of the EMF, and h.c. stands for hermitean conjugate.
Without loss of generality, we can take Ej real. Hence,

E7t) = 4€,Eq cos(kz) cos(wt). (90)
Assuming €, = €;, we have
HAar = —4pEq cos(kz) cos(wt)ys = Qg cos(kx) cos(wt)o5e, (91)

where |()g| = 4pE) is the Rabi vacuum frequency.
The hamiltonian that governs the atomic dynamics during the interaction with the stationary
field is given by

~ P hew,
H= ﬁ + 2eg 028 4 1y cos(k2) cos(wt)ys. (92)
Here, 6;° = |e)(e| — |g)(g|, and m is the atomic mass. In the rotating wave approximation
(RWA), we have
o PR e e MY o\ ( p—ict iwt
A= 2L T 5y 0 o ke) (e e {51 4+ ) el (93)

In order to remove the temporal dependence of H, we define |((t)) = exp (i wtod ) [p(t)).
Then, the evolution of the state |{(t)) is governed by the equation

d o s .
in;|#) = HIf), G
where 0
g Led + hAﬁgg + Ly cos(k®)&3S. (95)

2m 2 2
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Here, we define A = weg — w as the detuning between the frequency of the atomic transition
and the frequency of the field mode. In the limit of thin lens, the kinetic energy term can be

neglected. So, we have

s HA 19}
= 7&58 + ?0 cos(k2)633. (96)

Let us define the operator Q) = () cos(kz). Consider the set composed by the states e, x) =
ley ® |x) and |g, x) = |g) ® |x), where |x) is an eigenstate of the operator £ with eigenvalue x.

In the basis {|e, x), |¢, x) } xer, H is represented by the matrix

. A O,
Hy = , 97)
Oy —A

which is diagonalized by the eigenvectors

[+, x) = e, x) + lg, x), (98)
(Ay — D)2+ 02 (Ay — D)2+ 02

|-, x) = Br— 4 le, x) — O lg, x). (99)
(Ax = B)2 +OF (Ax = B)2 +OF

with the following eigenvalues

h h
Eip=d50r = ii\/m' (100)

Here, O, = g cos(kx) is an eigenvalue of the operator ). In the dispersive limit, we have

% < 1. In this limit, the eigenvectors and the eigenvalues given by the above equations can
be approximated by

[+,x) = le,x), |—,x) = |g,x), (101)
h 03
Eiy— :N:E (A + E) . (102)
Besides, assuming that the width of the atomic wavepacket is small compared with the
wavelength of the stationary EMF (harmonic approximation), 0,2( = Q% cosz(kx) can be

expanded to Q2 ~ Q2. + Q3k*x?. The fact that we have chosen the point 7/2 to do
the expansion means that we are treating the case of blue detuning (A < 0), i.e., the case
in which the atoms will pass in the region of electric field node (Berman, 1997). Also we
define 03(71/2) = Q2. to be different of zero, since the potential is produced by fields
counterpropagating and it difficultly will be null for real cavities. Thus, taking the dispersive
and harmonic approximations, we can define the effective hamiltonian

. h Oin . RG22 e
Heff = E <A + 2T + ﬁk X (4 (103)

As discussed above, the devised experiment uses three atomic levels and the third level i
possesses energy below of the energy of the levels ¢ and e , as shown in Figure 8. The
frequencies wy; and weg satisfy wg; > weg, thus the transition ¢ — 7 is very far from the
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resonance with the stationary mode. In this case, adopting the same reasoning sketched above,
the introduction of this level modifies the effective hamiltonian given in the Equation (103)

s hAj g h Q2 3 55\ e
Heffthrf +5 (Ag+ 28 +@k #2 ) o2, (104)

where A; = wg; — w, Ay = weg — w, and ff}gi = |g)(g| — |7)(i|. Note that the effective coupling
between the atom in the state i and the EMF is neglected in the above hamiltonian.
In order to discuss the focalization, let us consider the following initial state

1
0)) = —=(|i) + ® X), 105
[$(0)) \/§(|> 18)) © em (x) (105)
where |¢;) stands for some state of the atomic center of mass coordinate. The atom prepared
in this state interacts with the stationary field during a time interval ¢ . After this interval, the
state of the atom will be given by

- 1 i —i(—
(1)) = 5 [618) @ e (x) + 7)) © i (x)], (106)
— A _ (B O i i
where ¢; = Ftp, g = <7 + A, > tr are the phase shifts accumulated by the electronic

levels during the interaction, and

202
K203,

Wl (x) =€ 7B o (x) (107)

is the evolved state of the center of mass of atomic beam composed of atoms in |g) state. As
A¢ < 0, blue detuning, after to pass through the cavity satisfying the approaches that we use,
the center of mass state gets a negative quadratic phase. An optical converging cylindrical lens
with focal distance f puts a quadratic phase —kx?/(2f) on the electromagnetic beam (Saleh
& Teich, 1991). By analogy, a thin lens for atoms should put a phase of the type —kpx?/(2fp)
in the atomic beam, where kp = mv, /1 is the atomic wave number and fp the corresponding
focal distance. If we compare this phase with the phase in the Equation (107), we get

2|Ag|mo2

fo = e (108)
This expression is the focal distance for a thin classical lens. Different from Equation (82) to
thin quantum lens, this expression does not have a explicit dependence with photon number
of the field mode.

The Rayleigh range z, and the beam waist w], of the focused atomic beam also can be
calculated using the analogy with the action of lenses in electromagnetic beams considering
that the incident beam has plane wavefronts (Saleh & Teich, 1991)

! 1 /o 1
e [1+(zr/fp>2] TN T G (109)

where z, and wy are the Rayleigh range and the beam waist of the incident beam, respectively,
and fp is the focal distance of the atomic lens.
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5.2 Ramsey interferometry with focused atomic beam and Gouy phase

In order to experimentally observe this effect we propose an experiment with a focused
Gaussian atomic beam. We will use a cylindrical focusing in the x direction, without changing
the beam wavefunction in the y direction, what makes the total Gouy phase be 77/2. By
the analogy of the Schrodinger equation with the paraxial Helmholtz equation (Yariv, 1991;
Snyder & Love, 1991; Berman, 1997; Marte & Stenholm, 1997; da Paz et al., 2007), we see
that the cavities act on the |g) component of the atomic beam as cylindrical lenses with focal
distance fp. If we have fp = d/2, where d is the distance between the cavities C; and Cp,
the system will behave like the illustration in Figure 9. The cavity C; will transform the
|g) component of the wavefunction in a converging beam with the waist on a distance d/2
(represented by solid lines). After its waist, the beam will diverge until the cavity Cp. The
|g) component of the wavefunction on the position of cavity C, will have the same width and
the opposite quadratic phase of the state 1/, (x) above, so the cavity C, will transform the
divergent beam in a plane-wave beam again. The |i) component of the wavefunction, on the
other hand, propagates as a plane-wave beam all the time (represented by dashed lines), as its
interaction with the field of the cavities C; and C; is considered to be very small.

IVZtLI d i vzt|_i

Fig. 9. lllustration of the operation of the cavities C; and C, as thin lenses for the atomic
beam. The dashed lines represent the waist of the atomic beam if the cavities are empty. If a
field is present, the solid lines represent the waist of a beam composed by atoms in the state
|¢). F denotes the focus region. On the other hand, if the beam is composed by atoms in the
state |7), the waist does not change significatively.

By virtue of the |¢) component acquires a 77/2 Gouy phase due to the cylindrical focusing that
is not shared by the |i) component, the interference pattern will be (da Paz et al., 2011)

P’ = cos®[(wy — wgi)t — 71/2] . (110)

The difference on the positions of the minimums and maximums of the patterns, one
constructed when the field that forms the atomic lenses is present on the cavities C; and C;
and other when the field is removed, should attest the existence of the Gouy phase for matter
waves.

5.3 Experimental parameters and discussion

As experimental parameters, we propose the velocity of the atoms v, = 50 m/s and a slit
that generates an approximately Gaussian wavefunction for the atoms g(x) o e /i with
wo = 10 ym. The mass of Rubidium is m = 1.44 x 10-2 kg. With these parameters, the
Rayleigh range of the atomic beam will be z, = kpw%/ 2 ~ 3.5 m, much larger than the
length of the experimental apparatus, what justifies the plane-wave approximation. On the
cavities C; and Cp, we consider an interaction time between the atoms and the atomic lenses
t; = 0.2 ms, that corresponds to a width v,t; = 1 cm for the field on the cavities. The
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wavelength of the field of the cavities C; and C; must be A ~ 5.8 mm (Raimond et al., 2001),
with frequency near but strongly detuned from the resonance of the transition |g) < |e). The
Rabi frequency is about Qy/(27r) = 47 kHz (Raimond et al., 2001) and the detuning chosen
is Ag/(2m) = —30 MHz, what makes A;/(27) = +32 GHz, such that with 1 = 3 x 10°
photons, an effectively classical field, the focal distance for the atomic lenses is 10.5 cm for the
|¢) component and —11 m for the |i) component of the wavefunction. These parameters are
consistent with a separation of d = 21 cm between C; and C,. All the proposed parameters
can be experimentally achieved (Raimond et al., 2001; Nogues et al., 1999; Gleyzes et al., 2007).
Using the proposed parameters, we have z; ~ 3 mm and wj, ~ 0.3 yum. The fact thatd > z;
justifies our consideration that the |g) component of the beam acquires a 71/2 Gouy phase.
The interaction between the atomic beam and the field in the cavities C; and C, depends on
the position x, according to Equation (103). If we do not want that photons be absorbed by the
atoms, it is important that 7Q3k*x?/ (Af,) < 1 for the entire beam (Scully & Zubairy, 1997).
We have iQgk?wj/ (A3) =~ 8 x 10~* for the proposed parameters, where wj is the beam width,
showing that the absorption of photons can be disregarded.

The phase difference between the electronic levels is given by

A, Q2.
2¢; — ¢y = <Agi - 73 - &;”) tr, (111)

where the last term is a dispersive phase that occurs because the intensity of the electric field
is not exactly zero in the node x = 71/2 for real cavities. In this case is important that the
cavities C; and C, have a large quality factor Q. In fact, the ratio between the maximum
and the minimum of intensity in a cavity should roughly be the quality factor Q. So the |g)
component of the beam also acquires a phase 103t/ (A;Q) on the passage in each cavity, and
this phase will be added to the accumulated Gouy phase. If we want that this undesired phase
be smaller than Gouy phase, we need Q > 10° for our proposed parameters. This can also be
experimentally achieved (Raimond et al., 2001; Nogues et al., 1999; Gleyzes et al., 2007).

6. Conclusion

From the strict theoretical point of view we have used the formal analogy between matter
and light waves to show that the well known Gouy phase in the context of classical optics,
besides its geometrical character, reflects correlations of the same sort a free particle obeying a
matter wave equation. Conversely we have seen that matter waves may also present the exact
analogous to the Gouy phase of quantum optics and elaborated an experiment to measure
it. We hope this work might encourage the groups with the appropriate facilities to realize
the experiment and, who knows, find important applications for this matter phase. The
verification of the Gouy phase in matter waves has the possibility to generate a great amount
of development in atomic optics, in the same way as the electromagnetic counterpart Gouy
phase had contributed to electromagnetic optics. For instance, it can be used to construct
mode converters for atomic beams and trapped atoms, with potential applications in quantum
information.
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1. Introduction

Present day methodologies for mathematical simulation and computational experiment are
generally implemented in electromagnetics through the solution of boundary-value
(frequency domain) problems and initial boundary-value (time domain) problems for
Maxwell’s equations. Most of the results of this theory concerning open resonators have
been obtained by the frequency-domain methods. At the same time, a rich variety of applied
problems (analysis of complex electrodynamic structures for the devices of vacuum and
solid-state electronics, model synthesis of open dispersive structures for resonant quasi-
optics, antenna engineering, and high-power electronics, etc.) can be efficiently solved with
the help of more universal time-domain algorithms.

The fact that frequency domain approaches are somewhat limited in such problems is the
motivation for this study. Moreover, presently known remedies to the various theoretical
difficulties in the theory of non-stationary electromagnetic fields are not always
satisfactory for practitioners. Such remedies affect the quality of some model problems
and limit the capability of time-domain methods for studying transient and stationary
processes. One such difficulty is the appropriate and efficient truncation of the
computational domain in so-called open problems, i.e. problems where the computational
domain is infinite along one or more spatial coordinates. Also, a number of questions
occur when solving far-field problems, and problems involving extended sources or
sources located in the far-zone.

In the present work, we address these difficulties for the case of TE,, - and TM,,, -waves in
axially-symmetrical open compact resonators with waveguide feed lines. Sections 2 and 3
are devoted to problem definition. In Sections 4 and 5, we derive exact absorbing conditions
for outgoing pulsed waves that enable the replacement of an open problem with an
equivalent closed one. In Section 6, we obtain the analytical representation for operators that
link the near- and far-field impulsive fields for compact axially-symmetrical structures and
consider solutions that allow the use of extended or distant sources. In Section 7, we place
some accessory results required for numerical implementation of the approach under
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consideration. All analytical results are presented in a form that is suitable for using in the
finite-difference method on a finite-sized grid and thus is amenable for software
implementation. We develop here the approach initiated in the works by Maikov et
al. (1986) and Sirenko et al. (2007) and based on the construction of the exact conditions
allowing one to reduce an open problem to an equivalent closed one with a bounded
domain of analysis. The derived closed problem can then be solved numerically using the
standard finite-difference method (Taflove & Hagness, 2000).

In contrast to other well-known approximate methods involving truncation of the
computational domain (using, for example, Absorbing Boundary Conditions or Perfectly
Matched Layers), our constructed solution is exact, and may be computationally
implemented in a way that avoids the problem of unpredictable behavior of computational
errors for large observation times. The impact of this approach is most significant in cases of
resonant wave scattering, where it results in reliable numerical data.

2. Formulation of the initial boundary-value problem

In Fig. 1, the cross-section of a model for an open axially-symmetrical (6/6¢ =0 ) resonant
structure is shown, where { p,¢,z} are cylindrical and {p, 8,4)} are spherical coordinates. By

2 =3,x[0,2n] we denote perfectly conducting surfaces obtained by rotating the curve I,

about the z-axis; %° = ZE;" X [0,2n] is a similarly defined surface across which the relative

ext

Fig. 1. Geometry of the problem in the half-plane ¢ =m/2.
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permittivity ¢(g) and specific conductivity o,(g) :nglc( g) change step-wise; these
quantities are piecewise constant inside €, and take free space values outside. Here,
12 . . .

g=1{p,z}; Mo =(no/gy) " is the impedance of free space; g, and p, are the electric and
magnetic constants of vacuum.

The two-dimensional initial boundary-value problem describing the pulsed axially-
symmetrical TE,, - (E,=E,=H;=0) and TM,,- (H,=H,=E;=0) wave distribution in
open structures of this kind is given by

o o o o109
() —o () L+ 29 Sl U(e,t)=F(e,t), t>0, 9}
() 2o+ 2o 2 Lo lute) - Flen). 0 ge
a —
U(g )l =0(s) ZU(gt) =w(s), s={pze0
t=0
EfS(p’t)p={p,¢,z}€z:0’ t>0 1)

Eg(p,t) and Hy(p,t) arecontinuous when crossing X%

U(0,z,t)=0, |z/<o, 20

p[u(g.n-u"(gn] =0, Di[u(zm]

el

=0, t2>0,
8el,

where E= {Ep’E&p’EZ} and H= {prHsz} are the electric and magnetic field vectors;
U(gt)=E,(g t) for TEy, -waves and U(g,t)=H,(g t) for TM,,-waves (Sirenko et al,
2007). The SI system of units is used. The variable ¢ which being the product of the real time
by the velocity of light in free space has the dimension of length. The operators D;, D, will
be described in Section 2 and provide an ideal model for fields emitted and absorbed by the
waveguides.

The domain of analysis Q is the part of the half-plane ¢ =/2 bounded by the contours %,
together with the artificial boundaries I'; (input and output ports) in the virtual
waveguides Q;, j=1,2. The regions €, = {g = {r, 9} eQ: r< L} and Q. (free space),
such that Q=Q,,UQ,UI', are separated by the virtual boundary
F:{g:{r,S}eQ: r:L}.

The functions F(g,t), ¢(g), w(g), o(g),and &(g)—1 which are finite in the closure Q of
Q are supposed to satisfy the hypotheses of the theorem on the unique solvability of
problem (1) in the Sobolev space W, (QT) ,Qf = Qx(0;T) where T <o is the observation
time (Ladyzhenskaya, 1985). The ‘current’ and ‘instantaneous’ sources given by the
functions F(g,t) and ¢(g), w(g) as well as all scattering elements given by the functions
g(g), o(g) and by the contours X, and Z{° are located in the region €, . In axially-
symmetrical problems, at points g such that p=0, only H, or E, fields components are
nonzero. Hence it follows that U(0,z,t)=0; |z <o, t>0 in (1).

3. Exact absorbing conditions for virtual boundaries in input-output
waveguides

Equations
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Di|U(gt)-u"(g1)]

. 0, D,[u( g,t)]‘gerz =0, t>0. @)

in (1) give the exact absorbing conditions for the outgoing pulsed waves
u®(g,t)=U(gt)-u(gt) and U (gt)=U(gt) traveling into the virtual
waveguides Q; and Q,, respectively (Sirenko et al., 2007). Ui(l)( g,t) is the pulsed wave
that excites the axially-symmetrical structure from the circular or coaxial circular waveguide
Q, . It is assumed that by the time t=0 this wave has not yet reached the boundary T; .

By using conditions (2), we simplify substantially the model simulating an actual
electrodynamic structure: the Q;-domains are excluded from consideration while the
operators D; describe wave transformation on the boundaries I'; that separate regular
feeding waveguides from the radiating unit. The operators D; are constructed such that a

wave incident on I'; from the region Q;, passes into the virtual domain Q; as if into a

int
regular waveguide - without deformations or reflections. In other words, it is absorbed
completely by the boundary T';. Therefore, we call the boundary conditions (2) as well as
the other conditions of this kind “exact absorbing conditions’.

In the book (Sirenko et al., 2007), one can find six possible versions of the operators D; for
virtual boundaries in the cross-sections of circular or coaxial-circular waveguides. We pick
out two of them (one for the nonlocal conditions and one for the local conditions) and,
taking into consideration the location of the boundaries T'; in our problem (in the plane
z=-L, for the boundary I'; and in the plane z=L, for I',) as well as the traveling
direction for the waves outgoing through these boundaries (towards z=-o for I'; and
towards z=w for I',), write (2) in the form:

T ou'M(p,z,1)

u W (p,~Ly, )= D3 [To[ R (t-7)] 1 (P)PAP |dt i, (p),
n10

by oz z=-14 ©®)
by<p<a, t20,
‘ 2oU(p,z,t e e
Up, Ly, ) ==21 [Jo[ Mo (= 7)] J# Mz (P)PAP |dT 12 (p), 4
n |0 by z =L, 4)

by<p<a,, t>0
(nonlocal absorbing conditions) and
”f AW, (p.t,0)

u(p,-L,,t)=2 -
Vi

dp, t20, b<p<ag
0

{az_smz(,,ﬁlé’p}m (g0 (021)

Py 2 p b Y , b<p<a, t>0 (5)

z=-L,

Wi (p,0,0) o

=0, b <p<aq,
=0
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2 i oW, (P/t/(P)
U(p, Ly, t)== J. —2" T de, t20, by<p<a,
Ty ot
” ., 019 oU(p,z,t)
— —sin“ o———p |W, (p,t,9)=—"—" , by<p<a,, >0 6
L”z (pappapp} > (it 9) or | p<m, ®)
_oW, (p,t,0)

WZ(pIO/(p) :O, b2 SpSaz

t=0

ot

(local absorbing conditions). The initial boundary-value problems involved in (5) and (6)
with respect to the auxiliary functions W]- ( p,t,(p) must be supplemented with the following
boundary conditions for all times >0 :

W;(0,t,9)=W,(a;,t,0)=0 (TE,,-waves)
olpW.(p,t, 7
Wi (0,t,0)= (pja(p(p)) =0 (TM,,-waves) @)
p -
(on the boundaries p=0 and p=a; of the region Q; for a circular waveguide) and

W, (bj,t,(p) =W, (aj,t,(p) =0 (TE,,-waves)
ol pW.(p,t, o\pW. (p,t, 8
(p G (p))‘ = (p i(p (p))‘ =0 (TM,,-waves) ®

op ‘ op ‘
P:hj p=a;

(on the boundaries p=0b; and p=4; of the region Q; for a coaxial waveguide).

In (3) to (8) the following designations are used: J,(x) is the Bessel function, a; and b; are
the radii of the waveguide Q; and of its inner conductor respectively (evidently, b; #0 if
only Q; is a coaxial waveguide), { My (p)} and {knj} are the sets of transverse functions and
transverse eigenvalues for the waveguide Q; .

Analytical representations for p,;(p) and A, are well-known and for TE,, -waves take the

form:

Haj (P)=1 (flnj )\/5[‘1]‘]0 (flnj“j )Tl ;o n=12,.,
p<aj (circular waveguide) )
ﬂn]- >0 are the roots of the equation ] (/m j) =0,
-1/2
1,i(p)=G, (/Inj,p)\/z[aing (%.8,)-b/G} (Anj,bj)] . n=12,..,
bj<p<a; (coaxial waveguide)

(10)
A,; >0 are the roots of the equation G, (ﬂ,aj) =0

G, (4,p) =1, (4p)N,(2b;) =N, (4p) ], (4b;)-
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For TM,, -waves we have:

i (P) =T, (ﬂnjp)\/z[”jh (/%’1]' )Tl ;o n=L2,.,
p<a; (circular waveguide) (11)

Ayj >0 are the roots of the equation ], (ia j) =

1y (P)= G (2, £ N2 0762 (ay) ~bG2 (4,,0)] 7, m=12,.

Lo(p) [len( /b )} , bj<p<a; (coaxial waveguide) (12)

Ay >0 (n=12,..) are the roots of the equation Go(ﬁ,bj):o, 29 =0

ny

G, (4.p)= ]q(ﬂ‘p)NO(ﬂ’aj)_Nq (/1/0)]0(/1‘1]')-

Here N, (x) are the Neumann functions. The basis functions p,;(p) satisfy boundary
conditions at the ends of the appropriate intervals (p<a; or b; <p<a;) and the following
equalities hold

_[ Jod 0, nzm _[ Jod 0, n#m 13)
un/ Hm] p p 1, n=m “n] Hm] p p 1, n=m

in the circular or coaxial waveguide, respectively.

4. Exact radiation conditions for outgoing spherical waves and exact
absorbing conditions for the artificial boundary in free space

When constructing the exact absorbing condition for the wave U(g,t) crossing the artificial
spherical boundary I", we will follow the sequence of transformations widely used in the
theory of hyperbolic equations (e.g., Borisov, 1996) - incomplete separation of variables in
initial boundary-value problems for telegraph or wave equations, integral transformations
in the problems for one-dimensional Klein-Gordon equations, solution of the auxiliary
boundary-value problems for ordinary differential equations, and inverse integral
transforms.

In the domain Q. =Q\(Q,, UT), where the field U(g,t) propagates freely up to infinity
as t — o, the 2-D initial boundary-value problem (1) in spherical coordinates takes the form

2 2
17 Hl 4 [ .1 é’singﬂu(g,t):o, t>0, g={r,9}eQu

ot rort r2 08\ sing o9
o _
U(gt),, =0 ZU(t) =0, gely (14)
£=0

u(r,0,t)=U(r,7,t)=0, r=L, t=0.
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Let us represent the solution U(r,9,t) as U(r,9,t)=u(r,t)u(9). Separation of variables in
(14) results in a homogeneous Sturm-Liouville problem with respect to the function

fi(cos9)=n(9)

2
I:d+ctg8d— ! +7»2};1(C059)—0, 0<9<m

d9? d9 sin?9 (15)
fi(cos 8)‘9:0,7[ =0
and the following initial boundary-value problem for u(r,t):
2 2 2
I:—sz+jz—/12}’u(r,t) =0, r>L, >0
t reor (16)

=0, r=>L.

u(r,0) :gu(r,t) i
=

Let us solve the Sturm-Liouville problem (15) with respect to fi(cos9) and A . Change of
variables x =cos9, fi(x)={i(cos9) yields the following boundary-value problem for fi(x):

2
I:(l—xz);iz—2xt;lx+(/12_l_1x2j:l'[l(x):0, ‘x‘<l (17)

With 22 =ki =n(n+1) for each n=1,2,3,... equation (17) has two nontrivial linearly
independent solutions in the form of the associated Legendre functions P, (x) and Q) (x).
Taking into account the behavior of these functions in the vicinity of their singular points
x =1 (Bateman & Erdelyi, 1953), we obtain

,ﬂn(cos&):\/(Zn+1)/(2n(n+1))P,11(cosL9). (18)

Here {fi,(cos8)|  , is a complete orthonormal (with weight functionsin8) system of
functions in the space L, [(O <9< n)] and provides nontrivial solutions to (15). Therefore,
the solution of initial boundary-value problem (14) can be represented as

Uu(r,9,t)= Zu” (r,t),(cos9), u,(rt)= IU(r,S,t)[zn (cos 9)sin 9d9, (19)
n=l1 0

where the space-time amplitudes u, (r,t) are the solutions to problems (16) for A* =27

Our goal now is to derive the exact radiation conditions for space-time amplitudes u,,(r,t)
of the outgoing wave (19). By defining w,(r,t)=ru,(r,t) and taking into account that
Az =n(n+1), we rewrite equation (16) as

w,(r,t)=0, r=L, t>0. (20)

7672+i7n(n+1)
ot or? r?
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Now subject it to the integral transform

©

f(a)):J.f(r)Zy(a),r)dr, >0, (21)

L

where the kernel Z (o,r)=r" [ot(co)]Y((or)+[3(o))NY (wr)} satisfies the equation (Korn &
Korn, 1961)

& 1-2a8 5, a*-9?
—+ — 4w+ Z, (w,r)=0. 22
l:ﬁrz r or 72 7( ) (22)

Here a(®), B(®) are arbitrary functions independent of 7, and a is a fixed real constant.

Applying to (20) the transform (21) with a=1/2 and y=n+1/2, we arrive at

aw, (r,1)|”
or

oz, (o,r)|”

p» =0. ()

—w,(r,t)

© 62
J‘{_atz - a)z}wn (r.t)Z,(@,r)dr+Z,(w,r)
L

L L

Since the ‘signal’ w, (r,t) propagates with a finite velocity, for any ¢ we can always point a

distance r such that the signal has not yet reached it, that is, for these t and r we have
w, (r,t)=0 . Then we can rewrite equation (23) in the form

ow, (r,t)
r

éZy(a),r)

p» =0. (24

r=L

+w, (L,t)
r=L

.2 oot 5 0

2
| ot

From (24) the simple differential equation for the transforms @, (w,t) of the functions
w, (r,t) follows:
0Z,(w,r) (25)

o N
{Gtz + a)z:lw,, (o,t)=w,(L,t)

r=L

In this equation, the values o(®) and B(w) entering into Z, (o,7) are not defined yet. With

a(w)=1 and B(w)=0, we have

Z,(o,r) =], (or) (26)
and

0

f(a)):ff(r)\/;]y(a)r)dr. 27)

L

The last integral is the Hankel transform (Korn & Korn, 1961), which is inverse to itself,
and
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F(@)Wo = [[£(r)x(r~L)]ral, (o),

(28)
Fx(r-1)=[[ F(o)No [Vro], (or)do.
0
By y we denote the Heaviside step-function
0 for r<0
= ) 29
#(1) {1 for r>0 @9)
Taking into account (26), equation (25) can be rewritten in the form
o* 5.
Pl W, (o,t)=g(w,t), (30)
where
ow, (r,t)
,t L,t L)+ -+L L)—- , 31
s(0) =0, (L) (o) +on (o) | T (e P e

and the symbol *’’ denotes derivatives with respect to the whole argument oL .

If G is a fundamental solution of the operator B[G] (i.e., B[G(t)]=5(t), where 3(t) is the
Dirac delta function), then the solution to the equation B[U(t)]=g(t) can be written as a
convolution U=(G*g) (Vladimirov,1971). For [62/81}2 + wzﬁG(t) =3(t) we have
G(t)= x(t)of1 sinwt, and then

w, (o,t)= IG(w,t -1)g(o,1)dr= ﬁ]y (coL).:[wn (L,r)sin[m(t - ‘c)]d‘c + o)
+ \/E],,' (mL)jwn (L,7)sin[ o(t—1)]dr - JL jw sin[ o(t 1) |dr.

KIV((DL)O r=L

Applying the inverse transform (28) to equation (32), we can write

©

w, (r,4)1(r L) = [ @, (o,t)oNr], (or)do

0

) 1 ow, (r,7)
J,(or)], ((»L)sm[w(t - r)] du)\/;{mwn (Lt)- \/ZT

o], (or)], (mL)sin[m(t - r)]dmx/iwn (L,7)dr.

}d«.— + (33
r=L

Let us denote

I = J] or)],(oL)sin[ o(t-1)]do  and Iz—Jw] (or)], (oL)sin[ o(t-7)|do. (34)
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Then from (Gradshteyn & Ryzhik, 2000) we have for r >L >0

0, O<t—z<r-L
r2+L2—(t—T)2

N 2rL

2 2 2
+L—(t-
_cos}/ﬂle/z[_T(T)J, t—r>r+L,

], r—L<t—r<r+L (35)

rL 2rL

where PY(x) and Qy(x) are the Legendre functions of the first and second kind,
respectively. For y=n+ 1/ 2, we can rewrite this formula as

.Il:ﬁpn(q)l[(t—‘r)—(r—L)];{[(r-kL)—(t—z')], t-7>0,. (36)
where g :[rz +12 —(t—1:)2 } / 2rL and P,(q) denotes a Legendre polynomial. Considering
that

Izzilw M: L P, (q) (37)
oL oq 1-4* "

(Janke et al., 1960), and dy (x)/dx =3(x), we can derive

_L —-T)—(r— r+L)—(t—1 ,Pﬂ(q)+ Pnl(q) 171 4
IZ_NEX[U e )]{ . 1—q2(r Lﬂ (38)
+ﬁpn(4){5(t—T—r+L)+8(r+L—t+r)}.

Finally, taking into account the relation w, (r,t)=ru,(r,t), we have from (33)

o R [ 1 1 ou, (r,7)
”{Jl[ﬁ““]”“ o

ity (L= (r=L))+ (1) w, (Lt =(r+ L))}, r>L.

]d‘t +
r=L 39)

By using (19), we arrive at the desired radiation condition:

Pn=1 | t-(r+1)

» |t=(r-L) T
L L-r 1 . .
u(r,g,t)zzz{ [ [(T’L\/épnl(q)—LPn(q)J-([U(L,Sl,t)pn(cosSl)smSldSl—
(40)
2oU(r,9,,7)

R/

0

fi, (cos 9, )sin 9,49, } di+

r=L
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j[ (L9t~ r—L))+(—1)"U(L,81,t—(r+L))}ﬁn(cosé}1)sin81d81}x
xf,(cos9), r>L, 0<9<m.

By passing to the limit r — L in (40), we obtain

1G] t—1 (. (=17 1 (t-1)
U(L’S't)‘i,; ,JZL [L PR )ZP[l— e J—Lpn[l Y J]

xIU(L,Sl,r) i, (cos9,)sin 9,9, —
0

0 ‘r:L

2\n
_pn[l_(tz_L;) ]J‘au(gflrt) gn(cos\91)sin91d911dt+ (41)

+ J[U(L,Sl,t) +(-1)"U(L,94,t- 2L)}[1n (cos9, )sin81d91}ﬂn (cos9),
0
0<8<m

Formula (41) represents the exact absorbing condition on the artificial boundary T'. This
condition is spoken of as exact because any outgoing wave described by the initial problem
(1) satisfies this condition. Every outgoing wave U(g,t) passes through the boundary I
without distortions, as if it is absorbed by the domain Q. or its boundary I'. That is why
this condition is said to be absorbing.

5. On the equivalence of the initial problem and the problem with a bounded
domain of analysis

We have constructed the following closed initial boundary-value problem

0? o o o(108
-&(g)—- — = U(g,t)=F(g,t), t>0, Q.
(o) 5o 2o (L2 o lute)<r(gn), 120, genn,
0 _
u(g’t) =0 :(/7(8)/ au(g,t) :W(g)’ 8 eQil‘lt
t=0
Etg (p’t)‘p:{pnﬁ,z}ez =0, U(O, z, t) =0, ‘Z‘ <L, t>0 (42)

E,(p,t) and Hy(p,t) arecontinuous when crossing —=°7

D [u(g.)-u"(g.)]

D[U(g,t)

gerlzo, Dz[u(g,t)]‘gerzzo, >0

=0
el’ !

where the operator D is given by (41). It is equivalent to the open initial problem (1). This
statement can be proved by following the technique developed in (Ladyzhenskaya, 1985).
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The initial and the modified problems are equivalent if and only if any solution of the initial
problem is a solution to problem (42) and at the same time, any solution of the modified
problem is the solution to problem (1). (In the Q,,-domain, the solution to the modified
problem is constructed with the help of (40).) The solution of the initial problem is unique
and it is evidently the solution to the modified problem according construction. In this case,
if the solution of (42) is unique, it will be a solution to (1). Assume that problem (42) has two
different solutions U, (g,t) and U,(g,t). Then the function u(g,t)=U,(g,t)-U, (g t) is
also the generalized solution to (42) for F(g,t)=U""(g,t)=¢(g)=w(g)=0. This means
that for any function y(g,t)e W, (QT) that is zero at t =T , the following equality holds:

i {gauav_[l6pu}6<pv>_w_c%}dgdt+

> | ot ot \p*op o zoz ot
Qint (43)
| Hlapu]ycos(ﬁ,ﬁ)+auycos(ﬁ,Z)}dsdt -0.
s p 6p 0z

Here, Q] =Q, x (0,T) and =, are the space-time cylinder over the domain €, and its
lateral surface; cos(#,p) and cos(7,Z) are the cosines of the angles between the outer
normal i to the surface X! and p-and Z -axes, respectively; the element dg of the end
surface of the cylinder QF, equals pdpdz .

By making the following suitable choice of function,

T

P(s,t) = Jt‘u(g,g)dg’ for O<t<r (44)

0 for «7<t<T,

it is possible to show that every term in (43) is nonnegative (Mikhailov, 1976) and therefore
u(g,t) is equal to zero for all geQ;, and 0<t<T, which means that the solution to the
problem (42) is unique. This proves the equivalency of the two problems.

6. Far-field zone problem. Extended and remote sources

As we have already mentioned, in contrast to approximate methods based on the use of the
Absorbing Boundary Conditions or Perfectly Matched Layers, our approach to the effective
truncation of the computational domain is rigorous, which is to say that the original open
problem and the modified closed problem are equivalent. This allows one, in particular, to
monitor a computational error and obtain reliable information about resonant wave
scattering. It is noteworthy that within the limits of this rigorous approach we also obtain,
without any additional effort, the solution to the far-field zone problem, namely, of finding
the field U(g,t) at arbitrary point in Q. from the magnitudes of U(g,t)on any arc
r=M<L, 0<9<n, lying entirely in Q;, and retaining all characteristics of the arc T .
Thus in the case considered here, equation (39) defines the diagonal operator S, . (t) such
that it operates on the space of amplitudes u(r,t)={u,(r,t)} of the outgoing wave (19)
according the rule

}; r>L, t2720, (45)
F=L
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and allows one to follow all variations of these amplitudes in an arbitrary region of Q.
The operator

u(r,9,t)=T,,, (t) U(L,3,x) ou(rS.s)

<
v
=
o

A
®

A
&
-
Y
a
v
L

0<8<m,
given by (40) , in turn, enables the variations of the field U(g,t), § €., to be followed.
It is obvious that the efficiency of the numerical algorithm based on (42) reduces if the
support of the function F(g,t) and/or the functions ¢(g) and y(g) is extended
substantially or removed far from the region where the scatterers are located. The arising
problem (the far-field zone problem or the problem of extended and remote sources) can be

resolved by the following straightforward way.
Let us consider the problem

o* o & o190 -
(o) ol v 222 s lu(e,t)=F(e,t)+E(e,t), t>0, Q
g(g)atz G(g)at+az2+0p[p8ppﬂ (8:1)=F(g:t) +F(s:1) - gc
s 0 5 _
U(gt), =e(2)+o(e), Ut =v(g)+v(2) g={pz}eQ
t=0
Etg(p,t)p:{pm}ezzo, t>0 (47)

Ey(p,t) and Hy(p,t) arecontinuous when crossing X7

Uu(0,z,t)=0, |z<ow, 20

pi[u(gt)-u(gh] =0, Dy[u(s1)]

gel

=0, t=0,

gel, B

which differs from the problem (1) only in that the sources F(g,t)and ¢(g), ¥(g) are
located out of the domain €, enveloping all the scatterers (Fig. 1). The supports of the
functions F(g,t), §(g), and §(g) can be arbitrary large (and even unbounded) and are
located in Q, at any finite distance from the domain €, .

Let the relevant sources generate a field U’ (g,t) in the half-plane Q,= { g:p>0,|7< 00} .In
other words, let the function U’ ( [ # t) be a solution of the following Cauchy problem:

o 8 o106 ; -
_ 2 U'(¢,t)=F(g,t), t>0, Q
{ 6t2+022+6p[p6ppﬂ (g ) (g ) > 8%
i ~ 6 i - —
U(st),,=0(s), S U(gt) =v(g), s={pz<By (48)
t=0
Uu'(0,z,t)=0, |z<o, t=0.

It follows from (47), (48) that in the domain Q. the function U°(g,t)=U( g,t)—Ui( gt)
satisfies the equations
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2 2
{aﬁ +a[1apﬂus(&f)=01 >0, g Qe

o a2 eplpap
s a s i
(), , =0 ZW(gt) =0 g={pzjeQeu (49)
- t=0

us(0,z,t)=0, |4=L, t=>0

and determines there the pulsed electromagnetic wave crossing the artificial boundary T' in

one direction only, namely, from €, into Q.

The problems (49) and (14) are qualitatively the same. Therefore, by repeating the
transformations of Section 4, we obtain

s 18 f t—1 1 (t—‘r)2 1 (t—t)2
u(L,s,t)j; t_jﬂ {L\/4L2—(t—t)2 Pn[l— e ]—Lpn[1—2L2 ]]x

x ju (L,9,,7)fi, (cos 9, )sin 9,49, — (50)
0

(t—r)z]"aus(r,Sl,t) ) :
-P|1- fi, (cos9,)sin9,d9, (dt+
[ 212 { or

r=L
+.([[Us (L9, t)+(-1)"U* (L, 9, —ZL)}ﬂn (cosSl)sinE}ldSl}ﬁn (cos9), 0<9<m,

or, in the operator notations, D[U( g,t)—lli ( g,tﬂ‘ L= 0, - the exact absorbing condition
8€

allowing one to replace open problem (47) with the equivalent closed problem

8* o & o(10
o) S5 T oL e -Fle), 0 ge

ot 022 op\pop

8 _

U(gt),,=0(8) U(gt) =v(g), &<
=0
E ’ =Y, 4, 0)=Y, = L/ =
(P t)‘p={p,¢,z}sx 0, U(0,zt)=0, |2<L, 20 51
Eg(p,t) and Hy(p,t) arecontinuous when crossing —=°7
pfu(gn-u®(gn] =0, Di[u(gn] =0, 10
gel, gel,

Dlu(g,t)-Ui(g,t)] =o.
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7. Determination of the incident fields

To implement the algorithms based on the solution of the closed problems (42), (51), the
values of the functions Ui(l)( g,t) and u (g,t) as well as their normal derivatives on the
boundaries 1"1 and ' are required (see formulas (3), (5), (50)). Let us start from the
function U’ ( gt). In the feeding waveguide €, the field Ui(l)( g,t) incoming on the
boundary I'; can be represented (Sirenko et al., 2007) as

g g t):zuf,(l)(g,t):va(z,t) ta(p); b<p<a, z<-L. (52)

Here (see also Section 3), n=0,1,2,... only in the case of TM,, -waves and only for a coaxial
waveguide Q. In all other cases n=1,2,3,.... On the boundary I';, the wave Ui(l)(g,t)
can be given by a set of its amplitudes {0, (_Lvt)}n . The choice of the functions v, (-L;,t),
which are nonzero on the finite interval 0<T; <t<T, <T, is arbitrary to a large degree and
depends generally upon the conditions of a numerical experiment. As for the set
00,1 (2,1) /0] _ , which determines the derivative of the function U'(l)( gt) on Iy,
should b selecfled with ~consideration for the causality principle. Each pair
an(p,t)zf 0,1 =Ly, ) (p); (80,,1 z,t) /62‘ )unl(pk)} is determined by the pulsed
eigenmode U, (g,t) propagating in the wavegulde Q, in the sense of increasing z . This
condition is met if the functions v,,(~L;,t) and 0v,(zt)/ az‘z?L are related by the
following equation (Sirenko et al., 2007): '

(-Li,t) IIO[ #

dr; 20 (53)

z=-L,

The function U'(g,t) generated by the sources F(g,t), $(g), and §(g) is the solution to
the Cauchy problem (48). Let us separate the transverse variable p in this problem and
represent its solution in the form (Korn & Korn, 1961):

U (p,2) = [0, ()], (o) (54)
Tv,l z,t)3(n—1)dp = XI ﬁh(up)h@p)pdp}dw
if

In order to find the functions v, (z,t), one has to invert the following Cauchy problems for
one-dimensional Klein-Gordon equations:

(55)

[o ()1 up)du}h(?»p)pdp XIU p,z,t)]; (hp)pdp.
0

ot @
{_624—6 5 /12}7/1(2 t)=F,(zt), t>0, |z<oo
¢ (56)

=y,(z), |¢<oo.
t=0

0
vﬂ(z,t)‘f:o =9,(2), avi(z,t)
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Here, F, (z,t), ¢,(z) v y,(z,t) are the amplitude coefficients in the integral presentations
(54) for the functions F(g,t), $(g),and §(g).

Now, by extending the functions F,(z,t) and v, (z,t) with zero on the interval t<0, we
pass on to a generalized version of problems (56) (Vladimirov, 1971)

_;+§;—Kz}vx(z,t) =E(z4) =8 (t)e, (2)-8(1)w, (2) = £y (2.1),

B3]

|t <o, |7 <o

57)

(s (t) is the generalized derivative of the function §(t)). Their solutiolr}zs can be written by
using the fundamental solution G(z,t,%)=(-1/2)x(t-|2)], X(tZ —zz) } of the operator
B(2) as follows:

v,(2,t)=[G(z,t,4)* f,(z,t) ]| = T TG(Z—Z,t—r,l)fﬂ(Z,r)dr dz. (58)

-0 0

Equations (54) and (58) completely determine the desired function U’ (g1).

