

Pro	T-SQL	Programmer’s	Guide
4th	Edition

Miguel	Cebollero

Jay	Natarajan

Michael	Coles

Pro	T-SQL	Programmer’s	Guide

Copyright	©	2015	by	Miguel	Cebollero,	Jay	Natarajan,	and	Michael	Coles

This	work	is	subject	to	copyright.	All	rights	are	reserved	by	the	Publisher,	whether	the	whole	or	part	of	the
material	is	concerned,	specifically	the	rights	of	translation,	reprinting,	reuse	of	illustrations,	recitation,
broadcasting,	reproduction	on	microfilms	or	in	any	other	physical	way,	and	transmission	or	information	storage
and	retrieval,	electronic	adaptation,	computer	software,	or	by	similar	or	dissimilar	methodology	now	known	or
hereafter	developed.	Exempted	from	this	legal	reservation	are	brief	excerpts	in	connection	with	reviews	or
scholarly	analysis	or	material	supplied	specifically	for	the	purpose	of	being	entered	and	executed	on	a	computer
system,	for	exclusive	use	by	the	purchaser	of	the	work.	Duplication	of	this	publication	or	parts	thereof	is	permitted
only	under	the	provisions	of	the	Copyright	Law	of	the	Publisher’s	location,	in	its	current	version,	and	permission
for	use	must	always	be	obtained	from	Springer.	Permissions	for	use	may	be	obtained	through	RightsLink	at	the
Copyright	Clearance	Center.	Violations	are	liable	to	prosecution	under	the	respective	Copyright	Law.

ISBN-13	(pbk):	978-1-4842-0146-6

ISBN-13	(electronic):	978-1-4842-0145-9

Trademarked	names,	logos,	and	images	may	appear	in	this	book.	Rather	than	use	a	trademark	symbol	with	every
occurrence	of	a	trademarked	name,	logo,	or	image	we	use	the	names,	logos,	and	images	only	in	an	editorial
fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

The	use	in	this	publication	of	trade	names,	trademarks,	service	marks,	and	similar	terms,	even	if	they	are	not
identified	as	such,	is	not	to	be	taken	as	an	expression	of	opinion	as	to	whether	or	not	they	are	subject	to	proprietary
rights.

While	the	advice	and	information	in	this	book	are	believed	to	be	true	and	accurate	at	the	date	of	publication,
neither	the	authors	nor	the	editors	nor	the	publisher	can	accept	any	legal	responsibility	for	any	errors	or	omissions
that	may	be	made.	The	publisher	makes	no	warranty,	express	or	implied,	with	respect	to	the	material	contained
herein.

Managing	Director:	Welmoed	Spahr

Lead	Editor:	Jonathan	Gennick

Technical	Reviewer:	Edgar	Lanting

Editorial	Board:	Steve	Anglin,	Gary	Cornell,	Louise	Corrigan,	Jim	DeWolf,	Jonathan	Gennick,	Robert
Hutchinson,	Michelle	Lowman,	James	Markham,	Matthew	Moodie,	Jeff	Olson,	Jeffrey	Pepper,
Douglas	Pundick,	Ben	Renow-Clarke,	Gwenan	Spearing,	Matt	Wade,	Steve	Weiss

Coordinating	Editor:	Jill	Balzano

Copy	Editor:	Tiffany	Taylor

Compositor:	SPi	Global

Indexer:	SPi	Global

Artist:	SPi	Global

Cover	Designer:	Anna	Ishchenko

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media	New	York,	233	Spring	Street,	6th
Floor,	New	York,	NY	10013.	Phone	1-800-SPRINGER,	fax	(201)	348-4505,	e-mail	orders-ny@springer-
sbm.com,	or	visit	www.springeronline.com.

For	information	on	translations,	please	e-mail	rights@apress.com,	or	visit	www.apress.com.

Apress	and	friends	of	ED	books	may	be	purchased	in	bulk	for	academic,	corporate,	or	promotional	use.	eBook
versions	and	licenses	are	also	available	for	most	titles.	For	more	information,	reference	our	Special	Bulk	Sales–
eBook	Licensing	web	page	at	www.apress.com/bulk-sales.

Any	source	code	or	other	supplementary	materials	referenced	by	the	author	in	this	text	is	available	to	readers	at
www.apress.com/9781430245964.	For	detailed	information	about	how	to	locate	your	book’s	source	code,
go	to	www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

Contents	at	a	Glance
About	the	Authors

About	the	Technical	Reviewer

Acknowledgments

Introduction

	Chapter	1:	Foundations	of	T-SQL

	Chapter	2:	Tools	of	the	Trade

	Chapter	3:	Procedural	Code

	Chapter	4:	User-Defined	Functions

	Chapter	5:	Stored	Procedures

	Chapter	6:	In-Memory	Programming

	Chapter	7:	Triggers

	Chapter	8:	Encryption

	Chapter	9:	Common	Table	Expressions	and	Windowing	Functions

	Chapter	10:	Data	Types	and	Advanced	Data	Types

	Chapter	11:	Full-Text	Search

	Chapter	12:	XML

	Chapter	13:	XQuery	and	XPath

	Chapter	14:	Catalog	Views	and	Dynamic	aent	Views

	Chapter	15:	.NET	Client	Programming

	Chapter	16:	CLR	Integration	Programming

	Chapter	17:	Data	Services

	Chapter	18:	Error	Handling	and	Dynamic	SQL

	Chapter	19:	Performance	Tuning

	Appendix	A:	Exercise	Answers

	Appendix	B:	XQuery	Data	Types

	Appendix	C:	Glossary

	Appendix	D:	SQLCMD	Quick	Reference

Index

Contents
About	the	Authors

About	the	Technical	Reviewer

Acknowledgments

Introduction

	Chapter	1:	Foundations	of	T-SQL

A	Short	History	of	T-SQL

Imperative	vs.	Declarative	Languages

SQL	Basics
Statements

Databases

Transaction	Logs

Schemas

Tables

Views

Indexes

Stored	Procedures

User-Defined	Functions

SQL	CLR	Assemblies

Elements	of	Style
Whitespace

Naming	Conventions

One	Entry,	One	Exit

Defensive	Coding

The	SELECT	*	Statement

Variable	Initialization

Summary

	Chapter	2:	Tools	of	the	Trade

SQL	Server	Management	Studio
IntelliSense

Code	Snippets

Keyboard	Shortcut	Schemes

T-SQL	Debugging

SSMS	Editing	Options

Context-Sensitive	Help

Graphical	Query	Execution	Plans

Project-Management	Features

The	Object	Explorer

The	SQLCMD	Utility

SQL	Server	Data	Tools

SQL	Profiler

Extended	Events

SQL	Server	Integration	Services

The	Bulk	Copy	Program

SQL	Server	2014	Books	Online

The	AdventureWorks	Sample	Database

Summary

	Chapter	3:	Procedural	Code

Three-Valued	Logic

Control-of-Flow	Statements
The	BEGIN	and	END	Keywords

The	IF…ELSE	Statement

The	WHILE,	BREAK,	and	CONTINUE	Statements

The	GOTO	Statement

The	WAITFOR	Statement

The	RETURN	Statement

The	CASE	Expression
The	Simple	CASE	Expression

The	Searched	CASE	Expression

CASE	and	Pivot	Tables

The	IIF	Statement

CHOOSE

COALESCE	and	NULLIF

Cursors

Summary

	Chapter	4:	User-Defined	Functions

Scalar	Functions

Recursion	in	Scalar	User-Defined	Functions

Procedural	Code	in	User-Defined	Functions

Multistatement	Table-Valued	Functions

Inline	Table-Valued	Functions

Restrictions	on	User-Defined	Functions
Nondeterministic	Functions

State	of	the	Database

Summary

	Chapter	5:	Stored	Procedures

Introducing	Stored	Procedures

Metadata	Discovery

Natively	Compiled	Stored	Procedures

Managing	Stored	Procedures

Stored	Procedures	Best	Practices

Stored	Procedure	Example

Recursion	in	Stored	Procedures

Table-Valued	Parameters

Temporary	Stored	Procedures

Recompilation	and	Caching
Stored	Procedure	Statistics

Parameter	Sniffing

Recompilation

Summary

	Chapter	6:	In-Memory	Programming

The	Drivers	for	In-Memory	Technology

Hardware	Trends

Getting	Started	with	In-Memory	Objects
Step	1:	Add	a	New	Memory-Optimized	Data	FILEGROUP

Step	2:	Add	a	New	Memory-Optimized	Container

Step	3:	Create	Your	New	Memory-Optimized	Table

Limitations	on	Memory-Optimized	Tables

In-Memory	OLTP	Table	Indexes
Hash	Indexes

Range	Indexes

Natively	Compiled	Stored	Procedures

	Chapter	7:	Triggers

DML	Triggers
Multiple	Triggers

When	to	Use	DML	Triggers

Inserted	and	Deleted	Virtual	Tables

Auditing	with	DML	Triggers

Using	Change	Data	Capture	Instead
Sharing	Data	with	Triggers

Nested	and	Recursive	Triggers

The	UPDATE()	and	COLUMNS_UPDATED()	Functions

Triggers	on	Views

DDL	Triggers
DDL	Event	Types	and	Event	Groups

Logon	Triggers

Summary

	Chapter	8:	Encryption

The	Encryption	Hierarchy

Service	Master	Keys

Database	Master	Keys

Certificates

Limitations	of	Asymmetric	Encryption

Asymmetric	Keys
Asymmetric	Key	“Backups”

Symmetric	Keys
Temporary	Symmetric	Keys

Salt	and	Authenticators

Encryption	Without	Keys

Hashing	Data

Extensible	Key	Management

Transparent	Data	Encryption

Summary

	Chapter	9:	Common	Table	Expressions	and	Windowing	Functions

Common	Table	Expressions
Multiple	Common	Table	Expressions

CTE	Readability	Benefits

Recursive	Common	Table	Expressions

Windowing	Functions
ROW_NUMBER	Function

Query	Paging	with	OFFSET/FETCH

The	RANK	and	DENSE_RANK	Functions

The	NTILE	Function

Aggregate	Functions,	Analytic	Functions,	and	the	OVER	Clause

Analytic	Function	Examples
CUME_DIST	and	PERCENT_RANK

PERCENTILE_CONT	and	PERCENTILE_DISC

LAG	and	LEAD

FIRST_VALUE	and	LAST_VALUE

Summary

	Chapter	10:	Data	Types	and	Advanced	Data	Types

Basic	Data	Types
Characters

The	Max	Data	Types

Numerics

Date	and	Time	Data	Types

UTC	and	Military	Time

Date	and	Time	Functions

Time	Zones	and	Offsets

The	Uniqueidentifier	Data	Type

The	Hierarchyid	Data	Type
Representing	Hierarchical	Data

Hierarchyid	Example

Hierarchyid	Methods

Spatial	Data	Types
Hemisphere	and	Orientation

Michigan	and	the	Great	lakes

FILESTREAM	Support
Enabling	FILESTREAM	Support

Creating	FILESTREAM	Filegroups

FILESTREAM-Enabling	Tables

Accessing	FILESTREAM	Data

FileTable	Support

Filetable	Functions

Triggers	on	Filetables

Summary

	Chapter	11:	Full-Text	Search

FTS	Architecture
Creating	Full-Text	Catalogs	and	Indexes

Creating	Full-Text	Catalogs

Creating	Full-Text	Indexes

Full-Text	Querying

The	FREETEXT	Predicate

FTS	Performance	Optimization

The	CONTAINS	Predicate

The	FREETEXTTABLE	and	CONTAINSTABLE	Functions

Thesauruses	and	Stoplists

Stored	Procedures	and	Dynamic	Management	Views	and	Functions

Statistical	Semantics

Summary

	Chapter	12:	XML

Legacy	XML

OPENXML

OPENXML	Result	Formats

FOR	XML	Clause

FOR	XML	RAW

FOR	XML	AUTO

FOR	XML	EXPLICIT

FOR	XML	PATH

The	xml	Data	Type

Untyped	xml

Typed	xml

The	xml	Data	Type	Methods

The	query	Method

The	value	Method

The	exist	Method

The	nodes	Method

The	modify	Method

XML	Indexes

XSL	Transformations

SQL	CLR	Security	Settings

Summary

	Chapter	13:	XQuery	and	XPath

XPath	and	FOR	XML	PATH
XPath	Attributes

Columns	without	Names	and	Wildcards

Element	Grouping

The	data	Function

Node	Tests	and	Functions

XPath	and	NULL

The	WITH	XMLNAMESPACES	Clause

Node	Tests

XQuery	and	the	xml	Data	Type

Expressions	and	Sequences

The	query	Method

Location	Paths

Node	Tests

Namespaces

Axis	Specifiers

Dynamic	XML	Construction

XQuery	Comments

Data	Types

Predicates

Value	Comparison	Operators

General	Comparison	Operators

Xquery	Date	Format

Node	Comparisons

Conditional	Expressions	(if.then.else)

Arithmetic	Expressions

Integer	Division	in	XQuery

XQuery	Functions

Constructors	and	Casting

FLWOR	Expressions

The	for	and	return	Keywords

The	where	Keyword

The	order	by	Keywords

The	let	Keyword

UTF-16	Support

Summary

	Chapter	14:	Catalog	Views	and	Dynamic	aent	Views

Catalog	Views
Table	and	Column	Metadata

Querying	Permissions

Dynamic	Management	Views	and	Functions
Index	Metadata

Session	Information

Connection	Information

Currently	Executing	SQL

Memory-Optimized	System	Views

Most	Expensive	Queries

Tempdb	Space

Server	Resources

Unused	Indexes

Wait	Stats

INFORMATION_SCHEMA	Views

Summary

	Chapter	15:	.NET	Client	Programming

ADO.NET

The	.NET	SQL	Client

Connected	Data	Access

Disconnected	Datasets

Parameterized	Queries

Nonquery,	Scalar,	and	XML	Querying

SqIBulkCopy

Multiple	Active	Result	Sets

LINQ	to	SQL

Using	the	Designer

Querying	with	LINQ	to	SQL

Basic	LINQ	to	SQL	Querying

Deferred	Query	Execution

From	LINQ	to	Entity	Framework

Querying	Entities

Summary

	Chapter	16:	CLR	Integration	Programming

The	Old	Way

The	CLR	Integration	Way

CLR	Integration	Assemblies

User-Defined	Functions

Stored	Procedures

User-Defined	Aggregates
Creating	a	Simple	UDA

Creating	an	Advanced	UDA

CLR	Integration	User-Defined	Types

Triggers

Summary

	Chapter	17:	Data	Services

SQL	Server	2014	Express	LocalDB

Asynchronous	Programming	with	ADO.NET	4.5

ODBC	for	Linux

JDBC

Service-Oriented	Architecture	and	WCF	Data	Services

Creating	a	WCF	Data	Service

Defining	the	Data	Source

Creating	the	Data	Service

Creating	a	WCF	Data	Service	Consumer

Summary

	Chapter	18:	Error	Handling	and	Dynamic	SQL

Error	Handling

Legacy	Error	Handling

The	RAISERROR	Statement

Try.Catch	Exception	Handling
TRY_PARSE,	TRY_CONVERT,	and	TRY_CAST

Throw	Statement

Debugging	Tools
PRINT	Statement	Debugging

Trace	Flags

SSMS	Integrated	Debugger

Visual	Studio	T-SQL	Debugger

Dynamic	SQL
The	EXECUTE	Statement

SQL	Injection	and	Dynamic	SQL

Troubleshooting	Dynamic	SQL

The	sp_executesql	Stored	Procedure
Dynamic	SQL	and	Scope

Client-Side	Parameterization

Summary

	Chapter	19:	Performance	Tuning

SQL	Server	Storage
Files	and	Filegroups

Space	Allocation

Partitions

Data	Compression

Sparse	Columns

Indexes
Heaps

Clustered	Indexes

Nonclustered	Indexes

Filtered	Indexes

Optimizing	Queries

Reading	Query	Plans

Methodology

Waits

Extended	Events

Summary

	Appendix	A:	Exercise	Answers

Chapter	1

Chapter	2

Chapter	3

Chapter	4

Chapter	5

Chapter	6

Chapter	7

Chapter	8

Chapter	9

Chapter	10

Chapter	11

Chapter	12

Chapter	13

Chapter	14

Chapter	15

Chapter	16

Chapter	17

Chapter	18

Chapter	19

	Appendix	B:	XQuery	Data	Types

	Appendix	C:	Glossary

ACID

adjacency	list	model

ADO.NET	Data	Services

anchor	query

application	programming	interface	(API)

assembly

asymmetric	encryption

atomic,	list,	and	union	data	types

axis

Bulk	Copy	Program	(BCP)

catalog	view

certificate

check	constraint

closed-world	assumption	(CWA)

clustered	index

comment

computed	constructor

content	expression

context	item	expression

context	node

database	encryption	key

database	master	key

data	domain

data	page

datum

empty	sequence

entity	data	model	(EDM)

Extended	Events	(XEvents)

extensible	key	management	(EKM)

extent

Extract,	Transform,	Load	(ETL)

facet

filter	expression

FLWOR	expression

foreign	key	constraint

full-text	catalog

full-text	index

full-text	search	(FTS)

Functions	and	Operators	(F&O)

general	comparison

Geography	Markup	Language	(GML)

grouping	set

hash

heap

heterogeneous	sequence

homogenous	sequence

indirect	recursion

inflectional	forms

initialization	vector	(IV)

Language	Integrated	Query	(LINQ)

location	path

logon	trigger

materialized	path	model

Multiple	Active	Result	Sets	(MARS)

nested	sets	model

node

node	comparison

node	test

nonclustered	index

object-relational	mapping	(O/RM)

open-world	assumption	(OWA)

optional	occurrence	indicator

parameterization

path	expression

predicate

predicate	truth	value

primary	expression

query	plan

recompilation

recursion

row	constructor

scalar	function

searched	CASE	expression

sequence

server	certificate

service	master	key	(SMK)

shredding

simple	CASE	expression

SOAP

spatial	data

spatial	index

SQL	Server	Data	Tools

SQL	injection

step

table	type

three-valued	logic	(3VL)

transparent	data	encryption	(TDE)

untyped	XML

user-defined	aggregate	(UDA)

user-defined	type	(UDT)

value	comparison

well-formed	XML

well-known	text	(WKT)

windowing	functions

World	Wide	Web	Consortium	(W3C)

XML

XML	schema

XPath

XQuery

XQuery/XPath	Data	Model	(XDM)

XSL

XSLT

	Appendix	D:	SQLCMD	Quick	Reference

Command-Line	Options

Scripting	Variables

Commands

Index

About	the	Authors

Miguel	Cebollero	is	father	to	two	beautiful	children	(Ava	and	Alex),	husband	to	wife
Sandy,	and	a	database	professional	with	more	than	16	years	of	experience	in	the	SQL
Server	and	other	database	platforms.	He	has	held	positions	in	management,	database
administration,	development,	architecting,	and	BI	development	for	Fortune	500
corporations	in	the	software,	reverse	logistics,	telecommunications,	insurance,	legal,
professional	sports	and	banking	industries.

Miguel	is	a	regular	speaker	at	local	user	groups,	regional	SQL	Saturday	events,	and	the
national	Professional	Association	for	SQL	Server	Users	(PASS)	Summit	conference	on
various	database	topics.	He	has	been	an	avid	volunteer,	chapter	leader,	and	contributor	to
PASS	since	2000	and	a	contributor	to	the	insurance	industry	standards	organization
ACORD.	He	is	a	life-long	learner	with	a	BS	from	the	University	of	Tampa	and	an	MSc
from	the	University	of	North	Carolina	Greensboro.	Biking,	the	beach,	reading,	and	time
with	family	fulfill	his	life	outside	of	work.

Jay	Natarajan	has	more	than	15	years	of	experience	in	the	SQL	Server	space.	Her	skills
lie	in	both	the	design	and	implementation	arenas;	she	has	architected	and	deployed
complex	solutions	for	enterprise	customers.	She	joined	Microsoft	Consulting	Services	in
2008.	She	holds	a	bachelor’s	degree	in	mechanical	engineering	from	the	University	of
Madras.	Jay	currently	lives	in	Atlanta	with	her	husband,	Chad,	and	their	son,	Satya.

Michael	Coles	has	more	than	a	decade’s	worth	of	experience	designing	and	administering
SQL	Server	databases.	He	is	a	prolific	writer	of	articles	on	all	aspects	of	SQL	Server,
particularly	on	the	expert	use	of	T-SQL,	and	he	holds	MCDBA	and	MCP	certifications.	He
graduated	magna	cum	laude	with	a	bachelor’s	degree	in	information	technology	from
American	Intercontinental	University	in	Georgia.	A	member	of	the	United	States	Army
Reserve,	he	was	activated	for	two	years	following	9/11.

About	the	Technical	Reviewer
Edgar	Lanting	is	a	certified	Oracle	and	Microsoft	SQL	Server	database	engineer	and	is
currently	working	at	the	file-transfer	company	WeTransfer	(www.wetransfer.com),
where	he	is	responsible	for	all	things	related	to	databases.	He	has	worked	in	IT	for	over	19
years;	he	started	as	a	system	administrator	and	made	the	change	to	DBA	more	than	15
years	ago.	He’s	currently	living	in	a	small	Dutch	village	with	his	wife	and	two	dogs.

http://www.wetransfer.com

Acknowledgments
I	would	like	to	thank	my	wife	for	her	support	during	the	weekends	and	nights	when	she
took	care	of	the	bedtime	routine	with	the	kids	so	that	I	could	finish	this	book.	My	family
has	been	the	biggest	driver	of	why	I	want	to	become	better	every	day	in	my	career.	I
would	like	to	thank	Louis	Davidson	for	introducing	me	to	the	Apress	team	and	his
publisher,	Jonathan	Gennick.	I	am	grateful	for	this	opportunity	as	a	first-time	writer.	Many
thanks	to	the	SQL	professionals	in	my	community	who	gave	me	words	of	encouragement
on	this	journey.

—Miguel	E.	Cebollero

Introduction
In	the	mid-1990s,	when	Microsoft	parted	ways	with	Sybase	in	their	conjoint	development
of	SQL	Server,	it	was	an	entirely	different	product.	When	SQL	Server	6.5	was	released	in
1996,	it	was	starting	to	gain	credibility	as	an	enterprise-class	database	server.	It	still	had
rough	management	tools,	only	core	functionalities,	and	some	limitations	that	are	forgotten
today,	like	fixed-size	devices	and	the	inability	to	drop	table	columns.	It	functioned	as	a
rudimentary	database	server:	storing	and	retrieving	data	for	client	applications.	There	was
already	plenty	for	anyone	new	to	the	relational	database	world	to	learn.	Newcomers	had	to
understand	many	concepts,	such	as	foreign	keys,	stored	procedures,	triggers,	and	the
dedicated	language,	T-SQL	(which	could	be	a	baffling	experience—writing	SELECT
queries	sometimes	involves	a	lot	of	head-scratching).	Even	when	developers	mastered	all
that,	they	still	had	to	keep	up	with	the	additions	Microsoft	made	to	the	database	engine
with	each	new	version.	Some	of	the	changes	were	not	for	the	faint	of	heart,	like	.NET
database	modules,	support	for	XML	and	the	XQuery	language,	and	a	full	implementation
of	symmetric	and	asymmetric	encryption.	These	additions	are	today	core	components	of
SQL	Server.

Because	a	relational	database	management	server	(RDBMS)	like	SQL	Server	is	one	of
the	most	important	elements	of	the	IT	environment,	you	need	to	make	the	best	of	it,	which
implies	a	good	understanding	of	its	more	advanced	features.	We	have	designed	this	book
with	the	goal	of	helping	T-SQL	developers	get	the	absolute	most	out	of	the	development
features	and	functionality	in	SQL	Server	2014.	We	cover	all	of	what’s	needed	to	master	T-
SQL	development,	from	using	management	and	development	tools	to	performance	tuning.
We	hope	you	enjoy	the	book	and	that	it	helps	you	to	become	a	pro	SQL	Server	2014
developer.

Whom	This	Book	Is	For
This	book	is	intended	for	SQL	Server	developers	who	need	to	port	code	from	prior
versions	of	SQL	Server,	and	those	who	want	to	get	the	most	out	of	database	development
on	the	2014	release.	You	should	have	a	working	knowledge	of	SQL,	preferably	T-SQL	on
SQL	Server	2005	or	later,	because	most	of	the	examples	in	this	book	are	written	in	T-SQL.
The	book	covers	some	of	the	basics	of	T-SQL,	including	introductory	concepts	like	data
domain	and	three-valued	logic,	but	this	isn’t	a	beginner’s	book.	We	don’t	discuss	database
design,	database	architecture,	normalization,	and	the	most	basic	SQL	constructs	in	any
detail.	Apress	offers	a	beginner’s	guide	to	T-SQL	2012	that	covers	more	basic	SQL
constructs.

We	focus	here	on	advanced	SQL	Server	2014	functionalities,	and	so	we	assume	you
have	a	basic	understanding	of	SQL	statements	like	INSERT	and	SELECT.	A	working
knowledge	of	C#	and	the	.NET	Framework	is	also	useful	(but	not	required),	because	two
chapters	are	dedicated	to	.NET	client	programming	and	.NET	database	integration.

Some	examples	in	the	book	are	written	in	C#.	When	C#	sample	code	is	provided,	it’s
explained	in	detail,	so	an	in-depth	knowledge	of	the	.NET	Framework	class	library	isn’t

required.

How	This	Book	Is	Structured
This	book	was	written	to	address	the	needs	of	four	types	of	readers:

SQL	developers	who	are	coming	from	other	platforms	to	SQL	Server
2014

SQL	developers	who	are	moving	from	prior	versions	of	SQL	Server	to
SQL	Server	2014

SQL	developers	who	have	a	working	knowledge	of	basic	T-SQL
programming	and	want	to	learn	about	advanced	features

Database	administrators	and	non-developers	who	need	a	working
knowledge	of	T-SQL	functionality	to	effectively	support	SQL	Server
2014	instances

For	all	types	of	readers,	this	book	is	designed	to	act	as	a	tutorial	that	describes	and
demonstrates	T-SQL	features	with	working	examples,	and	as	a	reference	for	quickly
locating	details	about	specific	features.	The	following	sections	provide	a	chapter-by-
chapter	overview.

Chapter	1
Chapter	1	starts	this	book	by	putting	SQL	Server	2014’s	implementation	of	T-SQL	in
context,	including	a	short	history,	a	discussion	of	the	basics,	and	an	overview	of	T-SQL
coding	best	practices.

Chapter	2
Chapter	2	gives	an	overview	of	the	tools	that	are	packaged	with	SQL	Server	and	available
to	SQL	Server	developers.	Tools	discussed	include	SQL	Server	Management	Studio
(SSMS),	SQLCMD,	SQL	Server	Data	Tools	(SSDT),	and	SQL	Profiler,	among	others.

Chapter	3
Chapter	3	introduces	T-SQL	procedural	code,	including	control-of-flow	statements	like
IF…THEN	and	WHILE.	This	chapter	also	discusses	CASE	expressions	and	CASE-derived
functions,	and	provides	an	in-depth	discussion	of	SQL	three-valued	logic.

Chapter	4
Chapter	4	discusses	the	various	types	of	T-SQL	user-defined	functions	available	to
encapsulate	T-SQL	logic	on	the	server.	We	talk	about	all	forms	of	T-SQL–based	user-
defined	functions,	including	scalar	user-defined	functions,	inline	table-valued	functions,

and	multistatement	table-valued	functions.

Chapter	5
Chapter	5	covers	stored	procedures,	which	allow	you	to	create	server-side	T-SQL
subroutines.	In	addition	to	describing	how	to	create	and	execute	stored	procedures	on	SQL
Server,	we	also	address	an	issue	that	is	thorny	for	some:	why	you	might	want	to	use	stored
procedures.

Chapter	6
Chapter	6	covers	the	latest	features	available	in	SQL	Server	2014:	In-Memory	OLTP
tables.	The	In-Memory	features	provide	the	capability	to	dramatically	increase	the
database	performance	of	an	OLTP	or	data-warehouse	instance.	With	the	new	features	also
come	some	limitations.

Chapter	7
Chapter	7	introduces	all	three	types	of	SQL	Server	triggers:	classic	DML	triggers,	which
fire	in	response	to	DML	statements;	DDL	triggers,	which	fire	in	response	to	server	and
database	DDL	events;	and	logon	triggers,	which	fire	in	response	to	server	LOGON	events.

Chapter	8
Chapter	8	discusses	SQL	Server	encryption,	including	the	column-level	encryption
functionality	introduced	in	SQL	Server	2005	and	the	newer	transparent	database
encryption	(TDE)	and	extensible	key	management	(EKM)	functionality,	both	introduced
in	SQL	Server	2008.

Chapter	9
Chapter	9	dives	into	the	details	of	common	table	expressions	(CTEs)	and	windowing
functions	in	SQL	Server	2014,	which	feature	some	improvements	to	the	OVER	clause	to
achieve	row-level	running	and	sliding	aggregations.

Chapter	10
Chapter	10	discusses	T-SQL	data	types:	first	some	important	things	to	know	about	basic
data	types,	such	as	how	to	handle	date	and	time	in	your	code,	and	then	advanced	data
types	and	features,	such	as	the	hierarchyid	complex	type	and	FILESTREAM	and
filetable	functionality.

Chapter	11
Chapter	11	covers	the	full-text	search	(FTS)	feature	and	advancements	made	since	SQL

Server	2008,	including	greater	integration	with	the	SQL	Server	query	engine	and	greater
transparency	by	way	of	FTS-specific	data-management	views	and	functions.

Chapter	12
Chapter	12	provides	an	in-depth	discussion	of	SQL	Server	2014	XML	functionality,	which
carries	forward	and	improve	on	the	new	features	introduced	in	SQL	Server	2005.	We
cover	several	XML-related	topics	in	this	chapter,	including	the	xml	data	type	and	its	built-
in	methods,	the	FOR	XML	clause,	and	XML	indexes.

Chapter	13
Chapter	13	discusses	XQuery	and	XPath	support	in	SQL	Server	2014,	including
improvements	on	the	XQuery	support	introduced	in	SQL	Server	2005,	such	as	support	for
the	xml	data	type	in	XML	DML	insert	statements	and	the	let	clause	in	FLWOR
expressions.

Chapter	14
Chapter	14	introduces	SQL	Server	catalog	views,	which	are	the	preferred	tools	for
retrieving	database	and	database	object	metadata.	This	chapter	also	discusses	dynamic-
management	views	and	functions,	which	provide	access	to	server	and	database	state
information.

Chapter	15
Chapter	15	covers	SQL	CLR	Integration	functionality	in	SQL	Server	2014.	In	this	chapter,
we	discuss	and	provide	examples	of	SQL	CLR	stored	procedures,	user-defined	functions,
user-defined	types,	and	user-defined	aggregates.

Chapter	16
Chapter	16	focuses	on	client-side	support	for	SQL	Server,	including	ADO.NET-based
connectivity	and	the	newest	Microsoft	object-relational	mapping	(ORM)	technology,
Entity	Framework	4.

Chapter	17
Chapter	17	discusses	SQL	Server	connectivity	using	middle-tier	technologies.	Because
native	HTTP	endpoints	have	been	deprecated	since	SQL	Server	2008,	we	discuss	them	as
items	that	may	need	to	be	supported	in	existing	databases	but	shouldn’t	be	used	for	new
development.	We	focus	instead	on	possible	replacement	technologies,	such	as	ADO.NET
data	services	and	IIS/.NET	web	services.

Chapter	18

Chapter	18	discusses	improvements	to	server-side	error	handling	made	possible	with	the
TRY…CATCH	block.	We	also	discuss	various	methods	for	debugging	code,	including	using
the	Visual	Studio	T-SQL	debugger.	This	chapter	wraps	up	with	a	discussion	of	dynamic
SQL	and	SQL	injection,	including	the	causes	of	SQL	injection	and	methods	you	can	use	to
protect	your	code	against	this	type	of	attack.

Chapter	19
Chapter	19	provides	an	overview	of	performance-tuning	SQL	Server	code.	This	chapter
discusses	SQL	Server	storage,	indexing	mechanisms,	and	query	plans.	We	end	the	chapter
with	a	discussion	of	a	proven	methodology	for	troubleshooting	T-SQL	performance	issues.

Appendix	A
Appendix	A	provides	the	answers	to	the	exercise	questions	included	at	the	end	of	each
chapter.

Appendix	B
Appendix	B	is	designed	as	a	quick	reference	to	the	XQuery	Data	Model	(XDM)	type
system.

Appendix	C
Appendix	C	provides	a	quick	reference	glossary	to	several	terms,	many	of	which	may	be
new	to	those	using	SQL	Server	for	the	first	time.

Appendix	D
Appendix	D	is	a	quick	reference	to	the	SQLCMD	command-line	tool,	which	allows	you	to
execute	ad	hoc	T-SQL	statements	and	batches	interactively,	or	run	script	files.

Conventions
To	help	make	reading	this	book	a	more	enjoyable	experience,	and	to	help	you	get	as	much
out	of	it	as	possible,	we’ve	used	the	following	standardized	formatting	conventions
throughout.

C#	code	is	shown	in	code	font.	Note	that	C#	code	is	case	sensitive.	Here’s	an	example:

	

while	(i	<	10)

T-SQL	source	code	is	also	shown	in	code	font,	with	keywords	capitalized.	Note	that
we’ve	lowercased	the	data	types	in	the	T-SQL	code	to	help	improve	readability.	Here’s	an
example:

	

DECLARE	@x	xml;

XML	code	is	shown	in	code	font	with	attribute	and	element	content	in	bold	for
readability.

Some	code	samples	and	results	have	been	reformatted	in	the	book	for	easier	reading.
XML	ignores	whitespace,	so	the	significant	content	of	the	XML	has	not	been	altered.
Here’s	an	example:

	

<book	publisher	=	"Apress">Pro	SQL	Server	2014	XML</book>:

	Note		Notes,	tips,	and	warnings	are	displayed	like	this,	in	a	special	font	with	solid	bars
placed	over	and	under	the	content.

SIDEBARS

Sidebars	include	additional	information	relevant	to	the	current	discussion	and	other
interesting	facts.	Sidebars	are	shown	on	a	gray	background.

Prerequisites
This	book	requires	an	installation	of	SQL	Server	2014	to	run	the	T-SQL	sample	code
provided.	Note	that	the	code	in	this	book	has	been	specifically	designed	to	take	advantage
of	SQL	Server	2014	features,	and	some	of	the	code	samples	won’t	run	on	prior	versions	of
SQL	Server.	The	code	samples	presented	in	the	book	are	designed	to	be	run	against	the
AdventureWorks	2014	and	SQL	Server	2014	In-Memory	OLTP	sample	databases,
available	from	the	CodePlex	web	site	at
www.codeplex.com/MSFTDBProdSamples.	The	database	name	used	in	the
samples	is	not	AdventureWorks2014,	but	AdventureWorks	or	2014	In-Memory,	for	the
sake	of	simplicity.

If	you’re	interested	in	compiling	and	deploying	the	.NET	code	samples	(the	client	code
and	SQL	CLR	examples)	presented	in	the	book,	we	highly	recommend	an	installation	of
Visual	Studio	2010	or	a	later	version.	Although	you	can	compile	and	deploy	.NET	code
from	the	command	line,	we’ve	provided	instructions	for	doing	so	through	the	Visual
Studio	Integrated	Development	Environment	(IDE).	We	find	that	the	IDE	provides	a	much
more	enjoyable	experience.

Some	examples,	such	as	the	ADO.NET	Data	Services	examples	in	Chapter	16,	require
an	installation	of	Internet	Information	Server(IIS)	as	well.	Other	code	samples	presented
in	the	book	may	have	specific	requirements,	such	as	the	Entity	Framework	4	samples,
which	require	the	.NET	Framework	3.5.	We’ve	added	notes	to	code	samples	that	have
additional	requirements	like	these.

http://www.codeplex.com/MSFTDBProdSamples

Apress	Web	Site
Visit	this	book’s	apress.com	web	page	at	www.apress.com/9781484201466	for	the
complete	sample	code	download	for	this	book.	It’s	compressed	in	a	zip	file	and	structured
so	that	each	subdirectory	contains	all	the	sample	code	for	its	corresponding	chapter.

We	and	the	Apress	team	have	made	every	effort	to	ensure	that	this	book	is	free	from
errors	and	defects.	Unfortunately,	the	occasional	error	does	slip	past	us,	despite	our	best
efforts.	In	the	event	that	you	find	an	error	in	the	book,	please	let	us	know!	You	can	submit
errors	to	Apress	by	visiting	www.apress.com/9781484201466	and	filling	out	the
form	on	the	Errata	tab.

http://www.apress.com/9781484201466
http://www.apress.com/9781484201466

CHAPTER	1

Foundations	of	T-SQL
SQL	Server	2014	is	the	latest	release	of	Microsoft’s	enterprise-class	database	management
system	(DBMS).	As	the	name	implies,	a	DBMS	is	a	tool	designed	to	manage,	secure,	and
provide	access	to	data	stored	in	structured	collections	in	databases.	Transact-SQL	(T-SQL)
is	the	language	that	SQL	Server	speaks.	T-SQL	provides	query	and	data-manipulation
functionality,	data	definition	and	management	capabilities,	and	security	administration
tools	to	SQL	Server	developers	and	administrators.	To	communicate	effectively	with	SQL
Server,	you	must	have	a	solid	understanding	of	the	language.	In	this	chapter,	you	begin
exploring	T-SQL	on	SQL	Server	2014.

A	Short	History	of	T-SQL
The	history	of	Structured	Query	Language	(SQL),	and	its	direct	descendant	Transact-SQL
(T-SQL),	begins	with	a	man.	Specifically,	it	all	began	in	1970	when	Dr.	E.	F.	Codd
published	his	influential	paper	“A	Relational	Model	of	Data	for	Large	Shared	Data	Banks”
in	the	Communications	of	the	Association	for	Computing	Machinery	(ACM).	In	his
seminal	paper,	Dr.	Codd	introduced	the	definitive	standard	for	relational	databases.	IBM
went	on	to	create	the	first	relational	database	management	system,	known	as	System	R.	It
subsequently	introduced	the	Structured	English	Query	Language	(SEQUEL,	as	it	was
known	at	the	time)	to	interact	with	this	early	database	to	store,	modify,	and	retrieve	data.
The	name	of	this	early	query	language	was	later	changed	from	SEQUEL	to	the	now-
common	SQL	due	to	a	trademark	issue.

Fast-forward	to	1986,	when	the	American	National	Standards	Institute	(ANSI)
officially	approved	the	first	SQL	standard,	commonly	known	as	the	ANSI	SQL-86
standard.	The	original	versions	of	Microsoft	SQL	Server	shared	a	common	code	base	with
the	Sybase	SQL	Server	product.	This	changed	with	the	release	of	SQL	Server	7.0,	when
Microsoft	partially	rewrote	the	code	base.	Microsoft	has	since	introduced	several
iterations	of	SQL	Server,	including	SQL	Server	2000,	SQL	Server	2005,	SQL	Server
2008,	SQL	2008	R2,	SQL	2012,	and	now	SQL	Server	2014.	This	book	focuses	on	SQL
Server	2014,	which	further	extends	the	capabilities	of	T-SQL	beyond	what	was	possible	in
previous	releases.

Imperative	vs.	Declarative	Languages
SQL	is	different	from	many	common	programming	languages	such	as	C#	and	Visual	Basic
because	it’s	a	declarative	language.	In	contrast,	languages	such	as	C++,	Visual	Basic,	C#,
and	even	assembler	language	are	imperative	languages.	The	imperative	language	model
requires	the	user	to	determine	what	the	end	result	should	be	and	tell	the	computer	step	by

step	how	to	achieve	that	result.	It’s	analogous	to	asking	a	cab	driver	to	drive	you	to	the
airport	and	then	giving	the	driver	turn-by-turn	directions	to	get	there.	Declarative
languages,	on	the	other	hand,	allow	you	to	frame	your	instructions	to	the	computer	in
terms	of	the	end	result.	In	this	model,	you	allow	the	computer	to	determine	the	best	route
to	achieve	your	objective,	analogous	to	telling	the	cab	driver	to	take	you	to	the	airport	and
trusting	them	to	know	the	best	route.	The	declarative	model	makes	a	lot	of	sense	when	you
consider	that	SQL	Server	is	privy	to	a	lot	of	“inside	information.”	Just	like	the	cab	driver
who	knows	the	shortcuts,	traffic	conditions,	and	other	factors	that	affect	your	trip,	SQL
Server	inherently	knows	several	methods	to	optimize	your	queries	and	data-manipulation
operations.

Consider	Listing	1-1,	which	is	a	simple	C#	code	snippet	that	reads	in	a	flat	file	of
names	and	displays	them	on	the	screen.

Listing	1-1.	C#	Snippet	to	Read	a	Flat	File

StreamReader	sr	=	new	StreamReader("c:\\Person_Person.txt");

string	FirstName	=	null;

while	((FirstName	=	sr.ReadLine())	!=	null)	{

Console.WriteLine(s);	}	sr.Dispose();

The	example	performs	the	following	functions	in	an	orderly	fashion:

1.	 The	code	explicitly	opens	the	storage	for	input	(in	this	example,	a
flat	file	is	used	as	a	“database”).

2.	 It	reads	in	each	record	(one	record	per	line),	explicitly	checking	for
the	end	of	the	file.

3.	 As	it	reads	the	data,	the	code	returns	each	record	for	display	using
Console.Writeline().

4.	 Finally,	it	closes	and	disposes	of	the	connection	to	the	data	file.

Consider	what	happens	when	you	want	to	add	a	name	to	or	delete	a	name	from	the
flat-file	“database.”	In	those	cases,	you	must	extend	the	previous	example	and	add	custom
routines	to	explicitly	reorganize	all	the	data	in	the	file	so	that	it	maintains	proper	ordering.
If	you	want	the	names	to	be	listed	and	retrieved	in	alphabetical	(or	any	other)	order,	you
must	write	your	own	sort	routines	as	well.	Any	type	of	additional	processing	on	the	data
requires	that	you	implement	separate	procedural	routines.

The	SQL	equivalent	of	the	C#	code	in	Listing	1-1	might	look	something	like	Listing	1-
2.

Listing	1-2.	SQL	Query	to	Retrieve	Names	from	a	Table

SELECT	FirstName	FROM	Person.Person;

	Tip		Unless	otherwise	specified,	you	can	run	all	the	T-SQL	samples	in	this	book	in	the
AdventureWorks	2014	or	SQL	2014	In-Memory	sample	database	using	SQL	Server
Management	Studio	or	SQLCMD.

To	sort	your	data,	you	can	simply	add	an	ORDER	BY	clause	to	the	SELECT	query	in
Listing	1-2.	With	properly	designed	and	indexed	tables,	SQL	Server	can	automatically
reorganize	and	index	your	data	for	efficient	retrieval	after	you	insert,	update,	or	delete
rows.

T-SQL	includes	extensions	that	allow	you	to	use	procedural	syntax.	In	fact,	you	could
rewrite	the	previous	example	as	a	cursor	to	closely	mimic	the	C#	sample	code.	These
extensions	should	be	used	with	care,	however,	because	trying	to	force	the	imperative
model	on	T-SQL	effectively	overrides	SQL	Server’s	built-in	optimizations.	More	often
than	not,	this	hurts	performance	and	makes	simple	projects	a	lot	more	complex	than	they
need	to	be.

One	of	the	great	assets	of	SQL	Server	is	that	you	can	invoke	its	power,	in	its	native
language,	from	nearly	any	other	programming	language.	For	example,	in	.NET	you	can
connect	to	SQL	Server	and	issue	SQL	queries	and	T-SQL	statements	to	it	via	the
System.Data.SqlClient	namespace,	which	is	discussed	further	in	Chapter	16.	This
gives	you	the	opportunity	to	combine	SQL’s	declarative	syntax	with	the	strict	control	of	an
imperative	language.

SQL	Basics
Before	you	learn	about	developments	in	T-SQL,	or	on	any	SQL-based	platform	for	that
matter,	let’s	make	sure	we’re	speaking	the	same	language.	Fortunately,	SQL	can	be
described	accurately	using	well-defined	and	time-tested	concepts	and	terminology.	Let’s
begin	the	discussion	of	the	components	of	SQL	by	looking	at	statements.

Statements
To	begin	with,	in	SQL	you	use	statements	to	communicate	your	requirements	to	the
DBMS.	A	statement	is	composed	of	several	parts,	as	shown	in	Figure	1-1.

Figure	1-1.	Components	of	a	SQL	statement

As	you	can	see	in	the	figure,	SQL	statements	are	composed	of	one	or	more	clauses,
some	of	which	may	be	optional	depending	on	the	statement.	In	the	SELECT	statement
shown,	there	are	three	clauses:	the	SELECT	clause,	which	defines	the	columns	to	be
returned	by	the	query;	the	FROM	clause,	which	indicates	the	source	table	for	the	query;
and	the	WHERE	clause,	which	is	used	to	limit	the	results.	Each	clause	represents	a
primitive	operation	in	the	relational	algebra.	For	instance,	in	the	example,	the	SELECT

clause	represents	a	relational	projection	operation,	the	FROM	clause	indicates	the	relation,
and	the	WHERE	clause	performs	a	restriction	operation.

	Note		The	relational	model	of	databases	is	the	model	formulated	by	Dr.	E.	F.	Codd.	In
the	relational	model,	what	are	known	in	SQL	as	tables	are	referred	to	as	relations;	hence
the	name.	Relational	calculus	and	relational	algebra	define	the	basis	of	query	languages
for	the	relational	model	in	mathematical	terms.

ORDER	OF	EXECUTION

Understanding	the	logical	order	in	which	SQL	clauses	are	applied	within	a	statement
or	query	is	important	when	setting	your	expectations	about	results.	Although	vendors
are	free	to	physically	perform	whatever	operations,	in	any	order,	that	they	choose	to
fulfill	a	query	request,	the	results	must	be	the	same	as	if	the	operations	were	applied
in	a	standards-defined	order.

The	WHERE	clause	in	the	example	contains	a	predicate,	which	is	a	logical	expression
that	evaluates	to	one	of	SQL’s	three	possible	logical	results:	true,	false,	or	unknown.	In
this	case,	the	WHERE	clause	and	the	predicate	limit	the	results	to	only	rows	in	which
ContactId	equals	1.

The	SELECT	clause	includes	an	expression	that	is	calculated	during	statement
execution.	In	the	example,	the	expression	EmailPromotion	*	10	is	used.	This
expression	is	calculated	for	every	row	of	the	result	set.

SQL	THREE-VALUED	LOGIC

SQL	institutes	a	logic	system	that	may	seem	foreign	to	developers	coming	from	other
languages	like	C++	or	Visual	Basic	(or	most	other	programming	languages,	for	that
matter).	Most	modern	computer	languages	use	simple	two-valued	logic:	a	Boolean
result	is	either	true	or	false.	SQL	supports	the	concept	of	NULL,	which	is	a
placeholder	for	a	missing	or	unknown	value.	This	results	in	a	more	complex	three-
valued	logic	(3VL).

Let’s	look	at	a	quick	example	to	demonstrate.	If	I	asked	you,	“Is	x	less	than	10?”	your
first	response	might	be	along	the	lines	of,	“How	much	is	x	?”	If	I	refused	to	tell	you
what	value	x	stood	for,	you	would	have	no	idea	whether	x	was	less	than,	equal	to,	or
greater	than	10;	so	the	answer	to	the	question	is	neither	true	nor	false—it’s	the	third
truth	value,	unknown.	Now	replace	x	with	NULL,	and	you	have	the	essence	of	SQL
3VL.	NULL	in	SQL	is	just	like	a	variable	in	an	equation	when	you	don’t	know	the
variable’s	value.

No	matter	what	type	of	comparison	you	perform	with	a	missing	value,	or	which	other
values	you	compare	the	missing	value	to,	the	result	is	always	unknown.	The
discussion	of	SQL	3VL	continues	in	Chapter	3.

The	core	of	SQL	is	defined	by	statements	that	perform	five	major	functions:	querying
data	stored	in	tables,	manipulating	data	stored	in	tables,	managing	the	structure	of	tables,

controlling	access	to	tables,	and	managing	transactions.	These	subsets	of	SQL	are	defined
following:

Querying:	The	SELECT	query	statement	is	complex.	It	has	more
optional	clauses	and	vendor-specific	tweaks	than	any	other	statement.
SELECT	is	concerned	simply	with	retrieving	data	stored	in	the
database.

Data	Manipulation	Language	(DML):	DML	is	considered	a
sublanguage	of	SQL.	It’s	concerned	with	manipulating	data	stored	in
the	database.	DML	consists	of	four	commonly	used	statements:
INSERT,	UPDATE,	DELETE,	and	MERGE.	DML	also	encompasses
cursor-related	statements.	These	statements	allow	you	to	manipulate
the	contents	of	tables	and	persist	the	changes	to	the	database.

Data	Definition	Language	(DDL):	DDL	is	another	sublanguage	of
SQL.	The	primary	purpose	of	DDL	is	to	create,	modify,	and	remove
tables	and	other	objects	from	the	database.	DDL	consists	of	variations
of	the	CREATE,	ALTER,	and	DROP	statements.

Data	Control	Language	(DCL):	DCL	is	yet	another	SQL	sublanguage.
DCL’s	goal	is	to	allow	you	to	restrict	access	to	tables	and	database
objects.	It’s	composed	of	various	GRANT	and	REVOKE	statements	that
allow	or	deny	users	access	to	database	objects.

Transactional	Control	Language	(TCL):	TCL	is	the	SQL	sublanguage
that	is	concerned	with	initiating	and	committing	or	rolling	back
transactions.	A	transaction	is	basically	an	atomic	unit	of	work
performed	by	the	server.	TCL	comprises	the	BEGIN	TRANSACTION,
COMMIT,	and	ROLLBACK	statements.

Databases
A	SQL	Server	instance—an	individual	installation	of	SQL	Server	with	its	own	ports,
logins,	and	databases—can	manage	multiple	system	databases	and	user	databases.	SQL
Server	has	five	system	databases,	as	follows:

resource:	The	resource	database	is	a	read-only	system	database
that	contains	all	system	objects.	You	don’t	see	the	resource
database	in	the	SQL	Server	Management	Studio	(SSMS)	Object
Explorer	window,	but	the	system	objects	persisted	in	the	resource
database	logically	appear	in	every	database	on	the	server.

master:	The	master	database	is	a	server-wide	repository	for
configuration	and	status	information.	It	maintains	instance-wide
metadata	about	SQL	Server	as	well	as	information	about	all	databases
installed	on	the	current	instance.	It’s	wise	to	avoid	modifying	or	even
accessing	the	master	database	directly	in	most	cases.	An	entire

server	can	be	brought	to	its	knees	if	the	master	database	is
corrupted.	If	you	need	to	access	the	server	configuration	and	status
information,	use	catalog	views	instead.

model:	The	model	database	is	used	as	the	template	from	which
newly	created	databases	are	essentially	cloned.	Normally,	you	won’t
want	to	change	this	database	in	production	settings	unless	you	have	a
very	specific	purpose	in	mind	and	are	extremely	knowledgeable	about
the	potential	implications	of	changing	the	model	database.

msdb:	The	msdb	database	stores	system	settings	and	configuration
information	for	various	support	services,	such	as	SQL	Agent	and
Database	Mail.	Normally,	you	use	the	supplied	stored	procedures	and
views	to	modify	and	access	this	data,	rather	than	modifying	it	directly.

tempdb:	The	tempdb	database	is	the	main	working	area	for	SQL
Server.	When	SQL	Server	needs	to	store	intermediate	results	of
queries,	for	instance,	they’re	written	to	tempdb.	Also,	when	you
create	temporary	tables,	they’re	actually	created	in	tempdb.	The
tempdb	database	is	reconstructed	from	scratch	every	time	you	restart
SQL	Server.

Microsoft	recommends	that	you	use	the	system-provided	stored	procedures	and
catalog	views	to	modify	system	objects	and	system	metadata,	and	let	SQL	Server	manage
the	system	databases.	You	should	avoid	modifying	the	contents	and	structure	of	the	system
databases	directly	through	ad	hoc	T-SQL.	Only	modify	the	system	objects	and	metadata
by	executing	the	system	stored	procedures	and	functions.

User	databases	are	created	by	database	administrators	(DBAs)	and	developers	on	the
server.	These	types	of	databases	are	so	called	because	they	contain	user	data.	The
AdventureWorks2014	sample	database	is	one	example	of	a	user	database.

Transaction	Logs
Every	SQL	Server	database	has	its	own	associated	transaction	log.	The	transaction	log
provides	recoverability	in	the	event	of	failure	and	ensures	the	atomicity	of	transactions.
The	transaction	log	accumulates	all	changes	to	the	database	so	that	database	integrity	can
be	maintained	in	the	event	of	an	error	or	other	problem.	Because	of	this	arrangement,	all
SQL	Server	databases	consist	of	at	least	two	files:	a	database	file	with	an	.mdf	extension
and	a	transaction	log	with	an	.ldf	extension.

THE	ADVENTUREWORKS2014	CID	TEST

SQL	folks,	and	IT	professionals	in	general,	love	their	acronyms.	A	common	acronym
in	the	SQL	world	is	ACID,	which	stands	for	“atomicity,	consistency,	isolation,
durability.”	These	four	words	form	a	set	of	properties	that	database	systems	should
implement	to	guarantee	reliability	of	data	storage,	processing,	and	manipulation:

Atomicity :	All	data	changes	should	be	transactional	in	nature.	That	is,

data	changes	should	follow	an	all-or-nothing	pattern.	The	classic
example	is	a	double-entry	bookkeeping	system	in	which	every	debit
has	an	associated	credit.	Recording	a	debit-and-credit	double	entry	in
the	database	is	considered	one	transaction,	or	a	single	unit	of	work.
You	can’t	record	a	debit	without	recording	its	associated	credit,	and
vice	versa.	Atomicity	ensures	that	either	the	entire	transaction	is
performed	or	none	of	it	is.

Consistency	:	Only	data	that	is	consistent	with	the	rules	set	up	in	the
database	is	stored.	Data	types	and	constraints	can	help	enforce
consistency	in	the	database.	For	instance,	you	can’t	insert	the	name
Meghan	in	an	integer	column.	Consistency	also	applies	when
dealing	with	data	updates.	If	two	users	update	the	same	row	of	a	table
at	the	same	time,	an	inconsistency	could	occur	if	one	update	is	only
partially	complete	when	the	second	update	begins.	The	concept	of
isolation,	described	in	the	following	bullet	point,	is	designed	to	deal
with	this	situation.

Isolation:	Multiple	simultaneous	updates	to	the	same	data	should	not
interfere	with	one	another.	SQL	Server	includes	several	locking
mechanisms	and	isolation	levels	to	ensure	that	two	users	can’t	modify
the	exact	same	data	at	the	exact	same	time,	which	could	put	the	data	in
an	inconsistent	state.	Isolation	also	prevents	you	from	even	reading
uncommitted	data	by	default.

Durability:	Data	that	passes	all	the	previous	tests	is	committed	to	the
database.	The	concept	of	durability	ensures	that	committed	data	isn’t
lost.	The	transaction	log	and	data	backup	and	recovery	features	help	to
ensure	durability.

The	transaction	log	is	one	of	the	main	tools	SQL	Server	uses	to	enforce	the	ACID
concept	when	storing	and	manipulating	data.

Schemas
SQL	Server	2014	supports	database	schemas,	which	are	logical	groupings	by	the	owner	of
database	objects.	The	AdventureWorks2014	sample	database,	for	instance,	contains
several	schemas,	such	as	HumanResources,	Person,	and	Production.	These
schemas	are	used	to	group	tables,	stored	procedures,	views,	and	user-defined	functions
(UDFs)	for	management	and	security	purposes.

	Tip		When	you	create	new	database	objects,	like	tables,	and	don’t	specify	a	schema,
they’re	automatically	created	in	the	default	schema.	The	default	schema	is	normally	dbo,
but	DBAs	may	assign	different	default	schemas	to	different	users.	Because	of	this,	it’s
always	best	to	specify	the	schema	name	explicitly	when	creating	database	objects.

Tables
SQL	Server	supports	several	types	of	objects	that	can	be	created	in	a	database.	SQL	stores
and	manages	data	in	its	primary	data	structures:	tables.	A	table	consists	of	rows	and
columns,	with	data	stored	at	the	intersections	of	these	rows	and	columns.	As	an	example,
the	AdventureWorks	HumanResources.Department	table	is	shown	in	Figure	1-2.	In
SQL	Server	2014,	you	now	have	the	option	of	creating	a	table	In-Memory.	This	feature
allows	all	the	table	data	to	be	stored	in	memory	and	can	be	accessed	with	extremely	low
latency.

Figure	1-2.	HumanResources.Department	table

In	the	table,	each	row	is	associated	with	columns	and	each	column	has	certain
restrictions	placed	on	its	content.	These	restrictions	form	the	data	domain.	The	data
domain	defines	all	the	values	a	column	can	contain.	At	the	lowest	level,	the	data	domain	is
based	on	the	data	type	of	the	column.	For	instance,	a	smallint	column	can	contain	any
integer	values	between	-32,768	and	+32,767.

The	data	domain	of	a	column	can	be	further	constrained	through	the	use	of	check
constraints,	triggers,	and	foreign	key	constraints.	Check	constraints	provide	a	means	of
automatically	checking	that	the	value	of	a	column	is	within	a	certain	range	or	equal	to	a
certain	value	whenever	a	row	is	inserted	or	updated.	Triggers	can	provide	functionality
similar	to	that	of	check	constraints.	Foreign	key	constraints	allow	you	to	declare	a
relationship	between	the	columns	of	one	table	and	the	columns	of	another	table.	You	can
use	foreign	key	constraints	to	restrict	the	data	domain	of	a	column	to	include	only	those
values	that	appear	in	a	designated	column	of	another	table.

RESTRICTING	THE	DATA	DOMAIN:	A	COMPARISON

This	section	has	given	a	brief	overview	of	three	methods	of	constraining	the	data
domain	for	a	column.	Each	method	restricts	the	values	that	can	be	contained	in	the

column.	Here’s	a	quick	comparison	of	the	three	methods:

Foreign	key	constraints	allow	SQL	Server	to	perform	an	automatic
check	against	another	table	to	ensure	that	the	values	in	a	given	column
exist	in	the	referenced	table.	If	the	value	you’re	trying	to	update	or
insert	in	a	table	doesn’t	exist	in	the	referenced	table,	an	error	is	raised
and	any	changes	are	rolled	back.	The	foreign	key	constraint	provides	a
flexible	means	of	altering	the	data	domain,	because	adding	values	to
or	removing	them	from	the	referenced	table	automatically	changes	the
data	domain	for	the	referencing	table.	Also,	foreign	key	constraints
offer	an	additional	feature	known	as	cascading	declarative	referential
integrity	(DRI),	which	automatically	updates	or	deletes	rows	from	a
referencing	table	if	an	associated	row	is	removed	from	the	referenced
table.

Check	constraints	provide	a	simple,	efficient,	and	effective	tool	for
ensuring	that	the	values	being	inserted	or	updated	in	a	column(s)	are
within	a	given	range	or	a	member	of	a	given	set	of	values.	Check
constraints,	however,	aren’t	as	flexible	as	foreign	key	constraints	and
triggers	because	the	data	domain	is	normally	defined	using	hard-coded
constant	values	or	logical	expressions.

Triggers	are	stored	procedures	attached	to	insert,	update,	or	delete
events	on	a	table	or	view.	Triggers	can	be	set	on	DML	or	DDL	events.
Both	DML	and	DDL	triggers	provide	a	flexible	solution	for
constraining	data,	but	they	may	require	more	maintenance	than	the
other	options	because	they’re	essentially	a	specialized	form	of	stored
procedure.	Unless	they’re	extremely	well	designed,	triggers	have	the
potential	to	be	much	less	efficient	than	other	methods	of	constraining
data.	Generally	triggers	are	avoided	in	modern	databases	in	favor	of
more	efficient	methods	of	constraining	data.	The	exception	to	this	is
when	you’re	trying	to	enforce	a	foreign	key	constraint	across
databases,	because	SQL	Server	doesn’t	support	cross-database	foreign
key	constraints.

Which	method	you	use	to	constrain	the	data	domain	of	your	column(s)	needs	to	be
determined	by	your	project-specific	requirements	on	a	case-by-case	basis.

Views
A	view	is	like	a	virtual	table—the	data	it	exposes	isn’t	stored	in	the	view	object	itself.
Views	are	composed	of	SQL	queries	that	reference	tables	and	other	views,	but	they’re
referenced	just	like	tables	in	queries.	Views	serve	two	major	purposes	in	SQL	Server:	they
can	be	used	to	hide	the	complexity	of	queries,	and	they	can	be	used	as	a	security	device	to
limit	the	rows	and	columns	of	a	table	that	a	user	can	query.	Views	are	expanded,	meaning
their	logic	is	incorporated	into	the	execution	plan	for	queries	when	you	use	them	in
queries	and	DML	statements.	SQL	Server	may	not	be	able	to	use	indexes	on	the	base

tables	when	the	view	is	expanded,	resulting	in	less-than-optimal	performance	when
querying	views	in	some	situations.

To	overcome	the	query	performance	issues	with	views,	SQL	Server	also	has	the	ability
to	create	a	special	type	of	view	known	as	an	indexed	view.	An	indexed	view	is	a	view	that
SQL	Server	persists	to	the	database	like	a	table.	When	you	create	an	indexed	view,	SQL
Server	allocates	storage	for	it	and	allows	you	to	query	it	like	any	other	table.	There	are,
however,	restrictions	on	inserting	into,	updating,	and	deleting	from	an	indexed	view.	For
instance,	you	can’t	perform	data	modifications	on	an	indexed	view	if	more	than	one	of	the
view’s	base	tables	will	be	affected.	You	also	can’t	perform	data	modifications	on	an
indexed	view	if	the	view	contains	aggregate	functions	or	a	DISTINCT	clause.

You	can	also	create	indexes	on	an	indexed	view	to	improve	query	performance.	The
downside	to	an	indexed	view	is	increased	overhead	when	you	modify	data	in	the	view’s
base	tables,	because	the	view	must	be	updated	as	well.

Indexes
Indexes	are	SQL	Server’s	mechanisms	for	optimizing	access	to	data.	SQL	Server	2014
supports	several	types	of	indexes,	including	the	following:

Clustered	index:	A	clustered	index	is	limited	to	one	per	table.	This
type	of	index	defines	the	ordering	of	the	rows	in	the	table.	A	clustered
index	is	physically	implemented	using	a	b-tree	structure	with	the	data
stored	in	the	leaf	levels	of	the	tree.	Clustered	indexes	order	the	data	in
a	table	in	much	the	same	way	that	a	phone	book	is	ordered	by	last
name.	A	table	with	a	clustered	index	is	referred	to	as	a	clustered	table,
whereas	a	table	with	no	clustered	index	is	referred	to	as	a	heap.

Nonclustered	index:	A	nonclustered	index	is	also	a	b-tree	index
managed	by	SQL	Server.	In	a	nonclustered	index,	index	rows	are
included	in	the	leaf	levels	of	the	b-tree.	Because	of	this,	nonclustered
indexes	have	no	effect	on	the	ordering	of	rows	in	a	table.	The	index
rows	in	the	leaf	levels	of	a	nonclustered	index	consist	of	the
following:

A	nonclustered	key	value

A	row	locator,	which	is	the	clustered	index	key	on	a	table	with
a	clustered	index,	or	a	SQL-generated	row	ID	for	a	heap

Nonkey	columns,	which	are	added	via	the	INCLUDE	clause	of
the	CREATE	INDEX	statement

Columnstore	index:	A	columnstore	index	is	a	special	index	used	for
very	large	tables	(>100	million	rows)	and	is	mostly	applicable	to	large
data-warehouse	implementations.	A	columnstore	index	creates	an
index	on	the	column	as	opposed	to	the	row	and	allows	for	efficient
and	extremely	fast	retrieval	of	large	data	sets.	Prior	to	SQL	Server
2014,	tables	with	columnstore	indexes	were	required	to	be	read-only.

In	SQL	Server	2014,	columnstore	indexes	are	now	updateable.	This
feature	is	discussed	further	in	Chapter	6.

XML	index:	SQL	Server	supports	special	indexes	designed	to	help
efficiently	query	XML	data.	See	Chapter	11	for	more	information.

Spatial	index:	A	spatial	index	is	an	interesting	new	indexing	structure
to	support	efficient	querying	of	the	new	geometry	and	geography	data
types.	See	Chapter	2	for	more	information.

Full-text	index:	A	full-text	index	(FTI)	is	a	special	index	designed	to
efficiently	perform	full-text	searches	of	data	and	documents.

Memory-optimized	index:	SQL	Server	2014	introduced	In-Memory
tables	that	bring	with	them	new	index	types.	These	types	of	indexes
only	exist	in	memory	and	must	be	created	with	the	initial	table
creation.	These	index	types	are	covered	at	length	in	Chapter	6:

Nonclustered	hash	index:	This	type	of	index	is	most	efficient
in	scenarios	where	the	query	will	return	values	for	a	specific
value	criteria.	For	example,	SELECT	*	FROM	<Table>
WHERE	<Column>	=	@<ColumnValue>.

Memory-optimized	nonclustered	index:	This	type	of	index
supports	the	same	functions	as	a	hash	index,	in	addition	to	seek
operations	and	sort	ordering.

You	can	also	include	nonkey	columns	in	your	nonclustered	indexes	with	the
INCLUDE	clause	of	the	CREATE	INDEX	statement.	The	included	columns	give	you	the
ability	to	work	around	SQL	Server’s	index	size	limitations.

Stored	Procedures
SQL	Server	supports	the	installation	of	server-side	T-SQL	code	modules	via	stored
procedures	(SPs).	It’s	very	common	to	use	SPs	as	a	sort	of	intermediate	layer	or	custom
server-side	application	programming	interface	(API)	that	sits	between	user	applications
and	tables	in	the	database.	Stored	procedures	that	are	specifically	designed	to	perform
queries	and	DML	statements	against	the	tables	in	a	database	are	commonly	referred	to	as
CRUD	(create,	read,	update,	delete)	procedures.

User-Defined	Functions
User-defined	functions	(UDFs)	can	perform	queries	and	calculations,	and	return	either
scalar	values	or	tabular	result	sets.	UDFs	have	certain	restrictions	placed	on	them.	For
instance,	they	can’t	use	certain	nondeterministic	system	functions,	nor	can	they	perform
DML	or	DDL	statements,	so	they	can’t	make	modifications	to	the	database	structure	or
content.	They	can’t	perform	dynamic	SQL	queries	or	change	the	state	of	the	database
(cause	side	effects).

SQL	CLR	Assemblies
SQL	Server	2014	supports	access	to	Microsoft	.NET	functionality	via	the	SQL	Common
Language	Runtime	(SQL	CLR).	To	access	this	functionality,	you	must	register	compiled
.NET	SQL	CLR	assemblies	with	the	server.	The	assembly	exposes	its	functionality
through	class	methods,	which	can	be	accessed	via	SQL	CLR	functions,	procedures,
triggers,	user-defined	types,	and	user-defined	aggregates.	SQL	CLR	assemblies	replace	the
deprecated	SQL	Server	extended	stored	procedure	(XP)	functionality	available	in	prior
releases.

	Tip		Avoid	using	extended	stored	procedures	(XPs)	on	SQL	Server	2014.	The	same
functionality	provided	by	XPs	can	be	provided	by	SQL	CLR	code.	The	SQL	CLR	model
is	more	robust	and	secure	than	the	XP	model.	Also	keep	in	mind	that	the	XP	library	is
deprecated,	and	XP	functionality	may	be	completely	removed	in	a	future	version	of	SQL
Server.

Elements	of	Style
Now	that	you’ve	had	a	broad	overview	of	the	basics	of	SQL	Server,	let’s	look	at	some
recommended	development	tips	to	help	with	code	maintenance.	Selecting	a	particular
style	and	using	it	consistently	helps	immensely	with	both	debugging	and	future
maintenance.	The	following	sections	contain	some	general	recommendations	to	make	your
T-SQL	code	easy	to	read,	debug,	and	maintain.

Whitespace
SQL	Server	ignores	extra	whitespace	between	keywords	and	identifiers	in	SQL	queries
and	statements.	A	single	statement	or	query	may	include	extra	spaces	and	tab	characters
and	can	even	extend	across	several	lines.	You	can	use	this	knowledge	to	great	advantage.
Consider	Listing	1-3,	which	is	adapted	from	the	HumanResources.vEmployee	view
in	the	AdventureWorks2014	database.

Listing	1-3.	The	HumanResources.vEmployee	View	from	the
AdventureWorks2014	Database

SELECT	e.BusinessEntityID,	p.Title,	p.FirstName,	

p.MiddleName,	p.LastName,	p.Suffix,	e.JobTitle,	

pp.PhoneNumber,	pnt.Name	AS	PhoneNumberType,	

ea.EmailAddress,

p.EmailPromotion,	a.AddressLine1,	a.AddressLine2,	a.City,	

sp.Name	AS	StateProvinceName,	a.PostalCode,	cr.Name	AS	

CountryRegionName,	p.AdditionalContactInfo

FROM	HumanResources.Employee	AS	e	INNER	JOIN	Person.Person	

AS	p	ON	p.BusinessEntityID	=	e.BusinessEntityID	INNER	JOIN	

Person.BusinessEntityAddress	AS	bea	ON	bea.BusinessEntityID	

=	e.BusinessEntityID	INNER	JOIN	Person.Address	AS	a	ON	

a.AddressID	=	bea.AddressID	INNER	JOIN	Person.StateProvince	

AS	sp	ON	sp.StateProvinceID	=	a.StateProvinceID	INNER	JOIN	

Person.CountryRegion	AS	cr	ON	cr.CountryRegionCode	

=	sp.CountryRegionCode	LEFT	OUTER	JOIN	Person.PersonPhone	AS	

pp	ON	pp.BusinessEntityID	=	p.BusinessEntityID	LEFT	OUTER	

JOIN	Person.PhoneNumberType	AS	pnt	ON	pp.PhoneNumberTypeID	

=	pnt.PhoneNumberTypeID	LEFT	OUTER	JOIN	Person.EmailAddress	

AS	ea	ON	p.BusinessEntityID	=	ea.BusinessEntityID

This	query	will	run	and	return	the	correct	result,	but	it’s	very	hard	to	read.	You	can	use
whitespace	and	table	aliases	to	generate	a	version	that	is	much	easier	on	the	eyes,	as
demonstrated	in	Listing	1-4.

Listing	1-4.	The	HumanResources.vEmployee	View	Reformatted	for	Readability

SELECT

		e.BusinessEntityID,

		p.Title,

		p.FirstName,

		p.MiddleName,

		p.LastName,

		p.Suffix,

		e.JobTitle,

		pp.PhoneNumber,

		pnt.Name	AS	PhoneNumberType,

		ea.EmailAddress,

		p.EmailPromotion,

		a.AddressLine1,

		a.AddressLine2,

		a.City,

		sp.Name	AS	StateProvinceName,

		a.PostalCode,

		cr.Name	AS	CountryRegionName,

		p.AdditionalContactInfo

FROM	HumanResources.Employee	AS	e	INNER	JOIN	Person.Person	

AS	p

		ON	p.BusinessEntityID	=	e.BusinessEntityID

INNER	JOIN	Person.BusinessEntityAddress	AS	bea

		ON	bea.BusinessEntityID	=	e.BusinessEntityID

INNER	JOIN	Person.Address	AS	a

		ON	a.AddressID	=	bea.AddressID

INNER	JOIN	Person.StateProvince	AS	sp

		ON	sp.StateProvinceID	=	a.StateProvinceID

INNER	JOIN	Person.CountryRegion	AS	cr

		ON	cr.CountryRegionCode	=	sp.CountryRegionCode

LEFT	OUTER	JOIN	Person.PersonPhone	AS	pp

		ON	pp.BusinessEntityID	=	p.BusinessEntityID

LEFT	OUTER	JOIN	Person.PhoneNumberType	AS	pnt

		ON	pp.PhoneNumberTypeID	=	pnt.PhoneNumberTypeID

LEFT	OUTER	JOIN	Person.EmailAddress	AS	ea

		ON	p.BusinessEntityID	=	ea.BusinessEntityID;

Notice	that	the	ON	keywords	are	indented,	associating	them	visually	with	the	INNER
JOIN	operators	directly	before	them	in	the	listing.	The	column	names	on	the	lines	directly
after	the	SELECT	keyword	are	also	indented,	associating	them	visually	with	SELECT.
This	particular	style	is	useful	in	helping	visually	break	up	a	query	into	sections.	The
personal	style	you	decide	on	may	differ	from	this	one,	but	once	you’ve	decided	on	a
standard	indentation	style,	be	sure	to	apply	it	consistently	throughout	your	code.

Code	that	is	easy	to	read	is	easier	to	debug	and	maintain.	The	code	in	Listing	1-4	uses
table	aliases,	plenty	of	whitespace,	and	the	semicolon	(;)	terminator	to	mark	the	end	of
SELECT	statements,	to	make	the	code	more	readable.	(It’s	a	good	idea	to	get	into	the	habit
of	using	the	terminating	semicolon	in	your	SQL	queries—it’s	required	in	some	instances.)

	Tip		Semicolons	are	required	terminators	for	some	statements	in	SQL	Server	2014.
Instead	of	trying	to	remember	all	the	special	cases	where	they	are	or	aren’t	required,	it’s	a
good	idea	to	use	the	semicolon	statement	terminator	throughout	your	T-SQL	code.	You’ll
notice	the	use	of	semicolon	terminators	in	all	the	examples	in	this	book.

Naming	Conventions
SQL	Server	allows	you	to	name	your	database	objects	(tables,	views,	procedures,	and	so
on)	using	just	about	any	combination	of	up	to	128	characters	(116	characters	for	local
temporary	table	names),	as	long	as	you	enclose	them	in	single	quotes	('')	or	brackets	([
]).	Just	because	you	can,	however,	doesn’t	necessarily	mean	you	should.	Many	of	the
allowed	characters	are	hard	to	differentiate	from	other	similar-looking	characters,	and
some	may	not	port	well	to	other	platforms.	The	following	suggestions	will	help	you	avoid
potential	problems:

Use	alphabetic	characters	(A–Z,	a–z,	and	Unicode	Standard	3.2
letters)	for	the	first	character	of	your	identifiers.	The	obvious
exceptions	are	SQL	Server	variable	names	that	start	with	the	at	(@)
sign,	temporary	tables	and	procedures	that	start	with	the	number	sign
(#),	and	global	temporary	tables	and	procedures	that	begin	with	a
double	number	sign	(##).

Many	built-in	T-SQL	functions	and	system	variables	have	names	that
begin	with	a	double	at	sign	(@@),	such	as	@@ERR0R	and
@@IDENTITY.	To	avoid	confusion	and	possible	conflicts,	don’t	use	a
leading	double	at	sign	to	name	your	identifiers.

Restrict	the	remaining	characters	in	your	identifiers	to	alphabetic
characters	(A–Z,	a–z,	and	Unicode	Standard	3.2	letters),	numeric

digits	(0–9),	and	the	underscore	character	(_).	The	dollar	sign	($)
character,	although	allowed,	isn’t	advisable.

Avoid	embedded	spaces,	punctuation	marks	(other	than	the	underscore
character),	and	other	special	characters	in	your	identifiers.

Avoid	using	SQL	Server	2014	reserved	keywords	as	identifiers.	You
can	find	the	list	here:	http://msdn.microsoft.com/en-
us/library/ms189822.aspx.

Limit	the	length	of	your	identifiers.	Thirty-two	characters	or	less	is	a
reasonable	limit	while	not	being	overly	restrictive.	Much	more	than
that	becomes	cumbersome	to	type	and	can	hurt	your	code	readability.

Finally,	to	make	your	code	more	readable,	select	a	capitalization	style	for	your
identifiers	and	code,	and	use	it	consistently.	My	preference	is	to	fully	capitalize	T-SQL
keywords	and	use	mixed-case	and	underscore	characters	to	visually	break	up	identifiers
into	easily	readable	words.	Using	all	capital	characters	or	inconsistently	applying	mixed
case	to	code	and	identifiers	can	make	your	code	illegible	and	hard	to	maintain.	Consider
the	example	query	in	Listing	1-5.

Listing	1-5.	All-Capital	SELECT	Query

SELECT	P.BUSINESSENTITYID,	P.FIRSTNAME,	P.LASTNAME,	

S.SALESYTD

FROM	PERSON.PERSON	P	INNER	JOIN	SALES.SALESPERSON	SP

ON	P.BUSINESSENTITYID	=	SP.BUSINESSENTITYID;

The	all-capital	version	is	difficult	to	read.	It’s	hard	to	tell	the	SQL	keywords	from	the
column	and	table	names	at	a	glance.	Compound	words	for	column	and	table	names	aren’t
easily	identified.	Basically,	your	eyes	have	to	work	a	lot	harder	to	read	this	query	than
they	should,	which	makes	otherwise	simple	maintenance	tasks	more	difficult.
Reformatting	the	code	and	identifiers	makes	this	query	much	easier	on	the	eyes,	as	Listing
1-6	demonstrates.

Listing	1-6.	Reformatted,	Easy-on-the-Eyes	Query

SELECT

			p.BusinessEntityID,

			p.FirstName,

			p.LastName,

			sp.SalesYTD

FROM	Person.Person	p	INNER	JOIN	Sales.SalesPerson	sp

			ON	p.BusinessEntityID	=	sp.BusinessEntityID;

The	use	of	all	capitals	for	the	keywords	in	the	second	version	makes	them	stand	out
from	the	mixed-case	table	and	column	names.	Likewise,	the	mixed-case	column	and	table
names	make	the	compound	word	names	easy	to	recognize.	The	net	effect	is	that	the	code
is	easier	to	read,	which	makes	it	easier	to	debug	and	maintain.	Consistent	use	of	good
formatting	habits	helps	keep	trivial	changes	trivial	and	makes	complex	changes	easier.

http://msdn.microsoft.com/en-us/library/ms189822.aspx

One	Entry,	One	Exit
When	writing	SPs	and	UDFs,	it’s	good	programming	practice	to	use	the	“one	entry,	one
exit”	rule.	SPs	and	UDFs	should	have	a	single	entry	point	and	a	single	exit	point	(RETURN
statement).

The	SP	in	Listing	1-7	is	a	simple	procedure	with	one	entry	point	and	several	exit
points.	It	retrieves	the	ContactTypelD	number	from	the	AdventureWorks2014
Person.ContactType	table	for	the	ContactType	name	passed	into	it.	If	no
ContactType	exists	with	the	name	passed	in,	a	new	one	is	created,	and	the	newly
created	ContactTypelD	is	passed	back.

Listing	1-7.	Stored	Procedure	Example	with	One	Entry	and	Multiple	Exits

CREATE	PROCEDURE	dbo.GetOrAdd_ContactType

(

				@Name	NVARCHAR(50),

				@ContactTypeID	INT	OUTPUT

)

AS

				DECLARE	@Err_Code	AS	INT;

				SELECT	@Err_Code	=	0;

				SELECT	@ContactTypeID	=	ContactTypeID

				FROM	Person.ContactType

				WHERE	[Name]	=	@Name;

				IF	@ContactTypeID	IS	NOT	NULL

				RETURN;				--	Exit	1:	if	the	ContactType	exists

				INSERT

				INTO	Person.ContactType	([Name],	ModifiedDate)

				SELECT	@Name,	CURRENT_TIMESTAMP;

				SELECT	@Err_Code	=	'error';

				IF	@Err_Code	<>	0

							RETURN	@Err_Code;		--	Exit	2:	if	there	is	an	error	on	

INSERT

				SELECT	@ContactTypeID	=	SCOPE_IDENTITY();

				RETURN	@Err_Code;				—Exit	3:	after	successful	INSERT

GO

This	code	has	one	entry	point	but	three	possible	exit	points.	Figure	1-3	shows	a	simple
flowchart	for	the	paths	this	code	can	take.

Figure	1-3.	Flowchart	for	an	example	with	one	entry	and	multiple	exits

As	you	can	imagine,	maintaining	code	such	as	that	in	Listing	1-7	becomes	more
difficult	because	the	flow	of	the	code	has	so	many	possible	exit	points,	each	of	which	must
be	accounted	for	when	you	make	modifications	to	the	SP.	Listing	1-8	updates	Listing	1-7
to	give	it	a	single	entry	point	and	a	single	exit	point,	making	the	logic	easier	to	follow.

Listing	1-8.	Stored	Procedure	with	One	Entry	and	One	Exit

CREATE		PROCEDURE		dbo.GetOrAdd_ContactType

(

				@Name	NVARCHAR(50),

				@ContactTypeID	INT	OUTPUT

)

AS

				DECLARE	@Err_Code	AS	INT;

				SELECT	@Err_Code	=	0;

				SELECT	@ContactTypeID	=	ContactTypeID

				FROM	Person.ContactType

				WHERE	[Name]	=	@Name;

				IF		@ContactTypeID		IS		NULL

				BEGIN

				INSERT

				INTO		Person.ContactType		([Name],		ModifiedDate)

				SELECT		@Name,		CURRENT_TIMESTAMP;

				SELECT	@Err_Code	=	@@error;

				IF		@Err_Code		=		0				--		If		there's	an	error,	skip	

next

				SELECT		@ContactTypeID		=		SCOPE_IDENTITY();

				END

				RETURN	@Err_Code;		—Single	exit	point

GO

Figure	1-4	shows	the	modified	flowchart	for	this	new	version	of	the	SP.

Figure	1-4.	Flowchart	for	an	example	with	one	entry	and	one	exit

The	one	entry	and	one	exit	model	makes	the	logic	easier	to	follow,	which	in	turn
makes	the	code	easier	to	manage.	This	rule	also	applies	to	looping	structures,	which	you
implement	via	the	WHILE	statement	in	T-SQL.	Avoid	using	the	WHILE	loop’s
CONTINUE	and	BREAK	statements	and	the	GOTO	statement;	these	statements	lead	to	old-
fashioned,	difficult-to-maintain	spaghetti	code.

Defensive	Coding

Defensive	coding	involves	anticipating	problems	before	they	occur	and	mitigating	them
through	good	coding	practices.	The	first	and	foremost	lesson	of	defensive	coding	is	to
always	check	user	input.	Once	you	open	your	system	to	users,	expect	them	to	do
everything	in	their	power	to	try	to	break	your	system.	For	instance,	if	you	ask	users	to
enter	a	number	between	1	and	10,	expect	that	they’ll	ignore	your	directions	and	key	in	;
DROP	TABLE	dbo.syscomments;	—	at	the	first	available	opportunity.	Defensive
coding	practices	dictate	that	you	should	check	and	scrub	external	inputs.	Don’t	blindly
trust	anything	that	comes	from	an	external	source.

Another	aspect	of	defensive	coding	is	a	clear	delineation	between	exceptions	and	run-
of-the-mill	issues.	The	key	is	that	exceptions	are,	well,	exceptional	in	nature.	Ideally,
exceptions	should	be	caused	by	errors	that	you	can’t	account	for	or	couldn’t	reasonably
anticipate,	like	a	lost	network	connection	or	physical	corruption	of	your	application	or
data	storage.	Errors	that	can	be	reasonably	expected,	like	data-entry	errors,	should	be
captured	before	they’re	raised	to	the	level	of	exceptions.	Keep	in	mind	that	exceptions	are
often	resource-intensive,	expensive	operations.	If	you	can	avoid	an	exception	by
anticipating	a	particular	problem,	your	application	will	benefit	in	both	performance	and
control.	SQL	Server	2012	introduced	a	valuable	new	error-handling	feature	called	THROW.
The	TRY/CATCH/THROW	statements	are	discussed	in	more	detail	in	Chapter	18.

The	SELECT	*	Statement
Consider	the	SELECT	*	style	of	querying.	In	a	SELECT	clause,	the	asterisk	(*)	is	a
shorthand	way	of	specifying	that	all	columns	in	a	table	should	be	returned.	Although
SELECT	*	is	a	handy	tool	for	ad	hoc	querying	of	tables	during	development	and
debugging,	you	normally	shouldn’t	use	it	in	a	production	system.	One	reason	to	avoid	this
method	of	querying	is	to	minimize	the	amount	of	data	retrieved	with	each	call.	SELECT
*	retrieves	all	columns,	regardless	of	whether	they’re	needed	by	the	higher-level
applications.	For	queries	that	return	a	large	number	of	rows,	even	one	or	two	extraneous
columns	can	waste	a	lot	of	resources.

If	the	underlying	table	or	view	is	altered,	columns	may	be	added	to	or	removed	from
the	returned	result	set.	This	can	cause	errors	that	are	hard	to	locate	and	fix.	By	specifying
the	column	names,	your	front-end	application	can	be	assured	that	only	the	required
columns	are	returned	by	a	query	and	that	errors	caused	by	missing	columns	will	be	easier
to	locate.

As	with	most	things,	there	are	always	exceptions—for	example,	if	you’re	using	the
FOR	XML	AUTO	clause	to	generate	XML	based	on	the	structure	and	content	of	your
relational	data.	In	this	case,	SELECT	*	can	be	quite	useful,	because	you’re	relying	on
FOR	XML	to	automatically	generate	the	node	names	based	on	the	table	and	column	names
in	the	source	tables.

	Tip		SELECT	*	should	be	avoided,	but	if	you	do	need	to	use	it,	always	try	to	limit	the
data	set	being	returned.	One	way	of	doing	so	is	to	make	full	use	of	the	T-SQL	TOP
command	and	restrict	the	number	of	records	returned.	In	practice,	though,	you	should
never	write	SELECT	*	in	your	code—even	for	small	tables.	Small	tables	today	could	be

large	tables	tomorrow.

Variable	Initialization
When	you	create	SPs,	UDFs,	or	any	script	that	uses	T-SQL	user	variables,	you	should
initialize	those	variables	before	the	first	use.	Unlike	some	other	programming	languages
that	guarantee	that	newly	declared	variables	will	be	initialized	to	0	or	an	empty	string
(depending	on	their	data	types),	T-SQL	guarantees	only	that	newly	declared	variables	will
be	initialized	to	NULL.	Consider	the	code	snippet	shown	in	Listing	1-9.

Listing	1-9.	Sample	Code	Using	an	Uninitialized	Variable

DECLARE	@i	INT;	SELECT	@i	=	@i	+	5;	SELECT	@i;

The	result	is	NULL,	which	is	a	shock	if	you	were	expecting	5.	Expecting	SQL	Server
to	initialize	numeric	variables	to	0	(like	@i	in	the	previous	example)	or	an	empty	string
will	result	in	bugs	that	can	be	extremely	difficult	to	locate	in	your	T-SQL	code.	To	avoid
these	problems,	always	explicitly	initialize	your	variables	after	declaration,	as
demonstrated	in	Listing	1-10.

Listing	1-10.	Sample	Code	Using	an	Initialized	Variable

DECLARE	@i	INT	=	0;—Changed	this	statement	to	initialize	@i	

to	0

SELECT	@i	=	@i	+	5;

SELECT	@i;

Summary
This	chapter	has	served	as	an	introduction	to	T-SQL,	including	a	brief	history	of	SQL	and
a	discussion	of	the	declarative	programming	style.	The	chapter	started	with	a	discussion	of
ISO	SQL	standard	compatibility	in	SQL	Server	2014	and	the	differences	between
imperative	and	declarative	languages,	of	which	SQL	is	the	latter.	You	also	saw	many	of
the	basic	components	of	SQL,	including	databases,	tables,	views,	SPs,	and	other	common
database	objects.	Finally,	I	provided	my	personal	recommendations	for	writing	SQL	code
that	is	easy	to	debug	and	maintain.	I	subscribe	to	the	“eat	your	own	dog	food”	theory,	and
throughout	this	book	I	faithfully	follow	the	best	practice	recommendations	that	I’ve	asked
you	to	consider.

The	next	chapter	provides	an	overview	of	the	new	and	improved	tools	available	out	of
the	box	for	developers.	Specifically,	Chapter	2	discusses	the	SQLCMD	text-based	SQL
client	(originally	a	replacement	for	osql),	SSMS,	SQL	Server	2014	Books	Online
(BOL),	and	some	of	the	other	available	tools	that	make	writing,	editing,	testing,	and
debugging	easier	and	faster	than	ever.

EXERCISES

1.	 Describe	the	difference	between	an	imperative	language	and	a
declarative	language.

2.	 What	does	the	acronym	ACID	stand	for?

3.	 SQL	Server	2014	supports	seven	different	types	of	indexes.	Two	of
these	indexes	are	newly	introduced	in	SQL	2014.	What	are	they?

4.	 Name	two	of	the	restrictions	on	any	type	of	SQL	Server	UDF.

5.	 [True/False]	In	SQL	Server,	newly	declared	variables	are	always
assigned	the	default	value	0	for	numeric	data	types	and	an	empty
string	for	character	data	types.

CHAPTER	2

Tools	of	the	Trade
SQL	Server	2014	comes	with	a	wide	selection	of	tools	and	utilities	to	make	development
easier	and	more	productive	for	developers.	This	chapter	introduces	some	of	the	most
important	tools	for	SQL	Server	developers,	including	SQL	Server	Management	Studio
(SSMS)	and	the	SQLCMD	utility,	SQL	Server	Data	Tool	add-ins	to	Microsoft	Visual
Studio,	SQL	Profiler,	Database	Tuning	Advisor,	Extended	Events,	and	SQL	Server	2014
Books	Online	(BOL).	You’re	also	introduced	to	supporting	tools	like	SQL	Server
Integration	Services	(SSIS),	the	Bulk	Copy	Program	(BCP),	and	the	AdventureWorks
2014	sample	database,	which	you	use	in	examples	throughout	the	book.

SQL	Server	Management	Studio
Back	in	the	heyday	of	SQL	Server	2000,	it	was	common	for	developers	to	fire	up	the
Enterprise	Manager	(EM)	and	Query	Editor	GUI	database	tools	in	rapid	succession	every
time	they	sat	down	to	write	code.	Historically,	developer	and	DBA	roles	in	the	DBMS
have	been	highly	separated,	and	with	good	reason.	DBAs	have	historically	brought
hardware	and	software	administration	and	tuning	skills,	database	design	optimization
experience,	and	healthy	doses	of	skepticism	and	security	to	the	table.	On	the	other	hand,
developers	have	focused	on	coding	skills,	problem	solving,	system	optimization,	and
debugging.	This	separation	of	powers	works	very	well	in	production	systems,	but	in
development	environments	developers	are	often	responsible	for	their	own	database	design
and	management.	Sometimes	developers	are	put	in	charge	of	their	own	development
server	local	security.

SQL	Server	2000	EM	was	originally	designed	as	a	DBA	tool,	providing	access	to	the
graphical	user	interface	(GUI)	administration	interface,	including	security	administration,
database	object	creation	and	management,	and	server	management	functionality.	Query
Editor	was	designed	as	a	developer	tool,	the	primary	GUI	tool	for	creating,	testing,	and
tuning	queries.

SQL	Server	2014	continues	the	tradition	begun	with	SQL	Server	2005	by	combining
the	functionality	of	both	these	GUI	tools	into	a	single	GUI	interface	known	as	SQL	Server
Management	Studio	(SSMS).	This	makes	perfect	sense	in	supporting	real-world	SQL
Server	development,	where	the	roles	of	DBA	and	developer	are	often	intermingled	in
development	environments.

Many	SQL	Server	developers	prefer	the	GUI	administration	and	development	tools	to
the	text-based	query	tool	SQLCMD	to	build	their	databases,	and	on	this	front	SSMS
doesn’t	disappoint.	SSMS	offers	several	features	that	make	development	and
administration	easier,	including	the	following:

Integrated,	functional	Object	Explorer,	which	provides	the	ability	to
easily	view	all	the	objects	in	the	server	and	manage	them	in	a	tree
structure.	The	added	filter	functionality	helps	users	narrow	down	the
objects	they	want	to	work	with.

Color	coding	of	scripts,	making	editing	and	debugging	easier.

Enhanced	keyboard	shortcuts	that	make	searching	faster	and	easier.
Additionally,	users	can	map	predefined	keyboard	shortcuts	to	stored
procedures	that	are	used	most	often.

Two	keyboard	shortcut	schemes:	keyboard	shortcuts	from	SQL	Server
2008	R2	and	Microsoft	Visual	Studio	2010	compatibility.

Usability	enhancements	such	as	the	ability	to	zoom	text	in	the	Query
Editor	by	holding	the	Ctrl	key	and	scrolling	to	zoom	in	and	out.	Users
can	drag	and	drop	tabs,	and	there	is	true	multimonitor	support.

Breakpoint	validation,	which	prevents	users	from	setting	breakpoints
at	invalid	locations.

T-SQL	code	snippets,	which	are	templates	that	can	be	used	as	starting
points	to	build	T-SQL	statement	in	scripts	and	batches.

T-SQL	Debugger	Watch	and	Quick	Watch	windows,	which	support
watching	T-SQL	expressions.

Graphical	query	execution	plans.	These	are	the	bread	and	butter	of	the
query-optimization	process.	They	greatly	simplify	the	process	of
optimizing	complex	queries,	quickly	exposing	potential	bottlenecks	in
your	code.

Project-management	and	code-version	control	integration,	including
integration	with	Team	Foundation	Server	(TFS)	and	Visual
SourceSafe	version	control	systems.

SQLCMD	mode,	which	allows	you	to	execute	SQL	scripts	using
SQLCMD.	You	can	take	advantage	of	SQLCMD’s	additional	script
capabilities,	like	scripting	variables	and	support	for	the	AlwaysON
feature.

SSMS	also	includes	database	and	server	management	features,	but	this	discussion	is
limited	to	some	of	the	most	important	developer-specific	features.

IntelliSense
IntelliSense	is	a	feature	that	was	introduced	in	SQL	Server	2008.	When	coding,	you	often
need	to	look	up	language	elements	such	as	functions,	table	names,	and	column	names	to
complete	your	code.	This	feature	allows	the	SQL	Editor	to	automatically	prompt	for	the
completion	of	the	syntax	you	input,	based	on	partial	words.	To	enable	IntelliSense,	go	to
Tools	 	Options	 	Text	Editor	 	Transact-SQL	 	IntelliSense.	Figure	2-1	demonstrates
how	the	IntelliSense	feature	suggests	language	elements	based	on	the	first	letter	entered.

Figure	2-1.	Using	IntelliSense	to	complete	a	Select	statement

Code	Snippets
Code	snippets	aren’t	a	new	concept	to	the	programming	world.	Visual	Studio	developers
are	very	familiar	with	this	feature;	and	because	SSMS	is	built	on	the	Visual	Studio	2010
shell,	SQL	inherits	this	functionality	as	well.	During	the	development	cycle,	developers
often	use	a	set	of	T-SQL	statements	multiple	times	throughout	the	code	being	worked	on.
It’s	much	more	efficient	to	access	a	block	of	code	that	contains	common	code	elements
such	as	create	stored	procedure	and	create	function,	to	help	you	build
on	top	of	the	code	block.	Code	snippets	are	building	blocks	of	code	that	you	can	use	as	a
starting	point	when	building	T-SQL	scripts.	This	feature	can	help	you	be	more
productivity	while	increasing	reusability	and	standardization	by	enabling	the	development
team	to	use	existing	templates	or	to	create	and	customize	a	new	template.

Code	snippets	help	provide	a	better	T-SQL	code-editing	experience.	In	addition,	a
snippet	is	an	XML	template	that	can	be	used	to	guarantee	consistency	across	the
development	team.	These	snippets	fall	into	three	categories:

Expansion	snippets	list	the	common	outline	of	T-SQL	commands	such
as

Select,	Insert,	and	Create	Table.

Surround	snippets	include	constructs	such	as	while,	if	else,	and
begin	end	statements.

Custom	snippets	allow	custom	templates	that	can	be	invoked	via	the
snippet	menu.	You	can	create	a	custom	snippet	and	add	it	to	the	server
by	importing	the	snippet	using	the	Code	Snippet	Manager.	Once	you
add	a	custom	snippet,	the	Custom	Snippets	category	appears	in	the
Code	Snippet	Manager.

To	access	the	code	snippets,	select	the	Code	Snippets	Manager	from	the	Tools	menu.
Figure	2-2	shows	the	Code	Snippet	Manager	interface,	which	you	can	use	to	add,	remove,
or	import	code	snippets.

Figure	2-2.	Code	Snippet	Manager

To	insert	a	code	snippet	in	the	T-SQL	Editor,	right-click	and	select	Insert	Snippet	or
press	Ctrl	K+X.

Figure	2-3	demonstrates	how	to	invoke	the	Insert	Snippet	and	Surround	With
commands.

Figure	2-3.	Right-click	in	the	T-SQL	Editor	to	invoke	the	command	to	insert	snippets

Once	the	Insert	Snippet	command	is	invoked,	you	have	the	option	to	choose	a	template
based	on	the	SQL	object	type,	such	as	Index,	Table,	Function,	Login,	Role,	Schema,
Stored	Procedure,	Trigger,	Custom	Snippets,	and	so	on.	Figure	2-4	shows	how	to	insert	a
snippet.

Figure	2-4.	Inserting	a	snippet

When	the	snippet	is	inserted	into	the	T-SQL	Editor,	fields	that	need	to	be	customized
are	highlighted,	and	you	can	use	the	Tab	key	to	navigate	through	them.	If	you	mouse	over
a	highlighted	token,	a	tooltip	provides	additional	information	about	it.	Figure	2-5	shows
the	CREATE	TABLE	snippet	invoked	in	the	T-SQL	Editor	along	with	the	tooltip	that	lists
the	field’s	description.

Figure	2-5.	Adding	a	CREATE	TABLE	snippet,	with	the	tooltip	displayed

Keyboard	Shortcut	Schemes
If	you	ask	an	SQL	user	and	a	Visual	Studio	user,	“What	is	the	shortcut	key	to	execute
queries?”	you’re	bound	to	receive	two	different	answers:	Ctrl+E	for	SQL	users	and
Ctrl+Shift+E	for	Visual	Studio	users.	Because	application	developers	are	primarily	Visual
Studio	users,	it’s	prudent	to	have	an	option	that	lets	users	pick	the	keyboard	shortcut
scheme	that’s	familiar	based	on	the	tool	they	have	been	using.	Another	advantage	of
defining	and	standardizing	the	keyboard	shortcut	scheme	at	the	team	level	is	that	doing	so
helps	team	members	avoid	executing	wrong	actions	in	the	team	environment.

SQL	Server	2014	offers	two	keyboard	shortcut	schemes:	the	default,	the	SQL	Server
2014	shortcut	scheme	(the	default)	and	the	Visual	Studio	2010	shortcut	scheme.	The
SSMS	interface	hasn’t	been	updated	in	SQL	2014.	Functionality	and	color	schemes
operate	the	same	as	in	SQL	Server	2012.	To	change	the	keyboard	shortcut	settings,	choose
Tools	 	Options	 	Environment	 	Keyboard.	Figure	2-6	shows	the	option	to	change	the
keyboard	mapping	scheme.

Figure	2-6.	Keyboard	shortcut	mapping	scheme

T-SQL	Debugging
SQL	Server	2012	introduced	enhancements	to	T-SQL	debugging	by	providing	the	ability
to	set	conditional	breakpoints,	meaning	a	breakpoint	is	invoked	only	if	a	certain
expression	is	evaluated.	T-SQL	debugging	also	extends	support	for	expression	evaluation
in	Watch	and	Quick	Watch	windows.	You	can	also	specify	a	hit	count,	meaning	you	can
specify	how	many	times	a	breakpoint	can	be	hit	before	it’s	invoked.	Breakpoints	can	also
be	exported	from	one	session	to	the	other.	The	Watch	and	Quick	Watch	windows	support
T-SQL	expressions	as	well.	Figure	2-7	shows	the	Debugging	screen	with	the	Output	and
Locals	windows.

Figure	2-7.	T-SQL	debugging	with	the	Locals	and	Output	windows

A	breakpoint	can	now	be	placed	on	individual	statements	in	a	batch,	and	breakpoints
are	context-sensitive.	When	a	breakpoint	is	set,	SQL	validates	the	breakpoint’s	location
and	immediately	provides	feedback	if	the	breakpoint	is	set	at	an	invalid	location.	For
example,	if	you	set	a	breakpoint	on	a	comment,	you	get	feedback	that	it’s	an	invalid
breakpoint;	and	if	you	try	to	set	a	breakpoint	for	one	of	the	lines	in	a	multiline	statement,
the	breakpoints	is	added	to	all	the	lines.

A	DataTip	is	another	debugging	enhancement	that	was	added	in	SQL	Server	2012	to

help	you	track	variables	and	expressions	in	the	scope	of	execution	while	debugging	by
providing	ability	to	“pin”	a	DataTip	to	keep	it	visible	(even	when	the	debug	session	is
restarted).	When	the	debugger	is	in	break	mode,	if	you	mouse	over	a	T-SQL	expression
that	is	being	evaluated,	you	can	see	the	current	value	of	that	expression.	Figure	2-8	shows
a	breakpoint	and	DataTip.

Figure	2-8.	A	breakpoints	and	a	DataTip

	Note		The	user	login	must	be	part	of	the	sysadmin	role	on	the	SQL	Server	instance	in
order	to	use	T-SQL	debugging	capabilities	when	using	SSMS.	With	SQL	Server	Data
Tools	(SSDT),	developers	now	have	the	option	of	debugging	without	being	part	of	the
sysadmin	role,	using	their	localdb	instance	of	the	schema.

SSMS	Editing	Options
SSMS	incorporates	and	improves	on	many	of	the	developer	features	found	in	Query
Editor.	You	can	change	the	editing	options	discussed	in	this	section	via	the	Tools	ä
Options.

SSMS	includes	fully	customizable	script	color	coding.	The	default	font	has	been
changed	to	the	monotype	font	Consolas,	and	the	background	color	is	now	blue	to	match
Visual	Studio	2012.	You	can	customize	the	foreground	and	background	colors,	font	face,
size,	and	style	for	elements	of	T-SQL,	XML,	XSLT,	and	MDX	scripts.	Likewise,	you	can
customize	just	about	any	feedback	that	SSMS	generates,	to	suit	your	personal	taste.

You	can	set	other	editing	options,	such	as	word	wrap,	line-number	display,	indentation,
and	tabs	for	different	file	types	based	on	their	associated	file	extensions.	SSMS	lets	you
configure	your	own	keyboard	shortcuts	to	execute	common	T-SQL	statements	or	SPs.

By	default,	SSMS	displays	queries	using	a	tabbed	window	environment.	If	you	prefer
the	classic	multiple-document	interface	(MDI)	window	style,	you	can	switch	the

environment	layout	accordingly.	You	can	also	change	the	query	result	output	style	from
the	default	grid	output	to	text	or	file	output.

Context-Sensitive	Help
Starting	with	SQL	Server	2012,	the	product	documentation	is	hosted	online
(MSDN/TechNet)	to	ensure	that	the	content	is	kept	up	to	date.	If	you	want	to	access	the
product	documentation	from	your	local	computer,	you	have	to	download	the	help	catalogs
and	set	up	the	Help	Viewer.	To	configure	the	documentation,	go	to	the	Help	menu	and
select	Manage	Help	Settings.	Doing	so	launches	the	Help	Library	Manager.	Scroll	down	to
the	SQL	Server	2014	section,	and	click	Add	Next	for	the	documentation	you	want	to
download.	If	the	documentation	is	already	available	in	your	system,	the	Help	Library
Manager	updates	the	catalog’s	index	with	the	SQL	Server	documentation.

To	access	context-sensitive	help,	highlight	the	T-SQL	or	other	statement	you	want	help
with	and	press	F1.	You	can	add	help	pages	to	your	Help	Favorites	or	go	directly	to
MSDN.	If	pressing	F1	doesn’t	work,	remember	to	download	the	documentation	locally
and	choose	to	use	local	help.	Figure	2-9	shows	the	result	of	calling	context-sensitive	help
for	the	CREATE	TABLE	statement.

Figure	2-9.	Using	SSMS	context-sensitive	help	to	find	the	CREATE	TABLE	statement

SSMS	has	several	options	that	allow	you	to	control	help	functionality	and
presentation.	You	can,	for	example,	use	the	SSMS	Integrated	Help	Viewer,	shown	in
Figure	2-9,	or	you	can	use	the	External	Online	Help	Viewer.	The	Settings	window	in	the
Help	Viewer	allows	you	to	set	a	preference	to	use	online	or	offline	help;	it’s	shown	in
Figure	2-10.

Figure	2-10.	Using	the	Help	Viewer	Settings	window	to	personalize	SSMS	help

Help	Search	rounds	out	this	discussion	of	the	help	functionality	in	SSMS.	The	Help
Search	function	automatically	searches	several	online	providers	of	SQL	Server–related
information	for	answers	to	your	questions.	Searches	aren’t	restricted	to	SQL	Server
keywords	or	statements;	you	can	search	for	anything,	and	the	Help	Search	function	scours
registered	web	sites	and	communities	for	relevant	answers.	Figure	2-11	shows	the	result	of
using	Help	Search	to	find	XQuery	content	and	articles.

Figure	2-11.	Using	Help	Search	to	find	help	on	XQuery

Graphical	Query	Execution	Plans
SSMS	offers	graphical	query	execution	plans	similar	to	the	plans	available	in	Query
Editor.	A	graphical	query	execution	plan	is	an	excellent	tool	for	aiding	and	optimizing
query	performance.	SSMS	allows	you	to	view	two	types	of	graphical	query	execution
plans:	estimated	and	actual.	An	estimated	query	execution	plan	is	SQL	Server’s	cost-based
performance	estimate	of	a	query.	The	actual	execution	plan	is	virtually	identical	to	the
estimated	execution	plan,	except	that	it	shows	additional	information	such	as	actual	row
counts,	number	of	rebinds,	and	number	of	rewinds	when	the	query	is	run.	Sometimes	the
actual	execution	plan	differs	from	the	estimated	execution	plan;	this	may	be	due	to
changes	in	indexes	or	statistics,	parallelism,	or,	in	some	cases,	a	query	using	temporary
tables	or	DDL	statements.	These	options	are	available	via	the	Query	menu.	Figure	2-12
shows	an	estimated	query	execution	plan	in	SSMS.

Figure	2-12.	Estimated	query	execution	plan	for	a	simple	query

In	addition,	you	can	right-click	the	Execution	Plan	window	and	choose	to	save	the
XML	version	of	the	graphical	query	plan	to	a	file.	SSMS	can	open	these	XML	query	plan
files	(with	the	extension	.sqlplan)	and	automatically	show	you	the	graphical	version.
In	addition,	the	Properties	window	of	the	SQL	Server	2014	query	plan	contains	details
regarding	the	MemoryGrantInfo,
OptimizerHardwareDependentProperties,	and	warnings	about	data	that	can
affect	plans.	Figure	2-13	shows	a	sample	Properties	window	for	a	query	plan.	You	also
have	an	option	to	view	the	execution	plan	in	XML	format	by	right-clicking	the	Execution
Plan	window	and	choosing	Show	Execution	Plan	XML.

Figure	2-13.	Sample	Properties	window	for	a	simple	query

Along	with	the	execution	plan,	you	can	review	query	statistics	and	network	statistics
in	the	Client	Statistics	tab.	This	is	extremely	useful	for	remotely	troubleshooting
performance	problems	with	slow-running	queries.

Project-Management	Features
SQL	Server	2014	SSMS	supports	project-management	features	that	will	be	familiar	to
Visual	Studio	developers	using	solution-based	development.	These	types	of	solutions,
referred	to	as	SQL	Server	Management	Studio	database	projects,	are	a	deprecated	feature
in	SQL	Server	2014.	There	is	no	migration	path	for	these	types	of	solutions/projects,	and

they	won’t	be	supported	in	future	releases	of	SQL	Server.	The	replacement	for	this	type	of
functionality	is	SQL	Server	Data	Tools	(SSDT)	using	Visual	Studio	database	projects.	The
two	products	have	completely	different	project	types	that	can’t	be	managed	or	opened	in
the	other	product.

This	section	explains	how	to	use	SSMS	projects	types,	but	the	recommendation	is	that
you	start	developing	any	new	projects	in	SSDT.	There	is	a	section	discussing	SSDT	at	the
end	of	this	chapter.

SSMS	lets	you	create	solutions	that	consist	of	projects,	which	contain	T-SQL	scripts,
XML	files,	connection	information,	and	other	files.	By	default,	projects	and	solutions	are
saved	in	your	My	Documents\SQL	Server	Management	Studio\Projects
directory.	Solution	files	have	the	extension	.ssmssln,	and	project	files	are	saved	in	an
XML	format	with	the	.smssproj	extension.	SSMS	incorporates	a	Solution	Explorer
window	similar	to	Visual	Studio’s	Solution	Explorer,	as	shown	in	Figure	2-14.	You	can
access	the	Solution	Explorer	through	the	View	menu.

Figure	2-14.	Viewing	a	solution	in	the	SSMS	Solution	Explorer

SSMS	can	take	advantage	of	source-control	integration	with	TFS	to	help	you	manage
versioning	and	deployment.	To	use	SSMS’s	source-control	integration,	you	have	to	set	the
appropriate	source-control	option	in	the	Options	menu.	The	Options	window	is	shown	in
Figure	2-15.

Figure	2-15.	Viewing	the	source-control	options

	Note		To	use	SSMS	with	TFS,	you	need	to	download	and	install	the	appropriate
Microsoft	Source	Code	Control	Interface	(MSSCCI)	provider	from	Microsoft.	Go	to
www.microsoft.com/,	search	for	“MSSCCI”,	and	download	the	Visual	Studio	Team
System	2010,	2012,	or	2013	version	of	the	MSSCCI	provider,	depending	on	which	version
you’re	already	using.

After	you	create	a	solution	and	add	projects,	connections,	and	SQL	scripts,	you	can
add	your	solution	to	TFS	by	right-clicking	the	solution	in	the	Solution	Explorer	and
selecting	Add	Solution	to	Source	Control.

To	check	out	items	from	source	control,	open	a	local	copy	and	choose	Check	Out	for
Edit.	You	can	find	options	for	checking	out	items	from	source	control	on	the	File	
Source	Control	menu.	After	checking	out	a	solution	from	TFS,	SSMS	shows	you	the
pending	check-ins,	letting	you	add	comments	to	or	check	in	individual	files	or	projects.

The	Object	Explorer
The	SSMS	Object	Explorer	lets	you	view	and	manage	database	and	server	objects.	In	the
Object	Explorer,	you	can	view	tables,	stored	procedures	(SPs),	user-defined	functions
(UDFs),	HTTP	endpoints,	users,	logins,	and	just	about	every	other	database-specific	or
server-scoped	object.	Figure	2-16	shows	the	Object	Explorer	in	the	left	pane	and	the
Object	Explorer	Details	tab	on	the	right.

http://www.microsoft.com/

Figure	2-16.	Viewing	the	Object	Explorer	and	the	Object	Explorer	Details	tab

Most	objects	in	the	Object	Explorer	and	the	Object	Explorer	Details	tab	have	object-
specific	pop-up	context	menus.	Right-clicking	any	given	object	brings	up	the	menu.
Figure	2-17	shows	an	example	pop-up	context	menu	for	database	tables.

Figure	2-17.	Object	Explorer	database	table	pop-up	context	menusss

Object	Explorer	in	SQL	Server	2014	allows	developers	to	filter	specific	types	of
objects	from	all	the	database	objects.	To	filter	objects,	type	text	with	optional	wildcard
characters	in	the	Object	Explorer	Details	window,	and	press	Enter.	Optionally,	you	can
filter	objects	using	the	Filter	icon	on	the	Object	Explorer	Details	toolbar.	Figure	2-18
shows	an	example	of	filtering	objects	named	“Person”.

Figure	2-18.	Object	Explorer	with	database	objects	filtered	on	“Person”

The	SQLCMD	Utility
The	SQLCMD	utility	was	originally	introduced	in	SQL	Server	2005	as	an	updated
replacement	for	the	SQL	2000	osql	command-line	utility.	You	can	use	SQLCMD	to
execute	batches	of	T-SQL	statements	from	script	files,	individual	queries	or	batches	of
queries	in	interactive	mode,	or	individual	queries	from	the	command	line.	This	utility	uses
SQL	Server	Native	Client	to	execute	the	T-SQL	statements.

	Note		Appendix	D	provides	a	quick	reference	to	SQLCMD	command-line	options,
scripting	variables,	and	commands.	The	descriptions	in	the	appendix	are	based	on
extensive	testing	of	SQLCMD	and	differ	in	some	areas	from	the	descriptions	given	in
BOL.

SQLCMD	supports	a	wide	variety	of	command-line	switches,	making	it	a	flexible
utility	for	one-off	batch	or	scheduled	script	execution.	The	following	command
demonstrates	the	use	of	some	commonly	used	command-line	options	to	connect	to	an	SQL
Server	instance	named	SQL2014	and	execute	a	T-SQL	script	in	the
AdventureWorks2014	database:

sqlcmd	-S	SQL2014	-E	-d	AdventureWorks2014	-i	

"d:\scripts\ListPerson.sql"

The	options	include	-S	to	specify	the	server\instance	name,	-E	to	indicate	Windows
authentication,	-d	to	set	the	database	name,	and	-i	to	specify	the	name	of	a	script	file	to
execute.	The	command-line	switches	are	all	case	sensitive,	so	-v	is	a	different	option
from	-V,	for	instance.

SQLCMD	allows	you	to	use	scripting	variables	that	let	you	use	a	single	script	in
multiple	scenarios.	Scripting	variables	provide	a	mechanism	for	customizing	the	behavior
of	T-SQL	scripts	without	modifying	the	scripts’	content.	You	can	reference	scripting
variables	that	were	previously	set	with	the	-v	command-line	switch,	with	the	SQLCMD
:setvar	command	(discussed	in	the	next	section),	or	via	Windows	environment
variables.	You	can	also	use	any	of	the	predefined	SQLCMD	scripting	variables	from
within	your	script.	The	format	to	access	any	of	these	types	of	scripting	variables	from
within	your	script	is	the	same:	$(variable_name).	SQLCMD	replaces	your	scripting
variables	with	their	respective	values	during	script	execution.	Listing	2-1	shows	some

examples	of	scripting	variables	in	action.

Listing	2-1.	Using	Scripting	Variables	in	an	SQLCMD	Script

--	Windows	environment	variable

SELECT	'$(PATH)';

--	SQLCMD	scripting	variable

SELECT	'$(SQLCMDSERVER)';

--	Command-line	scripting	variable	-v	COLVAR=	"Name"	switch

SELECT	$(COLVAR)

FROM	Sys.Tables;

Because	scripting	variables	are	replaced	in	a	script	wholesale,	some	organizations	may
consider	their	use	a	security	risk	due	to	the	possibility	of	SQL	injection-style	attacks.	For
this	reason,	you	may	choose	to	turn	off	this	feature	by	using	the	-x	command-line	option,
which	disables	variable	substitution.

An	example	of	an	SQLCMD	scripting	variable	is	the	predefined	SOLCMDINI,	which
specifies	the	SQLCMD	startup	script.	The	startup	script	is	run	every	time	SQLCMD	is
run.	It’s	useful	for	setting	scripting	variables	with	the	:setvar	command,	setting	initial
T-SQL	options	such	as	QUOTED_IDENTIFIER	and	ANSI_PADDING,	and	performing
any	necessary	database	tasks	before	other	scripts	are	run.

In	addition	to	T-SQL	statements,	SQLCMD	recognizes	several	commands	specific	to
the	application.	SQLCMD	commands	allow	you	to	perform	tasks	like	listing	servers	and
scripting	variables,	connecting	to	a	server,	and	setting	scripting	variables,	among	others.
Except	for	the	batch	terminator	GO,	all	SQLCMD	commands	begin	with	a	colon	(:).

SQLCMD	can	also	be	run	interactively.	To	start	an	interactive	mode	session,	run
SQLCMD	with	any	of	the	previous	options	that	don’t	exit	immediately	on	completion.

	Note		SQLCMD	options	such	as	-0,	-i,	-Z,	and	-?	exit	immediately	on	completion.
You	can’t	start	an	interactive	SQLCMD	session	if	you	specify	any	of	these	command-line
options.

During	an	interactive	SQLCMD	session,	you	can	run	T-SQL	queries	and	commands
from	the	SQLCMD	prompt.	The	interactive	screen	looks	similar	to	Figure	2-19.

Figure	2-19.	Sample	query	run	from	the	SQLCMD	interactive	prompt

The	SQLCMD	prompt	indicates	the	current	line	number	of	the	batch	(1>,	2>,	and	so
on).	You	can	enter	T-SQL	statements	or	SQLCMD	commands	at	the	prompt.	T-SQL
statements	are	stored	in	the	statement	cache	as	they’re	entered;	SQLCMD	commands	are
executed	immediately.	Once	you	have	entered	a	complete	batch	of	T-SQL	statements,	use
the	GO	batch	terminator	to	process	all	the	statements	in	the	cache.

SQLCMD	has	support	for	the	new	AlwaysOn	feature.	You	can	use	the	switch	–K	to
specify	the	listener	name.

There	has	been	a	behavior	change	for	SQLCMD	for	XML	as	well.	In	SQL	2008,	text
data	that	contained	a	single	quote	was	always	replaced	with	an	apostrophe.	This	behavior
change	has	been	addressed	in	SQL	Server	2012.	Additionally,	legacy	datetime	values	with
no	fractional	seconds	donot	return	three	decimal	digits;	however,	other	datetime	data	types
aren’t	affected.

SQL	Server	Data	Tools
SQL	Server	2014	ships	with	a	new	developer	toolset	named	SQL	Server	Data	Tools	that
serves	as	a	replacement	for	Business	Intelligence	Development	Studio	(BIDS).	In	the
highly	competitive	business	world,	the	top	three	challenges	today’s	developers	face	are
collaboration,	targeting	different	database	platforms	with	the	same	codebase,	and	code
stability.	SSDT	is	designed	to	help	with	these	challenges.	It	provides	a	tool	that	enables
you	to	add	validations	at	design	time	and	not	at	runtime.	A	common	pitfall	for	developers
is	that	errors	are	discovered	at	runtime	which	aren’t	apparent	and	don’t	surface	at	design
time,	and	SSDT	serves	to	eliminate	this	issue.

You	can	code,	build,	debug,	package,	and	deploy	code	without	leaving	the	tool.	After
importing	or	creating	a	new	database	project,	you	can	alter	the	project	properties	to	target

a	specific	database	version.	The	underlying	compiler	uses	the	database	version	rules
engine	and	compiles	the	project	based	on	the	database	edition	features.	For	example,	if
you’re	developing	code	for	SQL	Azure,	the	tool	knows	that	you	can’t	use	sequence
objects.	This	type	of	built-in	intelligence	in	the	tool	is	key	to	faster	effective	development
so	you	don’t	discover	issues	at	runtime,	which	would	require	rearchitecting	the
application.

This	type	of	feature	is	also	helpful	when	you’re	upgrading	from	an	older	version	of
SQL	to	a	newer	version.	The	compiler	tells	you	if	the	older	code	will	generate	errors	in	the
newer	version	of	SQL.

SSDT	can	be	used	for	connected	development	and	disconnected	development	in	case
of	a	team	project.	Figure	2-20	shows	the	New	Project	window,	which	is	based	on	the
familiar	SSMS	Object	Explorer.

Figure	2-20.	SSDT	New	Project	window

You	can	create	objects	and	buffer	object	editing,	and	T-SQL	IntelliSense	is	also	used.
Once	you	finalize	development,	you	can	choose	the	platform	to	deploy	to,	and	the	project
is	deployed	with	a	single	click.

SQL	Profiler
SQL	Profiler	is	the	primary	tool	for	analyzing	SQL	Server	performance.	If	you	have	a

performance	problem	but	aren’t	sure	where	the	bottleneck	lies,	SQL	Profiler	can	help	you
rapidly	narrow	down	the	suspects.	It	works	by	capturing	events	that	occur	on	the	server
and	logging	them	to	a	trace	file	or	table.	The	classes	of	events	that	can	be	captured	are
exhaustive,	covering	a	wide	range	of	server-side	events	including	T-SQL	and	SP
preparation	and	execution,	security	events,	transaction	activity,	locks,	and	database
resizing.

When	you	create	a	new	trace,	SQL	Profiler	allows	you	to	select	all	the	events	you	wish
to	audit.	Normally,	you	narrow	this	list	as	much	as	possible	for	both	performance	and
manageability	reasons.	Figure	2-21	is	a	sample	trace	that	captures	T-SQL–specific	events
on	the	server.

Figure	2-21.	Preparing	to	capture	T-SQL	events	in	SQL	Profiler

Once	a	trace	is	configured	and	running,	it	captures	all	the	specified	events	on	the
server.	A	sample	trace	run	using	T-SQL	events	is	shown	in	Figure	2-22.

Figure	2-22.	Running	a	trace	of	T-SQL	events

As	you	can	see	in	the	example,	even	a	simple	trace	that	captures	a	relatively	small
number	of	events	can	easily	become	overwhelming,	particularly	if	run	against	an	SQL
Server	instance	with	several	simultaneous	user	connections.	SQL	Profiler	offers	the
Column	Filter	option,	which	lets	you	eliminate	results	from	a	trace.	Using	filters,	you	can
narrow	the	results	to	include	only	actions	performed	by	specific	applications	or	users,	or
activities	relevant	only	to	a	particular	database.	Figure	2-23	shows	the	Edit	Filter	window
where	you	select	trace	filters.

Figure	2-23.	Editing	filters	in	SQL	Profiler

SQL	Profiler	offers	several	additional	options,	including	trace	replay	and	the	ability	to
save	trace	results	to	either	a	file	or	a	database	table.	SQL	Profiler	is	vital	to
troubleshooting	SQL	Server	performance	and	security	issues.

SQL	Server	2014	lists	SQL	Profiler	for	trace	capture	and	trace	replay	as	deprecated;
they	won’t	be	supported	in	future	versions	of	SQL	Server.	However,	for	analysis	services
workloads,	both	trace	capture	and	trace	replay	will	be	supported.	The	replacement	feature
for	the	deprecated	functionality	is	Extended	Events.

Extended	Events
These	days	it’s	common	to	have	many	complex	systems	with	hundreds	of	cores	that
support	applications	with	a	scale-out	model	with	a	set	of	SQL	Servers.	The	SQL	Servers
that	support	the	complex	applications	use	various	features	such	as	compression	to	reduce
storage	costs,	high	availability,	and	disaster-recovery	features.	For	such	a	complex	system,
performance	monitoring	is	vital:	Extended	Events	is	designed	to	handle	these	complex
situations	and	diagnose	issues	in	these	systems	without	adding	a	performance	penalty.

The	Extended	Events	(XEvents)	diagnostic	tools	was	introduced	in	SQL	2008,	and	it
received	a	makeover	in	SQL	Server	2012	with	a	new	GUI	interface	to	aid	ease	of	use.	It’s

a	lightweight,	asynchronous	eventing	system	that	can	retrieve	information	based	on	events
triggered	in	the	SQL	engine.	You	can	use	XEventsto	track	both	high-level	issues	such	as
query	execution	or	blocking	in	the	server,	and	low-level	issues	that	are	very	close	to	the
SQL	Server	code,	such	as	how	long	it	took	for	the	spinlocks	to	back	off.	XEvents	can	be
used	to	collect	additional	data	about	any	event	and	perform	predefined	actions	such	as
taking	a	memory	dump	when	events	happen;	for	example,	you	may	be	working	with	an
application	whose	developer	requests	that	you	take	a	memory	dump	when	a	specific	query
executes.

Results	from	XEvents	can	be	written	to	various	targets,	including	the	Windows	trace
file.	If	you	have	an	application	that	is	gathering	diagnostic	information	from	IIS,	and	you
want	to	correlate	the	data	from	SQL	Server,	writing	to	the	Windows	trace	file	will	make
debugging	much	easier.	The	event	data	that	has	been	written	to	the	Windows	trace	file	can
be	viewed	using	a	tool	such	as	Xperf	or	tracerpt.	As	with	any	diagnostic	tool,	the	data	that
is	collected	can	be	saved	to	multiple	locations	including	the	file	system,	tables,	and
windows	logging	simultaneously.	Figure	2-24	shows	the	Extended	Events	user	interface.

Figure	2-24.	Extended	Events	new	session

XEvents	has	been	implemented	by	the	SQL	Engine,	merge	replication,	analysis
services,	and	reporting	services	in	SQL	Server	2014.	In	some	of	the	components,	such	as
analysis	services,	it’s	targeted	information	and	not	a	complete	implementation.

The	XEvents	UI	is	integrated	with	Management	Studio:	the	tree	has	a	separate	node
called	Extended	Events.	You	can	create	a	new	session	by	right-clicking	the	Extended
Events	node	and	selecting	the	session.	XEvents	sessions	can	be	based	on	predefined
templates,	or	you	can	create	a	session	by	choosing	specific	events.

XEvents	offers	a	rich	diagnostic	framework	that	is	highly	scalable	and	offers	the

capability	to	collect	little	or	large	amounts	of	data	in	order	to	troubleshoot	a	given
performance	issue.	Another	reason	to	start	using	XEvents	is	that	SQL	Profiler	has	been
marked	for	deprecation.	Extended	Events	is	discussed	in	detail	in	Chapter	19.

SQL	Server	Integration	Services
SSIS	was	introduced	in	SQL	Server	2005	as	the	replacement	for	SQL	Server	7.0	and	2000
Data	Transformation	Services	(DTS).	SSIS	provides	an	enterprise-class	Extract	Transform
Load	(ETL)	tool	that	allows	you	to	design	simple	or	complex	packages	to	extract	data
from	multiple	sources	and	integrate	them	into	your	SQL	Server	databases.	It	also	provides
rich	BI	integration	and	extensibility.	In	addition	to	data	transformations,	SSIS	provides
SQL	Server–specific	tasks	that	allow	you	to	perform	database-administration	and	-
management	functions	like	updating	statistics	and	rebuilding	indexes.

SSIS	divides	the	ETL	process	into	three	major	parts:	control	flow,	data	flow,	and	event
handlers.	The	control	flow	provides	structure	to	SSIS	packages	and	controls	execution	via
tasks,	containers,	and	precedence	constraints.	The	data	flow	imports	data	from	various
sources,	transforms	it,	and	stores	it	in	specified	destinations.	The	data	flow,	from	the
perspective	of	the	control	flow,	is	just	another	task.	However,	the	data	flow	is	important
enough	to	require	its	own	detailed	design	surface	in	a	package.	Event	handlers	allow	you
to	perform	actions	in	response	to	predefined	events	during	the	ETL	process.	Figure	2-25
shows	a	simple	SSIS	data	flow	that	imports	data	from	a	table	into	a	flat	file.

Figure	2-25.	Data	flow	to	import	data	from	a	table	to	flat	file

SSIS	is	a	far	more	advanced	ETL	tool	than	DTS,	and	it	provides	significant
improvements	in	features,	functionality,	and	raw	power	over	the	old	DTS	tools.

The	Bulk	Copy	Program
Although	it	isn’t	as	flashy	or	feature-rich	as	SSIS,	BCP	is	small	and	fast,	and	it	can
perform	simple	imports	with	no	hassle.	BCP	is	handy	for	generating	format	files	for	BCP
and	other	bulk-import	tools,	for	one-off	imports	where	a	full-blown	SSIS	package	would
be	overkill,	for	exporting	data	from	database	tables	to	files,	and	for	backward
compatibility	when	you	don’t	have	the	resources	to	devote	to	immediately	upgrading	old
BCP-based	ETL	processes.

Figure	2-26	shows	a	simple	command-line	call	to	BCP	to	create	a	BCP	format	file	and
a	listing	of	the	format	file.	The	format	files	generated	by	BCP	can	be	used	by	BCP,	SSIS,
and	the	T-SQL	BULK	INSERT	statement.

Figure	2-26.	Generating	a	format	file	with	BCP

SQL	Server	2014	Books	Online
Books	Online	(BOL)	is	the	primary	reference	for	SQL	Server	programming	and
administration.	SQL	Server	2014	introduces	the	Help	Viewer	piece	from	the	VS2010	shell
and	doesn’t	include	BOL	along	with	the	default	setup.	During	the	SQL	installation,	you
have	the	option	to	choose	the	documentation	feature,	which	in	turn	installs	the	Help
Viewer.

You	also	have	the	option	to	install	the	BOL	from	an	online	resource.	You	can	access	a
locally	installed	copy	of	BOL,	or	you	can	access	it	over	the	Web	at	Microsoft’s	web	site.
The	help	documentation	can	be	found	at
www.microsoft.com/download/en/details.aspx?id=347.	Figure	2-27
shows	a	search	of	a	local	copy	of	BOL.

http://www.microsoft.com/download/en/details.aspx?id=347

Figure	2-27.	Searching	local	BOL	for	information	about	the	SELECT	statement

You	can	get	updates	for	BOL	at	www.microsoft.com/sql/default.mspx.
The	online	version	of	SQL	Server	2012	BOL	is	available	at
http://msdn.microsoft.com/en-us/library/ms130214.aspx.	Also	keep
in	mind	that	you	can	search	online	and	local	versions	of	BOL,	as	well	as	several	other
SQL	resources,	via	the	Help	Search	function	discussed	previously	in	this	chapter.

	Tip		Microsoft	now	offers	an	additional	option	for	obtaining	the	most	up-to-date
version	of	BOL.	You	can	download	the	latest	BOL	updates	from	the	Microsoft	Update
site,	at	http://update.microsoft.com/microsoftupdate.	Microsoft	has
announced	plans	to	refresh	BOL	with	updated	content	more	often	and	to	integrate	SQL
Server	developer	and	DBA	feedback	into	BOL	more	quickly.

The	AdventureWorks	Sample	Database
SQL	Server	2014	has	two	main	sample	databases:	the	AdventureWorks2014	OLTP
and	SQL	Server	2014	RTM	In-Memory	OLTP	databases.	This	book	refers	to	the
AdventureWorks2014	OLTP	database	for	most	examples.	Microsoft	now	releases
SQL	Server	sample	databases	through	its	CodePlex	web	site.	You	can	download	the
AdventureWorks	databases	and	associated	sample	code	from
www.codeplex.com/MSFTDBProdSamples.

	Note		It’s	highly	recommended	that	you	download	the	SQL	Server

http://www.microsoft.com/sql/default.mspx
http://msdn.microsoft.com/en-us/library/ms130214.aspx
http://update.microsoft.com/microsoftupdate
http://www.codeplex.com/MSFTDBProdSamples

AdventureWorks2014	OLTP	database	so	that	you	can	run	the	sample	code	in	this
book	as	you	go	through	each	chapter.

Summary
SQL	Server	2014	includes	the	tools	you’ve	come	to	expect	with	any	SQL	Server	release.
This	chapter	has	provided	an	overview	of	several	tools	that	will	be	important	to	you	as	an
SQL	Server	2014	developer.	The	tools	discussed	include	the	following:

SSMS,	the	primary	GUI	for	SQL	Server	development	and
administration

SQLCMD,	SSMS’s	text-based	counterpart

SSDT,	an	integrated	tool	for	developers

SQL	Profiler,	which	supplies	event-capture	and	server-side	tracing
capabilities	for	analyzing	SQL	Server	performance	and	auditing
security

Extended	Events,	a	lightweight,	asynchronous,	event-based
troubleshooting	tool

SSIS,	the	primary	ETL	tool	for	SQL	Server	2014

BCP,	a	command	line–based	bulk	import	tool

BOL,	the	first	place	to	look	when	you’re	trying	to	locate	information
about	all	things	SQL	Server

AdventureWorks,	the	freely	available	Microsoft-supplied	sample
database

These	topics	could	easily	fill	a	book	by	themselves	(and	many,	in	fact,	have).	The
following	chapters	review	the	SQL	Server	2014	features	in	detail.

EXERCISES

1.	 SSDT	is	an	SQL	development	tool.	What	tools	did	SSDT	replace?

2.	 [Choose	all	that	apply]	SQL	Server	2014	SSMS	provides	which	of
the	following	features?

a.	 Ability	to	add	code	snippets	and	customize	them

b.	 An	integrated	Object	Explorer	for	viewing	and	managing
the	server,	databases,	and	database	objects

c.	 IntelliSense,	which	suggests	table,	object,	and	function
names	as	you	type	SQL	statements

d.	 Customizable	keyboard	mapping	scheme	for	Visual	Studio

users

3.	 SSIS	is	considered	what	type	of	tool?

4.	 [True/False]	SQLCMD	can	use	command-line	options,	environment
variables,	and	SQLCMD	:setvar	commands	to	set	scripting
variables.

5.	 [Choose	one]	BCP	can	be	used	to	perform	which	of	the	following
tasks?

a.	 Generating	format	files	for	use	with	SSIS

b.	 Importing	data	into	tables	without	format	files

c.	 Exporting	data	from	a	table	to	a	file

d.	 All	of	the	above

6.	 What	is	one	feature	that	Extended	Events	offers	that	SQL	Profiler
doesn’t?

7.	 What	are	the	target	platforms	that	can	be	deployed	using	SSDT?

CHAPTER	3

Procedural	Code
T-SQL	has	always	included	support	for	procedural	programmingCASE	expressions	in	the
form	of	control-of-flow	statements	and	cursors.	One	thing	that	throws	developers	from
other	languages	off	their	guard	when	migrating	to	SQL	is	the	peculiar	three-valued	logic
(3VL)	we	enjoy.	Chapter	1	introduced	you	to	SQL	3VL,	and	this	chapter	expands	further
on	this	topic.	SQL	3VL	is	different	from	most	other	programming	languages’	simple	two-
valued	Boolean	logic.	This	chapter	also	discusses	T-SQL	control-of-flow	constructs,
which	allow	you	to	change	the	normally	sequential	order	of	statement	execution.	Control-
of-flow	statements	let	you	branch	your	code	logic	with	statements	like	IF…ELSE…,
perform	loops	with	statements	like	WHILE,	and	perform	unconditional	jumps	with	the
GOTO	statement.	You’re	also	introduced	to	CASE	expressions	and	CASE-derived	functions
that	return	values	based	on	given	comparison	criteria	in	an	expression.	Finally,	we	finish
the	chapter	by	explaining	a	topic	closely	tied	to	procedural	code:	SQL	cursors.

	Note		Technically	the	T-SQL	TRY…CATCH	and	the	newer	TRY_PARSE	and
TRY_CONVERT	are	control-of-flow	constructs.	But	these	are	specifically	used	for	error
handling	and	are	discussed	in	Chapter	18,	which	describes	error	handling	and	dynamic
SQL.

Three-Valued	Logic
SQL	Server	2014,	like	all	ANSI-compatible	SQL	DBMS	products,	implements	a	peculiar
form	of	logic	known	as	3VL.	3VL	is	necessary	because	SQL	introduces	the	concept	of
NULL	to	serve	as	a	placeholder	for	values	that	aren’t	known	at	the	time	they’re	stored	in
the	database.	The	concept	of	NULL	introduces	an	unknown	logical	result	into	SQL’s
ternary	logic	system.	Let’s	begin	looking	at	SQL	3VL	with	a	simple	set	of	propositions:

Consider	the	proposition	“1	is	less	than	3.”	The	result	is	logically	true
because	the	value	of	the	number	1	is	less	than	the	value	of	the	number
3.

The	proposition	“5	is	equal	to	6”	is	logically	false	because	the	value	of
the	number	5	isn’t	equal	to	the	value	of	the	number	6.

The	proposition	“X	is	greater	than	10”	presents	a	bit	of	a	problem.	The
variable	X	is	an	algebraic	placeholder	for	an	actual	value.
Unfortunately,	we	haven’t	told	you	what	value	X	stands	for	at	this
time.	Because	you	don’t	know	what	the	value	of	X	is,	you	can’t	say
the	statement	is	true	or	false;	instead	you	can	say	the	result	is

unknown.	SQL	NULL	represents	an	unknown	value	in	the	database	in
much	the	same	way	that	the	variable	X	represents	an	unknown	value
in	this	proposition,	and	comparisons	with	NULL	produce	the	same
unknown	logical	result	in	SQL.

Because	NULL	represents	unknown	values	in	the	database,	comparing	anything	with
NULL	(even	other	NULLs)	produces	an	unknown	logical	result.	Figure	3-1	is	a	quick
reference	for	SQL	Server	3VL,	where	p	and	q	represent	3VL	result	values.

Figure	3-1.	SQL	3VL	quick	reference	chart

As	mentioned	previously,	the	unknown	logic	values	shown	in	the	chart	are	the	result	of
comparisons	with	NULL.	The	following	predicates,	for	example,	all	evaluate	to	an
unknown	result:

@x	=	NULL

FirstName	<>	NULL

PhoneNumber	>	NULL

If	you	used	one	of	these	as	the	predicate	in	a	WHERE	clause	of	a	SELECT	statement,
the	statement	would	return	no	rows—SELECT	with	a	WHERE	clause	returns	only	rows
where	the	WHERE	clause	predicate	evaluates	to	true;	it	discards	rows	for	which	the	WHERE
clause	is	false	or	unknown.	Similarly,	the	INSERT,	UPDATE,	and	DELETE	statements
with	a	WHERE	clause	only	affect	rows	for	which	the	WHERE	clause	evaluates	to	true.

SQL	Server	provides	a	proprietary	mechanism,	the	SET	ANSI_NULLS	OFF	option,
to	allow	direct	equality	comparisons	with	NULL	using	the	=	and	<>	operators.	The	only
ISO-compliant	way	to	test	for	NULL	is	with	the	IS	NULL	and	IS	NOT	NULL
comparison	predicates.	We	highly	recommend	that	you	stick	with	the	ISO-compliant	IS
NULL	and	IS	NOT	NULL	predicates	for	a	few	reasons:

Many	SQL	Server	features	like	computed	columns,	indexed	views,
and	XML	indexes	require	SET	ANSI_NULLS	ON	at	creation	time.

Mixing	and	matching	SET	ANSI_NULLS	settings	in	your	database
can	confuse	other	developers	who	have	to	maintain	your	code.	Using
ISO-compliant	NULL-handling	consistently	eliminates	confusion.

SET	ANSI_NULLS	OFF	allows	direct	equality	comparisons	with
NULL,	returning	true	if	you	compare	a	column	or	variable	to	NULL.	It
doesn’t	return	true	if	you	compare	NULLs	contained	in	two	columns,
though,	which	can	be	confusing.

To	top	it	all	off,	Microsoft	has	deprecated	the	SET	ANSI_NULLS
OFF	setting.	It	will	be	removed	in	a	future	version	of	SQL	Server,	so
it’s	a	good	idea	to	start	future-proofing	your	code	now.

IT’S	A	CLOSED	WORLD,	AFTER	ALL

The	closed-world	assumption	(CWA)	is	an	assumption	in	logic	that	the	world	is
“black	and	white,”	“true	or	false,”	or	“ones	and	zeros.”	When	applied	to	databases,
the	CWA	basically	states	that	all	data	stored	in	the	database	is	true;	everything	else	is
false.	The	CWA	presumes	that	only	knowledge	of	the	world	that	is	complete	can	be
stored	in	a	database.

NULL	introduces	an	open-world	assumption	(OWA)	to	the	mix.	It	allows	you	to	store
information	in	the	database	that	may	or	may	not	be	true.	This	means	an	SQL	database
can	store	incomplete	knowledge	of	the	world—a	direct	violation	of	the	CWA.	Many
relational	management	(RM)	theorists	see	this	as	an	inconsistency	in	the	SQL	DBMS
model.	This	argument	fills	many	an	RM	textbook	and	academic	blog,	including	web
sites	like	Hugh	Darwen’s	and	C.	J.	Date’s	The	Third	Manifesto
(www.thethirdmanifesto.com),	so	we	won’t	go	deeply	into	the	details	here.
Just	realize	that	many	RM	experts	dislike	SQL	NULL.	As	an	SQL	practitioner	in	the
real	world,	however,	you	may	discover	that	NULL	is	often	the	best	option	available	to
accomplish	many	tasks.

Control-of-Flow	Statements
T-SQL	implements	procedural	language	control-of-flow	statements,	including	such
constructs	as	BEGIN…END,	IF…ELSE,	WHILE,	and	GOTO.	T-SQL’s	control-of-flow
statements	provide	a	framework	for	developing	rich	server-side	procedural	code.
Procedural	code	in	T-SQL	does	come	with	some	caveats,	though,	which	we	discuss	in	this
section.

The	BEGIN	and	END	Keywords
T-SQL	uses	the	keywords	BEGIN	and	END	to	group	multiple	statements	together	in	a

http://www.thethirdmanifesto.com

statement	block.	The	BEGIN	and	END	keywords	don’t	alter	execution	order	of	the
statements	they	contain,	nor	do	they	define	an	atomic	transaction,	limit	scope,	or	perform
any	function	other	than	defining	a	simple	grouping	of	T-SQL	statements.

Unlike	other	languages,	such	as	C++	and	C#,	which	use	braces	({	})	to	group
statements	in	logical	blocks,	T-SQL’s	BEGIN	and	END	keywords	don’t	define	or	limit
scope.	The	following	sample	C#	code,	for	instance,	won’t	even	compile:

{

int	j	=	10;	}	Console.WriteLine	(j);

C#	programmers	will	automatically	recognize	that	the	variable	j	in	the	previous	code
is	defined	inside	braces,	limiting	its	scope	and	making	it	accessible	only	inside	the	braces.
T-SQL’s	roughly	equivalent	code,	however,	doesn’t	limit	scope	in	this	manner:

BEGIN

				DECLARE	@j	int	=	10;

END

PRINT	@j;

The	previous	T-SQL	code	executes	with	no	problem,	as	long	as	the	DECLARE
statement	is	encountered	before	the	variable	is	referenced	in	the	PRINT	statement.	The
scope	of	variables	in	T-SQL	is	defined	in	terms	of	command	batches	and	database	object
definitions	(such	as	SPs,	UDFs,	and	triggers).	Declaring	two	or	more	variables	with	the
same	name	in	one	batch	or	SP	results	in	errors.

	Caution		T-SQL’s	BEGIN	and	END	keywords	create	a	statement	block	but	don’t	define
a	scope.	Variables	declared	in	a	BEGIN…END	block	aren’t	limited	in	scope	just	to	that
block,	but	are	scoped	to	the	whole	batch,	SP,	or	UDF	in	which	they’re	defined.

BEGIN…END	is	useful	for	creating	statement	blocks	where	you	want	to	execute
multiple	statements	based	on	the	results	of	other	control-of-flow	statements	like	IF…
ELSE	and	WHILE.	BEGIN…END	can	also	have	another	added	benefit	if	you’re	using
SSMS	2014	or	a	good	third-party	SQL	editor	like	ApexSQL	Edit	(www.apexsql.com).
BEGIN…END	can	alert	the	GUI	that	a	section	of	code	is	collapsible.	Figure	3-2	shows
more	than	one	region	of	code	that	is	collapsible.	This	can	speed	up	development	and	ease
debugging,	especially	if	you’re	writing	complex	T-SQL	scripts.

http://www.apexsql.com

Figure	3-2.	BEGIN…END	statement	blocks	marked	collapsible	in	SSMS

	Tip		Although	it’s	not	required,	we	like	to	wrap	the	body	of	CREATE	PROCEDURE
statements	with	BEGIN…END.	This	clearly	delineates	the	body	of	the	stored	procedure.
This	is	purely	a	coding	style	preference	and	has	no	affect	on	the	stored	procedure
performance	or	function.

The	IF…ELSE	Statement
Like	many	procedural	languages,	T-SQL	implements	conditional	execution	of	code	using
the	simplest	of	procedural	statements:	the	IF…ELSE	construct.	The	IF	statement	is
followed	by	a	logical	predicate.	If	the	predicate	evaluates	to	true,	the	single	SQL	statement
or	statement	block	wrapped	in	BEGIN…END	is	executed.	If	the	predicate	evaluates	to
either	false	or	unknown,	SQL	Server	falls	through	to	the	ELSE	statement	and	executes	the
single	statement	or	statement	block	following	ELSE.

	Tip		A	predicate	in	SQL	is	an	expression	that	evaluates	to	one	of	the	logical	results	true,
false,	or	unknown.	Predicates	are	used	in	IF…ELSE	statements,	WHERE	clauses,	and
anywhere	that	a	logical	result	is	needed.

The	example	in	Listing	3-1	performs	up	to	three	comparisons	to	determine	whether	a
variable	is	equal	to	a	specified	value.	The	second	ELSE	statement	executes	if	and	only	if
the	tests	for	both	true	and	false	conditions	fail.

Listing	3-1.	Simple	IF…ELSE	Example

DECLARE	@i	int	=	NULL;

IF	@i	=	10

				PRINT	'TRUE.';

ELSE	IF	NOT	(@i	=	10)

				PRINT	'FALSE.';

ELSE

				PRINT	'UNKNOWN.';

Because	the	variable	@i	is	NULL	in	the	example,	SQL	Server	reports	that	the	result	is
unknown.	If	you	assign	the	value	10	to	the	variable	@i,	SQL	Server	will	report	that	the
result	is	true;	all	other	values	will	report	false.

To	create	a	statement	block	containing	multiple	T-SQL	statements	after	either	the	IF
statement	or	the	ELSE	statement,	simply	wrap	your	statements	with	the	T-SQL	BEGIN
and	END	keywords	discussed	in	the	previous	section.	The	example	in	Listing	3-2	is	an
IF…ELSE	statement	with	statement	blocks.	The	example	uses	IF…ELSE	to	check	the
value	of	the	variable	@direction.	If	@direction	is	ASCENDING,	a	message	is
printed,	and	the	top	ten	names,	in	order	of	last	name,	are	selected	from	the
Person.Contact	table.	If	@direction	is	DESCENDING,	a	different	message	is
printed,	and	the	bottom	ten	names	are	selected	from	the	Person.Contact	table.	Any
other	value	results	in	a	message	that	@direction	was	not	recognized.	The	results	of
Listing	3-2	are	shown	in	Figure	3-3.

Listing	3-2.	IF…ELSE	with	Statement	Blocks

DECLARE	@direction	NVARCHAR(20)	=	N'DESCENDING';

IF	@direction	=	N'ASCENDING'

BEGIN

								PRINT	'Start	at	the	top!';

								SELECT	TOP	(10)

								LastName,

								FirstName,

								MiddleName

								FROM	Person.Person

								ORDER	BY	LastName	ASC;

END

ELSE		IF	@direction	=	N'DESCENDING'

BEGIN

								PRINT	'Start	at	the	bottom!';

								SELECT	TOP	(10)

								LastName,

								FirstName,

								MiddleName

								FROM	Person.Person

								ORDER	BY	LastName	DESC;

ENDs

ELSE

								PRINT	'@direction		was	not	recognized!';

Figure	3-3.	The	last	ten	contact	names	in	the	AdventureWorks	database

The	WHILE,	BREAK,	and	CONTINUE	Statements
Looping	is	a	standard	feature	of	procedural	languages,	and	T-SQL	provides	looping
support	through	the	WHILE	statement	and	its	associated	BREAK	and	CONTINUE
statements.	The	WHILE	loop	is	immediately	followed	by	a	predicate;	WHILE	executes	a
given	SQL	statement	or	statement	block	bounded	by	the	BEGIN	and	END	keywords	as
long	as	the	associated	predicate	evaluates	to	true.	If	the	predicate	evaluates	to	false	or
unknown,	the	code	in	the	WHILE	loop	doesn’t	execute	and	control	passes	to	the	next
statement	after	the	WHILE	loop.	The	WHILE	loop	in	Listing	3-3	is	a	very	simple	example
that	counts	from	1	to	10.	The	result	is	shown	in	Figure	3-4.

Listing	3-3.	WHILE	Statement	Example

DECLARE	@i	int	=	1;

WHILE	@i	<=	10

BEGIN

			PRINT	@i;

			SET	@i	=	@i	+	1;

END

Figure	3-4.	Counting	from	1	to	10	with	WHILE

	Tip		Be	sure	to	update	your	counter	or	other	flag	in	the	WHILE	loop.	The	WHILE
statement	will	keep	looping	until	its	predicate	evaluates	to	false	or	unknown.	A	simple
coding	mistake	can	create	a	nasty	infinite	loop.

T-SQL	also	includes	two	additional	keywords	that	can	be	used	with	the	WHILE
statement:	BREAK	and	CONTINUE.	The	CONTINUE	keyword	forces	the	WHILE	loop	to
immediately	jump	to	the	start	of	the	code	block,	as	in	the	modified	example	in	Listing	3-4.

Listing	3-4.	WHILE…CONTINUE	Example

DECLARE	@i	int	=	1;

WHILE	@i	<=	10

BEGIN

			PRINT	@i;

			SET	@i	=	@i	+	1;

CONTINUE;—Force	the	WHILE	loop	to	restart

PRINT	'The	CONTINUE	keyword	ensures	that	this	will	never	be	

printed.';

END

The	BREAK	keyword,	on	the	other	hand,	forces	the	WHILE	loop	to	terminate
immediately.	In	Listing	3-5,	BREAK	forces	the	WHILE	loop	to	exit	during	the	first
iteration	so	that	the	numbers	2	through	10	are	never	printed.

Listing	3-5.	WHILE…BREAK	Example

DECLARE	@i	int	=	1;

WHILE	@i	<=	10

BEGIN

			PRINT	@i;

			SET	@i		=	@i		+	1;

			BREAK;—Force	the	WHILE	loop	to	terminate

			PRINT	'The	BREAK	keyword	ensures	that	this	will	never	be	

printed.';

END

	Tip		BREAK	and	CONTINUE	should	be	avoided	in	most	cases.	It’s	not	uncommon	to
see	a	WHILE	l	=	l	statement	with	a	BREAK	in	the	body	of	the	loop.	This	can	always	be
rewritten,	usually	very	easily,	to	remove	the	BREAK	statement.	Most	of	the	time,	the
BREAK	and	CONTINUE	keywords	introduce	additional	complexity	to	your	logic	and
cause	more	problems	than	they	solve.

The	GOTO	Statement
Despite	Edsger	W.	Dijkstra’s	best	efforts	at	warning	developers	(see	Dijkstra’s	1968	letter,
“Go	To	Statement	Considered	Harmful”),1	T-SQL	still	has	a	GOTO	statement.	The	GOTO
statement	transfers	control	of	your	program	to	a	specified	label	unconditionally.	Labels	are
defined	by	placing	the	label	identifier	on	a	line	followed	by	a	colon	(:),	as	shown	in
Listing	3-6.	This	simple	example	executes	its	step	1	and	uses	GOTO	to	dive	straight	into
step	3,	skipping	step	2.	The	results	are	shown	in	Figure	3-5.

Listing	3-6.	Simple	GOTO	Example

PRINT	'Step	1	Begin.';

GOTO	Step3_Label;

PRINT	'Step	2	will	not	be	printed.';

Step3_Label:

PRINT	'Step	3	End.';

Figure	3-5.	The	GOTO	statement	transfers	control	unconditionally

The	GOTO	statement	is	best	avoided,	because	it	can	quickly	degenerate	your	programs
into	unstructured	spaghetti	code.	When	you	have	to	write	procedural	code,	you’re	much
better	off	using	structured	programming	constructs	like	IF…ELSE	and	WHILE	statements.

The	WAITFOR	Statement
The	WAITFOR	statement	suspends	execution	of	a	transaction,	SP,	or	T-SQL	command

batch	until	a	specified	time	is	reached,	a	time	interval	has	elapsed,	or	a	message	is
received	from	Service	Broker.

	Note		Service	Broker	is	an	SQL	Server	messaging	system.	We	don’t	detail	Service
Broker	in	this	book,	but	you	can	find	out	more	about	it	in	Pro	SQL	Server	2008	Service
Broker,	by	Klaus	Aschenbrenner	(Apress,	2008).

The	WAITFOR	statement	has	a	DELAY	option	that	tells	SQL	Server	to	suspend	code
execution	until	one	of	the	following	criteria	is	met	or	a	specified	time	interval	has	elapsed.
The	time	interval	is	specified	as	a	valid	time	string	in	the	format	hh:mm:ss.	The	time
interval	can’t	contain	a	date	portion;	it	must	only	include	the	time,	and	it	can	be	up	to	24
hours.	Listing	3-7	is	an	example	of	the	WAITFOR	statement	with	the	DELAY	option,
which	blocks	execution	of	the	batch	for	3	seconds.

WAITFOR	CAVEATS

There	are	some	caveats	associated	with	the	WAITFOR	statement.	In	some	situations,
WAITFOR	can	cause	longer	delays	than	the	interval	you	specify.	SQL	Server	also
assigns	each	WAITFOR	statement	its	own	thread,	and	if	SQL	Server	begins
experiencing	thread	starvation,	it	can	randomly	stop	WAITFOR	threads	to	free	up
thread	resources.	If	you	need	to	delay	execution	for	an	exact	amount	of	time,	you	can
guarantee	more	consistent	results	by	suspending	execution	through	an	external
application	like	SQL	Server	Integration	Services	(SSIS).

In	addition	to	its	DELAY	and	TIME	options,	you	can	use	WAITFOR	with	the
RECEIVE	and	GET	CONVERSATION	GROUP	options	with	Service	Broker–
enabled	applications.	When	you	use	WAITFOR	with	RECEIVE,	the	statement	waits
for	receipt	of	one	or	more	messages	from	a	specified	queue.

When	you	use	WAITFOR	with	the	GET	CONVERSATION	GROUP	option,	it	waits
for	a	conversation	group	identifier	of	a	message.	GET	CONVERSATION	GROUP
allows	you	to	retrieve	information	about	a	message	and	lock	the	conversation	group
for	the	conversation	containing	the	message,	all	before	retrieving	the	message	itself.

Listing	3-7.	WAITFOR	Example

PRINT	'Step	1	complete.	';

GO

DECLARE	@time_to_pass	nvarchar(8);

SELECT	@time_to_pass	=	N'00:00:03';

WAITFOR	DELAY	@time_to_pass;

PRINT	'Step	2	completed	three	seconds	later.	';

You	can	also	use	the	TIME	option	with	the	WAITFOR	statement.	If	you	use	the	TIME
option,	SQL	Server	waits	until	the	appointed	time	before	allowing	execution	to	continue.
Datetime	variables	are	allowed,	but	the	date	portion	is	ignored	when	the	TIME	option	is
used.

The	RETURN	Statement
The	RETURN	statement	exits	unconditionally	from	an	SP	or	command	batch.	When	you
use	RETURN,	you	can	optionally	specify	an	integer	expression	as	a	return	value.	The
RETURN	statement	returns	a	given	integer	expression	to	the	calling	routine	or	batch.	If
you	don’t	specify	an	integer	expression	to	return,	a	value	of	0	is	returned	by	default.
RETURN	isn’t	normally	used	to	return	calculated	results,	except	for	UDFs,	which	offer
more	RETURN	options	(as	detailed	in	Chapter	4).	For	SPs	and	command	batches,	the
RETURN	statement	is	used	almost	exclusively	to	return	a	success	indicator,	a	failure
indicator,	or	an	error	code.

