با توجه به پیشرفت روز افزون علم مکانیک و توجه محققین و دانشمندان به بحث آیرودینامیک و هیدروآیرودینامیک در بهبود وضعیت وسایلی مانند خودروها ، پرتابه ها، کشتی ها ،زیر دریایی ها ،پمپها و ... ضرورت انجام چنین تحقیقی احساس می شود. یکی از ابزارهای کار آمد در بررسی مسئله آیرودینامیک و هیدروآیرودینامیک ، تونل آب می باشد که علاوه بر آن قابلیت بررسی پدیده کاویتاسیون را نیز دارد ، اولین نمونه تونل آب در سال ۱۹۰۴ میلادی توسط لودویک پرانتل ساخته شده است و از آن زمان تاکنون پیشرفتهای زیادی داشته است.

در فصل اول این تحقیق دلایل انتخاب تونل آب ،دلایل ارجهیت آن بر رقیب دیرینه خود یعنی تونل باد و انواع تونل آب با مشخصات فنی آنها ارائه شده اند. در فصل دوم درباره اجزا تشکیل دهنده تونل آب توضیح داده شده است ،همچنین به اختصار در باره وسایل جانبی و ابزار های کنترلی در تونل آب صحبت شده است . در فصل سوم یک تونل آب نمونه طراحی شده است. در پیوست ها نیز دو نمونه مختلف از کاتالوگهای مربوط به تونل آب ترجمه و ارائه شده است.

فصل اول

کلیاتی در مورد تونل آب و انواع آن

چرا تونل آب ؟

همانطور که میدانیم برای بررسی تجربی پدیده های آیرو دینامیکی دو ابزار قدرتمند موجود است :

- ۱- تونل باد
- ۲- تونل آب

در زیر ضمن مقایسه جزئی این دو وسیله دلایل ارجهیت تونل آب را به اختصار ذکر می کنیم:

به طور کلی در اکثر مواقع ما نمی توانیم به طور مستقیم جسم را در داخل تونل قرار داده و آن را بررسی کنیم لذا نا گذیر هستیم تا از وسیله خود نمونه ای با حفظ خصو صیات هندسی آن تهیه کنیم و سپس نمونه را در داخل تونل قرار دهیم و خصوصیات آن را بررسی کنیم و سپس با استفاده از بحث تشابه نتایج را برای نمونه اصلی تعمیم دهیم. همانطور که می دانیم برای برقراری تشابه باید تشابه هندسی و تشابه دینامیکی همزمان بر قرار باشند بر همین اساس و بوسیله تحلیل ابعادی و روشهای تحلیلی مانند قضیه پای – وکینگهام گروه های بی بعدی حاصل می شوند که در زیر به برخی از آنها اشاره کرده و مفهوم فیزیکی ان را به اختصار توضیح می دهیم :

۱- عدد رینولدز: نسبت نیروی لختی به نیروی اصطکاک می باشد.

$$\operatorname{Re} = \frac{VL}{v}$$

که در آن L طول مشخصه نمونه ،V سرعت جریان سیال و v لزجت سینماتیکی سیال می باشد.

$$M = \frac{V}{c}$$

- که در آن V سرعت جریان سیال و c سرعت صوت در سیال مورد نظر می باشد.
- ۳- عدد فرود: نسبت نیروی لختی به نیروی گرانش می باشد و بیشتر در جریانات روی سطح سیال اهمیت می یابد.

$$Fr = \frac{V^2}{Lg}$$

۴- عدد وبر : نسبت نیروی لختی به کشش سطحی می باشد. این عدد نیز وجود یک سطح آزاد را ایجاب می کند اما در جا یی که اشیای بزرگ مانند کشتیها در سیالی مانند آب در کار باشند این اثر خیلی ضعیف است.

$$We = \frac{\rho V^2 L}{\sigma}$$

که در آن L طول مشخصه نمونه ،V سرعت جریان سیال و ho چگالی سیال مورد نظر و σ چسبندگی سطحی سیال می باشد.

۵- عدد اویلر : نسبت نیروی فشاری به نیروی لختی است.

$$Eu = \frac{\Delta P}{\rho V^2}$$

در تشابه پمپ ها نیز اعداد بی بعد زیر مطرح هستند:

$$\frac{gH}{N^2D^2}$$
 - فريب ارتفاع: –۱

$$\frac{Q}{ND^3} + \frac{P}{\Theta}$$

$$\frac{\mu}{PND^2} + 2 \sum (2\pi)^2 + 2 \sum$$

$$\operatorname{Re} = \frac{VL}{v}$$

 $v(water) = 8.58 \times 10^{-7} \frac{m^2}{s}$ $v(air) = 15.89 \times 10^{-6} \frac{m^2}{s}$

همانطور که مشاهده می کنید لزجت سینماتیکی هوا ۱۸٫۵ برابر بیشتر از آب می باشد پس برای نمونه یکسان در تونل به منظور حصول عدد رینولدز یکسان از هر دو تونل باید سرعت هوا در تونل باد ۱۸٫۵ برابر بیشتر از سرعت آب در تونل آب باشد . یعنی در تونل آب می توانیم با سرعتهای کمتر ، پمپ کوچکتر و هزینه کمتر همان شرایط

را بر قرار کنیم.

۲- مورد اول را می توان به گونه ای دیگر نیز بررسی کرد یعنی در سرعت سیال یکسان در هر دو تونل و به منظور حصول عدد رینولدز یکسان باید در تونل هوا نمونه ای ۱۸٫۵ برابر بزرگتر از نمونه ای که در تونل آب به کار می رود استفاده کنیم

یعنی تونل آب کوچکتری می توان انتخاب نمود.

- ۳- آب سیال تراکم ناپذیری می باشد و به راحتی می توانیم سرعت آن را افزایش دهیم در حالیکه هوا سیال تراکم پذیر می باشد و در سرعتهای بالا نتایج آزمایشات در آن دارای انحرافات زیادی می باشد.
- ۴- در تونل آب علاوه بر بررسی ابزار هایی که در تونل هوا بررسی می شوند مانند : اتموبیل ها ، هواپیماها و پرتابه های هوایی می توانیم موارد دیگری مانند زیر دریایی ها ، کشتی ها ، پمپ ها و پرتابه های آبی رانیز بررسی کنیم.
- ۵- در تونل آب امکان بررسی پدیده بسیار مهم کاویتاسیون که در پمپ ها از اهمیت ویژه ای برخوردار می باشد نیز فراهم است.

البته محدودیتهایی نیز در مورد تونل آب می باشد که باعث می شود تا از تونل آب استفاده کنیم ک

۱- در تونل آب نیاز به آب به عنوان سیال می باشد که مانند هوا در همه جا در دسترس نمی باشد و ممکن است نیاز به منابعی برای ذخیره آن باشد.

۲- تجهیزات مورد استفاده در تونل آب پیچیده تر و پر هزینه تر از تونل آب می باشد.

۳- در تونل هوا امکان آن را داریم که حتی بتوانیم جسم را در اندازه واقعی خود در تونل قرار دهیم مثلا یک اتومبیل را به طور کامل وارد آن کنیم در صورتیکه در تونل آب این امکان فراهم نمی باشد.

اما با تمام این موارد امروزه ترجیح داده می شود تا به علت کاربرد کسترده تر تونل آب ازاین تونل استفاده شود.

انواع تونل آب:

تونل های آب را می توان از جهات گونا گونی مورد بررسی قرار داد و آنها را دسته بندی نمود که در زیر به چند سری از این دسته بندی ها اشاره می کنیم : *دسته بندی از نظر سرعت :

تونلهای آب را می توان از نظر سرعت آب در آنها به دو گروه عمده تقسیم نمود :

- سرعت بالا (High Speed) :

که معمولا سرعت آب در آنها بالای ۱۵ متر بر ثانیه می باشد و همین عامل باعث ایجاد تغییراتی در ساختار آنها می شود از جمله اینکه لوله ها و مقطع آزمایش (Test Section) حتما باید دارای مقطع گرد باشند تا از ایجاد جریانات برگشتی و همچنین اتلافات زیاد جلوگیری شود ،همچنین در این نوع تونلهای آب به علت حجم زیاد سیال جابه جا شده معمولا از پمپ های محوری استفاده می شود. این گروه تونلهای آب کاربرد گسترده تری در صنعت از جمله صنایع دفاعی دارند. همچنین این تونلها به علت سرعت بالایی که دارند به راحتی می توانند پدیده حفره زایی (Cavitation) را از این گروه می توانیم به تونلهای آبی گارفیلد ، Tom Fink Tunnel ، 24-inch water ،24-inch water tunnel ، Emerson water tunnel tunnel ، و انواع تونلهای آب با نام Cavitation Tunnel اشاره کرد.

۲- سرعت پایین (Low Speed) :

که معمولا دارای سرعتهایی زیر ۱۵ متر بر ثانیه می باشند و به همین دلیل به راحتی می توان در آنها از مقاطع مربعی استفاده نمود همچنین در آنها می توان از پمپ سانتریفوژ نیز برای انتقال سیال استفاده نمود . این دسته از تونلهای اب بیشتر جنبه آموزشی و آزمایشگاهی داشته و کمتر در صنعت مورد استفاده قرار می گیرند .

یکی از معایب مهم این گروه این است که در آنها نمی توان پدیده کاویتاسیون را مورد بررسی قرار داد .

در این گروه می توان به تونلهای آبی Rolling Hills ، این گروه می توان به تونلهای آبی Pilot water tunnel

* دسته بندی از نظر فشار کاری : از این نظر نیز می توان تونلهای آب را به دو گروه عمده تقسیم بندی نمود : ۱- تونلهای آب رو باز : که این تونلهای آب معمولا تحت فشار جو عمل می کنند و در آنها نمی توان فشار متغییر ایجاد نمود . از جمله معایب این تونلها این است که به علت تماس مستقیم هوا

با آب میزان هوای بیشتری به صورت محلول در آب در می آیند و این عامل باعث ایجاد هوا گرفتگی و کاهش راندمان در بعضی نقاط تونل که فشار افت می کند می شود . همچنین در این تونلها معمولابه علت ثابت بودن مقدار فشار پایه نمی توان سرعتهای بالایی را ایجاد نمود زیرا یکی از را ه های افزایش سرعت استفاده از نازل ها و دیفیوزر ها به منظور تبدیل فشار به سرعت و بلعکس می باشد و در غیر این صورت برای افزایش سرعت نیاز به پمپ های قویتر و بزرگتری می باشد.

از این گروه می توان به تونلهای آبی Rolling Hills ، از این گروه می توان به تونلهای آبی Pilot water tunnel ، Rolling Hills

۲- تونل های آب رو بسته :

در این تونلها به علت عدم ارتباط با محیط بیرون به راحتی می توان فشار متغییر در حین کار داشت و ضمن کاهش انحلال گاز ها از جمله هوا در آب به راحتی می توان سرعتهای بالایی را ایجاد نمود و در ضمن با وجود فشار متغییر بررسی پدیده کاویتاسیون بسیار ساده تر می باشد.

اکثر تونلهای آبی همانطور که در قسمت مشخصات فنی تونل ها مشاهده خواهید نمود از این دسته می باشند.

*دسته بندی از نظر مقدار عدد رینولدز:

۱- تونل های آبی Laminar :
 در این دسته از تونلهای آب جریان آرام می باشد و مقدار عدد رینولدز کمتر از ۲۵۰۰
 می باشد لذا این تونلهای آب دارای مقاطع آزمایش بزرگتر و سرعتهای کمتر می باشند

این دسته از تونلهای آب کاربرد محدودی دارند. از این دسته می توان به تونل آب LWK اشاره نمود. ۲- تونل های آب Turbulent : در این تونل های آب جریان از نوع متلاطم می باشد و لذا دارای سرعتهای خیلی بزرگتری می باشند این دسته از تونلهای آب کاربرد وسیعتر و صنعتی تری دارند. اکثر تونلهای آبی همانطور که در قسمت مشخصات فنی تونل ها مشاهده خواهید نمود از این دسته می باشند.

* دسته بندی تونل های آب از نظر ساختاری :

- تونلهای آب Closed Circuit - تونلهای

این دسته از تونلهای آب دارای ساختاری سیرکوله شونده هستند یعنی یک مقدار مشخص آب وارد آنها شده و این مقدار آب دائما در حال گردش در تونل آب بوسیله پمپ موجود در تونل جهت انجام آزمایشات می باشد . از جمله مزایای این ساختار صرفه جویی در میزان آب مصرفی بوسیله تونل آب می باشد زیرا معمولا حجم آب مورد استفاده در تونل های آب زیاد می باشد و نمی توان آن را بصورت یکسره (از یکطرف آب وارد تونل شده و از طرف دیگر خارج شود) مورد استفاده قرار داد ،البته بعد از مدتی از استفاده باید آب داخل تونل را به علت وجود موادی که در حین آزمایش مورد استفاده قرار گرفته اند و وارد آب شده است ، تعویض نمود برای اطلاعات بیشتر در این مورد به پیوست ۲ مراجعه کنید. همچنین در این دسته از تونل های آب به علت وجود پمپ به راحتی می توان سرعتهای بالا را ایجاد نمود.

اکثر تونلهای آبی همانطور که در قسمت مشخصات فنی تونل ها مشاهده خواهید نمود از این دسته می باشند.

۲-تونلهای آب Open Circuit :

در این دسته از تونل های آبی ، آب از یک طرف وارد و از طرف دیگر خارج می شود . این تونلهای آب معمولا در محل هایی مانند کنار رودخانه ها و دریاچه های آب شیرین که آب فراوانی در دسترس است ساخته می شوند. از معایب این دسته از تونلهای آب می توان به موارد زیر اشاره کرد : میزان زیاد آب مصرفی و ساختاری باز آنها که باعث می شود این دسته از تونل های آب بصورت فشار ثابت و تحت فشار محیط عمل کنند. این دسته از تونلهای اب معمولا کار برد محدودی داشته و بیشتر برای بررسی پدیده های سطحی آب مانند : کشتی ها مورد استفاده قرار می گیرند. نمونه هایی از تونل های آب :

در این قسمت چند مدل تونل آب به همراه جدول مشخصات فنی آنها ارائه می شود :

The First WaterTunnel:

Ludwig Prandtl besides his water-tunnel at the TU Hannover 1904

Diagram of the Laminar Water Tunnel

Technical data

Type of channel: circulation channel

construction: fiberglas-sandwich construction flow medium: water inertia type drive (400 kg) RPM-regulated motor (2.3 kW) transmission via belts contraction ratio 7.7:1 Meßstrecke: 1.2 * 0.5 * 10 m, horizontal, an 3 Seiten verglast freie Wasseroberfläche 10 textile screens temperature stability: less than 0.05 K/day (water) velocity range: 5 - 20 cm/s turbulence level (15 cm/s): 0.15% (0.01-10 Hz) 0.05% (0.10-10 Hz)

Instrumentation :

visualization of flows: hydrogen bubble instrumentation colour probe, laser light sheet instrumentation measurement technique: hot-film-anemometry (DISA 55M10) Laser-Doppler-Anemometry (2 components)

QUIET WATER TUNNEL

Naval Undersea Warfare Center Division Newport

Submarine Sonar Department

Quiet Water Tunnel Pump

Table of Specifications for the Quiet Water Tunnel	
Attribute	Attribute Value
Maximum centerline velocity	20 ft/s (rectangular test section) 80 ft/s (small circular test section)
Pump	Double suction centrifugal pump 300-1786 RPM
Motor	125 hp, 1786 RPM, ball-bearing, 480V 3-phase motor
Clutch	None (Direct Drive)
Speed control	+/- 0.25% of free stream velocity via close-loop feedback system
Maximum Reynolds number	16,700 in rectangular test section $(R_{\theta} = U_{o}\theta/\nu)$ 68,000 in circular test section $(R_{d}=U_{o}d/\nu)$
Boundary layer thickness (typical)	1.2-inches (rectangular test section) Fully developed 1.75 in. (circular test section)
System Water Volume	2,000 gal
Test Section Dimensions (inner)	12-inch (width-constant) by 4-inch (inlet) to 4.4-inch (outlet) by 72-inch (length) (rectangular test section) 3.5-inch diameter by 324-inches in length (circular test section)

Quiet Water Tunnel Pump

Upper Plenum and pump (from front to back)

- 14 -

Middle Plenum Chamber

Rectangular test section (flow is right to left)

Lower Plenum Chamber

Pilot Water Tunnel | Aerodynamics

Detailed Description | Aerodynamics

The following table contains the main technical data:

Geometric dimensions	
Length: 3.0m, Height: 2.5m, Width Volume: 350I	ו: 0.8m
Dimension of test section	
Length: 0.6m, Height: 0.15m, Wid PMMA windows	th: 0.1m
Closed, at different pressure level	s (p 6bar)
Main flow data	
Velocity: u = 0.05- 15m/s with Temperature: T = 20- 80 $^{\circ}$ C with Pressure: p = ambient- 6bar with Turbulence: Tu< 0.5% RMS Reynolds number: Re _{20 $^{\circ}$C= 1.5*10³ - 1.7*10⁵ Re_{80 $^{\circ}$C= 3.8*10³ - 5.4*10⁵}}	u = ±0.5% T = ±0.25% n p = ±0.5%
Pump system	
Centrifugal pump- 40kW AC drive motor with variable frequ	iency converter
Heater	
Electrical flow heater- 20kW	

Circulating Water Tunnel | Aerodynamics

Detailed Description | Aerodynamics

The following table contains the main technical data:

Main Dimens	ions
Leng	ht: 7.5 m, Height: 3.0 m, Width: 0.8 m
Volur	ne: 6000 l
Test Section	
Cross	s-section: 400 x 400 mm ² ,
Adjus	stable floor up to a height of 20 mm
Leng	ht: 1900 mm
PMM	IA windows on each side
Working Mod	es
Oper	n with free surface
Close	ed, at different pressure levels
Main Data	
Veloo	city: v = 0.115 m/s
Reyn	olds number: Re = 4.10 ⁴ 5 . 10 ⁶

24-Inch Variable Pressure Cavitation Tunnel (1940)

Description of Facility:

Vertical plane, closed recirculating, variable-speed, variable-pressure, open jet test section, closed jet test section, and semi-rectangular test section.

Type of Drive System:

1.22 m (48 in.) diameter three-bladed axial flow impeller with direct drive 6-pulse solid state variable speed DC drive system with digital closed loop control.

Total Impeller Motor Power:

559 kW (750 hp), 340 rpm

Working Section Max. Velocity:

17 m/s (55.8 ft/s, 33 knots)

Max. & Min. Abs. Pressures:

241 kPa (35 psia), 14 kPa (2 psia)

Min. Cavitation Number:

Sigma = 0.08 (at 2 psia & 33 knots)

Instrumentation:

Dynamometers for measuring steady & unsteady propeller forces on up and downstream shafts, 2-component force balance, hydrophones, pressure sensors, strobe lights, high speed photographic system.

Type & Location of Torque & Thrust Dynamometers:

- 1. Electric-cradle dynamometer located downstream outside the tunnel
 - Drive motor rating = 112 kW (150 hp) at 3600 rpm max.
 - Thrust range = 13,344 N (3000 lbs)
 - Torque range = 415 Nm (306 lb-ft) at 3600 rpm and 1424 Nm (1050 lb-ft) at 1050 rpm
- 2. Electric-cradle dynamometers located upstream & downstream outside the tunnel
 - Drive motor rating = 7.5 kW (10 hp) at 3600 rpm max.
 - Thrust range = 1334 N (300 lbs)
 - Torque range = 24 N m (18 lb-ft) at 3600 rpm
- 3. Unsteady propeller force transmission dynamometer, 6-component waterproof strain gaged sting-balance located either upstream or downstream in the tail shaft housing approx. 76 mm (3.0 in.) from the propeller hub.
 - $\circ~$ Drive motor rating = 7.5 kW (10 hp), 1800 rpm max. with this dynamometer
 - Steady Load Range
 - Thrust 0-1334 N (0-300 lbs)

- Torque 0-47 Nm (0-35 lb-ft)
 - Side Forces (vert. & horz.) 0-67 N (0-15 lbs)
- Moments (vert. & horz.) 0-17 Nm (0-12.5 lb-ft)
- Unsteady Load Range* (double amplitude)
 - Thrust 133 N (30 lbs)
 - Torque 4.7 Nm (3.5 lb-ft)
 - Side Forces (vert. & horz.) 13 N (3 lbs)
 - Moments (vert. & horz.) 1.7 Nm (1.25 lb-ft)

*Blade frequency limitation of the sting-balance: 12 hz min., 200 hz max. Optimum propeller size range: Diameter = 250-300 mm (10-12 in.); Weight = 9-44 N (2-10 lbs)

Propeller Size Range: Diameter = 450 mm (18 in.) max.

.

The Cavitation Laboratory

Cavitation tunnel data:

Height between center lines: 10 metres Width between center lines: 22.22 metres Contraction area ratio: 6.25 Diameter of working section: 1.20 metre Length of working section: 2.08 metres Type of working section: Closed throat Maximum water velocity: 18 m/sec. Maximum propeller RPM: 3000 Propeller motor power: 50 KW Maximum working pressure: 6.0 atm.abs. Minimum working pressure: 0.1 atm.abs./sv~0.2 Impeller motor power: 1150 KW Honeycomb for flow straightening.

Tom Fink Cavitation Tunnel

Introduction

The Tom Fink Cavitation Tunnel is located on the Newnham Campus of the Australian Maritime College (AMC), Launceston. The facility is a closed, variable pressure, recirculating water tunnel used for the study of flow about such bodies as ship hulls and under water vehicles and general flow applications. Investigations may involve the study of cavitation and other two-phase flows, steady and unsteady flows, turbulence and hydro-acoustics.

Cavitation is the change of phase, from liquid to vapour, that occurs when static pressures in the liquid on or about a body are reduced below the vapour pressure. It is a complex phenomenon and places limitations on the performance of submerged machinery. It may cause thrust breakdown in propulsors, loss of efficiency, metal erosion, noise, vibration and ultimately destruction of machinery.

The cavitation tunnel is being developed to serve both national and international markets in the high speed craft and defence sectors. To date capabilities for investigating the performance of a range of under water bodies, propulsion devices and appendages have been developed including;

- Marine propellers;
- Remotely operated under water vehicles;
- Sonar tow fish;
- Active and passive control surfaces such as stabilisers, rudders and motion control devices for both surface and undersea vehicles; and,
- Waterjet propulsion devices.