8. Conclusion

In this paper, a problem of efficient truncation of the computational domain in finite-

difference methods is discussed for axially-symmetrical open electrodynamic structures.

The original problem describing electromagnetic wave scattering on a compact axially-

symmetric structure with feeding waveguides is an initial boundary-value problem

formulated in an unbounded domain. The exact absorbing conditions have been derived for

a spherical artificial boundary enveloping all sources and scatterers in order to truncate the

computational domain and replace the original open problem by an equivalent closed one.

The constructed solution has been generalized to the case of extended and remote field

sources. The analytical representation for the operators converting the near-zone fields into

the far-zone fields has been also derived.

We would like to make the following observation about our approach.

¢ Inour description, the waveguide Q; serves as a feeding waveguide. However, both of
the waveguides can be feeding or serve to withdraw the energy; also both of them may
be absent in the structure.

e The choice of the parameters a(w) and B(w) determining Z (o,r) (see Section 4)
affects substantially the final analytical expression for the exact absorbing condition on
the spherical boundary I'. When constructing boundary conditions (41), (50), we
assumed that a(0)=1 and B(w)=0. In (Sirenko et al., 2007), for a similar situation, the
exact absorbing conditions for outgoing pulsed waves were constructed with the
assumption that o(w)=-N,(oL) and B(w)=], (oL). With such a(w) and B(w),
equation (21) is the Weber-Orr transform (Bateman & Erdelyi, 1953). However, the final
formulas corresponding to (39), (40) for this case turn into identities as r — L, which
present a considerable challenge for using them as absorbing conditions. In addition,
the analytical expressions with the use of Weber-Orr transform are rather complicated
to implement numerically.
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e The function U’ (g,t) (see Section 7) can be found in spherical coordinates as well. In
this situation, we arrive (see Section 4) at the expansions like (19) with the amplitude
coefficients v, (r,t) determined by the Cauchy problems

- ?  ? n(n+1)

o2 or? 2

v,(r,0)=0,(r), %Un (r,t)

:|rvn(r/t)_Fn(r/t)/ rZO/ t>0
, (59)

=y,(r), r=0
£=0

where F,(r,t), ¢,(r), and y,(r) are the amplitude coefficients for the functions
F(s,1), 6(g), and w(g).

o The standard discretization of the closed problems (42), (51) by the finite difference
method using a uniform rectangular mesh attached to coordinates g={p,z} leads to
explicit computational schemes with uniquely defined mesh functions
U(j,k,m):ll(p]-,zk,tm). The approximation error is O(I;2 , where h is the mesh
width in spatial coordinates, T =h/2 for 0=max[&(g)]<2 or T </1/2 for 0>2 is the
mesh width in time variable t; p; =jh, z, = K1, %nd t, =ml . The range of the integers
j=0,1,.,J], k=0,1,.K, and m=0,1,..M depends both on the size of the €,
domains and on the length of the interval [O,T ] of the observation time t. The
condition providing uniform boundedness of the approximate solutions U(j,k,m)
with decreasing h and | is met (see, for example, formula (1.50) in (Sirenko et
al., 2007)). Hence the finite-difference computational schemes are stable, and the mesh
functions U(j,k,m) converge to the solutions U(pj,zk,tm) of the original problems
(42), (51).

As opposed to the well-known approximate boundary conditions standardly utilized by
finite-difference methods, the conditions derived in this paper are exact by construction and
do not introduce an additional error into the finite-difference algorithm. This advantage is
especially valuable in resonant situations, where numerical simulation requires large
running time and the computational errors may grow unpredictably if an open problem is
replaced by an insufficiently accurate closed problem.
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1. Introduction

Tools of fractional calculus including fractional operators and transforms have been utilized
in physics by many authors (Hilfer, 2000). Fractional operators defined as fractionalizations
of some commonly used operators allow describing of intermediate states. For example,
fractional derivatives and integrals (Oldham & Spanier, 1974; Samko et al., 1993) are
generalizations of derivative and integral. Fractional curl operator defined in (Engheta,
1998) is a fractionalized analogue of conventional curl operator used in many equations of
mathematical physics. A fractionalized operator generalizes the original operator. The idea
to use fractional operators in electromagnetic problems was formulated by N. Engheta
(Engheta, 2000) and named “fractional paradigm in electromagnetic theory”.

Our purpose is to find possible applications of the use of fractional operators in the
problems of electromagnetic wave diffraction. In this paper two-dimensional problems of
diffraction by infinitely thin surfaces are considered: a strip, a half-plane and a strip
resonator (Fig.1). Assume that an incident field is an E-polarized plane wave, described by
the function

Ei _ ZE;(JC,]/) _ Ze—ik(xcosz9+ysinz9) , (1)

b) <)
Fig. 1. Geometry of the diffraction problems: a) strip, b) half-plane, c) two parallel strips.
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where @ is the incidence angle, k :277[ is the wavenumber. Here, the time dependence is

assumed to be e and omitted throughout the paper. There are three structures

considered in this paper:

- astrip located in the plane y =0 (x €[-a,4a]) infinite along the axis z (Fig. 1a);

- ahalf-plane (y =0, x>0) (Fig. 1b);

- two parallel strips infinite along the axis z (a strip resonator). The first strip is located at
y=1, xe[-a,a], and the second one is at y =-I, x €[-a,a] (Fig. 1c).

One may ask what new features are that the fractional operators can bring to the theory of

diffraction. The concept of intermediate states, obtained with the aid of fractional

derivatives and integrals, yields to various generalizations of commonly used models in

electrodynamics such as:

¢ Intermediate waves. For instance, intermediate waves between plane and cylindrical
waves (Engheta, 1996, 1999) can be obtained using fractional integral of scalar Green’s
function:

a 1 o a
G*(x,y;k)= 5(700Dy Gy (v, y;k)— DGy (x,y5k)), 0<a <1,

where G; is two-dimensional Green’s function of the free space. G* describes an
intermediate case between one- and two-dimensional Green’s functions and have the
following behavior in the far-zone (Engheta, 1999):

i o . —a |27 gpeinja 1 P
G% ~—cos| == |(ksin a |22 jkp=in/4 | " [(g)—o0 _ 2, .2
ir (2 ]( lo1)™, ko T ( )k| kp=k{x*+y* >0, p#0.

y |1—a s

This function consists of two waves: a cylindrical wave and a non-uniform plane wave

propagating in the x direction and behaving with y as |y |* .

e Fractional Green's function G” defined as a fractional derivative (integral) of the
ordinary Green’s function of the free space - G* =_, DgG . a denotes the fractional
order and varies from 0to 1 (0<a <1). In two-dimensional case G* is expressed as

G (=, ) =~ D HP (el = + (-9 ) @

e  Fractional Green’s theorem which involves fractional derivatives of ordinary Green’s
function and fractional derivatives of the considered function on a boundary of a
domain (Veliev & Engheta, 2003). The corresponding equations will be presented later
in this paper.

e Fractional boundary conditions (FBC) defined via fractional derivatives of the
tangential electric field components U(x,y) . For an infinitely thin boundary S located

in the plane y =d , FBC are defined as

DyU(x,y)lyes=0, y > £d .
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The order of the fractional derivative « is assumed to be between 0 and 1. Fractional
derivative D is applied along the direction normal to the surface S . Fractional boundary
conditions describe an intermediate boundary between the perfect electric conductor (PEC)
and the perfect magnetic conductor (PMC), obtained from FBC if the fractional order equals
to 0 and 1, respectively.

We will use the symbol Dj f to denote operator of fractional derivative or integral _,Dyf,
which is defined by the integral of Riemann-Liouville on semi-infinite interval (Samko et al.,
1993):

s
(DL =T dxj , 0<a<t,

where T'(1-¢«) is Gamma function.
This paper is devoted to the problems of diffraction by a strip, a strip resonator and a half-
plane characterized with fractional boundary conditions with 0 <& <1 expressed as

D,‘nyz(x,y):O, y—10, xeL,

where L=(-a,a) for a strip and L=(0,%) for a half-plane. For convenience, fractional
derivative is applied with respect to dimensionless variable ky. The function E,(x,y)
denotes z-component of the total electric field, E,(x,y)=E.+E:, that is the sum of the
incident plane wave E.(x,y) and the scattered wave E5(x,v).

In case of a strip resonator we have two equations to impose fractional boundary conditions:

D,‘nyZ(x,y):O, y—1+0, xe(-a,aq),

DiE.(x,y)=0, y>-1£0, xe(-a,a).

From the one hand, introduction of new boundary conditions should describe a new
physical boundary world, and from the other hand they must allow to build an effective
computational algorithm to solve the stated problems with a desired accuracy. Simple
mathematical description of the scattering properties of surfaces is a common problem in
modeling in diffraction theory.

One of the well-studied boundaries, which can be treated as an intermediate state between
PEC and PMC, is an impedance boundary defined by the equation

iix E(F)=niix (iix H(F)), 7 —> S,

where i is the normal to the surface S. The value of the impedance 7 varies from 0 for
PEC to i for PMC.

There are many papers devoted to diffraction by impedance boundaries. Impedance
boundary conditions (IBC) have been used for the modeling of the scattering properties of
good conductors, gratings, etc. In each case there are formulas to define the value of the
impedance as a function of material parameters. IBC are approximate BC and therefore they
have limitations in usage and cannot describe all diversity of boundaries.
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Further approximation of IBC can be made with the aid of derivatives of higher but integer
orders or generalized boundary conditions (Hope & Rahmat-Samii, 1995; Senior & Volakis,
1995). A general methodology to obtain exact IBC of higher order in spectral domain is
presented in (Hope & Rahmat-Samii, 1995), where flat covers (and also surfaces with
curvature) consisting of homogeneous materials with an arbitrary (linear, bi-anisotropic)
constitutive equations. It is possible to obtain exact IBC in the spectral domain that can be
often done in an analytical form very often. However, it is not always possible to get IBC in
the spatial domain in an exact form. That is why it is necessary to approximate IBC in the
spectral domain in order to apply inverse Fourier transform.

Another boundary condition that generalizes the perfect boundaries like PEC and PMC was
introduced in (Lindell & Sihvola, 2005a). The corresponding surface was named perfect
electromagnetic conductor (PEMC) and the mentioned condition is defined as

H+ME=0.

For M =0, PEMC defines a PEC boundary and for M=~ we get a PMC. The physical
model of PEMC boundary was proposed in (Lindell & Sihvola, 2005b) where it was shown
that the PEMC condition can simulate reflection from an anisotropic layer for the normal
incidence of the plane wave. Diffraction by a PEMC boundary has not been considered yet.
Further generalization of PEMC can be made using concept of the generalized soft-and-hard
surface (GSHS) (Haninnen et al., 2006):

i-E=0,b-H=0,

where @, b are complex vectors that satisfy equations 7i-d=7-b=0 and a-b=1. GSHS
can transform an incident plane wave with any given polarization into any other
polarization of the reflected plane wave if the vectors i, b are chosen appropriately
(Haninnen et al., 2006).

Fractional boundary conditions (FBC) can be compared with impedance boundary
conditions (IBC). First of all FBC are intermediate between PEC and PMC as well as IBC.
The value of fractional order a =0 (a=1) corresponds to the value of impedance 7 =0
(n =i, respectively. For other values of 0 <a <1 the deeper analysis is needed.

Physical analysis of the strip with FBC shows that the induced surface currents behave
similarly to the currents on an impedance strip. Due to specific properties the strip with FBC
is compared with the well-known impedance strip. It can be shown that for a wide range of
input parameters the “fractional strip” behaves similarly to the impedance strip if the
fractional order is chosen appropriately (Veliev et al., 2008b). The proposed method used for
a “fractional strip” has some advantages over the known methods applied to the analysis of
the wave scattering by an impedance strip.

The purpose of this work is to build an effective analytic-numerical method to solve two-
dimensional diffraction problems for the boundaries described by fractional boundary
conditions with a e [0,1]. The method will be applied to two canonical scattering objects: a
strip and a half plane. The method is based on presenting the scattered field via fractional
Green’s function,

ES(x,y) = [ f17 ()G (x —x\ )i,
L
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where f"%(x) is the unknown function and G”(x-x',y)= —iD,f‘yH(()l)(k«/(x —x)?+y?) is

the fractional derivative of the Green’s function defined by equation (2). This presentation
leads to the following dual integral equations (DIE) with respect to the Fourier transform

F*(g)= [ f1*(£)e ™ d¢ of the function f'* (x)
L
J-oo‘Flfa (q)eideéq (1 _ qz)a—l/qu _ _4”61'”/2(1—(1) sin® ee—ide§c030, é el,

[ F(q)e*<1dg = 0, fel,

where d; =a for L=(-a,a), d; =1 for L=(0,0).

In the case of a strip resonator, we obtain more complicated set of integral equations which
will be presented later in this paper.

The method generalizes the known method used for the PEC and PMC strip and half plane.
As will be shown later, this method allows obtaining a solution for the value a =0.5 in the
explicit analytical form. For other values of « €[0,1] the scattering problems are reduced to
solving of the infinite systems of linear algebraic equations (SLAE). In order to discretize the
DIE the function f'™“(x) is represented as a series in terms of orthogonal polynomials:
Gegenbauer polynomials for the strip and Laguerre polynomials for the half-plane. These
representations result in a special kind of the edge conditions for the fractional current
density function f'"“(x). The physical characteristics of the considered scattering objects
can be found with any desired accuracy by solving SLAE.

2. Diffraction by a strip with fractional boundary conditions

Assume that an E-polarized plane wave is characterized with the function
= ,—tk(xcosf+ysind

E' =ZE (x,y) =Ze ) The total field E =ZE_(x,y) must satisfy fractional boundary

conditions
DiE.(x,y)=0, y>+0, xeL, 3)

where L =(-a,a) for a strip. For convenience, fractional derivative _,Df, is applied with
respect to a dimensionless variable ky . The function E,(x,y) denotes the z-component of the
total electric field E,(x,y)=E. +ES that is the sum of the incident plane wave E.(x,y) and
the scattered field E(x,y). Solution to the diffraction by the screen
S={(x,y):y=0,-a<x<a} is to be sought under the following conditions:

- The total field E must satisfy the Helmholtz equation everywhere outside the screen

2 2
[;xz+:y2+k2JEz(x,y):0_ )

- The scattered field E;(x,y) must satisfy Sommerfeld radiation condition at the infinity
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1im,%ﬁ(a§% iE;]:o, =P 412 5)
T

- The total field E must satisfy the edge condition, i.e. the finiteness of energy in every
local area near the edges of the screen (Honl et al., 1961).

- The total field E,(x,y) must satisfy the boundary conditions (3).

The method is based on representation of the scattered field with the aid of the fractional

derivative of the Green's function:

Ei(x,y) jfl *(x)G*(x —x',y)dx" . (6)

In (6), the function f'™*(x) is the unknown function called the density of the fractional
potential, and G is the fractional derivative of two-dimensional the Green’s function of the
free space defined by equation (2).

For the limit cases of the fractional order with =0 and a=1 representation (6)
corresponds to the single-layer and double-layer potentials commonly used to present the
scattered fields in diffraction problems:

_iﬁf'(X')Hé”(km)dx', =0
E(x,y)=

—7.[ flx kd(x x)? +y?)dx!, a=1

More general representations (6) can be derived from the fractional Green’s theorem (Veliev
& Engheta, 2003) which generalizes the ordinary Green’s theorem.

2.1 Fractional Green’s theorem
Consider a function w(7), which satisfies inhomogeneous scalar Helmholtz equation with
the source density given by the function p(7):

Ay (7) + Ky (7) = ~4ap(7) )

Besides, define G(7,7,) as the Green’s function of the Helmholtz equation:

AG(7,7y) + K*G(F ,Ty) = —4r8(F - 7y) . 8)

Here, o6(7 —1,) is the three-dimensional Dirac delta function, 7 and 7, are the position
o° & &

vectors for the observation and source points, respectively, A=F+ﬁ+a—zls the
x Y 74

Laplacian, and k is a scalar constant. After applying fractional derivatives to equations (7)

and (8) with respect to the x variable, multiplying the first equation with _, D;G(7,7,), and

the second with _ Dfy(7), subtracting one from another, integrating this over all source
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coordinates x,,1,,z, inside S, and finally using the Green’s theorem, we obtain the
following representation:

[ D2 pliy)e D, GIF iy vy +

-0y,

v

1 v = -V (= -V (= v = =
L DPy () =+ PLDE G 7)Y DLy ()~ DL w (R Dy G(F o) edso, PV (9)
S

0, reV

where p+v=p. Operator V, denotes the operator of gradient in respect of variable
7o(x0,Yo,20) - Here it was used the property of the fractional derivative of the Dirac delta

function:

[F(#)_..D} 5(% — F)dvy = _ DYE(F), (10)
14

We use the uniform symbol _,Df (or D{) to denote both fractional derivatives and
fractional integrals, and it defines a fractional derivative for 0 <a <1 and a fractional
integral for o <0.

Equation (9) is a generalization of well-known Green’s theorem for the case of fractional
derivatives.

Consider some important particular cases, which can be obtained from (9).

In the case of excitation in a free space so that the volume V is the whole space, the surface
integrals in (9) vanish, and we have:

_DPy(F) = [ DL (), D}, G(F, Ty)doy - (11)
v
Originally function y/(7) characterizes the field excited by the source with the volume
density p(7). From the other hand, for f=0 representation (11) means that the field y/(7)
is expressed through the distribution of fractional sources with density D™V p(r;) inside the
volume V and by using fractional integral of conventional Green's function D"G(r,r) .
Assuming p(7) =0, we can obtain some other important representations:

1 . R R . .
2 PLDLGE RV oy () ~w (7)o . DL G T)ldso, if v =, =0
S
_.Dly(7)= (12)

1 . . . L .
4—gS[G(r,rO).vO_wan W)~ DLy ()Y G(F 7y)dsy, if v=0
s

From this representation we see that the fractional derivative of function w(7) is expressed
either via the value of the function and its first derivative at the boundary and the fractional
derivatives of Green’s function, or by the fractional derivatives of the function at the
boundary and the usual Green’s function.
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If v=—u,ie. f=0,we obtain a representation for the function y(7) itself:

_ 1 _ - _ ~ _ -
v(7) =Pl DG 7)o oDy (o) = o Dlyy () Vo o DG Ro)sy - (13)
S

This expression means that the function w(7) is represented through its fractional derivatives

at the boundary and the fractional derivatives of Green's function. The equation (13) can be
useful in scattering problems. If we have boundary conditions for the function w(7) on the
surface S as Vo _, Dy w() 1z s=0 (or Dy w(7) |z s=0) then one of the surface integrals in

(13) vanishes and we get a simple presentation for /(7). This fact will be used to present the

scattered field in all diffraction problems considered in this paper (6). Equations (12), (13)
generalize the Huygens principle in such a sense that the fractional derivative of the function

w(7) , which characterizes a wave process, is presented as a superposition of waves radiated

by elementary "fractional" sources distributed on the given surface. “Fractional” potentials,

CJS D’y (7,)eV, —o Dy G(F,Ty)edsg , <557WDZOG(T',T’O)-VO D’y (7,)ds, , can be treated as a
s

—0™x, P Xy

s

generalization of well-known single and double layer potentials.
2.2 Solution to integral equations

Substituting the expression (6) for E,(x,y) into fractional boundary conditions (3) we get
the equation

tim D [, ()G (x—x) y)dx' = ~im DY EL(x, ), (14)
It is convenient to use the Fourier transform of the fractional potential density f'*(x)

Feg) = [ P g =af e g,

where a new function f'"%(&) is introduced:
@ =af"@) , 1¢K<1,
fr€)=0, 1£p1.

Then the scattered field is expressed via the Fourier transform F'"“(q) as

iz /2

4r

E:(x,y) =i [7 Frre (@t TNt g2y D 2y, (15)

where the upper (lower) sign is chosen for y>0 (y<0). Here, in (15), the following
representation for the fractional Green'’s function was used:

sign(y)iza/2 . :
G (x—x'y) = ~iDE HSD (ky (x —x') + y?) = i [ NI (1 _ g2)(@D/2 g5 (16)

4z —©
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It can be shown that the equation (14) can be reduced to dual integral equations (DIE)

J‘w Flia (q)eikuﬁq (1 _ qZ)a—l/Z d[] _ 74”81’71'/2(1—0() sin® ge—idefcosﬁl | 5 |< 1,
17)
[ Fe(g)e1dq =, 1)1,

For the limit cases of the fractional order a = 0 and o = 1 the equations (17) are reduced to
the well known integral equations used for PEC and PMC strips (Honl et al., 1961; Veliev &
Veremey, 1993; Veliev & Shestopalov, 1988; Uflyand, 1977), respectively. In this paper the
method to solve DIE (17) is proposed for arbitrary value of  €[0,1].

DIE (17) can be solved analytically for one special case of = 0.5. In this case we get the
solutions for any value of k as

fOAS(x) =ik Sinl/z eefikxcosg+i7r/4 , (18)

sinka(q + cos 8)

P0‘5(q) =—4ie"/*sin'/? 9
q+cosf

(19)

In the case of arbitrary « the solutions can be obtained numerically. First, we modify the

equations (17). After multiplying by ¢ and integrating in & from -1 to 1, the first

equation in (17) can be rewritten in the following form:

sinka(q —7) 1 _qZ)a—l/qu — _4pe/20-a) gina g
T

sinka(z + cos8)

["F(q) (20)

7+cost

In order to discretize this equation, we present the unknown function f'™“(¢) as a
uniformly convergent series in terms of the orthogonal polynomials with corresponding
weight functions which allow satisfying the edge conditions:

I1-a 2\@"1/2 < P

Fro=(-8) 7Y e, 1)
n=0 ¢

where C; (x) are the Gegenbauer polynomials and f,; are the unknown coefficients.

Gegenbauer polynomials can be treated as intermediate polynomials between Chebyshev

polynomials of the first and second kind:

o 2 o
lim S &) _ T (@ =0 GiE) 1y — g
a0 o 1, n=0 a1 o

The Fourier transform F'~(g) is expressed as the series

a2 & o IF(n+2a) J,.q.kaq) .o
Fra= r(a+1)”§ g T(n+1) (2kaq)” U *)

where |, ,(kaq) is the Bessel function.
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It must be noted that the edge conditions are chosen in the following form
Fre@=o(a-y1?), g4 (23)
For special cases of =0 and a =1 the edge conditions have the form as

Tl-a O((l_gz)_l/Z)’ a=0
()= O((1—§2)1/2)r a=1

These are well-known Meixner edge conditions in diffraction problems (Honl et al., 1961).
Substituting (22) into (17) and taking into account the properties of discontinuous integrals
of Weber-Shafheitlin (Bateman & Erdelyi, 1953) and the following formula (Prudnikov et al.,
1986)

, £l (24)

lJ.OO ]n+vsgq) smg(q—ﬂ)dq: ]n+v(vgﬁ) , (25)
g q-p B
one can show that the homogenous equation in the set (17) is satisfied identically.

The first equation of (17) written in the form (20) can be reduced to an infinite system of
linear algebraic equations (SLAE) with respect to the unknown coefficients f,; :

S, o T(m+2a) g o ba
nZ:;‘)(_l) Wcm‘ﬂfn :Bm' m:O,l,Z,..,oo (26)

where the matrix coefficients are expressed as

" - 1— 2\a-1/2
Cmn = Jloo ]nm(k“‘?)]mm(k‘l‘ﬂ%d‘? ’

BY = ~2T(a + 1)(2ka) /20 i p Imsa(R1€0S0).
(cos8)*

It can be shown that the SLAE (26) can be reduced to SLAE of the Fredholm type of the
second kind (Veliev et al., 2008a). Then the coefficients f,” can be found with any desired
accuracy (within the machine precision) using the truncation of SLAE. The fractional density
f%(x) is computed by using (21) and the scattered field (6) and other physical
characteristics can be obtained as series in terms of the found coefficients f” .

In order to solve the diffraction problem on a plane screen with fractional boundary conditions
and obtain a convenient SLAE we applied several techniques. First of all, the fractional Green's
theorem presented above allowed searching the unknown scattered field as a potential with
the fractional Green’s function. The order of the fractional Green’s function is defined from the
fractional order of the boundary conditions. In general, the fractional derivative of Green’s
function may have a complicated form, but we used the Fourier transform where application
of the fractional derivative maps to a simple multiplication by (ig)* . Finally, utilization of the
orthogonal Gegenbauer polynomials along with the specific form of the edge conditions
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allowed to reduce integral equations to SLAE in a convenient form. One can compare the
method presented for fractional boundary conditions with the known methods applied to
solve diffraction by an impedance strip. The impedance strip requires to consider two
unknown densities in presentation of the scattered field as a sum of single- and double-layer
potentials. The usage of two unknown functions leads to more complicated SLAE in spite of
the SLAE obtained for fractional boundary conditions.

2.3 Physical characteristics

We consider such electrodynamic characteristics of the scattered field as the radiation
pattern (RP), monostatic radar cross-section (MRCS) and surface current densities
depending on the coefficients f,’. The scattered field E;(x,y) in the far-zone kr — o in the
cylindrical coordinate system (r,¢) , x=rcosg,y=rsing , is expressed as

Ei(r,0)= ;—”(ii)a .[ Fl= (cosﬂ)eikrms(“’iﬂ) sin® Bdg,

where the upper sign is chosen for ¢ € [0,7:] , and the lower one when ¢ e [7r,27r] . Using the
stationary phase method for kr — o we present E(x,y) as

E;(x,y)zA(kr)d)“ (gp), kr > o, (27)

where

A(kr)= %e”‘"*m/‘L , o ((/,):—i(ii)aFl’“(cosq))sin“(/J.

The function ®“(¢) describes RP and can be expressed via the coefficients f,” as

I+

wy o mi(F)" v & o e D(n+2a) ], (kacosy)
@ ((p)_zr(an)tan 2 S, C(n+l)  (2ka)”

In physical optics (PO) approximation (ka>1) ®“(p) has a simpler form. Using the
following formula

inka( o —
o Sin a(a—-pB)

Ii
ka—> o — ﬂ

=n5(a-p), (28)
in IE (20) we get the following expressions for F*(q) and ®“(¢):

sin'™@  sinka(q—cos6)

Fl—a ~ _4'0:
(q)~—4i (1_q2)(1—2a)/2 q—cos6

0% ()~ (F1)" sin(p(sm'g]a sinka(cos¢ + cos6)

sing cos@ + cost
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In the special case of o =0.5 and arbitrary value of ka we get an analytical expression for
the RP

0% (p) = (¢1)1/2 JSinpsing sinka(cos @ +cosd) '

cos@ + cosd
Bi-static radar cross section (BRCS) is expressed from RP ®(¢) as %(@) = E\@((p)\z. MRCS
r

08" is defined as o3 = Z24(0) - %\cp(a)\z .

We have the following representations in PO approximation

. 2a . 2
oy 2.0 (smﬁ] {smka(cosgo+cost9)} ks,

==—sin” | —
V4 sing cos@ +cosf
. 2
sinka(2cosé
o-é’g’m’:gsinzﬁ # , kax>1.
T 2cosf

It must be noted that the density function f'~(x) in the integral (6) does not describe the
density of physical surface currents on the strip for 0<a <1. The function f'*(x) is
defined as the discontinuity of fractional derivatives of E-field at the plane y=0:

F@) = D “E.(4,Y) ly=0 = Diy “E- (X, ¥y, x € (-a,0). (29)

For the limit cases of =0 and a=1 the equation (29) is reduced to well-known
presentations for electric and magnetic surface currents, respectively, i.e.

5EZ X, aEZ X,
(,gy y) |y=+0 - ;]/ y) |y=—0: Hx(x/+0)_ HX(JC,—O), a=0
(%)=
E,(x,+0)-E,(x,-0), a=1

In order to obtain physical surface currents from f'™“(x) we have to apply additional
integration. In case of E-polarized incident plane wave we have the following induced
currents on a strip: electric current j* =z%® and magnetic current ;" =zj*("

expressed from f1"%(x) as

. +oo

ale , ) i N “

o) =-icos{ % |- [ e et 1Py ey
T %

. +oo
]';l(m)(x) — _2511,1(%]% J‘ Flfa(q)elkﬂX(l _ q2)a/2*1/2dq .
T
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The detailed analysis of the scattering properties of the strip with fractional boundary
conditions one can find in papers (Veliev et al., 2008a; Veliev et al., 2008b).

2.4 H-polarization

In the case of the H -polarized incident plane wave H (0,0,H;) ,  Where
H' (x,y)= ¢ Kxcos+ysing) , the method proposed above can be applied as well. We define
fractional boundary conditions as

D; apy (x y)|y_>+o D1 “[H;(x’y)-g-H;(x,y)J |y—>10:0’ xe(—a,a).

The case of =0 corresponds to diffraction of the H -polarized plane wave on a PEC strip,
while the case of & =1 describes diffraction of the H -polarized plane wave on a PMC strip.
As before, we represent the scattered field via the fractional Green's function

Hi(x,y)= J.fa NG (x—x,y)dy’

After substituting (18) into fractional boundary conditions (19) we get the equation

hmD,%y“J‘f“ x')G Y (x—x',y)dx' = hmD,}y”H (x,y).

This equation can be solved by repeating all steps of the E -polarization case after changing
atol-a.

3. Diffraction by a half-plane with fractional boundary conditions

Another problem studied in this paper is the diffraction by a half-plane with fractional
boundary conditions. The method introduced to solve the dual integral equation (DIE) for a
finite object (a strip) will be modified to solve DIE for semi-infinite scatterers such as half-
plane. There are many papers devoted to the classical problem of diffraction by a half-plane.
The method to solve the scattering problem for a perfectly conducting half-plane is
presented in (Honl et al., 1961). Usually, it is solved using Wiener-Hopf method. The first
application of the method to a PEC half-plane can be referred to the papers of Copson
(Copson, 1946) and independently to papers of Carlson and Heins (Carlson & Heins, 1947).
In 1952 Senior first applied Wiener-Hopf method to the diffraction by an impedance half-
plane (Senior, 1952) and later oblique incidence was considered (Senior, 1959). Diffraction by
a resistive and conductive half-plane and also by various types of junctions is analyzed in
details in (Senior & Volakis, 1995). We propose a new approach for the rigorous analysis of
the considered problem which generalizes the results of (Veliev, 1999) obtained for the PEC
boundaries and includes them as special cases.

Let an E -polarized plane wave E. (x,y)= ¢ k(veos+ysind) (1) be scattered by a half-plane
(y=0,x>0). The total field E, = E + ES must satisfy fractional boundary conditions

DgE.(x,y)=0, y >+0,x>0, (30)

and Meixner’s edge conditions must be satisfied for x - 0.
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Following the idea used for the analysis of diffraction by a strip we represent the scattered
field using the fractional Green’s function

©

E;(x,y)EJ‘fl’“(x')G“ (x—x',y)dx', (31)
0

where f17* (x) is the unknown function, G* is the fractional Green’s function (2).
After substituting the representation (31) into fractional boundary conditions (30) we get
the equation

i 0 e (1) — o2 212 Vi — T P Fi
J %Dky !f (x')Hy (k (x—x') +y de ili%DkyEZ(x,y), x>0. (32)
The Fourier transform of f'~*(x) is defined as
Fl—a (q) _ J‘ j-l—a (é;)e—ikq’:dé; _ J'fl—a (x)e—ikqxdx ,
—00 O

where fl’“(é)sfl’”(é‘) for £>0 and ]"1’“(5)50 for £<0 .

Then the scattered field will be expressed via the Fourier transform F'™“(q) as

+ima /2

" plea (q)eik(qur\y\M)(l _ qz)(“‘l)/qu . (33)

Exxy)=-i——/,

Using the Fourier transform the equation (32) is reduced to the DIE with respect to F*™*(q):

a-1/2 dq _ _4”61'7!/2(170() sin® ee—ikicosg ,E>0,

T Fl-« (q)eik’:q(l _qz)
h (34)
TFl"" (9)e*9dg=0, ¢&<O0.

—0

The kernels in integrals (34) are similar to the ones in DIE (17) obtained for a strip if the
constant d; isequalto1 (L =(0,) in the case of a half-plane).

For the limit cases of the fractional order ¢ =0 and a =1 these equations are reduced to
well known integral equations used for the PEC and PMC half-planes (Veliev, 1999),
respectively. In this paper the method to solve DIE (5) is proposed for arbitrary values of
ae[0,1].

DIE allows an analytical solution in the special case of & =0.5 in the same manner as for a
strip with fractional boundary conditions. Indeed, for o =0.5 we obtain the solution for any
value of k as

F%(q)=-2sin'/? 96"’“%5(5} +cos0),
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f0.5(x) — —25in1/2 geizr/4e—ikxcos«9 .

The scattered field can be found in the following form:

E(x,y)= zieii”“/ 20i/4 ina-1/2 g i(-costxlylsing) 05 for y>0 (y<0).
In the general case of 0<a <1 the equations (34) can be reduced to SLAE. To do this we

represent the unknown function f~* (&) as a series in terms of the Laguerre polynomials
with coefficients f,:

fro(x)=ex 2y frra? (2x). (35)
n=0
Laguerre polynomials are orthogonal polynomials on the interval L=(0,0) with the

appropriate weight functions used in (35) . It can be shown from (35) that f'~* (&) satisfies
the following edge condition:

Fre(g)=o0(&), e>o. (36)

For the special cases of =0 and « =1, the edge conditions are reduced to the well-known
equations (Honl et al., 1961) used for a perfectly conducting half-plane.
After substituting (35) into the first equation of (34) we get an integral equation (IE)

®© o | o

fe [ | Jete P2 (2e)e T at x e (1 g7 )’H/ “dg=R(¢), (37)
n=0 —0 | 0
where R(¢&)= 47617 sin® 900 ig known.

Using the representation for Fourier transform of Laguerre polynomials (Prudnikov et al.,
1986) we can evaluate the integral over dt as

J'we—tta—l/ZLz—l/Z(2t)e—ikqtdt _ J'“ce—t(1+ikq)ta—1/2Lz—1/2(Zt)dt _ Fn+a+1/2) (kg —1)n1 5
0 0 C(n+1)  (ikg+1)"~*Y/

After some transformations IE (37) is reduced to

2 G T(n+a+1/2)%  (ikg-1)" Lo\ g
ng e D) ,[O(ikqﬂ)”*“”/z(l 7) Mg =R(&), £>0. (38)

Then we integrate both sides of equation (38) with appropriate weight functions, as

©

I (e ce* 21212 (2¢)dé . Using orthogonality of Laguerre polynomials we get the
0
following SLAE:

anacffm =By, m=012,..,0,
n=0
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with matrix coefficients

)m n-a-1/2 «-1/2
n—m-o— 1/2(1 qz) dq’

ca I(n+a+1/2)7% qu+1
" T(n+1) q-1)

8‘—-

i/ 2a |sing|* (1-ikcosd)"
(1+ikcos®)

By =4r

m

m+a+1/2

It can be shown that the coefficients f,” can be found with any desired accuracy by using
the truncation of SLAE. Then the function f'* (x) is found from (35) that allows obtaining
the scattered field (33).

4. Diffraction by two parallel strips with fractional boundary conditions

The proposed method to solve diffraction problems on surfaces described by fractional
boundary conditions can be applied to more complicated structures. The interest to such
structures is related to the resonance properties of scattering if the distance between the strips
varies. Two strips of the width 2a infinite along the axis z are located in the planes y =1 and
y=—1.Let the E -polarized plane wave E! (x,y)= ¢ K(xcos+ysind) (1) be the incident field. The
total field E, =E. + E; satisfies fractional boundary conditions on each strip:

DgE.(x,y)=0, y >+l£0, xe(-aa), (39)

and Meixner’s edge conditions must be satisfied on the edges of both strips (y=+I,
X —*a).
The scattered field Ei(x,y) consists of two parts

EX(x,y)=EX(x,y)+ EX(x,y),
where
EF(x, Y;) j ()G (x—x'y;)dx', j=1,2. (40)

Here, G” is the fractional Green’s function defined in (2). y1» are the coordinates in the
corresponding coordinate systems related to each strip,

yi=y-1l, x =x,

Yo=Yy+1l, xy=x

Using Fourier transforms, defined as
-a © Zl-a —i 1 -a —ikq&
=" fe©e ™ =af £l (ad)e ™ ds,

firu@) =af @), j=12,
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the scattered field is expressed as

tira/2 ot i .

E‘le(x,y):—ie . J‘iOOFllfa(q)ek[vq ly-Ily1-9 ](1_q2)( 1>/2dt]/ y>l (y<l)/
tina /2 | PR o .

E2(x,y) =i~ pp [~ B (gt ”ﬂ](l—qz)( V24q, y>-1 (y<-1).

Fractional boundary conditions (30) correspond to two equations
Df‘yEz(x,y) =0, y—>1£0, xe(-a,a).

DRE.(x,y)=0, y—>-1+0, xe(-a,a).

After substituting expressions (41) and (42) into the equations (43) and (44) we obtain

J'OO Fllfa (q)eikxq (1 _ qZ)afl/qu _ _47Z,iei7ra/2 sin® He—ik(xcosHJrlsinH) _
[ E @ TN 1 gy 2
.E"\ le—a (q)eikxq 1 _qZ )a—l/qu — _47ic7/2% gin® ee—ik(xcosa—lsinﬁ) _

_J‘inll_a (q)eik[qurZIJl—q ](1 _ qZ)a—l/qu

(41)

(42)

(46)

Multiplying both equations with e-** and integrating them in ¢ on the interval [-a4,a], the

system (45), (46) leads to

qg-t 7+ cosd

© 1w, Sinka(g—71) ; 2 -
_leljll (q)#EZkllq(l_qZ) 1/2dq

J‘°° El-e(g)Sn ka(q — ) (1-02)* 2 dg = —4ric™/? sin® o5 ka(z +cos0) _ixisino _
- qg-t T+ cosf
_Iinl,a(q) sinka(g —17) 21" (1-g2) 24
g-t
J-jo E-(q) sinka(q —7) (1- qz)“*l/z dq = A ie™/? gin@ o S ka(z + cos 8) QHlsing _

47)

Similarly to the method described for the diffraction by one strip, the set (47) can be reduced
to a SLAE by presenting the unknown functions fjl’”’(x) as a series in terms of the
orthogonal polynomials. We represent the unknown functions fjl’“(é) as series in terms of

the Gegenbauer polynomials:

ire@=(1-) " X e ci(é), =12,
n=0 @
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For the Fourier transforms F]vl’“(q) we have the representations (22). Substituting the
representations for F]-l’“(q) into the (47), using the formula (25), then integrating

J._ () Jnsa(ka7) kur) dr for m=0,1,2,.., we obtain the following SLAE:

i C(n+ 20‘)C71"1n,a o i (=i)" L(n+ Za)crlnzna 20 _ pla

=0 I'(n+1) v I'(n+1)
,m=0,1,2,..

mn n mn n

i L(n+20) 216 1a i (=)’ [(n+2¢) 2.4 _p2e
=0 I'(n+1) o I'(n+1)

where the matrix coefficients are defined as

mn mn

Cll a C22 a J'w ]m+a(km-) ]nﬂz(kuf) (1 _ Z.Z)afl/zdr ,
—» a _

(kar) ] .o (kaz) i2KN1-7? - T2)a—1/2d2_’

a a

Ccl2e _2la _ J’w Jinsa
- T T

mn mn

« Jusa(Kacos )

Brln/a — e—ZiklsinHB’Zn,a — _2 lﬂa/zl—w(a + 1) sin ee—lklslng(zk )
(cos0)*

Consider the case of the physical optics approximation, where ka>>1. In this case we can
obtain the solution of (47) in the explicit form. Indeed, using the formula (28) we get

ﬂFll_a(‘[)(]. _ ‘[2 )0{—1/2 —

_ _4ﬂ_iei7m/2 sin% @ sin klZ(T +cos 9) —lklsme ﬂ_Fl a(T)EIZkI\H 2 (1 )(1—1/2
7+ cosf
(48)
”lefa(z_)(l _ z_2 )a71/2 —
4 ™/? Gin® Hweﬂdme R ()M (1 £2)21/2
T+ cosf
Finally, we obtain the solution as
. iklsin@ i -2 —iklsin
Fl’“(r) _ 472 gin@ Hsmka(r +cosd) 1 (e klsing pi2kiN1=" _ =ikl 9)
! r+cosd  (1-72)*1/? (1=
(49)

( o-iklsin® eizklxll—rz _ eikzsine)

sinka(z + cos6) 1
r+cosd  (1-72)*1/? (1 4=

E % (7) = 4ie™/? sin® 0

Having expressions for F]-l’“(q) we can obtain the physical characteristics. The radiation
pattern of the scattered field in the far zone (27) is expressed as
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O%(p) =07 (p) + 03 (),

where

(Diz(w) _ _ieiiz/ZaFll—a (COS(ﬂ)Sina we—iklcosgo ,
®g(¢) _ —ieii”/z"le'“(cosw)sin“ ¢eiklcos¢z .

5. Conclusion

The problems of diffraction by flat screens characterized by the fractional boundary
conditions have been considered. Fractional boundary conditions involve fractional
derivative of tangential field components. The order of fractional derivative is chosen
between 0 and 1. Fractional boundary conditions can be treated as intermediate case
between well known boundary conditions for the perfect electric conductor (PEC) and
perfect magnetic conductor (PMC). A method to solve two-dimensional problems of
scattering of the E-polarized plane wave by a strip and a half-plane with fractional
boundary conditions has been proposed. The considered problems have been reduced to
dual integral equations discretized using orthogonal polynomials. The method allowed
obtaining the physical characteristics with a desired accuracy. One important feature of the
considered integral equations has been noted: these equations can be solved analytically for
one special value of the fractional order equal to 0.5 for any value of frequency. In that case
the solution to diffraction problem has an analytical form. The developed method has been
also applied to the analysis of a more complicated structure: two parallel strips. Introducing
of fractional derivative in boundary conditions and the developed method of solving such
diffraction problems can be a promising technique in modeling of scattering properties of
complicated surfaces when the order of fractional derivative is defined from physical
parameters of a surface.