WHAT	NUMBER,	SUCCESS?

All	system	SPs	return	0	to	indicate	success,	or	a	nonzero	value	to	indicate	failure
(unless	otherwise	documented	in	BOL).	It’s	considered	bad	form	to	use	the	RETURN
statement	to	return	anything	other	than	an	integer	status	code	from	a	script	or	SP.

UDFs,	on	the	other	hand,	have	their	own	rules.	UDFs	have	a	flexible	variation	of	the
RETURN	statement,	which	exits	the	body	of	the	UDF.	In	fact,	a	UDF	requires	the
RETURN	statement	be	used	to	return	scalar	or	tabular	results	to	the	caller.	You	see
UDFs	again	in	detail	in	Chapter	4.

	Note		There	are	a	couple	of	methods	in	T-SQL	to	redirect	logic	flow	based	on	errors.
These	include	the	TRY…CATCH	statement	and	the	THROW	statement.	Both	statements	are
discussed	in	detail	in	Chapter	18.

The	CASE	Expression
The	T-SQL	CASE	function	is	SQL	Server’s	implementation	of	the	ISO	SQL	CASE
expression.	Whereas	the	previously	discussed	T-SQL	control-of-flow	statements	allow	for
conditional	execution	of	SQL	statements	or	statement	blocks,	the	CASE	expression	allows
for	set-based	conditional	processing	in	a	single	query.	CASE	provides	two	syntaxes,
simple	and	searched,	which	are	discussed	in	this	section.

The	Simple	CASE	Expression
The	simple	CASE	expression	returns	a	result	expression	based	on	the	value	of	a	given
input	expression.	The	simple	CASE	expression	compares	the	input	expression	to	a	series
of	expressions	following	WHEN	keywords.	Once	a	match	is	encountered,	CASE	returns	a
corresponding	result	expression	following	the	keyword	THEN.	If	no	match	is	found,	the
expression	following	the	keyword	ELSE	is	returned.	NULL	is	returned	if	no	ELSE
keyword	is	supplied.

Consider	the	example	in	Listing	3-8,	which	uses	a	simple	CASE	expression	to	count

all	the	AdventureWorks	customers	on	the	West	Coast	(arbitrarily	defined	as	the	states	of
California,	Washington,	and	Oregon).	The	query	also	uses	a	common	table	expression
(CTE,	discussed	more	thoroughly	in	Chapter	9).	The	results	are	shown	in	Figure	3-6.

Listing	3-8.	Counting	West	Coast	Customers	with	a	Simple	CASE	Expression

WITH		EmployeesByRegion(Region)

AS

(

				SELECT

								CASE	sp.StateProvinceCode

								WHEN	'CA'	THEN	'West	Coast'

								WHEN	'WA'	THEN	'West	Coast'

								WHEN	'OR'	THEN	'West	Coast'

								ELSE	'Elsewhere'

								END

				FROM		HumanResources.Employee	e

				INNER	JOIN	Person.Person	p

								ON	e.BusinessEntityID	=	p.BusinessEntityID

							INNER	JOIN	Person.BusinessEntityAddress	bea

														ON	bea.BusinessEntityID	=	e.BusinessEntityID

							INNER	JOIN	Person.Address	a

														ON	a.AddressID	=	bea.AddressID

							INNER	JOIN	Person.StateProvince	sp

														ON	sp.StateProvinceID	=	a.StateProvinceID

				WHERE	sp.CountryRegionCode	=	'US'

)

SELECT		COUNT(Region)		AS		NumOfEmployees,		Region

FROM				EmployeesByRegion

GROUP		BY		Region;

Figure	3-6.	Results	of	the	West	Coast	Customer	Count

The	CASE	expression	in	the	subquery	compares	the	StateProvinceCode	value	to
each	of	the	state	codes	following	the	WHEN	keywords,	returning	the	name	West	Coast
when	StateProvinceCode	is	equal	to	CA,	WA,	or	OR.	For	any	other
StateProvinceCode	in	the	United	States,	it	returns	a	value	of	Elsewhere:

SELECT	CASE	sp.StateProvinceCode

								WHEN	'CA'	THEN	'West	Coast'

								WHEN	'WA'	THEN	'West	Coast'

								WHEN	'OR'	THEN	'West	Coast'

								ELSE	'Elsewhere'

				END

The	remainder	of	the	example	counts	the	number	of	rows	returned	by	the	query,
grouped	by	Region.

A	SIMPLE	CASE	OF	NULL

The	simple	CASE	expression	performs	basic	equality	comparisons	between	the	input
expression	and	the	expressions	following	the	WHEN	keywords.	This	means	you	can’t
use	the	simple	CASE	expression	to	check	for	NULLs.	Recall	from	the	“Three-Valued
Logic”	section	of	this	chapter	that	a	NULL,	when	compared	to	anything,	returns
unknown.	The	simple	CASE	expression	only	returns	the	expression	following	the
THEN	keyword	when	the	comparison	returns	true.	This	means	if	you	ever	try	to	use
NULL	in	a	WHEN	expression,	the	corresponding	THEN	expression	won’t	be	returned.
If	you	need	to	check	for	NULL	in	a	CASE	expression,	use	a	searched	CASE
expression	with	the	IS	NULL	or	IS	NOT	NULL	comparison	operators.

The	Searched	CASE	Expression
The	searched	CASE	expression	provides	a	mechanism	for	performing	more	complex
comparisons.	The	searched	CASE	evaluates	a	series	of	predicates	following	WHEN
keywords	until	it	encounters	one	that	evaluates	to	true.	At	that	point,	it	returns	the
corresponding	result	expression	following	the	THEN	keyword.	If	none	of	the	predicates
evaluates	to	true,	the	result	following	the	ELSE	keyword	is	returned.	If	none	of	the
predicates	evaluates	to	true	and	ELSE	isn’t	supplied,	the	searched	CASE	expression
returns	NULL.

Predicates	in	the	searched	CASE	expression	can	take	advantage	of	any	valid	SQL
comparison	operators	(such	as	<,	>,	=,	LIKE,	and	IN).	The	simple	CASE	expression	from
Listing	3-8	can	be	easily	expanded	to	cover	multiple	geographic	regions	using	the
searched	CASE	expression	and	the	IN	logical	operator,	as	shown	in	Listing	3-9.	This
example	uses	a	searched	CASE	expression	to	group	states	into	West	Coast,	Pacific,	and
New	England	regions.	The	results	are	shown	in	Figure	3-7.

Listing	3-9.	Counting	Employees	by	Region	with	a	Searched	CASE	Expression

WITH		EmployeesByRegion(Region)

AS

(

				SELECT

								CASE	WHEN	sp.StateProvinceCode	IN	('CA',	'WA',	'OR')	

THEN	'West	Coast'

								WHEN	sp.StateProvinceCode	IN	('HI',	'AK')	THEN	

'Pacific'

								WHEN	sp.StateProvinceCode	IN	('CT',		'MA',	'ME',	'NH',	

'RI',	'VT')

								THEN	'New	England'

								ELSE	'Elsewhere'

								END

				FROM		HumanResources.Employee	e

				INNER	JOIN	Person.Person	p

								ON	e.BusinessEntityID	=	p.BusinessEntityID

							INNER	JOIN	Person.BusinessEntityAddress	bea

											ON	bea.BusinessEntityID	=	e.BusinessEntityID

							INNER	JOIN	Person.Address	a

											ON	a.AddressID	=	bea.AddressID

							INNER	JOIN	Person.StateProvince	sp

											ON	sp.StateProvinceID	=	a.StateProvinceID

				WHERE	sp.CountryRegionCode	=	'US'

)

SELECT		COUNT(Region)		AS		NumOfCustomers,		Region

FROM				EmployeesByRegion

GROUP			BY		Region;

Figure	3-7.	Results	of	the	regional	customer	count

The	searched	CASE	expression	in	the	example	uses	the	IN	operator	to	return	the
geographic	area	that	StateProvinceCode	is	in:	California,	Washington,	and	Oregon
all	return	West	Coast;	and	Connecticut,	Massachusetts,	Maine,	New	Hampshire,	Rhode
Island,	and	Vermont	all	return	New	England.	If	the	StateProvinceCode	doesn’t	fit	in
one	of	these	regions,	the	searched	CASE	expression	returns	Elsewhere:

SELECT

				CASE	WHEN	sp.StateProvinceCode	IN	('CA',	'WA',	'OR')	THEN	

'West	Coast'

								WHEN	sp.StateProvinceCode	IN	('HI',	'AK')	THEN	

'Pacific'

								WHEN	sp.StateProvinceCode	IN	('CT',	'MA',	'ME',	'NH',	

'RI',	'VT')

								THEN	'New	England'

								ELSE	'Elsewhere'

				END

The	balance	of	the	sample	code	in	Listing	3-9	counts	the	rows	returned,	grouped	by
Region.	The	CASE	expression,	either	simple	or	searched,	can	be	used	in	SELECT,

UPDATE,	INSERT,	MERGE,	and	DELETE	statements.

A	CASE	BY	ANY	OTHER	NAME

Many	programming	and	query	languages	offer	expressions	that	are	analogous	to	the
SQL	CASE	expression.	C++	and	C#,	for	instance,	offer	the	?:	operator,	which
fulfills	the	same	function	as	a	searched	CASE	expression.	XQuery	has	its	own	flavor
of	if…then…else	expression	that	is	also	equivalent	to	the	SQL	searched	CASE.

C#	and	Visual	Basic	supply	the	switch	and	Select	statements,	respectively,
which	are	semi-analogous	to	SQL’s	simple	CASE	expression.	The	main	difference,	of
course,	is	that	SQL’s	CASE	expression	returns	a	scalar	value,	whereas	the	C#	and
Visual	Basic	statements	actually	control	program	flow,	allowing	you	to	execute
statements	based	on	an	expression’s	value.	The	similarities	and	differences	between
SQL	expressions	and	statements	and	similar	constructs	in	other	languages	provide	a
great	starting	point	for	learning	the	nitty-gritty	details	of	T-SQL.

CASE	and	Pivot	Tables
Many	times,	business	reporting	requirements	dictate	that	a	result	should	be	returned	in
pivot	table	format.	Pivot	table	format	simply	means	the	labels	for	columns	and/or	rows	are
generated	from	the	data	contained	in	rows.	Microsoft	Access	and	Excel	users	have	long
had	the	ability	to	generate	pivot	tables	on	their	data,	and	SQL	Server	2014	supports	the
PIVOT	and	UNPIVOT	operators	introduced	in	SQL	Server	2005.	Back	in	the	days	of	SQL
Server	2000	and	before,	however,	CASE	expressions	were	the	only	method	of	generating
pivot	table–type	queries.	And	even	though	SQL	Server	2014	provides	the	PIVOT	and
UNPIVOT	operators,	truly	dynamic	pivot	tables	still	require	using	CASE	expressions	and
dynamic	SQL.	The	static	pivot	table	query	shown	in	Listing	3-10	returns	a	pivot	table–
formatted	result	with	the	total	number	of	orders	for	each	AdventureWorks	sales	region	in
the	United	States.	The	results	are	shown	in	Figure	3-8.

Listing	3-10.	CASE-Style	Pivot	Table

SELECT

				t.CountryRegionCode,

				SUM

				(

								CASE	WHEN	t.Name	=	'Northwest'	THEN	1

								ELSE				0

								END

)		AS							Northwest,

				SUM

				(

								CASE	WHEN	t.Name	=	'Northeast'	THEN	1

								ELSE				0

								END

)		AS							Northeast,

				SUM

				(

								CASE	WHEN	t.Name	=	'Southwest'	THEN	1

								ELSE				0

								END

)		AS							Southwest,

				SUM

				(

								CASE	WHEN	t.Name	=	'Southeast'	THEN	1

								ELSE				0

								END

)		AS							Southeast,

				SUM

				(

								CASE	WHEN	t.Name	=	'Central'	THEN	1

								ELSE				0

								END

)		AS		Central

FROM		Sales.SalesOrderHeader	soh

INNER		JOIN		Sales.SalesTerritory		t

				ON		soh.TerritoryID	=	t.TerritoryID

WHERE		t.CountryRegionCode		=		'US'

GROUP		BY		t.CountryRegionCode;

Figure	3-8.	Number	of	sales	by	region	in	pivot	table	format

This	type	of	static	pivot	table	can	also	be	used	with	the	SQL	Server	2014	PIVOT
operator.	The	sample	code	in	Listing	3-11	uses	the	PIVOT	operator	to	generate	the	same
result	as	the	CASE	expressions	in	Listing	3-10.

Listing	3-11.	PIVOT	Operator	Pivot	Table

SELECT

				CountryRegionCode,

				Northwest,

				Northeast,

				Southwest,

				Southeast,

				Central

FROM

(

				SELECT

								t.CountryRegionCode,

								t.Name

				FROM		Sales.SalesOrderHeader		soh

				INNER	JOIN	Sales.SalesTerritory	t

								ON		soh.TerritoryID		=		t.TerritoryID

				WHERE	t.CountryRegionCode	=	'US'

)		p

PIVOT

(

				COUNT	(Name)

				FOR		Name

				IN

				(

								Northwest,	

								Northeast,

								Southwest,

								Southeast,

								Central

)

)		AS		pvt;

On	occasion,	you	may	need	to	run	a	pivot	table–style	report	where	you	don’t	know	the
column	names	in	advance.	This	is	a	dynamic	pivot	table	script	that	uses	a	temporary	table
and	dynamic	SQL	to	generate	a	pivot	table,	without	specifying	the	column	names	in
advance.	Listing	3-12	demonstrates	one	method	of	generating	dynamic	pivot	tables	in	T-
SQL.	The	results	are	shown	in	Figure	3-9.

Listing	3-12.	Dynamic	Pivot	Table	Query

--	Declare	variables

DECLARE	@sql	nvarchar(4000);

DECLARE	@temp_pivot	table

	(

		TerritoryID	int	NOT	NULL	PRIMARY	KEY,

		CountryRegion	nvarchar(20)	NOT	NULL,

		CountryRegionCode	nvarchar(3)	NOT	NULL

);

--	Get	column	names	from	source	table	rows

INSERT	INTO	@temp_pivot

	(

		TerritoryID,

		CountryRegion,

		CountryRegionCode

)

	SELECT

		TerritoryID,

		Name,

		CountryRegionCode

		FROM	Sales.SalesTerritory

		GROUP	BY

					TerritoryID,

					Name,

					CountryRegionCode;

--	Generate	dynamic	SQL	query

SET	@sql	=	N'SELECT'	+

				SUBSTRING(

							(

									SELECT	N',	SUM(CASE	WHEN	t.TerritoryID	=	'	+

											CAST(TerritoryID	AS	NVARCHAR(3))	+

								N'	THEN	1	ELSE	0	END)	AS	'	+	QUOTENAME(CountryRegion)	

AS	"*"

								FROM	@temp_pivot

								FOR	XML	PATH('')

),	2,	4000)	+

				N'	FROM	Sales.SalesOrderHeader	soh	'	+

							N'	INNER	JOIN	Sales.SalesTerritory	t	'	+

							N'	ON	soh.TerritoryID	=	t.TerritoryID;	'	;

--	Print	and	execute	dynamic	SQL

PRINT	@sql;

EXEC	(@sql);

Figure	3-9.	Dynamic	pivot	table	result

The	script	in	Listing	3-12	first	declares	an	nvarchar	variable	that	holds	the
dynamically	generated	SQL	script	and	a	table	variable	that	holds	all	the	column	names,
which	are	retrieved	from	the	row	values	in	the	source	table:

--	Declare	variables

DECLARE	@sql	nvarchar(4000);

DECLARE	@temp_pivot	table

	(

		TerritoryID	int	NOT	NULL	PRIMARY	KEY,

		CountryRegion	nvarchar(20)	NOT	NULL,

		CountryRegionCode	nvarchar(3)	NOT	NULL

);

Next,	the	script	grabs	a	list	of	distinct	territory-specific	values	from	the	table	and
stores	them	in	the	@temp_pivot	table	variable.	These	values	from	the	table	become
column	names	in	the	pivot	table	result:

--	Get	column	names	from	source	table	rows

INSERT	INTO	@temp_pivot

	(

		TerritoryID,

		CountryRegion,

		CountryRegionCode

)

	SELECT

		TerritoryID,

		Name,

		CountryRegionCode

		FROM	Sales.SalesTerritory

		GROUP	BY

					TerritoryID,

					Name,

					CountryRegionCode;

The	script	then	uses	FOR	XML	PATH	to	efficiently	generate	the	dynamic	SQL
SELECT	query	that	contains	CASE	expressions	and	column	names	generated	dynamically
based	on	the	values	in	the	@temppivot	table	variable.	This	SELECT	query	creates	the
dynamic	pivot	table	result:

--	Generate	dynamic	SQL	query

SET	@sql	=	N'SELECT'	+

				SUBSTRING(

							(

									SELECT	N',	SUM(CASE	WHEN	t.TerritoryID	=	'	+

											CAST(TerritoryID	AS	NVARCHAR(3))	+

								N'	THEN	1	ELSE	0	END)	AS	'	+	QUOTENAME(CountryRegion)	

AS	"*"

								FROM	@temp_pivot

								FOR	XML	PATH('')

),	2,	4000)	+

				N'	FROM	Sales.SalesOrderHeader	soh	'	+

							N'	INNER	JOIN	Sales.SalesTerritory	t	'	+

							N'	ON	soh.TerritoryID	=	t.TerritoryID;	'	;

Finally,	the	dynamic	pivot	table	query	is	printed	out	and	executed	with	the	T-SQL
PRINT	and	EXEC	statements:

--	Print	and	execute	dynamic	SQL

PRINT	@sql;

EXEC	(@sql);

Listing	3-13	shows	the	dynamic	SQL	pivot	table	query	generated	by	the	code	in
Listing	3-12.

Listing	3-13.	Autogenerated	Dynamic	SQL	Pivot	Table	Query

SELECT	SUM

(

				CASE		WHEN		t.TerritoryID		=		1		THEN	1

								ELSE	0

				END

)		AS			[Northwest],

SUM

(

				CASE		WHEN		t.TerritoryID		=		2		THEN	1

								ELSE	0

				END

)		AS			[Northeast],

SUM

(

				CASE		WHEN		t.TerritoryID		=		3		THEN	1

								ELSE	0

				END

)		AS		[Central],

SUM

(

				CASE		WHEN		t.TerritoryID		=		4		THEN	1

								ELSE	0

				END

)		AS			[Southwest],

SUM

(

				CASE		WHEN		t.TerritoryID		=		5		THEN	1

								ELSE	0

				END

)		AS			[Southeast],

SUM

(

				CASE		WHEN		t.TerritoryID		=		6		THEN	1

								ELSE	0

				END

)		AS		[Canada],

SUM

(

				CASE		WHEN		t.TerritoryID		=		7		THEN	1

								ELSE	0

				END

)		AS		[France],

SUM

(

				CASE		WHEN		t.TerritoryID		=		8		THEN	1

								ELSE	0

				END

)		AS		[Germany],

SUM

(

				CASE		WHEN		t.TerritoryID		=		9		THEN	1

								ELSE	0

				END

)		AS		[Australia],

SUM

(

				CASE		WHEN		t.TerritoryID		=		10		THEN	1

								ELSE	0

				END

)		AS		[United	Kingdom]

FROM		Sales.SalesOrderHeader	soh

INNER	JOIN		Sales.SalesTerritory		t

				ON		soh.TerritoryID	=	t.TerritoryID;

	Caution		Any	time	you	use	dynamic	SQL,	make	sure	you	take	precautions	against	SQL
injection—that	is,	malicious	SQL	code	being	inserted	into	your	SQL	statements.	This
example	uses	the	QUOTENAME	function	to	quote	the	column	names	being	dynamically
generated,	to	help	avoid	SQL	injection	problems.	Chapter	18	covers	dynamic	SQL	and
SQL	injection	in	greater	detail.

The	IIF	Statement
SQL	Server	2012	simplified	the	standard	CASE	statement	by	introducing	the	concept	of	an
IIF	statement.	You	get	the	same	results	as	you	would	using	the	CASE	statement	but	with
much	less	code.	Those	familiar	with	Microsoft	.NET	will	be	glad	to	see	that	the	same
functionality	is	now	part	of	T-SQL.

The	syntax	is	simple.	The	command	takes	a	Boolean	expression,	a	value	for	when	the
expression	equates	to	true,	and	a	value	for	when	the	expression	equates	to	false.	Listing	3-
14	show	two	examples:	one	uses	variables,	and	the	other	uses	table	columns.	The	output
for	both	statements	is	shown	in	Figure	3-10.

Listing	3-14.	Examples	Using	the	IIF	statement

--Example	1.	IIF	Statement	Using	Variables

DECLARE	@valueA	int	=	85

DECLARE	@valueB	int	=	45

SELECT	IIF	(@valueA	<	@valueB,	'True',	'False')	AS	Result

--Example	2.	IIF	Statement	Using	Table	Column

SELECT	IIF	(Name	in	('Alberta',	'British	Columbia'),	

'Canada',	Name)

FROM	[Person].[StateProvince]

Figure	3-10.	Partial	output	of	IIF	statements

CHOOSE
Another	logical	function	introduced	in	SQL	Server	2012	is	the	CHOOSE	function.	The
CHOOSE	function	allows	you	to	select	a	member	of	an	array	based	on	an	integer	index
value.	Simply	put,	CHOOSE	lets	you	select	a	member	from	a	list.	The	member	you	select
can	be	based	on	either	a	static	index	value	or	a	computed	value.	The	syntax	for	the
CHOOSE	function	is	as	follows:

CHOOSE	(index,	val_1,	val_2	[,	val_n])

If	the	index	value	isn’t	an	integer	(let’s	say	it’s	a	decimal),	then	SQL	converts	it	to	an
integer.	If	the	index	value	is	out	of	range	for	the	index,	then	the	function	returns	NULL.
Listing	3-15	shows	a	simple	example,	and	Figure	3-11	shows	the	output.	The	example
uses	the	integer	value	of	PhoneNumberTypeID	to	determine	the	type	of	phone.	In	this
case,	the	phone	type	is	defined	in	the	table,	so	a	CHOOSE	function	wouldn’t	be	necessary;
but	in	other	cases,	the	value	may	not	be	defined.

Listing	3-15.	Example	Using	the	CHOOSE	Statement

SELECT	p.FirstName,

							pp.PhoneNumber,

							CHOOSE(pp.PhoneNumberTypeID,	'Cell',	'Home',	'Work')	

'Phone	Type'

FROM	Person.Person	p

JOIN	Person.PersonPhone	pp

ON	p.BusinessEntityID	=	pp.BusinessEntityID

Figure	3-11.	Partial	output	of	the	CHOOSE	statement

COALESCE	and	NULLIF
The	COALESCE	function	takes	a	list	of	expressions	as	arguments	and	returns	the	first	non-
NULL	value	from	the	list.	COALESCE	is	defined	by	ISO	as	shorthand	for	the	following
equivalent	searched	CASE	expression:

CASE

WHEN	(expression1	IS	NOT	NULL)	THEN	expression1	WHEN	

(expression2	IS	NOT	NULL)	THEN	expression2

[...	"]	END

The	following	COALESCE	function	returns	the	value	of	MiddleName	when

MiddleName	is	not	NULL,	and	the	string	No	Middle	Name	when	MiddleName	is
NULL:

COALESCE	(MiddleName,	'No	Middle	Name')

The	NULLIF	function	accepts	exactly	two	arguments.	NULLIF	returns	NULL	if	the
two	expressions	are	equal,	and	it	returns	the	value	of	the	first	expression	if	the	two
expressions	aren’t	equal.	NULLIF	is	defined	by	the	ISO	standard	as	equivalent	to	the
following	searched	CASE	expression:

CASE	WHEN	expression1	=	expression2	THEN	NULL

ELSE	expression1

END

NULLIF	is	often	used	in	conjunction	with	COALESCE.	Consider	Listing	3-16,	which
combines	COALESCE	with	NULLIF	to	return	the	string	“This	is	NULL	or	A”	if	the
variable	@s	is	set	to	the	character	value	A	or	NULL.

Listing	3-16.	Using	COALESCE	with	NULLIF

DECLARE	@s	varchar(10);

SELECT	@s	=	'A';

SELECT	COALESCE(NULLIF(@s,	'A'),	'This	is	NULL	or	A');

T-SQL	has	long	had	alternate	functionality	similar	to	COALESCE.	Specifically,	the
ISNULL	function	accepts	two	parameters	and	returns	NULL	if	they’re	equal.

COALESCE	OR	ISNULL?

The	T-SQL	functions	COALESCE	and	ISNULL	perform	similar	functions,	but	which
one	should	you	use?	COALESCE	is	more	flexible	than	ISNULL	and	is	compliant
with	the	ISO	standard	to	boot.	This	means	it’s	also	the	more	portable	option	among
ISO-compliant	systems.	COALESCE	also	implicitly	converts	the	result	to	the	data
type	with	the	highest	precedence	from	the	list	of	expressions.	ISNULL	implicitly
converts	the	result	to	the	data	type	of	the	first	expression.	Finally,	COALESCE	is	a	bit
less	confusing	than	ISNULL,	especially	considering	that	there’s	already	a
comparison	operator	called	IS	NULL.	In	general,	we	recommend	using	the
COALESCE	function	instead	of	ISNULL.

Cursors
The	word	cursor	comes	from	the	Latin	word	for	runner,	and	that	is	exactly	what	a	T-SQL
cursor	does:	it	“runs”	through	a	result	set,	returning	one	row	at	a	time.	Many	T-SQL
programming	experts	rail	against	the	use	of	cursors	for	a	variety	of	reasons—the	chief
among	these	include	the	following:

Cursors	use	a	lot	of	overhead,	often	much	more	than	an	equivalent	set-

based	approach.

Cursors	override	SQL	Server’s	built-in	query	optimizations,	often
making	them	much	slower	than	an	equivalent	set-based	solution.

Because	cursors	are	procedural	in	nature,	they’re	often	the	slowest	way	to	manipulate
data	in	T-SQL.	Rather	than	spend	the	balance	of	the	chapter	ranting	against	cursor	use,
however,	we’d	like	to	introduce	T-SQL	cursor	functionality	and	play	devil’s	advocate	to
point	out	some	areas	where	cursors	provide	an	adequate	solution.

The	first	such	area	where	we	can	recommend	the	use	of	cursors	is	in	scripts	or
procedures	that	perform	administrative	tasks.	In	administrative	tasks,	the	following	items
often	hold	true:

Unlike	normal	data	queries	and	data	manipulations	that	are	performed
dozens,	hundreds,	or	potentially	thousands	of	times	per	day,
administrative	tasks	are	often	performed	on	a	one-off	basis	or	on	a
regular	schedule	like	once	per	day.

Administrative	tasks	often	require	calling	an	SP	or	executing	a
procedural	code	block	once	for	each	row	when	the	tasks	are	based	on
a	table	of	entries.

Administrative	tasks	generally	don’t	need	to	query	or	manipulate
massive	amounts	of	data	to	perform	their	jobs.

The	order	of	the	steps	in	which	administrative	tasks	are	performed	and
the	order	of	the	database	objects	they	touch	are	often	important.

The	sample	SP	in	Listing	3-17	is	an	example	of	an	administrative	task	performed	with
a	T-SQL	cursor.	The	sample	uses	a	cursor	to	loop	through	all	indexes	on	all	user	tables	in
the	current	database.	It	then	creates	dynamic	SQL	statements	to	rebuild	every	index	whose
fragmentation	level	is	above	a	user-specified	threshold.	The	results	are	shown	in	Figure	3-
12.	Be	aware	that	your	results	may	return	different	values	for	each	row.

Listing	3-17.	Sample	Administrative	Task	Performed	with	a	Cursor
CREATE	PROCEDURE	dbo.RebuildIndexes

(@ShowOrRebuiId	nvarchar(10)	=	N'show'

				,	@MaxFrag	decimal(20,	2)	=	20.0
)

AS

SET	NOCOUNT	ON;

BEGIN

—	Declare	variables

DECLARE

			@Schema	nvarchar(128),	@Table	nvarchar(128)
			,	@Index	nvarchar(128),	@Sql	nvarchar(4000)
			,	@DatabaseId	int,	@SchemaId	int

			,	@TableId	int,	@lndexId	int;

—	Create	the	index	list	table

DECLARE	@IndexList	TABLE

(DatabaseName	nvarchar(128)	NOT	NULL

				,	DatabaseId	int	NOT	NULL
				,	SchemaName	nvarchar(128)	NOT	NULL
				,	SchemaId	int	NOT	NULL
				,	TableName	nvarchar(128)	NOT	NULL
				,	TableId	int	NOT	NULL
				,	IndexName	nvarchar(128)
				,	IndexId	int	NOT	NULL
				,	Fragmentation	decimal(20,	2)
				,	PRIMARY	KEY	(DatabaseId,	SchemaId,	TableId,	IndexId)
);

—	Populate	index	list	table

INSERT	INTO	@IndexList	
(DatabaseName,	DatabaseId

				,	SchemaName,	SchemaId
				,	TableName,	TableId
				,	IndexName,	IndexId
				,	Fragmentation
)

	SELECT	db_name(),	db_id()
								,	s.Name,	s.schema_id
								,	t.Name,	t.object_id
								,	i.Name,	i.index_id
								,	MAX(ip.avg_fragmentation_in_percent)
			FROM	sys.tables	t
		INNER	JOIN	sys.schemas	s	ON
								t.schema_id	=	s.schema_id
		INNER	JOIN	sys.indexes	i	ON
								t.object_id	=	i.object_id
		INNER	JOIN	sys.dm_db_index_physical_stats	(db_id(),	NULL,
NULL,	NULL,	NULL)	ip	ON

								ip.object_id	=	t.object_id	AND	ip.index_id	=	i.index_id
		WHERE	ip.database_id	=	db_id()
		GROUP	BY
								s.Name
								,	s.schema_id
								,	t.Name
								,	t.object_id
								,	i.Name
								,	i.index_id;

—	If	user	specified	rebuiId,	use	a	cursor	to	loop	through

all	indexes

—	rebuiId	them

IF	@ShowOrRebuiId	=	N'rebuiId'

BEGIN

—	Declare	a	cursor	to	create	the	dynamic	SQL	statements

DECLARE	Index_Cursor	CURSOR	FAST_FORWARD

				FOR	SELECT	SchemaName,	TableName,	IndexName
										FROM	@IndexList
									WHERE	Fragmentation	>	@MaxFrag
									ORDER	BY	Fragmentation	DESC,	TableName	ASC,	IndexName
ASC;

—	Open	the	cursor	for	reading

OPEN	Index_Cursor;

—	Loop	through	all	the	tables	in	the	database

FETCH	NEXT	FROM	Index_Cursor

											INTO	@Schema,	@Table,	@Index;

WHILE	@@FETCH_STATUS	=	0

BEGIN	—	Create	ALTER	INDEX	statement	to	rebuiId	index

				SET	@Sql	=	N'ALTER	INDEX	'	+
								QUOTENAME(RTRIM(@Index))	+	N'	ON	'
+	QUOTENAME(RTRIM(@Table))	+	N'.'	+

								QUOTENAME(RTRIM(@Table))	+	N'	REBUILD	WITH	(ONLINE
=	OFF);	';

				PRINT	@Sql;

				—	Execute	dynamic	SQL
				EXEC	(@Sql);

				—	Get	the	next	index
				FETCH	NEXT	FROM	Index_Cursor
				INTO	@Schema,	@Table,	@Index;
END

—	Close	and	deallocate	the	cursor.	
CLOSE	Index_Cursor;

DEALLOCATE	Index_Cursor;

END

—	Show	results,	including	oId	fragmentation	and	new

fragmentation

—	after	index	rebuiId

	SELECT	il.DatabaseName
								,	il.SchemaName
								,	il.TableName
								,	il.IndexName
								,	il.Fragmentation	AS	FragmentationStart
								,	MAX(CAST(ip.avg_fragmentation_in_percent	AS
DECIMAL(20,	2))

)	AS	FragmentationEnd
			FROM	@IndexList	il
		INNER	JOIN	sys.dm_db_index_physical_stats(@DatabaseId,
NULL,	NULL,	NULL,	NULL)	ip	ON

								DatabaseId	=	ip.database_id	AND
								TableId	=	ip.object_id	AND
								IndexId	=	ip.index_id
		GROUP	BY
								il.DatabaseName
								,	il.SchemaName
								,	il.TableName
								,	il.IndexName
								,	il.Fragmentation
		ORDER	BY
								Fragmentation	DESC
								,	TableName	ASC
								,	IndexName	ASC;
		RETURN;
END

GO

—	Execute	index	rebuild	stored	procedure

EXEC	dbo.RebuildIndexes	N'rebuild',	30;

Figure	3-12.	The	results	of	a	cursor-based	index	rebuild	in	the	AdventureWorks	database

The	dbo.RebuildIndexes	procedure	shown	in	Listing	3-17	populates	a	table
variable	with	the	information	necessary	to	identify	all	indexes	on	all	tables	in	the	current
database.	It	also	uses	the	sys.dm_db_indexphysical_stats	catalog	function	to
retrieve	initial	index	fragmentation	information:

--Populate	index	list	table

INSERT	INTO	@IndexList

(

DatabaseName,

DatabaseId,

SchemaName,

SchemaId,

TableName,

TableId,

IndexName,

IndexId,

Fragmentation

)

SELECT

		db_name(),

db_id(),

s.Name,

s.schema_id,

t.Name,

t.object_id,

i.Name,

i.index_id,

MAX(ip.avg_fragmentation_in_percent)

FROM	sys.tables	t

INNER	JOIN	sys.schemas	s

		ON	t.schema_id	=	s.schema_id

INNER	JOIN	sys.indexes	i

		ON	t.object_id	=	i.object_id

INNER	JOIN	sys.dm_db_index_physical_stats	(db_id(),	NULL,	

NULL,NULL,	NULL)	ip

ON	ip.object_id	=	t.object_id

			AND	ip.index_id	=	i.index_id

WHERE	ip.database_id	=	db_id()

	GROUP	BY

			s.Name,

			s.schema_id,

			t.Name,

			t.object_id,

			i.Name,	

			i.index_id;

If	you	specify	a	rebuild	action	when	you	call	the	procedure,	it	creates	a	cursor	to	loop
through	the	rows	of	the	@IndexList	table,	but	only	for	indexes	with	a	fragmentation
percentage	higher	than	the	level	you	specified	when	calling	the	procedure:

--	Declare	a	cursor	to	create	the	dynamic	SOL	statements

DECLARE	Index_Cursor	CURSOR	FAST_FORWARD

FOR

SELECT

		SchemaName,

		TableName,

		IndexName	FROM	@IndexList

WHERE	Fragmentation	>	@MaxFrag

ORDER	BY

		Fragmentation	DESC,

		TableName	ASC,

		IndexName	ASC;

The	procedure	then	loops	through	all	the	indexes	in	the	@IndexList	table,	creating
an	ALTER	INDEX	statement	to	rebuild	each	index.	Each	ALTER	INDEX	statement	is
created	as	dynamic	SQL	to	be	printed	and	executed	using	the	SQL	PRINT	and	EXEC
statements:

--	Open	the	cursor	for	reading

OPEN	Index_Cursor;

--	Loop	through	all	the	tables	in	the	database

FETCH	NEXT	FROM	Index_Cursor

INTO	@Schema,@Table,	@Index;

WHILE	@@FETCH_STATUS	=	0

BEGIN

	--	Create	ALTER	INDEX	statement	to	rebuild	index

SET	@Sql	=N'ALTER	INDEX	'	+

	QUOTENAME(RTRIM(@Index))	+	N'	ON	'	+	QUOTENAME(l@Schema)	

+	N'.'	+

	QUOTENAME(RTRIM(@Table))	+	N'	REBUILD	WITH	(ONLINE	=	OFF);	

';

PRINT	@Sql;

--	Execute	dynamic	SQL

EXEC	(@Sql);

--	Get	the	next	index

FETCH	NEXT	FROM	Index_Cursor

INTO	@Schema,	@Table,	@lndex;

END

--	Close	and	deallocate	the	cursor.

CLOSE	Index_Cursor;

DEALLOCATE	Index_Cursor;

The	dynamic	SQL	statements	generated	by	the	procedure	look	similar	to	the
following:

ALTER	INDEX	[IX_PurchaseOrderHeader_EmployeeID]

ON	[Purchasing].[PurchaseOrderHeader]	REBUILD	WITH	(ONLINE	

=	OFF);

The	balance	of	the	code	simply	displays	the	results,	including	the	new	fragmentation
percentage	after	the	indexes	are	rebuilt.

NO	DBCC?

Notice	in	the	example	code	in	Listing	3-17	that	we	specifically	avoided	using
database	console	commands	(DBCCs)	like	DBCC	DBREINDEX	and	DBCC
SHOWCONTIG	to	manage	index	fragmentation	and	rebuild	the	indexes	in	the
database.	There	is	a	very	good	reason	for	this:	these	DBCC	statements,	and	many
others,	are	deprecated.	Microsoft	is	planning	to	do	away	with	many	common	DBCC
statements	in	favor	of	catalog	views	and	enhanced	T-SQL	statement	syntax.	The
DBCC	DBREINDEX	statement,	for	instance,	is	being	replaced	by	the	ALTER
INDEX	REBUILD	syntax,	and	DBCC	SHOWCONTIG	is	being	replaced	by	the
sys.dm_db_index_physical_stats	catalog	function.	Keep	this	in	mind
when	porting	code	from	legacy	systems	and	creating	new	code.

Another	situation	where	we	advise	developers	to	use	cursors	is	when	the	solution
required	is	a	one-off	task,	a	set-based	solution	would	be	very	complex,	and	time	is
short.	Examples	include	creating	complex	running	sum-type	calculations	and
performing	complex	data-scrubbing	routines	on	a	very	limited	timeframe.	We	don’t
using	a	cursor	as	a	permanent	production	application	solution	without	exploring	all
available	set-based	options.	Remember	that	whenever	you	use	a	cursor,	you	override
SQL	Server’s	automatic	optimizations—and	the	SQL	Server	query	engine	has	much
better	and	more	current	information	to	optimize	operations	than	you	have	access	to	at
any	given	point	in	time.	Also	keep	in	mind	that	tasks	you	consider	extremely
complex	today	will	become	much	easier	as	SQL’s	set-based	processing	becomes
second	nature	to	you.

CURSORS,	CURSORS	EVERYWHERE

Although	cursors	commonly	get	a	lot	of	bad	press	from	SQL	gurus,	there	is	nothing
inherently	evil	about	them.	They’re	just	another	tool	in	the	toolkit	and	should	be
viewed	as	such.	What	is	wrong	is	the	ways	in	which	developers	abuse	them.
Generally	speaking,	as	much	as	90%	of	the	time,	cursors	absolutely	are	not	the	best
tool	for	the	job	when	you’re	writing	T-SQL	code.	Unfortunately,	many	SQL	newbies

find	set-based	logic	difficult	to	grasp	at	first.	Cursors	provide	a	comfort	zone	for
procedural	developers	because	they	lend	themselves	to	procedural	design	patterns.

One	of	the	worst	design	patterns	you	can	adopt	is	the	“cursors,	cursors	everywhere”
design	pattern.	Believe	it	or	not,	there	are	developers	who	have	been	writing	SQL
code	for	years	and	have	never	bothered	learning	about	SQL’s	set-based	processing.
These	developers	tend	to	approach	every	SQL	problem	as	if	it	were	a	C#	or	Visual
Basic	problem,	and	their	code	tends	to	reflect	it	with	“cursors,	cursors	everywhere.”
Replacing	cursor-based	code	with	WHILE	loops	doesn’t	solve	the	problem.
Simulating	the	behavior	of	cursors	with	WHILE	loops	doesn’t	fix	the	design	flaw
inherent	in	the	cursor-based	solution:	row-by-row	processing	of	data.	WHILE	loops
may,	under	some	circumstances,	perform	comparably	to	cursors;	and	in	some
situations	even	a	cursor	will	outperform	a	WHILE	loop.

Another	horrible	design	pattern	results	from	what	are	actually	best	practices	in	other
procedural	languages.	Code	reuse	isn’t	SQL’s	strong	point.	Many	programmers
coming	from	object-oriented	languages	that	promote	heavy	code	reuse	tend	to	write
layers	and	layers	of	SPs	that	call	one	another.	These	SPs	often	have	cursors,	and
cursors	within	cursors,	to	feed	each	layer	of	procedures.	Although	it	does	promote
code	reuse,	this	design	pattern	causes	severe	performance	degradation.	A	commonly
used	term	for	this	type	of	design	pattern,	popularized	by	SQL	professional	Jeff
Moden,	is	“row-by-agonizing-row”	(RBAR)	processing.	This	design	pattern	is	high
on	our	top-ten	list	of	ways	to	abuse	SQL	Server	and	will	cause	you	far	more
problems	than	it	ever	solves.	SQL	Server	2014	offers	a	feature,	the	table-valued
parameter,	that	may	help	increase	manageability	and	performance	of	the	layered	SP
design	methodology.	Chapter	5	discusses	table-valued	parameters.

SQL	Server	supports	syntax	for	both	ISO	standard	cursors	and	T-SQL	extended	syntax
cursors.	The	ISO	standard	supports	the	following	cursor	options:

The	INSENSITIVE	option	makes	a	temporary	copy	of	the	cursor
result	set	and	uses	that	copy	to	fulfill	cursor	requests.	This	means
changes	to	the	underlying	tables	aren’t	reflected	when	you	request
rows	from	the	cursor.

The	SCROLL	option	allows	you	to	use	all	cursor	fetch	options	to
position	the	cursor	on	any	row	in	the	cursor	result	set.	The	cursor	fetch
options	include	FIRST,	LAST,	NEXT,	PRIOR,	ABSOLUTE,	and
RELATIVE.	If	the	SCROLL	option	isn’t	specified,	only	the	NEXT
cursor	fetch	option	is	allowed.

The	READ	ONLY	option	in	the	cursor	FOR	clause	prevents	updates	to
the	underlying	data	through	the	cursor.	In	a	non-read	only	cursor,	you
can	update	the	underlying	data	with	the	WHERE	CURRENT	OF
clause	in	the	UPDATE	and	DELETE	statements.

The	UPDATE	OF	option	allows	you	to	specify	a	list	of	updatable
columns	in	the	cursor’s	result	set.	You	can	specify	UPDATE	without

the	OF	keyword	and	its	associated	column	list	to	allow	updates	to	all
columns.

The	T-SQL	extended	syntax	provides	many	more	options	than	the	ISO	syntax.	In
addition	to	supporting	read-only	cursors,	the	UPDATE	OF	option,	the	SCROLL	option,
and	insensitive	cursors	(using	the	STATIC	keyword),	T-SQL	extended	syntax	cursors
support	the	following	options:

Cursors	that	are	local	to	the	current	batch,	procedure,	or	trigger	in
which	they’re	created	via	the	LOCAL	keyword.	Cursors	that	are	global
to	the	connection	in	which	they’re	created	can	be	defined	using	the
GLOBAL	keyword.

The	FORWARDONLY	option,	which	is	the	opposite	of	the	SCROLL
option,	allowing	you	to	only	fetch	rows	from	the	cursor	using	the
NEXT	option.

The	KEYSET	option,	which	specifies	that	the	number	and	order	of
rows	is	fixed	at	the	time	the	cursor	is	created.	Trying	to	fetch	rows	that
are	subsequently	deleted	doesn’t	succeed,	and	a	@@FETCH_STATUS
value	of	-2	is	returned.

The	DYNAMIC	option,	which	specifies	a	cursor	that	reflects	all	data
changes	made	to	the	rows	in	its	underlying	result	set.	This	type	of
cursor	is	one	of	the	slowest,	because	every	change	to	the	underlying
data	must	be	reflected	whenever	you	scroll	to	a	new	row	of	the	result
set.

The	FAST_FORWARD	option,	which	specifies	a	performance-
optimized	combination	forward-only/read-only	cursor.

The	SCROLLLOCKS	option,	which	locks	underlying	data	rows	as
they’re	read	to	ensure	that	data	modifications	will	succeed.	The
SCROLLLOCKS	option	is	mutually	exclusive	with	the
FAST_FORWARD	and	STATIC	options.

The	OPTIMISTIC	option,	which	uses	timestamps	to	determine	if	a
row	has	changed	since	the	cursor	was	loaded.	If	a	row	has	changed,
the	OPTIMISTIC	option	doesn’t	allow	the	current	cursor	to	update
the	same	row.	The	OPTIMISTIC	option	is	incompatible	with	the
FAST_FORWARD	option.

The	TYPEWARNING	option,	which	sends	a	warning	if	a	cursor	will	be
automatically	converted	from	the	requested	type	to	another	type.	This
can	happen,	for	instance,	if	SQL	Server	needs	to	convert	a	forward-
only	cursor	to	a	static	cursor.

	Note		If	you	don’t	specify	a	cursor	as	LOCAL	or	GLOBAL,	cursors	that	are	created
default	to	the	setting	defined	by	the	default	to	local	cursor	database	setting.

CURSOR	COMPARISONS

Cursors	come	in	several	flavors,	and	you	could	spend	a	lot	of	time	just	trying	to
figure	out	which	one	you	need	to	perform	a	given	task.	Most	of	the	time,	you	need
forward-only/read-only	cursors.	These	cursors	are	efficient	because	they	move	in
only	one	direction	and	don’t	need	to	perform	updates	on	the	underlying	data.
Maximizing	cursor	efficiency	by	choosing	the	right	type	of	cursor	for	the	job	is	a
quick-win	strategy	that	you	should	keep	in	mind	when	you	have	to	resort	to	a	cursor.

Summary
This	chapter	introduced	SQL	3VL,	which	consists	of	three	logical	result	values:	true,	false,
and	unknown.	This	is	a	key	concept	to	understanding	SQL	development	in	general,	but	it
can	be	a	foreign	idea	to	developers	coming	from	backgrounds	in	other	programming
languages.	If	you’re	not	yet	familiar	with	the	3VL	chart,	we	highly	recommend	revisiting
Figure	3-1.	This	chart	summarizes	the	logic	that	governs	SQL	3VL.

This	chapter	also	introduced	T-SQL’s	control-of-flow	statement	offerings,	which	allow
you	to	branch	conditionally	and	unconditionally,	loop,	handle	exceptions,	and	force	delays
in	your	code.	We	also	covered	the	two	flavors	of	CASE	expression	and	some	of	the	more
advanced	uses	of	CASE,	including	dynamic	pivot	table	queries	and	CASE-based	functions
like	COALESCE	and	NULLIF.

Finally,	we	discussed	the	redheaded	stepchild	of	SQL	development,	the	cursor.
Although	cursors	commonly	get	a	bad	rep,	there’s	nothing	inherently	bad	about	them;	the
problem	is	with	how	people	use	them.	The	discussion	of	cursors	focused	on	some
common	scenarios	where	they	might	be	considered	the	best	tool	for	the	job,	including
administrative	and	complex	one-off	tasks.	Finally,	we	presented	the	options	available	for
ISO-compliant	cursors	and	T-SQL	extended	syntax	cursors,	both	of	which	are	supported
by	SQL	Server	2014.

The	next	chapter	begins	to	discuss	T-SQL	programmability	features,	starting	with	an
in-depth	look	at	T-SQL	UDFs	in	all	their	various	forms.

EXERCISES

1.	 [True/False]	SQL	3VL	supports	the	logical	result	values	true,	false,
and	unknown.

2.	 [Choose	one]	SQL	NULL	represents	which	of	the	following?

a.	 An	unknown	or	missing	value

b.	 The	number	0

c.	 An	empty	(zero-length)	string

d.	 All	of	the	above

3.	 [True/False]	The	BEGIN	and	END	keywords	delimit	a	statement
block	and	limit	the	scope	of	variables	declared	in	that	statement
block,	like	curly	braces	({	})	in	C#.

4.	 [Fill	in	the	blank]	The	____keyword	forces	a	WHILE	loop	to
terminate	immediately.

5.	 [True/False]	The	TRY…CATCH	block	can	catch	every	possible	SQL
Server	error.

6.	 [Fill	in	the	blanks]	SQL	CASE	expressions	come	in	two	forms,	___
and	___.

7.	 [Choose	all	that	apply]	T-SQL	supports	which	of	the	following
cursor	options?

a.	 Read-only	cursors

b.	 Forward-only	cursors

c.	 Backward-only	cursors

d.	 Write-only	cursors

8.	 Modify	the	code	in	Listing	3-10	to	generate	a	pivot	table	result	set
that	returns	the	total	dollar	amount	(TotalDue)	of	orders	by
region,	instead	of	the	count	of	orders	by	region.

1A	Case	against	the	GO	TO	Statement	by:	Edsger	W	Dijkstra;	Technology	University	Eindhoven,	The	Netherlands
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD215.html

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD215.html

CHAPTER	4

User-Defined	Functions
Each	new	version	of	SQL	Server	features	improvements	to	T-SQL	that	make	development
easier.	SQL	Server	2000	introduced	(among	other	things)	the	concept	of	user-defined
functions	(UDFs).	Like	functions	in	other	programming	languages,	T-SQL	UDFs	provide
a	convenient	way	for	developers	to	define	routines	that	accept	parameters,	perform	actions
based	on	those	parameters,	and	return	data	to	the	caller.	T-SQL	functions	come	in	three
flavors:	inline	table-valued	functions	(TVFs),	multistatement	TVFs,	and	scalar	functions.
SQL	Server	2014	also	supports	the	ability	to	create	CLR	integration	UDFs,	which	are
discussed	in	Chapter	15.

Scalar	Functions
Basically,	a	scalar	UDF	is	a	function	that	accepts	zero	or	more	parameters	and	returns	a
single	scalar	value	as	the	result.	You’re	probably	already	familiar	with	scalar	functions	in
mathematics,	and	with	T-SQL’s	built-in	scalar	functions	(such	as	ABS	and	SUBSTRING).
The	CREATE	FUNCTION	statement	allows	you	to	create	custom	scalar	functions	that
behave	like	the	built-in	scalar	functions.

To	demonstrate	scalar	UDFs,	let’s	a	trip	back	in	time	to	high	school	geometry	class.	In
accordance	with	the	rules	passed	down	from	Euclid,	this	UDF	accepts	a	circle’s	radius	and
returns	the	area	of	the	circle	using	the	formula	area	=	π	×	r2.	Listing	4-1	demonstrates	this
simple	scalar	UDF.

Listing	4-1.	Simple	Scalar	UDF

CREATE	FUNCTION	dbo.CalculateCircleArea	(@Radius	float	=1.0)

RETURNS	float

WITH	RETURNS	NULL	ON	NULL	INPUT

AS

BEGIN

			RETURN	PI()	*	POWER(@Radius,	2);

END;

The	first	line	of	the	CREATE	FUNCTION	statement	defines	the	schema	and	name	of
the	function	using	a	standard	SQL	Server	two-part	name
(dbo.CalculateCircleArea)	and	a	single	required	parameter,	the	radius	of	the
circle	(@Radius).	The	@Radius	parameter	is	defined	as	a	T-SQL	float	type.	The
parameter	is	assigned	a	default	value	of	1.0	by	the	=	1.0	after	the	parameter	declaration:

CREATE	FUNCTION	dbo.CalculateCircleArea	(@Radius	float	=1.0)

The	next	line	contains	the	RETURNS	keyword,	which	specifies	the	data	type	of	the
result	that	will	be	returned	by	the	UDF.	In	this	instance,	the	RETURNS	keyword	indicates
that	the	UDF	will	return	a	float	result:

RETURNS	float

The	third	line	contains	additional	options	following	the	WITH	keyword.	The	example
uses	the	RETURNS	NULL	ON	NULL	INPUT	function	option	for	a	performance
improvement.	The	RETURNS	NULL	ON	NULL	INPUT	option	is	a	performance-
enhancing	option	that	automatically	returns	NULL	if	any	of	the	parameters	passed	in	are
NULL.	The	performance	enhancement	occurs	because	SQL	Server	won’t	execute	the	body
of	the	function	if	a	NULL	is	passed	in	and	this	option	is	specified:

WITH	RETURNS	NULL	ON	NULL	INPUT

The	AS	keyword	indicates	the	start	of	the	function	body	which	must	be	enclosed	in	the
T-SQL	BEGIN	and	END	keywords.	The	sample	function	in	Listing	4-1	is	very	simple,
consisting	of	a	single	RETURN	statement	that	immediately	returns	the	value	of	the	circle
area	calculation.	The	RETURN	statement	must	be	the	last	statement	before	the	END
keyword	in	every	scalar	UDF:

RETURN	PI()	*	POWER(@radius,	2);

You	can	test	this	simple	UDF	with	a	few	SELECT	statements	like	the	following.	The
results	are	shown	in	Figure	4-1:

SELECT	dbo.CalculateCircleArea(10);

SELECT	dbo.CalculateCircleArea(NULL);

SELECT	dbo.CalculateCircleArea(2.5);

Figure	4-1.	The	results	of	the	sample	circle	area	calculations

UDF	PARAMETERS

UDF	parameters	operate	similarly	to,	but	slightly	differently	from,	stored	procedure
(SP)	parameters.	It’s	important	to	be	aware	of	the	differences.	For	instance,	if	you
create	a	UDF	that	accepts	no	parameters,	you	still	need	to	include	empty	parentheses
after	the	function	name—both	when	creating	and	when	invoking	the	function.	Some
built-in	functions,	like	the	PI()	function	used	in	Listing	4-1,	which	represents	the

value	of	the	constant	π	(3.14159265358979),	don’t	take	parameters.	Notice	that	when
the	function	is	called	in	the	UDF,	it’s	still	called	with	empty	parentheses.

When	SPs	are	assigned	default	values,	you	can	simply	leave	the	parameter	off	your
parameter	list	completely	when	calling	the	procedure.	This	isn’t	an	option	with
UDFs.	To	use	a	UDF	default	value,	you	must	use	the	DEFAULT	keyword	when
calling	the	UDF.	To	use	the	default	value	for	the	@radius	parameter	of	the	example
dbo.CalculateCircleArea	UDF,	you	call	the	UDF	like	this:

SELECT	dbo.CalculateCircleArea	(DEFAULT);

Finally,	SPs	have	no	equivalent	to	the	RETURNS	NULL	ON	NULL	INPUT	option.
You	can	simulate	this	functionality	to	some	extent	by	checking	your	parameters	for
NULL	immediately	on	entering	the	SP,	though.	SPs	are	discussed	in	greater	detail	in
Chapter	5.

UDFs	provide	several	creation-time	options	that	allow	you	to	improve	performance
and	security,	including	the	following:

The	ENCRYPTION	option	can	be	used	to	store	your	UDF	in	the
database	in	obfuscated	format.	Note	that	this	isn’t	true	encryption,	but
rather	an	easily	circumvented	obfuscation	of	your	code.	See	the	“UDF
‘Encryption’”	sidebar	for	more	information.

The	SCHEMABINDING	option	indicates	that	your	UDF	will	be	bound
to	database	objects	referenced	in	the	body	of	the	function.	With
SCHEMABINDING	turned	on,	attempts	to	change	or	drop	referenced
tables	and	other	database	objects	result	in	an	error.	This	helps	to
prevent	inadvertent	changes	to	tables	and	other	database	objects	that
can	break	your	UDF.	Additionally,	the	SQL	Server	Database	Engine
team	has	published	information	indicating	that	SCHEMABINDING	can
improve	the	performance	of	UDFs,	even	if	they	don’t	reference	other
database	objects
(http://blogs.msdn.com/b/sqlprogrammability/archive/2006/05/12/596424.aspx

The	CALLED	ON	NULL	INPUT	option	is	the	opposite	of	RETURNS
NULL	ON	NULL	INPUT.	When	CALLED	ON	NULL	INPUT	is
specified,	SQL	Server	executes	the	body	of	the	function	even	if	one	or
more	parameters	are	NULL.	CALLED	ON	NULL	INPUT	is	a
default	option	for	all	scalar-valued	functions.

The	EXECUTE	AS	option	manages	caller	security	on	UDFs.	You	can
specify	that	the	UDF	be	executed	as	any	of	the	following:

CALLER	indicates	that	the	UDF	should	run	under	the	security
context	of	the	user	calling	the	function.	This	is	the	default.

SELF	indicates	that	the	UDF	should	run	under	the	security
context	of	the	user	who	created	(or	altered)	the	function.

OWNER	indicates	that	the	UDF	should	run	under	the	security

http://blogs.msdn.com/b/sqlprogrammability/archive/2006/05/12/596424.aspx

context	of	the	owner	of	the	UDF	(or	the	owner	of	the	schema
containing	the	UDF).

Finally,	you	can	specify	that	the	UDF	should	run	under	the
security	context	of	a	specific	user	by	specifying	a	username.

UDF	“ENCRYPTION”

Using	the	ENCRYPTION	option	on	UDFs	performs	a	simple	obfuscation	of	your
code.	It	actually	does	little	more	than	“keep	honest	people	honest,”	and	in	reality	it
tends	to	be	more	trouble	than	it’s	worth.	Many	developers	and	DBAs	have	spent
precious	time	scouring	the	Internet	for	tools	to	decrypt	their	database	objects	because
they	were	convinced	the	scripts	in	their	source	control	database	were	out	of	sync	with
the	production	database.	Keep	in	mind	that	those	same	decryption	tools	are	available
to	anyone	with	an	Internet	connection	and	a	browser.	If	you	write	commercial
database	scripts	or	perform	database	consulting	services,	your	best	(and	really	only)
protection	against	curious	DBAs	and	developers	reverse-engineering	and	modifying
your	code	is	a	well-written	contract.	Keep	this	in	mind	when	deciding	whether	to
“encrypt”	your	database	objects.

Recursion	in	Scalar	User-Defined	Functions
Now	that	you’ve	learned	the	basics,	let’s	hang	out	in	math	class	for	a	few	more	minutes	to
talk	about	recursion.	Like	most	procedural	programming	languages	that	allow	function
definitions,	T-SQL	allows	recursion	in	UDFs.	There’s	hardly	a	better	way	to	demonstrate
recursion	than	the	most	basic	recursive	algorithm	around:	the	factorial	function.

For	those	who	put	factorials	out	of	their	minds	immediately	after	graduation,	here’s	a
brief	rundown	of	what	they	are.	A	factorial	is	the	product	of	all	natural	(or	counting)
numbers	less	than	or	equal	to	n,	where	n	>	0.	Factorials	are	represented	in	mathematics
with	the	bang	notation:	n!.	As	an	example,	5!	=	1	×	2	×	3	×	4	×	5	=	120.	The	simple	scalar
dbo.CalculateFactorial	UDF	in	Listing	4-2	calculates	a	factorial	recursively	for
an	integer	parameter	passed	into	it.

Listing	4-2.	Recursive	Scalar	UDF

CREATE	FUNCTION	dbo.CalculateFactorial	(@n	int	=	1)

RETURNS	decimal(38,	0)

WITH		RETURNS	NULL	ON	NULL	INPUT

AS

BEGIN

								RETURN

								(CASE

											WHEN	@n	<=	0	THEN	NULL

											WHEN	@n	>	1	THEN	CAST(@n	AS	float)	

*	dbo.CalculateFactorial	(@n	-	1)

											WHEN	@n	=	1	THEN	1

								END);

END;

The	first	few	lines	are	similar	to	Listing	4-1.	The	function	accepts	a	single	int
parameter	and	returns	a	scalar	decimal	value.	The	RETURNS	NULL	ON	NULL
INPUT	option	returns	NULL	immediately	if	NULL	is	passed	in:

CREATE	FUNCTION	dbo.CalculateFactorial	(@n	int	=	1)

RETURNS	decimal(38,	0)

WITH	RETURNS	NULL	ON	NULL	INPUT

You	return	a	decimal	result	in	this	example	because	of	the	limitations	of	the	int
and	bigint	types.	Specifically,	the	int	type	overflows	at	13!	and	bigint	bombs	out
at	21!.	In	order	to	put	the	UDF	through	its	paces,	you	have	to	allow	it	to	return	results	up
to	32!,	as	discussed	later	in	this	section.	As	in	Listing	4-1,	the	body	of	this	UDF	is	a	single
RETURN	statement,	this	time	with	a	searched	CASE	expression:

RETURN	(CASE

WHEN	@n	<=	0	THEN	NULL

WHEN	@n	>	1	THEN	CAST(@n	AS	float)	*	dbo.CalculateFactorial	

(@n	-	1)

WHEN	@n	=	1	THEN	1	END);

The	CASE	expression	checks	the	value	of	the	UDF	parameter,	@n.	If	@n	is	0	or
negative,	dbo.CalculateFactorial	returns	NULL	because	the	result	is	undefined.
If	@n	is	greater	than	1,	dbo.CalculateFactorial	returns	@n	*
dbo.CalculateFactorial(@n	-	1),	the	recursive	part	of	the	UDF.	This	ensures
that	the	UDF	will	continue	calling	itself	recursively,	multiplying	the	current	value	of	@n
by	(@n-1)!.

Finally,	when	@n	reaches	1,	the	UDF	returns	1.	This	is	the	part	of
dbo.CalculateFactorial	that	stops	the	recursion.	Without	the	check	for	@n	=	1,
you	could	theoretically	end	up	in	an	infinite	recursive	loop.	In	practice,	however,	SQL
Server	saves	you	from	yourself	by	limiting	you	to	a	maximum	of	32	levels	of	recursion.
Demonstrating	the	32-level	limit	on	recursion	is	why	it	was	important	for	the	UDF	to
return	results	up	to	32!.	Following	are	some	examples	of	dbo.CalculateFactorial
calls	with	various	parameters,	and	their	results:

SELECT	dbo.CalculateFactorial(NULL);—Returns	NULL

SELECT	dbo.CalculateFactorial(-1);		—Returns	NULL

SELECT	dbo.CalculateFactorial(0);				--	Returns	NULL

SELECT	dbo.CalculateFactorial(5);				--	Returns	120

SELECT	dbo.CalculateFactorial(32);		—Returns	

263130836933693520000000000000000000

As	you	can	see,	the	dbo.CalculateFactorial	function	easily	handles	the	32
levels	of	recursion	required	to	calculate	32!.	If	you	try	to	go	beyond	that	limit,	you	get	an
error	message.	Executing	the	following	code,	which	attempts	33	levels	of	recursion,

doesn’t	work:

SELECT	dbo.CalculateFactorial(33);

This	causes	SQL	Server	to	grumble	loudly	with	an	error	message	similar	to	the
following:

Msg	217,	Level	16,	State	1,	Line	1

Maximum	stored	procedure,	function,	trigger,	or	view	nesting	

level	exceeded	(limit	32).

MORE	THAN	ONE	WAY	TO	SKIN	A	CAT

The	32-level	recursion	limit	is	a	hard	limit;	that	is,	you	can’t	programmatically
change	it	through	server	or	database	settings.	This	really	isn’t	as	bad	a	limitation	as
you	might	think.	Very	rarely	do	you	actually	need	to	recursively	call	a	UDF	more
than	32	times,	and	doing	so	could	result	in	a	severe	performance	penalty.	There’s
generally	more	than	one	way	to	get	the	job	done.	You	can	work	around	the	32-level
recursion	limitation	in	the	dbo.CalculateFactorial	function	by	rewriting	it
with	a	WHILE	loop	or	using	a	recursive	common	table	expression	(CTE),	as	shown
here:
CREATE	FUNCTION	dbo.CalculateFactorial	(@n	int	=	1)

RETURNS	float

WITH	RETURNS	NULL	ON	NULL	INPUT

AS

BEGIN

			DECLARE	@result	float;

			SET	@result	=	NULL;

IF	@n	>	0

BEGIN

			SET	@result	=	1.0;

WITH	Numbers	(num)

AS	(

				SELECT	1

				UNION	ALL

				SELECT	num	+	1

				FROM	Numbers

				WHERE	num	<	@n

)

			SELECT	@result	=	@result	*	num

			FROM	Numbers;

	END;

	RETURN	@result;

END;

This	rewrite	of	the	dbo.CalculateFactorial	function	averts	the	recursive

function	call	limit	by	eliminating	the	recursive	function	calls.	Instead,	it	pushes	the
recursion	back	into	the	body	of	the	function	through	the	use	of	a	recursive	common
table	expression	(CTE).	By	default,	SQL	Server	allows	up	to	100	levels	of	recursion
in	a	CTE	(you	can	override	this	with	the	MAXRECURSION	option),	greatly
expanding	your	factorial	calculation	power.	With	this	function,	you	can	easily	find
out	that	33!	is	8.68331761881189E+36,	or	even	that	100!	is
9.33262154439441E+157.	The	important	idea	to	take	away	from	this	discussion	is
that	although	recursive	function	calls	have	hard	limits	on	them,	you	can	often	work
around	those	limitations	using	other	T-SQL	functionality.

Also	keep	in	mind	that	although	you	used	factorial	calculation	as	a	simple	example	of
recursion,	this	method	is	considered	naive,	and	there	are	several	more-efficient
methods	of	calculating	factorials.

Procedural	Code	in	User-Defined	Functions
So	far,	you’ve	seen	simple	functions	that	demonstrate	the	basic	points	of	scalar	UDFs.	But
in	all	likelihood,	unless	you’re	implementing	business	logic	for	a	swimming	pool
installation	company,	you	aren’t	likely	to	need	to	spend	much	time	calculating	the	area	of
a	circle	in	T-SQL.

A	common	problem	that	you	have	a	much	greater	chance	of	running	into	is	name-
based	searching.	T-SQL	offers	tools	for	exact	matching,	partial	matching,	and	even	limited
pattern	matching	via	the	LIKE	predicate.	T-SQL	even	offers	built-in	phonetic	matching
(sound-alike	matching)	through	the	built-in	SOUNDEX	function.

Heavy-duty	approximate	matching	usually	requires	a	more	advanced	tool,	like	a	better
phonetic	matching	algorithm.	Let’s	use	one	of	these	algorithms,	the	New	York	State
Identification	and	Intelligence	System	(NYSIIS)	algorithm,	to	demonstrate	procedural
code	in	UDFs.

THE	SOUNDEX	ALGORITHM

The	NYSIIS	algorithm	is	an	improvement	on	the	Soundex	phonetic	encoding
algorithm,	itself	nearly	90	years	old.	The	NYSIIS	algorithm	converts	groups	of	one,
two,	or	three	alphabetic	characters	(known	as	n-grams)	in	names	to	a	phonetic
(“sounds	like”)	approximation.	This	makes	it	easier	to	search	for	names	that	have
similar	pronunciations	but	different	spellings,	such	as	Smythe	and	Smith.	As
mentioned	in	this	section,	SQL	Server	provides	a	built-in	SOUNDEX	function,	but
Soundex	provides	very	poor	accuracy	and	usually	results	in	many	false	hits.	NYSIIS
and	other	modern	algorithms	provide	much	better	results	than	Soundex.

To	demonstrate	procedural	code	in	UDFs,	you	can	implement	a	UDF	that	phonetically
encodes	names	using	NYSIIS	encoding	rules.	The	rules	for	NYSIIS	phonetic	encoding	are
relatively	simple,	with	the	majority	of	the	rules	requiring	simple	n-gram	substitutions.	The
following	is	a	complete	list	of	NYSIIS	encoding	rules:

1.	 Remove	all	non-alphabetic	characters	from	the	name.

2.	 The	first	characters	of	the	name	are	encoded	according	to	the	n-
gram	substitutions	shown	in	the	Start	of	Name	table	in	Figure	4-2.
In	Figure	4-2,	the	n-grams	shown	to	the	left	of	the	arrows	are
replaced	with	the	n-grams	to	the	right	of	the	arrows	during	the
encoding	process.

Figure	4-2.	NYSIIS	phonetic	encoding	rules	/	character	substitutions

3.	 The	last	characters	of	the	name	are	encoded	according	to	the	n-gram
substitutions	shown	in	the	End	of	Name	table	in	Figure	4-2.

4.	 The	first	character	of	the	encoded	value	is	set	to	the	first	character
of	the	name.

5.	 After	the	first	and	last	n-grams	are	encoded,	all	remaining
characters	in	the	name	are	encoded	according	to	the	n-gram
substitutions	shown	in	the	Middle	of	Name	table	in	Figure	4-2.

6.	 All	side-by-side	duplicate	characters	in	the	encoded	name	are
reduced	to	a	single	character.	This	means	that	AA	is	reduced	to	A
and	SS	is	reduced	to	S.

7.	 If	the	last	character	of	the	encoded	name	is	S,	it’s	removed.

8.	 If	the	last	characters	of	the	encoded	name	are	AY,	they’re	replaced
with	Y.

9.	 If	the	last	character	of	the	encoded	name	is	A,	it’s	removed.

10.	 The	result	is	truncated	to	a	maximum	length	of	six	characters.

You	could	use	some	fairly	large	CASE	expressions	to	implement	these	rules,	but	let’s
go	with	a	more	flexible	option:	using	a	replacement	table.	This	table	will	contain	the
majority	of	the	replacement	rules	in	three	columns,	as	described	here:

Location:	This	column	tells	the	UDF	whether	the	rule	should	be
applied	to	the	start,	end,	or	middle	of	the	name.

NGram:	This	column	is	the	n-gram,	or	sequence	of	characters,	that
will	be	encoded.	These	n-grams	correspond	to	the	left	side	of	the
arrows	in	Figure	4-2.

Replacement:	This	column	represents	the	replacement	value	for
the	corresponding	n-gram	on	the	same	row.	These	character	sequences
correspond	to	the	right	side	of	the	arrows	in	Figure	4-2.

Listing	4-3	is	a	CREATE	TABLE	statement	that	builds	the	NYSIIS	phonetic	encoding
replacement	rules	table.

Listing	4-3.	Creating	the	NYSIIS	Replacement	Rules	Table

--	Create	the	NYSIIS	replacement	rules	table

CREATE	TABLE	dbo.NYSIIS_Replacements

		(Location	nvarchar(10)	NOT	NULL,

			NGram	nvarchar(10)	NOT	NULL,

			Replacement	nvarchar(10)	NOT	NULL,

			PRIMARY	KEY	(Location,	NGram));

Listing	4-4	is	a	single	INSERT	statement	that	uses	row	constructors	to	populate	all	the
NYSIIS	replacement	rules,	as	shown	in	Figure	4-2.

Listing	4-4.	INSERT	Statement	to	Populate	the	NYSIIS	Replacement	Rules	Table

INSERT	INTO	NYSIIS_Replacements	(Location,	NGram,	

Replacement)

		VALUES(N'End',	N'DT',	N'DD'),

(N'End',	N'EE',	N'YY'),

(N'End',	N'lE',	N'YY'),

(N'End',	N'ND',	N'DD'),

(N'End',	N'NT',	N'DD'),

(N'End',	N'RD',	N'DD'),

(N'End',	N'RT',	N'DD'),

(N'Mid',	N'A',	N'A'),

(N'Mid',	N'E',	N'A'),

(N'Mid',	N'T',	N'A'),

(N'Mid',	N'K',	N'C'),

(N'Mid',	N'M',	N'N'),

(N'Mid',	N'O',	N'A'),

(N'Mid',	N'Q',	N'G'),

(N'Mid',	N'U',	N'A'),

(N'Mid',	N'Z',	N'S'),

(N'Mid',	N'AW',	N'AA'),

(N'Mid',	N'EV',	N'AF'),

(N'Mid',	N'EW',	N'AA'),

(N'Mid',	N'lW',	N'AA'),

(N'Mid',	N'KN',	N'NN'),

(N'Mid',	N'OW',	N'AA'),

(N'Mid',	N'PH',	N'FF'),

(N'Mid',	N'UW',	N'AA'),

(N'Mid',	N'SCH',	N'SSS'),

(N'Start',	N'K',	N'C'),

(N'Start',	N'KN',	N'NN'),

(N'Start',	N'PF',	N'FF'),

(N'Start',	N'PH',	N'FF'),

(N'Start',	N'MAC',	N'MCC'),

(N'Start',	N'SCH',	N'SSS');

GO

Listing	4-5	is	the	UDF	that	encodes	a	string	using	NYSIIS.	This	UDF	demonstrates
the	complexity	of	the	control-of-flow	logic	that	can	be	implemented	in	a	scalar	UDF.

Listing	4-5.	Function	to	Encode	Strings	Using	NYSIIS

CREATE	FUNCTION	dbo.EncodeNYSIIS

(

			@String	nvarchar(100)

)

RETURNS	nvarchar(6)

WITH	RETURNS	NULL	ON	NULL	INPUT

AS

BEGIN

		DECLARE	@Result	nvarchar(100);

		SET	@Result	=	UPPER(@String);

--	Step	1:	Remove	All	Nonalphabetic	Characters

WITH	Numbers	(Num)

AS

(

		SELECT	1

UNION	ALL

SELECT	Num	+	1

FROM	Numbers

WHERE	Num	<	LEN(@Result)

)

SELECT	@Result	=	STUFF

(

		@Result,

		Num,

		1,

	CASE	WHEN	SUBSTRING(@Result,	Num,	1)	>=	N'A'

						AND	SUBSTRING(@Result,	Num,	1)	<=	N'Z'

						THEN	SUBSTRING(@Result,	Num,	1)

						ELSE	N'.'

	END)

FROM	Numbers;

SET	@Result	=	REPLACE(@Result,	N'.',	N'');

--	Step	2:	Replace	the	Start	N-gram

SELECT	TOP	(1)	@Result	=	STUFF

(

		@Result,

		1,

		LEN(NGram),

		Replacement

)

FROM	dbo.NYSIIS_Replacements

WHERE	Location	=	N'Start'

		AND	SUBSTRING(@Result,	1,	LEN(NGram))	=	NGram

ORDER	BY	LEN(NGram)	DESC;

--	Step	3:	Replace	the	End	N-gram

SELECT	TOP	(1)	@Result	=	STUFF

	(

			@Result,

			LEN(@Result)	-	LEN(NGram)	+	1,

			LEN(NGram),

			Replacement	

)

FROM	dbo.NYSIIS_Replacements

WHERE	Location	=	N'End'

		AND	SUBSTRING(@Result,	LEN(@Result)	-	LEN(NGram)	+	1,	

LEN(NGram))	=	NGram

ORDER	BY	LEN(NGram)	DESC;

--	Step	4:	Save	the	First	Letter	of	the	Name

DECLARE	@FirstLetter	nchar(1);

SET	@FirstLetter	=	SUBSTRING(@Result,	1,	1);

--	Step	5:	Replace	All	Middle	N-grams

DECLARE	@Replacement	nvarchar(10);

DECLARE	@i	int;

SET	@i	=	1;

WHILE	@i	<=	LEN(@Result)

BEGIN

			SET	@Replacement	=	NULL;

--	Grab	the	middle-of-name	replacement	n-gram

SELECT	TOP	(1)	@Replacement	=	Replacement

FROM	dbo.NYSIIS_Replacements

WHERE	Location	=	N'Mid'

			AND	SUBSTRING(@Result,	@i,	LEN(NGram))	=	NGram

ORDER	BY	LEN(NGram)	DESC;

SET	@Replacement	=	COALESCE(@Replacement,	SUBSTRING(@Result,	

@i,	1));

--	If	we	found	a	replacement,	apply	it

		SET	@Result	=	STUFF(@Result,	@i,	LEN(@Replacement),	

@Replacement)

--	Move	on	to	the	next	n-gram

		SET	@i	=	@i	+	COALESCE(LEN(@Replacement),	1);

END;

--	Replace	the	first	character	with	the	first	letter	we	

saved	at	the	start

SET	@Result	=	STUFF(@Result,	1,	1,	@FirstLetter);

--	Here	we	apply	our	special	rules	for	the	'H'	character.	

Special	handling	for	'W'

--	characters	is	taken	care	of	in	the	replacement	rules	

table

WITH	Numbers	(Num)

AS

(

		SELECT	2	--	Don't	bother	with	the	first	character

		UNION	ALL

		SELECT	Num	+	1

		FROM	Numbers

		WHERE	Num	<	LEN(@Result)

)

SELECT	@Result	=	STUFF

		(

		@Result,

		Num,

		1,

		CASE	SUBSTRING(@Result,	Num,	1)

					WHEN	N'H'	THEN

							CASE	WHEN	SUBSTRING(@Result,	Num	+	1,	1)

												NOT	IN	(N'A',	N'E',	N'I',	N'O',	N'U')

							OR	SUBSTRING(@Result,	Num	-	1,	1)

												NOT	IN	(N'A',	N'E',	N'I',	N'O',	N'U')

							THEN	SUBSTRING(@Result,	Num	-	1,	1)

					ELSE	N'H'

		END

	ELSE	SUBSTRING(@Result,	Num,	1)

END

)

FROM	Numbers;

--	Step	6:	Reduce	All	Side-by-side	Duplicate	Characters

--	First	replace	the	first	letter	of	any	sequence	of	two	

side-by-side

--	duplicate	letters	with	a	period

WITH	Numbers	(Num)

AS

(

			SELECT	1

			UNION	ALL

			SELECT	Num	+	1

			FROM	Numbers

			WHERE	Num	<	LEN(@Result)

)

SELECT	@Result	=	STUFF

			(

			@Result,

			Num,

			1,

			CASE	SUBSTRING(@Result,	Num,	1)

						WHEN	SUBSTRING(@Result,	Num	+	1,	1)	THEN	N'.'

						ELSE	SUBSTRING(@Result,	Num,	1)

			END

)

FROM	Numbers;

--	Next	replace	all	periods	'.'	with	an	empty	string	''

SET	@Result	=	REPLACE(@Result,	N'.',	N'');

--	Step	7:	Remove	Trailing	'S'	Characters

WHILE	RIGHT(@Result,	1)	=	N'S'	AND	LEN(@Result)	>	1

			SET	@Result	=	STUFF(@Result,	LEN(@Result),	1,	N'');

--	Step	8:	Remove	Trailing	'A'	Characters

WHILE	RIGHT(@Result,	1)	=	N'A'	AND	LEN(@Result)	>	1

			SET	@Result	=	STUFF(@Result,	LEN(@Result),	1,	N'');

--	Step	9:	Replace	Trailing	'AY'	Characters	with	'Y'

IF	RIGHT(@Result,	2)	=	'AY'

			SET	@Result	=	STUFF(@Result,	LEN(@Result)	-	1,	1,	N'');

--	Step	10:	Truncate	Result	to	6	Characters

RETURN	COALESCE(SUBSTRING(@Result,	1,	6),	'');

END;

GO

The	NYSIISReplacements	table	rules	reflect	most	of	the	NYSIIS	rules	described
by	Robert	L.	Taft	in	his	famous	paper	“Name	Search	Techniques.”1	The	start	and	end	n-
grams	are	replaced,	and	then	the	remaining	n-gram	rules	are	applied	in	a	WHILE	loop.	The
special	rules	for	the	letter	H	are	applied,	side-by-side	duplicates	are	removed,	special
handling	of	certain	trailing	characters	is	performed,	and	the	first	six	characters	of	the	result
are	returned.

NUMBERS	TABLES

This	example	uses	recursive	CTEs	to	dynamically	generate	virtual	numbers	tables	in
a	couple	of	places.	A	numbers	table	is	simply	a	table	of	numbers	counting	up	to	a
specified	maximum.	The	following	recursive	CTE	generates	a	small	numbers	table
(the	numbers	1	through	100):
WITH	Numbers	(Num)

AS

(

			SELECT	1

			UNION	ALL

			SELECT	Num	+	1

			FROM	Numbers

			WHERE	Num	<	100

)

SELECT	Num	FROM	Numbers;

Listing	4-5	used	the	number	of	characters	in	the	name	to	limit	the	recursion	of	the
CTEs.	This	speeds	up	the	UDF	overall.	You	can	get	even	more	performance	gains	by
creating	a	permanent	numbers	table	in	your	database	with	a	clustered	index/primary	key
on	it,	instead	of	using	CTEs.	A	numbers	table	is	always	handy	to	have	around,	doesn’t	cost
you	very	much	to	build	or	maintain,	doesn’t	take	up	much	storage	space,	and	is	extremely
useful	for	converting	loops	and	cursors	to	set-based	code.	A	numbers	table	is	by	far	one	of
the	handiest	and	simplest	tools	you	can	add	to	your	T-SQL	toolkit.

As	an	example,	you	can	use	the	query	in	Listing	4-6	to	phonetically	encode	the	last
names	of	all	contacts	in	the	AdventureWorks	database	using	NYSIIS.	Partial	results	are
shown	in	Figure	4-3.

Listing	4-6.	Using	NYSIIS	to	Phonetically	Encode	All	AdventureWorks	Contacts

SELECT	LastName,

			dbo.EncodeNYSIIS(LastName)	AS	NYSIIS

FROM	Person.Person

GROUP	BY	LastName;

Figure	4-3.	Partial	results	of	NYSIIS	encoding	AdventureWorks	contacts

Using	the	dbo.EncodeNYSIIS	UDF	is	relatively	simple.	Listing	4-7	is	a	simple
example	of	using	the	new	UDF	in	the	WHERE	clause	to	retrieve	all	AdventureWorks
contacts	whose	last	name	is	phonetically	similar	to	the	name	Liu.	The	results	are	shown	in
Figure	4-4.

Listing	4-7.	Retrieving	All	Contact	Phonetic	Matches	for	Liu

SELECT

		BusinessEntityID,

		LastName,

		FirstName,

		MiddleName,

		dbo.EncodeNYSIIS(LastName)	AS	NYSIIS

FROM	Person.Person

WHERE	dbo.EncodeNYSIIS(LastName)	=	dbo.EncodeNYSIIS(N'	

Liu');

Figure	4-4.	Partial	listing	of	AdventureWorks	contacts	with	names	phonetically	similar	to	Liu

The	example	in	Listing	4-7	is	the	naive	method	of	using	a	UDF.	The	query	engine
must	apply	the	UDF	to	every	single	row	of	the	source	table.	In	this	case,	the
dbo.EncodeNYSIIS	function	is	applied	to	the	nearly	20,000	last	names	in	the
Person.Contact	table,	resulting	in	an	inefficient	query	plan	and	excessive	I/O.	A
more	efficient	method	is	to	perform	the	NYSIIS	encodings	ahead	of	time—to	pre-encode
the	names.	The	pre-encoding	method	is	demonstrated	in	Listing	4-8.

Listing	4-8.	Pre-encoding	AdventureWorks	Contact	Names	with	NYSIIS

CREATE	TABLE	Person.ContactNYSIIS

(

			BusinessEntityID	int	NOT	NULL,

			NYSIIS	nvarchar(6)	NOT	NULL,

			PRIMARY	KEY(NYSIIS,	BusinessEntityID)

);

GO

INSERT	INTO	Person.ContactNYSIIS

(

			BusinessEntityID,

			NYSIIS

)

SELECT

			BusinessEntityID,

			dbo.EncodeNYSIIS(LastName)

FROM	Person.Person;

GO

Once	you	have	pre-encoded	the	data,	queries	are	much	more	efficient.	The	query
shown	in	Listing	4-9	uses	the	table	created	in	Listing	4-8	to	return	the	same	results	as
Listing	4-7—just	much	more	efficiently,	because	this	version	doesn’t	need	to	encode	every
row	of	data	for	comparison	in	the	WHERE	clause	at	query	time.

Listing	4-9.	Efficient	NYSIIS	Query	Using	Pre-encoded	Data

SELECT

			cn.BusinessEntityID,

			c.LastName,

			c.FirstName,

			c.MiddleName,

			cn.NYSIIS

FROM	Person.ContactNYSIIS	cn

INNER	JOIN	Person.Person	c

			ON	cn.BusinessEntityID	=	c.BusinessEntityID

WHERE	cn.NYSIIS	=	dbo.EncodeNYSIIS(N'Liu');

To	keep	the	efficiency	of	the	dbo.EncodeNYSIIS	UDF-based	searches	optimized,
I	highly	recommend	pre-encoding	your	search	data.	This	is	especially	true	in	production
environments	where	performance	is	critical.	NYSIIS	(and	phonetic	matching	in	general)	is
an	extremely	useful	tool	for	approximate	name-based	searches	in	a	variety	of	applications,
such	as	customer	service,	business	reporting,	and	law	enforcement.

Multistatement	Table-Valued	Functions
Multistatement	TVFs	are	similar	in	style	to	scalar	UDFs,	but	instead	of	returning	a	single
scalar	value,	they	return	their	result	as	a	table	data	type.	The	declaration	is	very	similar
to	that	of	a	scalar	UDF,	with	a	few	important	differences:

The	return	type	following	the	RETURNS	keyword	is	actually	a	table
variable	declaration,	with	its	structure	declared	immediately	following
the	table	variable	name.

The	RETURNS	NULL	ON	NULL	INPUT	and	CALLED	ON	NULL
INPUT	function	options	aren’t	valid	in	a	multistatement	TVF
definition.

The	RETURN	statement	in	the	body	of	the	multistatement	TVF	has	no

values	or	variables	following	it.

Inside	the	body	of	the	multistatement	TVF,	you	can	use	the	SQL	Data	Manipulation
Language	(DML)	statements	INSERT,	UPDATE,	MERGE,	and	DELETE	to	create	and
manipulate	the	return	results	in	the	table	variable	that	will	be	returned	as	the	result.

For	the	example	of	a	multistatement	TVF,	let’s	create	another	business	application
function:	a	product	pull	list	for	AdventureWorks.	This	TVF	matches	the	AdventureWorks
sales	orders	stored	in	the	Sales.SalesOrderDetail	table	against	the	product
inventory	in	the	Production.ProductInventory	table.	It	effectively	creates	a	list
for	AdventureWorks	employees,	telling	them	exactly	which	inventory	bin	to	go	to	when
they	need	to	fill	an	order.	Some	business	rules	need	to	be	defined	before	you	write	this
multistatement	TVF:

In	some	cases,	the	number	of	ordered	items	may	be	more	than	are
available	in	one	bin.	In	that	case,	the	pull	list	will	instruct	the
employee	to	grab	the	product	from	multiple	bins.

Any	partial	fills	from	a	bin	will	be	reported	on	the	list.

Any	substitution	work	(for	example,	substituting	a	different-colored
item	of	the	same	model)	will	be	handled	by	a	separate	business
process	and	won’t	be	allowed	on	this	list.

No	zero	fills	(ordered	items	for	which	there	is	no	matching	product	in
inventory)	will	be	reported	back	on	the	list.

For	purposes	of	this	example,	let’s	say	there	are	three	customers:	Jill,	Mike,	and	Dave.
Each	of	these	three	customers	places	an	order	for	exactly	five	of	item	number	783,	the
black	Mountain-200	42-inch	mountain	bike.	Let’s	also	say	that	AdventureWorks	has	six	of
this	particular	inventory	item	in	bin	1,	shelf	A,	location	7,	and	another	three	of	this
particular	item	in	bin	2,	shelf	B,	location	10.	Your	business	rules	will	create	a	pull	list	like
the	following:

Jill’s	order:	Pull	five	of	item	783	from	bin	1,	shelf	A,	location	7;	mark
the	order	as	a	complete	fill.

Mike’s	order:	Pull	one	of	item	783	from	bin	1,	shelf	A,	location	7;
mark	the	order	as	a	partial	fill.

Mike’s	order:	Pull	three	of	item	783	from	bin	2,	shelf	B,	location	10;
mark	the	order	as	a	partial	fill.

In	this	example,	there	are	only	9	of	the	ordered	items	in	inventory,	but	15	total	items
have	been	ordered	(3	customers	multiplied	by	5	items	each).	Because	of	this,	Dave’s	order
is	zero-filled—no	items	are	pulled	from	inventory	to	fill	his	order.	Figure	4-5	is	designed
to	help	you	visualize	the	sample	inventory/order	fill	scenario.

Figure	4-5.	Filling	orders	from	inventory

Because	the	inventory	is	out	of	item	783	at	this	point	(there	were	nine	items	in
inventory	and	all	nine	were	used	to	fill	Jill’s	and	Mike’s	orders),	Dave’s	order	is	not	even
listed	on	the	pull	list	report.	This	function	doesn’t	concern	itself	with	product	substitutions
—for	example,	completing	Mike’s	and	Dave’s	orders	with	a	comparable	product	such	as
item	ID	number	780	(the	silver	Mountain-200	42-inch	mountain	bike),	if	there	happens	to
be	some	in	stock.	The	business	rule	for	substitutions	states	that	a	separate	process	handles
this	aspect	of	order	fulfillment.

Many	developers	may	see	this	problem	as	an	opportunity	to	flex	their	cursor-based
coding	muscles.	If	you	look	at	the	problem	from	a	procedural	point	of	view,	it	essentially
calls	for	performing	nested	loops	through	AdventureWorks’	customer	orders	and	inventory
to	match	them	up.	However,	this	code	doesn’t	require	procedural	code,	and	the	task	can	be
completed	in	a	set-based	fashion	using	a	numbers	table,	as	described	in	the	previous
section.	A	numbers	table	with	numbers	from	0	to	30,000	is	adequate	for	this	task;	the	code
to	create	it	is	shown	in	Listing	4-10.

Listing	4-10.	Creating	a	Numbers	Table

USE	[AdventureWorks2014]

GO

IF	EXISTS	(SELECT	*	FROM	sys.objects

											WHERE	object_id	=	OBJECT_ID(N'[dbo].[Numbers]')

													AND	type	in	(N'U'))

DROP	TABLE	[dbo].[Numbers];

--	Create	a	numbers	table	to	allow	the	product	pull	list	to	

be

--	created	using	set-based	logic

CREATE	TABLE	dbo.Numbers	(Num	int	NOT	NULL	PRIMARY	KEY);

GO

--	Fill	the	numbers	table	with	numbers	from	0	to	30,000

WITH	NumCTE	(Num)

AS

(

SELECT	0

UNION	ALL

SELECT	Num	+	1

FROM	NumCTE

WHERE	Num	<	30000

)

INSERT	INTO	dbo.Numbers	(Num)	SELECT	Num	FROM	NumCTE

OPTION	(MAXRECURSION	0);

GO

So,	with	a	better	understanding	of	order-fulfillment	logic	and	business	rules,	Listing	4-
11	creates	a	multistatement	TVF	to	return	the	product	pull	list	according	to	the	rules
provided.	As	mentioned,	this	multistatement	TVF	uses	set-based	logic	(no	cursors	or
loops)	to	retrieve	the	product	pull	list.

LOOK	MA,	NO	CURSORS!

Many	programming	problems	in	business	present	a	procedural	loop-based	solution
on	first	glance.	This	applies	to	problems	that	you	must	solve	in	T-SQL	as	well.	If	you
look	at	business	problems	with	a	set-based	mindset,	you	often	find	a	set-based
solution.	In	the	product	pull	list	example,	the	loop-based	process	of	comparing	every
row	of	inventory	to	the	order-detail	rows	is	immediately	apparent.

However,	if	you	think	of	the	inventory	items	and	order-detail	items	as	two	sets,	then
the	problem	becomes	a	set-based	problem.	In	this	case,	the	solution	is	a	variation	of
the	classic	computer	science/mathematics	bin-packing	problem.	In	the	bin-packing
problem,	you’re	given	a	set	of	bins	(in	this	case,	orders)	in	which	to	place	a	finite	set
of	items	(inventory	items	in	this	example).	The	natural	bounds	provided	are	the
number	of	each	item	in	inventory	and	the	number	of	each	item	on	each	order-detail
line.

By	solving	this	as	a	set-based	problem	in	T-SQL,	you	allow	SQL	Server	to	optimize
the	performance	of	your	code	based	on	the	most	current	information	available.	As
mentioned	in	Chapter	3,	when	you	use	cursors	and	loops,	you	take	away	SQL
Server’s	performance-optimization	options,	and	you	assume	the	responsibility	for
performance	optimization.	You	can	use	set-based	logic	instead	of	cursors	and	loops
to	solve	this	particular	problem.	In	reality,	solving	this	problem	with	a	set-based
solution	took	only	about	30	minutes	of	my	time.	A	cursor	or	loop-based	solution

would	have	taken	just	as	long	or	longer,	and	it	wouldn’t	have	been	nearly	as	efficient.

Listing	4-11.	Creating	a	Product	Pull	List

CREATE	FUNCTION	dbo.GetProductPullList()

RETURNS	@result	table

(

				SalesOrderID	int	NOT	NULL,

				ProductID	int	NOT	NULL,

				LocationID	smallint	NOT	NULL,

				Shelf	nvarchar(10)	NOT	NULL,

				Bin	tinyint	NOT	NULL,

				QuantityInBin	smallint	NOT	NULL,

				QuantityOnOrder	smallint	NOT	NULL,

				QuantityToPull	smallint	NOT	NULL,

				PartialFillFlag	nchar(1)	NOT	NULL,

				PRIMARY	KEY	(SalesOrderID,	ProductID,	LocationID,	Shelf,	

Bin)

)

AS

BEGIN

				INSERT	INTO	@result

				(

								SalesOrderID,

								ProductID,

								LocationID,

								Shelf,

								Bin,

								QuantityInBin,

								QuantityOnOrder,

								QuantityToPull,

								PartialFillFlag

)

				SELECT

								Order_Details.SalesOrderID,

								Order_Details.ProductID,

								Inventory_Details.LocationID,

								Inventory_Details.Shelf,

								Inventory_Details.Bin,

								Inventory_Details.Quantity,

								Order_Details.OrderQty,

								COUNT(*)	AS	PullQty,

								CASE	WHEN	COUNT(*)	<	Order_Details.OrderQty

								THEN	N'Y'

								ELSE	N'N'

								END	AS	PartialFillFlag

				FROM

				(

								SELECT	ROW_NUMBER()	OVER

								(

								PARTITION	BY	p.ProductID

								ORDER	BY	p.ProductID,

								p.LocationID,

								p.Shelf,

								p.Bin

)	AS	Num,

								p.ProductID,

								p.LocationID,

								p.Shelf,

								p.Bin,

								p.Quantity

								FROM	Production.ProductInventory	p

								INNER	JOIN	dbo.Numbers	n

								ON	n.Num	BETWEEN	1	AND	Quantity

)	Inventory_Details

				INNER	JOIN

				(

								SELECT	ROW_NUMBER()	OVER

								(

								PARTITION	BY	o.ProductID

								ORDER	BY	o.ProductID,

								o.SalesOrderID

)	AS	Num,

								o.ProductID,

								o.SalesOrderID,

								o.OrderQty

								FROM	Sales.SalesOrderDetail	o

								INNER	JOIN	dbo.Numbers	n

								ON	n.Num	BETWEEN	1	AND	o.OrderQty

)	Order_Details

				ON	Inventory_Details.ProductID	=	Order_Details.ProductID

								AND	Inventory_Details.Num	=	Order_Details.Num

				GROUP	BY

								Order_Details.SalesOrderID,

								Order_Details.ProductID,

								Inventory_Details.LocationID,

								Inventory_Details.Shelf,

								Inventory_Details.Bin,

								Inventory_Details.Quantity,

								Order_Details.OrderQty;

				RETURN;

END;

GO

Retrieving	the	product	pull	list	involves	a	simple	SELECT	query	like	the	following.
Partial	results	are	shown	in	Figure	4-6:

SELECT

			SalesOrderID,

			ProductID,

			LocationID,

			Shelf,

			Bin,

			QuantityInBin,

			QuantityOnOrder,

			QuantityToPull,

			PartialFillFlag

FROM	dbo.GetProductPullList();

Figure	4-6.	AdventureWorks	product	pull	list	(partial)

One	interesting	aspect	of	the	multistatement	TVF	is	the	CREATE	FUNCTION
keyword	and	its	RETURNS	clause,	which	define	the	name	of	the	procedure,	parameters
passed	in	(if	any),	and	the	resulting	set	table	structure:

CREATE	FUNCTION	dbo.GetProductPullList()

RETURNS	@result	table

(

			SalesOrderIlD	int	NOT	NULL,

			ProductID	int	NOT	NULL,

			LocationID	smallint	NOT	NULL,

			Shelf	nvarchar(10)	NOT	NULL,

			Bin	tinyint	NOT	NULL,

			QuantityInBin	smallint	NOT	NULL,

			QuantityOnOrder	smallint	NOT	NULL,

			QuantityToPull	smallint	NOT	NULL,

			PartialFillFlag	nchar(1)	NOT	NULL,

PRIMARY	KEY	(SalesOrderID,	ProductID,	LocationID,	Shelf,	

Bin)	

)

Notice	that	you	define	a	primary	key	on	the	table	result.	This	also	serves	as	the
clustered	index	for	the	result	set.	Due	to	limitations	in	table	variables,	you	can’t	explicitly
specify	other	indexes	on	the	result	set.

The	body	of	the	function	begins	with	the	INSERT	INTO	and	SELECT	clauses	that
follow:

INSERT	INTO	@result

(

			SalesOrderID,

			ProductID,

			LocationID,

			Shelf,

			Bin,

			QuantitylnBin,

			QuantityOnOrder,

			QuantityToPull,

			PartialFillFlag

)

SELECT

			Order_Details.SalesOrderID,

			Order_Details.ProductID,

			Inventory_Details.LocationID,

			Inventory_Details.Shelf,

			Inventory_Details.Bin,

			Inventory_Details.Quantity,

			Order_Details.OrderQty,

			COUNT(*)	AS	PullQty,

			CASE	WHEN	C0UNT(*)	<	Order_Details.OrderQty

						THEN	N'Y'

						ELSE	N'N'

END	AS	PartialFillFlag

These	clauses	establish	population	of	the	@result	table	variable.	The	most	important
point	to	notice	here	is	that	the	return	results	of	this	multistatement	TVF	are	created	by
manipulating	the	contents	of	the	@result	table	variable.	When	the	function	ends,	the
@result	table	variable	is	returned	to	the	caller.	Some	other	important	facts	about	this
portion	of	the	multistatement	TVF	are	that	the	COUNT(*)	AS	PullQty	aggregate
function	returns	the	total	number	of	each	item	to	pull	from	a	given	bin	to	fill	a	specific
order-detail	row,	and	the	CASE	expression	returns	Y	when	an	order-detail	item	is	partially

filled	from	a	single	bin	and	N	when	an	order-detail	item	is	completely	filled	from	a	single
bin.

The	source	for	the	SELECT	query	is	composed	of	two	subqueries	joined	together.	The
first	subquery,	aliased	as	InventoryDetails,	is	shown	next.	This	subquery	returns	a
single	row	for	every	item	in	inventory	with	information	identifying	the	precise	location
where	the	inventory	item	can	be	found:

(

				SELECT	ROW_NUMBER()	OVER

								(

								PARTITION	BY	p.ProductID

								ORDER	BY	p.ProductID,

								p.LocationID,

								p.Shelf,

								p.Bin

)	AS	Num,

								p.ProductID,

								p.LocationID,

								p.Shelf,

								p.Bin,

								p.Quantity

				FROM	Production.ProductInventory	p

				INNER	JOIN	dbo.Numbers	n

								ON	n.Num	BETWEEN	1	AND	Quantity

)	Inventory_Details

Consider	the	previous	example	with	the	customers	Jill,	Mike,	and	Dave.	If	there	are
nine	black	Mountain-200	42-inch	mountain	bikes	in	inventory,	this	query	returns	nine
rows,	one	for	each	instance	of	the	item	in	inventory,	and	each	with	a	unique	row	number
counting	from	1.

The	InventoryDetails	subquery	is	inner-joined	to	a	second	subquery,	identified
as	Order_Details:

(

				SELECT	ROW_NUMBER()	OVER

								(

								PARTITION	BY	o.ProductID

								ORDER	BY	o.ProductID,

								o.SalesOrderID

)	AS	Num,

								o.ProductID,

								o.SalesOrderID,

								o.OrderQty

				FROM	Sales.SalesOrderDetail	o

				INNER	JOIN	dbo.Numbers	n

								ON	n.Num	BETWEEN	1	AND	o.OrderQty

)	Order_Details

This	subquery	breaks	up	quantities	of	items	in	all	order	details	into	individual	rows.
Again,	in	the	example	of	Jill,	Mike,	and	Dave,	this	query	breaks	each	of	the	order	details
into	five	rows,	one	for	each	item	of	each	order	detail.	The	rows	are	assigned	unique
numbers	for	each	product.	So	in	the	example,	the	rows	for	each	black	Mountain-200	42-
inch	mountain	bike	that	the	three	customers	ordered	are	numbered	individually	from	1	to
15.

The	rows	of	both	subqueries	are	joined	based	on	their	ProductID	numbers	and	the
unique	row	numbers	assigned	to	each	row	of	each	subquery.	This	effectively	assigns	one
item	from	inventory	to	fill	exactly	one	item	in	each	order.	Figure	4-7	is	a	visualization	of
the	process	described	here,	where	the	inventory	items	and	order-detail	items	are	split	into
separate	rows	and	the	two	rowsets	are	joined	together.

Figure	4-7.	Splitting	and	joining	individual	inventory	and	order-detail	items

The	SELECT	statement	also	requires	a	GROUP	BY	to	aggregate	the	total	number	of
items	to	be	pulled	from	each	bin	to	fill	each	order	detail,	as	opposed	to	returning	the	raw
inventory-to-order	detail	items	on	a	one-to-one	basis:

GROUP	BY

		Order_Details.SalesOrderID,

		Order_Details.ProductID,

		Inventory_Details.LocationID,

		Inventory_Details.Shelf,

		Inventory_Details.Bin,

		Inventory_Details.Quantity,

		Order_Details.OrderQty;

Finally,	the	RETURN	statement	returns	the	@result	table	back	to	the	caller	as	the
multistatement	TVF	result.	Notice	that	the	RETURN	statement	in	a	multistatement	TVF
isn’t	followed	by	an	expression	or	variable	as	it	is	in	a	scalar	UDF:

RETURN;

The	table	returned	by	a	TVF	can	be	used	just	like	a	table	in	a	WHERE	clause	or	a	JOIN
clause	of	an	SQL	SELECT	query.	Listing	4-12	is	a	sample	query	that	joins	the	example
TVF	to	the	Production.Product	table	to	get	the	product	names	and	colors	for	each
product	listed	in	the	pull	list.	Figure	4-8	shows	the	output	of	the	product	pull	list	joined	to
the	Production.Product	table.

Listing	4-12.	Retrieving	a	Product	Pull	List	with	Product	Names

SELECT

		p.Name	AS	ProductName,

		p.ProductNumber,

		p.Color,

		ppl.SalesOrderID,

		ppl.ProductID,

		ppl.LocationID,

		ppl.Shelf,

		ppl.Bin,

		ppl.QuantityInBin,

		ppl.QuantityOnOrder,

		ppl.QuantityToPull,

		ppl.PartialFillFlag

FROM	Production.Product	p

INNER	JOIN	dbo.GetProductPullList()	ppl

		ON	p.ProductID	=	ppl.ProductID;

Figure	4-8.	Joining	the	product	pull	list	to	the	Production.Product	table

Inline	Table-Valued	Functions
If	scalar	UDFs	and	multistatement	TVFs	aren’t	enough	to	get	you	excited	about	T-SQL’s
UDF	capabilities,	here	comes	a	third	form	of	UDF:	the	inline	TVF.	Inline	TVFs	are
similar	to	multistatement	TVFs	in	that	they	return	a	tabular	rowset	result.

However,	whereas	a	multistatement	TVF	can	contain	multiple	SQL	statements	and
control-of-flow	statements	in	the	function	body,	the	inline	function	consists	of	only	a
single	SELECT	query.	The	inline	TVF	is	literally	“inlined”	by	SQL	Server	(expanded	by
the	query	optimizer	as	part	of	the	SELECT	statement	that	contains	it),	much	like	a	view.	In
fact,	because	of	this	behavior,	inline	TVFs	are	sometimes	referred	to	as	parameterized
views.

The	inline	TVF	declaration	must	simply	state	that	the	result	is	a	table	via	the
RETURNS	clause.	The	body	of	the	inline	TVF	consists	of	an	SQL	query	after	a	RETURN
statement.	Because	the	inline	TVF	returns	the	result	of	a	single	SELECT	query,	you	don’t
need	to	bother	with	declaring	a	table	variable	or	defining	the	return-table	structure.	The
structure	of	the	result	is	implied	by	the	SELECT	query	that	makes	up	the	body	of	the
function.

The	sample	inline	TVF	performs	a	function	commonly	implemented	by	developers	in
T-SQL	using	control-of-flow	statements.	Many	times,	a	developer	determines	that	a
function	or	SP	requires	that	a	large	or	variable	number	of	parameters	be	passed	in	to
accomplish	a	particular	goal.	The	ideal	situation	would	be	to	pass	an	array	as	a	parameter.
T-SQL	doesn’t	provide	an	array	data	type	per	se,	but	you	can	split	a	comma-delimited	list
of	strings	into	a	table	to	simulate	an	array.	This	gives	you	the	flexibility	of	an	array	that
you	can	use	in	SQL	joins.

	Tip		SQL	Server	2012	forward	allows	table-valued	parameters,	which	are	covered	in
Chapter	5	in	the	discussion	of	SPs.	Because	table-valued	parameters	have	special

requirements,	they	may	not	be	optimal	in	all	situations.

Although	you	could	do	this	using	a	multistatement	TVF	and	control-of-flow	statement
such	as	a	WHILE	loop,	you	get	better	performance	if	you	let	SQL	Server	do	the	heavy
lifting	with	a	set-based	solution.	The	sample	function	accepts	a	comma-delimited
varchar(max)	string	and	returns	a	table	with	two	columns,	Num	and	Element,	which
are	described	here:

The	Num	column	contains	a	unique	number	for	each	element	of	the
array,	counting	from	1	to	the	number	of	elements	in	the	comma-
delimited	string.

The	Element	column	contains	the	substrings	extracted	from	the
comma-delimited	list.

Listing	4-13	is	the	full	code	listing	for	the	comma-separated	string-splitting	function.
This	function	accepts	a	single	parameter,	which	is	a	comma-delimited	string	like
Ronnie,Bobbie,Ricky,Mike.	The	output	is	a	table-like	rowset	with	each	comma-
delimited	item	returned	on	its	own	row.	To	avoid	looping	and	procedural	constructs
(which	aren’t	allowed	in	an	inline	TVF),	you	use	the	same	Numbers	table	created
previously	in	Listing	4-10.

Listing	4-13.	Comma-Separated	String-Splitting	Function

CREATE	FUNCTION	dbo.GetCommaSplit	(@String	nvarchar(max))

RETURNS	table

AS

RETURN

(

				WITH	Splitter	(Num,	String)

				AS

				(

								SELECT	Num,	SUBSTRING(@String,

								Num,

								CASE	CHARINDEX(N',',	@String,	Num)

								WHEN	0	THEN		LEN(@String)	-	Num	+	1

								ELSE	CHARINDEX(N',',	@String,	Num)	-	Num

								END

)	AS	String

				FROM	dbo.Numbers

				WHERE	Num	<=	LEN(@String)

								AND	(SUBSTRING(@String,	Num	-	1,	1)	=	N','	OR	Num	=	0)

)

				SELECT

								ROW_NUMBER()	OVER	(ORDER	BY	Num)	AS	Num,

								RTRIM(LTRIM(String))	AS	Element

				FROM	Splitter

				WHERE	String	<>	''

);

GO

The	inline	TVF	name	and	parameters	are	defined	at	the	beginning	of	the	CREATE
FUNCTION	statement.	The	RETURNS	table	clause	specifies	that	the	function	returns	a
table.	Notice	that	the	structure	of	the	table	isn’t	defined	as	it	is	with	a	multistatement
TVF:

CREATE	FUNCTION	dbo.GetCommaSplit	(@String	varchar(max))	

RETURNS	table

The	body	of	the	inline	TVF	consists	of	a	single	RETURN	statement	followed	by	a
SELECT	query.	This	example	uses	a	CTE	called	Splitter	to	perform	the	actual
splitting	of	the	comma-delimited	list.	The	query	of	the	CTE	returns	each	substring	from
the	comma-delimited	list.	CASE	expressions	are	required	to	handle	two	special	cases,	as
follows:

The	first	item	in	the	list,	because	it	isn’t	preceded	by	a	comma

The	last	item	in	the	list,	because	it	isn’t	followed	by	a	comma

WITH	Splitter	(Num,	String)

AS

(

		SELECT	Num,	SUBSTRING(@String,

				Num,

				CASE	CHARINDEX(N',',	@String,	Num)

						WHEN	0	THEN	LEN(@String)	-	Num	+	1

						ELSE	CHARINDEX(N',',	@String,	Num)	-	Num

				END

)	AS	String

		FROM	dbo.Numbers

		WHERE	Num	<=	LEN(@String)

				AND	(SUBSTRING(@String,	Num	-	1,	l)	=	N','	OR	Num	=	0)

)

Finally,	the	query	selects	each	ROWNUMBER	and	Element	from	the	CTE	as	the	result
to	return	to	the	caller.	Extra	space	characters	are	stripped	from	the	beginning	and	end	of
each	string	returned,	and	empty	strings	are	ignored:

SELECT

		ROW_NUMBER()	OVER	(ORDER	BY	Num)	AS	Num,

		LTRIM(RTRIM(String))	AS	Element

FROM	Splitter

WHERE	String	<>	''

You	can	use	this	inline	TVF	to	split	up	the	Jackson	family,	as	shown	in	Listing	4-14.

The	results	are	shown	in	Figure	4-9.

Figure	4-9.	Splitting	up	the	Jacksons

Listing	4-14.	Splitting	Up	the	Jacksons

SELECT	Num,	Element

FROM	dbo.GetCommaSplit	

('Michael,Tito,Jermaine,Marlon,Rebbie,Jackie,Janet,La	

Toya,Randy');

You	can	use	this	technique	to	pull	descriptions	for	a	specific	set	of	AdventureWorks
products.	A	usage	like	this	is	good	for	front-end	web	page	displays	or	business	reports
where	end	users	can	select	multiple	items	for	which	they	want	data	returned.	Listing	4-15
retrieves	product	information	for	a	comma-delimited	list	of	AdventureWorks	product
numbers.	The	results	are	shown	in	Figure	4-10.

Listing	4-15.	Using	the	FnCommaSplit	Function

SELECT	n.Num,

			p.Name,

			p.ProductNumber,

			p.Color,

			p.Size,

			p.SizeUnitMeasureCode,

			p.StandardCost,

			p.ListPrice

FROM	Production.Product	p

INNER	JOIN	dbo.GetCommaSplit('FR-R38R-52,FR-M94S-52,FR-M94B-

44,BK-M68B-38')	n

			ON	p.ProductNumber	=	n.Element;

Figure	4-10.	Using	a	comma-delimited	list	to	retrieve	product	information

Restrictions	on	User-Defined	Functions
T-SQL	imposes	some	restrictions	on	UDFs.	This	section	discusses	these	restrictions	and
some	of	the	reasoning	behind	them.

Nondeterministic	Functions
T-SQL	prohibits	the	use	of	nondeterministic	functions	in	UDFs.	A	deterministic	function
is	one	that	returns	the	same	value	every	time	when	passed	a	given	set	of	parameters	(or	no
parameters).	A	nondeterministic	function	can	return	different	results	with	the	same	set	of
parameters	passed	to	it.	An	example	of	a	deterministic	function	is	ABS,	the	mathematical
absolute	value	function.	Every	time	and	no	matter	how	many	times	you	call	ABS(-10),
the	result	is	always	10.	This	is	the	basic	idea	behind	determinism.

On	the	flip	side,	there	are	functions	that	don’t	return	the	same	value	despite	the	fact
that	you	pass	in	the	same	parameters,	or	no	parameters.	Built-in	functions	such	as	RAND
(without	a	seed	value)	and	NEWID	are	nondeterministic	because	they	return	a	different
result	every	time	they’re	called.	One	hack	that	people	sometimes	use	to	try	to	circumvent
this	restriction	is	creating	a	view	that	invokes	the	nondeterministic	function	and	selecting
from	that	view	inside	their	UDFs.	Although	this	may	work	to	some	extent,	it	isn’t
recommended:	it	could	fail	to	produce	the	desired	results	or	cause	a	significant
performance	hit,	because	SQL	can’t	cache	or	effectively	index	the	results	of
nondeterministic	functions.	Also,	if	you	create	a	computed	column	that	tries	to	reference
your	UDF,	the	nondeterministic	functions	you’re	trying	to	access	via	your	view	can
produce	unpredictable	results.	If	you	need	to	use	nondeterministic	functions	in	your
application	logic,	SPs	are	probably	the	better	alternative.	Chapter	5	discusses	SPs.

NONDETERMINISTIC	FUNCTIONS	IN	A	UDF

In	previous	versions	of	SQL,	there	were	several	restrictions	on	the	use	of
nondeterministic	system	functions	in	UDFs.	In	SQL	Server	2012,	these	restrictions
were	somewhat	relaxed.	You	can	use	the	nondeterministic	system	functions	listed	in
the	following	table	in	your	UDFs.	One	thing	these	system	functions	have	in	common
is	that	they	don’t	cause	side	effects	or	change	the	database	state	when	you	use	them:

@@CONNECTIONS @@PACK_RECEIVED @@TOTAL_WRITE

@@CPU_BUSY @@PACK_SENT CURRENT_TIMESTAMP

@@DBTS @@PACKET_ERRORS GET_TRANSMISSION_STATUS

@@IDLE @@TIMETICKS GETDATE

@@IO_BUSY @@TOTAL_ERRORS GETUTCDATE

@@MAX_CONNECTIONS @@TOTAL_READ 	

If	you	want	to	build	an	index	on	a	view	or	computed	column	that	uses	a	UDF,	your
UDF	has	to	be	deterministic.	The	requirements	to	make	a	UDF	deterministic	include
the	following:

The	UDF	must	be	declared	using	the	WITH	SCHEMABINDING
option.	When	a	UDF	is	schema-bound,	no	changes	are	allowed	to	any
tables	or	objects	on	which	it’s	dependent	without	dropping	the	UDF
first.

Any	functions	you	refer	to	in	your	UDF	must	also	be	deterministic.
This	means	if	you	use	a	nondeterministic	system	function—such	as
GETDATE—in	your	UDF,	it’s	marked	nondeterministic.

You	can’t	invoke	extended	stored	procedures	(XPs)	in	the	function.
This	shouldn’t	be	a	problem,	because	XPs	are	deprecated	and	will	be
removed	from	future	versions	of	SQL	Server.

If	your	UDF	meets	all	these	criteria,	you	can	check	to	see	if	SQL	Server	has	marked
it	deterministic	via	the	OBJECTPROPERTY	function,	with	a	query	like	the	following:

SELECT	OBJECTPROPERTY	(OBDECT_ID('dbo.GetCommaSplit'),	

'IsDeterministic');

The	OBJECTPROPERTY	function	returns	0	if	your	UDF	is	nondeterministic	and	1	if
it’s	deterministic.

State	of	the	Database
One	of	the	restrictions	on	UDFs	is	that	they	aren’t	allowed	to	change	the	state	of	the
database	or	cause	other	side	effects.	This	prohibition	on	side	effects	in	UDFs	means	you
can’t	even	execute	PRINT	statements	from	within	a	UDF.	It	also	means	that	although	you
can	query	database	tables	and	resources,	you	can’t	execute	INSERT,	UPDATE,	MERGE,	or
DELETE	statements	against	database	tables.	Some	other	restrictions	include	the	following:

You	can’t	create	temporary	tables	within	a	UDF.	You	can,	however,
create	and	modify	table	variables	in	the	body	of	a	UDF.

You	can’t	execute	CREATE,	ALTER,	or	DROP	on	database	tables	from
within	a	UDF.

Dynamic	SQL	isn’t	allowed	within	a	UDF,	although	XPs	and
SQLCLR	functions	can	be	called.

A	TVF	can	return	only	a	single	table/result	set.	If	you	need	to	return
more	than	one	table/result	set,	you	may	be	better	served	by	an	SP.

MORE	ON	SIDE	EFFECTS

Although	XPs	and	SQL	CLR	functions	can	be	called	from	a	UDF,	Microsoft	warns
against	depending	on	results	returned	by	XPs	and	SQL	CLR	functions	that	cause	side
effects.	If	your	XP	or	SQL	CLR	function	modifies	tables,	alters	the	database	schema,
accesses	the	file	system,	changes	system	settings,	or	utilizes	non-deterministic
resources	external	to	the	database,	you	may	get	unpredictable	results	from	your	UDF.
If	you	need	to	change	database	state	or	rely	on	side	effects	in	your	server-side	code,
consider	using	an	SQL	CLR	function	or	a	regular	SP	instead	of	a	UDF.

The	prohibition	on	UDF	side	effects	extends	to	the	SQL	Server	display	and	error
systems.	This	means	you	can’t	use	the	T-SQL	PRINT	or	RAISERROR	statement	in	a
UDF.	The	PRINT	and	RAISERROR	statements	are	useful	in	debugging	stored
procedures	and	T-SQL	code	batches	but	are	unavailable	for	use	in	UDFs.	One
workaround	that	I	often	use	is	to	temporarily	move	the	body	of	the	UDF	code	to	an
SP	while	testing.	This	gives	you	the	ability	to	use	PRINT	and	RAISERROR	while
testing	and	debugging	code	in	development	environments.

Variables	and	table	variables	created	in	UDFs	have	a	well-defined	scope	and	can’t	be
accessed	outside	of	the	UDF.	Even	if	you	have	a	recursive	UDF,	you	can’t	access	the
variables	and	table	variables	that	were	previously	declared	and	assigned	values	by	the
calling	function.	If	you	need	values	that	were	generated	by	a	UDF,	you	must	pass
them	in	as	parameters	to	another	UDF	call	or	return	them	to	the	caller	in	the	UDF
result.

Summary
This	chapter	discussed	the	three	types	of	T-SQL	UDFs	and	provided	working	examples	of
the	different	types.	Scalar	UDFs	are	analogous	to	mathematical	functions	that	accept	zero
or	more	parameters	and	return	a	single	scalar	value	for	a	result.	You	can	use	the	standard
SQL	statements,	as	well	as	control-of-flow	statements,	in	a	scalar	UDF.	Multistatement
TVFs	allow	control-of-flow	statements	as	well	but	return	a	table-style	result	set	to	the
caller.	You	can	use	the	result	set	returned	by	a	multistatement	TVF	in	WHERE	and	JOIN
clauses.	Finally,	inline	TVFs	also	return	table-style	result	sets	to	the	caller;	however,	the
body	consists	of	a	single	SELECT	query,	much	like	an	SQL	view.	In	fact,	inline	TVFs	are
sometimes	referred	to	as	parameterized	views.

The	type	of	UDF	that	you	need	to	accomplish	a	given	task	depends	on	the	problem
you’re	trying	to	solve.	For	instance,	if	you	need	to	calculate	a	single	scalar	value,	a	scalar
UDF	will	do	the	job.	On	the	other	hand,	if	you	need	to	perform	complex	calculations	or
manipulations	and	return	a	table,	a	multistatement	TVF	might	be	the	correct	choice.

You	also	learned	about	recursion	in	UDFs,	including	the	32-level	recursion	limit.
Although	32	levels	of	recursion	is	the	hard	limit,	for	all	practical	purposes	you	should

rarely—if	ever—hit	this	limit.	If	you	do	need	recursion	beyond	32	levels,	you	can	replace
recursive	function	calls	with	CTEs	and	other	T-SQL	constructs.

Finally,	the	chapter	talked	about	determinism	and	side	effects	in	UDFs.	Specifically,
your	UDFs	should	not	cause	side	effects,	and	specific	criteria	must	be	met	in	order	for
SQL	Server	to	mark	your	UDFs	as	deterministic.	Determinism	is	an	important	aspect	of
UDFs	if	you	plan	to	use	them	in	indexed	views	or	computed	columns.

The	next	chapter	looks	at	SPs—another	tool	that	allows	procedural	T-SQL	code	to	be
consolidated	into	server-side	units.

EXERCISES

1.	 [Fill	in	the	blank]	SQL	Server	supports	three	types	of	T-SQL	UDFs:
_______,	________,	and	_________.

2.	 [True/False]	The	RETURNS	NULL	ON	NULL	INPUT	option	is	a
performance-enhancing	option	available	for	use	with	scalar	UDFs.

3.	 [True/False]	The	ENCRYPTION	option	provides	a	secure	option
that	prevents	anyone	from	reverse-engineering	your	source	code.

4.	 [Choose	all	that	apply]	You	aren’t	allowed	to	do	which	of	the
following	in	a	multistatement	TVF?

a.	 Execute	a	PRINT	statement

b.	 Call	RAISERROR	to	generate	an	exception

c.	 Declare	a	table	variable

d.	 Create	a	temporary	table

5.	 The	algebraic	formula	for	converting	Fahrenheit	measurements	to
the	Celsius	scale	is:	C=(F	–	32.0)	×	(5/9),	where	F	is	the
measurement	in	degrees	Fahrenheit	and	C	is	the	measurement	in
degrees	Celsius.

Write	a	deterministic	scalar	UDF	that	converts	a	measurement	in	degrees	Fahrenheit
to	degrees	Celsius.	The	UDF	should	accept	a	single	float	parameter	and	return	a
float	result.	You	can	use	the	OBJECTPROPERTY	function	to	ensure	that	the	UDF
is	deterministic.

1Robert	L.	Taft,	“Name	Search	Techniques,”	Special	Report	(Albany,	NY:	Bureau	of	Systems	Development,	1970).

CHAPTER	5

Stored	Procedures
Stored	procedures	(SPs)	have	been	a	part	of	T-SQL	from	the	beginning.	SPs	provide	a
means	for	creating	server-side	subroutines	written	in	T-SQL.	SQL	Server	2014	introduces
the	ability	to	natively	compile	an	SP	that	accesses	memory-optimized	tables.	The
efficiencies	gained	with	natively	compiled	SPs	are	an	absolute	game-changer	in	how	you
consider	architecting	an	OLTP	database	solution.

This	chapter	begins	with	a	discussion	of	what	SPs	are	and	why	you	might	want	to	use
them,	and	it	continues	with	a	discussion	of	SP	creation	and	usage,	including	examples.
Natively	compiled	SPs	are	introduced	in	this	chapter,	but	the	complete	picture	of	how	they
work	with	in-memory	tables	is	covered	in	more	detail	in	Chapter	6.

Introducing	Stored	Procedures
SPs	are	saved	collections	of	one	or	more	T-SQL	statements	stored	on	the	server	as	code
units.	They’re	analogous	to	procedures	or	subroutines	in	procedural	languages	like	Visual
Basic	and	C#.	And	just	like	procedures	in	procedural	languages,	SPs	give	you	the	ability
to	effectively	extend	the	language	of	SQL	Server	by	letting	you	add	named	custom
subroutines	to	your	databases.

An	SP	declaration	begins	with	the	CREATE	PROCEDURE	keywords	followed	by	the
name	of	the	SP.	Microsoft	recommends	against	naming	the	SP	with	the	prefix	sp_.	This
prefix	is	used	by	SQL	Server	to	name	system	SPs	and	isn’t	recommended	for	user	SPs	in
databases	other	than	the	master	database.	The	name	can	specify	a	schema	name	and
procedure	name,	or	just	a	procedure	name.	If	you	don’t	specify	a	schema	name	when
creating	an	SP,	SQL	Server	creates	it	in	the	default	schema	for	your	login.	It’s	a	best
practice	to	always	specify	the	schema	name	so	your	SPs	are	always	created	in	the	proper
schema,	rather	than	leaving	it	up	to	SQL	Server.	SQL	Server	allows	you	to	drop	groups	of
procedures	with	the	same	name	with	a	single	DROP	PROCEDURE	statement.

	Warning		You	can	also	define	a	stored	procedure	with	the	group	number	option	during
SP	creation.	The	group	number	option	is	deprecated	and	will	be	removed	from	future
versions	of	SQL	Server.	Don’t	use	this	option	in	new	development,	and	start	planning	to
update	code	that	uses	it.

SPs,	like	the	T-SQL	user-defined	functions	(UDFs)	discussed	in	Chapter	4,	can	accept
parameter	values	from	and	return	them	to	the	caller.	The	parameters	are	specified	in	a
comma-separated	list	following	the	procedure	name	in	the	CREATE	PROCEDURE
statement.	Unlike	with	UDFs,	when	you	call	an	SP,	you	can	specify	the	parameters	in	any
order;	and	you	can	omit	them	altogether	if	you	assigned	a	default	value	at	creation	time.

You	can	also	specify	OUTPUT	parameters,	which	return	values	from	the	procedure.	All
this	makes	SP	parameters	far	more	flexible	than	those	of	UDFs.

Each	parameter	is	declared	as	a	specific	type	and	can	also	be	declared	as	OUTPUT	or
with	the	VARYING	keyword	(for	cursor	parameters	only).	When	calling	SPs,	you	have
two	choices:	you	can	specify	parameters	by	position	or	by	name.	If	you	specify	an
unnamed	parameter	list,	the	values	are	assigned	based	on	position.	If	you	specify	named
parameters	in	the	format	@parameter	=	value,	they	can	be	in	any	order.	If	your
parameter	specifies	a	default	value	in	its	declaration,	you	don’t	have	to	pass	in	a	value	for
that	parameter.	Unlike	UDFs,	SPs	don’t	require	the	DEFAULT	keyword	as	a	placeholder
to	specify	default	values.	Leaving	out	a	parameter	when	you	call	the	SP	applies	the	default
value	to	that	parameter.

Unlike	UDFs,	which	can	return	results	only	via	the	RETURN	statement,	SPs	can
communicate	with	the	caller	in	a	variety	of	ways:

The	SP’s	RETURN	statement	can	return	an	int	value	to	the	caller.
Unlike	UDFs,	SPs	don’t	require	a	RETURN	statement.	If	the	RETURN
statement	is	left	out	of	the	SP,	0	is	returned	by	default	if	no	errors
were	raised	during	execution.

SPs	don’t	have	the	same	restrictions	on	database	side	effects	and
determinism	as	do	UDFs.	SPs	can	read,	write,	delete,	and	update
permanent	tables.	In	this	way,	the	caller	and	SP	can	communicate
information	to	one	another	through	the	use	of	permanent	tables.

When	a	temporary	table	is	created	in	an	SP,	that	temporary	table	is
available	to	any	SPs	called	by	that	SP.	There	are	two	types	of
temporary	tables:	local	and	global.	The	scope	of	a	local	temporary
table	is	the	current	session,	and	the	scope	of	a	global	temporary	table
is	all	sessions.	A	local	temporary	table	is	prefixed	with	#,	and	a	global
temporary	table	is	prefixed	with	##.	As	an	example,	if
dbo.MyProc1	creates	a	local	temporary	table	named	#Temp	and
then	calls	dbo.MyProc2,	dbo.MyProc2	can	access	#Temp	as
well.	If	dbo.MyProc2	then	calls	dbo.MyProc3,	dbo.MyProc3
can	also	access	the	same	#Temp	temporary	table.	Global	temporary
tables	are	accessible	by	all	users	and	all	connections	after	they’re
created.	This	provides	a	useful	method	of	passing	an	entire	table	of
temporary	results	from	one	SP	to	another	for	further	processing.

Output	parameters	provide	the	primary	method	of	retrieving	scalar
results	from	an	SP.	Parameters	are	specified	as	output	parameters	with
the	OUTPUT	keyword.

To	return	table-type	results	from	an	SP,	the	SP	can	return	one	or	more
result	sets.	Result	sets	are	like	virtual	tables	that	can	be	accessed	by
the	caller.	Unlike	with	views,	updates	to	these	result	sets	by
applications	don’t	change	the	underlying	tables	used	to	generate	them.
Also,	unlike	table-valued	function	(TVFs)	and	inline	functions	that

return	a	single	table	only,	SPs	can	return	multiple	result	sets	with	a
single	call.

SP	RETURN	STATEMENTS

Because	the	SP	RETURN	statement	can’t	return	tables,	character	data,	decimal
numbers,	and	so	on,	it’s	normally	used	only	to	return	an	int	status	or	error	code.
This	is	a	good	convention	to	follow,	because	most	developers	who	use	your	SPs	will
expect	it.	The	normal	practice,	followed	by	most	of	SQL	Server’s	system	SPs,	is	to
return	a	value	of	0	to	indicate	success	and	a	nonzero	value	or	an	error	code	to
indicate	an	error	or	a	failure.

Metadata	Discovery
SQL	Server	2012	introduced	two	new	stored	procedures	and	supporting	Dynamic
Management	Views	(DMVs)	to	provide	new	capabilities	for	determining	metadata
associated	with	code	batches	or	SPs.	This	set	of	capabilities	replaces	the	SET	FMTONLY
option,	which	is	being	deprecated.

Often	it’s	necessary	to	determine	the	format	of	a	result	set	without	actually	executing
the	query.	There	are	also	scenarios	in	which	you	have	to	ensure	that	the	column	and
parameter	metadata	from	query	execution	is	compatible	with	or	identical	to	the	format	you
specified	before	executing	the	query.	For	example,	if	you	want	to	generate	dynamic
screens	based	on	a	SELECT	statement,	you	need	to	make	sure	there	are	no	metadata	errors
after	query	execution,	so	in	turn	you	need	to	determine	whether	the	parameter	metadata	is
compatible	before	and	after	query	execution.	This	functionality	introduces	metadata
discovery	capabilities	for	result	sets	and	parameters	using	the	SPs
sp_describe_first_result_set	and
sp_describe_undeclared_parameters	and	the	DMVs
dm_exec_describe_first_result_set	and
dm_exec_describe_first_result_set_for_object.

The	SP	sp_describe_first_result_set	analyzes	all	possible	first	result	sets
and	returns	the	metadata	information	for	the	first	result	set	that	is	executed	from	the	input
T-SQL	batch.	If	the	SP	returns	multiple	result	sets,	this	procedure	only	returns	the	first
result	set.	If	SQL	Server	is	unable	to	determine	the	metadata	for	the	first	query,	then	an
error	is	raised.	This	procedure	takes	three	parameters:	@tsql	passes	the	T-SQL	batch,
@params	passes	the	parameters	for	the	T-SQL	batch,	and
@browse_information_mode	determines	whether	additional	browse	information	for
each	result	set	is	returned.

Alternatively,	you	can	use	the	DMV
sys.dm_exec_describe_first_result_set	to	query	against;	this	DMV
returns	the	same	details	as	the	SP	sp_describe_first_result_set.	You	can	use
the	DMV	sys.dm_exec_describe_first_result_set_for_object	to
analyze	objects	such	as	SPs	or	triggers	in	the	database	and	return	the	metadata	for	the	first

possible	result	set	and	the	errors	associated	with	them.	Let’s	say	you	want	to	analyze	all
the	objects	in	the	database	and	use	the	information	for	documentation	purposes.	Instead	of
analyzing	the	objects	one	by	one,	you	can	use	the	DMV
sys.dm_exec_describe_first_result_set_for_object	with	a	query
similar	to	following:

SELECT	p.name,	p.schema_id,	x.*	FROM	sys.procedures	p	CROSS	

APPLY	

sys.dm_exec_describe_first_result_set_for_object(p.object_id,0)

	x

The	SP	sp_describe_undeclared_parameters	analyzes	the	T-SQL	batch
and	returns	the	suggestion	for	the	best	parameter	datatype	based	on	least	number	of
conversions.	This	feature	is	very	useful	when	you	have	complicated	calculations	or
expressions	and	you’re	trying	to	figure	out	the	best	datatype	for	the	undeclared	parameter
value.

Natively	Compiled	Stored	Procedures
Natively	compiled	stored	procedures	are	new	in	SQL	Server	2014	and	can	provide
massive	performance	gains.	These	SPs	are	similar	to	traditional	T-SQL	compiled	SPs	in
the	way	you	call	them	and	how	they	function.	Natively	compiled	SPs	are	compiled	into
native	C	machine	code,	which	is	stored	as	a	DLL	in	machine	code.	This	allows	the	CPU	to
run	the	code	without	the	need	to	interpret	the	code	at	runtime,	providing	for	some	extreme
performance	gains.	By	contrast,	traditional	T-SQL	SPs	are	interpretive;	they’re	compiled
and	then	executed	every	time	the	SP	is	called.	Natively	compiled	SPs	have	several
limitations	and	can	only	access	memory-optimized	tables.	(Memory-optimized	tables	are
discussed	in	Chapter	6.)	As	of	SQL	Server	2014	RTM,	creating	a	natively	compiled	SP
has	several	limitations	and	requires	a	very	specific	syntax.

Listing	5-1	is	a	simple	example	of	a	traditional	T-SQL	interpreted	SP	in	the	Person
schema	that	accepts	an	AdventureWorks	employee’s	ID	and	returns	the	employee’s	full
name	and	e-mail	address	via	output	parameters.	The	following	section	contrasts	a	new
natively	compiled	SP	using	the	same	memory-optimized	table	objects	in	Listing	5-1.

	Note		The	SP	in	the	example,	Person.GetEmployee,	accepts	a	business	entity	ID
number	as	an	input	parameter	and	returns	the	corresponding	employee’s	e-mail	address
and	full	name	as	output	parameters.	If	the	business	entity	ID	number	passed	in	is	valid,	the
SP	returns	0	as	a	return	value;	otherwise	1	is	returned.

Listing	5-1.	Creating	a	Traditional	T-SQL	SP	That	Retrieves	an	Employee’s	Name	and	E-
mail

CREATE	PROCEDURE	Person.GetEmployee

(

				@BusinessEntityID		int		=		NULL

		,	@Email_Address	nvarchar(50)	OUTPUT

		,	@Full_Name	nvarchar(100)	OUTPUT

)

AS

BEGIN

				--	Retrieve	email	address	and	full	name	from	

HumanResources.Employee	table

				SELECT	@Email_Address	=	ea.EmailAddress,

								@Full_Name	=	p.FirstName	+	'	'	

+	COALESCE(p.MiddleName,'')	+	'	'	+	p.LastName

				FROM		HumanResources.Employee		e

				INNER	JOIN	Person.Person	p

								ON		e.BusinessEntityID		=		p.BusinessEntityID

				INNER	JOIN	Person.EmailAddress	ea

								ON		p.BusinessEntityID		=		ea.BusinessEntityID

				WHERE	e.BusinessEntityID	=	@BusinessEntityID;

				--		Return	a	code	of	1	when	no	match	is	found,	0	for	

success

				RETURN	(

								CASE

								WHEN		@Email_Address		IS		NULL		THEN		1

								ELSE	0

								END

);

END;

GO

To	contrast	the	differences,	see	Listing	5-2.	I	break	down	the	differences	line	by	line
following	this	listing.

	Note		The	code	in	Listing	5-2	will	not	execute	correctly	on	a	test	machine	until	all	the
in-memory	tables	have	been	created.	Chapter	6	discusses	all	the	code	samples,	with	an
explanation	of	how	to	set	up	the	in-memory	tables.

Listing	5-2.	Natively	Compiled	SP	Person.GetEmployee_inmem

CREATE	PROCEDURE	Person.GetEmployee_inmem

(

				@BusinessEntityID		int		=		NULL

		,	@Email_Address	nvarchar(50)	OUTPUT

		,	@Full_Name	nvarchar(100)	OUTPUT

)

/***	New	InMemory	Syntax	***/

WITH	NATIVE_COMPILATION,	SCHEMABINDING,	EXECUTE	AS	OWNER

AS

/***	New	InMemory	Syntax	***/

BEGIN	ATOMIC	WITH

		(TRANSACTION	ISOLATION	LEVEL	=	SNAPSHOT,

			LANGUAGE	=	N'us_english')

/***	New	Variable	to	handle	ReturnCode	Logic	***/

DECLARE	@ReturnCode	bit	=	0;

					--	Retrieve	email	address	and	full	name	from	

HumanResources.Employee	table

					SELECT	@Email_Address	=	ea.EmailAddress,

												@Full_Name	=	p.FirstName	+	'	'	

+	ISNULL(p.MiddleName,'')	+	'	'	+	p.LastName

								/***	New	Code	to	handle	ReturnCode	Logic	***/

												,	@ReturnCode	=	ISNULL(LEN(ea.EmailAddress,1))

							FROM	HumanResources.Employee_inmem		e

						INNER	JOIN	Person.Person_inmem	p	ON

												e.BusinessEntityID		=		p.BusinessEntityID

						INNER	JOIN	Person.EmailAddress_inmem	ea	ON

												p.BusinessEntityID		=		ea.BusinessEntityID

						WHERE	e.BusinessEntityID	=	@BusinessEntityID;

				--		Return	a	code	of	1	when	no	match	is	found,	0	for	

success

				RETURN	(@ReturnCode)

END;

GO

There	should	several	obvious	differences	when	you	look	at	the	SPs	in	Listing	5-1	and
5-2.	Following	is	an	outline	of	the	differences	and	how	to	create	a	natively	compiled	SP:

1.	 The	tables	accessed	in	Listing	5-2	reference	in-memory	tables	only.
The	new	tables	are	identified	with	the	_inmem	suffix.	It’s	an
absolute	requirement	to	access	memory-optimized	tables	from	a
natively	compiled	SP.	Chapter	6	goes	over	how	to	create	in-memory
tables,	in	addition	to	several	of	the	limitations	and	requirements	for
these	types	of	tables.

2.	 The	first	difference	from	a	traditional	T-SQL	SP	is	in	line	9:

a.	 The	WITH	option	is	required	with	the	indicator
NATIVE_COMPILATION	to	show	that	it’s	a	natively
compiled	SP.

b.	 SCHEMABINDING	must	be	specified	so	it’s	bound	to	the
schema	of	the	objects	it	references.	The	tables	referenced	in

the	SP	can’t	be	dropped	without	first	dropping	the	SP	itself.

c.	 The	EXECUTE	AS	execution	context	must	be	specified	as
EXECUTE	AS	OWNER,	EXECUTE	AS	USER,	or
EXECUTE	AS	SELF.	The	default	behavior	of	a	T-SQL	SP
is	EXECUTE	AS	CALLER,	which	isn’t	supported	in	a
natively	compiled	SP.

3.	 The	second	line	with	a	difference	is	line	13.	BEGIN	ATOMIC	must
be	specified	so	the	execution	is	guaranteed	to	be	atomic.	There	are
two	required	options	for	the	atomic	blocks:

a.	 TRANSACTION	ISOLATION	LEVEL	must	be	specified

b.	 LANGUAGE	must	be	specified.

4.	 Line	33	is	completely	different	from	the	original	version	of	the	code
(see	Figure	5-1),	for	a	very	important	reason.	Natively	compiled
SPs	don’t	support	the	CASE	statement.	This	limitation	forced	me	to
accommodate	for	the	logic	in	a	different	manner.	In	the	SELECT
clause	(line	24	in	Listing	5-2),	I	check	the	column	for	ISNULL	and
set	the	variable	@ReturnCode	so	that	the	valid	value	is	returned.

Figure	5-1.	Differences	in	the	RETURN	code	blocks	between	the	original	T-SQL	SP	and	the	natively	compiled	SP

Natively	compiled	SPs	have	a	significant	number	of	limitations.	They’re	so	numerous
that	it’s	best	to	reference	the	Microsoft	MSDN	for	the	latest	limitations	and	workarounds
at	http://msdn.microsoft.com/en-us/library/dn246937.aspx.

http://msdn.microsoft.com/en-us/library/dn246937.aspx

One	thing	to	keep	in	mind:	this	is	the	first	version	of	this	type	of	functionality.	Each
time	a	SP	is	compiled	into	native	machine	code,	it’s	translating	all	the	T-SQL	into	C.	The
limitations	arise	from	the	challenges	involved	in	doing	this	accurately.	Microsoft	has
promised	to	continue	investing	in	additional	capabilities	in	the	next	version	of	the	in-
memory	features.	Even	with	their	limitations,	the	enhanced	performance	gains	of	using
these	features	are	too	compelling	to	not	begin	using	them	now.

Managing	Stored	Procedures
T-SQL	provides	two	statements	that	allow	you	to	modify	and	delete	SPs:	ALTER
PROCEDURE	and	DROP	PROCEDURE,	respectively.	ALTER	PROCEDURE	lets	you
modify	the	code	for	an	SP	without	first	dropping	it.	The	syntax	is	the	same	as	for	the
CREATE	PROCEDURE	statement,	except	that	the	keywords	ALTER	PROCEDURE	are
used	in	place	of	CREATE	PROCEDURE.	ALTER	PROCEDURE,	like	CREATE
PROCEDURE,	must	always	be	the	first	statement	in	a	batch.	Using	the	CREATE,	DROP,
and	ALTER	PROCEDURE	statements	forces	SQL	Server	to	generate	a	new	query	plan.
The	advantage	of	ALTER	over	CREATE	or	DROP	is	that	ALTER	preserves	the	permissions
for	the	object,	whereas	CREATE	and	DROP	reset	the	permissions.	If	you’re	using	a
natively	compiled	SP,	the	ALTER	PROCEDURE	code	isn’t	allowed.	The	only	way	to	alter
a	natively	compiled	SP	is	to	drop	the	procedure	and	re-create	it.

To	delete	a	procedure	from	your	database,	use	the	DROP	PROCEDURE	statement.
Listing	5-3	shows	how	to	drop	the	procedure	created	in	Listing	5-1.

Listing	5-3.	Dropping	the	Person.GetEmployee	SP

DROP	PROCEDURE	Person.GetEmployee;

You	can	specify	multiple	SPs	in	a	single	DROP	PROCEDURE	statement	by	putting	the
SP	names	in	a	comma-separated	list.	Note	that	you	can’t	specify	the	database	or	server
name	when	dropping	an	SP,	and	you	must	be	in	the	database	containing	the	SP	in	order	to
drop	it.	Additionally,	as	with	other	database	objects,	you	can	grant	or	deny	EXECUTE
permissions	on	an	SP	through	the	GRANT	and	DENY	statements.

Stored	Procedures	Best	Practices
Stored	procedures	enable	you	to	store	batches	of	Transact-SQL	or	Managed	Common
Language	Runtime	(CLR)	code	centrally	on	the	server.	SPs	can	be	very	efficient;	here	are
some	best	practices	that	can	aid	development	and	avoid	common	pitfalls	that	can	hurt
performance:

Use	the	SET	NOCOUNT	ON	statement	after	the	AS	keyword,	as	the
first	statement	in	the	body	of	the	procedure,	when	you	have	multiple
statements	in	your	SP.	This	turns	off	the	DONE_IN_PROC	messages
that	SQL	Server	sends	back	to	the	client	after	each	statement	in	the	SP
is	executed.	This	also	reduces	the	processing	performed	by	SQL

Server	and	the	size	of	the	response	sent	across	the	network.

Use	schema	names	when	creating	or	referencing	the	SP	and	the
database	objects	in	the	procedure.	This	helps	SQL	Server	find	the
objects	more	quickly	and	thus	reduces	compile	lock,	which	results	in
less	processing	time.

Don’t	use	the	SP_	and	sys**	prefixes	to	name	user-created	database
objects.	They’re	reserved	for	Microsoft	and	have	different	behaviors.

Avoid	using	scalar	functions	in	SELECT	statements	that	return	many
rows	of	data.	Because	the	scalar	function	must	be	applied	to	every
row,	the	resulting	behavior	is	like	row-based	processing	and	degrades
performance.

Avoid	using	SELECT	*,	and	select	only	the	columns	you	need.	This
reduces	processing	in	the	database	server	as	well	as	network	traffic.

Use	parameters	when	calling	SPs	to	increase	performance.	In	your
SPs,	explicitly	create	parameters	with	type,	size,	and	precision	to
avoid	type	conversions.

Use	explicit	transactions	by	using	BEGIN/END	TRANSACTION,	and
keep	transactions	as	short	as	possible.	The	longer	the	transaction,	the
more	chances	you	have	for	locking	or	blocking,	and	in	some	cases
deadlocking,	as	well.	Keep	transactions	short	to	reduce	blocking	and
locking.

Use	the	T-SQL	TRY…CATCH	feature	for	error	handling	in	procedures.
TRY…CATCH	can	encapsulate	an	entire	block	of	T-SQL	statements.	If
you’re	using	TRY…CATCH	with	loops,	place	it	outside	the	loop	for
better	performance.	This	not	only	creates	less	performance	overhead,
but	also	makes	error	reporting	more	accurate	with	significantly	less
programming.

Use	NULL	or	NOT	NULL	for	each	column	in	a	temporary	table.	The
ANSI_DFLT_ON	and	ANSI_DFLT_OFF	options	control	the	way	the
database	engine	assigns	the	NULL	or	NOT	NULL	attribute	to	columns
when	these	attributes	aren’t	specified	in	a	CREATE	TABLE	or
ALTER	TABLE	statement.	If	a	connection	executes	a	procedure	with
different	settings	for	these	options	than	the	connection	that	created	the
procedure,	the	columns	of	the	table	created	for	the	second	connection
can	have	different	nullability	and	exhibit	different	behavior.	If	NULL
or	NOT	NULL	is	explicitly	stated	for	each	column,	the	temporary
tables	are	created	by	using	the	same	nullability	for	all	connections	that
execute	the	procedure.

Use	the	UNION	ALL	operator	instead	of	the	UNION	or	OR	operator,
unless	there	is	a	specific	need	for	distinct	values.	UNION	filters	and
removes	the	duplicate	records,	whereas	the	UNION	ALL	operator

requires	less	processing	overhead	because	duplicates	aren’t	filtered	out
of	the	result	set.

WHY	STORED	PROCEDURES?

Debates	have	raged	through	the	years	over	the	utility	of	SQL	Server	SPs.	Traditional
SPs	in	SQL	Server	2014	offer	the	same	execution	plan	caching	and	reuse,	but	the
luster	of	this	benefit	has	faded	somewhat.	Query	optimization,	query	caching,	and
reuse	of	query	execution	plans	for	parameterized	queries	have	been	in	a	state	of
constant	improvement	since	SQL	Server	2000.	Query	optimization	has	been
improved	even	more	in	SQL	Server	2014.	SPs	still	offer	the	performance	benefit	of
not	having	to	send	large	and	complex	queries	over	the	network,	but	the	primary
benefit	of	query	execution	plan	caching	and	reuse	isn’t	as	enticing	as	it	once	was.

So	why	use	SPs?	Apart	from	the	performance	benefit,	which	isn’t	as	big	a	factor	in
these	days	of	highly	efficient	parameterized	queries,	SPs	offer	code	modularization
and	security.	Creating	code	modules	helps	reduce	redundant	code,	eliminating
potential	maintenance	nightmares	caused	by	duplicate	code	stored	in	multiple
locations.	By	using	SPs,	you	can	deny	users	the	ability	to	perform	direct	queries
against	tables,	but	still	allow	them	to	use	SPs	to	retrieve	the	relevant	data	from	those
tables.	SPs	also	offer	the	advantage	of	centralized	administration	of	portions	of	your
database	code.	Finally,	SPs	can	return	multiple	result	sets	with	a	single	procedure
call,	such	as	the	sp_help	system	SP	demonstrated	here	(the	results	are	shown	in
Figure	5-2):
EXECUTE	dbo.sp_help;

Figure	5-2.	Results	of	the	dbo.sp_help	SP	call

Using	SPs,	you	can	effectively	build	an	application	programming	interface	(API)	for
your	database.	You	can	also	minimize	and	almost	prevent	SQL	injection	by	using	SPs
with	input	parameters	to	filter	and	validate	all	the	inputs.	Creation	and	adherence	to

such	an	API	can	help	ensure	consistent	access	across	applications	and	make
development	easier	for	front-end	and	client-side	developers	who	need	to	access	your
database.	Some	third-party	applications,	such	as	certain	ETL	programs	and	database
drivers,	also	require	SPs.

Using	natively	compiled	SPs	will	change	the	way	SPs	are	thought	of	in	the
architecture	of	an	application.	Because	they’re	compiled	into	machine	language,
there	will	be	instances	that	placing	business	logic	directly	in	the	database	layer	will
perform	better	than	other	architectures.

What	are	the	arguments	against	SPs?	One	major	issue	tends	to	be	that	they	tightly
couple	your	code	to	the	DBMS.	A	code	base	that	is	tightly	integrated	with	SQL
Server	2014	will	be	more	difficult	to	port	to	another	RDBMS	(such	as	Oracle,	DB2,
or	MySQL)	in	the	future.	A	loosely	coupled	application,	on	the	other	hand,	is	much
easier	to	port	to	different	SQL	DBMSs.

Portability,	in	turn,	has	its	own	problems.	Truly	portable	code	can	result	in	databases
and	applications	that	are	slow	and	inefficient.	To	get	true	portability	out	of	any
RDBMS	system,	you	have	to	take	great	care	to	code	everything	in	plain	vanilla	SQL,
meaning	a	lot	of	the	platform-specific	performance-enhancing	functionality	offered
by	SQL	Server	is	off-limits.

I’m	not	going	to	dive	too	deeply	into	a	discussion	of	the	pluses	and	minuses	of	SPs.
In	the	end,	the	balance	between	portability	and	performance	needs	to	be	determined
by	your	business	requirements	and	corporate	IT	policies	on	a	per-project	basis.	Just
keep	these	competing	factors	in	mind	when	making	that	decision.

Stored	Procedure	Example
A	common	application	of	SPs	is	to	create	a	layer	of	abstraction	for	various	data	query,
aggregation,	and	manipulation	functionality.	The	example	SP	in	Listing	5-4	performs	the
common	business	reporting	task	of	calculating	a	running	total.	The	results	are	shown	in
Figure	5-3.

Listing	5-4.	Procedure	to	Calculate	and	Retrieve	a	Running	Total	for	Sales

CREATE	PROCEDURE	Sales.GetSalesRunningTotal	(@Year	int)

AS

BEGIN

WITH	RunningTotalCTE

AS

				(

								SELECT	soh.SalesOrderNumber,

								soh.OrderDate,

								soh.TotalDue,

								(

								SELECT		SUM(soh1.TotalDue)

								FROM		Sales.SalesOrderHeader		soh1

								WHERE		soh1.SalesOrderNumber		<=		soh.SalesOrderNumber

)		AS		RunningTotal,

								SUM(soh.TotalDue)	OVER	()	AS	GrandTotal

								FROM	Sales.SalesOrderHeader	soh

								WHERE	DATEPART(year,	soh.OrderDate)	=	@Year

								GROUP	BY	soh.SalesOrderNumber,

								soh.OrderDate,

								soh.TotalDue

)

				SELECT	rt.SalesOrderNumber,

								rt.OrderDate,

								rt.TotalDue,

								rt.RunningTotal,

								(rt.RunningTotal	/	rt.GrandTotal)	*	100	AS	

PercentTotal

				FROM		RunningTotalCTE		rt

				ORDER	BY	rt.SalesOrderNumber;

				RETURN	0;

END;

GO

EXEC		Sales.GetSalesRunningTotal	@Year	=	2014;

GO

Figure	5-3.	Partial	results	of	the	running	total	calculation	for	the	year	2014

The	SP	in	Listing	5-4	accepts	a	single	int	parameter	indicating	the	year	for	which	the
calculation	should	be	performed:

CREATE	PROCEDURE	Sales.GetSalesRunningTotal	(@Year	int)

The	SP	uses	a	common	table	expression	(CTE)	to	return	the	relevant	data	for	the	year
specified,	including	calculations	for	the	running	total	via	a	simple	scalar	subquery	and	the
grand	total	via	a	SUM	calculation	with	an	OVER	clause:

WITH	RunningTotalCTE

AS

(

				SELECT	soh.SalesOrderNumber,

								soh.OrderDate,

								soh.TotalDue,

								(

								SELECT		SUM(soh1.TotalDue)

								FROM		Sales.SalesOrderHeader		soh1

								WHERE		soh1.SalesOrderNumber		<=		soh.SalesOrderNumber

)		AS		RunningTotal,

								SUM(soh.TotalDue)	OVER	()	AS	GrandTotal

				FROM	Sales.SalesOrderHeader	soh

				WHERE	DATEPART(year,	soh.OrderDate)	=	@Year

				GROUP	BY	soh.SalesOrderNumber,

								soh.OrderDate,

								soh.TotalDue

)

The	result	set	is	returned	by	the	CTE’s	outer	SELECT	query,	and	the	SP	finishes	with	a
RETURN	statement	that	sends	a	return	code	of	0	back	to	the	caller:

SELECT	rt.SalesOrderNumber,

rt.OrderDate,

rt.TotalDue,

rt.RunningTotal,

(rt.RunningTotal	/	rt.GrandTotal)	*	100	AS	PercentTotal	FROM	

RunningTotalCTE	rt	ORDER	BY	rt.SalesOrderNumber;	RETURN	0;

RUNNING	SUMS

The	running	sum,	or	running	total,	is	a	very	commonly	used	business	reporting	tool.
A	running	sum	calculates	totals	as	of	certain	points	in	time	(usually	dollar	amounts,
and	often	calculated	over	days,	months,	quarters,	or	years—but	not	always).	In
Listing	5-4,	the	running	sum	is	calculated	per	order,	for	each	day	over	the	course	of	a
given	year.

The	running	sum	generated	in	the	sample	gives	you	a	total	sales	amount	as	of	the
date	and	time	when	each	order	is	placed.	When	the	first	order	is	placed,	the	running
sum	is	equal	to	the	amount	of	that	order.	When	the	second	order	is	placed,	the
running	sum	is	equal	to	the	amount	of	the	first	order	plus	the	amount	of	the	second
order,	and	so	on.	Another	closely	related	and	often	used	calculation	is	the	running
average,	which	represents	a	calculated	point-in-time	average	as	opposed	to	a	point-
in-time	sum.

As	an	interesting	aside,	the	ISO	SQL	standard	allows	you	to	use	the	OVER	clause
with	aggregate	functions	like	SUM	and	AVG.	The	ISO	SQL	standard	allows	the
ORDER	BY	clause	to	be	used	with	the	aggregate	function	OVER	clause,	making	for
extremely	efficient	and	compact	running	sum	calculations.	Unfortunately,	SQL
Server	2012	doesn’t	support	this	particular	option,	so	you	still	have	to	resort	to
subqueries	and	other	less	efficient	methods	of	performing	these	calculations	for	now.

For	the	next	example,	assume	that	AdventureWorks	management	has	decided	to	add	a
database-driven	feature	to	its	web	site.	The	feature	they	want	is	a	“recommended	products
list”	that	will	appear	when	customers	add	products	to	their	online	shopping	carts.	Of
course,	the	first	step	to	implementing	any	solution	is	to	clearly	define	the	requirements.
The	details	of	the	requirements-gathering	process	are	beyond	the	scope	of	this	book,	so
you	work	under	the	assumption	that	the	AdventureWorks	business	analysts	have	done
their	due	diligence	and	reported	back	the	following	business	rules	for	this	particular
function:

The	recommended	products	list	should	include	additional	items	on
orders	that	contain	the	product	selected	by	the	customer.	As	an
example,	if	the	product	selected	by	the	customer	is	product	ID	773
(the	silver	Mountain-100	44-inch	bike),	then	items	previously	bought
by	other	customers	in	conjunction	with	this	bike—like	product	ID	712
(the	AWC	logo	cap)—should	be	recommended.