Specifications

General

Manufacturer	GEC Alsthom
Height between centre lines	6 metres
Width between centre lines	14 metres
Honeycomb	0.15 metres thick x 6.35 mm hex mesh
Contraction Ratio	7.11
Test Section	
Dimensions	0.6 metres x 0.6 metres x 2.6 metres
Maximum velocity	12 metres/second
Velocity spatial non- uniformity	< ±2% mean velocity
Velocity temporal variation	< 1% mean velocity
Max/min pressure	4.0/0.1 atmosphere absolute
Pressure temporal variation	< ± 0.004 atmosphere absolute
Max/min cavitation number	5.5/0.2
_	

Pump

6 bladed impeller and	14 bladed stator
Power	164kW
Max rpm	1750

Control

Automatic or manual control of pressure and velocity

Cavitation Tunnel

The Cavitation Tunnel of CEHIPAR, is used to check and optimize propeller design by observing the cavitation inception and development, erosion risk, pressure fluctuations and noise generation. The tests can be performed with the propeller in free-stream, behind a screen simulating the ship wake, or introducing a dummy body (partial model of the ship hull). Non-conventional propulsors are also tested.

The measurement system includes a Laser-Doppler anemometer for non-intrusive measurement of the velocity of the water.

Specifications

- Working section maximum flow speed: 11 m/s.
- Variable static pressure: 1.22 0.22 atm.
- Cavitation number range: 0.32 130.
- Propeller models diameter range: 150 to 450 mm.
- Wake flow simulation using wake screens and dummy models.

Cavitation Tunnel

Type K 15 B, Kempf & Remmers, Germany (vertical set-up), closed circulation, closed working section.

Dimensions:

Length (between vertical axes) - 12m

Other parameters:

Min. cavitation number - 0.2 Absolute pressure, max. - 200kPa

Instrumentation:

Propeller dynamometer No. 1

Type J25, Kempf & Remmers, Germany, intended for tests of propeller models.

Specifications:	
Thrust	± 3000 N
Torque	± 150 Nm
Rate of rotation	up to 60 rps
Accuracy	± 0,15%

Propeller dynamometer No. 2

Type H41, Kempf & Remmers, Germany, intended for tests of propeller models (including ducted propellers) in axial and oblique flow. When operating jointly with dynamometer J25, coaxial (counterrotating or tandem) propellers can be tested.

Specifications:	
Thrust	± 2000 N
Torque	± 100 Nm
Rate of rotation	up to 50 rps
Propeller shaft inclination towards the flow	± 12°
Accuracy	± 0,15%

Propeller dynamometer No. 3

Type R46, Kempf & Remmers, Germany, watertight, intended for tests of propeller models behind ship

models in Measuring section No.2	
Specifications:	
Thrust	± 400 N
Torque	± 15 Nm
Rate of rotation	up to 50 rps
Propeller shaft inclination towards the flow	$\pm 18^{\circ}$
Accuracy	± 0,15%

Six-component balance

Type H36, Kempf & Remmers, Germany intended for tests of ducted propellers, rudders, hydrofoils and various axisymmetric bodies.

Specifications:	
Measuring range along axes	
forces:	Fx = ± 2000 N; Fy = ± 500 N; Fz = ± 2000 N;
moments:	$Mx = \pm 100 \text{ Nm}; My = \pm 800 \text{ Nm};$ $Mz = \pm 200 \text{ Nm};$
Accuracy	± 0,15%

- Wake rake fourteen Pitot-static tubes for measurement of axial flow distribution
- 3-D Wake rake six 5-hole Pitot tubes for measurement of 3-D flow distribution
- Pressure transducers
- Measuring amplifiers and filters
- Electronic counters
- Digital voltmeters
- Digital frequency meters
- High precision digital manometers
- Laser Doppler anemometer
- Strobe and video system

Dimensions:	Other parameters:
Lenght - 2.6m	Max. flow velocity - 14m/s
Width - 0.6m	Max. propeller diameter - 0.3m
Depth - 0.6m	

Measuring section No. 1 (square, rounded corners)

Measuring section No. 2 (rectangular)

Dimensions:	Other parameters:
Lenght - 6m	Max. flow velocity - 4.5m/s
Width - 1.4m	Max. propeller diameter - 5m
Depth - 0.7m	

SSC-SD High Speed, Low Turbulence Water Tunnel

Specifications

- Flow is produced by a mixed flow pump driven by a 100Hp (75kw) electric motor through an eddy current variable speed clutch. Speed regulation is better than 0.1% and can be directly computer controlled.
- Maximum flow velocity is 15m/sec (30knots). The flow can be throttled by a butterfly valve so that flows as low as 0.075m/sec (0.15knots) can be produced.
- A combination of flow straighteners, honeycomb, screens and a contraction ratio of 6.25, create a low turbulence level in the jet of 0.16%, suitable for laminar flow studies.
- Absolute pressure in the test section can be varied from 10 to 210kPa (1.5 to 30psia).
- Models can be mounted on an <u>axisymmetric sting</u>, a <u>flat plate</u> or from the <u>side of the jet</u>.

Available Instrumentation

- Two component <u>Laser Doppler Velocimeter</u> (LDV) mounted on a computer controlled three axis traverse
- Various pressure transducers, load cells and hot film transducers.
- The LDV Argon-Ion laser can be reconfigured to make a laser sheet for flow visualization using fluorescent dye
- Video cameras and tape recorders (SVHS and Umatic)
- Nicolet 4094A digital oscilloscope
- Hewlett-Packard 35665A Spectrum Analyzer
- Strobe lights
- General purpose data acquisition computer (16 A/D, 4 D/A, RS-232, GPIB) with direct network connection

The Emerson Cavitation Tunnel

Tunnel Capabilities

- Propeller tests in uniform and non-uniform streams.
- Wake simulation using a wake screen including, if required, flat plate impulse measurements.
- Wake simulation using dummy hull model including, if required, hull surface impulse measurements.
- Tests with ducted propellers in uniform stream or with wake screens including measurements of duct thrust.
- Controllable pitch propeller tests
- Propeller model noise measurements.
- Drag forces on submerged bodies.
- Recording of nature and extent of cavitation, using still and video cameras.
- Flow measurement using LDA/PDA.

Specification	
Description	Vertical plane, closed circulating
Test section size(LxBxH)	3.10 x 1.22 x 0.81m
Contraction ratio	4.271
Type of drive system	4 Bladed axial flow impeller with thruster control
Main pump power	300 Kw

Main pump rotational speed	242 rpm
Impeller diameter	1.4 m
Maximum velocity	15.5 knots (8 m/s)
Absolute pressure range	7.6 kN/m2 (min) to 106 kN/m2 (max)
Cavitation number range	0.5 (min) to 23 (max)

Dynamometer Specifications

Type 1	Kempf & Remmers H33 propeller dynamometer
Max thrust	± 2943 N
Max torque	± 147 Nm
Max rpm	4000 rpm
Type 2	Kempf & Remmers R45 with vertical adjustable drive system and suitable for placement inside of hull models
Max thrust	± 687 N
Max torque	39 Nm
Max rpm	4000 rpm

Acoustic Specifications

Туре	Bruel & Kjaer 8103 miniature hydrophone and associated instruments.
Location	In a water filled, thick walled steel cylinder placed on a 30mm Perspex window above propeller

GARFIELD THOMAS WATER TUNNEL

Description	Closed Circuit, Closed Jet
Drive System	4-Blade Adjustable Pitch Impeller
Motor Power	2,000-hp Variable Speed (1,491 kW)
Working Section Maximum Velocity	18.29 m/s
Maximum and Minimum Absolute Pressures	413.7 to 20.7 kPa
Cavitation Number Range	>0.1 dependent on velocity and/or J-range
Instrumentation	Propeller dynamometers, 5-hole probes, pitot probes, lasers, pressure sensors, hydrophones, planar motion mechanism, force balances, accelerometers, acoustics arrays
Torque and Thrust Dynamometers	Model internally mounted, 150-hp limit (111.85 kW)
Propeller or Model Size Range	Model size from 76.2-mm to 635.0-mm inner diameter
Tests Performed	Forces, flowfield, and pressure distributions on bodies of revolution, hydrofoils, propeller, etc.; cavitation performance and noise measurements of propellers, foils, hydrodynamic shapes, etc.; steady state and time-dependent force and torque measurements on powered models; flow visualization, body acceleration levels, shaft/body unsteady forces, and radiated noise
Other Remarks	The tunnel turbulence level is 0.1 percent in test section. Air content can be controlled as low as 1 ppm per mole. Measurement can be made of hydrodynamic functions for stability and control of submerged vehicles. A directional hydrophone system is used for relative acoustic measurements.
Published Description	Lehman, ARL Penn State Report No. NORD 16597-56, Fluid Dynamics Department, Applied Research Laboratory, The Pennsylvania State University, 1959.
	Marboe, R. C., et. al., "Hydroacoustic Research capabilities in the Large Water Tunnel at ARL-Penn State," <i>Proceedings of Symposium on Flow</i> <i>Noise Modeling, Measurement, and Control</i> , NCA-VOL 15/FED-VOL 168, pp. 125-135, ASME Winter Annual Meeting, 28 Nov-3 Dec., 1993.

12-INCH WATER TUNNEL

Description	Closed Circuit, Closed Jet
Test Sections	 Circular 304.8 mm dia. x 762.0 mm long Rectangular 508.0 mm x 114.3 mm x 762.0 mm long
Drive System	Mixed Flow Peerless Pump
Motor Power	150 hp (111.8 kW)
Working Section Maximum Velocity	24.38 m/s
Maximum and Minimum Absolute Pressures	413.7 to 20.7 kPa
Cavitation Number Range	>0.1 dependent on velocity
Instrumentation	Lasers, pressure sensors, hydrophones
Model Size Range	50.8-mm maximum diameter
Tests Performed	Steady state and time-dependent force and pressure measurements on unpowered models; noise measurements on cavitating models; three-dimensional flow problems (circular section); two-dimensional flow problems (rectangular section); axial-flow pump tests
Other Remarks	Independent gas control of air content; water filtration with 25-micrometer filters; intermittent operation with drag- reducing additive injection; partial neutralization of additive downstream of test section
Published Description	Lehman, ARL Penn State Report No. NORD 16597-56, 1959.

6-INCH WATER TUNNEL

Description	Closed Circuit, Closed Jet
Drive System	Axial-Flow Pump
Motor Power	25 hp (18.64 kW)
Working Section Maximum Velocity	21.34 m/s
Maximum and Minimum Absolute Pressures	861.9 to 20.7 kPa
Cavitation Number Range	>0.1 dependent on velocity and pressure
Instrumentation	Pressure transducers, lasers
Temperature	Ambient
Tests Performed	Effect of polymers on axial-flow pumps; surface roughness effects on cavitation; probe calibration
Other Remarks	Air content by vacuum pump; water filtered through 25- micron filters as tunnel is filled
Published Description	Kaku, M.S. Thesis, ARL Penn State, 1962.

1.5-INCH ULTRA-HIGH SPEED CAVITATION TUNNEL

Description	Closed Circuit, Closed Jet
Drive System	Centrifugal Variable Speed Drive
Motor Power	75 hp (55.9 kW)
Working Section Maximum Velocity	83.8 m/s
Maximum and Minimum Absolute Pressures	8,274.0 to 41.4 kPa
Cavitation Number Range	>0.01 dependent on tunnel velocity
Instrumentation	Pressure and temperature sensors, lasers.
Temperature	16℃ to +176℃
Model Size Range	12.7-mm maximum diameter
Tests Performed	Incipient and dissonant cavitation studies; development cavitation studies; cavitation damage
Other Remarks	Stainless steel tunnel; bronze pump; three filter banks for removal of water, acids, solid particles (10 micrometers) depending on fluid media
Published Description	Weir, Billet, and Holl, ARL Penn State TM 75-188, 1975.

فصل دوم

معرفى اجزاء مختلف تونل آب
پس از معرفی انواع مختلف تونل آب و ارائه چند نمونه از تونل آب در فصل قبل ، در این فصل در نظر داریم تا اجزاء تشکیل دهنده تونل آب اعم از اجزاء اصلی و اجزاء کنترلی را معرفی کنیم .

- اجزاء اصلي تونل آب:
- هر تونل آب از پنج قسمت اصلی زیر تشکیل شده است : ۱- یمپ (محرک) :

این قسمت آب موجود در تونل آب را به حرکت در می آورد و سرعت و فشار مورد نظر را حدودا تامین می کند ، معمولا در تونل آب از دو نوع پمپ سانتریفیوژ یا پمپ محوری استفاده می کنند که البته نوع محوری پر کاربرد تر است .

۲- مقطع آزمایش (Test Section) :

در این ناحیه مدل مورد آزمایش و تجهیزات اندازه گیری مثل فشار سنج ها و ... و همچنین ابزار های کنترلی مانند سیستم پشتیبان مدل دینامیک قرار می گیرد.

۳- خطی ساز (Honeycomb) :

پروفیل سرعت جریان آب در مقطع آزمایش باید دارای توزیع یکنواخت بوده و جریان در آن کمترین آشفتگی را داشته باشد . هوای ایجاد شده توسط پمپ به تنهایی یکنواخت نیست و این جریان برای استفاده در تونل آب مناسب نمی باشد . لذا به کمک توری ها و شبکه لانه زنبوری از غیر یکنواختی و آشفتگی جریان آب کاسته می شود .

+ نازل (Nozzle) : (Nozzle

نازل جریان آب را با حجم زیاد و سرعت پایین از ناحیه خطی ساز دریافت می کند و آن را با سرعت بالا و حجم پایین بدون آشفتگی در جریان به مقطع آزمایش می دهد .

۵- پخش کننده (Diffuser) :

این ناحیه معمولا بعد از مقطع آزمایش قرار می گیرد و وظیفه آن کاهش سرعت جریان آب می باشد.

در شکل زیر تمامی این قسمتها در یک تونل آب نمایش داده شده است .

شکل ۲–۱) نمایی از یک تونل آب مدار بسته

مقطع آزمایش:

مهمترین قسمت در یک تونل آب مقطع آزمایش می باشد که در آن نمونه مورد نظر به منظور انجام آزمایشات لازم قرار می گیرد. برای مقطع آزمایش رعایت چند نکته ضروری است :

- اولا در مقطع آزمایش باید قطعه به گونه ای قرار گیری تا فاصله کافی را از دیواره های تونل آب داشته باشد در غیر این صورت در مجاورت دیواره جریان با آشفتگی زیادی همراه خواهد بود و اندازه گیری ها دقت کافی را نخواهند داشت.
- ثانیا جریان در هنگام ورود به داخل مقطع آزمایش باید کاملا یکنواخت باشد تا جریان در هنگام عبور از روی نمونه دچار آشفتگی نشود.
- مقطع آزمایش باید دارای فضای کافی به منظور قرار گرفتی ابزار های کنترلی در آن
 باشد ، مانند : فشار سنجها ، دبی سنجها ، سیستم پشتیبان مدل دینامیک و
- در صورت امکان باید سطحی از مقطع آزمایش پوشش شفاف و شیشه ای داشته
 باشد تا آزمایشگر بتواند مدل آزمایش را رویت و تغییرات آن را بررسی کند.

مقاطع ازمایش در انواع مختلفی ساخته شده و مورد استفاده قرار می گیرند :

۱- مقطع آزمایش چهارگوش:

در این نوع مقاطع با مشکلاتی مواجه هستیم از جمله اینکه بعلت وجود سیال آب ، جریان در زاویه ها آشفته خواهد بود و عملا این قسمت به عنوان فضای مرده در نظر گرفته می شود همچنین با افزایش سرعت در مقطع آزمایش این آشفتگی ها به سمت مرکز متمایل شده و بخش بزرگتری از مقطع آزمایش را فرا می گیرند. با وجود تمام این مشکلات تونل های آب زیادی از این نوع مقطع آزمایش استفاده می کنند و کار برد زیادی دارد.

۲- مقطع آزمایش گرد :

این نوع مقاطع نیز کاربرد ی بوده و در سرعتهای بالا به راحتی قابل استفاده هستند. میزان تلفات در این نوع مقاطع نیز کمتر می باشد .

شکل ۲–۲)نمونه ای از مقاطع آزمایش مربعی

شکل ۲-۳) نمونه ای از مقاطع آزمایش گرد

پخش کننده :

همانطور که می دانیم وظیفه پخش کننده ، کاهش سرعت و افزایش فشار در خروج می باشد . در تونل های آب بر حسب نوع تونل و بزرگی آن ممکن است از یک یا دو پخش کننده استفاده شود. یک پخش کننده همواره بعد از مقطع آزمایش قرار می گیرد تا سرعت زیادی را که جریان در مقطع آزمایش به منظور انجام آزمایشات مورد نظر داشته است را کاهش داده و تلفات در سایر قسمتهای تونل آب را کاهش دهد ، همچنین این کاهش سرعت به منظور جلوگیری از آسیب رسیدن به پمپ نیز صورت می گیرد زیرا فشلر در ورودی پمپ باید در محدوده مشخصی قرار داشته باشد و اگر فشار خیلی پایین باشد

در شکل زیر یک پخش کننده با مشخصات آن نمایش داده شده است که در آن زاویه انحراف دیواره در پخش کننده (heta) و طول پخش کننده (L) می باشد.

پخش کننده دوم در تونل های آب پر سرعت و بزرگ به کار رفته و معمولا بعد از پمپ قرار می گیرد زیرا در تونلهای آب بزرگ ، پمپ های قوی به کار می روند و سرعت در خروجی آنها بالا است لذا به منظور کاهش سرعت و تلفات در حین حرکت سیال از یک دیفیوزر بعد از پمپ استفاده می شود .

در پخش کننده ها یک پارامتر مهم وجود دارد و آن هم زاویه انحراف دیواره در پخش کننده (heta) می باشد و باید به حدی باشد که پدیده جدایش لایه مرزی روی دیواره اتفاق نیفتد طی تحقیقات انجام شده زاویه مخروط معادل (2 heta) در پخش کننده تونل آب ۶ تا ۸ درجه در نظر گرفته می شود ، این زاویه باعث تغییرات کم سرعت نسبت به مقاطع مختلف پخش کننده می شود.

با توجه به قانون پیوستگی ، می توان سرعت جریان را در هر مقطعی از پخش کننده بر حسب سرعت در مقطع آزمایش به صورت زیر بدست آورد :

$$A_1V_1 = A_2V_2$$

در این رابطه V_1, V_2 به ترتیب سرعت جریان در هر مقطعی از پخش کننده و سرعت جریان در مقطع آزمایش می باشند ، A_1, A_2 نیز به ترتیب سطوح مقاطع در مقطع مورد نظر در پخش کننده و مقطع آزمایش می باشند.

شکل ۲-۵) یک نمونه پخش کننده هوا

نازل :

تمامی تونل های آب دارای نازلی قبل از مقطع آزمایش و بعد از قسمت خطی ساز هستند. نازل جریان آب را از خطی ساز دریافت نموده و آن را به مقطع آزمایش تحویل می دهد . از نازل در تونل آب به چند دلیل استفاده می شود : الف – کاهش میزان غیر یکنواختی جریان ، با ایجاد یک پروفیل نسبتا یکنواخت در قسمت ورودی مقطع آزمایش . ب – کاهش میزان آشفتگی جریان . ج – افزایش سرعت جریان و کاهش بارهای دینامیکی و تلفات در توری ها و شبکه لانه زنبوری .

مهمترین پارامتری که نحوه تاثیر نازل بر این موارد را تعیین می کند ، ضریب انقباض سطح ، ، CR ، (نسبت سطح مقطع ورودی نازل به سطح مقطع خروجی آن) است. بعد از تعیین مقدار CR دو پارامتر دیگری که اهمیت دارند ، شکل پروفیل نازل و نیز طول آن است که روی یکنواختی پروفیل سرعت و نیز توسعه لایه مرزی موثرند . برای طراحی نازل از دو روش محاسباتی و طراحی به کمک چشم استفاده کرده اند. در روش طراحی به کمک چشم ماکتی از نازل را می سازند و آن را در تونل آب قرار می دهند ، با بررسی وضعیت جریان در نازل شبکه بهینه نازل را تعیین می کنند.

در ادامه بطور خلاصه یکی از روشهای طراحی نازل را مطرح و آن را مطالعه می کنیم. مورل (Morel , 1975) روشی را برای طراحی بهینه نازلها با تقارن محوری ارائه کرده است . شکل نازل را بصورت دو قسمت محدب و مقعر و معادله پروفیل آن را به صورت تابع توانی در نظر گرفت . بنابراین دو عامل مشخص کننده شکل نازل محل نقطع عطف این پروفیل – محلی که تحدب به تقعر تبدیل می شود که آنرا با $\frac{x_m}{l} = X$ نشان داد – و نیز توان تابع است . مورل با محاسبات خود نشان داد که تابع توانی درجه سه نتایج مطلوبی می دهد . وی معادله شکل پروفیل نازل را به صورت زیر بیان کرد(شکل ۲–۶) :

$$f = 1 - \frac{1}{X^2} (\frac{x}{l})^3 \& \frac{x}{l} \le X$$
 (1-Y)

شکل ۲-۶) پروفیل نازل حاصل از دو منحنی درجه سه متصل به هم

در این روابط ، \mathbf{X} ، نسبت فاصله نقطه عطف پروفیل تا ورودی نازل (x_m) به طول نازل ، \mathbf{I} ، $\frac{x}{l}$ طول نازل ، \mathbf{x} ، طول نقاط واقع بر پروفیل ، \mathbf{f} ، تابع بدون بعد که مقدار ان وابسته به نسبت $\frac{x}{l}$

است . با معلوم بودن X ، و داشتن قطر ورودی(D) و طول نازل این معادلات مشابه شکل ۲-۶ رسم می شوند . لازم به ذکر است که این روش برای طراحی نازل هایی با مقطع دایره ای است ، اما مورل اشاره می کند که این روش برای طراحی نازل هایی با مقطع مربعی نیز می توان استفاده کرد . اما باید توجه داشت روش سعی و خطا بر اساس مقطع دایره ای انجام شود .

اولین مرحله در طراحی نازل به روش مورل انتخاب و تعیین ضریب انقباض نازل است . مطابق تعریف ، ضریب انقباض نازل عبارتست از نسبت سطح مقطع ورودی نازل به سطح مقطع خروجی آن است . با توجه به اینکه خروجی نازل به ورودی مقطع آزمایش متصل می شود ، بنابراین مقطع خروجی نازل ابعادی مساوی با مقطع آزمایش دارد ولی ابعاد مقطع ورودی نازل مشخص نیست . و می توان آن را از ابعاد محل قرار گیری پمپ و لوله خروجی از آن که معمولا متصل به ورودی نازل است بدست آورد.

مورل بعد از انتخاب ضریب انقباض ، معیار طراحی نازل را یکنواختی جریان خروجی از نازل ، جدایش جریان ، ضخامت لایه مرزی خروجی از نازل ، هزینه ها و فضا معرفی می کند و پارامتر های طراحی نازل را طول نازل و پروفیل آن بیان می کند . مورل از چهار معیار طراحی که در بالا بیان شد توجه خود را به دو معیار یکنواختی و جدایش آن متمرکز کرده و آنها را به عنوان مهمترین معیارها در طراحی نازل معرفی می کند.

