

Principles of Infectious Disease Epidemiology

دكتر سيد عليرضا مروجي دانشیار یزشکی اجتماعی دانشکده پزشکی دانشگاه علوم پزشکی کاشان

Infectious disease

Definition

An illness due to a specific infectious agent or its toxic products that arises through transmission from an infected person, animal or reservoir to a susceptible host, either directly or indirectly through an intermediate plant or animal host, vector or inanimate environment.

Last JM, Dictionary of Epidemiology, 1988

Some special feature

- ♦ A case may also be a risk factor
- People may be immune
- A case may be a source without being recognized as a case
- There is sometimes a need for urgency
- preventive measure usually have a good scientific basis

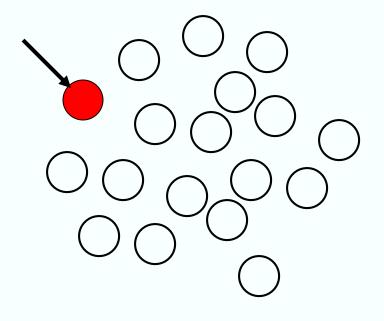
- All diseases caused by microorganisms
- Diseases can be transmitted from one infected person to another, directly or indirectly

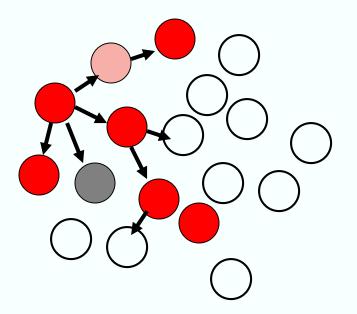
 Disease can be transmitted from one person to another by unnatural routes

Epidemiology

- •••
- Risk 🗆 case •
- Identifies causes •

Infectious disease epidemiology


- Deals with one population \rightarrow \checkmark Two or more populations
 - → A case is a risk factor
 - → The cause often known


Two or more populations

- Humans
- Infectious agents
 - Helminths, bacteria, fungi, protozoa, virus, prions
- ✤ Vectorer
 - Mosquito (protozoa-malaria), snails (helminths-schistosomiasis)
 - Blackfly (microfilaria-onchocerciasis) bacteria?
- Animals
 - Dogs and sheep/goats Echinococcus
 - Mice and ticks Borrelia

➡ A case is a risk factor …

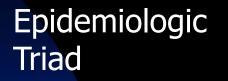
Infection in one person can be transmitted to others

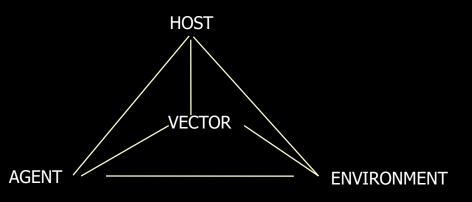
The cause often known

✤ An infectious agent is a necessary cause

What is infectious disease epidemiology then used for?

- Identification of causes of new, emerging infections, e.g. HIV, vCJD, SARS
- Surveillence of infectious disease
- Identification of source of outbreaks
- Studies of routes of transmission and natural history of infections
- Identification of new interventions


Epidemiologic Triad


Disease is the result of forces within a dynamic system consisting of:

- agent of infection
- host
- environment

Dynamics of Disease Transmission

- Human disease results from interaction between the host, agent and the environment. A vector may be involved in transmission.
- Host susceptibility to the agent is determined by a variety of factors, including:
 - Genetic background
 - Nutritional status
 - Vaccination
 - Prior exposure

Factors Influencing Disease Transmission

Agent

- Infectivity
- Pathogenicity
- Virulence
- Immunogenicity
- Antigenic stability
- Survival

Environment

- Weather
- Housing
- Geography
- Occupational setting
- Air quality
- Food

- Age
- Sex
- Host Genotype
 - Behaviour
 - Nutritional status
 - Health status

Epidemiologic Triad Concepts

Infectivity – ability to invade a host (# infected / # susceptible) X 100 Pathogenicity – ability to cause disease (# with clinical disease / # of infected) X 100 Virulence – ability to cause death (# of deaths / # with disease (cases)) X 100 All are dependent upon the condition of the host

- Immunity (active, passive)
- Nutrition
- Sleep
- Hygiene

Routes of transmission

Direct

- Skin-skin
 - Herpes type 1
- Mucous-mucous
 STI
- Across placenta
 toxoplasmosis
- Through breast milk
 HIV