6. References

Bateman, H. & Erdelyi, A. (1953). Higher Transcendental Functions, Volume 2, McGraw-Hill,
New York

Carlson J.F. & Heins A.E. (1947). The reflection of an electromagnetic plane wave by an
infinite set of plates. Quart. Appl. Math., Vol.4, pp. 313-329

Copson E.T. (1946). On an integral equation arising in the theory of diffraction, Quart. |.
Math., Vol.17, pp. 19-34

Engheta, N. (1996). Use of Fractional Integration to Propose Some ‘Fractional” Solutions for
the Scalar Helmholtz Equation. A chapter in Progress in Electromagnetics Research
(PIER), Monograph Series, Chapter 5, Vol12, Jin A. Kong, ed.EMW Pub.,
Cambridge, MA, pp. 107-132

Engheta, N. (1998). Fractional curl operator in electromagnetic. Microwave and Optical
Technology Letters, Vol.17, No.2, pp. 86-91

Engheta, N. (1999). Phase and amplitude of fractional-order intermediate wave, Microwave
and optical technology letters, Vol.21, No.5



136 Electromagnetic Waves

Engheta, N. (2000). Fractional Paradigm in Electromagnetic Theory, a chapter in IEEE Press,
chapter 12, pp.523-553

Hanninen, I.; Lindell, I.V. & Sihvola, A.H. (2006). Realization of Generalized Soft-and-Hard
Boundary, Progress In Electromagnetics Research, PIER 64, pp. 317-333

Hilfer, R. (1999). Applications of Fractional Calculus in Physics, World Scientific Publishing,
ISBN 981-0234-57-0, Singapore

Honl, H.,, A,; Maue, W. & Westpfahl, K. (1961). Theorie der Beugung, Springer-Verlag, Berlin

Hope D. J. & Rahmat-Samii Y. (1995). Impedance boundary conditions in electromagnetic, Taylor
and Francis, Washington, USA

Lindell I.V. & Sihvola A.H. (2005). Transformation method for Problems Involving Perfect
Electromagnetic Conductor (PEMC) Structures. IEEE Trans. Antennas Propag.,
Vol.53, pp. 3005-3011

Lindell I.V. & Sihvola A.H. (2005). Realization of the PEMC Boundary. IEEE Trans. Antennas
Propag., Vol.53, pp. 3012-3018

Oldham, K.B. & Spanier, J. (1974). The Fractional Calculus: Integrations and Differentiations of
Arbitrary Order, Academic Press, New York

Prudnikov, H.P.; Brychkov, Y.H. & Marichev, O.. (1986). Special Functions, Integrals and
Series, Volume 2, Gordon and Breach Science Publishers

Samko, S.G.; Kilbas, A.A. & Marichev, O.I. (1993), Fractional Integrals and Derivatives, Theory
and Applications, Gordon and Breach Science Publ., Langhorne

Senior, T.B.A. (1952). Diffraction by a semi-infinite metallic sheet. Proc. Roy. Soc. London,
Seria A, 213, pp. 436-458.

Senior, T.B.A. (1959). Diffraction by an imperfectly conducting half plane at oblique
incidence. Appl. Sci. Res., BS, pp. 35-61

Senior, T.B. & Volakis, J.L. (1995). Approximate Boundary Conditions in Electromagnetics, IEE,
London

Uflyand, Y.S. (1977). The method of dual equations in problems of mathematical physics [in
russian]. Nauka, Leningrad

Veliev, E.I. & Shestopalov, V.P. (1988). A general method of solving dual integral equations.
Sov. Physics Dokl., Vol.33, No.6, pp. 411-413

Veliev, EI. & Veremey, V.V. (1993). Numerical-analytical approach for the solution to the
wave scattering by polygonal cylinders and flat strip structures. Analytical and
Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and
O. A. Tretyakov (eds.), Chap. 10, Science House, Tokyo

Veliev, E.I. (1999). Plane wave diffraction by a half-plane: a new analytical approach. Journal
of electromagnetic waves and applications, Vol.13, No.10, pp. 1439-1453

Veliev, EI. & Engheta, N. (2003). Generalization of Green’s Theorem with Fractional
Differintegration, IEEE AP-S International Symposium & USNC/URSI National Radio
Science Meeting

Veliev, E.I; Ivakhnychenko, M.V. & Ahmedov, T.M. (2008). Fractional boundary conditions
in plane waves diffraction on a strip. Progress In Electromagnetics Research, Vol.79,
pp. 443-462

Veliev, E.I; Ivakhnychenko, M.V. & Ahmedov, T.M. (2008). Scattering properties of the strip
with fractional boundary conditions and comparison with the impedance strip.
Progress In Electromagnetics Research C, Vol.2, pp. 189-205



Part 3

Electromagnetic Wave Propagation
and Scattering






7

Atmospheric Refraction and Propagation in
Lower Troposphere

Martin Grabner and Vaclav Kvicera
Czech Metrology Institute
Czech Republic

1. Introduction

Influence of atmospheric refraction on the propagation of electromagnetic waves has been
studied from the beginnings of radio wave technology (Kerr, 1987). It has been proved that
the path bending of electromagnetic waves due to inhomogeneous spatial distribution of the
refractive index of air causes adverse effects such as multipath fading and interference,
attenuation due to diffraction on the terrain obstacles or so called radio holes (Lavergnat &
Sylvain, 2000). These effects significantly impair radio communication, navigation and radar
systems. Atmospheric refractivity is dependent on physical parameters of air such as
pressure, temperature and water content. It varies in space and time due the physical
processes in atmosphere that are often difficult to describe in a deterministic way and have
to be, to some extent, considered as random with its probabilistic characteristics.

Current research of refractivity effects utilizes both the experimental results obtained from
in situ measurements of atmospheric refractivity and the computational methods to
simulate the refractivity related propagation effects. The two following areas are mainly
addressed. First, a more complete statistical description of refractivity distribution is sought
using the finer space and time scales in order to get data not only for typical current
applications such as radio path planning, but also to describe adverse propagation in detail.
For example, multipath propagation can be caused by atmospheric layers of width of
several meters. During severe multipath propagation conditions, received signal changes on
time scales of minutes or seconds. Therefore, for example, the vertical profiles of
meteorological parameters measured every 6 hours by radiosondes are not sufficient for all
modelling purposes. The second main topic of an ongoing research is a development and
application of inverse propagation methods that are intended to obtain refractivity fields
from electromagnetic measurements.

In the chapter, recent experimental and modelling results are presented that are related to
atmospheric refractivity effects on the propagation of microwaves in the lowest troposphere.
The chapter is organized as follows. Basic facts about atmospheric refractivity are
introduced in the Section 2. The current experimental measurement of the vertical
distribution of refractivity is described in the Section 3. Long term statistics of atmospheric
refractivity parameters are presented in the Section 4. Finally, the methods of propagation
modelling of EM waves in the lowest troposphere with inhomogeneous refractivity are
discussed in the Section 5.
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2. Atmospheric refractivity

2.1 Physical parameters of air and refractivity formula

The refractive index of air # is related to the dielectric constants of the gas constituents of an
air mixture. Its numerical value is only slightly larger than one. Therefore, a more
convenient atmospheric refractivity N (N-units) is usually introduced as:

N=(n-1)x10° 1)

It can be simply demonstrated, based on the Debye theory of polar molecules, that refractivity
can be calculated from pressure p (hPa) and temperature T (K) as (Brussaard, 1996):

77.6 e
N=——|p+4810— 2
T (p TJ @)

where e (hPa) stands for a water vapour pressure that is related to the relative humidity
H (%) by a relation:

H =100¢/e,(t) (3)

where ¢, (hPa) is a saturation vapour pressure. The saturation pressure e; depends on
temperature ¢ (°C) according to the following empirical equation:

e,(t)=aexp(bt/(t+c)) 4

where for the saturation vapour above liquid water a=6.1121hPa, b=17.502 and
¢ =240.97 °C and above ice a = 6.1115 hPa, b = 22.452 and ¢ = 272.55 °C.

It is seen in Fig.la where the dependence of the refractivity on temperature and relative
humidity is depicted that refractivity generally increases with humidity. Its dependence on
temperature is not generally monotonic however. For humidity values larger than about
40%, refractivity also increases with temperature.

430 2
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Fig. 1. The radio refractivity dependence on temperature and relative humidity of air for
pressure p = 1000 hPa (a), refractivity sensitivity dependence on temperature and relative
humidity of air (b).
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The sensitivity of refractivity on temperature and relative humidity of air is shown in Fig. 1b.
For t = 10°C (cca average near ground temperature in the Czech Republic), H = 70% (cca
average near ground relative humidity) and p=1000hPa, the sensitivities are
dN/dt=1.43 N-unit/°C, dN/dH =0.57 N-unit/% and dN/dp =0.27 N-unit/hPa. The
refractivity variation is usually most significantly influenced by the changes of relative
humidity as a water vapour content often changes rapidly (both in space and time) and it is
least sensitive to pressure variation. However a decrease in pressure with altitude is mainly
responsible for a standard vertical gradient of the atmospheric refractivity.

During standard atmospheric conditions, the temperature and pressure are decreasing with
the height above the ground with lapse rates of about 6 °C/km and 125 hPa/km (near
ground gradients). Assuming that relative humidity is approximately constant with height,
a standard value of the lapse rate of refractivity with a height h can be obtained using
pressure and temperature sensitivities and their standard lapse rates. Such an estimated
standard vertical gradient of refractivity is about dN/dh = -42 N-units/km. It will be seen
that such value is very close to the observed long term median of the vertical gradient of
refractivity.

2.2 EM wave propagation basics
Ray approximation of EM wave propagation is convenient to see the basic propagation
characteristics in real atmosphere. The ray equation can be written in a vector form as:

i(nﬂ] =Vn ®)
ds\ ds

where a position vector r is associated with each point along a ray and s is the curvilinear
abscissa along this ray. Since the atmosphere is dominantly horizontally stratified, the
gradient Vn has its main component in vertical direction. Considering nearly horizontal
propagation, the refractive index close to one and only vertical component of the
gradient Vi, one can derive from (5) that the inverse of the radius of ray curvature, p, is
approximately equal to the negative height derivative of the refractive index, -dn/dh. Using
the conservation of a relative curvature: 1/R-1/p = const. =1/R- 1/ one can transform
the curvilinear ray to a straight line propagating above an Earth surface with the effective

Earth radius R given by:
Rs=R 1-R :R/(1+Rd—N10‘6j (6)
P dh

where R stands for the Earth radius and dN/dh denotes a vertical gradient of refractivity.
Three typical propagation conditions are observed depending on the numerical value of the
gradient. If dN/dh~ -40 N-units/km, than from (6): Res~4/3 R and standard atmospheric
conditions take place. The standard value of the vertical refractivity gradient is
approximately equal to the long term median of the gradient observed in mild climate areas.
The median gradients observed in other climate regions may be slightly different, see the
world maps of refractivity statistics in (Rec. ITU-R P.453-9, 2009).

Sub-refractive atmospheric conditions occur when the refractivity gradient has a significantly
larger value, super-refractive conditions occur when the refractivity gradient is well below the
standard value of -40 N-units/km. During sub-refractive atmospheric conditions, the effective
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Earth radius R, decreases, terrain obstacles are relatively higher and the received signal may
by attenuated due to diffraction loss appearing if the obstacle interfere more than 60% of the
radius of the 1st Fresnel ellipsoid on the line between the transmitter and receiver. During
super-refractive conditions, on the other hand, the effective Earth radius is lower than the
Earth radius R or it is even negative when dN/dh < -157 N-units/km. It means a radio path is
more “open” in the sense that terrain obstacles are relatively lower. Super-refractive conditions
are often associated with multipath propagation when the received signal fluctuates due to
constructive and destructive interference of EM waves coming to the receiver antenna with
different phase shifts or time delays.

In principle, the EM wave propagation characteristics during clear-air conditions are
straightforwardly determined by the state of atmospheric refractivity. Nevertheless,
atmospheric refractivity varies in time and space more or less randomly and full details of it
are out of reach in practice. Therefore the statistics of atmospheric refractivity and related
propagation effects are of main interest. The statistical data important for the design of
terrestrial radio systems have to be obtained from the experiments, an example of which is
described further.

3. Measurement of refractivity and propagation

3.1 Measurement setup

A propagation experiment focussed on the atmospheric refractivity related effects has been
carried out in the Czech Republic since November 2007. First, the combined experiment
consists of the measurement of a received power level fluctuations on the microwave
terrestrial path operating in the 10.7 GHz band with 5 receiving antennas located in different
heights above the ground. Second, atmospheric refractivity is determined in the several
heights (19 heights from May, 2010) at the receiver site from pressure, temperature and
relative humidity that are simultaneously measured by a meteo-sensors located on the 150
meters tall mast. Refractivity is calculated using (2) - (4). Figure 2a shows the terrain profile
of the microwave path.
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Fig. 2. (a) The terrain profile of an experimental microwave path, TV Tower Prague -
Podebrady mast, with the first Fresnel ellipsoids of the lowest and the highest paths for
k =R./R =4/3, (b) the parabolic receiver antennas placed on the 150 m high mast
(Podebrady site).
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The distance between the transmitter and receivers is 49.8 km. It can be seen in Fig. 2a a
terrain obstacle located about 33 km from the transmitter site. The height of the obstacle is
such that about 0% of the first Fresnel ellipsoid radius of the lowest path (between the
transmitter antenna and the lowest receiver antenna) is free. It follows that under standard
atmospheric conditions (k = R,/ R = 4/3) the lowest path is attenuated due to the diffraction
loss of about 6 dB. Tables 1a and 1b show the parameters of the measurement setup.

Heights of meteorological 5.1 m,27.6 m,50.3 m,75.9m, 98.3 m, 123.9 m, 19 sensors

Sensors approx. every 7 m (from May 2010)
Pressure sensor height 1.4m
Temperature/humidity

Vaisala HMP45D, accuracy +0.2°C, +2% rel. hum.
Vaisala PTB100A, accuracy +0.2 hPa

Table 1a. The parameters of a measurement system (meteorology).

Sensor
IPressure sensor

TX tower ground altitude 258.4 m above sea level

TX antenna height 126.3 m

Frequency 10.671 GHz

Polarization Horizontal

TX output power 20.0 dBm

Path length 49.82 km

Parabolic antennas diameter 0.65 m, gain 33.6 dBi
RX dynamical range > 40 dB

RX tower ground altitude 188.0 m above sea level

RX antennas heights 51.5m, 61.1 m, 90.0 m, 119.9 m, 1455 m
Est. uncertainty of received level +1 dB

Table 1b. The parameters of a measurement system (radio, TX = transmitter, RX = receiver).

3.2 Examples of refractivity effects

In order to get a better insight into atmospheric refractivity impairments occurring in real
atmosphere, several examples of measured vertical profiles of temperature, relative
humidity, modified refractivity and of received signal levels are given. The modified
refractivity M is calculated from refractivity N as:

M(h)=N(h)+157h @)

where hi(km) stands for the height above the ground. The reason of using M instead of N
here is to clearly point out the possible ducting conditions (dN/dh <-157 N-units/km)
when dM/dh < 0 M-units/km.

Figure 3 shows the example of radio-meteorological data obtained during a very calm day
in autumn 2010. The relative received signal levels measured at 51.5 m (floor 0), 90.0 m
(floor 2) and at 145.5 m (floor 4) are depicted. The lowest path (floor 0) is attenuated of about
6 dB due to diffraction on a path obstacle. The situation is atypical since the received signal
level is very steady and does not fluctuate practically. The vertical gradient of modified
refractivity has approximately the same value (= 110 M-units/km or -47 N-units/km)
during the whole day, the propagation conditions correspond to standard atmosphere.
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A more typical example of measured data is shown in Fig. 4. Temperature and relative
humidity change appreciably with height and in time. Specifically, temperature inversion
is seen before 4:00 and after 20:00, the standard gradient takes place in the middle of the
day. The received signal level recorded on the lowest path shows a typical enhancement
at the beginning and at the end of the day which is caused by super-refractive
propagation conditions. On the other hand the signal received at the higher antennas
fluctuates mildly around 0 dB with more pronounced variations of the signal in the
morning and at night.

Sub-refractive propagation conditions were observed between 2:00 and 4:00 on 14 October
2010 as shown in Fig. 5. One can see that increased attenuation due to diffraction on the path
obstacle appears on the lowest path (floor 0) at that time. This well corresponds with the
sub-refractive gradient of modified refractivity observed; see the lower value of dM/dh near
the ground between 2:00 and 4:00 which is caused by strong temperature inversion together
with no compensating humidity effect. The received signal measured on the higher
antennas that are not affected by diffraction stays around the nominal value with some
smaller fluctuations probably due to multipath and focusing/defocusing effects.

A typical example of multipath propagation is shown in Fig. 6. In the middle of the day
from about 7:00 to 18:00, the received signal is steady at all heights and the atmosphere
seems to be well mixed. On the other hand, multipath propagation occurring in the morning
and at night is characterized by relatively fast fluctuations of the received signal. It is seen
that all the receivers are impaired in the particular multipath events. Deep fading
(attenuation > 20 dB) is quite regularly changing place with significant enhancement of the
received signal level.
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Fig. 3. The vertical profiles of temperature T, relative humidity H, modified refractivity M
and received signal levels relative to free-space level observed on 17 November 2010
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4. Refractivity statistics

As already mentioned, the physical processes in troposphere are complex enough to allow
only statistical description of spatial and temporal characteristics of atmospheric refractivity.
Nevertheless the statistics of important refractivity parameters such as an average vertical
gradient are extremely useful in practical design of terrestrial radio paths when the long
term statistics of the received signal have to be estimated, see (Rec. ITU-R P.530-12, 2009).

4.1 Average vertical gradient of refractivity

The prevailing vertical gradient of refractivity can be regarded as the single most important
characteristics of atmospheric refractivity. According to (6), it is related to the effective Earth
radius discussed above and it specifically determines the influence of terrain obstacles on
terrestrial radio propagation paths. The examples of measured vertical profiles presented in
the previous section show that the near-ground refractivity profile evolution is complex
enough to not be described by only a single value of the gradient. The question arises what
should be considered as a prevailing vertical gradient at a particular time. The gradient value
is usually obtained from the refractivity difference at fixed heights, e.g. at 0 and 65 meters
above the ground (Rec. ITU-R P.453-9, 2009). If more accurate data is available, the prevailing
vertical gradient of refractivity can be calculated using a linear regression approach.

Two year data (2008-2009) of measured vertical profiles were analysed by means of linear
regression of refractivity in the heights (0 - 120 m) and the statistics of the vertical gradient
so obtained were calculated. The results are in Fig. 7a where the annual cumulative
distribution functions of the gradient are depicted. The quantiles provided by ITU-R
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datasets are also shown for comparison. It is clear that extreme gradients are less probable in
reality than predicted by ITU-R. Linear regression tends to filter out the extreme gradients
(otherwise obtained from two-point measurements) which do not fully represent the vertical
distribution as a whole.
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Fig. 7. Annual cumulative distributions of the vertical gradient of atmospheric refractivity
obtained in 2008, 2009 (a), cumulative distribution obtained from the whole season (2 years)
and fitted model (b).

Taking into account the importance of the gradient statistics for the design of terrestrial
radio path, it seems desirable to have a suitable model. Several models of the gradient
statistics were proposed, see (Brussaard, 1996), that can be fitted to measured data. Since
they are often discontinuous in the probability density, they can be thought to be little
unnatural. One can see in Fig. 7b where the two-year cumulative distribution is shown that
the distribution consists of three parts: the part around the standard (median) gradient and
two other parts - tails. Therefore the following model of the probability density f(x) and of
the cumulative distribution function F(x) is proposed:

fx)=2p G\}EEXP[(X_M) }; in-:l ®)

207

F(x)—ipi;{l+erf[z://gﬂ ©)

where the p;, p; and o; are the relative probabilities, the mean values and the standard
deviations of the Gaussian distributions forming the three parts of the whole distribution.
Fitted model parameters (see Fig. 7b) are summarized in Table 2.

i pi R Oi

1 0.086 -128.0 75.1
2 0.793 -46.1 11.8
3 0.121 -99.6 24.8

Table 2. Vertical refractivity gradient distribution parameters
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4.2 Ducting layers

Although the ducting layers appearing in the first several tens or hundreds meters above the
ground have significant impact on the propagation of EM waves on nearly horizontal paths,
surprisingly little is known about their occurrence probabilities or about their
spatial/temporal properties (Ikegami et al., 1966). This is true especially in the lowest
troposphere where the usual radio-sounding data suffers from insufficient spatial and also
time resolution. In the following, the parameters of ducting layers observed during the
experiment are analysed by means of the modified Webster duct model.

An analytic approach to the modelling of refractivity profiles was proposed in (Webster,

1982). The refractivity profile with the height /1 (m) was to be approximated by the formula
similar to the following modified model:

2.96(1 -
N(h)=N, +GNh+d7Ntanhw

where the refractivity Ny (N-units), the gradient Gy (N-units/m), the duct depth dN (N-
units), the duct height 1y (m) and the duct width dh (m) are model parameters. A hyperbolic
tangent is used in (10) instead of arctangent in the original Webster model because the
“tanh” function converges faster to a constant value for increasing arguments than the
“arctan” does. As a consequence, there is a sharper transition between the layer and the
ambient gradient in the modified model and so the duct width values dh are more clearly
recognizable in profiles. Figure 8 shows the meaning of the model parameters by an
example where the modified refractivity profile is also included. It is seen from (7) and (10)
that the model for modified refractivity profiles differs only in the value of the gradient:
G = Gy + 0.157 (N-units/m).
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Fig. 8. Duct model parameter definition with the values of parameters: Ny = 300 N-units,
Gn = -40 N-units/km, dN = -20 N-units, hp = 80 m, dh = 40 m.

The above model was fitted to the refractivity profiles measured in between May and
November 2010. More than 3-105 profiles were analysed and related model parameters
were obtained. Figure 9 shows two examples of 1-hour measured data and fitted models.
Significant dynamics is clearly seen in the evolving elevated ducting layers. It is also clear
from the examples in Fig. 9 that the model is not able to capture all the fine details of
measured profiles but it serves very well to describe the most important features relevant
for radio propagation studies. Sometimes, the part or the whole ducting layer is located
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above the measurement range and so it is out of reach of modelling despite its effect on the
propagation might be serious. This should be kept in mind while studying the statistical
results presented below.
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Fig. 9. The examples of time evolution of elevated ducting layers observed on the 1st of
August 2010 at 00:00-00:50 (a) and on the 14th of July 2010 at 22:00-22:50 (b), measured data
with points, fitted profiles with lines.

Figure 10 shows the empirical cumulative distributions of duct model parameters obtained
from the fitting procedure. The medians (50% of time) of duct parameters can be read as
Np =320 N-units, G=116 N-units/km, dN=-22N-units, hy=61m, dh=73m. The
probability distributions of No and G are almost symmetric around the median. On the other
hand, the depth dN and width dh distributions are clearly asymmetric showing that the
smaller negative values of the depth and the smaller values of width are observed more
frequently. Almost linear cumulative distribution of the duct height iy between 50 and 100
m above the ground suggests that there is no preferred duct height here.
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Fig. 10. The cumulative distribution functions of duct parameters obtained from measured
profiles of atmospheric refractivity at Podebrady, 05/2010 - 11/2010.

Important interrelations between duct parameters are revealed by empirical joint probability
density functions (PDF) presented in Fig. 11 - 15. The 2D maps show the logarithm of joint
PDFs of all combinations of 5 parameters of the duct model (10). In these plots, dark areas
mean the high probability values and light areas mean the low probability values. It is
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generally observed that there are certain preferred areas in the parameter space where the
combinations of duct parameters usually fall in. For example, it is seen in Fig. 13a that the
absolute value of the negative duct depth is likely to increase with the increasing gradient G.
On the other hand, there are empty areas in the parameter space where the combinations of
parameters are not likely to appear. One may find this information helpful when analysing
terrestrial propagation using random ducts generated by the Monte Carlo method.
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Fig. 11. The logarithm of the joint probability density function of duct parameters, obtained
from measured profiles of atmospheric refractivity at Podebrady, 05/2010 - 11/2010.
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Fig. 12. The logarithm of the joint probability density function of duct parameters, obtained
from measured profiles of atmospheric refractivity at Podebrady, 05/2010 - 11/2010.
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Fig. 13. The logarithm of the joint probability density function of duct parameters, obtained
from measured profiles of atmospheric refractivity at Podebrady, 05/2010 - 11/2010.
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Fig. 14. The logarithm of the joint probability density function of duct parameters, obtained
from measured profiles of atmospheric refractivity at Podebrady, 05/2010 - 11/2010.
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5. Modelling of EM waves in the troposphere

Several numerical methods have been used in order to assess the effects of atmospheric
refractivity on the propagation of electromagnetic waves in the troposphere. They can be
roughly divided into two categories - ray tracing methods based on geometrical optics and
full-wave methods. The ray tracing methods numerically solve the ray equation (5) in order
to get the ray trajectories of the electromagnetic wave within inhomogeneous refractivity
medium. The ray tracing provides a useful qualitative insight into refraction phenomena
such as bending of electromagnetic waves. Its utilization for quantitative modelling is
limited to conditions where the electromagnetic waves of sufficiently large frequency may
be approximated by rays. Geometrical optics description is known to fail at focal points and
caustics where the full-wave methods provide more accurate results.

The full-wave numerical methods solve the wave equation that is a partial differential
equation. Among time domain techniques, finite difference time domain (FDTD) based
approaches were proposed (Akleman & Sevgi, 2000) that implement sliding rectangular
window where 2D FDTD algorithm is applied. Nevertheless, tropospheric propagation
simulation in frequency domain is more often. In particular , there is a computationally
efficient approach based on the paraxial approximation of Helmholtz wave equation, so
called Parabolic Equation Method (PEM), which is the most often used full-wave method in
tropospheric propagation.

5.1 Split step parabolic equation method
We start the brief summary of PEM (Levy, 2000) with the scalar wave equation for an
electric or magnetic field component y:

V2 +k*n?y =0 (11)

where k =21/ is the wave number in the vacuum and n(r,0,p) is the refractive index.
Spherical coordinates with the origin at the center of the Earth are used here. Further, we
assume the azimuthal symmetry of the field, y(r,0,p)=y(r,0), and express the wave
equation in cylindrical coordinates:

2 2
M+M+lal+k2mz

x,z)y =0
o2 ox®  x ox (x 2 (12)

where:

m(x,z)=n(x,z)+z /R (13)

is the modified refractive index which takes account of the Earth’s radius R and where x = 10
is a horizontal range and z=r- R refers to an altitude over the Earth’s surface. We are
interested in the variations of the field on scales larger than a wavelength. For near
horizontal propagation we can separate “phase” and “amplitude” functions by the
substitution of:

jkx

w(x,z)=u(x,z>j; (14)
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in equation (12) to obtain:

2 2
O O o 2| 14— Ju=0 (15)
oz"  ox ox (2kx)

Paraxial approximation is made now. The field u(x,z) depends only little on z, because main
dependence of y(x,z) is covered in the exp(jkx) factor in (14). Then it is assumed that:

Pu
ox?

u
ox

<< 2k (16)

and the 1/ (2kx)2 term can be removed from (15) since kx >>1 when the field is calculated far
enough from a source. We obtain the following parabolic equation:

2
ou ]ka—u+k2(m2(x,z)—1)u:0 (17)

An elliptic wave equation is therefore simplified to a parabolic equation where near
horizontal propagation is assumed. This equation can be solved by the efficient iterative

methods such as the Fourier split-step method. Let us assume the modified refractivity m is
constant. Then we can apply Fourier transform on the equation (17) to get:

—p2U+2jk%+k2(m2 -1)U=0 (18)

where Fourier transform is defined as:

U=U(x,p)=Fu(x,2)} = | u(x,2)e " dz (19)
From (18), we obtain:
2202
UCop) [ 70D g, ) (20)
Ox 2jk
U(x,p)=e (P /(20) | g (k(m®~1)/2) (1)

and we get the formula for step-by-step solution:
Ux + Ax, p) = (e—ij<p2/<2k» . eiAx(k(»nz—D/Z)) U(x, p) (22)
The field in the next layer u(x+Ax,z) is computed using the field in the previous layer u(x,z):
u(x + Ax, z) = el KP /) { U(x, p)e 0"/ <2’<>>} (23)

Fourier transformation is applied in z-direction and the variable p represents the “spatial
frequency” (wave number) of this direction: p = k. = ksin(¢) and ¢ is the angle of propagation.
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The assumption that m is constant is not fulfilled, but equation (23) is used anyway. The
resulting error is proportional to Ax and to horizontal and vertical gradients of refractivity.
In practice, the value of Ax can be of several hundred wavelengths.

5.2 Application example and comparison with measured data

The parabolic equation method outlined above has been applied frequently to investigate
the propagation characteristics on terrestrial (and also on Earth - space) paths under the
influence of different refractivity conditions (Barrios, 1992, 1994; Levy, 2000) including the
ducting layers described in the section 4.2. Users agree the method gives reliable results
provided all the relevant details of terrain profile and of refractivity distribution are known
and modelled correctly. This is however not always the case in practice. It is believed that
the modelling results have to be compared with real world data whenever possible in order
to validate the method under different propagation conditions and to know more about the
expected errors due to incomplete knowledge of propagation medium.

Let us illustrate the particular example of conditions where the parabolic equation method
performs successfully regardless the fact that refractivity profile along the propagation path
is only roughly estimated. Figures 16a and 16b show the results of PEM propagation
simulation performed using refractivity gradients measured during the 4th of November,
2008 at the receiver site. Sub-refractive conditions that occurred early morning caused a
significant diffraction fading of more than 20 dB on the two lowest paths see Fig. 16b. On the
other hand, the higher paths (receiving antennas located at 90 m and above) were not
affected by diffraction effects.
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Fig. 16. Spatial distribution of received power loss during sub-refractive condition on the
path TV Tower Prague - Podebrady calculated by PEM (a), received signal levels measured
in 5 receivers located in different heights and received signal levels modelled by PEM using
time dependent vertical gradient of refractivity (b).

The results shown in Fig. 16b confirm that a very good agreement between PEM simulation
and measurement can be achieved if the diffraction fading due to sub-refractive conditions
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(see time about 2:00) is the most important effect influencing the received power. It suggests
that sub-refractive gradients are likely to be approximately the same along the whole
propagation path and the approximation of horizontally independent refractivity, which is
usually applied in PEM, is reasonable in this case. On the other hand, similar conclusion
cannot be reached when multipath propagation occurs because only slight change in a
refractivity profile along the propagation path may vary the received power distribution
profoundly. These facts have to be kept in mind when the simulation results are interpreted.

6. Conclusion

Some results of the ongoing studies focussed on the propagation impairments of the
atmospheric refractivity in the lowest troposphere were presented. Concurrent
measurements of the vertical distribution of atmospheric refractivity together with the
multi-receiver microwave propagation experiment were described. A new statistical model
of vertical refractivity gradient was introduced. The unique joint statistics of ducting layers
parameters were presented. The application of parabolic equation method was
demonstrated on the example of a diffraction fading event. Simulated and measured time
series were compared. A good agreement between simulation and measured data has been
witnessed.

Future works in the area of the atmospheric refractivity related propagation effects should,
for example, investigate the relations between the time evolution of duct parameters and
multipath propagation characteristics, which is the area where only little is known at this
moment.
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1. Introduction

Humidity remains in the atmosphere even on bright days. Water of all three states can be
found naturally in the atmosphere: liquid (rain, fog, and clouds), solid (snowflakes, ice
crystals), and gas (water vapour). Water in any state is an obstacle in the link of the
electromagnetic wave. When the wave passes through the water particles, a part of its
energy is absorbed and a part is scattered. Therefore the electromagnetic wave is attenuated.
Prediction of the influence of these factors is very important in radio system design.
Attenuation due to rain, fog, and clouds can lead to the perturbations of the wireless,
mobile, satellite and other communications. Another problem is the refractive index of the
atmosphere, which affects the curvature of the electromagnetic wave path and gives some
insight into the fading phenomenon. The anomalous electromagnetic wave propagation can
cause disturbances to radar work, because variation of the refractive index of the
atmosphere can induce loss of radar coverage. Accurate prediction of losses due to these
factors can ensure a reliability of the radio system, decrease an equipment cost, furthermore,
the radio systems can become less injurious to health of people.

When there are no possibilities to gather data for calculations of the specific attenuation due
to rain, clouds and fog, and atmospheric refractive index, the values recommended by the
International Communication Union’s Radiocommunication sector (ITU-R) can be used. But
the recommended values are not always exact. In design of the radio links, the most
desirable operating frequencies are below 10 GHz, because in such cases atmospheric
absorption and rainfall loss may generally be neglected (Freeman, 2007). However, in most
countries, the frequency-band below 10 GHz is highly congested. In addition, high
frequencies provide larger bandwidth, narrower beam width, good resolution and smaller
component size (Bhattacharyya et al., 2000). Therefore, the operating frequencies of 10 GHz
and above are often used in design of radio systems. The higher the operating frequency, the
greater attenuation due to hydrometeors (rain, cloud, fog, snow, and etc.) is observed
(Tamositanaite et al., 2010a).

In (Ishimaru, 1978), it was mentioned that the electromagnetic wave attenuation due to snow
is less than attenuation due to rain, and that the attenuation due to dry snow may be neglected
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in microwave band. However, the attenuation due to wet snow is higher. Some results of
attenuation due to hail are presented in (Ishimaru, 1978). In this chapter, our attention would
be concentrated on the attenuation due to rain, clouds, and fog. The variation of the radio
refractivity will be the object of our investigation presented there as well.

2. Attenuation due to rain

The electromagnetic wave attenuation due to rain (the rain attenuation) is one of the most
noticeable components of excess losses, especially at frequencies of 10 GHz and above
(Freeman, 2007). The methods of prediction of the rain attenuation can be grouped into two
groups: the physical (exact) models and the empirical models. The physical models attempt
to reproduce the physical behaviour involved in the attenuation processes while the
empirical methodologies are based on measurement databases from stations in different
climatic zones within a given region. The empirical methods are used widely and frequently
with the best success (Emiliani et al., 2004). Two main causes of attenuation are scattering
and absorption. When the wavelength is large compared to the size of raindrop, scattering is
predominant. Conversely, when the wavelength is small compared to the raindrop’s size,
attenuation due to absorption is predominant (Ivanovs & Serdega 2006). Water molecules
are dipoles. The raindrop’s dipoles have the same time variation as the electromagnetic
waves and therefore act as an antenna, which re-radiates the electromagnetic wave energy.
Hence, a raindrop becomes an “antenna” with low directivity. Consequently, some energy is
reradiated in arbitrary directions giving a net loss of energy in the direction towards the
receiver (Ivanovs & Serdega 2006). Water is a loss-making dielectric medium. The relative
dielectric constant of water is high, compared to the dielectric constant of the surrounding
air. It depends on temperature and the operating frequency of the radio system. The specific
heat of the water is high. Therefore, water absorbs a large amount of warmth, while warms
itself. The surface tension of water is high. This is the reason why the molecules of water are
holding together. One of the problems in prediction of electromagnetic wave power losses is
description of shape of the raindrop. It depends on the size of droplet. It is known, that only
very small droplets are like spheres. Such droplets form in clouds, as water vapour
condenses on the nuclei of condensation. Further, these droplets grow by coalescence.
Shape of the raindrops, that are larger than 1 mm in diameter, is no more spherical. They are
not tear-shaped, as it commonly presented in pictures. The shape of falling large raindrops
is more like a hamburger shape. Therefore, horizontally polarized waves suffer greater
attenuation than vertically polarized waves (Freeman, 2007).

As mentioned above, the water molecules are polar ones. Those molecules rotate in such
way that positive part of one molecule would be as near as possible to the negative part of
another molecule. Therefore, molecules are rotating, hammering one on another and heating
(Tamositnaite et al., 2010a). The water molecule also rotates when a negative charge is
brought near to it. The fields of electromagnetic wave vary up as time goes and force the
water molecules to rotate respectively to the variation of fields.

2.1 Specific rain attenuation

One of the most widely used rain attenuation prediction methods is an empirical
relationship between the specific rain attenuation « [dB km-1] and the rain rate R [mm-h-]
(Freeman, 2007, Rec. ITU-R P.838-3, 2005):
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a =aR’ (1)

where a and b are functions of operating frequency f and rain temperature t; the value of R
[mm-h-] is for an exceedance of 0.01% of the time for point rainfall rates with an integration
time of one minute. The coefficients a and b (coefficients a, and by to be used for horizontal
polarized waves; coefficients a, and b, to be used for vertical polarized waves) are presented
in (Freeman, 2007; Recommendation ITU-R P. 838-3, 2005).

2.1.1 Rain rate

In determination of the rain attenuation, the main parameter is rain rate R, which is
expressed in [mm-h-1]. Gauges at the surface measure the accumulation of rain-water (flux)
in a known time interval and report the result as a rain rate (accumulation per unit time)
averaged over some measurement or aggregation interval (Crane, 1996). The rain rate can
be described as the thickness of the precipitation layer, which felled down over the time
period of one hour in the case when the precipitation is not evaporated, not soaked into the
soil, and is not blown away by the wind (Tamosianaité et al., 2010a). The evaluation of R-
value is the first step in the rain attenuation prediction. The rain attenuation depends on the
meteorological conditions in the considered localities. This is the reason to analyze the rain
attenuation in particular locations (eg. country, city, climatic region).

First attempts to predict the rain attenuation under Baltic region climate conditions are
described in (Tamositinas et al., 2005, 2006; Ivanovs & Serdega, 2006; Zilinskas et al., 2006,
2008). It was mentioned in (Ivanovs & Serdega, 2006), that rain events produce
unavailability of microwave link, which sometimes lead operators to economical losses or
even license loosing.

The significant differences in annual, seasonal, monthly, and daily amounts of rainfall are
observed in localities of Lithuania. The noticeable local differences of rainfall amounts are
characteristic of Lithuania as well. The precipitation amount is probably the most
changeable meteorological index on Lithuania’s territory. It varies from 901 mm in Silale
district to 520 mm in Pakruojis district (Bukantis, 2001). No month of a year could be
described as “an average month” in Lithuania. This is the reason to revise the suitability of
the models that derived under climatic conditions other than Lithuanian ones. The models
using only annual amount of rainfall was analyzed in (Tamositnas et al., 2005). Considering
the peculiarities of Lithuania’s climate, the change in (Chebil et al., 1999) model was made.
This new model for the electromagnetic wave attenuation due to rain medium in
atmosphere for the first time has been presented in (Tamo$itnas et al., 2006). Calculation of
radio wave attenuation due to rain using annual precipitation and heavy rainfall data is
described in (Zilinskas et al., 2006). The heavy rainfall events and showers with
thunderstorms occur during the warm season (from May to September) in Lithuania.

2.1.2 Integration time

As was mentioned above, the R-values are expressed in [mm-h-1]. However, time intervals
between the readings of rainfall amount in many cases must be much shorter. Those
intervals are called the integration time 7. In (Ivanovs & Serdega, 2006; Tamogitnas et al,
2007; Tamositnaité et al., 2010a) it was mentioned, that the period of time between the
readings of the rainfall amount values is a very important parameter, because it can
significantly change the R-value. High R-values “hides” when 7 is long.
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Consider an example. There were raining. The duration of the rain was 5 minutes. The total
amount of the precipitation was 5 mm. It did not rain during remaining 55 minutes of one
hour. Thereby, if we would count the average R-value for that hour (7 =60 min.), it would
be equal to 5 mm-h-1. But if we would count the R-value for every minute of that hour, we
would find that R-values are much higher. Consider that in every of those 5 rainy minutes
the amount of the precipitation was 1 mm. Consequently, for each of those 5 minutes the R-
value would be 60 mm-h-1. That is why the average R-values are unreliable.

In Lithuania, the 7 values must be as small as possible (Tamositinaité et al., 2010a).

2.1.3 “One-minute” rain rate

Almost all rain attenuation methods require “one-minute” rain rate value. The “one-
minute” rain rate value R min) is expressed in [mm-h-1]. R(; min)-value can be defined as the
R-value for 0.01% of time of the year, obtained using the rainfall amount value, which was
measured in 7 =1 min and multiplied by 60 (Karasawa & Matsudo, 1991).

However, in many instances data collection is oriented toward agricultural and hydrological
purposes, for which annual, monthly, daily, and less commonly, 3- and 6-hourly totals are
collected. Therefore the models for conversion of R(; min)-values into R min)-values are used.
A review of models for estimation of 1 min rainfall rates for microwave attenuation
calculations are presented in (Tattelman & Grantham, 1985).

One of such conversion models was presented in (Moupfouma &Martin, 1995):

R(l min) = (R(r min.))d @

d=0.9877%%" ®
where R in) is the “one-minute” rain rate value, R, ) is the rain rate value measured
in 7 minutes (7 >1 min.).
In (Zilinskas et al, 2008) another model (4) for calculation of the R

presented. That model was derived on the basis of model presented in (Rice & Holmberg,
1973) in accordance with the peculiarities of Lithuanian climate.

1min) “vValue was

1n(0.0144@}

Ry . \=
(1 min.) 0.03

“)

where My,_;x is amount of rainfall which precipitated in May-September, ¢ is the number of
hours in a year when the value of rain rate could be equal or exceed the R i, -value.

According to data that was collected in Lithuanian weather stations and (4) formula, the

average Ry, -value for Lithuanian territory was calculated. That value is 60.23 mm-h-.

This value is double the value, which is suggested by ITU-R (Tamositanaiteé et al., 2010a).
According to (1) formula, the values of coefficients a and b (presented in Freeman, 2007), and

the value of R i) = 60.23 mm-h, the dependency of the average specific electromagnetic

wave attenuation due to rain, a, on the operating frequency f was estimated. The results are
shown in Fig. 1.
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Fig. 1. The dependency of the average specific electromagnetic wave attenuation due to rain
a on the operating frequency f, in Lithuania.

2.1.4 Worst month statistics

The “Worst-month” model was proposed by ITU-R in (Rec. ITU-R P.481-4, 2005). This
model is a supplement of the “One-minute” models, which were explained above. In “One-
minute” models a lot of precipitation data must be collected and calculated. Furthermore,
majority of those models are appropriate only in cases when the reliability of the radio wave
system must be equal 99.99%. The main advantage of the “Worst-month” model is that only
the worst-month statistics must be collected. Furthermore, the “Worst-month” model is
appropriate in cases when the required reliability of the radio system is other than 99.99%.
The worst-month is the month (or 30 days period) from a year (or twelve consecutive
calendar months), during which the threshold is exceeded for the longest time. This month
is not necessarily the same month in different year. The fraction of time when the threshold
value of rain rate (so, and rain attenuation value) was exceeded is identical to probability
that the threshold value of rain rate would be exceeded (Crane, 1996).

The average annual worst-month time percentage of excess, pm, is proportional to the
average annual time percentage of excess, p, in such relation:

Pm =Qp ©)

where Q is the conversion factor; pm [%] and p [%] must refer to the same threshold levels
(the same rain rate value).