Products	that	are	in	the	same	category	as	the	product	the	customer
selected	should	not	be	recommended.	As	an	example,	if	a	customer
has	added	a	bicycle	to	an	order,	other	bicycles	should	not	be
recommended.

The	recommended	product	list	should	never	contain	more	than	ten
items.

The	default	product	ID	should	be	776,	the	black	Mountain-100	42-
inch	bike.

The	recommended	products	should	be	listed	in	descending	order	of
the	total	quantity	that	has	been	ordered.	In	other	words,	the	best-
selling	items	will	be	listed	in	the	recommendations	list	first.

Listing	5-5	shows	the	SP	that	implements	all	these	business	rules	to	return	a	list	of
recommended	products	based	on	a	given	product	ID.

Listing	5-5.	Recommended	Product	List	SP

CREATE	PROCEDURE	Production.GetProductRecommendations	

(@ProductID	int	=	776)

AS

BEGIN

WITH	RecommendedProducts

(

ProductID,

ProductSubCategoryID,

TotalQtyOrdered,

TotalDollarsOrdered

)

AS

(

SELECT

od2.ProductID,

p1.ProductSubCategoryID,

SUM(od2.OrderQty)	AS	TotalQtyOrdered,

SUM(od2.UnitPrice	*	od2.OrderQty)	AS	TotalDollarsOrdered

FROM	Sales.SalesOrderDetail	od1

INNER	JOIN	Sales.SalesOrderDetail	od2

ON	od1.SalesOrderID	=	od2.SalesOrderID

INNER	JOIN	Production.Product	p1

ON	od2.ProductID	=	p1.ProductID

WHERE	od1.ProductID	=	@ProductID

AND	od2.ProductID	<>	@ProductID

GROUP	BY

od2.ProductID,

p1.ProductSubcategoryID

)

SELECT	TOP(10)	ROW_NUMBER()	OVER

(

ORDER	BY	rp.TotalQtyOrdered	DESC

)	AS	Rank,

rp.TotalQtyOrdered,

rp.ProductID,

rp.TotalDollarsOrdered,

p.[Name]

FROM	RecommendedProducts	rp

INNER	JOIN	Production.Product	p

ON	rp.ProductID	=	p.ProductID

WHERE	rp.ProductSubcategoryID	<>

(

SELECT	ProductSubcategoryID

FROM	Production.Product

WHERE	ProductID	=	@ProductID

)

ORDER	BY	TotalQtyOrdered	DESC;

END;

GO

The	SP	begins	with	a	declaration	that	accepts	a	single	parameter,	@ProductID.	The
default	@ProductID	is	set	to	776,	per	the	AdventureWorks	management	team’s	rules:

CREATE	PROCEDURE	Production.GetProductRecommendations	

(@ProductID	int	=	776)

Next,	the	CTE	that	will	return	the	TotalQtyOrdered,	ProductID,
TotalDollarsOrdered,	and	ProductSubCategoryID	for	each	product	is
defined:

WITH	RecommendedProducts	(

ProductID,

ProductSubCategorylD,

TotalQtyOrdered,

TotalDollarsOrdered)

In	the	body	of	the	CTE,	the	Sales.SalesOrderDetail	table	is	joined	to	itself
based	on	SalesOrderlD.	A	join	to	the	Production.Product	table	is	also	included
to	get	each	product’s	SubcategorylD.	The	point	of	the	self-join	is	to	grab	the	total

quantity	ordered	(OrderQty)	and	the	total	dollars	ordered	(UnitPrice	*
OrderQty)	for	each	product.

The	query	is	designed	to	include	only	orders	that	contain	the	product	passed	in	via
@ProductID	in	the	WHERE	clause,	and	it	also	eliminates	results	for	@ProductID	itself
from	the	final	results.	All	the	results	are	grouped	by	ProductID	and
ProductSubcategorylD:

(

SELECT

od2.ProductID,

p1.ProductSubCategoryID,

SUM(od2.OrderQty)	AS	TotalQtyOrdered,

SUM(od2.UnitPrice	*	od2.OrderQty)	AS	TotalDollarsOrdered

FROM	Sales.SalesOrderDetail	od1

INNER	JOIN	Sales.SalesOrderDetail	od2

ON	od1.SalesOrderID	=	od2.SalesOrderID

INNER	JOIN	Production.Product	p1

ON	od2.ProductID	=	p1.ProductID

WHERE	od1.ProductID	=	@ProductID

AND	od2.ProductID	<>	@ProductID

GROUP	BY

od2.ProductID,

p1.ProductSubcategoryID

)

The	final	part	of	the	CTE	excludes	products	that	are	in	the	same	category	as	the	item
passed	in	by	@ProductID.	It	then	limits	the	results	to	the	top	ten	and	numbers	the	results
from	highest	to	lowest	by	TotalQtyOrdered.	It	also	joins	on	the
Production.Product	table	to	get	each	product’s	name:

SELECT	TOP(lO)	ROW_NUMBER()	OVER	(

ORDER	BY	rp.TotalOtyOrdered	DESC)	AS	Rank,

rp.TotalOtyOrdered,

rp.ProductID,

rp.TotalDollarsOrdered,

p.[Name]

FROM	RecommendedProducts	rp	INNER	JOIN	Production.Product	p

ON	rp.ProductID	=	p.ProductID	WHERE	rp.ProductSubcategorylD	

<>	(

SELECT	ProductSubcategorylD	FROM	Production.Product	WHERE	

ProductID	=	@ProductID)	ORDER	BY	TotalOtyOrdered	DESC;

Figure	5-4	shows	the	result	set	of	a	recommended	product	list	for	people	who	bought	a
silver	Mountain-100	44-inch	bike	(ProductID	=	773),	as	shown	in	Listing	5-6.

Figure	5-4.	Recommended	product	list	for	ProductID	773

Listing	5-6.	Getting	a	Recommended	Product	List

EXECUTE	Production..GetProductRecommendations	773;

Implementing	this	business	logic	in	an	SP	provides	a	layer	of	abstraction	that	makes	it
easier	to	use	from	front-end	applications.	Front-end	application	programmers	don’t	need
to	worry	about	the	details	of	which	tables	need	to	be	accessed,	how	they	need	to	be	joined,
and	so	on.	All	your	application	developers	need	to	know	to	utilize	this	logic	from	the	front
end	is	that	they	need	to	pass	the	SP	a	ProductID	number	parameter,	and	it	will	return
the	relevant	information	in	a	well-defined	result	set.

The	same	procedure	promotes	code	reuse,	and	if	you	have	business	logic	implemented
with	complex	code	in	an	SP,	the	code	doesn’t	have	to	be	written	multiple	times;	instead
you	can	simply	call	the	SP	to	access	the	code.	Also,	if	you	need	to	change	the	business
logic,	it	can	be	done	one	time,	in	one	place.	Consider	what	happens	if	the	AdventureWorks
management	decides	to	make	suggestions	based	on	total	dollars’	worth	of	a	product
ordered	instead	of	the	total	quantity	ordered.	You	can	change	the	ORDER	BY	clause	from
this

ORDER	BY	TotalOtyOrdered	DESC;

to	the	following:

ORDER	BY	TotalDollarsOrdered	DESC;

This	simple	change	in	the	procedure	does	the	trick.	No	additional	changes	to	front-end
code	or	logic	are	required,	and	no	recompilation	and	redeployment	of	code	to	web	server
farms	is	needed,	because	the	interface	to	the	SP	remains	the	same.

Recursion	in	Stored	Procedures
Like	UDFs,	SPs	can	call	themselves	recursively.	There	is	an	SQL	Server–imposed	limit	of

32	levels	of	recursion.	To	demonstrate	recursion,	let’s	solve	a	very	old	puzzle.

The	Towers	of	Hanoi	puzzle	consists	of	three	pegs	and	a	specified	number	of	discs	of
varying	sizes	that	slide	onto	the	pegs.	The	puzzle	begins	with	the	discs	stacked	on	top	of
one	another,	from	smallest	to	largest,	all	on	one	peg.	The	Towers	of	Hanoi	puzzle’s
starting	position	is	shown	in	Figure	5-5.

Figure	5-5.	The	Towers	of	Hanoi	puzzle’s	starting	position

The	object	of	the	puzzle	is	to	move	all	the	discs	from	the	first	tower	to	the	third	tower.
The	trick	is	that	you	can	only	move	one	disc	at	a	time,	and	no	larger	disc	may	be	stacked
on	top	of	a	smaller	disc	at	any	time.	You	can	temporarily	place	discs	on	the	middle	tower
as	necessary,	and	you	can	stack	any	smaller	disc	on	top	of	a	larger	disc	on	any	tower.	The
Towers	of	Hanoi	puzzle	is	often	used	as	an	exercise	in	computer	science	courses	to
demonstrate	recursion	in	procedural	languages.	This	makes	it	a	perfect	candidate	for	a	T-
SQL	solution	to	demonstrate	SP	recursion.

The	T-SQL	implementation	of	the	Towers	of	Hanoi	puzzle	uses	five	discs	and	displays
each	move	as	the	computer	makes	it.	The	complete	solution	is	shown	in	Listing	5-7.

Listing	5-7.	The	Towers	of	Hanoi	Puzzle

--		This	stored	procedure	displays	all	the	discs	in	the	

appropriate

--	towers.

CREATE		PROCEDURE		dbo.ShowTowers

AS

BEGIN

				--	Each	disc	is	displayed	like	this	"===3==="	where	the	

number	is	the	disc

				--	and	the	width	of	the	===	signs	on	either	side	

indicates	the	width	of	the

				--		disc.

--	These	CTEs	are	designed	for	displaying	the	discs	in	

proper	order	on	each

--	tower.

WITH	FiveNumbers(Num)—Recursive	CTE	generates	table	with	

numbers	1…5

AS

(

				SELECT	1

				UNION	ALL

				SELECT	Num	+	1

				FROM	FiveNumbers

				WHERE	Num	<	5

),

GetTowerA	(Disc)																—The	discs	for	Tower	A

AS

(

				SELECT	COALESCE(a.Disc,	-1)	AS	Disc

				FROM	FiveNumbers	f

				LEFT	JOIN	#TowerA	a

				ON		f.Num		=								a.Disc

),

GetTowerB	(Disc)																—The	discs	for	Tower	B

AS

(

				SELECT	COALESCE(b.Disc,	-1)	AS	Disc

				FROM	FiveNumbers	f

				LEFT	JOIN	#TowerB	b

				ON		f.Num		=								b.Disc

),

GetTowerC	(Disc)																—The	discs	for	Tower	C

AS

(

				SELECT	COALESCE(c.Disc,	-1)	AS	Disc

				FROM	FiveNumbers	f

				LEFT	JOIN	#TowerC	c

				ON		f.Num		=								c.Disc

)

--	This	SELECT	query	generates	the	text	representation	for	

all	three	towers

--	and	all	five	discs.	FULL	OUTER	JOIN	is	used	to	represent	

the	towers	in	a

--		side-by-side	format.

SELECT	CASE	a.Disc

								WHEN	5	THEN	'		=====5=====	'

								WHEN	4	THEN	'			====4====		'

								WHEN		3		THEN			'===3===						'

								WHEN		2		THEN			'	==2==				'

								WHEN		1		THEN			'		=1=						'

								ELSE		'		|		'

								END		AS	Tower_A,

								CASE	b.Disc

								WHEN	5	THEN	'		=====5=====	'

								WHEN	4	THEN	'			====4====		'

								WHEN		3		THEN		'	===3===						'

								WHEN		2		THEN		'		==2==				'

								WHEN		1		THEN		'			=1=						'

								ELSE		'		|		'

								END		AS	Tower_B,

								CASE	c.Disc

								WHEN	5	THEN	'		=====5=====	'

								WHEN	4	THEN	'			====4====		'

								WHEN		3		THEN		'	===3===						'

								WHEN		2		THEN		'		==2==				'

								WHEN		1		THEN		'			=1=						'

								ELSE		'		|		'

								END	AS	Tower_C

				FROM		(

								SELECT	ROW_NUMBER()	OVER(ORDER	BY	Disc)	AS	Num,

								COALESCE(Disc,	-1)	AS	Disc

								FROM	GetTowerA

)		a

				FULL		OUTER		JOIN		(

								SELECT	ROW_NUMBER()	OVER(ORDER	BY	Disc)	AS	Num,

								COALESCE(Disc,		-1)		AS		Disc

								FROM	GetTowerB

)		b

								ON		a.Num		=		b.Num

				FULL		OUTER		JOIN			(

								SELECT	ROW_NUMBER()	OVER(ORDER	BY	Disc)	AS	Num,

								COALESCE(Disc,	-1)	AS	Disc

								FROM	GetTowerC

)		c

								ON		b.Num		=		c.Num

				ORDER	BY	a.Num;

END;

GO

--		This	SP	moves	a	single	disc	from	the	specified	source	

tower	to	the

--		specified	destination	tower.

CREATE		PROCEDURE		dbo.MoveOneDisc		(@Source		nchar(1),

				@Dest	nchar(1))

AS

BEGIN

				--		@SmallestDisc	is	the	smallest	disc	on	the	source	

tower

				DECLARE	@SmallestDisc	int	=	0;

--		IF…	ELSE	conditional	statement	gets	the	smallest	disc	

from	the

--		correct	source	tower

IF		@Source	=	N'A'

BEGIN

				--		This		gets		the		smallest		disc		from		Tower				A

				SELECT	@SmallestDisc	=	MIN(Disc)

				FROM	#TowerA;

				--		Then		delete		it		from		Tower			A

				DELETE	FROM	#TowerA

				WHERE	Disc	=	@SmallestDisc;

END

ELSE		IF		@Source		=			N'B'

BEGIN

				--		This		gets		the		smallest		disc		from		Tower			B

				SELECT	@SmallestDisc	=	MIN(Disc)

				FROM	#TowerB;

				--		Then		delete		it		from		Tower			B

				DELETE	FROM	#TowerB

				WHERE	Disc	=	@SmallestDisc;

END

ELSE		IF		@Source		=				N'C'

BEGIN

				--		This		gets		the		smallest		disc		from		Tower			C

				SELECT	@SmallestDisc	=	MIN(Disc)

				FROM	#TowerC;

				--		Then		delete		it		from		Tower			C

				DELETE	FROM	#TowerC

				WHERE	Disc	=	@SmallestDisc;

END

--		Show	the	disc	move	performed

SELECT	N'Moving	Disc	('	+	CAST(COALESCE(@SmallestDisc,	0)	AS	

nchar(1))	+

				N')	from	Tower	'	+	@Source	+	N'	to	Tower	'	+	@Dest	+	':'	

AS	Description;

--		Perform	the	move	-	INSERT	the	disc	from	the	source	tower	

into	the

--	destination	tower

IF		@Dest	=	N'A'

				INSERT	INTO	#TowerA	(Disc)	VALUES	(@SmallestDisc);

ELSE	IF	@Dest	=	N'B'

				INSERT	INTO	#TowerB	(Disc)	VALUES	(@SmallestDisc);

ELSE	IF	@Dest	=	N'C'

				INSERT	INTO	#TowerC	(Disc)	VALUES	(@SmallestDisc);

				--	Show	the	towers

				EXECUTE	dbo.ShowTowers;

END;

GO

--		This	SP	moves	multiple	discs	recursively

CREATE		PROCEDURE		dbo.MoveDiscs		(@DiscNum		int,

				@MoveNum	int	OUTPUT,

				@Source	nchar(1)	=	N'A',

				@Dest	nchar(1)	=	N'C',

				@Aux	nchar(1)	=	N'B'

)

AS

BEGIN

				--		If	the	number	of	discs	to	move	is	0,	the	solution	has	

been	found

				IF		@DiscNum	=	0

								PRINT	N'Done';

				ELSE

				BEGIN

								-

-		If		the		number		of		discs		to		move		is		1,		go		ahead		and		move		it

								IF		@DiscNum		=		1

								BEGIN

								--		Increase		the		move		counter		by		1

								SELECT		@MoveNum		+=		1;

								--	And	finally	move	one	disc	from	source	to	

destination

								EXEC	dbo.MoveOneDisc	@Source,	@Dest;

								END

								ELSE

								BEGIN

								-

-		Determine		number		of		discs		to		move		from		source		to		auxiliary		tower

								DECLARE		@n		int		=		@DiscNum		-		1;

								--		Move		(@DiscNum		-		1)		discs		from		source	to	

auxiliary	tower

								EXEC		dbo.MoveDiscs		@n,		@MoveNum						OUTPUT,	

@Source,	@Aux,	@Dest;

								--	Move	1	disc	from	source	to	final	destination	tower

								EXEC		dbo.MoveDiscs		1,		@MoveNum		OUTPUT,	@Source,	

@Dest,	@Aux;

								--		Move		(@DiscNum		-		1)		discs		from		auxiliary	to	

final	destination	tower

								EXEC		dbo.MoveDiscs		@n,		@MoveNum						OUTPUT,	@Aux,	

@Dest,	@Source;

								END;

				END;

END;

GO

--		This	SP	creates	the	three	towers	and	populates	Tower	

A	with	5	discs

CREATE		PROCEDURE								dbo.SolveTowers

AS

BEGIN

				--		SET	NOCOUNT	ON	to	eliminate	system	messages	that	will	

clutter	up

				--		the	Message	display

				SET		NOCOUNT		ON;

				--			Create	the	three	towers:	Tower	A,	Tower	B,	and	Tower	

C

				CREATE	TABLE	#TowerA	(Disc	int	PRIMARY	KEY	NOT	NULL);

				CREATE	TABLE	#TowerB	(Disc	int	PRIMARY	KEY	NOT	NULL);

				CREATE	TABLE	#TowerC	(Disc	int	PRIMARY	KEY	NOT	NULL);

				--	Populate	Tower	A	with	all	five	discs

				INSERT	INTO	#TowerA	(Disc)

				VALUES	(1),	(2),	(3),	(4),	(5);

				--		Initialize	the	move	number	to	0

				DECLARE	@MoveNum	int	=	0;

				--	Show	the	initial	state	of	the	towers

				EXECUTE	dbo.ShowTowers;

				--		Solve	the	puzzle.	Notice	you	don't	need	to	specify	

the	parameters

				--		with	defaults

				EXECUTE	dbo.MoveDiscs	5,	@MoveNum	OUTPUT;

				--		How	many	moves	did	it	take?

				PRINT	N'Solved	in	'	+	CAST	(@MoveNum	AS	nvarchar(10))	

+	N'	moves.';

				--		Drop	the	temp	tables	to	clean	up	-	always	a	good	

idea.

				DROP	TABLE	#TowerC;

				DROP	TABLE	#TowerB;

				DROP	TABLE	#TowerA;

				--		SET	NOCOUNT	OFF	before	we	exit

				SET		NOCOUNT								OFF;

END;

GO

To	solve	the	puzzle,	just	run	the	following	statement:

--	Solve	the	puzzle

EXECUTE	dbo.SolveTowers;

Figure	5-6	is	a	screenshot	of	the	processing	as	the	discs	are	moved	from	tower	to
tower.

Figure	5-6.	Discs	are	moved	from	tower	to	tower.

	Note		The	results	of	Listing	5-7	are	best	viewed	in	Results	to	Text	mode.	You	can	put
SSMS	in	Results	to	Text	mode	by	pressing	Ctrl+T	while	in	the	Query	Editor	window.	To
switch	to	Results	to	Grid	mode,	press	Ctrl+D.

The	main	procedure	you	call	to	solve	the	puzzle	is	dbo.SolveTowers.	This	SP
creates	three	temporary	tables	named	#TowerA,	#TowerB,	and	#TowerC.	It	then
populates	#TowerA	with	five	discs	and	initializes	the	current	move	number	to	0:

--		Create	the	three	towers:	Tower	A,	Tower	B,	and	Tower	C

CREATE	TABLE	#TowerA	(Disc	int	PRIMARY	KEY	NOT	NULL);

CREATE	TABLE	#TowerB	(Disc	int	PRIMARY	KEY	NOT	NULL);

CREATE	TABLE	#TowerC	(Disc	int	PRIMARY	KEY	NOT	NULL);

--	Populate	Tower	A	with	all	five	discs

INSERT	INTO	#TowerA	(Disc)

VALUES	(1),	(2),	(3),	(4),	(5);

--		Initialize	the	move	number	to	0

DECLARE	@MoveNum	INT	=	0;

Because	this	SP	is	the	entry	point	for	the	entire	puzzle-solving	program,	it	displays	the
start	position	of	the	towers	and	calls	dbo.MoveDiscs	to	get	the	ball	rolling:

--	Show	the	initial	state	of	the	towers

EXECUTE	dbo.ShowTowers;

--	Solve	the	puzzle.	Notice	you	don't	need	to	specify	the	

parameters

--	with	defaults

EXECUTE	dbo.MoveDiscs	5,	@MoveNum	OUTPUT;

When	the	puzzle	is	finally	solved,	control	returns	back	from	dbo.MoveDiscs	to
dbo.SolveTowers,	which	displays	the	number	of	steps	it	took	to	complete	the	puzzle
and	performs	some	cleanup	work,	like	dropping	the	temporary	tables:

--	How	many	moves	did	it	take?

PRINT	N'Solved	in	'	+	CAST	(@MoveNum	AS	nvarchar(10))	+	N'	

moves.';

--	Drop	the	temp	tables	to	clean	up	-	always	a	good	idea.

DROP	TABLE	#TowerC;

DROP	TABLE	#TowerB;

DROP	TABLE	#TowerA;

--	SET	NOCOUNT	OFF	before	we	exit

SET	NOCOUNT	OFF;

	Tip		When	an	SP	that	created	local	temporary	tables	is	no	longer	in	scope,	the	local
temporary	tables	are	automatically	dropped.	Because	temporary	tables	are	created	in	the
tempdb	system	database,	it’s	a	good	idea	to	get	in	the	habit	of	explicitly	dropping
temporary	tables.	By	explicitly	dropping	temporary	tables,	you	can	guarantee	that	they
exist	only	as	long	as	they’re	needed,	which	can	help	minimize	contention	in	the	tempdb
database.

The	procedure	responsible	for	moving	discs	from	tower	to	tower	recursively	is
dbo.MoveDiscs.	This	procedure	accepts	several	parameters,	including	the	number	of
discs	to	move	(@DiscNum);	the	number	of	the	current	move	(@MoveNum);	and	the	names
of	the	source,	destination,	and	auxiliary/intermediate	towers.	This	procedure	uses	T-SQL
procedural	IF	statements	to	determine	which	types	of	moves	are	required—single-disc
moves,	recursive	multiple-disc	moves,	or	no	more	moves	(when	the	solution	is	found).	If
the	solution	has	been	found,	the	message	Done	is	displayed,	and	control	is	subsequently
passed	back	to	the	calling	procedure,	dbo.SolveTowers:

--	If	the	number	of	discs	to	move	is	0,	the	solution	has	

been	found

IF	@DiscNum	=	0

			PRINT	N'Done';

ELSE

RETURN	0;

If	there	is	only	one	disc	to	move,	the	move	counter	is	incremented	and
dbo.MoveOneDisc	is	called	to	perform	the	move:

--	If	the	number	of	discs	to	move	is	1,	go	ahead	and	move	it

IF	@DiscNum	=	1

BEGIN

--	Increase	the	move	counter	by	1

SELECT	@MoveNum	+=	1;

--	And	finally	move	one	disc	from	source	to	destination

EXEC	dbo.MoveOneDisc	@Source,	@Dest;

END

Finally,	if	there	is	more	than	one	disc	move	required,	dbo.MoveDiscs	calls	itself
recursively	until	there	are	either	one	or	zero	discs	left	to	move:

ELSE

BEGIN

--	Determine	number	of	discs	to	move	from	source	to	

auxiliary	tower

DECLARE	@n	INT	=	@DiscNum	-	1;

--	Move	(@DiscNum	-	1)	discs	from	source	to	auxiliary	tower

EXEC	dbo.MoveDiscs	@n,	@MoveNum	OUTPUT,	@Source,	@Aux,	

@Dest;

--	Move	1	disc	from	source	to	final	destination	tower

EXEC	dbo.MoveDiscs	1,	@MoveNum	OUTPUT,	@Source,	@Dest,	@Aux;

--	Move	(@DiscNum	-	1)	discs	from	auxiliary	to	final	

destination	tower

EXEC	dbo.MoveDiscs	@n,	@MoveNum	OUTPUT,	@Aux,	@Dest,	

@Source;

END;

The	basis	of	the	Towers	of	Hanoi	puzzle	is	the	movement	of	a	single	disc	at	a	time
from	tower	to	tower,	so	the	most	basic	procedure,	dbo.MoveOneDisc,	simply	moves	a
disc	from	the	specified	source	tower	to	the	specified	destination	tower.	Given	source	and
destination	towers	as	inputs,	this	procedure	first	determines	the	smallest	(or	top)	disc	on
the	source	and	moves	it	to	the	destination	table	using	simple	SELECT	queries.	The
smallest	disc	is	then	deleted	from	the	source	table:

--	@SmallestDisc	is	the	smallest	disc	on	the	source	tower

DECLARE	@SmallestDisc	int	=	0;

--	IF…	ELSE	conditional	statement	gets	the	smallest	disc	

from	the

--	correct	source	tower

IF	@Source	=	N'A'

BEGIN

--	This	gets	the	smallest	disc	from	Tower	A

SELECT	@SmallestDisc	=	MIN(Disc)

FROM	#TowerA;

--	Then	delete	it	from	Tower	A

DELETE	FROM	#TowerA

WHERE	Disc	=	@SmallestDisc;

END

Once	the	smallest	disc	of	the	source	table	is	determined,	dbo.MoveOneDisc
displays	the	move	it’s	about	to	perform	and	then	performs	the	INSERT	to	place	the	disc	in
the	destination	tower.	Finally,	it	calls	the	dbo.ShowTowers	procedure	to	show	the
current	state	of	the	towers	and	discs:

--	Show	the	disc	move	performed

SELECT	N'Moving	Disc

								('	+	CAST(COALESCE(@SmallestDisc,	0)	AS	nchar(1))	

+	N')

	FROM	Tower	'	+	@Source	+	N'	to	Tower	'

								+	@Dest	+	':'	AS	Description;

--	Perform	the	move	-	INSERT	the	disc	from	the	source	tower	

into	the

--	destination	tower

IF	@Dest	=	N'A'

INSERT	INTO	#TowerA	(Disc)	VALUES	(@SmallestDisc);

ELSE	IF	@Dest	=	N'B'

INSERT	INTO	#TowerB	(Disc)	VALUES	(@SmallestDisc);

ELSE	IF	@Dest	=	N'C

INSERT	INTO	#TowerC	(Disc)	VALUES	(@SmallestDisc);

--	Show	the	towers

EXECUTE	dbo.ShowTowers;

The	dbo.ShowTowers	procedure	doesn’t	affect	processing;	it’s	included	as	a
convenience	to	output	a	reasonable	representation	of	the	towers	and	discs	they	contain	at
any	given	point	during	processing.

This	implementation	of	a	solver	for	the	Towers	of	Hanoi	puzzle	demonstrates	several
aspects	of	SPs	introduced	in	this	chapter,	including	the	following:

SPs	can	call	themselves	recursively.	This	is	demonstrated	with	the
dbo.MoveDiscs	procedure,	which	calls	itself	until	the	puzzle	is
solved.

When	default	values	are	assigned	to	parameters	in	an	SP	declaration,
you	don’t	have	to	specify	values	for	them	when	you	call	the
procedure.	This	concept	is	demonstrated	in	the	dbo.SolveTowers
procedure,	which	calls	the	dbo.MoveDiscs	procedure.

The	scope	of	temporary	tables	created	in	an	SP	includes	the	procedure
in	which	they’re	created,	as	well	as	any	SPs	it	calls	and	any	SPs	they
in	turn	call.	This	is	demonstrated	in	dbo.SolveTowers,	which
creates	three	temporary	tables	and	then	calls	other	procedures	that
access	those	same	temporary	tables.	The	procedures	called	by
dbo.SolveTowers	and	those	called	by	those	procedures	(and	so
on)	can	also	access	these	same	temporary	tables.

The	dbo.MoveDiscs	SP	demonstrates	output	parameters.	This
procedure	uses	an	output	parameter	to	update	the	count	of	the	total
number	of	moves	performed	after	each	move.

Table-Valued	Parameters
Beginning	with	SQL	Server	2008,	you	can	pass	table-valued	parameters	to	SPs	and	UDFs.
Prior	to	SQL	Server	2008,	the	primary	methods	of	passing	multiple	rows	of	data	to	an	SP
included	the	following:

Converting	multiple	rows	to	an	intermediate	format	like	comma-
delimited	or	XML.	If	you	use	this	method,	you	have	to	parse	out	the
parameter	into	a	temporary	table,	table	variable,	or	subquery	to	extract
the	rows	from	the	intermediate	format.	These	conversions	to	and	from
intermediate	format	can	be	costly,	especially	when	large	amounts	of
data	are	involved.

Placing	rows	in	a	permanent	or	temporary	table	and	calling	the
procedure.	This	method	eliminates	conversions	to	and	from	the
intermediate	format,	but	it	isn’t	without	problems	of	its	own.

Managing	multiple	sets	of	input	rows	from	multiple	simultaneous
users	can	introduce	a	lot	of	overhead	and	additional	conversion	code
that	must	be	managed.

Passing	lots	and	lots	of	parameters	to	the	SP.	SQL	Server	SPs	can
accept	up	to	2,100	parameters.	Conceivably,	you	could	pass	several
rows	of	data	using	thousands	of	parameters	and	ignore	those
parameters	you	don’t	need.	One	big	drawback	to	this	method,
however,	is	that	it	results	in	complex	code	that	can	be	extremely
difficult	to	manage.

Calling	procedures	multiple	times	with	a	single	row	of	data	each	time.
This	method	is	probably	the	simplest,	resulting	in	code	that	is	very
easy	to	create	and	manage.	The	downside	to	this	method	is	that
querying	and	manipulating	potentially	tens	of	thousands	of	rows	of
data	or	more,	one	row	at	a	time,	can	result	in	a	big	performance
penalty.

A	table-valued	parameter	allows	you	to	pass	rows	of	data	to	your	T-SQL	statement	or
SPs	and	UDFs	in	tabular	format.	To	create	a	table-valued	parameter,	you	must	first	create
a	table	type	that	defines	your	table	structure,	as	shown	in	Listing	5-8.

Listing	5-8.	Creating	a	Table	Type

CREATE	TYPE	HumanResources.LastNameTableType

AS	TABLE	(LastName	nvarchar(50)	NOT	NULL	PRIMARY	KEY);

GO

The	CREATE	TYPE	statement	in	Listing	5-8	creates	a	simple	table	type	that
represents	a	table	with	a	single	column	named	LastName,	which	also	serves	as	the
primary	key	for	the	table.	To	use	table-valued	parameters,	you	must	declare	your	SP	with
parameters	of	the	table	type.	The	SP	in	Listing	5-9	accepts	a	single	table-valued	parameter
of	the	HumanResources.LastNameTableType	type	from	Listing	5-8.	It	then	uses
the	rows	in	the	table-valued	parameter	in	an	inner	join	to	restrict	the	rows	returned	by	the
SP.

Listing	5-9.	Simple	Procedure	Accepting	a	Table-Valued	Parameter

CREATE		PROCEDURE		HumanResources.GetEmployees

				(@LastNameTable	HumanResources.LastNameTableType	

READONLY)

AS

BEGIN

				SELECT

								p.LastName,

								p.FirstName,

								p.MiddleName,

								e.NationalIDNumber,

								e.Gender,

								e.HireDate

				FROM		HumanResources.Employee		e

				INNER	JOIN	Person.Person	p

								ON		e.BusinessEntityID		=		p.BusinessEntityID

				INNER	JOIN	@LastNameTable	lnt

								ON	p.LastName	=	lnt.LastName

				ORDER	BY

								p.LastName,

								p.FirstName,

								p.MiddleName;

END;

GO

The	CREATE	PROCEDURE	statement	in	Listing	5-9	declares	a	single	table-valued
parameter,	@LastNameTable,	of	the	HumanResources.LastNameTableType
created	in	Listing	5-8:

CREATE	PROCEDURE	HumanResources.GetEmployees

(@LastNameTable	HumanResources.LastNameTableType	READONLY)

The	table-valued	parameter	is	declared	READONLY,	which	is	mandatory.	Although
you	can	query	and	join	to	the	rows	in	a	table-valued	parameter	just	like	a	table	variable,
you	can’t	manipulate	the	rows	in	table-valued	parameters	with	INSERT,	UPDATE,
DELETE,	or	MERGE	statements.

The	HumanResources.GetEmployees	procedure	performs	a	simple	query	to
retrieve	the	names,	national	ID	number,	gender,	and	hire	date	for	all	employees	whose	last
names	match	any	of	the	last	names	passed	into	the	SP	via	the	@LastNameTable	table-
valued	parameter.	As	you	can	see	in	Listing	5-9,	the	SELECT	query	performs	an	inner	join
against	the	table-valued	parameter	to	restrict	the	rows	returned:

SELECT

				p.LastName,

				p.FirstName,

				p.MiddleName,

				e.NationalIDNumber,

				e.Gender,

				e.HireDate

FROM	HumanResources.Employee	e

INNER	JOIN	Person.Person	p

				ON	e.BusinessEntitylD	=	p.BusinessEntitylD

INNER	JOIN	@LastNameTable	lnt

				ON	p.LastName	=	Int.LastName

ORDER	BY

				p.LastName,

				p.FirstName,

				p.MiddleName;

To	call	a	procedure	with	a	table-valued	parameter,	like	the
HumanResources.GetEmployees	SP	in	Listing	5-9,	you	need	to	declare	a	variable
of	the	same	type	as	the	table-valued	parameter.	Then	you	populate	the	variable	with	rows
of	data	and	pass	the	variable	as	a	parameter	to	the	procedure.	Listing	5-10	demonstrates
how	to	call	the	HumanResources.GetEmployees	SP	with	a	table-valued	parameter.
The	results	are	shown	in	Figure	5-7.

Listing	5-10.	Calling	a	Procedure	with	a	Table-valued	Parameter

DECLARE	@LastNameList	HumanResources.LastNameTableType;

INSERT	INTO	@LastNameList

(LastName)

VALUES

(N'Walters'),

(N'Anderson'),

(N'Chen'),

(N'Rettig'),

(N'Lugo'),

(N'Zwilling'),

(N'Johnson');

EXECUTE	HumanResources.GetEmployees	@LastNameList;

Figure	5-7.	Employees	returned	by	the	SP	call	in	Listing	5-10

In	addition	to	being	read-only,	the	following	additional	restrictions	apply	to	table-
valued	parameters:

As	with	table	variables,	you	can’t	use	a	table-valued	parameter	as	the
target	of	an	INSERT	EXEC	or	SELECT	INTO	assignment
statement.

Table-valued	parameters	are	scoped	just	like	other	parameters	and
local	variables	declared	in	a	procedure	or	function.	They	aren’t	visible
outside	of	the	procedure	in	which	they’re	declared.

SQL	Server	doesn’t	maintain	column-level	statistics	for	table-valued

parameters,	which	can	affect	performance	if	you’re	passing	large
numbers	of	rows	of	data	via	table-valued	parameters.

You	can	also	pass	table-valued	parameters	to	SPs	from	ADO.NET	clients,	as	discussed
in	Chapter	16.

Temporary	Stored	Procedures
In	addition	to	normal	SPs,	T-SQL	provides	what	are	known	as	temporary	SPs.	Temporary
SPs	are	created	just	like	any	other	SPs;	the	only	difference	is	that	the	name	must	begin
with	a	number	sign	(#)	for	a	local	temporary	SP	and	two	number	signs	(##)	for	a	global
temporary	SP.	A	third	possibility	is	to	create	a	temporary	SP	in	the	tempdb	database.	The
scope	of	anything	created	in	the	tempdb	database	is	until	the	instance	is	restarted,
because	tempdb	is	re-created	each	time	an	instance	is	restarted.	It	isn’t	possible	to	create
a	temporary	natively	compiled	SP.	Temporary	SPs	are	only	used	in	traditional	T-SQL
interpretive	SPs.

Whereas	a	normal	SP	remains	in	the	database	and	schema	it	was	created	in	until	it’s
explicitly	dropped	via	the	DROP	PROCEDURE	statement,	temporary	SPs	are	dropped
automatically.	A	local	temporary	SP	is	visible	only	to	the	current	session	and	is	dropped
when	the	current	session	ends.	A	global	temporary	SP	is	visible	to	all	connections	and	is
automatically	dropped	when	the	last	session	using	it	ends.

Normally	you	won’t	use	temporary	SPs;	they’re	usually	used	for	specialized	solutions,
like	database	drivers.	Open	Database	Connectivity	(ODBC)	drivers,	for	instance,	use
temporary	SPs	to	implement	SQL	Server	connectivity	functions.	Temporary	SPs	are	useful
when	you	want	the	advantages	of	using	SPs,	such	as	execution	plan	reuse	and	improved
error	handling,	with	the	advantages	of	ad	hoc	code.	However,	temporary	SPs	bring	some
other	effects,	as	well.	They’re	often	not	destroyed	until	the	connection	is	closed	or
explicitly	dropped.	This	may	cause	the	procedures	to	fill	up	tempdb	over	time	and	cause
queries	to	fail.	Creating	temporary	SPs	in	a	transaction	may	also	cause	blocking	problems,
because	the	SP	creation	causes	data-page	locking	in	several	system	tables	for	the
transaction	duration.

Recompilation	and	Caching
SQL	Server	has	several	features	that	work	behind	the	scenes	to	optimize	SP	performance.
The	first	time	you	execute	an	SP,	SQL	Server	compiles	it	into	a	query	plan,	which	it	then
caches.	This	compilation	process	invokes	a	certain	amount	of	overhead,	which	can	be
substantial	for	procedures	that	are	complex	or	that	are	run	very	often.	SQL	Server	uses	a
complex	caching	mechanism	to	store	and	reuse	query	plans	on	subsequent	calls	to	the
same	SP,	in	an	effort	to	minimize	the	impact	of	SP	compilation	overhead.	This	section
talks	about	managing	query-plan	recompilation	and	cached	query-plan	reuse.

Stored	Procedure	Statistics

SQL	Server	2014	provides	DMVs	and	dynamic	management	functions	(DMFs)	to	expose
SP	query-plan	usage	and	caching	information	that	can	be	useful	for	performance	tuning
and	general	troubleshooting.	Listing	5-11	is	a	procedure	that	retrieves	and	displays	several
relevant	SP	statistics	from	a	few	different	DMVs	and	DMFs.

Listing	5-11.	Procedure	to	Retrieve	SP	Statistics	with	DMVs	and	DMFs

CREATE		PROCEDURE		dbo.GetProcStats		(@order		varchar(100)		=		'use')

AS

BEGIN

				WITH	GetQueryStats

				(

								plan_handle,

								total_elapsed_time,

								total_logical_reads,

								total_logical_writes,

								total_physical_reads

)

				AS

				(

								SELECT

								qs.plan_handle,

								SUM(qs.total_elapsed_time)		AS		total_elapsed_time,

								SUM(qs.total_logical_reads)		AS		total_logical_reads,

								SUM(qs.total_logical_writes)	AS	total_logical_writes,

								SUM(qs.total_physical_reads)		AS		total_physical_reads

								FROM	sys.dm_exec_query_stats	qs

								GROUP	BY	qs.plan_handle

)

				SELECT

								DB_NAME(st.dbid)	AS	database_name,

								OBJECT_SCHEMA_NAME(st.objectid,	st.dbid)	AS	

schema_name,

								OBJECT_NAME(st.objectid,	st.dbid)	AS	proc_name,

								SUM(cp.usecounts)	AS	use_counts,

								SUM(cp.size_in_bytes)	AS	size_in_bytes,

								SUM(qs.total_elapsed_time)	AS	total_elapsed_time,

								CAST

								(

								SUM(qs.total_elapsed_time)		AS		decimal(38,	4)

)		/		SUM(cp.usecounts)		AS		avg_elapsed_time_per_use,

								SUM(qs.total_logical_reads)	AS	total_logical_reads,

								CAST

								(

								SUM(qs.total_logical_reads)		AS		decimal(38,	4)

)		/		SUM(cp.usecounts)		AS		avg_logical_reads_per_use,

								SUM(qs.total_logical_writes)	AS	total_logical_writes,

								CAST

								(

								SUM(qs.total_logical_writes)		AS		decimal(38,	4)

)		/		SUM(cp.usecounts)		AS		avg_logical_writes_per_use,

								SUM(qs.total_physical_reads)	AS	total_physical_reads,

								CAST

								(

								SUM(qs.total_physical_reads)		AS								decimal(38,	4)

)		/		SUM(cp.usecounts)		AS		avg_physical_reads_per_use,

								st.text

				FROM		sys.dm_exec_cached_plans		cp

				CROSS	APPLY	sys.dm_exec_sql_text(cp.plan_handle)	st

				INNER	JOIN	GetQueryStats	qs

								ON		cp.plan_handle		=		qs.plan_handle

				INNER	JOIN	sys.procedures	p

								ON	st.objectid	=	p.object_id

								WHERE	p.type	IN	('P',	'PC')

								GROUP	BY	st.dbid,	st.objectid,	st.text

								ORDER	BY

								CASE		@order

								WHEN		'name'		THEN		OBJECT_NAME(st.objectid)

								WHEN	'size'	THEN	SUM(cp.size_in_bytes)

								WHEN		'read'		THEN						SUM(qs.total_logical_reads)

								WHEN		'write'		THEN		SUM(qs.total_logical_writes)

								ELSE		SUM(cp.usecounts)

								END	DESC;

END;

GO

This	procedure	uses	the	sys.dm_exec_cached_plans	and
sys.dm_exec_query_stats	DMVs	in	conjunction	with	the
sys.dmexecsqltext	DMF	to	retrieve	relevant	SP	execution	information.	The
sys.procedures	catalog	view	is	used	to	limit	the	results	to	only	SPs	(type	P).
Aggregation	is	required	on	most	of	the	statistics	because	the	DMVs	and	DMFs	can	return
multiple	rows,	each	representing	individual	statements	in	SPs.	The
dbo.GetProcStats	procedure	accepts	a	single	parameter	that	determines	how	the
result	rows	are	sorted.	Setting	the	@order	parameter	to	size	sorts	the	results	in
descending	order	by	the	sizeinbytes	column,	whereas	read	sorts	in	descending
order	by	the	totallogicalreads	column.	Other	possible	values	include	name	and
write—all	other	values	sort	by	the	default	usecounts	column	in	descending	order.

	Tip		This	SP	uses	a	few	useful	system	functions:	DB_NAME	accepts	the	ID	of	a	database
and	returns	the	database	name,	OBDECT_SCHEMA_NAME	accepts	the	ID	of	an	object	and
a	database	ID	and	returns	the	name	of	the	schema	in	which	the	object	resides,	and
OBJECT_NAME	accepts	the	object	ID	and	returns	the	name	of	the	object	itself.	These	are
handy	functions,	and	you	can	retrieve	the	same	information	via	SQL	Server’s	catalog

views.

Listing	5-12	demonstrates	how	to	call	this	SP.	Sample	results	are	shown	in	Figure	5-8.

Listing	5-12.	Retrieving	SP	Statistics

EXEC	dbo.GetProcStats	@order	=	'use';

GO

Figure	5-8.	Partial	results	of	calling	the	GetProcStats	procedure

SQL	Server	DMVs	and	DMFs	can	be	used	this	way	to	answer	several	questions	about
your	SPs,	including	the	following:

Which	SPs	are	executed	the	most?

Which	SPs	take	the	longest	to	execute?

Which	SPs	perform	the	most	logical	reads	and	writes?

The	answers	to	these	types	of	questions	can	help	you	quickly	locate	performance
bottlenecks	and	focus	your	performance-tuning	efforts	where	they’re	most	needed.
Chapter	20	discusses	performance	tuning	in	detail.

Parameter	Sniffing
SQL	Server	uses	a	method	known	as	parameter	sniffing	to	further	optimize	SP	calls.
During	compilation	or	recompilation	of	an	SP,	SQL	Server	captures	the	parameters	used
and	passes	the	values	along	to	the	optimizer.	The	optimizer	then	generates	and	caches	a
query	plan	optimized	for	those	parameters.	This	can	actually	cause	problems	in	some
cases—for	example,	when	your	SP	can	return	wildly	varying	numbers	of	rows	based	on
the	parameters	passed	in.	Listing	5-13	shows	a	simple	SP	that	retrieves	all	products	from
the	Production.Product	table	with	a	Name	like	the	@Prefix	parameter	passed
into	the	SP.

Listing	5-13.	Simple	Procedure	to	Demonstrate	Parameter	Sniffing

CREATE		PROCEDURE		Production.GetProductsByName

				@Prefix	NVARCHAR(100)

AS

BEGIN

				SELECT

								p.Name,

								p.ProductID

				FROM		Production.Product		p

				WHERE	p.Name	LIKE	@Prefix;

END;

GO

Calling	this	SP	with	the	@Prefix	parameter	set	to	%	results	in	a	query	plan	optimized
to	return	504	rows	of	data	with	a	nonclustered	index	scan,	as	shown	in	Figure	5-9.

Figure	5-9.	Query	plan	optimized	to	return	504	rows

If	you	run	the	Production.GetProductsByName	procedure	a	second	time	with
the	@Prefix	parameter	set	to	M%,	the	query	plan	shows	that	the	plan	is	still	optimized	to
return	504	estimated	rows,	although	only	102	rows	are	returned	by	the	SP.	Figure	5-10
shows	the	query	plan	for	the	second	procedure	call.

Figure	5-10.	Query	plan	optimized	for	the	wrong	number	of	rows

In	cases	where	you	expect	widely	varying	numbers	of	rows	to	be	returned	by	your
SPs,	you	can	override	parameter	sniffing	on	a	per-procedure	basis.	Overriding	parameter
sniffing	is	simple—just	declare	a	local	variable	in	your	SP,	assign	the	parameter	value	to
the	variable,	and	use	the	variable	in	place	of	the	parameter	in	your	query.	When	you
override	parameter	sniffing,	SQL	Server	uses	the	source	table	data-distribution	statistics	to
estimate	the	number	of	rows	to	return.	The	theory	is	that	the	estimate	will	be	better	for	a
wider	variety	of	possible	parameter	values.	In	this	case,	the	estimate	will	still	be
considerably	off	for	the	extreme	case	of	the	504	rows	returned	in	this	example,	but	it	will
be	much	closer	and	will	therefore	generate	better	query	plans	for	other	possible	parameter
values.	Listing	5-14	alters	the	SP	in	Listing	5-13	to	override	parameter	sniffing.	Figure	5-

11	shows	the	results	of	calling	the	updated	SP	with	a	@Prefix	parameter	of	M%

Figure	5-11.	Results	of	the	SP	with	parameter	sniffing	overridden

.

Listing	5-14.	Overriding	Parameter	Sniffing	in	an	SP

ALTER	PROCEDURE	Production.GetProductsByName

@Prefix	NVARCHAR(100)

AS

BEGIN

DECLARE	@PrefixVar	NVARCHAR(100)	=	@Prefix;

				SELECT

								p.Name,

								p.ProductID

				FROM		Production.Product		p

				WHERE	p.Name	LIKE	@PrefixVar;

END;

GO

With	parameter	sniffing	overridden,	the	query	plan	for	the	SP	in	Listing	5-14	uses	the
same	estimated	number	of	rows,	in	this	case	27.0914,	no	matter	what	value	you	pass	in	the
@Prefix	parameter.	This	results	in	a	query	plan	that	uses	a	nonclustered	index	seek—not
an	index	scan—which	is	a	much	better	query	plan	for	the	vast	majority	of	possible
parameter	values	for	this	particular	SP.

Recompilation
As	discussed	previously	in	this	chapter,	SQL	Server	optimizes	performance	by	caching
compiled	query	plans	while	it	can.	The	recompilation	of	SPs	is	performed	on	individual
statements	in	SPs	rather	than	entire	SPs	to	avoid	unnecessary	recompiles	and	consuming
CPU	resources.

There	are	several	reasons	the	SPs	are	recompiled:

If	the	object	is	modified	between	executions,	each	statement	in	the	SP
that	references	this	object	is	recompiled.

If	sufficient	data	has	changed	in	the	table	that	is	being	referenced	by
the	SP	since	the	original	query	plan	was	generated,	the	SP	recompiles
the	plan.

Use	of	a	temporary	table	in	the	SP	may	cause	the	SP	to	be	recompiled
every	time	the	procedure	is	executed.

If	the	SP	was	created	with	the	recompile	option,	this	may	cause	the	SP
to	be	recompiled	every	time	the	procedure	is	executed.

Caching	the	query	plan	eliminates	the	overhead	associated	with	recompiling	your
query	on	subsequent	runs,	but	occasionally	this	feature	can	cause	performance	to	suffer.
When	you	expect	your	SP	to	return	widely	varying	numbers	of	rows	in	the	result	set	with
each	call,	the	cached	query-execution	plan	is	only	optimized	for	the	first	call.	It	isn’t
optimized	for	subsequent	executions.	In	cases	like	this,	you	may	decide	to	force
recompilation	with	each	call.	Consider	Listing	5-15,	which	is	an	SP	that	returns	order
header	information	for	a	given	salesperson.

Listing	5-15.	SP	to	Retrieve	Orders	by	Salesperson

CREATE		PROCEDURE		Sales.GetSalesBySalesPerson		(@SalesPersonId		int)

AS

BEGIN

				SELECT

								soh.SalesOrderID,

								soh.OrderDate,

								soh.TotalDue

				FROM		Sales.SalesOrderHeader		soh

				WHERE	soh.SalesPersonID	=	@SalesPersonId;

END;

GO

There	happens	to	be	a	nonclustered	index	on	the	SalesPersonID	column	of	the
Sales.SalesOrderHeader	table,	which	you	might	expect	to	be	considered	by	the
optimizer.	However,	when	this	SP	is	executed	with	the	EXECUTE	statement	in	Listing	5-
16,	the	optimizer	ignores	the	nonclustered	index	and	instead	performs	a	clustered	index
scan,	as	shown	in	Figure	5-12.

Listing	5-16.	Retrieving	Sales	for	Salesperson	277

EXECUTE	Sales.GetSalesBySalesPerson	277;

Figure	5-12.	The	SP	ignores	the	nonclustered	index

The	SP	ignores	the	nonclustered	index	on	the	SalesPersonID	column	because	473
matching	rows	are	returned	by	the	query	in	the	procedure.	SQL	Server	uses	a	measure
called	selectivity,	the	ratio	of	qualifying	rows	to	the	total	number	of	rows	in	the	table,	as	a
factor	in	determining	which	index,	if	any,	to	use.	In	Listing	5-16,	the	parameter	value	277
represents	low	selectivity,	meaning	a	large	number	of	rows	are	returned	relative	to	the
number	of	rows	in	the	table.	SQL	Server	favors	indexes	for	highly	selective	queries,	to	the
point	of	completely	ignoring	indexes	when	the	query	has	low	selectivity.

If	you	subsequently	call	the	SP	with	the	@SalesPersonId	parameter	set	to	285,
which	represents	a	highly	selective	value	(only	16	rows	are	returned),	query-plan	caching
forces	the	same	clustered	index	scan,	even	though	it’s	suboptimal	for	a	highly	selective
query.	Fortunately,	SQL	Server	provides	options	that	allow	you	to	force	recompilation	at
the	SP	level	or	the	statement	level.	You	can	force	a	recompilation	in	an	SP	call	by	adding
the	WITH	RECOMPILE	option	to	the	EXECUTE	statement,	as	shown	in	Listing	5-17.

Listing	5-17.	Executing	an	SP	with	Recompilation

EXECUTE	Sales.GetSalesBySalesPerson	285	WITH	RECOMPILE;

The	WITH	RECOMPILE	option	of	the	EXECUTE	statement	forces	a	recompilation	of
the	SP	when	you	execute	it.	This	option	is	useful	if	your	data	has	significantly	changed
since	the	last	SP	recompilation	or	if	the	parameter	value	you’re	passing	to	the	procedure
represents	an	atypical	value.	The	query	plan	for	this	SP	call	with	the	highly	selective	value

285	is	shown	in	Figure	5-13.

Figure	5-13.	SP	query	plan	optimized	for	a	highly	selective	parameter	value

You	can	also	use	the	sp_recompile	system	SP	to	force	an	SP	to	recompile	the	next
time	it’s	run.

If	you	expect	that	the	values	submitted	to	your	SP	will	vary	a	lot,	and	that	the	“one
execution	plan	for	all	parameters”	model	will	cause	poor	performance,	you	can	specify
statement-level	recompilation	by	adding	OPTION	(RECOMPILE)	to	your	statements.
The	statement-level	recompilation	also	considers	the	values	of	local	variables	during	the
recompilation	process.	Listing	5-18	alters	the	SP	created	in	Listing	5-16	to	add	statement-
level	recompilation	to	the	SELECT	query.

Listing	5-18.	Adding	Statement-Level	Recompilation	to	the	SP

ALTER		PROCEDURE		Sales.GetSalesBySalesPerson		(@SalesPersonId		int)

AS

BEGIN

				SELECT

								soh.SalesOrderID,

								soh.OrderDate,

								soh.TotalDue

				FROM		Sales.SalesOrderHeader		soh

				WHERE	soh.SalesPersonID	=	@SalesPersonId

				OPTION	(RECOMPILE);

END;

GO

As	an	alternative,	you	can	specify	procedure-level	recompilation	by	adding	the	WITH
RECOMPILE	option	to	your	CREATE	PROCEDURE	statement.	This	option	is	useful	if
you	don’t	want	SQL	Server	to	cache	the	query	plan	for	the	SP.	With	this	option	in	place,
SQL	Server	recompiles	the	entire	SP	every	time	you	run	it.	This	can	be	useful	for
procedures	containing	several	statements	that	need	to	be	recompiled	often.	Keep	in	mind,
however,	that	this	option	is	less	efficient	than	a	statement-level	recompile	because	the
entire	SP	needs	to	be	recompiled.	Because	it’s	less	efficient	than	statement-level

recompilation,	this	option	should	be	used	with	care.

To	expand	on	the	“Stored	Procedure	Statistics”	section	of	this	chapter,	SQL	Server
2014	provides	details	about	the	last	time	the	SP	or	the	statements	were	recompiled	with
DMVs.	This	can	help	you	identify	the	most-recompiled	SPs	and	allow	you	to	focus	on
resolving	the	recompilation	issues.	Listing	5-19	is	a	procedure	that	returns	the	SPs	that
have	been	recompiled.

Listing	5-19.	SP	to	Return	a	List	of	Stored	Procedures	That	Have	Been	Recompiled

CREATE		PROCEDURE		dbo.GetRecompiledProcs

AS

BEGIN

				SELECT

								sql_text.text,

								stats.sql_handle,

								stats.plan_generation_num,

								stats.creation_time,

								stats.execution_count,

								sql_text.dbid,

								sql_text.objectid

				FROM	sys.dm_exec_query_stats	stats

								Cross	apply	sys.dm_exec_sql_text(sql_handle)	as	

sql_text

				WHERE	stats.plan_generation_num	>	1

								and	sql_text.objectid	is	not	null	--Filter	adhoc	

queries

				ORDER	BY	stats.plan_generation_num	desc

END;

GO

This	procedure	uses	the	sys.dm_exec_query_stats	DMV	with	the
sys.dm_exec_sql_text	DMF	to	retrieve	relevant	SP	execution	information.	The
query	returns	only	the	SPs	that	have	been	recompiled	by	filtering
plan_generation_num,	and	the	ad	hoc	queries	are	filtered	out	by	removing
object_ids	with	null	values.

Listing	5-20	demonstrates	how	to	call	this	SP,	and	partial	results	are	shown	in	Figure
5-14.

Listing	5-20.	Retrieving	SP	Statistics

EXEC	dbo.GetRecompiledProcs;

GO

Figure	5-14.	Partial	results	for	the	SP	dbo.GetRecompiledProcs

Summary
SPs	are	powerful	tools	for	SQL	Server	development.	They	provide	a	flexible	method	of
extending	the	power	of	SQL	Server	by	allowing	you	to	create	custom	server-side
subroutines.	Although	some	of	the	performance	advantages	provided	by	SPs	in	older
releases	of	SQL	Server	aren’t	as	pronounced	in	SQL	Server	2014,	the	ability	to
modularize	server-side	code,	administer	your	T-SQL	code	base	in	a	single	location,
provide	additional	security,	and	ease	front-end	programming	development	still	make	SPs
useful	development	tools	in	any	T-SQL	developer’s	toolkit.	With	the	newly	added
functionality	of	compiling	SPs	into	machine	code,	the	manner	in	which	you	have
traditionally	architected	a	solution	should	come	into	question.	Pulling	your	business	logic
into	your	database	may	make	sense	in	some	use	cases,	but	as	with	any	decision	in
software,	it	always	depends.

This	chapter	introduced	key	aspects	of	SP	development:	creating	natively	compiled
SPs;	management;	passing	scalar	parameters	to	SPs;	and	retrieving	result	sets,	output
parameters,	and	return	values	from	SPs.	You	also	saw	some	advanced	topics,	including	the
use	of	temporary	tables	to	pass	tabular	data	between	SPs,	writing	recursive	SPs,	and	SQL
Server	2014’s	table-valued	parameters.

Finally,	the	chapter	ended	with	a	discussion	of	SP	optimizations,	including	SP	caching,
accessing	SP	cache	statistics	through	DMVs	and	DMFs,	parameter	sniffing,	and
recompilation	options,	including	statement-level	and	procedure-level	recompilation.

The	examples	provided	in	this	chapter	are	designed	to	demonstrate	several	aspects	of
SP	functionality	in	SQL	Server	2014.	The	next	chapter	goes	into	the	newly	available	In-
Memory	OLTP	features	available	in	SQL	Server	2014.

EXERCISES

1.	 [True/False]	The	SP	RETURN	statement	can	return	a	scalar	value	of
any	data	type.

2.	 The	recursion	level	for	SPs	is	32	levels,	as	demonstrated	by	the
following	code	sample,	which	errors	out	after	reaching	the
maximum	depth	of	recursion:
CREATE	PROCEDURE	dbo.FirstProc	(@i	int)

AS

BEGIN

PRINT	@i;

SET	@i	+=	1;

EXEC	dbo.FirstProc	@i;	END;	GO

EXEC	dbo.FirstProc	1;

Write	a	second	procedure	and	modify	this	one	to	prove	that	the
recursion	limit	applies	to	two	SPs	that	call	each	other	recursively.

3.	 [Choose	one]	Table-valued	parameters	must	be	declared	with	which
of	the	following	modifiers:

READWRITE

WRITEONLY

RECOMPILE

READONLY

4.	 When	creating	a	natively	compiled	stored	procedure,	which	of	the
following	options	are	required?	[Choose	all	that	apply]

a.	 SCHEMABINDING

b.	 WITH	NATIVE_COMPILATION

c.	 EXECUTE	AS

d.	 BEGIN	ATOMIC

CHAPTER	6

In-Memory	Programming
SQL	Server	2014	introduces	new	In-Memory	features	that	are	a	game-changer	in	how	you
consider	the	data	and	physical	architecture	of	database	solutions.	The	manner	in	which
data	is	accessed,	the	indexes	used	for	in-memory	tables,	and	the	methods	used	for
concurrency	make	this	a	significant	new	feature	of	the	database	software	in	SQL	Server
2014.	In-Memory	OLTP	is	a	performance	enhancement	that	allows	you	to	store	data	in
memory	using	a	completely	new	architecture.	In	addition	to	storing	data	in	memory,
database	objects	are	compiled	into	a	native	DLL	in	the	database.

This	release	of	SQL	Server	has	made	investments	in	three	different	In-Memory
technologies:	In-Memory	OLTP,	In-Memory	data	warehousing	(DW),	and	the	SSD	Buffer
Pool	Extension.	This	chapter	covers	the	In-Memory	OLTP	programming	features;	In-
Memory	DW	and	the	Buffer	Pool	Extension	aren’t	applicable	to	the	subject	matter	in	this
book.

In-Memory	solutions	provide	a	significant	performance	enhancement	targeted	at	OLTP
workloads.	In-Memory	OLTP	specifically	targets	the	high	concurrency,	processing,	and
retrieval	contention	typical	in	OLTP	transactional	workloads.	These	are	the	first	versions
of	such	features	for	SQL	Server,	and	therefore	they	have	numerous	limitations,	which	are
discussed	in	this	chapter.	Regardless	of	the	limitations,	some	use	cases	see	as	much	as	a
30x	performance	improvement.	Such	performance	improvements	make	In-Memory	OLTP
compelling	for	use	in	your	environment.

In-Memory	OLTP	is	available	in	existing	SQL	Server	2014	installations;	no
specialized	software	is	required.	Additionally,	the	use	of	commodity	hardware	is	a	benefit
of	SQL	Server’s	implementation	of	this	feature	over	other	vendors	that	may	require
expensive	hardware	or	specialized	versions	of	their	software.

The	Drivers	for	In-Memory	Technology
Hardware	trends,	larger	datasets,	and	the	speed	at	which	OLTP	data	needs	to	become
available	are	all	major	drivers	for	the	development	of	in-memory	technology.	This
technology	has	been	in	the	works	for	the	past	several	years,	as	Microsoft	has	sought	to
address	these	technological	trends.

Hardware	Trends
CPU,	memory,	disk	speeds,	and	network	connections	have	continually	increased	in	speed
and	capacity	since	the	invention	of	computers.	However,	we’re	at	the	point	that	traditional
approaches	to	making	computers	run	faster	are	changing	due	to	the	economics	of	the	cost

of	memory	versus	the	speed	of	CPU	processing.	In	1965,	Gordon	E	Moore	“made	the
observation	that,	over	the	history	of	computing	hardware,	the	number	of	transistors	in	a
dense	integrated	circuit	doubles	approximately	every	two	years.”1	Since	then,	this
statement	has	been	known	as	Moore’s	Law.	Figure	6-1	shows	a	graph	of	the	increase	in
the	number	of	transistors	on	a	single	circuit.

Figure	6-1.	Moore’s	Law	transistor	counts

Manufacturers	of	memory,	pixels	on	a	screen,	network	bandwidth,	CPU	architecture,
and	so	on	have	all	used	Moore’s	Law	as	a	guide	for	long-term	planning.	It’s	hard	to
believe,	but	today,	increasing	the	amount	of	power	to	a	transistor,	for	faster	CPU	clock
speed,	no	longer	makes	economic	sense.	As	the	amount	of	power	being	sent	to	a	transistor
is	increased,	the	transistor	heats	up	to	the	point	that	the	physical	components	begin	to	melt
and	malfunction.	We’ve	essentially	hit	a	practical	limitation	on	the	clock	speed	for	an
individual	chip,	because	it	isn’t	possible	to	effectively	control	the	temperature	of	a	CPU.
The	best	way	to	continue	to	increase	the	power	of	a	CPU	with	the	same	clock	speed	is	via
additional	cores	per	socket.

In	parallel	to	the	limitations	of	CPUs,	the	cost	of	memory	has	continued	to	decline

significantly	over	time.	It’s	common	for	servers	and	commodity	hardware	to	come
equipped	with	more	memory	than	multimillion-dollar	servers	had	available	20	years	ago.
Table	6-1	shows	the	historical	price	of	1	gigabyte	of	memory.

Table	6-1.	Price	of	RAM	over	time2

Historic	RAM	Prices

Year Average	Cost	per	Gigabyte

1980 $6,635,520.00

1985 $				901,120.00

1990 $				108,544.00

1995 $						31,641.60

2000 $								1,149.95

2005 $											189.44

2010 $													12.50

2014 $															9.34

In	order	to	make	effective	use	of	additional	cores	and	the	increase	in	memory	available
with	modern	hardware,	software	has	to	be	written	to	take	advantage	of	these	hardware
trends.	The	SQL	Server	2014	In-Memory	features	are	the	result	of	these	trends	and
customer	demand	for	additional	capacity	on	OLTP	databases.

Getting	Started	with	In-Memory	Objects
SQL	Server	2014	In-Memory	features	are	offered	in	Enterprise,	Developer,	and	Evaluation
(64-bit	only)	Editions	of	the	software.	These	features	were	previously	available	only	to
corporations	that	had	a	very	large	budget	to	spend	on	specialized	software	and	hardware.
Given	the	way	Microsoft	has	deployed	these	features	in	existing	editions,	you	may	be	able
to	use	them	an	existing	installation	of	your	OLTP	database	system.

The	in-memory	objects	require	a	FILESTREAM	data	file	(container)	to	be	created
using	a	memory-optimized	data	filegroup.	From	here	on,	this	chapter	uses	the	term
container	rather	than	data	file;	it’s	more	appropriate	because	a	data	file	is	created	on	disk
at	the	time	data	is	written	to	the	new	memory-optimized	tables.	Several	checkpoint	files
are	created	in	the	memory-optimized	data	filegroup	for	the	purposes	of	keeping	track	of
changes	to	data	in	the	FILESTREAM	container	file.	The	data	for	memory-optimized	tables
is	stored	in	a	combination	of	the	transaction	log	and	checkpoint	files	until	a	background
thread	called	an	offline	checkpoint	appends	the	information	to	data	and	delta	files.	In	the
event	of	a	server	crash	or	availability	group	failover,	all	durable	table	data	is	recovered
from	a	combination	of	the	data,	delta,	transaction	log,	and	checkpoint	files.	All	nondurable
tables	are	re-created,	because	the	schema	is	durable,	but	the	data	is	lost.	The	differences
between	durable	and	non-durable	tables,	advantages,	disadvantages,	and	some	use	cases

are	explained	further	in	the	section	“Step	3,”	later	in	this	chapter.

You	can	alter	any	existing	database	or	new	database	to	accommodate	in-memory	data
files	(containers)	by	adding	the	new	data	and	filegroup	structures.	Several	considerations
should	be	taken	into	account	prior	to	doing	so.	The	following	sections	cover	the	steps
listed	in	the	code	format	and	SQL	Server	Management	Studio	to	create	these	structures.

Step	1:	Add	a	New	Memory-Optimized	Data
FILEGROUP
Typically,	before	you	can	begin	to	using	FILESTREAM	in	SQL	Server,	you	must	enable
FILESTREAM	on	the	instance	of	the	SQL	Server	Database	Engine.	With	memory-
optimized	filegroups,	you	don’t	need	to	enable	FILESTREAM	because	the	mapping	to	it’s
handled	by	the	In-Memory	OLTP	engine.

The	memory-optimized	data	filegroup	should	be	created	on	a	solid	state	drive	(SSD)
or	fast	serial	attached	SCSI	(SAS)	drive.	Memory-optimized	tables	have	different	access
patterns	than	traditional	disk-based	tables	and	require	the	faster	disk	subsystems	to	fully
realize	the	speed	benefit	of	this	filegroup.	Listing	6-1,	adds	a	new	memory-optimized
filegroup	to	our	existing	AdventureWorks2014	database.	This	syntax	can	be	used	against
any	existing	2014	database	on	the	proper	SQL	Server	edition	of	the	software.

Listing	6-1.	Adding	a	New	Filegroup

IF	NOT	EXISTS

		(SELECT	*	FROM	AdventureWorks2014.sys.data_spaces	WHERE	

TYPE	=	'FX')

ALTER	DATABASE	AdventureWorks2014

		ADD	FILEGROUP	[AdventureWorks2014_mem]	CONTAINS	

MEMORY_OPTIMIZED_DATA

GO

This	adds	an	empty	memory-optimized	data	filegroup	to	which	you’ll	add	containers
in	the	next	step.	The	key	words	in	the	syntax	are	CONTAINS
MEMORY_OPTIMIZED_DATA,	to	create	as	a	memory-optimized	data	filegroup.	You	can
create	multiple	containers	but	only	one	memory-optimized	data	filegroup.	Adding
additional	memory-optimized	data	filegroups	results	in	the	following	error:

Msg	10797,	Level	15,	State	2,	Line	2

Only	one	MEMORY_OPTIMIZED_DATA	filegroup	is	allowed	per	

database.

In	Listing	6-1,	we	added	a	new	memory-optimized	filegroup	using	T-SQL	code.	In	the
following	example,	we	will	do	the	same	using	SQL	Server	Management	Studio.	Following
are	the	steps	to	accomplish	adding	the	filegroup	via	Management	Studio	(see	Figure	6-2):

1.	 Right-click	the	database	to	which	you	want	to	add	the	new
filegroup,	and	select	Properties.

2.	 Select	the	Filegroups	option,	and	type	in	the	name	of	the	memory-
optimized	data	filegroup	you	wish	to	add.

3.	 Click	the	Add	Filegroup	button.

Figure	6-2.	Adding	a	new	memory-optimized	data	filegroup

	Note		Memory-optimized	data	filegroups	can	only	be	removed	by	dropping	the
database.	Therefore,	you	should	careful	consider	the	decision	to	move	forward	with	this
architecture.

Step	2:	Add	a	New	Memory-Optimized	Container
In	step-2	we	will	add	a	new	memory-optimized	container.	Listing	6-2	shows	an	example
of	how	this	is	accomplished	using	T-SQL	code.	This	code	can	be	used	against	any
database	that	has	a	memory-optimized	filegroup.

Listing	6-2.	Adding	a	New	Container	to	the	Database

IF	NOT	EXISTS

		(SELECT	*	FROM	AdventureWorks2014.sys.data_spaces	ds

													JOIN	AdventureWorks2014.sys.database_files	df	ON

																		ds.data_space_id=df.data_space_id

												WHERE	ds.type='FX')

			ALTER	DATABASE	AdventureWorks2014

							ADD	FILE	(name='	AdventureWorks2014_mem',

																			filename='C:\SQLData\AdventureWorks2014_mem')

						TO	FILEGROUP	[AdventureWorks2014_mem]

GO

In	Listing	6-2,	we	added	a	new	memory-optimized	container	to	our	database	using	T-
SQL	code.	In	the	following	steps	we	will	do	the	same	using	Management	Studio.	In	order
to	accomplish	this,	follow	the	steps	outlined	below	(see	Figure	6-3):

1.	 Right-click	the	database	to	which	you	want	to	add	the	new
container,	and	select	Properties.

2.	 Select	the	Files	option,	and	type	in	the	name	of	the	file	you	wish	to
add.

3.	 Select	FILESTREAM	Data	from	the	File	Type	list,	and	click	the
Add	button.

Figure	6-3.	Adding	a	new	filestream	container	file	to	a	memory-optimized	filegroup

It	is	a	best	practice	to	adjust	the	Autogrowth	/	Maxsize	of	a	fiegroup;	this	option	is	to
the	right	of	the	“Filegroup”	column	in	Figure	6-4.	For	a	memory-optimized	filegroup,	you
will	not	be	able	to	adjust	this	option	when	creating	the	fielgroup	through	Management
Studio.	This	filegroup	lives	in	memory;	therefore,	the	previous	practice	of	altering	this
option	no	longer	applies.	Leave	the	Autogrowth	/	Maxsize	option	set	to	Unlimited.	It’s	a
limitation	of	the	current	version	that	you	can’t	specify	a	MAXSIZE	for	the	specific
container	you’re	creating.

You	now	have	a	container	in	the	memory-optimized	data	filegroup	that	you	previously
added	to	the	database.	Durable	tables	save	their	data	to	disk	in	the	containers	you	just
defined;	therefore,	it’s	recommended	that	you	create	multiple	containers	across	multiple
disks,	if	they’re	available	to	you.	SSDs	won’t	necessarily	help	performance,	because	data

is	accessed	in	a	sequential	manner	and	not	in	a	random-access	pattern.	The	only
requirement	is	that	you	have	performant	disks	so	the	data	can	be	accessed	efficiently	from
disk.	Multiple	disks	allow	SQL	Server	to	recover	data	in	parallel	in	the	event	of	a	system
crash	or	availability	group	failover.	Your	in-memory	tables	won’t	become	available	until
SQL	Server	has	recovered	the	data	into	memory.

	Note		Data	and	delta	file	pairs	can’t	be	moved	to	other	containers	in	the	memory-
optimized	filegroup.

Step	3:	Create	Your	New	Memory-Optimized	Table
Step	1	and	Step	2	laid	out	the	foundation	necessary	to	add	memory-optimized	objects.
Listing	6-3	creates	a	table	that	in	memory.	The	result	is	a	compiled	table	with	data	that
resides	in	memory.

Listing	6-3.	Creating	a	New	Memory-Optimized	Table

USE	AdventureWorks2014;

GO

CREATE	SCHEMA	[MOD]	AUTHORIZATION	[dbo];

GO

CREATE	TABLE	[MOD].[Address]

	(

							AddressID	INT	NOT	NULL	IDENTITY(1,1)

				,	AddressLine1	NVARCHAR(120)	COLLATE	

Latin1_General_100_BIN2	NOT	NULL

				,	AddressLine2	NVARCHAR(120)	NULL

				,	City	NVARCHAR(60)	COLLATE	Latin1_General_100_BIN2	NOT	

NULL

				,	StateProvinceID	INT	NOT	NULL

				,	PostalCode	NVARCHAR(30)	COLLATE	Latin1_General_100_BIN2	

NOT	NULL

				,	rowguid	UNIQUEIDENTIFIER	NOT	NULL

																	INDEX	[AK_MODAddress_rowguid]	NONCLUSTERED

																	CONSTRAINT	[DF_MODAddress_rowguid]	DEFAULT	

(NEWID())

				,	ModifiedDate	DATETIME	NOT	NULL

												INDEX	[IX_MODAddress_ModifiedDate]	NONCLUSTERED

																	CONSTRAINT	[DF_MODAddress_ModifiedDate]	

DEFAULT	(GETDATE())

				,	INDEX	[IX_MODAddress_AddressLine1_	

City_StateProvinceID_PostalCode]

								NONCLUSTERED

				([AddressLine1]	ASC,	[StateProvinceID]	ASC,	[PostalCode]	

ASC)

							,	INDEX	[IX_MODAddress_City]

							([City]	DESC)

				,	INDEX	[IX_MODAddress_StateProvinceID]

								NONCLUSTERED

				([StateProvinceID]	ASC)

				,	CONSTRAINT	PK_MODAddress_Address_ID

													PRIMARY	KEY	NONCLUSTERED	HASH

				([AddressID])	WITH	(BUCKET_COUNT=30000)

)	WITH(MEMORY_OPTIMIZED=ON,	DURABILITY=SCHEMA_AND_DATA);

GO

	Note		You	don’t	need	to	specify	a	filegroup	when	you	create	an	in-memory	table.
You’re	limited	to	a	single	memory-optimized	filegroup;	therefore,	SQL	Server	knows	the
filegroup	to	which	to	add	this	table.

The	sample	table	used	for	this	memory-optimized	table	example	is	similar	to	the
AdventureWorks2014.Person.Address	table,	with	several	differences:

The	hint	at	the	end	of	the	CREATE	TABLE	statement	is	extremely
important:
WITH(MEMORY_OPTIMIZED=ON,	

DURABILITY=SCHEMA_AND_DATA);

The	option	MEMORY_OPTIMIZED=ON	tells	SQL	Server	that	this	is	a
memory-optimized	table.

The	DURABILITY=SCHEMA_AND_DATA	option	defines	whether
this	table	will	be	durable	(data	recoverable)	or	non-durable	(schema-
only	recovery)	after	a	server	restart.	If	the	durability	option	isn’t
specified,	it	defaults	to	SCHEMA_AND_DATA.

PRIMARY	KEY	is	NONCLUSTERED,	because	data	isn’t	physically
sorted:
,	CONSTRAINT	PK_MODAddress_Address_ID

								PRIMARY	KEY	NONCLUSTERED	HASH

([AddressID])	WITH	(BUCKET_COUNT=30000)

The	NONCLUSTERED	hint	is	required	on	a	PRIMARY	KEY
constraint,	because	SQL	Server	attempts	to	create	it	as	a	CLUSTERED
index	by	default.	Because	CLUSTERED	indexes	aren’t	allowed,	not
specifying	the	index	type	results	in	an	error.	Additionally,	you	can’t
add	a	sort	hint	on	the	column	being	used	in	this	index,	because	HASH

indexes	can’t	be	defined	in	a	specific	sort	order.

All	character	string	data	that	is	used	in	an	index	must	use	BIN2
collation:

COLLATE	Latin1_General_100_BIN2

Notice	that	the	MOD.Address	table	purposely	doesn’t	declare	BIN2
collation	for	the	AddressLine2	column,	because	it	isn’t	used	in	an
index.	Figure	6-8	shows	the	effect	that	BIN2	collation	has	on	data	in
different	collation	types.

If	you	compare	the	MOD.Address	table	to	Person.Address,	you
see	that	the	column	SpatialLocation	is	missing.	In-memory
tables	don’t	support	LOB	objects.	The	SpatialLocation	column
in	Person.Address	is	defined	as	a	GEOGRAPHY	data	type,	which
isn’t	supported	for	memory-optimized	tables.	If	you	were	converting
this	data	type	to	be	used	in	a	memory-optimized	table,	you	would
potentially	need	to	make	coding	changes	to	accommodate	the	lack	of
the	data	type.

The	index	type	HASH	with	the	hint	WITH
(BUCKET_COUNT=30000)	is	new.	This	is	discussed	further	in	the
“In-Memory	OLTP	Table	Indexes”	section	of	this	chapter.

Listing	6-3	added	a	memory-optimized	table	using	T-SQL.	We	will	now	add	add	a
memory-optimized	table	using	Management	Studio.	Right-click	the	Tables	folder,	and
select	New	 	Memory-Optimized	Table	(see	Figure	6-4).	A	new	query	window	opens
with	the	In-Memory	Table	Creation	template	script	available.

Figure	6-4.	Creating	a	new	memory-optimized	table

You	now	have	a	very	basic	working	database	and	table	and	can	begin	using	the	In-
Memory	features.	You	can	access	the	table	and	different	index	properties	using	a	system
view	(see	Listing	6-4	and	Figure	6-5)	or	Management	Studio	(see	Figure	6-6).

Listing	6-4.	Selecting	Table	Properties	from	a	System	View

SELECT	t.name	as	'Table	Name'

				,	t.object_id

							,	t.schema_id

				,	filestream_data_space_id

				,	is_memory_optimized

				,	durability

				,	durability_desc

		FROM	sys.tables	t

	WHERE	type='U'

			AND	t.schema_id	=	SCHEMA_ID(N'MOD');

Figure	6-5.	System	view	showing	MOD.Address	table	properties

Figure	6-6.	Management	Studio	showing	MOD.Address	table	properties

Now	that	you’ve	configured	your	database	and	created	a	new	table,	let’s	look	at	an
example	of	the	data	in	this	table	and	some	specific	issues	you	may	encounter.	First	you
must	load	the	data	in	the	newly	created	memory-optimized	table	[MOD].[Address],	as
shown	in	Listing	6-5.

Listing	6-5.	Inserting	Data	into	the	Newly	Created	Table

SET	IDENTITY_INSERT	[MOD].[Address]	ON;

	INSERT	INTO	[MOD].[Address]

	(AddressID,	AddressLine1,	AddressLine2

							,	City,	StateProvinceID,	PostalCode

				--,	SpatialLocation

				,	rowguid,	ModifiedDate)

	SELECT	AddressID,	AddressLine1,	AddressLine2

				,	City,	StateProvinceID,	PostalCode

				--,	SpatialLocation

				,	rowguid,	ModifiedDate

			FROM	[Person].[Address];

			SET	IDENTITY_INSERT	[MOD].[Address]	OFF;

			UPDATE	STATISTICS	[MOD].[Address]	WITH	FULLSCAN,	

NORECOMPUTE;

			GO

	Note		In-memory	tables	don’t	support	statistics	auto-updates.	In	Listing	6-5,	you
manually	update	the	statistics	after	inserting	new	data.

Because	AddressLine1	is	being	used	in	an	index	on	the	table,	you	have	to	declare
the	column	with	a	BIN2	collation.	The	limitation	with	this	collation	is	that	all	uppercase
AddressLine1	values	are	sorted	before	lowercase	string	values	(Z	sorts	before	a).	In
addition,	string	comparisons	of	BIN2	columns	don’t	give	correct	results.	A	lowercase
value	doesn’t	equal	an	uppercase	value	when	selecting	data	(A	!=	a).	Listing	6-6	gives	an
example	query	of	the	string-comparison	scenario.

Listing	6-6.	Selecting	Data	from	the	AddressLine1	Column

SELECT	AddressID,	AddressLine1,	RowGuid

			FROM	[MOD].[Address]

		WHERE	AddressID	IN	(804,	831)

				AND	AddressLine1	LIKE	'%plaza'

This	query	correctly	results	in	only	one	record.	However,	you	would	expect	two
records	to	be	returned,	using	disk-based	tables.	Pay	careful	attention	in	this	area	when
you’re	considering	moving	your	disk-based	tables	to	memory-optimized	tables.	Figure	6-7
displays	the	result	of	the	query.

Figure	6-7.	AddressLine1	results	with	no	collation

When	the	collation	for	the	column	is	altered	with	a	hint	(Listing	6-7),	the	query
correctly	returns	two	records	(Figure	6-8).

Listing	6-7.	Selecting	Data	from	the	AddressLine1	Column	with	Collation

SELECT	AddressID,	AddressLine1,	RowGuid

			FROM	[MOD].[Address]

		WHERE	AddressID	IN	(804,	831)

				AND	AddressLine1	COLLATE	SQL_Latin1_General_CP1_CI_AS	

LIKE	'%plaza';

Figure	6-8.	AddressLine1	results	with	collation

In	order	to	ensure	proper	results	and	behavior,	you	need	to	specify	the	collation	for	all
string	type	columns,	with	BIN2	collation	for	comparison	and	sort	operations.

Limitations	on	Memory-Optimized	Tables
When	you	create	a	table,	you	need	to	take	several	limitations	into	account.	Following	are
some	of	the	more	common	restrictions	that	you	may	encounter:

None	of	the	LOB	data	types	can	be	used	to	declare	a	column	(XML,
CLR,	spatial	data	types,	or	any	of	the	MAX	data	types).

All	the	row	lengths	in	a	table	are	limited	to	8,060	bytes.	This	limit	is
enforced	at	the	time	the	table	is	initially	created.	Disk-based	tables
allow	you	to	create	tables	that	could	potentially	exceed	8,060	bytes
per	row.

All	in-memory	tables	must	have	at	least	one	index	defined.	No	heap
tables	are	allowed.

No	DDL/DML	triggers	are	allowed.

No	schema	changes	are	allowed	(ALTER	TABLE).	To	change	the
schema	of	the	table,	you	would	need	to	drop	and	re-create	the	table.

Partitioning	or	compressing	a	memory-optimized	table	isn’t	allowed.

When	you	use	an	IDENTITY	column	property,	it	must	be	initialized
to	start	at	1	and	increment	by	1.

If	you’re	creating	a	durable	table,	you	must	define	a	primary	key

constraint.

	Note		For	a	comprehensive	and	up-to-date	list	of	limitations,	visit
http://msdn.microsoft.com/en-us/library/dn246937.aspx.

In-Memory	OLTP	Table	Indexes
Indexes	are	used	to	more	efficiently	access	data	stored	in	tables.	Both	in-memory	tables
and	disk-based	tables	benefit	from	indexes;	however,	In-Memory	OLTP	table	indexes
have	some	significant	differences	from	their	disk-based	counterparts.	Two	types	of
indexes	differ	from	those	of	disk-based	tables:	nonclustered	hashes	and	nonclustered	range
indexes.	These	indexes	are	both	contained	in	memory	and	are	optimized	for	memory-
optimized	tables.	The	differences	between	in-memory	and	disk-based	table	indexes	are
outlined	in	Table	6-2.

Table	6-2.	Comparison	of	in-memory	and	disk-based	indexes

In-Memory	Table Disk-Based	Table

Must	have	at	least	one	index No	indexes	required

Clustered	Index	not	allowed;	Only	hash	or	range	non-
clustered	indexes	allowed. Clustered	Index	usually	recommended

Indexes	added	only	at	table	creation Indexes	can	be	added	to	the	table	after	table
creation

No	auto	update	statistics Auto	update	statistics	allowed

In-memory	table	indexes	only	exist	in	memory Indexes	persist	on	disk	and	the	transaction	log

Indexes	are	created	during	table	creation	or	database
startup

Indexes	are	persisted	to	disk;	therefore,	they	are
not	rebuilt	and	can	be	read	from	disk

Indexes	are	covering,	since	the	index	contains	a
memory	pointer	to	the	actual	row	of	the	data Indexes	are	not	covering	by	default.

There	is	a	limitation	of	8	indexes	per	table 1	Clustered	Index+999	NonClustered=1000
Indexes	or	249	XML	Indexes

	Note		Durable	memory-optimized	tables	require	a	primary	key.	By	default,	a	primary
key	attempts	to	create	a	clustered	index,	which	will	generate	an	error	for	a	memory-
optimized	table.	You	must	specifically	indicate	NONCLUSTERED	as	the	index	type.

The	need	for	at	least	one	index	stems	from	the	architecture	of	an	in-memory	table.	The
table	uses	index	pointers	as	the	only	method	of	linking	rows	in	memory	into	a	table.	This
is	also	why	clustered	indexes	aren’t	needed	on	memory-optimized	tables;	the	data	isn’t
specifically	ordered	or	arranged	in	any	manner.

http://msdn.microsoft.com/en-us/library/dn246937.aspx

A	new	feature	of	SQL	Server	2014	is	that	you	can	create	indexes	inline	with	the
table	create	statement.	Earlier,	notice	that	Listing	6-3	creates	an	inline	nonclustered
index	with	table	create:

,	rowguid	UNIQUEIDENTIFIER	NOT	NULL

													INDEX	[AK_MODAddress_rowguid]	NONCLUSTERED

													CONSTRAINT	[DF_MODAddress_rowguid]	DEFAULT	

(NEWID())

Inline	index	creation	is	new	to	SQL	Server	2014	but	not	unique	to	memory-optimized
tables.	It’s	also	valid	for	disk-based	tables.

Both	hash	and	range	indexes	are	allowed	on	the	same	column.	This	can	be	a	good
strategy	when	the	use	cases	vary	for	how	the	data	is	accessed.

Hash	Indexes
A	hash	index	is	an	efficient	mechanism	that	accepts	input	values	into	a	hashing	function
and	maps	to	a	hash	bucket.	The	hash	bucket	is	an	array	that	contains	pointers	to	efficiently
return	a	row	of	data.	The	collection	of	pointers	in	the	hash	bucket	is	the	hash	index.	When
created,	this	index	exists	entirely	in	memory.

Hash	indexes	are	best	used	for	single-item	lookups,	a	WHERE	clause	with	an	=,	or
equality	joins.	They	can’t	be	used	for	range	lookups	such	as	LIKE	operations	or	between
queries.	The	optimizer	won’t	give	you	an	error,	but	it	isn’t	an	efficient	way	of	accessing
the	data.	When	creating	the	hash	index,	you	must	decide	at	table-creation	time	how	many
buckets	to	assign	for	the	index.	It’s	recommended	that	it	should	be	created	at	1.5	to	2	times
larger	than	the	existing	unique	key	counts	in	your	table.	This	is	an	important	assessment,
because	the	bucket	count	can’t	be	extended	by	re-creating	the	index	and	the	table.	The
performance	of	the	point	lookups	doesn’t	degrade	if	you	have	a	bucket	count	that	is	larger
than	necessary.	However,	performance	will	suffer	if	the	bucket	count	is	too	small.	Listing
6-3	used	a	hash	bucket	count	of	30,000,	because	the	number	of	unique	rows	in	the	table	is
slightly	less	than	20,000.	Here’s	the	code	that	defines	the	constraint	with	the	bucket	count:

,	CONSTRAINT	PK_MODAddress_Address_ID	PRIMARY	KEY	

NONCLUSTERED	HASH

([AddressID]	ASC)	WITH	(BUCKET_COUNT=30000)

If	your	use	case	requires	it,	you	can	create	a	composite	index	on	a	hash	index.	There
are	some	limitations	to	be	aware	of	if	you	decide	to	use	a	composite	index.	The	hash	index
will	be	used	only	if	the	point-lookup	search	is	done	on	both	columns	in	the	index.	If	both
columns	aren’t	used	in	the	search,	the	result	is	an	index	scan	or	a	scan	of	all	the	hash
buckets.	This	occurs	because	the	hash	function	converts	the	values	from	both	columns	into
a	hash	values.	Therefore,	in	a	composite	hash	index,	the	value	of	one	column	never
equates	to	the	hash	value	of	two	columns:

HASH(<Column1>)	<>	HASH(<Column1>,	<Column2>)

Let’s	compare	the	affect	of	a	hash	index	on	a	memory-optimized	table	versus	a	disk-

based	table	clustered	index.

	Warning		This	applies	to	the	code	in	Listing	6-8	and	several	other	examples.	Do	not
attempt	to	run	the	DBCC	commands	on	a	production	system,	because	they	can	severely
affect	the	performance	of	your	entire	instance.

Listing	6-8	includes	some	DBCC	commands	to	flush	all	cache	pages	and	make	sure
the	comparisons	start	in	a	repeatable	state	with	nothing	in	memory.	It’s	highly
recommended	that	these	types	of	commands	be	run	only	in	a	non-production	environment
that	won’t	affect	anyone	else	on	the	instance.

Listing	6-8.	Point	Lookup	on	a	Hash	Index	vs.	Disk-Based	Clustered	Index

CHECKPOINT

GO

DBCC	DROPCLEANBUFFERS

GO

DBCC	FREEPROCCACHE

GO

SET	STATISTICS	IO	ON;

SELECT	*	FROM	Person.Address	WHERE	AddressId	=	26007;

SELECT	*	FROM	MOD.Address	WHERE	AddressId	=	26007;

This	first	example	simply	looks	at	what	happens	when	you	compare	performance
when	doing	a	simple	point	lookup	for	a	specific	value.	Both	the	disk-based	table
(Person.Address)	and	the	memory-optimized	table	(MOD.Address)	have	a
clustered	and	hash	index	on	the	AddressID	column.	The	result	of	running	the	entire
batch	is	as	shown	in	Figure	6-9	in	the	Messages	tab.

Figure	6-9.	Hash	index	vs.	clustered	index	IO	statistics

There	are	two	piece	of	information	worth	noting.	The	first	batch	to	run	was	the	disk-
based	table,	which	resulted	in	two	logical	reads	and	two	physical	reads.	The	second	batch
was	the	memory-optimized	table,	which	didn’t	register	any	logical	or	physical	IO	reads
because	this	table’s	data	and	indexes	are	completely	held	in	memory.

Figure	6-10	clearly	shows	that	the	disk-based	table	took	99%	of	the	entire	batch
execution	time;	the	memory-optimized	table	took	1%	of	the	time	relative	to	the	entire
batch.	Both	query	plans	are	exactly	the	same;	however,	this	illustrates	the	significant
difference	that	a	memory-optimized	table	can	make	to	the	simplest	of	queries.

Figure	6-10.	Hash	index	vs.	clustered	index	point	lookup	execution	plan

Hovering	over	the	Index	Seek	operator	in	the	execution	plan	shows	a	couple	of
differences.	The	first	is	that	the	Storage	category	now	differentiates	between	the	disk-
based	table	as	RowStore	and	the	memory-optimized	table	as	MemoryOptimized.
There	is	also	a	significant	difference	between	the	estimated	row	size	of	the	two	tables.

Next	let’s	experiment	with	running	a	range	lookup	against	the	disk-based	table	and	the
memory-optimized	table.	Listing	6-9	does	a	simple	range	lookup	against	the	primary	key
of	the	table	to	demonstrate	some	of	the	difference	in	performance	(see	Figure	6-11).

Listing	6-9.	Range	Lookup	Using	a	Hash	Index

SELECT	*	FROM	PERSON.ADDRESS	WHERE	ADDRESSID	BETWEEN	100	AND	

26007;

SELECT	*	FROM	MOD.ADDRESS	WHERE	ADDRESSID	BETWEEN	100	AND	

26007;

Figure	6-11.	Hash	index	vs.	clustered	index	range	lookup	execution	plan

This	example	clearly	displays	that	a	memory-optimized	table	hash	index	isn’t
necessarily	quicker	than	a	disk-based	clustered	index	for	all	use	cases.	The	memory-
optimized	table	had	to	perform	an	index	scan	and	then	filter	the	results	for	the	specific
criteria	you’re	looking	to	get	back.	The	disk-based	table	clustered	index	seek	is	still	more
efficient	for	this	particular	use	case.	The	moral	of	the	story	is	that	it	always	depends.	You
should	always	run	through	several	use	cases	and	determine	the	best	method	of	accessing
your	data.

Range	Indexes
A	range	index	might	best	be	defined	as	a	memory-optimized	nonclustered	index.	When
created,	this	index	exists	entirely	in	memory.	The	memory-optimized	nonclustered	index
works	similarly	to	a	disk-based	nonclustered	index,	but	it	has	some	significant
architectural	differences.	The	architecture	for	range	indexes	is	based	on	a	new	data
structure	called	a	Bw-tree.3	The	Bw-tree	architecture	is	a	latch-free	architecture	that	can
take	advantage	of	modern	processor	caches	and	multicore	chips.

Memory-optimized	nonclustered	indexes	are	best	used	for	range-type	queries	such	as
(<,>,IN),	(All	sales	orders	between	dates),	and	so	on.	These	indexes	also	work	with	point
lookups	but	aren’t	as	optimized	for	those	types	of	lookups	as	a	hash	index.	Memory-
optimized	nonclustered	indexes	should	also	be	considered	over	hash	indexes	when	you’re
migrating	a	disk-based	table	that	has	a	considerable	number	of	duplicate	values	in	a
column.	The	size	of	the	index	grows	with	the	size	of	the	data,	similar	to	B-tree	disk-based
table	structures.

When	you’re	using	memory-optimized	nonclustered	indexes,	a	handful	of	limitations
and	differences	from	disk-based	nonclustered	indexes	are	worth	mentioning.	Listing	6-3

created	the	nonclustered	index	on	the	City	column.	Below	is	an	excerpt	from	the	listing,
that	displays	the	creation	of	the	nonclustered	index.

INDEX	[IX_MODAddress_City]

([City]	DESC)

All	the	columns	that	are	part	of	an	index	must	be	defined	as	NOT
NULL.

If	the	column	is	defined	as	a	string	data	type,	it	must	be	defined	using
a	BIN2	collation.

The	NONCLUSTERED	hint	is	optional	unless	the	column	is	the
primary	key	for	the	table,	because	SQL	Server	will	try	to	define	a
primary	key	constraint	as	clustered.

The	sort-order	hint	on	a	column	in	a	range	index	is	especially
important	for	a	memory-optimized	table.	SQL	Server	can’t	perform	a
seek	on	the	index	if	the	order	in	which	the	records	are	accessed	is
different	from	the	order	in	which	the	index	was	originally	defined,
which	would	result	in	an	index	scan.

Following	are	a	couple	of	examples	that	demonstrate	the	comparison	of	a	disk-based
nonclustered	index	and	a	memory-optimized	nonclustered	index	(range	index).	The	two
queries	in	Listing	6-10	select	all	columns	from	the	Address	disk-based	table	and	the
memory-optimized	table	using	a	single-point	lookup	of	the	date.	The	result	of	the	queries
is	displayed	in	Figure	6-12.

Listing	6-10.	Single-Point	Lookup	Using	a	Range	Index

CHECKPOINT

GO

DBCC	DROPCLEANBUFFERS

GO

DBCC	FREEPROCCACHE

GO

SET	STATISTICS	IO	ON

SELECT	*	FROM	[Person].[Address]	WHERE	ModifiedDate	=	'2013-

12-21';

SELECT	*	FROM	[MOD].[Address]	WHERE	ModifiedDate	=	'2013-12-

21';

Figure	6-12.	Single-point	lookup	using	a	nonclustered	index	comparison

This	example	displays	a	significant	difference	between	Query	1	(disk-based	table)	and
Query	2	(memory-optimized	index).	Both	queries	use	an	index	seek	to	get	to	the	row	in
the	table,	but	the	disk-based	table	has	to	do	an	additional	key-lookup	operation	on	the
clustered	index.	Because	the	query	is	asking	for	all	the	columns	of	data	in	the	row,	the
disk-based	nonclustered	index	must	obtain	the	pointer	to	the	data	through	the	clustered
index.	The	memory-optimized	index	doesn’t	have	the	added	cost	of	the	key	lookup,
because	all	the	indexes	are	covering	and,	therefore,	the	index	already	has	a	pointer	to	the
additional	columns	of	data.

Next,	Listing	6-11	does	a	range	lookup	on	the	disk-based	table	nonclustered	index	and
a	range	lookup	on	the	memory-optimized	nonclustered	index.	The	difference	between	the
two	queries	is	displayed	in	Figure	6-13.

Listing	6-11.	Range	Lookup	Using	a	Range	Index

CHECKPOINT

GO

DBCC	DROPCLEANBUFFERS

GO

DBCC	FREEPROCCACHE

GO

SET	STATISTICS	IO	ON

SELECT	*	FROM	[Person].[Address]	WHERE	ModifiedDate

														BETWEEN	'2013-12-01'	AND	'2013-12-21';

SELECT	*	FROM	[MOD].[Address]	WHERE	ModifiedDate

														BETWEEN	'2013-12-01'	AND	'2013-12-21';

Figure	6-13.	Range	Lookup	Comparison

The	results	are	as	expected.	The	memory-optimized	nonclustered	index	performs
significantly	better	than	the	disk-based	nonclustered	index	when	performing	a	range	query
using	a	range	index.

Natively	Compiled	Stored	Procedures
Natively	compile	stored	procedures	are	similar	in	purpose	to	disk-based	stored	procedures,
with	the	major	difference	that	a	natively	compiled	stored	procedure	is	compiled	into	C	and
then	into	machine	language	stored	as	a	DLL.	The	DLL	allows	SQL	Server	to	access	the
stored-procedure	code	more	quickly,	to	take	advantage	of	parallel	processing	and
significant	improvements	in	execution.	There	are	several	limitations,	but	if	used	correctly,
natively	compiled	stored	procedures	can	yield	a	2x	or	more	increase	in	performance.

To	get	started,	let’s	examine	the	outline	of	a	natively	compiled	stored	procedure	in
Listing	6-12	in	detail.

Listing	6-12.	Natively	Compiled	Stored	Procedure	Example

1	CREATE	PROCEDURE	selAddressModifiedDate

2	(@BeginModifiedDate	DATETIME

3					,	@EndmodifiedDate	DATETIME)

4		WITH

5				NATIVE_COMPILATION

6				,	SCHEMABINDING

7				,	EXECUTE	AS	OWNER

8		AS

9		BEGIN	ATOMIC

10		WITH

11	(TRANSACTION	ISOLATION	LEVEL	=	SNAPSHOT

12						LANGUAGE	=	N'us_english')

13

14		--	T-SQL	Logic	Here

15		SELECT	AddressID,	AddressLine1

16								,	AddressLine2,	City

17								,	StateProvinceID,	PostalCode

18								,	rowguid,	ModifiedDate

19				FROM	[MOD].[Address]

20			WHERE	ModifiedDate

21									BETWEEN	@BeginModifiedDate	AND	@EndmodifiedDate;

22

23		END;

The	requirements	to	create	a	natively	compiled	stored	procedure	are	as	follows:

Line	5,	NATIVE	COMPILATION:	This	option	tells	SQL	Server	that
the	procedure	is	to	be	compiled	into	a	DLL.	If	you	add	this	option,
you	must	also	specify	the	SCHEMABINDING,	EXECUTE	AS,	and
BEGIN	ATOMIC	options.

Line	6,	SCHEMABINDING:	This	option	binds	the	stored	procedure	to
the	schema	of	the	objects	it	references.	At	the	time	the	stored
procedure	is	compiled,	the	schema	and	of	the	objects	it	references	are
compiled	into	the	DLL.	When	the	procedure	is	executed,	it	doesn’t
have	to	check	to	see	whether	the	columns	of	the	objects	it	references
have	been	altered.	This	offers	the	fastest	and	shortest	method	of
executing	a	stored	procedure.	If	any	of	the	underlying	objects	it
references	are	altered,	you’re	first	forced	to	drop	and	recompile	the
stored	procedure	with	any	changes	to	the	underlying	objects	it
references.

Line	7,	EXECUTE	AS	OWNER:	The	default	execution	context	for	a
stored	procedure	is	EXECUTE	AS	CALLER.	Natively	compiled
stored	procedures	don’t	support	this	caller	context	and	must	be
specified	as	one	of	the	options	EXECUTE	AS	OWNER,	SELF,	or
USER.	This	is	required	so	that	SQL	Server	doesn’t	have	to	check
execution	rights	for	the	user	every	time	they	attempt	to	execute	the
stored	procedure.	The	execution	rights	are	hardcoded	and	compiled
into	the	DLL	to	optimize	the	speed	of	execution.

Line	9,	BEGIN	ATOMIC:	Natively	compiled	stored	procedures	have
the	requirement	that	the	body	must	consist	of	exactly	one	atomic
block.	The	atomic	block	is	part	of	the	ANSI	SQL	standard	that

specifies	that	either	the	entire	stored	procedure	succeeds	or	the	entire
stored	procedure	logic	fails	and	rolls	back	as	a	whole.	At	the	time	the
stored	procedure	is	called,	if	an	existing	transaction	is	open,	the	stored
procedure	joins	the	transaction	and	commits.	If	no	transaction	is	open,
then	the	stored	procedure	creates	its	own	transaction	and	commits.

Lines	11	and	12,	TRANSACTION	ISOLATION:	All	the	session
settings	are	fixed	at	the	time	the	stored	procedure	is	created.	This	is
done	to	optimize	the	stored	procedure’s	performance	at	execution
time.

Those	are	the	main	options	in	a	natively	compiled	stored	procedure	that	are	unique	to
its	syntax,	versus	a	disk-based	stored	procedure.	There	are	a	significant	number	of
limitations	when	creating	a	natively	compiled	stored	procedure.	Some	of	the	more
common	limitations	are	listed	next:

Objects	must	be	called	using	two-part	names	(schema.table).

Temporary	tables	from	tempdb	can’t	be	used	and	should	be	replaced
with	table	variables	or	nondurable	memory-optimized	tables.

A	natively	compiled	stored	procedure	can’t	be	accessed	from	a
distributed	transaction.

The	stored	procedure	can’t	access	disk-based	tables,	only	memory-
optimized	tables.

The	stored	procedure	can’t	use	any	of	the	ranking	functions.

DISTINCT	in	a	query	isn’t	supported.

EXISTS	or	IN	are	not	supported	functions.

Common	table	expressions	(CTEs)	are	not	supported	constructs.

Subqueries	aren’t	available.

	Note		For	a	comprehensive	list	of	limitations,	visit
http://msdn.microsoft.com/en-us/library/dn246937.aspx.

Execution	plans	for	queries	in	the	procedure	are	optimized	when	the	procedure	is
compiled.	This	happens	only	when	the	procedure	is	created	and	when	the	server	restarts,
not	when	statistics	are	updated.	Therefore,	the	tables	need	to	contain	a	representative	set
of	data,	and	statistics	need	to	be	up-to-date	before	the	procedures	are	created.	(Natively
compiled	stored	procedures	are	recompiled	if	the	database	is	taken	offline	and	brought
back	online.)

EXERCISES

1.	 Which	editions	of	SQL	Server	support	the	new	In-Memory
features?

http://msdn.microsoft.com/en-us/library/dn246937.aspx

a.	 Developer	Edition

b.	 Enterprise	Edition

c.	 Business	Intelligence	Edition

d.	 All	of	the	above

2.	 When	defining	a	string	type	column	in	an	in-memory	table,	you
must	always	use	a	BIN2	collation.

[True	/	False]

3.	 You	want	to	define	the	best	index	type	for	a	date	column	in	your
table.	Which	index	type	might	be	best	suited	for	this	column,	if	it	is
being	used	for	reporting	purposes	using	a	range	of	values?

a.	 Hash	index

b.	 Clustered	index

c.	 Range	index

d.	 A	and	B

4.	 When	creating	a	memory-optimized	table,	if	you	do	not	specify	the
durability	option	for	the	table,	it	will	default	to
SCHEMA_AND_DATA.

[True	/	False]

5.	 Memory-optimized	tables	always	require	a	primary	key	constraint.

[True	/	False]

6.	 Natively	compiled	stored	procedures	allow	for	which	of	the
following	execution	contexts?

a.	 EXECUTE	AS	OWNER

b.	 EXECUTE	AS	SELF

c.	 EXECUTE	AS	USER

d.	 A	and	B

e.	 A,	B,	and	C

1“Moore’s	Law,”	http://en.wikipedia.org/wiki/Moore's_law.

2“Average	Historic	Price	of	RAM,”	Statistic	Brain,	www.statisticbrain.com/average-historic-price-
of-ram.

3Justin	J.	Levandoski,	David	B.	Lomet,	and	Sudipta	Sengupta,	“The	Bw-Tree:	A	B-tree	for	New	Hardware	Platforms,”
Microsoft	Research,	April	8,	2013,	http://research.microsoft.com/apps/pubs/default.aspx?
id=178758.

http://en.wikipedia.org/wiki/Moore's_law
http://www.statisticbrain.com/average-historic-price-of-ram
http://research.microsoft.com/apps/pubs/default.aspx?id=178758

CHAPTER	7

Triggers
SQL	Server	provides	triggers	as	a	means	of	executing	T-SQL	code	in	response	to	database
object,	database,	and	server	events.	SQL	Server	2014	implements	three	types	of	triggers:
classic	T-SQL	Data	Manipulation	Language	(DML)	triggers,	which	fire	in	response	to
INSERT,	UPDATE,	and	DELETE	events	against	tables;	Data	Definition	Language	(DDL)
triggers,	which	fire	in	response	to	CREATE,	ALTER,	and	DROP	statements;	and	logon
triggers,	which	fire	in	response	to	LOGON	events.	DDL	triggers	can	also	fire	in	response	to
some	system	SPs	that	perform	DDL-like	operations.

Triggers	are	a	form	of	specialized	SP,	closely	tied	to	your	data	and	database	objects.	In
the	past,	DML	triggers	were	used	to	enforce	various	aspects	of	business	logic,	such	as
foreign	key	and	other	constraints	on	data,	and	other	more	complex	business	logic.
Cascading	declarative	referential	integrity	(DRI)	and	robust	check	constraints	in	T-SQL
have	supplanted	DML	triggers	in	many	areas,	but	they’re	still	useful	in	their	own	right.
This	chapter	discusses	how	triggers	work,	how	to	use	them,	and	when	they’re	most
appropriate.	You	also	learn	about	DDL	triggers	and	explore	their	use.

As	discussed	in	Chapter	6,	one	of	the	limitations	of	in-memory	tables	is	that	triggers
aren’t	available.	This	chapter	of	the	book	still	applies	to	all	disk-based	tables.

DML	Triggers
DML	triggers	are	composed	of	T-SQL	code	that	is	executed	(fired)	in	response	to	an
INSERT,	an	UPDATE,	a	DELETE,	or	a	MERGE	statement	on	a	table	or	view.	DML
triggers	are	created	via	the	CREATE	TRIGGER	statement,	which	allows	you	to	specify
the	following	details	about	the	trigger:

The	name	of	the	trigger,	which	is	the	identifier	you	can	use	to	manage
the	trigger.	You	can	specify	a	two-part	name	for	a	trigger	(schema	and
trigger	name),	but	the	schema	must	be	the	same	as	the	schema	for	the
table	on	which	the	trigger	executes.

The	table	or	view	on	which	the	trigger	executes.

The	triggering	events,	which	can	be	any	combination	of	INSERT,
UPDATE,	and	DELETE.	The	triggering	events	indicate	the	type	of
events	that	the	trigger	fires	in	response	to.

The	AFTER/FOR	and	INSTEAD	OF	indicators,	which	determine
whether	the	trigger	is	fired	after	the	triggering	statement	completes	or
the	trigger	overrides	the	firing	statement.

Additional	options	like	the	ENCRYPTION	and	EXECUTE	AS	clauses,
which	allow	you	to	obfuscate	the	trigger	source	code	and	specify	the
context	under	which	the	trigger	executes,	respectively.

	Note		DML	triggers	have	some	restrictions	on	their	creation	that	you	should	keep	in
mind.	DML	triggers	can’t	be	defined	on	temporary	tables,	they	can’t	be	declared	on	table
variables,	and	they	can’t	be	defined	on	in-memory	tables.	Finally,	only	INSTEAD	OF
triggers	can	be	used	on	views.

In	addition	to	the	CREATE	TRIGGER	statement,	SQL	Server	provides	an	ALTER
TRIGGER	statement	to	modify	the	definition	of	a	trigger,	a	DROP	TRIGGER	statement	to
remove	an	existing	trigger	from	the	database,	and	DISABLE	TRIGGER	and	ENABLE
TRIGGER	statements	to	disable	and	enable	a	trigger,	respectively.	Listing	7-1	shows	how
to	disable	and	enable	a	specific	trigger	named
HumanResources.EmployeeUpdateTrigger	or	all	triggers	on	an	object,	namely,
the	HumanResources.Employee	table.	It	also	contains	an	example	of	how	to	query
the	sys.triggers	catalog	view	to	return	all	the	disabled	triggers	in	the	current
database.

Listing	7-1.	Disabling	and	Enabling	Triggers

DISABLE	TRIGGER	HumanResources.EmployeeUpdateTrigger

ON	HumanResources.Employee;

SELECT

				name,

				OBJECT_SCHEMA_NAME(parent_id)	+	'.'	

+	OBJECT_NAME(parent_id)	as	Parent

FROM	sys.triggers

WHERE	is_disabled	=	1;

ENABLE	TRIGGER	HumanResources.EmployeeUpdateTrigger

ON	HumanResources.Employee;

--	disabling	and	enabling	all	triggers	on	the	object

DISABLE	TRIGGER	ALL	ON	HumanResources.Employee;

ENABLE	TRIGGER	ALL	ON	HumanResources.Employee;

Disabling	triggers	can	greatly	improve	performance	when	you	apply	a	batch	of
modifications	on	a	table.	Just	make	sure	the	rules	enforced	by	the	trigger(s)	are	checked
another	way:	for	instance,	manually	after	the	batch.	Also	don’t	forget	to	re-enable	the
trigger	at	the	end	of	the	process.

Multiple	Triggers
You	can	create	multiple	triggers	on	the	same	objects.	They	will	fire	in	no	specific	order.	If
you	really	need	to,	you	can	specify	that	a	trigger	should	be	fired	first	or	last,	by	using	the

sp_settriggerorder	system	stored	procedure.	For	example:

EXEC	sp_settriggerorder	@triggername	=	'MyTrigger',	@order	

=	'first',	@stmttype	=	'UPDATE';

That	sets	the	MyTrigger	trigger	to	fire	first	on	UPDATE	actions.	However,	in	our
opinion,	this	shouldn’t	be	used,	because	it	adds	unnecessary	complexity	in	the	database.	If
you	need	to	manage	precedence	between	trigger	actions,	it’s	best	to	consolidate	what	you
need	to	do	in	the	same	trigger.

When	to	Use	DML	Triggers
Way	back	in	the	day,	using	triggers	was	the	best	(and	in	some	cases	only)	way	to	perform
a	variety	of	tasks,	such	as	ensuring	cascading	DRI,	validating	data	before	storing	it	in
tables,	auditing	changes,	and	enforcing	complex	business	logic.	Newer	releases	of	SQL
Server	have	added	functionality	that	more	closely	integrates	many	of	these	functions	into
the	core	database	engine.	For	instance,	in	most	cases,	you	can	use	SQL	Server’s	built-in
cascading	DRI	to	ensure	referential	integrity	and	check	constraints	for	simple	validations
during	insert	and	update	operations.	DML	triggers	are	still	a	good	choice	when	simple
auditing	tasks	or	validations	with	complex	business	logic	are	required.

	Note		DRI	isn’t	enforced	across	databases.	This	means	you	can’t	reference	a	table	in	a
different	database	in	a	DRI/foreign-key	constraint.	Because	they	can	reference	objects
such	as	tables	and	views	in	other	databases,	triggers	are	still	a	good	option	when	this	type
of	referential-integrity	enforcement	is	necessary.

Listing	7-2	shows	a	very	simple	trigger	created	on	the
HumanResources.Employee	table	of	the	AdventureWorks	database.	The
HumanResources.EmployeeUpdateTrigger	trigger	updates	the
ModifiedDate	column	of	the	HumanResources.Employee	table	with	the	current
date	and	time	whenever	a	row	is	updated.

Listing	7-2.	HumanResources.EmployeeUpdateTrigger	Code

CREATE	TRIGGER	HumanResources.EmployeeUpdateTrigger

ON	HumanResources.Employee

AFTER	UPDATE

NOT	FOR	REPLICATION

AS

BEGIN

				--	stop	if	no	row	was	affected

				IF	@@ROWCOUNT	=	0	RETURN

				--	Turn	off	"rows	affected"	messages

				SET	NOCOUNT	ON;

				--	Make	sure	at	least	one	row	was	affected

				--	Update	ModifiedDate	for	all	affected	rows

				UPDATE	HumanResources.Employee

				SET	ModifiedDate	=	GETDATE()

				WHERE	EXISTS

					(

								SELECT	1

								FROM	inserted	i

								WHERE	i.BusinessEntityID	

=	HumanResources.Employee.BusinessEntityID

);

END;

The	first	part	of	the	CREATE	TRIGGER	statement	defines	the	name	of	the	trigger	and
specifies	that	it	will	be	created	on	the	HumanResources.Employee	table.	The
definition	also	specifies	that	the	trigger	will	fire	after	rows	are	updated,	and	the	NOT	FOR
REPLICATION	keywords	prevent	replication	events	from	firing	the	trigger:

CREATE	TRIGGER	HumanResources.EmployeeUpdateTrigger

ON	HumanResources.Employee

AFTER	UPDATE

NOT	FOR	REPLICATION

The	body	of	the	trigger	starts	by	checking	the	number	of	rows	affected	by	the	UPDATE
with	the	@@ROWCOUNT	system	function.	This	is	an	optimization	that	skips	the	body	of	the
trigger	if	no	rows	were	affected.

Whenever	any	trigger	is	fired,	it’s	implicitly	wrapped	in	the	same	transaction	as	the
DML	statement	that	fired	it.	This	has	big	performance	and	concurrency	implications.	It
means	that	whatever	your	trigger	does,	it	should	do	as	quickly	and	efficiently	as	possible.
The	T-SQL	statements	in	a	trigger	body	can	potentially	create	locks	in	your	database,	a
situation	that	you	want	to	minimize.	It’s	not	unheard	of	for	inefficient	triggers	to	cause
blocking	problems.	You	should	also	minimize	the	amount	of	work	done	inside	the	trigger
and	optimize	the	operations	it	has	to	perform.	It	also	means	a	ROLLBACK
TRANSACTION	statement	in	the	trigger	will	roll	back	DML	statements	executed	in	the
trigger,	as	well	as	the	original	DML	statement	that	fired	the	trigger	(and	all	explicit
transactions	in	which	the	statement	is	run).

Checking	@@ROWCOUNT	at	the	start	of	the	trigger	helps	ensure	that	your	triggers	are
efficient.	If	@@ROWCOUNT	is	0,	it	means	no	rows	were	affected	by	the	original	DML
statement	that	fired	the	trigger.	Then	the	trigger	has	no	work	to	do,	and	you	can	skip	the
rest:

--	stop	if	no	row	was	affected

IF	@@ROWCOUNT	=	0	RETURN

	Caution		Checking	@@ROWCOUNT	must	be	done	at	the	very	first	line.	Any	previous
action	in	the	trigger,	even	SET	commands,	could	change	the	@@ROWCOUNT	value.

Next,	the	trigger	turns	off	the	rows	affected	messages	via	the	SET	NOCOUNT

ON	statement:

--	Turn	off	"rows	affected"	messages

SET	NOCOUNT	ON;

	Note		Using	SET	NOCOUNT	ON	isn’t	strictly	required	in	triggers,	but	it	prevents
superfluous	rows	affected	messages	from	being	generated	by	the	trigger.	Some	older
database	drivers—and	even	some	more	recent	ones,	such	as	certain	Java	Database
Connectivity	(JDBC)	drivers—can	get	confused	by	these	extra	messages,	so	it’s	not	a	bad
idea	to	disable	them	in	the	body	of	your	triggers.	Any	SET	statement	can	be	used	in	the
body	of	a	trigger.	The	statement	remains	in	effect	while	the	trigger	executes	and	reverts	to
its	former	setting	when	the	trigger	completes.

The	IF	statement	contains	an	UPDATE	statement	that	sets	the	ModifiedDate
column	to	the	current	date	and	time	when	rows	in	the	table	are	updated.	An	important
concept	of	trigger	programming	is	to	be	sure	you	account	for	multiple	row	updates.	It’s
not	safe	to	assume	that	a	DML	statement	will	update	only	a	single	row	of	your	table,
because	triggers	in	SQL	Server	are	set-oriented	and	fire	only	once	for	a	statement.	There	is
no	such	thing	as	a	per-row	trigger	in	SQL	Server.	In	this	trigger,	the	UPDATE	statement
uses	the	EXISTS	predicate	in	the	WHERE	clause	to	ensure	that	ModifiedDate	is
updated	for	every	row	that	was	affected.	It	accomplishes	this	by	using	the	inserted
virtual	table,	described	in	the	“inserted	and	deleted	Virtual	Tables”	section	below.

--	Update	ModifiedDate	for	all	affected	rows

UPDATE	HumanResources.Employee

SET	ModifiedDate	=	GETDATE()

WHERE	EXISTS

(

				SELECT	1

				FROM	inserted	i

				WHERE	i.BusinessEntitylD	

=	HumanResources.Employee.BusinessEntitylD

);

Inserted	and	Deleted	Virtual	Tables
A	DML	trigger	needs	to	know	which	rows	were	affected	by	the	DML	statement	that	fired
it.	The	inserted	and	deleted	virtual	tables	fulfill	this	need.	When	a	trigger	fires,
SQL	Server	populates	the	inserted	and	deleted	virtual	tables	and	makes	them
available	within	the	body	of	the	trigger.	These	two	virtual	tables	have	the	same	structure
as	the	affected	table	and	contain	the	data	from	all	affected	rows.

The	inserted	table	contains	all	rows	inserted	into	the	destination	table	by	an
INSERT	statement.	The	deleted	table	contains	all	rows	deleted	from	the	destination
table	by	a	DELETE	statement.	For	UPDATE	statements,	the	rows	are	treated	as	a	DELETE
followed	by	an	INSERT,	so	the	pre-UPDATE-affected	rows	are	stored	in	the	deleted

table,	and	the	post-UPDATE-affected	rows	are	stored	in	the	inserted	table.

The	virtual	tables	are	read-only	and	can’t	be	modified	directly.	The	example	in	Listing
7-2	uses	the	inserted	virtual	table	to	determine	which	rows	were	affected	by	the
UPDATE	statement	that	fired	the	trigger.	The	trigger	updates	the	ModifiedDate	column
for	every	row	in	the	HumanResources.Employee	table	with	a	matching	row	in	the
inserted	table.	You	use	the	inserted	and	deleted	virtual	tables	in	other	example
code	in	this	section.

Testing	the	trigger	is	as	simple	as	using	SELECT	and	UPDATE.	The	example	in
Listing	7-3	changes	the	marital	status	of	employees	with	BusinessEntityID	numbers
1	and	2	to	M	(for	“married”).

Listing	7-3.	Testing	HumanResources.EmployeeUpdateTrigger

UPDATE	HumanResources.Employee

SET	MaritalStatus	=	'M'

WHERE	BusinessEntityID	IN	(1,	2);

SELECT	BusinessEntityID,	NationalIDNumber,	MaritalStatus,	

ModifiedDate

FROM	HumanResources.Employee

WHERE	BusinessEntityID	IN	(1,	2);

The	results,	shown	in	Figure	7-1,	demonstrate	that	the	UPDATE	statement	fired	the
trigger	and	properly	updated	ModifiedDate	for	the	two	specified	rows.

Figure	7-1.	Updated	marital	status	for	two	employees

	Caution		If	the	RECURSIVE_TRIGGERS	database	option	is	turned	on	in	the
AdventureWorks	database,	HumanResources.EmployeeUpdateTrigger	will
error	out	with	a	message	that	the	“nesting	limit	has	been	exceeded.”	This	is	caused	by	the
trigger	recursively	firing	itself	after	the	UPDATE	statement	in	the	trigger	is	executed.	Use
ALTER	DATABASE	AdventureWorks	SET	RECURSIVE_TRIGGERS	OFF	to
turn	off	recursive	triggers	and	ALTER	DATABASE	AdventureWorks	SET
RECURSIVE_TRIGGERS	ON	to	turn	the	option	back	on.	The	default	is	OFF.	Recursive
triggers	are	covered	later	in	this	chapter.

Auditing	with	DML	Triggers
Another	common	use	for	DML	triggers	is	auditing	DML	actions	against	tables.	The

primary	purpose	of	DML	auditing	is	to	maintain	a	record	of	changes	to	the	data	in	your
database.	This	may	be	required	for	a	number	of	reasons,	including	regulatory	compliance
or	to	fulfill	contractual	obligations.

Using	Change	Data	Capture	Instead
Since	SQL	Server	2008,	you	can	use	the	feature	known	as	Change	Data	Capture	(CDC),
which	provides	built-in	auditing	functionality.	The	CDC	functionality	provides	another
option	for	logging	DML	actions	against	tables.	Although	CDC	functionality	is	beyond	the
scope	of	this	book,	we	recommend	looking	into	this	option	before	deciding	which	method
to	use	when	you	need	DML	logging	functionality;	it	may	be	a	more	elegant	and	efficient
way	to	audit	data	changes.	One	of	the	drawbacks	with	triggers	is	the	performance	impact
they	have	on	DML	operations,	especially	because	they’re	part	of	the	DML	transaction.
CDC	is	much	faster	because	it	acts	as	a	separate	process	that	tracks	the	database-
transaction	log	for	modifications	applied	to	the	audited	tables	and	writes	changes	to
internal	change	tables,	using	the	same	technology	as	transaction	replication.	Moreover,
CDC	can	automatically	prune	the	audit	tables	to	keep	their	size	manageable.	Note	that
CDC	is	available	only	in	Enterprise	Edition.

The	first	step	to	implementing	DML	auditing	is	to	create	a	table	to	store	your	audit
information.	Listing	7-4	creates	just	such	a	table.

Listing	7-4.	DML	Audit	Logging	Table

CREATE	TABLE	dbo.DmlActionLog	(

				EntryNum	int	IDENTITY(1,	1)	PRIMARY	KEY	NOT	NULL,

				SchemaName	sysname	NOT	NULL,

				TableName	sysname	NOT	NULL,

				ActionType	nvarchar(10)	NOT	NULL,

				ActionXml	xml	NOT	NULL,

				LoginName	sysname	NOT	NULL,

				ApplicationName	sysname	NOT	NULL,

				HostName	sysname	NOT	NULL,

				ActionDateTime	datetime2(0)	NOT	NULL	DEFAULT	

(SYSDATETIME())

);

GO

The	dbo.DmlActionLog	table	in	Listing	7-4	stores	information	for	each	DML
action	performed	against	a	table,	including	the	name	of	the	schema	and	table	against
which	the	DML	action	was	performed,	the	type	of	DML	action	performed,	XML-
formatted	snapshots	of	the	before	and	after	states	of	the	rows	affected,	and	additional
information	to	identify	who	performed	the	DML	action	and	when	the	action	was
performed.	Once	the	audit	logging	table	is	created,	it’s	time	to	create	a	trigger	to	log	DML
actions.	This	is	shown	in	Listing	7-5.

Listing	7-5.	DML	Audit	Logging	Trigger

CREATE	TRIGGER	HumanResources.DepartmentChangeAudit

ON	HumanResources.Department

AFTER	INSERT,	UPDATE,	DELETE

NOT	FOR	REPLICATION

AS

BEGIN

				--	stop	if	no	row	was	affected

				IF	@@ROWCOUNT	=	0	RETURN

				--	Turn	off	"rows	affected"	messages

				SET	NOCOUNT	ON;

				DECLARE	@ActionType	nvarchar(10),	@ActionXml	xml;

				--	Get	count	of	inserted	rows

				DECLARE	@inserted_count	int	=	(

								SELECT	COUNT(*)

								FROM	inserted

);

				--	Get	count	of	deleted	rows

				DECLARE	@deleted_count	int	=	(

								SELECT	COUNT(*)

								FROM	deleted

);

				--	Determine	the	type	of	DML	action	that	fired	the	

trigger

				SET	@ActionType	=	CASE

								WHEN	(@inserted_count	>	0)	AND	(@deleted_count	=	0)	

THEN	N'insert'

								WHEN	(@inserted_count	=	0)	AND	(@deleted_count	>	0)	

THEN	N'delete'

								ELSE	N'update'

				END;

				--	Use	FOR	XML	AUTO	to	retrieve	before	and	after	

snapshots	of	the	changed

				--		data		in		XML		format

				SELECT	@ActionXml	=	COALESCE

				(

								(

												SELECT		*

												FROM		deleted

												FOR		XML		AUTO

),		N'<deleted/>'

)		+		COALESCE

				(

								(

												SELECT		*

												FROM		inserted

												FOR		XML		AUTO

),		N'<inserted/>'

);

				--	Insert	a	row	for	the	logged	action	in	the	audit	

logging	table

				INSERT	INTO	dbo.DmlActionLog

				(

								SchemaName,

								TableName,

								ActionType,

								ActionXml,

								LoginName,

								ApplicationName,

								HostName

)

				SELECT

								OBJECT_SCHEMA_NAME(@@PROCID,	DB_ID()),

								OBJECT_NAME(t.parent_id,	DB_ID()),

								@ActionType,

								@ActionXml,

								SUSER_SNAME(),

								APP_NAME(),

								HOST_NAME()

				FROM	sys.triggers	t

				WHERE	t.object_id	=	@@PROCID;

END;

GO

The	trigger	in	Listing	7-5	is	created	on	the	HumanResources.Department	table,
although	it’s	written	in	such	a	way	that	the	body	of	the	trigger	contains	no	code	specific	to
the	table	it’s	created	on.	This	means	you	can	easily	modify	the	trigger	to	work	as-is	on
most	tables.

The	HumanResources.DepartmentChangeAudit	trigger	definition	begins
with	the	CREATE	TRIGGER	statement,	which	names	the	trigger	and	creates	it	on	the
HumanResources.Department	table.	It	also	specifies	that	the	trigger	should	fire
after	INSERT,	UPDATE,	and	DELETE	statements	are	performed	against	the	table.	Finally,
the	NOT	FOR	REPLICATION	clause	specifies	that	replication	events	won’t	cause	the
trigger	to	fire:

CREATE	TRIGGER	HumanResources.DepartmentChangeAudit

ON	HumanResources.Department

AFTER	INSERT,	UPDATE,	DELETE

NOT	FOR	REPLICATION

The	trigger	body	begins	by	checking	the	number	of	rows	affected	by	the	DML
statement	with	the	@@ROWCOUNT	function.	The	trigger	skips	the	remainder	of	the
statements	in	the	body	if	no	rows	were	affected:

--	stop	if	no	row	was	affected

IF	@@ROWCOUNT	=	0	RETURN

The	main	body	of	the	trigger	begins	with	an	initialization	that	turns	off	extraneous
rows	affected	messages,	declares	local	variables,	and	gets	the	count	of	rows	inserted
and	deleted	by	the	DML	statement	from	the	inserted	and	deleted	virtual	tables:

--	Turn	off	"rows	affected"	messages

SET	NOCOUNT	ON;

DECLARE	@ActionType	nvarchar(10),	@ActionXml	xml;

--	Get	count	of	inserted	rows

DECLARE	@inserted_count	int	=	(

				SELECT	COUNT(*)

				FROM	inserted

);

--	Get	count	of	deleted	rows

DECLARE	@deleted_count	int	=	(

				SELECT	COUNT(*)

				FROM	deleted

);

Because	the	trigger	is	logging	the	type	of	DML	action	that	caused	it	to	fire	(an
INSERT,	a	DELETE,	or	an	UPDATE	action),	it	must	determine	the	type	programmatically.
This	can	be	done	by	applying	the	following	simple	rules	to	the	counts	of	rows	from	the
inserted	and	deleted	virtual	tables:

1.	 If	at	least	one	row	was	inserted	but	no	rows	were	deleted,	the	DML
action	was	an	insert.

2.	 If	at	least	one	row	was	deleted	but	no	rows	were	inserted,	the	DML
action	was	a	delete.

3.	 If	at	least	one	row	was	deleted	and	at	least	one	row	was	inserted,	the
DML	action	was	an	update.

These	rules	are	applied	in	the	form	of	a	CASE	expression,	as	shown	in	the	following:

--	Determine	the	type	of	DML	action	that	fired	the	trigger

SET	@ActionType	=	CASE

				WHEN	(@inserted_count	>	0)	AND	(@deleted_count	=	0)	THEN	

N'insert'

				WHEN	(@inserted_count	=	0)	AND	(@deleted_count	>	0)	THEN	

N'delete'

				ELSE	N'update'

END;

The	next	step	in	the	trigger	uses	the	SELECT	statement’s	FOR	XML	AUTO	clause	to
generate	XML-formatted	before	and	after	snapshots	of	the	affected	rows.	FOR	XML
AUTO	is	useful	because	it	automatically	uses	the	source	table	name	as	the	XML	element
name—in	this	case,	inserted	or	deleted.	The	FOR	XML	AUTO	clause
automatically	uses	the	names	of	the	columns	in	the	table	as	XML	attributes	for	each
element.	Because	the	inserted	and	deleted	virtual	tables	have	the	same	column
names	as	this	affected	table,	you	don’t	have	to	hard-code	column	names	into	the	trigger.	In
the	resulting	XML,	the	<deleted>	elements	represent	the	before	snapshot	and	the
<inserted>	elements	represent	the	after	snapshot	of	the	affected	rows:

--	Use	FOR	XML	AUTO	to	retrieve	before	and	after	snapshots	

of	the	changed

--		data		in		XML		format

SELECT	@ActionXml	=	COALESCE

(

				(

								SELECT		*

								FROM		deleted

								FOR		XML		AUTO

),		N'<deleted/>'

)		+		COALESCE

(

				(

								SELECT		*

								FROM		inserted

								FOR		XML		AUTO

),		N'<inserted/>'

);

	Tip		The	DML	audit	logging	trigger	was	created	to	be	flexible	so	you	can	use	it	with
minimal	changes	on	most	tables.	However,	there	are	some	circumstances	where	it	may
require	the	use	of	additional	options	or	more	extensive	changes	to	work	with	a	given	table.
As	an	example,	if	your	table	contains	a	varbinary	column,	you	have	to	use	the	FOR
XML	clause’s	BINARY	BASE64	directive	(FOR	XML,	BINARY	BASE64).

The	final	step	in	the	trigger	inserts	a	row	representing	the	logged	action	into	the
dbo.DmlActionLog	table.	Several	SQL	Server	metadata	functions—-like	@@PROCID,
OBJECT_SCHEMA_NAME(),	and	OBJECT_NAME(),	as	well	as	the	sys.triggers
catalog	view—are	used	in	the	INSERT	statement	to	dynamically	identify	the	current
trigger	procedure	ID,	and	the	schema	and	table	name	information.	Also,	functions	like
SUSER_SNAME(),	APP_NAME(),	and	HOST_NAME()	allow	you	to	retrieve	useful

audit	information	on	the	execution	context.	Again,	this	means	almost	nothing	needs	to	be
hard-coded	into	the	trigger,	making	it	easier	to	use	the	trigger	on	multiple	tables	with
minimal	changes:

--	Insert	a	row	for	the	logged	action	in	the	audit	logging	

table

INSERT	INTO	dbo.DmlActionLog

(

				SchemaName,

				TableName,

				ActionType,

				ActionXml,

				LoginName,

				ApplicationName,

				HostName

)

SELECT

				OBJECT_SCHEMA_NAME(@@PROCID,	DB_ID()),

				OBJECT_NAME(t.parent_id,	DB_ID()),

				@ActionType,

				@ActionXml,

				SUSER_SNAME(),

				APP_NAME(),

				HOST_NAME()

FROM	sys.triggers	t

WHERE	t.object_id	=	@@PROCID;

	Tip		SQL	Server	includes	several	metadata	functions,	catalog	views,	and	dynamic
management	views	and	functions	that	are	useful	for	dynamically	retrieving	information
about	databases,	database	objects,	and	the	current	state	of	the	server.	More	of	these	useful
T-SQL	functions	and	views	are	described	as	they’re	encountered	in	later	chapters.

You	can	easily	verify	the	trigger	with	a	few	simple	DML	statements.	Listing	7-6
changes	the	name	of	the	AdventureWorks	Information	Services	department	to	Information
Technology,	and	then	inserts	and	deletes	a	Customer	Service	department.	The	results	are
shown	in	Figure	7-2.

Listing	7-6.	Testing	the	DML	Audit	Logging	Trigger

UPDATE	HumanResources.Department	SET	Name	=	N'Information	

Technology'

WHERE	DepartmentId	=	11;

INSERT	INTO	HumanResources.Department

(

				Name,

				GroupName

)

VALUES

(

				N'Customer	Service',

				N'Sales	and	Marketing'

);

DELETE

FROM	HumanResources.Department

WHERE	Name	=	N'Customer	Service';

SELECT

				EntryNum,

				SchemaName,

				TableName,

				ActionType,

				ActionXml,

				LoginName,

				ApplicationName,

				HostName,

				ActionDateTime

FROM	dbo.DmlActionLog;

Figure	7-2.	Audit	logging	results

The	FOR	XML	AUTO-generated	ActionXml	column	data	deserves	a	closer	look.	As
mentioned	earlier	in	this	section,	the	FOR	XML	AUTO	clause	automatically	generates
element	and	attribute	names	based	on	the	source	table	and	source	column	names.	The
UPDATE	statement	in	Listing	7-6	generates	the	ActionXml	entry	shown	in	Figure	7-3.
Note	that	the	XML	has	been	formatted	for	easier	reading,	but	the	content	hasn’t	changed.

Figure	7-3.	The	ActionXml	entry	generated	by	the	UPDATE	statement

Sharing	Data	with	Triggers
A	commonly	asked	question	is,	“How	do	you	pass	parameters	to	triggers?”	The	short
answer	is,	you	can’t.	Because	they’re	automatically	fired	in	response	to	events,	SQL
Server	triggers	provide	no	means	to	pass	parameters.	If	you	need	to	pass	additional	data	to
a	trigger,	you	do	have	a	couple	of	options	available,	however.	The	first	option	is	to	create	a
table,	which	the	trigger	can	then	access	via	SELECT	queries.	The	advantage	of	this
method	is	that	the	amount	of	data	a	trigger	can	access	is	effectively	unlimited.	A
disadvantage	is	the	additional	overhead	required	to	query	the	table	within	the	trigger.

Another	option,	if	you	have	small	amounts	of	data	to	share	with	your	triggers,	is	to	use
the	CONTEXT_INFO	function.	You	can	assign	up	to	128	bytes	of	varbinary	data	to	the
CONTEXT_INFO	for	the	current	session	through	the	SET	CONTEXT_INFO	statement.
This	statement	accepts	only	a	variable	or	constant	value—no	other	expressions	are
allowed.	After	you’ve	set	the	CONTEXT_INFO	for	your	session,	you	can	access	it	in	your
trigger	via	the	CONTEXT_INFO()	function.	The	disadvantage	of	this	method	is	the	small
amount	of	data	you	can	store	in	CONTEXT_INFO.	Keep	these	methods	in	mind,	because
you	may	one	day	find	that	you	need	to	pass	information	into	a	trigger	from	a	batch	or	SP.

Nested	and	Recursive	Triggers
SQL	Server	supports	triggers	firing	other	triggers	through	the	concept	of	nested	triggers.	A
nested	trigger	is	simply	a	trigger	that	is	fired	by	the	action	of	another	trigger,	on	the	same
or	a	different	table.	Triggers	can	be	nested	up	to	32	levels	deep.	We	advise	against	nesting
triggers	deeply,	however,	because	the	additional	levels	of	nesting	affect	performance.	If
you	do	have	triggers	nested	deeply,	you	may	want	to	reconsider	your	trigger	design.
Nested	triggers	are	turned	on	by	default,	but	you	can	turn	them	off	with	the
sp_configure	statement,	as	shown	in	Listing	7-7.

Listing	7-7.	Turning	Off	Nested	Triggers

EXEC	sp_configure	'nested	triggers',	0;

RECONFIGURE;

GO

Set	the	nested	triggers	option	to	1	to	turn	nested	triggers	back	on.	This	option
affects	only	AFTER	triggers.	INSTEAD	OF	triggers	can	be	nested	and	will	execute
regardless	of	the	setting.	Triggers	can	also	be	called	recursively.	There	are	two	types	of
trigger	recursion:

Direct	recursion:	Occurs	when	a	trigger	performs	an	action	that	causes
it	to	recursively	fire	itself.

Indirect	recursion:	Occurs	when	a	trigger	fires	another	trigger	(which
can	fire	another	trigger,	and	so	on),	which	eventually	fires	the	first
trigger.

Direct	and	indirect	recursion	of	triggers	applies	only	to	triggers	of	the	same	type.	As
an	example,	an	INSTEAD	OF	trigger	that	causes	another	INSTEAD	OF	trigger	to	fire	is
direct	recursion.	Even	if	a	different	type	of	trigger	is	fired	between	the	first	and	second
firing	of	the	same	trigger,	it’s	still	considered	direct	recursion.	For	example,	if	one	or	more
AFTER	triggers	are	fired	between	the	first	and	second	firings	of	the	same	INSTEAD	OF
trigger,	it’s	still	considered	direct	recursion.	Indirect	recursion	occurs	when	a	trigger	of	the
same	type	is	called	between	firings	of	the	same	trigger.

You	can	use	the	ALTER	DATABASE	statement’s	SET	RECURSIVE_TRIGGERS
option	to	turn	direct	recursion	of	AFTER	triggers	on	and	off,	as	shown	in	Listing	7-8.
Turning	off	direct	recursion	of	INSTEAD	OF	triggers	requires	that	you	also	set	the
nested	triggers	option	to	0,	as	shown	previously	in	Listing	7-7.

Listing	7-8.	Turning	Off	Recursive	AFTER	Triggers

ALTER	DATABASE	AdventureWorks	SET	RECURSIVE_TRIGGERS	OFF;

Actions	taken	with	an	INSTEAD	OF	trigger	don’t	cause	it	to	fire	again.	Instead,	the
INSTEAD	OF	trigger	performs	constraint	checks	and	fires	any	AFTER	triggers.	As	an
example,	if	an	INSTEAD	OF	UPDATE	trigger	on	a	table	is	fired,	and	during	the	course
of	its	execution	it	performs	an	UPDATE	statement	against	the	table,	the	UPDATE	doesn’t
fire	the	INSTEAD	OF	trigger	again.	Instead,	the	UPDATE	statement	initiates	constraint-
check	operations	and	fires	AFTER	triggers	on	the	table.

	Caution		Nested	and	recursive	triggers	should	be	used	with	care,	because	nesting	and
recursion	that	are	too	deep	will	cause	your	triggers	to	throw	exceptions.	You	can	use	the
TRIGGER_NESTLEVEL()	function	to	determine	the	current	level	of	recursion	from
within	a	trigger.

The	UPDATE()	and	COLUMNS_UPDATED()
Functions

Triggers	can	take	advantage	of	two	system	functions,	UPDATE()	and
COLUMNS_UPDATED(),	to	tell	you	which	columns	are	affected	by	the	INSERT	or
UPDATE	statement	that	fires	the	trigger	in	the	first	place.	UPDATE()	takes	the	name	of	a
column	as	a	parameter	and	returns	true	if	the	column	is	updated	or	inserted,	and	false
otherwise.	COLUMNS_UPDATED()	returns	a	bit	pattern	indicating	which	columns	are
affected	by	the	INSERT	or	UPDATE	statement.

In	the	case	of	an	UPDATE,	affected	means	the	column	is	present	in	the	statement,	not
that	the	value	of	the	column	effectively	changed.	There	is	only	one	way	to	know	if	the
value	of	a	column	really	changed:	by	comparing	the	content	of	the	deleted	and
inserted	virtual	tables.	You	can	adapt	the	following	query	example	to	do	that	with	your
trigger:

SELECT	i.ProductId,	d.Color	as	OldColor,	i.Color	as	NewColor

FROM	deleted	as	d

JOIN	inserted	as	i	ON	d.ProductId	=	i.ProductId

				AND	COALESCE(d.Color,	'')	<>	COALESCE(i.Color,	'');

This	fragment	is	designed	to	be	part	of	a	trigger	that	could	be	created	on	the
Production.Product	table.	The	JOIN	condition	associates	lines	from	the	deleted
and	inserted	tables	on	the	primary	key	column	and	adds	a	non-equi	join	condition
(joining	on	difference	rather	than	on	equivalence)	on	the	Color	column,	to	keep	only
rows	where	the	Color	value	was	changed.	The	COALESCE()	function	allows	you	to
take	into	account	the	possibility	of	a	NULL	being	present	in	the	previous	or	new	value.

Getting	back	to	the	UPDATE()	and	COLUMNS_UPDATED()	functions,	the	example
trigger	in	Listing	7-9	demonstrates	the	use	of	triggers	to	enforce	business	rules.	In	this
example,	the	trigger	uses	the	UPDATE	function	to	determine	whether	Size	or
SizeUnitMeasureCode	has	been	affected	by	an	INSERT	or	UPDATE	statement.	If
either	of	these	columns	is	affected	by	an	INSERT	or	UPDATE	statement,	the	trigger
checks	whether	a	recognized	SizeUnitMeasureCode	was	used.	If	so,	the	trigger
converts	Size	to	centimeters.	The	trigger	recognizes	several	SizeUnitMeasureCode
values,	including	centimeters	(CM),	millimeters	(MM),	and	inches	(IN).

Listing	7-9.	Trigger	to	Enforce	Standard	Sizes

CREATE	TRIGGER	Production.ProductEnforceStandardSizes

ON	Production.Product

AFTER	INSERT,	UPDATE

NOT	FOR	REPLICATION

AS

BEGIN

				--	Make	sure	at	least	one	row	was	affected	and	either	the	

Size	or

				--	SizeUnitMeasureCode	column	was	changed

				IF	(@@ROWCOUNT	>	0)	AND	(UPDATE(SizeUnitMeasureCode)	OR	

UPDATE(Size))

				BEGIN

								--	Eliminate	"rows	affected"	messages

								SET	NOCOUNT	ON;

								--	Only	accept	recognized	units	of	measure	or	NULL

								IF	EXISTS

								(

												SELECT	1

												FROM	inserted

												WHERE	NOT

																(SizeUnitMeasureCode	IN	(N'M',	N'DM',	N'CM',	

N'MM',	N'IN')

																				OR	SizeUnitMeasureCode	IS	NULL

)

)

								BEGIN

												--	If	the	unit	of	measure	wasn't	recognized	raise	

an	error	and	roll	back

												--	the	transaction

												RAISERROR	('Invalid	Size	Unit	Measure	Code.',	10,	

127);

												ROLLBACK	TRANSACTION;

								END

								ELSE

								BEGIN

												--	If	the	unit	of	measure	is	a	recognized	unit	of	

measure	then	set	the

												--	SizeUnitMeasureCode	to	centimeters	and	perform	

the	Size	conversion

												UPDATE	Production.Product

												SET	SizeUnitMeasureCode	=	CASE

																				WHEN	Production.Product.SizeUnitMeasureCode	

IS	NULL	THEN	NULL	ELSE	N'CM'	END,

																Size	=	CAST	(

																				CAST	(CAST(i.Size	AS	float)	*

																								CASE	i.SizeUnitMeasureCode

																												WHEN	N'M'	THEN	100.0

																												WHEN	N'DM'	THEN	10.0

																												WHEN	N'CM'	THEN	1.0

																												WHEN	N'MM'	THEN	0.10

																												WHEN	N'IN'	THEN	2.54

																								END

																				AS	int

)	AS	nvarchar(5)

)

												FROM	inserted	i

												WHERE	Production.Product.ProductID	=	i.ProductID

												AND	i.SizeUnitMeasureCode	IS	NOT	NULL;

								END;

				END;

END;

GO

The	first	part	of	the	trigger	definition	gives	the	trigger	its	name,
Production.ProductEnforceStandardSizes,	and	creates	it	on	the
Production.Product	table.	It’s	specified	as	an	AFTER	INSERT,	UPDATE	trigger
and	is	declared	as	NOT	FOR	REPLICATION:

CREATE	TRIGGER	Production.ProductEnforceStandardSizes

ON	Production.Product

AFTER	INSERT,	UPDATE

NOT	FOR	REPLICATION

The	code	in	the	body	of	the	trigger	immediately	checks	@@ROWCOUNT	to	make	sure	at
least	one	row	was	affected	by	the	DML	statement	that	fired	the	trigger,	and	uses	the
UPDATE	function	to	ensure	that	the	Size	and	SizeUnitMeasureCode	columns	were
affected	by	the	DML	statement:

IF	(@@ROWCOUNT	>	0)

AND	(UPDATE(SizeUnitMeasureCode)	OR	UPDATE(Size))	BEGIN

•	•	•

END;

Once	the	trigger	has	verified	that	at	least	one	row	was	affected	and	the	appropriate
columns	were	modified,	the	trigger	sets	NOCOUNT	ON	to	prevent	the	rows	affected
messages	from	being	generated	by	the	trigger.	The	IF	EXISTS	statement	checks	to
make	sure	valid	unit-of-measure	codes	are	used.	If	not,	the	trigger	raises	an	error	and	rolls
back	the	transaction:

--	Eliminate	"rows	affected"	messages

SET	NOCOUNT	ON;

--	Only	accept	recognized	units	of	measure	or	NULL

IF	EXISTS

(

				SELECT	1

				FROM	inserted

				WHERE	NOT

								(SizeUnitMeasureCode	IN	(N'M',	N'DM',	N'CM',	N'MM',	

N'IN')

												OR	SizeUnitMeasureCode	IS	NULL

)

)

BEGIN

				--	If	the	unit	of	measure	wasn't	recognized	raise	an	

error	and	roll	back

				--	the	transaction

				RAISERROR	('Invalid	Size	Unit	Measure	Code.',	10,	127);

				ROLLBACK	TRANSACTION;

END

	Tip		The	ROLLBACK	TRANSACTION	statement	in	the	trigger	rolls	back	the
transaction	and	prevents	further	triggers	from	being	fired	by	the	current	trigger.	Two	error
messages	are	received	by	the	client:	the	one	raised	by	RAISERROR(),	and	the	error	3609
or	3616,	warning	that	the	transaction	ended	in	the	trigger.

If	the	unit-of-measure	validation	is	passed,	SizeUnitMeasureCode	is	set	to
centimeters	and	Size	is	converted	to	centimeters	for	each	inserted	or	updated	row:

BEGIN

				--	If	the	unit	of	measure	is	a	recognized	unit	of	measure	

then	set	the

				--	SizeUnitMeasureCode	to	centimeters	and	perform	the	

Size	conversion

				UPDATE	Production.Product

								SET	SizeUnitMeasureCode	=	CASE

												WHEN	Production.Product.SizeUnitMeasureCode	IS	

NULL	THEN	NULL	ELSE	N'CM'	END,

												Size	=	CAST	(

																CAST	(CAST(i.Size	AS	float)	*

																				CASE	i.SizeUnitMeasureCode

																								WHEN	N'M'	THEN	100.0

																								WHEN	N'DM'	THEN	10.0

																								WHEN	N'CM'	THEN	1.0

																								WHEN	N'MM'	THEN	0.10

																								WHEN	N'IN'	THEN	2.54

																				END

																AS	int

)	AS	nvarchar(5)

)

				FROM	inserted	i

				WHERE	Production.Product.ProductID	=	i.ProductID

				AND	i.SizeUnitMeasureCode	IS	NOT	NULL;

END;

This	trigger	enforces	simple	business	logic	by	ensuring	that	standard-size	codes	are
used	when	updating	the	Production.Product	table	and	converting	the	Size	values
to	centimeters.	To	test	the	trigger,	you	can	perform	updates	of	existing	rows	in	the
Production.Product	table.	Listing	7-10	updates	the	sizes	of	the	products	with
ProductID	680	and	780	to	600	millimeters	and	22.85	inches,	respectively.	The	results,
with	the	Size	values	automatically	converted	to	centimeters,	are	shown	in	Figure	7-4.

Listing	7-10.	Testing	the	Trigger	by	Adding	a	New	Product

UPDATE		Production.Product

SET	Size	=	N'600',

				SizeUnitMeasureCode	=	N'MM'

WHERE		ProductId		=		680;

UPDATE		Production.Product

SET	Size	=	N'22.85',

				SizeUnitMeasureCode	=	N'IN'

WHERE		ProductId		=		706;

SELECT		ProductID,

				Name,

				ProductNumber,

				Size,

				SizeUnitMeasureCode

FROM		Production.Product

WHERE		ProductID		IN		(680,		706);

Figure	7-4.	Results	of	the	Production.ProductEnforceStandardSizes	trigger	test

Whereas	the	UPDATE()	function	accepts	a	column	name	and	returns	true	if	the
column	is	affected,	the	COLUMNS_UPDATED()	function	accepts	no	parameters	and
returns	a	varbinary	value	with	a	single	bit	representing	each	column.	You	can	use	the
bitwise	AND	operator	(&)	and	a	bit	mask	to	test	which	columns	are	affected.	The	bits	are
set	from	left	to	right,	based	on	the	ColumnID	number	of	the	columns	from	the
sys.columns	catalog	view	or	the	COLUMNPROPERTY()	function.

	Caution		The	position	of	COLUMNS_UPDATED()	is	not	the	same	as	the
ORDINAL_POSITION	value	found	in	the	INFORMATION_SCHEMA.COLUMNS	catalog
view.	Rely	on	the	sys.columns.ColumnID	value	instead.

To	create	a	bit	mask,	you	must	use	20	(1)	to	represent	the	first	column,	21	(2)	to
represent	the	second	column,	and	so	on.	Because	COLUMNS_UPDATED()	returns	a
varbinary	result,	the	column	indicator	bits	can	be	spread	out	over	several	bytes.	To	test
columns	beyond	the	first	eight,	like	the	Size	and	SizeUnitMeasureCode	columns	in
the	example	code	(columns	11	and	12),	you	can	use	the	SUBSTRING	function	to	return
the	second	byte	of	COLUMNS_UPDATED()	and	test	the	appropriate	bits	with	a	bit	mask
of	12	(12	=	22	+	23).	The	example	trigger	in	Listing	7-9	can	be	modified	to	use	the
COLUMNS_UPDATED()	function,	as	shown	here:

IF	(@@ROWCOUNT	>	0)	AND	(SUBSTRING(COLUMNS_UPDATED(),	2,	1)	

&	12	<>	0x00)

The	COLUMNS_UPDATED()	function	won’t	return	correct	results	if	the	ColumnID
values	of	the	table	are	changed.	If	the	table	is	dropped	and	re-created	with	columns	in	a
different	order,	you	need	to	change	the	triggers	that	use	COLUMNS_UPDATED()	to
reflect	the	changes.	There	may	be	specialized	instances	in	which	you	can	take	advantage
of	the	COLUMNS_UPDATED()	functionality,	but	in	general	we	advise	against	using
COLUMNS_UPDATED():	instead,	use	the	UPDATE()	function	to	determine	which
columns	were	affected	by	the	DML	statement	that	fired	your	trigger.

Triggers	on	Views
Although	you	can’t	create	AFTER	triggers	on	views,	SQL	Server	does	allow	you	to	create
INSTEAD	OF	triggers	on	your	views.	A	trigger	can	be	useful	for	updating	views	that	are
otherwise	non-updatable,	such	as	views	with	multiple	base	tables	or	views	that	contain
aggregate	functions.	INSTEAD	OF	triggers	on	views	also	give	you	fine-grained	control,
because	you	can	control	which	columns	of	the	view	are	updatable	through	the	trigger.	The
AdventureWorks	database	comes	with	a	view	named	Sales.vSalesPerson,	which	is
formed	by	joining	11	separate	tables	together.	The	INSTEAD	OF	trigger	in	Listing	7-11
allows	you	to	update	specific	columns	of	two	of	the	base	tables	used	in	the	view	by
executing	UPDATE	statements	directly	against	the	view.