Indirect

- Food-borneSalmonella
- Water-borneHepatitis A
- Vector-borneMalaria
- Air-borneChickenpox

Sneeze-cough
 Influenza

Exposure

A relevant contact – depends on the agent
 Skin, sexual intercourse, water contact, etc

Some Pathogens that Cross the Placenta

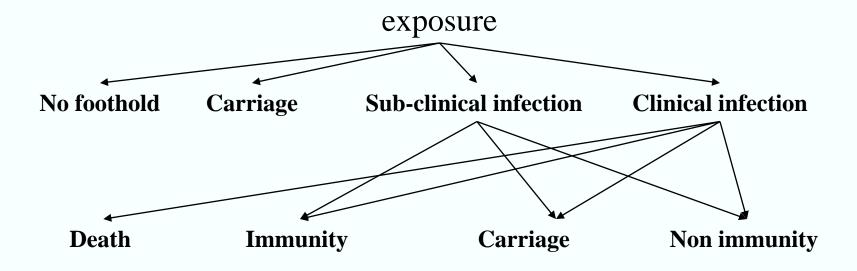
Table 14.3 Some Pathogens that Cross the Placenta

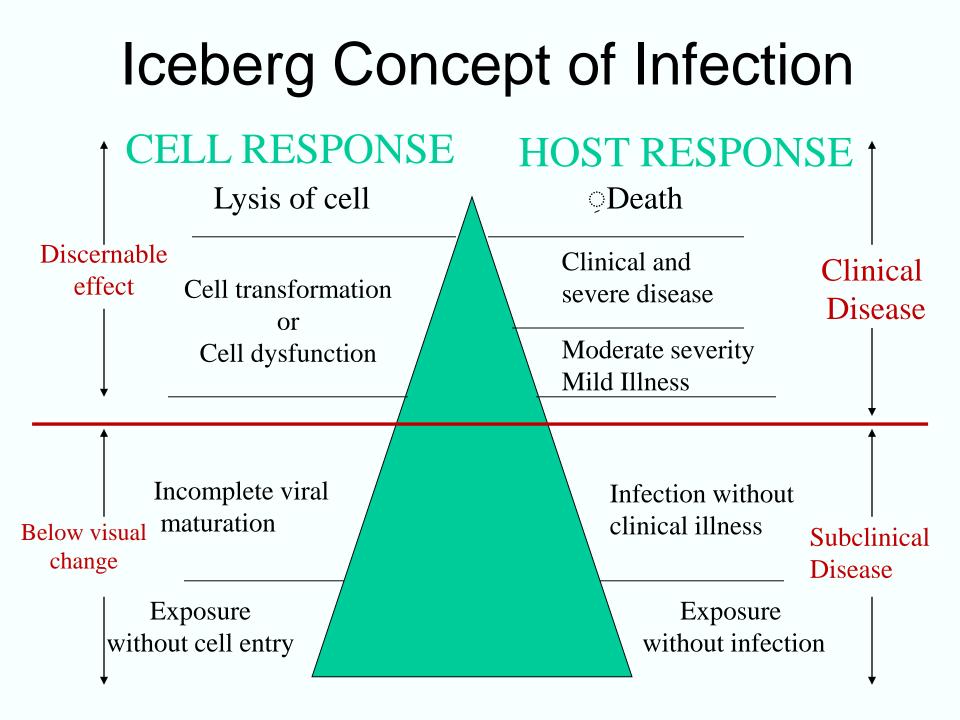
	Pathogen	Condition in the Adult	Effect on Embryo or Fetus
Protozoan	Toxoplasma gondii	Toxoplasmosis	Abortion, epilepsy, encephalitis, microcephaly, mental retardation, blindness, anemia, jaundice, rash, pneumonia, diarrhea, hypothermia, deafness
Bacteria	Treponema pallidum	Syphilis	Abortion, multiorgan birth defects, syphilis
	Listeria monocytogenes	Listeriosis	Granulomatosis infantiseptica (nodular inflammatory lesions and infant blood poisoning), death
DNA viruses	Cytomegalovirus	Usually asymptomatic	Deafness, microcephaly, mental retardation
	Parvovirus B19	Erythema infectiosum	Abortion
RNA viruses	Lentivirus (HIV)	AIDS	Immunosuppression (AIDS)
	Rubivirus rubella	German measles	Severe birth defects or death