The conversion factor Q is a two-parameters (Q1, ff) function of p. In most cases a high
reliability of the radio system is required (p <3 %). Then Q can be expressed as (Rec. ITU-R

P.481-4, 2005):

Q= Qleﬁ (6)
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For global planning purposes the following values of the parameters Q; and  may be used:
Q; =285 and £=0.13 (Rec. ITU-R P.481-4, 2005).

For global rain rate applications, the following values for the parameters Q; and ff should be
used: Q; =2.82 and B =0.15, for tropical, subtropical and temperate climate regions with

frequent rain; Q; =4.48 and S =0.11, for dry temperate, polar and desert regions. Yet ITU-

R recommends that more precise values of Q; and ff should be used where possible.
Since

_Pm @)
"~Q
and (6), consequently:
1 1
ey ) 8
P ) P ®)
Mark i =g and b =¢, then:
o 1-8
p=ars )

According to (2), (3) and annual data, the relation between p and R, can be found.

1 min.
This relation could be compared to the relation calculated according to (8) and ITU-R
suggested Q; and g values. According to Lithuanian climate, the values Q; =2.82 and
£ =0.15 should be appropriate.

For example, we evaluated the “Worst-month” model in Vilnius, the capital of Lithuania.
The results are shown in Fig. 2. As can be seen, the values Q; =2.82 and £=0.15 are

04 ¢
p (%) i
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— = = p(calculated values)
p (corrected values)
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Fig. 2. The correlation between the real, calculated and corrected values of p (in Vilnius).
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appropriate only in cases when R ) >38 mm-hl. When R

calculated values are apparently distant from the real values. Therefore, the values of Q; and
p must be corrected. The best correlation is when in (6) there are g=0.5 and £=1.03.

1 min. 1 min.) <38 mm.h_ll the

Consequently, the corrected Q1 and ff values should be Q; =2 and £ =0.03. But still, as can
1min) <30 mm-h-l.
) > 34 mm-hl, the values Q; =282 and £=0.15 are more
proper than Q; =2 and B=0.03. As aresult, in cases when R 1) <34, the values Q; =2
and £ =0.03 should be used, and in cases when R ;) >34 mm-h7, the ITU-R suggested
values Q; =2.82 and f=0.15 may be used.

be seen in Fig.2, the corrected values are only correct when R

Furthermore, when Rg pin,

3. Attenuation due to clouds

The effect of rain attenuation is greater than that of clouds in many cases, but clouds occur
more often than rain. In clouds, water droplets are generally less than 0.01 cm in diameter
(Freeman, 2007). In (Altshuler & Mart, 1989), it was mentioned that cloud attenuation was
primarily due to absorption by the cloud droplets, and scattering losses were secondary.
With increase in operating frequency the attenuation due to clouds also increases, but as the
temperature of the clouds decreases the attenuation value increases (Sarkar et. al., 2005).

On average, the clouds cover more than 50% of the territory of Lithuania. According to the
data of its weather stations, November and December are the cloudiest months. The clearest
sky is in May and June. There are about 100 overcast days in the year.

3.1 Liquid water content

The liquid water content M is one of the most important parameters of the clouds. M
describes the mass of water drops in the volume units of the cloud. It has been mentioned in
(Freeman, 2007) that the specific cloud attenuation o [dB/km] is a function of the liquid

water content M [g/m3], the frequency f, and the temperature within the cloud T. The
measurements of M at a point in space or averaged over a radio wave path are very
complicated. Direct methods for measuring M consists of extracting a known volume
through a cotton pad or of rotating cups in an impeller apparatus, both to be weighed; also,
resistance changes can be measured with a hot wire probe attached to an aircraft flying
through clouds (Liebe et al., 1989). The liquid water content in the cloud varies in a wide
range. In most of the cloud attenuation models, it is required to know the value of M.

The climate conditions (humidity, temperature, etc.) and cloud morphology are different
over various localities of several regions; accordingly, the liquid water contents differ within
the clouds as well. This factor must be considered when analyzing rain attenuation and
cloud attenuation. Our first attempt to determine the specific cloud attenuation under the
Lithuanian climatic conditions is presented in (TamoS$itnaité et al., 2008; Zilinskas et al.,
2008). The humid weather predominates over the year in Lithuania.

3.2 Calculation of the specific cloud attenuation

The specific cloud attenuation is a function of clouds’ liquid water content and a coefficient,
which is a function of frequency and temperature. In this case, the main problem is the value
of clouds’ water content, because the direct measurements at a point in space are
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problematic. In cases when such data is unavailable, models that require only the
meteorological parameters, measured at ground level, can be used. These models are based
on the fact that the condensation is possible when the water vapour concentration exceeds
the saturation density at the temperature, which is prevailing at that height. The water
vapour density can be estimated from the humidity measurements carried out at ground
level. The cloud’s water content value can be estimated as the difference between water
vapour concentration and saturation density at cloud temperature. The specific cloud
attenuation is, unlike the case of rain, independent of drop-size distribution (Freeman,
2007). Several cloud attenuation models were developed. In (Freeman, 2007), the specific
cloud attenuation was expressed as the function of liquid water content M:

ac =KeM (10)

where Kc is the attenuation constant.

The attenuation constant Kc is the function of frequency f and temperature T. The values of
Kc for pure water droplets are presented in (Freeman, 2007). The values of Kc for salt-water
droplets (over the sea and ocean surfaces) are higher. The necessity to know M value is
limiting the direct use of relationship (10).

Often there are no possibility to measure the liquid water content and temperature within
the clouds. In such cases the methods that require only meteorological parameters measured
at the ground level may be used. The basic idea of such models (Dintelmann &Ortgies, 1989)
is that the water vapour in the atmosphere would lead to the formation of clouds whenever
there would be a possibility for condensation at some height I above ground level. There is
also mentioned that the condensation is possible when the water vapour density p exceeds
the saturation density ps at temperature T prevailing at that height. It is assumed that the
water vapour density p can be estimated from humidity measurements carried out at
ground level.

The height at which cloud exists is very important for accurate determination of results of
attenuation due to clouds (Sarkar et al., 2005). It was assumed in (Ito, 1989, as cited in
Dintelmann &Ortgies, 1989) that clouds are created starting in the vicinity of the height F,
and & [km] follows ground temperature Ty [K] as:

h=0.89+0.165(T, —273) . (11)

Relation (11) is based on analysis of temperature profiles in rain and on the Aerological Data
of Japan and we have specified the applicability of this relation in the territory of Lithuania.
The condensed water content M is estimated as the difference between p and saturation
density ps at cloud temperature (Dintelmann & Ortgies, 1989):

M:p_ps (12)

where p; [g/m3] is the saturated vapour density.

It is assumed that clouds are formed when M >0. As mentioned above, the determination of
the water content value M is complicated. Its values differ in each group of the clouds (the
clouds are grouped according to their shape, height, and structure). In our calculations, the
main problem was determination of M. According to (Dintelmann & Ortgies, 1989), the
values of water vapour density p at the height  can be estimated from the equation of state,
assuming an adiabatic process:
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K
pofulofy K= pgh <t (13)
T xk  RT,

where py is the water vapour density at the ground level, Ty is the ground level temperature,
T is the absolute temperature in the vicinity of /i, denotes the specific heat ratio which is 4/3
for the water vapour molecule, i is the water molar mass, g is the acceleration due to
gravity, h is the height, and R is the fundamental gas constant. The values of py can be
determined by using known relations (Freeman, 2007).

We assume that the clouds are created starting in the vicinity of the height h. We determine
the values of h by using relation (11) or the data of the dew point temperature, temperature
at the ground level, and the temperature gradient of 6.5°C/km (Rec. ITU-R P. P.835-3, 2004).

The values of I obtained here we compared to the cloud base height values measured at the
weather stations (see Table 1). The analysis of the cloud cover over the localities of Lithuania
data shows that the relationship (11) can be used only in the cases when the middle or high
clouds are formed over those localities.

Cloud base height Cloud base height
To [K] (data of weather (equation 11)
stations)
280.1 0.6-1.0 2.06
280.1 2.0-2.5 2.06
280.4 2.0-2.5 2.11
281.5 2.0-2.5 2.29
281.6 2.0-2.5 2.31
282.6 2.0-2.5 2.47
284.4 2.0-2.5 2.77

Table 1. Temperature at the ground level and the values of the cloud base heights (data of
weather station) in Vilnius in April 2007, as well as the height /1 determined using equation
(8) (Tamositnaite et al., 2008).

4. Attenuation due to fog

The influence of the fog on the attenuation of the electromagnetic waves can to lead to the
perturbation of the wireless communication. In (Chen et al., 2004), it was mentioned that fog
may be one of dominant factors in determination of the reliability of millimeter wave
systems, especially in coastal areas, where dense moist fog with high liquid water content
happen frequently. Fog results from the condensation of atmospheric water vapour into
water droplets that remain suspended in air (Freeman, 2007). Moist fog frequently appears
over the localities of Lithuania (Tamosiunas et al., 2009). There are several meteorological
mechanisms for determination whether fog will form and of degree of its intensity. The
physical mechanism of the formation of the fog can be reduced to three processes: cooling,
moistening, and vertical mixing of air parcels with different temperatures and humidity
(Duynkerke et al.,, 1991). All three processes can occur, although one meteorological
mechanism may dominate. This circumstance leads to the different types of the fog. In
(Galati et. al., 2006), the fog is classified in four types: strong advection fog, light advection
fog, strong radiation fog, and light radiation fog.
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The calculation methods for determination of fog attenuation are used in many cases. The
propagation properties for microwave and millimeter-wave frequencies at the foggy air
conditions were examined in (Liebe et. al, 1989). The values of the specific attenuation were
derived from a complex refractivity based on the Rayleigh absorption approximation of
Mie’s scattering theory. In (Liebe et. al, 1989), the particle mass content and permittivity,
which depends on the frequency and the temperature, were key variables. Attenuation due
to fog is a complex function of the particle size distribution, density, extent, index of
refraction, and wavelength (Altshuler, 1984). Normalized fog attenuation directly, given
only the wavelength and fog temperature is presented in (Altshuler, 1984):

A =-1.347+0.03724 + % —-0.022T, (14)

where A is attenuation in [(dB/km)/(g/m3)], A is wavelength in [mm)], ¢ is temperature in
[°C]; the relation (14) is valid only for 3 mm< 1 <3 cm and -8°C< T < 25°C.

It was mentioned in (Altshuler, 1984], that the total fog attenuation could be obtained by
multiplying the normalized attenuation by the fog density in [g/m3] and the fog extent in
[km]. In (Zhao &Wu, 2000), it was mentioned that fog is often characterized by the visibility
and the visibility is defined as the greatest distance at which it is just possible for an
observer to see a prominent dark object against the sky at the horizon.

Attenuation due to fog can be expressed in terms of the water content M, and the
microstructure of the fog can be ignored (Galati et al., 2000). In (Altshuler, 1984), the
empirical formula for fog visibility as a function of fog density was derived:

V =0.024M 0 (15)

where V is the visibility in [km] and M is the liquid water content in [g/m?3].

It was mentioned in (Altshuler, 1984), that the empirical formula (15) is valid for drop
diameter between 0.3 pm and 10 pm. For the case of dense haze or other special type fogs, it
is recommended to replace the coefficient 0.024 with 0.017 (Altshuler, 1984). If the visibility
data are available, but the fog density data are not available, the following expression may
be used (Altshuler, 1984):

1.54

In (Chen et al., 2004; Galati et al., 2006; Recommendation ITU-R PN 840-4, 2009), based on
the Rayleigh approximation, the specific attenuation due to the fog o has been written
as:

gog = KM [dB/km], 17)
where K is specific attenuation coefficient.

K = 6.0826-10~4 f—1.8963 (78087001565 f-3.073010™* f* (18)

where 0 =300/T, fis frequency, and T is temperature [K].
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V, km M, g/m3
0.1 0.111
0.2 0.038
0.3 0.020
0.5 0.010
1.0 0.003

Table 2. The values of visibility V measured in the localities of Lithuania and the values of
fog water content M (Tamosiunas et al., 2009).

The values of the visibility measured in the localities of Lithuania and the values of fog
water content M determined using (16) are presented in Table 2. The highest value of the
specific fog attenuation determined using M-data presented in Table 2 was 0.59 dB/km.

In (Naveen Kumar Chaudhary et al., 2011), it was concluded, that the link reliability can be
improved by increasing the transmission power or using high gain directional antennas in
the cases when the foggy conditions occur and the visibility is less than 500 meters. For the
same value of visibility, the fog attenuation decreases when the temperature increases
(Naveen Kumar Chaudhary et al., 2011).

5. Radio refractive index and its variability

The atmospheric refractive index is the ratio of the velocity of propagating electromagnetic
wave in free space and its velocity in a specific medium (Freeman, 2007). The value of the
atmosphere’s refractive index is very close to the unit. Furthermore, changes of the
refractive index value are very small in time and space. In the aim to make those changes
more noticeable, the term of refractivity is used. It is a function of temperature, atmospheric
pressure and partial vapour pressure. The value of the refractivity is about million times
greater than the value of refractive index.

In design of the radio communication networks, it is important to know the atmospheric
radio refractive index. The path of a radio ray becomes curved when the radio wave
propagates through the Earth’s atmosphere due to the variations in the atmospheric
refractivity index along its trajectory (Freeman, 2007). Refractivity of the atmosphere affects
not only the curvature of the radio ray path but also gives some insight into the fading
phenomenon. The anomalous electromagnetic wave propagation can be a problem for
radars because the variation of the refractive index can induce loss of radar coverage
(Norland, 2006). In practice, the propagation conditions are more complicated in
comparison with the conditions predictable in design of radio system in most cases.

The anomalous propagation is due to the variations of the humidity, temperature and
pressure at the atmosphere that cause variations in the refractive index (Norland, 2006). The
climatic conditions are very changeable and unstable in Lithuania (Pankauskas & Bukantis,
2006). The territory of Lithuania belongs to the area where there is the excess of moisture.
The relative humidity is about 70% in spring and summer while in winter it is as high as 85
- 90% (Bagdonas & Karalevic¢iene, 1987). Lithuanian climate is also characterized by large
temperature fluctuations. Difference between the warmest and coldest months is 21.8°C
(Pankauskas & Bukantis, 2006). It was noted in (Priestley & Hill, 1985; Kablak, 2007) that
even small changes of temperature, humidity and partial water vapour pressure lead to
changes in the atmospheric refractive index. In (Zilinskas et al., 2008), the measurements of
these meteorological parameters were analyzed in the different time of year and different



168 Electromagnetic Waves

time of day. The values of the refractive index have been determined by using measured
meteorological data. In (Zilinskas et al., 2010), it was mentioned that seasonal variation of
refractivity gradient could cause microwave systems unavailability.

5.1 Calculation of radio refractivity

As mentioned above, the value of the radio refractive index, #, is very close to the unit and
changes in this value are very small in the time and in the space. With the aim to make those
changes more noticeable, the term of radio refractivity, N, is used (Freeman, 2007; Rec. ITU-
R P. 453-9, 2003):

N=(n-1)-10°. (20)
According to the recommendation of ITU -R (Rec. ITU-R P. 453-9, 2003):

77.6 e
N=——|p+4810— 21
T [P Tj (21)

where T [K] is a temperature; p [hPa] is the atmospheric pressure; e [hPa] is partial water
vapour pressure. The refractivity is expressed in N - units.

It was mentioned in (Freeman, 2007; Rec. ITU-R P. 453-9, 2003), that expression (21) may be
used for all radio frequencies; for frequencies up to 100 GHz, the error is less than 0.5%.
There are two terms (the “dry term” and the “wet term”) in relationship (21).

The values of the refractivity N in Lithuania were determined by using (21). The data of
temperature, humidity, and atmospheric pressure were taken from a meteorological data
website (http:/ /rp5.ru).
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Fig. 3. The dependences of average N- values on the time of day in cities of Lithuania:
Vilnius (curve 1), Mazeikiai (curve 2), Kaunas (curve 3), and Klaipéda (curve 4) in July 2008
(Valma, et al., 2010).

The dependences of average N-values on the time of day in cities of Lithuania are presented
in Fig. 3. As can be seen, the behaviours of those dependences at the diurnal time are similar
in all localities that are situated in the Continental part of Lithuania (Vilnius, Kaunas and
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Mazeikiai) and slightly different in Seacoast (Klaipéda). The climate of Klaipéda is moderate
and warm (Pankauskas &Bukantis, 2006; Zilinskas et al., 2008). The climate of Continental
part of Lithuania is typical climate of the middle part of the Eastern Europe. This may
explain the difference between the daily variations of N in Klaipéda and in other localities
analyzed here. In Lithuania, the highest N-values were in July.

6. Conclusions

The main models for calculation of electromagnetic wave attenuation due to atmosphere
humidity were revised. In Lithuania, when the reliability of the radio system of 99,99% is
required, the R p,)-value is Ry ) =60.23 mm/h. It is twice the ITU-R recommended

1 min.
value. The dependency of the average specific electromagnetic wave attenuation due to rain
on the operating frequency (0-100 GHz) was determined. The attenuation of horizontally
polarized electromagnetic waves is greater than the attenuation of vertically polarized
electromagnetic waves. In cases when the required reliability of the radio system is other
than 99,99%, the “Worst-month” model can be used. However, for small R 1) -values the

parameters of that model should be corrected. In Vilnius, the city of Lithuania, when
R y >34 mm/h, ITU-R recommended values Q; =2.82 and S=0.15 could be used. In

cases when R ) <34 mm/h, the corrected values Q; =2 and £=0.03 are more

1 min.

1 min.
appropriate.

The main problem of models for calculation of electromagnetic wave attenuation due to
clouds and fog is the required value of liquid water content. In Lithuania it is impossible to
gather such meteorological information. Therefore, models excluding or calculating the
liquid water content were revised. The variations of the atmospheric humidity, temperature
and pressure can cause the fluctuations of the atmospheric refractive index. In Lithuania, the
atmosphere refractive index fluctuates most in July. The variations of N in diurnal time are
similar in all localities that are situated in the Continental part of Lithuania and slightly
different in Seacoast.
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1. Introduction

The majority of natural materials (rocks, soil, wood, etc.) are inhomogeneous and have a
complex structure. Very often they are conglomerates or aggregates, i.e. made of small
grains stuck together. This is especially typical for planetary aerosols and all types of
cosmic dust (interstellar, circumstellar, interplanetary, cometary, etc.). Cosmic dust,
specifically, cometary will be the main test object for this paper. This is related to the fact
that cosmic dust is usually studied through remote sensing, specifically through the study of
electromagnetic waves it scatters and emits. Due to this, the field of light scattering by
cosmic dust has always been at the frontier of the study of interaction of electromagnetic
waves with non-spherical and inhomogeneous particles. It has inspired publication of the
scholarly books by van de Hulst (1957), Schuerman (1980), Kokhanovsky (2001), Hovenier et
al. (2004), Voshchinnikov (2004), Borghese et al. (2010), and Mishchenko et al. (2000, 2002,
2010) and numerous book chapters, e.g., Mukai (1989), Lien (1991), Gustafson (1999),
Gustafson et al. (2001), Kolokolova et al. (2004a, b).

To consider the scattering of electromagnetic waves by an object of complex structure, we
will determine this object as a configuration of discrete finite constituents. They will be
called inclusions in the case of inhomogeneous particles, or monomers in the case when they
are constituent particles of an aggregate. Their volume is large enough that we may ignore
their atomic structure and characterize their material by a specified complex refractive
index, m=n+ik, whose real part is responsible for the refraction and imaginary part for the
absorption of the light by the material. The surrounding medium is assumed to be
homogeneous, linear, isotropic, and, in the case of aggregates, non-absorbing. Although we
discuss some approximations, our consideration is based on the Maxwell equations fully
describing the interaction of the electromagnetic radiation with the material. The non-linear
optical effects, non-elastic scattering, quickly-changing illumination and morphology of the
scattering object are beyond the scope of our study.

As mentioned above, our test example will be cosmic dust that typically can be presented as
aggregates of submicron monomers. In the optical wavelengths they are good
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representatives of inhomogeneous particles with inclusions of size comparable with the
wavelength, more exactly of size parameter x=2ma/A\> 1 where a is the radius of the
monomers and 1 is the wavelength. The main light scattering characteristics that we use in
our consideration are intensity (the first Stokes parameter, I) and linear polarization, P. The
latter we describe as P=Q/I where Q is the second Stokes parameter; P>0 when the scattering
plane is perpendicular to the polarization plane and P<0 when the scattering plane coincides
with the polarization plane. We ignore the third Stokes parameter U since in the vast
majority of the observational data the third Stokes parameter is equal to zero. We mainly
consider how electromagnetic scattering affects phase curves, i.e. dependences of I and P on
the phase angle, a, i.e. the angle source-scatterer-observer. It is related to the scattering angle
as 180°- a. The phase curves typical for cosmic dust are presented in Fig. 1.1. Their major
features that we will discuss later are forward and back scattering enhancements in the
intensity phase curve and negative polarization at small phase angles. In Section 5 we also
briefly consider spectral dependence of the intensity and polarization and circular
polarization defined as V/I where V is the fourth Stokes parameter. All the ideas considered
below can be easily extended to the case of other complex particles or media with
inhomogeneities characterized by x>1.
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Fig. 1.1. Typical phase curves of intensity (left) and polarization (right) for cosmic dust.
Intensity is normalized to the value at 180°. Notice forward and back scattering
enhancements in the intensity curve and a negative polarization branch in the polarization
curve at small phase angles.

In Sections 2-4 we consider main interactions between constituents of a complex particle
and describe the conditions and consequences of these interactions. The focus of our
consideration is how the electromagnetic interactions change as the constituents (e.g.
monomers in aggregates) become more closely packed. In Section 5 we discuss the results
of rigorous computer simulations of the electromagnetic interactions. The simulations are
illustrated by the results of computer modeling of light scattering by aggregates. For the
modeling, we use the T-matrix approach for clusters of spheres by Mackowski &
Mishchenko (1996) that, being a rigorous solution of the Maxwell equations, allows us to
account for all physical phenomena that occur at the light scattering by aggregates of
small particles, including far-field and near-field effects, and diffuse and coherent
scattering.
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2. Electrostatic approximation: Effective medium theories

An extreme case of electromagnetic interaction between constituents of a complex particle
occurs when this interaction can be considered in the electrostatic approximation. This
consideration works when a complex particle can be represented as a matrix material that
contains inclusions and both the size of the inclusions and distances between them are much
smaller than the wavelength. This approach implies that the inhomogeneous particle is
much larger than the inclusions and can be considered as a medium. Such a medium can be
presented as homogeneous and characterized by some “effective” refractive index whose
value can be found if refractive indexes of the matrix and inclusion materials are known.
Such an approach to the complex particles (or media) is called mixing rules or effective
medium theories. After the effective refractive index is found, it can be used to model the
material of the particle whose size and shape correspond to the macroscopic particle and
then consider scattering of radiation by such a macroscopic particle as if it is homogeneous.
Numerous mixing rules have been developed for a variety of inclusion types (non-Rayleigh,
non-spherical, layered, anisotropic, chiral) and their distribution within the medium
including aligned inclusions and fractal structures (see, e.g., Bohren & Huffman, 1983;
Sihvola, 1999; Choy, 1999; Chylek et al., 2000). However, still the most popular remain the
simplest Maxwell Garnett (1904) and Bruggeman (1935) mixing rules. The Maxwell Garnett
rule represents the medium as inclusions embedded into the matrix material and the result
depends upon which material is chosen as the matrix. The Bruggeman rule was obtained for
a conglomerate of particles made of materials with the refractive indexes of inclusions and
matrix embedded into the material with the effective refractive index. This formula is
symmetric with respect to the interchange of materials and can be easily generalized for the
n-component medium.

As we mentioned above, the derivation of the mixing rules is based on an assumption that
the external field is an electrostatic one, which requires the inclusions to be much smaller
than the wavelength of electromagnetic wave. More exactly, the criterion of the validity of
effective medium theories is xRe(m)<<1 (Chylek et al., 2000) where x is the size parameter of
inclusions and Re(m) is the real part of the refractive index for the matrix material.
Comparison of effective medium theories with more rigorous calculations, e.g. those that
use Discrete Dipole Approximation, DDA (Lumme & Rahola, 1994; Wolff et al., 1998;
Voshchinnikov et al., 2007; Shen et al., 2008), and experiments (Kolokolova & Gustafson,
2001) show that even for xRe(m) ~1 effective medium theories provide reasonable results.
The best accuracy can be obtained for cross sections and the worst for polarization,
especially at phase angles smaller than 50° and larger than 120°.

There were a number of attempts to consider heterogeneous grains using effective-medium
theories, particularly to treat cosmic aggregates as a mixture of constituent particles
(inclusions) and voids (matrix material) (e.g. Greenberg & Hage, 1990; Mukai et al., 1992; Li
& Greenberg, 1998b; Voshchinnikov et al., 2005, 2006). In the visual these aggregates with
the monomer size parameter of x >1 are, most likely, out of the range of the validity of the
effective medium theories. However, for the thermal infrared, cosmic aggregates can be
treated with the effective medium theories if they are sufficiently large; remember, that the
macroscopic particle should be large enough to allow considering it as a medium.

If the distance between inclusions becomes larger than the wavelength, the electrostatic
approximation should be replaced by the far-field light scattering (see Section 3). If the
inclusions or monomers in aggregates become comparable or larger than the wavelength i.e.
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the criterion xRe(m)<1 is violated, cooperative effects in electromagnetic interaction between
the inhomogeneities become dominating. To account for them one needs to consider
rigorously the interaction of electromagnetic waves that occurs in such complex objects
counting on the near-field effects (Section 4).

3. Far-field light scattering

The fundamental solution of the Maxwell equations as a harmonic plane wave describes the
energy transfer from one point to another. The plane electromagnetic wave propagates in
the infinite nonabsorbing medium with no change in intensity and polarization state. The
presence of a finite scattering object results in modification of the field of the incident wave;
this modification is called the electromagnetic scattering.

If the scattering object (e.g., particle) is located from the observer at such a distance that the
scattered field becomes a simple spherical wave with amplitude decreasing in inverse
proportion to the distance to the scattering object, the equations describing the scattered
field become much simpler. This is the so-called far-field approximation. There are several
criteria of this approximation (e.g., Mishchenko et al., 2006, Ch. 3.2): 2ri(R-a)/\ >>1, R>>g,
and R>>ma2/\, where R is the distance between the object and the observer and a is the
radius of the object. The first relation means that the distance from any point inside the
object to the observer must be much larger than the wavelength. Then, the field produced by
any differential volume of the object (the so-called partial field) becomes an outgoing
spherical wave. The second relation requires the observer to be at a distance from the object
much larger than the object size. Then, the spherical partial waves coming to the observer
propagate almost in the same direction. The third relation can be interpreted as a
requirement that the observer is sufficiently far from the scatterer so that the constant-phase
surfaces of the waves generated by differential volumes of the scattering object locally
coincide in the observation point and form an outgoing spherical wave.

If the scattering object is an ensemble of particles, it is convenient to present the total
scattered field as a vector superposition of the fields scattered by individual particles and,
thus, to introduce the concept of multiple scattering. It is worth noting that at multiple
scattering the mutual electromagnetic excitations occur simultaneously and are not
temporally discrete and ordered events (Mishchenko et al., 2010). However, the concept of
multiple scattering is a useful mathematical abstraction facilitating, in particular, the
derivation of such important theories as the microphysical theories of radiative transfer and
coherent backscattering (see below).

In some cases the scattering by a complex object can be considered in the far-field
approximation that substantially simplifies the equations that describe the scattering. The
conditions for this are the following: (1) the constituent scatterers of the complex object are
far from each other to allow each constituent to be in the far-field zone of the others, and (2)
the observer is located in the far fields of all of the constituent scatterers. Natural examples
of such objects are atmospheric clouds and aerosols.

3.1 Diffuse light scattering

The properties of the light that is scattered by an ensemble of scatterers (e.g., small particles)
only once are fully determined by the properties of the constituents. If the particles are
much smaller than the wavelength, they scatter light in the Rayleigh regime and produce



Effects of Interaction of Electromagnetic Waves in Complex Particles 177

symmetric photometric phase function with the minimum at 90° and also symmetric, bell-
shaped, polarization phase function with the maximum at 90°. For larger particles, the phase
curves demonstrate a resonant structure with several, or even numerous, minima and
maxima in both intensity and polarization depending on the size parameter of particles and
the refractive index. Nowadays, the single scattering properties can be reliably calculated for
particles of various types (e.g., Mishchenko et al., 2002).

If a complex object can be presented as a cluster of sparsely distributed particles, i.e. the far-
field requirements are satisfied, the intensity of light scattered by the object is proportional
to the number of constituents, N. While the number N and the packing density are
increasing, the effects of mutual shadowing, multiple scattering, interference, and the
interaction in the near field may destroy this dependence.

The evolution of the scattering characteristics of a cluster of separated particles with
increasing number of the constituent partciels can be illustrated with the results of model
calculations preformed with the T-matrix method for randomly oriented clusters of spheres
(Mackowski & Mishchenko, 1996). We consider a restricted spherical volume and randomly
fill it with small non-intersecting identical spheres (in the same manner as Mishchenko,
2008; Mishchenko et al., 2009a, b; Petrova & Tishkovets, 2011; see example in Fig.3.1). In Fig.
3.1 we show the absolute values of intensity and the degree of linear polarization calculated
for a single small nonabsorbing spherical particle and the volume containing different
number of such particles. There we define the intensity as F11Qs.Xy, where F11 is the first
element of the scattering matrix normalized in such a way that this quantity integrated over
all phase angles is equal to unity, Qs is the scattering efficiency of the cluster, and X, is the
size parameter of the cluster calculated from the volume of the constituents as x1N'/3.

When the number of particles in the cluster grows, the amplitude of the bell-shaped branches
of polarization decreases, and the curves of intensity in the phase interval from 20° to 150°
become flatter. If the phase curves for individual particles contained substantial interference
features typical for relatively large spheres (larger than the particles considered in the example
in Fig. 3.1), these features would be continuously smoothed with increasing packing density
(see, e.g., Mishchenko, 2008). Such a smoothing can be interpreted as a result of the increasing
contribution of multiple scattering, when many scattering events force light to “forget” the
initial direction and to contribute equally to all exit directions. This also causes the
depolarization effect, ie. the light multiply scattered by an ensemble of particles is
characterized by smaller values of polarization than the polarization of the light scattered by
an individual particle of the ensemble. This happens since the position of the scattering plane
changes at each consequent scattering, thus changing the polarization plane of the scattered
light. Multiple changes that resulted from multiple scattering by randomly distributed
particles randomize the polarization plane and, thus, lower the polarization of the resultant
light. It is remarkable that diffuse multiple scattering is unable to change the state of
polarization. As a result of this, the polarization always changes its sign at the same phase
angle as for an individual particle no matter how many particles are in the cluster (Fig 3.1).
Since the behavior of the diffuse multiple scattering in the sparse media is rather well
investigated in the framework of the radiative transfer theory, here we only recall the main
properties of the scattered electromagnetic radiation. It increases, when either the particle
size, or the number of particles in the medium, or the real part of the refractive index, or the
packing density grow. If the imaginary part of the refractive index increases, the
contribution of the radiation scattered twice predominates. The latter is partially polarized
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and can strongly depend on phase angle. For densely packed clusters or media, a study of
the scattering based on the diffuse scattering is not relevant as it lacks consideration of such
effects as shadowing and near-field interaction (see Section 4).
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Fig. 3.1. The intensity and polarization of light scattered by a single spherical particle
(dotted curve) and clusters of such particles contained in the volume of the size parameter
X=20. The values of the size parameter x; and the refractive index m of the constituent
particles and the number of particles in the volume are listed in the figure. The packing
density of the cluster (defined as p = N x43/ X3) grows from 0.1% to 10% (for N=1 and 100,
respectively). An example of the cluster is shown on the right.

Numerous computations have shown that the light-scattering characteristics of aggregates
substantially differ from those of a cluster of separated monomers and change if the
structure and porosity of the aggregates change (West, 1991, Lumme & Rahola, 1994;
Kimura, 2001; Kimura et al., 2003, 2006; Mann et al., 2004; Petrova et al., 2004; Tishkovets et
al., 2004; Mishchenko & Liu, 2007; Mishchenko et al., 2007; 2009a; 2009b; Zubko et al., 2008;
Okada & Kokhanovsky, 2009; and references therein). These changes cannot result from the
diffuse multiple scattering between the aggregate monomers, which can only suppress the
resonant features typical for the phase function of constituents and depolarize the scattered
light. The specific shape of the phase curves shown in Fig. 1.1 is caused by more complex
cooperative effects.

A striking feature in the intensity phase curve in Fig 1.1 is a strong increase of the intensity as
the phase angles become larger than 160°. Development of such an increase with increasing
number of the particles in the volume is evident in the plots shown in the left panel of Fig. 3.1.
This strong forward scattering enhancement is caused by constructive interference of light
scattered by the particles in the exact forward direction. In this direction, the waves scattered
once by all the particles are of the same phase (if the particles are identical) irrespective of the
particle positions (see Bohren &Huffman, 1983; Section 3.3). The oscillating behavior of the
intensity curves in the forward scattering domain also points to the interference nature of this
feature. In the absence of multiple scattering, this interference would result in an increase of
intensity by a factor of N(N —1) as compared to the scattering by a single particle or by a factor
of N2, if the non-coherent single scattered components are taken into account. Such an increase
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is really observed, when the packing density is small. However its development slows down
with increasing packing density and practically stops, when the packing density exceeds
approximately 15%. Such a behavior results from the fact that the incident light exciting a
particle gets attenuated by its neighbors. This effect finally leads to the exponential extinction
of light considered in the radiative transfer theory. The polarization caused by the single
scattering interference in the forward scattering region is the same as that for the constituents,
if they are identical.

One more interesting feature starts to develop in the intensity phase curve when the number
of particles in the volume grows. This is the enhancement toward zero phase angle, which
becomes noticeable at N=50 at phase angles smaller than 15°. It is accompanied by a change in
the polarization state at small phase angles. These features are a typical manifestation of the
coherent-backscattering (or weak-localization) effect, which is considered in the next section.

3.2 Coherent backscattering effect

The enhancement of intensity that started to emerge in the backscattering domain (Fig. 3.1),
when the packing density approached 5%, is a frequent feature of the phase curves of many
scattering objects observed in laboratory (particulate samples) or in nature (regolith
surfaces). This is the so-called brightness opposition effect. Explanation of its origin is
illustrated in Fig. 3.2a (see Mishchenko et al., 2006 and references therein). The conjugate
waves scattered along the same sequence of particles in the medium but in opposite
directions interfere, and the result depends on the respective phase differences. For any
observational direction far from the exact backscattering, the average effect of interference is
negligible, since the particle positions are random. However, at exactly the backscattering
direction, the phase difference is always zero and, consequently, the interference is always
constructive, which causes the intensity enhancement to the opposition. This effect is called
coherent backscattering.

Interference in the backscattering direction may manifest itself in one more effect: it may
lead to appearance of a branch of negative polarization at small phase angles (the so-called
polarization opposition effect). This effect is schematically explained in Fig. 3.2b (also see
Shkuratov, 1989; Muinonen, 1990; Shkuratov et al., 1994; Mishchenko, 2008). Particles 1-4 are
in the plane perpendicular to the direction of the incident nonpolarized light. The particles 1
and 2 are in the scattering plane, while particles 3 and 4 are in the perpendicular plane. Let
us assume that the particles are small relatively to the wavelength. Then they scatter light in
the Rayleigh regime; the radiation scattered by such a Rayleigh particle is positively
polarized for all phase angles. For the light scattered by the pair of particles 1-2, the
resultant polarization keeps the polarization plane of the single scattering, i.e. it stays
positive. However, the light scattering by the pair 3-4 occurs in the plane perpendicular to
the resultant scattering plane; this makes the light scattered by this pair polarized in the
scattering plane, i.e. negatively. The phase difference between the waves passing through
particles 3 and 4 in opposite directions is always zero, while for particles 1 and 2 such phase
difference is zero only at exactly the backscattering direction and quickly changes with
changing the phase angle. Consequently, the conditions for negative polarization of the
scattered light are on average more favorable in a wider range of phase angles than those for
positive polarization. This forms a branch of negative polarization with the minimum at a
phase angle whose value is comparable with the width of the brightness peak of coherent
backscattering. Since only definite configurations of particles contribute to this effect,
polarization opposition effect is less strong than the opposition effect in intensity.
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(a) (b)

Fig. 3.2. Schematic explanation of the coherent backscattering effect (from Mishchenko,
2009a, b).

An example of such a behavior is shown in Fig. 3.3. It is seen that the formation of the
intensity enhancement at small phase angles is accompanied by development of a negative
polarization branch as the number of particles in the ensemble grows. Notice that the effect
results from the fact that the polarization of the single-scattered light is positive. If the
polarization of the single scattered light is negative, the interference results in positive
polarization. If the polarization of singly scattered light changes its sign at a specific
scattering angle, the interference leads to a complex angular dependence of polarization for
the ensemble of scatterers as seen in Fig. 3.1.

In the interference presentation of the brightness and polarization opposition effects it was
clearly assumed that the scatterers are in the far-field zones of each other, since some phase
and polarization are attributed to the wave scattered by one particle and exiting the other
one. However, recently it has been demonstrated that the conclusion on the interference
nature of the opposition effects remains also valid for more closely packed media. In Fig. 3.4
we present some results obtained by Mishchenko et al. (2009a, b). They examined the
influence of the packing density on the opposition phenomena in order to determine the
range of applicability of the low-packing density concept of the coherent backscattering
theory to densely packed media. As in the previous example, the ensemble of varying
packing density was enclosed in a spherical volume of size parameter X (shown on the right
of Fig. 3.4). When the number of particles in the volume of X=40 grows (N=500 corresponds
to the packing density p=6.25%), the opposition peak grows, and the branch of negative
polarization becomes deeper (Fig. 3.4 a-b). At the same time, the angular width of the
opposition peak (determined as the angular position of the point, where the curve changes
its slope) and the angular position of the polarization minimum are almost the same and
remain constant with increasing number of particles. However, as the packing density
grows (in Fig 3.4c this was achieved by decreasing the volume X) the shape of the negative
branch transforms. To some value of the packing density, it is asymmetric, and its minimum
is shifted to opposition as predicted by the theory of coherent backscattering (Mishchenko et
al., 2006 and references therein). When the packing density grows up to substantial values
(Fig. 3.4c, N= 300 that correspond to p = 30%), the effects related to the interaction of
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particles in the near field become noticeable. They manifest themselves in the
transformation of the shape of the negative branch and its widening, which we discuss in

Section 4.
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Fig. 3.3. Same as Fig. 3.1, but X=15, x1=1.5, and m=1.55+i0.01. The numbers of particles in the
volume are listed in the right top corner of the polarization plot.
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Fig. 3.4 The influence of the coherent backscattering on the intensity (normalized to the
value at zero phase angle) and polarization of light scattered by ensembles of nonabsorbing
spherical monomers of x1=2 and m=1.32. Note that such individual monomers have
polarization equal to zero in the backscattering domain and positive for the other phase
angles. The size parameter of the volume X and the smallest and largest numbers of
particles are shown in the plots. The geometry of the scattering ensemble is shown on the
right. Adapted from Mischchenko et al. (2009b).
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3.2.1 Some experimental facts

The above described opposition phenomena - a nonlinear enhancement of brightness to
opposition and a negative branch of linear polarization of the scattered light - have been
observed for cosmic dust in a variety of environments (debris disks, comets, Saturn’s rings,
asteroids and satellites of planets) as well as for laboratory particulate samples. Numerous
experimental studies showed that the characteristics of these effects and their phase profiles
are undoubtedly connected with absorption and microphysical structure of the scattering
objects. In particular, it was found that a very sharp narrow brightness peak and an
asymmetric branch of negative polarization with the minimum close to zero phase angle
(less than 2°) are typical of bright and porous objects (see, e.g., the review by Rosenbush et
al, 2002). These strongly expressed manifestations of the coherent backscattering
mechanism appear due to a rather large free path of light in such a sparse particulate
medium as regolith. Since the width of the coherent peak in intensity is inversely
proportional to the free path, for extremely sparse media like atmospheric clouds this peak
should be very narrow and cannot be observed. This peak also cannot be observed for the
media that have a small restricted volume like small aggregates, especially if they are
absorbing (e.g., Etemad et al., 1987). The absence of very sharp opposition features in
aggregates and other individual particles of complex structure was confirmed by both
observations of the cosmic dust and laboratory measurements (e.g., Levasseur-Regourd &
Hadamcik, 2003; Shkuratov et al., 2004). This effect is also seen in Figs. 3.3-3.4 when the
number of monomers in aggregates is small. These particles demonstrate a moderate
increase of brightness to opposition and the branch of negative polarization with a shape
close to symmetric.

Astronomical observations also revealed that dark or densely packed media demonstrate
wider, if any, peaks of brightness near opposition and more symmetric branches of negative
polarization (e.g., Shkuratov et al., 2002; Belskaya et al., 2005). This contradicts to the theory
of coherent backscattering, which predicts that the opposition effects in brightness and
polarization have the same cause and should appear simultaneously. Moreover, since only
certain particle configurations contribute to polarization opposition effect, it might be less
pronounced than brightness opposition effect. The shadow hiding, which is usually invoked
to explain the widening of the opposition brightness peaks in dark surfaces (Lumme &
Bowell, 1981), cannot induce such a significant negative polarization of the scattered light
(e.g., Shkuratov & Grynko, 2005). Accurate consideration of the electromagnetic field in the
particle vicinity, accounting for the presence of neighbor particles in the densely packed
scattering clusters allows revealing one more scattering effect - the influence of the near
field, which is considered in the next section.

4. Near-field effects

In the case of compact aggregates/media the electromagnetic interaction becomes even
more complex, because the electromagnetic field in the close vicinity of the scattering
particle is inhomogeneous due to the lag of the wave within the particle with respect to the
incident wave. This effect is mostly expressed if the scatterer is comparable in size to the
wavelength. Direct calculations using the Lorentz-Mie theory for spherical particles show
that the constant phase surface of the total field is funnel shaped in the particle vicinity (Fig.
4.1a). Consequently, the field inhomogeneity near the particle causes a rotation of the total
field vector relatively to the incident field vector. This results in the formation of a Z-
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component of the total field that lies in the scattering plane and, consequently, reduces the
scattered intensity in the back and forward scattering regions and increases the negative
polarization (Tishkovets, 1998; Tishkovets et al., 1999; 2004a, b; Petrova et al., 2007).