Listing	7-11.	INSTEAD	OF	Trigger	on	a	View

CREATE	TRIGGER	Sales.vIndividualCustomerUpdate

ON	Sales.vIndividualCustomer

INSTEAD	OF	UPDATE

NOT	FOR	REPLICATION

AS

BEGIN

				--	First	make	sure	at	least	one	row	was	affected

				IF	@@ROWCOUNT	=	0	RETURN

				--	Turn	off	"rows	affected"	messages

				SET	NOCOUNT	ON;

				--	Initialize	a	flag	to	indicate	update	success

				DECLARE	@UpdateSuccessful	bit	=	0;

				--	Check	for	updatable	columns	in	the	first	table

				IF	UPDATE(FirstName)	OR	UPDATE(MiddleName)	OR	

UPDATE(LastName)

				BEGIN

								--	Update	columns	in	the	base	table

								UPDATE	Person.Person

								SET	FirstName	=	i.FirstName,

												MiddleName	=	i.MiddleName,

												LastName	=	i.LastName

								FROM	inserted	i

								WHERE	i.BusinessEntityID	

=	Person.Person.BusinessEntityID;

								--	Set	flag	to	indicate	success

								SET	@UpdateSuccessful	=	1;

				END;

				--	If	updatable	columns	from	the	second	table	were	

specified,	update	those

				--	columns	in	the	base	table

				IF	UPDATE(EmailAddress)

				BEGIN

								--	Update	columns	in	the	base	table

								UPDATE	Person.EmailAddress

								SET	EmailAddress	=	i.EmailAddress

								FROM	inserted	i

								WHERE	i.BusinessEntityID	

=	Person.EmailAddress.BusinessEntityID;

								--	Set	flag	to	indicate	success

								SET	@UpdateSuccessful	=	1;

				END;

				--	If	the	update	was	not	successful,	raise	an	error	and	

roll	back	the

				--	transaction

				IF	@UpdateSuccessful	=	0

								RAISERROR('Must	specify	updatable	columns.',	10,	127);

END;

GO

The	trigger	in	Listing	7-11	is	created	as	an	INSTEAD	OF	UPDATE	trigger	on	the
Sales.vIndividualCustomer	view,	as	shown	here:

CREATE	TRIGGER	Sales.vIndividualCustomerUpdate

ON	Sales.vIndividualCustomer

INSTEAD	OF	UPDATE

NOT	FOR	REPLICATION

As	with	the	previous	examples	in	this	chapter,	this	trigger	begins	by	checking
@@ROWCOUNT	to	ensure	that	at	least	one	row	was	updated:

--	First	make	sure	at	least	one	row	was	affected

IF	@@ROWCOUNT	=	0	RETURN;

Once	the	trigger	verifies	that	one	or	more	rows	were	affected	by	the	DML	statement
that	fired	the	trigger,	it	turns	off	the	rows	affected	messages	and	initializes	a	flag	to
indicate	success	or	failure	of	the	update	operation:

--	Turn	off	"rows	affected"	messages

SET	NOCOUNT	ON;

--	Initialize	a	flag	to	indicate	update	success

DECLARE	@UpdateSuccessful	bit	=	0;

The	trigger	then	checks	to	see	whether	the	columns	designated	as	updatable	were
affected	by	the	UPDATE	statement.	If	the	proper	columns	were	affected	by	the	UPDATE
statement,	the	trigger	performs	updates	on	the	appropriate	base	tables	for	the	view.	For
purposes	of	this	demonstration,	the	columns	that	are	updatable	by	the	trigger	are	the
FirstName,	MiddleName,	and	LastName	columns	from	the	Person.Person
table,	and	the	EmailAddress	column	from	the	Person.EmailAddress	column:

--	Check	for	updatable	columns	in	the	first	table

IF	UPDATE(FirstName)	OR	UPDATE(MiddleName)	OR	

UPDATE(LastName)

BEGIN

				--	Update	columns	in	the	base	table

				UPDATE	Person.Person

				SET	FirstName	=	i.FirstName,

								MiddleName	=	i.MiddleName,

								LastName	=	i.LastName

				FROM	inserted	i

				WHERE	i.BusinessEntityID	

=	Person.Person.BusinessEntityID;

				--	Set	flag	to	indicate	success

				SET	@UpdateSuccessful	=	1;

END;

--	If	updatable	columns	from	the	second	table	were	

specified,	update	those

--	columns	in	the	base	table

IF	UPDATE(EmailAddress)	BEGIN

				--	Update	columns	in	the	base	table

				UPDATE	Person.EmailAddress

				SET	EmailAddress	=	i.EmailAddress

				FROM	inserted	i

				WHERE	i.BusinessEntityID	

=	Person.EmailAddress.BusinessEntityID;

				--	Set	flag	to	indicate	success

				SET	@UpdateSuccessful	=	1;

END;

Finally,	if	no	updatable	columns	were	specified	by	the	UPDATE	statement	that	fired
the	trigger,	an	error	is	raised	and	the	transaction	is	rolled	back:

--	If	the	update	was	not	successful,	raise	an	error	and	roll	

back	the

--	transaction

IF	@UpdateSuccessful	=	1

				RAISERROR('Must	specify	updatable	columns.',	10,	127);

Listing	7-12	demonstrates	a	simple	UPDATE	against	the
Sales.vIndividualCustomer	view	with	the	INSTEAD	OF	trigger	from	Listing	7-
11	created	on	it.	The	result	is	shown	in	Figure	7-5.

Listing	7-12.	Updating	a	View	Using	an	INSTEAD	OF	Trigger

UPDATE	Sales.vIndividualCustomer

SET	FirstName	=	N'Dave',

				MiddleName	=	N'Robert',

				EmailAddress	=	N'dave.robinett@adventure-works.com'

WHERE	BusinessEntityID	=	1699;

SELECT	BusinessEntityID,	FirstName,	MiddleName,	LastName,	

EmailAddress

FROM	Sales.vIndividualCustomer

WHERE	BusinessEntityID	=	1699;

Figure	7-5.	Result	of	the	INSTEAD	OF	trigger	view	update

DDL	Triggers
Since	SQL	Server	2005,	T-SQL	programmers	have	had	the	ability	to	create	DDL	triggers
that	fire	when	DDL	events	occur	in	a	database	or	on	the	server.	This	section	discusses
DDL	triggers,	the	events	that	fire	them,	and	their	purpose.	The	format	of	the	CREATE
TRIGGER	statement	for	DDL	triggers	is	only	slightly	different	from	the	DML	trigger
syntax,	with	the	major	difference	being	that	you	must	specify	the	scope	for	the	trigger:
either	ALL	SERVER	or	DATABASE.	The	DATABASE	scope	causes	the	DDL	trigger	to
fire	if	an	event	of	a	specified	event	type	or	event	group	occurs	in	the	database	in	which	the
trigger	was	created.	ALL	SERVER	scope	causes	the	DDL	trigger	to	fire	if	an	event	of	the
specified	event	type	or	event	group	occurs	anywhere	on	the	current	server.

DDL	triggers	can	only	be	specified	as	FOR	or	AFTER	(there’s	no	INSTEAD	OF-type
DDL	trigger).	The	event	types	that	can	fire	a	DDL	trigger	are	largely	of	the	form	CREATE,
ALTER,	DROP,	GRANT,	DENY,	or	REVOKE.	Some	system	SPs	that	perform	DDL
functions	also	fire	DDL	triggers.	The	ALTER	TRIGGER,	DROP	TRIGGER,	DISABLE
TRIGGER,	and	ENABLE	TRIGGER	statements	work	for	DDL	triggers	just	as	they	do	for
DML	triggers.

DDL	triggers	are	useful	when	you	want	to	prevent	changes	to	your	database,	perform
actions	in	response	to	a	change	in	the	database,	or	audit	changes	to	the	database.	Which
DDL	statements	can	fire	a	DDL	trigger	depends	on	the	scope	of	the	trigger.

DDL	Event	Types	and	Event	Groups
DDL	triggers	can	fire	in	response	to	a	wide	variety	of	event	types	and	event	groups,
scoped	at	either	the	database	or	server	level.	The	events	that	fire	DDL	triggers	are	largely
DDL	statements	like	CREATE	and	DROP,	and	Data	Control	Language	(DCL)	statements
like	GRANT	and	DENY.	Event	groups	form	a	hierarchical	structure	of	DDL	events	in
logical	groupings,	like	DDL_FUNCTION_EVENTS	and	DDL_PROCEDURE_EVENTS.
Event	groups	allow	you	to	fire	triggers	in	response	to	a	wide	range	of	DDL	events.

BOL	has	complete	listings	of	all	available	DDL	trigger	event	types	and	event	groups,
so	they	aren’t	reproduced	fully	here.	Just	keep	in	mind	that	you	can	fire	triggers	in
response	to	most	T-SQL	DDL	and	DCL	statements.	You	can	also	query	the
sys.trigger_event_types	catalog	view	to	retrieve	available	DDL	events.

With	DDL	triggers,	you	can	specify	either	an	event	type	or	an	event	group,	the	latter	of
which	can	encompass	multiple	events	or	other	event	groups.	If	you	specify	an	event
group,	any	events	included	in	that	group,	or	in	the	subgroups	of	that	group,	will	fire	the
DDL	trigger.

	Note		Creating	a	DDL	trigger	with	ALL	SERVER	scope	requires	CONTROL	SERVER
permission	on	the	server.	Creating	a	DDL	trigger	with	DATABASE	scope	requires	ALTER
ANY	DATABASE	DDL	TRIGGER	permissions.

Once	the	DDL	trigger	fires,	you	can	access	metadata	about	the	event	that	fired	the
trigger	with	the	EVENTDATA()	function.	EVENTDATA()	returns	information	such	as	the
time,	connection,	object	name,	and	type	of	event	that	fired	the	trigger.	The	results	are
returned	as	a	SQL	Server	xml	data	type	instance.	Listing	7-13	shows	a	sample	of	the	type
of	data	returned	by	the	EVENTDATA	function.

Listing	7-13.	EVENTDATA()	Function	Example	Data

<EVENT_INSTANCE>

	<EventType>CREATE_TABLE</EventType>

	<PostTime>2012-04-21T17:08:28.527</PostTime>

	<SPID>115</SPID>

	<ServerName>SQL2012</ServerName>

	<LoginName>SQL2O12\Rudi</LoginName>

	<UserName>dbo</UserName>

	<DatabaseName>AdventureWorks</DatabaseName>

	<SchemaName>dbo</SchemaName>

	<ObjectName>MyTable</ObjectName>

	<ObjectType>TABLE</ObjectType>

	<TSQLCommand>

	<SetOptions	

ANSI_NULLS="ON"ANSI_NULL_DEFAULT="ON"ANSI_PADDING="ON"QUOTED_IDENTIFIER="ON"ENCRYPTED="FALSE"

	/>

	<CommandText>CREATE	TABLE	dbo.MyTable	(i	int);

</CommandText>

	</TSQLCommand>

</EVENT_INSTANCE>

You	can	use	the	xml	data	type’s	value()	method	to	retrieve	specific	nodes	from	the
result.	The	example	DDL	trigger	in	Listing	7-14	creates	a	DDL	trigger	that	fires	in
response	to	the	CREATE	TABLE	statement	in	the	AdventureWorks	database.	It	logs	the
event	data	to	a	table	named	dbo.DdlActionLog.

Listing	7-14.	CREATE	TABLE	DDL	Trigger	Example

--	Create	a	table	to	log	DDL	CREATE	TABLE	actions

CREATE	TABLE	dbo.DdlActionLog

(

				EntryId	int	NOT	NULL	IDENTITY(1,	1)	PRIMARY	KEY,

				EventType	nvarchar(200)	NOT	NULL,

				PostTime	datetime	NOT	NULL,

				LoginName	sysname	NOT	NULL,

				UserName	sysname	NOT	NULL,

				ServerName	sysname	NOT	NULL,

				SchemaName	sysname	NOT	NULL,

				DatabaseName	sysname	NOT	NULL,

				ObjectName	sysname	NOT	NULL,

				ObjectType	sysname	NOT	NULL,

				CommandText	nvarchar(max)	NOT	NULL

);

GO

CREATE	TRIGGER	AuditCreateTable

ON	DATABASE

FOR	CREATE_TABLE

AS

BEGIN

				--	Assign	the	XML	event	data	to	an	xml	variable

				DECLARE	@eventdata	xml	=	EVENTDATA();

				--	Shred	the	XML	event	data	and	insert	a	row	in	the	log	

table

				INSERT	INTO	dbo.DdlActionLog

				(

								EventType,

								PostTime,

								LoginName,

								UserName,

								ServerName,

								SchemaName,

								DatabaseName,

								ObjectName,

								ObjectType,

								CommandText

)

				SELECT

								EventNode.value(N'EventType[1]',	N'nvarchar(200)'),

								EventNode.value(N'PostTime[1]',	N'datetime'),

								EventNode.value(N'LoginName[1]',	N'sysname'),

								EventNode.value(N'UserName[1]',	N'sysname'),

								EventNode.value(N'ServerName[1]',	N'sysname'),

								EventNode.value(N'SchemaName[1]',	N'sysname'),

								EventNode.value(N'DatabaseName[1]',	N'sysname'),

								EventNode.value(N'ObjectName[1]',	N'sysname'),

								EventNode.value(N'ObjectType[1]',	N'sysname'),

								EventNode.value(N'(TSQLCommand/CommandText)[1]',	

'nvarchar(max)')

				FROM	@eventdata.nodes('/EVENT_INSTANCE')	

EventTable(EventNode);

END;

GO

The	first	part	of	the	example	in	Listing	7-14	creates	a	simple	table	to	store	the	event-
specific	data	generated	by	events	that	fire	the	DDL	trigger:

--	Create	a	table	to	log	DDL	CREATE	TABLE	actions

CREATE	TABLE	dbo.DdlActionLog

(

				EntryId	int	NOT	NULL	IDENTITY(1,	1)	PRIMARY	KEY,

				EventType	nvarchar(200)	NOT	NULL,

				PostTime	datetime	NOT	NULL,

				LoginName	sysname	NOT	NULL,

				UserName	sysname	NOT	NULL,

				ServerName	sysname	NOT	NULL,

				SchemaName	sysname	NOT	NULL,

				DatabaseName	sysname	NOT	NULL,

				ObjectName	sysname	NOT	NULL,

				ObjectType	sysname	NOT	NULL,

				CommandText	nvarchar(max)	NOT	NULL

);

GO

The	DDL	trigger	definition	begins	with	the	name,	the	scope	(DATABASE),	and	the
DDL	action	that	fires	the	trigger.	In	this	example,	the	action	that	fires	the	trigger	is	the

CREATE	TABLE	event.	Notice	that	unlike	DML	triggers,	DDL	triggers	don’t	belong	to
schemas	and	don’t	have	schemas	specified	in	their	names:

CREATE	TRIGGER	AuditCreateTable

ON	DATABASE

FOR	CREATE_TABLE

The	body	of	the	trigger	begins	by	declaring	an	xml	variable,	@eventdata.	This
variable	holds	the	results	of	the	EVENTDATA()	function	for	further	processing	later	in
the	trigger:

--	Assign	the	XML	event	data	to	an	xml	variable

DECLARE	@eventdata	xml	=	EVENTDATA();

Next,	the	trigger	uses	the	nodes()	and	value()	methods	of	the	@eventdata
xml	variable	to	shred	the	event	data,	which	is	then	inserted	into	the
dbo.DdlActionLog	table	in	relational	form:

--	Shred	the	XML	event	data	and	insert	a	row	in	the	log	

table

INSERT	INTO	dbo.DdlActionLog

(

				EventType,

				PostTime,

				LoginName,

				UserName,

				ServerName,

				SchemaName,

				DatabaseName,

				ObjectName,

				ObjectType,

				CommandText

)

SELECT

				EventNode.value(N'EventType[1]',	N'nvarchar(200)'),

				EventNode.value(N'PostTime[1]',	N'datetime'),

				EventNode.value(N'LoginName[1]',	N'sysname'),

				EventNode.value(N'UserName[1]',	N'sysname'),

				EventNode.value(N'ServerName[1]',	N'sysname'),

				EventNode.value(N'SchemaName[1]',	N'sysname'),

				EventNode.value(N'DatabaseName[1]',	N'sysname'),

				EventNode.value(N'ObjectName[1]',	N'sysname'),

				EventNode.value(N'ObjectType[1]',	N'sysname'),

				EventNode.value(N'(TSQLCommand/CommandText)[1]',	

'nvarchar(max)')

FROM	@eventdata.nodes('/EVENT_INSTANCE')	

EventTable(EventNode);

Listing	7-15	demonstrates	the	DDL	trigger	by	performing	a	CREATE	TABLE
statement.	Partial	results	are	shown	in	Figure	7-6.

Listing	7-15.	Testing	the	DDL	Trigger	with	a	CREATE	TABLE	Statement

CREATE	TABLE	dbo.MyTable	(i	int);

GO

SELECT

				EntryId,

				EventType,

				UserName,

				ObjectName,

				CommandText

FROM	DdlActionLog;

Figure	7-6.	DDL	audit	logging	results

Dropping	a	DDL	trigger	is	as	simple	as	executing	the	DROP	TRIGGER	statement,	as
shown	in	Listing	7-16.	Notice	that	the	ON	DATABASE	clause	is	required	in	this	instance.
The	reason	is	that	the	DDL	trigger	exists	outside	the	schemas	of	the	database,	so	you	must
tell	SQL	Server	whether	the	trigger	exists	at	the	database	or	server	scope.

Listing	7-16.	Dropping	a	DDL	Trigger

DROP	TRIGGER	AuditCreateTable

ON	DATABASE;

Logon	Triggers
SQL	Server	offers	yet	another	type	of	trigger:	the	logon	trigger.	Logon	triggers	were	first
made	available	in	SQL	Server	2005	SP	2.	These	triggers	fire	in	response	to	an	SQL	Server
LOGON	event—after	authentication	succeeds,	but	before	the	user	session	is	established.
You	can	perform	tasks	ranging	from	simple	LOGON	event	auditing	to	more	advanced	tasks
like	restricting	the	number	of	simultaneous	sessions	for	a	login	or	denying	users	the	ability
to	create	sessions	at	certain	times.

The	code	example	for	this	section	uses	logon	triggers	to	deny	a	given	user	the	ability
to	log	in	to	SQL	Server	during	a	specified	time	period	(for	example,	during	a	resource-
intensive	nightly	batch	process).	Listing	7-17	begins	by	creating	a	sample	login	and	a	table
that	holds	a	logon-denial	schedule.	The	first	entry	in	this	table	will	be	used	to	deny	the
example	login	the	ability	to	log	in	to	SQL	Server	between	the	hours	of	9:00	and	11:00
p.m.	on	Saturday	nights.

Listing	7-17.	Creating	a	Test	Login	and	Logon-Denial	Schedule

CREATE	LOGIN	PublicUser	WITH	PASSWORD	=	'p@$$w0rd';

GO

USE	Master;

CREATE	TABLE	dbo.DenyLogonSchedule	(

				UserId	sysname	NOT	NULL,

				DayOfWeek	tinyint	NOT	NULL,

				TimeStart	time	NOT	NULL,

				TimeEnd	time	NOT	NULL,

				PRIMARY	KEY	(UserId,	DayOfWeek,	TimeStart,	TimeEnd)

);

	GO

INSERT	INTO	dbo.DenyLogonSchedule	(

				UserId,

				DayOfWeek,

				TimeStart,

				TimeEnd

)	VALUES	(

				'PublicUser',

				7,

				'21:00:00',

				'23:00:00'

);

The	logon	trigger	that	uses	this	table	to	deny	logons	on	a	schedule	is	shown	in	Listing
7-18.

Listing	7-18.	Example	Logon	Trigger

USE	Master;

CREATE	TRIGGER	DenyLogons

ON	ALL	SERVER

WITH	EXECUTE	AS	'sa'

FOR	LOGON

AS

BEGIN

				IF	EXISTS	(SELECT	1

								FROM	Master	.dbo.DenyLogonSchedule

								WHERE	UserId	=	ORIGINAL_LOGIN()

								AND	DayOfWeek	=	DATEPART(WeekDay,	GETDATE())

								AND	CAST(GETDATE()	AS	TIME)	BETWEEN	TimeStart	AND	

TimeEnd

)	BEGIN

								ROLLBACK	TRANSACTION;

				END;

END;

	Caution		If	your	logon	trigger	errors	out,	you	can’t	log	on	into	SQL	Server	normally.
You	can	still	connect	using	the	Dedicated	Administrator	Connection	(DAC),	which
bypasses	logon	triggers.	Make	sure	the	table	dbo.DenyLogonSchedule	exists	and
that	your	logon	trigger	works	properly	before	putting	it	in	production.

The	CREATE	TRIGGER	statement	begins	much	like	the	other	trigger	examples
you’ve	used	to	this	point,	by	specifying	the	name	and	scope	(ALL	SERVER).	The	WITH
EXECUTE	clause	is	used	to	specify	that	the	logon	trigger	should	run	under	the	sa	security
context,	and	the	FOR	LOGON	clause	indicates	that	this	is	actually	a	logon	trigger:

CREATE	TRIGGER	DenyLogons

ON	ALL	SERVER

WITH	EXECUTE	AS	'sa'

FOR	LOGON

The	trigger	body	is	fairly	simple.	It	checks	for	the	existence	of	an	entry	in	the
AdventureWorks.dbo.DenyLogonSchedule	table,	indicating	that	the	current
user	(retrieved	with	the	ORIGINAL_LOGIN()	function)	is	denied	login	based	on	the
current	date	and	time.	If	there	is	an	entry	indicating	that	the	login	should	be	denied,	then
the	ROLLBACK	TRANSACTION	statement	is	executed,	denying	the	login:

IF	EXISTS	(SELECT	1

				FROM	AdventureWorks.dbo.DenyLogonSchedule

				WHERE	UserId	=	ORIGINAL_LOGIN()

				AND	DayOfWeek	=	DATEPART(WeekDay,	GETDATE())

				AND	CAST(GETDATE()	AS	TIME)	BETWEEN	TimeStart	AND	TimeEnd

)	BEGIN

				ROLLBACK	TRANSACTION;

END;

Notice	that	the	three-part	name	of	the	table	is	used	in	this	statement,	because	the	user
attempting	to	log	in	may	be	connecting	to	a	different	default	database.	Attempting	to	log
in	to	SQL	Server	using	the	PublicUser	account	on	Saturday	night	between	the	hours
indicated	results	in	an	error	message	like	the	one	shown	in	Figure	7-7.

Figure	7-7.	A	logon	trigger	denying	a	login

	Tip		Logon	triggers	are	useful	for	auditing	and	restricting	logins,	but	because	they	only
fire	after	a	successful	authentication,	they	can’t	be	used	to	log	unsuccessful	login	attempts.

The	logon	trigger	also	makes	logon	information	available	in	XML	format	in	the	trigger
via	the	EVENTDATA()	function.	An	example	of	the	logon	information	generated	by	the
LOGON	event	is	shown	in	Listing	7-19.

Listing	7-19.	Example	Event	Data	Generated	by	a	LOGON	Event

<EVENT_INSTANCE>

	<EventType>LOGON</EventType>

	<PostTime>2012-04-21T23:18:33.357</PostTime>

	<SPID>110</SPID>

	<ServerName>SQL2012</ServerName>

	<LoginName>PublicUser</LoginName>

	<LoginType>SQL	Login</LoginType>

	<SID>zgPcN6UCBE2j/HYTug0i4A==</SID>

	<ClientHost><local	machine></ClientHost>

	<IsPooled>0</IsPooled>

</EVENT_INSTANCE>

	Note		Logon	triggers	to	deny	access	to	logins	based	on	day	of	week,	time	of	day,	and
number	of	sessions	per	login	are	available	in	the	Common	Criteria	compliance	package
for	SQL	Server.	You	can	download	them	on	the	SQL	Server	Common	Criteria
Certifications	website:		http://msdn.microsoft.com/en-
us/library/bb326650.aspx.

Summary
This	chapter	discussed	triggers,	including	traditional	DML	triggers,	DDL	triggers,	and
logon	triggers.	As	you’ve	seen,	triggers	are	useful	tools	for	a	variety	of	purposes.

DML	triggers	are	the	original	form	of	trigger.	Much	of	the	functionality	that	DML
triggers	were	used	for	in	the	past,	such	as	enforcing	referential	integrity,	has	been

http://msdn.microsoft.com/en-us/library/bb326650.aspx

supplanted	by	newer	and	more	efficient	T-SQL	functionality	over	the	years,	like	cascading
DRI.	DML	triggers	are	useful	for	auditing	DML	statements	and	for	enforcing	complex
business	rules	and	logic	in	the	database.	They	can	also	be	used	to	implement	updating	for
views	that	normally	aren’t	updatable.

This	chapter	discussed	the	inserted	and	deleted	virtual	tables,	which	hold
copies	of	the	rows	being	affected	by	a	DML	statement.	You	also	saw	the	UPDATE()	and
COLUMNS_UPDATED()	functions	in	DML	triggers,	which	identify	the	columns	affected
by	the	DML	statement	that	fired	a	trigger.	Finally,	you	learned	about	the	differences
between	AFTER	and	INSTEAD	OF	triggers	along	with	nested	triggers	and	trigger
recursion.

DDL	triggers	can	be	used	to	audit	and	restrict	database	object	and	server	changes.
DDL	triggers	can	help	provide	protection	against	accidental	or	malicious	changes	to,	or
destruction	of,	database	objects.	This	chapter	discussed	the	EVENTDATA()	function	and
how	you	can	use	it	to	audit	DDL	actions	in	a	database	or	on	the	server.

Logon	triggers	can	likewise	be	used	to	audit	successful	logins	and	restrict	logins	for
various	reasons.

The	next	chapter	discusses	the	native	encryption	functionality	available	in	SQL	Server
2014.

EXERCISES

1.	 [True/False]	The	EVENTDATA()	function	returns	information
about	DDL	events	within	DDL	triggers.

2.	 [True/False]	In	a	DML	trigger,	the	inserted	and	deleted
virtual	tables	are	both	populated	with	rows	during	an	UPDATE
event.

3.	 [True/False]	DML	triggers	are	available	on	in-memory	tables	and
disk-based	tables.

4.	 [Choose	all	that	apply]	Which	of	the	following	types	of	triggers
does	SQL	Server	2014	support?

Logon	triggers

TCL	triggers

DDL	triggers

Hierarchy	triggers

DML	triggers

5.	 [Fill	in	the	blank]	The	___________	statement	prevents	triggers
from	generating	extraneous	rows	affected	messages.

6.	 [Choose	one]	The	COLUMNS_UPDATED()	function	returns	data	in
which	of	the	following	formats?

A	varbinary	string	with	bits	set	to	represent	affected
columns

A	comma-delimited	varchar	string	with	a	column	ID
number	for	each	affected	column

A	table	consisting	of	column	ID	numbers	for	each	affected
column

A	table	consisting	of	all	rows	that	were	inserted	by	the	DML
operation

7.	 [True/False]	@@ROWCOUNT,	when	used	at	the	beginning	of	a	DML
trigger,	reflects	the	number	of	rows	affected	by	the	DML	statement
that	fired	the	trigger.

8.	 [True/False]	You	can	create	recursive	AFTER	triggers	on	views.

CHAPTER	8

Encryption
SQL	Server	2014	supports	built-in	column-and	database-level	encryption	functionality
directly	through	T-SQL.	Column-level	encryption	allows	you	to	encrypt	the	data	in	your
database	at	the	column	level.	Back	in	the	days	of	SQL	Server	2000	(and	before),	you	had
to	turn	to	third-party	tools	or	write	your	own	extended	stored	procedures	(XPs)	to	encrypt
sensitive	data.	Even	with	these	tools	in	place,	subpar	implementation	of	various	aspects	of
the	system,	such	as	encryption	key	management,	could	leave	many	systems	in	a
vulnerable	state.

SQL	Server	2014’s	encryption	model	takes	advantage	of	the	Windows	CryptoAPI	to
secure	your	data.	With	built-in	encryption	key	management	and	facilities	to	handle
encryption,	decryption,	and	one-way	hashing	through	T-SQL	statements,	SQL	Server	2014
provides	useful	tools	for	efficient	and	secure	data	encryption.	SQL	Server	2014	also
supports	two	encryption	options:	transparent	data	encryption	(TDE)	for	supporting
encryption	of	an	entire	database;	and	extensible	key	management	(EKM),	which	allows
you	to	use	third-party	hardware-based	encryption	key	management	and	encryption
acceleration.

This	chapter	discusses	SQL	Server	2014’s	built-in	column-level	encryption	and
decryption	functionality,	key	management	capabilities,	one-way	hashing	functions,	and
TDE	and	EKM	functionality.

The	Encryption	Hierarchy
SQL	Server	2014	offers	a	layered	approach	to	encryption	key	management	by	allowing
several	levels	of	key-encrypting	keys	between	the	top-level	master	key	and	the	lowest-
level	data-encrypting	keys.	SQL	Server	also	allows	for	encryption	by	certificates,
symmetric	keys,	and	asymmetric	keys.	The	SQL	Server	2014	encryption	model	is
hierarchical,	as	shown	in	Figure	8-1.

Figure	8-1.	SQL	Server	2014	encryption	hierarchy

At	the	top	of	the	SQL	Server	2014	encryption	hierarchy	is	the	Windows	Data
Protection	API	(DPAPI),	which	is	used	to	protect	the	granddaddy	of	all	SQL	Server	2014
encryption	keys:	the	service	master	key	(SMK).	The	SMK	is	automatically	generated	by
SQL	Server	the	first	time	it’s	needed	to	encrypt	another	key.	There	is	only	one	SMK	per
SQL	Server	instance,	and	it	directly	or	indirectly	secures	all	keys	in	the	SQL	Server
encryption	key	hierarchy	on	the	server.

Although	each	SQL	Server	instance	has	only	a	single	SMK,	each	database	can	have	a
database	master	key	(DMK).	The	DMK	is	encrypted	by	the	SMK	and	is	used	to	encrypt
lower-level	keys	and	certificates.

At	the	bottom	of	the	SQL	Server	2014	key	hierarchy	are	the	certificates,	symmetric
keys,	and	asymmetric	keys	used	to	encrypt	data.

SQL	Server	2014	also	introduces	the	concept	of	the	server	certificate,	which	is	a
certificate	created	in	the	master	database	for	the	purpose	of	protecting	database
encryption	keys.	Database	encryption	keys	are	symmetric	encryption	keys	created	to
encrypt	entire	databases	via	TDE.

Service	Master	Keys
As	mentioned	in	the	previous	section,	the	SMK	is	automatically	generated	by	SQL	Server
the	first	time	it’s	needed.	Because	the	SMK	is	generated	automatically	and	managed	by
SQL	Server,	there	are	only	a	couple	of	administrative	tasks	you	need	to	perform	for	this

key:	backing	it	up	and	restoring	it	on	a	server	as	necessary.	You	also	need	access	to	the
directory	where	the	backup	file	is	located.	For	example,	in	Listing	8-1,	you	want	to	create
a	folder	named	CH08	on	your	C	drive.	Listing	8-1	demonstrates	the	BACKUP	and
RESTORE	SERVICE	MASTER	KEY	statements.

Listing	8-1.	BACKUP	and	RESTORE	SMK	Examples

--	Back	up	the	SMK	to	a	file

BACKUP	SERVICE	MASTER	KEY	TO	FILE	=	'c:\CH08\S0L2012.SMK'

ENCRYPTION	BY	PASSWORD	=	'p@$$w0rd';

--	Restore	the	SMK	from	a	file

RESTORE	SERVICE	MASTER	KEY	FROM	FILE	=	'c:\CH08\S0L2012.SMK'

DECRYPTION	BY	PASSWORD	=	'p@$$w0rd';

The	BACKUP	SERVICE	MASTER	KEY	statement	allows	you	to	back	up	your	SMK
to	a	file.	The	SMK	is	encrypted	in	the	file,	so	the	ENCRYPTION	BY	PASSWORD	clause
of	this	statement	is	mandatory.

The	RESTORE	SERVICE	MASTER	KEY	statement	restores	the	SMK	from	a
previously	created	backup	file.	The	DECRYPTION	BY	PASSWORD	clause	must	specify
the	same	password	used	to	encrypt	the	file	when	you	created	the	backup.	Backing	up	and
restoring	an	SMK	requires	CONTROL	SERVER	permissions.	In	the	previous	scenario,
SQL	Server	is	intelligent	enough	to	know	that	the	backup	SMK	and	the	SMK	in	the
restore	are	the	same,	so	it	doesn’t	need	to	go	through	an	unnecessary	decryption	and
encryption	process.	The	data	is	encrypted	again	only	if	the	SMK	you’re	trying	to	restore	is
different	from	the	SMK	you	backed	up.

The	RESTORE	SERVICE	MASTER	KEY	statement	can	include	the	optional
keyword	FORCE	to	force	the	SMK	to	restore	even	if	there	is	a	data	decryption	failure.	If
you	have	to	use	the	FORCE	keyword,	you	can	expect	to	lose	data,	so	use	this	option	with
care	and	only	as	a	last	resort.

	Tip		After	installing	SQL	Server	2014,	you	should	immediately	back	up	your	SMK	and
store	a	copy	of	it	in	a	secure	offsite	location.	If	your	SMK	becomes	corrupted	or	is
otherwise	compromised,	you	could	lose	access	to	all	of	your	encrypted	data	if	you	don’t
have	a	backup	of	the	SMK.

In	addition	to	BACKUP	and	RESTORE	statements,	SQL	Server	provides	the	ALTER
SERVICE	MASTER	KEY	statement	to	allow	you	to	change	the	SMK	for	an	instance	of
SQL	Server.	When	SQL	Server	generates	the	SMK,	it	uses	the	credentials	of	the	SQL
Server	service	account	to	encrypt	the	SMK.	If	you	change	the	SQL	Server	service	account,
you	can	use	ALTER	SERVICE	MASTER	KEY	to	update	it	using	the	current	service
account	credentials.	Alternatively,	you	can	advise	SQL	Server	to	secure	the	SMK	using
the	local	machine	key,	which	is	managed	by	the	operating	system.	You	can	also	use
ALTER	SERVICE	MASTER	KEY	to	regenerate	the	SMK	completely.

As	with	the	RESTORE	SERVICE	MASTER	KEY	statement,	the	ALTER	SERVICE

MASTER	KEY	statement	allows	use	of	the	FORCE	keyword.	Normally,	if	there	is	a
decryption	error	during	the	process	of	altering	the	SMK,	SQL	Server	stops	the	process
with	an	error	message.	When	FORCE	is	used,	the	SMK	is	regenerated	even	at	the	risk	of
data	loss.	Just	like	the	RESTORE	statement,	the	FORCE	option	should	be	used	with	care,
and	only	as	a	last	resort.

	Tip		When	you	regenerate	the	SMK,	all	keys	that	are	encrypted	by	it	must	be	decrypted
and	re-encrypted.	This	operation	can	be	resource	intensive	and	should	be	scheduled	during
off-peak	time	periods.

Database	Master	Keys
Each	database	can	have	a	single	DMK,	which	is	used	to	encrypt	certificate	private	keys
and	asymmetric	key-pair	private	keys	in	the	current	database.	The	DMK	is	created	with
the	CREATE	MASTER	KEY	statement,	as	shown	in	Listing	8-2.

Listing	8-2.	Creating	a	Master	Key

USE	AdventureWorks2014;

GO

CREATE	MASTER	KEY

ENCRYPTION	BY	PASSWORD	=	'p@$$w0rd'	;

The	CREATE	MASTER	KEY	statement	creates	the	DMK	and	uses	the	Advanced
Encryption	Standard	(AES)	to	encrypt	it	with	the	supplied	password.	If	the	password	you
supply	doesn’t	meet	Windows’	password-complexity	requirements,	SQL	Server	will
complain	with	an	error	message	like	the	following:

Msg	15118,	Level	16,	State	1,	Line	1

Password	validation	failed.	The	password	does	not	meet	

Windows

policy	requirements	because	it	is	not	complex	enough.

	Note		Versions	of	SQL	prior	to	SQL	2012	used	Triple	Data	Encryption	Standard
(3DES)	for	encrypting	SMKs	and	DMKs.	SQL	Server	2012	and	later	use	the	more
advanced	AES	encryption.	If	you	upgrade	SQL	Server	from	a	previous	version,	you	need
to	also	upgrade	your	encryption	keys.	This	can	be	accomplished	by	using	either	ALTER
SERVICE	MASTER	KEY	or	ALTER	MASTER	KEY	and	the	REGENERATE	clause.

SQL	Server	2014	automatically	uses	the	SMK	to	encrypt	a	copy	of	the	DMK.	When
this	feature	is	used,	SQL	Server	can	decrypt	your	DMK	when	necessary	without	the	need
to	first	open	the	master	key.	When	this	feature	isn’t	in	use,	you	must	issue	the	OPEN
MASTER	KEY	statement	and	supply	the	same	password	initially	used	to	encrypt	the	DMK
whenever	you	need	to	use	it.	The	potential	downside	to	encrypting	your	DMK	with	the

SMK	is	that	any	member	of	the	sysadmin	server	role	can	decrypt	the	DMK.	You	can
use	the	ALTER	MASTER	KEY	statement	to	change	the	method	SQL	Server	uses	to
decrypt	the	DMK.	Listing	8-3	shows	how	to	turn	off	encryption	by	SMK	for	a	DMK.

Listing	8-3.	Turning	Off	DMK	Encryption	by	the	SMK

ALTER	MASTER	KEY

			DROP	ENCRYPTION	BY	SERVICE	MASTER	KEY;

When	the	DMK	is	regenerated,	all	the	keys	it	protects	are	decrypted	and	re-encrypted
with	the	new	DMK.	The	FORCE	keyword	is	used	to	force	SQL	Server	to	regenerate	the
DMK	even	if	there	are	decryption	errors.	As	with	the	SMK,	the	FORCE	keyword	should
be	used	only	as	a	last	resort.	You	can	expect	to	lose	data	if	you	have	to	use	FORCE.

You	can	also	back	up	and	restore	a	DMK	with	the	BACKUP	MASTER	KEY	and
RESTORE	MASTER	KEY	statements.	The	BACKUP	MASTER	KEY	statement	is	similar
in	operation	to	the	BACKUP	SERVICE	MASTER	KEY	statement.	When	you	back	up	the
DMK,	you	must	specify	the	password	that	SQL	Server	will	use	to	encrypt	the	DMK	in	the
output	file.	When	you	restore	the	DMK,	you	must	specify	the	same	password	in	the
DECRYPTION	BY	PASSWORD	clause	to	decrypt	the	DMK	in	the	output	file.	In	addition,
you	must	specify	an	encryption	password	that	SQL	Server	will	use	to	encrypt	the
password	in	the	ENCRYPTION	BY	PASSWORD	clause.	Listing	8-4	demonstrates	backing
up	and	restoring	a	DMK.

Listing	8-4.	Backing	Up	and	Restoring	a	DMK

USE	AdventureWorks2014;

GO

OPEN	MASTER	KEY	DECRYPTION	BY	PASSWORD	=	'p@$$w0rd'	;

BACKUP	MASTER	KEY

			TO	FILE	=	'c:\CH08\AdventureWorks2014.DMK'

			ENCRYPTION	BY	PASSWORD	=	'p@$$wOrd';

--	Restore	DMK	from	backup

RESTORE	MASTER	KEY

		FROM	FILE	=	'c:\CH08\AdventureWorks2014.DMK'

		DECRYPTION	BY	PASSWORD	=	'p@$$wOrd'

		ENCRYPTION	BY	PASSWORD	=	'3rt=d4uy';

CLOSE	MASTER	KEY;

The	FORCE	keyword	is	available	for	use	with	the	RESTORE	MASTER	KEY
statement.	But	as	with	other	statements,	it	should	only	be	used	as	a	last	resort,	because	it
could	result	in	unrecoverable	encrypted	data.

The	DROP	MASTER	KEY	statement	can	be	used	to	remove	a	DMK	from	the
database.	DROP	MASTER	KEY	doesn’t	remove	a	DMK	if	it’s	currently	being	used	to
encrypt	other	keys	in	the	database.	If	you	want	to	drop	a	DMK	that	is	protecting	other

keys	in	the	database,	the	protected	keys	must	first	be	altered	to	remove	their	encryption	by
the	DMK.

	Tip		Always	make	backups	of	your	DMKs	immediately	on	creation	and	store	them	in	a
secure	location.

If	you	choose	to	disable	automatic	key	management	with	the	ALTER	MASTER	KEY
statement,	you	need	to	use	the	OPEN	MASTER	KEY	and	CLOSE	MASTER	KEY
statements	every	time	you	wish	to	perform	encryption	and	decryption	in	a	database.

OPEN	MASTER	KEY	requires	you	to	supply	the	same	password	used	to	encrypt	the
DMK	in	the	DECRYPTION	BY	PASSWORD	clause.	This	password	is	used	to	decrypt	the
DMK,	a	required	step	when	you’re	encrypting	and	decrypting	data.	When	you’re	finished
using	the	DMK,	issue	the	CLOSE	MASTER	KEY	statement.	If	your	DMK	is	encrypted	by
the	SMK,	you	don’t	need	to	use	the	OPEN	MASTER	KEY	and	CLOSE	MASTER	KEY
statements;	SQL	Server	handles	that	task	for	you	automatically.

Certificates
Certificates	are	asymmetric	encryption	key	pairs	with	additional	metadata,	such	as	subject
and	expiration	date,	in	the	X.509	certificate	format.	Asymmetric	encryption	is	a	method	of
encrypting	data	using	two	separate	but	mathematically	related	keys.	SQL	Server	2014	uses
the	standard	public	key/private	key	encryption	methodology.	You	can	think	of	a	certificate
as	a	wrapper	for	an	asymmetric	encryption	public	key/private	key	pair.	The	CREATE
CERTIFICATE	statement	can	be	used	to	either	install	an	existing	certificate	or	create	a
new	certificate	on	SQL	Server.	Listing	8-5	shows	how	to	create	a	new	certificate	on	SQL
Server.

Listing	8-5.	Creating	a	Certificate	on	SQL	Server

CREATE	CERTIFICATE	TestCertificate

		ENCRYPTION	BY	PASSWORD	=	'p@$$wOrd'

		WITH	SUBJECT	=	'AdventureWorks2014	Test	Certificate',

		EXPIRY_DATE	=	'2026-10-31';

The	CREATE	CERTIFICATE	statement	includes	several	options.	The	only
mandatory	things	are	the	SQL	Server	identifier	for	the	certificate	immediately	following
the	CREATE	CERTIFICATE	statement	(in	this	case	TestCertificate)	and	the
WITH	SUBJECT	clause,	which	sets	the	certificate	subject	name.	If	the	ENCRYPTION
BY	PASSWORD	clause	isn’t	used	when	you	create	a	certificate,	the	certificate’s	private
key	is	encrypted	by	the	DMK.	Additional	options	available	to	the	CREATE
CERTIFICATE	statement	include	START_DATE	and	EXPIRY_DATE,	which	set	the
start	and	expiration	dates	for	the	certificate;	and	the	ACTIVE	FOR	BEGIN	DIALOG
clause,	which	makes	the	certificate	available	for	use	by	Service	Broker	dialogs.

	Tip		If	START_DATE	isn’t	specified,	the	current	date	is	used.	If	EXPIRY_DATE	is

omitted,	the	expiration	date	is	set	to	one	year	after	the	start	date.

You	can	also	use	the	CREATE	CERTIFICATE	statement	to	load	an	existing
certificate	in	a	variety	of	ways,	including	the	following:

You	can	use	the	FROM	ASSEMBLY	clause	to	load	an	existing
certificate	from	a	signed	assembly	already	loaded	in	the	database.

You	can	use	the	EXECUTABLE	FILE	clause	to	create	a	certificate
from	a	signed	DLL	file.

You	can	use	the	FILE	clause	to	create	a	certificate	from	an	existing
Distinguished	Encoding	Rules	(DER)	X.509	certificate	file.

You	can	also	use	the	WITH	PRIVATE	KEY	clause	with	the	FILE	or
EXECUTABLE	FILE	option	to	specify	a	separate	file	containing	the
certificate’s	private	key.	When	you	specify	the	WITH	PRIVATE
KEY	clause,	you	can	specify	the	optional	DECRYPTION	BY
PASSWORD	and	ENCRYPTION	BY	PASSWORD	clauses	to	specify
the	password	that	will	be	used	to	decrypt	the	private	key	if	it’s
encrypted	in	the	source	file,	and	to	secure	the	private	key	once	it’s
loaded.

	Note		SQL	Server	generates	private	keys	that	are	1,024	bits	in	length.	If	you	import	a
private	key	from	an	external	source,	it	must	be	a	multiple	of	64	bits,	between	384	and
3,456	bits	in	length.

After	creating	a	certificate—as	with	DMKs	and	SMKs—you	should	immediately
make	a	backup	and	store	it	in	a	secure	location.	Listing	8-6	demonstrates	how	to	make	a
backup	of	a	certificate.

Listing	8-6.	Backing	Up	a	Certificate

BACKUP	CERTIFICATE	TestCertificate

		TO	FILE	=	'c:\CH08\TestCertificate.CER'

		WITH	PRIVATE	KEY

		(

				FILE	=	'c:\CH08\TestCertificate.PVK',

				ENCRYPTION	BY	PASSWORD	=	'	7&rtOxp2',

				DECRYPTION	BY	PASSWORD	=	'p@$$wOrd'

);

The	BACKUP	CERTIFICATE	statement	in	Listing	8-6	backs	up	the	TestCertificate
certificate	to	the	c:\TestCertificate.CER	file	and	the	certificate’s	private	key	to
the	c:\TestCertificate.PVK	file.	The	DECRYPTION	BY	PASSWORD	clause
specifies	the	password	to	use	to	decrypt	the	certificate,	and	ENCRYPTION	BY
PASSWORD	gives	SQL	Server	the	password	to	use	when	encrypting	the	private	key	in	the
file.	There	is	no	RESTORE	statement	for	certificates;	instead,	the	CREATE

CERTIFICATE	statement	has	all	the	options	necessary	to	restore	a	certificate	from	a
backup	file	by	simply	creating	from	an	existing	certificate	using	the	FROM	FILE	clause.
T-SQL	also	provides	an	ALTER	CERTIFICATE	statement	that	allows	you	to	make
changes	to	an	existing	certificate.

You	can	use	certificates	to	encrypt	and	decrypt	data	directly	with	the	certificate
encryption	and	decryption	functions,	EncryptByCert	and	DecryptByCert.	The
EncryptByCert	function	encrypts	a	given	clear	text	message	with	a	specified
certificate.	The	function	accepts	an	int	certificate	ID	and	a	plain	text	value	to	encrypt.
The	int	certificate	ID	can	be	retrieved	by	passing	the	certificate	name	to	the	CertID
function.	Listing	8-7	demonstrates	this	function.	EncryptByCert	returns	a
varbinary	value	up	to	a	maximum	of	432	bytes	in	length	(the	length	of	the	result
depends	on	the	length	of	the	key).	The	following	section,	“Limitations	of	Asymmetric
Encryption,”	describes	some	of	the	limitations	of	asymmetric	encryption	on	SQL	Server,
including	encryption	by	certificate.

Limitations	of	Asymmetric	Encryption
Asymmetric	encryption	has	certain	limitations	that	should	be	noted	before	you	attempt	to
encrypt	data	directly	with	certificates	or	asymmetric	keys.	The	EncryptByCert
function	can	accept	a	char,	varchar,	binary,	nchar,	nvarchar,	or	varbinary
constant,	column	name,	or	variable	as	clear	text	to	encrypt.	Asymmetric	encryption,
including	encryption	by	certificate,	on	SQL	Server	returns	a	varbinary	result,	but	it
won’t	return	a	result	longer	than	432	bytes.	As	mentioned,	the	maximum	length	of	the
result	depends	on	the	length	of	the	encryption	key	used.	As	an	example,	with	the	default
private	key	length	of	1,024	bits,	you	can	encrypt	a	varchar	plain	text	message	with	a
maximum	length	of	117	characters	and	an	nvarchar	plain	text	message	with	a
maximum	length	of	58	characters.	The	result	in	either	case	is	a	varbinary	result	of	128
bytes.

Microsoft	recommends	that	you	avoid	using	asymmetric	encryption	to	encrypt	data
directly	because	of	the	size	limitations,	and	for	performance	reasons.	Symmetric
encryption	algorithms	use	shorter	keys	but	operate	more	quickly	than	asymmetric
encryption	algorithms.	The	SQL	Server	2014	encryption	key	hierarchy	provides	the	best
of	both	worlds,	with	the	long	key	lengths	of	asymmetric	keys	protecting	the	shorter,	more
efficient	symmetric	keys.	To	maximize	performance,	Microsoft	recommends	using
symmetric	encryption	to	encrypt	data	and	asymmetric	encryption	to	encrypt	symmetric
keys.

The	DecryptByCert	function	decrypts	text	previously	encrypted	by
EncryptByCert.	The	DecryptByCert	function	accepts	an	int	certificate	ID,	an
encrypted	varbinary	cipher	text	message,	and	an	optional	certificate	password	that
must	match	the	one	used	when	the	certificate	was	created	(if	one	was	specified	at	creation
time).	If	no	certificate	password	is	specified,	the	DMK	is	used	to	decrypt	it.	Listing	8-7
demonstrates	encryption	and	decryption	by	certificate	for	short	plain	text.	The	results	are
shown	in	Figure	8-2.	If	you	get	an	error	during	the	CREATE	MASTER	KEY	and	CREATE

CERTIFICATE	commands,	be	sure	to	run	the	final	DROP	statements	prior	to	creating	the
objects.

Listing	8-7.	Example	Encryption	and	Decryption	by	Certificate

--						Create	a	DMK

CREATE		MASTER		KEY

				ENCRYPTION	BY	PASSWORD	=	'P@55w0rd';

--		Create	a	certificate

CREATE		CERTIFICATE		TestCertificate

				WITH		SUBJECT		=		N'AdventureWorks		Test		Certificate',

				EXPIRY_DATE	=	'2026-10-31';

--	Create	the	plain	text	data	to	encrypt

DECLARE	@plaintext	nvarchar(58)	=

				N'This	is	a	test	string	to	encrypt';

SELECT		'Plain		text		=		',		@plaintext;

--	Encrypt	the	plain	text	by	certificate

DECLARE	@ciphertext	varbinary(128)	=

				EncryptByCert(Cert_ID('TestCertificate'),	@plaintext);

SELECT	'Cipher	text	=	',	@ciphertext;

--		Decrypt	the	cipher	text	by	certificate

DECLARE	@decryptedtext	nvarchar(58)	=

				DecryptByCert(Cert_ID('TestCertificate'),	@ciphertext);

SELECT		'Decrypted		text		=		',		@decryptedtext;

--	Drop	the	test	certificate

DROP		CERTIFICATE	TestCertificate;

--						Drop	the	DMK

DROP		MASTER	KEY;

Figure	8-2.	Result	of	encrypting	and	decrypting	by	certificate

Listing	8-7	first	creates	a	DMK	and	a	test	certificate	using	the	CREATE	MASTER
KEY	and	CREATE	CERTIFICATE	statements	presented	previously	in	this	chapter.	It
then	generates	an	nvarchar	plain	text	message	to	encrypt:

--	Create	a	DMK

CREATE	MASTER	KEY	ENCRYPTION	BY	PASSWORD	=	'P@55wOrd';

--	Create	a	certificate

CREATE	CERTIFICATE	TestCertificate

WITH	SUBJECT	=	N'AdventureWorks	Test	Certificate',

EXPIRY_DATE	=	'2026-10-31';

--	Create	the	plain	text	data	to	encrypt

DECLARE	@plaintext	nvarchar(58)	=

N'This	is	a	test	string	to	encrypt';

SELECT	'Plain	text	=	',	@plaintext;

The	example	uses	the	EncryptByCert	function	to	encrypt	the	plain	text	message.
The	CertID	function	is	used	to	retrieve	the	int	certificate	ID	for	TestCertificate:

--	Encrypt	the	plain	text	by	certificate

DECLARE	@ciphertext	varbinary(128)	=

EncryptByCert(Cert_ID('TestCertificate'),	@plaintext);

SELECT	'Cipher	text	=	',	@ciphertext;

The	DecryptByCert	function	is	then	used	to	decrypt	the	cipher	text.	Again,	the
CertID	function	is	used	to	retrieve	the	TestCertificate	certificate	ID:

--	Decrypt	the	cipher	text	by	certificate

DECLARE	@decryptedtext	nvarchar(58)	=

DecryptByCert(Cert_ID('TestCertificate'),	@ciphertext);

SELECT	'Decrypted	text	=	',	@decryptedtext;

The	balance	of	the	code	performs	some	cleanup,	dropping	the	certificate	and	DMK:

--	Drop	the	test	certificate

DROP	CERTIFICATE	TestCertificate;

--	Drop	the	DMK

DROP	MASTER	KEY;

You	can	also	use	a	certificate	to	generate	a	signature	for	a	plain	text	message.
SignByCert	accepts	a	certificate	ID,	a	plain	text	message,	and	an	optional	certificate
password.	The	result	is	a	varbinary	string,	up	to	a	length	of	432	characters	(again,	the
length	of	the	result	is	determined	by	the	length	of	the	encryption	key).	When
SignByCert	is	used,	the	slightest	change	in	the	plain	text	message—even	a	single
character—will	result	in	a	completely	different	signature	being	generated	for	the	message.
This	allows	you	to	easily	detect	whether	your	plain	text	has	been	tampered	with.	Listing	8-
8	uses	the	SignByCert	function	to	create	a	signature	for	a	plain	text	message.	The
results	are	shown	in	Figure	8-3.

Listing	8-8.	Signing	a	Message	with	the	SignByCert	Function

--	Create	a	DMK

CREATE	MASTER	KEY	ENCRYPTION	BY	PASSWORD	=	'P@55w0rd';

--	Create	a	certificate

CREATE	CERTIFICATE	TestCertificate

WITH	SUBJECT	=	'AdventureWorks	Test	Certificate',

EXPIRY_DATE	=	'2026-10-31';

--	Create	message

DECLARE	@message	nvarchar(4000)	=	N'Four	score	and	seven	

years	ago	our	fathers	brought	forth	on	this	continent	a	new	

nation,	conceived	in	Liberty,	and	dedicated	to	the	

proposition	that	all	men	are	created	equal.

Now	we	are	engaged	in	a	great	civil	war,	testing	whether	

that	nation,	or	any	nation,	so	conceived	and	so	dedicated,	

can	long	endure.	We	are	met	on	a	great	battle-field	of	that	

war.	We	have	come	to	dedicate	a	portion	of	that	field,	as	

a	final	resting	place	for	those	who	here	gave	their	lives	

that	that	nation	might	live.	It	is	altogether	fitting	and	

proper	that	we	should	do	this.	';

--	Sign	the	message	by	certificate

SELECT	SignByCert(Cert_ID(N'TestCertificate'),	@message);

--	Drop	the	certificate

DROP	CERTIFICATE	TestCertificate;

--	Drop	the	DMK	DROP	MASTER	KEY;

Figure	8-3.	Signature	generated	by	SignByCert	(partial)

Asymmetric	Keys
Asymmetric	keys	are	actually	composed	of	a	key	pair:	a	public	key,	which	is	publicly
accessible,	and	a	private	key,	which	is	kept	secret.	The	mathematical	relationship	between
the	public	and	private	keys	allows	for	encryption	and	decryption	without	revealing	the
private	key.	T-SQL	includes	statements	for	creating	and	managing	asymmetric	keys.

The	CREATE	ASYMMETRIC	KEY	statement	allows	you	to	generate	an	asymmetric
key	pair	or	install	an	existing	key	pair	on	the	server,	in	much	the	same	manner	as	when
creating	a	certificate.	Encryption-key	length	is	often	used	as	an	indicator	of	relative
encryption	strength,	and	when	you	create	an	asymmetric	key	on	SQL	Server,	you	can
specify	an	RSA	key	length,	as	shown	in	Table	8-1.

Table	8-1.	Asymmetric	Key	Algorithms	and	Limits

Listing	8-9	creates	an	asymmetric	key	pair	on	SQL	Server	2014.

Listing	8-9.	Creating	an	Asymmetric	Key	Pair

CREATE	ASYMMETRIC	KEY	TempAsymmetricKey	WITH	ALGORITHM	

=	RSA_1024;

You	can	alter	an	existing	asymmetric	key	with	the	ALTER	ASYMMETRIC	KEY
statement.	ALTER	ASYMMETRIC	KEY	offers	the	following	options	for	managing	your
asymmetric	keys:

You	can	use	the	REMOVE	PRIVATE	KEY	clause	to	remove	the
private	key	from	the	asymmetric	public	key/private	key	pair.

You	can	use	the	WITH	PRIVATE	KEY	clause	to	change	the	method
used	to	protect	the	private	key.

You	can	change	the	asymmetric	key	protection	method	from	DMK
encryption	to	password	encryption	with	the	ENCRYPTION	BY
PASSWORD	option.

You	can	switch	from	password	protection	for	your	asymmetric	key	to
DMK	protection	with	the	DECRYPTION	BY	PASSWORD	clause.

You	can	specify	both	the	ENCRYPTION	BY	PASSWORD	and
DECRYPTION	BY	PASSWORD	clauses	together	to	change	the
password	used	to	encrypt	the	private	key.

The	DROP	ASYMMETRIC	KEY	statement	removes	an	asymmetric
key	from	the	database.

The	EncryptByAsymKey	and	DecryptByAsymKey	functions	allow	you	to
encrypt	and	decrypt	data	with	an	asymmetric	key	in	the	same	way	as	EncryptByCert
and	DecryptByCert.

The	EncryptByAsymKey	function	accepts	an	int	asymmetric	key	ID	and	plain
text	to	encrypt.	The	AsymKeyID	function	can	be	used	to	retrieve	an	asymmetric	key	ID
by	name.	DecryptByAsymKey	accepts	an	asymmetric	key	ID,	encrypted	cipher	text	to
decrypt,	and	an	optional	password	to	decrypt	the	asymmetric	key.	If	the	password	is
specified,	it	must	be	the	same	password	used	to	encrypt	the	asymmetric	key	at	creation
time.

	Tip		The	limitations	for	asymmetric	key	encryption	and	decryption	on	SQL	Server	are
the	same	as	those	for	certificate	encryption	and	decryption.

Listing	8-10	demonstrates	the	use	of	asymmetric	key	encryption	and	decryption
functions.	Be	sure	to	drop	any	master	keys	prior	to	running	the	code.	The	results	are
shown	in	Figure	8-4.

Listing	8-10.	Encrypting	and	Decrypting	with	Asymmetric	Keys

--	Create	DMK

CREATE	MASTER	KEY

ENCRYPTION	BY	PASSWORD	=	'P@55wOrd';

--	Create	asymmetric	key

CREATE	ASYMMETRIC	KEY	TestAsymmetricKey	WITH	ALGORITHM	

=	RSA_512;

--Assign	a	credit	card	number	to	encrypt

DECLARE	@CreditCard	nvarchar(26)	=	N'9000	1234	5678	9012';

SELECT	@CreditCard;

--Encrypt	the	credit	card	number

DECLARE	@EncryptedCreditCard	varbinary(64)	=

		EncryptByAsymKey(AsymKey_ID(N'TestAsymmetricKey'),	

@CreditCard);

		SELECT	@EncryptedCreditCard;

--Decrypt	the	encrypted	credit	card	number

DECLARE	@DecryptedCreditCard	nvarchar(26)	=

		DecryptByAsymKey(AsymKey_ID(N'TestAsymmetricKey'),	

@EncryptedCreditCard);

SELECT	@DecryptedCreditCard;

--	Drop	asymmetric	key

DROP	ASYMMETRIC	KEY	TestAsymmetricKey;

--Drop	DMK

DROP	MASTER	KEY;

Figure	8-4.	Asymmetric	key	encryption	results

This	example	first	creates	a	DMK	and	an	RSA	asymmetric	key	with	a	512-bit	private

key	length.	Then	it	creates	plain	text	representing	a	simple	credit	card	number:

--	Create	DMK

CREATE	MASTER	KEY	ENCRYPTION	BY	PASSWORD	=	'P@55wOrd';

--	Create	asymmetric	key

CREATE	ASYMMETRIC	KEY	TestAsymmetricKey	WITH	ALGORITHM	

=	RSA_512;

--Assign	a	credit	card	number	to	encrypt

DECLARE	@CreditCard	nvarchar(26)	=	N'9000	1234	5678	9012';

SELECT	@CreditCard;

	Note		You	have	the	option	to	create	an	asymmetric	key	without	a	corresponding
database	master	key.	If	you	decide	to	do	this,	you	must	have	a	password	assigned	to	the
asymmetric	key;	otherwise,	a	password	is	optional.

The	example	then	encrypts	the	credit	card	number	with	the	EncryptByAsymKey
function	and	decrypts	it	with	the	DecryptByAsymKey	function.	Both	functions	use	the
AsymKeylD	function	to	retrieve	the	asymmetric	key	ID:

--	Encrypt	the	credit	card	number

DECLARE	@EncryptedCreditCard	varbinary(64)	=

EncryptByAsymKey(AsymKey_ID(N'TestAsymmetricKey'),	

@CreditCard);

SELECT	@EncryptedCreditCard;

--	Decrypt	the	encrypted	credit	card	number

DECLARE	@DecryptedCreditCard	nvarchar(26)	=

DecryptByAsymKey(AsymKey_ID(N'TestAsymmetricKey'),	

@EncryptedCreditCard);

SELECT	@DecryptedCreditCard;

The	code	finishes	up	with	a	little	housekeeping,	namely	dropping	the	asymmetric	key
and	the	DMK	created	for	the	example:

--	Drop	asymmetric	key

DROP	ASYMMETRIC	KEY	TestAsymmetricKey;

--	Drop	DMK

DROP	MASTER	KEY;

Like	certificates,	asymmetric	keys	offer	a	function	to	generate	digital	signatures	for
plain	text.	The	SignByAsymKey	function	accepts	a	string	up	to	8,000	bytes	in	length
and	returns	a	varbinary	signature	for	the	string.	The	length	of	the	signature	is
dependent	on	the	key	length,	as	previously	shown	in	Table	8-1.	Listing	8-11	is	a	simple
example	of	the	SignByAsymKey	function	in	action.	The	results	are	shown	in	Figure	8-5.

Listing	8-11.	Signing	a	Message	by	Asymmetric	Key

--	Create	DMK

CREATE	MASTER	KEY

ENCRYPTION	BY	PASSWORD	=	'P@55wOrd';

--	Create	asymmetric	key

CREATE	ASYMMETRIC	KEY	TestAsymmetricKey	WITH	ALGORITHM	

=	RSA_512;

--	Create	message

DECLARE	@message	nvarchar(4000)	=	N'Alas,	poor	Yorick!';

SELECT	@message;

--	Sign	message	by	asymmetric	key

SELECT	SignByAsymKey(AsymKey_ID(N'TestAsymmetricKey'),	

@message);

--	Drop	asymmetric	key

DROP	ASYMMETRIC	KEY	TestAsymmetricKey;

--	Drop	DMK

DROP	MASTER	KEY;

Figure	8-5.	Signing	a	message	with	an	asymmetric	key

Asymmetric	Key	“Backups”
SQL	Server	provides	no	BACKUP	or	RESTORE	statement	for	asymmetric	keys.	For
physical	backups	of	your	asymmetric	keys,	you	should	install	the	asymmetric	keys	from
an	external	source	like	an	assembly,	an	executable	file,	a	strong-name	file,	or	a	hardware
security	module	(HSM).	You	can	make	backups	of	the	source	files	containing	your
asymmetric	keys.	As	an	alternative,	you	can	use	certificates	instead	of	asymmetric	keys.
Keep	these	options	in	mind	when	you’re	planning	to	take	advantage	of	SQL	Server	2014
encryption.

Symmetric	Keys
Symmetric	keys	are	at	the	bottom	of	the	SQL	Server	encryption	key	hierarchy.	Symmetric
encryption	algorithms	use	trivially	related	keys	to	both	encrypt	and	decrypt	your	data.
Trivially	related	simply	means	the	algorithm	can	use	either	the	same	key	for	both

encryption	and	decryption,	or	two	keys	that	are	mathematically	related	via	a	simple
transformation	to	derive	one	key	from	the	other.	Symmetric	keys	on	SQL	Server	2014	are
specifically	designed	to	support	SQL	Server’s	symmetric	encryption	functionality.	The
algorithms	provided	by	SQL	Server	2014	use	a	single	key	for	both	encryption	and
decryption.	In	the	SQL	Server	2014	encryption	model,	symmetric	keys	are	encrypted	by
certificates	or	asymmetric	keys,	and	they	can	be	used	in	turn	to	encrypt	other	symmetric
keys	or	raw	data.	The	CREATE	SYMMETRIC	KEY	statement	allows	you	to	generate
symmetric	keys,	as	shown	in	Listing	8-12.

Listing	8-12.	Creating	a	Symmetric	Key

CREATE	SYMMETRIC	KEY	TestSymmetricKey	WITH	ALGORITHM	

=	AES_128	ENCRYPTION	BY	PASSWORD	=	'p@55wOrd';

The	options	specified	in	the	CREATE	SYMMETRIC	KEY	statement	in	Listing	8-12
specify	that	the	symmetric	key	is	created	with	the	name	TestSymmetricKey,	it’s
protected	by	the	password	p@55wOrd,	and	it	uses	AES	with	a	127-bit	key	(AES128)	to
encrypt	data.

When	creating	a	symmetric	key,	you	can	specify	any	of	several	encryption	algorithms,
including	the	following:

AES128,	AES192,	and	AES256	specify	the	AES	block-encryption
algorithm	with	a	symmetric	key	length	of	128,	192,	or	256	bits	and	a
block	size	of	128	bits.

DES	specifies	the	DES	block-encryption	algorithm,	which	has	a
symmetric	key	length	of	56	bits	and	a	block	size	of	64	bits.

DESX	specifies	the	DES-X	block-encryption	algorithm,	which	was
introduced	as	a	successor	to	the	DES	algorithm.	DES-X	also	has	a
symmetric	key	length	of	56	bits	(although	because	the	algorithm
includes	security	augmentations,	the	effective	key	length	is	calculated
at	around	118	bits)	and	a	block	size	of	64	bits.

RC2	specifies	the	RC2	block-encryption	algorithm,	which	has	a	key
size	of	128	bits	and	a	block	size	of	64	bits.

RC4	and	RC4_128	specify	the	RC4	stream-encryption	algorithm,
which	has	a	key	length	of	40	or	128	bits.	RC4	and	RC4_128	aren’t
recommended,	because	they	don’t	generate	random	initialization
vectors	to	further	obfuscate	the	cipher	text.

The	CREATE	SYMMETRIC	KEY	statement	provides	additional	options	that	allow
you	to	specify	options	for	symmetric	key	creation,	including	the	following:

You	can	specify	a	KEYSOURCE	to	designate	a	passphrase	to	be	used
as	key	material	from	which	the	symmetric	key	is	derived.	If	you	don’t
specify	a	KEY	SOURCE,	SQL	Server	generates	the	symmetric	key
from	random	key	material.

The	ENCRYPTION	BY	clause	specifies	the	method	used	to	encrypt
this	symmetric	key	in	the	database.	You	can	specify	encryption	by	a
certificate,	a	password,	an	asymmetric	key,	another	symmetric	key,	or
HSM.

The	PROVIDER_KEY_NAME	and	CREATI0N_DISP0SITI0N
clauses	allow	you	to	use	your	symmetric	key	with	EKM	security.

The	IDENTITYVALUE	clause	specifies	an	identity	phrase	that	is	used
to	generate	a	GUID	to	“tag”	data	encrypted	with	the	key.

	Caution		When	a	symmetric	key	is	encrypted	with	a	password	instead	of	the	public	key
of	the	database	master	key,	the	3DES	encryption	algorithm	is	used.	Because	of	this,	keys
that	are	created	with	a	strong	encryption	algorithm,	such	as	AES,	are	themselves	secured
by	a	weaker	algorithm.

Temporary	Symmetric	Keys
You	can	create	temporary	symmetric	keys	by	prefixing	the	symmetric	key	name	with	a
number	sign	(#).	A	temporary	symmetric	key	exists	only	during	the	current	session	and	is
automatically	removed	when	the	current	session	ends.	Temporary	symmetric	keys	aren’t
accessible	to	any	sessions	outside	of	the	session	they’re	created	in.	When	referencing	a
temporary	symmetric	key,	the	number	sign	(#)	prefix	must	be	used.	You	can	use	the	same
WITH	clause	options	described	in	this	section	to	specify	how	the	symmetric	key	should	be
created.	To	be	honest,	we	don’t	see	much	use	for	temporary	symmetric	keys	at	this	point,
although	we	don’t	want	to	discount	them	totally.	After	all,	someone	may	find	a	use	for
them	in	the	future.

SQL	Server	also	provides	the	ALTER	SYMMETRIC	KEY	and	DROP	SYMMETRIC
KEY	statements	for	symmetric	key	management.	The	ALTER	statement	allows	you	to	add
or	remove	encryption	methods	on	a	symmetric	key.	As	an	example,	if	you	created	a
symmetric	key	and	encrypted	it	by	password	but	later	wished	to	change	it	to	encryption	by
certificate,	you	would	issue	two	ALTER	SYMMETRIC	KEY	statements—the	first	ALTER
statement	would	specify	the	ADD	ENCRYPTION	BY	CERTIFICATE	clause,	and	the
second	would	specify	DROP	ENCRYPTION	BY	PASSWORD,	as	shown	in	Listing	8-13.
Again,	you	may	need	to	drop	the	certificate	and	key	prior	to	running	the	code.

Listing	8-13.	Changing	the	Symmetric	Key	Encryption	Method

--	Create	certificate	to	protect	symmetric	key

CREATE	CERTIFICATE	TestCertificate

		WITH	SUBJECT	=	'AdventureWorks	Test	Certificate',

		EXPIRY_DATE	=	'2026-10-31';

CREATE	SYMMETRIC	KEY	TestSymmetricKey	WITH	ALGORITHM	

=	AES_128	ENCRYPTION	BY	

PASSWORD	=	'p@55wOrd';

OPEN	SYMMETRIC	KEY	TestSymmetricKey

		DECRYPTION	BY	PASSWORD	=	'p@55wOrd';

ALTER	SYMMETRIC	KEY	TestSymmetricKey

		ADD	ENCRYPTION	BY	CERTIFICATE	TestCertificate;

ALTER	SYMMETRIC	KEY	TestSymmetricKey

		DROP	ENCRYPTION	BY	PASSWORD	=	'p@55wOrd';

CLOSE	SYMMETRIC	KEY	TestSymmetricKey;

--	Drop	the	symmetric	key

DROP	SYMMETRIC	KEY	TestSymmetricKey;

--	Drop	the	certificate

DROP	CERTIFICATE	TestCertificate;

	Note		Before	you	alter	a	symmetric	key,	you	must	first	open	it	with	the	OPEN
SYMMETRIC	KEY	statement.

The	DROP	SYMMETRIC	KEY	statement	allows	you	to	remove	a	symmetric	key	from
the	database.

Once	you	create	a	symmetric	key,	you	can	encrypt	and	decrypt	data	with	the
EncryptByKey	and	DecryptByKey	functions.	Listing	8-14	creates	a	symmetric	key
and	encrypts	100	names	with	it.	Partial	results	are	shown	in	Figure	8-6.

Listing	8-14.	Encrypting	Data	with	a	Symmetric	Key

--	Create	a	temporary	table	to	hold	results

CREATE	TABLE	#TempNames

(

			BusinessEntityID	int	PRIMARY	KEY,

			FirstName						nvarchar(50),

			MiddleName					nvarchar(50),

			LastName							nvarchar(50),

			EncFirstName				varbinary(200),

			EncMiddleName			varbinary(200),

			EncLastName					varbinary(200)

);

--	Create	DMK

CREATE	MASTER	KEY

		ENCRYPTION	BY	PASSWORD	=	'Test_P@sswOrd';

--	Create	certificate	to	protect	symmetric	key

CREATE	CERTIFICATE	TestCertificate

		WITH	SUBJECT	=	'AdventureWorks	Test	Certificate',

		EXPIRY_DATE	=	'2026-10-31';

--	Create	symmetric	key	to	encrypt	data

CREATE	SYMMETRIC	KEY	TestSymmetricKey

		WITH	ALGORITHM	=	AES_128

		ENCRYPTION	BY	CERTIFICATE	TestCertificate;

--	Open	symmetric	key

OPEN	SYMMETRIC	KEY	TestSymmetricKey

		DECRYPTION	BY	CERTIFICATE	TestCertificate;

--	Populate	temp	table	with	100	encrypted	names	from	the	

Person.Person	table

INSERT

INTO	#TempNames

(

BusinessEntityID,

EncFirstName,

EncMiddleName,

EncLastName

)

SELECT	TOP(100)	BusinessEntityID,

		EncryptByKey(Key_GUID(N'TestSymmetricKey'),	FirstName),

		EncryptByKey(Key_GUID(N'TestSymmetricKey'),	MiddleName),

		EncryptByKey(Key_GUID(N'TestSymmetricKey'),	LastName)

FROM	Person.Person

ORDER	BY	BusinessEntityID;

--	Update	the	temp	table	with	decrypted	names

UPDATE	#TempNames

SET	FirstName	=	DecryptByKey(EncFirstName),

		MiddleName	=	DecryptByKey(EncMiddleName),

		LastName	=	DecryptByKey(EncLastName);

--	Show	the	results

SELECT	BusinessEntityID,

		FirstName,

		MiddleName,

		LastName,

		EncFirstName,

		EncMiddleName,

		EncLastName

FROM	#TempNames;

--	Close	the	symmetric	key

CLOSE	SYMMETRIC	KEY	TestSymmetricKey;

--	Drop	the	symmetric	key

DROP	SYMMETRIC	KEY	TestSymmetricKey;

--	Drop	the	certificate

DROP	CERTIFICATE	TestCertificate;

--Drop	the	DMK

DROP	MASTER	KEY;

--Drop	the	temp	table

DROP	TABLE	#TempNames;

Figure	8-6.	Symmetric	key	encryption	results	(partial)

Listing	8-14	first	creates	a	temporary	table	to	hold	the	encryption	and	decryption
results:

--	Create	a	temporary	table	to	hold	results

CREATE	TABLE	#TempNames

(

BusinessEntityID		int	PRIMARY	KEY,

FirstName															nvarchar(50),

MiddleName														nvarchar(50),

LastName																nvarchar(50),

EncFirstName												varbinary(200),

EncMiddleName											varbinary(200),

EncLastName													varbinary(200)

);

Then	a	DMK	is	created	to	protect	the	certificate	that	will	be	created	next.	The
certificate	that’s	created	is	then	used	to	encrypt	the	symmetric	key:

--	Create	DMK

CREATE	MASTER	KEY

		ENCRYPTION	BY	PASSWORD	=	'Test_P@sswOrd';

--	Create	certificate	to	protect	symmetric	key

CREATE	CERTIFICATE	TestCertificate

		WITH	SUBJECT	=	'AdventureWorks	Test	Certificate',

		EXPIRY_DATE	=	'2026-10-31';

--	Create	symmetric	key	to	encrypt	data

CREATE	SYMMETRIC	KEY	TestSymmetricKey

		WITH	ALGORITHM	=	AES_128

		ENCRYPTION	BY	CERTIFICATE	TestCertificate;

In	order	to	encrypt	data	with	the	symmetric	key,	the	example	must	first	execute	the
OPEN	SYMMETRIC	KEY	statement	to	open	the	symmetric	key.	The	DECRYPTION	BY
clause	specifies	the	method	to	use	to	decrypt	the	symmetric	key	for	use.	In	this	example,
the	key	is	protected	by	certificate,	so	DECRYPTION	BY	CERTIFICATE	is	used.	You
can	specify	decryption	by	certificate,	asymmetric	key,	symmetric	key,	or	password.	If	the
DMK	was	used	to	encrypt	the	certificate	or	asymmetric	key,	leave	off	the	WITH
PASSWORD	clause:

--	Open	symmetric	key

OPEN	SYMMETRIC	KEY	TestSymmetricKey

		DECRYPTION	BY	CERTIFICATE	TestCertificate;

The	next	step	is	to	use	the	EncryptByKey	function	to	encrypt	the	data.	In	this
example,	the	FirstName,	MiddleName,	and	LastName	for	100	rows	from	the
Person.Person	table	are	encrypted	with	EncryptByKey.	The	EncryptByKey
function	accepts	a	clear	text	char,	varchar,	binary,	varbinary,	nchar,	or	nvarchar
constant,	column,	or	T-SQL	variable	with	a	maximum	length	of	8,000	bytes.	The	result
returned	is	the	encrypted	data	in	varbinary	format	with	a	maximum	length	of	8,000
bytes.	In	addition	to	clear	text,	EncryptByKey	accepts	a	GUID	identifying	the
symmetric	key	with	which	you	wish	to	encrypt	the	clear	text.	The	KeyGUID	function
returns	a	symmetric	key’s	GUID	by	name:

--	Populate	temp	table	with	100	encrypted	names	from	the	

Person.Person	table

INSERT

INTO	#TempNames

(

			BusinessEntityID,

EncFirstName,

EncMiddleName,

EncLastName

)

SELECT	TOP(100)	BusinessEntityID,

			EncryptByKey(Key_GUID(N'TestSymmetricKey'),	FirstName),

			EncryptByKey(Key_GUID(N'TestSymmetricKey'),	MiddleName),

			EncryptByKey(Key_GUID(N'TestSymmetricKey'),	LastName)

FROM	Person.Person

ORDER	BY	BusinessEntityID;

The	example	code	then	uses	the	DecryptByKey	function	to	decrypt	the	previously
encrypted	cipher	text	in	the	temporary	table.	SQL	Server	stores	the	GUID	of	the
symmetric	key	used	to	encrypt	the	data	with	the	encrypted	data,	so	you	don’t	need	to
supply	the	symmetric	key	GUID	to	DecryptByKey.	In	the	example	code,	the
varbinary	encrypted	cipher	text	is	all	that’s	passed	to	the	EncryptByKey	function:

--	Update	the	temp	table	with	decrypted	names

UPDATE	#TempNames

SET	FirstName	=	DecryptByKey(EncFirstName),

				MiddleName	=	DecryptByKey(EncMiddleName),

				LastName	=	DecryptByKey(EncLastName);

Finally,	the	results	are	shown	and	the	symmetric	key	is	closed	with	the	CLOSE
SYMMETRIC	KEY	statement:

--	Show	the	results

SELECT	BusinessEntityID,

	FirstName,

	MiddleName,

	LastName,

	EncFirstName,

	EncMiddleName,

	EncLastName

FROM	#TempNames;

--	Close	the	symmetric	key

CLOSE	SYMMETRIC	KEY	TestSymmetricKey;

The	balance	of	the	code	drops	the	symmetric	key,	the	certificate,	the	master	key,	and
the	temporary	table:

--	Drop	the	symmetric	key

DROP	SYMMETRIC	KEY	TestSymmetricKey;

--	Drop	the	certificate

DROP	CERTIFICATE	TestCertificate;

--	Drop	the	DMK

DROP	MASTER	KEY;

--	Drop	the	temp	table

DROP	TABLE	#TempNames;

	Note		You	can	close	a	single	symmetric	key	by	name	or	use	the	CLOSE	ALL
SYMMETRIC	KEYS	statement	to	close	all	open	symmetric	keys.	Opening	and	closing
symmetric	keys	affects	only	the	current	session	on	the	server.	All	open	symmetric	keys

available	to	the	current	session	are	automatically	closed	when	the	current	session	ends.

Salt	and	Authenticators
The	initialization	vector	(IV),	or	salt,	is	an	important	aspect	of	encryption	security.	The	IV
is	a	block	of	bits	that	further	obfuscates	the	result	of	an	encryption.	The	idea	is	that	the	IV
helps	prevent	the	same	data	from	generating	the	same	cipher	text	if	it’s	encrypted	more
than	once	by	the	same	key	and	algorithm.	SQL	Server	doesn’t	allow	you	to	specify	an	IV
when	encrypting	data	with	a	symmetric	key,	however.	Instead,	SQL	Server	generates	a
random	IV	automatically	when	you	encrypt	data	with	block	ciphers	like	AES	and	DES.
The	obfuscation	provided	by	the	IV	helps	eliminate	patterns	from	your	encrypted	data
patterns	that	cryptanalysts	can	use	to	their	advantage	when	attempting	to	hack	your
encrypted	data.	The	downside	to	SQL	Server’s	randomly	generated	IVs	is	that	they	make
indexing	an	encrypted	column	a	true	exercise	in	futility.

In	addition	to	random	IV	generation,	SQL	Server’s	EncryptByKey	and
DecryptByKey	functions	provide	another	tool	to	help	eliminate	patterns	in	encrypted
data.	Both	functions	provide	two	options	parameters:	an	add_authenticator	flag
and	an	authenticator	value.	If	the	add_authenticator	flag	is	set	to	1,	SQL	Server
derives	an	authenticator	from	the	authenticator	value	passed	in.	The	authenticator	is	then
used	to	obfuscate	your	encrypted	data	further,	preventing	patterns	that	can	reveal
information	to	hackers	through	correlation	analysis	attacks.	If	you	supply	an	authenticator
value	during	encryption,	the	same	authenticator	value	must	be	supplied	during	decryption.

When	SQL	Server	encrypts	your	data	with	a	symmetric	key,	it	automatically	adds
metadata	to	the	encrypted	result,	as	well	as	padding,	making	the	encrypted	result	larger
(sometimes	significantly	larger)	than	the	unencrypted	plain	text.	The	format	for	the
encrypted	result	with	metadata	follows	the	following	format:

The	first	16	bytes	of	the	encrypted	result	represent	the	GUID	of	the
symmetric	key	used	to	encrypt	the	data.

The	next	4	bytes	represent	a	version	number,	currently	hard-coded	as
0x01000000.

The	next	8	bytes	for	DES	encryption	(16	bytes	for	AES	encryption)
represent	the	randomly	generated	IV.

If	an	authenticator	was	used,	the	next	8	bytes	contain	header
information	with	an	additional	20-byte	SHA1	hash	of	the
authenticator,	making	the	header	information	28	bytes	in	length.

The	last	part	of	the	encrypted	data	is	the	actual	padded	data.	For	DES
algorithms,	the	length	of	this	encrypted	data	is	a	multiple	of	8	bytes.
For	AES	algorithms,	the	length	is	a	multiple	of	16	bytes.

In	addition	to	DecryptByKey,	SQL	Server	2014	provides
DecryptByKeyAutoCert	and	DecryptByKeyAutoAsymKey	functions.	Both

functions	combine	the	functionality	of	the	OPEN	SYMMETRIC	KEY	statement	with	the
DecryptByKey	function,	meaning	you	don’t	need	to	issue	an	OPEN	SYMMETRIC
KEY	to	decrypt	your	cipher	text.	The	DecryptByKeyAutoAsymKey	function
automatically	opens	an	asymmetric	key	protecting	a	symmetric	key,	whereas
DecryptByKeyAutoCert	automatically	opens	a	certificate	protecting	a	symmetric
key.	If	a	password	is	used	to	encrypt	your	asymmetric	key	or	certificate,	that	same
password	must	be	passed	to	these	functions.	If	the	asymmetric	key	is	encrypted	with	the
DMK,	you	pass	NULL	as	the	password.	You	can	also	specify	an	authenticator	with	these
functions	if	one	was	used	during	encryption.	Decryption	of	data	in	bulk	using	these
functions	may	cause	a	pretty	severe	performance	penalty	over	using	the	OPEN
SYMMETRIC	KEY	statement	and	the	DecryptByKey	function.

Encryption	Without	Keys
SQL	Server	2014	provides	additional	functions	for	encryption	and	decryption	without
keys	and	for	one-way	hashing,	which	is	the	concept	of	inputting	a	value	into	a	function	to
get	a	hash	value	but	not	being	able	to	use	the	hash	value	to	reproduce	the	input.	These
functions	are	named	EncryptByPassPhrase,	DecryptByPassPhrase,	and
HashBytes,	respectively.

The	EncryptByPassPhrase	function	accepts	a	passphrase	and	clear	text	to
encrypt.	The	passphrase	is	simply	a	plain	text	phrase	from	which	SQL	Server	can	derive
an	encryption	key.	The	idea	behind	the	passphrase	is	that	users	are	more	likely	to
remember	a	simple	phrase	than	a	complex	encryption	key.	The	function	derives	a
temporary	encryption	key	from	the	passphrase	and	uses	it	to	encrypt	the	plain	text.	You
can	also	pass	an	optional	authenticator	value	to	EncryptByPassPhrase	if	you	wish.
EncryptByPassPhrase	always	uses	the	3DES	algorithm	to	encrypt	the	clear	text
passed	in.

DecryptByPassPhrase	decrypts	cipher	text	that	was	previously	encrypted	with
EncryptByPassPhrase.	To	decrypt	using	this	function,	you	must	supply	the	same
passphrase	and	authenticator	options	that	you	used	when	encrypting	the	clear	text.

Hashing	Data
The	HashBytes	function	performs	a	one-way	hash	on	the	data	passed	to	it	and	returns
the	hash	value	generated.	HashBytes	accepts	two	parameters:	a	hash	algorithm	name
and	the	data	to	hash.	The	return	value	is	a	fixed-length	varbinary	hash	value,	which	is
analogous	to	a	fingerprint	for	any	given	data.	Table	8-2	lists	the	SQL	Server-supported
hash	algorithms.

Table	8-2.	SQL	Server-Supported	Hash	Algorithms

Algorithm Hash	Length

MD2,	MD4,	MD5 128	bits	(16	bytes)

SHA,	SHA1 160	bits	(20	bytes)

	Caution		For	highly	secure	applications,	the	MD2,	MD4,	and	MD5	series	of	hashes
should	be	avoided.	Cryptanalysts	have	produced	meaningful	hash	collisions	with	these
algorithms	over	the	past	few	years	that	have	revealed	vulnerabilities	to	hacker	attacks.	A
hash	collision	is	a	string	of	bytes	that	produces	a	hash	value	that	is	identical	to	another
string	of	bytes.	A	meaningful	hash	collision	is	one	that	can	be	produced	with	meaningful
(or	apparently	meaningful)	strings	of	bytes.	Generating	a	hash	collision	by	modifying	the
content	of	a	certificate	would	be	an	example	of	a	meaningful,	and	dangerous,	hash
collision.

Listing	8-15	demonstrates	the	EncryptByPassPhrase,
DecryptByPassPhrase,	and	HashBytes	functions.	The	results	are	shown	in	Figure
8-7.

Listing	8-15.	Encryption	and	Decryption	by	Passphrase	and	Byte	Hashing

DECLARE	@cleartext	nvarchar(256);

DECLARE	@encrypted	varbinary(512);

DECLARE	@decrypted	nvarchar(256);

SELECT	@cleartext	=	N'To	be,	or	not	to	be:	that	is	the	

question:	'	+

				N'Whether	''tis	nobler	in	the	mind	to	suffer	'	+

				N'The	slings	and	arrows	of	outrageous	fortune,	'	+

				N'Or	to	take	arms	against	a	sea	of	troubles';

SELECT	@encrypted	=	EncryptByPassPhrase(N'Shakespeare''s	

Donkey',	@cleartext);

SELECT	@decrypted	=	CAST

(

				DecryptByPassPhrase(N'Shakespeare''s	Donkey',	@encrypted)

								AS		nvarchar(128)

);

SELECT	@cleartext	AS	ClearText;

SELECT	@encrypted	AS	Encrypted;

SELECT	@decrypted	AS	Decrypted;

SELECT	HashBytes	('SHA1',	@ClearText)	AS	Hashed;

Figure	8-7.	Results	of	encryption	by	passphrase	and	hashing

Extensible	Key	Management
SQL	Server	2014	contains	a	feature	added	in	SQL	2008	known	as	EKM,	which	allows
you	to	encrypt	your	SQL	Server	asymmetric	keys	(and	symmetric	keys)	with	keys
generated	and	stored	on	a	third-party	HSM.	To	use	EKM,	you	must	first	turn	on	the	EKM
provider	enabled	option	with	spconfigure,	as	shown	in	Listing	8-16.

	Note		EKM	is	available	only	on	the	Enterprise,	Developer,	and	Evaluation	editions	of
SQL	Server	2014,	and	it	requires	third-party	HSM	and	supporting	software.

Listing	8-16.	Enabling	EKM	Providers

sp_configure	'show	advanced',	1;

GO

RECONFIGURE;

GO

sp_configure	'EKM	provider	enabled',	1;

GO

RECONFIGURE;

GO

Once	you’ve	enabled	EKM	providers	and	have	an	HSM	available,	you	must	register	a
cryptographic	provider	with	SQL	Server.	The	cryptographic	provider	references	a	vendor-
supplied	DLL	file	installed	on	the	server.	Listing	8-17	gives	an	example	of	registering	a
cryptographic	provider	with	SQL	Server.

Listing	8-17.	Registering	a	Cryptographic	Provider

CREATE	CRYPTOGRAPHIC	PROVIDER	Eagle_EKM_Provider

FROM	FILE	=	'c:\Program	Files\Eagle_EKM\SQLEKM.DLL';

	GO

After	your	EKM	provider	is	registered	with	SQL	Server,	creating	an	asymmetric	key
that	is	encrypted	by	an	existing	key	on	the	HSM	is	simply	a	matter	of	specifying	the	EKM
provider,	the	CREATIONDISPOSITION	option,	and	the	name	of	the	key	on	the	EKM
device	via	the	PROVIDER_KEY_NAME	option.	Listing	8-18	gives	an	example.

Listing	8-18.	Creating	an	Asymmetric	Key	with	HSM	Protection

CREATE	ASYMMETRIC	KEY	AsymKeyEKMProtected

		FROM	PROVIDER	Eagle_EKM_Provider

		WITH	PROVIDER_KEY_NAME	=	'EKM_Key_1',

				CREATION_DISPOSITION	=	OPEN_EXISTING;

GO

EKM	is	designed	to	support	enterprise-level	encryption	key	management	by	providing
additional	encryption	key	security.	It	provides	this	additional	security	by	physically
separating	the	encryption	keys	from	the	data	they	encrypt.	In	addition	to	external	storage
of	encryption	keys,	HSM	vendors	can	also	provide	hardware-based	bulk	encryption	and
decryption	functionality	and	external	support	for	additional	encryption	options	beyond
what	is	supported	natively	by	SQL	Server	2014.	Some	of	the	additional	options	provided
by	HSM	vendors	include	key	aging	and	key	rotation	functionality.

Transparent	Data	Encryption
Up	to	this	point,	we’ve	talked	about	the	column-level	encryption	functionality	available	in
SQL	Server	2014.	These	functions	are	specifically	designed	to	encrypt	data	stored	in	the
columns	of	your	database	tables.	SQL	Server	2014	provides	a	method	of	encryption,	TDE,
which	allows	you	to	encrypt	your	entire	database	at	once.

TDE	automatically	encrypts	every	page	in	your	database	and	decrypts	pages	as
required	when	you	access	them.	This	feature	allows	you	to	secure	an	entire	database
without	worrying	about	all	those	little	details	that	pop	up	when	encrypting	at	the	column
level.	TDE	doesn’t	require	extra	storage	space,	and	it	lets	the	query	optimizer	generate	far
more	efficient	query	plans	than	it	can	when	you	search	on	encrypted	columns.	As	an
added	bonus,	TDE	is	easy	to	implement	and	allows	you	to	secure	the	data	in	your
databases	with	no	changes	to	middle-tier	or	front-end	code.

The	first	step	to	implement	TDE	in	your	database	is	to	create	a	server	certificate	(see
Listing	8-19).	A	server	certificate	is	a	certificate	created	in	the	master	database	for	the
purpose	of	encrypting	databases	with	TDE.

Listing	8-19.	Creating	a	Server	Certificate

CREATE	CERTIFICATE	ServerCert

		WITH	SUBJECT	=	'Server	Certificate	for	TDE',

		EXPIRY_DATE	=	'2022-12-31';

GO

	Tip		Remember	to	back	up	your	server	certificate	immediately	after	you	create	it!

Once	you’ve	created	a	server	certificate,	you	can	create	a	database	encryption	key	in
the	database	to	be	encrypted	(see	Listing	8-20).	The	database	encryption	key	is	created
with	the	CREATE	DATABASE	ENCRYPTION	KEY	statement.	Using	this	statement,	you
can	create	a	key	using	one	of	the	four	different	algorithms	listed	in	Table	8-3.

Listing	8-20.	Creating	as	Database	Encryption	Key	and	Securing	the	Database

USE	AdventureWorks2014;

GO

CREATE	DATABASE	ENCRYPTION	KEY

		WITH	ALGORITHM	=	AES_128

		ENCRYPTION	BY	SERVER	CERTIFICATE	ServerCert;

GO

ALTER	DATABASE	AdventureWorks2014

SET	ENCRYPTION	ON;

GO

Table	8-3.	Database	Encryption	Key	Algorithms

Algorithm Description

AES_128 AES,	127-bit	key

AES_192 AES,	192-bit	key

AES_256 AES,	256-bit	key

TRIPLE_DES_3KEY Three-key	3DES,	~112-bit	effective	key

The	obvious	question	at	this	point	is,	because	TDE	is	so	simple	and	secure,	why	not
use	it	all	the	time?	Well,	the	simplicity	and	security	of	TDE	come	at	a	cost.	When	you
encrypt	a	database	with	TDE,	SQL	Server	also	encrypts	the	database	log	file	and	the
tempdb	database.	This	is	done	to	prevent	leaked	data	that	a	hacker	with	the	right	tools
might	be	able	to	access.	Because	tempdb	is	encrypted,	the	performance	of	every	database
on	the	same	server	takes	a	hit.	Also,	SQL	Server	incurs	additional	CPU	overhead	because
it	has	to	decrypt	noncached	data	pages	that	are	accessed	by	queries.

Summary
Back	in	the	days	of	SQL	Server	2000,	database	encryption	functionality	could	be	achieved
only	through	third-party	tools	or	by	creating	your	own	encryption	and	decryption
functions.	SQL	Server	2014	continues	the	tradition	of	T-SQL	column-level	encryption	and
decryption	functionality	introduced	in	SQL	Server	2005.	The	tight	integration	of	Windows
DPAPI	encryption	functionality	with	native	T-SQL	statements	and	functions	makes
database	encryption	easier	and	more	secure	than	ever.

SQL	Server	2012	introduced	new	functionality,	including	TDE	for	quickly	and	easily
encrypting	entire	databases	transparently,	and	EKM	for	providing	access	to	third-party
HSMs	to	implement	enterprise-level	security	solutions	and	bulk	encryption	functionality.

This	chapter	discussed	the	SQL	Server	hierarchical	encryption	model,	which	defines

the	relationship	between	SMKs,	DMKs,	certificates,	asymmetric	keys,	and	symmetric
keys.	SQL	Server	provides	a	variety	of	T-SQL	statements	to	create	and	manage	encryption
keys	and	certificates,	which	you	saw	demonstrated	in	code	examples	throughout	the
chapter.	SQL	Server	also	provides	several	functions	for	generating	one-way	hashes,
generating	data	signatures,	and	encrypting	data	by	certificate,	asymmetric	key,	symmetric
key,	and	passphrase.

The	next	chapter	covers	the	topics	of	SQL	windowing	functions	and	common	table
expressions	(CTEs).

EXERCISES

1.	 [True/False]	Symmetric	keys	can	be	used	to	encrypt	other
symmetric	keys	or	data.

2.	 [Choose	all	that	apply]	SQL	Server	provides	native	support	for
which	of	the	following	built-in	encryption	algorithms?

a.	 DES

b.	 AES

c.	 Loki

d.	 Blowfish

e.	 RC4

3.	 [True/False]	SQL	Server	2014	T-SQL	includes	a	BACKUP
ASYMMETRIC	KEY	statement.

4.	 [Fill	in	the	blank]	You	must	set	the	___________	option	to	turn	on
EKM	for	your	server.

5.	 [True/False]	TDE	automatically	encrypts	the	tempdb,	model,	and
master	databases.

6.	 [True/False]	SQL	Server	automatically	generates	random
initialization	vectors	when	you	use	symmetric	encryption.

CHAPTER	9

Common	Table	Expressions	and
Windowing	Functions
SQL	Server	2014	continues	support	for	the	extremely	useful	common	table	expression
(CTE),	first	introduced	in	SQL	Server	2005.	CTEs	can	simplify	your	queries	to	make	them
more	readable	and	maintainable.	SQL	Server	also	supports	self-referential	CTEs,	which
make	for	very	powerful	recursive	queries.

In	addition,	SQL	Server	supports	windowing	functions,	which	allow	you	to	partition
your	results	and	apply	numbering	and	ranking	values	to	the	rows	in	the	result-set
partitions.	This	chapter	begins	with	a	discussion	of	the	power	and	benefits	of	CTEs	and
finishes	with	a	discussion	of	SQL	Server	windowing	functions.

Common	Table	Expressions
CTEs	are	a	powerful	addition	to	SQL	Server.	A	CTE	is	more	like	temporary	table	that
generates	a	named	result	set	that	exists	only	during	the	life	of	a	single	query	or	DML
statement	or	until	explicitly	dropped.	A	CTE	is	built	in	the	same	code	line	as	the	SELECT
statement	or	the	DML	statement	that	uses	it,	whereas	creating	and	using	a	temporary	table
is	usually	a	two-step	process.	CTEs	offer	several	benefits	over	derived	tables	and	views,
including	the	following:

CTEs	are	transient,	existing	only	for	the	life	of	a	single	query	or	DML
statement.	This	means	you	don’t	have	create	them	as	permanent
database	objects	like	views.

A	single	CTE	can	be	referenced	multiple	times	by	name	in	a	single
query	or	DML	statement,	making	your	code	more	manageable.
Derived	tables	have	to	be	rewritten	in	their	entirety	every	place	they’re
referenced.

CTEs	can	be	used	to	enable	grouping	by	columns	that	are	derived
from	a	scalar	subset	or	a	function	that	isn’t	deterministic.

CTEs	can	be	self-referencing,	providing	a	powerful	recursion
mechanism.

Queries	referencing	a	CTE	can	be	used	to	define	a	cursor.

CTEs	can	range	in	complexity	from	extremely	simple	to	highly	elaborate	constructs.
All	CTEs	begin	with	the	WITH	keyword	followed	by	the	name	of	the	CTE	and	a	list	of	the
columns	it	returns.	This	is	followed	by	the	AS	keyword	and	the	body	of	the	CTE,	which	is

the	associated	query	or	DML	statement	with	a	semicolon	as	a	terminator	for	a
multistatement	batch.	Listing	9-1	is	a	very	simple	example	of	a	CTE	designed	to	show	the
basic	syntax.

Listing	9-1.	Simple	CTE

WITH	GetNamesCTE	(BusinessEntityID,	FirstName,

																									MiddleName,	LastName)

AS

(

		SELECT

								BusinessEntityID,	FirstName,	MiddleName,	LastName

			FROM	Person.Person

)

		SELECT

								BusinessEntityID,

								FirstName,

								MiddleName,

								LastName

		FROM	GetNamesCTE;

In	Listing	9-1,	the	CTE	is	defined	with	the	name	GetNamesCTE	and	returns	columns
named	BusinessEntityID,	FirstName,	MiddleName,	and	LastName.	The	CTE
body	consists	of	a	simple	SELECT	statement	from	the	AdventureWorks	2014
Person.Person	table.	The	CTE	has	an	associated	SELECT	statement	immediately
following	it.	The	SELECT	statement	references	the	CTE	in	its	FROM	clause.

WITH	OVERLOADED

The	WITH	keyword	is	overloaded	in	SQL	Server,	meaning	it’s	used	in	many	different
ways	for	many	different	purposes	in	T-SQL.	It’s	used	to	specify	additional	options	in
DDL	CREATE	statements,	to	add	table	hints	to	queries	and	DML	statements,	and	to
declare	XML	namespaces	when	used	in	the	WITH	XMLNAMESPACES	clause,	just	to
name	a	few.	Now	it’s	also	used	as	the	keyword	that	indicates	the	beginning	of	a	CTE
definition.	Because	of	this,	whenever	a	CTE	isn’t	the	first	statement	in	a	batch,	the
statement	preceding	it	must	end	with	a	semicolon.	This	is	one	reason	we	strongly
recommend	using	the	statement-terminating	semicolon	throughout	your	code.

Simple	CTEs	have	some	restrictions	on	their	definition	and	declaration:

A	CTE	must	be	followed	by	single	INSERT,	DELETE,	UPDATE,	or
SELECT	statement.

All	columns	returned	by	a	CTE	must	have	a	unique	name.	If	all	the
columns	returned	by	the	query	in	the	CTE	body	have	unique	names,
you	can	leave	the	column	list	out	of	the	CTE	declaration.

A	CTE	can	reference	other	previously	defined	CTEs	in	the	same
WITH	clause,	but	it	can’t	reference	CTEs	defined	after	the	current

CTE	(known	as	a	forward	reference).

You	can’t	use	the	following	keywords,	clauses,	and	options	in	a	CTE:
COMPUTE,	COMPUTE	BY,	FOR	BROWSE,	INTO,	and	OPTION
(query	hint).	Also,	you	can’t	use	ORDER	BY	unless	you	specify	the
TOP	clause.

Multiple	CTEs	can	be	defined	in	a	nonrecursive	CTE.	All	the
definitions	must	be	combined	with	one	of	these	set	operators:	UNION
ALL,	UNION,	INTERSECT,	or	EXCEPT.

As	mentioned	in	the	“WITH	Overloaded”	sidebar,	when	a	CTE	is	not
the	first	statement	in	a	batch,	the	preceding	statement	must	end	with	a
semicolon	statement	terminator.

Keep	these	restrictions	in	mind	when	you	create	CTEs.

Multiple	Common	Table	Expressions
You	can	define	multiple	CTEs	for	a	single	query	or	DML	statement	by	separating	your
CTE	definitions	with	commas.	The	main	reason	for	doing	this	is	to	simplify	your	code	to
make	it	easier	to	read	and	manage.	CTEs	provide	a	means	of	visually	splitting	your	code
into	smaller	functional	blocks,	making	it	easier	to	develop	and	debug.	The	query	in	Listing
9-2	includes	multiple	CTEs,	with	the	second	CTE	referencing	the	first.	The	results	are
shown	in	Figure	9-1.

Listing	9-2.	Multiple	CTEs

WITH	GetNamesCTE	(BusinessEntityID,	FirstName,

																																				MiddleName,LastName)

AS	(

SELECT

								BusinessEntityID,	FirstName,

								MiddleName,	LastName

		FROM	Person.Person),

GetContactCTE	(BusinessEntityID,	FirstName,

																MiddleName,	LastName,

																Email,	HomePhoneNumber

)

AS	(

								SELECT	gn.BusinessEntityID,	gn.FirstName

																,	gn.MiddleName,	gn.LastName

																,	ea.EmailAddress,	pp.PhoneNumber

																FROM	GetNamesCTE	gn

									LEFT	JOIN	Person.EmailAddress	ea

														ON	gn.BusinessEntityID	=	ea.BusinessEntityID

								LEFT	JOIN	Person.PersonPhone	pp

														ON	gn.BusinessEntityID	=	pp.BusinessEntityID

																				AND	pp.PhoneNumberTypeID	=	2)

SELECT	BusinessEntityID,	FirstName

								,	MiddleName,	LastName

								,	Email,	HomePhoneNumber

			FROM	GetContactCTE;

Figure	9-1.	Partial	results	of	a	query	with	multiple	CTEs

CTE	Readability	Benefits
You	can	use	CTEs	to	make	your	queries	more	readable	than	equivalent	query	designs	that
use	nested	subqueries.	To	demonstrate,	the	following	query	uses	nested	subqueries	to
return	the	same	result	as	the	CTE-based	query	in	Listing	9-2:

SELECT

				gn.BusinessEntityID,

				gn.FirstName,

				gn.MiddleName,

				gn.LastName,

				gn.EmailAddress,

				gn.HomePhoneNumber

FROM

(

				SELECT

				p.BusinessEntityID,

				p.FirstName,

				p.MiddleName,

				p.LastName,

				ea.EmailAddress,

				ea.HomePhoneNumber

				FROM	Person.Person	p

				LEFT	JOIN

				(

				SELECT

				ea.BusinessEntityID,

				ea.EmailAddress,

				pp.HomePhoneNumber

				FROM	Person.EmailAddress	ea

				LEFT	JOIN

				(

				SELECT

				pp.BusinessEntityID,

				pp.PhoneNumber		AS		HomePhoneNumber,

				pp.PhoneNumberTypeID

				FROM		Person.PersonPhone		pp

)		pp

				ON		ea.BusinessEntityID		=		pp.BusinessEntityID

				AND	pp.PhoneNumberTypeID	=	2

)		ea

				ON		p.BusinessEntityID		=		ea.BusinessEntityID

)		gn

The	CTE-based	version	of	this	query,	as	shown	in	Listing	9-2,	simplifies	the	code,
encapsulates	the	query	logic,	and	is	much	easier	to	read	and	understand	than	the	nested
subquery	version,	which	makes	it	easier	to	debug	and	maintain	in	the	long	term.

The	example	in	Listing	9-2	contains	two	CTEs	named	GetNamesCTE	and
GetContactCTE.	GetNamesCTE	is	borrowed	from	Listing	9-1;	it	retrieves	the
names	from	the	Person.Person	table:

WITH	GetNamesCTE	(BusinessEntityID,	FirstName,	MiddleName,	

LastName)

AS

(

		SELECT

								BusinessEntityID,	FirstName,

								MiddleName,	LastName

			FROM	Person.Person	

)

The	second	CTE,	GetContactCTE,	joins	the	results	of	GetNamesCTE	to	the
Person.EmailAddress	and	Person.PersonPhone	tables:

GetContactCTE

(

				BusinessEntityID,	FirstName,	MiddleName,	LastName,	Email,	

HomePhoneNumber

)

AS	(

								SELECT	gn.	BusinessEntityID,	gn.FirstName

																,	gn.MiddleName,	gn.LastName

																,	ea.EmailAddress,	pp.PhoneNumber

																FROM	GetNamesCTE	gn

									LEFT	JOIN	Person.EmailAddress	ea

																		ON	gn.	BusinessEntityID	=	ea.	BusinessEntityID

						LEFT	JOIN	Person.PersonPhone	pp

														ON	gn.	BusinessEntityID	=	pp.	BusinessEntityID

																										AND	pp.PhoneNumberTypelD	=	2)

Notice	that	the	WITH	keyword	is	used	only	once	at	the	beginning	of	the	entire
statement.	The	second	CTE	declaration	is	separated	from	the	first	by	a	comma	and	doesn’t
accept	the	WITH	keyword.	Finally,	notice	how	simple	and	readable	the	SELECT	query
associated	with	the	CTEs	becomes	when	the	joins	are	moved	into	CTEs:

SELECT

								BusinessEntityID,

								FirstName,

								MiddleName,

								LastName,

								EmailAddress,

								HomePhoneNumber

		FROM	GetContactCTE;

	Tip		You	can	reference	a	CTE	from	within	the	body	of	another	CTE,	from	the
associated	query	or	DML	statement.	Both	types	of	CTE	references	are	shown	in	Listing	9-
2—GetNamesCTE	is	referenced	by	GetContactCTE,	and	GetContactCTE	is
referenced	in	the	query	associated	with	the	CTEs.

Recursive	Common	Table	Expressions
A	recursive	CTE	is	one	where	the	initial	CTE	is	executed	repeatedly	to	return	a	subset	of
the	data	until	the	complete	result	set	is	returned.	A	CTE	can	reference	itself	in	the	body	of
the	CTE,	which	is	a	powerful	feature	for	querying	hierarchical	data	stored	in	the	adjacency
list	model.	Recursive	CTEs	are	similar	to	nonrecursive	CTEs,	except	that	the	body	of	the
CTE	consists	of	multiple	sets	of	queries	that	generate	result	sets	with	multiple	rows
unioned	together	with	the	UNION	ALL	set	operator.	At	least	one	of	the	queries	in	the
body	of	the	recursive	CTE	must	not	reference	the	CTE;	this	query	is	known	as	the	anchor
query.	Recursive	CTEs	also	contain	one	or	more	recursive	queries	that	reference	the	CTE.
These	recursive	queries	are	unioned	together	with	the	anchor	query	(or	queries)	in	the
body	of	the	CTE.	Recursive	CTEs	require	a	top-level	UNION	ALL	operator	to	union	the
recursive	and	nonrecursive	queries	together.	Multiple	anchor	queries	may	be	unioned
together	with	INTERSECT,	EXCEPT,	and	UNION	operators,	and	multiple	recursive
queries	can	be	unioned	together	with	UNION	ALL.	The	recursion	stops	when	no	rows	are

returned	from	the	previous	query.	Listing	9-3	is	a	simple	recursive	CTE	that	retrieves	a
result	set	consisting	of	the	numbers	1	through	10.

Listing	9-3.	Simple	Recursive	CTE

WITH	Numbers	(n)

AS	(

SELECT	1	AS	n

		UNION	ALL

SELECT	n	+	1

			FROM	Numbers

WHERE	n	<	10)

SELECT	n	FROM	Numbers;

The	CTE	in	Listing	9-3	begins	with	a	declaration	that	defines	the	CTE	name	and	the
column	returned:

WITH	Numbers	(n)

The	CTE	body	contains	a	single	anchor	query	that	returns	a	single	row	with	the
number	1	in	the	n	column:

SELECT	1	AS	n

The	anchor	query	is	unioned	together	with	the	recursive	query	using	the	UNION	ALL
set	operator.	The	recursive	query	contains	a	self-reference	to	the	Numbers	CTE,	adding	1
to	the	n	column	with	each	recursive	reference.	The	WHERE	clause	limits	the	result	set	to
the	first	ten	numbers:

SELECT	n	+	1	FROM	Numbers	WHERE	n	<	10

Recursive	CTEs	have	a	maximum	recursion	level	of	100	by	default.	This	means	the
recursive	query	in	the	CTE	body	can	only	call	itself	100	times.	You	can	use	the
MAXRECURSION	option	to	increase	the	maximum	recursion	level	of	CTEs	on	an
individual	basis.	Listing	9-4	modifies	the	CTE	in	Listing	9-3	to	return	the	numbers	1	to
1,000.	The	modified	query	uses	the	MAXRECURSION	option	to	increase	the	maximum
recursion	level.	Without	the	MAXRECURSION	option,	this	CTE	would	error	out	after	the
first	100	levels	of	recursion.

Listing	9-4.	Recursive	CTE	with	the	MAXRECURSION	Option

WITH	Numbers	(n)

AS	(

SELECT	0	AS	n

		UNION	ALL

SELECT	n	+	1

			FROM	Numbers

WHERE	n	<	1000)

SELECT	n

			FROM	Numbers	OPTION	(MAXRECURSION	1000);

The	MAXRECURSION	value	specified	must	be	between	0	and	32,767.	SQL	Server
throws	an	exception	if	the	MAXRECURSION	limit	is	surpassed.	A	MAXRECURSION	value
of	0	indicates	that	no	limit	should	be	placed	on	recursion	for	the	CTE.	Be	careful	with	this
option—if	you	don’t	properly	limit	the	results	in	the	query	with	a	WHERE	clause,	you	can
easily	end	up	in	an	infinite	loop.

	Tip		Creating	a	permanent	table	of	counting	numbers	can	be	more	efficient	than	using	a
recursive	CTE	to	generate	numbers,	particularly	if	you	plan	to	execute	the	CTEs	that
generate	numbers	often.

Recursive	CTEs	are	useful	for	querying	data	stored	in	a	hierarchical	adjacency	list
format.	The	adjacency	list	provides	a	model	for	storing	hierarchical	data	in	relational
databases.	In	the	adjacency	list	model,	each	row	of	the	table	contains	a	pointer	to	its	parent
in	the	hierarchy.	The	Production.BillOfMaterials	table	in	the	AdventureWorks
database	is	a	practical	example	of	the	adjacency	list	model.	This	table	contains	two
important	columns,	ComponentID	and	ProductAssemblyID,	that	reflect	the
hierarchical	structure.	ComponentID	is	a	unique	number	identifying	every	component
that	AdventureWorks	uses	to	manufacture	its	products.	ProductAssemblyID	is	a
parent	component	created	from	one	or	more	AdventureWorks	product	components.	Figure
9-2	shows	the	relationship	between	components	and	product	assemblies	in	the
AdventureWorks	database.

Figure	9-2.	Component/product	assembly	relationship

The	recursive	CTE	shown	in	Listing	9-5	retrieves	the	complete	AdventureWorks
hierarchical	bill	of	materials	(BOM)	for	a	specified	component.	The	component	used	in
the	example	is	the	AdventureWorks	silver	Mountain-100	48-inch	bike,	ComponentID
774.	Partial	results	are	shown	in	Figure	9-3.

Listing	9-5.	Recursive	BOM	CTE

DECLARE	@ComponentID	int	=	774;

WITH		BillOfMaterialsCTE

(

				BillOfMaterialsID,

				ProductAssemblyID,

				ComponentID,

				Quantity,

				Level

)

AS

(

SELECT

								bom.BillOfMaterialsID,

								bom.ProductAssemblyID,

								bom.ComponentID,

								bom.PerAssemblyQty		AS		Quantity,

								0		AS		Level

			FROM	Production.BillOfMaterials	bom

WHERE	bom.ComponentID	=	@ComponentID

								UNION	ALL

SELECT

								bom.BillOfMaterialsID,	

								bom.ProductAssemblyID,

								bom.ComponentID,

								bom.PerAssemblyQty,

								Level	+	1

			FROM	Production.BillOfMaterials	bom

		INNER	JOIN	BillOfMaterialsCTE	bomcte

																ON		bom.ProductAssemblyID		=		bomcte.ComponentID

WHERE	bom.EndDate	IS	NULL

)

SELECT

								bomcte.ProductAssemblyID,

								p.ProductID,

								p.ProductNumber,

								p.Name,

								p.Color,

								bomcte.Quantity,

								bomcte.Level

		FROM		BillOfMaterialsCTE	bomcte

	INNER		JOIN		Production.Product		p

								ON	bomcte.ComponentID	=	p.ProductID

ORDER	BY	bomcte.Level;

Figure	9-3.	Partial	results	of	the	recursive	BOM	CTE

Like	the	previous	CTE	examples,	Listing	9-3	begins	with	the	CTE	name	and	column
list	declaration:

WITH	BillOfMaterialsCTE

(

				BillOfMaterialsID,	ProductAssemblylD,	Components,	

Quantity,	Level

)

The	anchor	query	simply	retrieves	the	row	from	the	table	where	the	ComponentID
matches	the	specified	ID.	This	is	the	top-level	component	in	the	BOM,	set	to	774	in	this
case.	Notice	that	the	CTE	can	reference	T-SQL	variables	like	@ComponentID	in	the
example:

SELECT

								bom.BillOfMaterialsID,

								bom.ProductAssemblylD,

								bom.Components,

								bom.PerAssemblyQty	AS	Quantity,

								0	AS	Level

			FROM	Production.BillOfMaterials	bom

	WHERE	bom.ComponentID	=	@ComponentID

The	recursive	query	retrieves	successive	levels	of	the	BOM	from	the	CTE	where	the
ProductAssemblyID	of	each	row	matches	the	ComponentID	of	the	higher-level
rows.	That	is	to	say,	the	recursive	query	of	the	CTE	retrieves	lower-level	rows	in	the
hierarchy	that	match	the	hierarchical	relationship	previously	illustrated	in	Figure	9-2:

SELECT

								bom.BillOfMaterialsID,

								bom.ProductAssemblyID,

								bom.ComponentID,

								bom.PerAssemblyQty,

								Level	+	1

		FROM	Production.BillOfMaterials	bom

	INNER	JOIN	BillOfMaterialsCTE	bomcte

								ON	bom.ProductAssemblyID	=	bomcte.ComponentID

WHERE	bom.EndDate	IS	NULL

The	CTE	has	a	SELECT	statement	associated	with	it	that	joins	the	results	to	the
Production.Product	table	to	retrieve	product-specific	information	like	the	name
and	color	of	the	component:

SELECT

								bomcte.ProductAssemblyID,

								p.ProductID,

								p.ProductNumber,

								p.Name,

								p.Color,

								bomcte.Quantity,

								bomcte.Level

			FROM	BillOfMaterialsCTE	bomcte

		INNER	JOIN	Production.Product	p

								ON	bomcte.ComponentID	=	p.ProductID;

The	restrictions	on	simple	CTEs	described	earlier	in	this	chapter	also	apply	to
recursive	CTEs.	In	addition,	the	following	restrictions	apply	specifically	to	recursive
CTEs:

Recursive	CTEs	must	have	at	least	one	anchor	query	and	at	least	one
recursive	query	specified	in	the	body	of	the	CTE.	All	anchor	queries
must	appear	before	any	recursive	queries.

All	anchor	queries	must	be	unioned	with	a	UNION,	UNION	ALL,
INTERSECT,	or	EXCEPT	set	operator.	When	using	multiple	anchor
queries	and	recursive	queries,	the	last	anchor	query	and	the	first
recursive	query	must	be	unioned	together	with	the	UNION	ALL
operator.	Additionally,	all	recursive	queries	must	be	unioned	together
with	UNION	ALL.

The	data	types	of	all	columns	in	the	anchor	queries	and	recursive
queries	must	match.

The	from	clause	of	the	recursive	member	should	refer	to	the	CTE
name	only	once.

The	recursive	queries	can’t	contain	the	following	operators	and

keywords:	GROUP	BY,	HAVING,	LEFT	JOIN,	RIGHT	JOIN,
OUTER	JOIN,	and	SELECT	DISTINCT.	Recursive	queries	also
can’t	contain	aggregate	functions	(like	SUM	and	MAX),	windowing
functions,	subqueries,	or	hints	on	the	recursive	CTE	reference.

Windowing	Functions
SQL	Server	2014	supports	windowing	functions	that	partition	results	and	can	apply
numbering,	ranking,	and	aggregate	functions	to	each	partition.	The	key	to	windowing
functions	is	the	OVER	clause,	which	allows	you	to	define	the	partitions,	and	in	some	cases
the	ordering	of	rows	in	the	partition,	for	your	data.	This	section	discusses	SQL	Server
2014	windowing	functions	and	the	numbering,	ranking,	and	aggregate	functions	that
support	the	OVER	clause.

ROW_NUMBER	Function
The	ROW_NUMBER	function	takes	the	OVER	clause	with	an	ORDER	BY	clause	and	an
optional	PARTITION	BY	clause.	Listing	9-6	retrieves	names	from	the
Person.Person	table.	The	OVER	clause	is	used	to	partition	the	rows	by	LastName
and	order	the	rows	in	each	partition	by	LastName,	FirstName,	and	MiddleName.
The	ROW_NUMBER	function	is	used	to	assign	a	number	to	each	row.

Listing	9-6.	ROW_NUMBER	with	Partitioning

SELECT

				ROW_NUMBER()	OVER

				(

								PARTITION	BY

								LastName

								ORDER	BY

								LastName,

								FirstName,

								MiddleName

)		AS		Number,

				LastName,

				FirstName,

				MiddleName

FROM	Person.Person;

The	partition	created	in	Listing	9-6	acts	as	a	window	that	slides	over	your	result	set
(hence	the	name	windowing	function).	The	ORDER	BY	clause	orders	the	rows	of	each
partition	by	LastName,	FirstName,	and	MiddleName.	SQL	Server	applies	the
ROW_NUMBER	function	to	each	partition.	The	net	result	is	that	the	ROW_NUMBER	function
numbers	all	rows	in	the	result	set,	restarting	the	numbering	at	1	every	time	it	encounters	a
new	LastName,	as	shown	in	Figure	9-4.

Figure	9-4.	Using	ROW_NUMBER	to	number	rows	in	partitions

	Note		When	PARTITION	BY	is	used,	it	must	appear	before	ORDER	BY	in	the	OVER
clause.

The	ROW_NUMBER	function	can	also	be	used	without	the	PARTITION	BY	clause,	in
which	case	the	entire	result	set	is	treated	as	one	partition.	Treating	the	entire	result	set	as	a
single	partition	can	be	useful	in	some	cases,	but	it’s	more	common	to	partition.

Query	Paging	with	OFFSET/FETCH
SQL	Server	gives	you	various	options	for	paging	through	result	sets.	The	traditional	way
of	paginating	is	to	use	the	TOP	operator	to	select	the	TOP	n	number	of	rows	returned	by
the	query.	SQL	Server	2005	introduced	ROW_NUMBER,	which	you	can	use	to	achieve	the
same	functionality	in	a	slightly	different	manner.	SQL	Server	2012	introduced	new
keywords	in	the	SELECT	statement	specifically	in	support	of	query	pagination.

The	OFFSET	keyword	provides	support	for	much	easier	pagination.	It	essentially
allows	you	to	specify	the	row	from	which	you	want	to	start	returning	the	data.	FETCH
then	lets	you	return	a	specified	number	of	rows	in	the	result	set.	If	you	combine	OFFSET
and	FETCH,	along	with	the	ORDER	BY	clause,	you	can	return	any	part	of	the	data	you
like	from	the	result	set,	paging	through	the	data	as	desired.

Listing	9-7	shows	the	approach	to	pagination	using	OFFSET	and	FETCH.	The	stored
procedure	uses	the	OFFSET	and	FETCH	clauses	to	retrieve	rows	from	the

Person.Person	table	in	the	AdventureWorks	database	based	on	input	parameter
values	specified	in	the	procedure	call.	The	procedure	determines	how	the	pagination	is
determined	using	the	@RowsPerPage	and	@StartPageNum	input	parameters.
@RowsPerPage	determines	how	many	rows	per	page	should	be	included	in	the	result
set.	@StartPageNum	determines	the	page	for	which	the	result	set	should	be	returned.
OFFSET	specifies	the	number	of	rows	to	skip	from	the	beginning	of	the	possible	query
result.	FETCH	specifies	the	number	of	rows	to	return	in	each	query	page.

Listing	9-7.	OFFSET/FETCH	Example

CREATE		PROCEDURE		Person.GetContacts

				@StartPageNum	int,

				@RowsPerPage	int

AS

				SELECT

								LastName,

								FirstName,

								MiddleName

				FROM	Person.Person

				ORDER	BY

								LastName,

								FirstName,

								MiddleName

				OFFSET	(@StartPageNum	-	1)	*	@RowsPerPage	ROWS

				FETCH	NEXT	@RowsPerPage	ROWS	ONLY;	

GO

The	example	procedure	call	that	uses	the	OFFSET/FETCH	clause	EXEC
Person.GetContacts	16,10	passes	an	@RowsPerPage	parameter	value	of	10
and	an	@StartPageNum	parameter	value	of	16	to	the	procedure	and	returns	the	10	rows
for	the	16th	page,	as	shown	in	Figure	9-5.	The	OFFSET	keyword	in	the	SELECT
statement	skips	the	rows	before	the	page	number	specified	in	@StartPageNum	and
@RowsPerPage.	This	example	skips	150	rows	and	begins	to	return	results	at	the	151st
row.	The	FETCH	keyword	returns	the	number	of	rows	specified	by	@RowsPerPage	(10).
The	query	plan	is	shown	in	Figure	9-6.

Figure	9-5.	Using	OFFSET	and	FETCH	to	implement	client-side	paging

Figure	9-6.	Query	plan	for	the	client-side	paging	implementation	using	OFFSET	and	FETCH

The	query	in	Listing	9-7	is	a	much	more	readable	and	elegant	solution	for	query
pagination	than	using	the	Top	clause	or	ROW_NUMBER	function	with	CTEs.	The	only
exception	would	be	if	you’re	using	OFFSET/FETCH	and	want	to	retrieve	ROW_NUMBER;
in	that	case,	you	would	have	to	add	ROW_NUMBER	to	your	query.	Thus	the
OFFSET/FETCH	clause	provides	a	much	cleaner	way	to	implement	ad	hoc	pagination.

There	are	some	restrictions,	though.	Keep	the	following	in	mind	when	using	OFFSET
and	FETCH:

OFFSET	and	FETCH	must	be	used	with	an	ORDER	BY	clause.

FETCH	can’t	be	used	without	OFFSET;	however,	OFFSET	can	be
used	without	FETCH.

The	number	of	rows	specified	using	the	OFFSET	clause	must	be
greater	than	or	equal	to	0.

The	number	of	rows	specified	by	the	FETCH	clause	must	be	greater
than	or	equal	to	1.

Queries	that	use	OFFSET	and	FETCH	can’t	use	the	TOP	operator.

The	OFFSET/FETCH	values	must	be	constants,	or	they	must	be
parameters	that	have	integer	values.

OFFSET	and	FETCH	aren’t	supported	with	the	OVER	clause.

OFFSET	and	FETCH	aren’t	supported	with	indexed	views	or	the
view’s	WITH	CHECK	OPTION.

In	general,	under	SQL	Server	2012	or	later,	the	combination	of	OFFSET	and	FETCH
provides	for	the	cleanest	approach	to	paginating	through	query	results.

The	RANK	and	DENSE_RANK	Functions
The	RANK	and	DENSE_RANK	functions	are	SQL	Server’s	ranking	functions.	They	both
assign	a	numeric	rank	value	to	each	row	in	a	partition;	however,	the	difference	lies	in	how
ties	are	dealt	with.	For	example:

If	you	have	three	values	7,	7,	and	9,	then	RANK	assigns	ranks	as	1,	1,
and	3.	That’s	because	the	two	7s	are	tied	for	first	place,	whereas	the	9
is	third	in	the	list.	RANK	doesn’t	respect	the	earlier	tie	when
computing	the	rank	for	the	value	9.

But	DENSE_RANK	assigns	ranks	1,	1,	and	2.	That’s	because
DENSE_RANK	lumps	both	7s	together	in	rank	1	and	doesn’t	count
them	separately	when	computing	the	rank	for	the	value	9.

There’s	no	right	or	wrong	way	to	rank	your	data,	absent	any	business	requirements.
SQL	Server	provides	two	options,	and	you	can	choose	the	one	that	fits	your	business	need.

Suppose	you	want	to	figure	out	AdventureWorks’	best	one-day	sales	dates	for	the
calendar	year	2012.	This	scenario	can	be	phrased	with	a	business	question	like,	“What
were	the	best	one-day	sales	days	in	2012?”	RANK	can	easily	give	you	that	information,	as
shown	in	Listing	9-8.	Partial	results	are	shown	in	Figure	9-7.

Listing	9-8.	Ranking	AdventureWorks’	Daily	Sales	Totals

WITH	TotalSalesBySalesDate

(

				DailySales,

				OrderDate

)

AS

(

				SELECT

								SUM(soh.SubTotal)	AS	DailySales,

								soh.OrderDate

				FROM		Sales.SalesOrderHeader		soh

				WHERE	soh.OrderDate	>=	'20120101'

								AND	soh.OrderDate	<	'20130101'

				GROUP	BY	soh.OrderDate

)

SELECT

				RANK()	OVER

				(

								ORDER	BY

								DailySales		DESC

)		AS		Ranking,

				DailySales,

				OrderDate

FROM		TotalSalesBySalesDate

ORDER		BY		Ranking;

Figure	9-7.	Ranking	AdventureWorks’	daily	sales	totals

Listing	9-8	is	a	CTE	that	returns	two	columns:	DailySales	and	OrderDate.
DailySales	is	the	sum	of	all	sales	grouped	by	OrderDate.	The	results	are	limited	by
the	WHERE	clause	to	include	only	sales	in	the	2012	sales	year:

WITH		TotalSalesBySalesDate

(

				DailySales,

				OrderDate

)

AS

(

				SELECT

								SUM(soh.SubTotal)	AS	DailySales,

								soh.OrderDate

				FROM		Sales.SalesOrderHeader		soh

				WHERE	soh.OrderDate	>=	'20120101'

								AND	soh.OrderDate	<	'20130101'

				GROUP	BY	soh.OrderDate

)

The	RANK	function	is	used	with	the	OVER	clause	to	apply	ranking	values	to	the	rows
returned	by	the	CTE	in	descending	order	(highest	to	lowest)	by	the	DailySales
column:

SELECT

RANK()	OVER	(ORDER	BY

DailySales	DESC)	AS	Ranking,	DailySales,	OrderDate

FROM	TotalSalesBySalesDate	ORDER	BY	Ranking;

Like	the	ROW_NUMBER	function,	RANK	can	accept	the	PARTITION	BY	clause	in	the
OVER	clause.	Listing	9-9	builds	on	the	previous	example	and	uses	the	PARTITION	BY
clause	to	rank	the	daily	sales	for	each	month.	This	type	of	query	can	answer	a	business
question	like,	“What	were	AdventureWorks’	best	one-day	sales	days	for	each	month	of
2012?”	Partial	results	are	shown	in	Figure	9-8.

Listing	9-9.	Determining	the	Daily	Sales	Rankings,	Partitioned	by	Month

WITH	TotalSalesBySalesDatePartitioned

(

				DailySales,

				OrderMonth,

				OrderDate

)

AS

(

				SELECT

								SUM(soh.SubTotal)	AS	DailySales,

								DATENAME(MONTH,	soh.OrderDate)	AS	OrderMonth,

								soh.OrderDate

				FROM		Sales.SalesOrderHeader		soh

				WHERE	soh.OrderDate	>=	'20120101'

								AND	soh.OrderDate	<	'20130101'

				GROUP	BY	soh.OrderDate

)

SELECT

				RANK()	OVER

				(

								PARTITION	BY

								OrderMonth

								ORDER	BY

								DailySales		DESC

)		AS		Ranking,

				DailySales,

				OrderMonth,

				OrderDate

FROM	TotalSalesBySalesDatePartitioned

ORDER	BY	DATEPART(mm,OrderDate),

				Ranking;

Figure	9-8.	Partial	results	of	daily	sales	rankings,	partitioned	by	month

The	query	in	Listing	9-9,	like	the	example	in	Listing	9-8,	begins	with	a	CTE	to
calculate	one-day	sales	totals	for	the	year.	The	main	differences	between	this	CTE	and	the
previous	example	are	that	Listing	9-9	returns	an	additional	OrderMonth	column	and	the
results	are	limited	to	the	year	2012.	Here	is	that	CTE:

WITH	TotalSalesBySalesDatePartitioned

(

				DailySales,

				OrderMonth,

				OrderDate

)

AS

(

				SELECT

								SUM(soh.SubTotal)	AS	DailySales,

								DATENAME(MONTH,	soh.OrderDate)	AS	OrderMonth,

								soh.OrderDate

				FROM		Sales.SalesOrderHeader		soh

				WHERE	soh.OrderDate	>=	'20120101'

								AND	soh.OrderDate	<	'20130101'

				GROUP	BY	soh.OrderDate

)

The	SELECT	query	associated	with	the	CTE	uses	the	RANK	function	to	assign
rankings	to	the	results.	The	PARTITION	BY	clause	is	used	to	partition	the	results	by

OrderMonth	so	that	the	rankings	restart	at	1	for	each	new	month.	For	example:

SELECT

RANK()	OVER

(

PARTITION	BY	OrderMonth

								ORDER	BY

								DailySales		DESC

)		AS		Ranking,

				DailySales,

				OrderMonth,

				OrderDate

FROM	TotalSalesBySalesDatePartitioned

ORDER	BY	DATEPART(mm,OrderDate),

				Ranking;

When	the	RANK	function	encounters	two	equal	DailySales	amounts	in	the	same
partition,	it	assigns	the	same	rank	number	to	both	and	skips	the	next	number	in	the
ranking.	As	shown	in	Figure	9-9,	the	DailySales	total	for	two	days	in	October	2012
was	$7479.3221,	resulting	in	the	RANK	function	assigning	the	two	days	a	Ranking	value
of	25.	The	RANK	function	then	skips	Ranking	value	26	and	assigns	the	next	row	a
Ranking	of	27.

Figure	9-9.	The	RANK	function	skips	a	value	in	the	case	of	a	tie

DENSE_RANK,	like	RANK,	assigns	duplicate	values	the	same	rank,	but	with	one
important	difference:	it	doesn’t	skip	the	next	ranking	in	the	list.	Listing	9-10	modifies
Listing	9-9	to	use	the	RANK	and	DENSE_RANK	functions.	As	you	can	see	in	Figure	9-10,
DENSE_RANK	still	assigns	the	same	Ranking	to	both	rows	in	the	result,	but	it	doesn’t
skip	the	next	Ranking	value,	whereas	RANK	does.

Listing	9-10.	Using	DENSE_RANK	to	Rank	the	Best	Daily	Sales	per	Month

WITH	TotalSalesBySalesDatePartitioned

(

				DailySales,

				OrderMonth,

				OrderDate

)

AS

(

				SELECT

								SUM(soh.SubTotal)	AS	DailySales,

								DATENAME(MONTH,	soh.OrderDate)	AS	OrderMonth,

								soh.OrderDate

				FROM		Sales.SalesOrderHeader		soh

				WHERE	soh.OrderDate	>=	'20120101'

								AND	soh.OrderDate	<	'20130101'

				GROUP	BY	soh.OrderDate

)

SELECT

	RANK()	OVER

				(

								PARTITION	BY

								OrderMonth

								ORDER	BY

								DailySales		DESC

)		AS		Ranking,

				DENSE_RANK()	OVER

				(

								PARTITION	BY

								OrderMonth

								ORDER	BY

								DailySales		DESC

)		AS		Dense_Ranking,	

				DailySales,

				OrderMonth,

				OrderDate

FROM	TotalSalesBySalesDatePartitioned

ORDER	BY	DATEPART(mm,OrderDate),

				Ranking;

Figure	9-10.	DENSE_RANK	doesn’t	skip	ranking	values	after	a	tie

The	NTILE	Function
NTILE	is	another	ranking	function	that	fulfills	a	slightly	different	need.	This	function
divides	your	result	set	into	approximate	n-tiles.	An	n-tile	can	be	a	quartile	(1/4,	or	25%
slices),	a	quintile	(1/5,	or	20%	slices),	a	percentile	(1/100,	or	1%	slices),	or	just	about	any
other	fractional	slice	you	can	imagine.	NTILE	divides	result	sets	into	approximate	n-tiles
because	the	number	of	rows	returned	may	not	be	evenly	divisible	into	the	required	number
of	groups.	A	table	with	27	rows,	for	instance,	isn’t	evenly	divisible	into	quartiles	or
quintiles.	When	you	query	a	table	with	the	NTILE	function	and	the	number	of	rows	isn’t
evenly	divisible	by	the	specified	number	of	groups,	NTILE	creates	groups	of	two	different
sizes.	The	larger	groups	are	all	one	row	larger	than	the	smaller	groups,	and	the	larger
groups	are	numbered	first.	In	the	example	of	27	rows	divided	into	quintiles	(1/5),	the	first
two	groups	have	6	rows	each,	and	the	last	three	groups	have	5	rows	each.

Like	the	ROW_NUMBER	function,	you	can	include	both	PARTITION	BY	and	ORDER
BY	in	the	OVER	clause.	NTILE	requires	an	additional	parameter	that	specifies	how	many
groups	it	should	divide	your	results	into.

NTILE	is	useful	for	answering	business	questions	like,	“Which	salespeople	made	up
the	top	4%	of	the	sales	force	in	July	2013?”	and	“What	were	their	sales	totals?”	Listing	9-
11	uses	NTILE	to	divide	the	AdventureWorks	salespeople	into	four	groups,	each	one
representing	4%	of	the	total	sales	force.	The	ORDER	BY	clause	is	used	to	specify	that
rows	are	assigned	to	the	groups	in	order	of	their	total	sales.	The	results	are	shown	in
Figure	9-11.

Listing	9-11.	Using	NTILE	to	Group	and	Rank	Salespeople

WITH	SalesTotalBySalesPerson

(

								SalesPersonID,	SalesTotal

)

AS

(

SELECT

								soh.SalesPersonID,

								SUM(soh.SubTotal)	AS	SalesTotal

			FROM	Sales.SalesOrderHeader	soh

WHERE	DATEPART(YEAR,	soh.OrderDate)	=	2013

AND	DATEPART(MONTH,	soh.OrderDate)	=	2

GROUP	BY	soh.SalesPersonID

)

SELECT

								NTILE(4)	OVER(ORDER	BY	st.SalesTotal	DESC)	AS	Tile,

								p.LastName,

								p.FirstName,

								p.MiddleName,

								st.SalesPersonID,

								st.SalesTotal

			FROM	SalesTotalBySalesPerson	st

		INNER	JOIN	Person.Person	p

								ON	st.SalesPersonID	=	p.BusinessEntityID	;

Figure	9-11.	AdventureWorks	salespeople	grouped	and	ranked	by	NTILE

The	code	begins	with	a	simple	CTE	that	returns	the	SalesPersonID	and	sum	of	the
order	SubTotal	values	from	the	Sales.SalesOrderHeader	table.	The	CTE	limits
its	results	to	the	sales	that	occurred	in	the	month	of	July	in	the	year	2014.	Here	is	the	CTE:

WITH	SalesTotalBySalesPerson	(

								SalesPersonID,

								SalesTotal)

AS	(

SELECT

								son.SalesPersonID,

								SUM(soh.SubTotal)	AS	SalesTotal

			FROM	Sales.SalesOrderHeader	soh

WHERE	DATEPART(YEAR,	soh.OrderDate)	=	2014

								AND	DATEPART(MONTH,	soh.OrderDate)	=	7

GROUP	BY	soh.SalesPersonID)

The	SELECT	query	associated	with	this	CTE	uses	NTILE(4)	to	group	the
AdventureWorks	salespeople	into	four	groups	of	approximately	4%	each.	The	OVER
clause	specifies	that	the	groups	should	be	assigned	based	on	SalesTotal	in	descending
order.	The	entire	SELECT	query	is	as	follows:

SELECT

								NTILE(4)	OVER(ORDER	BY	st.SalesTotal	DESC)	AS	Tile,

								p.LastName,

								p.FirstName,

								p.MiddleName,

								st.SalesPersonID,

								st.SalesTotal

			FROM	SalesTotalBySalesPerson	st	

		INNER	JOIN	Person.Person	p

								ON	st.SalesPersonID	=	p.BusinessEntityID	;

Aggregate	Functions,	Analytic	Functions,
and	the	OVER	Clause
As	previously	discussed,	the	numbering	and	ranking	functions	(ROW_NUMBER,	RANK,
and	so	on)	all	work	with	the	OVER	clause	to	define	the	order	and	partitioning	of	their	input
rows	via	the	ORDER	BY	and	PARTITION	BY	clauses.	The	OVER	clause	also	provides
windowing	functionality	to	T-SQL	aggregate	functions	such	as	SUM,	COUNT,	and	SQL
CLR	user-defined	aggregates.

Windowing	functions	can	help	with	common	business	questions	like	those	involving
running	totals	and	sliding	averages.	For	instance,	you	can	apply	the	OVER	clause	to	the
Purchasing.PurchaseOrderDetail	table	in	the	AdventureWorks	database	to	retrieve	the
SUM	of	the	dollar	values	of	products	ordered	in	the	form	of	a	running	total.	You	can
further	restrict	the	result	set	in	which	you	want	to	perform	the	aggregation	by	partitioning
the	result	set	by	PurchaseOrderId,	essentially	generating	the	running	total	separately	for
each	purchase	order.	An	example	query	is	shown	in	Listing	9-12.	Partial	results	are	shown
in	Figure	9-12.

Listing	9-12.	Using	the	OVER	Clause	with	SUM

SELECT

PurchaseOrderID,

ProductID,

OrderQty,

UnitPrice,

LineTotal,

SUM(LineTotal)

										OVER	(PARTITION	BY	PurchaseOrderIDORDER	BY	ProductId

																RANGE	BETWEEN	UNBOUNDED	PRECEDING

																AND	CURRENT	ROW)

										AS	CumulativeOrderOty

			FROM	Purchasing.PurchaseOrderDetail;

Figure	9-12.	Partial	results	from	a	query	generating	a	running	SUM

Notice	the	following	new	clause	in	Listing	9-12:

RANGE	BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW

This	is	known	as	a	framing	clause.	In	this	case,	it	specifies	that	each	sum	includes	all

values	from	the	first	row	in	the	partition	through	to	the	current	row.	A	framing	clause	like
this	makes	sense	only	when	there	is	order	to	the	rows,	and	that	is	the	reason	for	the
ORDER	BY	ProductId	clause.	The	framing	clause	in	combination	with	the	ORDER
BY	clause	generate	the	running	sum	that	you	see	in	Figure	9-12.

	Tip		Other	framing	clauses	are	possible.	The	RANGE	BETWEEN	UNBOUNDED
PRECEDING	AND	CURRENT	ROW	in	Listing	9-12	will	be	the	default	if	no	framing
clause	is	specified.	Keep	that	point	in	mind:	it’s	common	for	query	writers	to	be
confounded	by	unexpected	results	because	they	don’t	know	a	default	framing	clause	is
being	applied.

Let’s	look	at	an	example	to	see	how	the	default	framing	clause	can	affect	the	query
results.	For	example,	let’s	say	you	want	to	calculate	and	return	the	total	sales	amount	by
PurchaseOrder	with	each	line	item.	Based	on	how	the	framing	is	defined,	you	can	get
very	different	results,	because	total	can	mean	grand	total	or	running	total.	Let’s	modify	the
query	in	Listing	9-12	and	specify	the	framing	clause	RANGE	BETWEEN	UNBOUNDED
PRECEDING	AND	UNBOUNDED	FOLLOWING	along	with	the	default	framing	clause
and	review	the	results.	The	modified	query	is	shown	in	Listing	9-13,	and	the	results	are
shown	in	Figure	9-13.

Listing	9-13.	Query	Results	Due	to	the	Default	Framing	Specification

SELECT

PurchaseOrderID,

ProductID,

OrderQty,

UnitPrice,

LineTotal,

SUM(LineTotal)

										OVER	(PARTITION	BY	PurchaseOrderID	ORDER	BY	

ProductId)

														AS	TotalSalesDefaultFraming,

SUM(LineTotal)

										OVER	(PARTITION	BY	PurchaseOrderID	ORDER	BY	

ProductId

																RANGE	BETWEEN	UNBOUNDED	PRECEDING

																AND	UNBOUNDED	FOLLOWING)

										AS	TotalSalesDefinedFraming

		FROM	Purchasing.PurchaseOrderDetail

ORDER	BY	PurchaseOrderID;

Figure	9-13.	Partial	results	from	the	query	with	different	windowing	specifications

In	Figure	9-13,	you	can	see	that	the	total	sales	in	the	last	two	columns	differ
significantly.	Column	6,	TotalSalesDefaultFraming,	lists	total	cumulative	sales:
because	framing	isn’t	specified	for	that	column,	the	default	framing	RANGE	BETWEEN
UNBOUNDED	PRECEDING	AND	CURRENT	ROW	is	extended	to	the	column,	which
means	the	aggregate	is	calculated	only	until	the	current	row.	But	for	column	7,
TotalSalesDefinedFraming,	the	framing	clause	RANGE	BETWEEN	UNBOUNDED
PRECEDING	AND	UNBOUNDED	FOLLOWING	is	specified,	meaning	the	framing	is
extended	for	all	the	rows	in	the	partition	and	hence	the	total	is	calculated	for	sales	across
the	entire	PurchaseOrder.	The	objective	is	to	calculate	and	return	the	total	sales
amount	for	the	purchase	order	with	each	line	item,	so	not	specifying	the	framing	clause
yields	a	running	total.	This	example	shows	that	it’s	important	to	specify	the	proper
framing	clause	to	achieve	the	desired	result	set.

Now	let’s	look	at	another	example.	Listing	9-14	modifies	Listing	9-13:	it	again	applies
the	OVER	clause	to	the	Purchasing.PurchaseOrderDetail	table	in	the
AdventureWorks	database,	but	this	time	to	retrieve	the	two-day	average	of	the	total	dollar
amount	of	products	ordered.	Results	are	sorted	by	DueDate.	Notice	the	different	framing
clause	in	this	query:	ROWS	BETWEEN	1	PRECEDING	AND	CURRENT	ROW.	Rows
are	sorted	by	date.	For	each	row,	the	two-day	average	considers	the	current	row	and	the
row	from	the	previous	day.	Partial	results	are	shown	in	Figure	9-14.

Listing	9-14.	Using	the	OVER	Clause	to	Define	Frame	Sizes	That	Return	a	Two-Day
Moving	Average

SELECT

PurchaseOrderID,

ProductID,

Duedate,

LineTotal,

Avg(LineTotal)

										OVER	(ORDER	BY	Duedate

																ROWS	BETWEEN	1	PRECEDING	AND	CURRENT	ROW)	AS	

[2DayAvg]

		FROM	Purchasing.PurchaseOrderDetail

ORDER	BY	Duedate;

Figure	9-14.	Partial	results	from	a	query	returning	a	two-day	moving	average

Let’s	review	one	last	scenario	that	calculates	the	running	total	of	sales	by	ProductID
to	provide	information	to	management	about	which	products	are	selling	quickly.	Listing	9-
15	modifies	the	query	from	Listing	9-14	further	to	define	multiple	windows	by
partitioning	the	result	set	by	ProductID.	You	can	see	how	the	frame	expands	as	the
calculation	is	done	in	the	frame.	Once	the	ProductID	changes,	the	frame	is	reset	and	the
calculation	is	restarted.	Figure	9-15	shows	a	partial	result	set.

Listing	9-15.	Defining	Frames	from	within	the	OVER	Clause	to	Calculate	a	Running	Total

SELECT

PurchaseOrderID,

ProductID,

OrderQty,

UnitPrice,

LineTotal,

SUM(LineTotal)

										OVER	(PARTITION	BY	ProductId	ORDER	BY	DueDateRANGE

																BETWEEN	UNBOUNDED	PRECEDING	AND

																CURRENT	ROW)	AS		CumulativeTotal,

ROW_NUMBER()

										OVER	(PARTITION	BY	ProductId	ORDER	BY	DueDate	

)	AS		No

			FROM	Purchasing.PurchaseOrderDetail

	ORDER	BY	ProductId,	DueDate;

Figure	9-15.	Partial	results	showing	a	running	total	by	product	ID

You	can	also	see	in	the	query	in	Listing	9-15	that	you	aren’t	limited	to	using	one
aggregate	function	in	the	SELECT	statement.	You	can	specify	multiple	aggregate
functions	in	the	same	query.

Framing	can	be	defined	by	either	ROWS	or	RANGE	with	a	lower	boundary	and	an
upper	boundary.	If	you	define	only	the	lower	boundary,	then	the	upper	boundary	is	set	to
the	current	row.	When	you	define	the	framing	with	ROWS,	you	can	specify	the	boundary
with	a	number	or	scalar	expression	that	returns	an	integer.	If	you	don’t	define	the
boundary	for	framing,	then	the	default	value	of	RANGE	BETWEEN	UNBOUNDED
PRECEDING	AND	CURRENT	ROW	is	assumed.

Analytic	Function	Examples
SQL	Server	2012	introduced	several	helpful	analytical	functions.	Some	of	the	more	useful
of	these	are	described	in	the	subsections	to	follow.	Some	are	statistics	oriented;	others	are
useful	for	reporting	scenarios	in	which	you	need	to	access	values	across	rows	in	a	result
set.

CUME_DIST	and	PERCENT_RANK
CUME_DIST	and	PERCENT_RANK	are	two	analytical	functions	that	were	introduced	in
SQL	Server	2012.	Suppose	you	want	to	figure	out	how	AdventureWorks’	best,	average,
and	worst	salespeople	perform	in	comparison	to	each	other.	You’re	especially	interested	in
the	data	for	a	salesperson	named	Jillian	Carson,	who	you	know	exists	in	the	table	by	pre-
querying	the	data.	This	scenario	might	be	phrased	with	a	business	question	like,	“How

does	salesperson	Jillian	Carson	rank	when	compared	to	the	total	sales	of	all	the
salespeople?”	CUME_DIST	can	easily	give	you	that	information,	as	shown	in	Listing	9-
16.	The	query	results	are	shown	in	Figure	9-16.

Listing	9-16.	Using	the	CUME_DIST	Function

SELECT

				round(SUM(TotalDue),1)	AS	Sales,

				LastName,

				FirstName,

				SalesPersonId,

				CUME_DIST()	OVER	(ORDER	BY	round(SUM(TotalDue),1))	as	

CUME_DIST

FROM

				Sales.SalesOrderHeader	soh

								JOIN	Sales.vSalesPerson	sp

								ON	soh.SalesPersonID	=	sp.BusinessEntityID

GROUP	BY	SalesPersonID,LastName,FirstName;

Figure	9-16.	Results	of	the	CUME_DIST	calculation

The	query	in	Listing	9-16	rounds	the	TotalDue	for	the	Sales	amount,	to	improve
the	query	value’s	readability.	Because	CUME_DIST	returns	the	position	of	the	row,	the
column	results	are	returned	as	a	decimal	percent.	The	results	can	be	formatted	to	return	as
a	percentage	by	multiplying	by	100.	The	result	in	Figure	9-16	shows	that	94.11%	of	the
total	salespeople	have	total	sales	less	than	or	equal	to	Jillian	Carson,	as	represented	by	the

cumulative	distribution	value	of	0.9411.

If	you	slightly	rephrase	the	question	as	“In	what	percentile	are	the	total	sales	of
salesperson	Jillian	Carson?”	PERCENT_RANK	can	provide	the	answer.	Listing	9-17	is	a
modified	version	of	Listing	9-16’s	query,	now	including	a	call	to	PERCENT_RANK.
Partial	results	are	shown	in	Figure	9-17.

Listing	9-17.	Using	the	PERCENT_RANK	Function

SELECT

								round(SUM(TotalDue),1)	AS	Sales,

								LastName,

								FirstName,

								SalesPersonId,

								CUME_DIST()	OVER	(ORDER	BY	round(SUM(TotalDue),1))	as	

CUME_DIST

								,PERCENT_RANK()	OVER	(ORDER	BY	round(SUM(TotalDue),1))	

as	PERCENT_RANK

			FROM	Sales.SalesOrderHeader	soh

				JOIN	Sales.vSalesPerson	sp

							ON	soh.SalesPersonID	=	sp.BusinessEntityID

GROUP	BY	SalesPersonID,LastName,FirstName;

Figure	9-17.	Results	of	the	CUME_DIST	and	PERCENT_RANK	calculation	for	salespeople

The	PERCENT_RANK	function	returns	the	percentage	of	total	sales	from	all	sales	in
AdventureWorks.	As	you	can	see	in	the	results,	there	are	17	unique	values:	the	first	value
is	0,	and	the	last	value	is	1.	The	other	rows	have	values	based	on	the	number	of	rows	less
than	1.	In	this	example,	Jillian	Carson	is	at	the	93.75%	percentile	of	overall	sales	in

AdventureWorks,	represented	by	a	percent	rank	value	of	0.9375.

	Note		You	can	apply	the	PARTITION	BY	clause	to	the	CUME_DIST	and
PERCENT_RANK	functions	to	define	the	window	in	which	you	apply	those	calculations.

PERCENTILE_CONT	and	PERCENTILE_DISC
PERCENTILE_CONT	and	PERCENTILE_DISC	are	new	distribution	functions	that	are
essentially	the	inverse	of	the	CUME_DIST	and	PERCENT_RANK	functions.	Suppose	you
want	to	figure	out	AdventureWorks’	40th	percentile	sales	total	for	all	the	accounts.	This
can	be	phrased	with	the	business	question,	“What	is	the	40th	percentile	for	all	sales	for	all
accounts?”	PERCENTILE_CONT	and	PERCENTILE_DISC	require	the	WITHIN
GROUP	clause	to	specify	the	ordering	and	columns	for	the	calculation.
PERCENTILE_CONT	interpolates	over	all	the	values	in	the	window,	so	the	result	is	a
calculated	value.	PERCENTILE_DISC	returns	the	value	of	the	actual	column.	Both
PERCENTILE_CONT	and	PERCENTILE_DISC	require	the	percentile	as	an	argument,
given	as	a	value	in	the	range	from	0.0	to	1.0.	The	example	in	Listing	9-18	calculates	the
sales	total	for	the	40th	percentile,	partitioned	by	account	number.	The	example	uses
PERCENTILE_CONT	and	PERCENTILE_DISC	with	the	median	value	of	0.4	as	the
percentile	to	compute,	meaning	the	40th	percentile	value.	The	query	results	are	shown	in
Figure	9-18.

Listing	9-18.	Using	PERCENTILE_CONT	and	PERCENTILE_DISC

SELECT

				round(SUM(TotalDue),1)	AS	Sales,	

				LastName,

				FirstName,

				SalesPersonId,

				AccountNumber,

				PERCENTILE_CONT(0.4)	WITHIN	GROUP	(ORDER	BY	

round(SUM(TotalDue),1))

												OVER(PARTITION	BY	AccountNumber)	AS	

PERCENTILE_CONT,

				PERCENTILE_DISC(0.4)	WITHIN	GROUP(ORDER	BY	

round(SUM(TotalDue),1))

								OVER(PARTITION	BY	AccountNumber)	AS	PERCENTILE_DISC

FROM

				Sales.SalesOrderHeader	soh

								JOIN	Sales.vSalesPerson	sp

								ON	soh.SalesPersonID	=	sp.BusinessEntityID

GROUP	BY	AccountNumber,SalesPersonID,LastName,FirstName

Figure	9-18.	Results	from	the	PERCENTILE_CONT	and	PERCENTILE_DISC	functions

You	can	see	in	Figure	9-18	that	the	PERCENTILE_CONT	and	PERCENTILE_DISC
values	differ	based	on	the	account	number.	For	account	number	10-4020-000003,
regardless	of	the	salesperson,	PERCENTILE_CONT	is	198391.28,	which	is	an
interpolated	value	and	may	not	exist	in	the	data	set.	PERCENTILE_DISC	is	176830.40,
which	is	the	value	from	the	actual	column.	For	account	10-4020-000004,
PERCENTILE_CONT	is	308720.28	and	PERCENTILE_DISC	is	222309.60.

LAG	and	LEAD
LAG	and	LEAD	are	new	offset	functions	that	enable	you	to	perform	calculations	based	on
a	specified	row	that	is	before	or	after	the	current	row.	These	functions	provide	a	method	to
access	more	than	one	row	at	a	time	without	having	to	create	a	self-join.	LAG	gives	you
access	to	the	row	preceding	the	current	row,	whereas	LEAD	lets	you	access	the	row	after
the	current	row.

LAG	helps	answer	business	questions	such	as,	“For	all	active	products	that	have	not
been	discontinued,	what	are	the	current	and	previous	production	costs?”	Listing	9-19
shows	an	example	query	that	calculates	the	current	production	cost	and	the	previous
production	cost	for	all	active	products	using	the	LAG	function.	Partial	results	are	shown	in
Figure	9-19.

Listing	9-19.	Using	the	LAG	Function

WITH	ProductCostHistory	AS

(SELECT

								ProductID,

								LAG(StandardCost)

												OVER	(PARTITION	BY	ProductID	ORDER	BY	ProductID)	

AS	PreviousProductCost,

								StandardCost	AS	CurrentProductCost,

								Startdate,Enddate

FROM		Production.ProductCostHistory

)

SELECT

								ProductID,

								PreviousProductCost,

								CurrentProductCost,

								StartDate,

								EndDate

FROM	ProductCostHistory

WHERE	Enddate	IS	NULL

Figure	9-19.	Results	of	the	production	cost	history	comparison	using	the	LAG	function

In	this	example,	Listing	9-19	uses	the	LAG	function	in	a	CTE	to	calculate	the
difference	between	the	current	production	cost	and	the	previous	product	production	cost
by	partitioning	the	data	set	by	ProductID:

SELECT

								ProductID,

								LAG(StandardCost)

												OVER	(PARTITION	BY	ProductID	ORDER	BY	ProductID)	

AS	PreviousProductCost,

								StandardCost	AS	CurrentProductCost,

								Startdate,Enddate

FROM		Production.ProductCostHistory

The	SELECT	query	associated	with	the	CTE	returns	the	rows	with	the	latest
production	cost	from	the	dataset,	with	EndDate	being	NULL	in	the	call:

SELECT

								ProductID,

								PreviousProductCost,

								CurrentProductCost,

								StartDate,

								EndDate

FROM	ProductCostHistory

WHERE	Enddate	IS	NULL

LEAD,	which	is	the	opposite	of	LAG,	helps	answer	business	questions	such	as,	“How
do	each	month’s	sales	compare	with	sales	from	the	following	month	for	all
AdventureWorks	salespeople	over	the	year	2007?”	Listing	9-20	shows	an	example	query
that	lists	the	next	month’s	total	sales	relative	to	the	current	month’s	sales	for	year	2007
using	the	LEAD	function.	Partial	results	are	shown	in	Figure	9-20.

Listing	9-20.	Using	the	LEAD	Function

SELECT

				LastName,	
				SalesPersonID,
				Sum(SubTotal)	CurrentMonthSales,
				DateNAME(Month,OrderDate)	Month,
				DateName(Year,OrderDate)	Year,
				LEAD(Sum(SubTotal),1)
																OVER	(ORDER	BY	SalesPersonID,	OrderDate)
TotalSalesNextMonth

						FROM	Sales.SalesOrderHeader	soh
								JOIN	Sales.vSalesPerson	sp
										ON	soh.SalesPersonID	=	sp.BusinessEntityID
	WHERE	DateName(Year,OrderDate)		=	2007
	GROUP	BY	FirstName,	LastName,	SalesPersonID,OrderDate
	ORDER	BY	SalesPersonID,OrderDate;

Figure	9-20.	Results	of	comparing	each	employee’s	sales	performance	for	year	2007	using	the	LEAD	function

In	Figure	9-20	you	can	see	that	the	last	row	returns	NULL	for	the	next	month’s	sales,
because	there	is	no	LEAD	for	the	last	row.