میزان غیر یکنواختی پروفیل سرعت در خروجی نازل (u2) بصورت رابطه زیر تعریف می شود :

$$\ddot{u}_2 = \frac{(V - U_c)_2}{U_{2,\infty}} \tag{(Y-Y)}$$

که **V** ، سرعت در دیواره نازل (m/s) ،
$$U_e$$
 ، U_e ، (m/s) و $U_{2,\infty}$ (m/s) و به به سرعت جریان در پایین دست قسمت خروجی نازل دارد (زیر نویس ۲ اشاره به قسمت خروجی نازل دارد (زیر نویس ۲ اشاره به محاسبات عددی مورل نشان داد که برای توابع درجه سه ای که بیان کننده شکل نازل هستند ، طراح تنها نیاز به دانستن دو ضریب فشار در دیواره دارد که به صورت زیر تعریف می شود :
 $C_{pe} = 1 - (\frac{V_e}{U_{2,\infty}})^2$

$$C_{pi} = 1 - \left(\frac{V_i}{U_{1,\infty}}\right)^2 \tag{Y-F-Y}$$

زیر نویس های **i** و e در این دو معادله اشاره به نقاطی دارد که سرعت در کنار دیواره نازل به ترتیب حداقل و حداکثر است . در شکل ۲-۷ توزیع سرعت جریان در یک نازل با ضریب انقباض CR=4 و نسبت طول به قطر ورودی نازل $0.75 = \frac{l}{D_1}$ ، رسم شده است ، این مقادیر هم از طریق محاسبه – نسبت سرعت متوسط در مقطع نازل به سرعت در پایین دست خروجی نازل ($\frac{U_{av}}{U_{2,\infty}}$) در نظر گرفته شده است – و هم از طریق آزمایش بدست آمده اند. با توجه به این شکل نقاطی که در آن سرعت حداکثر و حداقل

شکل ۲-۷) توزیع سرعت روی دیواره نازل

مقدار C_{pi} ، با استفاده از معیار جدایی استراتفورد انتخاب می شود . معیار استراتفورد برای جدایی لایه مرزی از روی یک دیواره به صورت زیر است :

$$C_p (x \frac{dC_p}{dx})^{1/2} = 0.35(10^{-6} \text{ Re}_x)^{0.1}$$
 (\Delta-\mathbf{Y})

که در این رابطه C_p ، ضریب فشار روی دیواره و به صورت زیر تعریف می شود :

$$C_p = 1 - (\frac{U}{U_m})^2$$
 (۶-۲)
که U ، سرعت در دیواره و U_m سرعت در بالا دست این مقطع است .

عدد رینولدز در این حالت به صورت زیر تعریف می شود :

$$\operatorname{Re}_{x} = \frac{U_{m}x}{v}$$

x ، فاصله موضعی از شروع لایه مرزی مغشوش (m) و
$$v$$
 ، لزجت سینماتیکی آب است.
مورل برای طراحی نازل تقریب های زیر را در نظر گرفت :

- ۱- جدایش جریان در نزدیک نقطه ای است که ، فشار حداکثر اتفاق می افتد ، یعنی
 جائیکه ضریب فشار 0.95*C* است .
 - $C_{p2} = 0.8C_{pi}$ و $C_{p1} = 0.4C_{pi}$ نقاط ین نقاط $C_{p1} = 0.4C_{pi}$ و -7

$$\frac{dC_p}{dx} \approx 0.4 \frac{C_{pi}}{s} \tag{A-Y}$$

. فاصله بین نقاط
$${}_{p_1}, {}_{C_{p_1}}, {}_{p_2}$$
 بر حسب متر می باشد ${f s}$

$$x = x_0 + 0.9x_i \tag{(9-Y)}$$

با قرار دادن روابط ۲–۸ و ۲–۹ در معادله ۲–۵ طرف اول این معادله به صورت زیر در خواهد آمد:

$$C_{p} \left(x \frac{dC_{p}}{dx}\right)^{1/2} = C_{pi} \left(\frac{x_{0} + 0.9x_{i}}{s} \times 0.4C_{pi}\right)^{1/2}$$
$$= 0.6C_{pi}^{3/2} \left(\frac{x_{0} + 0.9x_{i}}{s}\right)^{1/2}$$

با قرار دادن این معادله ، بجای طرف اول معادله ۴-۵ ، به صورت زیر بدست می آید :

$$C_{pi} = 0.7 \left(\frac{x_0 + 0.9x_i}{s}\right)^{-1/2} \left(10^{-6} \operatorname{Re}_{x}\right)^{1/15}$$
(1) - (1)

مورل برای ضرایب انقباض مختلف تغییرات
$$\frac{s}{D_1}$$
 را برحسب C_{pi} بدست آورد (شکل ۲–۸)
. نتیجه دیگری که مورل از محاسبات خود بدست آورد ، وابستگی u_2 به u_2 توسط یک
رابطه خطی ساده است که حاکی از حساسیت کم آن به هندسه نازل است در تمام حالات
که $2.0 \ge a_{pe}$ است ، در تمام حاکت از حساسیت کم آن به هندسه نازل است در تمام حالات
ی سرعت ، $u_2 = 0.2$ که $2.0 \ge a_{pe}$ است . لذا اگر حداکثر غیر یکنواختی سرعت ،
 $u_2 = 0.2 = u_2$ ، در مقطع آزمایش مدنظر باشد باید $2.00 \ge a_{pe}$ انتخاب شود . همچنین مورل
نسبت قابل قبول $\frac{l}{D_1}$ برای نازل های مختلف ۲٫۷۵ و ۲٫۹۵ و ۱ و ۱٫۳۵ بیان می کند که
معمولا 1= $\frac{l}{D_1}$ توصیه می شود .

شکل ۲–۸) گرادیان فشار در دیواره نازل

شکل ۲-۹) فاصله از شروع نازل تا فشار حداکثر برحسب فاصله از شروع نازل تا نقطه عطف

با توجه به مطالبی که در بالا به آنها اشاره شد ، مراحل طراحی نازل به صورت سعی و خطای زیر است :

. $\frac{x_i}{D_1}$ سحس – ۱ - حدس $\frac{x_i}{D_1}$ از رابطه ۲ – ۱۰ . - ۳ – محاسبه X با استفاده از رابطه زیر : - ۳ $X^{1/2}(1-X)^{-2/3} = F_e^{1/3}G_i^{-1/2}m^{1/2}(m-1)^{1/6}$ (۱۱–۲)

m در این رابطه نسبت قطر ورودی نازل به قطر خروجی نازل ، G_i, F_i, F_e کمیت های بدون بعدی هستند که با استفاده از شکل های ۲–۱۰ و ۲–۱۱ تعیین می شوند.

 F_i, F_e شکل ۲-۱۰) وابستگی ضرایب فشار C_{pe}, C_{pi} به پارامتر های بی بعد (۱۰-۲ شکل

 G_i شکل ۲–۱۱) وابستگی ضریب فشار C_{pi} به پارامتر بی بعد

۴- تعیین $\frac{x_i}{D_1}$ از شکل ۲-۸

۵- اگر جواب همگرا نشد ، مراحل ۱ تا ۴ تا موقعی تکرار شوند که جواب برای X همگرا شود .

مورل $\frac{x_0}{D_1}$ را برابر ۲,۲ تا ۲,۳ پیشنهاد کرده است و بیان می کند این طول به اندازه ای است که نازل باعث غیر یکنواختی جریان در آخرین لانه زنبوری نمی شود . همچنین توصیه می کند که به انتهای نازل یک کانال با مقطع ثابت اضافه شود تا باعث کاهش بیشتر در غیر یکنواختی جریان شود .

شکل ۲–۱۲)نمایی سه بعدی از یک نمونه نازل ساخته شده

کاهش آشفتگی جریان توسط شبکه لانه زنبوری و توری ها :

پروفیل سرعت جریان در مقطع آزمایش باید دارای توزیع یکنواخت و خطوط جریان در آن به صورت خط مستقیم باشند . آبی که توسط پمپ برای تونل آب فراهم می شود یکنواخت نیست و این جریان برای استفاده در تونل آب مناسب نمی باشد . از این رو به کمک توری ها و شبکه لانه زنبوری که قبل از مقطع جریان و نازل قرار می گیرند علاوه بر کاهش غیر یکنواختی جریان ، خطوط جریان نیز در امتداد خطی راست حرکت می کنند . توری ها آشفتگی محوری را بیش از آشفتگی جانبی کاهش می دهند و باعث ایجاد افت فشار نسبتا بزرگی در جهت جریان می شوند ، که سر عتهای بزرگتر را بیشتر از سرعت های کوچکتر کاهش می دهد ، لذا سرعت محوری یکنواختی را ایجاد می کنند.

توری ها با تخلخل کمتر باعث ایجاد ناپایداری در مقطع آزمایش می شوند.

شبکه لانه زنبوری افت فشار کمی را ایجاد می کند (قطر روزنه ها در شبکه لانه زنبوری نسبت به توری ها خیلی بزرگتر است) ، بنابراین تاثیر کمی روی سرعت محوری دارد ، اما به علت طول شبکه ها ، سرعت های جانبی را کاهش می دهند .

معمولا شبکه های لانه زنبوری بعد از توری ها قرار می گیرند تا افت فشار کمتر و آشفتگی کمتری را در حین عبور جریان داشته باشیم .

در تونل های آب مخصوصا در سرعت های بالا فقط از شبکه لانه زنبوری استفاده می شود و توری به کار نمی رود زیرا اولا در سرعت های بالا و با توجه به اینکه سیال آب می باشد افت فشار های خیلی بزرگی خواهیم داشت و ثانیا با توجه به وجود سیال آب آشفتگی ها در جهت محوری کوچک هستند و غالبا می توان آنها را با همان شبکه لانه زنبوری رفع نمود.

شکل ۲–۱۳) موقعیت قرار گرفتن توری و شبکه لانه زنبوری نسبت به هم

معمولا در تونل های آب از چند شبکه لانه زنبوری استفاده می شود که با قطر های مختلف (در راستای جریان قطر کم می شود) در یک امتداد قرار گرفته اند مزیت این کار ، کاهش میزان افت فشار و همچنین جلوگیری از ایجاد آشفتگی بخصوص در دهانه ورودی شبکه لانه زنبوری می باشد .

شکل ۲–۱۴) کاربرد فقط شبکه لانه زنبوری در تونل آب رو باز

در محاسبه تلفات مربوط به شبکه لانه زنبوری نیز باید هر دو تلفات مربوط به ورودی شبکه لانه زنبوری که به علت تغییر اندازه سطح مقطع می باشد و نیز تلفات مربوط به حرکت سیال در طول شبکه لانه زنبوری را حساب کنیم ، در این باره در فصل سوم بیشتر صحبت شده است.

سطح مقطع روزنه های شبکه لانه زنبوری ممکن است به اشکال مختلفی باشد مانند دایره ، مربع و مثلث که بهترین شکل دایره می باشد که دارای کمترین میزان افت فشار می باشد . گاهی اوقات به علت محدودیت هایی که موجود است مانند هزینه ساخت و تجهیزات لازم برای ساخت شبکه لانه زنبوری با مقطع دایره ای مجبور می شویم تا از اشکال دیگری برای این منظور استفاده کنیم .

شبکه های لانه زنبوری ممکن است از جنس های مختلفی مانند آلومینیم ، فولاد و یا مواد مرکب ساخته شود.

شکل ۲-۱۶) شبکه لانه زنبوری از جنس کربن

شبکه لانه زنبوری از جنس فولاد

در زیر چند نمونه از جداول مشخصات فنی مربوط به شبکه های لانه زنبوری ارائه شده

است:

Specifications

Cell Size,mm	Depth,mm	Layout	Material
Cell sizes from 3.2mm to 30mm A/F	Depths up to 1250mm	Homogenous or framed panel layout	SUS304 stainless steel foil with thickness of 0.127-0.20mm

شکل ۲–۱۷) جدول مشخصات شبکه لانه زنبوری فولادی از شرکت ANDER

Module Dimensions		Aluminum Components (Thickness)		Available colors	Joinery		
Width	Length	Thickness	Core	Face	Liner	Std. PVDF colors	Custom
48"	Up to 20'	1/4", 1/2" (custom thickness available)	1⁄4" and 1⁄2" cell honey-comb	.040" and .060"	.020" and .040"	and custom colors	extrusion

شکل ۲-۱۸) جدول مشخصات شبکه لانه زنبوری آلومینیومی از شرکت PORTAFAB

Honeycomb Specifications and General information

Mid-States Packaging, Inc. uses Kraft Paper, grade 99, equals 33# core, sanded in continuous form.

The size specifications and other tolerances are as follows:

Cell Sizes available	1/2", 5/8", 3/4", 1", 1.2", and 2"
Facings - One side or both sides:	26#, 35# High Performance, 42#, 69# and 90#
Standard Thickness:	1/2" (Min.) to 4" in one piece We can laminate and slit score pieces to form greater thickness if desired.
Standard Length:	5" (Min.) and 144 (Max). without further process
Tolerances	Width $\pm 1/8$ " Length $\pm 1/4$ " Thickness $\pm .025$ (25 thousands of an inch)

Honeycomb is a very dependable product with very few end use problems. honeycomb has been used successfully as an alternative to foam, wood and plastics. Call our Sales Department if you have questions about the specific characteristics of our paper honeycomb.

شکل ۲–۱۹) جدول مشخصات شبکه لانه زنبوری از شرکت Mid-States Packaging, Inc

پمپ :

در تونل های آب برای به حرکت در آوردن از پمپ استفاده می کنند . وظیفه پمپ در تونل آب سیرکوله کردن سیال در داخل تونل آب می باشد .

در تونل آب بر حسب نوع تونل و کاربرد آن و میزان دبی سیال در حال گردش ممکن است از یکی از دو نوع پمپ سانتریفیوژ یا جریان محوری استفاده کنند:

- ۱- در تونل های آب بزرگ و حجیم که در آنها دبی آب زیادی جا به جا می شود معمولا
 از پمپ های جریان محوری استفاده می کنند . این نوع تونل ها کاربرد صنعتی
 دارند.
- ۲- در تونل های آب کوچکتر و رو باز که هم سیال کمتری در حال گردش است و هم فشار کمتری برقرار است (فشار محیط) معمولا از پمپ های سانتریفیوژ استفاده می شود . این نوع از تونل های آب معمولا کاربرد آموزشی و آزمایشگاهی دارند.

در تونل های آب بزرگ که از پمپ های محوری استفاده می شود چون میزان آشفتگی جریان در خروجی پمپ زیاد است از یک مقطع آرام کننده جریان (Settling Section) استفاده می کنند تا جریان یکنواخت تری را در خروجی از پمپ ایجاد نمایند (به شکل ۲– ۱ نگاه کنید).

در تونل های آب بزرگ که دارای سرعت زیادی نیز می باشند معمولا از دو پخش کننده در تونل آب استفاده می شود ، یکی از آنها بعد از پمپ و مقطع آرام کننده جریان قرار می گیرد و دیگری بعد از مقطع آزمایش نصب می شود (به شکل ۲–۱ توجه کنید). یکی از قسمت های مهم و قابل توجه در پمپ ها ، پره (Impeller) در آن می باشد . تعداد پره های به کار رفته ، طول پره ها و زاویه آنها از عوامل موثر بر راندمان و کارایی پمپ و همچنین میزان تلفات ایجاد شده در پره ها می باشد.

شکل ۲-۲۰) چند مدل پره پمپ ساخت شرکت propRmix

پس به طور کلی انتخاب پمپ دو مرحله دارد :

۱- انتخاب نوع پمپ (سانتریفیوژ یا محوری) که با توجه به ابعاد تونل آب ، کاربرد آن

و میزان آب در گردش تعیین می شود.

۲- انتخاب مدل پمپ از کاتالوگ های مربوطه که معمولا بر اساس سرعت آب در مقطع پمپ ، قطر تونل آب در محل قرار گیری پمپ و همچنین میزان قدرت پمپ که بعد از محاسبه میزان تلفات در تونل آب ، محاسبه می گردد ، انجام می شود . (نحوه محاسبه تلفات و قدرت پمپ به تفصیل در فصل سوم توضیح داده شده است.)

Tunnel Diameter	HP-Range	Drawing No.
42 inch	250-500	<u>C108401</u>
47 inch	400-600	<u>D107054</u> <u>B105299</u>
52 inch	500-700	
56 inch	600-800	<u>C105459</u>
62 inch	700-900	
66 inch	800-1100	<u>D106057</u> <u>D107657</u> <u>D107898</u>
71 inch	900-1250	<u>C105506</u>
77 inch	1100-1500	<u>D108104</u>
86 inch	1400-1800	
90 inch	1700-2100	<u>C107206</u> <u>C108412</u>
96 inch	2000-2500	
107 inch	2250-2750	
117 inch	2750-3300	

شکل ۲-۲۱) یک نمونه پمپ محوری به همراه نقشه و جدول مشخصات آن

تجهیزات اندازه گیری و جانبی تونل آب :

در این قسمت به معرفی تجهیزات جانبی می پردازیم که در افزایش کارایی و راحتی کار با تونل آب موثر هستند.

فضاى تخليه

وضعیت فضای تخلیه مقطع آزمایش، خصوصیت منحصر به فردی از تونل آب است. این فضا شامل یک پنجره نمای جریان است که اجازه مشاهده مستقیم مدل را ازعقب داده و نیاز به وجود آینه را حذف می کند. وضعیت فضای تخلیه به گونه ای طراحی شده که اطمینان دهد هیچ زاویه جریان یا تلاطمی وجود ندارد تا بتواند جریان را به درون مقطع آزمایش گسترش دهد. استوانه های سوراخ دار و پوشش داری از جنس فولاد زنگ نزن مشابه استوانه های سوراخ دارقسمت انتقال در حفرات خروجی مقطع آزمایش قرار داده شده اند تا از ورود هوا در مدار برگشتی در اثر گرداب های بزرگ ورودی به لوله های تخلیه جلوگیری کنند. این صفحات استوانه ای از ورود اشیای خارجی به لوله کشی برگشتی در این پمپ نیزجلوگیری می کنند.

سیستم منبع رنگ

از این سیستم به منظور نمایان کردن تغییرات جریان روی نمونه تحت آزمایش استفاده می شود. یک سیستم شش رنگ فشرده با استفاده از رنگ های غذایی محلول درآب برای هر مسیری از قوطی های رنگ تا سیستم پشتیبان مدل ساخته شده است. این سیستم اجازه کنترل دقیق نرخ نشر رنگ را داده و وسیله ای را برای دمش هوا به بیرون ازخطوط رنگ که به مدل می رود، فراهم می کند. قوطی های رنگ را می توان با سیستم هوای کارگاه تحت فشار قرارداد که سطح فشار به وسیله یک رگولاتور فشار کنترل می شود. کمیت رنگ برای هر قوطی به وسیله حباب های منفردی اصلاح می شود که بروی پنلی در نزدیکی مقطع آزمایش قراردارد.

شکل ۲–۲۳) سیستم رنگ

سیستم مکش به داخل

در برخی از آزمایش ها شبیه سازی جریان جرم در ورودی های موتور برای مدل های هواپیمای واقعی اهمیت دارد. سیستم مکشی شامل یک پمپ کوچک و حباب های مناسب و چند دبی سنج برای تغییر جریان از طریق ورودی های موتور جداگانه برای شبیه سازی جریان ورودی از صفر تا ماکزیمم برای برخی از هواپیماها اهمیت دارد.

سيستم اگزوز جت

سیستمی برای شبیه سازی جریان خروجی از اگزوز جت را نیز می توان فراهم کرد. یک پمپ کوچک شبیه به پمپ سیستم مکش ورودی و حباب های مناسب و یک دبی سنج برای شبیه سازی و اصلاح جریان فراهم می شود.

سيستم فيلتراسيون:

تغییر رنگ تدریجی آب در اثر استفاده مداوم از رنگ به وجود می آید. این تغییر رنگ را می توان با افزودن متناوب مقادیر کمی از کلر به آب از بین برد. یک سیستم فیلتراسیون نیز برای تمیز کردن آب فراهم شده که از موتور / پمپ با یک صافی و یک واحد فیلتر به کار می رود. سیستم فیلتراسیون معمولا در هنگام عدم استفاده از تونل – معمولا شب هنگام – کارمی کند. بعد از کار مداوم باید آب را جایگزین کرد. زهکشی و اتصالات پرکننده تونل برای این هدف فراهم شده اند.

كنترل سرعت تونل

کنترلگر سرعت تونل می تواند یک معکوس کننده کم نویز تمام دیجیتالی باشد. اجزای سرعت برای انتخاب سرعت به وسیله کاربر قابل تنظیم بوده و سرعت به وسیله یک دستگاه خواندنی دیجیتال نمایش داده می شود. کنترلگر سرعت تونل به سیستم پشتیبان مدل کنترل شده کامپیوتری و سیستم بالانس ۵ حزئی تبدیل می شود تا امکان کنترل کامپیوتری سرعت تونل را فراهم کرده و اجازه عملکرد تمام اتوماتیک آن را بدهد. از سرعت سنج های لیزری داپلر نیز در این مورد می توان استفاده کرد.

سیستم پشتیبان مدل دینامیک

آخرین پیشرفت در تونل های آب یک سیستم پشتیبان مدل کنترل کامپیوتری است که برای فراهم کردن حرکات بسیار مسطح و دقیق طراحی شده است. هنگامی که از این تجهیزات به همراه بالانس گیچ کرنش نیمه هادی ۵ جزئی استفاده می شود، این سیستم قادر به انجام آزمایش هایی است که قبلا تنها با تونل های آبی تخصصی و گران قیمت عملی بود. درحال حاضر آزمایش هایی همچون نوسان های نیرو و حرکات چرخشی متعادل را می توان در تونل آبی با بهره گیری از رؤیت عالی جریان های پیچیده انجام داد.

شکل ۲-۲۲) اجزاء یک سیستم پشتیبان دینامیکی

از نظر تاریخی، آزمایش های دینامیکی همچون اسیلاسیون نیرو و تعادل چرخشی اخیرا در برنامه طراحی هواپیما انجام شده اند. در زمانی که این نوع تست انجام می شود، معمولا تغییر شدید وضعیت آن از نظر مالی و سیاسی قابل قبول نیست. با این حال اگر دینامیک وضعیت د راوایل برنامه بررسی شود، می توان تغییراتی را با حداقل اثر گذاری انجام داده و از مسائل سیاسی پرهیز نمود. هزینه پایین مدل ها و آزمایش های تونل آبی، آن ها را درنگاه اول به گزینه های بسیار خوبی تبدیل می کند.