To illustrate the influence of the field inhomogeneity in the vicinity of a particle, let us
consider Rayleigh test particles located on a constant phase surface near a larger particle in
its inhomogeneous zone (Fig. 4.1b). First, assume that the incident field is polarized in the
scattering plane (as shown in Fig. 4.1a). If the test particles were far from each other and
from other particles, i.e., in the homogeneous field, their dipole moments would be parallel
to the xp axis. In this case, the intensity of the light scattered by all four test particles-dipoles
would concentrate in the direction a = 0° and 180° and would be zero in the direction a =
90°. If the test particles are, however, in the inhomogeneous zone near a wavelength-sized
particle, the dipole moments induced in particles 1 and 3 have a nonzero component in the
direction of wave propagation, i.e., along the zy axis. This results in decreasing intensity of
the scattered light in the direction a = 0° and 180°, whereas the intensity in the direction a =
90° becomes nonzero. In both cases, the scattered wave is polarized the same way as the
incident one, i.e. in the scattering plane (negatively). Now assume that the incident wave is
polarized perpendicular to the scattering plane. Then particles 1 and 3 produce the radiation
that is polarized perpendicular to the scattering plane and does not depend on phase angle.
The radiation scattered by particles 2 and 4 has a component parallel to the z axis (i.e.,
polarized in the scattering plane) that depends on a. As a result, the intensity again
decreases in the directions a = 0° and 180° and increases in side directions, and polarization
gets a negative component. So, at any polarization of the incident wave, the field
inhomogeneity in the vicinity of the scattering particle induces a rotation of the field vector
and leads to appearance of Z-component of the total field, which affects the angular
distribution of the scattered intensity and causes negative polarization (for more details, see
Tishkovets, 1998; Tishkovets et al., 1999; 2004a, b; Petrova et al., 2007).

One more type of interaction of particles in the near field is the mutual shielding of particles
(Tishkovets, 2008; Petrova et al., 2009). The scheme with the test dipoles (Fig. 4.1b) helps to
estimate qualitatively the result of the shielding. For the sake of simplicity, let us assume
that at a given polarization of the incident radiation, the dipole moment of particle 1 is
oriented exactly opposite to the k. vector. In this case, particle 1 does not radiate in the ke
direction. It does not matter whether we take the shielding into account or not. When the
incident radiation is polarized in the yozo plane, in the case of ignoring the shielding, particle
1 would radiate like particle 3 or like all the particles in the homogeneous field. However,
when the large particle shields particle 1, the latter does not radiate in the a direction, i.e., its
positive polarization does not contribute to the scattered light. Thus, the shielding
diminishes the positively polarized scattered radiation and diminishes the intensity in the a
direction. However, in the backscattering direction, dipole 1 contributes to the scattered
radiation, which induces an increase in the intensity with respect to that in the a direction.
Contrary to the field inhomogeneity in the near zone, which is most noticeable for the
wavelength-sized particles, the mutual shielding effect is independent of the size of the
particles located in the near field.

Under the above described conditions the wave coming from one particle to another is not
spherical, and the single-scattering characteristics of individual monomers, such as their
phase matrix, are not applicable. In other words, in densely packed systems the scatterers
become highly dependent. The influence of the interaction in the near field on intensity and
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polarization of the scattered light can be easily demonstrated by the models, where the near-
field contribution is ignored in the calculations of the light-scattering characteristics. The
example presented in Fig. 4.2 clearly shows that the interaction in the near field substantially
diminishes the backscattering peak in intensity induced by the coherent backscattering
effect and changes the shape of the negative polarization branch.

Contrary to the coherent backscattering mechanism, the near-field effects work in a wide
angular range. In the backscattering domain they distort the manifestations of the coherent
backscattering. Their influence on polarization is rather complex and significantly depends
on the size parameter of monomers, their packing density, and the refractive index. For
example, with increasing packing density (i.e., when the near-field effects manifest
themselves more clearly), the negative branch becomes deeper and wider if the aggregate is
composed of larger monomers, while it may become shallower for smaller constituents. The
modeling experiments with particles of different properties show that the most permanent
and noticeable manifestation of the near-field effects in polarization is the shift of the
polarization minimum out of opposition (Petrova et al., 2007; 2009). In other words, while
the coherent backscattering mechanism forms the negative branch with the minimum near
zero phase angle, the interaction in the near field causes the shift of the polarization
minimum to larger phase angles and makes the negative polarization branch more
symmetric.
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Fig. 4.1. (a) The scheme shows the constant phase surfaces and directions of electric field
vectors (sum of the incident and scattered waves) in the close vicinity of a particle with
x=4.0 and m = 1.32 + i0.05. The incident wave propagates along the wave vector ko and is
polarized in the xozo plane. Adapted from Tishkovets et al. (2004a). (b) The scheme for the
scattering of inhomogeneous waves by the Rayleigh test particles 1 - 4. Particles 1 and 3 are
in the xozo plane, while particles 2 and 4 are in the yozo plane. The incident wave propagates
along the zp axis and is polarized in the xozp plane. The scattered wave propagates to the
direction of the phase angle a. The vectors at the Rayleigh particles show the directions of
the induced dipole moments. Adapted from Petrova et al. (2009).
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Fig. 4.2. The influence of the interaction in the near field on the intensity (normalized to the
value at zero phase angle) and polarization in the backscattering domain for the compact
cluster shown in the insert. Thick and thin curves present the models calculated with and
without the near-field effects respectively. Dashed curves show intensity and polarization
for the individual monomer. The parameters x1, 1, and N are shown in the figure. The data
for the figures were kindly provided by V.P. Tishkovets.

Due to their nature, the manifestations of the near-field effects can be more easily
observed in absorbing aggregates when the packing density exceeds 10-15%. One of such
examples is shown in Figs. 4.3 for the whole range of phase angles and separately for the
backscattering domain. For rather small number of monomers, the conditions for diffuse
scattering and coherent backscattering are applied. With increasing number of
monomers, the forward-scattering peak develops, the intensity profile becomes flatter,
and the polarization maximum gets depressed. Then the opposition peak in intensity
grows, and the negative branch of polarization appears. However, the opposition
features do not develop as quickly as in nonabsorbing aggregates (compare Fig. 3.4),
because the free paths become somewhat shorter when absorbing monomers are added
into the volume. Partly due to this effect, partly due to the interaction in the near field -
which becomes more important with increasing packing density - the polarization
minimum moves out of opposition. Further increase of the packing density makes the
near-field effects even more decisive. We see that the opposition peak stops to grow,
while the negative branch continues to develop; it becomes wider and deeper (the curves
for N=200).
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Fig. 4.3. Top panel: same as Fig. 3.1-3.3, but for the parameters listed in the plot. The packing

density varied from 0.1% to 20% (N changes from 1
scale for the backscattering domain; the intensity is

to 200, respectively). Bottom panel: larger
normalized to the value at zero phase angle.

5. Modeling of light scattering by aggregates

In this section we explore how the considered above phenomena associated with
electromagnetic interaction between constituents in a complex medium affect the angular and
spectral dependence of intensity and linear polarization of the scattered radiation. We show
how these results can be applied to the study of cosmic dust and other types of complex
particles. We also briefly consider how the cooperative effects affect circular polarization of
aggregates that contain optically active materials, e.g. complex organics of biological origin.
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To model electromagnetic scattering by complex dispersed systems, several methods are
now available. They are based on the numerically exact solutions of the Maxwell equations.
One of them, the so-called superposition T-matrix method (Mishchenko et al., 2002;
Mackowski & Mishchenko, 1996), was used to obtain the intensity and linear polarization of
clusters of particles discussed above. Since these computations are time and resource
consuming, they cannot be presently fulfilled for very large clusters/layers of particles, such
as regolith. Nevertheless, they allow us to obtain the scattering characteristics of aggregates
of a restricted number of monomers that are typical for cosmic dust, and to study the
dependence of the light-scattering characteristics on the size of monomers, their packing
density and refractive index.

5.1 Dependence of light scattering characteristics on the physical properties of
aggregates

Exploring the light scattering characteristics of aggregates, we continue to focus on the
dependence of intensity and linear polarization on phase angle, i.e. photometric and
polarimetric phase curves. Our goal is to find out how the phase curves depend on such
characteristics of aggregates as the size and composition of the monomers, their number and
arrangement in the aggregate. In the previous sections we were mainly interested in the
models of complex objects that allowed us to better see specific physical phenomena such as
coherent backscattering or near-field effects. This section is directed to provide a basis for
the interpretation of experimental data, specifically the observations of cosmic dust. This is
why in this section we use more realistic models of natural aggregates, namely the
aggregates grown under ballistic process (Meakin et al. 1984). There are commonly used
two types of such aggregates: Ballistic Particle-Cluster Aggregate (BPCA) that grows at
collision of individual monomers with the aggregate and Ballistic Cluster-Cluster Aggregate
(BCCA) that grows at collision of clusters of monomers. Examples of such aggregates are
shown in Fig. 5.1. Notice that BPCAs are usually more compact than BCCAs. The packing
density of ballistic aggregates is defined as the ratio of the volume taken by their monomers
to the total volume of the aggregate which is the volume of a sphere of the characteristic

radius A calculated as A2 =5/3 Z (1i-1)%/(2N?) (Kozasa et al., 1992) where r; is location of
ij=L..N

the center of the ith monomer and the total number of the monomers is N. Packing density
depends on the number of monomers; as this number increases, it decreases significantly for
BCCAs and slightly for BPCAs (Kolokolova et al., 2007).

The results of the modeling of the light scattering characteristics of BCCA and BPCA at
some refractive indexes and monomer size are shown in Figs. 5.2 -5.3; for more results see
LISA database at https://www.cps-jp.org/~lisa/. There instead of intensity I we use
albedo, a characteristic that is usually used in astronomical observations to describe the
reflectivity of an object. In the case of aggregates, albedo is defined as (I/Ip)*(m/G) where Iyis
the intensity of the incident light and G is the aggregate geometric cross section (Hanner et
al.,, 1981; Kimura et al., 2003). We show spectral dependence of albedo and polarization in
two filters: 450 nm (blue filter) and 600 nm (red filter). Following astronomical definitions, if
albedo or polarization have larger values in the red filter we say that they have a red color
and if the values are larger in the blue filter we say that they have a blue color.
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Fig. 5.1. Samples of BPCA (left) and BCCA (right) aggregates. These aggregates were used in
Kimura et al. (2003, 2006) computations to model light-scattering characteristics of cometary
dust.

First, notice in Fig. 5.2-5.3 the features of the modeled phase curves described in the
previous sections, namely: (1) strong forward scattering resulted from the interference of the
light single-scattered by individual monomers; (2) rather low values of the maximum
polarization that manifests depolarizing effects of the diffuse scattering and influence of the
near-field effects; (3) some, although small, backscattering enhancement; and (4) rather
small but symmetric branch of negative polarization at small phase angles. The last two
features indicate a serious influence of the near-field effects. This is not surprising as the
monomers in aggregates touch each other, i.e. they do are located in the inhomogeneous
field produced by their neighbors. As it was shown in Section 4, the near-field effects affect
the shape of the intensity curve and result in a more pronounced and symmetric negative
polarization branch and in diminished values of the positive polarization.

The figures also show a difference between the plots obtained for aggregates of different
physical properties. The most influential parameter seems to be the monomer size whose
variations change the shape of the polarization phase curve and the dependence of the
albedo on the wavelength. The real part of the refractive index mostly affects the maximum
polarization. The imaginary part of the refractive index affects the spectral dependence of
photometric phase curve and the values of albedo but does not much affect polarization.
Notice also that the more compact BPCAs depolarize the light more strongly than the more
porous BCCAs, although their other characteristics are rather similar.

Although the curves in Figs 5.2-5.3 resemble the typical observational curves shown in
Fig.1.1, they have some characteristics that are not typical for cometary dust. Observational
facts summarized in Kolokolova et al. (2004a, b) indicate that comets usually have red
photometric and polarimetric colors, i.e. their albedo and polarization have larger values at
longer wavelengths. Unlike the observational data, the results of the modeling shown in
Figs. 5.2-5.3 always demonstrate predominantly blue photometric color. In the case of the
monomers of radius 120 nm and the refractive index equal to 1.4+i0.01, the results of the
modeling also demonstrate blue polarimetric color for some phase angles. Also, in the
majority of plots, the value of albedo at zero phase angle is higher than the one observed,
which is equal to 3 - 5% (Hanner, 2003).
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Fig. 5.2. Albedo (in %) and polarization as functions of phase angle for aggregates of
monomer radius equal to 90 nm. Real part of the refractive index, 1, and imaginary part of
the refractive index, k, are shown in the top left corner of each figure. Results for the
wavelength 450 nm are shown by thick line (BCCA) and crosses (BPCA) and for 600 by thin
line (BCCA) and circles (BPCA). All aggregates consisted of 128 monomers.



190

Electromagnetic Waves

Albedo

Linear Polarization

Albedo

Linear Polarization

Fig. 5.3. The same as Fig. 5.2 but for monomers of radius 120 nm.
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Our computations, summarized in Kimura et al. (2003, 2006) provided characteristics of the
aggregates that satisfy the observational data for cometary dust. The best fit was achieved
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for the monomers of radius 100 nm and the refractive index that was determined based on
in situ study of comet Halley, which is equal to 1.88+i0.47 for the wavelength A=450nm and
to 1.98+i0.48 for A=600nm. It appears that for such a dark material a crucial characteristic is
the number of monomers in the aggregate. Fig. 5.4 shows that increasing the number of
monomers in the aggregate results in a more pronounced negative polarization branch and
in a stronger depolarization of the positive polarization. This allows us to suggest that in the
case of aggregates of thousands of monomers it is possible to reach the observable values of
negative (~0.015) and positive (~0.3) polarization.

100 N=128 4 100 - N=256

Albedo
Albedo
Albedo

0.01 1 0.01 1 0.01

Linear Polarization
Linear Polarization
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Fig. 5.4. Albedo (in %) and polarization as functions of phase angle depending on the
aggregate size (number of monomers in the aggregate). The monomer radius is equal to 100
nm. The refractive index was taken as typical for cometary dust (based on in situ data for
comet Halley) and is equal to 1.88+i0.47 for the wavelength A=450nm and 1.98+i0.48 for
A=600nm. The number of monomers in the aggregate is 64 (left panel), 128 (middle panel),
256 (right panel). Development of the negative polarization is shown in the inserts. Notice
also a decrease of the polarization maximum more pronounced for the shorter wavelength.
The figure was adapted from Mann et al. (2004).

Figs. 5.2-5.4 also demonstrate that the polarimetric color is often less red in the case of more
compact BPCAs. We explain this by a stronger depolarization of light in the case of more
compact aggregates. Such a depolarization is even more evident from Figs. 3.3 and 4.3
where aggregates with higher packing density (more particles in the volume) always
demonstrate smaller polarization maximum. Depolarization of light with increasing packing
density is consistent with increasing electromagnetic interaction between the monomers
resulted from both diffuse multiple scattering and near-field effects as considered in
Sections 3-4

Kolokolova & Kimura (2010) showed that a measure of the depolarization can be the
number of monomers covered by a single wavelength; the more monomers the wavelength
covers, the more depolarized is the scattered light. It is clear that a single wavelength
covers more monomers in the case of more compact aggregates. It also covers more
monomers if the wavelength is longer. Thus, we can expect the scattered light to be more
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depolarized at longer wavelengths and the color of polarization should be blue. Blue
polarimetric color is frequently observed. For example, it is typical for asteroid surfaces and
interplanetary dust. However, as we already mentioned, cometary dust has a red
polarimetric color. In our opinion, this is good evidence that cometary aggregates are
highly porous. For porous aggregates, an increase in the wavelength may not increase the
number of monomers covered by a single wavelength. Then the polarimetric color is
defined by properties of individual monomers. Specifically, the monomer size parameter
decreases with increasing wavelength that moves it closer to the Rayleigh regime of
scattering characterized by higher polarization, thus, resulting in the red color of
polarization.

An interesting observational result was reported by Kiselev et al. (2008) who summarized
the observational data of spectral behavior of comet polarization and showed that cometary
dust is characterized by a red polarimetric color in the visible (wavelengths of 400-800nm)
but it changes to a blue polarimetric color in the near infrared (wavelengths of 1000-
3000nm). They also showed that some comets exhibit a blue polarimetric color even in the
visible. These observations can be interpreted based on the dependence of electromagnetic
interaction on the number of monomers covered by a single wavelength. Fig. 5.5 illustrates
our point. One can see there that in the case of a porous aggregate a small change in the
wavelength does not change the number of particles it covers. However, at longer
wavelength even in porous aggregates the number of monomers covered by a single

Fig. 5.5. llustration of the effect of increasing wavelength on the light scattering by an
aggregate. In a compact aggregate (top part of the aggregate) the longer the wavelength the
more monomers it covers, so the interaction between the monomers becomes stronger, and
the light becomes more depolarized. This results in a decrease of polarization with
wavelength, i.e. blue color of polarization. For a porous aggregate (bottom part of the
aggregate), the number of monomers covered by a single wavelength does not change much
as the wavelength increases, i.e. the change in the interaction between the monomers cannot
overpower the change in the monomer size parameter, and so the polarization color stays
red. However, as the wavelength reaches some critical value, the number of covered
monomers in the porous aggregate changes significantly(as shown in the right-hand
aggregate) and interaction becomes the main factor that defines the polarization color which
then becomes blue.
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wavelength increases causing depolarization of the scattered light. This explains the change in
the observed polarimetric color as the observations move to the near infrared. In the case of
more compact aggregates, even a slight change in wavelength increases the number of covered
monomers resulting in blue polarimetric color even in the visible. Thus, it is likely that the dust
in the comets with blue polarimetric color, as well as asteroidal and interplanetary dust, is
characterized by more compact particles. The wavelength where polarimetric color changes
from red to blue may be used to determine the porosity of aggregate particles.

5.2 Spectral manifestation of coherent backscattering

In Section 3.2 we discussed how coherent backscattering affects intensity and polarization
phase curves producing there brightness and polarization opposition effects. Recently it has
been found that coherent backscattering also manifests itself in spectral data. It affects the
depth of the absorption bands and makes it dependent on the phase angle. The physics of
this is clear: since coherent backscattering produces brightness opposition effect of different
steepness at different absorptions, the steepness of the opposition effect is different within
and outside of the absorption bands and, thus, the absorption bands should have different
depth and, most likely, shape at different phase angles. This fact was confirmed at
observations of Saturn’s satellites. Their spectra have distinct ice absorption bands in the
near infrared and these bands do change with phase angle (Fig. 5.6). Although this effect
has been studied so far for regolith surfaces it should also exist for any medium whose light
scattering is affected by coherent backscattering.

We modeled spectral manifestation of the coherent backscattering using the T-matrix code
and presenting the surface of Saturn’s satellites as a large icy aggregate similar to those
described in Sections 3 and shown in Fig. 3.4. Fig 5.7 presents the results of our simulations
of the ice absorption band at 2.8 ym at different size of monomers and packing density of
the aggregate. One can see that the simulations correctly reproduce the observed
tendencies. More so, the variations in the rate of the change of the absorption band depth
and shape promise that the study of the spectra at several phase angles can serve as a new
remote sensing tool to reveal properties of monomers and their arrangement in aggregates.
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Fig. 5.6. Spectrum of Saturn’s icy satellite Rhea at a variety of phase angles (from Kolokolova
et al., 2010). It is clearly seen that the depth of the absorption bands varies with phase angle
as it should be in accordance with the coherent backscattering. The red dashed ellipse shows
the band whose modeling is presented in Fig. 5.7.
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Fig. 5.7. Simulations of the phase angle variations in the spectra of icy aggregates. Different
phase angles (PA) are indicated in the left panel. The left panel is for the monomer of radius
1.0 pm and packing 5%, the middle panel is for the same monomers but different packing,
10%, and the right panel is for the same packing as the middle one but for smaller
monomers, r= 0.85 pm. In all cases the overall size of the aggregate is 14 pm. Adapted from
Kolokolova et al. (2011a).

5.3 Circular polarization of the light scattered by aggregates

Circular polarization was observed in the light scattered by the dust in comets (Rosenbush
et al., 2007) and molecular clouds (Hough et al.,, 2001). It is well known that circular
polarization manifests violation of mirror symmetry in the medium. Van de Hulst (1957)
showed (see his Section 5.22) that circular polarization arises when the medium has unequal
number of left-handed and right-handed identical but mirror asymmetric particles. This
immediately shows that if we consider light scattering by a single aggregate, let say BPCA
or BCCA, then even in the case of random orientation of this aggregate its circular
polarization does not vanish as the majority of ballistic aggregates are asymmetric (Fig. 5.1).
This was repeatedly shown by computer simulations of light scattering by aggregates
(Kolokolova et al., 2006; Guirado et al., 2007). However, ensembles of natural aggregates,
such as cosmic dust, usually do not have domination of particles of a specific handiness. So,
in the case when some ensemble of natural aggregates demonstrates circular polarization, it
has another violation of mirror symmetry than that resulted from the asymmetric
arrangement of the monomers in the aggregates.

One of the most common violations is alignment of elongated particles (e.g., in magnetic
field). This is a very common situation for cosmic dust and numerous papers on alignment
of aggregates and their circular polarization have been published (see reviews by Lazarian,
2007; 2009 and reference therein). One more opportunity for mirror asymmetry of
aggregates is optical activity of their material. Optical activity is typical for organics of
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biological origin due to the homochirality of their molecules (i.e. domination of left handed
amino acids and right handed sugars). Recently the T-matrix code by Mackowski &
Mishchenko (1996) has been updated to allow accounting for the optical activity of the
monomer material (Mackowski et al., 2011). Below we show some results of the computer
modeling based on this code.

To avoid the influence of mirror asymmetry of the aggregate itself, described above, we
performed the calculations for a completely symmetric aggregate like a cube of spheres or
3D-cross. The optical activity was described by a complex parameter B=f.+if; that
demonstrated the difference in the complex refractive index for the light with left-handed
and right-handed polarization; here fr described the circular birefringence of the material
and [; described its circular dichroism. The code correctly predicted the equal but opposite
sign of the circular polarization in the case of aggregates of the opposite sign of . The
modeling by Kolokolova et al. (2011b) showed that the circular polarization quickly
increased with increasing optical activity, size of monomers, and especially size of the
aggregate. An interesting result was a strong dependence of the circular polarization on the
packing density of the aggregates. Fig. 5.8 shows that the circular polarization is much
larger and increases more quickly with the size of aggregate in the case when the aggregate
is more compact. This probably demonstrates an increasing influence of the diffuse multiple
scattering as the aggregate becomes larger or more compact, and more monomers are
involved in the light scattering.
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Fig. 5.8. Dependence of absolute values of circular polarization on the size of a 3D-cross
aggregate (left) and cubic aggregate (right). The radius of the monomers is 50 nm; the
wavelength is 650 nm. The dashed line is for a single monomer; solid lines are for the
aggregates of 9, 125, and 343 monomers (thickness of the line increases with the number of
monomers). In the simulations we used m=1.55002+i0.0006002 and p=7.034*10-6 -i*0.8692*10-
which were estimated based on the measured excess of left-handed amino acids in some
meteorites (Pizzarello & Cronin, 2000; Pizzarello & Cooper, 2001).

It is evident that diffuse multiple scattering can affect circular polarization because at each
consequent scattering on an optically active monomer circular polarization should increase.
This effect is opposite to the depolarization of linearly polarized light in a result of multiple
scattering. Linear polarization depends on the plane in which the scattering happens, and at
multiple scattering this plane changes randomly thereby randomizing the resultant
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polarization (see Section 3.1). Orientation of the scattering plane does not affect circular
polarization, and its formation is determined only by the fact that the light repeatedly
interacts with optically-active scatterers. Since the cubic aggregate shown in Fig. 5.8
represents the case of a densely packed aggregate, we expect that its light scattering is also
affected by near-field effects. How near-field effects influence circular polarization is a topic
of a separate study that still needs to be done.

6. Conclusions

We have briefly described a progress recently made in the understanding and modeling of a
variety of physical effects associated with electromagnetic interaction between constituent
scatterers in a complex object such as an inhomogeneous particle or an aggregate of small
monomers. Our test objects were aggregates as a common example of natural particles. In
the case when such aggregates are made of particles much smaller than wavelength,
effective medium theories can be applied to study their light scattering. However, natural,
especially cosmic, particles are aggregates of monomers larger than wavelength when
observed in the visible spectral range. Their light scattering requires a more sophisticated
approach. We showed that with increasing packing density of aggregates interaction of their
monomers becomes more complex and involves diffuse multiple scattering, coherent
scattering, and, at even larger packing densities, near-field effects. The diffuse multiple
scattering simplifies dependencies of intensity and polarization on phase angle reducing the
resonant oscillations typical for single scattering by particles of size larger than wavelength.
In its turn, coherent scattering complicates the phase curves adding brightness and
polarization opposition feature in the backscattering domain. Development of these
features becomes even more complex when the packing density increases and near-field
effects become not negligible. The near-field effects affect all phase angles, changing value
and location of both the polarization minimum and maximum as well as behavior of the
intensity. The correct accounting for all these effects is possible by using rigorous solutions
of the Maxwell equations for complex objects. In the case of aggregates, such a solution is
provided by the superposition T-matrix approach (Mackowski & Mishchenko, 1996). We use
this approach to simulate properties of large aggregates. This allows us not only to study all
types of interaction separately and find conditions for their realization, but also to interpret
the observational data for cosmic dust. The T-matrix modeling provides: (1) explanation of
specifics of phase dependencies of intensity and polarization for cometary and other cosmic
dust; (2) explanation of spectral dependence of polarization for comets and asteroids and its
variations with wavelength; (3) explanation of variations in depth of spectral bands
observed for Saturn’s satellites; (4) study of circular polarization of light scattered by objects
of biological interest. This modeling also allows us to reveal the characteristics of dust
particles in a variety of natural environments thereby validating it as a powerful tool for
remote sensing applications.
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1. Introduction

Models for scattering of electromagnetic waves from random rough surfaces have been
developed during the last two centuries and the scientific interest in the problem remains
strong also today due to the importance of this phenomenon in diverse areas of science, such
as measurements in optics, geophysics, communications and remote sensing of the Earth.

Such models can be categorised into empirical models, analytical models and a combination
of the two. Though very simple, empirical models are greatly dependent on the
experimental conditions. In spite of their complexity, only theoretical models can yield a
significant understanding of the interaction between the electromagnetic waves and the
Earth’s surface, although an exact solution of equations governing this interaction may not
always be available and approximate methods have to be used. The semi-empirical models,
which are based on both physical considerations and experimental observations, can be set
between these two kinds of models and can be easily inverted. In this survey, we will focus
on the analytical models and we study more in detail the Kirchhoff Approximation (KA), the
Small Perturbation Method (SPM) and the Integral Equation Method (IEM). The Kirchhoff
Approximation and the Small Perturbation Methods represent early approaches to
scattering which are still much used, whereas the Integral Equation Method represents a
newer approach which has a larger domain of validity. These methods have been found to
be the most common in the literature and many of the other methods are based or have
much in common with these approaches. In section 2, we begin by giving a brief
presentation of the scattering problem and introduce some concepts and results from the
theory of electromagnetic fields which are often used in this context. We will also define the
bistatic scattering coefficient, due to the importance of this type of measurement in many
remote sensing applications, and in particular in the retrieval of soil moisture content. In
section 3, we give a brief presentation on the Kirchhoff Approximation and its close
variants, the Physical Optics (PO) and the Geometrical Optics (GO). In section 4, we give a
brief presentation of the Small Perturbation Method and in section 5 we will present the
Integral Equation Model.

2. Some concepts of the electromagnetic theory and surface parameters

In this section we will give a brief presentation of some concepts on theories of
electromagnetism and statistical characterisation of surfaces, which are often used for
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modelling scattering of electromagnetic waves from random rough surfaces. We will also
define the bistatic scattering coefficient due to the importance of this type of measurement in
many remote sensing applications.

2.1 The Maxwell’s equations and the wave equation

The basic laws of the electromagnetism are given by the Maxwell’s equations which, for
linear, homogeneous, isotropic, stationary and not dispersive media, can be written as
(Balanis, 1989):

vxE--28 2.1.1)
ot
vxH=L 7y 4], (2.1.2)
ot
V-D=p (2.1.3)
V-B=0 (2.1.4)

where E is the electric field vector, D is the electric flux density, H is the magnetic field
vector, B is the magnetic flux density, J is the conduction electric current density, J; is the
impressed electric current density and p is the electric charge density. Maxwell’s equations
together with the boundary conditions, give a complete description of the field vectors at
any points (including discontinuities) and at any time. In rough surface scattering, the
surface enters in the boundary conditions (see equations (2.2.1)-(2.2.4)), which have to be
also supplied at infinity.

If we consider time-harmonic variation of the electromagnetic field, the instantaneous field
vectors can be related to their complex forms. Thus the Maxwell’s equations can be written
in a much simpler form:

V xE = - jouH (2.1.5)
VxH=(0+ joe)E+]; = joe E+]; (2.1.6)
V-¢E=p (2.1.7)

V. uH=0 (2.1.8)

where we assumed the region characterised by permeability x4 permittivity ¢ and
conductivity o (lossy medium). To obtain the governing equation for the electric field, we
take the curl of (2.1.5) and then replace (2.1.6). Thus,

VxVxE+ o us.E= jou], (2.1.9)

which is known as the inhomogeneous Helmholtz vector wave equation. In a free-source
region, V-E=0 and (2.1.9) simplifies to:
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VZE + 0’ g E=0 (2.1.10)
In rectangular coordinates, a simple solution to (2.1.10) has the form:
E(r)=Ey e /** (2.1.11)

where E is a constant complex vector which determines the polarisation characteristics and
the complex propagation vector, k , is defined as:

k=xk, +yk, +zk, (2112
with the components satisfying
K2 +k; +k2 = o’ s, =k (21.13)

Equation (2.1.11) represents a plane wave and k is the propagation constant. Most analytical
methods for scattering from rough surfaces assume this kind of incident wave, which if
linearly polarised can be rewritten as:

E'(r)=pEje /™™ = pE’ (2.1.14)

where k; = 121.k, p is the unit polarisation vector and Ey is the amplitude. The associated

magnetic field is given by:
H (r)=k;xE'(r)/n (2.1.15)

where n=,/u/e, is the wave impendence in the medium.

2.2 Integral theorems and other results used in scattering models

We will present some results for electromagnetic fields which are often used as a starting point
in the analytical models for scattering from rough surfaces. These equations are approximated
and simplified using different methods and assumptions in the analytical solutions for
scattering from rough surfaces. We will not show how the equations in this section are
derived, but derivation can be found in the references.

Consider an electromagnetic plane wave incident on a rough surface as shown in figure 2.2.1.

region 0

Sy

region 1
. Ieg

s -

o Sie

Fig. 2.2.1. Scattering of electromagnetic field on surface separating two media.



206 Electromagnetic Waves

Across any surface interface, the electromagnetic field should satisfy continuity conditions
given by (Balanis, 1989):

Ax(E-E;)=0 (2.2.1)
Ax(H-H,)=], (222)
n-(sE-5E,)=p, (22.3)
A-(sH-gH,)=0 (2.2.4)

where n is the unit normal vector of the rough surface (pointing in the region 0). The
electric surface current density, J;, and the charge surface density, p, at the rough interface
are zero unless the scattering surface (or one of the media) is a perfect conductor.

Using the fact that the fields satisfy the Helmholtz wave equation (2.1.9), it can be shown
that in the region 0, the electromagnetic fields E and H, satisfy Huygens’ principle and the
radiation boundary condition at infinity and E is given by (Ulaby et al, 1982; Tsang et al,
2000):

E(r)=E'(1)+ I{ —ja)yz(r,r’)-ﬁ'xH(r’)—VxE(r,r')ﬁ’xE(r’) ds' (2.2.5)
S

where G is the dyadic Green function (to the vector Helmholtz equation) which is
represented by:

E(r,r’) = (i + Z—Zvj g(r,r') (2.2.6)

Here T is the unit dyadic and g(r, r') is the Green function that satisfies the scalar wave

equation. It assumes the following expression:

e—jk‘ r—r"
g(rr')=

= 227
47[‘ r—r ( )

In (2.2.5) the first term on the right-hand side represents the field generated by a current
source in an unbounded medium with permittivity £ and permeability # and corresponds to
the incident field. Hence, the electromagnetic field in the region 0 is expressed as the sum of
two contributions: one is given by the incident field E’ (r); the other contribution is given by
the surface integrals that involve the tangential components E, and H, of the fields at the
boundary S (note that A'’xE=n'xE, and n'xH =1'xH, ) and represents the scattered field
due to the presence of surface.

The equation (2.2.5) constitutes the mathematical basis of Huygens’ principle in vector form.
According to this principle, the electromagnetic field in a source-free region (J=0) is
uniquely determined once its tangential components are assigned on the boundary of the
region. However, since in the region 0, the existence of the impressed current J has been
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assumed, the total electric field can be expressed as the sum of two terms, the incident and
scattering ones:

E(r)=E'(r)+E(x) (2.2.8)
Thus, the scattered field can be written as:
E(r)= | { — jouG(r,¥) i x H(r')—VxG(r,r) - f'x E(r’)} ds’ (229)
SI

If the observation point is in the far field region, the Green function in (2.2.9) can be

simplified and the scattering field can be written as (Ulaby et al,1982; Tsang et al, 2000):
E°(r)=Krx .[ [( A x E(r')) -t x (0’ x H(r'))]ejk'r' ds’ (2.2.10)

5

where K =— jke’ﬂ" / 47r and t is the unit vector pointing in the direction of observation.

The tangential surface fields AxE and nxH can be also expressed as (Poggio & Miller, 1973):

ﬁxE:ZﬁxELﬁﬁxfsds’ (2.211)
. L2, ,
fixH=2RxH +——fx[#ds (2.2.12)
4z
and
AXE, ———># x [ e, ds (2.2.13)
t 4 t t e
A 2 A ’
AxH, =——f, x [ H, ds (2.2.14)
4z
where
e = jkn(?' xH')G, —(A'xE')xV'G, —(&'-E')V'G, (2.2.15)
=2 (5% B)G, - (' < H')xV'G, - (R -H)V'G, (2.2.16)
n
&, =] jko, (A" x H')G, - (2" x E)x V'G, - (A E')V'G, (1/¢,) | (2.2.17)
k Ay ’ At ’ ’ A ’ i
H, =— ;—z(n xE')G, —(A'xH')xV'G, -(n"-H')V Gz(l/,u,)} (2.2.18)
2

and n, A', n,, N} are the unit normal vectors to the surface and A, =-n, f;=-n', AxE
and nxH are the total tangential fields on the rough surface in the medium above the
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separating interface; G; and G; are the Green’s functions in medium above and below the
interface, respectively, and ¢, =¢,/&;, 4, =1/t , 1, =/t /&, and k, = o/ e, .

2.3 The nature of surface scattering

When an electromagnetic wave impinges the surface boundary between two semi-infinitive
media, the scattering process takes place only at the surface boundary if the two media can
be assumed homogeneous. Under such supposition, the problem at issue is indicated as
surface scattering problem. On the other hand, if the lower medium is inhomogeneous or is a
mixture of materials of different dielectric properties, then a portion of the transmitted wave
scattered backward by the inhomogeneities may cross the boundary surface into the upper
medium. In this case scattering takes place within the volume of the lower medium and it is
referred to as volume scattering. In most cases both the scattering processes are involved,
although only one of them can be dominant. In the case of bare soil, which will be assumed
to be a homogeneous body, surface scattering is the only process taken into consideration.
When the surface boundary separating the two semi-infinitive media is perfectly smooth the
reflection is in the specular direction and is described by the Fresnel reflection laws. On the
other hand, when the surface boundary becomes rough, the incident wave is partly reflected in
the specular direction and partly scattered in all directions. Qualitatively, the relationship
between surface roughness and surface scattering can be illustrated through the example
shown in Figure 2.3.1. For the specular surface, the angular radiation pattern of the reflected
wave is a delta function centred about the specular direction as shown in Figure 2.3.1 (a). For
the slightly rough surface (Figure 2.3.1 (b)), the angular radiation pattern consists of two
components: a reflected component and a scattered component. The reflected component is
again in the specular direction, but the magnitude of its power is smaller than that for smooth
surface. This specular component is often referred to as the coherent scattering component. The
scattered component, also known as the diffuse or incoherent component, consists of power
scattered in all directions, but its magnitude is smaller than that of the coherent component. As
the surface becomes rougher, the coherent component becomes negligible.

Note that the specular component represents also the mean scattered field (in statistical
sense), whereas the diffuse component has a stochastic behaviour, associated to the
randomness of the surface roughness.

@) (b)
Fig. 2.3.1. Relative contributions of coherent and diffuse scattering components for different
surface-roughness conditions: (a) specular, (b) slightly rough, (c) very rough.

2.3.1 Characterisation of soil roughness
A rough surface can be described by a height function¢ = z(x,y). There are basically two
categories of methods which are being used to measure surface roughness. The roughness
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can be carried out by means of various experimental approaches able to reproduce the
surface profile by using contact or laser probes, or it can be estimated using some theory
which relates scattering measurements to surface roughness. In general, the study of
scattering in remote sensing is performed by using random rough surface models, where the
elevation of surface, with respect to some mean surface, is assumed to be an ergodic!, and
hence stationary?, random process with a Gaussian height distribution.

Accordingly, the degree of roughness, or simply the roughness, of a random surface is
characterised in terms of statistical parameters that are measured in units of wavelength. For
this reason, a given surface that may “appear” very rough to an optical wave, may “appear”
very smooth to a microwave.

The two fundamental parameters commonly used are the standard deviation of the surface
height variation (or rms height) and the surface correlation length. Such parameters describe
the statistical variation of the random component of surface height relative to a reference
surface, that may be the unperturbed surface of a period pattern, as in the case of a row-
tilled soil surface (Figure 2.3.1.1. (a)), or may be the mean plane surface if only random
variations exist (Figure 2.3.1.1 (b)).

Random Surface Component

Random Surface Component

Periodic (Reference) Surface Mean (Reference) Surface
@) (b)
Fig. 2.3.1.1. Two configurations of height variations: (a) random height variations
superimposed to a periodic surface; (b) random variations superimposed to a flat surface.

Let z(x) be a representative realisation of the ergodic and stationary process that describes
a generic rough surface in a one-dimensional case. The mean value, which throughout this
chapter will be denoted by angular brackets (...), is equal to the spatial average over a
statistically representative segment of the surface, of dimensions L,, centred at the origin:

f LL/jz x=(z(x)) (23.1.1)

As it can be noted from the above definition, for a stationary surface the average does not
depend on x. The second moment is:

L j LL/ ", 2 (x)dx=((x)) (23.1.2)

1 A process is ergodic when one realisation is representative of all the process, i.e. the statistical averages
over an extracted random variable may be replaced by spatial averages over a single realisation.

2 The stationarity implies that all the statistically properties of a random process are invariant under the
translation of spatial coordinates.
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Using the above expressions, the standard deviation of the surface height, o, is therefore
defined as:

o :[ 2 —(z)ZT/2 - <[z(x) —z]2>1/2 (23.1.3)

Such quantities characterise the dispersion of the surface height relative to the reference
plane. Taking into account the stationary properties of the process and considering its mean
value null, the variance, o2, is coincident with the second moment and does not depend on
x. The autocorrelation function of the height random process z(x) is given by:

R,(7) :flx [57, 202w+ r)dx =(z(x)z(x-+7) (2.31.4)

The normalised autocorrelation function (ACF), better known as the correlation coefficient,
assumes for a process with zero mean value the following expression:

fz//zz z(x)z(x +7)dx R, (7)
o)tk _RAo) 2315
TR e RO @1

It is a measure of the similarity between the height z at point x and at point distant 7 from x.
It has the following properties:

lim p(7)=0.

T—0

The spectral density or power spectrum is defined, for an ergodic random process, as the
Fourier transform of the autocorrelation function R, (x):

W(k,)=[" R, (x)e/dx (23.1.6)

where k, is the Fourier transform variable.

However, taking into account the equation (2.3.1.5), it is common practice in characterising
the random surface to define the power spectrum of the normalised autocorrelation
function:

W(k)=[" p(x)eldx (23.1.7)
The Gaussian distribution plays a central role in modelling scattering from random rough
surfaces because it is encountered under a great number of different conditions and because
Gaussian variates have the unique property that the random process is entirely determined
by the height probability distribution and autocorrelation. All higher order correlations can
be expressed in terms of the (second order) autocorrelation function, which simplifies
modelling the surface scattering process. A simple and often used form for the
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autocorrelation is the Gaussian function but other forms have also been studied (Saillard &
Sentenac, 2001).

The roughness spectrum at the n’th power of the autocorrelation function, W which
often enters into closed form solutions of the scattering problem, is given by the Fourier
transform:

WO (k)= [" p" (x) e/x (23.1.8)
The consideration of a realistic autocorrelation function is in fact a relevant problem for a
better modelling of the soil scattering. Some often used forms (see for instance (Fung, 1994))
of the autocorrelation function are the Gaussian correlation function, the exponential
correlation function, combinations of the Gaussian and exponential functions and the so
called 1.5-power correlation function. For all of these, the roughness spectrum at the n’th
power can be evaluated analytically (see (Fung, 1994)). For instance, for an isotropically
rough surface, the normalised Gaussian autocorrelation in a single dimension assumes the
following expression:

p(x) —exp[—gliJ (2.3.1.9)

where [ is the correlation length. Such surface parameter is defined as the displacement x for
which p(x) is equal to 1/e

p(l)=1/e (23.1.10)

The correlation length of a surface provides a reference for estimating the statistical
independence of two points on the surface; if the two points are separated by a horizontal
distance greater than I, then their heights may be considered to be (approximately)
statistically independent of one another. In the extreme case of a perfectly smooth (specular)
surface, every point on the surface is correlated with every other point with a correlation
coefficient of unity. Hence, | =0 in this case.