FIRST_VALUE	and	LAST_VALUE
FIRST_VALUE	and	LAST_VALUE	are	offset	functions	that	return	the	first	and	last	values
in	the	window	defined	using	the	OVER	clause.	FIRST_VALUE	returns	the	first	value	in
the	window,	and	LAST_VALUE	returns	the	last	value	in	the	window.

These	functions	help	answer	questions	like,	“What	are	the	beginning	and	ending	sales
amounts	for	any	given	month	for	a	given	salesperson?”	Listing	9-21	shows	an	example
query	that	answers	this	question,	and	Figure	9-21	shows	partial	query	results.

Listing	9-21.	Using	FIRST_VALUE	and	LAST_VALUE

SELECT	DISTINCT

	LastName,

	SalesPersonID,

	datename(year,OrderDate)	OrderYear,

	datename(month,	OrderDate)	OrderMonth,

	FIRST_VALUE(SubTotal)

													OVER	(PARTITION	BY	SalesPersonID,	OrderDate	ORDER	

BY		SalesPersonID)

															FirstSalesAmount,

								LAST_VALUE(SubTotal)

												OVER	(PARTITION	BY	SalesPersonID,	OrderDate	ORDER	

BY		SalesPersonID)

														LastSalesAmount,

								OrderDate

			FROM	Sales.SalesOrderHeader	soh

					JOIN	Sales.vSalesPerson	sp

								ON	soh.SalesPersonID	=	sp.BusinessEntityID

ORDER	BY	OrderDate;

Figure	9-21.	Results	showing	the	first	and	last	sales	amount

This	example	returns	the	first	and	last	sales	amounts	for	each	salesperson	by	month
and	year.	You	can	see	in	Figure	9-21	that	in	some	cases,	FirstSalesAmount	and
LastSalesAmount	are	the	same,	which	means	there	was	only	one	sale	in	those
months.	In	months	with	more	than	one	sale,	the	values	for	FirstSalesOrder	and
LastSalesOrder	are	listed.

Summary
CTEs	are	powerful	SQL	Server	features	that	come	in	two	varieties:	recursive	and
nonrecursive.	Nonrecursive	CTEs	allow	you	to	write	expressive	T-SQL	code	that	is	easier
to	code,	debug,	and	manage	than	complex	queries	that	make	extensive	use	of	derived
tables.	Recursive	CTEs	simplify	queries	of	hierarchical	data	and	let	you	easily	generate
result	sets	consisting	of	sequential	numbers,	which	are	very	useful	in	themselves.

SQL	Server’s	support	for	windowing	functions	and	the	OVER	clause	makes	it	simple
to	calculate	aggregates	with	window	framing	and	ordering.	SQL	Server	supports	several
windowing	functions,	including	the	following:

ROW_NUMBER	numbers	the	rows	of	a	result	set	sequentially,
beginning	with	1.

RANK	and	DENSE_RANK	rank	a	result	set,	applying	the	same	rank
value	in	the	case	of	a	tie.

NTILE	groups	a	result	set	into	a	user-specified	number	of	groups.

CUME_DIST,	PERCENTILE_CONT,	PERCENT_RANK,	and
PERCENTILE_DISC	provide	analytical	capabilities	in	T-SQL	and
enable	cumulative	distribution	value	calculations.

LAG	and	LEAD	provide	access	to	the	rows	at	a	given	offset	value.

FIRST_VALUE	and	LAST_VALUE	return	the	first	and	last	row	for	a
given	window	defined	by	the	partition	subclause.

You	can	also	use	the	OVER	clause	to	apply	windowing	functionality	to	built-in
aggregate	functions	and	SQL	CLR	user-defined	aggregates.

Both	CTEs	and	windowing	functions	provide	useful	functionality	and	extend	the
syntax	of	T-SQL,	allowing	you	to	write	more	powerful	code	than	ever	in	a	simpler	syntax
than	was	possible	without	them.

EXERCISES

1.	 [True/false]	When	a	CTE	is	not	the	first	statement	in	a	batch,	the
statement	preceding	it	must	end	with	a	semicolon	statement
terminator.

2.	 [Choose	all	that	apply]	A	recursive	CTE	requires	which	of	the
following?

a.	 The	WITH	keyword

b.	 An	anchor	query

c.	 The	EXPRESSION	keyword

d.	 A	recursive	query

3.	 [Fill	in	the	blank]	The	MAXRECURSION	option	can	accept	a	value
between	0	and	_________.

4.	 [Choose	one]	SQL	Server	supports	which	of	the	following
windowing	functions?

a.	 ROW_NUMBER

b.	 RANK

c.	 DENSE_RANK

d.	 NTILE

e.	 All	of	the	above

5.	 [True/false]	You	can	use	ORDER	BY	in	the	OVER	clause	when	used
with	aggregate	functions.

6.	 [True/false]	When	PARTITION	BY	and	ORDER	BY	are	both	used
in	the	OVER	clause,	PARTITION	BY	must	appear	first.

7.	 [Fill	in	the	blank]	The	names	of	all	columns	returned	by	a	CTE

must	be__________.

8.	 [Fill	in	the	blank]	The	default	framing	clause	is
___________________.

9.	 [True/False]	If	ORDER	BY	is	not	specified	for	functions	that	do	not
require	an	OVER	clause,	the	window	frame	is	defined	for	the	entire
partition.

10.	 [True/False]	Checksum	can	be	used	with	an	OVER	clause.

CHAPTER	10

Data	Types	and	Advanced	Data	Types
Transact-SQL	is	a	strongly-typed	language.	Columns	and	variables	must	have	a	valid	data
type,	and	the	type	is	a	constraint	of	the	column.	In	this	chapter,	we	will	not	cover	all	data
types	comprehensively.	We	will	skip	the	obvious	part	and	concentrate	on	specific
information	and	on	more	complex	and	sophisticated	data	types	that	were	introduced	in
SQL	Server	over	time.

Basic	Data	Types
Basic	data	types	like	integer	or	varchar	are	pretty	much	self-explanatory.	Some	of	these
types	have	interesting	and	important-to-know	properties	or	behavior,	and	even	the	most
used,	like	varchar,	are	worth	a	look.

Characters
Many	tools,	like	the	Microsoft	Access	Upsizing	Wizard,	generate	tables	in	SQL	Server
using	some	default	choices.	For	all	character	strings,	they	create	nvarchar	columns	by
default.	The	n	stands	for	UNICODE,	the	double-bytes	representation	of	a	character,	with
enough	room	to	fit	all	worldwide	language	signs	(also	called	logograms	in	liguistics),	like
traditional	and	simplified	Chinese,	Arabic,	and	Farsi.	nvarchar	must	be	used	when	the
column	has	to	store	non-European	languages,	but	as	they	induce	an	obvious	overhead,	you
should	avoid	creating	unneeded	nvarchar	or	nchar	columns.

The	real	size	of	the	data	in	bytes	is	returned	by	the	DATALENGTH()	function,	while
the	LEN()	string	function,	designed	to	hide	internal	storage	specifics	from	the	T-SQL
developer,	will	return	the	number	of	characters.	We	test	the	different	values	returned	by
these	functions	in	Listing	10-1.	The	results	are	shown	in	Figure	10-1.

Listing	10-1.	Unicode	Handling

DECLARE

				@string	VARCHAR(50)	=	'hello	earth',

				@nstring	NVARCHAR(50)	=	'hello	earth';

SELECT

				DATALENGTH(@string)	as	DatalengthString,

				DATALENGTH(@nstring)	as	DatalengthNString,

				LEN(@string)	as	lenString,

				LEN(@nstring)	as	lenNString;

Figure	10-1.	The	Results	of	LEN()	and	DATALENGTH()

You	can	see	the	the	nvarchar	storage	of	our	'hello	earth'	is	22	bytes.
Imagine	a	100	million-row	table:	having	such	a	column	with	an	average	of	11-character
strings,	the	storage	needed	to	accomodate	the	extra	bytes	would	be	1.1	GB.

	Note		To	represent	a	T-SQL	identifier,	like	a	login	name	or	a	table	name,	you	can	use
the	special	sysname	type,	which	corresponds	to	nvarchar(128).

The	Max	Data	Types
In	the	heady	days	of	SQL	Server	2000,	large	object	(LOB)	data	storage	and	manipulation
required	use	of	the	old	style	text,	ntext,	and	image	data	types.	These	types	have	been
deprecated	and	were	replaced	with	easier-to-use	types	in	SQL	Server	2005,	namely	the
varchar(max),	nvarchar(max),	and	varbinary(max)	types.

Like	the	older	types,	each	of	these	new	data	types	can	hold	over	2.1	billion	bytes	of
character	or	binary	data,	but	they	handle	data	in	a	much	more	efficient	way.	The	old	text
or	image	types	required	a	dedicated	type	of	allocation	that	created	a	b-tree	structure	for
each	value	inserted,	regardless	of	its	size.	This	of	course	had	a	significant	performance
impact	when	retrieving	the	columns’	content,	because	the	storage	engine	had	to	follow
pointers	to	this	complex	allocation	structure	for	each	and	every	row	being	read,	even	if	its
value	was	a	few	bytes	long.	The	(n)varchar(max)	or	varbinary(max)	are	more
clever	types	that	are	handled	differently	depending	on	the	size	of	the	value.	The	storage
engine	creates	the	LOB	structure	only	if	the	data	inserted	cannot	be	kept	in	the	8	KB	page.

Also,	unlike	the	legacy	LOB	types,	the	max	data	types	operate	similarly	to	the
standard	varchar,	nvarchar,	and	varbinary	data	types.	Standard	string
manipulation	functions	such	as	LEN()	and	CHARINDEX(),	which	didn’t	work	well	with
the	older	LOB	data	types,	work	as	expected	with	the	new	max	data	types.	The	new	data
types	also	eliminate	the	need	for	awkward	solutions	involving	the	TEXTPTR,	READTEXT,
and	WRITETEXT	statements	to	manipulate	LOB	data.

	Note		The	varchar(max),	nvarchar(max),	and	varbinary(max)	data	types
are	complete	replacements	for	the	SQL	Server	2000	text,	ntext,	and	image	data
types.	The	text,	ntext,	and	image	data	types	and	their	support	functions	will	be
removed	in	a	future	version	of	SQL	Server.	Because	they	are	deprecated,	Microsoft
recommends	you	avoid	these	older	data	types	for	new	development.

The	new	max	data	types	support	a	.WRITE	clause	extension	to	the	UPDATE	statement
to	perform	optimized	minimally	logged	updates	and	appends	to	varchar(max),

varbinary(max),	and	nvarchar(max)	types.	You	can	use	the	.WRITE	clause	by
appending	it	to	the	end	of	the	column	name	in	your	UPDATE	statement.	The	example	in
Listing	10-2	compares	performance	of	the	.WRITE	clause	to	a	simple	string
concatenation	when	updating	a	column.	The	results	of	this	simple	comparison	are	shown
in	Figure	10-2.

Listing	10-2.	Comparison	of	.WRITE	Clause	and	String	Append

--	Turn	off	messages	that	can	affect	performance

SET	NOCOUNT	ON;

--	Create	and	initially	populate	a	test	table

CREATE	TABLE	#test	(

				Id	int	NOT	NULL	PRIMARY	KEY,

				String	varchar(max)	NOT	NULL

);

INSERT	INTO	#test	(

				Id,

				String

)	VALUES	(

				1,

				''

),	(

				2,

				''

);

--	Initialize	variables	and	get	start	time

DECLARE	@i	int	=	1;

DECLARE	@quote	varchar(50)	=	'Four	score	and	seven	years	

ago…';

DECLARE	@start_time	datetime2(7)	=	SYSDATETIME();

--	Loop	2500	times	and	use	.WRITE	to	append	to	

a	varchar(max)	column

WHILE	@i	<	2500

BEGIN

				UPDATE	#test

				SET	string.WRITE(@quote,	LEN(string),	LEN(@quote))

				WHERE	Id	=	1;

				SET	@i	+=	1;

END;

SELECT	'.WRITE	Clause',	DATEDIFF(ms,	@start_time,	

SYSDATETIME()),	'ms';

--	Reset	variables	and	get	new	start	time

SET	@i		=	1;

SET	@start_time	=	SYSDATETIME();

--	Loop	2500	times	and	use	string	append	to	a	varchar(max)	

column

WHILE	@i	<	2500

BEGIN

				UPDATE	#test

				SET	string	+=	@quote

				WHERE	Id	=	2;

				SET	@i	+=	1;

END;	

SELECT	'Append	Method',	DATEDIFF(ms,	@start_time,	

SYSDATETIME()),	'ms';

SELECT

				Id,

				String,

				LEN(String)

FROM	#test;

DROP	TABLE	#test;

Figure	10-2.	Testing	the	.WRITE	Clause	against	Simple	String	Concatenation

As	you	can	see	in	this	example,	the	.WRITE	clause	is	appreciably	more	efficient	than
a	simple	string	concatenation	when	updating	a	max	data	type	column.	Note	that	these
times	were	achieved	on	one	of	our	development	machines,	and	your	results	may	vary
significantly	depending	on	your	specific	configuration.	You	can	expect	the	.WRITE
method	to	perform	more	efficiently	than	simple	string	concatenation	when	updating	max

data	type	columns,	however.

You	should	note	the	following	about	the	.WRITE	clause:

The	second	.WRITE	parameter,	@offset,	is	a	zero-based	bigint
and	cannot	be	negative.	The	first	character	of	the	target	string	is	at
offset	0.

If	the	@offset	parameter	is	NULL,	the	expression	is	appended	to	the
end	of	the	target	string.	@length	is	ignored	in	this	case.

If	the	third	parameter,	@length,	is	NULL,	SQL	Server	truncates
anything	past	the	end	of	the	string	expression	(the	first	.WRITE
parameter)	after	the	target	string	is	updated.	The	@length	parameter
is	a	bigint	and	cannot	be	negative.

Numerics
There	are	two	types	of	numeric:	exact	and	approximate.	Integer	and	decimal	are	exact
numbers.	It	is	worth	knowing	that	any	exact	numeric	can	be	used	as	an	auto-incremented
IDENTITY	column.	Most	of	the	time	of	course,	a	32-bit	int	is	chosen	as	an	auto-
incremented	surrogate	key.

	Note		We	call	surrogate	key	a	technical,	non-natural	unique	key,	in	other	words	a
column	storing	values	created	inside	the	database,	and	having	no	meaning	outside	of	it.
Most	of	the	time	in	SQL	Server	it	is	an	IDENTITY	(auto-incremented)	number,	of	a
uniqueidentifier	(a	Globally	Unique	Identifier,	or	GUID)	that	we	will	see	later	in
this	chapter.

Because	there	is	no	unsigned	numeric	in	SQL	Server,	the	range	of	values	that	can	be
generated	by	the	IDENTITY	property	is	from	−2,147,483,648	to	+2,147,483,647.	Indeed,
as	the	IDENTITY	property	takes	a	seed	and	an	increment	as	parameters,	nothing	prevents
you	from	declaring	it	as	in	Listing	10-3:

Listing	10-3.	Use	the	Full	Range	of	32-bit	Integer	for	IDENTITY	Columns

CREATE	TABLE	dbo.bigtable	(

				bigtableId	int	identity(-2147483648,1)	NOT	NULL

);

INSERT	INTO	dbo.bigtable	DEFAULT	VALUES;

INSERT	INTO	dbo.bigtable	DEFAULT	VALUES;

SELECT	*	FROM	dbo.bigtable;

The	seed	parameter	of	the	bigtableId	column	IDENTITY	property	is	set	as	the
lowest	possible	int	value,	instead	of	the	most	commonly	seen	IDENTITY(1,1)
declaration.	The	results	follow	in	Figure	10-3.

Figure	10-3.	The	First	Two	IDENTITY	Values	Inserted

This	allows	for	twice	the	range	of	available	values	in	your	key	and	might	save	you
from	choosing	a	bigint	(64-bit	integer)	to	accommodate	values	for	a	table	in	which	you
expect	to	have	more	than	2	billion	rows	but	less	than	4	billion	rows.	Once	again,	on	a	100-
million	row	table,	it	will	save	about	400	MB,	and	probably	much	more	than	that	because
there	are	strong	chances	that	the	key	value	will	be	used	in	indexes	and	foreign	keys.

	Note		Some	are	reluctant	to	use	this	tip	because	it	creates	keys	with	negative	numbers.
Theoretically,	a	surrogate	key	is	precisely	meaningless	by	nature	and	should	not	be	seen
by	the	end	user.	It	is	merely	there	to	provide	a	unique	value	to	identify	and	reference	a
row.	Sometimes,	when	these	surrogate	keys	are	shown	to	users,	they	start	to	acquire	a	life
of	their	own,	a	purpose.	For	example,	people	start	to	talk	about	customer	3425	instead	of
using	her	name—hence	the	difficulty	with	negative	values.

We	talked	about	exact	numeric	types.	A	word	of	caution	about	approximate	type:	do
not	use	approximate	numeric	types	for	anything	other	than	scientific	purpose.	A	column
defined	as	float	or	real	stores	floating-point	values	as	defined	by	the	IEEE	Standard
for	Floating-Point	Arithmetic	(IEEE	754),	and	any	result	of	an	operation	on	float	or
real	will	be	approximate.	Think	about	the	number	pi:	you	always	give	a	non-precise
representation	of	pi,	and	you	will	never	get	the	precise	value	of	pi	because	you	need	to
round	or	truncate	it	at	some	decimal.	To	store	the	precise	decimal	values	that	most	of	us
manipulate	in	business	applications—amounts,	measurements,	etc.—	you	need	to	use
either	money	or	decimal	which	are	fixed	data	types.

The	bit	data	type	is	mostly	used	to	store	Boolean	values.	It	can	be	0,	1,	or	NULL,
and	it	consumes	one	byte	of	storage,	but	with	an	optimization:	if	you	create	up	to	8-bit
columns	in	your	table,	they	will	share	the	same	byte.	So	bit	columns	take	very	little
space.	SQL	Server	recognizes	also	the	string	values	'TRUE'	and	'FALSE'	when	they
are	applied	to	a	bit,	and	they	will	be	converted	to	1	and	0,	respectively.

Date	and	Time	Data	Types
The	date	and	time	types	were	enriched	in	SQL	Server	2008	by	the	distinct	date	and
time	types,	and	the	more	precise	datetime2	and	datetimeoffset.	Before	that,
only	datetime	and	smalldatetime	were	available.	Table	10-1	summarizes	the
differences	between	all	SQL	Server	2014	date	and	time	data	types	before	we	delve	more
into	details.

Table	10-1.	SQL	Server	2012	Date	and	Time	Data	Type	Comparison

The	date	data	type	allows	solving	a	very	common	problem	we	had	until	SQL	server
2008.	How	can	we	express	date	without	having	to	take	time	into	account?	Before	date,	it
was	tricky	to	do	a	straight	comparison	as	shown	in	Listing	10-4.

Listing	10-4.	Date	Comparison

SELECT	*

FROM	Person.StateProvince

WHERE	ModifiedDate	=	'2008-03-11';

Because	the	ModifiedDate	column	data	type	is	datetime,	SQL	Server	converts
implictly	the	'2008-03-11'	value	to	the	full	'2008-03-11	00:00:00.000'
datetime	representation	before	carrying	out	the	comparison.	If	the	ModifiedDate	time
part	is	not	'00:00:00.000',	no	line	will	be	returned,	which	is	the	case	in	our	example.
With	datetime-like	data	types,	we	are	forced	to	do	things	as	shown	in	Listing	10-5.

Listing	10-5.	Date	Comparison	Executed	Correctly

SELECT	*

FROM	Person.StateProvince

WHERE	ModifiedDate	BETWEEN	'2008-03-11'	AND	'2008-03-12';

--	or

SELECT	*

FROM	Person.StateProvince

WHERE	CONVERT(CHAR(10),	ModifiedDate,	126)	=	'2008-03-11';

But	both	tricks	are	unsatisfactory.	The	first	one	has	a	flaw:	because	the	BETWEEN
operator	is	inclusive,	lines	with	ModifiedDate	set	at	'2008-03-12
00:00:00.000'	would	be	included.	To	be	safe,	we	should	have	written	the	query	as	in
Listing	10-6.

Listing	10-6.	Correcting	the	Date	Comparison

SELECT	*

FROM	Production.Product

WHERE	ModifiedDate	BETWEEN	'2008-03-11'	AND	'2008-03-11	

23:59:59.997';

--	or

SELECT	*

FROM	Person.StateProvince

WHERE	ModifiedDate	>=	'2008-03-11'	AND	ModifiedDate	<	'2008-

03-12';

The	second	example,	in	Listing	10-5,	has	a	performance	implication,	because	it	makes
the	condition	non-sargable.

	Note		We	say	that	a	predicate	is	sargable	(from	Search	ARGument–able)	when	it	can
take	advantage	of	an	index	seek.	Here,	no	index	on	the	ModifiedDate	column	can	be
used	for	a	seek	operation	if	its	value	is	altered	in	the	query,	and	thus	does	not	match	what
was	indexed	in	the	first	place.

So,	the	best	choice	we	had	was	to	enforce,	maybe	by	trigger,	that	every	value	entered
in	the	column	had	its	time	part	stripped	off	or	written	with	'00:00:00.000',	but	that
time	part	was	still	taking	up	storage	space	for	nothing.	Now,	the	date	type,	costing	3
bytes,	stores	a	date	with	one	day	accuracy.

Listing	10-7	shows	a	simple	usage	of	the	date	data	type,	demonstrating	that	the
DATEDIFF()	function	works	with	the	date	type	just	as	it	does	with	the	datetime
data	type.

Listing	10-7.	Sample	Date	Data	Type	Usage

--	August	19,	14	C.E.

DECLARE	@d1	date	=	'0014-08-19';

--	February	26,	1983

DECLARE	@d2	date	=	'1983-02-26';

SELECT	@d1		AS	Date1,	@d2	AS	Date2,	DATEDIFF(YEAR,	

@d1,		@d2)	AS	YearsDifference;

The	results	of	this	simple	example	are	shown	in	Figure	10-4.

Figure	10-4.	The	Results	of	the	Date	Data	Type	Example

In	contrast	to	the	date	data	type,	the	time	data	type	lets	you	store	time-only	data.
The	range	for	the	time	data	type	is	defined	on	a	24-hour	clock,	from	00:00:00.0000000
through	23:59:59.9999999,	with	a	user-definable	fractional	second	precision	of	up	to
seven	digits.	The	default	precision,	if	you	don’t	specify	one,	is	seven	digits	of	fractional
second	precision.	Listing	10-8	demonstrates	the	time	data	type	in	action.

Listing	10-8.	Demonstrating	Time	Data	Type	Usage

--	6:25:19.1	AM

DECLARE	@start_time	time(1)	=	'06:25:19.1';—1	digit	

fractional	precision

--	6:25:19.1234567	PM

DECLARE	@end_time	time	=	'18:25:19.1234567';—default	

fractional	precision

SELECT	@start_time	AS	start_time,	@end_time	AS	end_time,

DATEADD(HOUR,	6,	@start_time)	AS	StartTimePlus,	

DATEDIFF(HOUR,	@start_time,	@end_time)	AS

	EndStartDiff;

In	Listing	10-8,	two	data	type	instances	are	created.	The	@start_time	variable	is
explicitly	declared	with	a	fractional	second	precision	of	one	digit.	You	can	specify	a
fractional	second	precision	of	one	to	seven	digits	with	100-nanosecond	(ns)	accuracy;	the
fixed	fractional	precision	of	the	classic	datetime	data	type	is	three	digits	with	3.33-
millisecond	(ms)	accuracy.	The	default	fractional	precision	for	the	time	data	type,	if	no
precision	is	specified,	is	seven	digits.	The	@end_time	variable	in	the	listing	is	declared
with	the	default	precision.	As	with	the	date	and	datetime	data	types,	the
DATEDIFF()	and	DATEADD()	functions	also	work	with	the	time	data	type.	The
results	of	Listing	10-8	are	shown	in	Figure	10-5.

Figure	10-5.	The	Results	of	the	Time	Data	Type	Example

The	cleverly	named	datetime2	data	type	is	an	extension	to	the	standard	datetime
data	type.	The	datetime2	data	type	combines	the	benefits	of	the	date	and	time	data
types,	giving	you	the	wider	date	range	of	the	date	data	type	and	the	greater	fractional-
second	precision	of	the	time	data	type.	Listing	10-9	demonstrates	simple	declaration	and
usage	of	datetime2	variables.

Listing	10-9.	Declaring	and	Querying	Datetime2	Variables

DECLARE	@start_dt2	datetime2	=	'1972-07-

06T07:13:28.8230234',

								@end_dt2			datetime2	=	'2009-12-14T03:14:13.2349832';

SELECT	@start_dt2	AS	start_dt2,	@end_dt2	AS	end_dt2;

The	results	of	Listing	10-9	are	shown	in	Figure	10-6.

Figure	10-6.	Declaring	and	Selecting	Datetime2	data	Type	Variables

The	datetimeoffset	data	type	builds	on	datetime2	by	adding	the	ability	to
store	offsets	relative	to	the	International	Telecommunication	Union	(ITU)	standard	for
Coordinated	Universal	Time	(UTC)	with	your	date	and	time	data.	When	creating	a
datetimeoffset	instance,	you	can	specify	an	offset	that	complies	with	the	ISO	8601
standard,	which	is	in	turn	based	on	UTC.	Basically,	the	offset	must	be	specified	in	the
range	-14:00	to	+14:00.	The	Z	offset	identifier	is	shorthand	for	the	offset	designated
“zulu,”	or	+00:00.	Listing	10-10	shows	the	datetimeoffset	data	type	in	action.

Listing	10-10.	Datetimeoffset	Data	Type	Sample

DECLARE	@start_dto	datetimeoffset	=	'1492-10-

12T13:29:59.9999999-05:00';

SELECT	@start_dto	AS	start_to,	DATEPART(YEAR,	@start_dto)	AS	

start_year;

The	results	of	Listing	10-10	are	shown	in	Figure	10-7.

Figure	10-7.	The	Result	of	the	Datetimeoffset	Sample

A	sampling	of	possible	offsets	is	shown	in	Table	10-2.	Note	that	this	list	is	not
exhaustive,	but	demonstrates	some	common	offsets.

Table	10-2.	Common	Standard	Time	Zones

Time	Zone	Offset Name Locations

–10:00 Hawaii-Aleutian	Standard Alaska	(Aleutian	Islands),	Hawaii

–08:00 Pacific	Standard US	West	Coast;	Los	Angeles,	CA

–05:00 Eastern	Standard US	East	Coast;	New	York,	NY

–04:00 Atlantic	Standard Bermuda

+00:00 Coordinated	Universal Dublin,	Lisbon,	London

+01:00 Central	European Paris,	Berlin,	Madrid,	Rome

+03:00 Baghdad Kuwait,	Riyadh

+06:00 Indian	Standard India

+09:00 Japan	Standard Japan

UTC	and	Military	Time
Some	people	see	the	acronym	UTC	and	think	that	it	stands	for	“Universal	Time
Coordination”	or	“Universal	Time	Code.”	Unfortunately,	the	world	is	not	so	simple.	When

the	ITU	standardized	Coordinated	Universal	Time,	it	was	decided	that	it	should	have	the
same	acronym	in	every	language.	Of	course,	international	agreement	could	not	be	reached,
with	the	English-speaking	countries	demanding	the	acronym	CUT	and	French-speaking
countries	demanding	that	TUC	(temps	universel	coordonné)	be	used.	In	the	final
compromise,	the	nonsensical	UTC	was	adopted	as	the	international	standard.

You	may	notice	that	we	use	“military	time,”	or	the	24-hour	clock,	when	representing
time	in	the	code	samples	throughout	this	book.	There’s	a	very	good	reason	for	that—the
24-hour	clock	is	an	ISO	international	standard.	The	ISO	8601	standard	indicates	that	time
should	be	represented	in	computers	using	the	24-hour	clock	to	prevent	ambiguity.

The	24-hour	clock	begins	at	00:00:00,	which	is	midnight	or	12	am.	Noon,	or	12	pm,	is
represented	as	12:00:00.	One	second	before	midnight	is	23:59:59,	or	11:59:59	pm.	In
order	to	convert	the	24-hour	clock	to	am/pm	time,	simply	look	at	the	hours.	If	the	hours
are	less	than	12,	then	the	time	is	am.	If	the	hours	are	equal	to	12,	you	are	in	the	noon	hour,
which	is	pm.	If	the	hours	are	greater	than	12,	subtract	12	and	add	pm	to	your	time.

So,	with	all	these	types	at	your	disposal,	which	do	you	choose?	As	a	rule,	avoid
datetime:	it	doesn’t	align	with	the	SQL	Standard,	takes	generally	more	space	and	has
lower	precision	than	the	other	types.	It	costs	8	bytes,	ranges	from	1753	through	9999,	and
rounds	the	time	to	3	milliseconds.	For	example,	let’s	try	the	code	in	Listing	10-11.

Listing	10-11.	Demonstration	of	Datetime	Rounding

SELECT	CAST('2011-12-31T23:59:59.999'	as	datetime)	as	

WhatTimeIsIt;

You	can	see	the	result	in	Figure	10-8.

Figure	10-8.	The	Results	of	the	Datetime	Rounding	Sample

The	999	milliseconds	were	rounded	to	the	next	value,	and	998	would	have	been
rounded	to	997.	For	most	usages	this	is	not	an	issue,	but	datetime2	does	not	have	this
drawback,	or	at	least	you	have	control	over	it	by	defining	the	precision.

Date	and	Time	Functions
One	of	the	difficulties	of	T-SQL	is	the	handling	of	dates	in	the	code.	Internally,	the	date
and	time	data	types	are	stored	in	a	numeric	representation,	but	of	course,	they	have	to	be
made	human-readable	in	a	string	format.	The	format	is	important	for	input	or	output,	but	it
has	nothing	to	do	with	storage,	and	it	is	a	common	misconception	to	consider	that	a	date	is
stored	in	a	particular	format.	The	output	is	managed	by	the	client.	For	example,	in	SSMS,
dates	are	always	returned	in	the	ODBC	API	ts	(timestamp)	format	(yyyy-mm-dd
hh:mm:ss.…),	regardless	of	the	computer’s		regional	settings.	If	you	want	to	force	a
particular	format	in	T-SQL,	you	will	need	to	use	a	conversion	function.	The	CONVERT()

function	is	a	legacy	function	that	returns	a	formatted	string	from	a	date	and	time	data	type
or	vice-versa,	while	the	FORMAT()	function,		introducedin	SQL	Server	2012,	uses	the
more	common	.NET	format	strings	and	an	optional	culture	to	return	a	formatted
nvarchar	value.	We	demonstrate	usage	of	these	two	functions	in	Listing	10-12.

Listing	10-12.	CONVERT()	and	FORMAT()	Usage	Sample

DECLARE	@dt2	datetime2	=	'2011-12-31T23:59:59';

SELECT	FORMAT(@dt2,	'F',	'en-US')	as	with_format,

								CONVERT(varchar(50),	@dt2,	109)	as	with_convert;

The	results	are	shown	in	Figure	10-9.

Figure	10-9.	The	Results	of	the	Datetime2	Formatting	Sample

Of	course,	data	input	must	also	be	done	using	a	string	representation	that	can	be
understood	by	SQL	Server	as	a	date.	This	depends	on	the	language	settings	of	the	session.
Each	session	has	a	language	environment	that	is	the	default	language	of	the	login,	unless	a
SET	LANGUAGE	command	changed	it	at	some	time.	You	can	retrieve	the	language	of	the
current	session	with	one	of	the	two	ways	shown	in	Listing	10-13.

Listing	10-13.	How	to	Check	the	Current	Language	of	the	Session

SELECT	language

FROM	sys.dm_exec_sessions

WHERE	session_id	=	@@SPID;

--	or

SELECT	@@LANGUAGE;

Formatting	your	date	strings	for	input	with	a	language	dependent	format	is	risky,
because	anyone	running	the	code	under	another	language	environment	would	get	an	error,
as	shown	in	Listing	10-14.

Listing	10-14.	Language	Dependent	Date	String	Representations

DECLARE	@lang	sysname;

SET	@lang	=	@@LANGUAGE

SELECT	CAST('12/31/2012'	as	datetime2);	--this	works

SET	LANGUAGE	'spanish';

SELECT

				CASE	WHEN	TRY_CAST('12/31/2012'	as	datetime2)	IS	NULL

				THEN	'Cast	failed'

				ELSE	'Cast	succeeded'

END	AS	Result;

SET	LANGUAGE	@lang;

The	second	CAST()	attempt,	using	the	TRY_CAST()	to	prevent	an	exception	from
being	raised,	will	return	‘Cast	failed’	because	'MM/dd/yyyy'	is	not	recognized	as	a
valid	date	format	in	Spanish.	If	we	would	have	used	CAST()	instead	of	TRY_CAST(),
we	would	have	received	a	conversion	error	in	the	Spanish	language,	and	the	last	SET
LANGUAGE	command	wouldn’t	have	been	executed,	due	to	the	preceding	exception.

You	have	two	options	to	prevent	this.	First,	you	can	use	the	SET	DATEFORMAT
instruction	that	sets	the	order	of	the	month,	day,	and	year	date	parts	for	interpreting	date
character	strings,	as	shown	in	Listing	10-15.

Listing	10-15.	Usage	of	SET	DATEFORMAT

SET	DATEFORMAT	mdy;

SET	LANGUAGE	'spanish';

SELECT	CAST('12/31/2012'	as	datetime2);	--this	works	now

Or	you	can	decide—this	is	a	better	option—to	stick	with	a	language-neutral	format
that	will	be	recognized	regardless	of	what	the	language	environment	is.	You	can	do	that	by
making	sure	you	always	have	your	date	strings	formatted	in	an	ISO	8601	standard	variant.
In	ISO	8601,	date	and	time	values	are	organized	from	the	most	to	the	least	significant,
starting	with	the	year.	The	two	most	common	ones	are	yyyy-MM-ddTHH:mm:ss	(note	the
T	character	to	separate	date	and	time)	and	yyyyMMdd	HH:mm:ss.	In	a	.NET	client	code,
you	could	generate	those	formats	with	the	.NET	format	strings,	as	shown	in	the	pseudo-
code	examples	of	Listing	10-16.

Listing	10-16.	Samples	of	ISO	8601	Date	Formatting	in	.NET	Pseudo-code

DateTime.Now.Format("s");

DateTime.Now.ToString	("s",	

System.Globalization.CultureInfo.InvariantCulture);

The	first	line	calls	the	Format()	method	of	the	the	DateTime	.NET	type,	and	the
second	line	uses	the	ToString()	method	of	.NET	objects,	that	can	take	a	format	string
and	a	culture	as	parameters	when	applied	to	a	DateTime.

With	more	complete	and	precise	date	and	time	data	types	comes	also	a	wide	range	of
built-in	date-	and	time-related	functions.	You	might	already	know	the	GETDATE()	and
CURRENT_TIMESTAMP	functions.	Since	SQL	Server	2008,	you	have	had	more	functions
for	returning	the	current	date	and	time	of	the	server.

The	SYSDATETIME()	function	returns	the	system	date	and	time,	as	reported	by	the
server’s	local	operating	system,	as	a	datetime2	value	without	time	offset	information.
The	value	returned	by	GETDATE(),	CURRENT_TIMESTAMP	and	SYSDATETIME()	is
the	date	and	time	reported	by	Windows	on	the	computer	where	your	SQL	Server	instance

is	installed.

The	SYSUTCDATETIME()	function	returns	the	system	date	and	time	information
converted	to	UTC	as	a	datetime2	value.	As	with	the	SYSDATETIME()	function,	the
value	returned	does	not	contain	additional	time	offset	information.

The	SYSDATETIMEOFFSET()	function	returns	the	system	date	and	time	as	a
datetimeoffset	value,	including	the	time	offset	information.	Listing	10-17	uses	these
functions	to	display	the	current	system	date	and	time	in	various	formats.	The	results	are
shown	in	Figure	10-10.

Listing	10-17.	Using	the	Date	and	Time	Functions

SELECT	SYSDATETIME()	AS	[SYSDATETIME];

SELECT	SYSUTCDATETIME()	AS	[SYSUTCDATETIME];

SELECT	SYSDATETIMEOFFSET()	AS	[SYSDATETIMEOFFSET];

Figure	10-10.	The	Current	System	Date	and	Time	in	a	Variety	of	Formats

The	TODATETIMEOFFSET()	function	allows	you	to	add	time	offset	information	to
date	and	time	data	without	time	offset	information.	You	can	use	TODATETIMEOFFSET	to
add	time	offset	information	to	a	date,	time,	datetime,	datetime2,	or
datetimeoffset	value.	The	result	returned	by	the	function	is	a	datetimeoffset
value	with	time	offset	information	added.	Listing	10-18	demonstrates	by	adding	time
offset	information	to	a	datetime	value.	The	results	are	shown	in	Figure	10-11.

Listing	10-18.	Adding	an	Offset	to	a	Datetime	Value

DECLARE	@current	datetime	=	CURRENT_TIMESTAMP;

SELECT	@current	AS	[No_0ffset];

SELECT	TODATETIMEOFFSET(@current,	'-04:00')	AS	

[With_0ffset];

Figure	10-11.	Converting	a	Datetime	Value	to	a	Datetimeoffset

The	SWITCHOFFSET()	function	adjusts	a	given	datetimeoffset	value	to
another	given	time	offset.	This	is	useful	when	you	need	to	convert	a	date	and	time	to
another	time	offset.	In	Listing	10-19,	we	use	the	SWITCHOFFSET()	function	to	convert
a	datetimeoffset	value	in	Los	Angeles	to	several	other	regional	time	offsets.	The
values	are	calculated	for	Daylight	Saving	Time.	The	results	are	shown	in	Figure	10-12.

Listing	10-19.	Converting	a	Datetimeoffset	to	Several	Time	Offsets

DECLARE	@current	datetimeoffset	=	'2012-05-04	19:30:00	

-07:00';

SELECT	'Los	Angeles'	AS	[Location],	@current	AS	[Current	

Time]

UNION	ALL

SELECT	'New	York',	SWITCHOFFSET(@current,	'-04:00')

UNION	ALL

SELECT	'Bermuda',	SWITCHOFFSET(@current,	'-03:00')

UNION	ALL

SELECT	'London',	SWITCHOFFSET(@current,	'+01:00');

Figure	10-12.	Date	and	Time	Information	in	Several	Different	Time	Offsets

	Tip		You	can	use	the	Z	time	offset	in	datetimeoffset	literals	as	an	abbreviation	for
UTC	(+00:00	offset).	You	cannot,	however,	specify	Z	as	the	time	offset	parameter	with	the
TODATETIMEOFFSET	and	SWITCHOFFSET	functions.

Time	Zones	and	Offsets
Time	offsets	are	not	the	same	thing	as	time	zones.	A	time	offset	is	relatively	easy	to
calculate—it’s	simply	a	plus	or	minus	offset	in	hours	and	minutes	from	the	UTC	offset
(+00:00),	as	defined	by	the	ISO	8601	standard.	A	time	zone,	however,	is	an	identifier	for	a
specific	location	or	region	and	is	defined	by	regional	laws	and	regulations.	Time	zones	can
have	very	complex	sets	of	rules	that	include	such	oddities	as	Daylight	Saving	Time	(DST).
SQL	Server	uses	time	offsets	in	calculations,	not	time	zones.	If	you	want	to	perform	date
and	time	calculations	involving	actual	time	zones,	you	will	have	to	write	custom	code.
Just	keep	in	mind	that	time	zone	calculations	are	fairly	involved,	especially	since
calculations	like	DST	can	change	over	time.	Case	in	point—the	start	and	end	dates	for
DST	were	changed	to	extend	DST	in	the	United	States	beginning	in	2007.

The	Uniqueidentifier	Data	Type
In	Windows,	you	see	a	lot	of	GUIDs	(Globally	Unique	IDentifiers)	in	the	registry	and	as	a
way	to	provide	code	and	modules	(like	COM	objects)	with	unique	identifiers.	GUIDs	are
16-byte	values	generally	represented	as	32-character	hexadecimal	strings,	and	can	be
stored	in	SQL	Server	in	the	uniqueidentifier	data	type.	uniqueidentifier
could	be	used	to	create	unique	keys	across	tables,	servers	or	data	centers.	To	create	a	new
GUID	and	store	it	in	a	uniqueidentifier	column,	you	use	the	NEWID()	function,
as	demonstrated	in	Listing	10-20.	The	results	are	shown	in	Figure	10-13.

Listing	10-20.	Using	Uniqueidentifier

CREATE	TABLE	dbo.Document	(

				DocumentId	uniqueidentifier	NOT	NULL	PRIMARY	KEY	DEFAULT	

(NEWID())

);

INSERT	INTO	dbo.Document	DEFAULT	VALUES;

INSERT	INTO	dbo.Document	DEFAULT	VALUES;

INSERT	INTO	dbo.Document	DEFAULT	VALUES;

SELECT	*	FROM	dbo.Document;

Figure	10-13.	Results	Generated	by	the	Newid()	Function

Each	time	the	NEWID()	function	is	called,	it	generates	a	new	value	using	an
algorithm	based	on	a	pseudo-random	generator.	The	risk	of	two	generated	numbers	being
the	same	is	statistically	negligible:	hence	the	global	uniqueness	it	offers.

However,	usage	of	uniqueidentifier	columns	should	be	carefully	considered,
because	it	bears	significant	consequences.	We	have	already	talked	about	the	importance	of
data	type	size,	and	especially	key	size.	Choosing	a	uniqueidentifier	over	an	int
as	a	primary	key	creates	an	overhead	of	12	bytes	per	row	that	impacts	the	size	of	the	table,
of	the	primary	key	index,	of	all	other	indexes	if	the	primary	key	is	defined	as	clustered	(as
it	is	by	default),	and	of	all	tables	that	have	a	foreign	key	associated	to	it,	and	finally	on	all
indexes	on	these	foreign	keys.	Needless	to	say,	it	could	considerably	increase	the	size	of
your	database.

There	is	another	problem	with	uniqueidentifier	values,	because	of	their
inherent	randomness.	If	your	primary	key	is	clustered,	the	physical	order	of	the	table
depends	upon	the	value	of	the	key,	and	at	each	insert	or	update,	SQL	Server	must	place	the
new	or	modified	lines	at	the	right	place,	in	the	right	data	pages.	GUID	random	values	will

cause	page	splits	that	will	noticeably	decrease	performances	and	generate	table
fragmentation.

To	address	this	last	issue,	SQL	Server	2008	introduced	the	NEWSEQUENTIALID()
function	to	use	as	a	default	constraint	with	an	uniqueidentifier	primary	key.
NEWSEQUENTIALID()	generates	sequential	GUIDs	in	increasing	order.	Its	usage	is
shown	in	Listing	10-21.	Results	are	shown	in	Figure	10-14;	notice	that	the	GUID	digits
are	displayed	in	groups	in	reverse	order.	In	the	results,	the	first	byte	of	each	GUID
represents	the	sequentially	increasing	values	generated	by	NEWSEQUENTIALID()	with
each	row	inserted.

Listing	10-21.	Generating	Sequential	GUIDs

CREATE	TABLE	#TestSeqID	(

				ID	uniqueidentifier	DEFAULT	NEWSEQUENTIALID()	PRIMARY	KEY	

NOT	NULL,

				Num	int	NOT	NULL

);

INSERT	INTO	#TestSeqID	(Num)

VALUES	(1),	(2),	(3);

SELECT	ID,	Num

FROM	#TestSeqID;

DROP	TABLE	#TestSeqID;

Figure	10-14.	Results	Generated	by	the	NEWSEQUENTIALID	Function

The	Hierarchyid	Data	Type
The	hierarchyid	data	type	offers	a	new	twist	on	an	old	model	for	representing
hierarchical	data	in	the	database.	This	data	type	introduced	in	SQL	Server	2008	offers
built-in	support	for	representing	your	hierarchical	data	using	one	of	the	simplest	models
available:	materialized	paths.

Representing	Hierarchical	Data
The	representation	of	hierarchical	data	in	relational	databases	has	long	been	an	area	of
interest	for	SQL	developers.	The	most	common	model	of	representing	hierarchical	data
with	SQL	Server	is	the	adjacency	list	model.	In	this	model,	each	row	of	a	table	maintains	a

reference	to	its	parent	row.	The	following	illustration	demonstrates	how	the	adjacency	list
model	works	in	an	SQL	table.

The	AdventureWorks	sample	database	makes	use	of	the	adjacency	list	model	in	its
Production.BillOfMaterials	table,	where	every	component	references	its	parent
assembly.

The	materialized	path	model	requires	that	you	store	the	actual	hierarchical	path	from
the	root	node	to	the	current	node.	The	hierarchical	path	is	similar	to	a	modern	file	system
path,	where	each	folder	or	directory	represents	a	node	in	the	path.	The	hierarchyid
data	type	supports	generation	and	indexing	of	materialized	paths	for	hierarchical	data
modeling.	The	following	illustration	shows	how	the	materialized	path	might	look	in	SQL.

It	is	a	relatively	simple	matter	to	represent	adjacency	list	model	data	using
materialized	paths,	as	you’ll	see	later	in	this	section	in	the	discussion	on	converting

AdventureWorks	adjacency	list	data	to	the	materialized	path	model	using	the
hierarchyid	data	type.

Another	model	for	representing	hierarchical	data	is	the	nested	sets	model.	In	this
model,	every	row	in	the	table	is	considered	a	set	that	may	contain	or	be	contained	by
another	set.	Each	row	is	assigned	a	pair	of	numbers	defining	the	lower	and	upper	bounds
for	the	set.	The	following	illustration	shows	a	logical	representation	of	the	nested	sets
model,	with	the	lower	and	upper	bounds	for	each	set	shown	to	the	set’s	left	and	right.
Notice	that	the	sets	in	the	figure	are	contained	within	one	another	logically,	in	a	structure
from	which	this	model	derives	its	name.

In	this	section,	we’ll	use	the	AdventureWorks	Production.BillOfMaterials
table	extensively	to	demonstrate	the	adjacency	list	model,	the	materialized	path	model,
and	the	hierarchyid	data	type.	Technically	speaking,	a	bill	of	materials	(BOM),	or
“parts	explosion,”	is	a	directed	acyclic	graph.	A	directed	acyclic	graph	is	essentially	a
generalized	tree	structure	in	which	some	subtrees	may	be	shared	by	different	parts	of	the
tree.	Think	of	a	cake	recipe,	represented	as	a	tree,	in	which	“sugar”	can	be	used	multiple
times	(once	in	the	“cake	mix”	subtree,	once	in	the	“frosting”	subtree,	and	so	on).	This
book	is	not	about	graph	theory,	though,	so	we’ll	pass	on	the	technical	details	and	get	to	the
BOM	at	hand.	Although	directed	acyclic	graph	is	the	technical	term	for	a	true	BOM,	we’ll
be	representing	the	AdventureWorks	BOMs	as	materialized	path	hierarchies	using	the
hierarchyid	data	type,	so	you’ll	see	the	term	hierarchy	used	a	lot	in	this	section.

In	order	to	understand	the	AdventureWorks	BOM	hierarchies,	it’s	important	to
understand	the	relationship	between	product	assemblies	and	components.	Basically,	a
product	assembly	is	composed	of	one	or	more	components.	An	assembly	can	become	a
component	for	use	in	other	assemblies,	defining	the	recursive	relationship.	All
components	with	a	product	assembly	of	NULL	are	top-level	components,	or	“root	nodes,”
of	each	hierarchy.	If	a	hierarchyid	data	type	column	is	declared	a	primary	key,	it	can
contain	only	a	single	hierarchyid	root	node.

The	hierarchyid	data	type	stores	hierarchy	information	as	an	optimized
materialized	path,	which	is	a	very	efficient	way	to	store	hierarchical	information.	We	will
go	though	a	complete	example	of	its	use.

Hierarchyid	Example
In	this	example,	we	will	convert	the	AdventureWorks	BOMs	to	materialized	path	form
using	the	hierarchyid	data	type.	The	first	step,	shown	in	Listing	10-22,	is	to	create	the

table	that	will	contain	the	hierarchyid	BOMs.	To	differentiate	it	from	the
Production.BillOfMaterials	table,	we	have	called	this	table
Production.HierBillOfMaterials.

Listing	10-22.	Creating	the	Hierarchyid	Bill	of	Materials	Table

CREATE	TABLE	Production.HierBillOfMaterials

(

				BomNode	hierarchyid	NOT	NULL	PRIMARY	KEY	NONCLUSTERED,

				ProductAssemblyID	int	NULL,

				ComponentID	int	NULL,

				UnitMeasureCode	nchar(3)	NULL,

				PerAssemblyQty	decimal(8,	2)	NULL,

				BomLevel	AS	BomNode.GetLevel()

);

The	Production.HierBillOfMaterials	table	consists	of	the	BomNode
hierarchyid	column,	which	will	contain	the	hierarchical	path	information	for	each
component.	The	ProductAssemblyID,	ComponentID,	UnitMeasureCode,	and
PerAssemblyQty	are	all	pulled	from	the	source	tables.	BomLevel	is	a	calculated
column	that	contains	the	current	level	of	each	BomNode.	The	next	step	is	to	convert	the
adjacency	list	BOMs	to	hierarchyid	form,	which	will	be	used	to	populate	the
Production.HierBillOfMaterials	table.	This	is	demonstrated	in	Listing	10-23.

Listing	10-23.	Converting	AdventureWorks	BOMs	to	hierarchyid	Form

;WITH	BomChildren

(

				ProductAssemblyID,

				ComponentID

)

AS

(

				SELECT

								b1.ProductAssemblyID,

								b1.ComponentID

				FROM		Production.BillOfMaterials	b1

				GROUP	BY

								b1.ProductAssemblyID,

								b1.ComponentID

),

BomPaths

(

				Path,

				ComponentID,

				ProductAssemblyID

)

AS

(

				SELECT

								hierarchyid::GetRoot()	AS	Path,

								NULL,

								NULL

				UNION	ALL

				SELECT

								CAST

								('/'	+	CAST	(bc.ComponentId	AS	varchar(30))	+	'/'	AS	

hierarchyid)	AS	Path,

								bc.ComponentID,

								bc.ProductAssemblyID

				FROM	BomChildren	AS	bc

				WHERE	bc.ProductAssemblyID	IS	NULL

				UNION	ALL

				SELECT

								CAST

								(bp.path.ToString()		+

												CAST(bc.ComponentID	AS	varchar(30))	+	'/'	AS	

hierarchyid)	AS	Path,

								bc.ComponentID,

								bc.ProductAssemblyID

				FROM	BomChildren	AS	bc

				INNER	JOIN	BomPaths	AS	bp

								ON	bc.ProductAssemblyID	=	bp.ComponentID

)

INSERT	INTO	Production.HierBillOfMaterials

(

				BomNode,

				ProductAssemblyID,	

				ComponentID,

				UnitMeasureCode,

				PerAssemblyQty

)

SELECT

				bp.Path,

				bp.ProductAssemblyID,

				bp.ComponentID,

				bom.UnitMeasureCode,

				bom.PerAssemblyQty

FROM	BomPaths	AS	bp

LEFT	OUTER	JOIN	Production.BillOfMaterials	bom

				ON		bp.ComponentID	=	bom.ComponentID

								AND	COALESCE(bp.ProductAssemblyID,	-1)	

=	COALESCE(bom.ProductAssemblyID,	-1)

WHERE	bom.EndDate	IS	NULL

GROUP	BY

				bp.path,

				bp.ProductAssemblyID,	

				bp.ComponentID,

				bom.UnitMeasureCode,	

				bom.PerAssemblyQty;

This	statement	is	a	little	more	complex	than	the	average	hierarchyid	data	example
you’ll	probably	run	into,	since	most	people	currently	out	there	are	demonstrating
conversion	of	the	simple,	single-hierarchy	AdventureWorks	organizational	chart.	The
AdventureWorks	Production.BillOfMaterials	table	actually	contains	several
individual	hierarchies.

We	will	go	through	the	code	step	by	step	here	to	show	you	exactly	what’s	going	on	in
this	statement.	The	first	part	of	the	statement	is	a	common	table	expression	(CTE)	called
BomChildren.	It	returns	all	ProductAssemblyIDs	and	ComponentIDs	from	the
Production.BillOfMaterials	table.

;WITH	BomChildren

(

				ProductAssemblyID,

				ComponentID

)

AS

(

				SELECT

								b1.ProductAssemblyID,

								b1.ComponentID

				FROM	Production.BillOfMaterials	b1

				GROUP	BY

								b1.ProductAssemblyID,

								b1.ComponentID

),

While	the	organizational	chart	represents	a	simple	top-down	hierarchy	with	a	single
root	node,	the	BOM	is	actually	composed	of	dozens	of	separate	hierarchies	with	no	single
hierarchyid	root	node.	BomPaths	is	a	recursive	CTE	that	returns	the	current
hierarchyid,	ComponentID,	and	ProductAssemblyID	for	each	row.

BomPaths

(

				Path,

				ComponentID,

				ProductAssemblyID

)

The	anchor	query	for	the	CTE	is	in	two	parts.	The	first	part	returns	the	root	node	for
the	entire	hierarchy.	In	this	case,	the	root	just	represents	a	logical	grouping	of	all	the
BOM’s	top-level	assemblies;	it	does	not	represent	another	product	that	can	be	created	by
mashing	together	every	product	in	the	AdventureWorks	catalog.

SELECT

				hierarchyid::GetRoot(),

				NULL,

				NULL

The	second	part	of	the	anchor	query	returns	the	hierarchyid	path	to	the	top-level
assemblies.	Each	top-level	assembly	has	its	ComponentId	appended	to	the	root	path,
represented	by	a	leading	forward	slash	(/).

SELECT

				CAST

				('/'		+	CAST	(bc.ComponentId	AS	varchar(30))	+	'/'	AS	

hierarchyid)	AS	Path,

				bc.ComponentID,

				bc.ProductAssemblyID

FROM	BomChildren	AS	bc

WHERE	bc.ProductAssemblyID	IS	NULL

The	recursive	part	of	the	CTE	recursively	appends	forward	slash-separated
ComponentId	values	to	the	path	to	represent	each	component	in	any	given	assembly:

SELECT

								CAST
								(bp.path.ToString()		+
												CAST(bc.ComponentID	AS	varchar(30))	+	'/'	AS
hierarchyid)	AS	Path,

								bc.ComponentID,
								bc.ProductAssemblyID
				FROM	BomChildren	AS	bc
				INNER	JOIN	BomPaths	AS	bp
								ON	bc.ProductAssemblyID	=	bp.ComponentID
)

The	next	part	of	the	statement	inserts	the	results	of	the	recursive	BomPaths	CTE	into
the	Production.HierBillOfMaterials	table.	The	results	of	the	recursive	CTE
are	joined	to	the	Production.BillOfMaterials	table	for	a	couple	of	reasons:

to	ensure	that	only	components	currently	in	use	are	put	into	the
hierarchy	by	making	sure	that	the	EndDate	is	NULL	for	each
component

to	retrieve	the	UnitMeasureCode	and	PerAssemblyQty
columns	for	each	component

We	use	a	LEFT	OUTER	JOIN	in	this	statement	instead	of	an	INNER	JOIN	because
of	the	inclusion	of	the	hierarchyid	root	node,	which	has	no	matching	row	in	the
Production.BillOfMaterials	table.	If	you	had	opted	not	to	include	the
hierarchyid	root	node,	you	could	turn	this	join	back	into	an	INNER	JOIN.

INSERT	INTO	Production.HierBillOfMaterials

(

				BomNode,

				ProductAssemblyID,

				ComponentID,

				UnitMeasureCode,

				PerAssemblyQty

)

SELECT

				bp.Path,

				bp.ProductAssemblyID,

				bp.ComponentID,

				bom.UnitMeasureCode,	

				bom.PerAssemblyQty

FROM	BomPaths	AS	bp

LEFT	OUTER	JOIN	Production.BillOfMaterials	bom

				ON		bp.ComponentID	=	bom.ComponentID

								AND	COALESCE(bp.ProductAssemblyID,	-1)	

=	COALESCE(bom.ProductAssemblyID,	-1)

WHERE	bom.EndDate	IS	NULL

GROUP	BY

				bp.path,

				bp.ProductAssemblyID,

				bp.ComponentID,

				bom.UnitMeasureCode,

				bom.PerAssemblyQty;

The	simple	query	in	Listing	10-24	shows	the	BOM	after	conversion	to	materialized
path	form	with	the	hierarchyid	data	type,	and	ordered	by	the	hierarchyid	column
to	demonstrate	that	the	hierarchy	is	reflected	from	the	hierarchyid	content	itself.
Partial	results	are	shown	in	Figure	10-15.

Listing	10-24.	Viewing	the	Hierarchyid	BOMs

SELECT

				BomNode,

				BomNode.ToString(),

				ProductAssemblyID,

				ComponentID,

				UnitMeasureCode,

				PerAssemblyQty,

				BomLevel

FROM	Production.HierBillOfMaterialsORDER	BY	BomNode;

Figure	10-15.	Partial	Results	of	the	hierarchical	BOM	Conversion

As	you	can	see,	the	hierarchyid	column,	BomNode,	represents	the	hierarchy	as	a
compact	path	in	a	variable-length	binary	format.	Converting	the	BomNode	column	to
string	format	with	the	ToString()	method	results	in	a	forward	slash-separated	path
reminiscent	of	a	file	path.	The	BomLevel	column	uses	the	GetLevel()	method	to
retrieve	the	level	of	each	node	in	the	hierarchy.	The	hierarchyid	root	node	has	a
BomLevel	of	0.	The	top-level	assemblies	are	on	level	1,	and	their	children	are	on	levels	2
and	below.

Hierarchyid	Methods
The	hierarchyid	data	type	includes	several	methods	for	querying	and	manipulating
hierarchical	data.	The	IsDescendantOf()	method,	for	instance,	can	be	used	to
retrieve	all	descendants	of	a	given	node.	The	example	in	Listing	10-25	retrieves	the
descendant	nodes	of	product	assembly	749.	The	results	are	shown	in	Figure	10-16.

Listing	10-25.	Retrieving	Descendant	Nodes	of	Assembly	749

DECLARE	@CurrentNode	hierarchyid;

SELECT	@CurrentNode	=	BomNode

FROM	Production.HierBillOfMaterials

WHERE	ProductAssemblyID	=	749;

SELECT

				BomNode,

				BomNode.ToString(),

				ProductAssemblyID,

				ComponentID,

				UnitMeasureCode,

				PerAssemblyQty,

				BomLevel

FROM	Production.HierBillOfMaterials

WHERE	@CurrentNode.IsDescendantOf(BomNode)	=	1;

Figure	10-16.	Descendant	Nodes	of	Assembly	749

Table	10-3	is	a	quick	summary	of	the	hierarchyid	data	type	methods.

Table	10-3.	hierarchyid	Data	Type	Methods

Method Description

GetAncestor(n) Retrieves	the	nth	ancestor	of	the	hierarchyid	node	instance.

GetDescendant(n)
Retrieves	the	nth	descendant	of	the	hierarchyid	node
instance.

GetLevel()
Gets	the	level	of	the	hierarchyid	node	instance	in	the
hierarchy.

GetRoot()
Gets	the	hierarchyid	instance	root	node;	GetRoot()	is	a
static	method.

IsDescendantOf(node)
Returns	1	if	a	specified	node	is	a	descendant	of	the
hierarchyid	instance	node.

Parse(string)
Converts	the	given	canonical	string,	in	forward	slash-
separated	format,	to	a	hierarchyid	path.

GetReparentedValue(old_root,

new_root)
Returns	a	node	reparented	from	old_root	to	new_root.

ToString()
Converts	a	hierarchyid	instance	to	a	canonical	forward
slash-separated	string	representation.

Spatial	Data	Types
Since	version	2008,	SQL	Server	includes	two	data	types	for	storing,	querying,	and
manipulating	spatial	data.	The	geometry	data	type	is	designed	to	represent	flat-earth,	or
Euclidean,	spatial	data	per	the	Open	Geospatial	Consortium	(OGC)	standard.	The
geography	data	type	supports	round-earth,	or	ellipsoidal,	spatial	data.	Figure	10-17
shows	a	simple	two-dimensional	flat	geometry	for	a	small	area,	with	a	point	plotted	at
location	(2,	1).

Figure	10-17.	Flat	Spatial	Representation

The	spatial	data	types	store	representations	of	spatial	data	using	instance	types.	There
are	12	instance	types,	all	derived	from	the	Geography	Markup	Language	(GML)	abstract
Geometry	type.	Of	those	12	instance	types,	only	7	are	concrete	types	that	can	be
instantiated;	the	other	5	serve	as	abstract	base	types	from	which	other	types	derive.	Figure
10-18	shows	the	spatial	instance	type	hierarchy	with	the	XML-based	GML	top-level
elements.

Figure	10-18.	Spatial	Instance	Type	Hierarchy

The	available	spatial	instance	types	include	the	following:

Point:	This	object	represents	a	zero-dimensional	object	representing
a	single	location.	The	Point	requires,	at	a	minimum,	a	two-
dimensional	(x,	y)	coordinate	pair,	but	it	may	also	have	an	elevation
coordinate	(z)	and	an	additional	user-defined	measure.	The	Point
object	has	no	area	or	length.

MultiPoint:	This	type	represents	a	collection	of	multiple	points.	It
has	no	area	or	length.

LineString:	This	is	a	one-dimensional	object	representing	one	or
more	connected	line	segments.	Each	segment	is	defined	by	a	start
point	and	an	endpoint,	and	all	segments	are	connected	in	such	a	way
that	the	endpoint	of	one	line	segment	is	the	start	point	for	the	next	line
segment.	The	LineString	has	length,	but	no	area.

MultiLineString:	This	is	a	one-dimensional	object	composed	of
multiple	LineString	objects.	The	LineString	objects	in	a
MultiLineString	do	not	necessarily	have	to	be	connected	to	one
another.	The	MultiLineString	has	no	area,	but	it	has	an
associated	length,	which	is	the	sum	of	the	lengths	of	all
LineString	objects	in	the	MultiLineString.

Polygon:	This	is	a	two-dimensional	object	defined	by	a	sequence	of
connected	points.	The	Polygon	object	must	have	a	single	exterior

bounding	ring,	which	defines	the	interior	region	of	the	Polygon
object.	In	addition,	the	Polygon	may	have	interior	bounding	rings,
which	exclude	portions	of	the	area	inside	the	interior	bounding	ring
from	the	Polygon’s	area.	Polygon	objects	have	a	length,	which	is
the	length	of	the	exterior	bounding	ring,	and	an	area,	which	is	the	area
defined	by	the	exterior	bounding	ring	minus	the	areas	defined	by	any
interior	bounding	rings.
MultiPolygon:	This	is	a	collection	of	Polygon	objects.	Like	the
Polygon,	the	MultiPolygon	has	both	length	and	area.

GeometryCollection:	This	is	the	base	class	for	the	“multi”	types
(e.g.	MultiPoint,	MultiLine,	and	MultiPolygon).	This
class	can	be	instantiated	and	can	contain	a	collection	of	any	spatial
objects.

You	can	populate	spatial	data	using	Well-Known	Text	(WKT)	strings	or	GML-
formatted	data.	WKT	strings	are	passed	into	the	geometry	and	geography	data	types’
STGeomFromText()	static	method	and	related	static	methods.	Spatial	data	types	can	be
populated	from	GML-formatted	data	with	the	GeomFromGml()	static	method.	Listing
10-26	shows	how	to	populate	a	spatial	data	type	with	a	Polygon	instance	via	a	WKT-
formatted	string.	The	coordinates	in	the	WKT	Polygon	are	the	borders	of	the	state	of
Wyoming,	chosen	for	its	simplicity.	The	result	of	the	SELECT	in	the	SSMS	spatial	data
pane	is	shown	in	Figure	10-19.

Listing	10-26.	Representing	Wyoming	as	a	Geometry	Object

DECLARE	@Wyoming	geometry;

SET	@Wyoming	=	geometry::STGeomFromText	('POLYGON	(

(-104.053108	41.698246,	-104.054993	41.564247,

-104.053505	41.388107,	-104.051201	41.003227,

-104.933968	40.994305,	-105.278259	40.996365,

-106.202896	41.000111,	-106.328545	41.001316,

-106.864838	40.998489,	-107.303436	41.000168,

-107.918037	41.00341,	-109.047638	40.998474,

-110.001457	40.997646,	-110.062477	40.99794,

-111.050285	40.996635,	-111.050911	41.25848,

-111.050323	41.578648,	-111.047951	41.996265,

-111.046028	42.503323,	-111.048447	43.019962,

-111.04673	43.284813,	-111.045998	43.515606,

-111.049629	43.982632,	-111.050789	44.473396,

-111.050842	44.664562,	-111.05265	44.995766,

-110.428894	44.992348,	-110.392006	44.998688,

-109.994789	45.002853,	-109.798653	44.99958,

-108.624573	44.997643,	-108.258568	45.00016,

-107.893715	44.999813,	-106.258644	44.996174,

-106.020576	44.997227,	-105.084465	44.999832,

-105.04126	45.001091,	-104.059349	44.997349,

-104.058975	44.574368,	-104.060547	44.181843,

-104.059242	44.145844,	-104.05899	43.852928,

-104.057426	43.503738,	-104.05867	43.47916,

-104.05571	43.003094,	-104.055725	42.614704,

-104.053009	41.999851,	-104.053108	41.698246))',	0);

SELECT	@Wyoming	as	Wyoming;

Figure	10-19.	The	Wyoming	Polygon

Listing	10-26	demonstrates	a	couple	of	interesting	items.	The	first	point	is	that	the
coordinates	are	given	in	latitude-longitude	order,	not	in	(x,	y).

(X,	Y)	OR	(LATITUDE,	LONGITUDE)?

Coordinates	in	spatial	data	are	generally	represented	using	(x,	y)	coordinate	pairs.
However,	we	often	say	“latitude-longitude”	when	we	refer	to	coordinates.	The	problem	is
that	latitude	is	the	y	axis,	while	longitude	is	the	x	axis.	The	Well-Known	Text	format	we’ll
discuss	later	in	this	section	represents	spatial	data	using	(x,	y)	coordinate	pair	ordering	for
the	geometry	and	geography	data	types.	But	the	GML	syntax	expresses	coordinates
the	other	way	around,	with	latitude	before	longitude.	You	need	to	be	aware	of	this
difference	when	entering	coordinates.

The	second	point	is	that	the	final	coordinate	pair,	(-104.053108,	41.698246),	is	the
same	as	the	first	coordinate	pair.	This	is	a	requirement	for	Polygon	objects.

You	can	populate	a	geography	instance	similarly	using	WKT	or	GML.	Listing	10-
27	populates	a	geography	instance	with	the	border	coordinates	for	the	state	of
Wyoming	using	GML.	The	result	will	be	the	same	as	shown	previously	in	Figure	10-19.

Listing	10-27.	Using	GML	to	Represent	Wyoming	as	a	Geography	Object

DECLARE	@Wyoming	geography;

SET	@Wyoming	=	geography::GeomFromGml	('<Polygon

				xmlns="http://www.opengis.net/gml">

				<exterior>

								<LinearRing>

								<posList>

								41.698246		-104.053108		41.999851							-104.053009

								43.003094		-104.05571		43.503738								-104.057426

								44.145844		-104.059242		44.574368							-104.058975

								45.001091		-105.04126		44.997227								-106.020576

								44.999813		-107.893715		44.997643							-108.624573

								45.002853		-109.994789		44.992348							-110.428894

								44.664562		-111.050842		43.982632							-111.049629

								43.284813		-111.04673		42.503323								-111.046028

								41.578648		-111.050323		40.996635							-111.050285

								40.997646		-110.001457		41.00341								-107.918037

								40.998489		-106.864838		41.000111							-106.202896

								40.994305		-104.933968		41.388107							-104.053505

								41.698246		-104.053108

								</posList>

								</LinearRing>

				</exterior>

</Polygon>',	4269);

Like	the	geometry	data	type,	the	geography	data	type	has	some	interesting
features.	The	first	thing	to	notice	is	that	the	coordinates	are	given	in	latitude-longitude
order,	because	of	the	GML	format.	Another	thing	to	notice	is	that	in	GML	format,	there
are	no	comma	separators	between	coordinate	pairs.	All	coordinates	are	separated	by
whitespace	characters.	GML	also	requires	you	to	declare	the	GML	namespace
http://www.opengis.net/gml.

The	coordinate	pairs	in	Listing	10-27	are	also	listed	in	reverse	order	from	the
geometry	instance	in	Listing	10-26.	This	is	required	because	the	geography	data	type
represents	ellipsoidal	spatial	data.	Ellipsoidal	data	in	SQL	Server	has	a	couple	of
restrictions	on	it:	an	object	must	all	fit	in	one	hemisphere	and	it	must	be	expressed	with	a
counterclockwise	orientation.	These	limitations	do	not	apply	to	the	geometry	data	type.
These	limitations	are	discussed	further	in	the	Hemisphere	and	Orientation	sidebar	in	this
section.

The	final	thing	to	notice	is	that	when	you	create	a	geometry	instance,	you	must	specify
a	spatial	reference	identifier	(SRID).	The	SRID	used	here	is	4269,	which	is	the	GCS	North
American	Datum	1983	(NAD	83).	A	datum	is	an	associated	ellipsoid	model	of	Earth	on
which	the	coordinate	data	is	based.	We	used	SRID	4269	because	the	coordinates	used	in
the	example	are	borrowed	from	the	US	Census	Bureau’s	TIGER/Line	data,	which	is	in
turn	based	on	NAD	83.	As	you	can	see,	using	the	geography	data	type	is	slightly	more
involved	than	using	the	geometry	data	type,	but	it	can	provide	more	accurate	results	and
additional	functionality	for	Earth-based	geographic	information	systems	(GISs).

Hemisphere	and	Orientation

http://www.opengis.net/gml

In	SQL	Server	2008,	the	geography	data	type	required	spatial	objects	to	be	contained	in
a	single	hemisphere—they	couldn’t	cross	the	equator.	That	was	mostly	for	performance
reasons.	Beginning	in	SQL	Server	2012,	you	can	create	geography	instances	larger	than
a	single	hemisphere	by	using	the	new	object	type	named	FULLGLOBE.

You	need	also	to	specifiy	the	right	ring	orientation.	So	why	is	ring	orientation	so
important,	and	what	is	the	“right”	ring	orientation?	To	answer	these	questions,	you	have	to
ask	yet	another	question:	“What	is	the	inside	of	a	Polygon?”	You	might	instinctively	say
that	the	inside	of	a	Polygon	is	the	smallest	area	enclosed	by	the	coordinates	you	supply.
But	you	could	end	up	in	a	situation	where	your	Polygon	should	be	the	larger	area
enclosed	by	your	coordinates.	If	you	created	a	border	around	the	North	Pole,	for	instance,
is	your	Polygon	the	area	within	the	border	or	is	it	the	rest	of	the	Earth	minus	the	North
Pole?	Your	answer	to	this	question	determines	what	the	“inside”	of	the	Polygon	really
is.

The	next	step	is	to	tell	SQL	Server	where	the	inside	of	the	Polygon	lies.	SQL
Server’s	geography	instance	makes	you	define	your	coordinates	in	counterclockwise
order,	so	the	inside	of	the	Polygon	is	everything	that	falls	on	the	left-hand	side	of	the
lines	connecting	the	coordinates.	In	the	following	illustration,	the	image	on	the	left	side	is
an	invalid	orientation	because	the	coordinates	are	defined	in	a	clockwise	order.	The	image
on	the	right	side	is	a	valid	orientation	because	its	coordinates	are	defined	in	a
counterclockwise	order.	If	you	follow	the	direction	of	the	arrows	on	the	image,	you’ll
notice	that	the	area	on	the	left-hand	side	of	the	arrows	is	the	area	“inside”	the	Polygon.
This	eliminates	any	ambiguity	from	your	Polygon	definitions.

Keep	these	restrictions	in	mind	if	you	decide	to	use	the	geography	data	type	in
addition	to,	or	instead	of,	the	geometry	data	type.

Polygon	and	MultiPolygon	are	two	of	the	more	interesting	and	complex	spatial
objects	you	can	create.	We	like	to	use	the	state	of	Utah	as	a	real-world	example	of	a
Polygon	object	for	a	couple	of	reasons.	First,	the	exterior	bounding	ring	for	the	state	is
very	simple,	composed	of	relatively	straight	lines.	Second,	the	Great	Salt	Lake	within	the
state	can	be	used	as	a	highly	visible	example	of	an	interior	bounding	ring.	Figure	10-20
shows	the	state	of	Utah.

Figure	10-20.	The	state	of	Utah	with	the	Great

The	state	of	Michigan	provides	an	excellent	example	of	a	MultiPolygon	object.
Michigan	is	composed	of	two	distinct	peninsulas,	known	as	the	Upper	Peninsula	and
Lower	Peninsula,	respectively.	The	two	peninsulas	are	separated	by	the	Straits	of
Mackinac,	which	join	Lake	Michigan	to	Lake	Huron.	Figure	10-21	shows	the	Michigan
MultiPolygon.

Figure	10-21.	Michigan	as	a	MultiPolygon	Salt	Lake	as	an	Interior	Bounding	Ring

Michigan	and	the	Great	lakes
Michigan’s	two	peninsulas	are	separated	by	the	Straits	of	Mackinac,	which	is	a	five-mile-
wide	channel	that	joins	two	of	the	Great	Lakes,	Lake	Michigan	and	Lake	Huron.	Although
these	two	bodies	of	water	are	historically	referred	to	as	separate	lakes,	hydrologists
consider	them	to	be	one	contiguous	body	of	water.	Hydrology	experts	sometimes	refer	to
the	lakes	as	a	single	entity,	Lake	Michigan-Huron.	On	the	other	hand,	it	makes	sense	to
consider	the	two	lakes	as	separate	from	a	political	point	of	view,	since	Lake	Michigan	is

wholly	within	the	borders	of	the	United	States,	while	the	border	between	the	United	States
and	Canada	divides	Lake	Huron.	For	the	purposes	of	this	section,	the	most	important	fact
is	that	the	lakes	separate	Michigan	into	two	peninsulas,	making	it	a	good	example	of	a
MultiPolygon.

Through	the	use	of	the	spatial	instance	types,	you	can	create	spatial	objects	that	cover
the	entire	range	from	very	simple	to	extremely	complex.	Once	you’ve	created	spatial
objects,	you	can	use	the	geometry	and	geography	data	type	methods	on	them	or
create	spatial	indexes	on	spatial	data	type	columns	to	increase	calculation	efficiency.
Listing	10-28	uses	the	geography	data	type	instance	created	in	Listing	10-22	and	the
STIntersects()	method	to	report	whether	the	town	of	Laramie	and	the	Statue	of
Liberty	are	located	within	the	borders	of	Wyoming.	The	results	are	shown	in	Figure	10-22.

Listing	10-28.	Are	the	Statue	of	Liberty	and	Laramie	in	Wyoming?

DECLARE	@Wyoming	geography,	

				@StatueOfLiberty	geography,

				@Laramie	geography;

SET	@Wyoming	=	geography::GeomFromGml	('<Polygon

				xmlns="http://www.opengis.net/gml">

				<exterior>

								<LinearRing>

								<posList>

								41.698246		-104.053108		41.999851							-104.053009

								43.003094		-104.05571		43.503738								-104.057426

								44.145844		-104.059242		44.574368							-104.058975

								45.001091		-105.04126		44.997227								-106.020576

								44.999813		-107.893715		44.997643							-108.624573

								45.002853		-109.994789		44.992348							-110.428894

								44.664562		-111.050842		43.982632							-111.049629

								43.284813		-111.04673		42.503323								-111.046028

								41.578648		-111.050323		40.996635							-111.050285

								40.997646		-110.001457		41.00341								-107.918037

								40.998489		-106.864838		41.000111							-106.202896

								40.994305		-104.933968		41.388107							-104.053505

								41.698246		-104.053108

								</posList>

								</LinearRing>

				</exterior>

</Polygon>',	4269);

SET	@StatueOfLiberty	=	geography::GeomFromGml('<Point

				xmlns="http://www.opengis.net/gml">

				<pos>

								40.689124	-74.044483

				</pos>

				</Point>',	4269);

SET	@Laramie	=	geography::GeomFromGml('<Point

				xmlns="http://www.opengis.net/gml">

				<pos>

								41.312928	-105.587253

				</pos>

				</Point>',	4269);

SELECT	'Is	the	Statue	of	Liberty	in	Wyoming?',

				CASE	@Wyoming.STIntersects(@StatueOfLiberty)

								WHEN	0	THEN	'No'

								ELSE	'Yes'

				END	AS	Answer

UNION

SELECT	'Is	Laramie	in	Wyoming?',

				CASE	@Wyoming.STIntersects(@Laramie)

								WHEN	0	THEN	'No'

								ELSE	'Yes'

				END;

Figure	10-22.	The	Results	of	the	STIntersection()	Method	Example

SQL	Server	also	allows	you	to	create	spatial	indexes	that	optimize	spatial	data
calculations.	Spatial	indexes	are	created	by	decomposing	your	spatial	data	into	a	b-tree-
based	grid	hierarchy	four	levels	deep.	Each	level	represents	a	further	subdivision	of	the
cells	above	it	in	the	hierarchy.	Figure	10-23	shows	a	simple	example	of	a	decomposed
spatial	grid	hierarchy.

Figure	10-23.	Decomposing	Space	for	Spatial	Indexing

The	CREATE	SPATIAL	INDEX	statement	allows	you	to	create	spatial	indexes	on
spatial	data	type	columns.	Listing	10-29	is	an	example	of	a	CREATE	SPATIAL	INDEX
statement.

Listing	10-29.	Creating	a	Spatial	Index

CREATE	SPATIAL	INDEX	SIX_Location	ON	MyTable	

(SpatialColumn);

Spatial	indexing	is	one	of	the	biggest	benefits	of	storing	spatial	data	inside	the
database.	As	one	astute	developer	pointed	out,	“Without	spatial	indexing,	you	may	as	well
store	your	spatial	data	in	flat	files.”

	Note		Pro	Spatial	with	SQL	Server	2012,	by	Alastair	Aitchison	(Apress,	2012),	is	a
fully	dedicated	book	about	SQL	Server	Spatial,	a	feature	much	more	complex	that	what
we	present	here.

FILESTREAM	Support
SQL	Server	is	optimized	for	dealing	with	highly	structured	relational	data,	but	SQL
developers	have	long	had	to	deal	with	heterogeneous	unstructured	data.	The
varbinary(max)	LOB	(Large	Object)	data	type	provides	a	useful	method	of	storing
arbitrary	binary	data	directly	in	database	tables;	however,	it	still	has	some	limitations,
including	the	following:

There	is	a	hard	2.1	GB	limit	on	the	size	of	binary	data	that	can	be
stored	in	a	varbinary(max)	column,	which	can	be	an	issue	if	the
documents	you	need	to	store	are	larger.

Storing	and	managing	large	varbinary(max)	data	in	SQL	Server
can	have	a	negative	impact	on	performance,	owing	largely	to	the	fact
that	the	SQL	Server	engine	must	maintain	proper	locking	and	isolation
levels	to	ensure	data	integrity	in	the	database.

Many	developers	and	administrators	have	come	up	with	clever	solutions	to	work
around	this	problem.	Most	of	these	solutions	are	focused	on	storing	LOB	data	as	files	in
the	file	system	and	storing	file	paths	pointing	to	those	files	in	the	database.	This	introduces
additional	complexities	to	the	system	since	you	must	maintain	the	links	between	database
entries	and	physical	files	in	the	file	system.	You	also	must	manage	LOB	data	stored	in	the
file	system	using	external	tools,	outside	of	the	scope	of	database	transactions.	Finally,	this
type	of	solution	can	double	the	amount	of	work	required	to	properly	secure	your	data,
since	you	must	manage	security	in	the	database	and	separately	in	the	file	system.

SQL	Server	provides	a	third	option:	integrated	FILESTREAM	support.	SQL	Server
can	store	FILESTREAM-enabled	varbinary(max)	data	as	files	in	the	file	system.	SQL
Server	can	manage	the	contents	of	the	FILESTREAM	containers	on	the	file	system	for	you
and	control	access	to	the	files,	while	the	NT	File	System	(NTFS)	provides	efficient	file

streaming	and	file	system	transaction	support.	This	combination	of	SQL	Server	and	NTFS
functionality	provides	several	advantages	when	dealing	with	LOB	data,	including
increased	efficiency,	manageability,	and	concurrency.	Microsoft	provides	some	general
guidelines	for	use	of	FILESTREAM	over	regular	LOB	data	types,	including	the	following:

When	the	average	size	of	your	LOBs	is	greater	than	1	MB

When	you	have	to	store	any	LOBs	that	are	larger	than	2.1	GB

When	fast-read	access	is	a	priority

When	you	want	to	access	LOB	data	from	middle-tier	code

	Tip		For	smaller	and	limited	LOB	data,	storing	the	data	directly	in	the	database	might
make	more	sense	than	using	FILESTREAM.

Enabling	FILESTREAM	Support
The	first	step	to	using	FILESTREAM	functionality	in	SQL	Server	is	enabling	it.	You	can
enable	FILESTREAM	support	through	the	SQL	Server	Configuration	Manager.	You	can
set	FILESTREAM	access	in	the	SQL	Server	service	Properties	FILESTREAM	page.	Once
you’ve	enabled	FILESTREAM	support,	you	can	set	the	level	of	access	for	the	SQL	Server
instance	with	sp_configure	and	then	restart	the	SQL	Server	service.	Listing	10-30
enables	FILESTREAM	support	on	the	SQL	Server	instance	for	the	maximum	allowable
access.

Listing	10-30.	Enabling	FILESTREAM	Support	on	the	Server

EXEC	sp_configure	'filestream	access	level',	2;

RECONFIGURE;

The	configuration	value	defines	the	access	level	for	FILESTREAM	support.	The	levels
supported	are	listed	in	Table	10-4.

Table	10-4.	FILESTREAM	Access	Levels

Configuration	Value Description

0 Disabled	(default)

1 Access	via	T-SQL	only

2 Access	via	T-SQL	and	file	system

You	can	use	the	query	in	Listing	10-31	to	see	the	FILESTREAM	configuration
information	at	any	time.	Sample	results	from	our	local	server	are	shown	in	Figure	10-24.

Listing	10-31.	Viewing	FILESTREAM	Configuration	Information

SELECT

				SERVERPROPERTY('ServerName')	AS	ServerName,

				SERVERPROPERTY('FilestreamSharename')	AS	ShareName,

				CASE	SERVERPROPERTY('FilestreamEffectiveLevel')

								WHEN	0	THEN	'Disabled'

								WHEN	1	THEN	'T-SQL	Access	Only'

								WHEN	2	THEN	'Local	T-SOL/File	System	Access	Only'

								WHEN	3	THEN	'Local	T-SOL/File	System	and	Remote	File	

System	Access'

				END	AS	Effective_Level,

				CASE	SERVERPROPERTY('FilestreamConfiguredLevel')

								WHEN	0	THEN	'Disabled'

								WHEN	1	THEN	'T-SQL	Access	Only'

								WHEN	2	THEN	'Local	T-SOL/File	System	Access	Only'

								WHEN	3	THEN	'Local	T-SOL/File	System	and	Remote	File	

System	Access'

				END	AS	Configured_Level;

Figure	10-24.	Viewing	FILESTREAM	Configuration	Information

Creating	FILESTREAM	Filegroups
Once	you’ve	enabled	FILESTREAM	support	on	your	SQL	Server	instance,	you	have	to
create	an	SQL	Server	filegroup	with	the	CONTAINS	FILESTREAM	option.	This
filegroup	is	where	SQL	Server	will	store	FILESTREAM	LOB	files.	As	AdventureWorks
2014	is	shipped	without	a	FILESTREAM	filegroup,	we	need	to	add	it	manually.	Listing
10-32	shows	the	final	generated	CREATE	DATABASE	statement	as	if	we	had	created	the
database	from	scratch.	The	FILEGROUP	clause	of	the	statement	that	creates	the
FILESTREAM	filegroup	is	shown	in	bold.

Listing	10-32.	CREATE	DATABASE	for	AdventureWorks	Database

CREATE	DATABASE	[AdventureWorks]

	CONTAINMENT	=	NONE

	ON	PRIMARY

(NAME	=	N'AdventureWorks2014_Data',	FILENAME	

=	N'C:\sqldata\MSSQL12.MSSQLSERVER\MSSQL\DATA\AdventureWorks2014_Data.mdf',

	SIZE	=	226304KB,	MAXSIZE	=	UNLIMITED,	FILEGROWTH	=	16384KB	

),

	FILEGROUP	[FILESTREAM1]	CONTAINS	FILESTREAM		DEFAULT

(NAME	=	N'AdventureWordsFS',	FILENAME	

=	N'C:\sqldata\MSSQL12.MSSQLSERVER\MSSQL\DATA\AdventureWordsFS',

	MAXSIZE	=	UNLIMITED)

	LOG	ON

(NAME	=	N'AdventureWorks2014_Log',	FILENAME	

=	N'C:\sqldata\MSSQL12.MSSQLSERVER\MSSQL\DATA\AdventureWorks2014_log.ldf',

	SIZE	=	5696KB,	MAXSIZE	=	UNLIMITED,	FILEGROWTH	=	10%);

To	create	this	FILESTREAM	filegroup	on	an	already	existing	database,	we	used	the
ALTER	DATABASE	statement	as	shown	in	Listing	10-33.

Listing	10-33.	Adding	a	FILESTREAM	Filegroup	to	an	Existing	Database

ALTER	DATABASE	AdventureWorks

ADD	FILEGROUP	FILESTREAM1	CONTAINS	FILESTREAM;

GO

ALTER	DATABASE	AdventureWorks

ADD	FILE

(

NAME	=	N'	AdventureWordsFS',

FILENAME	=	N'	

C:\sqldata\MSSQL12.MSSQLSERVER\MSSQL\DATA\AdventureWordsFS'	

)

TO	FILEGROUP	FILESTREAM1;

You	can	see	that	the	file	created	is	in	fact	not	a	file,	but	a	directory	where	the	files	will
be	stored	by	SQL	Server.

FILESTREAM-Enabling	Tables
Once	you’ve	enabled	FILESTREAM	on	the	server	instance	and	created	a	FILESTREAM
filegroup,	you’re	ready	to	create	FILESTREAM-enabled	tables.	FILESTREAM	storage	is
accessed	by	creating	a	varbinary(max)	column	in	a	table	with	the	FILESTREAM
attribute.	The	FILESTREAM-enabled	table	must	also	have	a	uniqueidentifier
column	with	a	ROWGUIDCOL	attribute	and	a	unique	constraint	on	it.	The
Production.Document	table	in	the	AdventureWorks	sample	database	is	ready	for
FILESTREAM.	In	fact,	its	Document	column	was	declared	as	a	varbinary(max)
with	the	FILESTREAM	attribute	in	AdventureWorks	2008,	but	this	dependency	was
removed	in	AdventureWorks	2012.	Now,	the	Document	column	is	still	a
varbinary(max),	and	the	rowguid	column	is	declared	as	a	uniqueidentifier
with	the	ROWGUIDCOL	attribute.	To	convert	it	to	a	FILESTREAM-enabled	table,	we
create	a	new	table	named	Production.DocumentFS	and	import	the	lines	from
Production.Document	into	that	new	table.	Let’s	see	how	it	works	in	Listing	10-34.
The	Document	and	rowguid	columns	are	shown	in	bold.

Listing	10-34.	Production.Document	FILESTREAM-Enabled	Table

CREATE	TABLE	Production.DocumentFS	(

				DocumentNode				hierarchyid	NOT	NULL	PRIMARY	KEY,

				DocumentLevel			AS	(DocumentNode.GetLevel()),

				Title											nvarchar(50)	NOT	NULL,

				Owner											int	NOT	NULL,

				FolderFlag						bit	NOT	NULL,

				FileName								nvarchar(400)	NOT	NULL,

				FileExtension			nvarchar(8)	NOT	NULL,

				Revision								nchar(5)	NOT	NULL,

				ChangeNumber				int	NOT	NULL,

				Status										tinyint	NOT	NULL,

				DocumentSummary	nvarchar(max)	NULL,

				Document								varbinary(max)	FILESTREAM	NULL,

				rowguid									uniqueidentifier	ROWGUIDCOL	NOT	NULL	

UNIQUE,

				ModifiedDate				datetime	NOT	NULL

);

GO

INSERT	INTO	Production.DocumentFS

				(DocumentNode,	Title,	Owner,	FolderFlag,	FileName,	

FileExtension,	Revision,	ChangeNumber,	Status,	

DocumentSummary,	Document,	rowguid,	ModifiedDate)

SELECT

				DocumentNode,	Title,	Owner,	FolderFlag,	FileName,	

FileExtension,	Revision,	ChangeNumber,	Status,	

DocumentSummary,	Document,	rowguid,	ModifiedDate

FROM	Production.Document;

When	the	table	is	created,	we	insert	the	content	of	Production.Document	into	it.
Now,	we	can	open	Windows	Explorer	and	go	to	the	location	of	the	FILESTREAM
directory.	The	content	of	the	directory	is	shown	in	Figure	10-25.	The	file	names	appear	as
a	jumble	of	grouped	digits	that	don’t	offer	up	much	information	about	the	LOB	files’
contents,	because	SQL	Server	manages	the	file	names	internally.

Figure	10-25.	LOB	Files	Stored	in	the	FILESTREAM	Filegroup

	Caution		SQL	Server	also	creates	a	file	named	filestream.hdr.	This	file	is	used
by	SQL	Server	to	manage	FILESTREAM	data.	Do	not	open	or	modify	this	file.

Accessing	FILESTREAM	Data
You	can	access	and	manipulate	your	FILESTREAM-enabled	varbinary(max)
columns	using	standard	SQL	Server	SELECT	queries	and	DML	statements	like	INSERT
and	DELETE.	Listing	10-35	demonstrates	querying	the	varbinary(max)	column	of
the	Production.DocumentFS	table.	The	results	are	shown	in	Figure	10-26.

Listing	10-35.	Querying	a	FILESTREAM-Enabled	Table

SELECT

				d.Title,

				d.Document.PathName()	AS	LOB_Path,

				d.Document	AS	LOB_Data

FROM	Production.DocumentFS	d

WHERE	d.Document	IS	NOT	NULL;

Figure	10-26.	Results	of	Querying	the	FILESTREAM-enabled	Table

A	property	called	PathName()	is	exposed	on	FILESTREAM-enabled
varbinary(max)	columns	to	retrieve	the	full	path	to	the	file	containing	the	LOB	data.
The	query	in	Listing	10-35	uses	PathName()	to	retrieve	the	LOB	path	along	with	the
LOB	data.	As	you	can	see	from	this	example,	SQL	Server	abstracts	away	the	NTFS
interaction	to	a	large	degree,	allowing	you	to	query	and	manipulate	FILESTREAM	data	as
if	it	were	relational	data	stored	directly	in	the	database.

	Tip		In	most	cases,	it’s	not	a	good	idea	to	retrieve	all	LOB	data	from	a	FILESTREAM-
enabled	table	in	a	single	query	as	in	this	example.	For	large	tables	with	large	LOBs,	this
can	cause	severe	performance	problems	and	make	client	applications	unresponsive.	In	this
case,	however,	the	LOB	data	being	queried	is	actually	very	small	in	size,	and	there	are	few
rows	in	the	table.

SQL	Server	2008,	2012	and	2014	provide	support	for	the	OpenSqlFilestream
API	for	accessing	and	manipulating	FILESTREAM	data	in	client	applications.	A	full
description	of	the	OpenSqlFilestream	API	is	beyond	the	scope	of	this	book,	but
Accelerated	SQL	Server	2008,	by	Rob	Walters	et	al.	(Apress,	2008),	provides	a
description	of	the	OpenSqlFilestream	API	with	source	code	for	a	detailed	client
application.

FileTable	Support
SQL	Server	2012	improved	greatly	the	FILESTREAM	type	by	introducing	filetables.	As
we	have	seen,	to	use	FILESTREAM	we	need	to	manage	the	content	only	through	SQL
Server,	by	T-SQL	or	with	the	OpenSqlFilestream	API.	It	is	unfortunate,	because	we
have	access	to	a	directory	on	our	file	system,	which	cannot	be	managed	simply	and
publishes	cryptic	file	names.	In	short,	we	have	a	great	functionality	that	could	be	more
flexible	and	user-friendly.	Filetable	brings	that	to	the	table.	It	makes	the	Windows
filesystem	namespace	compatible	with	SQL	Server	tables.	With	it,	you	can	create	a	table
in	SQL	Server	that	merely	reflects	the	content	of	a	directory	and	its	subdirectories,	and
you	can	manage	its	content	at	the	file	system	level,	out	of	SQL	Server,	with	regular	tools
like	the	Windows	Explorer,	or	by	file	I/O	APIs	in	your	client	application.	All	changes
made	to	the	file	system	will	be	immediately	reflected	in	the	filetable.	In	fact,	the	file
system	as	we	see	it	in	the	share	does	not	exist	per	se;	it	is	a	kind	of	mirage	created	by	SQL
Server.	Files	or	directories	will	be	internally	handled	by	SQL	Server	and	filestream
objects,	and	if	you	try	to	access	the	real	directory	with	Windows	Explorer,	it	will	be	as
jumbled	as	any	other	FILESTREAM	directory.

To	be	able	to	use	filetables,	you	first	need	to	have	activated	the	filestream	support	at
the	instance	level	as	we	have	seen	in	the	previous	section.	The
filestream_access_level	option	needs	to	be	set	to	2	to	accept	file	I/O	streaming
access.	In	addition,	the	FILESTREAM	property	of	the	database	must	be	set	to	accept	non-
transacted	access.	We	will	see	how	to	do	that	in	our	example.	We	have	downloaded	a	zip
package	from	the	http://openclipart.org/	web	site,	containing	the	entire
collection	of	free	cliparts.	It	represents	almost	27,000	image	files	at	this	time.	We	will	add
them	in	a	filetable.	First,	in	Listing	10-36,	we	create	a	dedicated	database	with	a
FILESTREAM	filegroup	that	will	store	our	filetable.	The	FILESTREAM	filegroup
creation	is	shown	in	bold.

Listing	10-36.	Creating	a	Database	with	a	FILESTREAM	Filegroup

CREATE	DATABASE	cliparts

CONTAINMENT	=	NONE

ON	PRIMARY

(NAME	=	N'cliparts',	FILENAME	

=	N'C:\sqldata\MSSQL12.MSSQLSERVER\MSSQL\DATA\cliparts.mdf',	

SIZE	=	5120KB,	FILEGROWTH	=	1024KB),

FILEGROUP	[filestreamFG1]	CONTAINS	FILESTREAM

(NAME	=	N'filestream1',	FILENAME	

=	N'C:\sqldata\MSSQL12.MSSQLSERVER\MSSQL\DATA\filestream1')

LOG	ON

(NAME	=	N'cliparts_log',	FILENAME	

=	N'C:\sqldata\MSSQL12.MSSQLSERVER\MSSQL\DATA\cliparts_log.ldf',

	SIZE	=	1024KB	,	FILEGROWTH	=	10%);

GO

ALTER	DATABASE	[cliparts]	SET	FILESTREAM(

http://openclipart.org/

NON_TRANSACTED_ACCESS	=	FULL,	DIRECTORY_NAME	=	N'cliparts'	

);

	Note		As	filetables	are	stored	in	a	FILESTREAM	filegroup,	filetables	are	included	in
database	backups,	unless	you	perform	filegroup	backups	and	you	exclude	the
FILESTREAM	filegroup.

In	the	last	line	of	Listing	10-36,	we	set	the	filestream	option	to
NON_TRANSACTED_ACCESS	=	FULL,	which	will	ensure	that	files	will	be	writable
from	the	share	outside	of	SQL	Server.	We	also	specify	the	directory	name	'cliparts'.
It	will	be	shown	as	a	sub-directory	in	the	FILESTREAM	share.

The	path	where	a	filetable	will	be	found	on	the	share	depends	on	the	directory	set	at
the	database	level,	plus	a	sub-directory	set	when	the	table	is	created.	In	Listing	10-37,	we
create	the	filetable	and	a	directory	by	inserting	a	line	in	the	filetable.

Listing	10-37.	Creating	the	Filetable

USE	[cliparts];

GO

CREATE	TABLE	dbo.OpenClipartsLibrary	AS	FILETABLE

WITH

				(

								FILETABLE_DIRECTORY	=	'OpenClipartsLibrary'

);

GO

INSERT	INTO	dbo.OpenClipartsLibrary	(name,is_directory)

VALUES	('import_20120501',1);

To	create	a	filetable,	we	simple	create	a	table	AS	FILETABLE.	We	specify	with	the
option	FILETABLE_DIRECTORY	=	'OpenClipartsLibrary'	in	which	directory
in	the	share	the	content	of	the	table	will	be	found.

	Note		The	directory	of	a	filetable	can	be	changed	later	with	an	ALTER	TABLE.

As	you	can	see,	the	table	structure	is	not	part	of	the	CREATE	TABLE	statement.	A
filetable	schema	is	fixed.	We	describe	the	filetable	columns	in	Table	10-5.

Table	10-5.	Filetable	Structure

Column Type Description

stream_id uniqueindetifier The	unique	id	of	the	line,	being	a	file	(a	FILESTREAM
document)	or	a	directory.	There	is	a	UNIQUE	constraint	on	it.

file_stream varbinary(max)
The	FILESTREAM	column	containing	the	file.	NULL	if	it	is	a
directory.

name nvarchar(255) Contains	the	name	of	the	file	or	directory.

path_locator hierarchyid The	position	of	the	file	or	directory	in	the	directory’s	hierarchy.
The	primary	key	of	the	table.

parent_path_locator hierarchyid The	path_locator	of	the	parent	(ie.,	the	directory	containing	the
file	or	directory).	A	calculated	column.

file_type nvarchar(255) The	type	(extension)	of	the	file.	A	calculated	column.	NULL	if	it
is	a	directory.

cached_file_size bigint The	size	of	the	file	in	bytes.	A	calculated	column.	NULL	if	it	is	a
directory.

creation_time datetimeoffset(7) The	date	and	time	of	creation.	It	is	set	by	default	at	the	current
date	and	time	when	the	object	is	created.

last_write_time datetimeoffset(7) The	date	and	time	of	the	last	modification	of	the	file	or	directory.
Can	be	set	manually	like	creation_time.

last_access_time datetimeoffset(7) The	date	and	time	when	the	file	was	last	accessed.	Can	be	set
manually	like	creation_time.

is_directory bit 1	if	it	is	a	directory.	Calculated.

is_offline bit
1	if	the	extended	NTFS	attribute	Offline	is	set	on	the	file.	That
would	mean	that	the	file	is	not	physically	in	the	directory	but
stored	remotely.

is_hidden bit 1	if	the	file	has	the	hidden	attribute.

is_readonly bit 1	if	the	file	has	the	read-only	attribute.

is_archive bit 1	if	the	file	has	the	archive	bit	set.

is_system bit 1	if	the	file	has	the	system	attribute.

is_temporary bit 1	if	the	file	has	the	temporary	attribute.

To	retrieve	the	filetables	in	our	database,	we	can	query	the	sys.filetables
catalog	view.	We	also	can	find	them	in	SSMS	Object	Explorer,	in	the	Tables	|	FileTables
node,	as	shown	in	Figure	10-27.

Figure	10-27.	Filetables	in	SSMS

You	can	see	the	share	itself	in	Windows	Explorer	by	going	to	Network,	choosing	your
server	name	and	entering	the	share	name	you	set	in	the	SQL	Server	Configuration
Manager.	You	can	also	right-click	on	the	filetable	in	the	SSMS	Object	Explorer—as	we
see	in	Figure	10-27—and	click	on	“Explore	FileTable	Directory,”	which	will	open	a
Windows	Explorer	window	directly	on	the	filetable	directory.	You	need	to	access	it
through	the	network	share,	and	not	directly	through	the	local	directory,	because	the	local
directory	will	only	show	you	FILESTREAM	GUID	names,	while	the	network	share,
managed	by	SQL	Server,	will	show	you	a	virtual	directory	hierarchy	that	looks	like	a
regular	hierarchy	of	directores	and	files.	This	is	logical	anyway,	as	clients	are	not
supposed	to	access	directly	local	server	directories.	For	our	example,	we	did	that	and
copied	the	full	unzipped	cliparts	directory	and	subdirectories.	When	the	copy	was
finished,	a	COUNT(*)	from	dbo.OpenClipartsLibrary	returned	27,890	lines.

To	manage	files	and	directories,	you	can	do	it	by	issuing	T-SQL	statements	against	the
filetable,	directly	in	the	share	with	Windows	tools,	or	programmatically	with	Windows	I/O
APIs.	As	an	example	of	how	to	do	it	also	by	T-SQL,	Listing	10-38	creates	a	new	directory
under	the	OpenClipartsLibrary	root	directory.

Listing	10-38.	Inserting	a	Directory	in	the	Filetable

INSERT	INTO	dbo.OpenClipartsLibrary	(name,	is_directory)

VALUES	('directory01',1);

Setting	the	is_directory	column	to	1	is	all	you	have	to	do	to	create	a	directory.
You	can	also	modifiy	the	file	or	directory	properties	by	Windows	I/O	APIs	or	by	T-SQL
queries	against	the	table.	In	Listing	10-39,	we	insert	a	subdirectory	or	the	newly	created
directory01	and	set	a	creation	date	as	different	from	the	current	date	and	time.

Listing	10-39.	Inserting	a	Subdirectory

INSERT	INTO	dbo.OpenClipartsLibrary

					(name,	is_directory,	creation_time,	path_locator)

SELECT

				'directory02',1,	dateadd(year,	-1,	sysdatetime()),	

path_locator.GetDescendant(NULL,	NULL)

FROM	dbo.OpenClipartsLibrary

WHERE	name	=	'directory01'

AND	is_directory	=	1

AND	parent_path_locator	IS	NULL;

The	code	in	Listing	10-39	creates	a	directory	named	directory02	as	a	subdirectory	of
directory01	by	setting	the	path_locator	of	the	created	directory	with	the
GetDescendant()	hierarchyId	method	of	the	directory01	path_locator	column.
GetDescendant(NULL,	NULL)	returns	the	least	descendant	node	of	the	current
hierarchyId	value.	To	be	sure	that	directory01	is	the	one	we	created	at	the	root	level,	we
check	that	its	parent_path_locator	is	NULL.	We	also	set	manually	the
creation_date	to	be	one	year	ago.

In	Figure	10-28,	we	verify	with	Windows	Explorer	that	the	directory	was	effectively
created.	Once	again,	you	need	to	do	it	through	the	network	share.

Figure	10-28.	The	Newly	Created	Directory02	Directory

	Note		You	cannot	change	a	file	to	be	a	directory	or	vice	versa.	A	check	constraint	on	the
filetable	enforces	that	is_directory	cannot	be	set	to	1	when	the	file_stream
column	is	not	NULL.

Whenever	you	add,	move	or	delete	a	file	on	the	share,	or	by	T-SQL	statements	against
the	filetable,	it	will	be	immediately	reflected	at	both	places.	SQL	Server	intercepts	all	I/O
operations	on	the	share	and	converts	them	into	DML	actions	on	the	filetable.	File	system
rules	like	name	limitations	are	enforced	by	constraints	on	the	filetable,	and	trying	to	create
invalid	files	or	folders	(with	names	containing	/	?	<	>	\	:	*	|	”)	in	the	filetable	will	result	in
a	constraint	violation.

There	is	however	an	important	difference	between	managing	the	filetable	content	by
T-SQL	or	at	the	Windows	level.	The	DML	statements	against	a	filetable	can	be	part	of	a
transaction	and	rolled	back,	while	creating,	modifying,	moving,	or	deleting	files	and
folders	by	the	means	of	the	Windows	I/O	APIs	cannot	be	part	of	a	transaction.	That’s	the
reason	why	we	enabled	non_transacted_access	support	in	our	database.	If	you
want	to	enable	transactional	modification	of	a	file	in	a	filetable	outside	of	T-SQL	context,
you	can	use	the	OpenSqlFileStream	API	in	your	client	code,	which	we	discussed

previously.

Filetable	Functions
You	can	use	dedicated	functions,	FILESTREAM	related	functions,	and	hierarchyid
functions	to	manipulate	files	and	folders	in	a	filetable.

The	FileTableRootPath()	function	returns	the	database	share	directory	if	called
without	argument,	or	the	filetable	share	directory	if	called	with	the	name	of	a	filetable
provided	in	a	nvarchar	argument,	as	shown	in	Listing	10-40.	The	results	are	shown	in
Figure	10-29.

Listing	10-40.	Using	FileTableRootPath()

USE	cliparts;

SELECT	FileTableRootPath();

SELECT	FileTableRootPath('dbo.OpenClipartsLibrary');

Figure	10-29.	The	Results	of	FileTableRootPath()

The	function	takes	a	second	optional	parameter,	@option,	which	is	useful	to	return
the	full	path	in	NETBIOS	format	or	with	the	full	domain	name	(FDN)	of	the	server.	The
@option	possible	values	are	detailed	in	Table	10-6.

Table	10-6.	FileTableRootPath	@options

@option
value Description

0 Returns	the	path	in	NETBIOS	format;	this	is	the	default	value.	A	NETBIOS	computer	name	has
a	maximum	of	16	characters	in	uppercase.

1 Returns	the	path	without	conversion.

2 Returns	the	path	with	the	full	domain	name	(FDN)	of	the	machine.

To	get	the	path	of	a	specific	file	or	folder	in	the	filetable,	the
GetFileNamespacePath()	function	comes	in	handy.	It	is	called	as	a	method	of	the
file_stream	column,	and	takes	two	optional	parameters,	the	first,	@is_full_path,
allows	the	path	returned	to	be	relative	(0)	or	absolute	(1).	Calling
GetFileNamespacePath(1)	will	produce	full	paths	and	saves	you	from
concatenating	the	result	of	FileTableRootPath()	with	the	relative	path.	The	second

option,	@option,	has	the	same	values	as	the	@option	parameter	of	the
FileTableRootPath()	function.	We	demonstrate	the	usage	of
GetFileNamespacePath()	in	Listing	10-41.

Listing	10-41.	Using	GetFileNamespacePath(),

SELECT	file_stream.GetFileNamespacePath(1)	as	path

FROM	dbo.OpenClipartsLibrary

WHERE	is_directory	=	1

ORDER	BY	path_locator.GetLevel(),	path;

The	statement	in	Listing	10-41	returns	all	the	directories	of	absolute	paths	ordered	by
their	level	in	the	directories’	hierarchy	and	their	name.	The	GetLevel()	hierarchyid
function	applied	to	the	path_locator	column	allows	you	to	return	the	current	level	of
the	item	in	the	file	system	relative	to	the	filetable	root.

As	we	can	see,	hierarchyid	functions	are	interesting	ways	to	move	through	the
hierarchy.	An	example	is	given	in	Listing	10-42	that	returns	a	directory	and	the	name	of	its
parent	directory.	A	partial	result	is	shown	in	Figure	10-30.

Listing	10-42.	Using	hierarchyid	Functions

SELECT	l1.name,	l1.path_locator.GetLevel(),	l2.name	as	

parent_directory

FROM	dbo.OpenClipartsLibrary	l1

JOIN	dbo.OpenClipartsLibrary	l2	ON	

l1.path_locator.GetAncestor(1)	=	l2.path_locator

WHERE	l1.is_directory	=	1;

Figure	10-30.	The	Results	of	Using	hierarchyid	Functions

By	using	the	GetAncestor()	hierarchyid	function	on	the	path_locator	in	the
JOIN	clause,	we	retrieve	the	parent	path_locator	and	display	its	name.	An	easier
way	to	do	that	is	to	use	directly	the	parent_path_locator	computed	column	that

maintains	a	foreign	key	relationship	with	the	path_locator	column	in	the	same	table.
The	query	in	Listing	10-43	returns	exactly	the	same	result	as	the	query	in	Listing	10-42.
Listing	10-43.	Using	Parent_path_locator	Column

SELECT	l1.name,	l1.path_locator.GetLevel(),	l2.name	as	

parent_directory

FROM	dbo.OpenClipartsLibrary	l1

JOIN	dbo.OpenClipartsLibrary	l2	ON	l1.parent_path_locator	

=	l2.path_locator

WHERE	l1.is_directory	=	1;

Thanks	to	the	recursive	relationship	between	parent_path_locator	and	path_locator,	we
can	travel	down	the	directory’s	path	with	a	recursive	Common	Table	Expression	(CTE),	as
follows	in	Listing	10-44.

Listing	10-44.	Using	a	CTE	to	Travel	Down	the	Directories’	Hierarchy

;WITH	mycte	AS	(

				SELECT	name,	path_locator.GetLevel()	as	Level,	

path_locator

				FROM	dbo.OpenClipartsLibrary

				WHERE	name	=	'Yason'

				AND	is_directory	=	1

				UNION	ALL

				SELECT	l1.name,	l1.path_locator.GetLevel()	as	Level,	

l1.path_locator

				FROM	dbo.OpenClipartsLibrary	l1

				JOIN	mycte	l2	ON	l1.parent_path_locator	=	l2.path_locator

				WHERE	l1.is_directory	=	1

)

SELECT	name,	Level

FROM	mycte

ORDER	BY	level,	name;

Of	course,	as	the	path_locator	column	is	a	hierarchyid,	we	might	as	well	express
it	as	in	Listing	10-45.

Listing	10-45.	Using	hierarchyid	Functions	to	Travel	Down	the	Directory’s	Hierarchy

SELECT	l1.name,	l1.path_locator.GetLevel()	as	Level

FROM	dbo.OpenClipartsLibrary	l1

JOIN	dbo.OpenClipartsLibrary	l2	ON	

l1.path_locator.IsDescendantOf(l2.path_locator)	=	1	OR	

l1.path_locator	=	l2.path_locator

WHERE	l1.is_directory	=	1

AND	l2.is_directory	=	1

AND	l2.name	=	'Yason'

ORDER	BY	level,	name;

In	Listing	10-45,	we	use	the	IsDescendantOf()function	to	retrieve	all	descendent
directories	of	the	directory	named	Yason.	We	have	copied	a	few	directories	in	Yason,	and
the	queries	in	Listings	10-44	and	10-45	return	exactly	the	same	result	shown	in	Figure	10-
31.

Figure	10-31.	The	Results	of	the	Queries	in	Listings	10-44	and	10-45

Finally,	the	GetPathLocator()	function	returns	a	path_locator	value	for	a
file	system	full	path.	The	example	in	Listing	10-46	retrieves	the	path_locator	of	the
Yason	directory,	and	uses	it	to	find	the	matching	line	in	the	OpenClipartsLibrary
table.	The	result	is	shown	in	Figure	10-32.

Listing	10-46.	Using	the	GetPathLocator()	function.

DECLARE	@path_locator	hierarchyid

SET	@path_locator	

=	GetPathLocator('\\Sql2012\mssqlserver\cliparts\OpenClipartsLibrary\

import_20120501\Yason');

SELECT	*

FROM	dbo.OpenClipartsLibrary

WHERE	path_locator	=	@path_locator;

Figure	10-32.	The	Line	Found	Using	the	GetPathLocator()	Function

Triggers	on	Filetables
Filetables	can	have	triggers	like	any	other	tables.	Because	making	changes	in	the	filetable
share	at	the	Windows	level	results	in	SQL	Server	calls	behind	the	scene,	a	trigger	will	also
receive	these	events.

	Note		But	replication	and	related	features	(including	transactional	replication,	merge

replication,	change	data	capture,	and	change	tracking)	are	not	supported	with	FileTables.
You	can	see	a	FileTable	Compatibility	list	with	SQL	Server	features	at	this	address:
http://msdn.microsoft.com/en-us/library/gg492086.aspx.

We	will	demonstrate	that	with	the	audit	table	and	the	trigger	created	in	Listing	10-47.

Listing	10-47.	Creating	an	Audit	Table	and	a	Trigger	on	the	OpenClipartsLibrary	Table

CREATE	TABLE	dbo.cliparts_log	(

				path	nvarchar(4000)	not	null,

				deletion_date	datetime2(0),

				deletion_user	sysname,

				is_directory	bit

)

GO

CREATE	TRIGGER	OpenClipartsLibrary_logTrigger

ON	[dbo].[OpenClipartsLibrary]

AFTER	DELETE

AS	BEGIN

				IF	@@ROWCOUNT	=	0	RETURN;

				SET	NOCOUNT	ON;

				INSERT	INTO	dbo.cliparts_log	(path,	deletion_date,	

deletion_user,	is_directory)

				SELECT	name,	SYSDATETIME(),	SUSER_SNAME(),is_directory

				FROM	deleted

END;

First,	we	create	an	audit	table	named	cliparts_log.	We	want	to	keep	track	of	file
and	directory	deletions.	We	want	to	keep	the	date	and	time	of	deletion	and	name	of	the
account	that	deleted	the	item.	To	record	deletion	into	the	table,	we	create	a	trigger	named
OpenClipartsLibrary_logTrigger	that	will	fire	for	every	DELETE	statement
against	the	OpenClipartsLibrary	table.

To	test	it,	we	go	to	the	filetable	share	with	Windows	Explorer	and	delete	the
\Sql2014\mssqlserver\cliparts\OpenClipartsLibrary\import_20140501\acspike

directory.	It	contains	two	files.	What	gets	written	in	the	table	is	shown	in	Figure	10-33.

Figure	10-33.	The	Content	of	the	Cliparts_log	Table	after	the	Directory’s	Deletion

http://msdn.microsoft.com/en-us/library/gg492086.aspx

Summary
In	this	chapter,	we	first	discussed	some	details	to	know	about	basic	data	types.	Mastering
how	basic	data	types	work	allows	you	to	understand	the	impact	they	have	on	the	storage,
and	therefore	on	the	performance,	of	your	database.	For	instance,	the	nvarchar	data
type	stores	UNICODE	values	and	consumes	twice	the	space	of	the	same	varchar
content.	If	used	lightly,	it	can	blow	up	the	size	of	your	database	file.	The
varchar(max)	and	varbinary(max)	types	replace	the	legacy	text	and	image
data	types.	They	allow	an	easy	and	more	performant	handling	on	Large	Objects	(LOB)
inside	the	database.	We	then	spent	some	time	on	the	date	and	time	data	types.	They	have
been	improved	in	SQL	Server	2008	with	new	types	that	are	more	precise	and	compact.

We	also	covered	more	advanced	data	types,	like	uniqueidentifier,	which	stored	a	16-
byte	globally	unique	identifier,	and	hierarchyid,	a	.NET-based	data	type	that	can	be
used	in	a	hierarchical	table	to	represent	a	tree	structure,	as	well	as	the	spatial	geometry
and	geography	data	types.

Finally,	we	explored	the	FILESTREAM	type.	With	FILESTREAM,	you	can	keep
binary	documents	inside	a	database	more	efficiently.	Through	SQL	Server,	the	document
will	be	stored	in	the	NTFS	file	system	and	can	be	retrieved	directly	with	I/O	APIs.
Transactional	coherence	is	maintained	on	the	files	as	if	they	were	inside	the	database	file.
The	new	filetable	feature	improves	upon	FILESTREAM	by	offering	special	database
tables	storing	FILESTREAM	documents	and	folder	definitions	that	can	be	accessed	simply
on	the	filesystem	with	a	network	share	managed	by	SQL	Server.

EXERCISES

1.	 [True/False]	Storing	character	strings	with	European	language
accents	(é,à,	ö,	for	instance)	requires	you	to	use	a	UNICODE
encoding.

2.	 [Choose	all	that	apply]	Which	of	the	following	LOB	data	types	are
deprecated?

a.	 image

b.	 varchar(max)

c.	 text

d.	 ntext

e.	 All	of	the	above

3.	 [True/False]	The	new	date	data	type	stores	time	offset
information.

4.	 What	model	does	the	hierarchyid	data	type	use	to	represent
hierarchical	data	in	the	database?

5.	 [Choose	one]	Which	of	the	following	is	true	of	Polygon	spatial

objects	when	created	in	geography	data	type	instances?

f.		They	must	have	a	clockwise	orientation.

g.		They	must	have	a	counterclockwise	orientation.

h.		Orientation	does	not	matter.

i.		They	cannot	cross	up	to	two	hemispheres.

6.	 [Choose	one]	Which	of	the	following	functions	adjusts	a	given
datetimeoffset	value	to	another	specified	time	offset?

j.		TODATETIMEOFFSET

k.		SWITCHOFFSET

l.		CHANGEOFFSET

m.		CALCULATE	OFFSET

7.	 [True/False]	The	FILESTREAM	functionality	in	SQL	Server	2014
uses	NTFS	to	provide	streaming	LOB	data	support.

8.	 What	is	the	name	of	the	filetable	column	that	allows	you	to	retrieve
the	path	of	the	file	or	directory	on	the	filetable	network	share?

CHAPTER	11

Full-Text	Search
Full-text	search	(FTS)	is	a	powerful	SQL	Server	feature	allowing	for	advanced	searches
using	multiple	languages	to	find	information	in	documents	as	well	as	document	properties.
FTS	is	tightly	integrated	with	SQL	Server	2014	and	can	be	easily	managed	with	SQL
Server	Management	Studio	(SSMS)	and	monitored	with	standard	dynamic	management
views.	FTS	broadens	the	scope	of	what	is	thought	of	as	a	T-SQL	search	by	providing
meaningful	results	from	sometimes	seemingly	unstructured	textual	data.	SQL	Server	2012
introduced	statistical	semantics	which	allow	for	searching	on	document	meaning	as
opposed	to	simply	searching	content.	Based	on	word	distributions	and	other	factors,
statistical	semantics	allows	you	to	find	documents	with	similar	contents.

FTS	Architecture
As	mentioned	earlier,	the	FTS	architecture	is	tightly	integrated	with	the	SQL	Server
database	engine.	In	fact,	FTS	consists	of	two	main	components:	the	sqlserver	process
(sqlserver.exe)	and	the	filter	daemon	host	(fdhost.exe).	The	filter	daemon	is	responsible
for	retrieving	the	text	data	from	the	tables	and	applying	word	breaks	as	well	as
determining	the	type	of	text	is	being	retrieved.	The	filter	daemon	host	applies	different
rules	based	on	whether	the	document	is	a	Word	document,	an	Excel	file,	or	even	XML.
Information	is	passed	between	the	SQL	Server	process	and	the	filter	daemon	host.
Because	the	fdhost	process	has	the	responsibility	to	directly	access	and	filter	the	data,	the
process	requires	a	separate	security	account.	This	keeps	the	entire	FTS	process	much	more
secure	than	in	previous	implementations.

The	SQL	Server	process	is	primarily	responsible	for	maintaining	full-text	indexes,
controlling	query	optimization,	and	maintaining	the	stoplist	and	theasaures	objects.	A
stoplist	is	a	list	of	non-essentials	words	which	should	be	ignored	in	most	linguistic
searches.	A	thesaurus	is	something	you	fill	out	in	order	to	extend	the	reach	of	searches	to
find	matches	that	FTS	may	not	have	been	able	to	suggest	on	its	own.	Figure	11-1	shows
how	these	architectural	components	are	put	to	together.

Figure	11-1.	FTS	architecture	(simplified)

Here	is	a	quick	summary	of	some	of	the	beneficial	features	of	FTS:

The	full-text	engine	is	hosted	in	the	SQL	Server	process,	eliminating
much	of	the	overhead	associated	with	interservice	communications.

Integration	with	the	SQL	Server	process	to	better	predict	query
performance	through	the	use	of	new	query	operators.

Full-text	indexes	are	maintained	by	the	SQL	Server	process	for	better
optimization.

Ability	to	create	customized	stoplists	of	words	to	ignore	during	FTS,
and	the	ability	to	create	a	thesaurus	for	more	efficient	and	accurate
searching.

Dynamic	management	views	and	functions	that	provide	greater
transparency	in	understanding	how	FTS	queries	are	processed	and
executed.

Creating	Full-Text	Catalogs	and	Indexes
The	first	step	to	take	advantage	of	SQL	Server	FTS	is	to	create	full-text	catalogs	and	full-
text	indexes.	A	full-text	catalog	can	contain	one	or	more	full-text	indexes,	and	each	full-
text	index	can	only	be	assigned	to	one	full-text	catalog.	You	can	create	full-text	catalogs
and	full-text	indexes	in	SSMS	using	GUI	(graphical	user	interface)	wizards	or	T-SQL
statements.

Creating	Full-Text	Catalogs
You	can	access	the	GUI	full-text	catalog	wizard	by	right-clicking	Full	Text	Catalogs	in	the
SSMS	Object	Explorer.	The	New	Full-Text	Catalog	option	on	the	pop-up	context	menu
starts	the	wizard	(see	Figure	11-2).

Figure	11-2.	New	Full-Text	Catalog	Context	Menu	Option

After	selecting	New	Full-Text	Catalog,	SSMS	presents	the	wizard’s	New	Full-Text
Catalog	window.	This	window	allows	you	to	define	the	name	of	your	full-text	catalog,	the
full-text	catalog’s	owner,	an	accent	sensitivity	setting,	and	whether	or	not	this	full-text
catalog	is	designated	as	the	default	for	a	database.	The	New	Full-Text	Catalog	window	is
shown	in	Figure	11-3.

Figure	11-3.	New	Full-Text	Catalog	Window

For	this	sample	full-text	catalog,	we	chose	the	following	options:

The	full-text	catalog	is	named	AdventureWorksFTCat,	and	dbo	is	designated	as	the
owner.

The	first	created	full-text	catalog	is	designated	the	default	full-text	catalog	for	the
database.	When	a	new	full-text	index	is	created	you	will	have	a	choice	to	create	it	in	the
default	catalog	or	in	any	additional	non-default	catalogs.

The	accent	sensitivity	is	set	to	Insensitive,	meaning	that	words	with	accent	marks	are
treated	as	equivalent	to	those	without	accent	marks	(e.g.,	for	search	purposes,	resumé	is
the	same	as	resume).

You	can	also	create	and	manage	full-text	catalogs	using	T-SQL	statements.	Listing	11-
1	shows	how	to	create	the	same	full-text	catalog	that	we	created	previously	in	this	section
with	the	SSMS	wizard.

Listing	11-1.	Creating	a	Full-Text	Catalog	with	T-SQL

CREATE	FULLTEXT	CATALOG	AdventureWorksFTCat

		WITH	ACCENT_SENSITIVITY	=	OFF

		AS	DEFAULT

		AUTHORIZATION	dbo;

Once	you’ve	created	your	full-text	catalog,	the	next	step	is	to	build	full-text	indexes.
We	describe	full-text	index	creation	in	the	next	section.	Maximum	performance	full-text
catalogs,	particularly	those	you	anticipate	will	become	very	large,	should	be	created	on
filegroups	that	are	located	on	their	own	physical	drives.	This	is	also	useful	for
administrative	functions	such	as	performing	filegroup	backups	and	restores	independent	of
data	and	log	files.

Creating	Full-Text	Indexes
As	with	full-text	catalogs,	you	have	two	options	for	creating	full-text	indexes—you	can
use	the	GUI	wizard	in	SSMS,	or	you	can	use	T-SQL	statements.	Once	you’ve	created	a
full-text	catalog,	as	described	in	the	previous	section,	it’s	time	to	define	your	full-text
indexes.	Begin	by	right-clicking	a	table;	the	example	in	Figure	11-4	uses	the
Production.ProductModel	table,	in	the	SSMS	Object	Explorer	to	pull	up	the	table	context
menu.	From	the	context	menu,	choose	the	Full-Text	Index	 	Define	Full-Text	Index
option,	shown	in	Figure	11-4.

Figure	11-4.	“Full-Text	Index”	Context	Menu

The	full-text	index	wizard	shows	a	splash	screen	the	first	time	you	access	it.	You	can

choose	to	turn	off	the	splash	screen	or	just	ignore	it.	On	the	next	screen,	shown	in	Figure
11-5,	the	wizard	allows	you	to	select	a	single-column	unique	index	on	the	table.	Every
full-text	index	requires	a	single-column	unique	index	that	allows	the	full-text	index	to
reference	individual	rows	in	the	table.	If	you	don’t	have	a	single-column	unique	index
defined	on	the	table	you’re	trying	to	create	a	full-text	index	on,	the	wizard	will	display	an
error	message	as	soon	as	you	try	to	run	it.	In	this	example,	we’ve	chosen	to	use	the	table’s
integer	primary	key	for	the	full-text	index.

Figure	11-5.	Selecting	a	Single-column	Unique	Index

	Tip		It’s	recommended	that	you	specify	a	single-column	unique	index	defined	on	an
integer	column	when	creating	a	full-text	index.	This	will	help	maximize	performance
and	minimize	full-text	index	storage	requirements.

After	you	select	a	unique	index,	you’ll	choose	the	columns	that	will	provide	the
searchable	content	for	the	full-text	index.	You	can	specify	char,	nchar,	varchar,
nvarchar,	xml,	varbinary,	varbinary(max),	and	image	columns	in	this	step.
In	Figure	11-6,	the	nvarchar	and	xml	data	type	columns	of	the	table	are	selected	to
participate	in	the	full-text	index.	We’ve	also	selected	English	as	the	word-breaker
language	for	each	of	these	columns.	The	word-breaker	language	specification	determines
the	language	used	for	word-breaking	and	stemming.	SQL	Server	2014	currently
recognizes	over	50	different	languages.

Figure	11-6.	Selecting	Columns	to	Participate	in	Full-text	Searches

	Note		The	type	column	is	the	name	of	a	column	indicating	the	document	type	(e.g.,
Microsoft	Word,	Excel,	PowerPoint,	Adobe	PDF,	and	others)	when	you	full-text	index
documents	stored	in	varbinary(max)	or	image	columns.	Be	aware	that	some
document	types	require	installation	and	configuration	of	additional	IFilter	components.
More	information	about	full-text	and	the	new	filetable	feature	is	available	on	Microsoft
TechNet	at
http://social.technet.microsoft.com/wiki/contents/articles/9809.store-

and-index-documents-in-sql-server-2012-an-end-to-end-

walkthrough.aspx.

After	you’ve	selected	the	columns	that	will	participate	in	full-text	searches	against	a
table,	you	must	select	the	change-tracking	option.	Change	tracking	determines	whether
SQL	Server	maintains	a	change	log	for	the	full-text	indexed	columns,	and	how	the	log	is
used	to	update	the	full-text	index.	Figure	11-7	shows	the	change-tracking	options	available
through	the	wizard.

http://social.technet.microsoft.com/wiki/contents/articles/9809.store-and-index-documents-in-sql-server-2012-an-end-to-end-walkthrough.aspx

Figure	11-7.	Selecting	a	Change-tracking	Option

The	change-tracking	options	available	through	the	wizard	include	the	following:

Automatically:	SQL	Server	updates	the	full-text	index	automatically
when	data	is	modified	in	the	columns	that	participate	in	the	full-text
index.	This	is	the	default	option.

Manually:	The	change-tracking	log	is	either	used	to	update	the	full-
text	index	via	SQL	Agent	on	a	scheduled	basis,	or	through	manual
intervention.	This	option	is	useful	when	automatic	full-text	index
updates	could	slow	down	your	server	during	business	hours.

Do	not	track	changes:	SQL	Server	does	not	track	changes.	Updating
the	full-text	index	requires	you	to	issue	an	ALTER	FULLTEXT
INDEX	statement	with	the	START	FULL	or	INCREMENTAL
POPULATION	clause	to	populate	the	entire	full-text	index.

	Tip		Keep	in	mind	that	automatic	updates	to	the	full-text	index	are	not	necessarily
immediate	updates.	When	automatic	change	tracking	is	specified,	there	may	be	some	lag
time	between	changes	in	the	table	data	and	updates	to	the	full-text	index.

The	next	step	in	the	wizard	allows	you	to	assign	your	full-text	index	to	a	full-text

catalog.	You	can	choose	a	preexisting	full-text	catalog,	like	the
AdventureWorksFTCat	shown	in	Figure	11-8,	or	you	can	create	a	new	full-text
catalog.	You	can	also	choose	a	filegroup	and	full-text	stoplist	for	the	full-text	index	in	this
step.

Figure	11-8.	Assigning	a	Full-text	Index	to	a	Catalog

The	final	steps	of	the	wizard	allow	you	to	create	a	full-text	index	population	schedule
and	review	your	previous	wizard	selections.	Since	automatic	population	is	used	in	the
example,	no	schedule	is	necessary.

	Note		It	is	possible	you	may	receive	an	error	on	the	population	schedule	screen	when
using	SQL	Server	2014	Express	Advanced	Services.	This	might	be	due	to	a	bug	in	the
application.	You	can	ignore	the	error	and	continue.	Express	Advanced	Services	does
support	population	schedules	so	you	can	avoid	the	error	by	manually	creating	the	schedule
and	bypassing	the	GUI.	It	also	may	be	possible	to	create	the	schedule	through	the	GUI
later	by	selecting	the	index	properties.	For	more,	go	to
http://connect.microsoft.com/SQLServer/feedback/details/740181/management-

studio-does-not-fully-manage-full-text-in-sql-server-express.

In	the	review	window	of	the	wizard,	shown	in	Figure	11-9,	you	can	look	at	the	choices
you’ve	made	in	each	step	of	the	wizard	and	go	back	to	previous	steps	to	make	changes	if
necessary.	Once	you	click	the	Finish	button,	the	full-text	index	is	created	in	your	database.

http://connect.microsoft.com/SQLServer/feedback/details/740181/management-studio-does-not-fully-manage-full-text-in-sql-server-express

Figure	11-9.	Review	Wizard	Selections

The	SSMS	full-text	index	wizard	is	very	thorough,	but	you	can	also	create	and	manage
full-text	indexes	using	T-SQL	statements.	Listing	11-2	shows	the	T-SQL	statements
required	to	create	and	enable	a	full-text	index	with	the	same	options	previously	selected	in
the	SSMS	wizard	example.

Listing	11-2.	Creating	a	Full-Text	Index	with	T-SQL	Statements

CREATE	FULLTEXT	INDEX

ON	Production.ProductModel

(

		CatalogDescription	LANGUAGE	English,

		Instructions	LANGUAGE	English,

		Name	LANGUAGE	English

)

KEY	INDEX	PK_ProductModel_ProductModelID

ON

(

		AdventureWorksFTCat

)

WITH

(

CHANGE_TRACKING	AUTO

);

GO

ALTER	FULLTEXT	INDEX

ON	Production.ProductModel	ENABLE;

GO

		

The	CREATE	FULLTEXT	INDEX	statement	builds	the	full-text	index	on	the
Production.ProductModel	table	with	the	specified	options.	In	this	example,	the
CatalogDescription,	Instructions,	and	Name	columns	are	all	participating	in	the	full-text
index.	The	LANGUAGE	clause	specifies	that	the	English	language	word	breaker	will	be
used	to	index	the	columns.	A	word	breaker	is	a	naturally	occurring	break	between	words
based	on	a	language’s	lexicon.	Setting	the	word	breaker	language	to	English	helps	FTS
understand	how	the	sentences	are	structured	in	order	to	better	search	on	individual	words.
The	KEY	INDEX	clause	specifies	the	primary	key	of	the	table,
PK_ProductModel_ProductModelID,	as	the	single-column	unique	index	for	the	table.
Finally,	the	CHANGE	TRACKING	AUTO	option	turns	on	automatic	change	tracking	for
the	full-text	index.

The	ALTER	FULLTEXT	INDEX	statement	in	the	listing	enables	the	full-text	index
and	starts	a	full	population.	ALTER	FULLTEXT	INDEX	is	a	flexible	statement	that	can
be	used	to	add	columns	to,	or	remove	columns	from,	a	full-text	index.	You	can	also	use	it
to	enable	or	disable	a	full-text	index,	set	the	change-tracking	options,	start	or	stop	a	full-
text	index	population,	or	change	full-text	index	stoplist	settings.

	Note		Stoplists	are	lists	of	words	that	are	considered	unimportant	for	purposes	of	FTS.
These	words	are	known	as	stopwords.	Stopwords	are	language	dependent,	with	the
English	system	stoplist	containing	words	like	a,	an,	and,	and	the	(and	many	others).	SQL
Server	2014	provides	a	system	stoplist	and	allows	you	to	create	your	own	custom	stoplists.
We	will	discuss	stoplists	later	in	this	chapter.

Full-Text	Querying
After	you	create	a	full-text	catalog	and	a	full-text	index,	you	can	take	advantage	of	FTS
with	SQL	Server’s	FTS	predicates	and	functions.	SQL	Server	provides	four	ways	to	query
a	full-text	index.	The	FREETEXT	and	CONTAINS	predicates	retrieve	rows	from	a	table
that	match	a	given	FTS	criteria,	in	much	the	same	way	that	the	EXISTS	predicate	returns
rows	that	meet	given	criteria.	The	FREETEXTTABLE	and	CONTAINSTABLE	functions
return	rowsets	with	two	columns:	a	key	column,	which	is	a	row	identifier	(the	unique
index	value	specified	when	the	full-text	index	was	created)	and	a	rank	column,	which	is	a
relevance	rating.

The	FREETEXT	Predicate

The	FREETEXT	predicate	offers	the	simplest	method	of	using	FTS	to	search	character-
based	columns	of	a	full-text	index.	FREETEXT	searches	for	words	that	match	inflectional
forms	and	thesaurus	expansions	and	replacements.	The	FREETEXT	predicate	accepts	a
column	name	or	list	of	columns,	a	free-text	search	string,	and	an	optional	language
identifier	(a	locale	ID,	or	LCID).	Because	it	is	a	predicate,	FREETEXT	can	be	used	in	the
WHERE	clause	of	a	SELECT	query	or	DML	statement.	All	rows	for	which	the	FREETEXT
predicate	returns	true	(a	match)	are	returned.	Listing	11-3	shows	a	simple	FREETEXT
query	that	uses	the	full-text	index	created	on	the	Production.ProductModel	table	in	the
previous	section.	The	results	are	shown	in	Figure	11-10.	The	wildcard	character	(*)	passed
as	a	parameter	to	the	FREETEXT	predicate	indicates	that	all	columns	participating	in	the
full-text	index	should	be	searched	for	a	match.	The	second	FREETEXT	parameter	is	the
word	you	want	to	match.

Listing	11-3.	Simple	FREETEXT	Full-Text	Query

SELECT

			ProductModelID,

			Name,

			CatalogDescription,

			Instructions

FROM	Production.ProductModel

WHERE	FREETEXT(*,	N'sock');

Figure	11-10.	Using	FREETEXT	to	Find	Socks

The	FREETEXT	predicate	automatically	stems	words	to	find	inflectional	forms.	The
query	in	Listing	11-3	returns	rows	that	contain	an	inflectional	form	of	the	word	sock—in
this	case,	FTS	finds	two	rows	that	contain	the	plural	form	of	the	word,	socks.	Notice	that
if	you	were	to	replace	the	word	“socks”	with	“sox”	you	receive	the	same	result	set.	This	is
because	FREETEXT	also	performs	FTS	thesaurus	expansions	and	replacements
automatically,	if	a	thesaurus	file	is	available.

The	integration	of	FTS	with	the	SQL	Server	query	engine	results	in	a	more	efficient
FTS	experience.	In	SQL	Server	2014,	FTS	can	take	advantage	of	optimized	operators	like
the	Table	Valued	Function	[FulltextMatch]	operator	shown	in	Figure	11-
11.	The	query	plan	shown	is	generated	by	the	query	in	Listing	11-3.

Figure	11-11.	FREETEXT	Query	Execution	Plan

FTS	Performance	Optimization
In	previous	releases	of	SQL	Server,	the	FTS	functionality	was	provided	via	an
independent	service	known	as	MSFTESQL	(Microsoft	Full-Text	Engine	for	SQL	Server).
Because	it	was	completely	separate	from	the	SQL	Server	query	engine,	the	MSFTESQL
service	could	not	take	advantage	of	T-SQL	operators	to	optimize	performance.	As	an
example,	consider	the	following	variation	on	the	query	in	Listing	11-3:

SELECT

		ProductModelID,

		Name,

		CatalogDescription,

		Instructions

FROM	Production.ProductModel

WHERE	FREETEXT(*,	N'sock')

AND	ProductModelID	<	100;

Imagine	for	a	moment	that	the	Production.ProductModel	table	has	1,000,000
rows	that	match	the	FREETEXT	predicate.	Versions	of	SQL	Server	prior	to	SQL	Server
2008	were	incapable	of	using	the	additional	T-SQL	ProductModelID	<	100
predicate	in	the	WHERE	clause	to	limit	the	rows	accessed	by	the	FTS	service.	The
MSFTESQL	service	had	to	return	all	1,000,000	rows	from	the	FREETEXT	predicate	and
then	narrow	them	down.	Beginning	with	SQL	2008	and	continuing	in	SQL	Server	2014,
the	FTS	engine	can	work	in	tandem	with	the	SQL	Server	query	engine	to	optimize	the
query	plan	and	limit	the	number	of	rows	touched	by	the	FREETEXT	predicate.

	Tip		You’ll	see	heavy	use	of	the	phrase	inflectional	forms	throughout	this	section.
Inflectional	forms	of	words	include	verb	conjugations	like	go,	goes,	going,	gone,	and
went.	Inflectional	forms	also	include	plural	and	singular	noun	variants	of	words,	like	bike
and	bikes.	Searching	for	any	word	with	FREETEXT	automatically	results	in	matches	of	all

supported	inflectional	forms.

Listing	11-4	demonstrates	a	FREETEXT	query	that	retrieves	all	rows	that	contain
inflectional	forms	of	the	word	ride	in	the	CatalogDescription	column.	Another
word	for	this	process	is	called	stemming.	Inflectional	forms	that	are	matched	in	this	query
include	the	plural	noun	riders	and	the	verb	riding.	In	this	FREETEXT	query,	the
CatalogDescription	column	name	is	identified	by	name	to	restrict	the	search	to	a
single	column,	and	the	LANGUAGE	specifier	is	used	to	indicate	LCID	1033,	which	is	US
English.	The	results	are	shown	in	Figure	11-12.

Listing	11-4.	FREETEXT	Query	with	Automatic	Word	Stemming

SELECT

		ProductModelID,

		Name,

		CatalogDescription,

		Instructions

FROM	Production.ProductModel

WHERE	FREETEXT(CatalogDescription,	N'weld',	LANGUAGE	1033);

Figure	11-12.	Automatic	Stemming	with	FREETEXT

You	can’t	see	the	words	that	matched	in	the	xml	type	CatalogDescription
(there’s	not	enough	space	on	the	page	to	reproduce	the	entire	result).	Rest	assured	that
FREETEXT	has	located	valid	matches	in	the	row.	For	the	first	match	the	XML	has	the	text
“The	heat	treated	welded	aluminum,”	while	the	second	match	has	the	text	“it	is	welded
and	heat	treated.”

The	CONTAINS	Predicate
In	addition	to	the	FREETEXT	predicate,	SQL	Server	2014	supports	the	CONTAINS
predicate.	CONTAINS	allows	more	advanced	full-text	query	options	than	the	FREETEXT
predicate.	Just	like	FREETEXT,	the	CONTAINS	predicate	accepts	a	column	name	or	list
of	columns,	a	search	condition,	and	an	optional	language	identifier	as	parameters.	The
CONTAINS	predicate	can	search	for	simple	strings	like	FREETEXT,	but	it	also	allows
sophisticated	search	conditions	that	include	word	or	phrase	prefixes,	words	that	are	in
close	proximity	to	other	words,	inflectional	word	forms,	thesaurus	synonyms,	and
combinations	of	search	criteria.

The	simplest	CONTAINS	predicates	are	basic	word	searches,	similar	to	FREETEXT.
Unlike	FREETEXT,	however,	the	CONTAINS	predicate	does	not	automatically	search	for
inflectional	forms	of	words	or	thesaurus	expansions	and	replacements.	Listing	11-5
modifies	Listing	11-4	to	demonstrate	a	simple	CONTAINS	query.	The	results	are	shown	in

Figure	11-13.	As	you	can	see,	a	couple	of	rows	that	do	not	contain	an	exact	match	for	the
word	weld	are	eliminated	from	the	results.

Listing	11-5.	Simple	CONTAINS	Query

SELECT

		ProductModelID	,

		Name,

		CatalogDescription,

		Instructions

FROM	Production.ProductModel

WHERE	CONTAINS	(*,	N'weld');

Figure	11-13.	Results	of	the	Simple	CONTAINS	Query

To	use	inflectional	forms	or	thesaurus	expansions	and	replacements	with	CONTAINS,
use	the	FORMSOF	generation	term	in	your	search	condition.	Listing	11-6	performs	a
CONTAINS	search	on	the	Name	and	CatalogDescription	columns	of	the
Production.ProductModel	table.	The	results,	which	include	matches	for
inflectional	forms	of	the	word	sport,	like	sports	and	sporting,	are	shown	in	Figure	11-14.

Listing	11-6.	Sample	CONTAINS	Query	with	FORMSOF	Inflectional	Generation	Term

SELECT

		ProductModelID	,

		Name,

		CatalogDescription

FROM	Production.ProductModel

WHERE	CONTAINS

(

		(

				Name,

				CatalogDescription

),

		N'FORMSOF(INFLECTIONAL,	sport)'

);

Figure	11-14.	Results	of	the	CONTAINS	Query	with	Inflectional	FORMSOF	Term

The	CONTAINS	predicate	also	allows	you	to	combine	simple	search	terms	like	these
with	the	AND	(&),	AND	NOT	(&!),	and	OR	(|)	Boolean	operators.	Listing	11-7
demonstrates	combining	two	search	terms	in	a	CONTAINS	predicate.	The	results	of	this
sample	query,	which	retrieves	all	rows	containing	inflectional	forms	of	the	word	sport
(like	sports)	or	the	word	tube	in	the	Name	or	CatalogDescription	columns,	are
shown	in	Figure	11-15.

Listing	11-7.	Compound	CONTAINS	Search	Term

SELECT

		ProductModelID	,

		Name,

		CatalogDescription

FROM	Production.ProductModel

WHERE	CONTAINS

(

		(

				Name,

				CatalogDescription

),

N'"tube"	|	FORMSOF	(INFLECTIONAL,	sport)'

);

Figure	11-15.	Results	of	the	CONTAINS	Query	with	a	Compound	Search	Term

Listing	11-7	uses	FORMSOF	to	return	matches	for	inflectional	forms.	You	can	also	use
the	FORMSOF	(THESAURUS,	…)	format	to	return	matches	for	expansions	and
replacements	of	words,	as	defined	in	your	language-specific	thesaurus	files.

CONTAINS	also	supports	prefix	searches	using	the	wildcard	asterisk	(*)	character.
Place	the	search	word	or	phrase,	immediately	followed	by	the	wildcard	character,	in
double	quotes	to	specify	a	prefix	search.	Listing	11-8	demonstrates	a	simple	prefix	search
to	retrieve	all	rows	that	have	a	word	starting	with	the	prefix	bot	in	the	Name	column.	The
results	are	shown	in	Figure	11-16.

Listing	11-8.	CONTAINS	Prefix	Search

SELECT

		ProductModelID	,

		Name

FROM	Production.ProductModel

WHERE	CONTAINS	(Name,	N'"bot*"');

Figure	11-16.	Results	of	the	CONTAINS	Prefix	Search

The	CONTAINS	predicate	also	supports	the	NEAR	(~)	keyword	for	proximity
searches.	NEAR	will	return	matches	for	words	that	are	close	to	one	another	in	the	source
columns.	Listing	11-9	demonstrates	a	NEAR	proximity	search	that	looks	for	instances	of
the	word	aluminum	that	occur	in	close	proximity	to	the	word	jig	in	the	Instructions
column.	The	results	are	shown	in	Figure	11-17.	This	example	is	considered	a	generic
proximity	search.

Listing	11-9.	CONTAINS	Proximity	Search

SELECT

		ProductModelID	,

		Name

FROM	Production.ProductModel

WHERE	CONTAINS	(Instructions,	N'aluminum	NEAR	jig');

Figure	11-17.	CONTAINS	Proximity	Query	Results

	Tip		Avoid	using	generic	proximity	searches.	These	will	be	deprecated	in	future

versions	of	SQL	Server.	Instead,	use	the	custom	proximity	searches	discussed	later	in	this
chapter.

SQL	Server	2012	introduced	a	custom	proximity	search	for	the	NEAR	clause.	It	allows
you	to	easily	search	for	words	within	a	customizable	distance	from	one	another.	It	also
allows	you	to	define	the	order	of	the	phrases	in	your	search.	The	distance	is	determined	by
the	number	of	non-searchable	words	between	the	words	included	in	your	search.	If	we
take	the	example	in	Listing	11-9	and	convert	it	to	a	custom	proximity	search,	we	find	that
in	order	to	get	the	same	results	we	have	to	include	a	distance	of	three.	This	means	that	a
maximum	of	three	words	exist	between	the	words	aluminum	and	jig.	Listing	11-10	shows
the	revised	code.

Listing	11-10.	CONTAINS	Custom	Search

SELECT

		ProductModelID	,

		Name

FROM	Production.ProductModel

WHERE	CONTAINS(Instructions,	'NEAR((aluminum,jig),	3)');

Listing	11-10	gives	you	the	same	results	as	Figure	11-17.	A	distance	of	two	will	give
you	no	results	but	any	other	number	above	three	gives	you	the	same	results	as	the	original.
Keep	in	mind	the	distance	between	the	words	also	includes	stopwords.	Remember
stopwords	are	words	usually	not	included	in	searches.	Keep	in	mind	too	that	the	custom
proximity	clause	is	not	limited	to	only	two	search	words.	You	could	have	also	included
words	like	“bike,”	“weld,”	and	“frame”—for	example,	NEAR((bike,	weld,
frame),	3).	You	can	even	include	phrases	like	“bike	riding”	or	“welding	frame.”
Whatever	you	choose,	the	distance	is	still	based	on	the	distance	between	the	first	and	last
word	listed	in	the	condition.

By	default	the	custom	proximity	search	will	ignore	the	order	of	the	search	words.	In
the	example	above,	jig	could	be	within	a	distance	of	three	either	before	or	after	the	word
aluminum.	If	you	want	to	control	the	order	of	the	search	words	then	you	need	add	the
TRUE	clause	in	the	NEAR	statement.	Listing	11-11	shows	two	examples.	The	first	has	jig
before	aluminum	and	the	second	has	aluminum	before	jig.	Notice	that	only	the	second
example	returns	values.

Listing	11-11.	Custom	Search	with	TRUE	Clause

SELECT

		ProductModelID	,

		Name

FROM	Production.ProductModel

WHERE	CONTAINS(Instructions,	'NEAR((jig,	aluminum),3,	

TRUE)');

SELECT

		ProductModelID	,

		Name

FROM	Production.ProductModel	

WHERE	CONTAINS(Instructions,	'NEAR((aluminum,	jig),3,	

TRUE)');

The	custom	proximity	search	also	allows	for	search	conditions	which	combine
multiple	grouping	of	words	using	expressions	like	AND,	OR,	and	AND	NOT.	The	added
flexibility	of	the	SQL	Server	2014	custom	proximity	search	adds	advanced	features	not
available	in	the	generic	search.	Going	forward,	all	searches	should	be	done	using	the
custom	properties.

The	FREETEXTTABLE	and	CONTAINSTABLE
Functions
SQL	Server	provides	TVF-based	counterparts	to	the	FREETEXT	and	CONTAINS
predicates,	known	as	FREETEXTTABLE	and	CONTAINSTABLE.	These	functions
operate	like	the	similarly	named	predicates,	but	both	functions	return	result	sets	consisting
of	a	table	with	two	columns,	named	KEY	and	RANK.	The	KEY	column	contains	the	key
index	values	relating	back	to	the	unique	index	of	matching	rows	in	the	source	table,	and
the	RANK	column	contains	relevance	rankings.

The	FREETEXTTABLE	function	accepts	the	name	of	the	table	to	search,	a	single
column	name	or	column	list,	a	search	string,	and	an	optional	language	identifier	just	like
the	FREETEXT	predicate.	FREETEXTTABLE	can	also	take	an	additional	“top	n	by	rank”
parameter	to	limit	the	rows	returned	to	a	specific	number	of	the	highest-ranked	rows.	The
results	of	FREETEXTTABLE	are	useful	for	joining	back	to	the	source	table	via	the	KEY
column	of	the	results.	Listing	11-12	demonstrates	a	simple	FREETEXTTABLE	query	that
locates	rows	where	the	word	aluminum	appears	in	the	Instructions	column	of	the
Production.ProductModel	table.	The	results	are	joined	back	to	the	source	table	to
return	the	ProductModelID	and	Name,	as	shown	in	Figure	11-18.

Listing	11-12.	FREETEXTTABLE	Results	Joined	to	Source	Table

SELECT

		ftt.[KEY],

		ftt.[RANK],

		pm.ProductModelID	,

		pm.Name	FROM	FREETEXTTABLE

(

		Production.ProductModel,

		Instructions,

		N'aluminum'

)	ftt

INNER	JOIN	Production.ProductModel	pm

		ON	ftt.[KEY]	=	pm.ProductModelID;

Figure	11-18.	Results	of	the	FREETEXTTABLE	Query

The	CONTAINSTABLE	function	offers	the	advanced	search	capabilities	of	the
CONTAINS	predicate	in	a	function	form.	The	CONTAINSTABLE	function	accepts	the
name	of	the	source	table,	a	single	column	name	or	list	of	columns,	and	a	CONTAINS-
style	search	condition.	Like	FREETEXTTABLE,	the	CONTAINSTABLE	function	also
accepts	an	optional	language	identifier	and	“top	n	by	rank”	parameter.	Listing	11-13
demonstrates	the	CONTAINSTABLE	function	in	a	simple	keyword	search	that	retrieves
KEY	and	RANK	values	for	all	rows	containing	inflectional	forms	of	the	word	tours.	The
results	are	shown	in	Figure	11-19.

Listing	11-13.	Simple	CONTAINSTABLE	Query

SELECT

		[KEY],

		[RANK]

FROM	CONTAINSTABLE	(

Production.ProductModel,

[Name],

N'FORMSOF(INFLECTIONAL,	tours)'

);

Figure	11-19.	Results	of	the	CONTAINSTABLE	Query	with	Inflectional	Forms

CONTAINSTABLE	supports	all	of	the	options	supported	by	the	CONTAINS	predicate,
including	the	ISABOUT	term,	which	allows	you	to	assign	weights	to	the	matched	words	it
locates.	With	ISABOUT,	you	assign	a	weight	value	between	0.0	and	1.0	to	each	search
word.	CONTAINSTABLE	applies	the	weight	to	the	relevance	rankings	returned	in	the
RANK	column.	Listing	11-14	shows	two	CONTAINSTABLE	queries.	The	first	query
returns	all	products	with	the	words	aluminum	or	polish	in	their	XML	Instructions
column.	The	second	query	uses	ISABOUT	to	assign	each	of	these	words	a	weight	between
0.0	and	1.0,	which	is	then	applied	to	the	result	RANK	for	each	row.	The	results,	shown	in
Figure	11-20,	demonstrate	how	ISABOUT	weights	can	rearrange	the	rankings	of	your
CONTAINSTABLE	query	results.

Listing	11-14.	ISABOUT	in	a	CONTAINSTABLE	Query

SELECT

		ct.[RANK],

		ct.[KEY],

		pm.[Name]

FROM	CONTAINSTABLE

(

		Production.ProductModel,

		Instructions,

		N'aluminum	OR	polish'

)	ct

INNER	JOIN	Production.ProductModel	pm

		ON	ct.[KEY]	=	pm.ProductModelID

ORDER	BY	ct.[RANK]	DESC;

		SELECT

		ct.[RANK],

		ct.[KEY],

		pm.[Name]	FROM	CONTAINSTABLE

(

		Production.ProductModel,

		Instructions,

N'ISABOUT(aluminum	WEIGHT(1.0),	polish	WEIGHT(0.1))'

)	ct

INNER	JOIN	Production.ProductModel	pm

		ON	ct.[KEY]	=	pm.ProductModelID

ORDER	BY	ct.[RANK]	DESC;

Figure	11-20.	Changing	Result	Set	Rankings	with	ISABOUT

Thesauruses	and	Stoplists
The	FREETEXT	predicate	and	FREETEXTTABLE	function	automatically	perform	word
stemming	for	inflectional	forms	and	thesaurus	expansions	and	replacements.	The
CONTAINS	predicate	and	CONTAINSTABLE	function	require	you	to	explicitly	specify
that	you	want	inflectional	forms	and	thesaurus	expansions	and	replacements	with	the
FORMSOF	term.	While	inflectional	forms	include	verb	conjugations	and	plural	forms	of
words,	thesaurus	functionality	is	based	on	user-managed	XML	files	that	define	word
replacement	and	expansion	patterns.

Each	language-specific	thesaurus	is	located	in	an	XML	file	in	the	FTData	directory	of
your	SQL	Server	installation.	If	you	installed	SQL	Server	with	the	default	settings	then	the
directory	would	be	located	in	the	path	C:\Program	Files\Microsoft	SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\FTData.	The	thesaurus	files	are	named	using
the	format	tsnnn.xml,	where	nnn	is	a	three-letter	code	representing	a	specific
language.	The	file	name	tsenu.xml,	for	instance,	is	the	US	English	thesaurus.	To
demonstrate	the	FTS	thesaurus	capabilities,	we’ll	begin	by	creating	a	new	full-text	index
on	the	Production.Product	table	using	the	code	in	Listing	11-15.

Listing	11-15.	Creating	a	Full-Text	Index

CREATE		FULLTEXT		INDEX		ON		Production.Product

(

				Name		LANGUAGE		English,

				Color	LANGUAGE	English

)

KEY		INDEX	PK_Product_ProductID

ON		(AdventureWorksFTCat)

WITH

(

				CHANGE_TRACKING	AUTO,

				STOPLIST	=	SYSTEM

);

GO

ALTER	FULLTEXT	INDEX	ON	Production.Product

ENABLE;

GO

You	can	edit	the	thesaurus	XML	files	with	a	simple	text	editor	or	a	more	advanced
XML	editor.	For	this	example,	we	opened	the	tsenu.xml	thesaurus	file	in	Notepad,
made	the	appropriate	changes,	and	saved	the	file	back	to	the	MSSQLFTData	directory.
The	contents	of	the	tsenu.xml	file,	after	our	edits,	are	shown	in	Listing	11-16.