Mode of Transmission

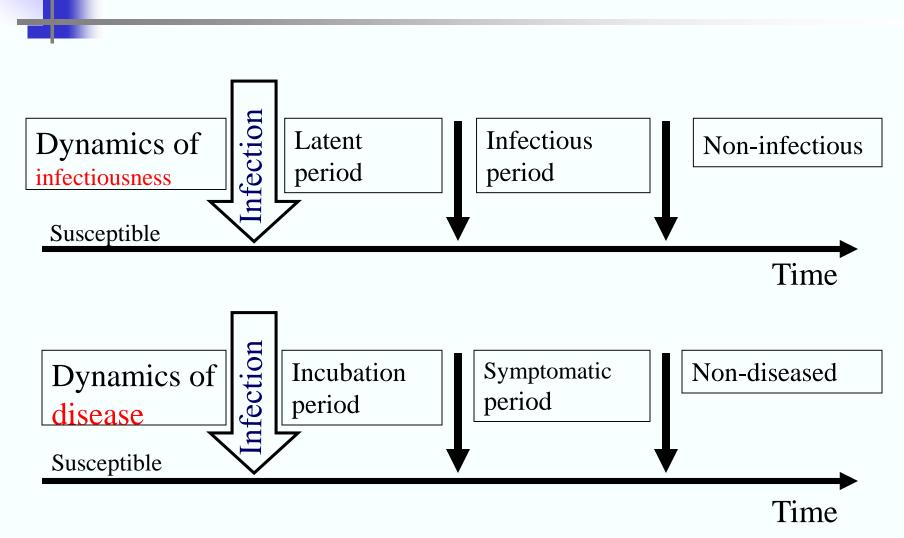
 Person-to-person (respiratory, urogenital, skin) ***** Examples: HIV, measles Vector (animals, insects) *** Examples: rabies, yellow fever** Common vehicle (food, water) ***** Examples: salmonellosis Mechanical vectors (personal effects) such as doorknobs, or toothbrushes

Modes of Disease Transmission

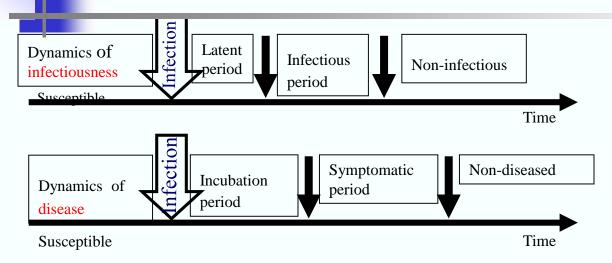

Table 14.10 Modes of Disease Transmission


Biological: e.g. lice, mites, mosquitoes, ticks

Mode of Transmission	Diseases Spread Include:	
Contact Transmission		
Direct Contact: e.g. handshaking, kissing, sex, bites	cutaneous anthrax, genital warts, gonorrhea, herpes, rabies, staphylococcus infections, syphilis	
Indirect Contact: e.g. drinking glasses, toothbrushes, toys, punctures, droplets from sneezing and coughing (within one meter)	common cold, enterovirus infections, influenza, measles, Q fever, pneumonia, tetanus, whooping cough	
Vehicle Transmission		
Airborne: e.g. dust particles	chicken pox, coccidiomycosis, histoplasmosis, influenza, measles, pulmonary anthrax, tuberculosis	
Waterborne: e.g. streams, swimming pools	Campylobacter infections, cholera, Giardia diarrhea	
Foodborne: e.g. poultry, seafood Mec	food poisoning (botulism, staphylococcal); hepatitis A, listeriosis, tapeworms, toxoplasmosis, typhoid fever	
Vector Transmission		
Mechanical: e.g. (on insect bodies) flies, roaches	E. coli diarrhea, salmonellosis, trachoma	

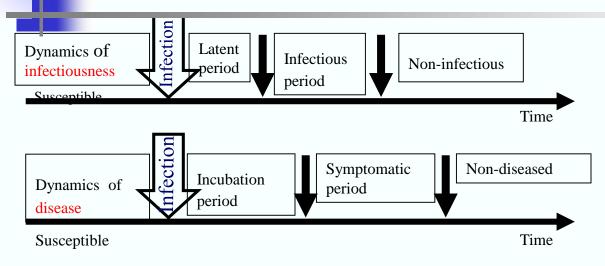

Chagas' disease, Lyme disease, malaria, plague, Rocky Mountain spotted fever, typhus fever, yellow fever

The possible outcomes of exposure to an infectious agent



Timeline for Infection

Timeline for Infection



Definitions from Previous Slide:

Latent period: time interval from infection to development of infectious (note: this definition differs from that used for non-infectious diseases).