Referring to equation (2.3.1.9), the n’th power roughness spectrum is equal to:

kA1

x

WO (k,) = [ p" (x)eldx d\ﬁ[Tn (2.3.1.11)
n

Beside the height random function z(x), the slope function is another important
characterisation of the rough surface. It is defined as:

Z. = lim z(x +Ax)—z(x)

(2.3.1.12)
Ax—0 Ax

Considering the stationary random process z(x) as normally distributed with zero mean
and variance o2, being Z the first derivative, its distribution is again normal with zero
mean and variance related to the second derivative of the autocorrelation function of z(x)
at the origin (Beckman & Spizzichino, 1963):
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2=(22)==0"p'(0) (2.3.1.13)

The rms slope is subsequently indicated as m:

m= (—Uzp"(O))l/ ’ (23.1.14)

When the normalised autocorrelation function is Gaussian (equation (2.3.1.9)), the rms slope
is equal to:

m=-2 % (2.3.1.15)

2.4 Bistatic scattering coefficient

A quantity often used in models and measurements of scattering in the microwave region is
the bistatic scattering coefficient o, , (6:,4,,0,,4.) . It describes the target’s scattering properties
at a given frequency, polarisation, incidence and observing directions, being independent on
the specific measurement system used. It is possible to define o , directly in terms of the
incident and scattering field E, and E; as follows (Ulaby et al, 1982):

2

47R? E;

2

O-;,p(eil¢i/95/¢s): A (241)
AolE!

where the ensemble average must be considered in case the scattered field is the fluctuating
zero mean component (i.e., the diffuse or incoherent component mentioned before)

generated by a natural target or random rough surface. Such equation shows oy, as the

ratio of the total power scattered by an equivalent isotropic scatterer in direction (6,,4,) to
the product of the incident power density in direction (6;,¢;) and the illuminated area.

The backscattering coefficient o, ,(6;) is a special case of oy ,(6.,4,6.,4,); it is defined for
6,=6, and ¢ =¢ £tz (Figure 2.4.1), which corresponds to the incident and scattered

direction being the same except for a reversal in sense.
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Fig. 2.4.1. Geometry of the scattering problem.
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3. The Kirchhoff approximation

In this section we shall consider the Kirchhoff (also sometimes referred to as the tangent
plane approximation) approach to describe the scattering from rough surfaces, which was
one of the first methods applied. We will consider surfaces with random surface profiles (i.e.
not period surfaces) and within the context of the vector theory we will discuss the
Kirchhoff Approximation. We will consider here the case of scattering from 2-dimensional
dielectric surfaces. We will present results for the case of a surface which can be
characterised as a Gaussian random process. We will also mention some extensions of the
Kirchhoff approximation and will give references to further reading about the Kirchhoff
approach. The reference list is by no means complete, since the literature on the Kirchhoff
approximation is vast. A good representation of the Kirchhoff method can be found for
instance in (Tsang et al, 2000, Tsang & Kong, 2001, Ulaby et al, 1982).

3.1 Formulation of the scattering problem

The geometry of the scattering problem we consider is shown in figure 2.4.1. We consider a
monochromatic, linearly polarised incident plane wave with electric and magnetic field
given by the equations (2.1.14) and (2.1.15), respectively.

It can be shown, similarly to equation (2.2.10), that the far zone scattering field, E;p , can be
written in terms of the tangential surface fields in the medium above the separating surface
as (Stratton-Chu integral) (Ulaby et al, 1982):

A T8 (a A (k.-
E., :KJ{ q~[ks x(anP)+77(n><Hp)J} /g (3.1.1)
where
k, = kk, = k(sin 6, cosgx +sin 6, sin g,y + cos6,z) = kX + kg + k.2 (3.1.2)

What needs to be calculated are the tangential surface fields in equation (3.1.1). In equations
(2.211) - (2.2.12) and (2.2.15) - (2.2.16) we presented integral equations for the tangential
surface fields in the medium above the scattering dielectric surface. It should be noted that
these expressions are exact. However, they cannot in general be solved analytically and
therefore approximations have to be introduced. Below we will show that by introducing an
approximation called the tangent plane approximation (or the Kirchhoff approximation), closed
analytical solutions can be obtained to the scattering problem.

3.2 The tangent plane approximation and the Kirchhoff fields

In the Kirchhoff approach, the total fields at any point of the surface (i.e., the incident plus
the scattered one, to be considered inside the integral (3.1.1)) are approximated by the fields
that would be present on an infinitely extended tangent plane at that particular point on the
surface. The reflection is therefore considered to be locally specular. It is due to this fact that
the Kirchhoff approximation is also referred to as the tangent plane approximation. The
Kirchhoff approach requires to be valid that every point on the surface has a large radius of
curvature relative to the wavelength of the incident field.

Thus, under the tangent-plane approximation, the total field at a point on the surface is
assumed equal to the incident field plus the field reflected by an infinite plane tangent to the
point. Hence, the tangential surface fields are (Ulaby et al, 1982):
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=fix(E +E) (3.2.1)

=fx(H +H) (3.2.2)

Here the subscript k stands for the Kirchhoff approximation.

The way to proceed from here, in most presentations of the Kirchhoff method, consists in
expressing the tangential fields under the Kirchhoff approximation in terms of the incident
electric field components and the local Fresnel reflection coefficients, which depend on the
local angles of incidence. This results in the following expressions:

ﬁxE:[ (1+R,)(p-)(AxE)-(1-R,) (A k) (p-d) E} Ey ¢ ki (3.2.3)

ry(ﬁxH):—[ (l—Rh)(ﬁ-f(i)(frf)f+(1+Rv)(f)~&)(ﬁ><fﬂ Ege &t (3.24)

where the unit vectors t, a, 1A<,- define the local reference coordinate system (see (Fung,

1994)) and n is the unit normal vector to the interface in the above medium. R, and Rj, are
the Fresnel reflection coefficients for vertical and horizontal polarisation respectively.
Upon substituting (3.2.3) and (3.2.4) in (3.1.1), the scattered field is:

E, = Kj{ q-[kox(AxE,)+n(nx HP)J} ok Tgg (3.2.5)

where the phase factor, exp(— jkﬂi -r) , of the incident wave has been pointed out from the

equations (3.2.3) and (3.2.4). Such equation represents the scattered field formulated under
the tangent-plane, or Kirchhoff approximation. As it stands the expression is a complicated
function of the surface function and its partial derivatives. No analytic solution has been
obtained from (3.2.5) without additional simplifying assumptions. Here we will show the
results presented in (Ulaby et al, 1982): for surface with large (with respect to wavelength)
standard deviation of surface heights, for which the stationary-phase approximation
(Geometric Optics, GO) will be used, and for surfaces with small slopes and a medium or
small standard deviation of surface heights, for which a scalar approximation (Physical
Optics, PO) will be used.

3.2.1 The scattered field under the stationary-phase approximation (Geometric Optic,
GO)

Under the stationary-phase approximation the local tangent plane on a surface point can be
considered infinitely wide and, as consequence, the angular re-irradiation pattern
originating from that specific point can be represented by a delta function centred in the
specular direction. This means that scattering can occur only along directions for which
there are specular points on the surface. Hence local diffraction effects are excluded. The
approximating relations are obtained from the phase Q of (3.2.5), that is:

Q:k(ﬂs—ﬂi)~r5q-r:qxx+qyy+qzz (3.21.1)
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where
Kk, =Xsin6, cosg, + ysind, sing, +2cos6, (3.21.2)
K, =Xsin @, cosg, + ysin 6, sing, — zcosb, (3.2.1.3)
q, =k(sin6, cos ¢, —sin, cos ¢, ) (3.2.1.4)
q, =k(sin @, sing, —sin g, sing,) (3.2.1.5)
q, =k(cos6, +cos b)) (3.2.1.6)

The phase Q is said to be stationary at a point if its rate of change is zero at the point, that is:

oQ oz
—==0=qg,+g,—
o 95+ q: 5
aQ 0z
— =0=¢q,+q9,—
oy Yoy

Hence, the partial derivatives of the surface slopes can be replaced by the components of the
phase as:

7 =% _ 4 (3.217)
ox q,
Z,= %_4 (3.2.1.8)
Ty 9,
Since, the local unit vector n is a function of the surface derivatives:
I X—-Z y+2Z
a2 Y (3.1.1.9)

J1+22+2]

the use of (3.2.1.7) and (3.2.1.8) makes nxE and nxH independent on the integration
variables. Thus, the expression for E° can be rewritten as:

E* = Kk, x| (AxE) -k, x (AxH) | I (3.2.1.10)

where

L= g (32.1.11)

The scattering field corresponding to transmission of p polarisation and reception of q

polarisation can be written as (Ulaby et al, 1982):
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=q-E =KLEU,, (3.2.1.12)

where
»=E, q-k, ><[(f1><E)—77kS x(ﬁxH)J (3.2.1.13)
To compute the scattering coefficient, defined in (2.4.1), for different polarisation states, it is

necessary to calculate the ensemble average of |I; ‘2 :

()= <ejk(1;51;,.).(”'>>d5ds, (32.1.14)

By assuming the surface roughness as a stationary and isotropic Gaussian random process,

2

with zero mean, variance o, and correlation coefficient p, and in the assumption that the

standard deviation of surface heights is large (that is, (qza)2 large) the integral can be
solved. The result is (Ulaby et al, 1982):

2 2 + 2

<\ 11\2> = 742721%? exp| ——pr (3.2.1.15)
q:0°|p"(0) | 2420°["(0)

where the illuminated area Ao is (2L )2 , p"(0) is the second derivatives of p evaluated at the

origin and 02‘ p"(O)‘ corresponds to the mean-squared slope of the surface (Ulaby et al,

1982) (Section 2.3.1).
Upon substituting (3.2.1.15) into the product in the scattered-field expression, it follows:

. 2
(B3 B ) =[KEU, | (1) (32.1.16)

Substituting (3.2.1.16) in the definition of the scattering coefficient given by equation (2.4.1),
it assumes the following expression:

) (k‘i‘qu‘z) p[— 7+q; }

Oop = quaz‘p"(o)‘ex 2026%[ " (0)

(3.2.1.17)

In the derivation of a;p ,

It is important to underline that (3.2.1.17) is valid only for surface with sufficiently large

the effects of shadowing and multiple scattering have been ignored.

standard deviation of surface heights. Under such assumption, that is (qZO')2 large, the

Lo . 2 .
scattering is purely incoherent. As (qZO') decreases, some scattered energy begins to appear
in the coherent component. To examine such situation, a different approximation to the

tangential fields is needed to permit small (qza)z . This is discussed in the next section.
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3.2.2 The scattered field under the scalar approximation (Physical Optics, PO)

A different Kirchhoff approach is the Physical Optics solution to (3.1.1). The Physical Optics
approach involves the integration of the Kirchhoff scattered field over the entire rough
surface, not just the portions of surface which contribute specularly to the scattered
direction. Unlike the Geometric Optics solution, the Physical Optics solution predicts a
coherent component.

The power in the incoherent reflected field can be found by expanding the Stratton-Chu
equation in a Taylor series in surface slope distribution. In (Ulaby et al, 1982) the Physical
Optics solution is called scalar approximation because slopes are ignored in the surface
coordinate system, leading to a decoupling of polarisation in the vector scattering equations.
Accordingly, the basic scattered-field expression can be rewritten in the form:

ES, = KEy Uy exp[ (k.- ) rJ ds (3.2.2.1)

where Uy, are given in (Ulaby et al, 1982). To find <ESPE;p*> for the scattering-coefficient

computation, the following integral needs to be computed:
I= ”<aqpﬁ2p exp[jk(f(s - 1A<l) (r- r’)}>dsds’ (3.2.2.2)
Since all Uy, are expressed in a Taylor series in surface slope distribution, Z, and Z,:
Ugp =8y + 02, + 0,7, (3.2.2.3)

where a; are polarisation-dependent coefficients, the product aqpa;p can be written up to

the first order in slope as:
UgpUgy ~ agas + ag i Z, + a1, Z,, + a2, +aya,Z, (3.2.2.4)

Since (qZO')2 is no longer required to be large and assuming the size of the illuminated area

equal to 2Lx 2L, the ensemble average of the first term in (3.2.2.4) can be expressed as (for
more details see (Ulaby et al, 1982))

Io—aozef'?“z%(%al)fi [ p"(2L-[uf) (2L o)™ " audo  (3.225)
&

where the n = 0 term corresponds to coherent scattering. It can be shown that this coherent-
scattering coefficient can be expressed as:

on =7k |ag| 5(q,) (g, )e (3.2.2.6)

which shows that coherent scattering is important only when g.o is small. The rest of the
series in (3.2.2.5) represents incoherent scattering. The integral Ip for n>1 can be rewritten

in the following manner pointing out the illuminated area A, = (2L)2 :
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2 n
lafeira Z( ) [ 7 o™ o (32.2.7)

For an isotropically rough surface with correlation length ! and Gaussian normalised

autocorrelation function, p = exp[—g‘z / lz} , the integral (3.2.2.7) can be shown to be:

(deq)r

ro Iw e_”§2/12+jq‘u+quvdudv:ﬂi—e 4n (3.1.2.8)
—o0  J—0 n

It is clear that different solutions may be obtained for the integral if the normalised surface
autocorrelation function is assumed to take some other functional forms. Upon substituting

(3.2.2.7) and (3.2.2.8) into the factor <EZPEZP*> the scattering coefficient for the incoherent
part of the ‘uo‘z term has the following expression:

( 2 2) (aegp)
o’ inc _ (‘ao‘ kl/2) -q20” Z . 4n (3229)

qp

If the normalised surface autocorrelation is not known, ¢ " can be written as:

qap

o2 n
O';pim _ M 1%l k ‘“0‘ —q o Z( ) le Jlm n ]‘ix”*]% dudv (32210)

An additional contribution to the total scattering coefficient comes from the slope terms in
(3.2.24). It can be computed taking into account in the ensemble average <E;pE;p*> the
integrals of the slope terms in the x- and y-direction. The results of such integrals for a
Gaussian normalised autocorrelation function are reported in (Ulaby et al, 1982). Also the
expressions of the polarisation-dependent coefficients a; can be found in the same reference.
However, the expressions of the coefficient ag for each polarisation are reported below for
the two particular cases of backscattering and scattering in the specular direction.

In the backscattering:

HH polarisation: ay = 2R, (6;)cos 6,
VH polarisation: ay=0

VV polarisation: ay =—2R, (6;)cos6,
HV polarisation: a,=0

Conversely, in the specular direction case:
HH polarisation: ay =—2R;,(6;)cos6,
VH polarisation: ay=0

VV polarisation: ay =2R,(6;)cosé,

HV polarisation: a,=0
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The quantity gy, are defined in the previous section.

3.3 On the range of validity of the Kirchhoff method and shadowing effects

The basic assumption of the Kirchhoff method is that plane-boundary reflection occurs at
every point on the surface. Thus, when statistical surfaces are considered, their horizontal-
scale roughness, the correlation length I, must be larger than the electromagnetic
wavelength, while their vertical-scale roughness, the standard deviation o of surface
heights, must be small enough so that the average radius of curvature is larger than the
electromagnetic wavelength. Mathematically, for stationary isotropic Gaussian surface the
above-stated restriction are (Ulaby et al, 1982):

K >6 (33.1)

12
2.764

o<

(332)

where k is the wave number and A is the electromagnetic wavelength. Note that the surface
standard deviation should be small relative to the correlation length, but it can be
comparable to or even larger than the electromagnetic wavelength. This means that large
standard deviations can be tolerated if the correlation length is large enough to preserve an
acceptable average radius of curvature. The conditions reported above are for the Kirchhoff
approximation. The scattering models described in section 3.2.1 and 3.2.2 require additional
approximations reported in the following table:

Validity limits of Kirchhoff Approximation (KA)
(Gaussian surface)

[2>2.7604 and ki>6
Stationary Phase Aproximation (GO) Scalar Approximation (PO)
ko> 2 ko<1 and rmsgepe < 0.25

Table 3.3.1. Validity of GO and PO for stationary isotropic Gaussian surfaces with standard
deviation oand correlation length I.

3.4 Some concluding remarks on the Kirchhoff method

As was mentioned in the previous paragraph, the Kirchhoff method does neither in itself
account for shadowing and nor does it (in the form described here) account for multiple
scattering on the surface. Due to the lack of these two effects energy conservation is not
satisfied. However, in (Ulaby et al, 1982) this conservation is demonstrating with the
inclusion of these two effects.

In the literature, the surface height distribution is in most cases assumed to be Gaussian. The
reason for this is, as mentioned previously, that the surface roughness rms height and the
autocorrelation function entirely determine the random process, and therefore the bistatic
scattering coefficient can be expressed in terms of these two quantities.

The Kirchhoff method has been applied to surfaces described by fractal geometry. As an
example we can mention that in (Franceschetti et al, 1999) a fractional Brownian motion model
was used for modelling the scattering from natural rough surface. In combination with the
Kirchhoff method an analytical solution for the bistatic scattering coefficient was obtained.
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4. The small perturbation method

The Small Perturbation Method (SPM) belongs to a large family of perturbation expansion
solutions to the wave equation. The approach is based on formulating the scattering as a
partial differential equation boundary value problem. The basic idea is to find a solution in
terms of plane waves that matches the surface boundary conditions, which state that the
tangential component of the field must be continuous across the boundary. The surface
fields are expanded in a perturbation series with respect to surface height, e.g,
E=E)+E; +.... In the expansion E; would be the surface field if the surface was flat. The

philosophy behind this approach is that small effective surface currents on a mean surface
replace the role of a small-scale roughness. So this method applies to surfaces with small
surface height variations and small surface slopes compared with the wavelength but
independently of the radius of curvature of the surface. Therefore, the surface needs no
longer to be approximated by planes. The small-scale roughness is expanded in a Fourier
series and the contribution to the field is therefore analysed in terms of different wavelength
components.

Here we will report only the expressions of the bistatic scattering coefficient. A more
detailed description of their computation process can be found in (Ulaby et al, 1982).

4.1 A small presentation of the SPM

The zero order solution of the SPM is the same as for a plane interface, while the first order
solution gives the incoherent scattered field due to single scattering. For the latter case, the
bistatic scattering coefficient for either a horizontally or vertically polarised incident wave is
(Ulaby et al, 1982):

2 .
ogp =8 k*o cos 6, cosé?saqp‘ W(kx + ksm&i,ky) (4.1.1)
where
k, =—ksing, cosg,

k, =—ksin6, sin g

W(kx,ky) = iﬁ: :o p(u,v)eijk"ufjkyvdudv

c and p(u,v) are, respectively, the variance of surface heights and the surface correlation

coefficient; oy, are coefficients that depend on polarisation, incidence and scattering angle,
and on complex relative dielectric constant & of the homogeneous medium below the
interface. The detailed expressions of ag, are reported in (Ulaby et al, 1982).

4.2 Some remarks on the region of validity of the SPM

The Small Perturbation Method is applied to surfaces with a surface height standard
deviation much less than the incident wavelength (5 percent or less) and an average surface
slope comparable to or less than the surface standard deviation times the wave number. For
a surface with Gaussian correlation function, such two conditions can be expressed
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analytically as follows, but they should be viewed only as a guideline for applying the SPM
scattering model:

ko <0.3

V20/1<03

The SPM has been compared to more accurate numerical simulations in (Thorsos & Jackson,
1989; 1991) for one-dimensional rough surfaces with a Gaussian roughness spectrum. Under
these conditions the authors show that the first-order SPM gives accurate results for ko <<'1
and kIl =1 . The results also show that for ko << 1 and kI > 6, the sum of the first three orders
of the SPM is required to obtain accurate results.

It has been argued that the SPM does account for multiple scattering up to the order of the
perturbative expansion. This means that the first order perturbative solution does not
account for multiple scattering but that some multiple scattering effects can be observed in
the higher order solutions.

Validity limits of Small Perturbation Method (SPM)
(Gaussian surface)

ko<0.3 and MSsigpe < 0.3

Table 4.2.1. Validity of SPM for stationary isotropic Gaussian surfaces with standard
deviation o and root mean square slope rsgope.

5. The Integral Equation Method (IEM)

A relatively new method for calculating scattering of electromagnetic waves from rough
surfaces is the Integral Equation Method (IEM). The IEM has been used extensively in the
microwave region in recent years and it has proved to provide good predictions for a wide
range of surface profiles. The method can be viewed as an extension of the Kirchhoff
method and the Small Perturbation Method since it has been shown to reproduce results of
these two methods in appropriate limits. The IEM is a relatively complicated method in its
general form (including multiple scattering) and it is beyond the scope of the present
overview to give a full presentation of the method. A more detailed presentation of the [IEM
can be found in (Fung, 1994).

5.1 On the formulation of the IEM

The starting point of the IEM is the Stratton-Chu integral for the scattered field, equation
(3.1.1). The tangential surface fields which enter the Stratton-Chu integral are given in
equations (2.2.11) - (2.2.12) and (2.2.15) - (2.2.16). In the Kirchhoff approach, the tangential
fields are approximated using the tangent plane approximation, replacing the complete
tangential surface fields with the Kirchhoff tangential surface fields of equations (3.2.1) and
(3.2.2). It is clear that the Kirchhoff tangential surface fields cannot provide alone a good
estimate of the surface fields since the integral form in equations (2.2.11) - (2.2.12) are not
accounted for in the Kirchhoff approach. In the IEM, a complementary term is included in
equations (3.2.1) and (3.2.2) to correct for this:



222 Electromagnetic Waves

nxE=(nxE) +(nxE) (5.1.1)

faxH=(nxH) +(axH) (5.1.2)

In these equations, the first terms on the right hand side are the tangential fields under
Kirchhoff approximation and the complementary fields are given by:

(ﬁxE),=ﬁx(Ef—E’)—4iﬁxjeds' (5.13)
T

Cc

il i T 2 2 ’
(an)cznx(H -H )+EnXJ%ds (5.1.4)
E" and H' being the reflected electric and magnetic fields propagating along the reflected
direction. To use (5.1.1) and (5.1.2) for estimating the tangential field, both the Kirchhoff
field and the complementary field need to be expressed in terms of the incident field

components and the surface reflectivity properties. Using the local coordinate system
defined by the unit vectors t, d, 1A<l- (for their expressions refer to (Fung, 1994)), the

incident electric and magnetic field can be expressed into locally horizontally and vertically
polarised components. Accordingly, after some manipulations (see (Fung, 1994) for more
details), the Kirchhoff and complementary tangential fields can be rewritten as:

(AxE), =ax[(1+R,)(p-E) E+(1-R,) (p-d)d] F (5.1.5)
n(AxH), =x|(1-R,)(p-t)d+(1+R,) (p-d) | E (5.1.6)
(ﬁxE)C:—i(ﬁxﬁ){ﬁx@-ﬁxI[(1+R,l)s+(1—Rh)st]ds’}
T (5.1.7)
—Et{t~ﬁxj[(1—Rv)s+(1+Rv)st]ds’}
(ﬁxH)C:i(ﬁxf){ﬁxf-ﬁxj‘[(l+Rv)’H+(1—Rv)7-t,]ds’}
T (5.1.8)
+Et{t~ﬁxj[(1—R,1)H+(1+R;,)?-L,]ds'}

It can be noted that, while (5.1.5) and (5.1.6) are expressed in terms of known quantities, that
is the incident electric or magnetic fields, the local Fresnel reflection coefficient and the local
incident angle, (5.1.7) and (5.1.8) are integral equations. In order to obtain estimates of (5.1.7)
and (5.1.8), IEM substitutes the unknown expressions of the tangential fields in the right-

hand side of (5.1.7) and (5.1.8), that is the (A'xE') and (A'xH') terms which appear in ¢,
&, H and H,, with the Kirchhoff tangential fields, (f'xE') , and (A'xH) , - Tespectively.

This is the fundamental approximation adopted by IEM model. However, even with this
simplification the obtained integral expressions remain too complex for practical use.
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Much simpler approximate expressions of the tangential Kirchhoff and complementary
fields can be obtained differentiating them for each linear incident and scattered
polarisation. The resulting approximated equations (electric and magnetic surface field
equations for horizontal, vertical and cross polarisation) can be found in (Fung, 1994).

Then, the simplified tangential surface fields can be inserted in the Stratton-Chu integral.
The far field scattered from the rough surface can be expressed as a combination of the
Kirchhoff and the complementary term:

E, =El +E, (5.1.9)
where
EE, =CE, [ f,, ¢/ ™ axay (5.1.10)
and
E,= J. E e/ dx dy— 2_'. € M iRl =y ks ek " dxdydudodx'dy’ (5.1.11)

The quantities f;, and qu , respectively the Kirchhoff and complementary field coefficients,

that appear in the above equations are defined as follows:
fip=|axk. (R xE,) +nd-(axH,) D) JE, (5.1.12)

E, =87 [qus.(ﬁxEP)c+;7£1.(ﬁpr)JD1 (5.1.13)

where D, = [1+Z2 + Z; and Ei is the complex amplitude of the incident electric field.

In general, both f;, and ﬁqp are dimensionless, complicated expressions and depended on
spatial variables. Therefore several approximations are made to make these functions
independent of spatial variables (Fung, 1994).

In particular, the f;, coefficients depend on the Fresnel reflection coefficients, and hence on
the local angle, and on the slope terms, Z, and Z,. The first dependency is removed by
approximating the local incidence angle in the Fresnel reflection coefficients by the incident

angle, @, for surface with small scale roughness and by the specular angle, €., cos Hsp =-nx ki ,

for surface with large scale roughness. The rule that defines the bound between the two
regions is reported here assuming a Gaussian autocorrelation function:

o] Ren(®) Kol<12e, 114
Ry (O K >5 (5-1.14)

spec
In order to remove the dependence on the slope terms, the integral (5.1.10) is solved by parts
and the edge terms were discarded.

To obtain the expressions of the complementary coefficients qu , the computation is rather
lengthy and complicated. When the equations (2.2.15) - (2.2.18) are substituted in the
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approximated expressions of tangential complementary fields, the spectral representations
of Green's function and of its gradient are introduced, assuming however the same Green’s
functions for both the medium:

G =~ [ Lt pioloy il g (5.1.15)
2r7 q
VG = L [B ooy )il g gy (5.1.16)
277 q

g=ux+vyFqz and g=vVk*> —u> —v* are the propagation vector and its z-component of the
generic plane wave that appears in the plane waves expansion of the field, whereas z and z'
are the random variables representing the surface heights at different locations on the
random surface. In (Fung, 1994), the ‘z - z" terms and the term with the ¥ are dropped in
the equations (5.1.15) and (5.1.16) in order to simplify the calculation. However, in an
improved version of the IEM (see (Chen et al, 2000)) these terms are kept in the analysis. In
addition, as was the case for the Kirchhoff coefficients, f;,, the dependence through the slope
terms is removed by integrating by parts and discarding the edge terms. Instead, as regard
the Fresnel reflection coefficients, the local angle is always replaced by incident angle (Fung,
1994; Wu et al, 2001).

Moreover, it is important to underline that the tangential and normal field components that
appear in the expressions of the qu coefficients through equations (2.2.15) - (2.2.18) can be
approximated by the tangential Kirchhoff fields. The complimentary field coefficients Fy,
that appear in the right term of the equation (5.1.11) are obtained from the definition of the
ﬁqp after the Green’s function and its gradient are replaced by the simplified spectral
representation, above mentioned, and after the phase factor of the Green function and u, v,
x’, y’ integrations are factored out. The expressions of such coefficients together with the
expressions of the Kirchhoff ones are reported in (Brogioni et al, 2010).

Once the field coefficients, f;, and F;, are made independent of spatial variables, it is
possible to provide the expression of the incoherent scattered power:

< E;p 2> N ‘<E;r'>‘2 = <E;PE;P*> - <E';P><E;P>* =
= <E;PE;P*> - <E5p><Egp > + (5.1.17)

+ 2Re[<EﬂEmE§P*> - <E;P><E§P>*} + <EKCWE;P*> - <E;P><E;p>*
and from this the bistatic scattering coefficient:

o _ _k ke c
Ogp =Ogp+0gy +0g, (5.1.18)

From the above expression it follows that the scattering coefficient is given by the sum of
three terms: the Kirchhoff, the complementary and the cross term. The first is originated by
Kirchhoff fields, the second by the interaction between Kirchhoff and complementary fields,
whereas the last is due only to complementary fields.
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To carry out the average operation an assumption about the type of surface height
distribution is necessary. In order to simplify the calculation of the incoherent power terms
the rough surface is assumed characterised by a Gaussian height distribution. Accordingly,
the terms in (5.1.18) assume the following expressions, reported in (Fung, 1994):

‘f ‘ —o? (ke +k)
% =gl (5.1.19)
j{exp[a (ke + k. p(66) |1 expl (ko o)+ (ke —k, ) | dé
2
ok = 1;‘”3 Re{ (B, fy Jexp| -0 (k2 + K2 + k)
[Jexp[-okkap(- 216 =¢)]{ exp %k (ke 4 K.) (£, )+ 5.120)

ok, (ko + k) (7)1 exp| jhat + ey + (& =)+ ju(E-&)]
exp|—jk.& - jk, ¢ |dédd ag dudo }

c

g,
ap ‘16”25

{”(FWFW )exp[ 2(k2 +k2)J

exp[-oPkkop(r+E-& x+¢ =) |(exp[a2p(5,0)]
exp{ok.p(£,¢")+ ok k[ o §+T,§+K)+p(.§'—r,§'—lc)]}—1) (5.1.21)
exp{][k vu)é+(k, +v)g—(kx+u)§’—(ky+v)g']}

exp{ j[(u—u)r+(0-0)x ]} dgdSd A" dr di du do du' do'

The above expressions consist of multiple integrals which are too complex and hence not
practical to use. In order to evaluate these integrals, the model is approximated in two
different forms depending upon whether the surface height is moderate or large in terms of
the incident wavelength (ko). The first case is referred to as low frequency approximation,
whilst the other is referred to as high frequency approximation. An indicative threshold

value of ko < 2 is reported in (Fung, 1994). The detailed expressions of o-é‘p , cré‘; , oy, valid

separately when ko < 2 and for large ko are given in (Fung, 1994) and are not reported here.
For both the approximations, in the expression of the bistatic scattering coefficient two types
of terms can be distinguished: one representing single-scattering and the other representing
multiple-scattering. The latter may be viewed as a correction to the single term for both the
high- and the low-frequency regions. This division is important to identify weather single or
multiple scattering is significant for applications. For completeness we report here the total
single scattering coefficient obtained by selecting the single scattering contributions in the

ok, ¢ valid when ko < 2 (for the detailed explanation refer to (Fung,

expressions of O'qp s Oopr Ogp

1994)):



226 Electromagnetic Waves
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6. Conclusions

We have presented the results from a literature search of models for scattering of
electromagnetic waves from random rough surfaces. In particular we have focused on the
calculation of the bistatic scattering coefficient in three different classes of methods: the
Kirchhoff Approximation, the Method of Small Perturbation and the Integral Equation Method. Of
these, the first two, are amongst the early approaches which however are still much used.
The latter is an example of more recent approaches which have been developed as an
attempt to extend the validity of the former methods.
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1. Introduction

The problem of guided wave propagation in a wave guide with imperfectly reflecting
boundaries arises in several applications, such as propagation in mine tunnels and in
screened surface wave guides. In recent years, many studies have been carried out on the
propagation characteristic of radio waves in tunnels in UHF band [1-2]. From the theoretical
point of view, tunnels can be regarded as hollow waveguides surrounded by a lossy
dielectric medium, such as concrete, ground, and so on. The problem of radio
communication in tunnels has found solutions using leaky transmission lines as supports
for propagation of transverse electromagnetic modes [3-4]. These modes are characterized
by the fact that there is no cutoff frequency, and by an attenuation which increases with
increasing frequency. However, when the frequency is high enough, natural propagation
modes, which are transverse electric or transverse magnetic, can appear and interfere with
the transmission line supported transverse electromagnetic modes [5].

Natural propagation can be helpful to solve some specific problems, such as radio
communications in mines with rooms and pillars which cannot be solved easily with the
help of transmission lines. Natural propagation modes are also useful for short range
communications, for example, in some road tunnels. For distances shorter than 200m, these
modes can be more suitable the transmission line supported modes [6].

In order to maximize the performance attainable feeding in the interior of tunnels with
antenna systems, it is important to estimate the value and the attenuation of the
electromagnetic strength inside the tunnel. Investigations concerning radiowave
propagation in railways tunnels have been performed [7] and the results confirm the
existence of a waveguide effect strongly related to the antenna positions. Recently, Abo-
Seida et al. [8] and Abo-Seida [9] studied the electromagnetic field due to vertical magnetic
dipole buried in stratified media. Also, Abo-Seida [10] computed the attenuation below and
above the cutoff frequency in a rectangular tunnel.

It might be thought that waveguides with circular cross sections would be preferred to guides
with rectangular cross sections, just as circular pipes are commonly used for carrying water
and fluids in preference to rectangular pipes. However, circular waveguides have the
disadvantage that there is only a very narrow range between the cutoff wavelength of the
dominant mode and the cutoff wavelength of the next higher mode. As with rectangular
guides, the modes may be classified as transverse electric ( TE ) or transverse magnetic ( TM ),
according to whether it is the electric or magnetic lines of force that lie in planes perpendicular
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to the axis of the guide. The different modes are designated by a double subscript system
analogous to that for rectangular guides.

2. Geometrical structure and basic equations

The concrete tunnel is practically of finite thickness. At low frequencies, below cutoff
frequencies, the skin depth may exceed this thickness and thus the field penetrates to the
outside. However, our aim is to check the possibilities of radio communication in tunnels
and to replace the tunnel by a circular waveguide. It is possible to make this replacement in
practical problems involving conducting walls.

A uniform waveguide of circular cross section is most conveniently described by polar
coordinate system(r,$,z), and divide the possible solutions for circular guides into
transverse magnetic and transverse electric waves. For the TM waves H is identically zero
and the wave equation for E,is used. Also, TE waves E, is identically zero and H, is used.
The modes are further labeled by a two-dimensional order number ( 1,1 ).

For a circular waveguide with a radius r the critical frequencies are given by

Tm” , T™,,,, modes
fomn =| oy M
—m TE,,, modes
2r

where m>0,Y, and Y

4 mn mn

are the nth zero of Bessel function J,, and of its derivative,
respectively, and C=3x10% ms™ is the speed of light.
The cutoff wavelengths are given for a circular waveguide by [11]

2 ro, TM,,, modes
Y,
Mo =| o @
—_—r , TE,, modes
Ymn
where m,n are equal to 1,2,3,........ for the TM,,, modes, and equal to
0,1,2,3,....... for the TE,,, modes.

Below the lowest cutoff frequency, propagation is not possible. The attenuation o is
independent of the electrical properties of the wall and have the form equation

0228 [ ey 2x314x8.69 /1_(&)2
e A e n

546
A

1—(%)2 dB/ unit length )

[

where L, is the longest cutoff wavelength of the waveguide and the value 8.69 is the
decibels of attenuation per unit length.

Above its cutoff frequency, the attenuation a for the TM,,, modes is given by [11]
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on:8.69§;7¥
r / 2
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modes, this attenuation a is given by

dB/m @)

and for the TE

mn

Er | Yoo —m® Ay,

2
a:8.69R{m+(x)z}1 dB/m 5)
n A 2
mn 1 (7)

Nonn
where1 & is the intrinsic impedance of the propagation medium and equal to
(u/g)?, R=10.88x107,/(10" /5)(1/%) ohms, o isthe conductivity of the guide walls in
mho/m, p is the permeability of the propagation medium in henry/m, & is the
permittivity of the propagation medium in farad/m.

3. Determination of the attenuation constant

We consider the circular ~-waveguide model of the tunnel. In practice, the concrete tunnel
wall is of finite thickness. This tunnel is considered to have a radius r=4.08 m. Its
conductivity is taken as 107! and 10 mho,/m as in [10].

The cutoff frequency is 20 MHz corresponding to approximately a tunnel shaped as a
circular cylinder, inside it a wave is propagating in the

TE,; mode. Taking account of the conductivity of the walls, the attenuation constants of the
TE,; and TEjy modes have been determined and the results plotted in Figs (1) and (2),
respectively, for both values of ¢ and for frequencies in the range 20-300 MHz.

As in the case of TE,,, modes, the attenuation of the electromagnetic waves is calculated for
both the TM;; and TM; modes. The obtained results are plotted in Figs (3) and (4),
respectively, as a function of the frequency.
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Fig. 1. Frequency and attenuation in a circular tunnel
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Fig. 4. Frequency and attenuation in a circular tunnel

4. Conclusion

The propagation of electromagnetic waves in a circular tunnel have been performed and the
results confirm the existence of a waveguide effect strongly related to the antenna positions.
The cutoff frequency was calculated and three different types of frequency ranges were
characterized. The numerical results presented here indicate that the different values of m
and n modes.

This work enable us to distinguish three different ranges of frequency, characterized by
three different propagation mechanisms.
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Propagation of Electromagnetic Waves
in Thin Dielectric and Metallic Films
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1. Introduction

Matrix formalism is a very systematic method to find the reflectance or transmittance in a
stratified medium consisting of a pile of thin homogeneous films. Fitting experimental
values of reflectance curve to expressions obtained from the matrix formalism method is an
efficient method to estimate the refractive index (n) of a dielectric and/or the real and
imaginary parts of a metal permittivity (¢). In the next section, the method of matrix
formalism is briefly reviewed with some examples to show how it can be applied in curve
fitting to determine refractive indices or the metal permittivity. Applications to more
complex structures such as planar waveguides and periodic grating are presented in
sections 2 and 3, respectively.

1.1 Matrix formalism for the transverse electric and magnetic waves in stratified thin
films

Maxwell equations will be applied at each interface between two homogeneous media to
find the characteristic matrix defining a thin film. Let us consider figure 1 for a transverse
electric (TE) wave with the E-field vector perpendicular to the plane of incidence for one

thin homogeneous film.
Hi Hr
Er1 <
Hy, = 1 —=m (Ey —E, )cos 6,
nq

Eit @"
%

Ef =E; +E, Ho
_ | -
El = Ell +Er2 En, Hn _ g(} i
Hy, = |—ny(E,; —E,y)cos 6,
ﬂ()
Ej =Ep+E,

fs
_ 2 Hi = |[-*n,(E,—-E. )cosé
E2 :EIZ En Mo ’_")| 2x P 2( i2 r2) 2
| . ns3 o
; £
103 Sabig Hj, = —n3E,y cos Oy
: Ho

Fig. 1. Electric field (E) and magnetic field (H) in each medium of refractive index nj, n, and ns.
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In figure 1, the H-field is related to the E-field using;:

&
Hi, = =1, E @
Ho

where &, and i, are referred to as the electric permittivity and the magnetic permeability,
respectively. Letters i, r and t stand for incident, reflected and transmitted rays, respectively
and the homogeneous medium is identified using numbers 1, 2 or 3.

As both the E and H fields are continuous at boundary 1, one may write E; and H; as:

E =E =Eq+ E;z 2

_ fgo . .
Hy,=Hy =mn, ;(Etl —E,;)cos60, =Y,(E; —E,,) 3
0

where Y, =n, fi cos6, @)
Ho

The system of equations (2) and (3) can be written under the matrix form as:
E 1 1 ||E
' |- ; ©)
Hi | [Y2 % ][E,

Ey=E, =E, +E, (6)

At interface 2, we merely write

By making use of the E-field amplitude phase shift, it can be shown that E;; and E’;; can be
expressed as:

Ep =Eqe " @)
and
E,y = E,pe /" ®)
respectively, with
hy =d, cosé, )

where d; is the thickness of the homogenous thin film and 6;; is the angle defined as shown
in figure 1. k; is the wave-vector in the thin homogeneous film (medium 2) , which is given
as

2r
k==, (10)

where A is the wavelength of the monochromatic incident light when propagating in a
vacuum.
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Equations (7) and (8) are used to express the tangential component of the H-field vector at
interface 2 as:

Hy, = Yz(Ezl‘fijh2 - E;zejk2llz ) 11

Using Equations (7) and (8), Equations (6) and (11) are expressed under the matrix form and
by matrix inversion one can show that:

(12)

eszhz e/kzhz
{En}: A 2Y, {E2i|

E;Z Eijk2h% _e*]‘kzhz/ZYz H2x

Lastly, substituting Equation (12) into Equation (5) the E and H field components at
interface 1 are related to those at interface 2 by:

E | cos(kyhy)  jsin(kh,) /Y, || E, B E,
{Hlj - {]'Yz sin(k, 1) cos(kyh,) }{sz =M {sz 1)

The 2x2 matrix in equation (13) is the characteristic matrix (M) of the homogenous thin film.
Note that M> is unimodular as its determinant is equal to 1. Assuming another film lying
just underneath the thin film shown in figure 1, from Equation (13) we imply that field
components E and H at interface 2 will be related to those at interface 3 by the matrix
equation:

Ey |_| cos(kshs)  jsin(kshs)/ Y[ Es _ Eq 14
H,, | | jYssin(ksh k3h iy | V|1 4
2x JY3sin(kshs) cos(kshs) || Hay 3x
Substituting Equation (14) into Equation (13) one finds:
E E; |
=M,M;, (15)
Hlx H3x_

By applying this method repeatedly for a stratified system of N thin homogeneous thin
films we can write:

E E E
{ ! }:MZMS...M,\{ N}:M{ N} (16)
Hlx ENx ENx

where Y, = inl cosb, , k :Zjﬂn, and h; =d,;cosé for interfaces I = 2,3, ... , N. (Born &
Ho

Wolf, 1980) show that the reflection and transmission coefficient amplitudes for a system of
N-1 layers (I = 2 to N) lying on a substrate of refractive index ns can be expressed from the
matrix entries of the system matrix M as:

’ Ey _ Yymyy + Y Yimy, -ty — Yy,
= =

17)

E.q  Yymyy +Y,Ymgp + 1y + Yy,
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where r, is referred to as the reflection coefficient for the TE wave. Admittances Y7 and Y
for the incident medium and the substrate hosting the system of N-1 homogeneous thin

films are given by:
Y, = ﬁn1 cos 6, (18)
Ho

Y, = ins cos by (19)
Ho

For the case where the H-field is perpendicular to the plane of incidence (TM wave), the
impedances Y1,Y; and Y, must be replaced by Z; , Z; and Z, , which are given by

7, - /& cos 6, 20)
& M

7= [#o50 o1203, N (1)
g, n

Z.- /& cos 22)
gO nS

1.2 Examples with dielectrics and metal thin films with some experimental results
Expressions derived in the previous section can be applied to find the reflectance curve of
thin dielectric or metal films. They can be applied to fit experimental reflectivity data points
to determine refractive indices of a dielectric film or metal film relative permittivity and
even their thickness. Before we illustrate how it is used, let us apply Equation (17) for the
simple case of Fresnel reflection coefficient amplitude for an interface between two semi-
infinite media.

and

and

1.2.1 Interface between two semi-infinite media (Fresnel reflection coefficient)
This situation can be mimicked by setting d» = 0 into Equation (13). In other words,
interfaces 1 and 2 in Figure 1 collapse into one single interface separating two semi-infinite
media of refractive index n; and n.
Characteristic matrix in Equation (13) can be used to find the matrix system for two semi-
infinite media. Setting for d» = 0, the matrix system for the two semi-infinite media becomes
the identity matrix as hy equals 0. This means that m;; = my» = 1 and my2 = my = 0.
Substituting the matrix entries into Equation (17) one obtains:

Y, Y,

s _ 1y cos6) —n,cosb,

(23)

r =
Y +Y, mnycosé, +n,cosb,
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In the previous equation we use ns = ny and 6y = 02 for this single interface system. For the
TM wave, it can be shown that:

Z,-7

P _1pCos6) —n, cosb,
3 Zi+Z, n,cosb, +mn,cosb,

S

(24)

We then retrieve the results for the Fresnel reflection coefficients. Results for the
transmission coefficient amplitude (t) can be obtained in the same manner.