تکنیک های پذیرفته شده کنونی درتونل بادی برای اندازه گیری دینامیک وسایل نقلیه معمولا در سرعت های بسیارپایین انجام می شود. دلیل آن عمدتا این است که حرکات چرخشی هواپیما با سرعت تونل هماهنگ است. حتی دراین سرعت های پایین، بارهای روی سیستم پشتیبان تونل بادی می تواند بسیاربزرگ بوده و نرخ چرخش مدل را به شدت محدود کند. علاوه برآن، بارهای داخلی مدل می تواند بسیار بزرگتر از ایرودینامیکی باشد که محققان برای اندازه گیری آن تلاش می کنند.

تونل های آبی سطح آزاد معمولا درسرعت های کمتر از ft/sec کارمی کنند تا رؤیت جریان با کیفیت بالا و تلاطم پایین به دست بیاید. دراین سرعت های تونل، فرکانس های پایین تولید شده به وسیله مانورمقیاس کامل، واکنش کندی را به وجود آورده و بارهای اینرسی چرخشی قابل چشمپوشی است. این بدین معنی است که بسیاری از دشواری هایی که معمولا درتست های دینامیک بروزمی کند، درتونل آبی وجود ندارد. لازم نیست پشتیبان مدل برای تونل آبی به همان قدرت بوده و تنها موردی که باید حذف شود، جاذبه است. این فاکتورها محیطی آزمایشی را خلق می کنند که درآن می توان داده های با

Model Support System شکل ۲–۲۴) سیستم پشتیبان مدل دینامیکی نصب شدہ روی تونل آب

سیستم کنترل PID

سیستم پشتیبان ازسیستم فلکس موشن وسایل ملی برای فراهم کردن بازخورد نسبی-مجتمع – دیفرانسیلی مقدماتی و سیستم کنترل استفاده می کند. این سیستم از یک ذخیره قدرت موتور فرمان و یک آمپلی فایر و یک بورد کامپیوتری مبتنی برPCI تشکیل شده که سیگنال های رمزگذار نوری را خوانده و پردازش می کند. سوئیچ های محدود کننده برق در داخل سیستم قراردارد تا درصورت برقراری یک فرمان ناخواسته ازسخت افزار پشتیبان مدل محافظت کند. زمانی که از یک سوئیچ محدود کننده استفاده می شود، قدرت وارد به سرووموتور فورا قطع می شود.

استفاده از پره های راهنما در زانویی ها

همانطور که می دانیم در سرعتهای بالای آب معمولا در زانویی ها برگشت جریان و در نتیجه افزایش تلفات را داریم لذا برای جلوگیری از این مورد و هدایت جریان در مسیر صحیح از این پره های را هنما در زانویی ها استفاده می کنند .

مخزن تنظيم فشار

کاربرد محدودی دارد و معمولا در بالای قسمت مقطع آزمایش یا کمی قبل از آن قرار داده می شود تا زمانیکه فشار از حد مجاز در داخل مقطع آزمایش پایین تر آمد و احتمال بروز کاویتاسیون وجود دارد با تزریق مقداری آب به سیستم فشار را افزایش دهد . البته این عمل باعث ایجاد آشفتگی هایی در جریان می شود.

ابزارهای اندازه گیری

ابزارهای اندازه گیری مانند فشار سنج ها ، نیرو سنج ها ، دبی سنجها و سرعت سنج ها نیز در تونل های آب و بخصوص در قسمت مقطع آزمایش کاربرد فراوانی دارند.

فصل سوم

طراحی یک تونل آب نمونه

مقدمه برای پمپهای محوری

ـ كاربرد براى انتقال مايع با حجم زياد وهد نسبتاً كم تا 10m (مثل انتقال فاضلاب ، رانش قايقهاو...) _ پروانه آنها باز است و معمولاً محور آنها به طور مستقیم با الکتروموتور کوپل می شود. _ سرعت دورانی آنها نیز نسبتاً کم است(1800rpm). **۔** بازدہ ی پایین ، قدرت شروع به حرکت زیاد و دربرابر کاویتاسیون نامطلوب می ىاشند. ـ به علت پایین هر افت اصطحکاکی در این پمپها اهمیت زیادی دارد. برای کاهش افت اصطکاکی و سطوح پره ها صیقلی باشد لحطوط جريان برروى پرهها پروانه كاملاً مناسب حصول حداكثر بازده یعنی پروفیل پردها به شکل ایروفویل ساخته می شود _ خصوصيات ايروفول: ا نسبت $\frac{C_{DP}}{C_{I}}$ نسبت $\lambda_1 = \frac{C_{DP}}{C_{I}}$ (نسبت $\lambda_1 = \frac{C_{DP}}{C_{I}}$.کم باشد $\mathbf{C}_{\mathbf{D}}$ دارای λ_1 کوچک در ضریب $\mathbf{C_L}$ های کوچک باشد تا افت در اثر جریان های λ_1 ثانویه که تابع درجه دومی از ضریب C_L است کم بوده و در عین حال پروانه در

برابر كاويتاسيون ايمن باشد.

۳ـ C_L ماکزیمم باید عدد بزرگی باشد تا بازده پمپ در حوالی نقطه طرح مناسب باشد (ایروفویلهای سری44 این خصوصیات را دارند)

مراحل طراحی :

۱_ حداقل داده های مورد نیاز برای طراحی هد و دبی پمپ.

۲۔ اگر دورہ محور دادہ نشدہ باشد می توان با انتخاب یک سرعت مخصوص بین 10000~15000 دور پمپ را محاسبہ کرد (برای پمپہایی که با موتور AC کار می کنند

> دور محور باید با دور موتور یکی باشد($\frac{60f^{50}}{P} = N$) در اکثر مسائل دور محور به عنوان داده مشخص است. برای محاسبه ابعاد پمپ قدمهای زیر برداشته می شود : ۱ـ محاسبه سرعت مخصوص با داشتن هد، دبی و دور محور ۲ـ تعیین تعداد پرههای روتور (بین 2تا 5 عدداست) ۳ ـ محاسبه قطر و تور2D با استفاده از نمودار کردیر شکل (۶ـ۹) ۴ـ محاسبه قطر ریشه پرههای متحرک 2D به کمک شکل (۸ـ۹)

شکل ۳–۱) یک نمونه پمپ محوری
۵ـ محاسبه سرعت سیال در زانویی رانش (V_B):سرعت را طوری انتخاب کنیدکه سرعت از 50% هر پمپ تجاوز نکند.لذا:

$$V_B = \sqrt{0.052 g H}$$

۶ـ محاسبه قطر رانش (D_B):(با استفاده از دبی و سرعت سیال در زانویی رانش) ۷ـ محاسبه شعاع انحنای زانویه رانش (مقدار بهینه آن برابر است با 1.25D) ۸ـ محاسبه افت در زانویی رانش : افت در یدفیوزر پمپ و افت ورودی به پمپ (زاویه واگر این دیفیوزر به منظور جلوگیری از جدایش °8درنظر گرفته می شود) ۹_انتخاب پرهها کوتاه (پرههای ساکن).

ال افتدرپرههاکوتاه
$$C_s = C_D \frac{C_s}{S_c} \frac{V^2}{2g} \leftarrow 1$$
 اندیس5معرف پرهساکن $c_s = 0.2 \cong 0.2$ قطر (وتور)

۱۱ـ افت در پرههای ساکن راهنما را میتوان حدود 2% هر پمپ حدس زد وپس از انجام طراحی آن را از روش سعی و خطا تصحیح کرد.

۱۲_ هر کل پمپ (H_d)شامل جمع هد واقعی پمپ به علاوه افت در دیفیوزر، افت درورودی پمپ، افت درزانویی و افت در پرههای ساکن راهنما است.

۱۳۔ تعیین پروفیل پره متحرک : از طریق سعی و خطا محاسبه می شود.پروفیل طوری انتخاب می شود که کاویتاسیون و جدایش روی پره ایجاد نشود.

(ابتدا یک ایروفیل چهار شمارهای از سری 44 برای پروفیل نوک پره انتخاب می کنیم و ضریب برای آن را 0.7 ضریب برای حداکثر این ایروفیل در نظر می گیریم سپس C_{DS} را می خوانیم و $L_{L} \tan \lambda_{1}$ و $L_{L} \tan \lambda_{1}$ را بدست می آوریم. است با $C_{L}, \lambda_{1}, \alpha$ سپس $C_{DS} = \lambda \frac{C_{L}^{2}}{S/C}$ است با $C_{DS} = \lambda \frac{C_{L}^{2}}{S/C}$ را بدست می آوریم. $C_{D} = C_{Da} + C_{DP} + C_{DS}$ $C_{Da} = \frac{f}{2} \frac{s}{h}$

ضریب درگ جریان ثانویه (گردابه):C_{DS} و ضریب درگ پروفیل مقطع پره :C_{DP} و ضریب دیوارها برای این منظور داریم :

هد در نقطه طرح $\eta_{_{p}}$ را تخممین زده و $\mathbf{v_{t2}}$ رامحاسبه می کنیم.

$$H_{d} = \frac{uv_{t2}}{g} \eta_{p} \longrightarrow$$
$$V_{n} = \frac{Q}{\frac{\pi}{4} \left(D_{9}^{2} - D_{1}^{2} \right)}$$

داریم سرعت مطلق خروجی مشخص است $V_n\,,\,V_t$ _

$$\operatorname{Re} = \frac{VD}{\gamma} \qquad \Rightarrow f = \frac{0.184}{\operatorname{Re}^{0.2}}$$
$$C_{Da}, C_{DP}, C_{DS} \qquad \Rightarrow C_{D} \qquad \Rightarrow \tan \lambda = \frac{C_{D}}{C_{L}} \rightarrow \lambda$$

 $\tan \beta_{m}^{\circ} = \frac{v_{n}}{u - \frac{v + 2}{2}} \longrightarrow \beta_{m}^{\circ}$ $\Rightarrow \quad \eta_{p} = 1 - \frac{v_{n}}{u} \frac{\sin \lambda}{\sin \beta_{m}^{\circ} \sin \lambda}$

در صورتیکه اخلاف بین $\eta_{_p}$ حاصله و $\eta_{_p}$ تخمین زده شده محاسبات را دوباره تکرارمی کنیم.

*حال پروفیل مقطع پره را از نظر کاویتاسیون بررسی می کنیم:

برای این منظور لازم است ضریب کاهش فشار حداکثر بر روی دیوارهها(C̃_κ) را بررسی کنیم.

$$C_{K}^{`} = \frac{P \max / g}{\left(\frac{v_{r}^{2}}{2g}\right)} \rightarrow C_{K}^{`} (A-1+)$$
شكل (۱+) $C_{K}^{`} (A-1+)$ مثل ($C_{K}^{`} = \left[\frac{v_{r}^{2}}{v_{r}^{2}} + \left(u - \frac{v+2}{2}\right)\right]^{\frac{1}{2}}$
 $V_{rm} = \left[v_{n}^{2} + \left(u - \frac{v+2}{2}\right)\right]^{\frac{1}{2}}$
 $= \frac{V_{rm}}{H} = \frac{NPSH}{H} \Rightarrow C_{K}$

 ${f C_L}$ محاسبه شده را با $C_\kappa^{`}$ مقایسه می کنیم در صورت بزرگتر بودن با انتخاب ${f C_K}$

 $\frac{C}{t} = \frac{2V_{t2}}{C_{L}V_{n}} * \frac{\cos\lambda \sin^{2}\beta_{m}}{\sin(\beta_{m} + \lambda)}$

از رابطه بالا صلبیت را محاسبه می کنیم.باداشتن تعداد پره ها، فاصله هر دوپره متوالی (t) و سپس با استفاده ار ؟، طول وتر c بدست می آید.

بروفیل پره $\beta_n = \beta_n^* + \alpha$: (اویه پروفیل پره $\beta_n = \beta_n^* + \alpha$: (اویه پروفیل پره $\beta_n = \beta_n^* + \alpha$: (اور ماک $\beta_n = \beta_n^* + \alpha$) : (اور ماک $\beta_n = \beta_n^* + \alpha$) : (اور ماک $\beta_n = \beta_n^* + \alpha$) : (اور مال المح) : (اور مال

مشابه پره های متحرک $c_{v,t}$, eta_{v} , را بدست می آوریم و با داشتن $c_{v,t}$ را محاسبه می

کنیم و بلاخره افت در پره ساکن راهنما از رابطه:

$$h_{\ell\nu} = \frac{DV_{rm}}{\rho g \Delta r t_{\nu} v_{n}} = \frac{c_{\nu}}{t_{\nu}} \frac{v_{n}^{2}}{2g} \frac{C_{d}}{\sin^{2} \beta_{m}}$$

$$C_{D} = \frac{D}{\frac{1}{2}C_{\nu} \Delta r \ \rho \ v_{rm}^{2}} \text{ if } \lambda e^{2}$$

اگر $h_{\ell v}$ متوسط با $R_{\ell v}$ حدس زده شده در بند ۱۳ متفاوت بوده محاسبات را تکرار می $h_{\ell v}$ کنیم.

 $W^{`} = \frac{\rho Q_{g} H}{\eta_{P}}$ ١٥ - ١٥ - ١٥

(توان محاسبه شده بدون در نظر گرفتن افت مکانیکی بدست آمده است.) ۱۶ـ عملکرد در خارج از نقطه طرح : برای بدست آوردن منحنیها ی عملکردپمپ، دبیهای متفاوت با دبی طرح انتخاب می کنیم و محاسبات را انجام داده ، هد، قدرتو بازده پمپ را محاسبه می کنیم. نحوه محاسبات دراین بخش مشابه محاسبات در نقطه طرح است.

$$\varepsilon = 0.15mm \leftarrow + 1$$
فرض ۱:جنس آهن گالوانیزه باشد $+ 18.5m/s \leftarrow + 18.5m/s$ فرض ۲: سرعت در ا

محاسبه سرعت در نقاط مختلف:

: diffuser 7° –در-

$$Q_1 = Q_2 \Longrightarrow 18.5 * \pi \frac{48^2}{4} = V_2 * \frac{\pi \cdot 5^2}{4}$$

diffuser $\Longrightarrow V_2 = 4.72 \frac{m}{s}$

: Nozzle در ۲

$$Q_1 = Q_2 \Longrightarrow V_1 * \frac{\pi 12^2}{4} = 18.5 * \frac{\pi 4^2}{4}$$

nozzle $\Longrightarrow V_1 = 2.05 \frac{m}{s}$

(از تأثیر اتلاف روی سرعت صرف نظر شده و فقط تأثیر پمپ، Nozzel,diffuser بر سرعت هر منطقه لحاظگشته است.)

۳ - در ۴ diffuser - ۲

$$Q_1 = Q_2 \Longrightarrow V_1^{16} * \frac{\pi * 9^2}{4} = V_2 \frac{\pi * 12^2}{4}$$

diffuser $\Longrightarrow V_2 = 9 \frac{m}{s}$

_ دبی در کل تونل آب :

$$Q = \pi * \frac{\left(48 * 2.54 * 10^{-2}\right)^2}{4} * 18.5 = 21.6 \frac{m^3}{s}$$

۴– در پمپ :

$$\{ \eta_P \times W = FgQH \Rightarrow H = \frac{2000*745.8 \times 0.8}{1000 \times 9.81*21.6} = 5.64m$$
 هر پمپ:
$$\eta_P = 0.8$$

سرعت قبل از پمپ
$$V = 4.72 \frac{m}{s}$$

 $V = V_N = \frac{UQ}{\pi (D_0^2 - D_1^2)} = \frac{4*21.6}{\pi (2.74^2 - 2.41^2)} = 16.18 \frac{m}{s}$

شکل۳-۲) نمای شماره گذاری شده تونل آب برای محاسبه تلفات بخشهای مختلف بر حسب نام گذاری

محاسبه تلفات:

$$\begin{split} \mathcal{E}_{D} &= \frac{0.15}{95*25.4} = 0.000062 \\ \text{Re} &= \frac{VD}_{V} = \frac{4.72*(95*2.54*10^{-2})}{10^{-6}} = 11.4 \times 10^{6} \quad \rightarrow f = 0.0113 \\ h_{f} &= f \times \frac{L}{D} \times \frac{V^{2}}{2g} \\ 27 - 2*8 = L \quad \Rightarrow \quad L = 11ft \end{split}$$

$$h_f = f * \frac{L}{D} * \frac{V^2}{2g} = 0.0113 * \left(\frac{25 * 0.31}{8 * 0.31}\right) * \frac{4.72^2}{2 * 9.81} = 0.04 m$$

:۴

$$\begin{cases} \frac{\mathcal{E}}{D} = \frac{0.15}{9*12*25.4} = 0.000055\\ \text{Re} = \frac{VD}{V} = \frac{16.18*(9*0.31)}{10^{-6}} = 4.7 \times 10^7 \quad \rightarrow F = 0.011 \end{cases}$$

$$h_f = 0.011 * \frac{25}{9} * \frac{16.18^2}{2 \times 9.81} = 0.41m$$

Diffuser 8° :

:۱۵

$$k = \frac{2.6 \sin(8^{\circ}) \left[1 - \frac{D_1^2}{D_2^2} \right]^2}{\left(\frac{D_1}{D_2} \right)^2} \qquad \theta \le 45$$

$$\Rightarrow \quad K = \frac{2.6^{\circ} \sin(4^{\circ}) \left[1 - \frac{9^2}{12^2} \right]^2}{\left(\frac{9}{12} \right)^4} = 0.11$$

$$\Rightarrow h_{\ell} = k \frac{V_2^2}{2g} = 0.11^{\circ} \frac{g^2}{2 \circ 9.81} = 0.453m$$

:9

$$h_{f} = 0.011 * \frac{6}{9} * \frac{9^{2}}{2 \times 9.81} = 0.03\theta 3m$$

$$\begin{cases} \mathcal{E}/D = \frac{0.15}{9 \times 12 * 25.4} = 0.000055\\ \text{Re} = \frac{VD}/V = \frac{9 * (9 * 0.31)}{10 - 6} = 2.5 * 10^{7} \qquad \rightarrow F = 0.011 \end{cases}$$

۸: مشابه۶است

$$L = 31 - 24 = 7 ft$$
 $f = 0.011 = 0.011 * \frac{7}{12} * \frac{9_x^2}{2 \times 9.81} = 0.024 m \leftarrow$

$$V \sim 6\frac{m}{s}$$

$$\begin{cases} \frac{\mathcal{E}}{D} = 0.000055 \\ \text{Re} = \frac{6*12*0.31}{106} = 2.23 \times 10^{f} \quad \rightarrow f = 0.011 \\ h_{f} = 0.011*\frac{9.75}{12}*\frac{6^{2}}{2*9.81} = 0.016m \end{cases}$$

(d=4in,l=1 ft) :Honey comb :

: Honey cemb داخل

$$\begin{cases} \mathcal{E}/D = \frac{0.15}{4 \times 25.4} = 0.0015 \\ \text{Re} = \frac{7.5 \times 4 \times 2.54 \times 10^{-2}}{10^{-6}} = 7.62 \times 10^5 \quad \left(\overline{V} = \frac{9+6}{2} = 7.5 \, \frac{m}{s}\right) \end{cases}$$

f=0.0215

$$h_f = 0.0215 * \frac{1 \times 12}{4} * \frac{7.5^2}{2 \times 9.81} = 0.185m$$

$$k = 0.09$$
 (*if* : $r/d = 0.1$) :Honey comb ورودی

$$\rightarrow h_{\ell} = k \frac{V^2}{2g} = 0.09 * 7.5^2 / 2 * 9.81 = 0.258m$$

$$\left(d = \frac{1}{4}in, L = 3in\right)$$
:Honey comb : 1+

($\overline{V} = \frac{6+2}{2} = 4\frac{m}{s}$) Honey cemb داخل

$$\begin{cases} \mathcal{E}/D = \frac{0.15}{0.25 * 25.4} = 0.024 \\ \text{Re} = \frac{4 * 0.25 * 25.4}{10^6} = 2.54 * 10^5 \end{cases}$$

f=0.051

$$h_f = 0.051 * \frac{3}{0.25} * \frac{4^2}{2*9.81} = 0.5m$$

$$(if: r/d = 0.6)$$
 :Honey comb ورودى

$$\rightarrow k = 0.15$$

$$h_f = k \frac{V^2}{2Y} = 0.15 * \frac{4^2}{2 \times 9.81} = 0.122m$$

 $D_1 = 12 ft, D_2 = 4 ft \left(\frac{\theta}{2} = 11.3^\circ, L = 20 ft\right)$ Nozzel :11

$$\theta \le 45 \to k = \frac{0.8 \sin\left(\frac{\theta}{2} \left[1 - \left(\frac{D_2}{D_1}\right)^2 \right]}{\left(\frac{D_2}{D_1}\right)^4} \implies K = \frac{0.8 \sin\left(11.3\right) \left[1 - \left(\frac{1}{3}\right)^2 \right]}{\left(\frac{1}{3}\right)^4} = 11.3$$
$$\Rightarrow h_R = K \frac{V_1^2}{2g} = 11.3 * \frac{2^2}{2 \times 9.81} = 2.3m$$

:1۳

$$\begin{cases} \mathcal{E}/D = \frac{0.15}{48 \cdot 25.4} = 0.00012\\ \text{Re} = \frac{18.5 \cdot 48 \cdot 2.54 \times 10^7}{10^{-6}} = 2.25 \times 10^7 \quad \rightarrow f = 0.0122 \end{cases}$$

$$h_f = 0.0122 * \frac{14}{4} * 18.5^2 / 2 \times 9.81 = 0.745 m$$

	:diffuser 7°	:	۱۴
--	--------------	---	----

$$k = \frac{2.6 \sin\left(\frac{\theta}{2} \left[1 - \left(\frac{D_1}{D_2}\right)^2 \right]}{\left(\frac{D_1}{D_2}\right)^4} \qquad \theta \le 45^\circ$$
$$\Rightarrow K = \frac{2.6 \sin(3.5) \left[1 - \left(\frac{1}{2}\right)^2 \right]^2}{\left(\frac{1}{2}\right)^4} = 1.42$$
$$h_{\ell} = 1.42 * \frac{4.70^2}{2*9.81} = 1.6m$$

۱: زانویی8ft(دو عدد): با استفاده از معادل سازی موجود در Hand book(پیوست ج)

:

d=8ft ,()90° نوايى 210ft
$$\rightarrow$$
8ft زانويى 210ft ≈ 210 ft ≈ 210 ft ≈ 210 ft $\approx 10^{-7}$ $= 1.15 \times 10^{-7}$

$$\Rightarrow f = 0.011 \Rightarrow h_f = 0.011 \frac{210}{8} * \frac{4.7^2}{2 \times 9.81} = 0.32m$$

 $h_f = 0.2$ پس برای دو زانویی وبا وجودپره راهنما(% 40% کاهش در h_f)داریم:

۲: زانویی 12ft(دو عدد):(پیوست ج)

(لوله 360ft(12ft=زانویی °90(خم ساده)و 360ft (

$$\begin{cases} \mathcal{E}_D' = \frac{0.15}{144*25.4} = 0.00004 \\ \text{Re} = \frac{9*144*2.54 \times 10^{-2}}{10^{-6}} = 3.3 \times 10^7 \quad \rightarrow f = 0.01 \end{cases}$$

$$h_f = 0.01*\frac{350}{12}*\frac{9^2}{2*9.81} = 1.1$$

 h_f =0.87m (h_f): سرای دو زانویی وبا وجود پره راهنما (% 40 کاهش در h_f):

جمع كل تلفات:

$$\begin{split} & \Rightarrow \Sigma h_f = 0.018 + 0.04 + 0.41 + 0.453 + 0.0303 + 0.027 + 0.016 + 0.185 + \\ & 0.258 + 0.5 + 0.122 + 2.3 + 0.745 + 1.6 + 0.26 + 0.84 \\ & \Rightarrow \Sigma h_f = 7.834m \end{split}$$

طراحی پمپ محوری مربوط به پروژه water tunnel

فرضيات:

۱- چون در مراحل طراحی اولیه مقدار هددیفیوزر بعد از پمپ محاسبه می شوند از مقدار H حاصله مقدرای که مربوط به دیفیوزر تونل آب بعد از پمپ است خودمان حساب کرده ایم را کسر می کنیم.