Infectious period: time during which the host can infect another host.

Timeline for Infection

Definitions from Previous Slide:


Incubation period: time from infection to development of symptomatic disease.

Symptomatic period: period in which symptoms of the disease are present.

Incubation Period

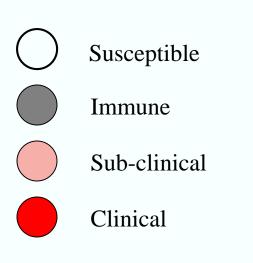
- The interval between the <u>time of</u> <u>contact and/or entry of the agent</u> and <u>onset of illness</u>
- The time required for the multiplication of microorganisms within the host up to a threshold where the parasitic population is large enough to produce symptoms

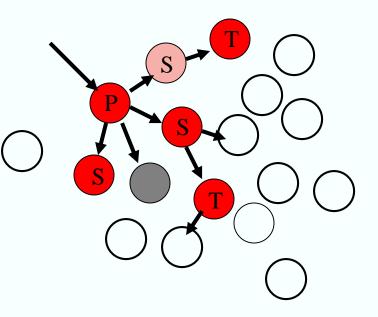
Influenza Infection Timeline

در آبله مرغان، latent period کوتاهتر از incubation
 وتاهتر از period

– لذا می تواند قبل از بروز علایم، دیگران را آلوده کند.

 در مالاریا فالسیپاروم، latent period طولانی تر از incubation period است

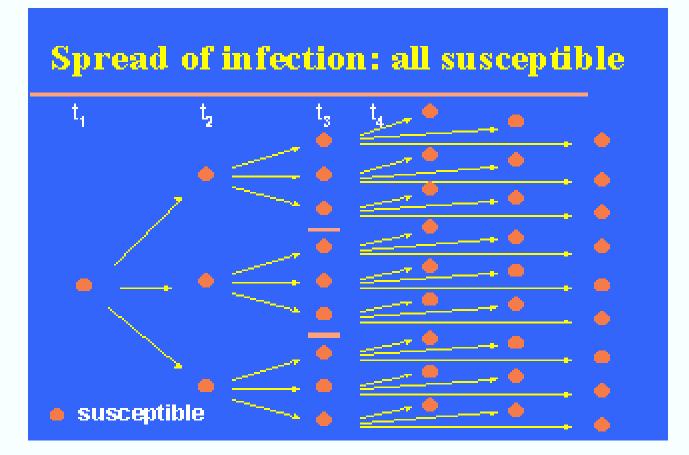

– لذا درمان زودرس، می تواند از انتقال جلوگیری کند.

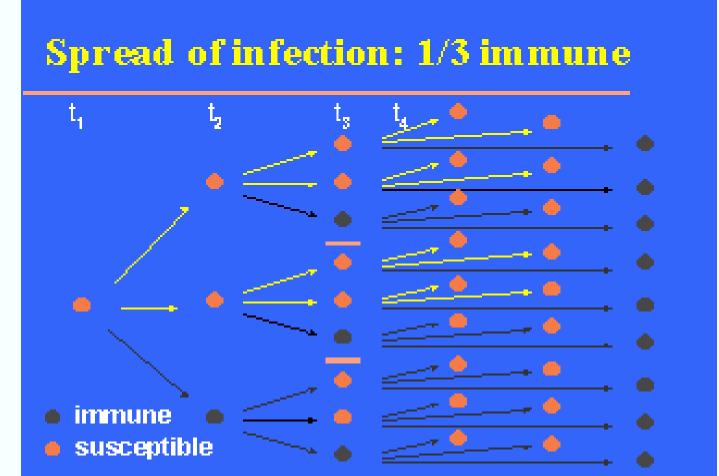

در ایدز، latent period کوتاه (در حد چند روز تا هفته)
 است و incubation period طولانی(در حد چند سال)
 لذا بیمار ایدزی می تواند برای مدت طولانی، دیگران را نیز آلوده
 کند بدون این که علایم داشته باشد