1.2.2 Reflectance curve for a thin metallic film of silver or gold (surface plasmons)

A matrix approach is used to compute the reflectance of a thin film coupled to the
hypotenuse of a right angle prism. The system shown in Figure 2 can be modeled by using
three characteristic matrices for the matching fluid, the glass slide, the metal film and then
accounting for the various Fresnel reflection losses at both the entrance and output face of
the prism.

Air > 6

Metal film — 5
Glass slide YRR 4
Matching fluid _p - 94: 3
’ M

. €
Prism long face —» S, Oy

Detector —» \l

Air (g1=1)

Fig. 2. Path of a laser beam propagating through all interfaces bounded by two given media.
For a one way trip the media are (1) air, (2) glass, (3) matching fluid (greatly exaggerated),
(4) glass (slide), (5) metal film (Au of Ag) and (6) air.

(Lévesque, 2011) expressed the characteristic matrix M of the sub-system of three layers in
Figure 2 as

M = M;M,M; (25)

where M3, My and M5 are the characteristic matrices for the index matching fluid layer, the
glass slide and the metal thin film, respectively. Each of these matrices is given by

i
v cos(B) ;Sm(ﬁf) (26)

1 1

—ig;sin(B;)  cos(f)

where i =3, 4 or 5. f§; and q; for p-polarized light are expressed as

2
Bi= 7” 1;d; cos 6 (27)
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% a/””fcose,- = [“eq, (28)
& \ & &

respectively, where g ( = n;?) is the relative permittivity of the material. Using Snell’s law,
note that

(29)

&

1/2
We are assuming all media to be non-magnetic and ds, d4 and ds are the thicknesses of the
matching fluid, glass slide and the metal film, respectively. €3, €4 and &5 (= €'5 +ies”’) are the
relative permittivity for the matching fluid, the glass slide and the metal film, respectively.
g5 and &5 are respectively, the real and imaginary parts of the metal film relative
permittivity. By taking into account the Fresnel reflection losses F; at the input and output
faces of the glass prism, the reflectance for the p-polarized light Rpe is given by:

2
Rpy =F (mq1 + mu%)% (my + mzz% ‘ (30)
(g + 111061 + (1ay +Mydg) ‘
where my; are the entries of matrix M and F; is given by
4 0,086, |
E - 11, cos 8, cos b, i (31)
(cos@, +n,cosé)

In previous equation n is the refractive index of the prism. Investigations on optical
reflectivity were done on glass slides which were sputtered with gold or silver. These glass
slides were pressed against a right angle prism long face and a physical contact was then
established with a refractive index matching fluid. The prism is positioned on a rotary stage
and a detector is measuring the signal of the reflected beam after minute prism rotations of
roughly 0.03°. The p-polarized light at L = 632.8 nm is incident from one side of a glass
prism and reflects upon thin metal films as shown in figure 3. As exp (jwt) was assumed in
previous sections, all complex permittivity € must be expressed ase =€ +je”.

o

[ T \— Glass slide

Matching fluid

Si detector Mirror

Laser /
|-
» /

Fig. 3. Experimental set-up to obtain reflectivity data points.
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If no film is coating the glass slide, a very sharp increase in reflectivity is expected when 64
approaches the critical angle. This sudden increase would occur at 6. = sin(1/nz) ~ 41.3°.
The main feature of the sharp increase in the reflectivity curve is still obvious in the case of a
metalized film. This is so as the penetration of the evanescent field is large enough to feel the
presence of air bounding the thin metal film. As silver or gold relative permittivity (optical
constant) is complex, cosBs becomes complex in general and as a result 65 is not represented
in Fig. 2. This means physically that the field penetrates into the metal film and decays
exponentially through the film thickness. At an optimum thickness, the evanescent field
excites charge oscillations collectively at the metal-film-air surface (c.f.fig.2), which is often
used to probe the metal surface. This phenomenon known as Surface Plasmon Resonance
(Raether, 1988; Robertson & Fullerton, 1989; Welford, 1991) is occurring at an angle of 0, that
is a few degrees greater than 6.. For a He-Ne laser beam at A = 632.8 nm, that is incident
from the prism’s side (c.f.fig.2) and then reflecting on silver or gold metal films, surface
plasmons (SP) are excited at 6> near 43° and 44°, respectively. At these angles, the incident
light wave vector matches that of the SP wave vector. At this matching condition, the
incident energy delivered by the laser beam excites SP and as a result of energy conservation
the reflected beam reaches a very low value. At an optimal thickness, the reflectance curve
displays a very sharp reflectivity dip. Figure 4 shows the sudden increase at the critical
angle followed by a sharp dip in the reflectance curve in the case of a gold film of various
thicknesses, which is overlaying the glass slide.

1r RDet

09F
08F
Y ——
0.6
05F

04r
037

02f

01F

0 1
38 40 42 44 46 48
Fig. 4. Reflectance curves for gold films of various thicknesses ds obtained from Eq.(30).

We used d3 = 10000 nm and ds = 1000000 nm (Imm), np =1.515, n3 =1.51, n4 =1.515 and &5 = -
11.3+3;.

Reflectance curves for gold films sputtered on glass slides show a sudden rise at the critical
angle 6. followed by a sharp drop reaching a minimum near 44°. For all film thicknesses, a
sudden rise occurs at the critical angle. Note that the reflectance curve for a bare glass slide
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(ds = 0 nm) is also shown in figure 4. At smaller thicknesses, the electromagnetic field is less
confined within the metallic film and does penetrate much more into the air. The
penetration depth of the electromagnetic field just before reaching the critical angle (6 <
41.3° is indicated by a lower reflectance as ds gets closer to zero, as shown in Fig.4. The
reflectivity drop beyond 6. is known as Surface Plasmon Resonance (SPR). SPR is discussed
extensively in the literature and is also used in many applications. Good fitting of both
regions displaying large optical intensity change is also useful in chemical sensing devices.
As a result fitting of both regions is attempted using the exact function curve without any
approximations given by Eq. (30). Eq. (30) is only valid for incident plane wave. Therefore,
the reflectivity data points were obtained for a very well-collimated incident laser beam. A
beam that is slightly converging would cause more discrepancy between the curve
produced from Eq. (30) and the reflectivity data points. Although the Fresnel loss at the
transparent matching fluid-glass slide interface is very small, it was taken into account in
Eq. (30), using d3=10 000nm (10 pm) in matrix Ms. The theoretical reflectance curve is not
affected much by the matching fluid thickness ds. It was found that d; exceeding 50 pm
produces larger oscillations in the reflectance curve predicted by Eq.(30). As the oscillations
are not noticeable amongst the experimental data points, the value of d;3 = 10 um was
deemed to be reasonable. A function curve from Eq. (30) is generated by changing three
output parameters &5, €5” and ds. The sum of the squared differences (SSQ) between Rpet and
the experimental data points R; is calculated. The best fit is determined when the SSQ is
reaching a minimum. The SSQ is defined as:

N
SSQ =Y (R - Rp,)* (32)

i=1
where i is a subscript for each of the N data points from the data acquisition. Each sample
was placed on a rotary stage as shown in Figure 3 and a moving Si-pin diode is rotating to
track down the reflected beam to measure a DC signal as a function of 6. The reflectivity
data points and typical fits are shown in Figure 5.
In the fit in Fig. 5a, we used nz =n4 = 1.515, n3 = 1.47(glycerol) for red light, d3 = 10 000 nm, &5
=-11.55+3.132j and ds =43.34 nm.
In the fit in Fig. 5b, we used ny =n4 = 1.515, n3 = 1.47(glycerol) for red light, d3 = 10 000 nm, &5
=-10.38+2.22j and ds = 53.8 nm. The three output parameters ( &5, &5" and ds) minimizing the
SSQ determine the best fit. Plotting the SSQ in 3D as a function of &' and ds at &5 = 3.132
shows there is indeed a minimum in the SSQ for the fit shown in Fig.5a. Figure 6 shows a 3D
plot of the SSQ near the output parameters that produced (Lévesque, 2011) the best fit in
Fig. 5a. 3D plots at values slightly different from &5" = 3.132 yield larger values for the
minimum.

2. Wave propagation in a dielectric waveguide

In this section, we apply the matrix formalism to a dielectric waveguide. We will describe
how the reflectance curve changes for a system such as the one depicted in Fig. 2 if a
dielectric film is overlaying the metal film. It will be shown that waveguide modes can be
excited in a dielectric thin film overlaying a metal such as silver or gold and that waveguide
modes supported by the dielectric film depend upon its thickness.
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Fig. 5. Reflectivity data points (+) and a fit (solid line) produced from Eq.(30) for two
different gold films.
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Fig. 6. 3D plot of SSQ as a function of two output parameters at a given value of &5”(= 3.132).
We assumed the glycerol layer (d3) to be 10 pm and the thickness of the glass slide is 1 mm
(d4). The SSQ reaches a minimum of 0.01298 for &5" =-11.55, &5" = 3.132 and ds =43.34 nm.
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2.1 Wave propagation in dielectric films

Let us consider a dielectric film of thickness d¢ overlaying the metal film in Figure 2. We will
be assuming that the top surface of the overlaying dielectric is bounded by the semi-infinite
air medium. The characteristic matrix M for the sub-system of four layers can be expressed
as:

M = M;M,M;M, 33)

where M3, My, Ms and M are the characteristic matrices for the index matching fluid layer,
the glass slide, the metal thin film and the thin dielectric film, respectively. Each matrix in
Eq.(33) is given by Eq.(26) for i = 3,4,5 and 6 and the reflectance for the p-polarized wave is
given by Eq.(30). For this four layer system, gs" in Eq.(30) should be replaced by g7 (air) and
my1, My, Mp; and my; are the entries of the system matrix given by Eq.(33). The expression
for qe¢is given by Eq.(28) and is used in the computation of Ms for the dielectric film
characteristic matrix.

2.1.1 Computation of reflectance with a thin dielectric film and experimental results
Eq. (30) can be used with the minor modifications discussed in section 2.1 to find the
reflectance of the system in Fig. 2 with an extra dielectric film processed on the metal film. The
dielectric film can support waveguide modes if the laser beam is directed at very precise
incident angle 6. Let us consider a transparent polymer film with a real permittivity g5 = 2.30
processed on a silver film. The computation is done for a silver film that is 50 nm thick. Silver
permittivity is assumed to be &5 = -18.0 +0.6i and the prism refractive index to be 2.15 (ZrO»)
for He-Ne laser at A = 632.8 nm. We also assume that the metal film is directly coated on the
prism long face and as a result we set d3 =d4 = 0. In other words M3z and M, are expressed by
identity matrices. Figure 7 is showing the reflectance curve for a dielectric film of different
thickness that is overlaying the silver film coated on the high refractive index ZrO, prism.

17 17
09 | Rou 0.9 | Roa
08 | 08 | |
07 | W 0.7 |
06 | r 06 | \
05 | 05 |
04 | 04 |
03 | 03
02 | 02
01 | 01
O35 40 45 50 55 O35 40 45 50 55
6,0) 6,()
a) b)

Fig. 7. a) Reflectance curve for a lossless dielectric film of 1.7 pm overlaying a thin silver film
b) Reflectance curve for a lossless dielectric film of 2.5 pm overlaying a thin silver film
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In figure 7a, a series of very sharp reflectivity drops occur in the reflectance curve for 6,
within the range 35°-45°. These sharp reflectivity drops with small full width at half
maximum (FWHM) are waveguide modes supported by the dielectric film. The last
reflectivity dip with a larger FWHM near 6, ~ 50° is due to surface plasmon resonance (SPR)
and is mostly depending upon the metal film properties and its thickness as discussed in
section 1.2.2. A thicker dielectric film (c.f. fig. 7b) can support more waveguide modes and
as a result the number of sharp reflectivity dip for 8, within the range 35° to 45° is expected
to be greater. Note that the FWHM of the SPR dip remains at the same position as the metal
film thickness was not changed. These waveguide modes do not propagate a very large
distance as light is slightly attenuated when reflecting at the metal-dielectric film interface.
Therefore, at precise angle 8, the incident light is probing the dielectric film locally before
being reflected by the thin metal film. Nevertheless, the laser beam is simultaneously
probing the metal and the dielectric films because it creates SPR on the thin metal film and
waveguide modes are being supported by the dielectric film. In practice, dielectric films are
not lossless (Podgorsek & Franke, 2002) and their permittivity should be expressed using a
small imaginary part. Let us assume that each dielectric films in Fig. 7 have a permittivity of
g6 = 2.30 +0.005;.
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Fig. 8. a) Reflectance curve for a dielectric film (g6 = 2.30 +0.005j, ds =1.7 um) overlaying the
metal film. b) Reflectance curve for a dielectric film (g = 2.30 +0.005j, ds =2.5 um) overlaying
the metal film.

Note from figures 7 and 8 that the waveguide mode dips are greatly attenuated when a
small imaginary part is assumed in the dielectric film permittivity. The dips at larger angles
(near 45°) are getting smaller as the propagation distance into in the dielectric film is larger
as 0> increases. Note that the SPR dip is not much affected by the imaginary part of &.
Essentially, the whole 4-layer system of prism material-silver film- dielectric film-air can be
mounted on a rotary stage and the angle 6, can be varied using a set-up similar to that
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shown in figure 3. As it is difficult to obtain a large dynamic range in the measurements of
reflectivity data points, scans must be done successively to cover a long range of incident
angle. Figure 9 shows reflectance curves for a transparent layer of polyimide processed
directly on silver films. Ranges of incident angle 6, where no noticeable change in
reflectivity were observed are not shown. Only the dips in the reflectivity data points are
fitted by Eq. (30).
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Fig. 9. Reflectivity data points of the 4-layer system and fits (solid lines) from Eq. (30) for
a) ZrO; prism-Ag-polyimide film b) glass prism-Ag-polyimide film

Using a method based on the optimization of the sum of square (SSQ) as presented in
section 1.2.2, thicknesses and the complex permittivities of both films can be estimated.
Values obtained from the minimization of the SSQ are given in table 1. Uncertainties are
estimated from a method described by (Lévesque et al., 1994).

Prism ZrO2 Glass
&' (Ag) -17.41£0.10 -18.1 0.1
&' (Ag) 0.2 0.1 1.36 £0.08
ds 615 +15A 146 +5A
& (Pi) 2.49540.001 2.230+0.002
&’ (Pi) 0.011£0.003 0.0017+0.0002
ds 1.488+0.004um 1.723+0.003um

Table 1. Thicknesses and permittivities of the silver (Ag) and polyimide (Pi) films.

3. Diffraction efficiency (DE) in dielectric periodic grating structures

Abrupt changes in reflectivity or transmission were first observed in gratings as early as
1902 (Wood, 1902). These so-called anomalies in diffraction efficiency (DE) occurring over
an angle range or a wavelength spectrum are very different from the normally smooth
diffraction curves. These abrupt changes in DE led researchers to design and investigate
resonant filters for applications in many devices including gratings.

Rigorous coupled wave analysis (RCWA) has been used extensively (Moharam et al., 1995;
Lalanne & Morris, 1996; Lenaerts et al., 2005) to calculate diffraction efficiencies (DE) in
waveguide structures. The application of RCWA to resonant-grating systems has been
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investigated mostly for both the TE and TM polarization. In this section, the basic binary
dielectric rectangular-groove grating is treated with careful considerations on the
computation of DE. The results obtained for binary dielectric rectangular-groove grating are
also applied to metallic grating. Introduction to photonic bandgap systems are discussed
and some examples are presented at the end of this section.

3.1 Theory of coupled wave analysis

As the numerical RCWA method is introduced extensively in the literature, only the basics
equations will be presented in this section. Computation will be done for the TM wave on
ridge binary grating bounded by two semi-infinite dielectric media of real permittivities &
and &;. The type of structures presented in this section is depicted in figure 10.

&3

Fig. 10. Basic structure of the binary rectangular-groove grating bounded by two semi-
infinite dielectrics.

The relative permittivity &(x) of the modulated region shown in figure 10 is varying
periodically along the x-direction and is defined as:

&(x)= ZES exp(—2rzjsx / A) (34)

where ¢ is the sth Fourier component of the relative permittivity in the grating region (0< z
<h), which can be complex in the case of metallic gratings. The incident normalized
magnetic field that is normal to the plane of incidence (cf. fig.10) is given by:

H;,. , = exp[-jk,n,(sin@.x + cos 6;z)] (35)

inc,y

where k, =27/ 4. 6 is the incident angle with respect to the z-axis as shown in figure 10.
The normalized solutions in regions 1 (z < 0) and 3 (z > h) are expressed as:

Hl,y = Hinc,y + ZRi exp[_j(kxix - kl,ziz)] (36)
i

Ha, = YT expl-j(kx + ks i (2= )] 37)
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where k,; is defined by the Floquet condition, i.e.,
ky =k,(n;sin; —i(1 / A)) (38).

In previous equations, A is the grating spacing, ni (=/¢; ) is the refractive index of medium

1and
1/2
2 kxi ’
ko ny — ki konl >kxi

= (39)

) 1/2
_jka [(%] —11,2‘| kxi > kanl

withl=1,3.n3 (= \/g ) is the refractive index of medium 3.

1,zi

R; and T; are the normalized electric-field amplitudes of the ith diffracted wave in media 1
and 3, respectively. In the grating region (0 < z < h) the tangential magnetic (y-component)
and electric (x-component) fields of the TM wave may be expressed as a Fourier expansion:

Hy =3 U, (2)exp(-jkyx)
z 40

E, = j(“2)/23 S, (2)exp(~jk,x) o
€ i

[

where U,; (z) and Sy (z) are the normalized amplitudes of the ith space-harmonic which
satisfy Maxwell’s equations, i.e.,

%y _ —jou,H, + o,

Z Ox

1 oH (41)
——t= ja)goEz
e(x) ox

where a temporal dependence of exp (jot ) is assumed (j2 = -1) and @ is the angular optical
frequency. & and g, are respectively the permittivity and permeability of free space. As the
exp (jot) is used, all complex permittivity must be expressed under € = & - j&”.

Substituting the set of equations (40) into Maxwell’s equations and eliminating E., the
coupled-wave equations can be expressed in the matrix form as:

ou,/oz'| |0 E||U
v/ Y 42)
oS, / oz' B 0] S,
where z’ equals k,z.

Previous equations under the matrix form can be reduced to

[o?u, /o2 | =[EB][U, ] (43)
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where B = K,E-K, - I . E is the matrix formed by the permittivity elements, K, is a diagonal
matrix, with their diagonal entries being equal to kv, / k, and I is the identity matrix. The
solutions of Eq. (43) and the set of Eq. (42) for the space harmonics of the tangential
magnetic and electric fields in the grating region are expressed as:

n
uyi(z) = z wi,m (Ci;rz eXP[_fkuqu] + C;n exp[jkoqnz(z - h)])
" (44)
Sxi(Z) = Z Z)i,m(_cr-; eXP[_]'ka%nZ] + Cr_n exp[jkaqm(z - h)])
m=1
where, w, ,, and gm are the elements of the eigenvector matrix W and the positive square
root of the eigenvalues of matrix G (=-EB), respectively. The quantities cn,* and ¢, - are
unknown constants (vectors) to be determined from the boundary conditions. The
amplitudes of the diffracted fields R; and T; are calculated by matching the tangential
electric and magnetic field components at the two boundaries. Using Egs. (35) , (36), (44) and
the previously defined matrices, the boundary conditions at the input boundary (z = 0) are:

80+ Ry =Wc" + WXc™ (45)

and

jcos@

80— jZiR; =Ve* —VXc (46)
1

where X and Z; are diagonal matrices with diagonal elements exp(-jkoqmh) and ki.i/ (2 ko),
respectively. c* and c- are vectors of the diffracted amplitude in the ith order. From (42) and
(44), it can be shown that

vV =jE'WQ (47)

where v,,; are the elements of the product matrix with Q being a diagonal matrix with
diagonal entries g;.
At z = h, the boundary conditions are:

WXt +We™ =T, (48)

1
and
VXct-Ve =jZ,T, (49)

where Z3 is the diagonal matrix with diagonal elements ks.i/ (ns2 ko). Multiplying each
member of Eq. (48) by -jZ3 and using Eq. (49) to eliminate T; vectors c- and c* are related

by:
¢ =(JZW + VY (=jZ;W + V) Xc* (50)

Multiplying each member of Eq. (45) by jZ; and using Eq. (46) to eliminate R; a numerical
computation can be found for c¢* by making use of Eq.(50), that is:
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=110 iz (51)

i,0
1
where

C=[(GZW + V) + (jZW = V)X(jZW + V) (=jZ,W +V)X] (52)

Note in Eq. (51) that &;o is a column vector. In the case of a solution truncated to the first
negative and positive orders,

o

o

assuming the incident wave to be a plane wave. In this particular case

0
jcos@ . .cosf .
22412008, =| <20+ 24(2,2) (54)
n nl
0

where Z1(2,2) is the element on line 2 and column 2 of matrix Z;. Finally, the vector on the
right-hand side of Eq.(54) is applied to the inverse matrix of C to find the column vector for
the diffracted amplitude c* from Eq. (51). Then c- is found from Eq. (50) and the normalized
electric field amplitudes for R; and T; can be found from Eqs. (48) and (49).

Substituting Eq. (34) and Eq.(44) into Maxwell’s equations and eliminating E, , it can be
shown that

Lk,
i}p}; uyp_uyi) (55)

asxm H kxm
Doxm _ e
0z ](Zp: k

0

Eq. (55) is one of the two coupled-wave equations involving the inverse permittivity for the
case of TM polarization only. In the conventional formulation (Wang et al., 1990; Magnusson

& Wang, 1992; Tibuleac & Magnusson, 1997) the term g[_lp is treated by taking the inverse

of the matrix E defined by the permittivity components (Moharam & Gaylord, 1981), with
the i, p elements being equal to ). In the reformulation of the eigenvalue problem (Lalanne

& Morris, 1996), the term si’}p is considered in a different manner by forming a matrix A of
the inverse-permittivity coefficient harmonics for the two regions inside the modulated
region. Fourier expansion in Eq.(34) is modified to:

%m:%(%)s exp(=27jsx / A) (56)

where (1/¢)s is the sth Fourier component of the relative permittivity in the grating region.
Since the coupled-wave equations do not involve the inverse of the permittivity in the
coupled-wave equations for the TE wave, matrix A is not needed in numerical computations
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and the eigenvalue problem is greatly simplified in this case. As a result, solutions for the TE
wave are more stable in metallic lamellar gratings.

Only the DE in reflection and transmission for zeroth order are computed in the examples
that will be discussed throughout this section. The diffraction efficiencies in both reflection
(DER) and transmission (DEr) are defined as:

DEg = RyRj Re(ky .o / (K1, cos6)) 7)

and

k,cos®
m

.k
DE; = T,T; Re( Z;O) /(
3

) (58)

3.1.1 Examples with binary dielectric periodic gratings

Let us consider a binary rectangular-groove grating with real permittivity & and &y as
shown in figure 10. In the case of notch filters the higher permittivity value &y (A/2< x < A)
is greater than g (0< x < A/ 2). Figure 11 shows the numerical computation for DE from the
RCWA formulation for the TM wave when only three orders (m = -1, 0, 1) are retained in the
computation.

Sum
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Fig. 11. DEg and DEr for a binary dielectric periodic grating for er, =4.00, ey = 4.41, A =314
nm, n; =1.00 (air), ns =1.52 (glass) and h = 134 nm.

From the principle of energy conservation, the sum of DEr and DEr must be equal to unity.
This principle is useful to decide if the number of orders retained in the computation is
sufficient. As no deviation from unity is seen in the sum of DEg and DEr in figure 11, three
orders is deemed to be enough to describe the diffraction efficiencies within this narrow
wavelength spectrum. At a wavelength of roughly 511.3 nm all the optical energy is
reflected back in the opposite direction from that of the incident light. As a result, DEr is
reaching a zero value as destructive interferences occur within the grating at this precise
wavelength value of 511.3 nm.

3.1.2 Examples with metallic periodic gratings
The theory presented in section 3.1 can be applied to metallic periodic gratings. For the TM
wave many terms need to be retained in the calculation to reach convergence (Li &
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Haggans, 1993). For the sake of saving time, a fairly accurate computation is reached after
retaining ten orders when using the reformulated eigenvalue problem (Lalanne & Morris,
1996). Figure 12 shows DEp for a metallic periodic grating using a 3D plot. Metallic periodic
grating are used to excite surface plasmons (SP) to improve Surface-enhanced-Raman-
Scattering (SERS) sensor performances (Sheng et al., 1982). At a given wavelength A the
reflectivity of the metallic grating should be symmetric with the incident angle 6. If a
reflectivity drop occurs due to SP at 6, the metallic periodic grating should display a similar
drop at -6. Note that two minima occur on either side of normal incidence (6 = 0°) and one
single minimum is displayed at normal incidence for A ~ 630 nm. Basically each minimum in
DER forms two valleys which crisscross at normal incidence and A ~ 630 nm. This point will
become important in the next section where photonic band gap is discussed.

580 -4

Fig. 12. 3D plot of DER for a periodic metallic grating. In the calculation, we used n; =1,
g3 =g,= -17.75-0.7j, A = 600nm, €1 = -17.75 - 0.7j, ey =1, and h = 10.5 nm.

3.2 Photonic bandgap in metallic periodic gratings

Resonant surface plasmon (SP) coupling involving metallic periodic gratings has been
extensively studied over the past years and more recently in work looking at photonic
devices (Park et al., 2003; Barnes et al. 2003; Ebbesen et al., 1998; Ye & Zhang, 2004) surface-
enhanced Raman scattering (Sheng et al., 1982) and photonic bandgaps (Barnes et al., 1996).
Corrugated surfaces are commonly produced by direct exposure of a photoresist film to a
holographic interference pattern. There is some experimental evidence that owing to
nonlinear response of the photoresist, this technique leads to the presence of higher
harmonics in addition to the fundamental pattern that is inscribed (Gallatin, 1987; Pai &
Awada, 1991). The higher harmonics can then influence the propagation of the SP on the
metallic periodic grating and, in particular, can generate a bandgap in the plasmon
dispersion curve.

3.2.1 Generating a photonic bandgap with two metallic periodic gratings
Let us consider two metallic sinusoidal gratings with vectors K1 (= 2n/A1) and K2 (=2rn/A2)
inscribed at the same location on the film surface. One grating acts as a coupler that allows light
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to generate SPs while the second grating creates a bandgap in the dispersion curve for the SP
propagation. Herein, we consider the case K, = 2K;. More complicated cases such as K, < 2K;
have also been investigated and may be found in the literature (Lévesque & Rochon , 2005).

The SP dispersion curve for a uniform silver or gold film in the absence of a gap is shown in
Figure 13a and is described by:

w, E,8
ksp :*(7'1 )1/2 69

where kep is the wave vector of the SP modes coupled at the surface and e, and &4 are the
permittivities of the metal and dielectric material (air). The dispersion line for light incident
at an angle 6 and scattered by a vector K; is given by:

Kignt = —sin @+ myK, (60)
C

2m/A A Kx

Fig. 13. a) SP dispersion curves for one periodic grating of Bragg vector K; b) Normalized
reflectance (Rp/Rs) curve for a single metallic grating with A ~ 755 nm.

Note from Figure 13a that at normal incidence (6 = 0°) SPs will be excited at a single
wavelength from a loss or gain of light momentum by the grating Bragg vector K; = 2n/A.
Scattering of incident light from the metallic grating at a given incident angle can fulfill the
phase-matching condition (ksp = kiigns) for SP excitation. As 0 increases from zero SPs can be
generated if light scatters by a Bragg vector = Ky, i.e., two valleys will form for 6 > 0° and 6 <
0° as shown in Figure 13b. Experimentally, a fairly sharp dip in the reflectivity curve (Rp)
was observed for the p-polarized light but not for the s-polarized light (Rs). To emphasize
the SP contribution, the R;, reflectance curves were normalized to R; in the range 600-900 nm
spectral range. Curves shown in Figure 13b were predicted by DEr computations shown in
Figure 12.

The SP dispersion curves for the doubly corrugated surfaces and light lines are shown in
Figure 14a.

It can be seen from Figure 14a) that two SPs can be generated at normal incidence as a
bandgap is being created by the grating of Bragg vector K». As a result, SPs can be generated
at ® = 01 and ® = a. This means the band will open as shown in Figure 14b, where two
minima are shown in the experimental data points for all incident angles (Lévesque &
Rochon , 2005). Each of these minima corresponds to SP excitation at the air-metal grating
surface when light is scattered by Bragg vector K.
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Fig. 14. a) SP dispersion curves for two superimposed periodic grating of Bragg vector K
and K> b) Normalized reflectance curve for a doubly corrugated surface with A; ~ 755 nm
and A, ~ 375 nm.

3.2.2 Processing of the single and double metallic corrugated surfaces

Surface corrugations with selected pitches (Bragg vectors) can be produced on azopolymer
films by direct exposure of an interference pattern from two coherent light beams at A = 532
nm, as shown in Figure 15a. The two desired spacing are obtained by adjusting the angle
¢ (c. f fig.15a) between the writing beams, and their depth is determined by their exposure
time. The films under investigation have two superimposed sinusoidal gratings with vectors
Kj and K;. These azopolymer films were prepared on glass slides and then coated with a 50

Nd:YAG (doubled)
A=353Z nm
Spatial fifter
Lans to collimate beam
Quarter wave-piate
sampi;
P
sample mirror

Grating period A is controlled by varying ¢
a) b)
Fig. 15. a) Experimental set-up to produce corrugated metallic grating. b) Atomic force
microscope image of a double metallic grating. Pitches here are 700 and 375 nm with their
respective depths of 19+ 1 nm and 7.0£0.5 nm.
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nm thick gold film by sputter. The surface profile s(x) shown in the atomic force microscope
image in Figure 15b can be represented as

s(x) = hy sin(Kyx) + h, sin(Kyx + ¢,) (61)

where x is the spatial coordinate, h; and h; are the amplitudes of the two harmonic
components, and ¢, is their relative phase.

4. Conclusion

The matrix formalism was shown to be efficient to predict the reflectance curves of both
uniform films and periodic corrugated surfaces. It was shown in this chapter that the
reflectance derived from the matrix formalism allows precise determinations of refractive
indices and thickness when it is fitted to experimental data points. The principle to
determine a good fit from the minimization of the sum of squares was presented in some
details. The application of the sum of squares in more complex structures involving
transparent overlaying films were also introduced along with waveguide modes. It was
also shown that the matrix formalism can be used in numerical techniques and can be
applied to periodic gratings to predict diffraction efficiencies. Systems of metallic periodic
gratings were discussed and it was shown that photonic bandgap can be produced by
superposition of two inscribed corrugated surface on an azopolymer film. The modulated
films were made by holographic technique to write surface relief structures. One grating is
written to have a spacing vector K, to generate a bandgap in the SP dispersion curve. A
second grating with grating spacing vector K is superimposed and allows the coupling of
the incident light to generate the SP itself.
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1. Introduction

Open resonators and open waveguides are widely used in millimeter and submillimeter
wave electronics because they provide lower loss and higher Q-factor in comparison to the
standard closed structures [Valitov et al., 1969; Shestopalov, 1985; Weinstein, 1966, 1995] .
Examples of high performance measurement equipment employing open resonators (based
on spherical or semispherical mirrors) include resonant wave meters, reference oscillators,
systems for measurement of intrinsic electromagnetic properties of dielectric materials, and
others [Valitov et al, 1969; Milovanov and Sobenin, 1980; Valitov and Makarenko, 1984].
Semispherical and spherocylindrical open resonators in combination with reflective
diffraction gratings are used in various diffraction radiation oscillators [Shestopalov,
1976, 1985, 1991] providing higher frequency stability and output power in comparison to
the standard devices such as traveling-wave tubes, klystrons, and magnetrons. Open
resonators with echelette-type corner mirrors have been chosen as the basis for highly
efficient Gunn and IMPATT diode oscillators. Quasi-optical resonators of such devices
adopt reactive reflection and transmission-type schemes [Sukhoruchko et al., 2003]. Open
resonators has found a wide practical application in relativistic electronics. Several types of
oscillators and amplifiers have been created on their basis [Balakirev et al., 1993]. It has been
demonstrated by [Weinstein and Solntsev, 1973] that Smith-Purcell effect (diffraction
radiation) can be used to build an amplifier based on an open waveguide.

The constantly growing interest in the implementation of millimeter and submillimeter
wave radiation in different areas of science and technology puts forward demands for
components with high performance and flexible functionality. One of the most promising
strategies for the development of such components is to modify their electromagnetic
structure in order to increase operating frequency band and improve efficiency of
interaction between the electron beam and electromagnetic wave. Following this strategy,
several new approaches have been proposed based on modification of open coupled
electromagnetic structures such as coupled open resonators [Shestopalov, 1991], open
waveguides [Weinstein, 1995, Weinstein and Solntsev, 1973], open resonators with
dispersion elements [Marshall et al, 1998], as well as the metal-dielectric structures
[Shestopalov, 1991] which are particularly useful for electromagnetic wave excitation
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employing Cherenkov effect. Unfortunately, the practical realization of the proposed
structures is a rather difficult task because of complicated electromagnetic analysis and a
lack of systematic approach.

The objective of this chapter is to perform a comparative analysis of classical quasi-optical
structures and their new modifications. The strategies for further development of these
structures will be discussed based on the performed analysis.

The chapter starts with a description of basic properties of a classical regular open resonator
as a basis for new modified millimeter and submillimeter wave coupled resonant structures.
The properties of open resonators and open waveguides based on periodic metal and metal-
dielectric discontinuities excited by both the electron beam and the surface wave of the
dielectric waveguide are considered.

2. The coupled quasi-optical systems based on open resonators

This section is dedicated to the analysis of simple (regular) resonant systems and coupled
quasi-optical systems based on periodic metal and metal-dielectric structures such as open
resonators with diffraction grating, coupled open resonators and resonators with layered
metal-dielectric structures.

2.1 The main properties of classical quasi-optical resonators

A classical quasi-optical resonator consists of two-mirrors. In the simplest case considered
here, the open resonator contains two opposing flat infinitely thin parallel aligned disks.
This system of mirrors is referred as plane-parallel resonator and known from optics as the
main part of Fabry-Perot interferometer.

The plane-parallel resonators exhibit a number of valuable properties: sparse spectrum
of resonant frequencies, homogeneous field along the symmetry axis of the resonator
and the wavelength in the resonator is slightly different from the wavelength in the free
space.

While simple, this arrangement is rarely used in practice due to the difficulty of alignment,
comparatively large size, and insufficient mode separation. Therefore the resonators based
on the reflectors with quadratic phase correction are more promising in the millimeter and
submillimeter wave range. These type of resonators are referred as confocal resonators and
contain spherical mirrors. These resonators exhibit a better spectral resolution in comparison
to the plane-parallel resonators. Besides, confocal resonators are less sensitive to
misalignment. The resonator with spherical reflectors typically exhibits lower power loss
per one propagation in comparison to the open resonator with plane mirrors having the
same aperture. The other important advantage is the large separation between the
fundamental and the higher order modes TEanq , where m,n=0,1,2,... is the number of
half-waves in transverse direction and q is the longitudinal index which corresponds to the
number of half-waves in the direction of propagation. For the resonator with spherical
mirrors the resonance distances or the resonance wavelengths of the oscillation modes
should comply with the following condition:

27H:q+%(m+2n+1)arcc05«/g1g2 , @
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where H is the distance between the mirrors; A is the wavelength in the open resonator;

=1- H ; o, =1-— H ; Ri, R, are the curvature radii of the mirrors.
81 82 1, %9
R, R,

Limiting the size of resonator's apertures results in radiation loss and has negligible effect on
the field distribution in the open resonator. Therefore the field must be concentrated close to
the center of the mirror in order to reduce the losses. This, in turn, restricts the choice of
ratio between the radius of the curved mirrors and the distance between them. In order to
construct resonators with the field concentrated close to the center of the mirror, the
distance between the mirrors must be selected within the following intervals:

0<g18, <1, )

This expression is known as the condition of stability of the resonator with quadratic
correction; g;, g, are the parameters that depend on geometry of the resonator.

The behavior of oscillations in plane-parallel and spherical-mirror resonators is quite
different. The field distribution in the plane-parallel resonator mostly depends on the
dimensions of the plane plates, while field distribution in the resonator with spherical
mirrors is mostly determined by their radius and the ratio of the distance between mirrors

and the radius, —

The semi-spherical resonators which consist of a plane and a spherical mirror have also
received a great deal of interest in microwave and millimeter-wave applications. It is known
that the fundamental modes of the semi-spherical resonator are represented by the
azimuthal oscillations TEM,,,q, . If the field spot on the plane mirror is considerably smaller
than its diameter then the semi-spherical resonators can be substituted by the equivalent
resonators with two spherical mirrors having doubled distance between them. The
distribution of amplitudes in both cases is identical to a high degree of accuracy. The Q-
factor of the semi-spherical resonator depends on diffraction losses at the edges of the plane
and the spherical mirrors, ohmic losses in the mirrors, the coupling losses and the losses
related to attenuation in the medium.

2.2 Resonators with periodic metal grating

The plane-parallel mirror of the semi-spherical resonator can be substituted by a diffraction
grating as it is shown in Fig. 1. Such an electrodynamic structure is often used in diffraction
radiation oscillators - orotrons [Shestopalov, 1976, 1991; Marshall et al., 1998;
Ginzburg et al., 2000; Bratman et al., 2002; Rusin et al., 2002].

The orotron's operation principle is based on the diffraction radiation effect caused by the
electron beam propagating above the diffraction grating of the open resonator. The electron
beam interacts with the incident field diffracted from the grating which results in oscillation
and amplification of the electromagnetic signal. Therefore, the orotron's output
characteristics are strictly defined by the properties of the implemented open resonator. The
periodic structure in the open resonator of the orotron considerably changes the
characteristics of the previously described classical resonant quasi-optical structures. The
substitution of the plane mirror by a diffraction grating considerably increases the total loss
resulting in the Q-factor degradation by almost four times. The decrease of the Q-factor
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occurs as the result of additional losses, which are originated from a power leakage of the
waveguide waves propagating along the grooves to the edges of the mirror where the
reflection coefficient is not equal to one.

- >
L

Fig. 1. Semispherical open resonator with diffraction grating

To overcome this drawback, a semi-spherical resonator where only the central part of the
plane mirror was covered with the diffraction grating, has been proposed [Shestopalov,
1976, 1991]. This resonator has a wider distance between the oscillation frequencies. The
achieved radiation loss depends on the parameters and the position of the grating. The
width of the grating defines the number of the oscillation modes excited in the open
resonator and the frequency of the higher order resonances. Losses in the open resonator are
greatly dependent on the ratio between the period of the grating and the wavelength. The
maximally achieved Q-factor of the resonator also greatly depends on the groove depths of
the reflective grating oscillations could be varied by several times.

The fundamental mode of the semi-spherical resonator with a local diffraction grating is
TEMy, - The research in [Shestopalov, 1976, 1991] proved that the perturbation caused by
the grating is insignificant in such a system if the minimum of the field distribution is above
the boundary between the grating and the mirror. This is the case when the width of the
diffraction grating is larger or equal than the width of the main lobe in TEM,,, oscillation
mode.

Corner-echelette open resonators are widely used for realization of semiconductor sources
in the microwave and millimeter-wave range. For example, modifications of quasi-optical
reflection and transmission-type solid-state pump oscillators with spherical-corner-echelette
open resonator have been shown in [Belous et al., 2003]. As shown in [Sukhoruchko et al.,
2003], the corner-echelette resonator has the following properties: the degree of sparseness
of the spectrum is lower than for the resonator with plane echelette mirror; however, the
spectrum contains the oscillation modes with extremely high Q-factor, which are known as
the quasi-fundamental oscillation modes; the field of the quasi-fundamental oscillation
modes is concentrated around the axis of the open resonator resulting in a larger power
density in comparison to the fundamental and higher order oscillation modes; the field
distribution close to the surface of the corner-echelette mirror transforms and near the center
of the resonator becomes similar to the field in a rectangular waveguide; corner-echelette
mirror can be considered as a multi-step impedance transformer.
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2.3 Coupled open resonators

The work by [Shestopalov, 1991] is dedicated to the diffraction radiation devices employing
coupled open resonators. The coupled resonators have an advantage of providing a wider
operating frequency range in comparison to the single resonator structures. The coupling
between open resonators can be realized either by means of the field diffracted at the edges
of the mirrors using series positioning of the resonators (Fig. 2a) or the field diffracted on a
metal-strip grating using parallel connection of open resonators (Fig. 2b) with respect to the
axis of the distributed excitation source. In the electron devices, the electron beam is such a
source. In case of experimental modeling of diffraction radiation it is the surface wave of the
single-mode dielectric waveguide.

SN A

Fig. 2. Electrodynamic systems based on coupled open resonators: a - series connection of
open resonators; b - parallel connection of open resonators

The system of series open resonators is, in the case shown in Fig. 2a, consists of two semi-
spherical resonators with the common plane mirror realized as a reflective diffraction
grating. In the parallel coupling case (Fig. 2b), a two-layer metal-strip diffraction grating is
placed between the spherical mirrors.

Systems of coupled open resonators consist of spherical mirrors 1 with the radius R=60 mm
and aperture A=55 mm reduced to 35 mm along the axis of the dielectric waveguide 2. The
lower plane mirror 3 of the system shown in Fig. 2a is either a reflective or semitransparent
diffraction grating and serves as a common mirror for the first and the second open
resonator. In the system with parallel open resonators, plane mirrors 4 with semitransparent
diffraction gratings in their central sections were placed between spherical mirrors 1.
Parameters of the gratings are chosen to ensure the operation at a frequency f, = 46 GHz.
These gratings transform the surface wave of the dielectric waveguide into a free space
wave propagating normal to the surface of the grating [Shestopalov, 1976]. The energy is
coupled out from the system through the coupling slots in the spherical mirrors. The signals
are then fed to a detector and measured using a standard measurement equipment
[Shestopalov, 1976, 1991].