۲_ چون در طراحی مقدار تلفات زانویی محاسبه می شود و ما در پروژه به جای زانویی قسمت

«آرام سازی جریان »داریم لذا مقدار تلفات آن را که دستی حساب شده است را نیز از هد کسر می کنیم.

معلومات :

 $\begin{cases} H = 7.834 - 0.41 - 0.453 = 6.971M = 22.87FT \\ Q = 21.6m\frac{3}{5} = 342770g.p.m \\ A = 4 \end{cases}$

. همان تعداد پره متحرک می باشد ${f A}$

حل :

با توجه به تعداد پره ها و شکل ۱۰ـ۷ داريم :

$$N_{s} = 11000 \left(\frac{rpm\sqrt{gpm}}{ft^{\frac{3}{4}}} \right)$$

$$N_{s} = \frac{N_{v}\sqrt{Q}}{\mu^{0.55}} \Rightarrow N = \frac{N_{s}H^{0.55}}{\sqrt{Q}} = \frac{1000*(22.87)^{0.55}}{\sqrt{342770}} = 197rpm$$

$$a = \frac{N_{v}\sqrt{Q}}{(H_{s})^{0.55}} = 3.6558 \times 10^{-6} N_{s} = 4.02$$

$$\Delta = 1.5$$

$$A = 1.5$$

$$\Rightarrow D_i = 1.46m$$

حال قطر، شعاع انحناو افت زانویی رانش را محاسبه می کنیم:

$$V_B = (0.05 * 2gH)^{0.5} = (0.05 * 2 * 9.8 * 6.97)^{0.5} = 2.62 \frac{m}{s}$$

 $D_B = \left(\frac{UQ}{\pi V_B}\right)^{\frac{1}{2}} = \left(\frac{U}{\pi} * \frac{21.6}{2.62}\right)^{0.5} = 3.24m$
قطر زانویی رانش:
 $\mathbf{R}_B = \mathbf{1.25} * \mathbf{3.24} = \mathbf{4.05m}$
شعاع انحنای زانویی رانش ۱٫۲۵ برابر قطر زانو است.

ضریباصطحکاکدر زانویی به شرح زیر بدست می آید:

$$f = \frac{0.186}{R_e^{0.2}}$$

$$Re = \frac{V_B D_B}{V} = \frac{2.62 * 3.24}{10^{-7}} = 8.5 * 10^7$$

$$\Rightarrow f = \frac{0.186}{(8.5 * 10^7)^{0.2}} = 0.0048$$

حال می توان افت در زانویی رانش رامحاسبه کرده با فرض اینکه نسبت طول معادله به قطر زانو ۱۴ باشد. داریم:

$$h_{lB} = f \frac{le}{D} \frac{V_B^2}{2g} = 0.0048 * 14 * \frac{2.62^2}{2*9.81} = 0.0235m$$

سیال خروجی از پره های ساکن قبل و بعد از پروانه (پره های راهنما)تنها دارای محوری است:

$$V_{n} = \frac{4Q}{\pi (D_{0}^{2} - D_{I}^{2})} = \frac{4 * 21.6}{\pi (2.42^{2} - 1.46^{2})} = 7.38 \frac{m}{s}$$

let c, c since the set of the set

$$k = \frac{2.6 \sin\left(\frac{\theta}{2}\left[1 - \frac{V_B}{V_N}\right]}{\left(\frac{V_B}{V_N}\right)^2} = \frac{2.6 \sin(4^{\circ}\left(1 - \frac{2.62}{7.38}\right)}{\left(\frac{2.62}{7.38}\right)^2} = 0.928$$

$$h_{lD} = 0.928 * \frac{2.62^2}{2*9.81} = 0.325 m$$

$$i = 0.928 * \frac{2.62^2}{2*9.81} = 0.325 m$$

$$k = \frac{40}{\pi D_0} = \frac{4*21.6}{\pi * 2.42^2} = 4.7 \frac{m}{s}$$

$$k = \frac{40}{\pi D_0} = \frac{4*21.6}{\pi * 2.42^2} = 4.7 \frac{m}{s}$$

$$h_{lD} = 0.928 + \frac{10}{\pi E} = \frac{100}{\pi E} = \frac{$$

$$R_{I} = 0.8D_{0} = 1.94m$$

 $h_{II} = k \frac{V_{I}^{2}}{2g} = 0.05 * \frac{4.7^{2}}{2*9.81} = 0.056m$
reaction react

 $C_{_{D_{P}}} = 0.01, C_{_{L}} = 0$ (D_{h}) راحساب کنیم ، برای محاسبه عدد دینولد از قطر هیدرولکی C_{Da} استفاده می کنیم:

$$D_n = D_o - Di = 2.42 - 1.46 = 0.96m$$

$$f = \frac{0.184}{p\ell^{0.2}}, \qquad \text{Re} = \frac{V_n D_n}{V} = \frac{7.38 * 0.96}{10^{-7}} = 7.1 * 10^7$$

$$S_{s} = \frac{1}{4} \pi \left(\frac{D_{s}D_{t}}{2} \right) = 1.52m$$
 :(تعداد کل پره ها ۱۳ست): $S_{s} = \frac{1}{4} \pi \left(\frac{D_{s}D_{t}}{2} \right) = 2.52m$ (hs) علول پره (hs) علول پره (hs) :(hs) علول پره (hs) = 0.005 $h_{t} = \frac{D_{o}D_{t}}{(7.1 \times 10^{2})^{0.2}} = 0.005$ $C_{D_{0}} = \frac{1}{2} (*0.005 \times \frac{1.52}{0.48} = 0.008m$ $C_{D_{0}} = \frac{1}{2} (*0.005 \times \frac{1.52}{0.48} = 0.008m$ $h_{cr} = C_{p} \frac{C_{s}}{T_{s}} \frac{V_{s}^{2}}{2g}$ $h_{cr} = C_{D_{0}} \frac{C_{s}}{T_{s}} \frac{V_{s}^{2}}{2g}$ $h_{cr} = C_{D_{0}} \frac{C_{s}}{T_{s}} \frac{V_{s}^{2}}{2g}$ $h_{cr} = C_{D_{0}} \frac{C_{s}}{T_{s}} \frac{V_{s}^{2}}{2g}$ $C_{D} = 0.208 \times 0.01 = 0.018$ $C_{D} = 0.22 D_{0} = 0.2 \times 2.42 = 0.484m$ $t_{s} = s_{c} = 1.52m$ $\Rightarrow h_{cr} = 0.018 \times \frac{0.484}{1.52} \times \frac{7.38^{2}}{2^{*9.81}} = 0.016m$ $\Rightarrow h_{cr} = 0.018 \times \frac{0.484}{1.52} \times \frac{7.38^{2}}{2^{*9.81}} = 0.016m$ $\Rightarrow h_{cr} = 0.02H = 0.139m$ $H_{d} = H + h_{tr} + h_{tr} + h_{tr} + h_{tr} + h_{tr}$ $\Rightarrow H_{d} = 6.971 + 0.056 + 0.325 + 0.016 + 0.139 = 7.507m$ $AccA4406 + 0.139 = 7.507m$ $AccA4406 + 0.016 + 0.129 = 7.507m$ $AccA4406 + 0.016 + 0.020 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.00$

کمترین λ نخواهد بود و در عین حال باعث ایجاد کاویتاسیون خواهد بودشد اما با چنین ضریب لیفتی شروع می کنیم تا در تصحیحات بعدی برای ایرفویل NACA4406خواهیم داشت:

$$4-10$$
شکل: $C_L = 0.85 \rightarrow \lambda_1 = 0.683^\circ, \alpha = 4.4^\circ$

$$C_{D_P} = C_L ton \lambda_1 = 0.85 ton(0.683) = 0.0101$$
 :
 $C_{D_P} = C_L ton \lambda_1 = 0.85 ton(0.683) = 0.0101$:
 $C_{DS} = 0.018 \ C_L^2 = 0.013$:
 $C_{DS} = 0.018 \ C_L^2 = 0.013$:
برای محاسبه C_{Da} باید با استفاده از سرعت متوسط سیال در پروانه **Re** را محاسبه
کنیم:

$$\overline{V} = \sqrt{V_n^2} + \left(\frac{v+2}{2}\right)^2 \qquad V_{t2} = \frac{ghd}{u\eta p}$$
$$u = \frac{N}{60}\pi D_0 = \frac{179}{60}\pi * 2.42 = 22.68 \frac{m}{s}$$

شکل ۱۰-۴ منحنیهای مشخصهٔ بعضی از ایرفویلهای سری ۴۴ ناکا

$$\eta_p = 0.9$$
 ... ابتدا η_p را محاسبه می زنیم و سپس تصحیح می کنیم: η_p

$$V_{t2} = \frac{9.81*7.507}{22.68*0.9} = 3.608 \frac{m}{s}$$
$$\Rightarrow \overline{V} = \sqrt{7.38^2 + \left(\frac{3.608}{2}\right)^2} = 7.6 \frac{m}{s}$$

$$D_{h} = D_{0} - D_{i} = 2.42 - 1.46 = 0.96 m$$

$$Re = \frac{\overline{V} D_{h}}{V} = \frac{7.9 * 0.96}{10^{-7}} = 7.3 * 10^{7}$$

$$f = \frac{0.184}{Re^{0.2}} = \frac{0.184}{(7.3 * 10^{7})^{0.2}} = 0.0049$$

$$C_{D_{a}} = \frac{1}{2} f \frac{S}{h}$$

همان ضریب درگ دیواره است. $\mathbf{C}_{\mathbf{Da}}$

$$s = \frac{D_o + D_i}{2} \pi / 4 = \frac{2.42 + 1.46}{2} * \pi / 4 = 1.523 m$$
 reaction reactions are set of the set of th

$$C_{D_a} = \frac{1}{2} * 0.0049 * \frac{1.523}{0.48} = 0.0076 m$$

ضريب درگ کل :

$$C_D = C_{Da} + C_{Ds} + C_{Dp} = 0.0076 + 0.013 + 0.0101 = 0.0307$$

$$\tan \lambda = \frac{c_D}{c_L} = \frac{0.0307}{0.85} = 0.0362 \Longrightarrow \lambda = 2.07^\circ$$

در باره $\eta_{_{p}}$ را محاسبه برای این منظور ابتدا باید $eta_{_{m}}$ را محاسبه کنیم:

$$\tan \beta_{m}^{*} = \frac{V_{n}}{u - \frac{V + 2}{2}} = \frac{7.38}{22.68 - \frac{3.61}{2}} = 0.354 \Rightarrow \beta_{m}^{*} = 19.47^{\circ}$$
$$\Rightarrow \eta_{p} = 1 - \frac{v_{n}}{u} \frac{\sin \lambda}{\sin \beta_{m}^{*} \sin(\beta_{m}^{*} + \lambda)} = 1 - \frac{7.38}{22.68} \frac{\sin(2.07)}{\sin(19.47) \sin(19.47 + 2.07)}$$

$$\Rightarrow \eta_n = 0.904$$

بدست آمده به η_p حدس زده بسیار نزدیک است و تصحیح مجدد لازم ندارد اکنون η_p بدست آمده به η_p حدس زده بسیار نزدیک است و تصحیح مجدد لازم ندارد اکنون پروفیل را در برابر کاویتاسیون باز بینی می کنیم. از شکل (۱۰ـ۸)در می یابیم که برای ضریب لیفت انتخابی $C_{\kappa}^{*} = 0.868$

$$\sigma = \frac{6.3 N_s^{4/3}}{10^r} = \frac{6.3(11000)^{4/3}}{100} = 1.54$$

NPSH = σ H = 1.54 * 6.97 = 10.74 m

$$NPSH = h_f + \frac{v_n^2}{2g} + C_K \frac{V_{rm}^2}{2g} + H_{II} \qquad : \text{ the equation of } H_{II}$$

برابر افت دو ورودی به افت در پره های کوتاه است. $\mathbf{h_f}$

$$V_{rm}^{2} \sqrt{v_{n}^{2}} + \left(4 - \frac{v+2}{2}\right)^{2} = \sqrt{7.38^{2} + \left(22.68 - \frac{3.61}{2}\right)^{2}} = 22.14 \frac{m}{s}$$

با استفاده از معادله زیر C_K را بدست می آوریم:

$$NPSH = H_{li} + h_{ls} + \frac{vn^2}{2g} + C_K \frac{V_{rm}^2}{2g}$$

10.74 = 0.056 + 0.016 + $\frac{7.38^2}{2 \times 9.81} + C_K \frac{22.14^2}{2 \times 9.81}$
 $\Rightarrow C_K = 0.38$, $C_K = -C_K = -0.36$

ر بدست آمده از ۲ً انتخابی بزرگتر است. بنابراین باید ضریب لیفت را کاهش داده و مجدداً این فویل را طراحی کرد.

با استفاده از c_{κ} را انتخاب می کنیم از شکل (۱۰ـ۸)در می بابیم که با c_{κ} به دست آماده مقدار CL=0.21 است. چنین ضریب لیفتی دارای کمترین λ نسبت به ضرایب لیفت کمتر از خود است.

$$C_{L} = 0.25, \lambda_{1} = 1.98^{\circ}$$

$$C_{DP} = C_{L} ton\lambda_{1} = 0.25 tan(1.98) = 0.00864$$

$$C_{DS} = 0.018C_{L}^{2} = 0.018(0.25)^{2} = 0.0013$$

 $\eta_{P} = 0.87$

مجدداً $\eta_{\scriptscriptstyle P}$ را برابر ${f 0.87}$ حدس می زنیم:

$$V_{t2} = \frac{ghd}{u\eta_p} = \frac{9.81*7.507}{22.68*0.87} = 3.73 \frac{m}{s}$$

$$\overline{V} = \sqrt{V_n^2 + \left(\frac{v+2}{2}\right)^2} = \sqrt{7.38^2 + \left(\frac{B.73}{2}\right)^2} = 7.61 \frac{m}{s}$$

$$C_{DU} = 0.00307$$

$$\beta_m^{`} = \tan^{-1} \left(\frac{v_n}{u - \frac{v+2}{2}}\right) = \tan^{-1} \left(\frac{7.38}{22.68 - \frac{3.73}{2}}\right) \Rightarrow \beta_m^{`} = 19.52^{\circ}$$

$$C_D = C_{DU} + C_{DS} + C_{DP} = 0.00864 + 0.00113 + 0.00307 = 0.01284$$

$$\tan \lambda = \frac{C_D}{C_L} = 0.0495 \rightarrow \lambda = 2.93$$

$$\eta_P = 1 - \frac{7.38}{22.68} \frac{\sin(2.93)}{\sin(19.52)\sin(19.52 + 2.93)} \Rightarrow \eta_P = 0.871 \rightarrow \text{ is } 12.52$$

$$V_{rm} = \sqrt{v_n^2 + \left(u - \frac{v+2}{2}\right)^2} = 22.08 \frac{m}{s}$$

$$NPSH = H_{\ell I} + h_{\ell s} + \frac{vn^2}{2g} + C_K \frac{V_{rm}^2}{2g}$$

$$10.74 = 0.056 + 0.016 + \frac{7.38^2}{2 \times 9.81} + C_K \frac{22.08^2}{2 \times 9.81} \Rightarrow$$

$$C_K = 0.318 \quad , C_K = -C_K = -0.318$$

َرَ» بدست آمده از ۲ٔ تکقبلی است.بنابراین پروفیل پره در برابر کایتاسیون ایمن است با استفاده از معادله های (9-10)و(10-10) دیگر مشخصصات پروفیل پره را بدست می ۲

C=1.9*1.186=2.25mطول وتر پره ها:
$$\beta_m = \beta_m^2 - \alpha = 19.52 - 2.25 = 17.24^{\circ}$$
زاویه متوسط پره ها:زاویه متوسط پره ها:می کنیم. تعداد پره ها:اکنون در همین قطر پروفیل پره های ساکن راهنما را طراحی می کنیم. تعداد پره ها:راهنما 8 عدد انتخاب می شود. در قطر مذبور ایروفویل مذبور دارای کمترین λ درراهنما 8 عدد انتخاب می شود. در قطر مذبور ایروفویل مذبور دارای کمترین λ در $C_L = 0.68, \lambda_1 = 0.79, \alpha = 2.88^{\circ}$ $C_L = 0.68, \lambda_1 = 0.79, \alpha = 2.88^{\circ}$ $C_{DP} = C_L \tan \lambda_1 = 0.68(\tan 0.79) = 0.00933$ $C_{DS} = 0.18C_L^S = 0.00832$ $C_{Da} = \frac{1}{2}f\frac{s}{h}$

ضریب اصطحکاک f و طول پره(h)در پره های ساکن بعد از پروانه و پرههای یکسان است. تنها فاصله متوسط دو پره متوالی(s)به علت متفاوت بودن تعداد پره ها تغییر می کند.

$$S_{V} = \frac{D_{o} + D_{I}}{2} * \frac{\pi}{8} = \frac{2.42 + 1.46}{2} * \frac{2}{8} = 0.79 m$$

$$C_{Da} = \frac{1}{2} * 0.0049 * \frac{0.79}{0.48} = 0.0039$$

$$C_{D_{total}} = C_{Da} + C_{DP} + C_{DS} = 0.0039 + 0.0093 + 0.0083 = 0.0215$$

$$\tan \lambda = \frac{C_{D}}{C_{L}} = \frac{0.0215}{0.68} = 0.316 \rightarrow \lambda = 1.81^{\circ}$$

با استفاده از معادلات (10-9)و(10-10) دیگر مشخصات پروفیل پره را بدست آورده و با استفاده از معادله (11-10)افت را محاسبه می کنیم.بدین منظور ابتدا β_m^{γ} را بدست می آوریم:

$$\tan \beta_{m}^{`} = \frac{2V_{n}}{V_{t2}} = \frac{2*7.38}{3.73} = 3.96 \rightarrow \beta_{m}^{`} = 75.8^{\circ}$$

$$\begin{aligned} \frac{C_v}{t_v} &= \frac{2V_{r_2}}{C_k V_n} \frac{\cos \lambda \sin^2 \beta_m}{\sin(\beta_m^- + \lambda)} = \frac{2*3.73}{0.68*7.38} \frac{\cos(1.81)(\sin 75.8)^2}{\sin(75.8 + 1.81)} \end{aligned}$$

$$\Rightarrow \frac{C_v}{t_v} = 1.43 \\ b_v &= \frac{\pi D_o}{8} = \frac{\pi * 2.42}{8} = 0.95 \\ c_v &= 1.43 * 0.95 = 1.36m \\ c_v &= 1.43* 0.95 = 1.36m \\ h_{v_v} &= \frac{C_v}{t_v} \frac{V_n^2}{2} \frac{C_o}{\sin^3 \beta_m^-} \end{aligned}$$

$$= 0.94m \\ h_{v_v} &= \frac{C_v}{t_v} \frac{V_n^2}{2*9.81} * \frac{0.0215}{(\sin 75.8)^3} = 0.094m \\ \beta_{mv} &= \beta_m^2 + \alpha = 75.8 + 2.88 = 78.68^\circ \\ \beta_{mv} &= \beta_m^2 + \alpha = 75.8 + 2.88 = 78.68^\circ \\ m &= 0.094m \\ \beta_{mv} &= \beta_m^2 + \alpha = 75.8 + 2.88 = 78.68^\circ \\ m &= 0.094m \\ \beta_{mv} &= \beta_m^2 + \alpha = 75.8 + 2.88 = 78.68^\circ \\ m &= 0.094m \\ \beta_{mv} &= \beta_m^2 + \alpha = 75.8 + 2.88 = 78.68^\circ \\ m &= 0.094m \\ \beta_{mv} &= \beta_m^2 + \alpha = 75.8 + 2.88 = 78.68^\circ \\ m &= 0.094m \\ \beta_{mv} &= \beta_m^2 + \alpha = 75.8 + 2.88 = 78.68^\circ \\ m &= 0.094m \\ \beta_{mv} &= \beta_m^2 + \alpha = 75.8 + 2.88 = 78.68^\circ \\ m &= 0.094m \\ \beta_{mv} &= 0.094m \\ \beta_{mv} &= 0.094m \\ \beta_{mv} &= 0.016m \\ \beta_$$

$$\overline{\eta_p} \approx 0.908$$

 $w = \frac{PQ_gH}{\eta_p} = \frac{1000 * 21.6 * 9.81 * 7.58}{0.908} = 1769 KW = 2365 hp$
 $\gamma_p = 1769 KW = 2365 hp$

خطای حاصل محاسبه نسبت به مقدار واقعی موجود در کاتالوگ:

$$\begin{cases} w = 2365 \ hp \\ w = 2000 \ hp \end{cases} \implies error\% = \frac{|2000 - 2365|}{2000} \times 100 = 18\%$$

عوامل خطا:

ا۔ در تونل آب موجود پرہ ھای ساکن نداریم پس اگر این پرہ ھا را از H کم کنیم: $H = 7.38 \rightarrow w^{2} = 1722 km = 2302 hp$ $error \% = \frac{12000 - 23021}{2000} \times 100 = 15\%$ T- مقدار راندمان متوسط به کمک نتایج تجربی فرض شدہ است، حال آنکه مقدار ممکن است کمی متفاوت باشد.