Transmission

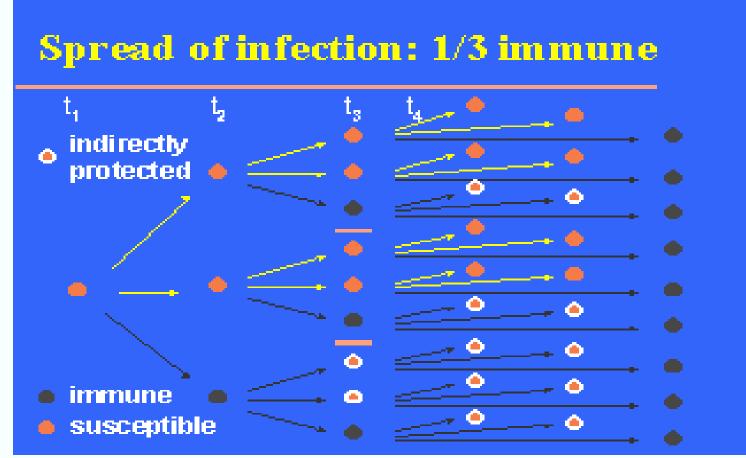
Cases

- Index the first case identified
- Primary the case that brings the infection into a population
- Secondary infected by a primary case
- Tertiary infected by a secondary case


Definitions


<u>Endemic:</u> Habitual presence of a disease in a given geographic area.

<u>Epidemic</u>: Occurrence of a group of illnesses of similar nature within a given community or region <u>in excess of</u> <u>normal expectancy</u>, and derived from a common or from a propagated source.


Pandemic: A worldwide epidemic.

<u>Herd immunity:</u> Resistance of a group to an attack by a disease to which a large proportion of members of the group are immune.

7/27/2018

- This is HERD IMMUNITY.
- Herd immunity: The indirect protection from infection of susceptible members of a population, and the protection of the population as a whole, which is brought about by the presence of immune individuals.

Definitions (cont.)

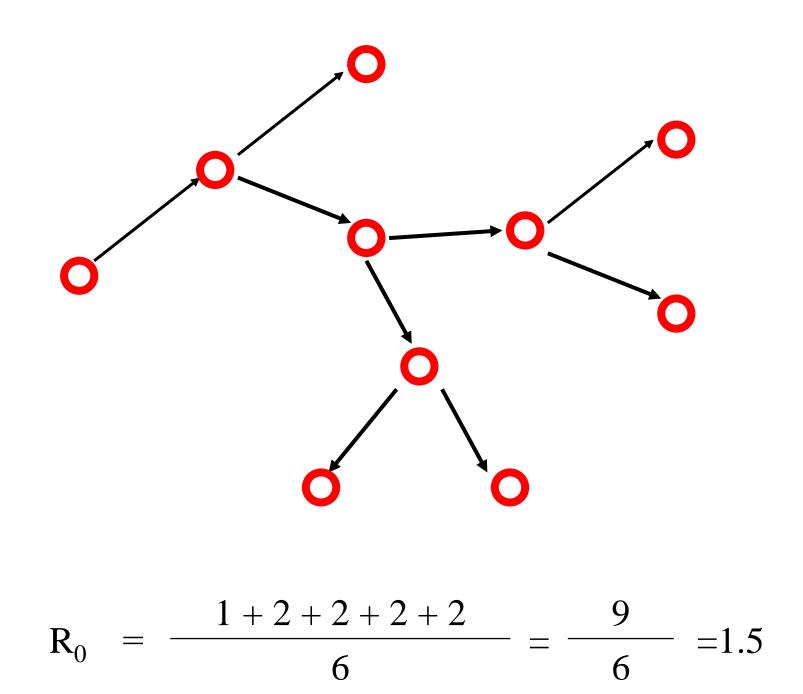
- <u>Virulence:</u> Severity of the disease produced by the organism.
- <u>Carrier:</u> Individual who harbors the organism but is not infected, as measured by serologic studies or evidence of clinical illness.
- Classic Example: Typhoid Mary was a carrier of *Salmonella typhi* who worked as a cook in NYC in different households over many years – considered to have caused at least 10 typhoid fever outbreaks that included 51 cases and 3 deaths.