The described coupled resonators have been analyzed with regard to their spectra and
resonance characteristics of oscillation. The measured characteristics of the equivalent single
hemispherical and spherical open resonators have been used as a reference.

Fig. 3 shows the resonant frequencies versus the distance between the mirrors (H) in the
system with coupling through the diffraction field (Fig. 2a) and in a reference hemispherical
open resonator. The data presented in Fig. 3 characterizes the capability of the considered
resonance system to support a limited number of TEM,,; oscillation modes.
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Fig. 3. Spectra of resonant frequencies of (a) a hemispherical resonator and (b, c) a
diffraction-coupled resonators with (b) reflective and (c) strip diffraction gratings.

The data in Fig.3a shows that for the hemispherical open resonator, the fundamental
TEMy,, modes exist in the entire frequency range f=45-47 GHz while changing the
distance between the mirrors. The implementation of a dispersive element such as the
reflective diffraction grating in the open resonator allows for the modes with transverse
indices m and n. The TEM,,, oscillation mode is usually a fundamental mode for such
resonators [Shestopalov, 1991]. In addition to the fundamental modes, depending on the
parameters of the open resonator and the diffraction grating, the other types of higher order
oscillations (e.g., TEM,, ) occur influencing the coupling between the two open resonators
through the diffraction fields.
Figure 3b shows the resonances of two coupled open resonators tuned to a frequency
f=46 GHz. As can be seen from these spectra, the second hemispherical open resonator is
excited at the edge points of the frequency band in the interval H=27-33 mm. There are no
oscillations around the resonance frequency of the open resonator, which is due to the
minimum amplitude of the diffraction field in a case when the diffraction-grating-dielectric-
waveguide system emits radiation along the normal. Detuning from the frequency f, in the
interval Af =+1GHz leads to the deviation of the main lobe direction from the normal,
which increases the intensity of the diffraction field and, consequently, leads to the
excitation of the second resonator at the edges of the frequency range. As the distance H
increases, the coupling between the resonators becomes stronger reaching its maximum
magnitude when the distances between the mirrors are equal to each other. In this case,
oscillations in the second open resonator arise even at a frequency f =46 GHz .
Coupled open resonators with a strip grating at the center of the common plane mirror
(Fig. 2b) exhibit similar properties. The decrease in the number of oscillation modes in such
a system (Fig.3c) is due to the selective properties of the employed diffraction grating
[Shestopalov, 1991]: the intensity of radiation emitted from the volume of the open resonator
to free space through the diffraction grating reaches its maximum at H=(4/4)(2N +1),
while the accumulation of energy inside the volume of the open resonator appears at values
z(ﬁ,N )/2, where A is the radiated wavelength, N=1, 2, ... . The coupling in open
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resonators reaches its maximum when the distances between the resonators are
approximately equal to each other, i.e., when the resonators are tuned to close frequencies.
The typical response of the previously described coupled open resonators is presented in
Fig. 4. Here P/P,,.

P_ . - The resonance curve of a hemispherical open resonator is shown for comparison

is the power in the open resonators normalized to the maximum power

(curve 1) in the same figure. As can be seen from the presented data, the transmission band
of coupled open resonators measured at the level of 0,5P, .
two, resulting in Af =250 MHz. The resonance curves corresponding to coupled open

. increases by a factor of nearly

resonators with reflective and strip diffraction gratings virtually coincide with each other
under these conditions, which indicates the existence of efficient coupling in these systems
through the diffraction of the fields at the periphery of the mirrors.

_ max 1 2 3
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Fig. 4. Response of (1) a hemispherical open resonator and (2, 3) coupled open resonators
with (2) metal-strip and (3) reflective diffraction gratings
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The open resonator with spherical mirrors, which is a basis for the second scheme of
coupled resonators (Fig.2b) supports similar to the case of the hemispherical open
resonators fundamental TEMgg, modes. This follows from the analysis of the achieved
resonance frequencies. The field distribution in an open resonator with spherical mirrors is
the same as in the hemispherical open resonator [Shestopalov, 1976]. However, the distance
between the resonance frequencies in the open resonator with spherical mirrors is two times
smaller than in a hemispherical open resonator. Inserting an additional plane mirror with a
strip diffraction grating in a spherical open resonator will result in the spectrum of the
coupled system similar to the spectrum of the hemispherical open resonator (Fig. 3a). The
metal-strip diffraction gratings couple two hemi-spherical open resonators simultaneously
filtering out the angular spectrum of plane waves excited in the system. Consequently, the
variation of the position of these diffraction gratings in the volume of the resonator with
respect to the spherical mirrors changes the spatial distribution of the fields corresponding
to the oscillation modes excited in the considered system of coupled open resonators.
Similar to the hemispherical open resonator with a reflective diffraction grating, TEM3o; and
TEMyy, oscillation modes, as well as the higher order oscillation modes arise due to
introducing a coupling element such as a double-layer diffraction grating.
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The measured data for the resonance curves of coupled open resonators indicates that the
achieved bandwidth of the system becomes much broader when the open resonators are
tuned to close frequencies rather than in the case when the resonators are coupled through
the diffracted fields. Fig. 5 presents the response of the open resonators coupled through a
strip diffraction grating and for the open resonator with spherical mirrors. The achieved
bandwidth of the coupled system was observed within the range f=44,5+49,5GHz for
equal distances of spherical mirrors from the planes of the coupling element with a total
distance between the spherical mirrors equal to H=31 mm. The achieved bandwidth
measured at the 0,5P,, power level is equal to Af =1,3GHz. The narrowing of the
transmission band of coupled open resonators observed in the higher frequency band
(f=48,5 GHz) is due to the deviation of the radiation pattern for the diffraction grating-
dielectric waveguide system from the normal and, consequently, the decrease in the
coupling coefficient between the resonators.

PP
_max ’l 2

1,0

T
45 46 47 48 19 SGHz

Fig. 5. Response of (1) the spherical open resonator and (2) the system of resonators coupled
through semitransparent diffraction gratings.

Analysis of the achieved bandwidth Af for the single resonator and coupled systems shows
that the maximum bandwidth in systems with comparable H can be achieved when two
open resonators are coupled through a strip diffraction grating. The bandwidth of the
system with parallel open resonators is almost five times wider than the bandwidth of the
system with series open resonators. It should be noted that the Q-factor of the coupled open
resonators is of the same order as the Q-factor of the single open resonators. Therefore the
open resonators coupled through the strip diffraction grating are preferable for systems
requiring wideband operation. Such resonators also provide a reduced size of the system
along the electron beam propagation axis.

2.4 Open resonators with metal-dielectric structures

Coupled systems based on open resonators and open waveguides with metal-dielectric
structures allow to realize different modes of energy transformation depending on
parameters of the electromagnetic system [Shestopalov, 1991].

The simplest open resonator employing a metal-dielectric slab is shown in Fig. 6a. It consists
of a metal plane and a dielectric slab with a planar metallic diffraction grating on its surface.
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€ is the permittivity of the dielectric. The source of electromagnetic energy is distributed
along the grating. It excites various spatial harmonics of Cherenkov diffraction radiation of
order n=0,%1,%2,... and the power density S, , which depends on the parameters of the
structure. Fig. 6a demonstrates the excitation of Cherenkov ( S, ) and minus first diffraction
(' S_1, ) harmonics in the dielectric as well as minus first diffraction harmonic ( S_;, ) in open
volume, which can be reflected back by a metal plane and fed to the metal-dielectric
channel. A number of numerical and experimental methods for simulation of different
excitation modes of Cherenkov diffraction radiation has been developed [Vorobyov et al.,
1997, 2007]. They allow to determine the quantitative relation between the power densities
of spatial harmonics in the structure as well as to optimize and tune their parameters.
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Fig. 6. Quasi-optical resonators based on metal-dielectric slabs

A more complicated case of the open resonator with a metal-dielectric structure is shown in
Fig. 6b. The resonator consists of a spherical mirror, a plane mirror such as a reflecting
diffraction grating, and a layered metal-dielectric structure between the two mirrors. Such
an electromagnetic structure is often used in Cherenkov diffraction oscillators. Fig. 6b
demonstrates possible modes of Cherenkov diffraction radiation excited by a source of
electromagnetic energy distributed between the metal-dielectric grating and plane mirror.
The metal-dielectric slab (Fig. 6b) of the open resonator introduces qualitatively new
electromagnetic properties in such a system. It is possible to attenuate the power in the
open resonator, increase the amplitude of the oscillating wave and the value of Q-factor as
well as to improve selectivity by choosing parameters of the metal-dielectric slab.

3. Coupled open waveguides employing periodic structures

This section describes the main properties of quasi-optical open waveguides with periodic
metal-dielectric structures excited by distributed sources of electromagnetic energy such as
electron beam or surface wave of a dielectric waveguide. Such structures are promising for
the design of low-voltage amplifiers based on Smith-Purcell effect [Weinstein and Solntsev,
1973; Smith and Parcell, 1953] and other microwave and millimeter wave electron devices
[Joe et al., 1994, 1997].

3.1 Amplifiers based on Smith-Purcell effect
Fig. 7 shows the structure of the amplifier using a planar layered metal-dielectric stack and
based on Smith-Purcell effect. The open waveguide of the considered system consists of the
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periodic rectangular grating structure 1 with the period of 21, width 2d and grating depth of
h; the planar layered metal-dielectric structure 2 with the thickness A=H —s which is
positioned in parallel to the grating at a distance s . A non-relativistic sheet electron beam 3
with the finite thickness (r-b) is propagating along the axis Oy at a distance b above the
grating. The entire structure is considered to be infinite within the plane x0y.

The electromagnetic problem is solved using the method of partial domains. The field in
each domain is determined from the Maxwell equations, equation for the electron beam
propagation, and corresponding boundary conditions. In order to obtain the dispersion
equation, we have to perform the following operations: determine the linear approximation
of the equation for the variable component of the convectional current intensity and the field
in the beam, and transform it into a homogeneous form; determine the electromagnetic field
in the interaction region in hot (with electron beam) and cold (without electron beam)
regime.

Fig. 7. The amplifier with the metal-dielectric layer based on the Smith-Purcell effect: 1 -
periodic metal structure, 2 - planar layered metal-dielectric structure, 3 - electron beam

To this end, the electric field E, the beam velocity v,, and the charge density p, are
expressed as a sum of constant and small harmonically time-dependent variable quantities
[Shmatko, 2008]. The charge density constant p, of the beam is considered to be

compensated by external sources. The solution of the problem in such a way leads to the
following dispersion:

k e sinzand rn(Cos(é:nrn(b_r))_Sin(ggnrn(b_r))n) _
1+atankhn;m 2 Mrsin(Er, (b-1)) =0, (3)
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where I1=

- is the frequency; c - is the speed of light; ¢ - is the relative permittivity of the dielectric

mo . . .
layer; o, =0y + ln - is the propagation constant of the electromagnetic wave propagating
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along the axis Oy; n=0,%1,%2 - is the spatial harmonic number;

&= \/ K -0, 0,= \/ ex* — o - are the transverse wave numbers;
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r

/ e .
a2 %= R0 _ s the plasma frequency of the electron
(0-vya,)” - @, 1m,&y

beam (e and m, - are the charge and the mass of the electron, &; - is the electric constant).
The following analysis of equation (3) concerns defining the propagation constant ¢, ,
which is generally a complex number. The imaginary part —ic, is responsible for the

solutions increasing along the axis Oy and specifies the electromagnetic wave amplification
in the system. The analysis of the given dispersion equation would be difficult without
simplifications. If we separate this equation in three terms, which correspond to zeroth
order harmonic, first harmonic, and the sum of the rest harmonics, and then use an
approximation of the maximum interaction between the electron beam the fields of the slow
wave structures (b = 0, s =), it is possible to reformulate (3) into the following;:
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is the spatial charge parameter, in practice ¢<0,01; f=— - is the relative electron beam
c

%,

velocity, u = o, -1; &, = - - is the unitless propagation constant;

H . .
0= 7 X =— - are the unitless geometrical parameters of the system.
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The solution to the dispersion equation is found by using Newton iterative method for the
range of electron velocities f=0,05+0,2 and various values of the electromagnetic
parameters of the system «, 7,{ and £=1+210. The lower & limit corresponds to the
case where there is no dielectric between the grating and the metal mirror; the upper limit
corresponds to the case when it is possible to excite Cherenkov radiation at non-relativistic
electron beam velocities ( # = 0,07 ).

The numerical analysis of the dispersion equation for an open waveguide with no dielectric
layer shows that there are two direct waves and two waves traveling in the backward
direction exist in the system without the presence of an electron beam. They have different
wave numbers and corresponding phase velocities. In addition to the previously described
electromagnetic waves in the open waveguide, there are also two electron beam waves: a

b d
ll

fast space-charge wave and a slow space-charge wave. All four electromagnetic waves in the
system while synchronized with the electron beam spatial waves have regions with a



268 Electromagnetic Waves

positive amplitude growth that allows for signal amplification and realization of the
following regimes varying parameter [ : surface wave mode with the maximum amplitude
exists when synchronized with the slow space-charge wave; the volume waves of the
diffraction radiation at the angle less than /2 with respect to the grating plane which
transfer power from the beam to the field by means of the slow and fast space-charge waves.
It must be noted that the regime employing fast space-charge wave is observed starting
from the relative beam thickness {=0,6, and the regime employing slow space-charge
wave is observed starting from ¢ =0,02. Depending on the excitation region the maximum
amplitude of the amplified signal is observed at {=0,4+0,6 that corresponds to the
electron beam thickness r = 0,1 mm, which is typical for the microwave tubes. The further
increase in r has no influence on the amplitude of the amplified signal but results in
generation of a discrete set of radiated electromagnetic waves the number of which depends
on thickness of the electron beam and the frequency. This effect can be physically explained
by the dispersion properties of the electron beam and partial reflection of the
electromagnetic waves from its boundaries (equivalent of the low reflection coefficient
resonator).

Introducing a dielectric layer with small values &£=3 will result in changing the phase
velocities of the electromagnetic waves in the open resonator and synchronization with the
electron beam. This also leads to the generation of additional waves with the parameters
close to those for the case with £=1. Transverse wave numbers o,, &, (3) determine the
wave modes classification in the open waveguide: volume waves propagating between the
periodic structure and the metal plane; the volume waves in the dielectric layer; the surface
waves above the periodic structure.

The increase in permittivity £ of the dielectric layer leads to accumulation of power from
volume waves that is caused by the improvement of its resonance properties due to
reflection from the boundaries of the dielectric. Fig. 8 represents graphically the solution of
the dispersion equation with regard to the real (Re ) and imaginary (Im u ) parts of the
gain factor versus the parameter f for £ =50, x=0,083, y =10 . The presented curves allow
to analyze the propagation properties for fourteen wave modes in the open waveguide, two
of which, 7 and 8, are the fast and slow space-charge waves of the electron beam
respectively. The waves from 1 to 6 are propagating in the same direction as the electron
beam propagation, while the waves 9 and 10 are propagating in the opposite direction. The
parameters of the mentioned waves satisfy the condition for their propagation in the
dielectric layer. Consequently, the increase of the number of wave modes in the open
waveguide results in distribution of the energy between them and leads to a decrease of the
amplitude growth factors for some waves as compared to the case when £=1.

Parameter y (the distance between the mirrors of the open waveguide normalized to the
grating period) has a significant influence on the propagation properties of the modes and
defines the field distribution between the mirrors of the open waveguide. Fig. 9 graphically
represents the solution of the transcendent equation (4) with regard to the real and
imaginary parts of the gain factor versus f§ for different values of the parameter y and the
direct volume wave of the periodic structure (£=1). The presented data illustrates that
changing the distance from y=8 to y=14 leads to a considerable decrease in the
amplitude of the signal. The maximum amplitude of the signal is observed at the radiation
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along the normal direction (=8, ¢ =0) while the minimum is observed in a tangential
direction (y =14, u=0,073). However, it is not possible to ensure the excitation of the
traveling wave mode along the axis of the open waveguide for radiation in the normal
direction. In practice, this would result in a feedback and instability. This operation mode is
similar to the operation of the microwave tubes such as orotron and diffraction radiation
oscillator [Shestopalov, 1991].

It should also be noted that increasing the distance between the mirrors results in increase of
a number of surface waves and decrease of the gain factor for the volume waves. In the
extreme case when the values y — «, the volume waves transfer into surface waves and the
system is similar to the traditional devices such as the backward-wave oscillator and the
traveling-wave tube.
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Fig. 8. Solutions of the dispersion equation (4) for &£ =50
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Fig. 9. Influence of the parameter y on the solutions of the dispersion equation (4) for £=1

3.2 Experimental modeling of coupled open waveguides

The experimental modeling is one of the most efficient methods for solving problems of
diffraction electronics. The radiation of the electron beam is simulated by a surface wave in
the planar dielectric waveguide placed above the diffraction grating. The modeling
techniques have been sufficiently developed and summarized in the literature
[Shestopalov, 1976, 1985, 1991]. Nevertheless, each structure has its own specific features
which have to be taken into account while developing and realizing the experimental setup.
There are three components in the previously described electromagnetic system which can
be considered separately during the experimental modeling of the wave processes in
amplifiers based on Smith-Purcell effect. They determine the general electromagnetic
properties of the open waveguide. These components are the dielectric waveguide which
feeds the surface wave into the system; diffraction grating which transforms the surface
wave from the dielectric waveguide into the volume wave; the planar layered metal-
dielectric structure which serves for both a transformation of the surface wave into the
volume wave for the dielectric layer and reflection of the radiation arriving from the
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diffraction grating - dielectric waveguide interface. Compared to the system without the
metal-dielectric layer, the wave processes in the open waveguide with the metal-dielectric
stack are more complicated in comparison to the systems without such a stack due to the
presence and superposition of different waves such as the volume wave incident to the
layered metal-dielectric structure from the diffraction-grating-dielectric-waveguide interface
and the waves propagating in the dielectric.

The parameters of the diffraction-grating-dielectric-waveguide system are chosen to
satisfy the condition of the volume wave existence in the open waveguide [Shestopalov,
1991]:

¢4 =arccos(1/ B, —n/k), 5)

where ¢, - is the radiation angle, f,=v,/c - is the relative velocity of the wave in the
waveguide, v,, - is the phase velocity, k=1/4 - is the wave number, A - is the wave length.
The period of the diffraction grating has been chosen such that the main lobe of the
radiation pattern (n=-1) is at an angle ¢=70° for the wavelength of 9 mm and the
parameter f3,~=0,9 which corresponds to the material of the dielectric waveguide
implemented in the experiment (polystyrene waveguide with a cross-section
7,2x3,4mm* ). The depth of the grating slots was chosen to minimize the influence of their
resonance properties on the radiation characteristics. The waveguide length L is 150 mm,
that satisfies the requirement L/4210. This ensured the excitation and propagation of
electromagnetic wave along the open waveguide axis.

The distance between the dielectric waveguide and the surface of the diffraction grating, a,
is a very important parameter for the optimization of the system. The diffraction of the
surface waves on the diffraction grating is nontrivial in this case because the value a is
chosen to be smaller than the wavelength. However, a strong coupling between the
waveguide and the diffraction grating effects the field distribution in the waveguide and,
consequently, the propagation constant B,. The strong coupling results in interference
between the wave propagating along the waveguide and the wave being scattered by the
diffraction grating. Such an interference might result in additional propagation modes in the
waveguide and, consequently, in the parasitic spatial harmonics [Shestopalov, 1991].

The behavior of the planar metal-dielectric structure of the open waveguide is similar to the
behavior of the shielded planar dielectric waveguide. In order to analyze the physical
phenomena of the electromagnetic wave excitation in the layered metal-dielectric structure,
the electromagnetic field can be represented as a composition of plane electromagnetic
waves. Based on this, the metal-dielectric structure can support two types of waves: the one
excited by the diffraction grating-dielectric waveguide interface (these waves not necessarily
undergo total internal reflection in the dielectric for certain angles ¢_,, ); the second type of
waves is excited by a guided surface electromagnetic wave in the dielectric waveguide and
is totally reflected from the boundaries of the layered metal-dielectric structure (the wave
satisfies the following condition cosy,, =cv,, / e )(see Fig. 7). The second wave allows to
model Cherenkov radiation. However, this concept of wave decomposition does not
consider the multimode nature of the metal-dielectric wave-guiding structure. The modes
exist due to the finite layer thickness A comparable to the wavelength. The metal layer on
the side wall of the dielectric does not prevent the wave propagation but results in increase
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of the effective thickness of the layer and number of the higher order modes in the metal-
dielectric structure.

The experiments were performed in the frequency range from 30 GHz to 37 GHz within the
interval A= A-44 and using a dielectric with permittivity €=2.

Fig. 10 shows of the normalized radiation pattern in the open waveguide at the center
frequency f =33,4 GHz. The diagrams in Fig. 10a depicts the radiation from the end of the
metal-dielectric structure in the mode of Cherenkov radiation for the phase velocities
satisfying the condition &3 >1 for guiding electromagnetic wave on the homogeneous
surface of the dielectric. Propagation of the most portion of power in the surrounding
environment is typical for the dielectric layer with the thickness less than the wavelength
(Figure 10a - curve 1). This holds when the single-mode condition satisfies the condition of
synchronization between the phase velocities of waves in dielectric and wave in the
surrounding environment. The dielectric layer is actually operates as an antenna, which
radiates the power in the direction close to the axis y. The observed asymmetry in the
patterns is caused by the technical difficulties to measure the radiation at angles
@ =0-10°. The side lobes are caused by the mismatch with the open area, multiple
reflections from the measurement setup, and by a power leakage from the dielectric-
waveguide-to-metallic-waveguide transitions. The observed peaks in the radiation pattern
are due to the strong coupling between the dielectric waveguide and the dielectric layer at
the center and critical frequencies.

P/P,

Max

20 40 60 80 100 120 140 160 Pn /P02

Fig. 10. Radiation patterns of the open waveguide components: a - dielectric layer - dielectric
waveguide (A= A-curvel, A=4A4 - curve 2); b - diffraction-grating-dielectric-waveguide
(curve 1), diffraction-grating-dielectric-waveguide-dielectric-layer system (curve 2)
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For dielectric layers with A> A, the wave is totally reflected from the boundaries and a
significant portion of the power is concentrated in the dielectric. The direction of radiation
from the end changes to a higher angle (Fig.10a - graph 2) and approach the calculated
values determined from the geometrical optics (¢, = 62° at y,, =39°, Fig. 7).

Fig. 10b (curve 1) demonstrates the patterns of the diffraction-grating-dielectric-waveguide
radiating system. It is clear from the presented data that the main radiation maximum is in
agreement with the calculated value of ¢_, =70°. At such an angle, the beam for £=2,
which incidents side wall of the dielectric layer, is slightly refracted and leaves the dielectric
from the opposite side at an angle, which is approximately equal to the angle of radiation.
This fact is illustrated in Figure10b for the diffraction-grating-dielectric-waveguide-
dielectric-layer system for A =44 (graph 2).

Covering the dielectric layer with a metal (Fig. 7) results in the fact that the radiation arriving
from the diffraction-grating-dielectric-waveguide system will be reflected and fed into the
open waveguide volume exciting the wave along its axis. Correspondingly, there are two
volume waves propagating in the system: the wave in the layered metal-dielectric structure
and the wave in the volume of the open waveguide. These waves are coupled to each other by
means of the surface wave of the common radiation source - the dielectric waveguide. The
existence of the forward and backward coupled waves in the open waveguide might result in
parasitic resonances during the modeling. The wave numbers are complex if there is a
coupling between the direct and the backward waves. This indicates the excitation of complex
decaying waves. The waves are synchronized and the power of the forward wave is pumped
into the backward wave and vice versa. Such a power exchange is performed along the
significant propagation distance if the coupling is weak. The propagation becomes impossible
and the transmission line turns into a sort of a resonator for certain frequencies. In such a
system the waveguide characteristics such as the standing wave ratio (SWR) and the
transmission coefficient (K = Poutpuy/Pinput, Where Poygpy and Py are the power values at the
dielectric waveguide output and input respectively) become fundamental. The waveguide
characteristics of the dielectric-waveguide-dielectric-layer system (curve 1), dielectric-
waveguide-diffraction-grating-dielectric-layer system (curve2) and the open waveguide
system in general (curve 3) are represented in Fig. 11 for A = A. The presented data indicates
that the SWR of the open waveguide elements and the system in general are within the
interval 1,05 + 1,4. These reflections are due to the out of band mismatch of the dielectric-
waveguide-metallic-waveguide transitions. The achieved SWR is considerably different from
SWR for the open waveguide with no dielectric layer which is approximately 2,0 (curve 4) due
to the resonance nature of the system. Substantial changes in the behavior of the K- versus
frequency are also observed. Curves 1 and 2 indicate an efficient transformation of surface
waves into the volume waves, while graph 3 indicates the presence of the coupled waves in
the system and it is substantially different from the behavior of K; for the open waveguide
with no layered metal-dielectric structure in it (curve 4). It can be assumed that for A =1 a large
amount of power escapes from the dielectric and propagates in the open waveguide. The
observed maxima and minima of the spectrum of Kj can be explained by the fact that the
waves propagating in the open waveguide are combined in- and out of phase.

The increase in the thickness of the dielectric layer results in the fact that the most amount of
power is concentrated in the dielectric which leads to decrease in coupling between the
layered metal-dielectric structure and the dielectric waveguide, and, in general, increase in
Ki for the open waveguide components (Fig. 12, curves 1 and 2) at A =44
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At the same time, the behavior of the transmission coefficient in the considered frequency
band indicates the decrease in the coupling between the waves propagating in the open
waveguide (Fig. 12, curve 3).

The analysis described above for the characteristics of the open waveguide and its
components indicates that it is possible to control the electromagnetic processes in the
system by varying the thickness of the dielectric layer: adjust the coupling between the
radiation of the dielectric waveguide and the waves propagating in the open waveguide.
The increase in coupling is useful for enhancing the efficiency of the interaction between the
electron beam and the open waveguide fields in the amplifier applications. The decrease in
the coupling is interesting for realization of power decoupling from the open waveguide
through the dielectric layer.
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Fig. 11. Waveguide characteristics of the open waveguide components at A = A - dielectric-
layer-diffraction-grating system; 2 - diffraction-grating-dielectric-waveguide-dielectric-layer
system; 3 - open waveguide with the dielectric layer; 4 - open waveguide without the
dielectric layer
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Fig. 12. Characteristics of the open waveguide components at A = 44 :1 - dielectric-layer-
dielectric-waveguide system; 2 - diffraction-grating-dielectric waveguide-dielectric-layer
system; 3 - open wavegude with the dielectric layer

4. The implementation of coupled quasi-optical systems in vacuum electron
devices

A two-stage diffraction radiation oscillator has been realized using the structure shown in
Fig. 2a in the frequency range f=43+98 GHz. The system consists of two short-focus
spherical mirrors [Shestopalov, 1991] and the common cylindrical mirror with a diffraction
grating along its longitudinal axis. The electron beam generated by the electron gun and
focused by the static magnetic field propagates above the diffraction grating exciting
electromagnetic oscillations in the coupled open resonators. In case of weak coupling
between the open resonators, the device operates as a multifrequency oscillator at specific
frequencies. In case of optimal coupling, the device operates as a broadband diffraction
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radiation oscillator with coupled resonators. The operating frequency band in this case is
more than 1,5 times wider compared to the single resonator diffraction radiation oscillator.
The device operates as an amplifier if the microwave signal is applied to the input of the
first (with respect to the gun) resonator and the beam current J is less than the starting
current . These regimes have been tested in the millimeter wave range ( f =43 +98 GHz ).
Figure 13 shows the data when the device operates as an oscillator in case of optimal
coupling between the open resonators. The power of such a diffraction radiation oscillator at
fo =84 GHz was measured to be 0,4 W with the beam current J=1,5], (], =30 mA). The
range of electron frequency tuning at these conditions was 1,5 times wider than in the case
of a single-resonator oscillator, which is comparable with the results obtained by the
previously described modeling (Fig. 4). A similar behavior has been also observed in the
regime of amplification at ]=0,8+0,9],, which confirms the possibility to build a
regenerative amplifier based on coupled open resonators with a broader transmission band
than just using a single-resonator amplifier [Shestopalov, 1991].
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Fig. 13. The bandwidth and a tuning range of the diffraction radiation oscillator based on
two coupled resonators

Figure 14 presents the diagrams of a vacuum electron devices with open resonators
connected in series with respect to the axis of the electron beam. An orotron shown in
Fig. 14a consists of two coupled open resonators 1. Each of these resonators consists of two
mirrors 2 and 3. Energy is coupled out through a waveguide in mirror 2. Mirror 3 has a
parabolic cylinder shape. Metal-strip diffraction gratings 4 located in the center of the
adjacent parabolic mirrors 3 are made of metal bars. The electron gun 5 generates a focused
electron beam 6 and is placed between the parabolic mirrors 3. A collector 7 is positioned at
the end of the interaction region.
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The operation of the orotron can be described in the following way: the electron gun
generates a focused electron beam which than experiences a bunching within the small
interaction length due to the spatial charge in the interaction zone formed by the open
resonators and gratings. The diffraction radiation is produced in the open resonators as
electrons propagate through the gap between the diffraction gratings. The electrons are than
striking a collector at the other end of the interaction region. The orotron operates as an
oscillator if the electron beam current is much higher than the starting current. The orotron
operates as an amplifier if the condition of self-excitation is not satisfied and a signal from
an external microwave source is fed to the input of one of the resonators. It should also be
noted that the orotron may function as a frequency multiplier if using two coupled open
resonators. This device is a low-power oscillator. The increase of the electron beam current
density is limited due to overheating of the strip diffraction grating.

Fig. 14. Vacuum electron devices based on parallel connection of open resonators: a - an
orotron with coupling through the strip diffraction gratings and b - diffraction radiation
oscillator with coupling through the reflective diffraction gratings

A higher power level can be achieved in diffraction radiation oscillators based on coupled
open resonators schematically shown in Fig. 14b. The design and the principle of operation of
such a device are similar to the design and the principle of operation of the previously
described orotron. The coupling of resonators 1 is achieved through the slots in the identical
reflective diffraction gratings 4 placed in the center of the adjacent mirrors 3 and
perpendicularly oriented with regard to the planes of these mirrors. The electron beam is
focused with a magnetic field. The use of bulky gratings attached to the mirrors simplifies the
temperature dissipation and, consequently, allows for higher electron beam currents.
Furthermore, one of the resonators in such a system may be realized with an option for
mechanical tuning where a moving short-circuit plunger located on the opposite side of the
coupling slot. Figure 15 shows the oscillation bandwidth and frequency tuning characteristic
for different distances & of the plunger for the case when the open resonator is centered at
fo=36 GHz.
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Fig. 15. The output power and the frequency tuning range of the diffraction radiation
oscillator with a tunable resonator coupled to the open resonator

The presented data shows that, one can smoothly tune the oscillation frequency within a
sufficiently broad frequency range by mechanically tuning the volume resonator with a
fixed value of H for the mirrors in the open resonator. The variation of the output power in
the considered frequency band does not exceed 3 dB. This characteristic of the considered
device indicates the possibility for improving the vibration stability of the system in
comparison to the vibration stability of systems with mechanical tuning of mirrors. The
grating-coupled open resonators could also be used to build reflection type diffraction
radiation oscillators [Shestopalov, 1991]. In this case, the collector should be replaced by an
electron reflector, producing a backward electron beam. Such devices exhibit low starting
currents and able to operate in the regime of stochastic oscillations [Korneenkov et al., 1982].
The wide functionality of open resonators with layered metal-dielectric structures allowed
to build several types of diffraction based devices with complex resonant structures such as
Cherenkov diffraction oscillator and Cherenkov backward-wave tube. Fig. 16 shows the
example of Cherenkov backward-wave tube and Cherenkov diffraction oscillator.

The electron beam 1 of the backward-wave tube is generated by the electron gun 2. The
beam propagates through the channel 3 formed by the adjacent surfaces of the resonator 4 to
the slow-wave structure 5. The electron beam interacts with the field of the slow-wave
structure 5 resulting in modulation of charge density. Simultaneously, Cherenkov radiation
occurs when the electrons velocity exceed the phase velocity of the electromagnetic wave in
the dielectric. The radiation is directed into the dielectric. The resonator 4 has a field
distribution allowing a feedback (solid lines with arrows). Oscillations occur in the resonator
effectively extracting power from the modulated electron beam via the strip grating 6 when
the frequency is synchronized with the eigen frequency of the resonator. The power is
coupled from the resonator 4 via the waveguide 7 with & > & The synchronization between
the electron beam and the wave in the dielectric is achieved by choosing the proper value
for £and adjusting the accelerating voltage for the electron beam.



Quasi-optical Systems Based on Periodic Structures 279

Fig. 16. Realization of Cherenkov backward-wave tube and Cherenkov diffraction oscillator

The similar electron optics is used for excitation of Cherenkov diffraction radiation. The
slow-wave structure (diffraction grating) 5 is positioned in the central part of the fixed
mirror. The moving mirror 8 with a coupling slot 9 is used for coupling the power out of the
device. In contrast to the backward-wave oscillator, the geometrical parameters of the
gratings 5, 6 are optimized for efficient excitation of radiation in the normal direction with
respect to the axis of the electron gun 2 (dotted oscillation pattern in Fig.16) and for
maximum power density of Cherenkov radiation within the dielectric resonator 4.

Recently, significant attention is drawn to amplifiers based on Smith-Purcell effect, which
has been described in section 3. An amplifier employing sheet electron beam is shown in
Figure 17.
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Fig. 17. Travelling wave tube based on the Smith-Purcell effect




280 Electromagnetic Waves

The open waveguide with length L is formed by the surfaces of parallel passive 1 and active
2 mirrors realized as reflecting diffraction gratings with the periods I; and I, and a distance
H between them. The sheet electron beam 3 propagates above the surface of the active
mirror 2. The dielectric waveguide 4 is placed close to the surface of the passive mirror 1,
and the matched absorption loads 5 are positioned at the ends of the waveguide. The
periods I; and I, of the diffraction gratings comply with the relations that follow from the
conditions of the in-phase mode of radiation (shown with arrows) from the active and the
passive mirrors of the open waveguide:
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! 1+,§w(\/z—1)—cos;/2 2 5/«/Kuo—cos;/2 ©)
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voltage of the electron beam, V; K=5051/V.

The range of angle », and the length L of the waveguide are chosen to minimize diffraction
loss into the free space. A high-frequency signal of power P, with a wavelength A is fed to
the dielectric waveguide 4. The transformation of the surface wave into the volume wave
radiated in the direction of angle y, = arccos(c/v,, +4/l;) occurs on the diffraction grating of
the passive mirror 1. The non-reflected portion of the volume wave excites the spectrum of
the spatial harmonics having different phase velocities when the volume wave of the
transformed input signal incidents the grating of the active mirror 2. The electron beam
velocity v, synchronizes with one of the surface waves which results in bunching of
electrons radiating at a frequency of input signal in the direction of angle
7, =arccos(c/v, + A/l,). The reverse transformation of the volume wave into the surface
wave, which is followed by a radiation into the open waveguide, occurs at the grating of the
passive mirror. The signal P, is amplified in the case of the in-phase radiation from the
mirrors. The periodic re-emission results in increase of amplitude of the volume wave

- is the effective permittivity of the waveguide; U, - is the accelerating

propagated along the open waveguide and the amplitude of the surface wave propagating
in the same direction along the dielectric waveguide which is used to couple the amplified
signal P, out to the load. The matched loads 5 and the dielectric waveguide 4 decrease the
probability of regeneration effects that might occur in the amplifier both due to the
reflections from the open waveguide ends and due to the parasitic oscillations due to
multiple reflections between the active and the passive mirrors in direction of angles ; and
7, close to 7/2.

The prototype of the suggested travelling wave tube has been realized in the V band. The
open waveguide was formed by two cylinder-shaped mirrors (the passive mirror with the
curve radius R, =20 mm and the active mirror with R, =110 mm ). The grating periods
I, and I, were chosen according to (6) resulting in ¥, =, . High-frequency signal was fed
into the amplifier from the resonance carcinotron in the frequency band f =68+72GHz
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using a quartz dielectric waveguide and a sheet beam with a cross-section 5x0,2 mm? . The
electron beam was propagating along the active mirror with accelerating voltages in the
range U, =2200+2500V . The system was built in the vacuum shell between the poles of
the electromagnet that limited the open waveguide length to L=40 mm and allowed to
ensure about a double transformation of the surface wave into the diffraction radiation. The
achieved experimental results show that amplification of rather broadband signals (up to
2 GHz) along with increase in gain is possible if increase the beam current. At the same time,
the limited length of the open waveguide did not allow a sufficient number of
transformations of the surface waves into the volume waves, which limited the increase of
the gain K.

A further improvement of the output parameters of the amplifier could be achieved by
increasing the interaction region and the electron beam current. This could be achieved, for
instance, by means of using axial-symmetric electromagnetic systems and a better electron
focusing optics.

5. Conclusion

The chapter provides a summary of results on both the classical quasi-optical systems
forming a basis for development of new modifications of oscillation systems of the
microwave and millimeter-wave band devices and more advanced coupled electromagnetic
systems with complex periodic structures such as coupled open resonators, open resonators
and waveguides with layered metal-dielectric structures. It is demonstrated that the coupled
open resonators exhibit wider frequency tuning range while preserving high values of Q-
factor. Coupled systems such as open resonators and waveguides with layered metal-
dielectric structures have qualitatively new properties: by varying the parameters of metal-
dielectric structure one could achieve attenuation or amplification of the oscillations and
their selection. New modifications of Cherenkov traveling wave tube such as Cherenkov
diffraction oscillator and amplifier based on the Smith-Purcell effect are suggested and
realized.
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Waveguide Mode Converters
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1. Introduction

Metallic waveguides have major advantages, such as low propagation loss and high power
transmission in the microwave frequency range. However, one disadvantage is that the
usable frequency range is restricted to f. < f < 2f, because the TE; mode is possible in a
frequency region higher than 2f. for rectangular metallic waveguides. A ridge waveguide
(Cohn, 1947) (or double-ridge waveguide) has an advantage in that it can spread the
propagating frequency range as a result of reduction in the cutoff frequency for the TEjo
mode. However, one disadvantage is that the attenuation constant becomes large.

Power sources, such as watt class IMPATT diodes or Gunn diodes, are readily available, and
for high frequency use, power sources are sometimes combined, due to their low power
rating. However, power combiners consisting of cavity resonators usually have narrow
bandwidths (For example, Matsumura et al., 1987). Power dividers and power combiners
may be easily setup using mode converters. For example, a TE1;-TE3 mode converter easily
offers a three-port power divider, and a three-way power combiner can be composed by
reversal. A power combiner is useful for application to Gunn diodes in a waveguide array
(Bae et al., 2000), because it converts the TEz mode to the TE;p mode.

2. Design method of the mode converters

We have reported that single-mode propagation is available for a metallic waveguide with
dielectric rods arrayed at the center of the waveguide in the frequency under twice the
cutoff frequency region using the TEjp mode, and in the frequency over twice the cutoff
frequency region using the TE» mode, because of restrictions of the TE1p mode (Kokubo,
2007; Kokubo & Kawai, 2009). However, a TEx-like mode, which is propagated in the
second band, is an odd mode, and generation systems for odd modes have seldom been
reported. In this investigation, a mode converter is proposed which passes through the TEjo
mode for the low frequency range and efficiently converts TE1o to TEz mode for the high
frequency range.

2.1 Design method of the TEo-to-TE2 mode converter

The frequency eigenvalues of a conventional metallic waveguide in a given k wavevector are
shown in Fig. 1. In this figure, the wavevector k and frequency ® are normalized using the
width of the waveguide w. The electromagnetic wave propagates the TE;p mode only for
0.5<oww/2mc<1, and can propagate TEjgp and TEz modes for 1<ow/2mc<1.5. If these two
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modes are excited by only the TE;p mode, the group velocity of TEjo (A) must be changed to
that of TE (B) for 1<@w/2mrc<1.5. On the other hand, the group velocity (C) is not changed
for 0.5<ww/2mc<1, because this remains in the TEjy mode. If the distribution of the
transverse electromagnetic field is gradually changed from TEjo to TE»o, and group velocity
(A) is also gradually changed to (B), then the reflection may be reduced for 1<ow/2mc<1.5.
On the other hand, if the group velocity (C) is not significantly changed, the reflection may
also be suppressed for 0.5<ow/2rc<1. Since the mode profile gradually shifts from TEjp to
TEx, the dielectric rods are replaced from near the sidewall to the center of the waveguide.
In other words, the basic setup is shown in Fig. 2.

~—— fc(TEy)

Normalized Frequency ww/2 ¢

0 0.5 1 1.5 2
Normalized Wavevector kw/2 7t

Fig. 1. The frequency eigenvalues of a conventional metallic waveguide in a given k
wavevector.
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Fig. 2. The proposed structure of the TEjo to TEz mode converter.
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Fig. 3. The group velocity in a metallic waveguide with a periodic array of dielectric rods for
various distances from the sidewall, d, and various radii of the rods, 7, at 15 and 9 GHz.
(Kokubo, 2010)

The group velocity is given by v, :(dkl)' However, it is not simple to determine the
da

group velocity in the waveguide shown in Fig. 2. The propagation modes in a waveguide
having in-line dielectric rods with period a are calculated using a supercell approach
(Benisty, 1996) by application of appropriate periodic Bloch conditions at the boundary of
the unit cell (Boroditsky et al.; Kokubo & Kawai, 2008). When the location of the dielectric
rods is fixed at a distance d from the sidewall, the group velocity vg at both of the first and
the second bands is changed by varying the radius r. However, the group velocities are also
changed at the same time and cannot be changed individually.

If the group velocity is normalized using light velocity in a vacuum, vg/c is the same as the
gradient of the characteristic curve. Therefore, when d and r are fixed to certain values, vg/c
is calculated for the periodic structure of the dielectric rods at a specific frequency. If group
velocity (A) is gradually changed to (B) for 1<eow/2mrc<1.5 when d is varied, and group
velocity (C) is not changed for 0.5<®w/21c<1, then one unit of each pair of d and r connects
to its respective pair to form a structure shown in Fig. 2.

The metallic waveguide is assumed to be a WR-90 (22.9x10.2 mm, cutoff frequency f. ~
6.55GHz) and period a is fixed at 9.54 mm. Fig. 3 shows a sample of calculated results of
normalized velocity along the axis of the waveguide at 15 GHz and 9 GHz for dielectric rods
(LaAlOs: &= 24, radius 