پيوست (الف)

ترجمه كاتالوگ تونل آبی گارفیلد

تونل آب گارفیلد توماس

(تونل آب سرعت بالا با سيكل بسته)

در بزرگترین تونل آبی جهان در دانشگاه ایالت پنسیلوانیا، جریان ۳۱ گرهی که با سرعت از روی اژدر عبور می کند، الگوی حباب های متلاطمی را تشکیل می دهد. دانشمندان ناظر می دانند که هرچه حباب های بیشتری را مشاهده کنند، اژدر از کارایی کمتری برخوردارخواهد بود. اژدری با شکل کامل دارای هیچ تلاطمی نیست، زیرا آب به صورت یکنواخت دراطراف آن جریان می یابد. همانند هواپیماها، تلاطم منجربه ایجاد سنگینی و کاهش سرعت موشک می شود. مهم ترآن که تلاطم در اژدرها موجب ایجاد نویز می شود.

پنجاه سال پیش نمایندگان آزمایشگاه تحقیقاتی مهمات سازی دانشگاه ایالت پنسیلوانیا و نیروی دریایی پیشنهادی را برای ساخت تونل آبی گارفیلد توماس ارائه کردند که یک تونل آبی ۴۸ اینچی بود که خیلی زودی به عنوان بزرگترین تونل آبی پرسرعت در جهان شناخته شد. این تونل آبی که درکمپ اصلی دانشگاه ساخته شد، در ۷ اکتبر ۱۹۴۹ اختصاص داده شده و شش ماه بعد کارخود را آغازکرد. این تجهیزات جدید به افتخار گارفیلد توماس – یکی ازنخستین فارغ التحصیلان ایایلت پنسیلوانیا که در جنگ جهانی دوم زندگی خود را فدای وطنش نمود– به اسم او نامگذاری شد.

ييشين

ظرفیت کلی تونل – که طول آن حدود ۱۰۰ فوت و ارتفاع آن حدود ۳۲ فوت است – 100,000 گالن است. زمانی که این تونل در بالاترین سرعت خود کارمی کند، هرسه دقیقه یکباربیش از یک میلیون گالن آب از درون مقطع آزمایشی آن عبورمی کند.

تونل آبی گارفیلد توماس، یک تونل آبی به قطر ۴۸ اینچ است که در بین سال های ۱۹۴۸ تا ۱۹۴۹ در آزمایشگاه تحقیقاتی مهمات سازی (ORL) ساخته شده و تحت پشتیبانی نیروی دریایی در دانشگاه ایالت پنسیلوانیا قراردارد.

گزارش آزمایشگاه درسال ۱۹۴۶ با عنوان پیشنهاد تونل آبی بیان کرده که ازتونل جدید انتظارمی رود تا:

- مبنای علمی محکمی را برای طراحی پروانه های زیردریایی ایجاد کند
 - بازدهی کلی ترکیب پوسته و پروانه را افزایش دهد
- پرتوی جدیدی را برروی احتمال به دست آوردن پروانه هایی با سرعت های پیشرفته بالا بیفکند
- عملکرد کاملا ایمن و بدون تخلخلی را برای پروانه تسلیحات هدایت شده
 ای که در سرعت های بیش از سرعت ماکزیمم ممکن کارمی کنند، ارائه
 دهد.

برای این که آزمایشگاه بتواند به این اهداف دست پیدا کند، نیازبه تونل آبی پر سرعتی داشت که بزرگتر از هر تونلی باشد که تاکنون ساخته شده است. قطر مقطع - 102 - آزمایش باید حداقل ۴۸ اینچ بوده و سرعت آبی که از درون این مقطع می گذرد، ۳۰ تا ۳۵ گره (۴۸ تا ۵۶ فوت برثانیه) باشد. به علاوه، هزینه تونل – شامل ساخت وسایل و تجهیزات عکسبرداری آن – حدود ۱ میلیون دلار و هزینه نهایی آن حدود ۲ میلیون دلارپیش بینی شد.

در این زمان طراحی پروانه های زیر آبی بیشتر تابع هنر بود تا عمل، و طراحان اژدر به داده های به دست آمده از تست آب متکی بودند. اما ORL از اهمیت اطلاع از خواص دقیق اختلال جریان که در اثر جریان موجود بر روی بدنه ایجاد می شد، آگاه بود. برای آرام تر و کارآمدتر کردن اژدر، محققان نیاز به تجهیزات آزمایشی برای اندازه گیری واقعی میدان اثر ایجاد شده توسط اژدر داشتند.

تحقیقات قبلی نیروی دریایی نشان داده بود که برای تعیین عملکرد واقعی پروانه، نمی توان آن را به خودی خود دریک جریان یکنواخت امتحان کرد. محققان با قراردادن پروانه بر روی وسیله آزمایش توانستند اثرات جریان روی پوسته و برهم کنش پروانه با جریان را ارزیابی کنند. به علاوه برای اندازه گیری دینامیک مدل های اژدر، محققان نیازبه بررسی حفراتی داشتند که در اثر تشکیل حباب های میدان گازی درآب (کاویتاسیون) ناشی از وجود نواحی موضعی با فشار بخار بالاتر

مراحل ساخت تونل آب گارفیلد در ۱۹۴۸

ساخت فنداسیون تونل آب کنترل پره ها است

محل نصب پمپ سیرکوله و کارگری که مشغول

تونل آب کامل شدہ

مرحله ساخت ساختمان تونل آب

ساختمان تكميل شده

از فشار استاتیک موضعی ایجاد می شد. این ناحیه اساسی نقشی بحرانی درطراحی اژدر ایفا می کند، زیرا نتیجه اولیه ارتعاش (noise) زیر آب است.

طراحى تونل

تلاش های تیم طراحی برای ساختن تونل زیرآبی واقعا جالب است وقتی بدانید که اطلاعات کمی درمورد جریانات عدد رینولد صحیح در دست بوده و دوره طراحی تونل بسیار کوتاه بوده است. این تونل از نظر هیدرولیک کارامد بوده، از نظر آکوستیک آرام و از نظر مکانیکی قدرتمند است (حتی با استانداردهای امروزی). دراین زمان، گروهی از ORL خصوصیاتی را برای ساخت پوسته تونل ارائه کردند. آن ها دو هدف عمده برای طراحی خود داشتند: کارایی و ساختار حجیم برای میرایی ارتعاش.

بازدهی

مهندسان می دانند که آب موجود در تونل باید براساس مقدارقدرت ورودی تا حد امکان با سرعت بالا حرکت کند. موتور الکتریکی مورد استفاده برای راندن پمپ اصلی در hp ۲۰۰۰ تعیین شده و سرعت آن بین ۰ تا N۰۰ rpm متغیراست. این موتوربه آمپلی فایری به قطر ۹۵ اینچ با شیب قابل تنظیم جفت شده است. موتورهای بزرگتری نیز در نظرگرفته شده اند، اما هزینه اجرای آن ها عاملی بازدارنده است. برای رفع این مشکل، مهندسان می خواهند اجزای تونل را به گونه ای طراحی کنند که افت جریان کمینه شده و قسمت اعظم انرژی را بتوان درقسمت دیفیوزر بازیابی نمود. پیش از آغاز ساخت تونل آب، تیم طراحی تونل های موجود را مورد بررسی قراردادند. آن ها همچنین اطلاعاتی را دررابطه با جریان اجزای تونل مرور کرده و چنین جریاناتی را آنالیزنمودند. آن ها برای اصلاح رقابت طراحی فنی خود، یک مدل تونل آبی را در لابراتوار هیدرولیک ایالت پنسیلوانیا مورد بررسی قراردادند. این تونل آبی تجربی از ایجاد یک روش مستدل برای آنالیز جریان در اجزای تونل حمایت می کرد. مطالعه روابط بین اجزای تونل را می توان به صورت تجربی با استفاده از این مدل انجام داد. در یک تلاش تحقیقاتی موازی، تیم دیگری به انجام تحقیقات تحلیلی می پرداخت.

این مطالعات بر روی مقاطع هیدرودینامیک بحرانی همچون نازل مدار تونل، مقطع آزمایش، مقطع انتقال، دیفیوزر و محل های چرخش متمرکز شده بودند. این تیم دیفیوزر و زانویی ها را شدیدا مورد بررسی قرارداد، اما کارآن ها بر روی نازل و مقاطع انتقال تحلیلی تر بود. مقاطعی با کانتورهای منحنی شکل فورا تحت کار قرار گرفته و بعد از مقطع آزمایش در بالاترین حد در معرض ایجاد کاویتاسیون یا جدایش جریان قرارداشت.

محققان مطالعاتی را انجام دادند که فیزیک چگونگی جریان آب در نازل و نفوذ مجدد آن به درون مدار برای بازیابی قسمتی از انرژی را بررسی می کرد. آن ها به دلیل افت انرژی حاصله نمی خواستند ناحیه کاملا یکنواختی را د رسرتاسر تونل داشته باشند. بزرگترین افت انرژی در تونل آبی در مقطع آزمایش صورت می گیرد که درآن بالاترین سرعت متمرکز می شود. یکی از موارد بسیار مهم، چگونگی ایجاد لایه های مرزی در امتداد جداره با عدد رینولد بالا است. با جریان یافتن آب در امتداد جداره، اصطکاک منجر به ایجاد تاخیر در جریان نزدیک سطح شده و یک لایه مرزی را ایجاد می کند. این منطقه فوق العاده متلاطم میدان جریان، آب را ازجداره دورکرده و موجب افت انرژی می شود. همچنین اگر مساحت سطح مقطع دیفیوزر به سرعت افزایش پیدا کند، لایه های مرزی نمی توانند دیواره را دنبال کنند. بنابراین لایه های مرزی از جداره جدا شده و

در مارچ ۱۹۴۶ اعضای تیم نخستین آنالیز این میدان جریان را به پایان رسانده و کار خود را برمبنای روابط پروفیل سرعت توربولنت ایجاد شده قراردادند. آنالیز آن ها شامل تعمیماتی در تئوری مرسوم بوده و منجربه پیش بینی پروفیل های سرعت شد. با وجود آن که این آنالیز فاقد بسیاری از ابزارهای قابل دسترس کنونی بود، کار آن ها منجر به طراحی موفق تونل آبی گردید.

ساختار

هنگامی که محققان بر روی تونل کار می کردند، تیم آن ها تصمیم گرفت که این تونل باید حجیم باشد تا بتواند ارتعاش را کمینه کند. مواد لازم برای مقاطع تونل براساس تکنیک های طراحی و ساخت و نیز هزینه تولید کانتورهای جریان فوق دقیق تهیه شد. مقاطع حد فاصل و استوانه ای فولادی برای اجزای اصلی تونل انتخاب شد. مقطع آزمایش و مقطع دیفیوزر رو به پایین از قطعات ریختگی چدن ساخته شد. این اندازه عظیم موجب میرایی ارتعاش شده و توضیح می دهد که چرا این امکانات لابراتوار یکی از آرام ترین تونل های آزمایشی در جهان است.

كنترل تونل

بخشی از تجهیزات کنترل سرعت و فشار در تونل آب

کنترل سرعت از طریق پمپی از نوع پروانه جریان محوری با تغییر دادن سرعت چرخش پره پیش ران (impeller) و شیب چهار تیغه پیشران صورت می گیرد. پره پیشران به وسیله موتور القایی با سرعت متغیر ph 2000 در سرعت های بین ۰ تا پیشران به وسیله موتور القایی با سرعت متغیر hp 2000 در سرعت های بین ۰ تا موان با استفاده از سروومکانیزم هیدرولیکی که از راه دور از طریق اتاق کنترل تونل اداره می شود، تا بیش از ۲۸ هیدرولیکی که از راه دور از طریق اتاق کنترل تونل اداره می شود، تا بیش از ۲۸ درجه تغییرداد. این بازه وسیع سرعت عملیات با کنترل سرعت دقیق و اتوماتیک تا حد ۵۰٪ مقدار تنظیم شده در شرایط بارگذاری طراحی به وسیله سیستم تحریک کرامر اصلاح شده به دست می آید که در روش عملیاتی آن، نیاز به وجود تجهیزات راه اندازی در مقیاس بزرگ حذف شده و بنابراین هزینه های راه اندازی و کاری
یکی از الزامات طراحی تونل که اجازه مطالعه کاویتاسیون را می دهد، کنترل فشار استاتیک در داخل مقطع آزمایش است. کنترل فشار به وسیله تغییردادن فشار هوا در قسمت فوقانی یک تانک اصلاح کننده فشاربه دست می آید که به پایه تونل متصل است. این تانک شامل تخته شناوری است که از تماس هوا با سطح بزرگی از آب جلوگیری می کند. این تخته یکی ازعوامل ضروری برای کمینه سازی محتوای گاز در آب است.

این منحصر به فرد بودن سیستم اصلاح فشار در این واقعیت نهفته است که ایجاد تغییرات مطلوب در فشار در مقطع آزمایش در هنگام تنظیم فشار به شکل کاملا اتوماتیک انجام می شود.

تونل آب شامل یک تهویه آب یا بای پاس، یک سیستم فیلتر،سیستم تخلیه گاز و سیستم کنترل درجه حرارت آب است. دیاگرام های عملی زیر این سیستم بای پس را به همراه تانک اصلاح کننده فشار و وسایل مکانیکی مناسب نشان می دهد. یکی از خصوصیات منحصربه فرد تونل آبی این است که وضعیت آب را می توان در طول عملیات کنترل کرد. کنترل محتوای آب خصوصا بدین دلیل اهمیت دارد که مقدار گاز بر روی جوانه زنی حفرات (کاویتاسیون) و رشد آن ها تاثیرمی گذارد.

خصوصيات تونل آبي گارفيلد توماس

Description of Facility: Type of Drive System: Total Motor Power: Working Section Max. Velocity: Max. & Min. Abs. Pressure: Closed Circuit, Closed Jet 4-Blade Adjustable Pitch Impeller 2,000 hp Variable Speed 60 ft/s 60 psia to 3 psia *قابلیت های اندازه گیری: نیروی محرکه – نیرو و گشتاور پایدار، وابستگی به عدد رینولد و نسبت های پیشرفته

«آکوستیک: نیروی ناپایدار شافت و بدنه، نیروهای جانبی، فشارهای ناپایدار اندازه گیری شده با تراز، شتاب، لیزر اندازه گیری ارتعاش ، نویز حرارتی برای ردیف پایین جریان، هیدروفون های پنجره ای و هیدروفون متمرکز تانک روزنه

«کاویتاسیون: شروع، دزیننس، شکل، زاویه حمله مدل، محتوای جوانه ها، وابستگی به عدد رینولد و نسبت های پیشرفته، قدرت برخورد و نیروهای جانبی، شکست حفرات و محتوای هوا

*خصوصیات میدان جریان: بررسی های خطی و محیطی با جستجو گر های(probes) فشار پنج حفره ای، سرعت سنجی داپلر لیزر، توزیعات فشار استاتیک

*مشاهده جریان: رنگ روغن، ورقه نور لیزر، حباب، پرزهای ریز(mini tufts)، سرعت سنجی تصویر ذره ای *مانورینگ:کنترل نیروهای پره *آزمایش های انجام شده: مدل های قدرت،چرخش یا بازگشت بدنه ها ، هیدروفویل، پروانه ها و غیره پیروانه ها و غیره پیتوت، لیزرها، سنسورهای فشار، هیدروفون ها، مکانیزم حرکت صفحه ای، تعادل «نوع و مکان دینامومترهای گشتاور و نیروی محوری: مدل نصب شده داخلی تا حدّ 150 hp

*بازه اندازه پروانه یا مدل: اندازه قطر مدل بین ۳٫۵ تا ۲۵ اینچ *سایرموارد: سطح تلاطم تونل درمقطع آزمایش برابربا ۰٫۱٪ است. محتوای هوا را می توان تا حدّ 1 ppm/mole کنترل کرد. این اندازه گیری ها را می توان برای پایداری و کنترل وسایل مربوطه از نوع توابع هیدرودینامیک قرارداد. سیستم هیدروفون جهتدار برای اندازه گیری های آکوستیک نسبی.

مشاهده گذار لایه مرزی در سطح با استفاده از عبور جریان از روی یک دماغه گرم

مشاهده کاویتاسیون از نوع چرخشی ناشی از حرکت پره

اندازه گیری متمرکز پلیمر در آزمایش کاهش درگ بوسیله دستگاه لیزر د تونل آب ۱۲ اینچ

اندازه گیری سرعت جریان روی پره بوسیله سرعت سنج لیزری داپلر

ساخت پره پیشران بوسیله دستگاه تراش

پنج محور

مدل کردن پره پیشران بوسیله کامپیوتر

عملكرد

تونل آبی گارفیلد توماس تنها یک قطعه فلز است، اما ارزش واقعی آن در دانشمندانی نهفته است که از آن بهره می گیرند. آن ها نظریات، ایده ها را خلق کرده اند که رابطه زیادی با زمینه مکانیک سیالات و آکوستیک داشته و کارآن ها به خوبی در سرتاسر جهان شناخته شده است.

در سال ۱۹۵۰، جیمزام رابرتسون اولین هدایت کننده تونل آبی گارفیلد توماس بود. او و پنج راهنمای بعدی اش برنامه های تحقیقاتی و توسعه ای را ترتیب دادند که بر روی افزایش درگ دینامیک سیالات و پدیده آکوستیک تمرکز می کرد. چنین آگاهی می تواند منجر به عملکرد کارامدتر، آرام تر و بی نقص تری برای پروانه ها و توربوماشین های کم سرعت شود. در طول ۵۰ سال کارتونل، محققان ARL مطالعاتی را بر روی تلاطم، کاهش کشش، جریان و آمکوستیک ساختاری، کنترل نویز فعال و جوانه زنی حفرات(کاویتاسیون) انجام داده اند. درطول سالیان، کارآن ها منجر به پیشرفت ساخت وسایل و تکنیک های تجربی و نیزپیوند بین طراحی قسمت دافعه با دینامیک و آکوستیک تجربی و محاسباتی شده است.

این واقعیت که تونل آبی درمدت ۳۸ سال تقریبا بی وقفه و بدون هیچ گونه توقف عمده ای کارکرده، برای بسیاری از افرای که در طراحی و ساخت آن دخیل بوده اند، شگفت آوراست. اما در سال ۱۹۸۸ این لابراتوار پروژه بازسازی عمده ای را برای حذف نشت های تونل، جلای مجدد شافت محرک پروانه اصلی و اصلاح پروانه و چرخاندن بادنماها برای بهبود خواص هیدرودینامیک و هیدروآکوستیک آن ترتیب داد. همچنین دراین پروژه سیستم کنترل قدرت و سرعت محرک اصلی، سیستم کنترل فشارتونل، وسایل اتاق کنترل و سیستم قدرت مدل ارتقا داده شد.

قابلیت های اندازه گیری کنونی در تونل آبی ۴۸ اینچی، داده هایی را برای دافعه، آکوستیک، کاویتاسیون، خصوصیات میدان جریان، رؤیت جریان و مانورینگ فراهم می کند. در تست ها و آزمایش ها از تکنیک های متوسط زمانی، وابستگی زمانی و اندازه گیری نوری استفاده شده است. ساخت وسایل برای اندازه گیری های وابسته به زمان شامل ردیف نویز به جریان حرارتی ازهیدروفون ها، هیدروفون های پنجره ای و یک هیدروفون متمرکز تانک روزنه است. چندین تکنیک نوری برای GTWT و سایرامکانات آزمایشی مورد استفاده قرارگرفته است. این تکنیک ها شامل سرعت سنجی داپلرلیزر، ارتعاش سنجی لیزر و سرعت سنجی تصویرذره ای می باشند.

تونل آب و نیروی دریایی آمریکا

ثابت شده است که تونل آبی یک امکانات هیدرودینامیک منحصر به فرد بوده و لابراتواررا قادر ساخته تا از تحقیقات و فناوری ساختی بهره بگیرد که منجر به پیشرفت سریع نیرویی دریایی شده است. بسیاری از این کاربردها به صورت طرح های زیرآبی ای ایجاد شدند که ازتوربوماشین های برنامه R&D که در زمان رهبری جرج واشنگتن صورت می گرفت، ناشی می شد. بزرگترین شاخص تونل آبی این بود که امکان طراحی پروانه های اصلاح کننده اثر را برای لابراتوار فراهم می کرد. با اندازه گیری این اثرات، این تجهیزات می توانست نظریاتی را در مورد چگونگی طراحی پروانه ها برای موقعیت های اصلاح اثر ارائه دهد. این قابلیت منجربه ساخت پروانه های آرام تری برای نیروی دریایی شده است.

علاوه بر تست پروانه، کارکنان ARL نخستین آزمایش مدل زیرآبی را در این تجهیزات انجام داده اند. چنین کارهایی منجر به افزایش موفقیت در طراحی وسایل زیرآبی شده است. برنامه های دیگری نیز به طراحی پروانه و تست های انجام شده در تونل آبی بستگی دارد.

تونل آبی با بسیاری از برنامه های نیروی دریایی با فراهم کردن دسته ای از داده های تجربی که معمولا عملکرد کاویتاسیون را تفسیرمی کند، ارتباط دارد. کار حاضر از - 115 - سیستم های دفاع بحرانی ای همچون موشک پلاریس، موشک SUBROC، اژدر MK-46 و اژدر MK-44 حمایت می کند.

تجهيزات كنونى

امروزه تونل آبی گارفیلد توماس، مجموعه ای از تجهیزات آزمایشی هیدرودینامیک و هیدروآکوستیک است که در کنفرانس تانک کشش بین المللی (ITTC) – سازمانی از کشورهای عضوی که کشتی ها و سایرسازه های زیرآبی را طراحی و تست می کنند – ثبت شده است. از زمان آغاز عملیات، تونل آبی امکانات خود را افزایش داده است. این گسترش شامل افزودن چندین تونل کوچک تردرهاوسینگ ساختمان تونل آبی است. با بودن یک تونل آبی کوچک تر، محققان می توانند مسائل فیزیکی خاصی را حل کرده و در نتیجه این کارخصوصا برای کارهای دانشجویان کارشناسی مناسب است.

این تلاش برای تعمیم ازسال ۱۹۵۱ آغازشد، زمانی که لابراتوار یک تونل آبی ۱۲ اینچی را برای تکمیل تونلی به قطر ۴۸ اینچی ساخت. این تونل کوچک تر را می توان با مقطع آزمایش مدوّری به قطر ۱۲ اینچ و یا با مقطعی مستطیلی شکل به ابعاد ۴٫۵**۲۰ اینچ مربع مورد استفاده قرارداده و سرعت آبی برابربا ۸۰ فوت در ثانیه را به دست آورد. این تونل از آزمایش های مقدماتی محققان مختلفی در زمینه هیدرودینامیک حمایت کرده و به توسعه وسایل پیشرفته ای همچون سیستم های اندازه گیری بزرگتر، نخستین سیستم عکسبرداری شیلرن و پروب های فشار پنج حفره ای کمک نموده است.