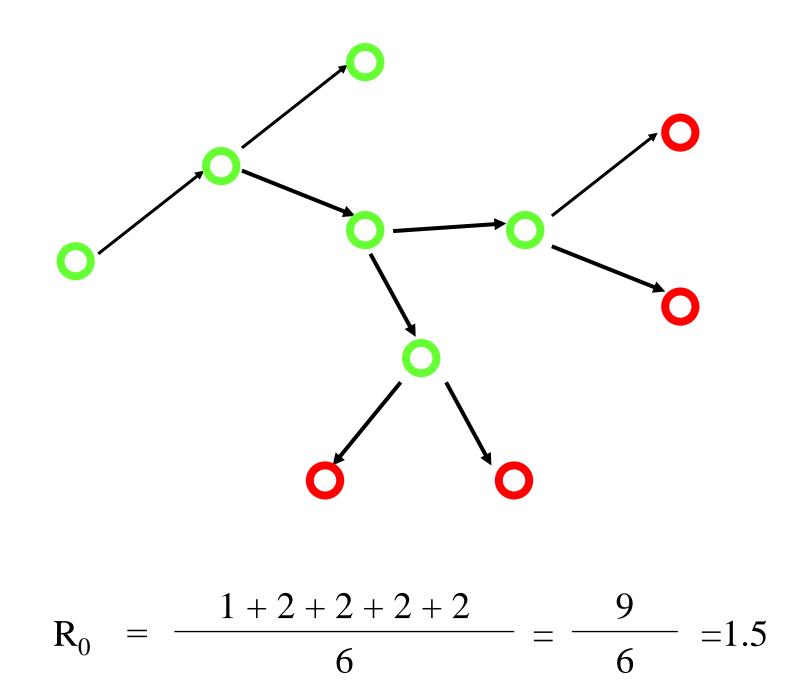
Attack Rate

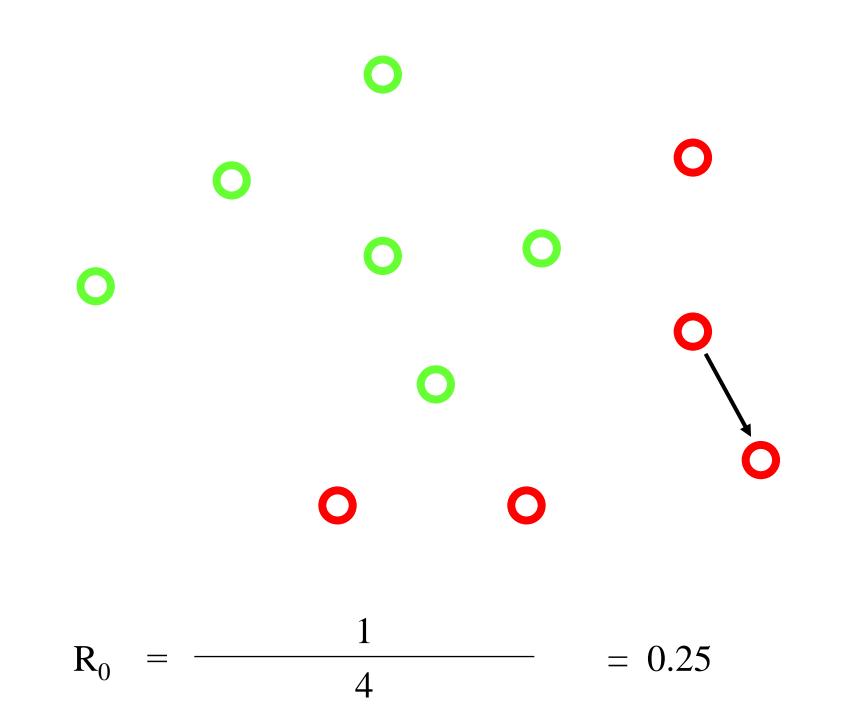
Number of people at risk who develop disease

AR =

Number of people at risk during a specified period of time


Person-to-person transmission


Data from Dr. Simpson's studies in England (1952)						
	Measles	Chickenpox	Rubella			
Children exposed	251	238	218			
Children ill	201	172	82			
attack rate	0.80	0.72	0.38			


Attack rate =	i11
	exposed

The Basic Reproductive Number *R*₀

*R*₀ is defined as "the average number of secondary cases caused by an infectious individual in a totally susceptible population".