Listing	11-16.	Tsenu.xml	US	English	XML	Thesaurus	File

<XML		ID	=	"Microsoft		Search		Thesaurus">

				<thesaurus	xmlns	=	"x-schema:tsSchema.xml">

								<diacritics_sensitive>0</diacritics_sensitive>

								<expansion>

								_{thin}

								_{flat}

								</expansion>

								<replacement>

								<pat>sapphire</pat>

								<pat>indigo</pat>

								<pat>navy</pat>

								_{blue}

								</replacement>

				</thesaurus>

</XML>

After	editing	the	XML	thesaurus	file,	you	can	use	the	sys.spfulltextloadthesaurusfile
stored	procedure	(SP)	to	reload	the	thesaurus	file.	This	procedure	accepts	an	integer	LCID
parameter,	as	shown	in	Listing	11-17.	The	LCID	used	in	the	listing	is	1033,	which
specifies	US	English.

Listing	11-17.	Reloading	US	English	XML	Thesaurus

EXEC	sys.sp_fulltext_load_thesaurus_file	1033;

GO

	Note		Starting	in	SQL	Server	2008,	reloading	a	thesaurus	in	SQL	Server	did	not	require
an	SQL	Server	service	restart.

The	diacritics_sensitive	element	of	the	thesaurus	file	indicates	whether
accent	marks	are	replaced	during	expansion	and	replacement.	For	instance,	if
diacritics_sensitive	is	set	to	0,	the	words	cafe	and	café	are	considered
equivalent	for	purposes	of	the	thesaurus.	If	diacritics_sensitive	is	set	to	1,
however,	these	two	words	would	be	considered	different.

The	expansion	element	indicates	substitutions	that	should	be	applied	during	the

full-text	query.	The	word	being	searched	is	expanded	to	match	the	other	words	in	the
expansion	set.	In	the	example,	if	the	user	queries	for	the	word	thin,	the	search	is
automatically	expanded	to	include	matches	for	the	word	flat,	and	vice	versa.	An	expansion
set	can	include	as	many	substitutions	as	you	care	to	define,	and	the	thesaurus	can	contain
as	many	expansion	sets	as	you	need.	The	sample	FREETEXT	query	in	Listing	11-18
shows	the	expansion	sets	in	action,	with	partial	results	shown	in	Figure	11-21.

Listing	11-18.	FREETEXT	Query	with	Thesaurus	Expansion	Sets

SELECT

		ProductID,

		Name

FROM	Production.Product

WHERE	FREETEXT(*,	N'flat');

Figure	11-21.	Partial	Results	of	the	Full-text	Query	with	Expansion	Sets

The	replacement	section	of	the	thesaurus	file	indicates	replacements	for	words	that
are	used	in	a	full-text	query.	In	the	example,	we’ve	defined	patterns	like	navy,	sapphire,
and	indigo,	which	will	be	replaced	with	the	word	blue.	The	result	is	that	a	full-text	query
for	these	replacement	patterns	will	be	converted	internally	to	a	search	for	blue.	Listing	11-
19	shows	a	FREETEXT	query	that	uses	the	replacement	patterns	defined	in	the	thesaurus.
You	can	use	any	of	the	replacement	patterns	defined	in	the	thesaurus	file	in	the	full-text
query	to	get	the	same	result.	Figure	11-22	shows	the	results.

Listing	11-19.	FREETEXT	Query	with	Thesaurus	Replacement	Patterns

SELECT

		ProductID,

		Name,

		Color

FROM	Production.Product

WHERE	FREETEXT(*,	N'navy');

Figure	11-22.	Partial	Results	of	the	Full-text	Query	with	Replacement	Sets

Previous	versions	of	FTS	had	system-defined	lists	of	noise	words,	which	provided	a
way	to	essentially	ignore	commonly	occurring	words	that	don’t	help	the	search.
Commonly	cited	noise	words	included	those	like	the,	a,	an,	and	others.	The	noise	word
implementation	in	previous	versions	stored	the	noise	words	in	files	in	the	file	system.

SQL	Server	2014	implements	the	classic	noise	words,	known	in	FTS	as	stopwords.
Stopwords	are	managed	inside	the	SQL	Server	database	using	structures	known	as
stoplists.	You	can	use	the	system-supplied	stoplists	or	create	and	manage	your	own
language-specific	stoplists	with	the	CREATE	FULLTEXT	STOPLIST,	ALTER
FULLTEXT	STOPLIST,	and	DROP	FULLTEXT	STOPLIST	statements.	The	statement
in	Listing	11-20	creates	a	stoplist	based	on	the	system	stoplist.

Listing	11-20.	Creating	a	Full-Text	Stoplist

CREATE	FULLTEXT	STOPLIST	AWStoplist

FROM	SYSTEM	STOPLIST;

GO

Stoplists	are	more	flexible	than	the	old	noise	word	lists	since	you	can	easily	use	T-SQL
statements	to	add	words	to	your	stoplists.	Consider	AdventureWorks	product	model
searches	where	the	word	“instructions”	appears	in	several	of	the	XML	documents	in	the
Instructions	column.	You	can	add	the	word	instructions	to	the	previously	created
stoplist	with	the	ALTER	FULLTEXT	STOPLIST	statement,	and	then	associate	the
stoplist	with	the	full-text	index	on	the	Production.ProductModel	table	via	the
ALTER	FULLTEXT	INDEX	statement,	as	shown	in	Listing	11-21.	This	will	effectively
ignore	the	word	instructions	during	full-text	searches	on	this	column.

Listing	11-21.	Adding	the	Word	“Instructions”	to	the	Stoplist

ALTER	FULLTEXT	STOPLIST	AWStoplist

ADD	N'instructions'	LANGUAGE	English;	

GO

ALTER	FULLTEXT	INDEX	ON	Production.ProductModel

SET	STOPLIST	AWStoplist;

GO

After	application	of	the	newly	created	stoplist,	a	full-text	query	against	the
Production.ProductModel	table	for	the	word	instructions,	as	shown	in	Listing	11-
22,	will	return	no	results.

Listing	11-22.	Full-Text	Query	with	Newly	Created	Stoplist

SELECT

		ProductModelID,

		Name

FROM	Production.ProductModel

WHERE	FREETEXT(*,	N'instructions');

Stored	Procedures	and	Dynamic	Management	Views
and	Functions
SQL	Server	2014	provides	access	to	many	of	the	legacy	FTS	SPs	available	in	previous
releases	of	SQL	Server.	Most	of	these	procedures	have	been	deprecated,	however,	and
have	been	replaced	by	fully	integrated	T-SQL	statements	and	dynamic	management	views
and	functions.

SQL	Server	2014	FTS	uses	the	sys.sp_fulltext_load_thesaurus_file
procedure	that	we	introduced	earlier	in	this	chapter	to	load	an	XML	thesaurus	file.
Another	procedure	is	the	sys.sp_fulltext_resetfdhostaccount	procedure
that	updates	the	Windows	username	and	password	that	SQL	Server	uses	to	start	the	filter
daemon	service.

A	big	issue	for	developers	who	used	FTS	in	SQL	Server	2005	and	earlier	was	the	lack
of	transparency.	Basically	everything	that	FTS	did	was	well	hidden	from	view,	and
developers	and	administrators	had	to	troubleshoot	FTS	issues	in	the	dark.	SQL	Server
2008	introduced	some	catalog	views	and	dynamic	management	functions	that	made	FTS
more	transparent,	and	this	continues	to	be	the	case	in	SQL	Server	2014.

If	you’re	experiencing	FTS	query	performance	issues,	the
sys.fulltext_index_fragments	catalog	view	can	provide	insight.	This	catalog
view	reports	full-text	index	fragments	and	their	status.	You	can	use	the	information	in	this
catalog	view	to	decide	if	it’s	time	to	reorganize	your	full-text	index.

The	sys.fulltext_stoplists	and	sys.fulltext_stopwords	catalog
views	let	you	see	the	user-defined	stopwords	and	stoplists	defined	in	the	current	database.

The	information	returned	by	these	catalog	views	is	useful	for	troubleshooting	issues	with
certain	words	being	ignored	(or	not	being	ignored)	in	full-text	queries.	The
sys.fulltext_system_stopwords	catalog	view	returns	a	row	for	every	stopword
in	the	system	stoplist,	which	is	useful	information	to	have	if	you	want	to	use	the	system
stoplist	as	the	basis	for	your	own	stoplists.

The	sys.dm_fts_parser	function	is	a	useful	tool	for	troubleshooting	full-text
queries.	This	function	accepts	a	full-text	query	string,	an	LCID,	a	stoplist	ID,	and	an
accent	sensitivity	setting.	The	result	returned	by	the	function	shows	the	results	produced
by	the	word	breaker	and	stemmer	for	any	given	full-text	query.	This	information	is	very
useful	if	you	need	to	troubleshoot	or	just	want	to	better	understand	exactly	how	the	word
breaker	and	stemmer	affect	your	queries.	Listing	11-23	is	a	simple	demonstration	of
stemming	the	word	had	with	the	sys.dm_fts_parser	function.	Results	are	shown	in
Figure	11-23.

Listing	11-23.	Using	Sys.dm_fts_parser	to	See	Word	Breaking	and	Stemming

SELECT

		keyword,

		group_id,

		phrase_id,

		occurrence,

		special_term,

		display_term,

		expansion_type,

		source_term

FROM	sys.dm_fts_parser

(

			N'FORMSOF(FREETEXT,had)',

			1033,

			NULL,

			0

);

Figure	11-23.	Results	of	Word-breaking	and	Stemming	the	Word	“Had”

Statistical	Semantics
When	you	created	the	index	(see	Figure	11-6)	you	had	the	option	to	select	statistical

semantics.	Statistical	semantics	was	new	in	SQL	Server	2012	and	it	dramatically	changed
what	it	meant	to	search	documents.	Everything	discussed	up	to	now	was	focused	on
searching	words	within	a	document.	If	you	needed	to	find	all	the	words	similar	to	“weld,”
you	could	find	them	by	using	FTS	functions	against	text	data	stored	in	the	SQL	Server
engine.	But	what	if	you	wanted	to	find	all	the	documents	stored	in	your	SQL	Server
database	that	were	related	to	finance	or	a	particular	law	case?	Or,	let’s	say,	you	needed	to
search	through	hundreds	of	resumes	to	determine	which	ones	best	fit	a	particular	job
application.	This	is	where	statistical	semantics	becomes	helpful.	Statistical	semantics	is
used	to	search	for	the	meaning	of	documents	and	not	just	their	content.

The	statistical	semantic	feature	requires	FTS	but	is	installed	as	a	separate	feature.	The
install	file	is	located	on	the	SQL	Server	install	disk.	The	64bit	version	is	located	at	…
\x64\Setup	and	the	file	name	is	SemanticLanguageDatabase.msi.	The	install	wizard	is
straight-forward.	The	wizard	extracts	the	semantic	database	files	to	a	directory.	The
default	directory	is	C:\Program	Files\Microsoft	Semantic	Language	Database.	You	will
then	want	to	copy	or	move	these	database	files	to	another	location,	preferably	the	same
location	as	your	other	database	files,	and	then	attach	the	database.	Once	the	database	is
attached,	run	the	command	in	Listing	11-24.

Listing	11-24.	Initializing	the	Statistical	Semantics	Database

EXEC	sp_fulltext_semantic_register_language_statistics_db	

@dbname	=	N'semanticsdb';

Once	initialized,	you	can	verify	the	database	is	ready	by	running	the	code	in	Listing
11-25.	Figure	11-24	shows	the	results.

Listing	11-25.	Verifying	Active	Statistical	Semantics	Database

SELECT	*	FROM	

sys.fulltext_semantic_language_statistics_database

Figure	11-24.	Results	of	Querying	the	Semantics	Database

From	here	you	can	now	go	back	to	the	properties	of	the
Production.ProductModel	FTS	index	we	created	earlier	in	the	chapter	and
checkmark	the	Statistical	Semantics	column	as	shown	in	Figure	11-25.

Figure	11-25.	Enabling	Statistical	Semantics	on	Table	Columns

Now	that	statistical	semantics	is	installed	we	can	do	things	like	search	for	key	phrases
or	find	related	documents.	To	find	a	key	phrase	we	use	the	TVF
semantickeyphrasetable.	Searching	for	key	phrases	on	the
Production.ProductModel	name	column	yields	the	results	we	see	in	Figure	11-26.	Run	the
code	in	Listing	11-26	to	get	the	results.

Listing	11-26.	Using	the	Semantickeyphrasetable	Function

SELECT	TOP(10)	KEYP_TBL.keyphrase

FROM	SEMANTICKEYPHRASETABLE

				(

				Production.ProductModel,

								Name

)	AS	KEYP_TBL

ORDER	BY	KEYP_TBL.score	DESC;

GO

Figure	11-26.	Results	from	Semantickeyphrasetable	Function

Semantic	searching	offers	some	interesting	possibilities	and	broadens	the	scope	of
traditional	FTS.	If	you	include	the	SQL	Server	2014	FileTable	feature	then	the
possibilities	widen	even	further.	FileTable	allows	documents	stored	on	a	file	system	to	be
integrated	and	managed	through	SQL	Server.	Semantic	searching	can	be	performed
against	these	and	any	other	document	managed	by	the	SQL	Server	engine.

Summary
FTS	functionality	is	highly	integrated	with	SQL	Server,	providing	more	efficient	full-text
queries	than	ever	before.	Full-text	indexes	and	stoplists	are	stored	in	the	database,	making
FTS	more	manageable,	flexible,	and	scalable.

SQL	Server	provides	the	powerful	FREETEXT	and	CONTAINS	predicates,	and
FREETEXTTABLE	and	CONTAINSTABLE	functions,	to	perform	full-text	searches.	SQL
Server	also	supports	thesaurus	and	stoplist	functionality	to	help	customize	FTS	as	well	as
the	new	CONTAIN	custom	search	and	statistical	semantics.	SQL	Server	2014	also
provides	dynamic	management	views	and	functions	to	make	FTS	more	transparent	and
easier	to	troubleshoot	than	was	the	case	in	previous	versions	of	SQL	Server.

Exercises

1.	 [True/False]	Stoplists	and	full-text	indexes	are	stored	in	the
database.

2.	 [Choose	one]	You	can	create	a	full-text	index	with	which	of	the
following	methods:

a.	 Using	a	wizard	in	SSMS

b.	 Using	the	T-SQL	CREATE	FULLTEXT	INDEX	statement

c.	 Both	(a)	and	(b)

d.	 None	of	the	above

3.	 [Fill	in	the	blanks]	The	FREETEXT	predicate	automatically
performs	word	stemming	and	thesaurus	_________	and
__________.

4.	 [Fill	in	the	blank]	Stoplists	contain	stopwords,	which	are	words	that
are	_________	during	full-text	querying.

5.	 [True/False]	The	sys.dm_fts_parser	dynamic	management
function	shows	the	results	produced	by	word	breaking	and
stemming.

CHAPTER	12

XML
SQL	Server	2014	continues	the	standard	for	XML	integration	included	with	the	SQL
Server	2008	release.	SQL	Server	2014	XML	still	offers	tight	integration	with	T-SQL
through	the	xml	data	type,	support	for	the	World	Wide	Web	Consortium	(W3C)	XQuery
and	XML	Schema	recommendations.

SQL	Server	2014’s	tight	XML	integration	and	the	xml	data	type	provide	streamlined
methods	of	performing	several	XML-related	tasks	that	used	to	require	clunky	code	to
interface	with	COM	objects	and	other	tools	external	to	the	SQL	Server	engine.	This
chapter	discusses	the	xml	data	type	and	the	XML	tools	built	into	T-SQL	to	take	advantage
of	this	functionality.

The	new	memory-optimized	tables	provided	in	SQL	Server	2014,	do	not	support	xml
data	types.	Currently,	the	row	limit	size	is	8060	bytes	and	there	is	no	off-row	storage
capability.	If	you	have	a	need	to	relate	to	a	row	of	data	with	an	xml	data	type,	we	would
recommend	that	the	data	be	stored	in	a	disk-based	table	with	a	pointer	back	to	the
memory-optimized	table.

Legacy	XML
T-SQL	support	for	XML	was	introduced	with	the	release	of	SQL	Server	2000	via	the	FOR
XML	clause	of	the	SELECT	statement,	the	OPENXML	rowset	provider,	and	the
sp_xml_preparedocument	and	sp_xml_removedocument	system	SPs.	In	this
section,	we’ll	discuss	the	legacy	OPENXML,	sp_xml_preparedocument,	and
sp_xml_removedocument	functionality.	Though	these	tools	still	exist	in	SQL	Server
2014	and	can	be	used	for	backward-compatibility	scripts,	they	are	awkward	and	kludgy	to
use.

OPENXML
OPENXML	is	a	legacy	XML	function	that	provides	a	rowset	view	of	XML	data.	The
process	of	converting	XML	data	to	relational	form	is	known	as	shredding.	OPENXML	is
technically	a	rowset	provider,	which	means	its	contents	can	be	queried	and	accessed	like	a
table.	The	legacy	SQL	Server	XML	functionality	requires	the
sp_xml_preparedocument	and	sp_xml_removedocument	system	SPs	to	parse
text	into	an	XML	document	and	clean	up	afterward.	These	procedures	are	used	in
conjunction	with	the	OPENXML	function	to	move	XML	data	from	its	textual
representation	into	a	parsed	internal	representation	of	an	XML	document,	and	from	there
into	a	tabular	format.

This	method	is	rather	clunky	compared	to	the	newer	methods	first	introduced	by	SQL
Server	2005,	but	you	might	need	it	if	you’re	writing	code	that	needs	to	be	backward
compatible.	The	OPENXML	method	has	certain	disadvantages	based	on	its	heritage,	some
of	which	are	listed	here:

OPENXML	relies	on	COM	to	invoke	the	Microsoft	XML	Core	Services	Library
(MSXML)	to	perform	XML	manipulation	and	shredding.

When	it	is	invoked,	MSXML	assigns	one-eighth	of	SQL	Server’s	total	memory	to	the
task	of	parsing	and	manipulating	XML	data.

If	you	fail	to	call	spxmlremovedocument	after	preparing	an	XML	document	with
the	spxmlpreparedocument	procedure,	it	won’t	be	removed	from	memory	until	the
SQL	Server	service	is	restarted.

	Tip		We	strongly	recommend	using	xml	data	type	methods	like	nodes(),	value(),
and	query()	to	shred	your	XML	data	instead	of	using	OPENXML.	We’ll	discuss	these
xml	data	type	methods	later	in	this	chapter,	in	the	section	titled	“The	XML	Data	Type
Methods.”

The	sample	query	in	Listing	12-1	is	a	simple	demonstration	of	using	OPENXML	to
shred	XML	data.	The	partial	results	of	this	query	are	shown	in	Figure	12-1.

Listing	12-1.	Simple	OPENXML	Query

DECLARE	@docHandle	int;

DECLARE	@xmlDocument	nvarchar(max)	=	N'<Customers>

				<Customer	CustomerID="1234"	ContactName="Larry"	

CompanyName="APress">

							<Orders>

										<Order	CustomerID="1234"				OrderDate="2006-04-

25T13:22:18"/>

										<Order	CustomerID="1234"				OrderDate="2006-05-

10T12:35:49"/>

							</Orders>

				</Customer>

				<Customer	CustomerID="4567"	ContactName="Bill"	

CompanyName="Microsoft">

							<Orders>

										<Order	CustomerID="4567"				OrderDate="2006-03-

12T18:32:39"/>

										<Order	CustomerID="4567"				OrderDate="2006-05-

11T17:56:12"/>

							</Orders>

				</Customer>

</Customers>';

EXECUTE	sp_xml_preparedocument	@docHandle	OUTPUT,	

@xmlDocument;

SELECT

								Id,

								ParentId,

								NodeType,

								LocalName,

								Prefix,

								NameSpaceUri,

								DataType,

								Prev,

								[Text]	

FROM	OPENXML(@docHandle,	N'/Customers/Customer');

EXECUTE	sp_xml_removedocument	@docHandle;	

GO

Figure	12-1.	Results	of	the	OPENXML	Query

The	first	step	in	using	OPENXML	is	to	call	the	sp_xml_preparedocument	SP	to
convert	an	XML-formatted	string	into	an	XML	document:

DECLARE	@docHandle	int;

DECLARE	@xmlDocument	nvarchar(max)	=	N'<Customers>

			<Customer	CustomerID="1234"	ContactName="Larry"	

CompanyName="APress">

							<Orders>

										<Order	CustomerID="1234"				OrderDate="2006-04-

25T13:22:18"/>

										<Order	CustomerID="1234"				OrderDate="2006-05-

10T12:35:49"/>

							</Orders>

			</Customer>

			<Customer	CustomerID="4567"	ContactName="Bill"	

CompanyName="Microsoft">

							<Orders>

										<Order	CustomerID="4567"				OrderDate="2006-03-

12T18:32:39"/>

										<Order	CustomerID="4567"				OrderDate="2006-05-

11T17:56:12"/>

							</Orders>

			</Customer>

	</Customers>';

EXECUTE	sp_xml_preparedocument	@docHandle	OUTPUT,	

@xmlDocument;

The	sp_xml_preparedocument	procedure	invokes	MSXML	to	parse	your	XML
document	into	an	internal	Document	Object	Model	(DOM)	tree	representation	of	the
nodes.	The	sp_xml_preparedocument	procedure	accepts	up	to	three	parameters,	as
follows:

The	first	parameter,	called	hdoc,	is	an	output	parameter	that	returns
an	int	handle	to	the	XML	document	created	by	the	SP.

The	second	parameter	is	the	original	XML	document.	This	parameter
is	known	as	xmltext	and	can	be	a	char,	nchar,	varchar,
nvarchar,	text,	ntext,	or	xml	data	type.	If	NULL	is	passed	in	or
the	xmltext	parameter	is	omitted,	an	empty	XML	document	is
created.	The	default	for	this	parameter	is	NULL.

A	third	optional	parameter,	xpathnamespaces,	specifies	the
namespace	declarations	used	in	OPENXML	XPath	expressions.	Like
xmltext,	the	xpath_namespaces	parameter	can	be	a	char,
nchar,	varchar,	nvarchar,	text,	ntext,	or	xml	data	type.
The	default	xpath_namespaces	value	is	<root
xmlns:mp=“urn:schemas-microsoft-com:	xml-

metaprop”>.

The	OPENXML	rowset	provider	shreds	the	internal	DOM	representation	of	the	XML
document	into	relational	format.	The	result	of	the	rowset	provider	can	be	queried	like	a
table	or	view,	as	shown	following:

SELECT

			Id,

			ParentId,

			NodeType,

			LocalName,

			Prefix,

			NameSpaceUri,

			DataType,

			Prev,

			[Text]

FROM	OPENXML(@docHandle,	N'/Customers/Customer');

The	OPENXML	rowset	provider	accepts	up	to	three	parameters:

The	first	parameter,	hdoc,	is	the	int	document	handle	returned	by
the	call	to	the	sp_xml_preparedocument	procedure.

The	second	parameter,	known	as	rowpattern,	is	an	nvarchar
XPath	query	pattern	that	determines	which	nodes	of	the	XML
document	are	returned	as	rows.

The	third	parameter	is	an	optional	flags	parameter.	This	tinyint
value	specifies	the	type	of	mapping	to	be	used	between	the	XML	data
and	the	relational	rowset.	If	specified,	flags	can	be	a	combination	of
the	values	listed	in	Table	12-1.

Table	12-1.	OPENXML	Flags	Parameter	Options

Value Name Description

0 DEFAULT
A	flags	value	of	0	tells	OPENXML	to	default	to	attribute-centric	mapping.
This	is	the	default	value	if	the	flags	parameter	is	not	specified.

1 XML_ATTRIBUTES
A	flags	value	of	1	indicates	that	OPENXML	should	use	attribute-centric
mapping.

2 XML_ELEMENTS
A	flags	value	of	2	indicates	that	OPENXML	should	use	element-centric
mapping.

3
XML_ATTRIBUTES

|	XML_ELEMENTS

Combining	the	XML_ATTRIBUTES	flag	value	with	the	XML_ELEMENTS
flag	value	(logical	OR)	indicates	that	attribute-centric	mapping	should	be
applied	first,	and	element-centric	mapping	should	be	applied	to	all	columns
not	yet	dealt	with.

8 	
A	flags	value	of	8	indicates	that	the	consumed	data	should	not	be	copied
to	the	overflow	property	@mp:xmltext.	This	value	can	be	combined
(logical	OR)	with	any	of	the	other	flags	values.

The	internal	XML	document	generated	by	sp_xml_preparedocument	is	cached
and	will	continue	to	take	up	SQL	Server	memory	until	it	is	explicitly	removed	with	the
sp_xml_removedocument	procedure.	The	sp_xml_removedocument	procedure
accepts	a	single	parameter,	the	int	document	handle	initially	generated	by
sp_xml_preparedocument:

EXECUTE	sp_xml_removedocument	@docHandle;

	Caution		Always	call	sp_xml_removedocument	to	free	up	memory	used	by	XML

documents	created	with	sp_xml_createdocument.	Any	XML	documents	created	with
sp_xml_createdocument	remain	in	memory	until	sp_xml_removedocument	is	called
or	the	SQL	Server	service	is	restarted.	Microsoft	advises	that	not	freeing	up	memory	with
sp_xml_removedocument	could	cause	your	server	to	run	out	of	memory.

OPENXML	Result	Formats
The	sample	in	Listing	12-1	returns	a	table	in	edge	table	format,	which	is	the	default
OPENXML	rowset	format.	According	to	BOL,	“Edge	tables	represent	the	fine-grained
XML	document	structure	…	in	a	single	table”
(http://msdn2.microsoft.com/en-us/library/
ms186918(SQL.11).aspx).	The	columns	returned	by	the	edge	table	format	are
shown	in	Table	12-2.

Table	12-2.	Edge	Table	Format

Column	Name Data	Type Description

id Bigint The	unique	ID	of	the	document	node.	The	root	element	ID	is	0.

parentid Bigint
The	identifier	of	the	parent	of	the	node.	If	the	node	is	a	top-level	node,
the	parentid	is	NULL.

nodetype Int
The	column	that	indicates	the	type	of	the	node.	It	can	be	1	for	an	element
node,	2	for	an	attribute	node,	or	3	for	a	text	node.

localname Nvarchar
The	local	name	of	the	element	or	attribute,	or	NULL	if	the	DOM	object
does	not	have	a	name.

prefix Nvarchar The	namespace	prefix	of	the	node.

namespaceuri Nvarchar The	namespace	URI	of	the	node,	or	NULL	if	there’s	no	namespace.

datatype Nvarchar
The	data	type	of	the	element	or	attribute	row,	which	is	inferred	from	the
inline	DTD	or	inline	schema.

prev Bigint
The	XML	ID	of	the	previous	sibling	element,	or	NULL	if	there	is	no
direct	previous	sibling.

text Ntext The	attribute	value	or	element	content.

OPENXML	supports	an	optional	WITH	clause	to	specify	a	user-defined	format	for	the
returned	rowset.	The	WITH	clause	lets	you	specify	the	name	of	an	existing	table	or	a
schema	declaration	to	define	the	rowset	format.	By	adding	a	WITH	clause	to	the
OPENXML	query	in	Listing	12-1,	you	can	specify	an	explicit	schema	for	the	resulting
rowset.	This	technique	is	demonstrated	in	Listing	12-2,	with	results	shown	in	Figure	12-2.
The	differences	between	Listings	12-2	and	12-1	are	shown	in	bold.

Listing	12-2.	OPENXML	and	WITH	Clause,	Explicit	Schema

DECLARE	@docHandle	int;

http://msdn2.microsoft.com/en-us/library/

DECLARE	@xmlDocument	nvarchar(max)	=	N'<Customers>

				<Customer	CustomerID="1234"	ContactName="Larry"	

CompanyName="APress">

							<Orders>

											<Order	CustomerID="1234"				OrderDate="2006-04-

25T13:22:18"/>

											<Order	CustomerID="1234"				OrderDate="2006-05-

10T12:35:49"/>

							</Orders>

				</Customer>

				<Customer	CustomerID="4567"	ContactName="Bill"	

CompanyName="Microsoft">

							<Orders>

											<Order	CustomerID="4567"				OrderDate="2006-03-

12T18:32:39"/>

											<Order	CustomerID="4567"				OrderDate="2006-05-

11T17:56:12"/>

							</Orders>

				</Customer>

</Customers>';

EXECUTE	sp_xml_preparedocument	@docHandle	OUTPUT,	

@xmlDocument;

SELECT

				CustomerID,

								CustomerName,

								CompanyName,

								OrderDate

FROM	OPENXML(@docHandle,	

N'/Customers/Customer/Orders/Order')

WITH

(

								CustomerID	nchar(4)	N'../../@CustomerID',

								CustomerName	nvarchar(50)	N'../../@ContactName',

								CompanyName	nvarchar(50)	N'../../@CompanyName',

								OrderDate	datetime

);

EXECUTE	sp_xml_removedocument	@docHandle;

GO

Figure	12-2.	Results	of	OPENXML	with	an	Explicit	Schema	Declaration

The	OPENXML	WITH	clause	can	also	use	the	schema	from	an	existing	table	to	format
the	relational	result	set.	This	is	demonstrated	in	Listing	12-3.	The	differences	between
Listing	12-3	and	12-2	are	shown	in	bold.

Listing	12-3.	OPENXML	with	WITH	Clause,	Existing	Table	Schema

DECLARE	@docHandle	int;	

DECLARE	@xmlDocument	nvarchar(max)	=	N'<Customers>

			<Customer	CustomerID="1234"	ContactName="Larry"	

CompanyName="APress">

						<Orders>

										<Order	CustomerID="1234"				OrderDate="2006-04-

25T13:22:18"/>

										<Order	CustomerID="1234"				OrderDate="2006-05-

10T12:35:49"/>

						</Orders>

			</Customer>

			<Customer	CustomerID="4567"	ContactName="Bill"	

CompanyName="Microsoft">

						<Orders>

										<Order	CustomerID="4567"				OrderDate="2006-03-

12T18:32:39"/>

										<Order	CustomerID="4567"				OrderDate="2006-05-

11T17:56:12"/>

						</Orders>

			</Customer>

</Customers>';

EXECUTE	sp_xml_preparedocument	@docHandle	OUTPUT,	

@xmlDocument;

CREATE	TABLE	#CustomerInfo

(

				CustomerID	nchar(4)	NOT	NULL,

				ContactName	nvarchar(50)	NOT	NULL,

				CompanyName	nvarchar(50)	NOT	NULL

);

CREATE	TABLE	#OrderInfo

(

				CustomerID	nchar(4)	NOT	NULL,

				OrderDate	datetime	NOT	NULL

);

INSERT	INTO	#CustomerInfo

(

				CustomerID,

				ContactName,

				CompanyName

)

SELECT

				CustomerID,

				ContactName,	

				CompanyName

FROM	OPENXML(@docHandle,	N'/Customers/Customer')

WITH	#CustomerInfo;

INSERT	INTO	#OrderInfo

(

				CustomerID,

				OrderDate

)

SELECT

				CustomerID,

				OrderDate

FROM	OPENXML(@docHandle,	N'//Order')

WITH	#OrderInfo;

SELECT

				c.CustomerID,

				c.ContactName,

				c.CompanyName,

				o.OrderDate

FROM	#CustomerInfo	c

INNER	JOIN	#OrderInfo		o

				ON	c.CustomerID	=	o.CustomerID;

DROP	TABLE	#OrderInfo;

DROP	TABLE	#CustomerInfo;

EXECUTE	sp_xml_removedocument	@docHandle;

GO

The	WITH	clause	used	by	each	OPENXML	query	in	Listing	12-3	specifies	a	table	name.
OPENXML	uses	the	table’s	schema	to	define	the	relational	format	of	the	result	returned.

FOR	XML	Clause
SQL	Server	2000	introduced	the	FOR	XML	clause	for	use	with	the	SELECT	statement	to
efficiently	convert	relational	data	to	XML	format.	The	FOR	XML	clause	is	highly	flexible
and	provides	a	wide	range	of	options	that	give	you	fine-grained	control	over	your	XML
result.

FOR	XML	RAW
The	FOR	XML	clause	appears	at	the	end	of	the	SELECT	statement	and	can	specify	one	of
five	different	modes	and	several	mode-specific	options.	The	first	FOR	XML	mode	is	RAW
mode,	which	returns	data	in	XML	format	with	each	row	represented	as	a	node	with
attributes	representing	the	columns.	FOR	XML	RAW	is	useful	for	ad	hoc	FOR	XML
queries	while	debugging	and	testing.	The	FOR	XML	RAW	clause	allows	you	to	specify	the
element	name	for	each	row	returned	in	parentheses	immediately	following	the	RAW
keyword	(if	you	leave	it	off,	the	default	name,	row,	is	used).	The	query	in	Listing	12-4
demonstrates	FOR	XML	RAW,	with	results	shown	in	Figure	12-3.

Listing	12-4.	Sample	FOR	XML	RAW	Query

USE	AdventureWorks2014;

GO

SELECT

			ProductID,

			Name,

			ProductNumber

FROM	Production.Product

WHERE	ProductID	IN	(770,	903)

FOR	XML	RAW;

Figure	12-3.	Results	of	the	FOR	XML	RAW	Query

The	FOR	XML	clause	modes	support	several	additional	options	to	control	the	resulting
output.	The	options	supported	by	all	FOR	XML	modes	are	shown	in	Figure	12-4.

Figure	12-4.	FOR	XML	Clause	Options

The	options	supported	by	FOR	XML	RAW	mode	include	the	following:

The	TYPE	option	specifies	that	the	result	should	be	returned	as	an
xml	data	type	instance.	This	is	particularly	useful	when	you	use	FOR
XML	in	nested	subqueries.	By	default,	without	the	TYPE	option,	all
FOR	XML	modes	return	XML	data	as	a	character	string.

The	ROOT	option	adds	a	single	top-level	root	element	to	the	XML
result.	Using	the	ROOT	option	guarantees	a	well-formed	XML	(single
root	element)	result.

The	ELEMENTS	option	specifies	that	column	data	should	be	returned
as	subelements	instead	of	attributes	in	the	XML	result.	The
ELEMENTS	option	can	have	the	following	additional	options:

XSINIL	specifies	that	columns	with	SQL	nulls	are	included	in	the
result	with	an	xsi:nil	attribute	set	to	true.

ABSENT	specifies	that	no	elements	are	created	for	SQL	nulls.
ABSENT	is	the	default	action	for	handling	nulls.

The	BINARY	BASE64	option	specifies	that	binary	data	returned	by
the	query	should	be	represented	in	Base64-encoded	form	in	the	XML
result.	If	your	result	contains	any	binary	data,	the	BINARY	BASE64
option	is	required.

XMLSCHEMA	returns	an	inline	XML	schema	definition	(the	W3C

XML	Schema	Recommendation	is	available	at
www.w3.org/XML/Schema).

XMLDATA	appends	an	XML-Data	Reduced	(XDR)	schema	to	the
beginning	of	your	XML	result.	This	option	is	deprecated	and	should
not	be	used	for	future	development.	If	you	currently	use	this	option,
Microsoft	recommends	changing	your	code	to	use	the	XMLSCHEMA
option	instead.

As	we	discuss	the	other	FOR	XML	modes,	we	will	point	out	the	options	supported	by
each.

FOR	XML	AUTO
For	a	query	against	a	single	table,	the	AUTO	keyword	retrieves	data	in	a	format	similar	to
RAW	mode,	but	the	XML	node	name	is	the	name	of	the	table	and	not	the	generic	label
row.	For	queries	that	join	multiple	tables,	however,	each	XML	element	is	named	for	the
tables	from	which	the	SELECT	list	columns	are	retrieved.	The	order	of	the	column	names
in	the	SELECT	list	determine	the	XML	element	nesting	in	the	result.	The	FOR	XML
AUTO	clause	is	called	similarly	to	the	FOR	XML	RAW	clause,	as	shown	in	Listing	12-5.
The	results	are	shown	in	Figure	12-5.

Listing	12-5.	FOR	XML	AUTO	Query	on	a	Single	Table

USE	AdventureWorks2014;

GO

SELECT

			ProductID,

			Name,

			ProductNumber

FROM	Production.Product

WHERE	ProductID	IN	(770,	903)

FOR	XML	AUTO;

Figure	12-5.	Results	of	the	FOR	XML	AUTO	Single-table	Query

Listing	12-6	demonstrates	using	FOR	XML	AUTO	in	a	SELECT	query	that	joins	two
tables.	The	results	are	shown	in	Figure	12-6.

Listing	12-6.	FOR	XML	AUTO	Query	with	a	Join

SELECT

		Product.ProductID,

		Product.Name,

		Product.ProductNumber,

		Inventory.Quantity	

FROM	Production.Product	Product

INNER	JOIN	Production.ProductInventory	Inventory

ON	Product.ProductID	=	Inventory.ProductID

WHERE	Product.ProductID	IN	(770,	3)

FOR	XML	AUTO;

Figure	12-6.	Results	of	the	FOR	XML	AUTO	Query	with	a	Join

The	FOR	XML	AUTO	statement	can	be	further	refined	by	adding	the	ELEMENTS
option.	Just	as	with	the	FOR	XML	RAW	clause,	the	ELEMENTS	option	transforms	the
XML	column	attributes	into	subelements,	as	demonstrated	in	Listing	12-7,	with	results
shown	in	Figure	12-7.

Listing	12-7.	FOR	XML	AUTO	Query	with	ELEMENTS	Option

SELECT

		ProductID,

		Name,

		ProductNumber

FROM	Production.Product

WHERE	ProductID	=	770

FOR	XML	AUTO,	ELEMENTS;

Figure	12-7.	Results	of	the	FOR	XML	AUTO	Query	with	the	ELEMENTS	Option

The	FOR	XML	AUTO	clause	can	accept	almost	all	of	the	same	options	as	the	FOR
XML	RAW	clause.	The	only	option	that	you	can	use	with	FOR	XML	RAW	that’s	not

available	to	FOR	XML	AUTO	is	the	user-defined	ElementName	option,	since	AUTO	mode
generates	row	names	based	on	the	names	of	tables	in	the	query.

FOR	XML	EXPLICIT
The	FOR	XML	EXPLICIT	clause	is	flexible	but	complex.	This	clause	allows	you	to
specify	the	exact	hierarchy	of	XML	elements	and	attributes	in	your	XML	result.	This
structure	is	specified	in	the	SELECT	statement	itself	using	a	special
ElementName!TagNumber!AttributeName!Directive	notation.

	Tip		The	FOR	XML	PATH	clause,	described	in	the	next	section,	also	allows	you	to
explicitly	define	your	XML	result	structure.	The	FOR	XML	PATH	clause	accepts	XPath-
style	syntax	to	define	the	structure	and	node	names,	however,	and	is	much	easier	to	use
than	FOR	XML	EXPLICIT.	As	a	general	recommendation,	we	would	advise	using	FOR
XML	PATH	instead	of	FOR	XML	EXPLICIT	for	new	development	and	converting	old
FOR	XML	EXPLICIT	queries	to	FOR	XML	PATH	when	possible.

In	order	to	get	FOR	XML	EXPLICIT	to	convert	your	relational	data	to	XML	format,
there’s	a	strict	requirement	on	the	results	of	the	SELECT	query—it	must	return	data	in
universal	table	format	that	includes	a	Tag	column	defining	the	level	of	the	current	tag	and
a	Parent	column	with	the	parent	level	for	the	current	tag.	The	remaining	columns	in	the
query	are	the	actual	data	columns.	Listing	12-8	demonstrates	a	FOR	XML	EXPLICIT
query	that	returns	information	about	a	product,	including	all	of	its	inventory	quantities,	as
a	nested	XML	result.	The	results	are	shown	in	Figure	12-8.

Listing	12-8.	FOR	XML	EXPLICIT	Query

SELECT

								1	AS	Tag,

								NULL	AS	Parent,

								ProductID	AS	[Products!1!ProductID!element],

								Name	AS	[Products!1!ProductName],

								ProductNumber	AS	[Products!1!ProductNumber],

								NULL	AS	[Products!2!Quantity]

								FROM	Production.Product

								WHERE	ProductID	IN	(770,	3)

UNION	ALL

SELECT

		2	AS	Tag,

		1	AS	Parent,

		NULL,

		NULL,

		NULL,

		Quantity

FROM	Production.ProductInventory

WHERE	ProductID	IN	(770,	3)

		FOR	XML	EXPLICIT;

Figure	12-8.	Results	of	the	FOR	XML	EXPLICIT	Query

The	FOR	XML	EXPLICIT	query	in	Listing	12-8	defines	the	top-level	elements	with
Tag	=	1	and	Parent	=	NULL.	The	next	level	is	defined	with	Tag	=	2	and	Parent
=	1,	referencing	back	to	the	top	level.	Additional	levels	can	be	added	by	using	the
UNION	keyword	with	additional	queries	that	increment	the	Tag	and	Parent	references
for	each	additional	level.

Each	column	of	the	query	must	be	named	with	the
ElementName!TagNumber!AttributeName!Directive	format	that	we
mentioned	previously.	As	specified	by	this	format,	ElementName	is	the	name	of	the
XML	element,	in	this	case	Products.TagNumber	is	the	level	of	the	element,	which	is
1	for	top-level	elements.	AttributeName	is	the	name	of	the	attribute	if	you	want	the
data	in	the	column	to	be	returned	as	an	XML	attribute.	If	you	want	the	item	to	be	returned
as	an	XML	element,	use	AttributeName	to	specify	the	name	of	the	attribute,	and	set
the	Directive	value	to	element.	The	Directive	values	that	can	be	specified
include	the	following:

The	hide	directive	value,	which	is	useful	when	you	want	to	retrieve
values	for	sorting	purposes	but	do	not	want	the	specified	node
included	in	the	resulting	XML.

The	element	directive	value,	which	generates	an	XML	element
instead	of	an	attribute.

The	elementxsinil	directive	value,	which	generates	an	element
for	SQL	null	column	values.

The	xml	directive	value,	which	generates	an	element	instead	of	an
attribute,	but	does	not	encode	entity	values.

The	cdata	directive	value,	which	wraps	the	data	in	a	CDATA	section
and	does	not	encode	entities.

The	xmltext	directive	value,	which	wraps	the	column	content	in	a
single	tag	integrated	with	the	document.

The	id,	idref,	and	idrefs	directive	values,	which	allow	you	to
create	internal	document	links.

The	additional	options	that	the	FOR	XML	EXPLICIT	clause	supports	are	BINARY
BASE64,	TYPE,	ROOT,	and	XMLDATA.	These	options	operate	the	same	as	they	do	in	the
FOR	XML	RAW	and	FOR	XML	AUTO	clauses.

FOR	XML	PATH
The	FOR	XML	PATH	clause	was	first	introduced	in	SQL	Server	2005.	It	provides	another
way	to	convert	relational	data	to	XML	format	with	a	specific	structure,	but	is	much	easier
to	use	than	the	FOR	XML	EXPLICIT	clause.	Like	FOR	XML	EXPLICIT,	the	FOR
XML	PATH	clause	makes	you	define	the	structure	of	the	XML	result.	But	the	FOR	XML
PATH	clause	allows	you	to	use	a	subset	of	the	well-documented	and	much	more	intuitive
XPath	syntax	to	define	your	XML	structure.

The	FOR	XML	PATH	clause	uses	column	names	to	define	the	structure,	as	with	FOR
XML	EXPLICIT.	In	keeping	with	the	XML	standard,	column	names	in	the	SELECT
statement	with	a	FOR	XML	PATH	clause	are	case	sensitive.	For	instance,	a	column
named	Inventory	is	different	from	a	column	named	INVENTORY.	Any	columns	that
do	not	have	names	are	inlined,	with	their	content	inserted	as	XML	content	for	xml	data
type	columns	or	as	a	text	node	for	other	data	types.	This	is	useful	for	including	the	results
of	nameless	computed	columns	or	scalar	subqueries	in	your	XML	result.

FOR	XML	PATH	uses	XPath-style	path	expressions	to	define	the	structure	and	names
of	nodes	in	the	XML	result.	Because	path	expressions	can	contain	special	characters	like
the	forward	slash	(/)	and	at	sign	(@),	you	will	usually	want	to	use	quoted	column	aliases
as	shown	in	Listing	12-9.	The	results	of	this	sample	FOR	XML	PATH	query	are	shown	in
Figure	12-9.

Listing	12-9.	FOR	XML	PATH	Query

SELECT

								p.ProductID	AS	"Product/@ID",

								p.Name	AS	"Product/Name",

								p.ProductNumber	AS	"Product/Number",

								i.Quantity	AS	"Product/Quantity"

FROM	Production.Product	p

								INNER	JOIN	Production.ProductInventory	i

								ON	p.ProductID	=	i.ProductID

								WHERE	p.ProductID	=	770

FOR	XML	PATH;

Figure	12-9.	Results	of	the	FOR	XML	PATH	Query

The	FOR	XML	PATH	clause	imposes	some	rules	on	column	naming,	since	the
column	names	define	not	only	the	names	of	the	XML	nodes	generated,	but	also	the
structure	of	the	XML	result.	You	can	also	use	XPath	node	tests	in	your	FOR	XML	PATH
clauses.	These	rules	and	node	tests	are	summarized	in	Table	12-3.

Table	12-3.	FOR	XML	PATH	Column-naming	Conventions

Column	Name Result

text() The	string	value	of	the	column	is	added	as	a	text	node.

comment() The	string	value	of	the	column	is	added	as	an	XML	comment.

node() The	string	value	of	the	column	is	inserted	inline	under	the	current	element.

* This	is	the	same	as	node().

data()
The	string	value	of	the	column	is	inserted	as	an	atomic	value.	Spaces	are	inserted
between	atomic	values	in	the	resulting	XML.

processing-

instruction(name)

The	string	value	of	the	column	is	inserted	as	an	XML-processing	instruction
named	name.

@name The	string	value	of	the	column	is	inserted	as	an	attribute	of	the	current	element.

Name The	string	value	of	the	column	is	inserted	as	a	subelement	of	the	current	element.

elem/name
The	string	value	of	the	column	is	inserted	as	a	subelement	of	the	specified
element	hierarchy,	under	the	element	specified	by	elem.

elem/@name
The	string	value	of	the	column	is	inserted	as	an	attribute	of	the	last	element	in	the
specified	hierarchy,	under	the	element	specified	by	elem.

The	FOR	XML	PATH	clause	supports	the	BINARY	BASE64,	TYPE,	ROOT,	and
ELEMENTS	options,	and	the	user-defined	ElementName	options.	The	additional	FOR
XML	PATH	options	operate	the	same	as	they	do	for	the	FOR	XML	AUTO	and	FOR	XML

RAW	clauses.

The	xml	Data	Type
SQL	Server’s	legacy	XML	functionality	can	be	cumbersome	and	clunky	to	use	at	times.
Fortunately,	SQL	Server	2014	provides	much	tighter	XML	integration	with	its	xml	data
type.	The	xml	data	type	can	be	used	anywhere	that	other	SQL	Server	data	types	are	used,
including	variable	declarations,	column	declarations,	SP	parameters,	and	UDF	parameters
and	return	types.	The	T-SQL	xml	data	type	provides	built-in	methods	that	allow	you	to
query	and	modify	XML	nodes.	When	you	declare	instances	of	the	xml	data	type,	you	can
create	them	as	untyped	(which	is	the	default),	or	you	can	associate	them	with	XML
schemas	to	create	typed	xml	instances.	This	section	discusses	both	typed	and	untyped
xml	in	T-SQL.

The	xml	data	type	can	hold	complete	XML	documents	or	XML	fragments.	An	XML
document	must	follow	all	the	rules	for	well-formed	XML,	including	the	following:

Well-formed	XML	must	have	at	least	one	element.

Every	well-formed	XML	document	has	a	single	top-level,	or	root,
element.

Well-formed	XML	requires	properly	nested	elements	(tags	cannot
overlap).

All	tags	must	be	properly	closed	in	a	well-formed	XML	document.

Attribute	values	must	be	quoted	in	a	well-formed	XML	document.

Special	characters	in	element	content	must	be	properly	entitized,	or
converted	to	XML	entities	such	as	&	for	the	ampersand
character.

An	XML	fragment	must	conform	to	all	the	rules	for	well-formed	XML,	except	that	it
may	have	more	than	one	top-level	element.	The	stored	internal	representation	of	an	XML
document	or	fragment	stored	in	an	xml	variable	or	column	maxes	out	at	around	2.1	GB	of
storage.

Untyped	xml
Untyped	xml	variables	and	columns	are	created	by	following	them	with	the	keyword	xml
in	the	declaration,	as	shown	in	Listing	12-10.

Listing	12-10.	Untyped	xml	Variable	and	Column	Declarations

DECLARE	@x	XML;

CREATE	TABLE	XmlPurchaseOrders

(

			PoNum	int	NOT	NULL	PRIMARY	KEY,

			XmlPurchaseOrder	xml);

Populating	an	xml	variable	or	column	with	an	XML	document	or	fragment	requires	a
simple	assignment	statement.	You	can	implicitly	or	explicitly	convert	char,	varchar,
nchar,	nvarchar,	varbinary,	text,	and	ntext	data	to	xml.	There	are	some	rules
to	consider	when	converting	from	these	types	to	xml:

The	XML	parser	always	treats	nvarchar,	nchar,	and
nvarchar(max)	data	as	a	two-byte	Unicode-encoded	XML
document	or	fragment.

SQL	Server	treats	char,	varchar,	and	nvarchar(max)	data	as
a	single-byte-encoded	XML	document	or	fragment.	The	code	page	of
the	source	string,	variable,	or	column	is	used	for	encoding	by	default.

The	content	of	varbinary	data	is	passed	directly	to	the	XML
parser,	which	accepts	it	as	a	stream.	If	the	varbinary	XML	data	is
Unicode	encoded,	the	byte-order	mark/encoding	information	must	be
included	in	the	varbinary	data.	If	no	byte-order	mark/encoding
information	is	included,	the	default	of	UTF-8	is	used.

	Note		The	binary	data	type	can	also	be	implicitly	or	explicitly	converted	to	xml,	but
it	must	be	the	exact	length	of	the	data	it	contains.	The	extra	padding	applied	to	binary
variables	and	columns	when	the	data	they	contain	is	too	short	can	cause	errors	in	the
XML-parsing	process.	Use	the	varbinary	data	type	when	you	need	to	convert	binary
data	to	XML.

Listing	12-11	demonstrates	implicit	conversion	from	nvarchar	to	the	xml	data	type.
The	CAST	or	CONVERT	functions	can	be	used	when	an	explicit	conversion	is	needed.

Listing	12-11.	Populating	an	Untyped	xml	Variable

DECLARE	@x	xml	=	N'<?xml	version="1.0"	?>

<Address>

<Latitude>47.642737</Latitude>

<Longitude>-122.130395</Longitude>

<Street>ONE	MICROSOFT	WAY</Street>

<City>REDMOND</City>

<State>WA</State>

<Zip>98052</Zip>

<Country>US</Country>

</Address>';

SELECT	@x;

Typed	xml

To	create	a	typed	xml	variable	or	column	in	SQL	Server	2014,	you	must	first	create	an
XML	schema	collection	with	the	CREATE	XML	SCHEMA	COLLECTION	statement.	The
CREATE	XML	SCHEMA	COLLECTION	statement	allows	you	to	specify	a	SQL	Server
name	for	your	schema	collection	and	an	XML	schema	to	add.	Listing	12-12	shows	how	to
create	an	XML	schema	collection.

Listing	12-12.	Creating	a	Typed	xml	Variable

CREATE	XML	SCHEMA	COLLECTION	AddressSchemaCollection

				AS	N'<?xml	version="1.0"	encoding="utf-16"		?>

				<xsd:schema	xmlns:xsd="http://www.w3.org/2001/XMLSchema">

								<xsd:element	name="Address">

																<xsd:complexType>

																								<xsd:sequence>

																																<xsd:element	name="Latitude"	

type="xsd:decimal"	/>

																																<xsd:element	name="Longitude"	

type="xsd:decimal"	/>

																																<xsd:element	name="Street"	

type="xsd:string"	/>

																																<xsd:element	name="City"	

type="xsd:string"	/>

																																<xsd:element	name="State"	

type="xsd:string"	/>

																																<xsd:element	name="Zip"	

type="xsd:string"		/>

																																<xsd:element	name="Country"	

type="xsd:string"	/>

																								</xsd:sequence>

																</xsd:complexType>

								</xsd:element>

				</xsd:schema>';

GO

DECLARE	@x	XML	(CONTENT	AddressSchemaCollection);

SELECT	@x	=			N'<?xml	version="1.0"	?>

								<Address>

																<Latitude>47.642737</Latitude>

																<Longitude>-122.130395</Longitude>

																<Street>ONE		MICROSOFT		WAY</Street>

																<City>REDMOND</City>

																<State>WA</State>

																<Zip>98052</Zip>

																<Country>US</Country>

								</Address>';

SELECT	@x;

DROP		XML	SCHEMA	COLLECTION	AddressSchemaCollection;

GO

The	first	step	in	creating	a	typed	xml	instance	is	to	create	an	XML	schema	collection,
as	we	did	in	Listing	12-12:

CREATE	XML	SCHEMA	COLLECTION	AddressSchemaCollection

								AS	N'<?xml	version="1.0"	encoding="utf-16"		?>

								<xsd:schema	

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

																<xsd:element	name="Address">

																								<xsd:complexType>

																																<xsd:sequence>

																																								<xsd:element	name="Latitude"	

type="xsd:decimal"	/>

																																								<xsd:element	

name="Longitude"	type="xsd:decimal"	/>

																																								<xsd:element	name="Street"	

type="xsd:string"	/>

																																								<xsd:element	name="City"	

type="xsd:string"	/>

																																								<xsd:element	name="State"	

type="xsd:string"	/>

																																								<xsd:element	name="Zip"	

type="xsd:string"		/>

																																								<xsd:element	name="Country"	

type="xsd:string"	/>

																																</xsd:sequence>

																								</xsd:complexType>

																</xsd:element>

								</xsd:schema>';

	Tip		The	World	Wide	Web	Consortium	(W3C)	maintains	the	standards	related	to	XML
schemas.	The	official	XML	Schema	recommendations	are	available	at
www.w3.org/TR/xmlschema-1/	and	www.w3.0rg/TR/xmlschema-2/.	These
W3C	recommendations	are	an	excellent	starting	point	for	creating	your	own	XML
schemas.

The	next	step	is	to	declare	the	variable	as	xml	type,	but	with	an	XML	schema
collection	specification	included:

DECLARE	@x	XML	(CONTENT	AddressSchemaCollection);

In	the	example,	we	used	the	CONTENT	keyword	before	the	schema	collection	name	in
the	xml	variable	declaration.	SQL	Server	offers	two	keywords,	DOCUMENT	and
CONTENT,	that	represent	facets	you	can	use	to	constrain	typed	xml	instances.	Using	the

DOCUMENT	facet	in	your	typed	xml	variable	or	column	declaration	constrains	your	typed
XML	data	so	that	it	must	contain	only	one	top-level	root	element.	The	CONTENT	facet
allows	zero	or	more	top-level	elements.	CONTENT	is	the	default	if	neither	is	specified
explicitly.

The	next	step	in	the	example	is	the	assignment	of	XML	content	to	the	typed	xml
variable.	During	the	assignment,	SQL	Server	validates	the	XML	content	against	the	XML
schema	collection.

SELECT	@x	=	N'<?xml	version="1.0"	?>

								<Address>

																<Latitude>47.642737</Latitude>

																<Longitude>-122.130395</Longitude>

																<Street>ONE		MICROSOFT		WAY</Street>

																<City>REDMOND</City>

																<State>WA</State>

																<Zip>98052</Zip>

																<Country>US</Country>

								</Address>';	

SELECT	@x;

The	DROP	XML	SCHEMA	COLLECTION	statement	in	the	listing	removes	the	XML
schema	collection	from	SQL	Server.

DROP	XML	SCHEMA	COLLECTION	AddressSchemaCollection;

You	can	also	add	new	XML	schemas	and	XML	schema	components	to	XML	schema
collections	with	the	ALTER	XML	SCHEMA	COLLECTION	statement.

The	xml	Data	Type	Methods
The	xml	data	type	has	several	methods	for	querying	and	modifying	xml	data.	The	built-in
xml	data	type	methods	are	summarized	in	Table	12-4.

Table	12-4.	xml	Data	Type	Methods

Method Result

query(xquery)
Performs	an	XQuery	query	against	an	xml	instance.	The	result
returned	is	an	untyped	xml	instance.

value(xquery,	sql_type)
Performs	an	XQuery	query	against	an	xml	instance	and	returns	a	scalar
value	of	the	specified	SQL	Server	data	type.

exist(xquery)

Performs	an	XQuery	query	against	an	xml	instance	and	returns	one	of
the	following	bit	values:	1	if	the	xquery	expression	returns	a
nonempty	result,	0	if	the	xquery	expression	returns	an	empty	result,
NULL	if	the	xml	instance	is	NULL.

modify(xml_dml) Performs	an	XML	Data	Modification	Language	(XML	DML)	statement
to	modify	an	xml	instance.

nodes(xquery)	as

table_name(column_name)

Performs	an	XQuery	query	against	an	xml	instance	and	returns
matching	nodes	as	an	SQL	result	set.	The	table_name	and
column_name	specify	aliases	for	the	virtual	table	and	column	to	hold
the	nodes	returned.	These	aliases	are	mandatory	for	the	nodes()
method.

This	section	introduces	each	of	these	xml	data	type	methods.

The	query	Method
The	xml	data	type	query()	method	accepts	an	XQuery	query	string	as	its	only
parameter.	This	method	returns	all	nodes	matching	the	XQuery	as	a	single	untyped	xml
instance.	Conveniently	enough,	Microsoft	provides	sample	typed	xml	data	in	the
Resume	column	of	the	HumanResources.JobCandidate	table.	Though	all	of	its
xml	is	well	formed	with	a	single	root	element,	the	Resume	column	is	faceted	with	the
default	of	CONTENT.

Listing	12-13	shows	how	to	use	the	query()	method	to	retrieve	names	from	the
resumes	in	the	HumanResources.JobCandidate	table.

Listing	12-13.	Using	the	Query	Method	on	the	HumanResources.JobCandidate	Resume
XML

SELECT	Resume.query(N'declare	namespace	ns	=

				"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

/ns:Resume/ns:Name')	AS	[NameXML]

FROM	HumanResources.JobCandidate;

The	first	thing	to	notice	is	the	namespace	declaration	inside	the	XQuery	query	via	the
declare	namespace	statement.	This	is	done	because	the	Resume	column’s	xml	data
declares	a	namespace.	In	fact,	the	namespace	declaration	used	in	the	XQuery	is	exactly	the
same	as	the	declaration	used	in	the	xml	data.	The	declaration	section	of	the	XQuery	looks
like	this:

declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

The	actual	query	portion	of	the	XQuery	query	is	a	simple	path	expression:

/ns:Resume/ns:Name

A	sample	of	the	results	of	Listing	12-13	are	shown	in	Figure	12-10	(reformatted	for
easy	reading).

Figure	12-10.	Retrieving	Job	Candidate	Names	with	the	Query	Method	(Partial	Results)

	Tip		SQL	Server	2014	implements	a	subset	of	the	W3C	XQuery	recommendation.
Chapter	13	discusses	SQL	Server’s	XPath	and	XQuery	implementations	in	detail.	If
you’re	just	getting	started	with	XQuery,	additional	resources	include	the	W3C
recommendation	available	at
http://www.w3.org/standards/techs/xquery#w3c_all/,	and	on	BOL	at
http://msdn.microsoft.com/en-us/library/ms189075.aspx.

The	value	Method
The	xml	data	type’s	value()	method	performs	an	XQuery	query	against	an	xml
instance	and	returns	a	scalar	result.	The	scalar	result	of	value()	is	automatically	cast	to
the	T-SQL	data	type	specified	in	the	call	to	value().	The	sample	code	in	Listing	12-14
uses	the	value()	method	to	retrieve	all	last	names	from	AdventureWorks	job	applicant
resumes.	The	results	are	shown	in	Figure	12-11.

Listing	12-14.	xml	Data	Type	Value	Method	Sample

SELECT	Resume.value	(N'declare	namespace	ns	=

			"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

			(/ns:Resume/ns:Name/ns:Name.Last)[1]',

			'nvarchar(100)')	AS	[LastName]

FROM	HumanResources.JobCandidate;

http://www.w3.org/standards/techs/xquery#w3c_all
http://msdn.microsoft.com/en-us/library/ms189075.aspx

Figure	12-11.	Using	the	Value	Method	to	Retrieve	Job	Candidate	Last	Names

Like	the	query()	method	described	previously,	the	value()	method	sample
XQuery	query	begins	by	declaring	a	namespace:

declare	namespace	ns	=

			"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

The	actual	query	portion	of	the	XQuery	query	is	a	simple	path	expression:

(/ns:Resume/ns:Name/ns:Name.Last)[1]

Because	value()	returns	a	scalar	value,	the	query	is	enclosed	in	parentheses	with	an
XQuery	numeric	predicate	[1]	following	it	to	force	the	return	of	a	singleton	atomic
value.	The	second	parameter	passed	into	value()	is	the	T-SQL	data	type	that	value()
will	cast	the	result	to,	in	this	case	nvarchar.	The	value()	method	cannot	cast	its
result	to	a	SQL	CLR	user-defined	type	or	an	xml,	image,	text,	ntext,	or
sql_variant	data	type.

The	exist	Method
The	xml	data	type	provides	the	exist()	method	for	determining	if	an	XML	node	exists
in	an	xml	instance,	or	if	an	existing	XML	node	value	meets	a	specific	set	of	criteria.	The
example	in	Listing	12-15	uses	the	exist()	method	in	a	query	to	return	all
AdventureWorks	job	candidates	that	reported	a	bachelor’s	degree	level	of	education.	The
results	are	shown	in	Figure	12-12.

Listing	12-15.	xml	Data	Type	Exist	Method	Example

SELECT	Resume.value	(N'declare	namespace	ns	=

		"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

		(/ns:Resume/ns:Name/ns:Name.Last)	[1]',

		'nvarchar(100)')	AS	[BachelorsCandidate]

FROM	HumanResources.JobCandidate

WHERE	Resume.exist	(N'declare	namespace	ns	=

		"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

		/ns:Resume/ns:Education/ns:Edu.Level	[.	=	"Bachelor"]')	

=	1;

Figure	12-12.	Using	the	Exist	Method	to	Retrieve	Bachelor’s	Degree	Job	Candidates

The	first	part	of	the	query	borrows	from	the	value()	method	example	in	Listing	12-
13	to	retrieve	matching	job	candidate	names:

SELECT	Resume.value	(N'declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

(/ns:Resume/ns:Name/ns:Name.Last)	[1]',	

'nvarchar(100)')	AS	[BachelorsCandidate]	FROM	

HumanResources.JobCandidate

The	exist()	method	in	the	WHERE	clause	specifies	the	xml	match	criteria.	Like	the
previous	sample	queries,	the	exist()	method	XQuery	query	begins	by	declaring	a
namespace:

declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

The	query	itself	compares	the	Edu.Level	node	text	to	the	string	Bachelor:

/ns:Resume/ns:Education/ns:Edu.Level	[.	=	"Bachelor"]

If	there	is	a	match,	the	query	returns	a	result	and	the	exist()	method	returns	1.	If
there	is	no	match,	there	will	be	no	nodes	returned	by	the	XQuery	query,	and	the	exist()
method	will	return	0.	If	the	xml	is	NULL,	exist()	returns	NULL.	The	query	limits	the
results	to	only	matching	resumes	by	returning	only	those	where	exist()	returns	1.

The	nodes	Method

The	nodes()	method	of	the	xml	data	type	retrieves	XML	content	in	relational	format—
a	process	known	as	shredding.	The	nodes()	method	returns	a	rowset	composed	of	the
xml	nodes	that	match	a	given	XQuery	expression.	Listing	12-16	retrieves	product	names
and	IDs	for	those	products	with	the	word	Alloy	in	the	Material	node	of	their
CatalogDescription	column.	The	table	queried	is
Production.ProductModel.	Notice	that	the	CROSS	APPLY	operator	is	used	to
perform	the	nodes()	method	on	all	rows	of	the	Production.ProductModel	table.

Listing	12-16.	xml	Data	Type	Nodes	Example

SELECT

								ProductModelID,

								Name,

								Specs.query('.')	AS	Result

FROM	Production.ProductModel

CROSS	APPLY	CatalogDescription.nodes('declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

/ns:ProductDescription/ns:Specifications/Material/text()

		[contains	(.	,	"Alloy")]')

AS	NodeTable(Specs);

The	first	part	of	the	SELECT	query	retrieves	the	product	model	ID,	the	product	name,
and	the	results	of	the	nodes()	method	via	the	query()	method:

SELECT

		ProductModelId,

		Name,	

		Specs.query('.')	AS	Result

FROM	Production.ProductModel

One	restriction	of	the	nodes()	method	is	that	the	relational	results	generated	cannot
be	retrieved	directly.	They	can	only	be	accessed	via	the	exist(),	nodes(),	query(),
and	value()	methods	of	the	xml	data	type,	or	checked	with	the	IS	NULL	and	IS
NOT	NULL	operators.

The	CROSS	APPLY	operator	is	used	with	the	nodes()	method	to	generate	the	final
result	set.	The	XQuery	query	used	in	the	nodes()	method	begins	by	declaring	a
namespace:

CROSS	APPLY	CatalogDescription.nodes('declare	namespace	ns

=	“http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription”;

The	query	portion	is	a	path	expression	that	retrieves	XML	nodes	in	which	a
Material	node’s	text	contains	the	word	Alloy:

/ns:ProductDescription/ns:Specifications/Material/text()	[

contains	(.	,	“Alloy”)]')

Notice	that	the	nodes()	method	requires	you	to	provide	aliases	for	both	the	virtual
table	returned	and	the	column	that	will	contain	the	result	rows.	In	this	instance,	we	chose
to	alias	the	virtual	table	with	the	name	NodeTable	and	the	column	with	the	name
Specs.

AS	NodeTable(Specs);

The	modify	Method
The	xml	data	type	modify()	method	can	be	used	to	modify	the	content	of	an	xml
variable	or	column.	The	modify()	method	allows	you	to	insert,	delete,	or	update	xml
content.	The	main	restrictions	on	the	modify()	method	is	that	it	must	be	used	in	a
variable	SET	statement	or	in	the	SET	clause	of	an	UPDATE	statement.	The	example	in
Listing	12-17	demonstrates	the	modify()	method	on	an	untyped	xml	variable.	The
results	are	shown	in	Figure	12-13.

Listing	12-17.	xml	Data	Type	Modify	Method	Example

DECLARE	@x	xml	=	N'<?xml	version="1.0"	?>

<Address>

		<Street>l	MICROSOFT	WAY</Street>

		<City>REDMOND</City>

		<State>WA</State>

		<Zip>98052</Zip>

		<Country>US</Country>

		<Website>http://www.microsoft.com</Website>

</Address>';

SELECT	@x;

SET	@x.modify	('insert	

(

		<CompanyName>Microsoft	Corporation</CompanyName>,

		<Url>http://msdn.microsoft.com</Url>,

		<UrlDescription>Microsoft	Developer	

Network</UrlDescription>

)

into	(/Address)[1]	');

SET	@x.modify('replace	value	of

		(/Address/Street/text())[1]

		with	"ONE	MICROSOFT	WAY"

');

SET	@x.modify('

delete	/Address/Website	

');

SELECT	@x;

Figure	12-13.	Before-and-after	Results	of	the	Modify	Method

	Tip		Although	the	SELECT	and	SET	statements	are	similar	in	their	functionality	when
applied	to	variables,	the	modify()	method	of	the	xml	data	type	will	not	work	in
SELECT	statements—even	SELECT	statements	that	assign	values	to	variables.	Use	the
SET	statement	as	demonstrated	in	Listing	12-17	to	use	the	modify()	method	on	an	xml
variable.

The	sample	begins	by	creating	an	xml	variable	and	assigning	XML	content	to	it:

DECLARE	@x	xml	=	N'<?xml	version="1.0"	?>	<Address>

<Street>l	MICROSOFT	WAY</Street>

<City>REDMOND</City>

<State>WA</State>

<Zip>98052</Zip>

<Country>US</Country>

<Website>http://www.microsoft.com</Website>	</Address>';

SELECT	@x;

The	XML	DML	insert	statement	inserts	three	new	nodes	into	the	xml	variable,
right	below	the	top-level	Address	node:

SET	@x.modify	('insert

(

		<CompanyName>Microsoft	Corporation</CompanyName>J

		<Url>http://msdn.microsoft.com</Url>,

		<UrlDescription>Microsoft	Developer's	

Network</UrlDescription>

)

into	(/Address)[1]	');

The	replace	value	of	statement	specified	in	the	next	modify()	method
updates	the	content	of	the	Street	node	with	the	street	address	our	good	friends	at
Microsoft	prefer:	ONE	MICROSOFT	WAY,	instead	of	1	MICROSOFT	WAY.

SET	@x.modify('replace	value	of	(/Address/Street/text())[l]

		with	"ONE	MICROSOFT	WAY"

');

Finally,	the	XML	DML	method	delete	statement	is	used	to	remove	the	old
<Website>	tag	from	the	xml	variable’s	content:

SET	@x.modifyC

				delete	/Address/Website	

');

SELECT	@x;

XML	Indexes
SQL	Server	provides	XML	indexes	to	increase	the	efficiency	of	querying	xml	data	type
columns.	XML	indexes	come	in	two	flavors:

Primary	XML	index:	An	XML	column	can	have	a	single	primary
XML	index	declared	on	it.	The	primary	XML	index	is	different	from
the	standard	relational	indexes	most	of	us	are	used	to.	Rather,	it	is	a
persisted	preshredded	representation	of	your	XML	data.	Basically,	the
XML	data	stored	in	a	column	with	a	primary	XML	index	is	converted
to	relational	form	and	stored	in	the	database.	By	persisting	an	xml
data	type	column	in	relational	form,	you	eliminate	the	implicit
shredding	that	occurs	with	every	query	or	manipulation	of	your	XML
data.	In	order	to	create	a	primary	XML	index	on	a	table’s	xml
column,	a	clustered	index	must	be	in	place	on	the	primary	key
columns	for	the	table.

Secondary	XML	index:	Secondary	XML	indexes	can	also	be	created
on	a	table’s	xml	column.	Secondary	XML	indexes	are	nonclustered
relational	indexes	created	on	primary	XML	indexes.	In	order	to	create
secondary	XML	indexes	on	an	xml	column,	a	primary	XML	index
must	already	exist	on	that	column.	You	can	declare	any	of	three
different	types	of	secondary	XML	index	on	your	primary	XML
indexes:

The	PATH	index	is	a	secondary	XML	index	optimized	for
XPath	and	XQuery	path	expressions	that	rely	heavily	on	path
and	node	values.	The	PATH	index	creates	an	index	on	path	and
node	values	on	the	columns	of	the	primary	XML	index.	The
path	and	node	values	are	used	as	key	columns	for	efficient	path
seek	operations.

The	VALUE	index	is	optimized	for	queries	by	value	where	the
path	is	not	necessarily	known.	This	type	of	index	is	the	inverse
of	the	PATH	index,	with	the	primary	XML	index	node	values
indexed	before	the	node	paths.

The	PROPERTY	index	is	optimized	for	queries	that	retrieve
data	from	other	columns	of	a	table	based	on	the	value	of	nodes
or	paths	in	the	xml	data	type	column.	This	type	of	secondary
index	is	created	on	the	primary	key	of	the	base	table,	node
paths,	and	node	values	of	the	primary	XML	index.

Consider	the	example	XQuery	FLWOR	(for,	let,	where,	order	by,	return)
expression	in	Listing	12-18	that	retrieves	the	last,	first,	and	middle	names	of	all	job
applicants	in	the	HumanResources.JobCandidate	table	with	an	education	level	of
Bachelor.	The	results	of	this	query	are	shown	in	Figure	12-14.

Listing	12-18.	Retrieving	Job	Candidates	with	Bachelor’s	Degrees

SELECT	Resume.query('declare	namespace	ns	=

		"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume";

for	$m	in	/ns:Resume

where	$m/ns:Education/ns:Edu.Level[.	=	"Bachelor"]

return	<Name>

			{

					data(($m/ns:Name/ns:Name.Last)[1]),

					data(($m/ns:Name/ns:Name.First)[1]),

					data(($m/ns:Name/ns:Name.Middle)[1])

			}	</Name>')

FROM	HumanResources.JobCandidate;

GO

Figure	12-14.	Retrieving	Candidate	Names	with	a	FLWOR	Expression

We’ll	describe	FLWOR	expressions	in	greater	detail,	with	examples,	in	Chapter	13.

For	the	purposes	of	this	discussion,	however,	the	results	are	not	as	important	as	what’s
going	on	under	the	hood.	This	FLWOR	expression	is	returning	the	last,	first,	and	middle
names	of	all	candidates	for	which	the	Edu.Level	node	contains	the	value	Bachelor.	As
shown	in	Figure	12-15,	the	execution	cost	of	this	query	is	41.2849.	Although	the	subtree
cost	is	an	arbitrary	number,	it	represents	the	total	cost	in	relationship	to	the	batch.	In	this
case	the	number	is	large	enough	in	relationship	to	the	batch	to	warrant	investigation.

Figure	12-15.	The	Execution	Cost	of	the	Query

By	far	the	most	expensive	part	of	this	query	is	contained	in	a	step	called	Table	Valued
Function	[XML	Reader	with	XPath	Filter].	This	is	the	main	operator	SQL	Server	uses	to
shred	XML	data	on	the	fly	whenever	you	query	XML	data.	In	this	query	plan,	it	is	invoked
two	times	at	a	cost	of	13.052	each,	and	three	more	times	at	a	cost	of	4.89054	each,
accounting	for	over	98	percent	of	the	query	plan	cost	(see	Figure	12-16).

Figure	12-16.	Table	Valued	Function	[XML	Reader	with	XPath	Filter]	Cost

Adding	XML	indexes	to	this	column	of	the	HumanResources.JobCandidate
table	significantly	improves	XQuery	query	performance	by	eliminating	on-the-fly	XML
shredding.	Listing	12-19	adds	a	primary	and	secondary	XML	index	to	the	Resume
column.

Listing	12-19.	Adding	XML	Indexes	to	the	Resume	Column

CREATE	PRIMARY	XML	INDEX	PXML_JobCandidate

ON	HumanResources.JobCandidate	(Resume);

GO

CREATE	XML	INDEX	IXML_Education

ON	HumanResources.JobCandidate	(Resume)

USING	XML	INDEX	PXML_JobCandidate

FOR	PATH;

GO

With	the	primary	and	secondary	XML	indexes	in	place,	the	query	execution	cost	drops
significantly	from	41.2849	to	0.278555,	as	shown	in	Figure	12-17.

Figure	12-17.	The	Query	Execution	Cost	with	XML	Indexes

The	greater	efficiency	is	brought	about	by	the	XML	Reader	with	XPath	Filter	step
being	replaced	with	efficient	index	seek	operators	on	both	clustered	and	nonclustered
indexes.	The	primary	XML	index	eliminates	the	need	to	shred	XML	data	at	query	time
and	the	secondary	XML	index	provides	additional	performance	enhancement	by	providing
a	nonclustered	index	that	can	be	used	to	efficiently	fulfill	the	FLWOR	expression	where
clause.

The	CREATE	PRIMARY	XML	INDEX	statement	in	the	example	creates	a	primary
XML	index	on	the	Resume	column	of	the	HumanResources.JobCandidate	table.
The	primary	XML	index	provides	a	significant	performance	increase	by	itself,	since	it
eliminates	on-the-fly	XML	shredding	at	query	time.

CREATE	PRIMARY	XML	INDEX	PXML_JobCandidate	ON
HumanResources.JobCandidate	(Resume);

The	primary	XML	index	is	a	prerequisite	for	creating	the	secondary	XML	index	that
will	provide	additional	performance	enhancement	for	XQuery	queries	that	specify	both	a
path	and	a	predicate	based	on	node	content.	The	CREATE	XML	INDEX	statement	in	the
example	creates	the	secondary	XML	PATH	index.

CREATE	XML	INDEX	IXML_Education	ON	HumanResources.JobCandidate
(Resume)	USING	XML	INDEX	PXML_JobCandidate	FOR	PATH;

The	USING	XML	INDEX	clause	of	the	CREATE	XML	INDEX	statement	specifies
the	name	of	the	primary	XML	index	on	which	to	build	the	secondary	XML	index.	The
FOR	clause	determines	the	type	of	secondary	XML	index	that	will	be	created.	You	can

specify	a	VALUE,	PATH,	or	PROPERTY	type	as	described	previously.

The	optional	WITH	clause	of	both	of	the	XML	index	creation	statements	allows	you	to
specify	a	variety	of	XML	index	creation	options,	as	shown	in	Table	12-5.

Table	12-5.	XML	Index	Creation	Options

Option Description

PAD_INDEX
This	option	specifies	whether	index	padding	is	on	or	off.	The	default	is
OFF.

FILLFACTOR

This	option	indicates	how	full	the	leaf	level	index	pages	should	be	made
during	XML	index	creation	or	rebuild.	Values	of	0	and	100	are	equivalent.
The	FILLFACTOR	option	is	used	in	conjunction	with	the	PAD_INDEX
option.

SORT_IN_TEMPDB

This	option	specifies	that	intermediate	sort	results	should	be	stored	in
tempdb.	By	default,	SORT_IN_TEMPDB	is	set	to	OFF	and	intermediate
sort	results	are	stored	in	the	local	database.

STATISTICS_NORECOMPUTE
This	option	indicates	whether	distribution	statistics	are	automatically
recomputed.	The	default	is	OFF.

DROP_EXISTING
This	option	specifies	that	the	preexisting	XML	index	of	the	same	name
should	be	dropped	before	creating	the	index.	The	default	is	OFF.

ALLOW_ROW_LOCKS
This	option	allows	SQL	Server	to	use	row	locks	when	accessing	the	XML
index.	The	default	is	ON.

ALLOW_PAGE_LOCKS
This	option	allows	SQL	Server	to	use	page	locks	when	accessing	the
XML	index.	The	default	is	ON.

MAXDOP

This	option	determines	the	maximum	degree	of	parallelism	SQL	Server
can	use	during	the	XML	index	creation	operation.	MAXDOP	can	be	one	of
the	following	values:	0:	Uses	up	to	the	maximum	number	of	processors
available.	1:	Uses	only	one	processor;	no	parallel	processing.	2	through
64:	Restricts	the	number	of	processors	used	for	parallel	processing	to	the
number	specified	or	less.

XSL	Transformations
One	of	the	powerful	features	available	to	SQL	Server	2014	is	its	ability	to	execute	.NET
Framework-based	code	via	the	SQL	Common	Language	Runtime	(SQL	CLR).	You	can
use	standard	.NET	Framework	classes	to	access	XML-based	functionality	that	is	not
supported	directly	within	T-SQL.	One	useful	feature	that	can	be	accessed	via	CLR
Integration	is	the	W3C	Extensible	Stylesheet	Language	Transformations	(XSLT).	As
defined	by	the	W3C,	XSLT	is	a	language	designed	for	the	sole	purpose	of	“transforming
XML	documents	into	other	XML	documents.”	SQL	Server	2014	provides	access	to	XSL
transformations	via	a	combination	of	the	built-in	xml	data	type	and	the	.NET	Framework
XslCompiledTransform	class.

	Tip		The	XSLT	1.0	standard	is	available	at	www.w3.org/TR/xslt.

http://www.w3.org/TR/xslt

You	can	access	XSLT	from	SQL	Server	to	perform	server-side	transformations	of	your
relational	data	into	other	XML	formats.	I’ve	chosen	to	use	XHTML	as	the	output	format
for	this	example,	although	some	would	argue	that	generating	XHTML	output	is	best	done
away	from	SQL	Server,	in	the	middle	tier	or	presentation	layer.	Arguments	can	also	be
made	for	performing	XSL	transformations	close	to	the	data,	for	efficiency	reasons.	I’d	like
to	put	those	arguments	aside	for	the	moment,	and	focus	on	the	main	purpose	of	this
example,	demonstrating	that	additional	XML	functionality	is	available	to	SQL	Server	via
SQL	CLR.	Listing	12-20	demonstrates	the	first	step	in	the	process	of	performing	server-
side	XSL	transformations	using	FOR	XML	to	convert	relational	data	to	an	xml	variable.

Listing	12-20.	Using	FOR	XML	to	Convert	Relational	Data	to	Populate	an	xml	Variable

DECLARE	@xml	xml	=

(

				SELECT

								p.ProductNumber	AS	"@Id",

								p.Name	AS	"Name",

								p.Color	AS	"Color",

								p.ListPrice	AS	"ListPrice",

								p.SizeUnitMeasureCode	AS	"Size/@UOM",

								p.Size	AS	"Size",

								p.WeightUnitMeasureCode	AS	"Weight/@UOM",

								p.Weight	AS	"Weight",

								(

								SELECT	COALESCE(SUM(i.Quantity),		0)

								FROM	Production.ProductInventory		i

								WHERE	i.ProductID	=		p.ProductID

)	AS	"QuantityOnHand"

				FROM	Production.Product		p

				WHERE	p.FinishedGoodsFlag	=	1

				ORDER	BY	p.Name

				FOR	XML	PATH		('Product'),

								ROOT	('Products')

);

SELECT	@xml;

The	resulting	xml	document	looks	like	Figure	12-18.

Figure	12-18.	Partial	Results	of	the	FOR	XML	Product	Query

The	next	step	is	to	create	the	XSLT	style	sheet	to	specify	the	transformation	and	assign
it	to	an	xml	data	type	variable.	Listing	12-21	demonstrates	a	simple	XSLT	style	sheet	to
convert	XML	data	to	HTML.

Listing	12-21.	XSLT	Style	Sheet	to	Convert	Data	to	HTML

DECLARE	@xslt	xml	=	N'<?xml	version="1.0"	encoding="utf-16"?

>

<xsl:stylesheet	version="1.0"

								xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template	match="/Products">

<html>

								<head>

												<title>AdventureWorks	Product	Listing	

Report</title>

												<style	type="text/css">

								tr.row-heading		{

												background-color:	000099;

												color:	ffffff;

												font-family:	tahoma,	arial,	helvetica,	sans-serif;

												font-size:		12px;

								}

								tr.row-light	{

												background-color:		ffffff;

												font-family:	tahoma,	arial,	helvetica,	sans-serif;

												font-size:	12px;

								}

								tr.row-dark		{

												background-color:		00ffff;

												font-family:	tahoma,		arial,	helvetica,	sans-

serif;

												font-size:	12px;

								}

								td.col-right	{

												text-align:	right;

								}

								</style>

</head>

<body>

			<table>

					<tr		class="row-heading">

								<th>ID</th>

								<th>Product		Name</th>

								<th>On		Hand</th>

								<th>List	Price</th>

								<th>Color</th>

								<th>Size</th>

								<th>Weight</th>

					</tr>

					<xsl:for-each		select="Product">

											<xsl:element	name="tr">

														<xsl:choose>

																	<xsl:when	test="position()	mod	2	=	0">

																					<xsl:attribute	name="class">row-

light</xsl:attribute>

																	</xsl:when>

														<xsl:otherwise>

																			<xsl:attribute	name="class">row-

dark</xsl:attribute>

														</xsl:otherwise>

													</xsl:choose>

													<td><xsl:value-of	select="@Id"/></td>

													<td><xsl:value-of	select="Name"/></td>

													<td	class="col-right">

																	<xsl:value-of	select="QuantityOnHand"/>

													</td>

													<td	class="col-right"><xsl:value-of	

select="ListPrice"/></td>

													<td><xsl:value-of	select="Color"/></td>

													<td	class="col-right">										<xsl:value-of	

select="Size"/>

																		<xsl:value-of	select="Size/@UOM"/>

												</td>

												<td	class="col-right">

																	<xsl:value-of	select="Weight"/>

																	<xsl:value-of	select="Weight/@UOM"/>

								</td>

					</xsl:element>

		</xsl:for-each>

			</table>

	</body>

</html>

</xsl:template>

</xsl:stylesheet>';

	Tip		We	won’t	dive	into	the	details	of	XSLT	style	sheet	creation	in	this	book,	but
information	can	be	found	at	the	official	W3C	XSLT	1.0	standard	site,	at
http://www.w3.org/TR/xslt20/.	The	book	Pro	SQL	Server	2008	XML	(Apress,
2008)	also	offers	a	detailed	discussion	of	XSLT	on	SQL	Server.

The	final	step	is	to	create	an	SQL	CLR	SP	that	accepts	the	raw	XML	data	and	the
XSLT	style	sheet,	performs	the	XSL	transformation,	and	writes	the	results	to	an	HTML
file.	The	SQL	CLR	SP	code	is	shown	in	Listing	12-22.

Listing	12-22.	SQL	CLR	SP	for	XSL	Transformations

using	System.Data.SqlTypes;

using	System.Xml;

using	System.Xml.Xsl;

namespace	Apress.Samples

{

public	partial	class	XSLT

{

[Microsoft.SqlServer.Server.SqlProcedure]

public	static	void	XmlToHtml

(

SqlXml	RawXml,

SqlXml	XslStyleSheet,

SqlString	OutputPage

)

{

//	Create	and	load	the	XslCompiledTransform	object

XslCompiledTransform	xslt	=	new	XslCompiledTransform();

XmlDocument	xmldoc1	=	new	XmlDocument();

xmldocl.LoadXml(XslStyleSheet.Value);

xslt.Load(xmldoc1);

//	Create	and	load	the	Raw	XML	document

XmlDocument	xml	=	new	XmlDocument();

xml.LoadXml(RawXml.Value);

http://www.w3.org/TR/xslt20/

//	Create	the	XmlTextWriter	for	output	to	HTML	document

XmlTextWriter	htmlout	=	new	XmlTextWriter

(

OutputPage.Value,

System.Text.Encoding.Unicode

);

//	Perform	the	transformation

xslt.Transform

(

xml,

htmlout

);

//	Close	the	XmlTextWriter	

htmlout.Close();

}

			}

};

SQL	CLR	Security	Settings
There	are	a	few	administrative	details	you	need	to	take	care	of	before	you	deploy	SQL
CLR	code	to	SQL	Server.	The	first	thing	to	do	is	set	the	database	to	trustworthy	mode	with
the	ALTER	DATABASE	statement,	as	shown	following:

ALTER	DATABASE	AdventureWorks2014	SET	TRUSTWORTHY	ON;

A	better	alternative	to	setting	your	database	to	trustworthy	mode	is	to	sign	your
assemblies	with	a	certificate.	While	signing	SQL	CLR	assemblies	is	beyond	the	scope	of
this	book,	authors	Robin	Dewson	and	Julian	Skinner	cover	this	topic	in	their	book	Pro
SQL	Server	2005	Assemblies	(Apress,	2005).	The	book	covers	SQL	2005	but	the	topics
are	still	relevant	and	applicable	to	SQL	Server	2014.

For	the	example	in	Listing	12-22,	which	accesses	the	local	file	system,	you	also	need
to	set	the	CLR	assembly	permission	level	to	External.	You	can	do	this	through	Visual
Studio,	as	shown	in	the	following	illustration,	or	you	can	use	WITH	PERMISSION_SET
clause	of	the	CREATE	ASSEMBLY	or	ALTER	ASSEMBLY	statements	in	T-SQL.

For	SQL	CLR	code	that	doesn’t	require	access	to	external	resources	or	unmanaged
code,	a	permission	level	of	Safe	is	adequate.	For	SQL	CLR	assemblies	that	need	access	to
external	resources	like	hard	drives	or	network	resources,	External	permissions	are	the
minimum	required.	Unsafe	permissions	are	required	for	assemblies	that	access	unsafe	or
unmanaged	code.	Always	assign	the	minimum	required	permissions	when	deploying	SQL
CLR	assemblies	to	SQL	Server.

Finally,	make	sure	the	SQL	Server	service	account	has	permissions	to	any	required
external	resources.	For	this	example,	the	service	account	needs	permissions	to	write	to	the
c:\Documents	and	Settings\	All	Users\Documents	directory.

After	you	have	deployed	the	SQL	CLR	assembly	to	SQL	Server	and	set	the
appropriate	permissions,	you	can	call	the	XmlToHtml	procedure	to	perform	the	XSL
transformation,	as	shown	in	Listing	12-23.	The	resulting	HTML	file	is	shown	in	Figure
12-19.

Listing	12-23.	Performing	a	SQL	CLR	XSL	Transformation

EXECUTE	XmlToHtml	@xml,

			gxslt,

			'c:\Documents	and	SettingsXAll	

Users\Documents\adventureworks-inventory.html';

Figure	12-19.	Results	of	the	XML-to-HTML	Transformation

Summary
In	this	chapter,	we	discussed	SQL	Server	2014’s	integrated	XML	functionality.	We	began
with	a	discussion	of	legacy	XML	functionality	carried	forward,	and	in	some	cases
improved	upon,	from	the	days	of	SQL	Server	2005.	This	legacy	functionality	includes	the
flexible	FOR	XML	clause	and	the	OPENXML	rowset	provider.

We	then	discussed	the	powerful	xml	data	type	and	its	many	methods:

The	query()	method	allows	you	to	retrieve	XML	nodes	using
XQuery	queries.

The	value()	method	lets	you	retrieve	singleton	atomic	values	using
XQuery	path	expressions	to	locate	nodes.

The	exist()	method	determines	whether	a	specific	node	exists	in
your	XML	data.

The	modify()	method	allows	you	to	use	XML	DML	to	modify	your
XML	data	directly.

The	nodes()	method	makes	shredding	XML	data	simple.

We	also	presented	SQL	Server’s	primary	and	secondary	XML	indexes,	which	are
designed	to	optimize	XML	query	performance.	Finally,	we	touched	on	SQL	Server’s	SQL
CLR	integration	and	demonstrated	how	to	use	it	to	access	.NET	Framework	XML
functionality	not	directly	available	through	the	T-SQL	language.

In	the	next	chapter,	we	will	continue	the	discussion	of	SQL	Server	XML	by
introducing	XPath	and	XQuery	support,	including	a	more	detailed	discussion	of	the
options,	functions,	operators,	and	expressions	available	for	querying	and	manipulating

XML	on	SQL	Server.

Exercises

1.	 [Choose	all	that	apply]	SQL	Server’s	FOR	XML	clause	supports
which	of	the	following	modes:

a.	 FOR	XML	RAW

b.	 FOR	XML	PATH

c.	 FOR	XML	AUTO

d.	 FOR	XML	EXPLICIT

e.	 FOR	XML	RECURSIVE

2.	 [Fill	in	the	blank]	By	default,	the	OPENXML	rowset	provider	returns
data	in	____________	table	format.

3.	 [True/False]	The	xml	data	type	query()	method	returns	its
results	as	an	untyped	xml	data	type	instance.

4.	 [Choose	one]	A	SQL	Server	primary	XML	index	performs	which	of
the	following	functions:

f.		It	creates	a	nonclustered	index	on	your	xml	data	type	column
or	variable.

g.		It	creates	a	clustered	index	on	your	xml	data	type	column	or
variable.

h.		It	stores	your	xml	data	type	columns	in	a	preshredded
relational	format.

i.		It	stores	your	xml	data	type	columns	using	an	inverse	index
format.

5.	 [True/False]	When	you	perform	XQuery	queries	against	an	xml
data	type	column	with	no	primary	XML	index	defined	on	it,	SQL
Server	automatically	shreds	your	XML	data	to	relational	format.

6.	 [True/False]	You	can	utilize	define	an	XML	data	type	column	on	a
memory-optimized	table	in	SQL	Server	2014.

7.	 [True/False]	You	can	access	additional	XML	functionality	on	SQL
Server	through	the	.NET	Framework	via	SQL	Server’s	SQL	CLR
integration.

CHAPTER	13

XQuery	and	XPath
As	we	described	in	Chapter	12,	SQL	Server	2014	continues	the	high	level	of	XML
integration	begun	in	SQL	Server	2005.	As	part	of	that	integration,	SQL	Server’s	xml	data
type	provides	built-in	functionality	for	shredding	XML	data	into	relational	format,
querying	XML	nodes	and	singleton	atomic	values	via	XQuery,	and	modifying	XML	data
via	XML	Data	Modification	Language	(XML	DML).	This	chapter	focuses	on	how	to	get
the	most	out	of	SQL	Server’s	implementation	of	the	powerful	and	flexible	XPath	and
XQuery	standards.

The	XML	data	model	represents	a	departure	from	the	relational	model	SQL	Server
developers	know	so	well.	XML	is	not	a	replacement	for	the	relational	model,	but	it	does
nicely	complement	relational	data.	XML	is	very	useful	for	sharing	data	with	a	wide
variety	of	web	services	and	message	systems	including	MSMQ	and	disparate	systems,	and
highly	structured	XML	data	from	remote	data	sources	is	often	shredded	to	relational
format	for	easy	storage	and	querying.	The	SQL	Server	2014	xml	data	type	and	XML-
specific	query	and	conversion	tools	represent	a	marriage	of	some	of	the	best	features	of
relational	database	and	XML	technologies.

	Note		This	chapter	is	not	meant	to	be	a	comprehensive	guide	to	XPath	and	XQuery,	but
rather	an	introduction	to	SQL	Server’s	XPath	and	XQuery	implementations,	which	are
both	subsets	of	the	W3C	XPath	2.0	and	XQuery	1.0	recommendations.	In	addition	to	the
discussion	in	this	chapter,	Appendix	B	provides	a	reference	to	the	XQuery	Data	Model
(XDM)	type	system	as	implemented	by	SQL	Server.

XPath	and	FOR	XML	PATH
The	FOR	XML	PATH	clause	of	the	SELECT	statement	uses	XPath	2.0-style	path
expressions	to	specify	the	structure	of	the	XML	result.	Listing	13-1	demonstrates	a	simple
FOR	XML	PATH	query	that	returns	the	names	and	e-mail	addresses	of	people	in	the
AdventureWorks	database.	Partial	results	are	shown	in	Figure	13-1,	which	you	can	display
by	clicking	on	the	XML	within	the	column.

Listing	13-1.	Retrieving	Names	and	E-mail	Addresses	with	FOR	XML	PATH

SELECT

								p.BusinessEntityID	AS	"Person/ID",

								p.FirstName	AS	"Person/Name/First",

								p.MiddleName	AS	"Person/Name/Middle",

								p.LastName	AS	"Person/Name/Last",

								e.EmailAddress	AS	"Person/Email"

FROM	Person.Person	p	INNER	JOIN	Person.EmailAddress	e

ON	p.BusinessEntityID	=	e.BusinessEntityID

FOR	XML	PATH,	ROOT('PersonEmailAddress');

Figure	13-1.	Partial	Results	of	Retrieving	Names	and	E-mail	Addresses	with	FOR	XML	PATH

Because	they	are	used	specifically	to	define	the	structure	of	an	XML	result,	FOR	XML
PATH	XPath	expressions	are	somewhat	limited	in	their	functionality.	Specifically,	you
cannot	use	features	that	contain	certain	filter	criteria	or	use	absolute	paths.	Briefly,	here
are	the	restrictions:

A	FOR	XML	PATH	XPath	expression	may	not	begin	or	end	with	the
/step	operator,	and	it	may	not	begin	with,	end	with,	or	contain	//.

FOR	XML	PATH	XPath	expressions	cannot	specify	axis	specifiers
such	as	child::	or	parent::.

The	.	(context	node)	and	..	(context	node	parent)	axis	specifiers	are
not	allowed.

The	functions	defined	in	Part	4	of	the	XPath	specification,	Core
Function	Library,	are	not	allowed.

Predicates,	which	are	used	to	filter	result	sets,	are	not	allowed.	[
position()	=	4]	is	an	example	of	a	predicate.

Basically,	the	FOR	XML	PATH	XPath	subset	allows	you	to	specify	the	structure	of
the	resulting	XML	relative	to	the	implicit	root	node.	This	means	that	advanced
functionality	of	XPath	expressions	above	and	beyond	defining	a	simple	relative	path
expression	is	not	allowed.	In	general,	XPath	2.0	features	that	can	be	used	to	locate	specific
nodes,	return	sets	of	nodes,	or	filter	result	sets	are	not	allowed	with	FOR	XML	PATH.

By	default,	FOR	XML	PATH	uses	the	name	row	for	the	root	node	of	each	row	it
converts	to	XML	format.	The	results	of	FOR	XML	PATH	also	default	to	an	element-
centric	format,	meaning	that	results	are	defined	in	terms	of	element	nodes.

In	Listing	12-1,	we’ve	aliased	the	column	names	using	the	XPath	expressions	that
define	the	structure	of	the	XML	result.	Because	the	XPath	expressions	often	contain
characters	that	are	not	allowed	in	SQL	identifiers,	you	will	probably	want	to	use	quoted
identifiers.

SELECT	p.BusinessEntityID	AS	“Person/ID”,	p.FirstName	AS	“Person/Name/First”,
p.MiddleName	AS	“Person/Name/Middle”,	p.LastName	AS	“Person/Name/Last”,
e.EmailAddress	AS	“Person/Email”

XPath	expressions	are	defined	as	a	path	separated	by	step	operators.	The	step	operator
(/)	indicates	that	a	node	is	a	child	of	the	preceding	node.	For	instance,	the	XPath
expression	Person/ID	in	the	example	indicates	that	a	node	named	ID	will	be	created	as
a	child	of	the	node	named	Person	in	a	hierarchical	XML	structure.

XPath	Attributes
Alternatively,	you	can	define	a	relational	column	as	an	attribute	of	a	node.	Listing	13-2
modifies	Listing	13-1	slightly	to	demonstrates	this.	We’ve	shown	the	differences	between
the	two	listings	in	bold	print.	Partial	results	are	shown	in	Figure	13-2,	reformatted	slightly
for	easier	reading.

Listing	13-2.	FOR	XML	PATH	Creating	XML	Attributes

SELECT	p.BusinessEntityID		AS	"Person/@ID",

																e.EmailAddress	AS	"Person/@Email",

																p.FirstName	AS	"Person/Name/First",

																p.MiddleName	AS	"Person/Name/Middle",

																p.LastName	AS	"Person/Name/Last"

FROM	Person.Person	p	INNER	JOIN	Person.EmailAddress	e

ON	p.BusinessEntityID	=	e.BusinessEntityID	FOR	XML	PATH;

Figure	13-2.	Creating	Attributes	with	FOR	XML	PATH

The	bold	portion	of	the	SELECT	statement	in	Listing	13-2	generates	XML	attributes
of	the	ID	and	Email	nodes	by	preceding	their	names	in	the	XPath	expression	with	the	@
symbol.	The	result	is	that	ID	and	Email	become	attributes	of	the	Person	element	in	the
result:

p.BusinessEntityID	AS	"Person/@ID",	e.EmailAddress	AS	

"Person/@Email",

Columns	without	Names	and	Wildcards
Some	of	the	other	XPath	expression	features	you	can	use	with	FOR	XML	PATH	include
columns	without	names	and	wildcard	expressions,	which	are	turned	into	inline	content.
The	sample	in	Listing	13-3	demonstrates	this.

Listing	13-3.	Using	Columns	without	Names	and	Wildcards	with	FOR	XML	PATH

SELECT	p.BusinessEntityID	AS	"*",	','	+	e.EmailAddress,

p.FirstName	AS	"Person/Name/First",

p.MiddleName	AS	"Person/Name/Middle",

p.LastName	AS	"Person/Name/Last"	FROM	Person.Person	p	INNER	

JOIN	Person.EmailAddress	e

ON	p.BusinessEntityID	=	e.BusinessEntityID	FOR	XML	PATH;

In	this	example,	the	XPath	expression	for	BusinessEntityID	is	the	wildcard
character	*.	The	second	column	is	defined	as		','	+	EmailAddress	and	the	column
is	not	given	a	name.	Both	of	these	columns	are	turned	into	inline	content	immediately
below	the	row	element,	as	shown	in	Figure	13-3.	This	is	particularly	useful	functionality
when	creating	lists	within	your	XML	data,	or	when	your	XML	data	conforms	to	a	schema
that	looks	for	combined,	concatenated,	or	list	data	in	XML	text	nodes.

Figure	13-3.	Columns	without	Names	and	Wildcard	Expressions	in	FOR	XML	PATH

Element	Grouping
As	you	saw	in	the	previous	examples,	FOR	XML	PATH	groups	together	nodes	that	have
the	same	parent	elements.	For	instance,	the	First,	Middle,	and	Last	elements	are	all
children	of	the	Name	element.	They	are	grouped	together	in	all	of	the	examples	because	of
this.	However,	as	shown	in	Listing	13-4,	this	is	not	the	case	when	these	elements	are
separated	by	an	element	with	a	different	parent	element.

Listing	13-4.	Two	Elements	with	a	Common	Parent	Element	Separated

SELECT	p.BusinessEntityID	AS	"@ID",

																e.EmailAddress	AS	"@EmailAddress",

																p.FirstName	AS	"Person/Name/First",

																pp.PhoneNumber	AS	"Phone/BusinessPhone",

																p.MiddleName	AS	"Person/Name/Middle",

																p.LastName	AS	"Person/Name/Last"

FROM	Person.Person	p

INNER	JOIN	Person.EmailAddress	e

ON	p.BusinessEntityID	=	e.BusinessEntityID

INNER	JOIN		Person.PersonPhone	pp

ON	p.BusinessEntityID	=	pp.BusinessEntityID

AND	pp.PhoneNumberTypeID	=	3	FOR	XML	PATH;

The	results	of	this	query	include	a	new	Phone	element	as	a	direct	child	of	the
Person	element.	Because	this	new	element	is	positioned	between	the
Person/Name/First	and	Person/Name/Middle	elements,	FOR	XML	PATH
creates	two	separate	Person/Name	elements:	one	to	encapsulate	the	First	element,
and	another	to	encapsulate	the	Middle	and	Last	elements,	as	shown	in	Figure	13-4.

Figure	13-4.	Breaking	Element	Grouping	with	FOR	XML	PATH

The	data	Function
The	FOR	XML	PATH	XPath	expression	provides	support	for	a	function	called	data().	If
the	column	name	is	specified	as	data(),	the	value	is	treated	as	an	atomic	value	in	the
generated	XML.	If	the	next	item	generated	is	also	an	atomic	value,	FOR	XML	PATH
appends	a	space	to	the	end	of	the	data	returned.	This	is	useful	for	using	subqueries	to
create	lists	of	items,	as	in	Listing	13-5,	which	demonstrates	use	of	the	data()	function.

Listing	13-5.	The	FOR	XML	PATH	XPath	data	Node	Test

SELECT	DISTINCT	soh.SalesPersonID	AS	"SalesPerson/@ID",	(

								SELECT	soh2.SalesOrderID	AS	"data()"

								FROM	Sales.SalesOrderHeader	soh2

								WHERE	soh2.SalesPersonID	=	soh.SalesPersonID	FOR	XML	

PATH	(''))	AS	"SalesPerson/@Orders",

								p.FirstName	AS	"SalesPerson/Name/First",

								p.MiddleName	AS	"SalesPerson/Name/Middle",

								p.LastName	AS	"SalesPerson/Name/Last",

								e.EmailAddress	AS	"SalesPerson/Email"

								FROM	Sales.SalesOrderHeader	soh

								INNER	JOIN	Person.Person	p

																ON	p.BusinessEntityID	=	soh.SalesPersonID

								INNER	JOIN	Person.EmailAddress	e

																ON	p.BusinessEntityID	=	e.BusinessEntityID

								WHERE	soh.SalesPersonID	IS	NOT	NULL	FOR	XML	PATH;

This	sample	retrieves	all	SalesPerson	ID	numbers	from	the
Sales.SalesOrderHeader	table	(eliminating	NULLs	for	simplicity)	and	retrieves
their	names	in	the	main	query.	The	subquery	uses	the	data()	function	to	retrieve	a	list	of
each	salesperson’s	sales	order	numbers	and	places	them	in	a	space-separated	list	in	the
Orders	attribute	of	the	SalesPerson	element.	A	sample	of	the	results	is	shown	in
Figure	13-5.

Figure	13-5.	Creating	Lists	with	the	data	Node	Test

Node	Tests	and	Functions
The	SQL	Server	2014	FOR	XML	PATH	expression	provides	access	to	both	the	text()
function	and	the	data()	node	test.	In	terms	of	FOR	XML	PATH,	the	text()	function
returns	the	data	in	the	text	node	as	inline	text	with	no	separator.	The	data()	node	test
returns	the	data	in	the	XML	text	node	as	a	space-separated	concatenated	list.

In	XQuery	expressions,	the	data()	node	test,	the	text()	function,	and	the	related
string()	function	all	return	slightly	different	results.	The	following	code	snippet
demonstrates	their	differences:

DECLARE	@x	xml;

SET	@x	=	N'<a>123456<c>789</c><a>987654

<c>321</c>';

SELECT	@x.query('/a/text()');

SELECT	@x.query('data(/a)');

SELECT	@x.query('string(/a[1])');

The	text()	function	in	this	example	returns	the	concatenated	text	nodes	of	the	<a>
elements;	in	this	example,	it	returns	123987.

The	data()	node	test	returns	the	concatenated	XML	text	nodes	of	the	<a>	elements
and	all	their	child	elements.	In	this	example,	data()	returns	123456789
987654321,	the	concatenation	of	the	<a>	elements	and	the		and	<c>	subelements
they	contain.	The	data()	node	test	puts	a	space	separator	between	the	<a>	elements
during	the	concatenation.

The	string()	function	is	similar	to	the	data()	node	test	in	that	it	concatenates	the
data	contained	in	the	specified	element	and	all	child	elements.	The	string()	function

requires	a	singleton	node	instance,	which	is	why	we	specified	string(/a[i])	in	the
example.	The	result	of	the	string()	function	used	in	the	example	is	123456789.
We’ll	discuss	the	text()	and	string()	functions	in	greater	detail	later	in	this	chapter.

XPath	and	NULL
In	all	of	the	previous	examples,	FOR	XML	PATH	maps	SQL	NULL	to	a	missing	element
or	attribute.	Consider	the	results	of	Listing	13-1	for	Kim	Abercrombie,	shown	in	Figure
13-6.	Because	her	MiddleName	in	the	table	is	NULL,	the	Name/Middle	element	is
missing	from	the	results.

Figure	13-6.	NULL	Middle	Name	Eliminated	from	the	FOR	XML	PATH	Results

If	you	want	SQL	NULL-valued	elements	and	attributes	to	appear	in	the	final	results,
use	the	ELEMENTS	XSINIL	option	of	the	FOR	XML	clause,	as	shown	in	Listing	13-6.

Listing	13-6.	FOR	XML	with	the	ELEMENTS	XSINIL	Option

SELECT

p.BusinessEntityID	AS	"Person/ID",

p.FirstName	AS	"Person/Name/First",

p.MiddleName	AS	"Person/Name/Middle",

p.LastName	AS	"Person/Name/Last",

e.EmailAddress	AS	"Person/Email"	FROM	Person.Person	p	INNER	

JOIN	Person.EmailAddress	e

ON	p.BusinessEntityID	=	e.BusinessEntityID	FOR	XML	PATH,

ELEMENTS	XSINIL;

With	the	ELEMENTS	XSINIL	option,	Kim’s	results	now	look	like	the	results	shown
in	Figure	13-7.	The	FOR	XML	PATH	clause	adds	a	reference	to	the	xsi	namespace,	and
elements	containing	SQL	NULL	are	included	but	marked	with	the	xsi:nil=“true”
attribute.

Figure	13-7.	NULL	Marked	with	the	xsi:nil	Attribute

The	WITH	XMLNAMESPACES	Clause
Namespace	support	is	provided	for	FOR	XML	clauses	and	other	XML	functions	by	the
WITH	XMLNAMESPACES	clause.	The	WITH	XMLNAMESPACES	clause	is	added	to	the
front	of	your	SELECT	queries	to	specify	XML	namespaces	to	be	used	by	FOR	XML
clauses	or	xml	data	type	methods.	Listing	13-7	demonstrates	the	use	of	the	WITH
XMLNAMESPACES	clause	with	FOR	XML	PATH.

Listing	13-7.	Using	WITH	XMLNAMESPACES	to	Specify	Namespaces

WITH	

XMLNAMESPACES('http://www.apress.com/xml/sampleSqlXmlNameSpace

	as	ns)

SELECT

p.BusinessEntityID	AS	"ns:Person/ID",

p.FirstName	AS	"ns:Person/Name/First",

p.MiddleName	AS	"ns:Person/Name/Middle",

p.LastName	AS	"ns:Person/Name/Last",

e.EmailAddress	AS	"ns:Person/Email"

FROM	Person.Person	p

INNER	JOIN	Person.EmailAddress	e

ON	p.BusinessEntityID	=	e.BusinessEntityID

FOR	XML	PATH;

The	WITH	XMLNAMESPACES	clause	in	this	example	declares	a	namespace	called	ns
with	the	URI	http://www.apress.com/xml/sampleSqlXmlNameSpace.	The
FOR	XML	PATH	clause	adds	this	namespace	prefix	to	the	Person	element,	as	indicated	in
the	XPath	expressions	used	to	define	the	structure	of	the	result.	A	sample	of	the	results	is
shown	in	Figure	13-8.

http://www.apress.com/xml/sampleSqlXmlNameSpace
http://www.apress.com/xml/sampleSqlXmlNameSpace

Figure	13-8.	Adding	an	XML	Namespace	to	the	FOR	XML	PATH	Results

Node	Tests
In	addition	to	the	previous	options,	the	FOR	XML	PATH	XPath	implementation	supports
four	node	tests,	including	the	following:

The	text()	node	test	turns	the	string	value	of	a	column	into	a	text
node.

The	comment()	node	test	turns	the	string	value	of	a	column	into	an
XML	comment.

The	node()	node	test	turns	the	string	value	of	a	column	into	inline
XML	content;	it	is	the	same	as	using	the	wildcard	*	as	the	name.

The	processing-instruction(name)	node	test	turns	the
string	value	of	a	column	into	an	XML-processing	instruction	with	the
specified	name.

Listing	13-8	demonstrates	use	of	XPath	node	tests	as	column	names	in	a	FOR	XML
PATH	query.	The	results	are	shown	in	Figure	13-9.

Listing	13-8.	FOR	XML	PATH	Using	XPath	Node	Tests

SELECT

p.NameStyle	AS	"processing-instruction(nameStyle)",

p.BusinessEntityID	AS	"Person/@ID",

p.ModifiedDate	AS	"comment()",

pp.PhoneNumber	AS	"text()",

FirstName	AS	"Person/Name/First",

MiddleName	AS	"Person/Name/Middle",

LastName	AS	"Person/Name/Last",

EmailAddress	AS	"Person/Email"

FROM	Person.Person	p

INNER	JOIN	Person.EmailAddress	e

ON	p.BusinessEntityID	=	e.BusinessEntityID

INNER	JOIN	Person.PersonPhone	pp

ON	p.BusinessEntityID	=	pp.BusinessEntityID

FOR	XML	PATH;

Figure	13-9.	Using	Node	Tests	with	FOR	XML	PATH

In	this	example,	the	NameStyle	column	value	is	turned	into	an	XML-processing
instruction	called	nameStyle,	the	ModifiedDate	column	is	turned	into	an	XML
comment,	and	the	contact	PhoneNumber	is	turned	into	a	text	node	for	each	person	in	the
AdventureWorks	database.

XQuery	and	the	xml	Data	Type
XQuery	represents	the	most	advanced	standardized	XML	querying	language	to	date.
Designed	as	an	extension	to	the	W3C	XPath	2.0	standard,	XQuery	is	a	case-sensitive,
declarative,	functional	language	with	a	rich	type	system	based	on	the	XDM.	The	SQL
Server	2014	xml	data	type	supports	querying	of	XML	data	using	a	subset	of	XQuery	via
the	query()	method.	Before	diving	into	the	details	of	the	SQL	Server	implementation,
we	are	going	to	start	this	section	with	a	discussion	of	XQuery	basics.

Expressions	and	Sequences
XQuery	introduces	several	advances	on	the	concepts	introduced	by	XPath	and	other
previous	XML	query	tools	and	languages.	Two	of	the	most	important	concepts	in	XQuery
are	expressions	and	sequences.	A	sequence	is	an	ordered	collection	of	items—either	nodes
or	atomic	values.	The	word	ordered,	as	it	applies	to	sequences,	does	not	necessarily	mean
numeric	or	alphabetic	order.	Sequences	are	generally	in	document	order	(the	order	in
which	their	contents	appear	in	the	raw	XML	document	or	data)	by	default,	unless	you
specify	a	different	ordering.	The	roughly	analogous	XPath	1.0	structure	was	known	as	a
node	set,	a	name	that	implies	ordering	was	unimportant.	Unlike	the	relational	model,
however,	the	order	of	nodes	is	extremely	important	to	XML.	In	XML,	the	ordering	of

nodes	and	content	provides	additional	context	and	can	be	just	as	important	as	the	data
itself.	The	XQuery	sequence	was	defined	to	ensure	that	the	importance	of	proper	ordering
is	recognized.	There	are	also	some	other	differences	that	we	will	cover	later	in	this	section.

Sequences	can	be	returned	by	XQuery	expressions	or	created	by	enclosing	one	of	the
following	in	parentheses:

Lists	of	items	separated	by	the	comma	operator	(,)

Range	expressions

Filter	expressions

	Tip		Range	expressions	and	the	range	expression	keyword	to	are	not	supported	in	SQL
Server	2014	XQuery.	If	you	are	converting	an	XQuery	with	range	expressions	like	(1	to
10),	you	will	have	to	modify	it	to	run	on	SQL	Server	2014.

A	sequence	created	as	a	list	of	items	separated	by	the	comma	operator	might	look	like
the	following:

(1,	2,	3,	4,	(5,	6),	7,	8,	(),	9,	10)

The	comma	operator	evaluates	each	of	the	items	in	the	sequence	and	concatenates	the
result.	Sequences	cannot	be	nested,	so	any	sequences	within	sequences	are	“flattened	out.”
Also,	the	empty	sequence	(a	sequence	containing	no	items,	denoted	by	empty	parentheses:
())	is	eliminated.	Evaluation	of	the	previous	sample	sequence	results	in	the	following
sequence	of	ten	items:

(1,	2,	3,	4,	5,	6,	7,	8,	9,	10)

Notice	that	the	nested	sequence	(5,	6)	has	been	flattened	out,	and	the	empty
sequence	()	is	removed	during	evaluation.

	Tip		SQL	Server	2014	XQuery	does	not	support	the	W3C-specified	sequence	operators
union,	intersect,	and	except.	If	you	are	porting	XQuery	code	that	uses	these
operators,	it	will	have	to	be	modified	to	run	on	SQL	Server	2008.

Another	method	of	generating	a	sequence	is	with	a	filter	expression.	A	filter
expression	is	a	primary	expression	followed	by	zero	or	more	predicates.	An	example	of	a
filter	expression	to	generate	a	sequence	might	look	like	the	following:

(//Coordinates/*/text())

An	important	property	of	sequences	is	that	a	sequence	of	one	item	is	indistinguishable
from	a	singleton	atomic	value.	So	the	sequence	(1.0)	is	equivalent	to	the	singleton
atomic	value	1.0.

Sequences	come	in	three	flavors:	empty	sequences,	homogeneous	sequences,	and
heterogeneous	sequences.	Empty	sequences	are	sequences	that	contain	no	items.	As
mentioned	before,	the	empty	sequence	is	annotated	with	a	set	of	empty	parentheses:	().

Homogeneous	sequences	are	sequences	of	one	or	more	items	of	the	same	or
compatible	types.	The	examples	already	given	are	all	examples	of	homogenous	sequences.

Heterogeneous	sequences	are	sequences	of	two	or	more	items	of	incompatible	types,
or	singleton	atomic	types	and	nodes.	The	following	is	an	example	of	a	heterogeneous
sequence:

(“Harry”,	299792458,	xs:date(“2006-12-29Z”))

SQL	Server	does	not	allow	heterogeneous	sequences	that	mix	nodes	with	singleton
atomic	values.	Trying	to	declare	the	following	sequence	results	in	an	error:

(<tag/>,	“you	are	it!”)

	Note		Singleton	atomic	values	are	defined	as	values	that	are	in	the	value	space	of	the
atomic	types.	The	value	space	is	the	complete	set	of	values	that	can	be	expressed	with	a
given	type.	For	instance,	the	complete	value	space	for	the	xs:boolean	type	is	true
and	false.	Singleton	atomic	values	are	indivisible	for	purposes	of	the	XDM	standard
(although	you	can	extract	portions	of	their	content	in	some	situations).	Values	that	fall	into
this	space	are	decimals,	integers,	dates,	strings,	and	other	primitive	data	types.

Primary	expressions	are	the	building	blocks	of	XQuery.	An	expression	in	XQuery
evaluates	to	a	singleton	atomic	value	or	a	sequence.	Primary	expressions	can	be	any	of
several	different	items,	including	the	following:

Literals:	These	include	string	and	numeric	data	type	literals.	String
literals	can	be	enclosed	in	either	single	or	double	quotes	and	may
contain	the	XML-defined	entity	references	>,	<,	&,
",	and	',	or	Unicode	character	references	such	as	€,
which	represents	the	euro	symbol	(€).

Variable	references:	These	are	XML-qualified	names	(QNames)
preceded	by	a	$	sign.	A	variable	reference	is	defined	by	its	local
name.	Note	that	SQL	Server	2012	does	not	support	variable	references
with	namespace	URI	prefixes,	which	are	allowed	under	the	W3C
recommendation.	An	example	of	a	variable	reference	is	$count.

Parenthesized	expressions:	These	are	expressions	enclosed	in
parentheses.	Parenthesized	expressions	are	often	used	to	force	a
specific	order	of	operator	evaluation.	For	instance,	in	the	expression
(3	+	4)	*	2,	the	parentheses	force	the	addition	to	be	performed
before	the	multiplication.

Context	item	expressions:	These	are	expressions	that	evaluate	to	the
context	item.	The	context	item	is	the	node	or	atomic	value	currently
being	referenced	by	the	XQuery	query	engine.

Function	calls:	These	are	composed	of	a	QName	followed	by	a	list	of
arguments	in	parentheses.	Function	calls	can	reference	built-in
functions.	SQL	Server	2014	does	not	support	XQuery	user-defined

functions.

The	query	Method
The	query()	method	can	be	used	to	query	and	retrieve	XML	nodes	from	xml	variables
or	xml-typed	columns	in	tables,	as	demonstrated	in	Listing	13-9,	with	partial	results
shown	in	Figure	13-10.

Listing	13-9.	Retrieving	Job	Candidates	with	the	query	Method

SELECT	Resume.query

(

N'//*:Name.First,

//*:Name.Middle,

//*:Name.Last,

//*:Edu.Level'

)

FROM	HumanResources.JobCandidate;

Figure	13-10.	Sample	Job	Candidate	Returned	by	the	query	Method

The	simple	XQuery	query	retrieves	all	first	names,	middle	names,	last	names,	and
education	levels	for	all	AdventureWorks	job	candidates.	The	XQuery	path	expressions	in
the	example	demonstrate	some	key	XQuery	concepts,	including	the	following:

The	first	item	of	note	is	the	//	axis	at	the	beginning	of	each	path
expression.	This	axis	notation	is	defined	as	shorthand	for	the
descendant-or-self::node(),	which	we’ll	describe	in	more
detail	in	the	next	section.	This	particular	axis	retrieves	all	nodes	with	a
name	matching	the	location	step,	regardless	of	where	it	occurs	in	the
XML	being	queried.

In	the	example,	the	four	node	tests	specified	are	Name.First,
Name.Middle,	Name.Last,	and	Edu.Level.	All	nodes	with	the
names	that	match	the	node	tests	are	returned	no	matter	where	they
occur	in	the	XML.

The	*	namespace	qualifier	is	a	wildcard	that	matches	any	namespace
occurring	in	the	XML.	Each	node	in	the	result	node	sequence	includes
an	xmlns	namespace	declaration.

This	XQuery	query	is	composed	of	four	different	paths	denoting	the
four	different	node	sequences	to	be	returned.	They	are	separated	from
one	another	by	commas.

Location	Paths
The	location	path	determines	which	nodes	should	be	accessed	by	XQuery.	Following	a
location	path	from	left	to	right	is	generally	analogous	to	moving	down	and	to	the	right	in
your	XML	node	tree	(there	are	exceptions,	of	course,	which	we	discuss	in	the	section	on
axis	specifiers).	If	the	first	character	of	the	path	expression	is	a	single	forward	slash	(/),
then	the	path	expression	is	an	absolute	location	path,	meaning	that	it	starts	at	the	root	of
the	XML.	Listing	13-10	demonstrates	the	use	of	an	XQuery	absolute	location	path.	The
results	are	shown	in	Figure	13-11.

Listing	13-10.	Querying	with	an	Absolute	Location	Path

DECLARE	@x	xml	=	N'<?xml	version	=	"1.0"?>

<Geocode>

<Info	ID	=	"1">

<Coordinates	Resolution	=	"High">

<Latitude>37.859609</Latitude>

<Longitude>-122.291673</Longitude>

</Coordinates>

<Location	Type	=	"Business">

<Name>APress,	Inc.</Name>

</Location>

</Info>

<Info	ID	=	"2">

<Coordinates	Resolution	=	"High">

<Latitude>37.423268</Latitude>

<Longitude>-122.086345</Longitude>

</Coordinates>

<Location	Type	=	"Business">

<Name>Google,	Inc.</Name>

</Location>

</Info>

</Geocode>';

SELECT	@x.query(N'/Geocode/Info/Coordinates');

Figure	13-11.	Absolute	Location	Path	Query	Result

	Tip		The	left-hand	forward	slash	actually	stands	for	a	conceptual	root	node	that
encompasses	your	XML	input.	The	conceptual	root	node	doesn’t	actually	exist,	and	can
neither	be	viewed	in	your	XML	input	nor	accessed	or	manipulated	directly.	It’s	this
conceptual	root	node	that	allows	XQuery	to	properly	process	XML	fragments	that	are	not
well	formed	(i.e.,	XML	with	multiple	root	nodes)	as	input.	Using	a	path	expression	that
consists	of	only	a	single	forward	slash	returns	every	node	below	the	conceptual	root	node
in	your	XML	document	or	fragment.

Listing	13-10	defines	an	xml	variable	and	populates	it	with	an	XML	document
containing	geocoding	data	for	a	couple	of	businesses.	We’ve	used	an	absolute	location
path	in	the	query	to	retrieve	a	node	sequence	of	the	latitude	and	longitude	coordinates	for
the	entire	XML	document.

A	relative	location	path	indicates	a	path	relative	to	the	current	context	node.	The
context	node	is	the	current	node	being	accessed	by	the	XQuery	engine	at	a	given	point
when	the	query	is	executed.	The	context	node	changes	during	execution	of	the	query.
Relative	location	paths	are	specified	by	excluding	the	leading	forward	slash,	as	in	the
following	modification	to	Listing	13-10:

SELECT	@x.query(N'Geocode/Info/Coordinates');

And,	as	previously	mentioned,	using	a	double	forward	slash	(//)	in	the	lead	position
returns	nodes	that	match	the	node	test	anywhere	they	occur	in	the	document.	The
following	modification	to	Listing	13-10	demonstrates	this:

SELECT	@x.query(N'//Coordinates');

In	addition,	the	wildcard	character	(*)	can	be	used	to	match	any	node	by	name.	The
following	example	retrieves	the	root	node,	all	of	the	nodes	on	the	next	level,	and	all
Coordinates	nodes	below	that:

SELECT	@x.query(N'//*/*/Coordinates');

Because	the	XML	document	in	the	example	is	a	simple	one,	all	the	variations	of
Listing	13-10	return	the	same	result.	For	more	complex	XML	documents	or	fragments,	the
results	of	different	relative	location	paths	could	return	completely	different	results.

Node	Tests
The	node	tests	in	the	previous	example	are	simple	name	node	tests.	For	a	name	node	test
to	return	a	match,	the	nodes	must	have	the	same	names	as	those	specified	in	the	node	tests.
In	addition	to	name	node	tests,	SQL	Server	2014	XQuery	supports	four	node	kind	tests,	as
listed	in	Table	13-1.

Table	13-1.	Supported	Node	Tests

Node	Kind	Test Description

comment() Returns	true	for	a	comment	node	only.

node() Returns	true	for	any	kind	of	node.

processing-

instruction(“name”)

Returns	true	for	a	processing	instruction	node.	The	name	parameter	is	an
optional	string	literal.	If	it	is	included,	only	processing	instruction	nodes	with
that	name	are	returned;	if	not	included,	all	processing	instructions	are
returned.

text() Returns	true	for	a	text	node	only.

	Tip		Keep	in	mind	that	XQuery,	like	XML,	is	case	sensitive.	This	means	your	node	tests
and	other	identifiers	must	all	be	of	the	proper	case.	The	identifier	PersonalID,	for
instance,	does	not	match	personalid	in	XML	or	XQuery.	Also	note	that	your	database
collation	case	sensitivity	settings	do	not	affect	XQuery	queries.

Listing	13-11	demonstrates	use	of	the	processing-instruction()	node	test	to
retrieve	the	processing	instruction	from	the	root	level	of	a	document	for	one	product
model.	The	results	are	shown	in	Figure	13-12.

Listing	13-11.	Sample	Processing-instruction	Node	Test

SELECT	CatalogDescription.query(N'/processing-

instruction()')	AS	Processing_Instr

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

Figure	13-12.	Results	of	the	Processing-instruction	Node	Test	Query

The	sample	can	be	modified	to	retrieve	all	XML	comments	from	the	source	by	using
the	comment()	node	test,	as	in	Listing	13-12.	The	results	are	shown	in	Figure	13-13.

Listing	13-12.	Sample	comment	Node	Test

SELECT	CatalogDescription.query(N'//comment()')	AS	Comments

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

Figure	13-13.	Results	of	the	comment	Node	Test	Query

Listing	13-13	demonstrates	use	of	another	node	test,	node(),	to	retrieve	the
specifications	for	product	model	19.	Results	are	shown	in	Figure	13-14.

Listing	13-13.	Sample	node	Node	Test

SELECT	

CatalogDescription.query(N'//*:Specifications/node()')	AS	

Specifications

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

Figure	13-14.	Results	of	the	node	Node	Test	Query

SQL	Server	2014	XQuery	does	not	support	other	node	kind	tests	specified	in	the
XQuery	recommendation.	Specifically,	the	schema-element(),	schema-
attribute(),	and	document-node()	kind	tests	are	not	implemented.	SQL	Server
2013	also	doesn’t	provide	support	for	type	tests,	which	are	node	tests	that	let	you	query
nodes	based	on	their	associated	type	information.

Namespaces
You	might	notice	that	the	first	node	of	the	result	shown	in	Figure	13-14	is	not	enclosed	in
XML	tags.	This	node	is	a	text	node	located	in	the	Specifications	node	being
queried.	You	might	also	notice	that	the	*	namespace	wildcard	mentioned	previously	is
used	in	this	query.	This	is	because	namespaces	are	declared	in	the	XML	of	the
CatalogDescription	column.	Specifically	the	root	node	declaration	looks	like	this:

<pl:ProductDescription

xmlns:pl=”http://schemas.microsoft.com/sqlserver/2004

07/adventure-works/ProductModelDescription”
xmlns:wm=”http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/ProductModelWarrAndMain”

xmlns:wf=”http://www.adventure-

works.com/schemas/OtherFeatures”
xmlns:html=”http://www.w3.org/1999/xhtml”	ProductModelID=“l9”
ProductModelName=“Mountain	100”>

The	Specifications	node	of	the	XML	document	is	declared	with	the	pi
namespace	in	the	document.	Not	using	a	namespace	in	the	query	at	all,	as	shown	in
Listing	13-14,	results	in	an	empty	sequence	being	returned	(no	matching	nodes).

Listing	13-14.	Querying	CatalogDescription	with	No	Namespaces

SELECT	CatalogDescription.query(N'//Specifications/node()')	

AS	Specifications

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

In	addition	to	the	wildcard	namespace	specifier,	you	can	use	the	XQuery	prolog	to
define	namespaces	for	use	in	your	query.	Listing	13-15	shows	how	the	previous	example
can	be	modified	to	include	the	p1	namespace	with	a	namespace	declaration	in	the	prolog.

Listing	13-15.	Prolog	Namespace	Declaration

SELECT	CatalogDescription.query

(

N'declare	namespace

p1	

=	"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

//p1:Specifications/node()'

)

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

The	keywords	declare	namespace	allow	you	to	declare	specific	namespaces	that
will	be	used	in	the	query.	You	can	also	use	the	declare	default	element
namespace	keywords	to	declare	a	default	namespace,	as	in	Listing	13-16.

Listing	13-16.	Prolog	Default	Namespace	Declaration

SELECT	CatalogDescription.query

(

N'declare	default	element	namespace

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

//Specifications/node()'

)

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

Declaring	a	default	namespace	with	the	declare	default	element
namespace	keywords	allows	you	to	eliminate	namespace	prefixes	in	your	location	paths
(for	steps	that	fall	within	the	scope	of	the	default	namespace,	of	course).	Listings	13-15
and	13-16	both	generate	the	same	result	as	the	query	in	Listing	13-13.

	Tip		You	can	also	use	the	T-SQL	WITH	XMLNAMESPACES	clause,	described
previously	in	this	chapter,	to	declare	namespaces	for	use	by	xml	data	type	methods.

SQL	Server	defines	an	assortment	of	predeclared	namespaces	that	can	be	used	in	your
queries.	With	the	exception	of	the	xml	namespace,	you	can	redeclare	these	namespaces	in

your	queries	using	the	URIs	of	your	choice.	The	predeclared	namespaces	are	listed	in
Table	13-2.
Table	13-2.	SQL	Server	Predeclared	XQuery	Namespaces

Namespace URI Description

Fn http://www.w3.org/2005/xpath-functions

XQuery	1.0,
XPath	2.0,
XSLT	2.0
functions	and
operators
namespace.

Sqltypes http://schemas.microsoft.com/sqlserver/2004/sqltypes

This
namespace
provides	SQL
Server	2005	to
base	type
mapping.

Xdt http://www.w3.org/2005/xpath-datatypes/

XQuery
1.0/XPath	2.0
data	types
namespace.

Xml http://www.w3.org/XML/1998/namespace
Default	XML
namespace.

Xs http://www.w3.org/2001/XMLSchema
XML	schema
namespace.

Xsi http://www.w3.org/2001/

XML	schema
instance
namespace;
XMLSchema-

instance.

	Tip		The	W3C-specified	local	functions	namespace,	local
(http://www.w3.org/2005/xquery-local-functions),	is	not	predeclared
in	SQL	Server.	SQL	Server	2014	does	not	support	XQuery	user-defined	functions.

Another	useful	namespace	is	http://www.w3.org/2005/xqt-errors,	which
is	the	namespace	for	XPath	and	XQuery	function	and	operator	error	codes.	In	the	XQuery
documentation,	this	URI	is	bound	to	the	namespace	err,	though	this	is	not	considered
normative.

Axis	Specifiers
Axis	specifiers	define	the	direction	of	movement	of	a	location	path	step	relative	to	the
current	context	node.	The	XQuery	standard	defines	several	axis	specifiers,	which	can	be
defined	as	forward	axes	or	reverse	axes.	SQL	Server	2014	supports	a	subset	of	these	axis
specifiers,	as	listed	in	Table	13-3.

http://www.w3.org/2005/xpath-functions
http://schemas.microsoft.com/sqlserver/2004/sqltypes
http://www.w3.org/2005/xpath-datatypes/
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/
http://www.w3.org/2005/xquery-local-functions
http://www.w3.org/2005/xqt-errors

Table	13-3.	SQL	2014	Supported	Axis	Specifiers

Axis	Name Direction Description

child:: Forward Retrieves	the	children	of	the	current	context	node.

descendant:: Forward Retrieves	all	descendents	of	the	current	context	node,	recursive	style.	This
includes	children	of	the	current	node,	children	of	the	children,	and	so	on.

self:: Forward Contains	just	the	current	context	node.

descendant-

or-self::
Forward Contains	the	context	node	and	children	of	the	current	context	node.

attribute:: Forward Returns	the	specified	attribute(s)	of	the	current	context	node.	This	axis
specifier	may	be	abbreviated	using	an	at	sign	(@).

parent:: Reverse Returns	the	parent	of	the	current	context	node.	This	axis	specifier	may	be
abbreviated	as	two	periods	(..).

In	addition,	the	context-item	expression,	indicated	by	a	single	period	(.),	returns	the
current	context	item	(which	can	be	either	a	node	or	an	atomic	value).	The	current	context
item	is	the	current	node	or	atomic	value	being	processed	by	the	XQuery	engine	at	any
given	point	during	query	execution.

	Note		The	following	axes,	defined	as	optional	axes	by	the	XQuery	1.0	specification,	are
not	supported	by	SQL	Server	2014:	following-sibling::,	following::,
ancestor::,	preceding-sibling::,	preceding::,	ancestor-or-
self::,	and	the	deprecated	namespace::.	If	you	are	porting	XQuery	queries	from
other	sources,	they	may	have	to	be	modified	to	avoid	these	axis	specifiers.

In	all	of	the	examples	so	far,	the	axis	has	been	omitted,	and	the	default	axis	of
child::	is	assumed	by	XQuery	in	each	step.	Because	child::	is	the	default	axis,	the
two	queries	in	Listing	13-17	are	equivalent.

Listing	13-17.	Query	with	and	Without	Default	Axes

SELECT	

CatalogDescription.query(N'//*:Specifications/node()')	AS	

Specifications

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

SELECT	

CatalogDescription.query(N'//child::*:Specifications/child::node()')

AS	Specifications

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

Listing	13-18	demonstrates	the	use	of	the	parent::	axis	to	retrieve	Coordinates
nodes	from	the	sample	XML.

Listing	13-18.	Sample	Using	the	parent::	Axis

DECLARE	@x	xml	=	N'<?xml	version	=	"1.0"?>

<Geocode>

<Info	ID	=	"1">

<Coordinates	Resolution	=	"High">

<Latitude>37.859609</Latitude>

<Longitude>-122.291673</Longitude>

</Coordinates>

<Location	Type	=	"Business">

<Name>APress,	Inc.</Name>

</Location>

</Info>

<Info	ID	=	"2">

<Coordinates	Resolution	=	"High">

<Latitude>37.423268</Latitude>

<Longitude>-122.086345</Longitude>

</Coordinates>

<Location	Type	=	"Business">

<Name>Google,	Inc.</Name>

</Location>

</Info>

</Geocode>';

SELECT	@x.query(N'//Location/parent::node()/Coordinates');

This	particular	query	locates	all	Location	nodes,	then	uses	the	parent::	axis	to
retrieve	their	parent	nodes	(Info	nodes),	and	finally	returns	the	Coordinates	nodes,
which	are	children	of	the	Info	nodes.	The	end	result	is	shown	in	Figure	13-15.

Figure	13-15.	Retrieving	Coordinates	Nodes	with	the	parent::	Axis

Dynamic	XML	Construction
The	XQuery	1.0	recommendation	is	based	on	XPath	2.0,	which	is	in	turn	based	largely	on
XPath	1.0.	The	XPath	1.0	recommendation	was	designed	to	consolidate	many	of	the	best
features	of	both	the	W3C	XSLT	and	XPointer	recommendations.	One	of	the	benefits	of
XQuery’s	lineage	is	its	ability	to	query	XML	and	dynamically	construct	well-formed	XML
documents	from	the	results.	Consider	the	example	in	Listing	13-19,	which	uses	an	XQuery

direct	constructor	to	create	an	XML	document.	Figure	13-16	shows	the	results.

Listing	13-19.	XQuery	Dynamic	XML	Construction

DECLARE	@x	xml	=	N'<?xml	version	=	"1.0"?>

<Geocode>

								<Info	ID	=	"1">

								<Location	Type	=	"Business">

								<Name>APress,		Inc.</Name>

								</Location>

								</Info>

								<Info	ID	=	"2">

								<Location	Type	=	"Business">

								<Name>Google,		Inc.</Name>

								</Location>

								</Info>

</Geocode>';

SELECT		@x.query(N'<Companies>

								{

								//Info/Location/Name

								}

</Companies>');

Figure	13-16.	Dynamic	Construction	of	XML	with	XQuery

The	direct	constructor	in	the	XQuery	example	looks	like	this:

<Companies>

{

//Info/Location/Name

}

</Companies>

The	<Companies>	and	</Companies>	opening	and	closing	tags	in	the	direct
constructor	act	as	the	root	tag	for	the	XML	result.	The	opening	and	closing	tags	contain
the	content	expression,	which	consists	of	the	location	path	used	to	retrieve	the	nodes.	The
content	expression	is	wrapped	in	curly	braces	between	the	<Companies>	and
</Companies>	tags:

{

//Info/Location/Name

}

	Tip		If	you	need	to	output	curly	braces	in	your	constructed	XML	result,	you	can	escape
them	by	doubling	them	up	in	your	query	using	{{	and	}}.

You	can	also	use	the	element,	attribute,	and	text	computed	constructors	to
build	your	XML	result,	as	demonstrated	in	Listing	13-20,	with	the	result	shown	in	Figure
13-17.

Listing	13-20.	Element	and	Attribute	Dynamic	Constructors

SELECT	CatalogDescription.query

(

N'declare	namespace

p1	

=	"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

//p1:Specifications/node()'

)

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

DECLARE	@x	xml	=	N'<?xml	version	=	"1.0"?>

<Geocode>

<Info	ID	=	"1">

<Location	Type	=	"Business">

<Name>APress,	Inc.</Name>

<Address>

<Street>2560	Ninth	St,	Ste	219</Street>

<City>Berkeley</City>

<State>CA</State>

<Zip>94710-2500</Zip>

<Country>US</Country>

</Address>

</Location>

</Info>

</Geocode>';

SELECT	@x.query

(

N'element	Companies

{

element	FirstCompany

{

attribute	CompanyID

{

(//Info/@ID)[1]

},

(//Info/Location/Name)[1]

}

}'

);

Figure	13-17.	Results	of	the	XQuery	Computed	Element	Construction

The	element	Companies	computed	element	constructor	creates	the	root
Companies	node.	The	FirstCompany	node	is	constructed	as	a	child	node	using
another	element	constructor:

element	Companies

{

element	FirstCompany

{

...

}

}

The	content	expressions	of	the	FirstCompany	elements	are	where	the	real	action
takes	place:

element	FirstCompany

{

attribute	CompanyID

{

(//Info/@ID)[1]

},

(//Info/Location/Name)[1]

}

The	CompanyID	dynamic	attribute	constructor	retrieves	the	ID	attribute	from	the
first	Info	node.	The	predicate	[l]	in	the	path	ensures	that	only	the	first	//Info/@ID
is	returned.	This	path	location	could	also	be	written	like	this:

//Info[l]/@ID

The	second	path	location	retrieves	the	first	Name	node	for	the	first	Location	node
of	the	first	Info	node.	Again,	the	[1]	predicate	ensures	that	only	the	first	matching	node
is	returned.	The	path	is	equivalent	to	the	following:

//Info[l]/Location[l]/Name[l]

To	retrieve	the	second	node,	change	the	predicate	to	[2],	and	so	on.

	Tip		By	definition,	a	predicate	that	evaluates	to	a	numeric	singleton	value	(such	as	the
integer	constant	1)	is	referred	to	as	a	numeric	predicate.	The	effective	Boolean	value	is
true	only	when	the	context	position	is	equal	to	the	numeric	predicate	expression.	When
the	numeric	predicate	is	3,	for	instance,	the	predicate	truth	value	is	true	only	for	the	third
context	position.	This	is	a	handy	way	to	limit	the	results	of	an	XQuery	query	to	a	single
specific	node.

XQuery	Comments
XQuery	comments	(not	to	be	confused	with	XML	comment	nodes)	are	used	to	document
your	queries	inline.	You	can	include	them	in	XQuery	expressions	by	enclosing	them	with
the	(:	and	:)	symbols	(just	like	the	smiley	face	emoticon).	Comments	can	be	used	in
your	XQuery	expressions	anywhere	ignorable	whitespace	is	allowed,	and	they	can	be
nested.	XQuery	comments	have	no	effect	on	query	processing.	The	following	example
modifies	the	query	in	Listing	13-19	to	include	XQuery	comments:

SELECT	@x.query	(N'<Companies>	(:	This	is	the	root	node	:)	

{

//Info/Location/Name	(:	Retrieves	all	company	names	(:	ALL	

of	them	:)	:)	}	</Companies>');

You	will	see	XQuery	comments	used	in	some	of	the	examples	later	in	this	chapter.

Data	Types
XQuery	maintains	the	string	value	and	typed	value	for	all	nodes	in	the	referenced	XML.
XQuery	defines	the	string	value	of	an	element	node	as	the	concatenated	string	values	of
the	element	node	and	all	its	child	element	nodes.	The	type	of	a	node	is	defined	in	the	XML
schema	collection	associated	with	the	xml	variable	or	column.	As	an	example,	the	built-in
AdventureWorks	Production.ManuInstructionsSchemaCollection	XML
schema	collection	defines	the	LocationID	attribute	of	the	Location	element	as	an
xsd:integer:

<xsd:attribute	name="LocationID"	type="xsd:integer"	

use="required"	/>

Every	instance	of	this	attribute	in	the	XML	of	the	Instructions	column	of	the
Production.ProductModel	table	must	conform	to	the	requirements	of	this	data
type.	Typed	data	can	also	be	manipulated	according	to	the	functions	and	operators	defined
for	this	type.	For	untyped	XML,	the	typed	data	is	defined	as	xdt:untypedAtomic.	A
listing	of	XDM	data	types	available	to	SQL	Server	via	XQuery	is	given	in	Appendix	B.

Predicates

An	XQuery	predicate	is	an	expression	that	evaluates	to	one	of	the	xs:boolean	values
true	or	false.	In	XQuery,	predicates	are	used	to	filter	the	results	of	a	node	sequence,
discarding	nodes	that	don’t	meet	the	specified	criteria	from	the	results.	Predicates	limit	the
results	by	converting	the	result	of	the	predicate	expression	into	an	xs:boolean	value,
referred	to	as	the	predicate	truth	value.	The	predicate	truth	value	is	determined	for	each
item	of	the	input	sequence	according	to	the	following	rules:

1.	 If	the	type	of	the	expression	is	numeric,	the	predicate	truth	value	is
true	if	the	value	of	the	predicate	expression	is	equal	to	the	context
position;	otherwise	for	a	numeric	predicate,	the	predicate	truth
value	is	false.

2.	 If	the	type	of	the	expression	is	a	string,	the	predicate	is	false	if
the	length	of	the	expression	is	0.	For	a	string	type	expression	with	a
length	greater	than	0,	the	predicate	truth	value	is	true.

3.	 If	the	type	of	the	expression	is	xs:boolean,	the	predicate	truth
value	is	the	value	of	the	expression.

4.	 If	the	expression	results	in	an	empty	sequence,	the	predicate	truth
value	is	false.

5.	 If	the	value	of	the	predicate	expression	is	a	node	sequence,	the
predicate	truth	value	is	true	if	the	sequence	contains	at	least	one
node;	otherwise	it	is	false.

Queries	that	include	a	predicate	return	only	nodes	in	a	sequence	for	which	the
predicate	truth	value	evaluates	to	true.	Predicates	are	composed	of	expressions,
conveniently	referred	to	as	predicate	expressions,	enclosed	in	square	brackets	([]).	You
can	specify	multiple	predicates	in	a	path,	and	they	are	evaluated	in	order	of	occurrence
from	left	to	right.

	Note		The	XQuery	specification	says	that	multiple	predicates	are	evaluated	from	left	to
right,	but	it	also	gives	some	wiggle	room	for	vendors	to	perform	predicate	evaluations	in
other	orders,	allowing	them	to	take	advantage	of	vendor-specific	features	such	as	indexes
and	other	optimizations.	You	don’t	have	to	worry	too	much	about	the	internal	evaluation
order	of	predicates,	though.	No	matter	what	order	predicates	are	actually	evaluated	in,	the
end	results	have	to	be	the	same	as	if	the	predicates	were	evaluated	left	to	right.

Value	Comparison	Operators
As	we	mentioned,	the	basic	function	of	predicates	is	to	filter	results.	Results	are	filtered	by
specified	comparisons,	and	XQuery	offers	a	rich	set	of	comparison	operators.	These
operators	fall	into	three	main	categories:	value	comparison	operators,	general	comparison
operators,	and	node	comparison	operators.	Value	comparison	operators	compare	singleton
atomic	values	only.	Trying	to	compare	sequences	with	value	comparison	operators	results
in	an	error.	The	value	comparison	operators	are	listed	in	Table	13-4.

Table	13-4.	Value	Comparison	Operators

Operator Description

Eq Equal

Ne Not	equal

Lt Less	than

Le Less	than	or	equal	to

Gt Greater	than

Ge Greater	than	or	equal	to

Value	comparisons	follow	a	specific	set	of	rules:

1.	 The	operands	on	the	left	and	right	sides	of	the	operator	are
atomized.

2.	 If	either	atomized	operand	is	an	empty	sequence,	the	result	is	an
empty	sequence.

3.	 If	either	atomized	operand	is	a	sequence	with	a	length	greater	than
1,	an	error	is	raised.

4.	 If	either	atomized	operand	is	of	type	xs:untypedAtomic,	it	is
cast	to	xs:string.

5.	 If	the	operands	have	compatible	types,	they	are	compared	using	the
appropriate	operator.	If	the	comparison	of	the	two	operands	using
the	chosen	operator	evaluates	to	true,	the	result	is	true;
otherwise	the	result	is	false.	If	the	operands	have	incompatible
types,	an	error	is	thrown.

Consider	the	value	comparison	examples	in	Listing	13-21,	with	results	shown	in
Figure	13-18.

Listing	13-21.	Value	Comparison	Examples

DECLARE	@x	xml	=	N'<?xml	version	=	"1.0"	?>

<Animal>

Cat

</Animal>';

SELECT	@x.query(N'9	eq	9.0	(:	9	is	equal	to	9.0	:)');

SELECT	@x.query(N'4	gt	3	(:	4	is	greater	than	3	:)');

SELECT	@x.query(N'(/Animal/text())[1]	lt	"Dog"	(:	Cat	is	

less	than	Dog	:)')	;

Figure	13-18.	Results	of	the	XQuery	Value	Comparisons

Listing	13-22	attempts	to	compare	two	values	of	incompatible	types,	namely	an
xs:decimal	type	value	and	an	xs:string	value.	The	result	is	the	error	message
shown	in	the	results	following.

Listing	13-22.	Incompatible	Type	Value	Comparison

DECLARE	@x	xml	=	N'';

SELECT	@x.query(N'3.141592	eq	"Pi"')	;

Msg	2234,	Level	16,	State	1,	Line	2

XQuery	[query()]:	The	operator	"eq"	cannot	be	applied	to	

"xs:decimal"	and	"xs:string"	operands.

General	Comparison	Operators
General	comparisons	are	existential	comparisons	that	work	on	operand	sequences	of	any
length.	Existential	simply	means	that	if	one	atomized	value	from	the	first	operand
sequence	fulfills	a	value	comparison	with	at	least	one	atomized	value	from	the	second
operand	sequence,	the	result	is	true.	The	general	comparison	operators	will	look	familiar
to	programmers	who	are	versed	in	other	computer	languages,	particularly	C-style
languages.	The	general	comparison	operators	are	listed	in	Table	13-5.

Table	13-5.	General	Comparison	Operators

Operator Description

= Equal

!= Not	equal

< Less	than

> Greater	than

<= Less	than	or	equal	to

>= Greater	than	or	equal	to

Listing	13-23	demonstrates	comparisons	using	general	comparisons	on	XQuery

sequences.	The	results	are	shown	in	Figure	13-19.

Listing	13-23.	General	Comparison	Examples

DECLARE	@x	xml	=	'';

SELECT	@x.query('(3.141592,	1)	=	(2,	3.141592)	(:	true	:)	

');

SELECT	@x.query('(1.0,	2.0,	3.0)	=	1	(:	true	:)	');

SELECT	@x.query('("Joe",	"Harold")	<	"Adam"	(:	false	:)	');

SELECT	@x.query('xs:date("1999-01-01")	<	xs:date("2006-01-

01")	(:	true	:)');

Figure	13-19.	General	XQuery	Comparison	Results

Here’s	how	the	general	comparison	operators	work.	The	first	query	compares	the
sequences	(3.141592,	1)	and	(2,	3.141592)	using	the	=	operator.	The
comparison	atomizes	the	two	operand	sequences	and	compares	them	using	the	rules	for
the	equivalent	value	comparison	operators.	Since	the	atomic	value	3.141592	exists	in
both	sequences,	the	equality	test	result	is	true.

The	second	example	compares	the	sequence	(1.0,	2.0,	3.0)	to	the	atomic	value
1.	The	atomic	values	1.0	and	1	are	compatible	types	and	are	equal,	so	the	equality	test
result	is	true.	The	third	query	returns	false	because	neither	of	the	atomic	values	Doe
or	Harold	are	lexically	less	than	the	atomic	value	Adam.

The	final	example	compares	two	xs:date	values.	Since	the	date	1999-01-01	is
less	than	the	date	2006-01-01,	the	result	is	true.

Xquery	Date	Format
The	XQuery	implementation	in	SQL	Server	2005	had	a	special	requirement	concerning
xs:date,	xs:time,	xs:dateTime,	and	derived	types.	According	to	a	subset	of	the
ISO	8601	standard	that	SQL	Server	2005	uses,	date	and	time	values	had	to	include	a
mandatory	time	offset	specifier.	SQL	Server	2014	does	not	strictly	enforce	this	rule.	When
you	leave	the	time	offset	information	off	an	XQuery	date	or	time	value,	SQL	Server	2014
defaults	to	the	zero	meridian	(Zspecifier).

SQL	Server	2014	also	differs	from	SQL	Server	2005	in	how	it	handles	time	offset
information.	In	SQL	Server	2005,	all	dates	were	automatically	normalized	to	coordinated

universal	time	(UTC).	SQL	Server	2014	stores	the	time	offset	information	you	indicate
when	specifying	a	date	or	time	value.	If	a	time	zone	is	provided,	it	must	follow	the	date	or
time	value,	and	can	be	either	of	the	following:

The	capital	letter	Z,	which	stands	for	the	zero	meridian,	or	UTC.	The	zero	meridian
runs	through	Greenwich,	England.

An	offset	from	the	zero	meridian	in	the	format	[+/-]hh:mm.	For	instance,	the	US
Eastern	Time	zone	would	be	indicated	as	-05:00.

Here	are	a	few	sample	ISO	8601	formatted	dates	and	times	acceptable	to	SQL	Server,
with	descriptions:

1999-05-16:	May	16,1999,	no	time,	UTC

09:15:00-05:00:	No	date,	9:15	am,	US	and	Canada	Eastern	time

2003-12-25T20:00:00-08:00:	December	25,	2003,	8:00	pm,	US	and
Canada	Pacific	time

2004-07-06T23:59:59.987+01:00:	July	6,	2004,11:59:59.987	pm	(.987
is	fractional	seconds),	Central	European	time

Unlike	the	homogenous	sequences	in	Listing	13-23,	a	heterogeneous	sequence	is	one
that	combines	nodes	and	atomic	values,	or	atomic	values	of	incompatible	types	(such	as
xs:string	and	xs:decimal).	Trying	to	perform	a	general	comparison	with	a
heterogeneous	sequence	causes	an	error	in	SQL	Server,	as	demonstrated	by	Listing	13-24.

Listing	13-24.	General	Comparison	with	Heterogeneous	Sequence

DECLARE	@x	xml	=	'';

SELECT	@x.query('(xs:date("2006-10-09"),	6.02E23)	>	

xs:date("2007-01-01")');

The	error	generated	by	Listing	13-24	looks	like	the	following:

Msg	9311,	Level	16,	State	1,	Line	3

XOuery	[queryQ]:	Heterogeneous	sequences	are	not	allowed	in	

V,	found

'xs:date'	and	'xs:double'.

SQL	Server	also	disallows	heterogeneous	sequences	that	mix	nodes	and	atomic	values,
as	demonstrated	by	Listing	13-25.

Listing	13-25.	Mixing	Nodes	and	Atomic	Values	in	Sequences

DECLARE	@x	xml	=	'';

SELECT	@x.query('(1,	<myNode>Testing</myNode>)');

Trying	to	mix	and	match	nodes	and	atomic	values	in	a	sequence	like	this	results	in	an
error	message	indicating	that	you	tried	to	create	a	sequence	consisting	of	atomic	values

and	nodes,	similar	to	the	following:

Msg	2210,	Level	16,	State	1,	Line	3

XOuery	[queryQ]:	Heterogeneous	sequences	are	not	allowed:	

found

'xs:integer'	and	'element(myl\lode,xdt:untyped)'

Node	Comparisons
The	third	type	of	comparison	that	XQuery	allows	is	a	node	comparison.	Node
comparisons	allow	you	to	compare	XML	nodes	in	document	order.	The	node	comparison
operators	are	listed	in	Table	13-6.

Table	13-6.	Node	Comparison	Operators

Operator Description

Is Node	identity	equality

<< Left	node	precedes	right	node

>> Left	node	follows	right	node

The	is	operator	compares	two	nodes	to	each	other	and	returns	true	if	the	left	node	is
the	same	node	as	the	right	node.	Note	that	this	is	not	a	test	of	the	equality	of	node	content
but	rather	of	the	actual	nodes	themselves	based	on	an	internally	generated	node	ID.
Consider	the	sample	node	comparisons	in	Listing	13-26	with	results	shown	in	Figure	13-
20.

Listing	13-26.	Node	Comparison	Samples

DECLARE	@x	xml	=	N'<?xml	version	=	"1.0"?>

<Root>

<NodeA>Test	Node</NodeA>

<NodeA>Test	Node</NodeA>

<NodeB>Test	Node</NodeB>

</Root>';

SELECT	@x.query('((/Root/NodeA)[1]	is	(//NodeA)[1])	(:	true	

:)');

SELECT	@x.query('((/Root/NodeA)[1]	is	(/Root/NodeA)[2])	(:	

false	:)');

SELECT	@x.query('((/Root/NodeA)[2]	<<	(/Root/NodeB)[1])	(:	

true	:)');

Figure	13-20.	Results	of	the	XQuery	Node	Comparisons

The	first	query	uses	the	is	operator	to	compare	(/Root/NodeA)[l]	to	itself.	The
[l]	numeric	predicate	at	the	end	of	the	path	ensures	that	only	a	single	node	is	returned
for	comparison.	The	right-hand	and	left-hand	expressions	must	both	evaluate	to	a
singleton	or	empty	sequence.	The	result	of	this	comparison	is	true	only	because
(/Root/NodeA)[l]	is	the	same	node	returned	by	the	(//NodeA)[l]	path	on	the
right-hand	side	of	the	operator.