پمپ رینولدز بالا ، نصب شده در دریچه آب ۴۸ اینچ (HIREP)

اتاق کنترل تونل آب ۴۸ اینچ

جریان پیرامون محفظه بدون انعکاس باد زیر صوت

تجهیزات ایجاد گردابه نصب شده در تونل

تانک پر انعکاس (Reverberant tank)

پمپ سانتريفيوژ مورد تست

درسال ۱۹۶۰، تونل سومی در لابراتوار ساخته شد. این تونل پرسرعت که توسط NASA ساخته شده بود، برای مطالعه کاویتاسیون در پمپ های اکسیژن و نیتروژن مایع مورد استفاده در صنعت فضا به کارمی رفت. در داخل این تجهیزات، جریان می توانست از طریق مقطع آزمایش خود به قطر ۱۹٫۵ینچ به سرعت های بالای ۲۹۰ فوت برثانیه دست پیدا کند. همچنین می توان تحقیقاتی را با بهره گیری از آب یا مایعات دیگری همچون فرئون ۱۱۳ انجام داد. این تونل برای مطالعات آسیب کاویتاسیون بر روی سطوحی ازجنس مواد مختلف شامل برنز، فولاد زنگ نزن و کامپوزیت ها مورد استفاده قرارگرفته است.

در سال ۱۹۸۸ لازم بود لابراتوار تجهیزات مضاعفی را برای حمایت از این تست ها و انواع دیگر آزمایش های اکوستیک بسازد. یک محفظه ضد اکو با جریان بزرگ در ساختمان اصلی که تونل آبی درآن قرار داشت، ساخته شد. با حجم کاری به ابعاد ۱۸ فوت عرض * ۲۲ فوت عمق * ۳۰ فوت ارتفاع، این محفظه دارای فرکانس cut off پایین ۹۰ هرتز بود. این امکانات تطبیق پذیر را می توان به عنوان یک محفظه ضد اکوی نرمال و یا برای مطالعه فن جریان محوری یا تجهیزات اپن جت آرام مورد استفاده قرارداد.

از آن جا که این تنها نوع ا ز این امکانات تحقیقات لایه مرزی در جهان است که درسال ۱۹۶۱ ساخته شده، دارای یک مقطع آزمایش به قطر۱۱٫۵ اینچ می باشد. گلیسرین با سرعت ۲۰۰ برابر بزرگتر از آب به عنوان مایع کاری در تونل حلقه بسته مورد استفاده قرارمی گیرد. این سرعت بالا اثرات لایه مرزی جریان برروی اشیای داخل تونل را تشدید می کند. محققان از این امکانات برای انجام مطالعات مشخصی بر روی خصوصیات توربولنس د ر لوله کاملی با سرعت سیال ۲۰ فوت بر ثانیه بهره گرفته اند.

علاوه بر ساخت تونل های جدید، ARL مقاطع آزمایش تونل های کنونی را برای افزایش قابلیت های بالقوه آن ها اصلاح کرده است. در سال ۱۹۸۵ مهندسین لابراتوار تجهیزات پمپی را با عدد رینولد بالا (HIREP) ساختند که درمقطع آزمایش تونل آبی به قطر۴۸ اینچ قراردارد. HIREP شامل یک پمپ به قطر۴۴ اینچ است که توسط توربین جریانی به قطر۴۹ اینچ از طریق یک شافت به حرکت در می آید. این ابعاد بزرگ اجازه تست کردن تیغه های دافعه ای را با اعداد رینولد بزرگتر از تیغه های مدلی که در پشت وسایل زیرآبی نصب می شود، می دهد. اندازه HIREP بدین معنی است که می تواند انواع مختلفی از وسایل را در قاب های ساکن و چرخشی مرجع خود جای دهد. به علاوه، محققان ARL می توانند لایه های مرزی با اعداد رینولد بسیاربزرگ را با نصب صفحه مسطح بزرگی در داخل تونل آبی به قطر۴۴ اینچ مطالعه کنند.

مهندسان تونل آبی برای کار درآکوستیک سازه ای می توانند لابراتوار آکوستیک سازه ای (SAL) را که در سال ۱۹۶۸ ساخته شده و تانک ریوربرانت را که در سال ۱۹۹۴ ساخته شده به خدمت بگیرند. قابلیت های SAL به ابعاد ۸ فوت عرض * ۸ فوت عمق * ۲۵ فوت ارتفاع عبارتند از:

- کالیبره کردن فشار آکوستیک در مدل و ترانسدیوسرهای نیروهای ناپایدار
 - اندازه گیری دریافت و میرایی سازه های بزرگ

اندازه گیری بازدهی تشعشع سازه ای در داخل یک تانک غیرمتقارن پر

انعکاس(reverberant tank)

تانک پر انعکاس به ابعاد ۲۸٫۷ فوت عرض * ۲۲٫۷ فوت عمق * ۱۸ فوت ارتفاع برای اندازه گیری دریافت، فاکتورافت و بازدهی تشعشع سازه های بزرگ و کوچک مورد استفاده قرار می گیرد.

پيوست (ب)

ترجمه كاتالوگ تونل آبی RollingHills

RESEARCH WATER TUNNELS

SPECIFICATIONS

شرکت تحقیقاتی رولینگ هیلز، یک شرکت تکنولوژی هوانوردی است که درسال ۲۰۰۲ تاسیس شده است.یکی ازاهداف کلیدی این شرکت توسعه تکتولوژی هایی است که بتواند به درک پدیده هوانوردی کمک کند. تونل آب یک طراحی اولیه و ابزارتحقیقاتی عالی برای بررسی فیزیک جریان مبنا است که عملکرد وسایل هوایی را سبب می شود. دلیل این امرعمدتا کیفیت فوق العاده بالای رؤیت جریانی است که درتونل آبی میسرمی باشد.

با وجود آن که زمانی تست تونل آب تنها به عنوان ابزاری کیفی برای رؤیت میدان جریان حول وسایل درنظرگرفته می شد، RHRC این تکنیک را به بلوغ رسانده تا اندازه گیری های کمّی نیروها و ممان ها را با تعادل گیج کرنش در آب شامل شود. علاوه براندازه گیری های استاتیک، تونل آبی ابزاری عالی برای مطالعه حرکات دینامیک هواپیما و اختلافات حاصل درمیدان جریان و نیروها و ممان های مربوطه است. در یک تونل بادی زیر مقیاس باید آزمایش های دینامیکی را در سرعت های بالاتر از مقیاس کامل انجام داد. درتونل آب، نرخ های مقیاس بندی شده دینامیکی بسیار پایین تر از مقیاس کامل بوده و درنتیجه بسیاری از مشکلاتی که معمولا درآزمایش های دینامیک یافت می شود، کاهش پیدا می کند. دراین نرخ های مقیاس بندی شده، نیروهای اینرسی به شدت کوچک شده و استحکام، سفتی و اندازه از آزمایش ها با یک سیستم پشتیبان کامپیوتری چند محوری انجام شود که دربخش های بعد درمورد آن صحبت شده است.

RHRC دو مدل متفاوت برای تونل آبی تحقیقاتی ارائه می دهد که عبارتند ازمدل ۲۴۳۶ و مدل ۱۵۲۰. همان طورکه درشکل ۱ نشان داده شده، طرح کلی این دو تونل

آبی تقریبا یکسان بوده و اختلاف اصلی آن ها اندازه مقاطع آزمایش است. هردو تونل ازیک مقطع آزمایش "سطح آزاد" بهره می برند که بدون ضرورت زهکشی تونل، اجازه دسترسی آسان یه قسمت تست را درطول آزمایش برای تغییرات مدل یا كنترل حركت به آن مي دهد. مدل ۲۴۳۶ داراي مقطع آزمايشي است كه عرض آن ۲۴ اینچ، عمق آن ۳۶ اینچ و طول آن ۷۲ اینچ بوده و ظرفیت کلی آن حدود ۵۰۰۰ گالن است. اندازه مدل ۲۴۳۶ به گونه ای طراحی شده که نسبت ظاهری معمول 1/32nd را بتوان برای هواپیما درزوایای حمله بالا (تا حد ۹۰ درجه) تست کرده و درعین حال عاری از اثرات انسداد اضافی و تداخل جداره باقی بماند. مدل ۱۵۲۰ دارای مقطع آزمایشی است که عرض آن ۱۵ اینچ، عمق آن ۲۰ اینچ و طول آن ۶۰ اینچ بوده و ظرفیت کلی آن حدود ۱۰۰۰ گالن است. اندازه مدل ۱۵۲۰ برای استفاده با مدل های هواپیما با مقیاس معمول 1/48th طراحی شده است. هردو سیستم را می توان به وسیله تکنیسین RHRC منتقل، تنظیم، کالیبره و راه اندازی کرده و اکنون هردو مدل ۱۵۲۰ و ۲۴۳۶ به شکل کیت قابل دسترس می باشند. درشکل کیت، مشتری می تواند برای صرفه جویی درپول خود تونل آبی را درخانه سرهم کند. این کیت شامل دستورالعمل هایی با نمایش های تصویری است.

۱. تشریح امکانات – مدل ۲۴۳۶

تونل آبی رؤیت جریان شرکت تحقیقاتی هیلزرولینگ، یک تجهیزات مداربسته مناسب برای مطالعه بازه وسیعی ازپدیده های ایرودینامیک و دینامیک سیالات است. ترسیمی ازآن که نماهای جانبی و پلتفرم آن را به همراه ابعاد کلی آن نشان می دهد، درشکل ۲ نمایش داده شده است. خصوصیات کلیدی طراحی تونل عبارتند ازکیفیت بالای جریان و جهت گیری افقی آن. حالت افقی تونل، دسترسی به مدل را تسهیل کرده و اجازه تغییرآسان آن را بدون زهکشی آب ازتونل داده و امکان رؤیت جریان محوری را از یک پنجره متقاطع پایین جریان فراهم می کند. این تجهیزات به صورت یک کانال جریان پیوسته کارمی کند، یعنی لازم نیست سطح آب درمقطع آزمایشی درقسمت فوقانی جداره های مقطع قرارگیرد. معمولا سطح آب حدودا دو اینچ پایین تر از قسمت فوقانی جداره ها قرارگرفته و نیازبه پوشش دادن آن را برطرف کرده و مواد ضد خورنده ساخته شده و به وسیله قالب بندی فولادی رنگ شده پشتیبانی می شود. قطعات اولیه ازفایبرگلاس رزین پلی اورتان ساخته شده و سطوح داخلی آن درمقابل یک سطح قالب صاف و براق قراردارد که منجربه ایجاد سطح پرداخت کاری شده بسیارمناسبی می شود. سطوح خارجی آن نیز از رزین اپوکسی پوشش ژل رنگی ساخته شده که برروی فایبرگلاس اسپری شده است. سطح خارجی صاف بوده و نیازبه نقاشی ندارد.

مقطع آزمایش نامی ، دارای عرض 24 اینچ، ارتفاع 36 اینچ و طول 72 اینچ بوده و ازشیشه عملیات حرارتی شده ساخته شده تا اجازه رؤیت حداکثرمدل را بدهد. مقطع آزمایش شیشه ای، آب تونل را برای استفاده با تجهیزات سرعت سنجی تصویرذره ای (PIV) ایده آل می سازد. مقطع آزمایش و فضای تخلیه به گونه ای طراحي شده اند كه اجازه رؤيت همزمان مدل را ازبالا، پايين، اطراف و عقب بدهد. مشاهده ازعقب خصوصا درهنگام مطالعه ساختارهای جریان درصفحه سطح مقطع مفيد است. خط مركزى مقطع آزمايش درفاصله 72 اينچ بالاي سطح زمين قرارداشته و 54اینچ پایین تراز مقطع آزمایش قراردارد تا اجازه رؤیت و ایجاد فضای مناسب را برای دسترسی بصری مستقیم یا غیرمستقیم به آن برای عکسبرداری ازقسمت پایینی مقطع آزمایش بدهد. خط مرکزی تونل درنماهای جانبی و عقبی تقریبا درسطح چشم قراردارد. این ارتفاعات برای فراهم کردن نمای سطح چشم مقطع آزمایش بدون نیاز به وجود پلتفرم های کمکی دراطراف مقطع آزمایش انتخاب شده اند. ناحیه زیر مقطع آزمایش کاملا آشکاراست، زیرا لوله کشی برگشت آن به هردو طرف تونل کشیده شده و اگرمشتری ترجیح دهد، مستقیما درزیرخط مرکزی تونل درپایین سطح زمین قراردارد. دسترسی به قسمت زیرین مقطع آزمایش برای به دست آوردن عکس یا نصب دوربین ویدیویی ضروری است. سرعت جریان مقطع آزمایش بین ۰ تا ۱٫۰ فوت برثانیه متغیراست. درمورد اکثرتست های بصری که ازقالب رنگی برروی سطح مدل استفاده می کنند، سرعت هایی در بازه ۰٫۳ تا ۵٫۰ فوت برثانیه بهترین نتایج را فراهم می کند. سرعت های بالاتری همچون 1ft/sec برای استفاده با سیستم بالانس گیج کرنش زیرآبی مطلوب است، زیرا فشاردینامیک بزرگتر، علامت بهتری را برای نسبت نویزنیروهای ایرودینامیک مطلوب به دست می دهد. پشتیبان مدل بربالای مقطع آزمایش قرارداشته و مدل به صورت معکوس درآن قراردارد.

۱٫۱ توضيحات جزء مدار

دربخش های بعد درمورد اجزای مدارمقدماتی تونل که درشکل ۲ نشان داده شده، توضیحاتی ارائه خواهد شد. این تونل که ناحیه کارمفید آن فضایی حدود 40 ft x 20 ft را اشغال می کند، دارای ارتفاع ماکزیمم حدود ۸ فوت است. ارتفاع سقف اتاقک تونل باید حداقل ۱۲ فوت باشد تا اجازه نصب یا برداشتن صفحات، مدل ها و غیره را بدهد. این تجهیزات مستلزم وجود یک شیرآب و سیستم زهکشی مرسوم است. وقتی تونل پراست، حدودا حاوی ۵۰۰۰ گالن آب به وزن حدود ۴۰۰۰۰ پوند می باشد. وزن سازه حدودا برابربا ۸۰۰۰ پوند بوده و موتورآن ازنوع Hp 7.5 بوده و واحد جریان محوری آن 2800 gpm است که نیازمند یک مدار V 230، سه فاز، 20 60. amp می باشد. ولتاژهای دیگری را هم می توان استفاده کرد. ساختارزمین باید بار 200 psf را تحمل کند. تمام قطعات قبل از اسمبلی نهایی از یک گذرگاه 7 ft x 4 ft عبورخواهد کرد.

۱٫۱٫۱ فضای انتقال

آب با نرخ جریان ۲۸۰۰ گالن بردقیقه به چرخش درآمده و سرعت ماکزیمم ۱۰۰ فوت برثانیه را در مقطع آزمایش فراهم می کند. این آب ازطریق یک استوانه سوراخ دار وارد فضای انتقال می شود که دربالای این فضا قراردارد. اسمبلی سوراخ دار انرژی کافی برای اطمینان ازانتقال یکنواخت آب درامتداد استوانه جذب می کند. درانتهای پایینی فضای انتقال، مقطعی با عناصرتهویه جریان قراردارد که اولین نوع آن یک صفحه فولادی ازجنس فولاد زنگ نزن است که تلاطم را به مقیاس های کوچکی تبدیل کرده و بعد ازآن دو صفحه فایبرگلاس قراردارد که سطح تلاطم را بیشترکاهش می دهد. آخرین مورد نیزیک مسطح کننده جریان لانه زنبوری است. این عناصرتهویه جریان را می توان به سادگی جایگزین کرد تا شرایط تست به دلخواه کاربرتغییرکند.

١,١.٢ مقطع انقباض

مقطع انقباض دارای مساحتی به نسبت ۶:۱ است. هندسه آن به گونه ای انتخاب شده تا مینیمم انقباض طولی را با توزیع مناسب، کاهش تلاطم و جلوگیری ازجدایش و توسعه حالت گردابی فراهم کند.

۱,۱,۲ مقطع آزمایش

ابعاد داخلی مقطع آزمایش عبارتند از: "24 عرض، "36 ارتفاع و "72طول. جداره های جانبی اندکی واگرا می باشند تا رشد لایه مرزی را خنثی کرده و گذردهی سرعت جریان یکنواختی را به دست آورند. این بخش از یک قاب فولادی رنگ شده با شیشه عملیات حرارتی شده درسه جهت ساخته شده است. شیشه عملیات حرارتی شده به ضخامت ''1⁄2 درجداره ها و ضخامت ''3⁄4 درکف، با لاستیک سیلیکونی درقاب فولای نصب شده تا از فاکتور ایمنی بالا در بارهای تنشی در اثر وزن و فشار آب اطمينان حاصل شود. شيشه عمليات حرارتي شده به دليل مقاومت بالاترخود نسبت به خراش و رسانایی حرارتی بالاتر خود بر پلکسی گلاس و پلاستیک ترجیح داده شده و اجازه عبور موثرتر حرارت را از منایع لامپ مورد استفاده درعکاسی می دهد. آزمایش های سرعت سنجی لیزری را می توان از طریق شیشه عملیات حرارتی شده انجام داد که ضخامت شیشه ثابت بوده و سطح آن صاف است. اگراشعه های لیزر به محل های دیگری در مقطع آزمایش مهاجرت کنند، انکسارسطحی موجب بروز مشکلاتی در فوکوس نگه داشتن پرتوهای لیزر بر روی یک نقطه از پیش انتخاب شده می شود.

مقطع آزمایش با یک قاب فولادی ساخته شده تا پلتفرم پشتیبان قدرتمندی را برای سخت افزارپشتیبان مدل فراهم کرده و محیط پایدار و کم نویزی را برای بالانس گیج کرنش ۵ جزئی ارائه دهد. پایه پشتیبان مدل را می توان در موقعیت های طولی متغیری بر روی قاب قرارداد تا طول قابل دسترس ماکزیمم مقطع آزمایش درجلو یا - 130 - پشت مدل قرارگیرد. همچنین این قاب برای امکان نصب کردن سایر تجهیزات بر روی مقطع ساخته شده، مثل سیستم متقاطع ۳ محوری که برای پروب های چشمی کنترل از راه دور به کار می رود.سیستم متقاطع را می توان برای نصب کردن و قراردادن دقیق پروب های LDV به کاربرد.

سیستم پشتیبان مدل به قسمت فوقانی مقطع آزمایش متصل شده و مدل در موقعیت معکوس آزمایش می شود. پشتیبان مدل دارای پنل قابل حرکتی است تا امکان دسترسی آسان به مدل را درهنگام کارکردن آن فراهم کرده و پس زمینه آن را برای عکاسی تغییردهد.

سطح کیفیت جریان(میزان خطا) با سرعت ماکزیمم ۱ فوت برثانیه در مقطع آزمایش به صورت زیراست:

سطح شدت تلاطم: كمتر از RMS %1.0

یکنواختی سرعت: کمتر از %2±

زاویه میانگین جریان:کمتر از °1.0±

یک سنسور سرعت در مدار لوله کشی تونل قرارداده شده و به گونه ای کالیبره شده تا خواندن دیجیتالی سرعت مقطع آزمایش را درپنل سیستم کنترل تونل آسان کند. اگرسیستم بالانس ۵ جزئی مورد استفاده قرارگیرد، ارتقا دادن سیستم اندازه گیری سرعت و دما مطلوب بوده و می تواند سرعت و دما را در مقطع آزمایش به شکل بسیاردقیقی بسنجد. این اطلاعات برای محاسبه دقیق فشاردینامیکی که در مدل وجود دارد، به کاررفته و برای محاسبه ضرایب ایرودینامیک ضروری است.

۱,۱,۴ فضای تخلیه

وضعیت فضای تخلیه مقطع آزمایش، خصوصیت منحصر به فردی از این تونل آبی است. این فضا شامل یک پنجره نمای جریان است که اجازه مشاهده مستقیم مدل را ازعقب داده و نیاز به وجود آینه را حذف می کند. وضعیت فضای تخلیه به گونه ای طراحی شده که اطمینان دهد هیچ زاویه جریان یا تلاطمی وجود ندارد تا بتواند جریان را به درون مقطع آزمایش گسترش دهد. استوانه های سوراخ دارو پوشش داری از جنس فولاد زنگ نزن مشابه استوانه های سوراخ دارقسمت انتقال در حفرات خروجی مقطع آزمایش قرارداده شده اند تا از ورود هوا در مدار برگشتی در اثر گرداب های بزرگ ورودی به لوله های تخلیه جلوگیری کنند. این صفحات استوانه ای از ورود اشیای خارجی به لوله کشی برگشتی در این پمپ نیزجلوگیری می کنند.

۱٫۱٫۵ لوله های برگشتی و ذخیره

ازفضای تخلیه، آب از طریق دو لوله عمودی به درون یک هدر جمع می شود. ازهدر، آب درامتداد جداره تونل جریان یافته و ازطریق لوله ذخیره به پمپی می رسد که مستقیما در زیر فضای انقباض قراردارد. لوله کشی درکناره تونل قراردارد تا ناحیه زیر مقطع آزمایش را برای مشاهده و قراردادن تجهیزات ویدیویی و عکسبرداری کاملا آزاد نگه دارد. اگربتوان لوله کشی برگشتی را در زیر سطح زمین قرارداد، ایجاد برگشتی خط مرکزی مطلوب خواهد بود. لوله کشی برگشتی خط مرکزی بدون غوطه رفتن ازیک قسمت از مقطع آزمایش به قسمت دیگر بدون گذر از انتهای تونل را غیرممکن می سازد. این ترتیب لوله کشی پیشنهاد نمی شود. مفاصل جداسازی ارتعاش دربین پمپ و لوله های برگشتی قراردارد. یک تنظیم کننده و حباب درنقطه پایینی لوله ها قراردارد تا اجازه زهکشی تجهیزات را بدهد.

۱,۱٫۶ پمپ/موتور

آب با یک پمپ جریان محوری به ظرفیت gpm 2800 که توسط یک موتور الکتریکی T.5 HP رانده می شود، جریان پیدا می کند. محفظه پمپ ازجنس چدن ساخته شده و برای جلوگیری از فرسایش و خوردگی پوشش داده شده است. پروانه ازجنس برنز بوده و بر روی یک شافت فولاد زنگ نزن نصب شده است. سرعت جریان مقطع آزمایش را می توان بدون توجه به افت های متغیر مقطع آزمایش در اثر اندازه و وضعیت مدل بین ۰ تا 1.0 fps تغییرداد. کنترلگرهای پمپ برروی پنلی نصب شده اند که در نزدیکی ناحیه مقطع آزمایش قراردارد. وسایل اندازه گیری و نمایش سرعت مقطع آزمایش نیزفراهم شده است.