The Basic Reproductive Number *R*₀

- Individualistic definition: R0 = The number of infections an infected person would generate over the course of their infection if everyone they encountered were susceptible.
- Population definition: R0 = The average force for growth of infection in a population where everyone is susceptible.

The Basic Reproductive Number

- $R_0 > 1$ is also a persistence criterion
- R_0 tells us how easy or difficult it is to eradicate an infection
- Easier to eradicate an infection with low R_0 than high R_0 (e.g. smallpox: $R_0 \approx 5$, measles: $R_0 \approx 15$)

The Basic Reproductive Number *R*₀

• As such R_0 tells us about the initial rate of increase of the disease over a generation:

- When *R*0 is greater than 1, the disease can enter a totally susceptible population and the number of cases will increase,
- whereas when R₀ is less than 1, the disease will always fail to spread.

Reproductive Number, R₀

- If R₀ < 1 then infection cannot invade a population

 implications: infection control mechanisms
 unnecessary (therefore not cost-effective)
- If $R_0 > 1$ then (on average) the pathogen will invade that population
 - implications: control measure necessary to prevent (delay) an epidemic

Infectious disease epidemiology

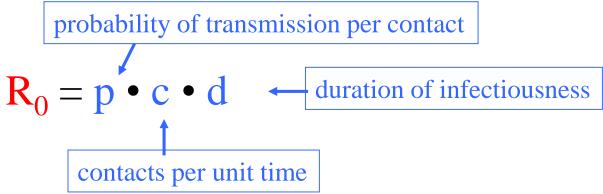
- If Ro < 1, then every new generation of infection will affect fewer individuals and eventually the disease will die out. The value of Ro and the % of the population that is vaccinated affects disease spread and die out.
- If Ro = 1 then approximately the same number of individuals are infected with every new generation causing endemicity.
- If Ro > 1 then there is an ever increasing number of infected individuals.

The Basic Reproductive Number *R*₀

Measles

16-18

Infectious disease epidemiology


 Reproductive rate (R) (potential of spread from person to person) <u>depend on:</u>

- The probability of transmission in a contact between an infected individual and susceptible one
- 2) The frequency of contacts in the population
- 3) How long an infected person is infectious
- 4) The proportion of the population that is already immune

Reproductive Number, R₀

A measure of the potential for transmission

The basic reproductive number, R_0 , the mean number of individuals directly infected by *an infectious case* through the total infectious period, when introduced to a susceptible population

Infection willdisappear, ifR < 1become endemic, ifR = 1become epidemic, ifR > 1

What determines R₀?

p, transmission probability per exposure – depends on the infection

- HIV, p(hand shake)=0, p(transfusion)=1, p(sex)=0.001
- \clubsuit interventions often aim at reducing p
 - ✤ use gloves, screene blood, condoms

c, number of contacts per time unit – relevant contact depends on infection

- ✤ same room, within sneezing distance, skin contact,
- \clubsuit interventions often aim at reducing c
 - ✤ Isolation, sexual abstinence

d, duration of infectious period

* may be reduced by medical interventions (TB, but not salmonella)

Reproductive Number, R₀ Use in STI Control

 $\mathbf{R}_0 = \mathbf{p} \cdot \mathbf{c} \cdot \mathbf{d}$

- p condoms, acyclovir, zidovudine
- c health education, negotiating skills
- d case ascertainment (screening, partner notification), treatment, compliance, health seeking behaviour, accessibility of services

Immunity – herd immunity

 $If R_0$ is the mean number of secondary cases in a susceptible population, then R is the mean number of secondary cases in a population where a proportion, p, are *immune*

$$\mathbf{R} = \mathbf{R}_0 - (\mathbf{p} \bullet \mathbf{R}_0)$$

*What proportion needs to be immune to prevent epidemics?

If R_0 is 2, then R < 1 if the proportion of *immune*, p, is > 0.50 If R_0 is 4, then R < 1 if the proportion of *immune*, p, is > 0.75

• If $R_0 = 15$, how large will p need to be to avoid an epidemic?

$$p > 1 - 1/15 = 0.94$$

 \bullet The higher R₀, the higher proportion of *immune* required for herd immunity

 (\underline{WWW})