The	second	query	compares	(/Root/NodeA)[l]	with	(/Root/NodeA)[2].
Even	though	the	two	nodes	have	the	same	name	and	content,	they	are	in	fact	different
nodes.	Because	they	are	different	nodes,	the	is	operator	returns	false.

The	final	query	retrieves	the	second	NodeA	node	with	the	path	(/Root/NodeA)
[2].	Then	it	uses	the	“	operator	to	determine	if	this	node	precedes	the	NodeB	node	from
the	path	(/Root/NodeB)[l].	Since	the	second	NodeA	precedes	NodeB	in	document
order,	the	result	of	this	comparison	is	true.

A	node	comparison	results	in	an	xs:boolean	value	or	evaluates	to	an	empty
sequence	if	one	of	the	operands	results	in	an	empty	sequence.	This	is	demonstrated	in
Listing	13-27.

Listing	13-27.	Node	Comparison	That	Evaluates	to	an	Empty	Sequence

DECLARE	@x	xml	=	N'<?xml	version	=	"1.0"?>

<Root>

<NodeA>Test	Node</NodeA>

</Root>';

SELECT	@x.query('((/Root/NodeA)[1]	is	(/Root/NodeZ)[1])	(:	

empty	sequence	:)');

The	result	of	the	node	comparison	is	an	empty	sequence	because	the	right-hand	path
expression	evaluates	to	an	empty	sequence	(because	no	node	named	NodeZ	exists	in	the
XML	document).

Conditional	Expressions	(if…then…else)
As	shown	in	the	previous	examples,	XQuery	returns	xs:boolean	values	or	empty
sequences	as	the	result	of	comparisons.	XQuery	also	provides	support	for	the	conditional
if…then…else	expression.	The	if…then…else	construct	returns	an	expression

based	on	the	xs:boolean	value	of	another	expression.	The	format	for	the	XQuery
conditional	expression	is	shown	in	the	following:

if	(test-expression)	then	then-expression	else	else-expression

In	this	syntax,	test-expression	represents	the	conditional	expression	that	is
evaluated,	the	result	of	which	will	determine	the	returned	result.	When	evaluating	test-
expression,	XQuery	applies	the	following	rules:

1.	 If	test-expression	results	in	an	empty	sequence,	the	result	is
false.

2.	 If	test-expression	results	in	an	xs:boolean	value,	the
result	is	the	xs:boolean	value	of	the	expression.

3.	 If	test-expression	results	in	a	sequence	of	one	or	more
nodes,	the	result	is	true.

4.	 If	these	steps	fail,	a	static	error	is	raised.

If	test-expression	evaluates	to	true,	then-expression	is	returned.	If	test-expression
evaluates	to	false,	else-expression	is	returned.

The	XQuery	conditional	is	a	declarative	expression.	Unlike	the	C#	if…else
statement	and	Visual	Basic’s	If…Then…Else	construct,	XQuery’s	conditional	if…
then…else	doesn’t	represent	a	branch	in	procedural	logic	or	a	change	in	program	flow.
It	acts	like	a	function	that	accepts	a	conditional	expression	as	input	and	returns	an
expression	as	a	result.	In	this	respect,	XQuery’s	if…then…else	has	more	in	common
with	the	SQL	CASE	expression	and	the	C#	?:	operator	than	the	if	statement	in
procedural	languages.	In	the	XQuery	if…then…else,	syntax	parentheses	are	required
around	test-expression,	and	the	else	clause	is	mandatory.

Arithmetic	Expressions
XQuery	arithmetic	expressions	provide	support	for	the	usual	suspects—standard
mathematical	operators	found	in	most	modern	programming	languages,	including	the
following:

Multiplication	(*)

Division	(div)

Addition	(+)

Subtraction	(-)

Modulo	(mod)

Integer	Division	in	XQuery
SQL	Server	2014	XQuery	does	not	support	the	idiv	integer	division	operator.

Fortunately,	the	W3C	XQuery	recommendation	defines	the	idiv	operator	as	equivalent
to	the	following	div	expression:

($argl	div	$arg2)	cast	as	xs:integer?

If	you	need	to	convert	XQuery	code	that	uses	idiv	to	SQL	Server,	you	can	use	the
div	and	cast	operators	as	shown	to	duplicate	idiv	functionality.

XQuery	also	supports	the	unary	plus	(+)	and	unary	minus	(-)	operators.	Because	the
forward	slash	character	is	used	as	a	path	separator	in	XQuery,	the	division	operator	is
specified	using	the	keyword	div.	The	modulo	operator,	mod,	returns	the	remainder	of
division.

Of	the	supported	operators,	unary	plus	and	unary	minus	have	the	highest	precedence.
Multiplication,	division,	and	modulo	are	next.	Binary	addition	and	subtraction	have	the
lowest	precedence.	Parentheses	can	be	used	to	force	the	evaluation	order	of	mathematical
operations.

XQuery	Functions
XQuery	provides	several	built-in	functions	defined	in	the	XQuery	Functions	and
Operators	specification	(sometimes	referred	to	as	F&O),	which	is	available	at
www.w3.org/TR/xquery-operators/	.	Built-in	XQuery	functions	are	in	the
predeclared	namespace	fn.

	Tip		The	fn	namespace	does	not	have	to	be	specified	when	calling	a	built-in	function.
Some	people	leave	it	off	to	improve	readability	of	their	code.

We’ve	listed	the	XQuery	functions	that	SQL	Server	2014	supports	in	Table	13-7.

Table	13-7.	Supported	Built-in	XQuery	Functions

Function Description

fn:avg(x)
Returns	the	average	of	the	sequence	of	numbers	x.	For	example,	fn:avg((10,
20,	30,	40,	50))	returns	30.

fn:ceiling(n)
Returns	the	smallest	number	without	a	fractional	part	that	is	not	less	than	n.	For
example,	fn:ceiling(1.1)	returns	2.

fn:concat(s1,

s2,	…)

Concatenates	zero	or	more	strings	and	returns	the	concatenated	string	as	a	result.	For
example,	fn:concat(“hi”,	“,”,	“how	are	you?”)	returns	“hi,	how
are	you?”.

fn:contains(s1,

s2,)

Returns	true	if	the	string	s1	contains	the	string	s2.	For	example,
fn:contains(“fish”,	“is”)	returns	true.

fn:count(x)
Returns	the	number	of	items	in	the	sequence	x.	For	example,	fn:count((1,
2,	4,	8,	16))	returns	5.

fn:data(a)
Returns	the	typed	value	of	each	item	specified	by	the	argument	a.	For	example,
fn:data((3.141592,	“hello”))	returns	“3.141592	hello”.

http://www.w3.org/TR/xquery-operators/

fn:distinct-

values(x)

Returns	the	sequence	x	with	duplicate	values	removed.	For	example,
fn:distinct-values((1,	2,	3,	4,	5,	4,	5))	returns	“1	2	3	4
5”.

fn:empty(i)
Returns	true	if	i	is	an	empty	sequence;	returns	false	otherwise.	For	example,
fn:empty((1,	2,	3))	returns	false.

fn:expanded-

QName(u,	l)

Returns	an	xs:QName.	The	arguments	u	and	l	represent	the	xs:QName’s
namespace	URI	and	local	name,	respectively.

fn:false()
Returns	the	xs:boolean	value	false.	For	example,	fn:false()	returns
false.

fn:floor(n)
Returns	the	largest	number	without	a	fractional	part	that	is	not	greater	than	n.	For
example,	fn:floor(1.1)	returns	1.

fn:id(x)

Returns	the	sequence	of	element	nodes	with	ID	values	that	match	one	or	more	of	the
IDREF	values	supplied	in	x.	The	parameter	x	is	treated	as	a	whitespace-separated
sequence	of	tokens.

fn:last()
Returns	the	index	number	of	the	last	item	in	the	sequence	being	processed.	The	first
index	in	the	sequence	has	an	index	of	1.

fn:local-

name(n)
Returns	the	local	name,	without	the	namespace	URI,	of	the	specified	node	n.

fn:local-name-

from-QName(q)

Returns	the	local	name	part	of	the	xs:QName	argument	q.	The	value	returned	is	an
xs:NCName.

fn:max(x)
Returns	the	item	with	the	highest	value	from	the	sequence	x.	For	example,
fn:max((1.0,	2.5,	9.3,	0.3,	-4.2))	returns	9.3.

fn:min(x)
Returns	the	item	with	the	lowest	value	from	the	sequence	x.	For	example,
fn:min((“x”,	“q”,	“u”,	“e”,	“r”,	“y”))	returns	“e”.

fn:namespace-

uri(n)
Returns	the	namespace	URI	of	the	specified	node	n.

fn:namespace-

uri-from-

QName(q)

Returns	the	namespace	URI	part	of	the	xs:QName	argument	q.	The	value	returned
is	an	xs:NCName.

fn:not(b)

Returns	true	if	the	effective	Boolean	value	of	b	is	false;	returns	false	if	the
effective	Boolean	value	is	true.	For	example,
fn:not(xs:boolean(“true”))	returns	false.

fn:number(n)
Returns	the	numeric	value	of	the	node	indicated	by	n.	For	example,
fn:number(“/Root/NodeA[1]”).

fn:position()
Returns	the	index	number	of	the	context	item	in	the	sequence	currently	being
processed.

fn:round(n)
Returns	the	number	closest	to	n	that	does	not	have	a	fractional	part.	For	example,
fn:round(10.5)	returns	11.

fn:string(a) Returns	the	value	of	the	argument	a,	expressed	as	an	xs:string.	For	example,
fn:string(3.141592)	returns	“3.141592”.

fn:string-

length(s)

Returns	the	length	of	the	string	s.	For	example,	fn:string-
length(“abcdefghij”)	returns	10.

fn:substring(s,

m,	n)

Returns	n	characters	from	the	string	s,	beginning	at	position	m.	If	n	is	not	specified,
all	characters	from	position	m	to	the	end	of	the	string	are	returned.	The	first
character	in	the	string	is	position	1.	For	example,	fn:substring(“Money”,
2,	3)	returns	“one”.

fn:sum(x)
Returns	the	sum	of	the	sequence	of	numbers	in	x.	For	example,	fn:sum((1,
4,	9,	16,	25))	returns	55.

fn:true() Returns	the	xs:boolean	value	true.	For	example,	fn:true()	returns	true.

In	addition,	two	functions	from	the	sql:	namespace	are	supported.	The
sql:column	function	allows	you	to	expose	and	bind	SQL	Server	relational	column	data
in	XQuery	queries.	This	function	accepts	the	name	of	an	SQL	column	and	exposes	its
values	to	your	XQuery	expressions.	Listing	13-28	demonstrates	the	sql:column
function.

Listing	13-28.	The	sql:column	Function

DECLARE	@x	xml	=	N'';

SELECT	@x.query(N'<Name>

<ID>

{

sql:column("p.BusinessEntityID")

}

</ID>

<FullName>

{

sql:column("p.FirstName"),

sql:column("p.MiddleName"),

sql:column("p.LastName")

}

</FullName>

</Name>')

FROM	Person.Person	p

WHERE	p.BusinessEntityID	<=	5

ORDER	BY	p.BusinessEntityID;

The	result	of	this	example,	shown	in	Figure	13-21,	is	a	set	of	XML	documents
containing	the	BusinessEntitylD	and	full	name	of	the	first	five	contacts	from	the
Person.Person	table.

Figure	13-21.	Results	of	the	sql:column	Function	Query

The	sql	variable	function	goes	another	step,	allowing	you	to	expose	T-SQL
variables	to	XQuery.	This	function	accepts	the	name	of	a	T-SQL	variable	and	allows	you
to	access	its	value	in	your	XQuery	expressions.	Listing	13-29	is	an	example	that	combines
the	sql:column	and	sql:variable	functions	in	a	single	XQuery	query.

Listing	13-29.	XQuery	sql:column	and	sql:variable	Functions	Example

/*	10%	discount	*/

DECLARE	@discount	NUMERIC(3,	2);

SELECT	@discount	=	0.10;

DECLARE	@x	xml;

SELECT	@x	=	'';

SELECT	@x.query('<Product>

<Model-ID>	{	sql:column("ProductModelID")	}</Model-ID>

<Name>	{	sql:column("Name")	}</Name>

<Price>	{	sql:column("ListPrice")	}	</Price>

<DiscountPrice>

{	sql:column("ListPrice")	-

(sql:column("ListPrice")	*	sql:variable("@discount"))	}

</DiscountPrice>

</Product>

')

FROM	Production.Product	p

WHERE	ProductModelID	=	30;

The	XQuery	generates	XML	documents	using	the	sql:column	function	to	retrieve
the	ListPrice	from	the	Production.Product	table.	It	also	uses	the
sql:variable	function	to	calculate	a	discount	price	for	the	items	retrieved.	Figure	13-
22	shows	partial	results	of	this	query	(formatted	for	easier	reading):

Figure	13-22.	Partial	Results	of	the	Query	with	the	sql:column	and	sql:variable	Functions

Constructors	and	Casting
The	XDM	provides	constructor	functions	to	dynamically	create	instances	of	several
supported	types.	The	constructor	functions	are	all	in	the	format	xs:TYP(value),	where
TYP	is	the	XDM	type	name.	Most	of	the	XDM	data	types	have	constructor	functions;
however,	the	following	types	do	not	have	constructors	in	SQL	Server	XQuery:
xs:yearMonthDuration,	xs:dayTimeDuration,	xs:	OName,	xs:NMTOKEN,
and	xs:NOTATION.

The	following	are	examples	of	XQuery	constructor	functions:

xs:boolean("1")									(:	returns	true	:)

xs:integer(1234)								(:	returns	1234	:)

xs:float(9.8723E+3)					(:	returns	9872.3	:)

xs:NCName("my-id")						(:	returns	the	NCName	"my-id"	:)

Numeric	types	can	be	implicitly	cast	to	their	base	types	(or	other	numeric	types)	by
XQuery	to	ensure	proper	results	of	calculations.	The	process	of	implicit	casting	is	known
as	type	promotion.	For	instance,	in	the	following	sample	expression,	the	xs:integer
type	value	is	promoted	to	an	xs:decimal	to	complete	the	calculation:

xs:integer(100)	+	xs:decimal(l00.99)

	Note		Only	numeric	types	can	be	implicitly	cast.	String	and	other	types	cannot	be
implicitly	cast	by	XQuery.

Explicit	casting	is	performed	using	the	cast	as	keywords.	Examples	of	explicit
casting	include	the	following:

xs:string("98d3f4")	cast	as	xs:hexBinary?	(:	98d3f4	:)

100	cast	as	xs:double?		(:	1.0E+2	:)

"0"	cast	as	xs:boolean?	(:	true	:)

The	?	after	the	target	data	type	is	the	optional	occurrence	indicator.	It	is	used	to
indicate	that	an	empty	sequence	is	allowed.	SQL	Server	XQuery	requires	the	?	after	the
cast	as	expression.	SQL	Server	BOL	provides	a	detailed	description	of	the	XQuery
type	casting	rules	at	http://msdn.microsoft.com/en-
us/library/ms191231.aspx.

The	instance	of	Boolean	operator	allows	you	to	determine	the	type	of	a	singleton
value.	This	operator	takes	a	singleton	value	on	its	left	side	and	a	type	on	its	right.	The
xs:boolean	value	true	is	returned	if	the	atomic	value	represents	an	instance	of	the
specified	type.	The	following	examples	demonstrate	the	instance	of	operator:

10	instance	of	xs:integer	(:	returns	true	:)	100	instance	of	

xs:decimal	(:	returns	true	:)	"hello"	instance	of	

xs:bytes		(:	returns	false	:)

The	?	optional	occurrence	indicator	can	be	appended	after	the	data	type	to	indicate
that	the	empty	sequence	is	allowable	(though	it	is	not	mandatory,	as	with	the	cast	as
operator),	as	in	this	example:

9.8273	instance	of	xs:double?	(:	returns	true	:)

FLWOR	Expressions
FLWOR	expressions	provide	a	way	to	iterate	over	a	sequence	and	bind	intermediate
results	to	variables.	FLWOR	is	an	acronym	for	the	keywords	that	define	this	type	of
expression:	for,	let,	where,	order	by,	and	return.	This	section	discusses
XQuery’s	powerful	FLWOR	expressions.

The	for	and	return	Keywords
The	for	and	return	keywords	have	long	been	a	part	of	XPath,	though	in	not	nearly	so
powerful	a	form	as	the	XQuery	FLWOR	expression.	The	for	keyword	specifies	that	a
variable	is	iteratively	bound	to	the	results	of	the	specified	path	expression.	The	result	of
this	iterative	binding	process	is	known	as	a	tuple	stream.	The	XQuery	for	expression	is
roughly	analogous	to	the	T-SQL	SELECT	statement.	The	for	keyword	must,	at	a
minimum,	have	a	matching	return	clause	after	it.	The	sample	in	Listing	13-30
demonstrates	a	basic	for	expression.

Listing	13-30.	Basic	XQuery	for…return	Expression

SELECT	CatalogDescription.query(N'declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

for	$spec	in	//ns:ProductDescription/ns:Specifications/*

return	fn:string($spec)')	AS	Description	FROM	

Production.ProductModel	WHERE	ProductModelID	=	19;

http://msdn.microsoft.com/en-us/library/ms191231.aspx

The	for	clause	iterates	through	all	elements	returned	by	the	path	expression.	It	then
binds	the	elements	to	the	$spec	variable.	The	tuple	stream	that	is	bound	to	$spec
consists	of	the	following	nodes	in	document	order:

$spec	=	<Material>Almuminum	Alloy</Material>

$spec	=	<Color>Available	in	most	colors</Color>

$spec	=	<ProductLine>Mountain	bike</ProductLine>

$spec	=	<Style>Unisex</Style>

$spec	=	<RiderExperience>Advanced	to	Professional	

riders</RiderExperience>

The	return	clause	applies	the	fn:string	function	to	the	$spec	variable	to	return
the	string	value	of	each	node	as	it	is	bound.	The	results	look	like	the	following:

Almuminum	Alloy	Available	in	most	colors	Mountain	bike	

Unisex	Advanced	to	Professional	riders.

The	sample	can	be	modified	to	return	an	XML	result,	using	the	techniques	described
previously	in	the	“Dynamic	XML	Construction”	section.	Listing	13-31	demonstrates	with
results	shown	in	Figure	13-23.

Listing	13-31.	XQuery	for…return	Expression	with	XML	Result

SELECT	CatalogDescription.query	(

N'declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

for	$spec	in	//ns:ProductDescription/ns:Specifications/*	

return	<detail>	{

$spec/text()	}	</detail>')	AS	Description

FROM	Production.ProductModel	WHERE	ProductModelID	=	19;

Figure	13-23.	Results	of	the	for…return	Expression	with	XML	Construction

XQuery	allows	you	to	bind	multiple	variables	in	the	for	clause.	When	you	bind
multiple	variables,	the	result	is	the	Cartesian	product	of	all	possible	values	of	the
variables.	SQL	Server	programmers	will	recognize	the	Cartesian	product	as	being
equivalent	to	the	SQL	CROSS	JOIN	operator.	Listing	13-32	modifies	the	previous

example	further	to	generate	the	Cartesian	product	of	the	Specifications	and
Warranty	child	node	text.

Listing	13-32.	XQuery	Cartesian	Product	with	for	Expression

SELECT	CatalogDescription.query(N'declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

for	$spec	in	//ns:ProductDescription/ns:Specifications/*,

$feat	in	

//ns:ProductDescription/*:Features/*:Warranty/node()

return	<detail>

{

$spec/text()

}	+

{

fn:string($feat/.)

}

</detail>'

)	AS	Description

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

The	$spec	variable	is	bound	to	the	same	nodes	shown	previously.	A	second	variable
binding,	for	the	variable	$feat,	is	added	to	the	for	clause	in	this	example.	Specifically,
this	second	variable	is	bound	to	the	child	nodes	of	the	Warranty	element,	as	shown
following:

<pl:WarrantyPeriod>3	years</pl:WarrantyPeriod>	

<pl:Description>parts	and	labor</pl:Description

The	Cartesian	product	of	the	text	nodes	of	these	two	tuple	streams	consists	of	ten
possible	combinations.	The	final	result	of	the	XQuery	expression	is	shown	in	Figure	13-24
(formatted	for	easier	reading).

Figure	13-24.	Cartesian	Product	XQuery

A	bound	variable	can	be	used	immediately	after	it	is	bound,	even	in	the	same	for
clause.	Listing	13-33	demonstrates	this.

Listing	13-33.	Using	a	Bound	Variable	in	the	for	Clause

SELECT	CatalogDescription.query

(

N'declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

for	$spec	in	//ns:ProductDescription/ns:Specifications,

$color	in	$spec/Color

return	<color>

{

$color/text()

}

</color>'

)	AS	Color

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

In	this	example,	the	$spec	variable	is	bound	to	the	Specifications	node.	It	is
then	used	in	the	same	for	clause	to	bind	a	value	to	the	variable	$color.	The	result	is
shown	in	Figure	13-25.

Figure	13-25.	Binding	a	Variable	to	Another	Bound	Variable	in	the	for	Clause

The	where	Keyword
The	where	keyword	specifies	an	optional	clause	to	filter	tuples	generated	by	the	for
clause.	The	expression	in	the	where	clause	is	evaluated	for	each	tuple,	and	those	for
which	the	effective	Boolean	value	evaluates	to	false	are	discarded	from	the	final	result.
Listing	13-34	demonstrates	use	of	the	where	clause	to	limit	the	results	to	only	those
tuples	that	contain	the	letter	A.	The	results	are	shown	in	Figure	13-26.

Listing	13-34.	where	Clause	Demonstration

SELECT	CatalogDescription.query

(

N'declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

for	$spec	in	//ns:ProductDescription/ns:Specifications/*

where	$spec[contains(.	,	"A")]

return	<detail>

{

$spec/text()

}

</detail>'

)	AS	Detail

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

Figure	13-26.	Results	of	a	FLWOR	Expression	with	the	where	Clause

The	functions	and	operators	described	previously	in	this	chapter	(such	as	the
contains	function	used	in	the	example)	can	be	used	in	the	where	clause	expression	to
limit	results	as	required	by	your	application.

The	order	by	Keywords
The	order	by	clause	is	an	optional	clause	of	the	FLWOR	statement.	The	order	by
clause	reorders	the	tuple	stream	generated	by	the	for	clause,	using	criteria	that	you
specify.	The	order	by	criteria	consists	of	one	or	more	ordering	specifications	that	are
made	up	of	an	expression	and	an	optional	order	modifier.	Ordering	specifications	are
evaluated	from	left	to	right.

The	optional	order	modifier	is	either	ascending	or	descending	to	indicate	the
direction	of	ordering.	The	default	is	ascending,	as	shown	in	Listing	13-35.	The	sample
uses	the	order	by	clause	to	sort	the	results	in	descending	(reverse)	order.	The	results
are	shown	in	Figure	13-27.

Listing	13-35.	order	by	Clause

SELECT	CatalogDescription.query(N'declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

for	$spec	in	//ns:ProductDescription/ns:Specifications/*

order	by	$spec/.	descending

return	<detail>	{	$spec/text()	}	</detail>')	AS	Detail

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

Figure	13-27.	Results	of	a	FLWOR	Expression	with	the	order	by	Clause

The	let	Keyword
SQL	Server	2012	added	support	for	the	FLWOR	expression	let	clause.	The	let	clause
allows	you	to	bind	tuple	streams	to	variables	inside	the	body	of	the	FLWOR	expression.
You	can	use	the	let	clause	to	name	repeating	expressions.	SQL	Server	XQuery	inserts
the	expression	assigned	to	the	bound	variable	everywhere	the	variable	is	referenced	in	the
FLWOR	expression.	Listing	13-36	demonstrates	the	let	clause	in	a	FLWOR	expression,
with	results	shown	in	Figure	13-28.

Listing	13-36.	let	Clause

SELECT	CatalogDescription.query

(

N'declare	namespace	ns	=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

for	$spec	in	//ns:ProductDescription/ns:Specifications/*

let	$val	:=	$spec/text()

order	by	fn:string($val[1])	ascending

return	<spec>

{

$val

}

</spec>'

)	AS	Detail

FROM	Production.ProductModel

WHERE	ProductModelID	=	19;

Figure	13-28.	Results	of	a	FLWOR	Expression	with	the	let	Clause

UTF-16	Support
When	SQL	Server	stores	unicode	data	types	with	nchar	and	nvarchar	it	stores	using	UCS-
2	encoding	(UCS	–	Universal	Character	Set),	meaning	it	counts	every	2-byte	character	as
single	character.	In	recent	years	the	charater	limit	was	increased	to	31	bits,	and	it	would	be
difficult	to	store	these	characters	given	the	fact	that	we	only	have	2	bytes	per
character.		This	led	to	the	problem	of	SQL	Server	not	handling	some	of	the	characters
properly.	In	the	previous	versions	of	SQL	Server,	even	though	SQLXML	supports	UTF-
16,	the	string	functions	only	supported	for	UCS-2	unicode	values.	This	means	that	even
though	the	data	can	be	stored	and	retrieved	without	losing	the	property,	some	of	the	string
operations	such	as	string	length	or	substring	functions	provided	wrong	results	since	they
don’t	recognize	surrogate	pairs.

Let’s	review	this	with	an	example,	and	in	our	case,	let’s	say	we	have	to	store	UTF-16
encoding	such	as	musical	symbol	drum	cleff-1	as	a	part	of	a	name	in	our	database.	Drum-
cleff-1	is	represented	by	surrogate	values	0xD834	and	0xDD25.	Let’s	say	we	calculate	the
length	of	the	string	to	see	if	SQL	Server	checks	for	surrogate	pairs.	Listing	13-37
demonstrates	the	creation	of	the	sample	row	for	our	usage	and	Listing	13-38	uses	the	row
that	was	created	using	Listing	13-37	to	demonstrate	UTF-16	encoding	handling	in	SQL
Server.	Results	for	Listing	13-38	are	shown	in	Figure	13-29.

Listing	13-37.	Create	Record	to	Demonstrate	UTF-16

declare	@BusinessEntityId	int

INSERT	INTO	Person.BusinessEntity(rowguid,	ModifiedDate)

VALUES	(NEWID(),CURRENT_TIMESTAMP)

SET	@BusinessEntityId	=	SCOPE_IDENTITY()

INSERT	INTO	[Person].[Person]

											([BusinessEntityID]

											,[PersonType]

											,[NameStyle]

											,[Title]

											,[FirstName]

											,[MiddleName]

											,[LastName]	

											,[Suffix]

											,[EmailPromotion]

											,[AdditionalContactInfo]

											,[Demographics]

											,[rowguid]

											,[ModifiedDate])

					VALUES

																(@BusinessEntityId,

																'EM',

																0,

																NULL,

																N'T'	+	nchar(0xD834)	+	nchar(0xDD25),

																'J',

																'Kim',

																NULL,

																0,

																NULL,

																'<IndividualSurvey	

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey">

<TotalPurchaseYTD>0</TotalPurchaseYTD></IndividualSurvey>',

																NEWID(),

																CURRENT_TIMESTAMP)

Listing	13-38.	SQL	Server	to	Check	for	Presence	of	Surrogates

SELECT

p.NameStyle	AS	"processing-instruction(nameStyle)",

p.BusinessEntityID	AS	"Person/@ID",

p.ModifiedDate	AS	"comment()",

FirstName	AS	"Person/Name/First",

Len(FirstName)	AS	"Person/FirstName/Length",

MiddleName	AS	"Person/Name/Middle",

LastName	AS	"Person/Name/Last"

FROM	Person.Person	p

WHERE	BusinessEntityID	=	20778

FOR	XML	PATH;

Figure	13-29.	Results	of	SQL	Server	UTF-16	Surrogate	Pair

From	Figure	13-29,	you	can	see	that	the	query	returns	the	column	length	to	be	3
whereas	the	length	should	be	2	because	length	function	calculates	the	number	of

characters	and	we	have	2	characters	in	our	string.	Since	the	surrogate	pair	is	not
recognized,	the	number	of	characters	is	listed	as	3	instead	of	2.

To	mitigate	the	above	issue,	in	SQL	Server	2014	there	is	full	support	for	UTF-
16/UCS-4,	meaning	the	Xquery	handles	the	surrogate	pairs	properly	and	returns	the
correct	results	for	string	operations	and	the	operators	such	as	=,==,<,>=and	LIKE.	Note
that	some	of	the	string	operators	may	already	be	surrogate	aware.	However	since	some	of
the	applications	are	already	developed	and	being	used	based	on	the	older	behavior,	SQL
Server	2012	added	a	new	set	of	flags	to	the	collation	names	to	indicate	that	the	collation	is
UTF-16	aware.	The	_SC	(Supplementary	Characters)	flag	will	be	appended	to	the	version
100	collation	names	and	it	be	applicable	for	nchar,	nvarchar,	and	sql_variant	data	types.

Let’s	modify	the	code	snippet	we	have	from	Listing	13-38	and	add	the	_SC	collation
to	the	query	to	see	how	SQL	Server	calculates	the	column	length	properly.	In	this	example
let’s	include	the	supplementary	characters	collation	so	that	SQL	Server	is	UTF-16	aware.
The	modified	code	snippet	is	shown	in	Listing	13-39	and	results	are	shown	in	Figure	13-
30.

Listing	13-39.	Surroage	Pair	with	UTF-16	and	_SC	collation

SELECT

p.NameStyle	AS	"processing-instruction(nameStyle)",

p.BusinessEntityID	AS	"Person/@ID",

p.ModifiedDate	AS	"comment()",

FirstName	AS	"Person/Name/First",

Len(FirstName	COLLATE	Latin1_General_100_CS_AS_SC)	AS	

"Person/FirstName/Length",

MiddleName	AS	"Person/Name/Middle",

LastName	AS	"Person/Name/Last"

FROM	Person.Person	p

WHERE	BusinessEntityID	=	20778

FOR	XML	PATH;

Figure	13-30.	Results	of	SQL	Server	UTF-16	Surrogate	Pair	with	_SC	collation

Figure	13-30	demonstrates	that	by	using		supplementary	characters	collation,	SQL
Server	now	is	UTF-16	aware,	and	it	calculates	the	column	length	as	it	should:	we	see	the
proper	value	of	2	for	the	column	length.

To	maintain	backward	compatibility	SQL	Server	is	surrogate	pair	aware	only	when	the
compatibility	mode	is	set	to	SQL11	or	higher.	If	the	compatability	mode	is	set	to	SQL10
or	lower,	the	fn:string-length	and	fn:substring	will	not	be	surrogate	aware	and	the	older
behavior	will	continue.

Summary
This	chapter	has	expanded	the	discussion	of	SQL	Server	XML	functionality	that	we	began
in	Chapter	12.	In	particular,	we	focused	on	the	SQL	Server	implementations	of	XPath	and
XQuery.	We	provided	a	more	detailed	discussion	of	the	SQL	Server	FOR	XML	PATH
clause	XPath	implementation,	including	XPath	expression	syntax,	axis	specifiers,	and
supported	node	tests.	We	also	discussed	SQL	Server	support	for	XML	namespaces	via	the
WITH	XMLNAMESPACES	clause.

We	used	the	majority	of	this	chapter	to	detail	SQL	Server	support	for	XQuery,	which
provides	a	powerful	set	of	expression	types,	functions,	operators,	and	support	for	the	rich
XDM	data	type	system.	SQL	Server	support	for	XQuery	has	improved	with	the	release	of
SQL	Server	2014,	including	new	options	like	the	FLWOR	expression	let	clause,	support
for	date	and	time	literals	without	specifying	explicit	time	offsets,	and	UTF-16	support	and
Supplementary	Characters	collation.

The	next	chapter	discusses	SQL	Server	2014	catalog	views	and	dynamic	management
views	and	functions	that	provide	a	way	to	look	under	the	hood	of	your	databases	and
server	instances.

Exercises

1.	 [True/False]	The	FOR	XML	PATH	clause	supports	a	subset	of	the
W3C	XPath	recommendation.

2.	 [Choose	one]	Which	of	the	following	symbols	is	used	in	XQuery
and	XPath	as	an	axis	specifier	to	identify	XML	attributes:

a.	 An	at	sign	(@)

b.	 An	exclamation	point	(!)

c.	 A	period	(.)

d.	 Two	periods	(..)

3.	 [Fill	in	the	blanks]	The	context	item,	indicated	by	a	single	period	(.)
in	XPath	and	XQuery,	specifies	the	current	_________	or	scalar
_________	being	accessed	at	any	given	point	in	time	during	query
execution.

4.	 [Choose	all	that	apply]	You	can	declare	namespaces	for	XQuery
expressions	in	SQL	Server	using	which	of	the	following	methods:

e.		The	T-SQL	WITH	XMLNAMESPACES	clause

f.		The	XQuery	declare	default	element	namespace
statement

g.		he	T-SQL	CREATE	XML	NAMESPACE	statement

h.		The	XQuery	declare	namespace	statement

5.	 [Fill	in	the	blanks]	In	XQuery,	you	can	dynamically	construct	XML
via	____________	constructors	or	___________	constructors.

6.	 [True/False]	SQL	Server	2012	supports	the	for,	let,	where,
order	by,	and	return	clauses	of	XQuery	FLWOR	expressions.

7.	 [Fill	in	the	blanks]	_SC	collation	enables	SQL	Server	to	be
__________________.

8.	 [Choose	all	that	apply]	SQL	Server	supports	the	following	types	of
XQuery	comparison	operators:

i.		Array	comparison	operators

j.		General	comparison	operators

k.		Node	comparison	operators

l.		Value	comparison	operators

CHAPTER	14

Catalog	Views	and	Dynamic	aent	Views
SQL	Server	has	always	offered	access	to	metadata	describing	databases,	tables,	views,	and
other	database	objects.	Prior	to	the	introduction	of	catalog	views	in	SQL	Server	2005,	the
primary	methods	of	accessing	this	metadata	included	system	tables,	system	SPs,
INFORMATION_SCHEMA	views,	and	SQL	Distributed	Management	Objects	(SQL-
DMO).	Catalog	views	provide	access	to	a	richer	set	of	detailed	information	than	any	of
these	options	provided	in	previous	SQL	Server	releases.	SQL	Server	even	includes	catalog
views	that	allow	you	to	access	server-wide	configuration	metadata.

	Note		Metadata	is	simply	data	that	describes	data.	SQL	Server	2014	databases	are
largely	“self-describing.”	The	data	describing	the	objects,	structures,	and	relationships	that
form	a	database	are	stored	in	the	database	itself.	This	data	describing	the	database
structure	and	objects	is	what	we	refer	to	as	metadata.

SQL	Server	2014	also	provides	dynamic	management	views	(DMVs)	and	dynamic
management	functions	(DMFs)	that	allow	you	to	access	server-state	information.	The	SQL
Server	DMVs	and	DMFs	provide	a	relational	tabular	view	of	internal	SQL	Server	data
structures	that	would	otherwise	be	inaccessible.	SQL	Server	2014	provides	a	new	set	of
DMVs	specifically	focused	on	the	memory,	performance,	and	space	usage	of	memory-
optimized	tables.	Examples	of	metadata	that	can	be	accessed	include	information	about
the	state	of	internal	memory	structures,	the	contents	of	caches	and	buffers,	and	statuses	of
processes	and	components.	You	can	use	the	information	returned	by	DMVs	and	DMFs	to
diagnose	server	problems,	monitor	server	health,	and	tune	performance.	This	chapter
discusses	catalog	views,	DMVs,	and	DMFs.

Catalog	Views
Catalog	views	provide	insight	into	database	objects	and	server-wide	configuration	options
in	much	the	same	way	that	system	tables,	system	SPs,	and	INFORMATION_SCHEMA
views	did	in	previous	releases	of	SQL	Server.	Catalog	views	offer	advantages	over	these
older	methods	of	accessing	database	and	server	metadata,	including	the	following:

Catalog	views,	unlike	system	SPs,	can	be	used	in	queries	with	results
joined	to	other	catalog	views	or	tables.	You	can	also	limit	the	results
returned	by	catalog	views	with	a	WHERE	clause.

Catalog	views	offer	SQL	Server–specific	information	that	isn’t
available	through	the	INFORMATION_SCHEMA	views.	The	reason	is
that	although	INFORMATION_SCHEMA	views	are	still	included	in

SQL	Server	to	comply	with	the	ISO	standard,	they	may	not	be
regularly	updated.	So	it’s	advisable	to	use	catalog	views	to	access
metadata	instead	of	the	system	SPs	or	INFORMATION_SCHEMA
views.

Catalog	views	provide	richer	information	than	system	tables	and
simplify	data	access	from	system	tables	regardless	of	schema	changes
in	the	underlying	system	tables.	There	are	also	more	catalog	views
available	than	legacy	system	tables	because	some	catalog	views
inherit	rows	from	other	catalog	views.

Many	catalog	views	follow	an	inheritance	model	in	which	some	catalog	views	are
defined	as	extensions	to	other	catalog	views.	The	sys.tables	catalog	view,	for
instance,	inherits	columns	from	the	sys.objects	catalog	view.	Some	catalog	views,
such	as	sys.allcolumns,	are	defined	as	the	union	of	two	other	catalog	views.	In	this
example,	the	sys.allcolumns	catalog	view	is	defined	as	the	union	of	the
sys.columns	and	sys.systemcolumns	catalog	views.

SQL	Server	supplies	a	wide	range	of	catalog	views	that	return	metadata	about	all
different	types	of	database	objects	and	server-configuration	options,	SQL	CLR	assemblies,
XML	schema	collections,	the	SQL	Server	resource	governor,	change	tracking,	and	more.
Rather	than	give	a	complete	list	of	all	the	available	catalog	views,	this	section	provides
some	usage	examples	and	descriptions	of	the	functionality	available	through	catalog
views.

	Tip		BOL	details	the	complete	list	of	available	catalog	views	(there	are	more	than	100
of	them)	at	http://msdn.microsoft.com/en-
us/library/ms174365.aspx.

Table	and	Column	Metadata
Way	back	in	the	pre-SQL	Server	Integration	Services	(SSIS)	days,	we	spent	a	good	deal	of
our	time	creating	custom	ETL	(extract,	transform,	and	load)	solutions.	One	of	the
problems	we	faced	was	the	quirky	nature	of	the	various	bulk-copy	APIs	available.	Unlike
SQL	Server	DML	statements	like	INSERT,	which	specify	columns	to	populate	by	name,
the	available	bulk-copy	APIs	require	you	to	specify	columns	to	populate	by	their	ordinal
position.	This	can	lead	to	all	kinds	of	problems	if	the	table	structure	changes	(for	example,
if	new	columns	are	added,	columns	are	removed,	or	the	order	of	existing	columns	is
changed).	One	way	to	deal	with	this	type	of	disconnect	is	to	create	your	own	function	that
maps	column	names	to	ordinal	positions.	You	can	use	catalog	views	to	access	exactly	this
type	of	functionality.	In	Listing	14-1,	you	join	the	sys.schemas,	sys.tables,
sys.columns,	and	sys.types	catalog	views	to	return	column-level	metadata	about
the	AdventureWorks	Person.Address	table.	The	results	are	shown	in	Figure	14-1.

Listing	14-1.	Retrieving	Column-level	Metadata	with	Catalog	Views

SELECT

http://msdn.microsoft.com/en-us/library/ms174365.aspx

s.name	AS	schema_name,

t.name	AS	table_name,

t.type_desc	AS	table_type,

c.name	AS	column_name,

c.column_id,

ty.name	AS	data_type_name,

c.max_Length,

c.precision,

c.scale,

c.is_nullable	FROM	sys.schemas	s	INNER	JOIN	sys.tables	t

ON	s.schema_id	=	t.schema_id	INNER	JOIN	sys.columns	c

ON	t.object_id	=	c.object_id	INNER	JOIN	sys.types	ty

ON	c.system_type_id	=	ty.system_type_id	AND	c.user_type_id	

=	ty.user_type_id	WHERE	s.name	=	'Person'

AND	t.name	=	'Address';

Figure	14-1.	Retrieving	column-level	metadata

This	type	of	metadata	is	also	useful	for	administrative	applications	or	dynamic	queries
that	need	to	run	against	several	different	tables	for	which	you	don’t	necessarily	know	the
structure	in	advance.

Whether	it’s	for	administrative	applications,	bulk	loading,	or	dynamic	queries	that
need	to	run	against	several	different	tables,	SQL	Server	catalog	views	can	provide
structure	and	attribute	information	for	database	objects.	SQL	Server	2014	provides	several
methods	of	retrieving	metadata.

Querying	Permissions
Another	administrative	task	that	can	be	performed	through	catalog	views	is	querying	and
scripting	database	object	permissions.	Listing	14-2	begins	this	demonstration	by	creating	a
couple	of	new	users	named	jack	and	jill	in	the	AdventureWorks	database.	The	jill
user	is	assigned	permissions	to	human	resources–related	objects,	and	jack	is	assigned
permissions	to	production	objects.

Listing	14-2.	Creating	the	jack	and	jill	Users

CREATE	USER	jill	WITHOUT	LOGIN;

CREATE	USER	jack	WITHOUT	LOGIN;

GRANT	SELECT,	INSERT

ON	Schema::HumanResources	TO	jill;

GRANT	SELECT

ON	dbo.ufnGetContactInformation	TO	jill;

GRANT	EXECUTE

ON	HumanResources.uspUpdateEmployeeLogin	TO	jill;

DENY	SELECT

ON	Schema::Sales	TO	jill;

DENY	SELECT

ON	HumanResources.Shift	(ModifiedDate)	TO	jill;

GRANT	SELECT,	UPDATE,	INSERT,	DELETE

ON	Schema::Production	TO	jack	WITH	GRANT	OPTION;

You	grant	and	deny	permissions	to	these	users	on	a	wide	selection	of	objects	for
demonstration	purposes.	The	query	in	Listing	14-3	is	a	modified	version	of	an	example
first	published	by	SQL	Server	MVP	Louis	Davidson.	The	code	uses	the
sys.databasepermissions,	sys.databaseprincipals,	and	sys.objects
catalog	views	to	query	the	permissions	granted	and	denied	to	database	principals	in	the
database.	The	results	are	shown	in	Figure	14-2.

Listing	14-3.	Querying	Permissions	on	AdventureWorks	Objects

WITH	Permissions	(

permission,

type,

obj_name,

db_principal,

grant_type,

schema_name)	AS

(

				SELECT	dp.permission_name,

								CASE	dp.class_desc

								WHEN	'OBJECT_OR_COLUMN'	THEN

								CASE

								WHEN		minor_id		>		0		THEN		'COLUMN'

								ELSE		o.type_desc

								END

								ELSE	dp.class_desc

								END,

								CASE	dp.class_desc

								WHEN		'SCHEMA'		THEN		SCHEMA_NAME(dp.major_id)

								WHEN	'OBJECT_OR_COLUMN'	THEN

								CASE

								WHEN		dp.minor_id		=		0		THEN	object_name(dp.major_id)

								ELSE

								(

								SELECT	object_name(o.object_id)	+	'.'+	c.name

								FROM	sys.columns	c

								WHERE		c.object_id		=		dp.major_id

								AND		c.column_id		=		dp.minor_id

)

								END

								ELSE	'**UNKNOWN**'

								END,

								dpr.name,

								dp.state_desc,

								SCHEMA_NAME(o.schema_id)

				FROM		sys.database_permissions		dp

				INNER	JOIN	sys.database_principals	dpr

								ON		dp.grantee_principal_id		=		dpr.principal_id

				LEFT		JOIN		sys.objects		o

								ON	o.object_id	=	dp.major_id

				WHERE	dp.major_id	>	0

)

SELECT	

				p.permission,

				CASE	type

								WHEN	'SCHEMA'	THEN	'Schema::'	+	obj_name

								ELSE	schema_name	+	'.'	+	obj_name

				END		AS		name,

				p.type,

				p.db_principal,

				p.grant_type

FROM	Permissions	p

ORDER		BY

				p.db_principal,

				p.permission;

GO

Figure	14-2.	Results	of	the	permissions	query

As	you	can	see	in	Figure	14-2,	the	query	retrieves	the	explicit	permissions	granted	to
and	denied	from	the	jack	and	jill	database	principals.	These	permissions	are	shown
for	each	object	along	with	information	about	the	objects	themselves.	This	simple	example

can	be	expanded	to	perform	additional	tasks,	such	as	scripting	object	permissions.

	Tip		Explicit	permissions	are	permissions	explicitly	granted	or	denied	through	T-SQL
GRANT,	DENY,	and	REVOKE	statements.	The	effective	permissions	of	a	principal	are	a
combination	of	the	principal’s	explicit	permissions,	permissions	inherited	from	the	roles	or
groups	to	which	the	principal	belongs,	and	permissions	implied	by	other	permissions.	You
can	use	the	sys.fn_my_permissions	system	function	to	view	your	effective
permissions.

Dynamic	Management	Views	and
Functions
In	addition	to	catalog	views,	SQL	Server	2014	provides	more	than	204	DMVs	and	DMFs
that	give	you	access	to	internal	server-state	information.	DMVs	and	DMFs	are	designed
specifically	for	the	benefit	of	database	administrators	(DBAs),	but	they	can	also	provide
developers	with	extremely	useful	insights	into	the	internal	workings	of	SQL	Server.
Having	access	to	this	server-state	information	can	enhance	the	server-management	and	-
administration	experience	and	help	to	identify	potential	problems	and	performance	issues
(for	which	developers	are	increasingly	sharing	responsibility).

SQL	Server	provides	DMVs	and	DMFs	that	are	scoped	at	the	database	level	and	at	the
server	level.	All	DMVs	and	DMFs	are	in	the	sys	schema,	and	their	names	all	start	with
dm*.	There	are	several	categories	of	DMVs	and	DMFs,	with	most	being	grouped	together
using	standard	name	prefixes.	Table	14-1	lists	some	of	the	most	commonly	used
categories.	The	majority	of	the	new	system	views	related	to	SQL	Server	2014	memory-
optimized	tables	contain	the	abbreviation	%xtp%	in	the	object	name.

Table	14-1.	Commonly	Used	DMV	and	DMF	Categories

Names Description

sys.dm_cdc_*
Contains	information	about	Change	Data	Capture	(CDC)	transactions	and	log
sessions

sys.dm_exec_* Returns	information	related	to	user	code	execution

sys.dm_fts_* Retrieves	information	about	integrated	full-text	search	(iFTS)	functionality

sys.dm_os_* Displays	low-level	details	such	as	locks,	memory	usage,	and	scheduling

sys.dm_tran_* Provides	information	about	current	transactions	and	lock	resources

sys.dm_io_* Allows	you	to	monitor	network	and	disk	I/O

sys.dm_db_* Returns	information	about	databases	and	database-level	objects

sys.dm_db_xtp*
Returns	information	about	database-level	memory-optimized	objects	(new	in	SQL
Server	2014)

sys.dm_xtp* Returns	information	related	to	memory-optimized	objects	(new	in	SQL	Server	2014)

Chapter	5	gave	an	example	of	DMV	and	DMF	usage	with	an	SP	that	extracts
information	from	the	SQL	Server	query-plan	cache.	This	section	explores	more	uses	for
DMVs	and	DMFs.

Index	Metadata
SQL	Server	metadata	is	useful	for	performing	tedious	administrative	tasks	like	identifying
potential	performance	issues,	updating	statistics,	and	rebuilding	indexes.	Creating	a
customized	procedure	to	perform	these	tasks	gives	you	the	ability	to	create	scripts	that	are
flexible	and	target	the	maintenance	tasks	being	performed,	which	isn’t	an	option	available
with	the	standard	maintenance	plan.	Listing	14-4	uses	catalog	views	to	identify	all	tables
in	the	AdventureWorks	database	with	clustered	or	nonclustered	indexes	defined	on	them.
The	procedure	then	generates	T-SQL	ALTER	INDEX	statements	to	rebuild	all	the	indexes
defined	on	these	tables	and	also	updates	the	statistics	and	recompiles	stored	procedures
and	triggers.	We	have	kept	this	example	fairly	simple,	although	it	can	be	used	as	a	basis
for	more	complex	index-rebuilding	procedures	that	make	decisions	based	on	various
scenarios	like	rebuilding	indexes	for	all	the	databases	in	the	server	and	that	also	consider
factors	such	as	LOB	to	reindex	the	objects.	Figure	14-3	shows	the	ALTER	INDEX
statements	created	by	the	procedure.

Listing	14-4.	Stored	Procedure	to	Rebuild	Table	Indexes

CREATE	PROCEDURE	dbo.RebuildIndexes

				@db	sysname	=	'Adventureworks',

				@online	bit	=	1,

				@maxfrag	int	=	10,

				@rebuildthreshold	int	=	30,

				@WeekdayRebuildOffline	int	=	1

AS

BEGIN;

				SET	NOCOUNT	ON;

				DECLARE

								@objectid	int,

								@indexid	int,

								@indextype	nvarchar(60),

								@schemaname	nvarchar(130),

								@objectname	nvarchar(130),

								@indexname	nvarchar(130),

								@frag	float,

								@sqlcommand	nvarchar(4000);

				--	Select	tables	and	indexes	from	the

				--	sys.dm_db_index_physical_stats	function	based	on	the	

threshold	defined

				SELECT

								object_id	AS	objectid,

								index_id	AS	indexid,

								index_type_desc	AS	indextype,

								avg_fragmentation_in_percent	AS	frag

				INTO

								#reindexobjects

				FROM

								sys.dm_db_index_physical_stats(DB_ID(@db),	NULL,	NULL,	

NULL,	'LIMITED')

				WHERE

								avg_fragmentation_in_percent	>	@maxfrag

								AND	index_id	>	0

				--	Declare	the	cursor	for	the	list	of	objects	to	be	

processed.

				DECLARE	objects	CURSOR	FOR

								SELECT	o.*	FROM	#reindexobjects	o

								INNER	JOIN	sys.indexes	i	ON	i.object_id	=	o.objectid

								WHERE	i.is_disabled	=	0	AND	i.is_hypothetical	=	0;

				--	Open	the	cursor.

				OPEN	objects;	

				WHILE	(1=1)

				BEGIN;

								FETCH	NEXT	FROM	objects	INTO	@objectid,	@indexid,	

@indextype,	@frag;

								IF	@@FETCH_STATUS	<	0	BREAK;

								SELECT	@objectname	=	QUOTENAME(o.name),	@schemaname	

=	QUOTENAME(s.name)

								FROM	sys.objects	AS	o

								JOIN	sys.schemas	AS	s	ON	s.schema_id	=	o.schema_id

								WHERE	o.object_id	=	@objectid;

								SELECT	@indexname	=	QUOTENAME(name)

								FROM	sys.indexes

								WHERE	object_id	=	@objectid	AND	index_id	=	@indexid;

								SET	@sqlcommand	=	N'ALTER	INDEX	'	+	@indexname	+	N'	ON	

'	+

																				@schemaname	+	N'.'	+	@objectname;

								IF	@frag	>	@rebuildthreshold

								BEGIN;

												SET	@sqlcommand	=	@sqlcommand	+	N'	REBUILD';

												IF	(DATEPART(WEEKDAY,	GETDATE())	<>	

@WeekdayRebuildOffline)

AND	((@indextype	Like	'HEAP')	OR	(@indextype	like	

'%CLUSTERED%'))

												SET	@sqlcommand	=	@sqlcommand	+	N'	WITH	(ONLINE	

=	ON)';

								END;

								ELSE

												SET	@sqlcommand	=	@sqlcommand	+	N'	REORGANIZE';

								PRINT	N'Executing:	'	+	@sqlcommand;

								EXEC	(@sqlcommand)	;

				END;

				--	Close	and	deallocate	the	cursor.

				CLOSE	objects;

				DEALLOCATE	objects;

				--		UPDATE	STATISTICS	&	SP_RECOMPILE

				DECLARE	tablelist	CURSOR	FOR

								SELECT	distinct	OBJECT_NAME(o.objectid)	FROM	

#reindexobjects	o;

				--	Open	the	cursor.

				OPEN	tablelist;

				FETCH	NEXT	FROM	tablelist	INTO	@objectname;

				--	Loop	through	the	partitions.

				WHILE	@@FETCH_STATUS	=	0

				BEGIN;

								--Update	Statistics

								SET	@sqlcommand	=	'	UPDATE	STATISTICS	'	+	@objectname;

								PRINT	N'Executing:	'	+	@sqlcommand;

								EXEC	(@sqlcommand)	;

								--Recompile	Stored	Procedures	and	Triggers

								SET	@sqlcommand	=	'	EXEC	sp_recompile	'	+	@objectname;

								PRINT	N'Executing:	'	+	@sqlcommand;

								EXEC	(@sqlcommand)	;

								FETCH	NEXT	FROM	tablelist	INTO	@objectname;

				END;

				CLOSE	tablelist;

				DEALLOCATE	tablelist;

				DROP	TABLE	#reindexobjects;

END;

GO

Figure	14-3.	ALTER	INDEX	statements	to	rebuild	indexes	on	AdventureWorks	tables

The	procedure	in	Listing	14-4	uses	the	DMV
sys.dm_db_index_physical_stats	to	retrieve	a	list	of	all	tables	in	the	database
that	have	indexes	defined	on	them	based	on	the	thresholds	defined	for	fragmentation:

SELECT

object_id	AS	objectid,

				index_id	AS	indexid,

				index_type_desc	AS	indextype,

				avg_fragmentation_in_percent	AS	frag

INTO

				#reindexobjects

FROM

				sys.dm_db_index_physical_stats(DB_ID(@db),	NULL,	NULL,	

NULL,	'LIMITED')

WHERE

				avg_fragmentation_in_percent	>	@maxfrag

				AND	index_id	>	0

The	procedure	then	uses	the	cursor	to	loop	through	the	active	indexes.	Depending	on
the	index-rebuild	thresholds,	the	procedure	determines	whether	the	index	has	to	be	rebuilt
or	reorganized.	The	procedure	also	takes	into	consideration	whether	the	process	can	be
performed	online	or	offline,	based	on	the	day	of	the	week.	For	example,	you	may	consider
rebuilding	the	index	offline	during	weekends	when	the	database	isn’t	too	active.	The
procedure	then	executes	ALTER	INDEX	statements	for	each	index:

DECLARE	objects	CURSOR	FOR

				SELECT	o.*	FROM	#reindexobjects	o

				INNER	JOIN	sys.indexes	i	ON	i.object_id	=	o.objectid

				WHERE	i.is_disabled	=	0	AND	i.is_hypothetical	=	0;

--	Open	the	cursor.

OPEN	objects;

WHILE	(1=1)

BEGIN;

				FETCH	NEXT	FROM	objects	INTO	@objectid,	@indexid,	

@indextype,	@frag;

				IF	@@FETCH_STATUS	<	0	BREAK;

				SELECT	@objectname	=	QUOTENAME(o.name),	@schemaname	

=	QUOTENAME(s.name)

				FROM	sys.objects	AS	o

				JOIN	sys.schemas	AS	s	ON	s.schema_id	=	o.schema_id

				WHERE	o.object_id	=	@objectid;

				SELECT	@indexname	=	QUOTENAME(name)

				FROM	sys.indexes

				WHERE	object_id	=	@objectid	AND	index_id	=	@indexid;

				SET	@sqlcommand	=	N'ALTER	INDEX	'	+	@indexname	+	N'	ON	'	

+

																								@schemaname	+	N'.'	+	@objectname;

				IF	@frag	>	@rebuildthreshold

				BEGIN;

								SET	@sqlcommand	=	@sqlcommand	+	N'	REBUILD';

								IF	(DATEPART(WEEKDAY,	GETDATE())	<>	

@WeekdayRebuildOffline)

												AND	((@indextype	Like	'HEAP')	OR	(@indextype	like	

'%CLUSTERED%'))

								SET	@sqlcommand	=	@sqlcommand	+	N'	WITH	(ONLINE	

=	ON)';

				END;

				ELSE

								SET	@sqlcommand	=	@sqlcommand	+	N'	REORGANIZE';

				PRINT	N'Executing:	'	+	@sqlcommand;

				EXEC	(@sqlcommand)	;

END;

--	Close	and	deallocate	the	cursor.

CLOSE	objects;	

DEALLOCATE	objects;

Next,	the	procedure	uses	the	cursor	to	loop	through	the	objects,	updates	the	statistics,
and	recompiles	the	stored	procedures	and	triggers:

DECLARE	tablelist	CURSOR	FOR

				SELECT	distinct	OBJECT_NAME(o.objectid)	FROM	

#reindexobjects	o;

--	Open	the	cursor.

OPEN	tablelist;

FETCH	NEXT	FROM	tablelist	INTO	@objectname;

--	Loop	through	the	partitions.

WHILE	@@FETCH_STATUS	=	0

BEGIN;

				--Update	Statistics

				SET	@sqlcommand	=	'	UPDATE	STATISTICS	'	+	@objectname;

				PRINT	N'Executing:	'	+	@sqlcommand;

				EXEC	(@sqlcommand)	;

				--Recompile	Stored	Procedures	and	Triggers

				SET	@sqlcommand	=	'	EXEC	sp_recompile	'	+	@objectname;

				PRINT	N'Executing:	'	+	@sqlcommand;

				EXEC	(@sqlcommand)	;

				FETCH	NEXT	FROM	tablelist	INTO	@objectname;

END;

CLOSE	tablelist;

DEALLOCATE	tablelist;

The	procedure	then	cleans	up	the	temporary	objects	that	were	created:

DROP	TABLE	#reindexobjects;

Session	Information
The	sys.dm_exec_sessions	DMV	returns	one	row	per	session	on	the	server.	The
information	returned	is	similar	to	that	returned	by	the	sp_who2	system	SP.	You	can	use
this	DMV	to	retrieve	information	that	includes	the	database	ID,	session	ID,	login	name,
client	program	name,	CPU	time	and	memory	usage,	transaction	isolation	level,	and
session	settings	like	ANSI_NULLS	and	ANSI_PADDING.	Listing	14-5	is	a	simple	query
against	the	sys.dm_exec_sessions	DMV.	Partial	results	are	shown	in	Figure	14-4.

Listing	14-5.	Retrieving	Session	Information

SELECT

db_name(database_id)	dbname,

session_id,

host_name,

program_name,

client_interface_name,

login_name,

cpu_time,

CASE	WHEN	ansi_nulls	=	0	THEN	'OFF'	ELSE	'ON'	END	

ansi_nulls,

CASE	WHEN	ansi_padding	=	0	THEN	'OFF'	ELSE	'ON'	END	

ansi_padding

	FROM	sys.dm_exec_sessions;

Figure	14-4.	Retrieving	session	information	with	sys.dm_exec_sessions

You	can	also	use	sys.dm_exec_sessions	to	retrieve	summarized	information
about	sessions.	Listing	14-6	presents	summary	information	for	every	current	session	on
the	server.	The	results	are	shown	in	Figure	14-5.

Listing	14-6.	Retrieving	Summarized	Session	Information

SELECT

login_name,

SUM(cpu_time)	AS	tot_cpu_time,

SUM(memory_usage)	AS	tot_memory_usage,

AVG(total_elapsed_time)	AS	avg_elapsed_time,

SUM(reads)	AS	tot_reads,

SUM(writes)	AS	tot_writes,

SUM(logical_reads)	AS	tot_logical_reads,

COUNT(session_id)	as	tot_sessions

FROM	sys.dm_exec_sessions	WHERE	session_id	>	50

GROUP	BY	login_name;

Figure	14-5.	Summary	session	information

Connection	Information
In	addition	to	session	information,	you	can	retrieve	connection	information	via	the
sys.dm_exec_connections	DMV.	This	DMV	returns	connection	information	for
every	session	with	a	sessionid	greater	than	50	(values	of	50	and	below	are	used
exclusively	by	the	server).	Listing	14-7	uses	the	DMV	to	retrieve	connection	information;
the	results	are	shown	in	Figure	14-6.	Notice	that	this	DMV	also	returns	client	network
address,	port,	and	authentication	scheme	information	with	no	fuss.

Listing	14-7.	Retrieving	Connection	Information

SELECT

Session_id,

client_net_address,

auth_scheme,

net_transport,

client_tcp_port,

local_tcp_port,

connection_id

FROM	sys.dm_exec_connections;

Figure	14-6.	Connection	information	retrieved	via	DMV

Currently	Executing	SQL
The	sys.dm_exec_requests	DMV	allows	you	to	see	all	currently	executing	requests
on	SQL	Server.	When	you	combine	the	DMV	sys.dm_exec_requests	with
sys.dm_exec_sessions,	you	can	get	information	about	the	SQL	statements	that	are
executing	at	that	point	in	time	and	whether	the	session	is	being	blocked.	You	can	use	these
DMVs	to	return	the	details	of	currently	executing	SQL,	as	shown	in	Listing	14-8.	Partial
results	are	shown	in	Figure	14-7.

	Tip		The	sys.dm_exec_requests	DMV	can	be	used	to	retrieve	additional
information	for	currently	executing	requests	for	CPU	time,	reads,	writes,	and	the	amount
of	granted	memory,	among	others.	The	information	returned	is	similar	to	what	is	returned
by	the	sys.dm_exec_sessions	DMV	described	previously	in	this	section,	but	on	a
per-request	basis	instead	of	a	per-session	basis.

Listing	14-8.	Querying	Currently	Executing	SQL	Statements

SELECT

s.session_id,

r.request_id,

r.blocking_session_id,

DB_NAME(r.database_id)	as	database_name,

r.[user_id],

r.status	AS	request_status,

s.status	AS	session_status,

s.login_time,

s.is_user_process,

ISNULL	(s.[host_name],	'')	AS	[host_name],

ISNULL	(s.[program_name],	'')	AS	[program_name],

ISNULL	(s.login_name,	'')	AS	login_name,

ISNULL	(r.wait_type,	'')		AS	wait_type,

ISNULL	(r.last_wait_type,	'')	AS	last_wait_type,

ISNULL	(r.wait_resource,	'')		AS	wait_resource,

r.transaction_id,

r.open_transaction_count,

r.cpu_time	AS	request_cpu_time,

r.logical_reads	AS	request_logical_reads,

r.reads	AS	request_reads,

r.writes	AS	request_writes,

r.total_elapsed_time	AS	request_total_elapsed_time,

r.start_time	AS	request_start_time,

r.wait_time	AS	request_wait_time,

s.memory_usage,

s.cpu_time	AS	session_cpu_time,

s.total_elapsed_time	AS	session_total_elapsed_time,

s.last_request_start_time	AS	

session_last_request_start_time,

s.last_request_end_time	AS	session_last_request_end_time,

r.command,

r.sql_handle

FROM	sys.dm_exec_sessions	s

LEFT	OUTER	MERGE	JOIN	sys.dm_exec_requests	r

ON	s.session_id	=	r.session_id

WHERE	r.session_id	<>	@@SPID	AND

				((r.session_id	IS	NOT	NULL	AND	(s.is_user_process	=	1	OR

r.status	NOT	IN	('background',	'sleeping')))	OR

				(s.session_id	IN	(SELECT	DISTINCT	blocking_session_id

FROM	sys.dm_exec_requests	WHERE	blocking_session_id	!=	0)))

OPTION	(FORCE	ORDER);

Figure	14-7.	Currently	executing	SQL	statements

The	procedure	in	Listing	14-8	uses	sys.dm_exec_sessions	to	retrieve	the
session	details	and	sys.dm_exec_requests	to	retrieve	the	request	statistics.	The
field	session_id	returns	the	ID	for	the	current	session	that	is	being	executed,	and
blocking_session_id	returns	the	head	blocker.	If	the	query	isn’t	being	blocked,
blocking_session_id	is	0.

The	query	filter	then	returns	all	active	sessions.	If	there	is	blocking	for	a	session,	the
query	filter	also	returns	the	head	blocker,	even	if	the	session	is	inactive:

((r.session_id	IS	NOT	NULL	AND	(

			s.is_user_process	=	1	OR	r.status

			NOT	IN	('background',	'sleeping')))	OR

(s.session_id	IN	(

			SELECT	DISTINCT	blocking_session_id

			FROM	sys.dm_exec_requests

			WHERE	blocking_session_id	!=	0)))

The	query	hint	OPTION	(FORCE	ORDER)	has	been	added	to	suppress	warning
messages.

As	you	can	see	in	the	results	shown	in	Figure	14-7,	there	were	two	active	sessions	in
the	SQL	Server	2014	instance	when	we	ran	this	query.	Session	ID	67	is	blocked	by	session
ID	65,	and	the	request_wait_time	field	returns	the	wait	time	for	session	ID	67
(which	is	currently	blocked)	in	milliseconds.	You	can	review	the	columns	wait_type
and	wait_resource	to	understand	what	the	session	is	waiting	on	and	resolve	the
blocking	issue.	If	you	have	more	active	sessions	in	your	server,	the	query	will	report	them
all.

Memory-Optimized	System	Views
SQL	Server	2014	introduces	a	series	of	new	views	to	assist	with	the	management	of
memory-optimized	objects;	see	Table	14-2.	These	system	views	allow	you	to	better
monitor	memory	usage,	garbage	collection,	index	usage,	and	transaction	statistics	related
to	memory-optimized	objects.	Disk-based	tables	have	a	counterpart	view	that	lets	you
monitor	disk-based	tables	in	a	similar	fashion.

Table	14-2.	Memory-Optimized	System	Views

System	View Description

dm_db_xtp_checkpoint_files
Displays	information	about	checkpoint	files,	including
file	size,	physical	location,	state,	and	lsn	information

dm_db_xtp_checkpoint_stats
Returns	statistics	about	In-Memory	OLTP	checkpoint
operations	in	the	current	database

dm_db_xtp_gc_cycle_stats

Outputs	the	current	state	of	committed	transactions	that
have	deleted	one	or	more	rows	from	the	garbage-
collection	cycles

dm_db_xtp_hash_index_stats
Returns	statistics	that	are	useful	for	understanding,
managing,	and	tuning	hash	index	bucket	counts

dm_db_xtp_index_stats

Contains	statistics	collected	since	the	last	database
restart,	specifically	tracking	memory-optimized	objects
that	aren’t	tracked	in	other	system	views

dm_db_xtp_memory_consumers Returns	one	row	of	memory	information	about
memory-optimized	objects,	which	the	database	engine
uses	at	a	granular	level

dm_db_xtp_merge_requests

Monitors	database	merge	requests	that	were	generated
by	SQL	Server	or	manually	triggered	using	the
sys.sp_xtp_merge_checkpoint_files

system	procedure

dm_db_xtp_nonclustered_index_stats

Returns	statistics	about	the	usage	of	nonclusted	indexes
in	memory-optimized	tables	in	the	current	database.
The	statistics	are	reset	after	a	database	restart,	because
in-memory	objects	are	recreated	after	a	restart

dm_db_xtp_object_stats

Monitors	the	number	of	operations	made	against	in-
memory	tables,	regardless	of	the	success	or	failure	of
the	operation

dm_db_xtp_table_memory_stats
Returns	the	memory	usage	for	each	table	and	index
created	in	memory,	expressed	in	KB

dm_db_xtp_transactions
Returns	the	current	active	transactions	for	in-memory
objects

dm_xtp_gc_queue_stats

Returns	information	about	the	garbage-collection
worker	queue	process	and	statistics,	per
schedulers/cores	on	the	machine

dm_xtp_gc_stats

Returns	overall	statistics	information	about	the	current
behavior	of	the	In-Memory	OLTP	garbage-collection
process

dm_xtp_system_memory_consumers
Returns	system-level	memory	consumers	for	in-
memory	OLTP,	expressed	in	bytes

dm_xtp_transaction_stats
Returns	information	about	the	transactions	that	have	run
since	the	server	started

Most	Expensive	Queries
The	sys.dm_exec_query_stats	DMV	allows	you	to	see	the	aggregated
performance	statistics	for	the	cached	query	plans.	This	DMV	contains	one	row	for	each
query	plan;	it	has	more	than	one	row	for	stored	procedures	containing	multiple	statements.
You	can	use	this	DMV	in	conjunction	with	sys.dm_exec_sql_text,	which	shows
the	SQL	statement	text	based	on	the	SQL	handle,	and	sys.dm_exec_query_plan,
which	shows	the	showplan	in	an	XML	format	to	retrieve	the	most	expensive	queries	for
the	cached	query	plans	in	the	server	(see	Listing	14-9).	Partial	results	are	shown	in	Figure
14-8.	You	can	use	the	columns	min_rows,	max_rows,	total_rows,	and
last_rows	to	analyze	the	row	statistics	for	the	query	plan	since	it	was	last	compiled.
For	example,	if	you	have	a	long-running	query,	and	you’re	trying	to	analyze	the	cause	for
the	query’s	slowness,	this	information	will	help	you	to	understand	the	maximum	number
of	rows	and	average	numbers	of	rows	returned	by	the	query	over	time	and	to	tune	the
query.

Listing	14-9.	Querying	the	Most	Expensive	Queries

SELECT

				DB_Name(qp.dbid)	AS	[DB],

				qp.dbid	AS	[DBID],

				qt.text,

				SUBSTRING(qt.TEXT,

				(qs.statement_start_offset/2)+1,

								((CASE	qs.statement_end_offset

												WHEN	-1

																THEN	DATALENGTH(qt.TEXT)

																ELSE	qs.statement_end_offset

												END	-	qs.statement_start_offset)/2)+1)	AS	

stmt_text,

				qs.execution_count,

				qs.total_rows,

				qs.min_rows,	

				qs.max_rows,

				qs.last_rows,

				qs.total_logical_reads/qs.execution_count	AS	

avg_logical_reads,

				qs.total_physical_reads/qs.execution_count	AS	

avg_physical_reads,

				qs.total_logical_writes/qs.execution_count	AS	avg_writes,

				(qs.total_worker_time/1000)/qs.execution_count	AS	

avg_CPU_Time_ms,

				qs.total_elapsed_time/qs.execution_count/1000	AS	

avg_elapsed_time_ms,

qs.last_execution_time,

				qp.query_plan	AS	[Plan]

FROM	sys.dm_exec_query_stats	qs

				CROSS	APPLY	sys.dm_exec_sql_text(qs.sql_handle)	qt

								CROSS	APPLY	sys.dm_exec_query_plan(qs.plan_handle)	qp

ORDER	BY

execution_count	DESC,	qs.total_logical_reads	desc,	

total_rows	desc;

Figure	14-8.	Most	expensive	queries

You	can	use	the	DMV	sys.dm_exec_query_stats	and
sys.dm_exec_sql_text	to	view	the	queries	that	are	blocked	in	the	server,	as	shown
in	Listing	14-10.	Partial	results	are	shown	in	Figure	14-9.

Listing	14-10.	Querying	the	Most-Blocked	Queries

	SELECT	TOP	50

(total_elapsed_time	-	total_worker_time)	

/	qs.execution_count	AS	average_time_blocked,

total_elapsed_time	-	total_worker_time	AS	

total_time_blocked,

qs.execution_count,

qt.text	blocked_query,

DB_NAME(qt.dbid)	dbname

FROM	sys.dm_exec_query_stats	qs

CROSS	APPLY	sys.dm_exec_sql_text(qs.sql_handle)	qt

ORDER	BY	average_time_blocked	DESC;

Figure	14-9.	Most-blocked	queries

As	you	can	see	in	Figure	14-9,	the	dbname	field	lists	the	database	name	for	some
queries	and	doesn’t	return	the	database	name	for	other	queries.	The	reason	is	that
sql_handle	identifies	only	the	text	that	is	being	submitted	to	the	server.	Because	only
the	text	is	submitted	to	the	server,	the	query	text	may	be	generic	enough	that	it	can	be
submitted	to	multiple	databases;	and	in	this	case,	sql_handle	can’t	identify	the
database	name.	However,	if	a	stored	procedure	resides	in	a	database,	the	database	name
can	be	identified	and	retrieved.	In	Figure	14-9,	if	you	look	at	the	rows	1	and	4,	you	can	see
that	both	queries	reference	the	same	select	statement—the	difference	is	that	row	4	uses
a	stored	procedure,	whereas	row	1	uses	a	batch	SQL	query.	The	database	name	was
retrieved	for	row	4,	but	for	row	1	it	wasn’t.

Tempdb	Space
The	tempdb	system	database	holds	a	position	of	prominence	for	DBAs.	The	tempdb
database	constitutes	a	global	server-wide	resource	shared	by	all	sessions,	connections,	and
databases	for	temporary	storage	on	a	single	SQL	Server	instance.	An	improperly	managed

tempdb	can	bring	a	SQL	Server	instance	to	its	knees.	Listing	14-11	demonstrates	a
simple	usage	of	sys.dm_db_file_space_usage	to	report	free	and	used	space	in
tempdb.	The	database_id	for	the	system	database	tempdb	is	2.	The	results	are
shown	in	Figure	14-10.

Listing	14-11.	Querying	Free	and	Used	Space	in	tempdb

SELECT

db_name(database_id)	AS	Database_Name,

SUM(unallocated_extent_page_count)	AS	free_pages,

SUM(unallocated_extent_page_count)	*	8.0	AS	free_KB,

SUM(user_object_reserved_page_count)	AS	user_object_pages,

SUM(user_object_reserved_page_count)	*	8.0	AS	

user_object_pages,

SUM(internal_object_reserved_page_count)	AS	

internal_object_pages,

SUM(internal_object_reserved_page_count)	*	8.0	AS	

internal_object_KB

FROM	sys.dm_db_file_space_usage

WHERE	database_id	=	2

GROUP	BY	database_id;

Figure	14-10.	Free	and	used	space	in	tempdb

The	tempdb	can	run	out	of	space	for	various	reasons—perhaps	the	objects	created	in
the	tempdb	haven’t	been	dropped,	or	the	application	is	performing	sort	operations	that
take	up	all	the	space	allocated	for	the	tempdb.	When	troubleshooting	tempdb	space
usage,	it’s	important	to	understand	space	allocation	for	the	objects	that	currently	reside	in
the	tempdb.	In	addition	to	the	sys.dm_db_file_space_usage	DMV,	SQL	Server
2014	provides	the	sys.dm_db_partition_stats	DMV,	which	returns	detailed
allocations	per	table.	This	DMV	returns	results	based	on	the	execution	database	context.
The	DMV	returns	details	about	how	much	space	has	been	reserved	for	the	in-row,	LOB
data	and	variable-length	data;	the	row-overflow	data	and	how	much	has	been	used;	and
the	row	count.	If	the	table	isn’t	partitioned,	then	the	partition	number	is	returned	as
1.	Listing	14-12	demonstrates	a	simple	usage	of	sys.dm_db_partition_stats	to
report	the	user	objects	in	the	tempdb	and	the	details	of	the	rowcount,	reserved	pages,
used	pages,	and	index	type.	Figure	14-11	shows	partial	result	sets	for	the	query.

Listing	14-12.	Querying	User	Object	Allocations	in	tempdb

SELECT	object_name(o.object_id)	AS	Object,

				CASE

								WHEN	index_id	=	0	then	'heap'

								WHEN	index_id	=	1	then	'clustered	index'

								WHEN	index_id	>	1	then	'nonclustered	index'

				END	AS	IndexType,

				SUM(reserved_page_count)	AS	ReservedPages,

				SUM(used_page_count)	AS	UsedPages,

				SUM(case	when	(index_id	<	2)	then	row_count	else	0	end)	

AS	Rows

FROM	sys.dm_db_partition_stats	p	JOIN	sys.objects	o	ON	

p.object_id	=	o.object_id

WHERE	type_desc	=	'USER_TABLE'

GROUP	BY	o.object_id,index_id

ORDER	BY	sum(used_page_count)	DESC;

Figure	14-11.	User	object	allocations	in	tempdb

In	addition,	you	can	use	the	DMV’s	sys.dm_db_session_space_usage	and
sys.dm_db_task_space_usage	to	return	details	about	tempdb	space	usage	based
on	a	specific	session	or	task	to	further	narrow	the	specific	offender	that	consumes	most
tempdb	space.	Listing	14-13	uses	the	sys.dm_db_session_space_usage	and
sys.dm_db_task_space_usage	DMVs	to	return	the	session_id,	the	request
associated	with	the	session,	and	the	object	page	allocation.	Figure	14-12	shows	a	partial
result	set.

Listing	14-13.	Querying	User	Object	Allocations	in	the	tempdb	per	Session

SELECT	s.session_id,	request_id,

SUM(s.internal_objects_alloc_page_count+

t.internal_objects_alloc_page_count)*8.0	AS	

internal_obj_pages_kb,

				SUM(s.user_objects_alloc_page_count)	as	user_obj_pages

FROM	sys.dm_db_session_space_usage	s	JOIN	

sys.dm_db_task_space_usage	t

ON	s.session_id	=	t.session_id

GROUP	BY	s.session_id,	request_id;

Figure	14-12.	User	object	allocations	in	tempdb	with	session	data

Server	Resources
The	sys.dm_os*	DMVs	and	functions	allow	you	to	query	detailed	information	about
your	server	and	resources.	This	is	useful	for	retrieving	the	server	restart	time	or	machine
and	configuration	details	such	as	whether	you’re	using	hyperthreading.	The
sys.dm_os_sys_info	DMV	returns	details	about	server	resources,	information	about
whether	the	SQL	Server	instance	is	physical	or	virtual,	and	details	of	the	virtualization
environment.	The	value	in	the	column	virtual_machine_type_desc	can	be	None,
Hypervisor,	or	Other.	None	means	the	server	is	physical,	and	Hypervisor	means	the
instance	is	running	in	the	hypervisor.

Listing	14-14	retrieves	server	configuration	information,	including	the	number	of
logical	CPUs	on	the	server,	the	ratio	of	logical	to	physical	CPUs,	physical	and	virtual
memory	available	to	the	server,	the	last	server	restart	time,	and	the	hyperthreading	ratio.
The	results	are	shown	in	Figure	14-13.

Listing	14-14.	Retrieving	Low-level	Configuration	Information

SELECT

cpu_count	AS	logical_CPUs,

hyperthread_ratio,

physical_memory_kb	/	1048576.00	AS	physical_MB,

virtual_memory_kb	/	1048576.00	AS	virtual_MB,

sqlserver_start_time,

virtual_machine_type_desc

FROM	sys.dm_os_sys_info;

Figure	14-13.	Server	configuration	details

Another	useful	DMV,	sys.dm_os_volume_stats,	returns	volume	information
for	the	mount	points	as	well.	You	can	check	to	see	whether	the	volume	attribute	is	read-
only	or	get	the	space	utilization	before	performing	a	bulk	operation.	Checking	the	volume
attribute	can	come	in	handy	when	you	work	with	the	Scalable	Shared	Database	(SSD).
SSD	lets	you	attach	a	read-only	volume	to	multiple	SQL	Server	instances	to	help	scale	out
the	database.

Listing	14-15	demonstrates	a	simple	query	that	lists	the	volume	information	for	all
databases	including	the	database	name,	file	name,	and	volume	ID	and	mount	points,	along
with	the	space	used.	Partial	results	are	shown	in	Figure	14-14.

Listing	14-15.	Returning	Volume	Information	for	All	Databases

SELECT

				DB_NAME(f.database_id)	AS	DBName,

				f.name	AS	FileName,

				volume_mount_point,

				volume_id,

				logical_volume_name,

				total_bytes,

				available_bytes,

				CAST(CAST(available_bytes	AS	FLOAT)/	CAST(total_bytes	AS	

FLOAT)	AS	DECIMAL(18,1))	*					100	AS	[Space	Used	%],

				v.is_read_only

FROM	sys.master_files		f

				CROSS	APPLY	sys.dm_os_volume_stats(f.database_id,	

f.file_id)	v

ORDER	BY	f.database_id	DESC;

Figure	14-14.	Returning	volume	information	for	all	databases

When	the	SQL	Server	process	creates	a	dump	file	or	mini	dumps,	you	have	to	browse
through	the	SQL	Server	error	logs	to	locate	the	dump	file	and	start	investigating	the	issue.
To	facilitate	your	locating	the	dump	file,	SQL	Server	2012	introduced	a	DMV	called
sys.dm_server_memory_dumps.	This	DMV	stores	all	the	SQL	Server	dumps	so
that	you	can	easily	locate	the	dump	file	path	along	with	the	file’s	name,	size,	and	creation

date.

Listing	14-16	demonstrates	a	query	that	lists	the	details	of	the	SQL	dumps;	the	results
are	shown	in	Figure	14-15.	You	can	see	that	the	server	has	two	SQL	mini	dumps;	the	path
to	the	dumps	and	the	creation	time	make	it	simple	to	locate	the	dump	files.	You	can	also
correlate	the	dumps	to	the	application	log	files	to	determine	the	code	that	caused	each
dump.

Listing	14-16.	Listing	SQL	Server	Dumps

select	*	from	sys.dm_server_memory_dumps

Figure	14-15.	Returning	SQL	Server	dump	details

Another	useful	DMV	is	sys.dm_server_registry,	which	lists	all	SQL	Server
registry	settings.	For	example,	suppose	you’re	calling	CLR	procedures	in	the	code,	and
you	want	to	check	whether	trace	flag	6527	is	not	enabled	for	the	SQL	Server	instance	so
that	you	can	make	sure	SQL	Server	will	generate	memory	dump	on	the	first	occurrence	of
an	out-of-memory	exception.	This	DMV	makes	it	easier	for	you	to	perform	that	check.
Listing	14-17	demonstrates	the	query	usage,	and	Figure	14-16	shows	a	partial	result	set.

Listing	14-17.	Listing	SQL	Server	Instance	Registry	Settings

select	*	from	sys.dm_server_registry

Figure	14-16.	Returning	SQL	Server	instance	registry	keys	and	values

Unused	Indexes
Another	important	aspect	of	managing	a	database	is	determining	which	indexes	are	used
and	which	ones	aren’t.	Indexes	consume	storage	space,	and	the	query	optimizer	uses	them
to	efficiently	access	data	as	well.	If	an	index	isn’t	being	used,	then	the	storage	space	that	is
being	consumed	by	that	index	is	an	overhead.	SQL	Server	provides	the
sys.dm_db_index_usage_stats	DMV	to	report	which	indexes	have	been	used
since	the	SQL	Server	service	was	last	started.	When	a	query	accesses	the	indexes,	the
objective	is	to	seek.	If	the	index	has	a	high	number	of	user_scans,	then	it’s	a	candidate
for	tuning	so	an	index	seek	can	take	place.	If	the	index	has	a	high	number	of	updates	and

few	or	no	seeks,	lookups,	or	scans,	you	can	safely	assume	that	the	index	isn’t	being	used,
and	hence	it	can	be	removed.

Listing	14-18	presents	a	query	that	lists	all	indexes	that	haven’t	been	used	since	the
service	was	last	restarted	for	the	AdventureWorks	database.	Partial	results	are	shown	in
Figure	14-17.

Listing	14-18.	Listing	Unused	Indexes

USE	AdventureWorks;

SELECT

				DB_NAME()	AS	DatabaseName,

				OBJECT_SCHEMA_NAME(i.object_id,	s.database_id)	AS	

SchemaName,

				OBJECT_NAME(i.object_id)	AS	TableName,

				i.name	AS	IndexName,

				user_updates,

				user_seeks,

				user_scans,

				user_lookups,

				system_updates,

				last_user_seek,

				last_user_update

FROM	sys.indexes	i

				LEFT	JOIN	sys.dm_db_index_usage_stats	s	ON	s.object_id	

=	i.object_id	AND					i.index_id	=	s.index_id

WHERE	s.database_id	=	DB_ID()

ORDER	BY	last_user_update	DESC;

Figure	14-17.	Indexes	that	haven’t	been	usrd	Recently

As	you	can	see	in	Figure	14-17,	the	query	returns	index-usage	details	for	the	table	and
the	corresponding	index.	user_scans	returns	the	number	of	times	the	index	has	been
scanned.	user_seeks	returns	the	number	of	times	index	seeks	have	taken	place.
user_lookups	returns	the	number	of	times	the	index	has	been	used	in	bookmark
lookups.	user_updates	returns	the	number	of	times	the	index	has	been	updated,	and
system_updates	returns	the	number	of	times	the	index	was	updated	by	the	system.	In
the	figure,	you	can	see	that	the	indexes	AK_Product_Name	and
IX_vProductAndDescription	have	user_updates	but	no
user_seeks/scans/lookups,	which	means	these	indexes	haven’t	been	used	since
the	last	system	restart.

Although	the	indexes	listed	by	this	query	haven’t	been	used	since	the	last	restart,	that’s

no	guarantee	that	they	won’t	be	used	in	the	future.	Instead	of	deleting	the	index	based	on
the	queries,	if	you	gather	index	usage	information	like	this	on	a	regular	basis,	you	can
develop	a	picture	of	index	usage	patterns.	You	can	use	this	information	to	optimize
existing	indexes	and	redesign	or	drop	irrelevant	indexes.

Wait	Stats
Finally,	let’s	look	at	one	of	the	DMVs	that	will	help	you	quickly	narrow	down	IO,	CPU,
network,	locking,	or	memory	performance	issues.	The	sys.dm_os_wait_stats
DMV	can	help	you	understand	why	SQL	Server	has	been	waiting	for	a	resource	since	the
server	was	restarted.	For	example,	your	application	team	may	notice	a	performance	issue
and	conclude	that	multiple	processes	are	blocking	each	other;	however,	the	real	issue
could	be	the	delay	associated	with	the	log	cache	being	flushed	to	the	disk.

Listing	14-19	shows	a	query	to	list	the	top	20	waits	since	the	server	was	restarted	or
the	statistics	were	cleared.	Partial	results	are	shown	in	Figure	14-18.

Listing	14-19.	Listing	the	Top	20	Wait	Types	for	the	SQL	Server	Instance

SELECT	TOP	20

	wait_type,

	wait_time_ms	/	1000	wait_time_secs,

	CONVERT(DECIMAL(12,2),	wait_time_ms	*	100.0

															/	SUM(wait_time_ms)	OVER())	Per_waiting

FROM	sys.dm_os_wait_stats

ORDER	BY	wait_time_ms	DESC;

Figure	14-18.	Top	20	wait	types	for	the	SQL	Server	instance

INFORMATION_SCHEMA	Views
INFORMATION_SCHEMA	views	provide	yet	another	method	of	retrieving	metadata	in
SQL	Server	2014.	Defined	by	the	SQL-92	standard,	INFORMATION_SCHEMA	views
provide	the	advantage	of	being	cross-platform	compatible	with	other	SQL-92-compliant
database	platforms.	One	of	the	major	disadvantages	is	that	they	leave	out	a	lot	of	platform-
specific	metadata	like	detailed	SQL	CLR	assembly	information.	Also,	unlike	some	of	the
catalog	views	that	are	server	wide,	all	INFORMATION_SCHEMA	views	are	database
specific.	The	INFORMATION_SCHEMA	views	are	listed	in	Table	14-3.

Table	14-3.	INFORMATION_SCHEMA	Views

Name Description

CHECK_CONSTRAINTS
Returns	a	row	of	descriptive	information	for	each	check	constraint	in	the
current	database.

COLUMN_DOMAIN_USAGE
Returns	a	row	of	metadata	for	each	column	in	the	current	database	that
has	an	alias	data	type.

COLUMN_PRIVILEGES

Returns	a	row	of	information	for	each	column	in	the	current	database
with	a	privilege	that	has	been	granted	by,	or	granted	to,	the	current	user
of	the	database.

COLUMNS Returns	descriptive	information	for	each	column	that	can	be	accessed	by
the	current	user	in	the	current	database.

CONSTRAINT_COLUMN_USAGE

Returns	one	row	of	metadata	for	each	column	in	the	current	database
that	has	a	constraint	defined	on	it,	on	each	table-type	object	for	which
the	current	user	has	permissions.

CONSTRAINT_TABLE_USAGE

Returns	one	row	of	information	for	each	table	in	the	current	database
that	has	a	constraint	defined	on	it	for	which	the	current	user	has
permissions.

DOMAIN_CONSTRAINTS

Returns	a	row	of	descriptive	information	for	each	alias	data	type	in	the
current	database	that	the	current	user	can	access	and	that	has	a	rule
bound	to	it.

DOMAINS
Returns	a	row	of	descriptive	metadata	for	each	alias	data	type	in	the
current	database	that	the	current	user	can	access.

KEY_COLUMN_USAGE
Returns	a	row	of	metadata	for	each	column	that	is	constrained	by	a	key
for	which	the	current	user	has	permissions	in	the	current	database.

PARAMETERS

Returns	a	row	of	descriptive	information	for	each	parameter	for	all	user-
defined	functions	(UDFs)	and	SPs	that	can	be	accessed	by	the	current
user	in	the	current	database.	For	UDFs,	the	results	also	contain	a	row
with	return	value	information.

REFERENTIAL_CONSTRAINTS

Returns	a	row	of	metadata	for	each	FOREIGN	KEY	constraint	defined
in	the	current	database,	on	objects	for	which	the	current	user	has
permissions.

ROUTINE_COLUMNS

Returns	a	row	of	descriptive	information	for	each	column	returned	by
table-valued	functions	(TVFs)	defined	in	the	current	database.	This
INFORMATION_SCHEMA	view	only	returns	information	about	TVFs
for	which	the	current	user	has	access.

ROUTINES
Returns	a	row	of	metadata	for	each	SP	and	function	in	the	current
database	that	is	accessible	to	the	current	user.

SCHEMATA
Returns	a	row	of	information	for	each	schema	defined	in	the	current
database.

TABLE_CONSTRAINTS

Returns	a	row	of	metadata	for	each	table	constraint	in	the	current
database	on	table-type	objects	for	which	the	current	user	has
permissions.

TABLE_PRIVILEGES
Returns	a	row	of	descriptive	metadata	for	each	table	privilege	that	is
either	granted	by,	or	granted	to,	the	current	user	in	the	current	database.

TABLES
Returns	a	row	of	metadata	for	each	table	in	the	current	database	for
which	the	current	user	has	permissions.

VIEW_COLUMN_USAGE

Returns	a	row	of	information	for	each	column	in	the	current	database
that	is	used	in	a	view	definition,	on	objects	for	which	the	current	user
has	permissions.

VIEW_TABLE_USAGE

Returns	a	row	of	information	for	each	table	that	the	current	user	has
permissions	for	in	the	current	database.	The	tables	returned	are	those	for
which	the	current	user	has	permissions.

VIEWS Returns	a	row	of	metadata	for	each	view	that	can	be	accessed	by	the
current	user	in	the	current	database.

	Note		Some	of	the	changes	made	in	SQL	Server	2012	and	2014	can	break	backward
compatibility	with	SQL	Server	2008,	2005,	or	2000	INFORMATION_SCHEMA	views	and
applications	that	rely	on	them.	Also	note	that	SQL	Server	6.5	and	earlier	don’t	implement
INFORMATION_SCHEMA	views.	Check	BOL	for	specific	change	information	if	your
application	uses	INFORMATION_SCHEMA	and	requires	backward	compatibility.

Retrieving	column	information	with	the	INFORMATION_SCHEMA.COLUMNS	view
is	similar	to	using	the	sys.columns	catalog	view.	Listing	14-20	demonstrates	this,	with
results	shown	in	Figure	14-19.

Listing	14-20.	Retrieving	Column	Data	with	INFORMATION_SCHEMA.COLUMNS

SELECT

c.COLUMN_NAME,

c.ORDINAL_POSITION	FROM

INFORMATION_SCHEMA.COLUMNS	c	WHERE	c.TABLE_SCHEMA	=	'Person'

AND	c.TABLE_NAME	=	'Person'	ORDER	BY	c.ORDINAL_POSITION;

Figure	14-19.	Column	metadata	retrieved	via	INFORMATION_SCHEMA

INFORMATION_SCHEMA	views	are	useful	for	applications	that	require	cross-
platform	or	high	levels	of	ISO	compatibility.	Because	they’re	ISO	compliant,
INFORMATION_SCHEMA	views	don’t	report	a	lot	of	platform-specific	metadata.	The	ISO
standard	has	also	not	kept	up	with	the	demand	for	access	to	server-wide	metadata,	so	there
is	no	standard	server-scoped	equivalent	to	INFORMATION_SCHEMA.

Summary
This	chapter	has	discussed	catalog	views,	which	allow	you	to	query	database	and	server-

wide	metadata.	Catalog	views	let	you	retrieve	comprehensive	information	about
databases,	database	objects,	and	database	configuration.	You	also	saw	some	scenarios	for
using	catalog	views	and	code	examples	that	demonstrated	their	utility.

The	chapter	also	introduced	DMVs	and	DMFs,	which	provide	an	amazing	level	of
detailed	insight	into	the	inner	workings	of	SQL	Server.	SQL	Server	2014	supports	the
DMVs	and	DMFs	introduced	in	SQL	Server	2005	and	introduces	several	more	to	support
SQL	Server	2014	functionality	like	memory-optimized	tables.	Although	DMVs	and	DMFs
are	targeted	to	fulfill	the	needs	of	DBAs,	the	information	they	provide	can	be	valuable	to
developers	who	are	troubleshooting	performance	problems	or	other	issues.

Finally,	the	chapter	briefly	discussed	the	ISO	standard	INFORMATION_SCHEMA
metadata	views.	The	INFORMATION_SCHEMA	views	provide	less	detail	than	catalog
views	and	are	scoped	at	the	database	level	only,	but	they	do	provide	the	advantage	of
cross-platform	portability	when	that	is	a	requirement.	Because	they	have	to	conform	to	the
ISO	SQL	standard,	however,	they	leave	out	a	lot	of	useful	platform-specific	metadata.

The	next	chapter	discusses	CLR	integration	and	the	improvements	that	were	first
introduced	in	Server	2012.

EXERCISES

1.	 [Fill	in	the	blank]	“Metadata”	is	defined	as	“data	that	describes
__________.”

2.	 [Fill	in	the	blank]	________	provide	insight	into	database	objects
and	server-wide	configuration	options.

3.	 [Choose	one]	Many	catalog	views	are	defined	using	what	model?

a.	 European	model

b.	 Inheritance	model

c.	 First	In,	First	Out	model

d.	 Procedural	model

4.	 [True/False]	Dynamic	management	views	and	functions	provide
access	to	internal	SQL	Server	data	structures	that	would	be
otherwise	inaccessible.

5.	 [Choose	all	that	apply]	The	advantages	provided	by
INFORMATION_SCHEMA	views	include:

a.	 ISO	SQL	standard	compatibility

b.	 Access	to	server-scoped	metadata

c.	 Cross-platform	compatibility

d.	 Operating	system	configuration	metadata

CHAPTER	15

.NET	Client	Programming
Which	is	more	important:	an	efficient	database	or	a	well-designed	client	application	that
connects	to	the	database?	In	our	estimation,	they’re	both	equally	important.	After	all,	your
database	can	be	very	well	designed	and	extremely	efficient,	but	that	won’t	matter	to	the
end	user	if	the	client	application	they	use	to	connect	to	your	database	is	slow	and
unresponsive.	This	book	focuses	on	SQL	Server	server-side	development	functionality,
but	we’ve	decided	to	take	a	moment	to	introduce	some	of	the	tools	available	to	create
efficient	SQL	Server	client	applications.	The	.NET	Framework,	in	particular,	offers
several	options	to	make	SQL	Server	2014	client	connectivity	simple	and	efficient.	This
chapter	discusses	using	ADO.NET	and	the	.NET	SqlClient	as	a	basis	for	building	your
own	easy-to-use,	cutting-edge	SQL	Server	client	applications,	and	you	venture	into
modern	O/RM	trends	with	LINQ	to	SQL	and	Entity	Framework.

ADO.NET
The	System.Data.*	namespaces	consist	of	classes	and	enumerations	that	form	the
ADO.NET	architecture,	the	.NET	Framework’s	primary	tool	for	database	access.	You	can
use	the	classes	in	the	System.Data.*	namespaces	to	connect	to	your	databases	and
access	them	in	real	time,	or	in	a	disconnected	fashion	via	the	DataSet,	DataTable,
and	DataAdapter	classes.	The	following	are	some	of	the	more	commonly	used
namespaces	for	SQL	Server	data	access,	some	of	which	you	saw	in	Chapter	14	when	you
had	a	look	at	SQL	Server	.NET	Integration:

The	System.Data	namespace	provides	access	to	classes	that
implement	the	ADO.NET	architecture,	such	as	DataSet	and
DataTable.

The	System.Data.Common	namespace	provides	access	to	classes
that	are	shared	by	.NET	Framework	data-access	providers,	such	as	the
DbProviderFactory	class.

The	primary	namespace	for	native	SQL	Server	connectivity	is
System.Data.SqlClient.	This	namespace	includes	classes	that
provide	optimized	access	to	SQL	Server	(version	7.0	and	higher)	via
SQL	Server	Native	Client.	The	classes	in	this	namespace	are	designed
specifically	to	take	advantage	of	SQL	Server–specific	features	and
don’t	work	with	other	data	sources.

The	System.Data.Odbc	namespace	provides	managed	access	to
old-fashioned	ODBC	drivers.	ODBC	was	developed	in	the	early

1990s	as	a	one-size-fits-all	standard	for	connecting	to	a	wide	array	of
varied	data	sources.	Because	of	its	mission	of	standardizing	data
access	across	a	variety	of	data	sources,	ODBC	provides	a	generally
“plain	vanilla”	interface	that	sometimes	doesn’t	take	advantage	of
SQL	Server	or	other	database	management	system	(DBMS)	platform-
specific	features.	This	means	ODBC	isn’t	as	efficient	as	the	SQL
client,	but	it	provides	a	useful	option	for	connecting	to	assorted	data
sources	such	as	Excel	spreadsheets	and	other	DBMSs.

Microsoft	also	provides	the	System.Data.OleDb	namespaces,
which	can	connect	to	a	variety	of	data	sources,	including	SQL	Server.
It’s	an	option	for	applications	that	need	to	access	data	on	multiple
platforms,	such	as	both	SQL	Server	and	Microsoft	Access.	OLEDB
has	been	recently	deprecated	by	Microsoft	in	favor	of	the	more
standard	ODBC,	even	though	OLEDB	was	created	after	ODBC.

The	System.Data.SqlTypes	namespace	provides	.NET	classes
representing	native,	nullable	SQL	Server	data	types.	These	.NET	SQL
Server–specific	data	types	for	the	most	part	use	the	same	internal
representation	as	the	equivalent	SQL	Server	native	data	types,	helping
to	reduce	precision-loss	problems.	Using	these	types	can	also	speed	up
SQL	Server	connectivity,	because	it	helps	eliminate	implicit
conversions.	And	these	data	types,	unlike	the	standard	.NET	value
types,	have	built-in	NULL-handling	capability.	Table	15-1	lists	the
.NET	SqlTypes	types	and	their	corresponding	native	T-SQL	data
types.

Table	15-1.	System.Data.SqlTypes	Conversions

System.Data.SqlTypes	Class Native	T-SQL	Data	Type

SqlBinary binary,	image,	timestamp,	varbinary

SqlBoolean bit

SqlByte tinyint

SqlDateTime datetime,	smalldatetime

SqlDecimal decimal,	numeric

SqlDouble float

SqlGuid uniqueidentifier

SqlInt16 smallint

SqlInt32 int

SqlInt64 bigint

SqlMoney money,	smallmoney

SqlSingle real

SqlString char,	nchar,	ntext,	nvarchar,	text,	varchar

SqlXml xml

	Note		At	the	time	of	this	writing,	there	are	no	.NET	SqlTypes	types	corresponding	to
the	SQL	Server	data	types	introduced	in	SQL	Server	2008	(such	as	date,	time,
datetimeoffset,	and	datetime2).

The	.NET	SQL	Client
The	.NET	native	SQL	client	(SQLNCLI)	is	the	most	efficient	way	to	connect	to	SQL
Server	from	a	client	application.	With	the	possible	exceptions	of	upgrading	legacy	code
and	designing	code	that	must	access	non-SQL	Server	data	sources,	the	native	SQL	client	is
the	client	connectivity	method	of	choice.	The	main	classes	for	establishing	a	connection,
sending	SQL	commands,	and	retrieving	results	with	SqlClient	are	listed	in	Table	15-2.

Table	15-2.	Commonly	Used	Native	SQL	Client	Classes

System.Data.SqlClient	Class Description

SqlCommand Represents	an	SQL	statement	or	SP	to	execute.

SqlCommandBuilder
Automatically	generates	single-table	commands	to	reconcile
changes	made	to	an	ADO.NET	DataSet.

SqlConnection Establishes	a	connection	to	SQL	Server.

SqlConnectionStringBuilder Builds	connection	strings	for	use	by	SqlConnection	objects.

SqlDataAdapter

Wraps	a	set	of	SqlCommand	objects	and	an	SqlConnection
that	can	be	used	to	fill	an	ADO.NET	DataSet	and	update	an	SQL
Server	database.

SqlDataReader
Provides	methods	to	read	a	forward-only	stream	of	rows	from	an
SQL	Server	database.

SqlException
Provides	access	to	SQL	Server–specific	exceptions.	This	class	can
be	used	to	capture	an	SQL	Server	error	or	warning.

SqlParameter Represents	a	parameter	to	an	SqlCommand.

SqlParameterCollection
A	collection	of	SqlParameter	objects	associated	with	an
SqlCommand.

SqlTransaction
Enables	an	SQL	Server	transaction	to	be	initiated	and	managed
from	a	client.

Connected	Data	Access

Listing	15-1	demonstrates	SqlClient	data	access	via	an	SqlDataReader	instance.
This	is	the	type	of	access	you	might	use	in	an	ASP.NET	page	to	quickly	retrieve	values	for
a	drop-down	list,	for	example.	This	example	is	written	to	run	as	a	C#	console	application.
The	SQL	Server	connection	string	defined	in	the	sqlconnection	variable	should	be
modified	to	suit	your	local	SQL	Server	environment	and	security.

Listing	15-1.	SqlDataReader	Example

using	System;

using	System.Data.SqlClient;

namespace	Apress.Examples

{

				class	Listing15_1

				{

								static	void	Main(string[]	args)

								{

												string	sqlconnection	=	@"DATA	SOURCE=SQL2014;"	+

														"INITIAL	CATALOG=AdventureWorks;"	+

														"INTEGRATED	SECURITY=SSPI;";

												string	sqlcommand	=	"SELECT	"	+

														"			DepartmentId,	"	+

														"			Name,	"	+

														"			GroupName	"	+

														"	FROM	HumanResources.Department	"	+

														"	ORDER	BY	DepartmentId";

												try

												{

																connection	=	new	SqlConnection(sqlconnection);

																connection.Open();

																command	=	new	SqlCommand(sqlcommand,	

connection);

																datareader	=	command.ExecuteReader();

																while	(datareader.Read())

																{

																				Console.WriteLine

																						(

																								"{0}\t{1}\t{2}",

																								datareader["DepartmentId"].ToString(),

																								datareader["Name"].ToString(),

																								datareader["GroupName"].ToString()

);

																}

												}

												catch	(SqlException	ex)

												{

																Console.WriteLine(ex.Message);

												}

												finally

												{

																connection.Close();

												}

												Console.Write("Press	a	Key	to	Continue…");

												Console.ReadKey();

								}

				}

}

This	example	is	a	very	simple	console	application	that	retrieves	the	list	of	departments
from	the	HumanResources.Department	table	of	the	AdventureWorks	database
and	writes	the	data	to	the	display.	The	example	begins	by	importing	the	System	and
System.Data.SqlClient	namespaces.	Although	not	required,	importing	the
namespaces	saves	some	keystrokes	and	helps	make	code	more	readable	by	eliminating	the
need	to	prefix	the	classes	and	enumerations	used	with	their	associated	namespaces:

using	System;

using	System.Data.SqlClient;

The	body	of	the	class	defines	the	SQL	Server	connection	string	and	the	T-SQL
command	that	retrieves	the	department	data.	The	DATA_SOURCE	connection	string
option	is	set	at	the	server	named	SQL2014;	change	it	accordingly	to	match	your	own
server	name.	When	defining	the	connection	string,	you	prefix	the	string	with	the	@	sign,	to
create	a	verbatim	string	literal.	This	is	useful	because	a	verbatim	string	literal	doesn’t
interpret	special	characters	like	\.	Without	that,	if	you	declares	a	named	instance	as	a	data
source,	such	as	YOUR_SERVER\SQL2014,	you	would	have	to	escape	it	like	this:
YOUR_SERVER\SQL2014.	With	a	verbatim	string	literal,	the	\	doesn’t	need	to	be
escapedL

string	sqlconnection	=	@"DATA	SOURCE=SQL2014;"	+

														"INITIAL	CATALOG=AdventureWorks;"	+

														"INTEGRATED	SECURITY=SSPI;";

												string	sqlcommand	=	"SELECT	"	+

														"			DepartmentId,	"	+

														"			Name,	"	+

														"			GroupName	"	+

														"	FROM	HumanResources.Department	"	+

														"	ORDER	BY	DepartmentId";

												SqlConnection	connection	=	null;

The	SqlConnection	connection	string	is	composed	of	a	series	of	key/value	pairs
separated	by	semicolons,	as	shown	in	the	following:

DATA	SOURCE=SQL2014;INITIAL	

CATALOG=AdventureWorks;INTEGRATED	SECURITY=SSPI;

Some	of	the	commonly	used	SqlConnection	connection	string	keys	are	listed	in
Table	15-3.

Table	15-3.	SqlConnection	Connection	String	Keys

Connection	String	Keys Description

AttachDBFileName
Name	of	the	full	path	to	an	attachable	primary	database	file	(MDF
file).

Connection	Timeout
Length	of	time	(in	seconds)	to	wait	for	a	server	connection	before
stopping	the	attempt.

Data	Source

Name	or	IP	address	of	an	SQL	Server	instance	to	connect	to.	Use	the
server\instance	format	for	named	instances.	A	port	number	can
be	added	to	the	end	of	the	name	or	network	address	by	appending	it
with	a	comma.

Encrypt
Indicates	that	SSL	encryption	will	be	used	to	communicate	with	SQL
Server.

Initial	Catalog
Name	of	the	database	to	connect	to	once	a	server	connection	is
established.

Integrated	Security
When	true,	yes,	or	sspi,	Windows	integrated	security	is	used	to
connect.	When	false	or	no,	SQL	Server	security	is	used.

MultipleActiveResultSets

When	true,	a	connection	can	enable	multiple	active	result	sets
(MARS).	When	false,	all	result	sets	from	a	batch	must	be	processed
before	any	other	batch	can	be	executed	on	the	connection.

Password
Password	for	the	SQL	Server	account	used	to	log	in.	Using	integrated
security	is	recommended	over	SQL	Server	account	security.

Persist	Security	Info

When	false	or	no,	sensitive	security	information	(like	a	password)
isn’t	returned	as	part	of	the	connection	if	the	connection	has	been
opened.	The	recommended	setting	is	false.

User	ID
SQL	Server	account	user	ID	used	to	log	in.	Integrated	security	is
recommended	over	SQL	Server	account	security.

	Note		The	www.connectionstrings.com/	web	site	is	a	handy	reference	of
connection	strings	for	all	major	database	servers.

The	next	section	of	code	is	enclosed	in	a	try…catch	block	because	of	the	possibility
that	a	database	connection	or	other	error	might	occur.	If	an	error	does	occur,	control	is
passed	to	the	catch	block	and	the	error	message	is	displayed.	The	try…catch	block
includes	the	finally	block,	which	cleans	up	the	database	connection	whether	an
exception	is	thrown	or	not:

http://www.connectionstrings.com/

try

{

				...

}

catch		(SqlException	ex)

{

				Console.WriteLine(ex.Message);

}

finally

{

				connection.Close();

}

When	connecting	to	SQL	Server	from	a	client	application,	it’s	a	very	good	idea	to	code
defensively	with	try…catch	blocks.	Defensive	coding	simply	means	trying	to	anticipate
the	problems	that	may	occur	and	making	sure	your	code	handles	them.	Following	this
practice	in	database	client	applications	can	save	you	a	lot	of	headaches	down	the	road.
Some	of	the	possible	errors	you	may	encounter	in	SQL	Server	client	applications	include
problems	connecting	to	SQL	Server,	trying	to	access	tables	and	other	database	objects	that
have	been	changed	or	no	longer	exist,	and	returning	NULL	when	you	expect	other	values.

In	the	example’s	try…catch	block,	the	SqlConnection	is	instantiated	and
opened	using	the	connection	string	defined	previously.	Then	an	SqlCommand	is	created
on	the	open	connection	and	executed	with	the	ExecuteReader()	method.	The
ExecuteReader()	method	returns	an	SqlDataReader	instance,	which	allows	you
to	retrieve	result-set	rows	in	an	efficient	forward-only	fashion.	This	example	uses
SqlDataReader	in	a	while	loop	to	quickly	retrieve	all	rows	and	display	them	on	the
console:

try

{

				connection	=	new	SqlConnection(sqlconnection);

				connection.Open();

				command	=	new	SqlCommand(sqlcommand,	connection);

				datareader	=	command.ExecuteReader();

				while	(datareader.Read())

				{

								Console.WriteLine

								(

												"{0}\t{1}\t{2}",

												datareader["DepartmentId"].ToString(),

												datareader["Name"].ToString(),

												datareader["GroupName"].ToString()

);

				}

}

The	results	of	the	simple	client	utility	from	Listing	15-1	are	shown	in	Figure	15-1.

Figure	15-1.	Querying	the	database	table	and	iterating	the	result	set

Disconnected	Datasets
The	example	in	Listing	15-1	demonstrated	the	forward-only	read-only
SqlDataReader,	which	provides	an	efficient	interface	for	data	retrieval	but	is	far	less
flexible	than	ADO.NET	disconnected	datasets.	A	disconnected	dataset	is	an	in-memory
cache	of	a	dataset.	It	provides	flexibility	because	you	don’t	need	a	constant	connection	to
the	database	in	order	to	query	and	manipulate	the	data.	Listing	15-2	demonstrates	how	to
use	the	SqlDataAdapter	to	fill	a	DataSet	and	print	the	results.	The	differences
between	Listing	15-2	and	Listing	15-1	are	shown	in	bold.

Listing	15-2.	Using	SqlDataReader	to	Fill	a	DataSet

using	System;

using	System.Data;

using	System.Data.SqlClient;

namespace	Apress.Examples

{

				class	Listing15_2

				{

								static	void	Main(string[]	args)

								{

												string	sqlconnection	=	@"DATA	SOURCE=SQL2014;"	+

														"INITIAL	CATALOG=AdventureWorks;"	+

														"INTEGRATED	SECURITY=SSPI;";

												string	sqlcommand	=	"SELECT	"	+

														"			DepartmentId,	"	+

														"			Name,	"	+

														"			GroupName	"	+

														"	FROM	HumanResources.Department	"	+

														"	ORDER	BY	DepartmentId";

												SqlDataAdapter	adapter	=	null;

												DataSet	dataset	=	null;

												try

												{

																adapter	=	new	SqlDataAdapter(sqlcommand,	

sqlconnection);

																dataset	=	new	DataSet();

																adapter.Fill(dataset);

																foreach	(DataRow	row	in	dataset.Tables[0].Rows)

																{

																				Console.WriteLine

																						(

																								"{0}\t{1}\t{2}",

																								row["DepartmentId"].ToString(),

																								row["Name"].ToString(),

																								row["GroupName"].ToString()

);

																}

												}

												catch	(SqlException	ex)

												{

																Console.WriteLine(ex.Message);

												}

												finally

												{

																if	(dataset	!=	null)

																				dataset.Dispose();

																if	(adapter	!=	null)

																				adapter.Dispose();

												}

												Console.Write("Press	a	Key	to	Continue…");

												Console.ReadKey();

								}

				}

}

The	second	version	of	the	application,	in	Listing	15-2,	generates	the	same	results	as
Listing	15-1.	The	first	difference	is	that	this	example	imports	the	System.Data
namespace,	because	the	DataSet	class	is	a	member	of	System.Data.	Again,	this	isn’t
required,	but	it	does	save	wear	and	tear	on	your	fingers	by	eliminating	the	need	to	prefix

System.Data	classes	and	enumerations	with	the	namespace:

using	System;

using	System.Data;

using	System.Data.SqlClient;

The	SQL	connection-string	and	query-string	definitions	are	the	same	in	both	examples.
Listing	15-2	departs	from	Listing	15-1	by	declaring	an	SqlDataAdapter	and	a
DataSet	instead	of	an	SqlConnection,	SqlCommand,	and	SqlDataReader:

SqlDataAdapter	adapter	=	null;

DataSet	dataset	=	null;

The	code	to	retrieve	the	data	creates	a	new	SqlDataAdapter	and	DataSet	and
then	populates	the	DataSet	via	the	Fill()	method	of	the	SqlDataAdapter:

adapter	=	new	SqlDataAdapter(sqlcommand,	sqlconnection);

dataset	=	new	DataSet();

adapter.Fill(dataset);

The	main	loop	iterates	through	each	DataRow	in	the	single	table	returned	by	the
DataSet	and	writes	the	results	to	the	console:

foreach	(DataRow	row	in	dataset.Tables[0].Rows)

{

				Console.WriteLine

				(

								"{0}\t{1}\t{2}",

								row["DepartmentId"].ToString(),

								row["Name"].ToString(),

								row["GroupName"].ToString()

);

}

The	balance	of	the	code	handles	exceptions,	performs	cleanup	by	disposing	of	the
DataSet	and	SqlDataAdapter,	and	waits	for	a	keypress	before	exiting:

if	(dataset	!=	null)

				dataset.Dispose();

if	(adapter	!=	null)

				adapter.Dispose();

Parameterized	Queries
ADO.NET	provides	a	safe	method	for	passing	parameters	to	an	SP	or	SQL	statement,
known	as	parameterization.	The	“classic”	Visual	Basic	6/VBScript	method	of
concatenating	parameter	values	directly	into	a	long	SQL	query	string	is	inefficient	and
potentially	unsafe	(see	the	“SQL	Injection	and	Performance”	sidebar	later	in	this	chapter

for	more	information).	A	concatenated	string	query	might	look	like	this:

string		sqlstatement		=		"SELECT		"		+

				"				BusinessEntityID,	"	+

				"				LastName,	"	+

				"				FirstName,	"	+

				"				MiddleName	"	+

				"FROM	Person.Person	"	+

				"WHERE	LastName	=	N'"	+	name	+	"';";

The	value	of	the	name	variable	can	contain	additional	SQL	statements,	leaving	SQL
Server	wide	open	to	SQL	injection	attacks.	Let’s	imagine	that	the	name	variable	used	here
comes	directly	from	a	text	box	where	the	user	can	enter	the	name.	An	attacker	could	enter
some	special	characters	in	order	to	tamper	with	the	generated	query,	as	in	the	following:

string	name	=	"';

DELETE	FROM	Person.Person;	--";

This	value	for	the	name	variable	results	in	the	following	dangerous	SQL	statements
being	executed	on	the	server:

SELECT

				BusinessEntityID,

				LastName,

				FirstName,

				MiddleName

FROM	Person.Person

WHERE		LastName		=		N'';

DELETE		FROM		Person.Person;		--	';

Parameterized	queries	avoid	SQL	injection	by	sending	the	parameter	values	to	the
server	separately	from	the	SQL	statement.	Listing	15-3	demonstrates	a	simple
parameterized	query.	(The	results	are	shown	in	Figure	15-2.)

Listing	15-3.	Parameterized	SQL	Query

using	System;

using	System.Data;

using	System.Data.SqlClient;

namespace	Apress.Examples

{

				class	Listing15_3

				{

								static	void	Main(string[]	args)

								{

												string	name	=	"SMITH";

												string	sqlconnection	=	@"SERVER=SQL2014;	"	+

														"INITIAL	CATALOG=AdventureWorks;	"	+

														"INTEGRATED	SECURITY=SSPI;";

												string	sqlcommand	=	"SELECT	"	+

														"		BusinessEntityID,	"	+

														"		FirstName,	"	+

														"		MiddleName,	"	+

														"		LastName	"	+

														"FROM	Person.Person	"	+

														"WHERE	LastName	=	@name";

												SqlConnection	connection	=	null;

												SqlCommand	command	=	null;

												SqlDataReader	datareader	=	null;

												try

												{

																connection	=	new	SqlConnection(sqlconnection);

																connection.Open();

																command	=	new	SqlCommand(sqlcommand,	

connection);

																command.Parameters.Add("@name",	

SqlDbType.NVarChar,	50).Value	=	name;

																datareader	=	command.ExecuteReader();

																while	(datareader.Read())

																{

																				Console.WriteLine

																						(

																								"{0}\t{1}\t{2}\t{3}",

																								datareader["BusinessEntityID"].ToString(),

																								datareader["LastName"].ToString(),

																								datareader["FirstName"].ToString(),

																								datareader["MiddleName"].ToString()

);

																}

												}

												catch	(Exception	ex)

												{

																Console.WriteLine(ex.Message);

												}

												finally

												{

																connection.Close();

												}

												Console.WriteLine("Press	any	key…");

												Console.ReadKey();

								}

				}

}

Figure	15-2.	Results	of	the	parameterized	query

Listing	15-3	retrieves	and	prints	the	contact	information	for	all	people	in	the
AdventureWorks	Person.Person	table	whose	last	name	is	Smith.	The	example	begins
by	importing	the	appropriate	namespaces.	The	System.Data	namespace	is	referenced
here	because	it	contains	the	SqlDbType	enumeration	that	is	used	to	declare	parameter
data	types:

using	System;

using	System.Data;

using	System.Data.SqlClient;

The	program	declares	a	variable	to	hold	the	parameter	value,	the	SqlClient
connection	string,	a	parameterized	SQL	SELECT	statement,	and	the	SqlConnection,
SqlCommand,	and	SqlDataReader	objects:

string	name	=	"SMITH";

string	sqlconnection	=	@"SERVER=SQL2014;	"	+

				"INITIAL	CATALOG=AdventureWorks;	"	+

				"INTEGRATED	SECURITY=SSPI;";

string	sqlcommand	=	"SELECT	"	+

				"		BusinessEntityID,	"	+

				"		FirstName,	"	+

				"		MiddleName,	"	+

				"		LastName	"	+

				"FROM	Person.Person	"	+

				"WHERE	LastName	=	@name";

SqlConnection	connection	=	null;

SqlCommand	command	=	null;

SqlDataReader	datareader	=	null;

As	in	the	previous	examples,	try…catch	is	used	to	capture	runtime	exceptions.	The
parameterized	SQL	SELECT	statement	contains	a	reference	to	an	SQL	Server	parameter
named	@name.	Next,	a	connection	is	established	to	the	AdventureWorks	database:

connection	=	new	SqlConnection(sqlconnection);

connection.Open();

An	SqlCommand	is	created	using	the	previously	defined	query	string,	and	a	value	is
assigned	to	the	@name	parameter.	Every	SqlCommand	exposes	an
SqlParameterCollection	property	called	Parameters.	The	Add	method	of	the
Parameters	collection	allows	you	to	add	parameters	to	the	SqlCommand.	In	this
example,	the	parameter	added	is	named	@name;	it’s	an	nvarchar	type	parameter,	and
its	length	is	50.	The	parameters	in	the	Parameters	collection	are	passed	along	to	SQL
Server	with	the	SQL	statement	when	the	ExecuteReader(),	ExecuteScalar(),
ExecuteNonOuery(),	or	ExecuteXmlReader()	method	of	the	SqlCommand	is
called.	The	addition	of	a	Parameter	object	to	the	SqlCommand	is	critical;	this	is	the
portion	of	the	code	that	inhibits	SQL	injection	attacks:

command	=	new	SqlCommand(sqlcommand,	connection);

command.Parameters.Add("@name",	SqlDbType.NVarChar,	

50).Value	=	name;

In	this	instance,	the	ExecuteReader()	method	is	called	to	return	the	results	via
SqlDataReader	instance,	and	a	while	loop	is	used	to	iterate	over	and	display	the
results:

datareader	=	command.ExecuteReader();

while	(datareader.Read())

{

				Console.WriteLine

					(

								"{0}\t{1}\t{2}\t{3}",

								datareader["BusinessEntityID"].ToString(),

								datareader["LastName"].ToString(),

								datareader["FirstName"].ToString(),

								datareader["MiddleName"].ToString()

);

}

SQL	INJECTION	AND	PERFORMANCE

SQL	developers	and	DBAs	have	long	known	of	the	potential	security	risks	that	SQL
injection	attacks	can	pose.	You	often	hear	about	exploits	based	on	SQL	injections.	As
an	example,	in	2011,	hackers	claimed	in	a	press	release	to	have	stolen	the	personal

information	of	1	million	users	on	the	Sony	Pictures	web	site	via	a	single	SQL
injection	attack.	So	if	developers	and	DBAs	have	known	all	about	the	evils	of	SQL
injection	for	years,	why	are	so	many	databases	being	compromised?

The	problem	isn’t	that	people	don’t	know	what	SQL	injection	is.	Most	DBAs	and
developers	instinctively	shudder	at	the	sound	of	those	two	little	words.	Instead,	it
appears	that	many	developers	either	don’t	know	how	or	are	just	not	motivated	to
properly	code	to	defend	against	this	vicious	attack.	A	lot	of	injection-susceptible	code
was	written	on	the	Visual	Basic	6	and	classic	ASP	platforms,	where	query
parameterization	was	a	bit	of	a	hassle.	Many	programmers	have	carried	their	bad
coding	habits	over	to	.NET,	despite	the	fact	that	query	parameterization	with
SqlClient	is	easier	than	ever.

As	an	added	benefit,	when	you	properly	parameterize	your	queries,	you	can	get	a
performance	boost.	When	SQL	Server	receives	a	parameterized	query,	it
automatically	caches	the	query	plan	generated	by	the	optimizer.	On	subsequent
executions	of	the	same	parameterized	query,	SQL	Server	can	use	the	cached	query
plan.	Concatenated	string	queries	without	parameterization	generally	can’t	take
advantage	of	cached	query-plan	reuse,	so	SQL	Server	must	regenerate	the	query	plan
every	time	the	query	is	executed.	Keep	these	benefits	in	mind	when	developing	SQL
Server	client	code.

Additionally,	using	stored	procedures	instead	of	ad	hoc	queries	built	in	the	client
code	solves	almost	all	SQL	injection	threats	and	allows	the	best	possible	query-plan
reuse,	unless	you	create	dynamic	SQL	in	the	procedure	with	the	EXECUTE()
command.

Nonquery,	Scalar,	and	XML	Querying
The	examples	covered	so	far	in	this	chapter	have	all	been	SQL	SELECT	queries	that
return	rows.	SQL	statements	that	don’t	return	result	sets	are	classified	by	.NET	as
nonqueries.	Examples	of	nonqueries	include	UPDATE,	INSERT,	and	DELETE	statements,
as	well	as	DDL	statements	like	CREATE	INDEX	and	ALTER	TABLE.	The	.NET
Framework	provides	the	ExecuteNonQuery()	method	of	the	SqlCommand	class	to
execute	statements	such	as	these.	Listing	15-4	is	a	code	snippet	that	shows	how	to	execute
a	nonquery	using	the	ExecuteNonQuery()	method	of	SqlCommand.

Listing	15-4.	Executing	a	Nonquery

SqlCommand	command	=	new	SqlCommand

		(

				"CREATE	TABLE	#temp	"	+

				"		("	+

				"				Id	INT	NOT	NULL	PRIMARY	KEY,	"	+

				"				Name	NVARCHAR(50)	"	+

				");",	connection

);

command.ExecuteNonQuery();

The	example	creates	a	temporary	table	named	#temp	with	two	columns.	Because	the
statement	is	a	DDL	statement	that	returns	no	result	set,	the	ExecuteNonQuery()
method	is	used.

In	addition	to	queries	that	return	no	result	sets,	some	queries	return	a	result	set
consisting	of	a	single	row	and	a	single	column.	For	these	queries,	.NET	provides	a
shortcut	method	of	retrieving	the	value.	The	ExecuteScalar()	method	retrieves	the
single	value	returned	as	a	scalar	value	as	a	.NET	Object.	Using	this	method,	you	can
avoid	the	hassle	of	creating	an	SqlDataReader	instance	and	iterating	it	to	retrieve	a
single	value.	Listing	15-5	is	a	code	snippet	that	demonstrates	the	ExecuteScalar()
method.

Listing	15-5.	Using	ExecuteScalar	to	Retrieve	a	Row	Count

SqlCommand	command	=	new	SqlCommand

		(

				"SELECT	COUNT(*)	"	+

				"FROM	Person.Person;",	sqlconnection

);

Object	count	=	command.ExecuteScalar();

If	you	call	ExecuteScalar()	on	an	SqlCommand	that	returns	more	than	one	row
or	column,	only	the	first	row	of	the	first	column	is	retrieved.	Your	best	bet	is	to	make	sure
you	only	call	ExecuteScalar()	on	queries	that	return	a	single	scalar	value	(one	row,
one	column)	to	avoid	possible	confusion	and	problems	down	the	road.

	Tip		You	may	find	that	using	the	ExecuteNonQuery()	method	with	scalar	OUTPUT
parameters	is	more	efficient	than	the	ExecuteScalar()	method	for	servers	under
heavy	workload.

An	additional	technique	for	retrieving	results	in	.NET	is	the
ExecuteXmlReader()	method.	This	method	of	the	SqlCommand	object	uses	an
XmlReader	to	retrieve	XML	results,	such	as	those	generated	by	a	SELECT	query	with
the	FOR	XML	clause.	Listing	15-6	demonstrates	a	modified	version	of	the	code	in	Listing
15-3	that	uses	the	ExecuteXmlReader()	method.	Differences	between	this	listing	and
Listing	15-3	are	in	bold.

Listing	15-6.	Reading	XML	Data	with	ExecuteXmlReader()

using	System;

using	System.Data;

using	System.Data.SqlClient;

using	System.Xml;

namespace	Apress.Examples

{

				class	Listing15_6

				{

								static	void	Main(string[]	args)

								{

												string	name	=	"SMITH";

												string	sqlconnection	=	@"SERVER=SQL2014;	"	+

														"INITIAL	CATALOG=AdventureWorks;	"	+

														"INTEGRATED	SECURITY=SSPI;";

												string	sqlcommand	=	"SELECT	"	+

														"		BusinessEntityID,	"	+

														"		FirstName,	"	+

														"		COALESCE(MiddleName,	'')	AS	MiddleName,	"	+

														"		LastName	"	+

														"FROM	Person.Person	"	+

														"WHERE	LastName	=	@name	"	+

														"FOR	XML	AUTO;";

												SqlConnection	connection	=	null;

												SqlCommand	command	=	null;

												XmlReader	xmlreader	=	null;

												try

												{

																connection	=	new	SqlConnection(sqlconnection);

																connection.Open();

																command	=	new	SqlCommand(sqlcommand,	

connection);

																SqlParameter	par	

=	command.Parameters.Add("@name",	SqlDbType.NVarChar,

50);

																par.Value	=	name;

																xmlreader	=	command.ExecuteXmlReader();

																while	(xmlreader.Read())

																{

																				Console.WriteLine

																				(

																						"{0}\t{1}\t{2}\t{3}",

																						xmlreader["BusinessEntityID"].ToString(),

																						xmlreader["LastName"].ToString(),

																						xmlreader["FirstName"].ToString(),

																						xmlreader["MiddleName"].ToString()

);

																}

												}

												catch	(Exception	ex)

												{

																Console.WriteLine(ex.Message);

												}

												finally

												{

																if	(xmlreader	!=	null)

																				xmlreader.Close();

																if	(command	!=	null)

																				command.Dispose();

																if	(connection	!=	null)

																				connection.Dispose();

												}

												Console.WriteLine("Press	any	key…");

												Console.ReadKey();

								}

				}

}

The	first	difference	between	this	listing	and	Listing	15-3	is	the	addition	of	the
System.Xml	namespace,	because	the	XmlReader	class	is	being	used:

using	System;

using	System.Data;

using	System.Data.SqlClient;

using	System.Xml;

The	SQL	SELECT	statement	is	also	slightly	different.	For	one	thing,	the
COALESCE()	function	is	used	on	the	MiddleName	column	to	replace	NULL	middle
names	with	empty	strings.	The	FOR	XML	clause	leaves	NULL	attributes	out	of	the
generated	XML	by	default.	Missing	attributes	would	generate	exceptions	when	trying	to
display	the	results.	The	FOR	XML	AUTO	clause	is	used	in	the	SELECT	query	to	inform
SQL	Server	that	it	needs	to	generate	an	XML	result:

string	sqlcommand	=	"SELECT	"	+

		"		BusinessEntityID,	"	+

		"		FirstName,	"	+

		"		COALESCE(MiddleName,	'')	AS	MiddleName,	"	+

		"		LastName	"	+

		"FROM	Person.Person	"	+

		"WHERE	LastName	=	@name	"	+

		"FOR	XML	AUTO;";

The	try…catch	block	uses	the	ExecuteXmlReader()	method	instead	of	the
ExecuteReader()	method.	The	loop	that	displays	the	results	is	very	similar	to	Listing
15-3	as	well.	The	main	difference	in	this	listing	is	that	an	XmlReader	is	used	in	place	of
an	SqlDataReader:

xmlreader	=	command.ExecuteXmlReader();

while	(xmlreader.Read())

{

				Console.WriteLine

				(

								"{0}\t{1}\t{2}\t{3}",

								xmlreader["BusinessEntityID"].ToString(),

								xmlreader["LastName"].ToString(),

								xmlreader["FirstName"].ToString(),

								xmlreader["MiddleName"].ToString()

);

}

The	remaining	code	in	the	example	performs	exception	handling	and	proper	cleanup,
as	in	the	other	example	listings.

SqIBulkCopy
SQL	Server	provides	tools	such	as	SQL	Server	Integration	Services	(SSIS)	and	the	Bulk
Copy	Program	(BCP)	to	help	populate	your	databases	from	external	data	sources.	Some
applications	can	benefit	from	built-in	.NET	bulk-load	functionality.	The	.NET	Framework
(versions	2.0	and	higher)	SqlClient	implements	the	SqlBulkCopy	class	to	make
efficient	bulk	loading	easy.	SqlBulkCopy	can	be	used	to	load	data	from	a	database
table,	an	XML	table,	a	flat	file,	or	any	other	type	of	data	source	you	choose.	The
SqlBulkCopy	example	in	Listing	15-7	loads	US	Postal	Service	ZIP	code	data	from	a
tab-delimited	flat	file	into	an	SQL	Server	table.	A	sample	of	the	source	text	file	is	shown
in	Table	15-4.

Table	15-4.	Sample	Tab-Delimited	ZIP	Code	Data

The	complete	sample	ZIP	code	file	is	included	with	the	downloadable	source	code	for
this	book.	The	target	table	is	built	with	the	CREATE	TABLE	statement	in	Listing	15-7.
You	need	to	execute	this	statement	to	create	the	target	table	in	the	AdventureWorks
database	(or	another	target	database	if	you	choose).

Listing	15-7.	Creating	the	ZipCodes	Target	Table

CREATE	TABLE	dbo.ZipCodes

(

				ZIP	CHAR(5)	NOT	NULL	PRIMARY	KEY,

				Latitude	NUMERIC(8,	4)	NOT	NULL,

				Longitude	NUMERIC(8,	4)	NOT	NULL,

				City	NVARCHAR(50)	NOT	NULL,

				State	CHAR(2)	NOT	NULL

)

GO

The	code	presented	in	Listing	15-8	uses	the	SqlBulkCopy	class	to	bulk-copy	the
data	from	the	flat	file	into	the	destination	table.

Listing	15-8.	SqlBulkCopy	Class	Example

using	System;

using	System.Data;

using	System.Data.SqlClient;

using	System.Data.SqlTypes;

using	System.Diagnostics;

using	System.IO;

using	System.Globalization;

namespace	Apress.Example

{

				class	Listing15_8

				{

								static	string	sqlconnection	=	"DATA	SOURCE=SQL2014;	"	

+

										"INITIAL	CATALOG=AdventureWorks;	"	+

										"INTEGRATED	SECURITY=SSPI;";

								static	string	sourcefile	=	"c:\\ZIPCodes.txt";

								static	DataTable	loadtable	=	null;

								static	void	Main(string[]	args)

								{

												Stopwatch	clock	=	new	Stopwatch();

												clock.Start();

												int	rowcount	=	DoImport();

												clock.Stop();

												Console.WriteLine("{0}	Rows	Imported	in	{1}	

Seconds.",

														rowcount,	(clock.ElapsedMilliseconds	/	1000.0));

												Console.WriteLine("Press	a	Key…");

												Console.ReadKey();

								}

								static	int	DoImport()

								{

												using	(SqlBulkCopy	bulkcopier	=	new	

SqlBulkCopy(sqlconnection))

												{

																bulkcopier.DestinationTableName	

=	"dbo.ZIPCodes";

																try

																{

																				LoadSourceFile();

																				bulkcopier.WriteToServer(loadtable);

																}

																catch	(SqlException	ex)

																{

																				Console.WriteLine(ex.Message);

																}

												}

												return	loadtable.Rows.Count;

								}

								static	void	LoadSourceFile()

								{

												loadtable	=	new	DataTable();

												DataColumn	loadcolumn	=	new	DataColumn();

												DataRow	loadrow	=	null;

												loadcolumn.DataType	=	typeof(SqlString);

												loadcolumn.ColumnName	=	"ZIP";

												loadcolumn.Unique	=	true;

												loadtable.Columns.Add(loadcolumn);

												loadcolumn	=	new	DataColumn();

												loadcolumn.DataType	=	typeof(SqlDecimal);

												loadcolumn.ColumnName	=	"Latitude";

												loadcolumn.Unique	=	false;

												loadtable.Columns.Add(loadcolumn);

												loadcolumn	=	new	DataColumn();

												loadcolumn.DataType	=	typeof(SqlDecimal);

												loadcolumn.ColumnName	=	"Longitude";

												loadcolumn.Unique	=	false;

												loadtable.Columns.Add(loadcolumn);

												loadcolumn	=	new	DataColumn();

												loadcolumn.DataType	=	typeof(SqlString);

												loadcolumn.ColumnName	=	"City";

												loadcolumn.Unique	=	false;

												loadtable.Columns.Add(loadcolumn);

												loadcolumn	=	new	DataColumn();

												loadcolumn.DataType	=	typeof(SqlString);

												loadcolumn.ColumnName	=	"State";

												loadcolumn.Unique	=	false;

												loadtable.Columns.Add(loadcolumn);

												using	(StreamReader	stream	=	new	

StreamReader(sourcefile))

												{

																string	record	=	stream.ReadLine();

																while	(record	!=	null)

																{

																				string[]	cols	=	record.Split('\t');

																				loadrow	=	loadtable.NewRow();

																				loadrow["ZIP"]	=	cols[0];

																				loadrow["Latitude"]	=	decimal.Parse(cols[1],	

CultureInfo.InvariantCulture);

																				loadrow["Longitude"]	

=	decimal.Parse(cols[2],	CultureInfo.InvariantCulture);

																				loadrow["City"]	=	cols[3];

																				loadrow["State"]	=	cols[4];

																				loadtable.Rows.Add(loadrow);

																				record	=	stream.ReadLine();

																}

												}

								}

				}

}

The	code	begins	by	importing	required	namespaces,	declaring	the
Apress.Example	namespace,	and	declaring	the	module	name.	The	System.IO
namespace	is	imported	for	the	StreamReader,	and	the	System.Diagnostics
namespace	is	imported	for	the	Stopwatch	class	so	that	the	program	can	report	the
import	time.	The	System.Globalization	namespace	gives	you	access	to	the
CultureInfo	class	to	allow	a	safe	conversion	of	decimal	columns:

using	System;

using	System.Data;

using	System.Data.SqlClient;

using	System.Diagnostics;

using	System.IO;

using	System.Globalization;

The	class	defines	an	SQL	connection	string,	the	source	file	name,	and	a	DataTable:

static	string	sqlconnection	=	@"DATA	SOURCE=SQL2014;	"	+

				"INITIAL	CATALOG=AdventureWorks;	"	+

				"INTEGRATED	SECURITY=SSPI;";

static	string	sourcefile	=	"c:\\ZIPCodes.txt";

static	DataTable	loadtable	=	null;

The	class	contains	three	functions:	Main(),	DoImport(),	and
LoadSourceFile().	The	Main()	function	begins	by	starting	a	Stopwatch	to	time
the	import	process.	Then	it	invokes	the	DoImport()	function	that	performs	the	actual
import	and	reports	back	the	number	of	rows.	Finally,	the	Stopwatch	is	stopped	and	the
number	of	rows	imported	and	number	of	seconds	elapsed	are	displayed:

static	void	Main(string[]	args)	

{

				Stopwatch	clock	=	new	Stopwatch();

				clock.Start();

				int	rowcount	=	DoImport();

				clock.Stop();

				Console.WriteLine("{0}	Rows	Imported	in	{1}	Seconds.",

								rowcount,	(clock.ElapsedMilliseconds	/	1000.0));

				Console.WriteLine("Press	a	Key…");

				Console.ReadKey();

}

The	second	function,	DoImport(),	initializes	an	instance	of	the	SqlBulkCopy
class.	It	then	calls	the	LoadSourceFile()	function	to	populate	the	DataTable	with
data	from	the	source	flat	file.	The	populated	DataTable	is	passed	into	the
WriteToServer()	method	of	the	SqlBulkCopy	object.	This	method	performs	a
bulk	copy	of	all	the	rows	in	the	DataTable	to	the	destination	table.	The	DoImport()
function	ends	by	returning	the	number	of	rows	loaded	into	the	DataTable:

static	int	DoImport()

{

				using	(SqlBulkCopy	bulkcopier	=	new	

SqlBulkCopy(sqlconnection))

				{

								bulkcopier.DestinationTableName	=	"dbo.ZIPCodes";

								try

								{

												LoadSourceFile();

												bulkcopier.WriteToServer(loadtable);

								}

								catch	(SqlException	ex)

								{

												Console.WriteLine(ex.Message);

								}

				}

				return	loadtable.Rows.Count;

}

The	third	and	final	function,	LoadSourceFile(),	initializes	the	structure	of	the
DataTable	and	loads	the	source	file	data	into	it:

static	void	LoadSourceFile()

								{
												loadtable	=	new	DataTable();
												DataColumn	loadcolumn	=	new	DataColumn();
												DataRow	loadrow	=	null;

												loadcolumn.DataType	=	typeof(SqlString);
												loadcolumn.ColumnName	=	“ZIP”;
												loadcolumn.Unique	=	true;
												loadtable.Columns.Add(loadcolumn);

												loadcolumn	=	new	DataColumn();
												loadcolumn.DataType	=	typeof(SqlDecimal);
												loadcolumn.ColumnName	=	“Latitude”;
												loadcolumn.Unique	=	false;
												loadtable.Columns.Add(loadcolumn);

												loadcolumn	=	new	DataColumn();
												loadcolumn.DataType	=	typeof(SqlDecimal);
												loadcolumn.ColumnName	=	“Longitude”;
												loadcolumn.Unique	=	false;
												loadtable.Columns.Add(loadcolumn);

												loadcolumn	=	new	DataColumn();
												loadcolumn.DataType	=	typeof(SqlString);
												loadcolumn.ColumnName	=	“City”;
												loadcolumn.Unique	=	false;
												loadtable.Columns.Add(loadcolumn);

												loadcolumn	=	new	DataColumn();
												loadcolumn.DataType	=	typeof(SqlString);
												loadcolumn.ColumnName	=	“State”;
												loadcolumn.Unique	=	false;
												loadtable.Columns.Add(loadcolumn);

												using	(StreamReader	stream	=	new
StreamReader(sourcefile))

												{
																string	record	=	stream.ReadLine();

																while	(record	!=	null)
																{
																				string[]	cols	=	record.Split('\t');
																				loadrow	=	loadtable.NewRow();
																				loadrow[“ZIP”]	=	cols[0];
																				loadrow[“Latitude”]	=	decimal.Parse(cols[1],
CultureInfo.InvariantCulture);

																				loadrow[“Longitude”]	=	decimal.Parse(cols[2],
CultureInfo.InvariantCulture);

																				loadrow[“City”]	=	cols[3];
																				loadrow[“State”]	=	cols[4];
																				loadtable.Rows.Add(loadrow);
																				record	=	stream.ReadLine();
																}
												}
								}
				}
}

You	do	an	explicit	conversion	to	decimals	for	latitude	and	longitude	from	the	strings
extracted	from	the	file.	Using	the	decimal.Parse()	method	ensures	that	the
conversion	understands	the	.	(dot)	as	a	decimal	separator	even	if	the	code	is	run	on	a
machine	configured	for	a	culture	where	the	decimal	separator	isn’t	a	dot,	such	as	in
French.

After	it	completes,	Listing	15-8	reports	the	number	of	rows	bulk-loaded	and	the
amount	of	time	required,	as	shown	in	Figure	15-3.

Figure	15-3.	Report	of	bulk-copy	rows	imported	and	the	time	required

You	can	perform	a	simple	SELECT	statement	like	the	one	shown	in	Listing	15-9	to
verify	that	the	destination	table	was	properly	populated.	Partial	results	are	shown	in	Figure

15-4.

Listing	15-9.	Verifying	Bulk-Copy	Results

SELECT

				ZIP,

				Latitude,

				Longitude,

				City,

State	FROM	dbo.ZipCodes;

Figure	15-4.	ZIP	codes	bulk-loaded	into	the	database

Multiple	Active	Result	Sets
Prior	to	SQL	Server	2005,	client-side	applications	were	limited	to	one	open	result	set	per
connection	to	SQL	Server.	The	workaround	was	to	fully	process	or	cancel	all	open	result
sets	on	a	single	connection	before	retrieving	a	new	result	set,	or	to	open	multiple
connections,	each	with	its	own	single	open	result.

SQL	Server	2014,	like	SQL	Server	2005,	allows	you	to	use	multiple	active	result	sets
(MARS)	functionality.	MARS	lets	you	process	multiple	open	result	sets	over	a	single
connection.	Listing	15-10	demonstrates	how	to	use	MARS	to	perform	the	following	tasks
over	a	single	connection:

1.	 Open	a	result	set,	and	begin	reading	it.

2.	 Stop	reading	the	result	set	after	a	few	rows.

3.	 Open	a	second	result	set,	and	read	it	to	completion.

4.	 Resume	reading	the	first	result	set.

Listing	15-10.	Opening	Two	Result	Sets	over	a	Single	Connection

using	System;

using	System.Data;

using	System.Data.SqlClient;

namespace	Apress.Examples

{

				class	MARS

				{

								static	string	sqlconnection	=	@"SERVER=SQL2014;	"	+

										"INITIAL	CATALOG=AdventureWorks;	"	+

										"INTEGRATED	SECURITY=SSPI;	"	+

										"MULTIPLEACTIVERESULTSETS=true;	";

								static	string	sqlcommand1	=	"SELECT	"	+

										"		DepartmentID,	"	+

										"		Name,	"	+

										"		GroupName	"	+

										"FROM	HumanResources.Department;	";

								static	string	sqlcommand2	=	"SELECT	"	+

										"		ShiftID,	"	+

										"		Name,	"	+

										"		StartTime,	"	+

										"		EndTime	"	+

										"FROM	HumanResources.Shift;	";

								static	SqlConnection	connection	=	null;

								static	SqlCommand	command1	=	null;

								static	SqlCommand	command2	=	null;

								static	SqlDataReader	datareader1	=	null;

								static	SqlDataReader	datareader2	=	null;

								static	void	Main(string[]	args)

								{

												try

												{

																connection	=	new	SqlConnection(sqlconnection);

																connection.Open();

																command1	=	new	SqlCommand(sqlcommand1,	

connection);

																command2	=	new	SqlCommand(sqlcommand2,	

connection);

																datareader1	=	command1.ExecuteReader();

																datareader2	=	command2.ExecuteReader();

																int	i	=	0;

																Console.WriteLine("===========");

																Console.WriteLine("Departments");

																Console.WriteLine("===========");

																while	(datareader1.Read()	&&	i++	<	3)

																{

																				Console.WriteLine

																				(

																						"{0}\t{1}\t{2}",

																						datareader1["DepartmentID"].ToString(),

																						datareader1["Name"].ToString(),

																						datareader1["GroupName"].ToString()

);

																}

																Console.WriteLine("======");

																Console.WriteLine("Shifts");

																Console.WriteLine("======");

																while	(datareader2.Read())

																{

																				Console.WriteLine

																				(

																						"{0}\t{1}\t{2}\t{3}",

																						datareader2["ShiftID"].ToString(),

																						datareader2["Name"].ToString(),

																						datareader2["StartTime"].ToString(),

																						datareader2["EndTime"].ToString()

);

																}

																Console.WriteLine("======================");

																Console.WriteLine("Departments,	Continued");

																Console.WriteLine("======================");

																while	(datareader1.Read())

																{

																				Console.WriteLine

																				(

																						"{0}\t{1}\t{2}",

																						datareader1["DepartmentID"].ToString(),

																						datareader1["Name"].ToString(),

																						datareader1["GroupName"].ToString()

);

																}

												}

												catch	(SqlException	ex)

												{

																Console.WriteLine(ex.Message);

												}

												finally

												{

																if	(datareader1	!=	null)

																				datareader1.Dispose();

																if	(datareader2	!=	null)

																				datareader2.Dispose();

																if	(command1	!=	null)

																				command1.Dispose();

																if	(command2	!=	null)

																				command2.Dispose();

																if	(connection	!=	null)

																				connection.Dispose();

												}

												Console.WriteLine("Press	a	key	to	end…");

												Console.ReadKey();

								}

				}

}

Listing	15-10	begins	by	importing	the	necessary	namespaces:

using	System;

using	System.Data;

using	System.Data.SqlClient;

The	class	first	declares	an	SQL	connection	string	and	two	SQL	query	strings.	It	also
declares	an	SqlConnection,	two	SqlCommand	objects,	and	two	SqlDataReader
objects.	The	connection	is	then	opened,	and	two	SqlCommands	are	created	on	the	single
connection	to	retrieve	the	two	result	sets:

static	string	sqlconnection	=	@"SERVER=SQL2014;	"	+

		"INITIAL	CATALOG=AdventureWorks;	"	+

		"INTEGRATED	SECURITY=SSPI;	"	+

		"MULTIPLEACTIVERESULTSETS=true;	";

static	string	sqlcommand1	=	"SELECT	"	+

		"		DepartmentID,	"	+

		"		Name,	"	+

		"		GroupName	"	+

		"FROM	HumanResources.Department;	";

static	string	sqlcommand2	=	"SELECT	"	+

		"		ShiftID,	"	+

		"		Name,	"	+

		"		StartTime,	"	+

		"		EndTime	"	+

		"FROM	HumanResources.Shift;	";

static	SqlConnection	connection	=	null;

static	SqlCommand	command1	=	null;

static	SqlCommand	command2	=	null;

static	SqlDataReader	datareader1	=	null;

static	SqlDataReader	datareader2	=	null;

The	key	to	enabling	MARS	is	the	MULTIPLEACTIVERESULTSETS=true
key/value	pair	in	the	connection	string.	The	Main	function	creates	and	opens	the
SqlConnection,	the	SqlCommand	objects,	and	the	SqlDataReader	objects
required	to	create	two	active	result	sets	over	one	connection:

connection	=	new	SqlConnection(sqlconnection);

connection.Open();

command1	=	new	SqlCommand(sqlcommand1,	connection);

command2	=	new	SqlCommand(sqlcommand2,	connection);

datareader1	=	command1.ExecuteReader();

datareader2	=	command2.ExecuteReader();

The	balance	of	the	code	loops	through	the	result	sets,	displaying	the	data	on	the
console.	The	code	interrupts	the	first	result	set	after	three	rows	are	consumed,	consumes
the	second	result	set	in	its	entirety,	and	then	finishes	the	first	result	set,	all	over	a	single
connection.	The	results	are	shown	in	Figure	15-5.

Figure	15-5.	Results	of	iterating	over	two	active	result	sets	over	one	connection

Removing	the	MULTIPLEACTIVERESULTSETS=true	option	from	the	connection
string,	as	shown	in	the	code	snippet	in	Listing	15-11,	results	in	the	invalid	operation
exception	in	Figure	15-6	being	thrown.

Listing	15-11.	SQL	Connection	String	without	MARS	Enabled

static	string	sqlconnection	=	"SERVER=SQL_2014;	"	+	"INITIAL	

CATALOG=AdventureWorks;	"	+	"INTEGRATED	SECURITY=SSPI;	";

Figure	15-6.	Trying	to	open	two	result	sets	on	one	connection	without	MARS

LINQ	to	SQL
Language	Integrated	Query	(LINQ)	is	a	set	of	technologies	built	into	Visual	Studio	and
the	.NET	Framework	that	allows	you	to	query	data	from	any	data	source.	LINQ	ships	with
standard	libraries	that	support	querying	SQL	databases,	XML,	and	objects.	Additional
LINQ-enabled	data	providers	have	already	been	created	to	query	Amazon.com,
NHibernate,	and	LDAP,	among	others.	LINQ	to	SQL	encapsulates	LINQ’s	built-in	support
for	SQL	database	querying.

LINQ	to	SQL	provides	two	things:	a	basic	object/relational	mapping	(O/RM)
implementation	for	the	.NET	Framework,	and	a	query	language	derived	from	SQL	but
more	integrated	into	the	.NET	language.	LINQ	to	SQL	lets	you	create	.NET	classes	that
model	your	database,	allowing	you	to	query	and	manipulate	data	using	object-oriented
methodologies.	Instead	of	enclosing	queries	into	strings	that	you	send	to	the	server,	you
write	them	with	the	LINQ	syntax.	As	objects	are	recognized	through	the	O/RM	mapping,
the	syntax	is	recognized	directly	like	any	other	.NET	language	construct.	It	helps	to
decrease	the	so-called	object/relational	impedance	mismatch	between	object-oriented
languages	and	SQL	(in	other	words,	the	impossibility	of	gracefully	integrating	one
language	into	the	other).

This	section	introduces	LINQ	to	SQL.	For	an	in-depth	introduction,	we	recommend
the	book	LINQ	for	Visual	C#	2008	by	Fabio	Claudio	Ferracchiati	(Apress,	2008).

http://www.Amazon.com

	Tip		In	addition	to	Ferracchiati’s	LINQ	for	Visual	C#	books,	Apress	publishes	several
other	books	on	LINQ.	You	can	view	the	list	at
http://www.apress.com/catalogsearch/result/?q=LINQ&submit=Go.
The	MSDN	web	site	(http://msdn.microsoft.com)	also	has	several	LINQ
resources	available.

Using	the	Designer
Visual	Studio	includes	a	LINQ	to	SQL	designer	that	makes	mapping	database	schema	to	a
.NET	representation	a	relatively	painless	process.	The	LINQ	to	SQL	designer	can	be
accessed	in	Visual	Studio	by	adding	a	new	LINQ	to	SQL	Classes	item	to	your	.NET
project,	as	shown	in	Figure	15-7.	Note	that	some	importance	is	placed	on	the	file	name
you	choose,	because	the	.NET	data	context	class	(the	main	LINQ	to	SQL	class)	created	is
based	on	the	name	you	choose	(without	the	.dbml	extension).	In	this	case,	we	chose	the
name	AdventureWorks.dbml.

Figure	15-7.	Adding	a	LINQ	to	SQL	Classes	item	to	a	project

Once	the	LINQ	to	SQL	Classes	item	has	been	added,	you	need	to	create	a	Microsoft
SQL	Server	SqlClient	connection	that	points	to	your	server	and	database.	You	can	add
a	data	connection	through	the	Visual	Studio	SQL	Server	Object	Explorer,	as	shown	in
Figure	15-8.

http://www.apress.com/catalogsearch/result/?q=LINQ&submit=Go
http://msdn.microsoft.com

Figure	15-8.	Adding	a	connection	through	the	SQL	Server	Object	Explorer

When	you’ve	added	the	connection	to	your	database,	the	SQL	Server	Object	Explorer
displays	the	tables	and	other	objects	contained	in	the	database.	You	can	select	tables	and
SPs	and	drag	them	from	the	SQL	Server	Object	Explorer	onto	the	O/RM	designer	surface.
Figure	15-9	shows	the	selection	of	two	tables,	Person.Person	and
Person.EmailAddress,	in	the	SQL	Server	Object	Explorer.

Figure	15-9.	Viewing	and	selecting	tables	in	the	SQL	Server	Object	Explorer

Once	the	tables	have	been	dragged	onto	the	O/RM	designer	surface,	Visual	Studio
provides	a	visual	representation	of	the	classes	it	creates	to	model	the	database	and	the
relationships	between	them.	Figure	15-10	shows	the	designer	surface	with	the
Person.Person	and	Person.EmailAddress	tables	added	to	it.

Figure	15-10.	O/RM	designer	surface	with	tables	added	to	it

Querying	with	LINQ	to	SQL
Once	you’ve	created	your	LINQ	to	SQL	O/RM	classes	with	the	designer,	it’s	time	to	write
queries.	Not	only	does	LINQ	allow	you	to	query	any	data	source	including	SQL,	but	it’s
also	integrated	directly	into	Visual	Basic	and	C#	via	dedicated	keywords.	These	new
LINQ-specific	keywords	include	from,	select,	where,	and	others	that	will	seem
eerily	familiar	to	SQL	developers.	These	keywords,	combined	with	some	other	features,
provide	a	powerful	mechanism	for	performing	declarative	queries	directly	in	your
procedural	code.

Basic	LINQ	to	SQL	Querying
The	first	LINQ	to	SQL	query	example,	in	Listing	15-12,	queries	the	Persons	property	of
the	AdventureWorksDataContext	class.