۱,۱,۷ سیستم منبع رنگ

یک سیستم شش رنگ فشرده با استفاده ازرنگ های غذایی محلول در آب برای هر مسیری از قوطی های رنگ تا سیستم پشتیبان مدل ساخته شده است. این سیستم اجازه کنترل دقیق نرخ نشر رنگ را داده و وسیله ای را برای دمش هوا به بیرون ازخطوط رنگ که به مدل می رود، فراهم می کند. قوطی های رنگ را می توان با سیستم هوای کارگاه تحت فشار قرارداد که سطح فشاربه وسیله یک رگولاتورفشارکنترل می شود. کمیت رنگ برای هر قوطی به وسیله حباب های منفردی اصلاح می شود که بروی پنلی درنزدیکی مقطع آزمایش قراردارد.

۱,۱,۸ سیستم مکش به داخل (اختیاری)

در برخی از آزمایش ها شبیه سازی جریان جرم در ورودی های موتور برای مدل های هواپیمای واقعی اهمیت دارد. سیستم مکشی شامل یک پمپ کوچک و حباب های مناسب و چند دبی سنج برای تغییرجریان از طریق ورودی های موتور جداگانه برای شبیه سازی جریان ورودی ازصفرتا ماکزیمم برای برخی ازهواپیماها اهمیت دارد.

۱,۱,۹ سیستم اگزوز جت (اختیاری)

سیستمی برای شبیه سازی جریان خروجی از اگزوز جت را نیز می توان فراهم کرد. یک پمپ کوچک شبیه به پمپ سیستم مکش ورودی و حباب های مناسب و یک دبی سنج برای شبیه سازی و اصلاح جریان فراهم می شود.

۱٫۱٫۱۰ سیستم فیلتراسیون:

تغییر رنگ تدریجی آب در اثر استفاده مداوم از رنگ به وجود می آید. این تغییر رنگ را می توان با افزودن متناوب مقادیرکمی از کلر به آب از بین برد. یک سیستم فیلتراسیون نیز برای تمیزکردن آب فراهم شده که از موتور/ پمپ Hp ³⁴ با یک صافی و یک واحد فیلتر به کار می رود. سیستم فیلتراسیون معمولا در هنگام عدم استفاده از تونل – معمولا شب هنگام – کارمی کند. بعد ازکارمداوم باید آب را جایگزین کرد. زهکشی و اتصالات پرکننده تونل برای این هدف فراهم شده اند.

۱,۱,۱۱ کنترل تونل

کنترلگر سرعت تونل یک معکوس کننده کم نویز تمام دیجیتالی است. اجزای سرعت برای انتخاب سرعت به وسیله کاربر قابل تنظیم بوده و سرعت به وسیله یک دستگاه خواندنی دیجیتال نمایش داده می شود. کنترلگرسرعت تونل به سیستم پشتیبان مدل کنترل شده کامپیوتری و سیستم بالانس ۵ حزئی تبدیل می شود تا امکان کنترل کامپیوتری سرعت تونل را فراهم کرده و اجازه عملکرد تمام اتوماتیک آن را بدهد.

۲ – تشریح تحهیزات: مدل ۱۵۲۰

تونل آبی مدل ۱۵۲۰ شرکت تحقیقاتی رولینگ هیلز تقریبا با مدل ۲۴۳۶ معادل بوده، اما مقطع آزمایش آن کوچکتراست. ترسیمی که نماهای جانبی و پلتفرم آن را به همراه ابعاد کلی آن نشان می دهد، درشکل ۳ نمایش داده شده است. مقطع آزمایش نامی دارای عرض ''15، ارتفاع ''20 و طول ''60 است. خط مرکزی مقطع آزمایش **66''** بالای سطح زمین و **56''** پایین تراز مقطع آزمایش قراردارد تا اجازه رؤیت آسان و تنظیم فضا و دسترسی بصری مستقیم یا غیرمستقیم را برای عکسبرداری از قسمت زیرین مقطع آزمایش بدهد. شیشه عملیات حرارتی شده به ضخامت ''3/8 درجداره ها و "21 درقسمت زیرین با لاستیک سیلیکونی نصب شده است. خط مرکزی تونل درنماهای جانبی و عقبی تقریبا درسطح چشم قراردارد. این ارتفاعات برای فراهم کردن نمای سطح چشم مقطع آزمایش بدون نیازبه وجود پلتفرم های كمكى دراطراف ناحيه مقطع آزمايش انتخاب شده اند. ناحيه زير مقطع آزمايش كاملا آشکاراست، زیرا لوله کشی برگشتی آن به هردو طرف تونل کشیده شده و مستقیما به زیرخط مرکزی تونل در زیر سطح زمین راه دارد. دسترسی به قسمت زیرین مقطع آزمایش برای به دست آوردن عکس یا نصب دوربین ویدیویی ضروری است. سرعت جریان مقطع آزمایش بین ۰ تا ۱٫۰ فوت برثانیه متغیراست. در مورد اکثر تست های بصری که از قالب رنگی بر روی سطح مدل استفاده می کنند، سرعت هایی دربازه ۰٫۳ تا ۰٫۵ فوت برثانیه بهترین نتایج را فراهم می کند. سرعت های بالاتری همچون lft/sec برای استفاده با سیستم بالانس گیج کرنش زیرآبی مطلوب است، زیرا فشاردینامیک بزرگتر، علامت بهتری را برای نسبت نویزنیروهای ایرودینامیک مطلوب به دست می دهد. اگرکیفیت جریان کمترمورد توجه باشد، سرعت های بالاتری برای مدل ۱۵۲۰ قابل دسترس خواهد بود.

این تونل که ناحیه کارمفید آن فضایی حدود 30 ft x 15 ft ما 30 ft x 15 و ا شغال می کند، دارای ارتفاع ماکزیمم حدود 6.5 فوت است. ارتفاع سقف اتاقک تونل باید حداقل 9 فوت باشد تا اجازه نصب یا برداشتن صفحات، مدل ها و غیره را بدهد. این تجهیزات مستلزم وجود یک شیر آب است و سیستم زهکشی مرسوم است. وقتی تونل پراست، حدودا حاوی 1000 گالن آب به وزن حدود 7500 پوند می باشد. وزن سازه حدودا برابربا 2000 پوند بوده و موتور آن ازنوع Hp دوده و واحد جریان محوری آن 900 برابربا 2000 پوند بوده و موتور آن ازنوع Hp دوده و واحد جریان محوری آن 900 ولتازهای دیگری را هم می توان استفاده کرد. ساختارزمین باید بار psf را تحمل کند. تمام قطعات قبل از اسمبلی نهایی از یک گذرگاه

ft x 6 ft 7 عبورخواهد کرد.

۳. سیستم پشتیبان مدل دینامیک

شرکت تحقیقاتی رولینگ هیلز، پیشگام درساخت تونل های آبی برای صنعت و تحقیقات بوده و مارک تجاری Eidetics آن ازسال ۱۹۸۵ تولید شده است. ازآن جا که RHRC نیز تحقیقاتی را در زمینه تونل آبی خود انجام می دهد، این تجهیزات به صورت مداوم ارتقا پیدا کرده است. آخرین پیشرفت آن یک سیستم پشتیبان مدل کنترل کامپیوتری است که برای فراهم کردن حرکات بسیارمسطح و دقیق طراحی شده است. هنگامی که از این تجهیزات به همراه بالانس گیچ کرنش نیمه هادی ۵ جزئی RHRC استفادہ می شود، این سیستم قادر به انجام آزمایش هایی است که قبلا تنها با تونل های آبی تخصصی و گران قیمت عملی بود. درحال حاضر آزمایش هایی همچون نوسان های نیرو و حرکات چرخشی متعادل را می توان درتونل آبی با بهره گیری از رؤیت عالی جریان های پیچیده انجام داد.

Arm and Sting at 60° AOA

از نظر تاریخی، آزمایش های دینامیکی همچون اسیلاسیون نیرو و تعادل چرخشی اخیرا در برنامه طراحی هواپیما انجام شده اند. درزمانی که این نوع تست انجام می شود، معمولا تغییرشدید وضعیت آن از نظر مالی و سیاسی قابل قبول نیست. با این حال اگر دینامیک وضعیت دراوایل برنامه بررسی شود، می توان تغییراتی را با حداقل اثرگذاری انجام داده و ازمسائل سیاسی پرهیزنمود. هزینه پایین مدل ها و آزمایش های تونل آبی، آن ها را درنگاه اول به گزینه های بسیارخوبی تبدیل می کند. تکنیک های پذیرفته شده کنونی درتونل بادی برای اندازه گیری دینامیک وسایل نقلیه معمولا درسرعت های بسیاریایین انجام می شود. دلیل آن عمدتا این است که حركات چرخشی هواپیما با سرعت تونل هماهنگ است. حتی دراین سرعت های پایین، بارهای روی سیستم پشتیبان تونل بادی می تواند بسیاربزرگ بوده و نرخ چرخش مدل را به شدت محدود کند. علاوه برآن، بارهای داخلی مدل می تواند بسیار بزرگتر از ایرودینامیکی باشد که محققان برای اندازه گیری آن تلاش می کنند. تونل های آبی سطح آزاد معمولا درسرعت های کمتر از 1 ft/sec کارمی کنند تا رؤیت جریان با کیفیت بالا و تلاطم پایین به دست بیاید. دراین سرعت های تونل، فرکانس های پایین تولید شده به وسیله مانورمقیاس کامل، واکنش کندی را به وجود آورده و بارهای اینرسی چرخشی قابل چشمپوشی است. این بدین معنی است که بسیاری از دشواری هایی که معمولا درتست های دینامیک بروزمی کند، درتونل آبی وجود ندارد. لازم نیست پشتیبان مدل برای تونل آبی به همان قدرت بوده و تنها موردی که بايد حذف شود، جاذبه است. اين فاكتورها محيطي آزمايشي را خلق مي كنند كه درآن می توان داده های با کیفیت بالایی را با هزینه نسبتا پایین به دست آورد.

۴٫۱ اجزای پشتیبان مدل

۴,۱,۱ تعاریف زاویه ای مقدماتی

۴,۱,۲ بخش انحراف و پرتاب استاندارد

محورانحراف به وسیله یک سرووموتور با گشتاور بالا به جرکت درآمده و حرکت انحرافی با اینرسی ثابتی را به وجود می آورد(ψ). ازیک رمزگذارنوری برای فراهم کردن بازخورد موقعیت و سرعت استفاده می شود. محور انحراف بر روی یک بخش آلومینیومی آندی دایره ای بزرگ قرارداشته و مرکزقوس، مرکزچرخش مدل را تعریف می کند. زمانی که وضعیت تونل مدل ۲۴۳۶ مشخص می شود، زاویه انحراف می تواند تا $^{2}2±$ متغیرباشد، درحالی که درمدل ۱۵۲۰ زوایای $^{0}1±$ قابل دستیابی است. یک محور شکل بزرگ بر روی میز انحراف درصفحه عمودی قرارداده می شود تا منجر به حرکت در جهت پرتاب شود (θ). زاویه پرتاب را می توان از۰ تا ۴۵ درجه تغییرداد. گسترش C شکلی در دسترس است که ۱۰ درجه حرکت پرتابی اضافی را به آن افزوده و محورC کوچک که درتجهیزات بالانس چرخشی قرار دارد، ۶۰ درجه به زاویه پرتاب می افزاید.

۴٫۱٫۳ محور دوران و تعادل چرخشی

موتور دوران در محفظه ضد آبی قراردارد که به انتهای محورC بزرگ متصل است. محفظه موتور به یک سنسور رطوبت مجهزاست که کاربر را از هرگونه نشت احتمالی آگاه می کند. موتور دوران از یک سردنده جهانی استفاده می کند که بک لش آن کمتراز 1/2 درجه است. تعادل چرخشی انحنای C شکل کوچکی را ایجاد می کند که در بین مدل و محفظه موتور دوران نصب شده است. محورC چرخشی ازیک سری حفرات پیچ برای فراهم کردن تنظیمات زاویه ای درهر۱ درجه استفاده می کند. درنگاه اول، منحنی C یک محور پرتاب زائد را به وجود می آورد. در واقع زمانی که منحنی C بزرگ بر روی ۰ درجه تنظیم می شود، منحنی C کوچک را می توان برای تنظیم heta از heta درجه به کاربرد. هنگامی که منحنی C کوچک برروی heta درجه تنظیم می شود، می توان از موتور دوران برای فراهم کردن حرکات دورانی محور بدنه استفاده کرد. هنگامی که منحنی C بزرگ بر روی ۰ تنظیم می شود، می توان ازمنحنی ${f C}$ کوچک برای فراهم کردن ${f heta}$ استفاده کرد، اما دراین حالت موتور دوران، حركت دوراني را حول بردارسرعت توليد خواهد نمود. اين حركت اصطلاحا كونينگ یا حرکت چرخشی متعادل نامیده می شود. این نوع حرکت قبلا برای بررسی خصوصیات اسپین هواپیما به کار می رفت، اما اخیرا برای مطالعه شدت یک زاویه - 141 -

غیرصفرمورد استفاده قرارمی گیرد. اگر حرکت متعادل چرخشی با منحنی C بزرگ دریک زاویه غیرصفرانجام شود، حرکت حاصله با عنوان کونینگ محوری خمیده شناخته می شود. حرکت حاصله کونینگی را با یک نوسان در هر چرخش در هر دو زاویه حمله و سور خوردن فراهم می کند که با یکدیگر ۹۰ درجه اختلاف فازدارند.

۴,۱,۴ سیستم کنترل PID

سیستم پشتیبان مدل RHRC ازسیستم فلکس موشن وسایل ملی برای فراهم کردن بازخورد نسبی- مجتمع- دیفرانسیلی مقدماتی و سیستم کنترل استفاده می کند. این سیستم از یک ذخیره قدرت موتور فرمان و یک آمپلی فایر و یک بورد کامپیوتری مبتنی بر PCI تشکیل شده که سیگنال های رمزگذار نوری را خوانده و پردازش می کند. سوئیچ های محدود کننده برق در داخل سیستم قراردارد تا درصورت برقراری یک فرمان ناخواسته ازسخت افزار پشتیبان مدل محافظت کند. زمانی که از یک سوئیچ محدود کننده استفاده می شود، قدرت وارد به سرووموتور فورا قطع می شود.

۴,۱٫۵ نرم افزارکنترل آزمایش

RHRC یک بسته نرم افزاری گسترده را برای کنترل آزمایش، دریافت داده و پردازش داده فراهم می کند. این نرم افزار با استفاده از LabVIEW API شرکت وسایل ملی ساخته شده و یک فصل مشترک گرافیکی دوستدارکاربررا ارائه می دهد. این نرم افزارموجب ترکیب بین سیستم پشتیبان مدل دینامیک ، بالانس ۵ جزئی کنترلگرهای تونل آبی می شود. این سیستم قادراست درحالت اتوماتیکی کارکند که درآن موارد وزن، بالای صفرها، کنترل سرعت تونل، حرکت مدل و زیر صفرهای داده را می توان برای یک سری اجرا انجام داد. همیشه می توان آزمایش ها را درحالات

۴,۲ آزمایش های قابل دسترس

نمودار شکل ۴ خلاصه ای گرافیکی از آزمایش هایی را که با پشتیبان مدل کنترل شده کامپیوتری قابل دسترس است، نشان می دهد. این تست ها را می توان به صورت دستی یا کاملا اتوماتیک انجام داد. درحالت دستی، محقق باید مقیاس وزن و wind-off zero را قبل از تنظیم سرعت تونل ثبت کرده و مدل را درجهت مطلوب حرکت دهد. درحالت اتوماتیک، محقق باید یک جدول زمانبندی برای اجرای آزمایش های متعدد تعیین کند. سیستم ابتدا چک می کند که ورودی ها قانون بوده و قابل تولید باشند و سپس مقیاس های وزن و صفرهای مورد نیازرا به صورت خودکار ثبت کرده و درنهایت تونل را راه اندازی کرده و نیروها و ممان های ایرودینامیک موجود درمدل را ثبت می نماید. بعد از اجرا، کالیبراسیون تعادل انجام شده و داده ها به ضرایب محوربدنه سنتی تجزیه می شود.
۴,۲,۱ ایرودینامیک استاتیک

ایرودینامیک استاتیک را می توان به چندین روش اندازه گیری کرد. مدل را می توان به صورت دستی به نقطه مطلوب فرمان داده و خروجی تعادلی آن را ثبت کرده و یا ازچندین روش اتوماتیک بهره گرفت. تست استاتیک اتوماتیک مرسوم می تواند یک سری زاویه حمله را در زوایای سر خوردن مشخص وسرعت های معین تونل اجرا کند. این سیستم پیش ازپردازش به نقطه داده بعدی تا زمانی که سیگنال تعادل به مقدار حالت پایدار خود برسد، منتظرمی ماند.

۴٬۲٬۲ شیب و توقف محوری منفرد

این نوع حرکت برای بررسی پدیده هایی همچون لیفت دینامیک حول محور مفید است. داده ها به صورت تابعی اززمان ثبت می شود تا بتوان کاهش لیفت صعودی را مشاهده کرد.

۴٫۲٫۳ نوسان نیروی Sine-wave محوری منفرد

حرکت sin-wave در آزمایش های نوسان تونل آب سنتی مورد استفاده قرارمی گیرد. این حرکت به وسیله فرکانس و اندازه حول یک نقطه مرکزی تعریف می شود. معمولا این حرکات حول یکی ازسه محوربدنه تولید می شوند که عبارتند از: رول، پرتاب و انحنا.

۴٫۲٫۴ نوسان نیروی نرخ ثابت محورمنفرد

RHRC تكنيك متفاوتى را ارائه كرده كه درآن تا حد امكان نرخ ثابتى براى اندازه حركت درنظر گرفته مى شود. اين نوع نوسان براى استخراج مشتقات حالت پايداربه صورت تابعى ازسرعت مفيد است. اين حركات نيزمعمولا حول يكى ازسه محورفوق توليد مى شوند.

۴,۲,۵ نوسان نیروی چند محوری

علاوه بر نوسان حول یک محورمنفرد، می توان حرکاتی را تعیین کرد که سرعت ها را درهرسه محوربه صورت همزمان با یکدیگرترکیب کند. این یکی ازویژگی های منحصربه فرد این تجهیزات بوده و به خوبی برای بررسی اعتبارموقعیت ریاضی ایرودینامیک تولید شده توسط حرکات دینامیک مورد استفاده RHRC است.

۴٫۲٫۶ تعادل چرخشی – حرکت کونینگ

تعادل چرخشی حرکتی را تولید می کند که شبیه به مخروط است. این حرکت هنگامی به وجود می آید که هواپیمایی در زاویه حمله ثابتی قرارداشته و فرمان دوران حول یک بردارسرعت را می دهد. این نوع حرکت برای هواپیماهای جنگی درزوایای حمله بزرگتردرهنگام انجام مانورهای حملاتی مرسوم است. وقتی AOA به ۹۰ درجه می رسد، حرکت کونینگ به یک اسپین مسطح شباهت پیدا می کند.

۴,۲,۷ کونینگ محوری خمیده

کونینگ خمیده با حرکت متعادل چرخشی معادل است، به جزاین که حرکت چرخشی حول محوری انجام می شود که با بردارسرعت زاویه می سازد. این حرکت منجربه زاویه حرکت نوسان و سرخوردن درفرکانس کونینگ شده و مقادیرآن برابربا زاویه ای است که چرخش با بردارسرعت می سازد.

۴٫۲٫۸ حرکت کونینگ با نوسان های نیروی شدید

این آزمایش نسبتا منحصر به فرد برای اولین بارتوسط دکترموری توباک و دکترلویس اسکیف از ناسا انجام شد. درحالی که این آزمایش مشابه حرکت کونینگ خمیده است، از مزیت جداسازی فرکانس کونینگ ازفرکانس و اندازه نوسان برخوردارمی باشد.

۴,۲,۹ حرکات دلخواه

این سیستم قاد راست پیشینه زمانی یک حرکت مطلوب را پذیرفته و آن را درتونل آبی بازسازی کند.

Experiment	Side View	Front View	a History	β History	Ω History
Static			x	в 	n
Body Axis Roll	r T	-		B	n
Body Axis Yaw			α	۰ MM	n
Body Axis Pitch		CAR	۰ MM	6	n
Velocity Vector Roll	⇒°C		a	6	Ω,
Inclined Axis	2 Cal			B .	Ω
Tobak-Schiff Pitch*	⇒C °	Č A	·MM	в .	Ω,
Tobak-Schiff Yaw*		r r	α	۰ MM	n

• requires 10° c-strut extension

Figure 4: Experiment Capability of RHRC Computer-Controlled Model Support System

پيوست (ج)

جداول ضميمه

منابع و ماخذ :

كتاب ها و مقالات :

دکتر ابراهیم شیرانی / توربوماشین ها/نشر دانشگاه صنعتی اصفهان / ۱۳۷۹ / صفحات ۲۸۴–۲۵۷

هرمن شیمز / مکانیک سیالات / ترجمه بهرام پوستی / نشر علوم دانشگاهی /۱۳۷۸/ صفحات ۲۳۰–۱۹۶

Morel T./ Comprehensive design of axisymmetric wind tunnel/ Journal of Fluids Engineering/1975/225.

Karassik & kyutzsch & Fraser & Messina / Pump Hand Book/ Mc Graw-Hill Company /1976/First edition/9-1

Crocker & King / Piping Hand Book/ Mc Graw-Hill Company / 1994/ Fifth edition/3-130 & 3-132 & 3-133

www.bshc.bg/structure/cavitation_tunnel.htm www50.dt.navy.mil/facilities/data/24in.html www.ivt.ntnu.no/imt/forskning/lab/cavitation.php www.en.wikipedia.org/wiki/Water_tunnel_(hydrodynamic) www.amhrc.edu.au/facilities/cavtunnel-info.html www.oceaniccorp.com/FacilityDetails.asp www.cehipar.es/instalaciones/tunelcavitacion www.cussons.co.uk/en/k&r/kempf1.htm environ.spawar.navy.mil/.../code2363/tunnel.html - 155 - www.allamericanracers.com www.arl.psu.edu www.baylor.edu/content/imglib www.dfrc.nasa.gov/Education/Educator/OnlineEducation www.dlr.de/archiv/ava.wasserkanal www.engineeringatboeing.com/fluids www.iag.uni-stuttgart.de www.niar.wichita.edu/researchlabs www.nmri.go.jp/.../facilities/facilities_e.html www.npt.nuwc.navy.mil/facilities/QuietWater www.nrc-cnrc.gc.ca/multimedia/picture www.rollinghillsresearch.com/Feedback.htm www.ncl.ac.uk/marine/about/facilities/emerson