Listing	15-12.	Querying	Persons	with	LINQ	to	SQL

using	System;

using	System.Linq;

namespace	Apress.Examples

{

				class	Listing15_12

				{

								static	void	Main(string[]	args)

								{

												AdventureWorksDataContext	db	=	new	

AdventureWorksDataContext();

												db.Log	=	Console.Out;

												var	query	=	from	p	in	db.Persons

																								select	p;

												foreach	(Person	p	in	query)

												{

																Console.WriteLine

																		(

																				"{0}\t{1}\t{2}",

																				p.FirstName,

																				p.MiddleName,

																				p.LastName

);

												}

												Console.WriteLine("Press	a	key	to	continue…");

												Console.ReadKey();

								}

				}

}

The	first	thing	to	notice	about	this	example	is	the	namespace	declarations.	Because
you’re	using	LINQ	to	SQL,	you	have	to	import	the	System.Linq	namespace.	This
namespace	gives	access	to	the	LINQ	IQueryable	interface,	providing	objects	that	can
be	enumerated	in	a	foreach	loop,	like	IEnumerable:

using	System;

using	System.Linq;

The	Main()	method	of	the	program	begins	by	creating	an	instance	of	the
AdventureWorksDataContext,	which	you	query	against.	Notice	that	you	set	the
Log	property	of	the	AdventureWorksDataContext	instance	to	Console.Out.
This	displays	the	actual	SQL	query	that	LINQ	to	SQL	generates	on	the	console:

AdventureWorksDataContext	db	=	new	

AdventureWorksDataContext();

db.Log	=	Console.Out;

After	the	AdventureWorksDataContext	class	is	instantiated,	querying	with	the
new	C#	keywords	is	as	simple	as	assigning	a	query	to	a	variable.	This	example	takes
advantage	of	the	.NET	anonymous	types	feature.	Anonymous	types	allow	you	to	declare
variables	without	an	explicit	type	using	the	var	keyword.	When	you	declare	a	variable
using	anonymous	types,	the	compiler	automatically	infers	the	type	at	compile	time.	This	is
an	important	distinction	from	Object	and	variant	data	types,	which	represent	general-
purpose	types	that	are	determined	at	runtime.	The	query	is	simple,	using	the	from…in

clause	to	indicate	the	source	of	the	data	and	the	select	keyword	to	return	objects.	As
you	can	see,	the	LINQ	to	SQL	syntax	has	a	different	order	than	the	SQL	syntax.	The
select	keyword	comes	at	the	end	of	the	statement:

var	query	=	from	p	in	db.Persons

												select	p;

The	final	part	of	this	example	uses	a	foreach	loop	to	iterate	over	all	the	Person
objects	returned	by	the	query	and	print	the	names	to	the	display.	Partial	results	of	this
query	are	shown	in	Figure	15-11:

foreach	(Person	p	in	query)

{

				Console.WriteLine

				(

								"{0}\t{1}\t{2}",

								p.FirstName,

								p.MiddleName,

								p.LastName

);

	}

Figure	15-11.	Querying	Persons	with	LINQ	to	SQL

As	mentioned	previously,	you	can	use	the	Log	attribute	of	the	data	context	class	to
output	the	SQL	code	generated	by	LINQ	to	SQL.	This	is	useful	for	debugging	or	finding
out	more	about	how	LINQ	to	SQL	works	internally.	The	SQL	query	generated	by	Listing
15-12	is	shown	in	Listing	15-13	(reformatted	for	readability).

Listing	15-13.	LINQ	to	SQL–Generated	SQL	Query

SELECT	[t0].[BusinessEntityID],	[t0].[PersonType],

															[t0].[NameStyle],	[t0].[Title],	[t0].

[FirstName],

															[t0].[MiddleName],	[t0].[LastName],	[t0].

[Suffix],

															[t0].[EmailPromotion],	[t0].

[AdditionalContactInfo],

															[t0].[Demographics],	[t0].[rowguid],	[t0].

[ModifiedDate]

			FROM	[Person].[Person]	AS	[t0]

LINQ	to	SQL	provides	several	clauses	in	addition	to	from	and	select.	Table	15-5
is	a	summary	of	some	commonly	used	LINQ	to	SQL	query	operators.	The	discussion	of
LINQ	to	SQL	query	operators	continues	in	the	sections	that	follow.

Table	15-5.	Useful	LINQ	Standard	Query	Operators

Function Keyword Description

Restriction where

Restricts/filters	the	results	returned	by	a	query,	returning	only	the	items	that
match	the	where	predicate	condition.	You	can	think	of	this	as	equivalent	to
the	WHERE	clause	in	SQL.

Projection select
Defines/restricts	the	attributes	that	should	be	returned	in	the	result	collection.
The	select	keyword	approximates	the	SQL	SELECT	clause.

Join join
Performs	an	inner	join	of	two	sequences	based	on	matching	keys	from	both
sequences.	This	is	equivalent	to	the	SQL	INNER	JOIN	clause.

Join
join…

into

Can	accept	an	into	clause	to	perform	a	left	outer	join.	This	form	of	the
join	keyword	is	equivalent	to	the	SQL	LEFT	OUTER	JOIN	clause.

Ordering orderby

Accepts	a	comma-separated	list	of	keys	to	sort	your	query	results.	Each	key
can	be	followed	by	the	ascending	or	descending	keyword.	The
ascending	keyword	is	the	default.	This	is	equivalent	to	the	SQL	ORDER
BY	clause.

Grouping group

Allows	you	to	group	results	by	a	specified	set	of	key	values.	You	can	use	the
group…into	syntax	to	perform	additional	query	operations	on	the	grouped
results.	The	behavior	of	this	keyword	approximates	the	SQL	GROUP	BY
clause.

Subexpressions let

Allows	you	to	store	subexpressions	in	a	variable	during	the	query.	You	can
use	the	variable	in	subsequent	query	clauses.	SQL	doesn’t	have	an	equivalent
for	this	statement,	although	subqueries	can	approximate	the	behavior	in
some	instances.	The	best	equivalent	for	this	keyword	is	the	XQuery	FLWOR
expression	let	clause.

The	where	Clause
The	where	clause	allows	you	to	restrict	the	results	returned	by	a	query,	as	shown	in
Listing	15-14.	Replacing	the	query	in	Listing	15-12	with	this	query	restricts	the	Person
objects	returned	to	only	those	with	the	letters	smi	in	their	last	names.

Listing	15-14.	Querying	Persons	with	“smi”	in	Their	Last	Names

var	query	=	from	p	in	db.Persons

												where	p.LastName.Contains("SMI")

												select	p;

The	SQL	code	generated	by	this	LINQ	to	SQL	query	is	slightly	different	from	the
previous	SQL	query,	as	shown	in	Listing	15-15.

Listing	15-15.	LINQ	to	SQL-Generated	SQL	Query	with	a	WHERE	Clause

exec	sp_executesql

								N'SELECT	[t0].[BusinessEntityID],	[t0].[PersonType],

																										[t0].[NameStyle],	[t0].[Title],	[t0].

[FirstName],

																										[t0].[MiddleName],	[t0].[LastName],

																										[t0].[Suffix],	[t0].[EmailPromotion],

																										[t0].[AdditionalContactInfo],	[t0].

[Demographics],

																										[t0].[rowguid],	[t0].[ModifiedDate]

														FROM	[Person].[Person]	AS	[t0]

											WHERE	[t0].[LastName]

																									LIKE	@p0',N'@p0	

nvarchar(5)',@p0=N'%SMI%'

One	interesting	aspect	to	this	query	is	that	LINQ	to	SQL	converts	the	Contains
method	of	the	Person	object’s	LastName	property	to	an	SQL	LIKE	predicate.	This	is
important	because	it	means	LINQ	to	SQL	is	smart	enough	to	realize	that	it	doesn’t	have	to
retrieve	an	entire	table,	instantiate	objects	for	every	row	of	the	table,	and	then	use	.NET
methods	to	limit	the	results	on	the	client.	This	can	be	a	significant	performance
enhancement	over	the	alternative.	Furthermore,	it	uses	sp_executesql	to	parameterize
the	query.

Another	interesting	feature	that	LINQ	to	SQL	provides	is	query	parameterization.	In
this	instance,	the	generated	SQL	query	includes	a	parameter	named	@p0	that	is	defined	as
an	nvarchar(5)	parameter	and	assigned	a	value	of	%SMI%.

The	orderby	Clause
LINQ	to	SQL	also	provides	result	ordering	via	the	orderby	clause.	You	can	use	the
orderby	keyword	in	a	query	to	specify	the	attributes	to	sort	by.	Listing	15-16	builds	on
the	query	in	Listing	15-14	by	adding	an	orderby	clause	that	sorts	results	by	the
LastName	and	FirstName	attributes	of	the	Person	object.

Listing	15-16.	Ordering	LINQ	to	SQL	Query	Results

var	query	=	from	p	in	db.Persons

												where	p.LastName.Contains("SMI")

												orderby	p.LastName,	p.FirstName

												select	p;

Replacing	the	query	in	Listing	15-12	with	this	query	returns	all	Person	objects
whose	last	names	contain	the	letters	smi,	and	sorts	the	objects	by	their	last	and	first	names.
The	generated	SQL	query	is	shown	in	Listing	15-17.	It’s	similar	to	the	previous	query
except	that	LINQ	to	SQL	has	added	an	SQL	ORDER	BY	clause.

Listing	15-17.	LINQ	to	SQL-Generated	SQL	Query	with	an	ORDER	BY	Clause

exec	sp_executesql

								N'SELECT	[t0].[BusinessEntityID],	[t0].[PersonType],

																										[t0].[NameStyle],	[t0].[Title],	[t0].

[FirstName],

																										[t0].[MiddleName],	[t0].[LastName],

																										[t0].[Suffix],	[t0].[EmailPromotion],

																										[t0].[AdditionalContactInfo],	[t0].

[Demographics],

																										[t0].[rowguid],	[t0].[ModifiedDate]

														FROM	[Person].[Person]	AS	[t0]

											WHERE	[t0].[LastName]	LIKE	@p0

												ORDER	BY	[t0].[LastName],	[t0].[FirstName]',N'@p0	

nvarchar(5)',@p0=N'%SMI%'

The	join	Clause
LINQ	to	SQL	also	provides	the	join	clause,	which	allows	you	to	perform	inner	joins	in
your	queries.	An	inner	join	relates	two	entities,	like	Person	and	EmailAddress	in	the
example,	based	on	common	values	of	an	attribute.	The	LINQ	to	SQL	join	operator
essentially	works	the	same	way	as	the	SQL	INNER	JOIN	operator.	Listing	15-18
demonstrates	a	LINQ	to	SQL	join	query.

Listing	15-18.	Retrieving	Persons	and	Related	E-mail	Addresses

using	System;

using	System.Linq;

namespace	Apress.Examples

{

				class	Listing15_18

				{

								static	void	Main(string[]	args)

								{

												AdventureWorksDataContext	db	=	new	

AdventureWorksDataContext();

												db.Log	=	Console.Out;

												var	query	=	from	p	in	db.Persons

																								join	e	in	db.EmailAddresses

																								on	p.BusinessEntityID	equals	

e.BusinessEntityID

																								where	p.LastName.Contains("SMI")

																								orderby	p.LastName,	p.FirstName

																								select	new

																								{

																												LastName	=	p.LastName,

																												FirstName	=	p.FirstName,

																												MiddleName	=	p.MiddleName,

																												EmailAddress	=	e.EmailAddress1

																								};

												foreach	(var	q	in	query)

												{

																Console.WriteLine

																		(

																				"{0}\t{1}\t{2}\t{3}",

																				q.FirstName,

																				q.MiddleName,

																				q.LastName,

																				q.EmailAddress

);

												}

												Console.WriteLine("Press	a	key	to	continue…");

												Console.ReadKey();

								}

				}

}

THE	EQUALS	OPERATOR	AND	NON-EQUIJOINS

C#	uses	the	equals	keyword	in	the	LINQ	join…on	clause	instead	of	the	familiar
==	operator.	This	is	done	for	clarity.	The	LINQ	from…join	pattern	maps	directly	to
the	Enumerable.Join()	LINQ	query	operator,	which	requires	two	delegates	that
are	used	to	compute	values	for	comparison.	The	delegate/key	on	the	left	side	of	the
operator	consumes	the	outer	sequence,	and	the	right	delegate/key	consumes	the	inner
sequence.	The	decision	was	made	to	use	the	equals	keyword	to	clarify	this	concept
primarily	because	implementing	a	full	query	processor	for	LINQ	would	have	resulted
in	significant	overhead.	To	perform	other	types	of	non-equijoins	in	LINQ,	you	can
use	a	combination	of	the	LINQ	GroupJoin	operator	and	the	where	clause.

The	LINQ	to	SQL	query	in	Listing	15-18	uses	the	join	operator	to	identify	the
entities	to	join	and	the	on	clause	specifies	the	join	criteria.	In	this	example,	the	Person
and	EmailAddress	entities	are	joined	based	on	their	BusinessEntitylD	attributes.
Because	the	query	needs	to	return	some	attributes	of	both	entities,	the	select	clause
creates	a	new	anonymous	type	on	the	fly.	Partial	results	of	the	join	query	are	shown	in
Figure	15-12:

var	query	=	from	p	in	db.Persons

												join	e	in	db.EmailAddresses

												on	p.BusinessEntityID	equals	e.BusinessEntityID

												where	p.LastName.Contains("SMI")

												orderby	p.LastName,	p.FirstName

												select	new

												{

																LastName	=	p.LastName,

																FirstName	=	p.FirstName,

																MiddleName	=	p.MiddleName,

																EmailAddress	=	e.EmailAddress1

												};

Figure	15-12.	Retrieving	Person	names	and	related	e-mail	addresses

The	SQL	query	generated	by	LINQ	to	SQL	includes	an	SQL	INNER	JOIN	clause
and	only	retrieves	the	columns	required	by	the	query,	as	shown	in	Listing	15-19.

Listing	15-19.	LINQ	to	SQL-Generated	SQL	Query	with	an	INNER	JOIN	Clause

exec	sp_executesql

								N'SELECT	[t0].[LastName],	[t0].[FirstName],

																										[t0].[MiddleName],	[t1].[EmailAddress]

															FROM	[Person].[Person]	AS	[t0]

														INNER	JOIN	[Person].[EmailAddress]	AS	[t1]

																										ON	[t0].[BusinessEntityID]	=	[t1].

[BusinessEntityID]

												WHERE	[t0].[LastName]	LIKE	@p0

												ORDER	BY	[t0].[LastName],	[t0].[FirstName]',N'@p0	

nvarchar(5)',@p0=N'%SMI%'

Deferred	Query	Execution

LINQ	to	SQL	uses	a	query	execution	pattern	known	as	deferred	query	execution.	When
you	declare	a	LINQ	to	SQL	query,	.NET	creates	an	expression	tree.	The	expression	tree	is
essentially	a	data	structure	that	acts	as	a	guide	that	LINQ	to	SQL	can	use	to	execute	your
query.	The	expression	tree	doesn’t	contain	the	data	retrieved	by	the	query,	but	rather	the
information	required	to	execute	the	query.	Deferred	query	execution	causes	the	execution
of	the	query	to	be	delayed	until	the	data	returned	by	the	query	is	actually	needed—when
you	iterate	the	results	in	a	foreach	loop,	for	instance.	You	can	view	deferred	query
execution	in	action	by	placing	breakpoints	on	the	foreach	loops	of	the	code	examples	in
the	previous	sections.	LINQ	to	SQL	will	not	generate	and	output	its	SQL	code	until	after
the	foreach	loop	iteration	begins.	This	is	shown	in	Figure	15-13.

Figure	15-13.	Testing	deferred	query	execution

Deferred	query	execution	is	an	important	concept	that	every	LINQ	to	SQL	developer
needs	to	be	familiar	with.	If	the	value	of	a	variable	that	the	query	depends	on	changes
between	the	time	the	query	is	declared	and	the	time	it’s	executed,	the	query	can	return
unexpected	results.

From	LINQ	to	Entity	Framework

After	LINQ	was	designed,	Microsoft	released	a	full	blown	O/RM	framework	named
Entity	Framework	(EF).	LINQ	provides	only	a	very	basic	O/RM	implementation,	where
one	table	is	mapped	to	one	class.	EF	offers	an	abstraction	level	(a	Data	Access	Layer),
allowing	you	to	build	a	conceptual	model	and	work	with	objects	and	collections	that	don’t
necessarily	match	the	relational	schema	of	the	underlying	database	and	aren’t	tied	to	a
physical	implementation.	Before	EF,	developers	who	wanted	to	work	with	an	O/RM	in
.NET	mostly	used	NHibernate,	the	port	of	the	Hibernate	Java	Framework	to	.NET	(some
are	still	using	it,	because	NHibernate	is	for	now	more	mature	and	feature-rich	than	EF).
Microsoft	created	its	own	framework	and	released	it	in	2008	with	the	.NET	framework	3.5
service	pack	1.	It	wasn’t	perfect	and	got	a	lot	of	criticism.	In	2010,	the	second	version,
Entity	Framework	4,	was	released	with	the	.NET	framework	4	(the	version	number	was
obviously	chosen	to	match	the	.NET	framework	version)	and	corrected	most	of	the
problems	encountered	with	the	first	release.

Entity	Framework	4	maps	database	structures	to	.NET	classes	that	you	manipulate	in
your	client	application	like	any	other	classes.	There	is	no	contact	with	SQL	code	and	no
need	for	any	knowledge	of	the	database	structure	or	physical	implementation,	matching	a
business	model	rather	than	a	physical	schema.	This	is	called	the	Entity	Data	Model
(EDM).	Let’s	create	one.

In	a	Visual	Studio	C#	project,	right-click	the	project	in	Solution	Explorer.	Click	Add	
New	Item,	and	select	ADO.NET	Entity	Data	Model	in	the	Data	section.	Enter	a	name	for
the	data	model,	and	click	Add.	A	wizard	opens	and	asks	whether	you	want	to	generate	the
model	from	a	database	or	create	an	empty	model,	as	shown	in	Figure	15-14.

Figure	15-14.	Choosing	EF	model	contents

The	Empty	Model	option	creates	a	model-first	EF	data	model	that	you	could	use	to
model	a	conceptual	schema,	create	EF	classes,	and	generate	database	tables	later.	In	this
case,	choose	Generate	From	Database,	and	click	Next.	The	next	step	allows	you	to	choose
or	create	a	data	connection	to	SQL	Server.	After	that,	you	select	the	database	objects	you
want	to	use	in	your	model.	You	can	add	tables,	views,	and	stored	procedure	results,	as
shown	in	Figure	15-15.

Figure	15-15.	Selecting	database	objects

Select	the	following	tables:

HumanResources.Employee

Person.Person

Person.BusinessEntity

Person.EmailAddress

Person.PersonPhone

Person.PhoneNumberType

The	page	shown	in	Figure	15-15	has	a	check	box	labeled	Pluralize	Or	Singularize
Generated	Object	Names.	This	allows	you	to	automatically	apply	English	language	rules
to	name	entities	and	entity	sets.	If	the	names	of	your	database	tables	are	in	plural	form,	EF
creates	entity	classes	in	plural	that	will	look	confusing	in	your	code.	The	EntityType
generated	from	the	tables	keeps	the	plural.	Look	at	this	code	example:

Employees	Employee	=	new	Employees();

What	does	the	Employees	class	represent?	A	single	entity,	so	it	should	be
Employee.	But	if	the	database	table	is	named	Employees,	EF	uses	this	name	to	build
the	entity.	If	Pluralize	Or	Singularize	Generated	Object	Names	is	checked,	EF	removes	the
s.

When	the	tables	are	selected,	click	Finish	to	let	the	wizard	create	the	data	model.	The
model	generated	is	shown	in	Figure	15-16.

Figure	15-16.	The	entity	data	model

As	you	can	see,	EF	created	one	class	per	table	and	kept	the	relationships	defined	by
the	foreign	keys	in	your	database	schema.	Some	“new”	types	aren’t	yet	supported	by
Entity	Framework,	such	as	hierarchyid	and	spatial	types.	If	you	created	the	EDM
from	the	example,	you	get	a	warning	about	the	OrganizationNode	column	of	the
HumanResources.Employee	table,	which	is	a	hierarchyid	type	column	and
can’t	be	imported	into	the	EDM.	To	include	the	string	representation	of	the
OrganizationNode	column,	you	can	create	a	computed	column	in
HumanResources.Employee	as	shown	in	Listing	15-20.

Listing	15-20.	Creating	a	Computed	Column	to	Show	a	hierarchyid	Representation
in	the	EDM

ALTER	TABLE	[HumanResources].[Employee]

ADD	OrganizationNodeString	AS	OrganizationNode.ToString()	

PERSISTED;

	Note		The	future	release	of	Entity	Framework	5	will	integrate	spatial	data	types.

In	each	class	of	the	EDM,	you	can	see	a	list	of	properties	that	are	the	tables’	columns,
as	well	as	navigation	properties	that	reference	the	association	between	entities.	For
instance,	the	PersonPhone	entity	has	a	navigation	property	referencing	the

PhoneNumberType	entity,	and	the	PhoneNumberType	entity	has	a	navigation
property	referencing	the	PersonPhone	entity.	Each	entity	that	is	part	of	an	association	is
called	an	end,	and	the	properties	that	define	the	values	of	the	association	are	called	roles.
If	you	click	the	line	joining	the	two	entities	in	the	EDM	that	represents	the	association,
you	see	the	association’s	properties,	as	shown	in	Figure	15-17.

Figure	15-17.	The	properties	of	an	association	between	entities

The	multiplicity	of	properties	allow	you	to	define	the	cardinality	of	each	role,	and	the
OnDelete	properties	reflect	whether	a	cascading	option	has	been	defined	on	the	foreign
key	in	the	database.

	Caution		Do	not	set	OnDelete	to	cascade	in	your	EDM	if	there	is	no	cascading	option
in	the	foreign	key	at	the	database	level.	EF	will	assume	that	the	DELETE	is	taken	care	of
by	the	database	engine.	It	will	only	delete	associated	objects	if	they’re	in	memory.

We	have	said	that	the	EDM	isn’t	tied	to	a	physical	implementation.	Entity	Framework
maintains	three	layers	for	better	abstraction.	At	design	time,	all	the	information	is	stored	in
an	.edmx	file,	but	at	runtime,	EF	separates	the	model	into	three	XML	files	that	have
different	structures,	as	detailed	in	Table	15-6.

Table	15-6.	Entity	Framework	Abstraction	Layers

File
extension Name Description

.csdl

Conceptual

Schema

Definition

Language

Defines	a	conceptual	model	that	is	agnostic	regarding	the	database
physical	implementation.	It	defines	entities,	relationships,	and
functions.

.ssdl

Store	Schema

Definition

Language

Describes	the	storage	model	of	the	conceptual	schema.	It	defines	the
name	of	the	underlying	tables	and	columns,	and	the	queries	used	to
retrieve	the	data	from	the	database.

.msl

Mapping

Specification

Language
Maps	the	CSDL	attributes	to	the	SSDL	columns.

These	levels	allow	you	to	switch	the	backend	database	with	minimal	change	to	your
client	application.	The	requests	you	write	to	EF	are	translated	to	SQL	behind	the	scenes.

Querying	Entities
Once	you	have	created	an	EDM,	you	can	refer	to	it	in	your	code	with	what	is	called	an
object	context,	just	as	you	have	a	data	context	in	LINQ	to	SQL.	The	EDM	is	available	as	a
class	inheriting	from	the	ObjectContext	class.	Let’s	see	it	in	action	in	Listing	15-21.
The	result	of	the	code	execution	is	shown	in	Figure	15-18.

Listing	15-21.	Using	an	EF	Object	Context	in	C#	Code

using	System;

using	System.Linq;

using	System.Text;

namespace	EntityFramework

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												using	(var	ctx	=	new	

AdventureWorksEntitiesEmployee())

												{

																var	qry	=	from	e	in	ctx.Employee

																										where	e.Gender	==	"F"

																										select	new

																										{

																														e.Person.FirstName,

																														e.Person.LastName,

																														e.BirthDate

																										};

																foreach	(var	emp	in	qry.Take(5))	{

																				Console.WriteLine("{0}	{1},	born	{2}",

																																						emp.FirstName,

																																						emp.LastName,

																																						emp.BirthDate.ToLongDateString()

);

																}

																Console.Read();

												}

								}

				}

}

Figure	15-18.	The	result	of	the	code	execution

The	code	in	Listing	15-21	is	a	console	application.	It	returns	five	lines	of	employees.
First,	you	create	an	instance	of	the	AdventureWorksEntitiesEmployee	class,
which	inherits	from	ObjectContext.	It	gives	you	access	to	entities	present	in	the
AdventureWorksEntitiesEmployee	EDM.	The	context	allows	you	to	access	its
entities,	to	define	and	execute	queries,	and	to	apply	modifications	to	data.	You	enclose	the
context	instantiation	in	a	using	block	in	order	to	ensure	that	the	instance	will	be	freed	no
matter	what	happens	in	the	block:

using	(var	ctx	=	new	AdventureWorksEntitiesEmployee())

{

				...

}

You	can	use	LINQ	queries	against	entities.	This	functionality	is	called	LINQ	to
Entities,	and	it’s	very	much	like	LINQ	to	SQL.	In	LINQ	to	SQL	you	would	write	this:

var	qry	=	from	e	in	ctx.Employee

										join	p	in	ctx.Person	on	e.BusinessEntityId	equals	

p.BusinessEntityId

										where	e.Gender	==	"F"

										select	new

										{

														p.FirstName,

														p.LastName,

														e.BirthDate

										};

But	in	Entity	Framework,	you	can	take	advantage	of	navigation	properties,	which	are
properties	of	an	entity	that	give	access	to	the	other	end	of	an	association.	A	navigation
property	returns	either	one	entity	or	a	collection	of	entities,	depending	on	the	cardinality	of
the	relationship.	Here,	because	the	association	is	0..1,	there	can	be	only	one	person
associated	with	an	employee,	so	it	returns	only	one	entity	reference.	You	can	directly	use
its	properties	to	retrieve	the	FirstName	and	LastName.	Additionally,	to	limit	the
number	of	properties	returned	by	the	query,	you	create	an	anonymous	type	(a	class	without
a	name),	declared	on	the	fly	with	a	new	{…}	construct	to	retrieve	only
Person.FirstName,	Person.LastName,	and	Employee.BirthDate:

var	qry	=	from	e	in	ctx.Employee

										where	e.Gender	==	"F"

										select	new

				{

								e.Person.FirstName,

								e.Person.LastName,

								e.BirthDate

				};

Using	the	anonymous	type	improves	performance.	In	Listing	15-22	you	can	see	the	T-
SQL	query	generated	by	EF	that	is	retrieved	using	SQL	Server	Profiler.

Listing	15-22.	T-SQL	Query	Generated	by	EF

SELECT	TOP	(5)

[Extent1].[BusinessEntityID]	AS	[BusinessEntityID],

[Extent2].[FirstName]	AS	[FirstName],

[Extent3].[LastName]	AS	[LastName],

[Extent1].[BirthDate]	AS	[BirthDate]

FROM			[HumanResources].[Employee]	AS	[Extent1]

INNER	JOIN	[Person].[Person]	AS	[Extent2]	ON	[Extent1].

[BusinessEntityID]	=	[Extent2].[BusinessEntityID]

LEFT	OUTER	JOIN	[Person].[Person]	AS	[Extent3]	ON	[Extent1].

[BusinessEntityID]	=	[Extent3].[BusinessEntityID]

WHERE	N'F'	=	[Extent1].[Gender]

You	can	see	that	only	the	needed	columns	are	selected.	That	reduces	the	cost	of	the
query	and	the	amount	of	data	that	needs	to	be	carried	by	the	query	back	to	the	client.

Then,	you	can	simply	loop	into	the	query’s	result,	because	the	query	returns	an
IQueryable	descendant	object.	To	limit	the	number	of	rows	returned,	you	call	the
method	Take()	on	the	IQueryable,	which	translates	to	a	SELECT	TOP,	as	you	can
see	in	the	generated	T-SQL	in	Listing	15-22.	You	can	also	see	that	deferred	execution	is
working	in	Entity	Framework.	Finally,	you	format	the	BirthDate	column/property	to
display	a	user-friendly	birth	date:

foreach	(var	emp	in	qry.Take(5))	{

				Console.WriteLine("{0}	{1},	born	{2}",

								emp.FirstName,

								emp.LastName,

								emp.BirthDate.ToLongDateString()

);

}

So	that	you	can	see	the	result	in	the	console	before	it	disappears,	you	add	a	call	to
Console.Read(),	which	makes	the	console	wait	until	a	key	is	pressed.

The	context	can	also	give	you	direct	access	to	entities	in	the	form	of	an	ObjectSet.
You	can	think	of	an	ObjectSet	as	a	kind	of	result	set.	You	can	directly	call	an

ObjectSet	and	enumerate	through	it.	So,	the	code	in	Listing	15-21	can	be	rewritten	as
in	Listing	15-23.

Listing	15-23.	Using	an	EF	ObjectSet

using	System;

using	System.Linq;

using	System.Text;

namespace	EntityFramework

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												using	(var	ctx	=	new	

AdventureWorksEntitiesEmployee())

												{

																foreach	(var	emp	in	ctx.Employee.Where(e	=>	

e.Gender	==	"F").Take(5))

																{

																				Console.WriteLine("{0}	{1},	born	{2}",

																																						emp.Person.FirstName,

																																						emp.Person.LastName,

																																						emp.BirthDate.ToLongDateString()

);

																}

																Console.Read();

												}

								}

				}

}

Listing	15-23	directly	uses	the	Employee	ObjectSet.	You	can	still	filter	it	by
using	its	Where()	method.	In	contrast	to	the	LINQ	query	approach,	this	is	called	a
method-based	query.	The	Where()	method	takes	a	lambda	expression	as	its	parameter.
Lambda	expressions	are	a	way	to	express	parameters	with	a	syntax	derived	from	Lambda
calculus,	a	formal	notation	in	mathematical	logic.	You	can	use	LINQ	queries	or	method-
based	querying;	choose	what	feels	more	natural	to	you.

Finally,	Listing	15-24	shows	an	example	of	data	modification	with	Entity	Framework.
The	result	is	shown	in	Figure	15-19.

Listing	15-24.	Modifying	Data	in	EF

using	System;

using	System.Linq;

using	System.Text;

namespace	EntityFramework

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												using	(var	ctx	=	new	

AdventureWorksEntitiesEmployee())

												{

																var	newP	=	new	BusinessEntity	{

																				ModifiedDate	=	DateTime.Now,

																				rowguid	=	Guid.NewGuid()

																};

																Console.WriteLine("BusinessEntityID	before	

insert	:	{0}",

																																		newP.BusinessEntityID);

																ctx.BusinessEntities.AddObject(newP);

																ctx.SaveChanges();

																Console.WriteLine("BusinessEntityID	after	

insert	:		{0}",

																																		newP.BusinessEntityID);

												}

												Console.Read();

								}

				}

}

Figure	15-19.	The	result	of	the	code	execution

There	are	several	ways	to	insert	new	data.	This	example	uses	the	object-initializer
syntax,	available	since	.NET	3.5.	In	the	object-initializer	block,	you	assign	values	to	the
two	properties	of	the	BusinessEntity	entity	that	need	to	be	populated.	The
ModifiedDate	property	is	a	datetime,	so	you	use	the	DateTime.Now	property	to
set	the	current	date	and	time;	the	rowguid	property	stores	a	uniqueidentifier,	so
you	use	the	Guid.NewGuid()	method	to	retrieve	a	value.	When	the	object	is	fully
populated,	you	can	add	it	to	the	entity	by	using	the	AddObject()	method:

var	newP	=	new	BusinessEntity	{

				ModifiedDate	=	DateTime.Now,

				rowguid	=	Guid.NewGuid()

};

...

ctx.BusinessEntities.AddObject(newP);

The	changes	made	to	entities	are	stored	in	a	collection	in	the	context	and	are	applied	to
the	underlying	database	only	when	the	SaveChanges()	method	of	the	context	is	called.
To	see	what	happens	with	the	BusinessEntityId	identity	column,	you	return	its
value	before	and	after	the	call	to	SaveChanges().	The	key	value	is	automatically	set
by	EF	to	match	the	identity	value	generated	by	SQL	Server.	The	query	issued	by	EF	when
you	call	SaveChanges()	is	shown	in	Listing	15-25.

Listing	15-25.	The	DML	Query	Generated	by	EF

exec	sp_executesql

								N'insert	[Person].[BusinessEntity]([rowguid],	

[ModifiedDate])

										values	(@0,	@1)

											select	[BusinessEntityID]

													from	[Person].[BusinessEntity]

										where	@@ROWCOUNT	>	0

														and	[BusinessEntityID]	=	scope_identity()',

								N'@0	uniqueidentifier,@1	datetime2(7)',

											@0='92EEC64E-BD11-4936-97C3-6528B5D1D97D',

											@1='2012-05-21	15:14:05.3493966'

As	you	can	see,	a	SELECT	is	issued	after	the	INSERT	operation	to	retrieve	the
identity	value	and	return	it	to	EF.

This	section	has	only	scratched	the	surface	of	Entity	Framework.	You	have	to	be	aware
of	it,	even	if	you	don’t	do	any	client	coding,	because	it’s	the	way	of	the	future	in	.NET
data	access.	The	question	of	whether	this	a	good	or	bad	thing	is,	fortunately	(we	admit	a
bit	of	cowardice	here),	outside	the	scope	of	this	book.	The	thinking	behind	LINQ	and	EF
is	to	abstract	out	database	access	and	to	hide	the	T-SQL	language	from	developers,	which
is	considered	a	pain	by	many	client-side	developers.	This	trend	pushes	toward	considering
DBMSs	to	be	just	data	stores.	In	this	model,	objects	like	views	and	stored	procedures	have
less	importance,	and	the	craftsmanship	of	writing	good	T-SQL	queries	seems	outdated.
This	has	advantages	and	pitfalls,	the	more	important	of	the	latter	being	performance	issues
in	complex	queries.	The	best	way	to	address	this	problem	is	to	become	proficient	in	EF;
and	to	start	on	that	path,	you	can	read	Pro	Entity	Framework	4.0	by	Scott	Klein	(Apress,
2010).

Summary
Although	the	focus	of	this	book	is	server-side	development,	a	good	database	is	useful	only
if	end	users	can	access	the	data	contained	in	it	efficiently.	That’s	where	an	efficient	and
well-designed	client-side	application	comes	in.	This	chapter	discussed	several	options

available	for	connecting	to	SQL	Server	2014	from	.NET.

The	chapter	began	with	a	discussion	of	the	ADO.NET	namespaces	and	the	.NET	SQL
Server	Native	Client	(SqlClient),	including	connected	data	access,	which	requires
constant	database	connectivity,	and	disconnected	datasets,	which	allow	users	to	cache	data
locally	and	connect	to	a	database	as	needed.	Although	.NET	offers	other	options	for
connecting	to	SQL	Server,	including	OLE	DB	and	ODBC,	the	primary	method	of
connecting	to	SQL	Server	(version	7.0	and	higher)	is	encapsulated	in	ADO.NET	and	the
System.Data.SqlClient	namespace.

You	also	learned	about	parameterized	queries,	including	the	topics	of	security	and
SQL	injection.	Other	topics	covered	included	the	various	methods	and	options	that	.NET
provides	to	query	SQL	Server,	bulk-copy	data	into	SQL	Server,	and	open	multiple	result
sets	over	a	single	active	database	connection.

You	rounded	out	this	chapter	with	a	discussion	of	the	O/RM	functionalities	provided
by	.NET	and	Visual	Studio.	Visual	Studio’s	built-in	visual	designer	and	automated	class
generation	can	make	light	work	of	many	O/RM	applications.	The	ability	to	abstract	out
database	access	and	to	write	declarative	LINQ	to	SQL	queries	directly	in	procedural	code
elevates	data	querying	to	the	level	of	a	first-class	programming	concept.

EXERCISES

1.	 [True/False]	The	System.Data.SqlClient	namespace
provides	optimized	access	to	SQL	Server	via	the	SQL	Server	Native
Client	library.

2.	 [Choose	one]	Which	of	the	following	concepts	allows	for	local
caching	of	data,	with	establishment	of	database	connections	on	an
as-needed	basis?

a.	 Connected	data	access

b.	 Disconnected	datasets

c.	 Casual	data	access

d.	 Partial	datasets

3.	 [Choose	all	that	apply]	Which	of	the	following	are	benefits	of	query
parameterization?

a.	 Protection	against	SQL	injection	attacks

b.	 Conversion	of	lead	to	gold

c.	 Increased	efficiency	through	query	plan	reuse

d.	 Decreased	power	consumption	by	at	least	25%

4.	 [True/False]	Turning	on	MARS	by	setting
MULTIPLEACTIVERESULTSETS=true	in	your	connection
string	allows	you	to	open	two	result	sets	but	requires	at	least	two
open	connections.

5.	 [True/False]	Visual	Studio	includes	a	drag-and-drop	visual	O/RM
designer.

6.	 [Choose	one]	LINQ	to	SQL	uses	which	of	the	following	query
execution	patterns?

a.	 Instant	query	execution

b.	 Fast-forward	query	execution

c.	 Random	query	execution

d.	 Deferred	query	execution

CHAPTER	16

CLR	Integration	Programming
One	of	the	most	prominent	enhancements	to	SQL	Server	2005	was	the	introduction	of	the
integrated	SQL	Common	Language	Runtime,	named	SQL	CLR	at	that	time.	What	is	now
called	CLR	integration	is	an	SQL	Server–specific	version	of	the	.NET	Common	Language
Runtime,	which	allows	you	to	run	.NET-managed	code	in	the	database.	CLR	integration
programming	is	a	broad	subject	that	could	easily	fill	an	entire	book,	and	in	fact	it	does—
Pro	SQL	Server	2005	Assemblies,	by	Robin	Dewson	and	Julian	Skinner	(Apress,	2005),	is
an	excellent	resource	for	in-depth	coverage	of	CLR	integration	programming.	This	chapter
discusses	the	methods	used	to	extend	SQL	Server	functionality	in	the	past	and	explains	the
basics	of	the	CLR	integration	programming	model	in	SQL	Server	2014.

The	Old	Way
In	versions	of	SQL	Server	prior	to	the	2005	release,	developers	could	extend	SQL	Server
functionality	by	writing	extended	stored	procedures	(XPs).	Writing	high-quality	XPs
required	a	strong	knowledge	of	the	Open	Data	Services	(ODS)	library	and	the	poorly
documented	C-style	Extended	Stored	Procedure	API.	Anyone	who	attempted	the	old	style
of	XP	programming	can	tell	you	it	was	a	complex	undertaking,	in	which	a	single	misstep
could	easily	result	in	memory	leaks	and	corruption	of	the	SQL	Server	process	space.
Additionally,	the	threading	model	used	by	XPs	required	SQL	Server	to	rely	on	the
operating	system	to	control	threading	in	the	XP.	This	could	lead	to	many	issues,	such	as
unresponsiveness	of	XP	code.

	Caution		XPs	have	been	deprecated	since	SQL	Server	2005.	Use	CLR	integration
instead	of	XPs	for	SQL	Server	2014	development.

Earlier	SQL	Server	releases	also	allowed	you	to	create	OLE	Automation	server	objects
via	the	spOACreate	SP.	Creating	OLE	Automation	servers	can	be	complex	and
awkward	as	well.	OLE	Automation	servers	created	with	spOACreate	can	result	in
memory	leaks	and	in	some	instances	corruption	of	the	SQL	Server	process	space.

Another	option	in	previous	versions	of	SQL	Server	was	to	code	all	business	logic
exclusively	in	physically	separate	business	objects.	Although	this	method	is	preferred	by
many	developers	and	administrators,	it	can	result	in	extra	network	traffic	and	a	less	robust
security	model	than	can	be	achieved	through	tight	integration	with	the	SQL	Server
security	model.

The	CLR	Integration	Way

The	CLR	integration	programming	model	provides	several	advantages	over	older	methods
of	extending	SQL	Server	functionality	via	XPs,	OLE	Automation,	or	external	business
objects.	These	advantages	include	the	following:

A	managed	code	base	that	runs	on	the	CLR	integration	.NET
Framework	is	managed	by	the	SQL	Server	Operating	System	(SQL
OS).	This	means	SQL	Server	can	properly	manage	threading,	memory
usage,	and	other	resources	accessed	via	CLR	integration	code.

Tight	integration	of	the	CLR	into	SQL	Server	means	SQL	Server	can
provide	a	robust	security	model	for	running	code	and	maintain	stricter
control	over	database	objects	and	external	resources	accessed	by	CLR
code.

CLR	integration	is	more	thoroughly	documented	in	more	places	than
the	Extended	Stored	Procedure	API	ever	was	(or	presumably	ever	will
be).

CLR	integration	doesn’t	tie	you	to	the	C	language-based	Extended
Stored	Procedure	API.	In	theory,	the	.NET	programming	model
doesn’t	tie	you	to	any	one	specific	language	(although	you	can’t	use
dynamic	languages	like	IronPython	in	CLR	integration).

CLR	integration	allows	access	to	the	familiar	.NET	namespaces,	data
types,	and	managed	objects,	easing	development.

CLR	integration	introduces	SQL	Server–specific	namespaces	that
allow	direct	access	to	the	underlying	SQL	Server	databases	and
resources,	which	can	be	used	to	limit	or	reduce	network	traffic
generated	by	using	external	business	objects.

There’s	a	misperception	expressed	by	some	that	CLR	integration	is	a	replacement	for
T-SQL	altogether.	CLR	integration	isn’t	a	replacement	for	T-SQL,	but	rather	a	supplement
that	works	hand	in	hand	with	T-SQL	to	make	SQL	Server	2014	more	powerful	than	ever.
So	when	should	you	use	CLR	code	in	your	database?	There	are	no	hard	and	fast	rules
concerning	this,	but	here	are	some	general	guidelines:

Existing	custom	XPs	on	older	versions	of	SQL	Server	are	excellent
candidates	for	conversion	to	SQL	Server	CLR	integration	assemblies
—that	is,	if	the	functionality	provided	isn’t	already	part	of	SQL	Server
2014	T-SQL	(for	example,	encryption).

Code	that	accesses	external	server	resources,	such	as	calls	to
xpcmdshell,	are	also	excellent	candidates	for	conversion	to	more
secure	and	robust	CLR	assemblies.

T-SQL	code	that	performs	lots	of	complex	calculations	and	string
manipulations	can	be	a	strong	candidate	for	conversion	to	CLR
integration	assemblies.

Highly	procedural	code	with	lots	of	processing	steps	might	be

considered	for	conversion.

External	business	objects	that	pull	large	amounts	of	data	across	the
wire	and	perform	a	lot	of	processing	on	that	data	might	be	considered
for	conversion.	You	might	first	consider	these	business	objects	for
conversion	to	T-SQL	SPs,	especially	if	they	don’t	perform	much
processing	on	the	data	in	question.

On	the	flip	side,	here	are	some	general	guidelines	for	items	that	should	not	be
converted	to	CLR	integration	assemblies

External	business	objects	that	pull	relatively	little	data	across	the	wire,
or	that	pull	a	lot	of	data	across	the	wire	but	perform	little	processing
on	that	data,	are	good	candidates	for	conversion	to	T-SQL	SPs	instead
of	CLR	assemblies.

T-SQL	code	and	SPs	that	don’t	perform	many	complex	calculations	or
string	manipulations	generally	won’t	benefit	from	conversion	to	CLR
assemblies.

T-SQL	can	be	expected	to	always	be	faster	than	CLR	integration	for
set-based	operations	on	data	stored	in	the	database.

You	might	not	be	able	to	integrate	CLR	assemblies	into	databases	that
are	hosted	on	an	Internet	Service	Provider’s	(ISP’s)	server,	if	the	ISP
didn’t	allow	CLR	integration	at	the	database-server	level.	This	is
mainly	for	security	reasons	and	because	there	can	be	less	control	of
the	code	in	an	assembly.

CLR	integration	isn’t	supported	on	the	SQL	Azure	platform.

As	with	T-SQL	SPs,	the	decision	about	whether	and	to	what	extent	to	use	CLR
integration	in	your	databases	depends	on	your	needs,	including	organizational	policies	and
procedures.	The	recommendations	presented	here	are	guidelines	of	instances	that	can
make	good	business	cases	for	conversion	of	existing	code	and	creation	of	new	code.

CLR	Integration	Assemblies
CLR	integration	exposes	.NET	managed	code	to	SQL	Server	via	assemblies.	An	assembly
is	a	compiled	.NET	managed	code	library	that	can	be	registered	with	SQL	Server	using	the
CREATE	ASSEMBLY	statement.	Publicly	accessible	members	of	classes	in	the	assemblies
are	then	referenced	in	the	appropriate	CREATE	statements,	described	later	in	this	chapter.
Creating	a	CLR	integration	assembly	requires	that	you	do	the	following:

1.	 Design	and	program	.NET	classes	that	publicly	expose	the
appropriate	members.

2.	 Compile	the	.NET	classes	into	managed	code	DLL	manifest	files
containing	the	assembly.

3.	 Register	the	assembly	with	SQL	Server	via	the	CREATE
ASSEMBLY	statement.

4.	 Register	the	appropriate	assembly	members	via	the	appropriate
CREATE	FUNCTION,	CREATE	PROCEDURE,	CREATE	TYPE,
CREATE	TRIGGER,	or	CREATE	AGGREGATE	statements.

CLR	integration	provides	additional	SQL	Server–specific	namespaces,	classes,	and
attributes	to	facilitate	development	of	assemblies.	Visual	Studio	2010,	Visual	Studio	2011,
and	Visual	Studio	13	also	include	an	SQL	Server	project	type	that	assists	in	quickly
creating	assemblies.	In	addition,	to	maximize	your	SQL	Server	development	possibilities
with	Visual	Studio,	you	can	install	the	SQL	Server	Data	Tools	(SSDT)	from	the	Microsoft
Data	Developer	Center	web	site	(http://msdn.microsoft.com/en-
us/data/tools.aspx)	which	provides	an	integrated	environment	for	database
developers	in	Visual	Studio	by	allowing	you	to	create	and	manage	database	objects	and
data	and	to	execute	T-SQL	queries	directly.

Perform	the	following	steps	to	create	a	new	assembly	using	Visual	Studio	2013:

1.	 Select	File	 	New	Project	from	the	menu.

2.	 Go	to	Installed	 	Templates	 	SQL	Server,	as	shown	in	Figure	16-
1.

Figure	16-1.	Visual	Studio	2013	New	Project	dialog	box

3.	 A	new	SQL	Server	database	project	is	created	in	the	SQL	Server
2014	target	platform.	You	can	verify	the	target	platform	by	selecting
Project	 	CLRDemo	Properties,	as	shown	in	Figure	16-2.	This
brings	up	the	properties	of	your	current	project,	where	you	can
verify	the	target	platform;	see	Figure	16-3.

http://msdn.microsoft.com/en-us/data/tools.aspx

Figure	16-2.	Database	project	properties	menu

Figure	16-3.	CLRDemo	Database	Project	properties

4.	 Highlight	the	project	name	in	the	Solution	Explorer,	right-click,	and
choose	Add	 	New	Item	(Ctrl+Shift+A),	as	shown	in	Figure	16-4.

Figure	16-4.	Adding	a	new	item	to	your	project

5.	 Visual	Studio	asks	you	to	select	the	type	of	item	you	would	like	to
add.	This	is	different	from	preview	version	of	Visual	Studio,	where
you	started	from	a	CLR	Project	type.	This	is	now	treated	as	part	of
the	database	project,	and	there	is	a	new	option:	SQL	CLR	C#	User
Defined	Type	(see	Figure	16-5).	Select	this	option.

Figure	16-5.	Adding	a	new	SQL	CLR	C#	User	Defined	Type	to	your	project

6.	 Visual	Studio	automatically	generates	a	template	for	the	item	you
select	in	the	language	of	your	choice,	complete	with	the	appropriate
Imports	statements	in	VB.NET	or	using	in	C#.

In	addition	to	the	standard	.NET	namespaces	and	classes,	CLR	integration	implements
some	SQL	Server–specific	namespaces	and	classes	to	simplify	interfacing	your	code	with
SQL	Server.	Some	of	the	most	commonly	used	namespaces	include	the	following:

System,	which	includes	the	base	.NET	data	types	and	the	Object
base	class	from	which	all	.NET	classes	inherit.

System.Data,	which	contains	the	DataSet	class	and	other	classes
for	ADO.NET	data	management.

System.Data.SqlClient,	which	contains	the	SQL	Server–
specific	ADO.NET	data	provider.

System.Data.SqlTypes,	which	contains	SQL	Server	data	types.
This	is	important	because	(unlike	the	standard	.NET	data	types)	these
types	can	be	set	to	SQL	NULL	and	are	defined	to	conform	to	the	same
operator	rules,	behaviors,	precision,	and	scale	as	their	SQL	Server
type	counterparts.

Microsoft.SqlServer.Server,	which	contains	the
SqlContext	and	SqlPipe	classes	that	allow	assemblies	to
communicate	with	SQL	Server.

Once	the	assembly	is	created	and	compiled,	it’s	registered	with	SQL	Server	via	the
CREATE	ASSEMBLY	statement.	Listing	16-1	demonstrates	a	CREATE	ASSEMBLY
statement	that	registers	a	CLR	integration	assembly	with	SQL	Server	from	an	external
DLL	file.	The	DLL	file	used	in	the	example	isn’t	supplied	in	precompiled	form	in	the
sample	downloads	for	this	book	available	on	the	Apress	web	site,	but	you	can	compile	it
yourself	from	the	code	introduced	in	Listing	16-2.	CLR	integration	isn’t	enabled	by
default,	so	you	also	need	to	enable	it	at	the	server	level.	Here,	you	do	that	using	the
sp_configure	system	stored	procedure	prior	to	running	the	CREATE	ASSEMBLY
statement.	(CREATE	ASSEMBLY	would	succeed	even	if	CLR	integration	was	disabled;
an	error	would	be	raised	by	SQL	Server	only	when	a	CLR	integration	code	module	was
called	by	a	user	later.)	The	RECONFIGURE	statement	applies	the	configuration	change
immediately.

Listing	16-1.	Registering	a	CLR	Integration	Assembly	with	SQL	Server

EXEC	sp_configure	'CLR	Enabled';

RECONFIGURE;

CREATE	ASSEMBLY	ApressExamples

AUTHORIZATION	dbo

FROM	N'C:\MyApplication\CLRDemo.DLL'

WITH	PERMISSION_SET	=	SAFE;

GO

	Note		The	second	portion	of	Listing	16-1	won’t	succeed	until	you	have	created	the	DLL
shown	in	Listing	16-2.	Additionally,	the	location	of	the	DLL	is	dependent	on	the	Build
Output	Path	setting	of	your	database	project.	See	Figure	16-6	and	Figure	16-7	for	details.

The	CREATE	ASSEMBLY	statement	in	the	example	specifies	an	assembly	name	of
EmailUDF.	This	name	must	be	a	valid	SQL	Server	identifier,	and	it	must	be	unique	in	the
database.	You	use	this	assembly	name	when	referencing	the	assembly	in	other	statements.

The	AUTHORIZATION	clause	specifies	the	owner	of	the	assembly,	in	this	case	dbo.
If	you	leave	out	the	AUTHORIZATION	clause,	it	defaults	to	the	current	user.

The	FROM	clause	in	this	example	specifies	the	full	path	to	the	external	DLL	file.
Alternatively,	you	can	specify	a	varbinary	value	instead	of	a	character	file	name.	If
you	use	a	varbinary	value,	SQL	Server	uses	it,	as	it’s	a	long	binary	string	representing
the	compiled	assembly	code,	and	no	external	file	needs	to	be	specified.

Finally,	the	WITH	PERMISSION_SET	clause	grants	a	set	of	Code	Access	Security
(CAS)	permissions	to	the	assembly.	Valid	permission	sets	include	the	following:

The	SAFE	permission	set	is	the	most	restrictive,	preventing	the
assembly	from	accessing	system	resources	outside	of	SQL	Server.
SAFE	is	the	default.

EXTERNAL_ACCESS	allows	assemblies	to	access	some	external
resources,	such	as	files,	the	network,	the	registry,	and	environment
variables.

UNSAFE	allows	assemblies	unlimited	access	to	external	resources,
including	the	ability	to	execute	unmanaged	code.

After	the	assembly	is	installed,	you	can	use	variations	of	the	T-SQL	database	object-
creation	statements	(such	as	CREATE	FUNCTION	or	CREATE	PROCEDURE)	to	access
the	methods	exposed	by	the	assembly	classes.	These	statements	are	demonstrated
individually	in	the	following	sections.

User-Defined	Functions
CLR	integration	UDFs	that	return	scalar	values	are	similar	to	standard	.NET	functions.
The	primary	differences	from	standard	.NET	functions	are	that	the	SqlFunction
attribute	must	be	applied	to	the	main	function	of	CLR	integration	functions	if	you’re	using
Visual	Studio	to	deploy	your	function	or	if	you	need	to	set	additional	attribute	values	like
IsDeterministic	and	DataAccess.	Listing	16-2	demonstrates	a	scalar	UDF	that
accepts	an	input	string	value	and	a	regular	expression	pattern	and	returns	a	bit	value
indicating	a	match	(1)	or	no	match	(0).	The	UDF	is	named	EmailMatch()	and	is
declared	as	a	method	of	the	UDFExample	class	in	the	Apress.Example	namespace

used	for	all	the	examples	in	this	chapter.

Listing	16-2.	Regular	Expression	Match	UDF

using	System.Data.SqlTypes;

using	System.Text.RegularExpressions;

namespace	Apress.Examples

{

				public	static	class	UDFExample

				{

								private	static	readonly	Regex	email_pattern	=	new	

Regex

								(

								//		Everything		before		the		@		sign		(the		"local		part")

								"^[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&'*+/=?

^_`{|}~-]+)*"	+

								//		Subdomains		after		the		@		sign

								"@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+"	+

								//	Top-level	domains

								"(?:[a-z]

{2}|com|org|net|gov|mil|biz|info|mobi|name|aero|jobs|museum)\\b$"

);

								[Microsoft.SqlServer.Server.SqlFunction

								(

								IsDeterministic		=		true

)]

								public	static	SqlBoolean	EmailMatch(SqlString	input)

								{

												SqlBoolean	result	=	new	SqlBoolean();

												if		(input.IsNull)

																result		=		SqlBoolean.Null;

												else

																result		=		(email_pattern.IsMatch(input.Value.ToLower())

	==	true)

																?		SqlBoolean.True	:	SqlBoolean.False;

												return	result;

								}

				}

}

In	order	to	compile	this	code,	you	must	build	your	database	project	(see	Figure	16-6).
Doing	so	creates	the	DLL	that	you	deploy	to	your	database.

Figure	16-6.	Build	your	project,	to	compile	the	UDF

The	location	of	your	DLL	output	is	dependent	on	the	build	configuration	of	your
database	project.	You	can	change	the	location	to	suit	your	needs.	Figure	16-7	shows	how
to	specify	where	your	objects	should	reside	when	the	project	is	built.

Figure	16-7.	Build	location	of	objects	in	your	project

The	first	part	of	Listing	16-2	specifies	the	required	namespaces	to	import.	This	UDF
uses	the	System.Data.SqlTypes	and	System.Text.RegularExpressions
namespaces:

using	System.Data.SqlTypes;

using	System.Text.RegularExpressions;

The	UDFExample	class	and	the	EmailMatch	function	it	exposes	are	both	declared
static.	CLR	integration	functions	need	to	be	declared	as	static.	A	static	function	is
shared	among	all	instances	of	the	class.	Here,	the	class	itself	is	also	static,	so	it	can’t	be
instantiated;	this	allows	the	class	to	be	loaded	more	quickly	and	its	memory	to	be	shared
between	SQL	Server	sessions.	The	function	is	decorated	with	the
Microsoft.SqlServer.Server.SqlFunction	attribute	with	the
IsDeterministic	property	set	to	true	to	indicate	the	function	is	a	deterministic
CLR	integration	method.	The	function	body	is	relatively	simple.	It	accepts	an
SqlString	input	string	value.	If	the	input	string	is	NULL,	the	function	returns	NULL;
otherwise	the	function	uses	the	.NET	Regex.IsMatch	function	to	perform	a	regular
expression	match.	If	the	result	is	a	match,	the	function	returns	a	bit	value	of	1;	otherwise	it
returns	0:

public	static	class	UDFExample

{

				private	static	readonly	Regex	email_pattern	=	new	Regex

				(

				//		Everything		before		the		@		sign		(the		"local		part")

				"^[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&'*+/=?

^_`{|}~-]+)*"	+

				//		Subdomains		after		the		@		sign

				"@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+"	+

				//	Top-level	domains

				"(?:[a-z]

{2}|com|org|net|gov|mil|biz|info|mobi|name|aero|jobs|museum)\\b$"

);

				[Microsoft.SqlServer.Server.SqlFunction

				(

				IsDeterministic		=		true

)]

				public	static	SqlBoolean	EmailMatch(SqlString	input)

				{

								SqlBoolean	result	=	new	SqlBoolean();

								if		(input.IsNull)

												result		=		SqlBoolean.Null;

								else

												result		=		(email_pattern.IsMatch(input.Value.ToLower())

	==	true)

												?		SqlBoolean.True	:	SqlBoolean.False;

								return	result;

				}

}

The	regular	expression	pattern	used	in	Listing	16-2	was	created	by	Jan	Goyvaerts	of
Regular-Expressions.info	(www.regular-expressions.info).	Jan’s	regular
expression	validates	e-mail	addresses	according	to	RFC	2822,	the	standard	for	e-mail
address	formats.	Although	not	perfect,	Jan	estimates	that	this	regular	expression	matches
over	99%	of	“e-mail	addresses	in	actual	use	today.”	Performing	this	type	of	e-mail	address
validation	using	only	T-SQL	statements	would	be	cumbersome,	complex,	and	inefficient.

	Tip		It’s	considered	good	practice	to	use	the	SQL	Server	data	types	for	parameters	and
return	values	to	CLR	Integration	methods	(SqlString,	SqlBoolean,	SqlInt32,
and	so	on).	Standard	.NET	data	types	have	no	concept	of	SQL	NULL	and	will	error	out	if
NULL	is	passed	in	as	a	parameter,	calculated	in	the	function,	or	returned	from	the	function.

After	the	assembly	is	installed	via	the	CREATE	ASSEMBLY	statement	you	wrote	in
Listing	16-1,	the	function	is	created	with	the	CREATE	FUNCTION	statement	using	the
EXTERNAL	NAME	clause,	as	shown	in	Listing	16-3.

Listing	16-3.	Creating	a	CLR	UDF	from	the	Assembly	Method

CREATE	FUNCTION	dbo.EmailMatch	(@input	nvarchar(4000))

RETURNS	bit

WITH	EXECUTE	AS	CALLER

http://www.regular-expressions.info

AS

EXTERNAL	NAME	ApressExamples.

[Apress.Examples.UDFExample].EmailMatch

GO

After	this,	the	CLR	function	can	be	called	like	any	other	T-SQL	UDF,	as	shown	in
Listing	16-4.	The	results	are	shown	in	Figure	16-8.

Listing	16-4.	Validating	E-mail	Addresses	with	Regular	Expressions

SELECT

				'nospam-123@yahoo.com'	AS	Email,

				dbo.EmailMatch	(N'nospam-123@yahoo.com')	AS	Valid

UNION

SELECT

				'123@456789',

				dbo.EmailMatch('123@456789')

UNION

				SELECT	'BillyG@HOTMAIL.COM',

				dbo.EmailMatch('BillyG@HOTMAIL.COM');

Figure	16-8.	Results	of	e-mail	address	validation	with	regular	expressions

	Tip		Normally	you	can	automate	the	process	of	compiling	your	assembly,	registering	it
with	SQL	Server,	and	installing	the	CLR	Integration	UDF	with	Visual	Studio’s	Build	and
Deploy	option.	You	can	also	test	the	CLR	Integration	UDF	with	the	Visual	Studio	Debug
and	Start	Debugging	option.	This	doesn’t	work	with	Visual	Studio	2010,	because	it
doesn’t	recognize	SQL	Server	2012,	which	was	released	after	Visual	Studio.	In	Visual
Studio	11	and	2013,	you	can	deploy	the	assembly	with	Visual	Studio.	This	is	just	a	detail;
it’s	straightforward	to	copy	the	assembly	on	the	server	and	register	it	manually	with
CREATE	ASSEMBLY	as	shown	in	Listing	16-1.

As	mentioned	previously,	CLR	UDFs	also	allow	tabular	results	to	be	returned	to	the
caller.	This	example	demonstrates	another	situation	in	which	CLR	integration	can	be	a
useful	supplement	to	T-SQL	functionality:	accessing	external	resources	such	as	the	file
system,	network	resources,	or	even	the	Internet.	Listing	16-5	uses	a	CLR	function	to
retrieve	the	Yahoo	Top	News	Stories	RSS	feed	and	return	the	results	as	a	table.	Table-
valued	CLR	UDFs	are	a	little	more	complex	than	scalar	functions.	This	code	could	be
added	to	the	same	Visual	Studio	project	that	you	created	for	the	first	CLR	function
example.	Here	you	create	another	class	named	YahooRSS.

Listing	16-5.	Retrieving	the	Yahoo	Top	News	Stories	RSS	Feed

using	System;

using	System.Collections;

using	System.Data.SqlTypes;

using	Microsoft.SqlServer.Server;

using	System.Xml;

namespace	Apress.Examples	{

				public	partial	class	YahooRSS	{

								[Microsoft.SqlServer.Server.SqlFunction	(

												IsDeterministic	=	false,

												DataAccess	=	DataAccessKind.None,

												TableDefinition	=	"title	nvarchar(256),"

												+	"link	nvarchar(256),	"

												+	"pubdate	datetime,	"

												+	"description	nvarchar(max)",

												FillRowMethodName	=	"GetRow")

]

								public	static	IEnumerable	GetYahooNews()	{

												XmlTextReader	xmlsource	=

																new	

XmlTextReader("http://rss.news.yahoo.com/rss/topstories");

												XmlDocument	newsxml	=	new	XmlDocument();

												newsxml.Load(xmlsource);

												xmlsource.Close();

												return	newsxml.SelectNodes("//rss/channel/item");

								}

								private	static	void	GetRow	(

												Object	o,

												out	SqlString	title,

												out	SqlString	link,

												out	SqlDateTime	pubdate,

												out	SqlString	description)

								{

												XmlElement	element	=	(XmlElement)o;

												title	

=	element.SelectSingleNode("./title").InnerText;

												link	

=	element.SelectSingleNode("./link").InnerText;

												pubdate	

=	DateTime.Parse(element.SelectSingleNode("./pubDate").InnerText);

												description	

=	element.SelectSingleNode("./description").InnerText;

								}

				}

}

Before	stepping	through	the	source	listing,	let’s	address	security,	because	this	function
accesses	the	Internet.	Because	the	function	needs	to	access	an	external	resource,	it	requires
EXTERNAL_ACCESS	permissions.	In	order	to	deploy	a	non-SAFE	assembly,	one	of	two
sets	of	conditions	must	be	met:

The	database	must	be	marked	TRUSTWORTHY,	and	the	user	installing
the	assembly	must	have	EXTERNAL	ACCESS	ASSEMBLY	or
UNSAFE	ASSEMBLY	permission.

Or	the	assembly	must	be	signed	with	an	asymmetric	key	or	certificate
associated	with	a	login	that	has	proper	permissions.

To	meet	the	first	set	of	requirements,	do	the	following:

1.	 Execute	the	ALTER	DATABASE	AdventureWorks	SET
TRUSTWORTHY	ON;	statement.

2.	 In	Visual	Studio,	select	Project	 	CLRDemo	Properties	
SQLCLR,	and	change	the	permission	level	to
EXTERNAL_ACCESS	(see	Figure	16-9).

Figure	16-9.	Alter	the	permission	level	of	your	database	project	SQLCLR

3.	 If	you	manually	import	the	assembly	into	SQL	Server,	specify	the
EXTERNAL_ACCESS	permission	set	when	issuing	the	CREATE
ASSEMBLY	statement,	as	shown	in	Listing	16-6.

Listing	16-6.	CREATE	ASSEMBLY	with	EXTERNAL_ACCESS	Permission	Set

CREATE	ASSEMBLY	ApressExample

AUTHORIZATION	dbo

FROM	N'C:\MyApplication\CLRDemo.DLL'

WITH	PERMISSION_SET	=	EXTERNAL_ACCESS;

As	mentioned	previously,	signing	assemblies	is	beyond	the	scope	of	this	book.	You
can	find	additional	information	on	signing	assemblies	in	this	MSDN	Data	Access
Technologies	blog	entry:
http://blogs.msdn.com/b/dataaccesstechnologies/archive/2011/10/29/deploying-

sql-clr-assembly-using-asymmetric-key.aspx.

The	code	listing	begins	with	the	using	statements.	This	function	requires	the	addition
of	the	System.Xml	namespace	in	order	to	parse	the	RSS	feed	and	the
System.Collections	namespace	to	allow	the	collection	to	be	searched,	among	other
functionality	specific	to	collections:

using	System;

using	System.Collections;

using	System.Data.SqlTypes;

using	Microsoft.SqlServer.Server;

using	System.Xml;

The	primary	public	function	again	requires	that	the	SqlFunction	attribute	be
declared.	This	time	several	additional	attributes	need	to	be	declared	with	it:

[Microsoft.SqlServer.Server.SqlFunction	(

				IsDeterministic	=	false,

				DataAccess	=	DataAccessKind.None,

				TableDefinition	=	"title	nvarchar(256),"

				+	"link	nvarchar(256),	"

				+	"pubdate	datetime,	"

				+	"description	nvarchar(max)",

				FillRowMethodName	=	"GetRow")

]

public	static	IEnumerable	GetYahooNews()

{

				XmlTextReader	xmlsource	=

								new	

XmlTextReader("http://rss.news.yahoo.com/rss/topstories");

				XmlDocument	newsxml	=	new	XmlDocument();

				newsxml.Load(xmlsource);

				xmlsource.Close();

				return	newsxml.SelectNodes("//rss/channel/item");

}

You	specifically	set	the	IsDeterministic	attribute	to	false	this	time	to	indicate
that	the	contents	of	an	RSS	feed	can	change	between	calls,	making	this	UDF
nondeterministic.	Because	the	function	doesn’t	read	data	from	system	tables	using	the	in-

http://blogs.msdn.com/b/dataaccesstechnologies/archive/2011/10/29/deploying-sql-clr-assembly-using-asymmetric-key.aspx

process	data	provider,	the	DataAccess	attribute	is	set	to	DataAccessKind.None.
This	CLR	TVF	also	sets	the	additional	TableDefinition	attribute	defining	the
structure	of	the	result	set	for	Visual	Studio.	In	addition,	it	needs	the
FillRowMethodName	attribute	to	designate	the	fill-row	method.	The	fill-row	method
is	a	user	method	that	converts	each	element	of	an	IEnumerable	object	into	an	SQL
Server	result	set	row.

The	public	function	is	declared	to	return	an	IEnumerable	result.	This	particular
function	opens	an	XmlTextReader	that	retrieves	the	Yahoo	Top	News	Stories	RSS	feed
and	stores	it	in	an	XmlDocument.	The	function	then	uses	the	SelectNodes	method	to
retrieve	news	story	summaries	from	the	RSS	feed.	The	SelectNodes	method	generates
an	XmlNodeList.	The	XmlNodeList	class	implements	the	IEnumerable	interface.
This	is	important	because	the	fill-row	method	is	fired	once	for	each	object	returned	by	the
IEnumerable	collection	returned	(in	this	case,	the	XmlNodeList).

The	GetRow	method	is	declared	as	a	C#	void	function,	which	means	no	value	is
returned	by	the	function;	the	method	communicates	with	SQL	Server	via	its	out
parameters.	The	first	parameter	is	an	Object	passed	by	value—in	this	case,	an
XmlElement.	The	remaining	parameters	correspond	to	the	columns	of	the	result	set.	The
GetRow	method	casts	the	first	parameter	to	an	XmlElement	(the	parameter	can’t	be
directly	an	XmlElement	because	the	fill-row	method	signature	must	have	an	Object	as
the	first	parameter).	It	then	uses	the	SelectSingleNode	method	and	InnerText
property	to	retrieve	the	proper	text	from	individual	child	nodes	of	the	XmlElement,
assigning	each	to	the	proper	columns	of	the	result	set	along	the	way:

private	static	void	GetRow	(

				Object	o,

				out	SqlString	title,

				out	SqlString	link,

				out	SqlDateTime	pubdate,

				out	SqlString	description)

{

				XmlElement	element	=	(XmlElement)o;

				title	=	element.SelectSingleNode("./title").InnerText;

				link	=	element.SelectSingleNode("./link").InnerText;

				pubdate	

=	DateTime.Parse(element.SelectSingleNode("./pubDate").InnerText);

				description	

=	element.SelectSingleNode("./description").InnerText;

}

The	CLR	TVF	can	be	called	with	a	SELECT	query,	as	shown	in	Listing	16-7.	The
results	are	shown	in	Figure	16-10.

Listing	16-7.	Querying	a	CLR	Integration	TVF

CREATE	FUNCTION	dbo.GetYahooNews()

RETURNS	TABLE(title	nvarchar(256),	link	nvarchar(256),	

pubdate	datetime,	description	nvarchar(max))

AS	EXTERNAL	NAME	ApressExamples.

[Apress.Examples.YahooRSS].GetYahooNews

GO

SELECT

				title,

				link,

				pubdate,

				description

FROM	dbo.GetYahooNews();

Figure	16-10.	Retrieving	the	Yahoo	RSS	feed	with	the	GetYahooNews()	function

Stored	Procedures
CLR	integration	SPs	provide	an	alternative	to	extend	SQL	Server	functionality	when	T-
SQL	SPs	just	won’t	do.	Of	course,	like	other	CLR	integration	functionality,	there	is	a
certain	amount	of	overhead	involved	with	CLR	SPs,	and	you	can	expect	them	to	be	less
efficient	than	comparable	T-SQL	code	for	set-based	operations.	On	the	other	hand,	if	you
need	to	access	.NET	functionality	or	external	resources,	or	if	you	have	code	that	is
computationally	intensive,	CLR	integration	SPs	can	provide	an	excellent	alternative	to
straight	T-SQL	code.

Listing	16-8	shows	how	to	use	CLR	integration	to	retrieve	operating	system
environment	variables	and	return	them	as	a	recordset	via	an	SP.	In	the
Apress.Examples	namespace,	you	create	a	SampleProc	class.

Listing	16-8.	Retrieving	Environment	Variables	with	a	CLR	Stored	Procedure

using	System;

using	System.Collections;

using	System.Data;

using	System.Data.SqlClient;

using	System.Data.SqlTypes;

using	Microsoft.SqlServer.Server;

namespace	Apress.Examples

{

				public	partial	class	SampleProc

				{

								[Microsoft.SqlServer.Server.SqlProcedure()]

								public	static	void	GetEnvironmentVars()

								{

												try

												{

																SortedList	environment_list	=	new	SortedList();

																foreach	(DictionaryEntry	de	in	

Environment.GetEnvironmentVariables())

																{

																				environment_list[de.Key]	=	de.Value;

																}

																SqlDataRecord	record	=	new	SqlDataRecord	(

																				new	SqlMetaData("VarName",	

SqlDbType.NVarChar,	1024),

																				new	SqlMetaData("VarValue",	

SqlDbType.NVarChar,	4000)

);

																SqlContext.Pipe.SendResultsStart(record);

																foreach	(DictionaryEntry	de	in	

environment_list)

																{

																				record.SetValue(0,	de.Key);

																				record.SetValue(1,	de.Value);

																				SqlContext.Pipe.SendResultsRow(record);

																}

																SqlContext.Pipe.SendResultsEnd();

												}

												catch	(Exception	ex)

												{

																SqlContext.Pipe.Send(ex.Message);

												}

								}

				}

};

As	with	the	previous	CLR	integration	examples,	appropriate	namespaces	are	imported
at	the	top:

using	System;

using	System.Collections;

using	System.Data;

using	System.Data.SqlClient;

using	System.Data.SqlTypes;

using	Microsoft.SqlServer.Server;

The	GetEnvironmentVars()	method	is	declared	as	a	public	void	function.	The
SqlProcedure()	attribute	is	applied	to	the	function	in	this	code	to	indicate	to	Visual
Studio	that	this	is	a	CLR	SP.	The	body	of	the	SP	is	wrapped	in	a	try…catch	block	to
capture	any	.NET	exceptions,	which	are	returned	to	SQL	Server.	If	an	exception	occurs	in
the	.NET	code,	it’s	sent	back	to	SQL	Server	via	the	SqlContext.Pipe.Send	method:

public	partial	class	SampleProc

				{
								[Microsoft.SqlServer.Server.SqlProcedure()]
								public	static	void	GetEnvironmentVars()
								{
												try
												{
																…
												}
												catch	(Exception	ex)
												{
																SqlContext.Pipe.Send(ex.Message);
												}
								}
				}
};

THROWING	READABLE	EXCEPTIONS

When	you	need	to	raise	an	exception	in	a	CLR	SP,	you	have	two	options.	For	code
readability	reasons,	I’ve	chosen	the	simpler	option	of	allowing	exceptions	to	bubble
up	through	the	call	stack.	This	results	in	.NET	Framework	exceptions	being	returned
to	SQL	Server.	The	.NET	Framework	exceptions	return	a	lot	of	extra	information,
like	call	stack	data,	however.

If	you	want	to	raise	a	nice,	simple	SQL	Server–style	error	without	all	the	extra	.NET
Framework	exception	information,	you	can	use	a	method	introduced	in	the	book	Pro
SQL	Server	2005,	by	Thomas	Rizzo	et	al.	(Apress,	2005).	This	second	method
involves	using	the	ExecuteAndSend()	method	of	the	SqlContext.Pipe	to
execute	a	T-SQL	RAISERROR	statement.	This	method	is	shown	in	the	following	C#
code	snippet:
try	{

				SqlContext.Pipe.ExecuteAndSend(“RAISERROR	('This	is	

a	T-SQL	Error',	16,	1);”);

}

catch

{

				//	do	nothing

}

The	ExecuteAndSend()	method	call	executes	the	RAISERROR	statement	on	the
current	context	connection.	The	try…catch	block	surrounding	the	call	prevents	the
.NET	exception	generated	by	the	RAISERROR	to	be	handled	by	.NET	and	reported
as	a	new	error.	Keep	this	method	in	mind	if	you	want	to	raise	SQL	Server–style
errors	instead	of	returning	the	verbose	.NET	Framework	exception	information	to
SQL	Server.

As	the	procedure	begins,	all	the	environment	variable	names	and	their	values	are
copied	from	the	.NET	Hashtable	returned	by	the
Environment.GetEnvironmentVariables()	function	to	a	.NET
SortedList.	In	this	procedure,	I	chose	to	use	the	SortedList	to	ensure	that	the
results	are	returned	in	order	by	key.	I	added	the	SortedList	for	display	purposes,	but
it’s	not	required.	Greater	efficiency	can	be	gained	by	iterating	the	Hashtable	directly
without	a	SortedList:

SortedList	environment_list	=	new	SortedList();

foreach	(DictionaryEntry	de	in	

Environment.GetEnvironmentVariables())

{

				environment_list[de.Key]	=	de.Value;

}

The	procedure	uses	the	SqlContext.Pipe	to	return	results	to	SQL	Server	as	a
result	set.	The	first	step	of	using	the	SqlContext.Pipe	to	send	results	back	is	to	set	up
an	SqlRecord	with	the	structure	that	you	wish	the	result	set	to	take.	For	this	example,
the	result	set	consists	of	two	nvarchar	columns:	VarName,	which	contains	the
environment	variable	names;	and	VarValue,	which	contains	their	corresponding	values:

SqlDataRecord	record	=	new	SqlDataRecord	(

				new	SqlMetaData("VarName",	SqlDbType.NVarChar,	1024),

				new	SqlMetaData("VarValue",	SqlDbType.NVarChar,	4000)

);

Next,	the	function	calls	the	SendResultsStart()	method	with	the
SqlDataRecord	to	initialize	the	result	set:

SqlContext.Pipe.SendResultsStart(record);

Then	it’s	a	simple	matter	of	looping	through	the	SortedList	of	environment
variable	key/value	pairs	and	sending	them	to	the	server	via	the	SendResultsRow()
method:

foreach	(DictionaryEntry	de	in	environment_list)	{

				record.SetValue(0,	de.Key);

				record.SetValue(1,	de.Value);

				SqlContext.Pipe.SendResultsRow(record);

}

The	SetValue()	method	is	called	for	each	column	of	the	SqlRecord	to	properly
set	the	results,	and	then	SendResultsRow()	is	called	for	each	row.	After	all	the	results
have	been	sent	to	the	client,	the	SendResultsEnd()	method	of	the
SqlContext.Pipe	is	called	to	complete	the	result	set	and	return	the
SqlContext.Pipe	to	its	initial	state:

SqlContext.Pipe.SendResultsEnd();

The	GetEnvironmentVars	CLR	SP	can	be	called	using	the	T-SQL	EXEC
statement,	shown	in	Listing	16-9.	The	results	are	shown	in	Figure	16-11.

Listing	16-9.	Executing	the	GetEnvironmentVars	CLR	Procedure

CREATE	PROCEDURE	dbo.GetEnvironmentVars

AS	EXTERNAL	NAME	ApressExamples.

[Apress.Examples.SampleProc].GetEnvironmentVars;

GO

EXEC	dbo.GetEnvironmentVars;

Figure	16-11.	Retrieving	environment	variables	with	CLR

User-Defined	Aggregates
User-defined	aggregates	(UDAs)	are	an	exciting	addition	to	SQL	Server’s	functionality.
UDAs	are	similar	to	the	built-in	SQL	aggregate	functions	(SUM,	AVG,	and	so	on)	in	that
they	can	act	on	entire	sets	of	data	at	once,	as	opposed	to	one	item	at	a	time.	An	SQL	CLR
UDA	has	access	to	.NET	functionality	and	can	operate	on	numeric,	character,	date/time,	or

even	user-defined	data	types.	A	basic	UDA	has	four	required	methods:

The	UDA	calls	its	Init()	method	when	the	SQL	Server	engine
prepares	to	aggregate.	The	code	in	this	method	can	reset	member
variables	to	their	start	state,	initialize	buffers,	and	perform	other
initialization	functions.

The	Accumulate()	method	is	called	as	each	row	is	processed,
allowing	you	to	aggregate	the	data	passed	in.	The	Accumulate()
method	might	increment	a	counter,	add	a	row’s	value	to	a	running
total,	or	possibly	perform	other	more	complex	processing	on	a	row’s
data.

The	Merge()	method	is	invoked	when	SQL	Server	decides	to	use
parallel	processing	to	complete	an	aggregate.	If	the	query	engine
decides	to	use	parallel	processing,	it	creates	multiple	instances	of	your
UDA	and	calls	the	Merge()	method	to	join	the	results	into	a	single
aggregation.

Terminate()	is	the	final	method	of	the	UDA.	It’s	called	after	all
rows	have	been	processed	and	any	aggregates	created	in	parallel	have
been	merged.	The	Terminate()	method	returns	the	final	result	of
the	aggregation	to	the	query	engine.

	Tip		In	SQL	Server	2005,	there	was	a	serialization	limit	of	8,000	bytes	for	an	instance
of	an	SQL	CLR	UDA,	making	certain	tasks	harder	to	perform	using	a	UDA.	For	instance,
creating	an	array,	a	hash	table,	or	another	structure	to	hold	intermediate	results	during	an
aggregation	(like	aggregates	that	calculate	a	statistical	mode	or	median)	could	cause	a
UDA	to	very	quickly	run	up	against	the	8,000-byte	limit	and	throw	an	exception	for	large
datasets.	SQL	Server	2008,	2012,	and	2014	don’t	have	this	limitation.

Creating	a	Simple	UDA
The	example	UDA	in	Listing	16-10	determines	the	statistical	range	for	a	set	of	numbers.
The	statistical	range	for	a	given	set	of	numbers	is	the	difference	between	the	minimum	and
maximum	values	of	the	set.	The	UDA	determines	the	minimum	and	maximum	values	of
the	set	of	numbers	passed	in	and	returns	the	difference.

Listing	16-10.	Sample	Statistical	Range	UDA

using	System;

using	System.Data;

using	System.Data.SqlClient;

using	System.Data.SqlTypes;

using	Microsoft.SqlServer.Server;

namespace	Apress.Examples	{

				[Serializable]

				[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.Native)]

				public	struct	Range

				{

								SqlDouble	min,	max;

								public	void	Init()	{

												min	=	SqlDouble.Null;

												max	=	SqlDouble.Null;

								}

								public	void	Accumulate(SqlDouble	value)

								{

												if	(!value.IsNull)	{

																if	(min.IsNull	||	value	<	min)

																{

																				min	=	value;

																}

																if	(max.IsNull	||	value	>	max)

																{

																				max	=	value;

																}

												}	

								}

								public	void	Merge(Range	group)

								{

												if	(min.IsNull	||	(!group.min.IsNull	&&	group.min	

<	min))

												{

																min	=	group.min;

												}

												if	(max.IsNull	||	(!group.max.IsNull	&&	group.max	

>	max))

												{

																max	=	group.max;

												}

								}

								public	SqlDouble	Terminate()	{

												SqlDouble	result	=	SqlDouble.Null;

												if	(!min.IsNull	&&	!max.IsNull)

												{

																result	=	max	-	min;

												}

												return	result;

								}

				}

}

This	UDA	begins,	like	the	previous	CLR	integration	assemblies,	by	importing	the
proper	namespaces:

using	System;

using	System.Data;

using	System.Data.SqlClient;

using	System.Data.SqlTypes;

using	Microsoft.SqlServer.Server;

Next,	the	code	declares	the	struct	that	represents	the	UDA.	The	attributes
Serializable	and	SqlUserDefinedAggregate	are	applied	to	the	struct.	You
use	the	Format.Native	serialization	format	for	this	UDA.	Because	this	is	a	simple
UDA,	Format.Native	provides	the	best	performance	and	is	the	easiest	to	implement.
More	complex	UDAs	that	use	reference	types	require	Format.UserDefined
serialization	and	must	implement	the	IBinarySerialize	interface:

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.Native)]

public	struct	Range

{

}

The	struct	declares	two	member	variables,	min	and	max,	which	hold	the	minimum
and	maximum	values	encountered	during	the	aggregation	process:

SqlDouble	min,	max;

The	mandatory	Init()	method	in	the	aggregate	body	initializes	the	min	and	max
member	variables	to	SqlDouble.Null:

public	void	Init()	{

				min	=	SqlDouble.Null;

				max	=	SqlDouble.Null;

}

The	Accumulate()	method	accepts	a	SqlDouble	parameter.	This	method	first
checks	that	the	value	isn’t	NULL	(NULL	is	ignored	during	aggregation).	Then	it	checks	to
see	if	the	value	passed	in	is	less	than	the	min	variable	(or	if	min	is	NULL)	and,	if	so,
assigns	the	parameter	value	to	min.	The	method	also	checks	max	and	updates	it	if	the
parameter	value	is	greater	than	max	(or	if	max	is	NULL).	In	this	way,	the	min	and	max
values	are	determined	on	the	fly	as	the	query	engine	feeds	values	into	the
Accumulate()	method:

public	void	Accumulate(SqlDouble	value)

								{

												if	(!value.IsNull)	{

																if	(min.IsNull	||	value	<	min)

																{

																				min	=	value;

																}

																if	(max.IsNull	||	value	>	max)

																{

																				max	=	value;

																}

												}

								}

The	Merge()	method	merges	a	Range	structure	that	was	created	in	parallel	with	the
current	structure.	The	method	accepts	a	Range	structure	and	compares	its	min	and	max
variables	to	those	of	the	current	Range	structure.	It	then	adjusts	the	current	structure’s
min	and	max	variables	based	on	the	Range	structure	passed	into	the	method,	effectively
merging	the	two	results:

public	void	Merge(Range	group)

{

				if	(min.IsNull	||	(!group.min.IsNull	&&	group.min	<	min))

				{

								min	=	group.min;

				}

				if	(max.IsNull	||	(!group.max.IsNull	&&	group.max	>	max))

				{

								max	=	group.max;

				}

}

The	final	method	of	the	UDA	is	the	Terminate()	function,	which	returns	an
SqlDouble	result.	This	function	checks	for	min	or	max	results	that	are	NULL.	The
UDA	returns	NULL	if	either	min	or	max	is	NULL.	If	neither	min	nor	max	is	NULL,	the
result	is	the	difference	between	the	max	and	min	values:

public	SqlDouble	Terminate()	{

				SqlDouble	result	=	SqlDouble.Null;

				if	(!min.IsNull	&&	!max.IsNull)

				{

								result	=	max	-	min;

				}

				return	result;

}

	Note		The	Terminate()	method	must	return	the	same	data	type	that	the
Accumulate()	method	accepts.	If	these	data	types	don’t	match,	an	error	will	occur.
Also,	as	mentioned	previously,	it’s	best	practice	to	use	the	SQL	Server–specific	data	types,
because	the	standard	.NET	types	will	choke	on	NULL.

Listing	16-11	is	a	simple	test	of	this	UDA.	The	test	determines	the	statistical	range	of
unit	prices	that	customers	have	paid	for	AdventureWorks	products.	Information	like	this,
on	a	per-product	or	per-model	basis,	can	be	paired	with	additional	information	to	help	the
AdventureWorks	sales	teams	set	optimal	price	points	for	their	products.	The	results	are
shown	in	Figure	16-12.

Listing	16-11.	Retrieving	Statistical	Ranges	with	a	UDA

CREATE	AGGREGATE	Range	(@value	float)	RETURNS	float

EXTERNAL	NAME	ApressExamples.[Apress.Examples.Range];

GO

SELECT

				ProductID,

				dbo.Range(UnitPrice)	AS	UnitPriceRange

FROM	Sales.SalesOrderDetail

WHERE	UnitPrice	>	0

GROUP	BY	ProductID;

Figure	16-12.	Results	of	the	range	aggregate	applied	to	unit	prices

	Caution		This	UDA	is	an	example.	It’s	faster	to	use	regular	T-SQL	aggregation
functions	for	this	type	of	calculation,	especially	if	you	have	a	large	number	of	rows	to
process.

Creating	an	Advanced	UDA

You	can	create	more	advanced	CLR	aggregates	that	use	reference	data	types	and	user-
defined	serialization.	When	creating	a	UDA	that	uses	reference	(nonvalue)	data	types	such
as	ArrayLists,	SortedLists,	and	Objects,	CLR	integration	imposes	the	additional
restriction	that	you	can’t	mark	the	UDA	for	Format.Native	serialization.	Instead,
these	aggregates	have	to	be	marked	for	Format.UserDefined	serialization,	which
means	the	UDA	must	implement	the	IBinarySerialize	interface,	including	both	the
Read	and	Write	methods.	Basically,	you	have	to	tell	SQL	Server	how	to	serialize	your
data	when	using	reference	types.	There	is	a	performance	impact	associated	with
Format.UserDefined	serialization	as	opposed	to	Format.Native.

Listing	16-12	is	a	UDA	that	calculates	the	statistical	median	of	a	set	of	numbers.	The
statistical	median	is	the	middle	number	of	an	ordered	group	of	numbers.	If	the	set	contains
an	even	number	of	values,	the	statistical	median	is	the	average	(mean)	of	the	middle	two
numbers	in	the	set.

Listing	16-12.	UDA	to	Calculate	the	Statistical	Median

using	System;

using	System.Collections.Generic;

using	System.Data;

using	System.Data.SqlTypes;

using	System.Runtime.InteropServices;

using	Microsoft.SqlServer.Server;

namespace	Apress.Examples	{

				[Serializable]

				[Microsoft.SqlServer.Server.SqlUserDefinedAggregate	(

								Format.UserDefined,

								IsNullIfEmpty	=	true,

								MaxByteSize	=	-1)]

				[StructLayout(LayoutKind.Sequential)]

				public	struct	Median	:	IBinarySerialize

				{

								List<double>	temp;	//	List	of	numbers

								public	void	Init()

								{

												//	Create	new	list	of	double	numbers

												this.temp	=	new	List<double>();

								}

								public	void	Accumulate(SqlDouble	number)

								{

												if	(!number.IsNull)	//	Skip	over	NULLs

												{

																this.temp.Add(number.Value);	//	If	number	is	

not	NULL,	add	it	to	list

												}

								}

								public	void	Merge(Median	group)

								{

												//	Merge	two	sets	of	numbers

												this.temp.InsertRange(this.temp.Count,	

group.temp);

								}

								public	SqlDouble	Terminate()	{

												SqlDouble	result	=	SqlDouble.Null;	//	Default	

result	to	NULL

												this.temp.Sort();	//	Sort	list	of	numbers

												int	first,	second;	//	Indexes	to	middle	two	

numbers

												if	(this.temp.Count	%	2	==	1)

												{

																//	If	there	is	an	odd	number	of	values	get	the	

middle	number	twice

																first	=	this.temp.Count	/	2;

																second	=	first;

												}

												else

												{

																//	If	there	is	an	even	number	of	values	get	the	

middle	two	numbers

																first	=	this.temp.Count	/	2	-	1;

																second	=	first	+	1;

												}

												if	(this.temp.Count	>	0)	//	If	there	are	numbers,	

calculate	median

												{

																//	Calculate	median	as	average	of	middle	

number(s)

																result	=	(SqlDouble)(this.temp[first]	

+	this.temp[second])	/	2.0;

												}

												return	result;	

								}

								#region	IBinarySerialize	Members

								//	Custom	serialization	read	method

								public	void	Read(System.IO.BinaryReader	r)

								{

												//	Create	a	new	list	of	double	values

												this.temp	=	new	List<double>();

												//	Get	the	number	of	values	that	were	serialized

												int	j	=	r.ReadInt32();

												//	Loop	and	add	each	serialized	value	to	the	list

												for	(int	i	=	0;	i	<	j;	i++)

												{

																this.temp.Add(r.ReadDouble());

												}

								}

								//	Custom	serialization	write	method

								public	void	Write(System.IO.BinaryWriter	w)

								{

												//	Write	the	number	of	values	in	the	list

												w.Write(this.temp.Count);

												//	Write	out	each	value	in	the	list

												foreach	(double	d	in	this.temp)

												{

																w.Write(d);

												}

								}

								#endregion

				}

}

This	UDA	begins,	like	the	other	CLR	integration	examples,	with	namespace	imports.
You	add	the	System.Collections.Generic	namespace	this	time	so	you	can	use
the	.NET	List<T>	strongly	typed	list:

using	System;

using	System.Collections.Generic;

using	System.Data;

using	System.Data.SqlTypes;

using	System.Runtime.InteropServices;

using	Microsoft.SqlServer.Server;

The	Median	structure	in	the	example	is	declared	with	the	Serializable	attribute
to	indicate	that	it	can	be	serialized,	and	the	StructLayout	attribute	with	the
LayoutKind.Sequential	property	to	force	the	structure	to	be	serialized	in
sequential	fashion	for	a	UDA	that	has	a	Format	different	from	Native.	The

SqlUserDefinedAggregate	attribute	declares	three	properties,	as	follows:

Format.UserDefined	indicates	that	the	UDA	implements
serialization	methods	through	the	IBinarySerialize	interface.
This	is	required	because	the	List<T>	reference	type	is	being	used	in
the	UDA.

IsNullIfEmpty	is	set	to	true,	indicating	that	NULL	will	be
returned	if	no	rows	are	passed	to	the	UDA.

MaxByteSize	is	set	to	-1	so	that	the	UDA	can	be	serialized	if	it’s
greater	than	8,000	bytes.	(The	8,000-byte	serialization	limit	was	a
strict	limit	in	SQL	Server	2005	that	prevented	serialization	of	large
objects,	like	large	ArrayList	objects,	in	the	UDA).

Because	Format.UserDefined	is	specified	on	the	Median	structure,	it	must
implement	the	IBinarySerialize	interface.	In	the	body	of	the	struct,	you	define	a
List<double>	named	temp	that	holds	an	intermediate	temporary	list	of	numbers
passed	into	the	UDA:

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedAggregate	(

				Format.UserDefined,

				IsNullIfEmpty	=	true,

				MaxByteSize	=	-1)]

[StructLayout(LayoutKind.Sequential)]

public	struct	Median	:	IBinarySerialize

{

				List<double>	temp;	//	List	of	numbers

				...

}

The	Read()	and	Write()	methods	of	the	IBinarySerialize	interface	are
used	to	deserialize	and	serialize	the	list,	respectively:

#region	IBinarySerialize	Members

//	Custom	serialization	read	method

public	void	Read(System.IO.BinaryReader	r)

{

				//	Create	a	new	list	of	double	values

				this.temp	=	new	List<double>();

				//	Get	the	number	of	values	that	were	serialized

				int	j	=	r.ReadInt32();

				//	Loop	and	add	each	serialized	value	to	the	list

				for	(int	i	=	0;	i	<	j;	i++)

				{

								this.temp.Add(r.ReadDouble());

				}

}

//	Custom	serialization	write	method

public	void	Write(System.IO.BinaryWriter	w)

{

				//	Write	the	number	of	values	in	the	list

				w.Write(this.temp.Count);

				//	Write	out	each	value	in	the	list

				foreach	(double	d	in	this.temp)	

				{

								w.Write(d);

				}

}

#endregion

The	Init	method	of	the	UDA	initializes	the	temp	list	by	creating	a	new
List<double>	instance:

public	void	Init()	{

				//	Create	new	list	of	double	numbers

				this.temp	=	new	List<double>();

}

The	Accumulate()	method	accepts	a	SqlDouble	number	and	adds	all	non-NULL
values	to	the	temp	list.	Although	you	can	include	NULLs	in	your	aggregate	results,	keep
in	mind	that	T-SQL	developers	are	used	to	the	NULL	handling	of	built-in	aggregate
functions	like	SUM	and	AVG.	In	particular,	developers	are	used	to	their	aggregate	functions
discarding	NULL.	This	is	the	main	reason	you	eliminate	NULL	in	this	UDA:

public	void	Accumulate(SqlDouble	number)

{

				if	(!number.IsNull)	//	Skip	over	NULLs

				{

								this.temp.Add(number.Value);	//	If	number	is	not	NULL,	

add	it	to	list

				}

}

The	Merge()	method	in	the	example	merges	two	lists	of	numbers	if	SQL	Server
decides	to	calculate	the	aggregate	in	parallel.	If	so,	the	server	passes	a	list	of	numbers	into
the	Merge()	method.	This	list	of	numbers	must	then	be	appended	to	the	current	list.	For
efficiency,	you	use	the	InsertRange()	method	of	List<T>	to	combine	the	lists:

public	void	Merge(Median	group)

{

				//	Merge	two	sets	of	numbers

				this.temp.InsertRange(this.temp.Count,	group.temp);

}

The	Terminate()	method	of	the	UDA	sorts	the	list	of	values	and	then	determines
the	indexes	of	the	middle	values.	If	there	is	an	odd	number	of	values	in	the	list,	there	is
only	a	single	middle	value;	if	there	is	an	even	number	of	values	in	the	list,	the	median	is
the	average	of	the	middle	two	values.	If	the	list	contains	no	values	(which	can	occur	if
every	value	passed	to	the	aggregate	is	NULL),	the	result	is	NULL;	otherwise	the
Terminate()	method	calculates	and	returns	the	median:

public	SqlDouble	Terminate()	{

				SqlDouble	result	=	SqlDouble.Null;	//	Default	result	to	

NULL

				this.temp.Sort();	//	Sort	list	of	numbers

				int	first,	second;	//	Indexes	to	middle	two	numbers

				if	(this.temp.Count	%	2	==	1)

				{

								//	If	there	is	an	odd	number	of	values	get	the	middle	

number	twice

								first	=	this.temp.Count	/	2;

								second	=	first;

				}

				else

				{

								//	If	there	is	an	even	number	of	values	get	the	middle	

two	numbers

								first	=	this.temp.Count	/	2	-	1;

								second	=	first	+	1;

				}

				if	(this.temp.Count	>	0)	//	If	there	are	numbers,	

calculate	median

				{

								//	Calculate	median	as	average	of	middle	number(s)

								result	=	(SqlDouble)(this.temp[first]	

+	this.temp[second])	/	2.0;

				}

				return	result;

}

Listing	16-13	demonstrates	the	use	of	this	UDA	to	calculate	the	median	UnitPrice

from	the	Sales.SalesOrderDetail	table	on	a	per-product	basis.	The	results	are
shown	in	Figure	16-13.

Listing	16-13.	Calculating	the	Median	Unit	Price	with	a	UDA

CREATE	AGGREGATE	dbo.Median	(@value	float)	RETURNS	float

EXTERNAL	NAME	ApressExamples.[Apress.Examples.Median];

GO

SELECT

				ProductID,

				dbo.Median(UnitPrice)	AS	MedianUnitPrice

FROM	Sales.SalesOrderDetail

GROUP	BY	ProductID;

Figure	16-13.	Median	unit	price	for	each	product

CLR	Integration	User-Defined	Types
SQL	Server	2000	had	built-in	support	for	user-defined	data	types,	but	they	were	limited	in
scope	and	functionality.	The	old-style	user-defined	data	types	had	the	following
restrictions	and	capabilities:

They	had	to	be	derived	from	built-in	data	types.

Their	format	and/or	range	could	only	be	restricted	through	T-SQL
rules.

They	could	be	assigned	a	default	value.

They	could	be	declared	as	NULL	or	NOT	NULL.

SQL	Server	2014	provides	support	for	old-style	user-defined	data	types	and	rules,
presumably	for	backward	compatibility	with	existing	applications.	The	AdventureWorks
database	contains	examples	of	old-style	user-defined	data	types,	like	the	dbo.Phone
data	type,	which	is	an	alias	for	the	varchar(25)	data	type.

	Caution		Rules	(CHECK	constraints	that	can	be	applied	to	user-defined	data	types)	have
been	deprecated	since	SQL	Server	2005	and	will	be	removed	from	a	future	version.	T-SQL
user-defined	data	types	are	now	often	referred	to	as	alias	types.

SQL	Server	2014	supports	a	far	more	flexible	solution	to	your	custom	data	type	needs
in	the	form	of	CLR	user-defined	types.	CLR	integration	user-defined	types	allow	you	to
access	the	power	of	the	.NET	Framework.	Common	examples	of	CLR	UDTs	include
mathematical	concepts	like	points,	vectors,	complex	numbers,	and	other	types	not	built
into	the	SQL	Server	type	system.	In	fact,	CLR	UDTs	are	so	powerful	that	Microsoft	has
begun	including	some	as	standard	in	SQL	Server.	These	CLR	UDTs	include	the	spatial
data	types	geography	and	geometry,	and	the	hierarchyid	data	type.

CLR	UDTs	are	useful	for	implementing	data	types	that	require	special	handling	and
that	implement	their	own	special	methods	and	functions.	Complex	numbers,	which	are	a
superset	of	real	numbers,	are	one	example.	Complex	numbers	are	represented	with	a
“real”	part	and	an	“imaginary”	part	in	the	format	a+bi,	where	a	is	a	real	number
representing	the	real	part	of	the	value,	b	is	a	real	number	representing	the	imaginary	part,
and	the	literal	letter	i	after	the	imaginary	part	stands	for	the	imaginary	number	i,	which	is
the	square	root	of	-1.	Complex	numbers	are	often	used	in	math,	science,	and	engineering
to	solve	difficult	abstract	problems.	Some	examples	of	complex	numbers	include
101.9+3.7i,	98+12i,	-19i,	and	12+0i	(which	can	also	be	represented	as	12).	Because	their
format	is	different	from	real	numbers	and	calculations	with	them	require	special
functionality,	complex	numbers	are	a	good	candidate	for	CLR.	The	example	in	Listing	16-
14	implements	a	complex	number	CLR	UDT.

	Note		To	keep	the	example	simple,	only	a	partial	implementation	is	reproduced	here.
The	sample	download	file	includes	the	full	version	of	this	CLR	UDT	that	includes	basic
operators	as	well	as	additional	documentation	and	implementations	of	many	more
mathematical	operators	and	trigonometric	functions.

Listing	16-14.	Complex	Numbers	UDT

using	System;

using	System.Data.SqlTypes;

using	Microsoft.SqlServer.Server;

using	System.Text.RegularExpressions;

namespace	Apress.Examples

{

				[Serializable]

				[Microsoft.SqlServer.Server.SqlUserDefinedType

						(

								Format.Native,

								IsByteOrdered	=	true

)]

				public	struct	Complex	:	INullable

				{

								#region	"Complex	Number	UDT	Fields/Components"

								private	bool	m_Null;

								public	Double	real;

								public	Double	imaginary;

								#endregion

								#region	"Complex	Number	Parsing,	Constructor,	and	

Methods/Properties"

								private	static	readonly	Regex	rx	=	new	Regex(

										"^(?<Imaginary>[+-]?([0-9]+|[0-9]*\\.[0-9]+))

[i|I]$|"	+

										"^(?<Real>[+-]?([0-9]+|[0-9]*\\.[0-9]+))$|"	+

										"^(?<Real>[+-]?([0-9]+|[0-9]*\\.[0-9]+))"	+

										"(?<Imaginary>[+-]?([0-9]+|[0-9]*\\.[0-9]+))

[i|I]$");

								public	static	Complex	Parse(SqlString	s)

								{

												Complex	u	=	new	Complex();

												if	(s.IsNull)

																u	=	Null;

												else

												{

																MatchCollection	m	=	rx.Matches(s.Value);

																if	(m.Count	==	0)

																				throw	(new	FormatException("Invalid	Complex	

Number	Format."));

																String	real_str	=	m[0].Groups["Real"].Value;

																String	imaginary_str	

=	m[0].Groups["Imaginary"].Value;

																if	(real_str	==	""	&&	imaginary_str	==	"")

																				throw	(new	FormatException("Invalid	Complex	

Number	Format."));

																if	(real_str	==	"")

																				u.real	=	0.0;

																else

																				u.real	=	Convert.ToDouble(real_str);

																if	(imaginary_str	==	"")

																				u.imaginary	=	0.0;

																else

																				u.imaginary	

=	Convert.ToDouble(imaginary_str);

												}

												return	u;

								}

								public	override	String	ToString()

								{

												String	sign	=	"";

												if	(this.imaginary	>=	0.0)

																sign	=	"+";

												return	this.real.ToString()	+	sign	

+	this.imaginary.ToString()	+	"i";

								}

								public	bool	IsNull

								{

												get

												{

																return	m_Null;

												}

								}

								public	static	Complex	Null

								{

												get

												{

																Complex	h	=	new	Complex();

																h.m_Null	=	true;

																return	h;

												}

								}

								public	Complex(Double	r,	Double	i)

								{

												this.real	=	r;

												this.imaginary	=	i;

												this.m_Null	=	false;

								}

								#endregion

								#region	"Complex	Number	Basic	Operators"

								//	Complex	number	addition

								public	static	Complex	operator	+(Complex	n1,	Complex	

n2)

								{

												Complex	u;

												if	(n1.IsNull	||	n2.IsNull)

																u	=	Null;

												else

																u	=	new	Complex(n1.real	+	n2.real,	n1.imaginary	

+	n2.imaginary);

												return	u;

								}

								#endregion

								#region	"Exposed	Mathematical	Basic	Operator	Methods"

								//	Add	complex	number	n2	to	n1

								public	static	Complex	CAdd(Complex	n1,	Complex	n2)

								{

												return	n1	+	n2;

								}

								//	Subtract	complex	number	n2	from	n1

								public	static	Complex	Sub(Complex	n1,	Complex	n2)

								{

												return	n1	-	n2;

								}

								#endregion

								//	other	complex	operations	are	available	in	the	

source	code

				}

}

The	code	begins	with	the	required	namespace	imports	and	the	namespace	declaration
for	the	example:

using	System;

using	System.Data.SqlTypes;

using	Microsoft.SqlServer.Server;

using	System.Text.RegularExpressions;

Next	is	the	declaration	of	the	structure	that	represents	an	instance	of	the	UDT.	The
Serializable,	Format.Native,	and	IsByteOrdered=true	attributes	and
attribute	properties	are	all	set	on	the	UDT.	In	addition,	all	CLR	UDTs	must	implement	the

INullable	interface.	INullable	requires	that	the	IsNull	and	Null	properties	be
defined:

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedType

		(

				Format.Native,

				IsByteOrdered	=	true

)]

public	struct	Complex	:	INullable

{

				...

}

Table	16-1	shows	a	few	of	the	common	attributes	that	are	used	in	CLR	integration
UDT	definitions.

Table	16-1.	Common	CLR	UDT	Attributes

The	public	and	private	fields	are	declared	in	the	body	of	the	Complex	structure.	The
real	and	imaginary	public	fields	represent	the	real	and	imaginary	parts	of	the
complex	number,	respectively.	The	m_Null	field	is	a	bool	value	that	is	set	to	true	if
the	current	instance	of	the	complex	type	is	NULL	and	is	set	to	false	otherwise:

#region	"Complex	Number	UDT	Fields/Components"

private	bool	m_Null;

public	Double	real;

public	Double	imaginary;

#endregion

The	first	method	declared	in	the	UDT	is	the	Parse	method	(required	by	all	UDTs),
which	takes	a	string	value	from	SQL	Server	and	parses	it	into	a	complex	number.	Parse
uses	a	.NET	regular	expression	to	simplify	parsing	a	bit:

private	static	readonly	Regex	rx	=	new	Regex(

		"^(?<Imaginary>[+-]?([0-9]+|[0-9]*\\.[0-9]+))[i|I]$|"	+

		"^(?<Real>[+-]?([0-9]+|[0-9]*\\.[0-9]+))$|"	+

		"^(?<Real>[+-]?([0-9]+|[0-9]*\\.[0-9]+))"	+

		"(?<Imaginary>[+-]?([0-9]+|[0-9]*\\.[0-9]+))[i|I]$");

public	static	Complex	Parse(SqlString	s)

{

				Complex	u	=	new	Complex();

				if	(s.IsNull)

								u	=	Null;

				else

				{

								MatchCollection	m	=	rx.Matches(s.Value);

								if	(m.Count	==	0)

												throw	(new	FormatException("Invalid	Complex	Number	

Format."));

								String	real_str	=	m[0].Groups["Real"].Value;

								String	imaginary_str	=	m[0].Groups["Imaginary"].Value;

								if	(real_str	==	""	&&	imaginary_str	==	"")

												throw	(new	FormatException("Invalid	Complex	Number	

Format."));

								if	(real_str	==	"")

												u.real	=	0.0;	

								else

												u.real	=	Convert.ToDouble(real_str);

								if	(imaginary_str	==	"")

												u.imaginary	=	0.0;

								else

												u.imaginary	=	Convert.ToDouble(imaginary_str);

				}

				return	u;

}

The	regular	expression	(a.k.a.	regex)	uses	named	groups	to	parse	the	input	string	into
Real	and/or	Imaginary	named	groups.	If	the	regex	is	successful,	at	least	one	(if	not

both)	of	these	named	groups	will	be	populated.	If	unsuccessful,	both	named	groups	will	be
empty	and	an	exception	of	type	FormatException	will	be	thrown.	If	at	least	one	of
the	named	groups	is	properly	set,	the	string	representations	are	converted	to	Double	type
and	assigned	to	the	appropriate	UDT	fields.	Table	16-2	shows	some	sample	input	strings
and	the	values	assigned	to	the	UDT	fields	when	they’re	parsed.

Table	16-2.	Complex	Number-Parsing	Samples

The	ToString()	method	is	required	for	all	UDTs	as	well.	This	method	converts	the
internal	UDT	data	to	its	string	representation.	In	the	case	of	complex	numbers,
ToString()	needs	to	perform	the	following	steps:

1.	 Convert	the	real	part	to	a	string.

2.	 Append	a	plus	sign	(+)	if	the	imaginary	part	is	0	or	positive.

3.	 Append	the	imaginary	part.

4.	 Append	the	letter	i	to	indicate	that	it	does	in	fact	represent	a
complex	number.

Notice	that	if	the	imaginary	part	is	negative,	no	sign	is	appended	between	the	real	and
imaginary	parts,	because	the	sign	is	already	included	in	the	imaginary	part:

public	override	String	ToString()

{

				String	sign	=	"";

				if	(this.imaginary	>=	0.0)

								sign	=	"+";

				return	this.real.ToString()	+	sign	

+	this.imaginary.ToString()	+	"i";

}

The	IsNull	and	Null	properties	are	both	required	by	all	UDTs.	IsNull	is	a	bool
property	that	indicates	whether	a	UDT	instance	is	NULL.	The	Null	property	returns	a
NULL	instance	of	the	UDT	type.	One	thing	you	need	to	be	aware	of	any	time	you	invoke	a
UDT	(or	any	CLR	integration	object)	from	T-SQL	is	SQL	NULL.	For	purposes	of	the
Complex	UDT,	you	take	a	cue	from	T-SQL	and	return	a	NULL	result	any	time	a	NULL	is
passed	in	as	a	parameter	to	any	UDT	method.	So	a	Complex	value	plus	NULL	returns

NULL,	as	does	a	Complex	value	divided	by	NULL,	and	so	on.	Notice	that	a	lot	of	code	in
the	complete	Complex	UDT	listing	is	specifically	designed	to	deal	with	NULL:

public	bool	IsNull

{

				get

				{

								return	m_Null;

				}

}

public	static	Complex	Null

{

				get

				{

								Complex	h	=	new	Complex();

								h.m_Null	=	true;

								return	h;

				}

}

This	particular	UDT	includes	a	constructor	function	that	accepts	two	Double	type
values	and	creates	a	UDT	instance	from	them:

public	Complex(Double	r,	Double	i)

{

				this.real	=	r;

				this.imaginary	=	i;

				this.m_Null	=	false;

}

	Tip		For	a	UDT	designed	as	a	.NET	structure,	a	constructor	method	isn’t	required.	In
fact,	a	default	constructor	(that	takes	no	parameters)	isn’t	even	allowed.	To	keep	later	code
simple,	I	added	a	constructor	method	to	this	example.

In	the	next	region,	you	define	a	few	useful	complex	number	constants	and	expose
them	as	static	properties	of	the	Complex	UDT:

#region	"Useful	Complex	Number	Constants"

//	The	property	"i"	is	the	Complex	number	0	+	1i.	Defined	

here	because

//	it	is	useful	in	some	calculations

public	static	Complex	i

{

				get

				{

								return	new	Complex(0,	1);

				}

}

...

#endregion

To	keep	this	listing	short	but	highlight	the	important	points,	the	sample	UDT	shows
only	the	addition	operator	for	complex	numbers.	The	UDT	overrides	the	+	operator.
Redefining	operators	makes	it	easier	to	write	and	debug	additional	UDT	methods.	These
overridden	.NET	math	operators	aren’t	available	to	T-SQL	code,	so	the	standard	T-SQL
math	operators	won’t	work	on	the	UDT:

//	Complex	number	addition

public	static	Complex	operator	+(Complex	n1,	Complex	n2)

{

				Complex	u;

				if	(n1.IsNull	||	n2.IsNull)

								u	=	Null;

				else

								u	=	new	Complex(n1.real	+	n2.real,	n1.imaginary	

+	n2.imaginary);

				return	u;

}

Performing	mathematical	operations	on	UDT	values	from	T-SQL	must	be	done	via
explicitly	exposed	methods	of	the	UDT.	These	methods	in	the	Complex	UDT	are	CAdd
and	Div,	for	complex	number	addition	and	division,	respectively.	Note	that	I	chose	CAdd
(which	stands	for	“complex	number	add”)	as	a	method	name	to	avoid	conflicts	with	the	T-
SQL	reserved	word	ADD.	I	won’t	go	too	deeply	into	the	inner	workings	of	complex
numbers,	but	I	chose	to	implement	the	basic	operators	in	this	listing	because	some	(like
complex	number	addition)	are	straightforward	operations,	whereas	others	(like	division)
are	a	bit	more	complicated.	The	math	operator	methods	are	declared	as	static,	so	they
can	be	invoked	on	the	UDT	data	type	itself	from	SQL	Server	instead	of	on	an	instance	of
the	UDT:

#region	"Exposed	Mathematical	Basic	Operator	Methods"

//	Add	complex	number	n2	to	n1

public	static	Complex	CAdd(Complex	n1,	Complex	n2)

{

				return	n1	+	n2;

}

//	Subtract	complex	number	n2	from	n1

public	static	Complex	Sub(Complex	n1,	Complex	n2)

{

				return	n1	-	n2;

}

#endregion

	Note		Static	methods	of	a	UDT	(declared	with	the	static	keyword	in	C#	or	the
Shared	keyword	in	Visual	Basic)	are	invoked	from	SQL	Server	using	a	format	like	this:
Complex::CAdd(@nl,	@n2).	Nonshared,	or	instance,	methods	of	a	UDT	are
invoked	from	SQL	Server	using	a	format	similar	to	this:	@>nl.CAdd(@n2).	The	style	of
method	you	use	(shared	or	instance)	is	a	determination	you	need	to	make	on	a	case-by-
case	basis.

Listing	16-15	demonstrates	how	the	Complex	UDT	can	be	used;	the	results	are
shown	in	Figure	16-14.

Listing	16-15.	Using	the	Complex	Number	UDT

CREATE	TYPE	dbo.Complex

EXTERNAL	NAME	ApressExamples.[Apress.Examples.Complex];

GO

DECLARE	@c	complex	=	'+100-10i',

		@d	complex	=	'5i';

SELECT	'ADD:	'	+	@c.ToString()	+	'	,	'	+	@d.ToString()	AS	

Op,

		complex::CAdd(@c,	@d).ToString()	AS	Result

UNION

SELECT	'DIV:	'	+	@c.ToString()	+	'	,	'	+	@d.ToString(),

		complex::Div(@c,	@d).ToString()

UNION

SELECT	'SUB:	'	+	@c.ToString()	+	'	,	'	+	@d.ToString(),

		complex::Sub(@c,	@d).ToString()

UNION

SELECT	'MULT:	'	+	@c.ToString()	+	'	,	'	+	@d.ToString(),

		complex::Mult(@c,	@d).ToString()

UNION

SELECT	'PI:		',

		complex::Pi.ToString();

Figure	16-14.	Performing	operations	with	the	Complex	UDT

In	addition	to	the	basic	operations,	the	Complex	class	can	be	easily	extended	to
support	several	more	advanced	complex	number	operators	and	functions.	The	code	sample
download	file	contains	a	full	listing	of	an	expanded	Complex	UDT,	including	all	the
basic	math	operators,	as	well	as	logarithmic	and	exponential	functions	(Log(),
Power(),	etc.)	and	trigonometric	and	hyperbolic	functions	(Sin(),	Cos(),	Tanh(),
etc.)	for	complex	numbers.

Triggers
Finally,	you	can	also	create	.NET	triggers.	This	is	logical;	after	all,	triggers	are	just	a
specialized	type	of	stored	procedures.	There	are	few	examples	of	really	interesting	.NET
triggers.	Most	of	what	you	want	to	do	in	a	trigger	can	be	done	with	regular	T-SQL	code.
When	SQL	Server	2005	was	released,	you	saw	an	example	of	a	.NET	trigger	on	a	location
table	that	calls	a	web	service	to	find	the	coordinates	of	a	city	and	adds	them	to	a
coordinates	column.	This	could	at	first	sound	like	a	cool	idea,	but	if	you	remember	that	a
trigger	is	fired	in	the	scope	of	the	DML	statement’s	transaction,	you	can	guess	that	the
latency	added	to	every	insert	and	update	on	the	table	might	be	a	problem.	Usually,	you	try
to	keep	the	trigger	impact	as	light	as	possible.	Listing	16-16	presents	an	example	of	a
.NET	trigger	based	on	your	previous	regular	expression	UDF.	It	tests	an	e-mail	inserted	or
modified	on	the	AdventureWorks	Person.EmailAddress	table,	and	rolls	back
the	transaction	if	it	doesn’t	match	the	pattern	of	a	correct	e-mail	address.	Let’s	see	it	in
action.

Listing	16-16.	Trigger	to	Validate	an	E-mail	Address

using	System;

using	System.Data;

using	System.Data.SqlClient;

using	Microsoft.SqlServer.Server;

using	System.Text.RegularExpressions;

using	System.Transactions;

namespace	Apress.Examples

{

				public	partial	class	Triggers

				{

								private	static	readonly	Regex	email_pattern	=	new	

Regex

								(

												//		Everything		before		the		@		sign		(the		"local		part")

												"^[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-

9!#$%&'*+/=?^_`{|}~-]+)*"	+

												//		Subdomains		after		the		@		sign

												"@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+"	+

												//	Top-level	domains

												"(?:[a-z]

{2}|com|org|net|gov|mil|biz|info|mobi|name|aero|jobs|museum)\\b$"

);	

								[Microsoft.SqlServer.Server.SqlTrigger(

												Name	=	"EmailAddressTrigger",

												Target	=	"[Person].[EmailAddress]",

												Event	=	"FOR	INSERT,	UPDATE")]

								public	static	void	EmailAddressTrigger()

								{

												SqlTriggerContext	tContext	

=	SqlContext.TriggerContext;

												//	Retrieve	the	connection	that	the	trigger	is	

using.

												using	(SqlConnection	cn

															=	new	SqlConnection(@"context	connection=true"))

												{

																SqlCommand	cmd;

																SqlDataReader	r;

																cn.Open();

																cmd	=	new	SqlCommand(@"SELECT	EmailAddress	FROM	

INSERTED",	cn);

																r	=	cmd.ExecuteReader();

																try

																{

																				while	(r.Read())

																				{

																								if	

(!email_pattern.IsMatch(r.GetString(0).ToLower()))

																												Transaction.Current.Rollback();

																				}

																}

																catch	(SqlException	ex)

																{

																				//	Catch	the	expected	exception.

																}

																finally

																{

																				r.Close();

																				cn.Close();

																}

												}

								}

				}

}

As	you	now	are	used	to,	you	first	declare	your	.NET	namespaces.	To	manage	the
transaction,	you	have	to	declare	the	System.Transactions	namespace.	In	your
Visual	Studio	project,	it	might	not	be	recognized.	You	need	to	right-click	the	project	in	the
Solution	Explorer	and	select	“add	reference.”	Then,	go	to	the	SQL	Server	tab,	and	check
“System.Transactions	for	framework	4.0.0.0.”

Then,	like	in	your	previous	UDF,	you	declare	the	Regex	object.	The	trigger	body
follows.	In	the	function’s	decoration,	you	name	the	trigger,	and	you	declare	for	which
target	table	it’s	intended.	You	also	specify	at	what	events	it	will	fire.

[Microsoft.SqlServer.Server.SqlTrigger(

				Name	=	"EmailAddressTrigger",

				Target	=	"[Person].[EmailAddress]",

				Event	=	"FOR	INSERT,	UPDATE")]

public	static	void	EmailAddressTrigger()

{	...

Then,	you	declare	an	instance	of	the	SqlTriggerContext	class.	This	class
exposes	a	few	properties	that	give	information	about	the	trigger’s	context,	like	what
columns	are	updated,	what	the	action	is	that	fired	the	trigger,	and	in	case	of	a	DDL	trigger,
it	also	gives	access	to	the	EventData	XML	structure	containing	all	the	execution	details.

SqlTriggerContext	tContext	=	SqlContext.TriggerContext;

The	next	line	opens	the	so-called	context	connection	to	SQL	Server.	There	is	only	one
way	to	access	the	content	of	a	table:	with	a	T-SQL	SELECT	statement.	Even	a	.NET	code
executed	in	SQL	Server	can’t	escape	from	this	rule.	To	be	able	to	retrieve	the	e-mails	that
have	been	inserted	or	updated,	you	need	to	open	a	connection	to	SQL	Server	and	query	the
inserted	virtual	table.	For	that,	you	use	a	special	type	of	connection	available	in	CLR
integration	named	the	context	connection,	which	is	designed	to	be	faster	than	a	regular
network	or	local	connection.	Then	you	use	a	data	reader	to	retrieve	the	e-mails	in	the
EmailAddress	column.	You	loop	through	the	results	and	apply	the	regular	expression
pattern	to	each	address.	If	it	doesn’t	match,	you	roll	back	the	transaction	by	using	the
Transaction.Current.Rollback()	method.	You	need	to	protect	the	rollback	by

a	try	…	catch	block,	because	it	will	throw	an	ambiguous	exception,	stating	that
“Transaction	is	not	allowed	to	roll	back	in	a	user	defined	routine,	trigger	or	aggregate
because	the	transaction	is	not	started	in	that	CLR	level.”	This	can	be	safely	ignored.
Another	error	will	be	raised	even	if	the	try	…	catch	block	is	there,	and	it	must	be
dealt	with	at	the	T-SQL	level.	You	see	that	in	your	example	later	on.
using	(SqlConnection	cn

											=	new	SqlConnection(@“context	connection=true”))
								{
												SqlCommand	cmd;
												SqlDataReader	r;

												cn.Open();

												cmd	=	new	SqlCommand(@“SELECT	EmailAddress	FROM
INSERTED”,	cn);

												r	=	cmd.ExecuteReader();
												try
												{
																while	(r.Read())
																{
																				if
(!email_pattern.IsMatch(r.GetString(0).ToLower()))

																								Transaction.Current.Rollback();
																}
												}
												catch	(SqlException	ex)
												{
																//	Catch	the	expected	exception.
												}
												finally
												{
																r.Close();
																cn.Close();
												}
								}
				}
}

Now	that	the	trigger	is	written,	let’s	try	it	out.	When	the	assembly	is	compiled	and
added	to	the	AdventureWorks	database	using	CREATE	ASSEMBLY,	you	can	add	the
trigger	to	the	Person.EmailAddress	table,	as	shown	in	Listing	16-17.

Listing	16-17.	Creation	of	the	CLR	Trigger	to	Validate	an	E-mail	Address

CREATE	TRIGGER	atr_Person_EmailAddress_ValidateEmail

ON	Person.EmailAddress

AFTER	INSERT,	UPDATE

AS	EXTERNAL	NAME	ApressExamples.

[Apress.Examples.Triggers].EmailAddressTrigger;

You	now	try	to	update	a	line	to	an	obviously	invalid	e-mail	address	in	Listing	16-18.
The	result	is	shown	in	Figure	16-15.

Listing	16-18.	Setting	an	Invalid	E-mail	Address

UPDATE	Person.EmailAddress

SET	EmailAddress	=	'pro%sql@apress@com'

WHERE	EmailAddress	=	'dylan0@adventure-works.com';

Figure	16-15.	Result	of	the	Trigger’s	Action

As	you	can	see,	the	trigger	worked	and	rolled	back	the	UPDATE	attempt,	but	the	error
message	generated	for	the	CLR	code	isn’t	very	user-friendly.	You	need	to	catch	the
exception	in	your	T-SQL	statement.	A	modified	UPDATE	dealing	with	that	is	shown	in
Listing	16-19.

Listing	16-19.	UPDATE	Statement	Modified	to	Handle	the	Error

BEGIN	TRY

				UPDATE	Person.EmailAddress

				SET	EmailAddress	=	'pro%sql@apress@com'

				WHERE	EmailAddress	=	'dylan0@adventure-works.com';

END	TRY

BEGIN	CATCH

				IF	ERROR_NUMBER()	=	3991

								RAISERROR('invalid	email	address',	16,	10)

END	CATCH

This	CLR	trigger	is	an	example,	and	it	might	not	be	the	best	solution	to	your	e-mail
checking	needs,	for	two	reasons:	firstly	because	you	need	to	handle	the	CLR	error	in	your
calling	code,	which	forces	us	to	enclose	every	statement	modifying	the	EmailAddress
in	a	try	…	catch	block,	and	secondly	because	of	performance	considerations.	Your
CLR	code	loops	through	a	DataReader	and	checks	it	line	per	line.	A	set-oriented	T-SQL
trigger	like	the	one	shown	in	Listing	16-20	will	certainly	be	faster,	especially	if	there	are
many	rows	affected	by	the	INSERT	or	UPDATE	statement.

Listing	16-20.	T-SQL	Trigger	to	Validate	an	E-mail	Address

CREATE	TRIGGER	atr_Person_EmailAddress_ValidateEmail

ON	Person.EmailAddress

AFTER	INSERT,	UPDATE

AS	BEGIN

				IF	@@ROWCOUNT	=	0	RETURN

				IF	EXISTS	(SELECT	*	FROM	inserted	WHERE	

dbo.EmailMatch(EmailAddress)	=	0)

				BEGIN

								RAISERROR('an	email	is	invalid',	16,	10)

								ROLLBACK	TRANSACTION

				END

END;

Summary
SQL	Server	2005	introduced	SQL	CLR	integration,	allowing	you	to	create	UDFs,	UDAs,
SPs,	UDTs,	and	triggers	in	managed	.NET	code.	SQL	Server	2008	improved	on	CLR
integration	by	allowing	UDTs	and	UDAs	to	have	a	maximum	size	of	2.1	GB	(the	size	of
large	object	(LOB)	size	limit),	which	is	still	the	case	in	SQL	Server	2014.

In	this	chapter,	you	talked	about	CLR	integration	usage	considerations	and	scenarios
when	CLR	integration	code	might	be	considered	a	good	alternative	to	strict	T-SQL.	You
also	discussed	assemblies	and	security,	including	the	SAFE,	EXTERNAL_ACCESS,	and
UNSAFE	permission	sets	that	can	be	applied	on	a	per-assembly	basis.

Finally,	you	provided	several	examples	of	CLR	integration	code	that	cover	a	wide
range	of	possible	uses,	including	the	following:

CLR	integration	can	be	invaluable	when	access	to	external	resources
is	required	from	the	server.

CLR	integration	can	be	useful	when	non-table	specific	aggregations
are	required.

CLR	integration	simplifies	complex	data	validations	that	would	be
complex	and	difficult	to	perform	in	T-SQL.

CLR	integration	allows	you	to	supplement	SQL	Server’s	data	typing
system	with	your	own	specialized	data	types	that	define	their	own
built-in	methods	and	properties.

This	chapter	has	served	as	an	introduction	to	CLR	integration	programming.	For	in-
depth	CLR	integration	programming	information,	I	highly	recommend	Pro	SQL	Server
2005	Assemblies,	by	Robin	Dewson	and	Julian	Skinner	(Apress,	2005).	Though	written
for	SQL	Server	2005,	much	of	the	information	it	contains	is	still	relevant	to	SQL	Server
2014.	In	the	next	chapter,	you	introduce	client-side	.NET	connectivity	to	SQL	Server
2014.

EXERCISES

1.	 [Choose	all	that	apply]	SQL	Server	2014	provides	support	for
which	of	the	following	CLR	integration	objects:

a.	 UDFs

b.	 UDAs

c.	 UDTs

d.	 SPs

e.	 Triggers

f.	 User-defined	catalogs

2.	 [True/False]	SQL	Server	2014	limits	CLR	integration	UDAs	and
UDTs	to	a	maximum	size	of	8000	bytes.

3.	 [Choose	one]	SAFE	permissions	allow	your	CLR	integration	code
to

g.		Write	to	the	file	system

h.		Access	network	resources

i.		Read	the	computer’s	registry

j.		Execute	managed	.NET	code

k.		All	of	the	above

4.	 [True/False]	CLR	integration	UDAs	and	UDTs	must	be	defined
with	the	Serializable	attribute.

5.	 [Fill	in	the	blank]	A	CLR	integration	UDA	that	is	declared	as
Format.UserDefined	must	implement	the	_________
interface.

6.	 [Choose	all	that	apply]	A	CLR	integration	UDA	must	implement
which	of	the	following	methods?

l.		Init

m.		Aggregate

n.		Terminate

o.		Merge

p.		Accumulate

CHAPTER	17

Data	Services
Today’s	systems	are	disparate,	and	large	enterprises	have	widely	heterogeneous
environments,	with	Windows	and	non-Windows	platforms	for	application	development.
Developers,	whether	they’re	enterprise	developers,	web	developers,	independent	software
vendor	(ISV))	developers,	or	DBAs,	have	different	needs	and	different	ways	of	accessing
the	data	that	resides	in	SQL	Server.	For	example,	ISV	developers	look	for	stability	in	the
platform,	enterprise	developers	look	for	rich	development	tooling	experience	and
interoperability,	and	web	developers	want	the	latest	rich	development	experience.
Similarly,	what	a	PHP	developer	needs	is	very	different	from	what	a	.NET	developer
needs.	To	achieve	the	rich	development	experience,	developers	can	choose	from	various
data	access	libraries	such	as	ADO.NET,	SQL	Server	2014	Native	Client	(SNAC),	JDBC,
ODBC,	and	PHP,	based	on	the	application’s	requirements.	Since	SQL	Server	2000,	the
platform	has	supported	interoperability	with	Windows	and	non-Windows	environments.
SQL	Server	2000	started	supporting	Java	development	using	JDBC	drivers.	PHP
application	development	support	was	added	to	SQL	Server	with	SQL	Server	2005.	With
SQL	Server	2014,	support	for	ODBC	driver	for	Linux	has	been	added.	This	simplifies
PHP	or	other	application	development	on	Linux	to	a	greater	extent.

The	model	of	choice	to	address	distributed	computing	and	heterogeneous
environments	today	is	the	Service	Oriented	Architecture	(SOA)	paradigm.	There	have
been	different	ways	to	generate	services	from	query	results	over	the	SQL	Server	versions.
Microsoft	is	now	concentrating	on	a	powerful	and	very	flexible	framework	named
Windows	Communication	Foundation	(WCF).	In	this	chapter,	you	see	how	to	use	WCF
Data	Services	to	provide	services	and	trendy	RESTful	resources	from	your	databases.
Bear	with	us	for	the	explanation	of	these	concepts.

But	first,	the	data	access	libraries	support	a	powerful	new	SQL	Server	2014	feature
named	Local	Database	runtime	(LocalDB).	Let’s	look	at	this	very	interesting	way	to	ship
solutions	with	an	embedded	database.

SQL	Server	2014	Express	LocalDB
Developers	always	look	for	simple	way	to	install	and	embed	SQL	Server	with	third-party
applications	or	to	use	a	small	database	engine	to	connect	to	diverse	remote-data	storage
types.	When	you	wanted	to	meet	any	of	these	requirements	for	creating	applications	prior
to	SQL	Server	2012,	the	only	option	was	to	use	SQL	Server	Express	Edition.	However,
developers	didn’t	want	to	go	through	tons	of	screens	to	install	the	SQL	Server.	On	top	of
this,	they	had	to	worry	about	security	and	management	of	the	SQL	Server	instance	they
had	just	installed.

Starting	with	SQL	Server	2012,	SQL	Server	simplifies	the	experience	for	developers

by	introducing	LocalDB,	which	was	temporarily	called	Serverless	SQL	Server	during	SQL
Server	2012	development.	The	goal	of	this	new	feature	is	to	simplify	installation	and
provide	a	database	as	a	file	without	any	administration	overhead	while	providing	the	same
feature	sets	as	SQL	Server	Express	Edition.

	Note		Database	as	a	file	means	LocalDB	allows	the	use	of	SQL	Server,	a	traditional
client-server	application,	in	a	local	context,	more	or	less	like	local	applications	such	as
Microsoft	Access	and	SQLite.

The	installation	of	LocalDB	is	simplified	to	a	great	extent,	with	no	prerequisites,	no
reboots,	and	no	options	to	select.	There	is	only	one	global	installation,	meaning	only	one
set	of	binaries	is	installed	per	major	version	of	SQL	Server	for	all	LocalDB	instances;
there	is	no	constantly	running	service	or	agent	in	the	box.	The	instance	of	LocalDB	is
started	when	the	application	connects	to	it	and	stopped	when	the	application	closes	the
connection.

You	can	download	LocalDB	from	the	same	page	as	the	old-fashioned	SQL	Server
2014	Express	Edition,	at		www.microsoft.com/en-
us/download/details.aspx?id=42299.	Two	builds	are	available:
ENU\x64\SqlLocalDB.MSI	for	64-bit	systems	and	ENU\x86\SqlLocalDB.MSI
for	32-bit	systems.	MSI	files	are	Microsoft	Installer	packages	that	you	can	run	by	double-
clicking	and	typing	like	any	executable	in	a	cmd	or	PowerShell	session.	MSI	installations
are	usually	graphical	wizard-driven	installations.	The	LocalDB	installation	doesn’t	require
any	user	choice,	so	you	can	simply	perform	a	silent	install	by	using	the	following
command:

SQLLocalDB.msi	/Quiet

Once	LocalDB	is	installed,	you	can	create	and	manage	the	instances	by	using
SQLLocalDB.exe,	found	in	%Program	Files%\Microsoft	SQL
Server\110\Tools\Binn.	From	now	on,	each	time	you	call	SQLLocalDB.exe,	it
will	be	in	this	directory	context.	Because	it	isn’t	in	the	path,	you	need	to	tell	your	shell
where	to	find	the	tool.

	Note		The	LocalDB	runtime,	which	is	nothing	more	than	a	specific	sqlserver.exe
binary,	can	be	found	in	%Program	Files%\Microsoft	SQL
Server\120\LocalDB\Binn.

You	can	use	the	following	command	to	find	out	the	details	of	the	existing	instances:

SQLLocalDB.exe	info

To	create	a	LocalDB	instance,	you	can	use	SQLLocaldb.exe	and	specify	the	name
of	the	instance	and	the	version	number	with	the	create	option.	The	commands	listed
next	first	create	an	SQL	Server	2014	LocalDB	instance	named	SQLSrvWebApp1	and
then	start	the	instance.	Finally,	you	use	the	info	command	to	list	the	existing	instances.
The	results	are	shown	in	Figure	17-1.

http://www.microsoft.com/en-us/download/details.aspx?id=42299

SQLLocalDB.exe	create	SQLSrvWebApp1	12.0

SQLLocalDB.exe	start	SQLSrvWebApp1

SQLLocalDB.exe	info

Figure	17-1.	Query	to	create	and	start	a	LocalDB	instance	named	SQLSrvWebApp1

You	may	have	guessed	that	if	you	want	to	drop	an	instance,	you	can	use	the
SQLLocalDB.exe	delete	command.

There	are	two	types	of	LocalDB	instances:	automatic	and	named.	Automatic	instances
are	created	by	default.	There	can	be	only	one	automatic	instance	per	major	version	of	SQL
Server.	For	SQL	Server	2014,	the	automatic	instance	name	is	v12.0	(which	is	the	internal
version	number	of	the	SQL	Server	2014	RTM	release);	the	intent	for	this	instance	is	that	it
be	public	and	shared	by	many	applications.	Named	instances	are	created	explicitly	by	the
user	and	are	managed	by	a	single	application.	So,	if	you	have	a	small	web	application	that
needs	to	start	small	and	be	implemented	in	the	enterprise,	the	better	option	is	to	create	a
named	instance	when	it’s	small	so	that	you	can	isolate	and	manage	the	application.

To	connect	to	a	LocalDB	instance	with	your	SQL	server	Native	Client,	OLEDB,	or
ODBC	provider,	you	mention	the	(localdb)	keyword	in	the	connection	string.	Here	are
some	examples	of	connection	strings	that	connect	to	an	automatic	instance	(first	line)	and
named	instance	(second	line):

New	SQLConnection("Server=(localDB)\v12.0;AttachDBFile=

				C:\Program	Files\Microsoft	SQL	Server\Data	

Files\AppDB1.mdf")'

New	SQLConnection("Server=(localDB)\WebApp1;AttachDBFile=

				C:\Program	Files\Microsoft	SQL	Server\Data	

Files\WebApp1DB.mdf")'

This	code	invokes	LocalDB	as	a	child	process	and	connects	to	it.	LocalDB	runs	as	an
application	when	you	initiate	a	connection	from	the	client,	and	if	the	database	isn’t	used
by	the	client	application	for	more	than	5	minutes,	LocalDB	is	shut	down	to	save	system
resources.

LocalDB	is	supported	in	ODBC,	SQL	Native	Client,	and	OLEDB	client	providers.	If
these	client	providers	encounter	Server=(localdb)\<instancename>,	they	know
to	call	the	LocalDB	instance	if	it	already	exists	or	to	start	the	instance	automatically	as
part	of	the	connection	attempt.

Likewise,	you	can	connect	to	a	LocalDB	instance	using	SQL	Server	Management
Studio	(the	Express	or	full	version)	or	the	sqlcmd	command-line	tool,	by	using	the	same
(localdb)	keyword	as	the	server	name,	as	shown	in	the	following:

sqlcmd	-S	(localdb)\SQLSrvWebApp1

For	this	to	work,	you	need	to	make	sure	the	LocalDB	instance	is	started.	You	can	test	it
by	using	the	info	command	along	with	the	instance	name,	as	shown	next.	The	result	of
the	command	is	shown	in	Figure	17-2.	The	instance’s	state	is	visible	on	the	State:	line:

SQLLocalDB.exe	info	SQLSrvWebApp1

Figure	17-2.	Results	of	the	SQLLocalDB.exe	info	SQLSrvWebApp1	command	when	the	instance	is	stopped

You	can	see	in	Figure	17-2	that	the	instance	is	running.	If	it	had	stopped,	you	could
start	it	using	the	start	command	(shown	earlier),	and	then	you	would	be	able	to	connect
to	it.

	Note		Connecting	to	the	(localdb)	keyword	is	supported	in	.NET	version	4.0.2
onward.	If	you’re	using	an	older	.NET	version,	you	can	connect	to	a	LocalDB	instance,
but	you	need	to	use	the	named	pipe	address	that	is	returned	by	the	SQLLocalDB.exe
info	command.	You	can	see	that	address	In	Figure	17-2.	The	server’s	address	in	this	case
is	np:\.\pipe\LOCALDB#EC0F7CB5\tsql\query:	that’s	what	you	would	need
to	enter	in	the	Server	address	box	for	an	SSMS	connection,	or	after	the	–S	parameter
when	calling	sqlcmd.

The	authentication	and	security	model	of	LocalDB	is	simplified.	The	current	user	is
sysadmin	and	is	the	owner	of	the	databases	attached	to	the	instance.	No	other	permission
is	applied.	Because	the	LocalDB	processes	run	under	a	user’s	account,	this	also	implies
that	the	database	files	you	want	to	use	on	this	instance	must	be	in	a	directory	where	the
user	has	read	and	write	permissions.	Also,	whereas	SQL	Server	hides	the	physical	details
of	the	database	storage,	LocalDB	follows	another	approach:	it	gives	access	to	a	database

file.	A	LocalDB	connection	string	supports	the	AttachDbFileName	property,	which
allows	you	to	attach	a	database	file	during	connection.	The	C#	console	application	in
Listing	17-1	illustrates	how	to	use	the	database	as	a	file	approach	with	LocalDB.

Listing	17-1.	Console	Application	to	Connect	to	a	LocalDB	Instance

using	System;

using	System.Data.SqlClient;

using	System.Text;

namespace	localdbClient

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												try

												{

																SqlConnectionStringBuilder	builder	=

																				new	SqlConnectionStringBuilder(@"Server=

(localdb)

																								\SQLSrvWebApp1;Integrated	

Security=true");

																builder.AttachDBFilename	

=	@"C:\Users\Administrator

																\Documents\AdventureWorksLT2014_Data.mdf";

																Console.WriteLine("connection	string	=	"	

+	builder.ConnectionString);

																using	(SqlConnection	cn	=	new	

SqlConnection(builder.ConnectionString))

																{

																				cn.Open();

																				SqlCommand	cmd	=	cn.CreateCommand();

																				cmd.CommandText	=	"SELECT	Name	FROM	

sys.tables;";

																				SqlDataReader	rd	=	cmd.ExecuteReader();

																				while(rd.Read())

																				{

																								Console.WriteLine(rd.GetValue(0));

																				}

																				rd.Close();

																				cn.Close();

																}

																Console.WriteLine("Press	any	key	to	finish.");

																Console.ReadLine();

												}

												catch	(Exception	ex)

												{

																Console.WriteLine(ex.Message);

																Console.WriteLine("Press	any	key	to	finish.");

																Console.ReadLine();

												}

								}

				}

}

The	interesting	element	of	the	code	in	Listing	17-1	is	the	connection-string	builder.
You	first	create	a	SqlConnectionStringBuilder	to	connect	to	the
(localdb)\SQLSrvWebApp1	LocalDB,	and	then	you	use	the	connection	builder’s
AttachDBFilename	property	to	attach	the	AdventureWorksLT2014	data	file	to
your	LocalDB:

SqlConnectionStringBuilder	builder	=

				new	SqlConnectionStringBuilder(@"Server=(localdb)

								\SQLSrvWebApp1;Integrated	Security=true");

builder.AttachDBFilename	

=	@"C:\Users\Administrator\Documents\AdventureWorksLT2014_Data.mdf";

The	AdventureWorksLT2014_Data.mdf	file	is	in	the	Documents	directory,
so	you	have	full	permissions	over	it.	When	connecting,	you	are	automatically	in	the
database’s	context,	as	you	can	see	by	executing	the	code.	A	list	of	the	first	ten	tables	in	the
AdventureWorksLT	database	is	returned,	as	shown	in	Figure	17-3.	The	generated
connection	string	is	also	printed	in	the	figure.

Figure	17-3.	Results	of	the	LocalDB	client	program	execution

Databases	attached	to	LocalDB	can	be	thought	of	as	personal	databases—thus	the
database	as	a	file	approach.	You	can	of	course	use	all	T-SQL	DDL	commands	to	create	a
database	and	the	tables	in	it.	You	just	need	to	specify	for	the	database	files	a	location	on
which	you	have	permissions.	If	you	create	a	database	without	specifying	a	location,

LocalDB	chooses	your	user	directory.	For	example,	the	following	command

CREATE	DATABASE	ApressDb;

creates	.mdf	and	.ldf	files	in	your	personal	directory,	as	shown	in	Figure	17-4.

Figure	17-4.	The	ApressDb	database	files

You	should	obviously	specify	a	dedicated	location	when	you	create	a	LocalDB
database.	The	databases	created	or	attached	to	a	LocalDB	instance	will	stay	attached	until
you	detach	or	remove	them,	even	if	you	attached	one	during	a	connection	with	the
AttachDBFilename	command.	So,	you	theoretically	don’t	need	to	attach	it	every	time
you	connect.	However,	if	you	use	the	AttachDBFilename	command,	the	name	of	the
database	in	LocalDB	is	the	full	path	of	the	database	file.

select	name	FROM	sys.databases;

It’s	easier	to	keep	the	AttachDBFilename	option	in	the	connection	string	that
allows	you	to	attach	the	database	if	it	isn’t	already	attached,	and	enter	the	database	context
at	connection	time,	thus	providing	a	smoother	experience	from	the	developer’s	point	of
view.

Asynchronous	Programming	with
ADO.NET	4.5
Let’s	take	a	simple	scenario	of	an	application	requirement	to	upload	multiple	files	or	the
need	to	create	reports	with	pagination.	In	either	scenario,	using	a	synchronous	model	in
the	application	can	cause	the	client	and	server	to	slow	down	considerably	and	result	in
higher	memory	utilization	due	to	I/O	operations.	In	cases	like	this,	writing	the	calls
asynchronously	instead	of	synchronously	can	improve	the	user	experience;	however,	the
current	model	has	some	issues	with	manageability	and	debugging	capabilities	with
asynchronous	code.

Starting	with	.NET	4.5,	the	new	Async	.NET	pattern	is	extended	to	ADO.NET.	Now
the	connection	operations	SqlDataReader	and	SqlBulkCopy	can	use	the

asynchronous	capabilities.	For	example,	let’s	take	the	simple	case	shown	in	Listing	17-2
that	opens	a	connection	and	runs	a	stored	procedure	named	dbo.GetProducts	against
a	LocalDB	instance.
Listing	17-2.	ADO.NET	Code	to	Run	a	Stored	Procedure	Synchronously

private	void	ExecuteSP()

{

				SqlConnectionStringBuilder	cnString	=	new	

SqlConnectionStringBuilder();

				cnString.DataSource	=	@"(localdb)\v12.0";

				cnString.IntegratedSecurity	=	true;

				using	(SqlConnection	cn	=	new	

SqlConnection(cnString.ConnectionString))

				{

								cn.Open();

								SqlCommand	cmd	=	new	SqlCommand("EXEC	

dbo.GetProducts",	cn);

								cmd.ExecuteReader();

				}

}

This	code	opens	the	connection	to	the	database	synchronously	and	runs	the	stored
procedure,	waiting	until	the	entire	resultset	is	returned.	Instead	of	waiting	for	the	process
to	complete,	it	would	be	more	efficient	to	perform	this	operation	asynchronously.	Listing
17-3	shows	the	code	from	Listing	17-2	modified	for	asynchronous	execution.	Changes
appear	in	bold.

Listing	17-3.	ADO.NET	Code	to	Run	Stored	Procedure	Asynchronously

private	async	Task	ExecuteSP()

{

				SqlConnectionStringBuilder	cnString	=	new	

SqlConnectionStringBuilder();

				cnString.DataSource	=	@"(localdb)\v12.0";

				cnString.IntegratedSecurity	=	true;

				using	(SqlConnection	cn	=	new	

SqlConnection(cnString.ConnectionString))

				{
								await	cn.OpenAsync();

								SqlCommand	cmd	=	new	SqlCommand("EXEC	

dbo.GetProducts",	cn);
								await	cmd.ExecuteReaderAsync();

				}

}

If	you	compare	the	code	in	Listings	17-2	and	17-3,	the	structure	has	not	changed;

however,	by	including	the	keyword	await	and	modifying	a	few	keywords,	you	retain
readability	and	manageability	while	adding	the	asynchronous	capability.

Every	possibility	for	improving	performance	on	the	client	side	is	interesting.	Keep	in
mind,	of	course,	that	the	best	way	to	ensure	optimal	performance	in	database	querying	is
to	improve	the	structure	and	code	on	the	server	side.

ODBC	for	Linux
For	many	years,	and	over	many	SQL	Server	versions,	developers	who	wanted	to	access
SQL	Server	from	non-Windows	environments	had	only	one	option:	using	a	free	library
named	FreeTDS	that	was	originally	created	to	access	Sybase	servers.

	Note		TDS	stands	for	Tabular	Data	Stream	and	is	the	network	layer	protocol	used	by
Sybase	and	SQL	Server	to	exchange	packets	between	the	database	server	and	the	client
library.	As	you	may	know,	SQL	Server	was	in	its	early	days	a	joint	development	between
Sybase	and	Microsoft.

FreeTDS	is	fine	and	works	well,	but	it	doesn’t	cover	the	newer	data	types	and
functionalities	SQL	Server	has	to	offer,	like	XML,	date,	time,	and	datetime2,	or
FILESTREAM	data	types,	or	features	like	multiple	active	resultsets	(MARS).	So,	Linux
developers	wanting	to	access	SQL	Server	from	PHP	or	any	CGI	application	had	to	stick	to
a	limited	set	of	functionalities.	If	you	ever	wrote	PHP	code	to	access	SQL	Server	in	a
Linux	environment,	you	may	have	used	the	integrated	PHP	MSSQL	functions	that	call	the
php5-odbc	library.	It’s	nothing	more	than	a	layer	using	FreeTDS	behind	the	scenes.

In	an	effort	to	provide	a	wider	range	of	possibilities	for	accessing	SQL	Server,
Microsoft	decided	to	change	its	data-access	strategy,	which	was	previously	in	favor	of
OLEDB,	by	aligning	with	ODBC	for	native	access	to	SQL	Server.	Open	Database
Connectivity	(ODBC)	is	an	API	first	designed	by	Microsoft	that	became	a	kind	of	de	facto
standard	for	heterogeneous	database	access.	It	allows	access	to	different	data	sources	from
many	languages	and	environments.

Along	with	this	change	of	strategy,	Microsoft	developed	an	ODBC	driver	for	Linux
that	was	released	in	March	2012.	You	can	download	it	from
www.microsoft.com/en-us/download/details.aspx?id=28160.

Linux	is	available	though	many	distributions,	which	have	their	own	core	applications,
distribution	mechanisms,	and	directory	organization.	At	the	time	of	this	writing,	Microsoft
offers	64-bit	packages	for	the	Red	Hat	Enterprise	distribution	only.	A	32-bit	version	is
planned.	Red	Hat	Enterprise	doesn’t	necessarily	have	the	most	widespread	distribution,
and	many	companies	use	other	distributions,	such	as	Debian,	Ubuntu,	CentOS,	and	so	on.
The	Microsoft	ODBC	driver	can	be	installed	from	other	distributions,	providing	you	have
a	way	to	install	the	libraries	the	ODBC	driver	is	using.

	Caution		In	the	Linux	world,	most	of	the	tools	used	are	open	source	and	can	be
compiled	directly	on	the	system,	to	link	to	the	available	version	of	the	libraries	used	in	the

http://www.microsoft.com/en-us/download/details.aspx?id=28160

code.	But	the	ODBC	driver	for	SQL	Server	isn’t	open	source,	and	only	the	binaries	are
available	to	download.	That’s	why	you	need	to	ensure	that	you	get	the	proper	version	of
the	libraries	used	by	the	ODBC	driver	installed	on	the	Linux	box.

Let’s	look	at	a	short	example	using	Ubuntu	Server.	Ubuntu	is	a	very	popular
distribution	that	is	based	on	Debian,	another	widespread	Linux	distribution.

The	driver	you	can	download	at	the	address	previously	mentioned	is	compressed	in	the
tar.gz	format,	the	common	compression	format	in	Linux.	Once	downloaded,	you	can
extract	it	by	opening	a	shell,	going	to	the	directory	where	the	compressed	file	is,	and
executing	the	following	command:

tar	xvzf	sqlncli-11.0.1790.0.tar.gz

The	tar	command	extracts	the	archive	into	a	new	directory	named	here	sqlncli-
11.0.1790.0	on	the	version	of	the	ODBC	driver.

	Note		The	xvzf	set	of	options	used	with	the	tar	command	is	commonly	used	to
extract	tar.gz	archives.	x	means	eXtract,	and	v	means	Verbose;	these	options	allow	the
extraction’s	details	to	be	printed	on	the	shell	output.	z	tells	tar	that	it	needs	to	deal	with	a
gzip	archive;	and	f	tells	tar	that	the	name	of	the	file	to	extract	will	follow.

The	archive	is	extracted	into	a	directory.	You	enter	it	using	the	cd	(change	directory)
command:

cd	sqlncli-11.0.1790.0

The	steps	to	install	the	driver	on	Ubuntu	are	valid	at	the	time	of	this	writing	with	the
current	driver	release,	which	is	sqlncli-11.0.1790.0	for	Red	Hat	Enterprise	6,	and	the
current	Ubuntu	version,	which	is	12.04	Precise	Pangolin.	The	driver	being	installed	is
correct	at	the	time	of	writing,	but	Linux	minor	and	major	version	upgrades	occur
regularly.	This	means	the	Microsoft	driver	may	be	out	of	date,	or	you	may	need	a	later
version	when	a	new	one	is	brought	out.	However,	we’re	demonstrating	on	Ubuntu	12.04
with	the	11.0.1790.0	Microsoft	driver,	and	although	in	future	releases	the	process	may
vary,	we	can	hopefully	guide	you	in	a	general	way.

According	to	its	documentation,	the	unixodbc	version	needed	to	run	the	driver	is
2.3.0.	Using	the	apt-cache	tool	that	manages	the	cache	of	Debian	and	Ubuntu
packages,	you	can	check	the	current	unixodbc	version	on	your	system:

apt-cache	show	unixodbc

The	show	option	returns	details	about	a	package,	and	on	Debian	and	Ubuntu,	the
name	of	the	package	is	simply	unixodbc.	The	result	is	shown	in	Figure	17-5.

Figure	17-5.	apt-cache	command	result

The	current	version	on	our	Ubuntu	is	2.2.14.	The	libsqlncli	downloaded	from
Microsoft	includes	a	script	that	downloads	and	builds	the	required	unixodbc	version.	So
you	first	uninstall	the	current	unixodbc	using	the	apt-get	command,	and	then	you
install	the	newer	unixodbc	using	the	Microsoft	script.	Also,	you	need	to	prefix	the
commands	with	the	sudo	instruction	to	execute	them	with	super	user	(su)	privileges,	as
follows.

sudo	apt-get	remove	unixodbc

sudo	bash	./build_dm.sh

There	is	a	catch	here:	at	the	time	of	this	writing,	the	build_dm.sh	script	(as	well	as
the	install.sh	script	that	you	see	shortly)	has	a	flaw.	If	you	open	it	in	a	text	editor,
you’ll	see	on	its	first	line	that	it	declares	itself	as	a	script	written	for	the	sh	Linux	shell,
using	what	is	called	the	shebang	syntax,	as	follows:

#!/bin/sh

This	allows	the	file	to	be	executed	without	mentioning	the	interpreter	on	the	command
line.	The	shebang	line	is	read,	and	the	proper	interpreter	is	called.	The	problem	here	is	that
the	script	is	declared	as	being	an	sh	script,	whereas	it	is	in	fact	a	bash	script.	sh	and	bash
are	two	different	Linux	shells.	So,	to	make	the	shell	work,	you	need	to	run	it	explicitly
with	bash.	A	partial	result	of	the	build_dm.sh	command	is	shown	in	Figure	17-6.

Figure	17-6.	build_dm.sh	command	result

The	unixodbc	driver	manager	is	built	and	copied	to	a	directory	in	/tmp.	The	script
tells	you	what	to	do	next:	go	there	and	use	the	make	install	command	to	copy	the
binaries	at	the	right	place.	What	it	doesn’t	say	is	that	you	need	administrative	privileges	to
run	both	commands	(shown	on	the	same	line	in	Figure	17-6,	separated	by	a	semicolon).
So,	you	need	to	run	the	commands	as	follows:

sudo	cd	/tmp/unixODBC.22830.6255.24287/unixODBC-2.3.0

sudo	make	install

Now	that	the	driver	manager	is	installed,	you	can	go	to	the	next	step:	installing	the
Microsoft	driver.	The	first	thing	to	do	is	to	check	the	versions	of	the	libraries	requested	by
the	driver.	You	can	use	the	ldd	command,	which	returns	the	shared	libraries	dependencies
of	a	binary,	to	check	the	libraries	used	by	the	driver:

ldd	lib64/libsqlncli-11.0.so.1790.0

.so	(shared	object)	is	the	common	extension	for	shared	libraries	on	Linux.	On	our
system,	the	command	returns	the	results	shown	in	Figure	17-7.

Figure	17-7.	Results	of	the	ldd	command

In	Figure	17-7,	you	see	that	most	of	the	libraries	are	found,	except	the	SSL	libraries
libcrypto.so.10	and	libssl.so.10.	Here,	10	stands	for	the	dynamic	shared
objects’	version	number.	You	need	to	find	out	whether	any	versions	of	these	libraries	are
available	on	your	system.	To	do	that,	you	use	the	find	command	as	follows:

find	/	-name	libcrypto.so.*	-print

As	you	might	have	guessed,	the	find	command	searches	for	files.	You	ask	it	to	start
its	search	at	the	root	of	the	file	system	(/),	to	search	for	libcrypto.so.*,	and	to	print
the	result.	We	found	this	reference:	/lib/x86_64-linux-
gnu/libcrypto.so.1.0.0.	That	looks	like	what	you	need,	but	how	do	you	allow
the	driver	to	see	it?	You	create	a	symbolic	link—you	could	call	it	a	shortcut—with	the
name	requested	by	the	driver,	which	is	a	pointer	to	the	installed	library.	The	following
commands	do	just	that:

sudo	ln	-s	/lib/x86_64-linux-gnu/libcrypto.so.1.0.0	

/lib/x86_64-linux-gnu/libcrypto.so.10

sudo	ln	-s	/lib/x86_64-linux-gnu/libssl.so.1.0.0	

/lib/x86_64-linux-gnu/libssl.so.10

You	use	the	ln	command	to	create	a	link,	and	the	–s	option	specifies	that	you	create	a
symbolic	link.

Now	you	can	install	the	driver.	In	the	driver’s	directory,	the	install.sh	shell	script
allows	you	to	copy	the	files	to	the	/opt/microsoft/sqlncli	location	and	create	the
symbolic	links	in	the	path	to	let	the	driver	and	its	tools	be	recognized	on	your	system.	The
/opt	directory	is	chosen	as	the	install	path	because	it’s	where	applications	not	installed
with	the	distribution	are	supposed	to	go:

sudo	bash	./install.sh	install	--force

Once	again	you	use	sudo	to	run	the	script	under	administrative	privileges,	and	you
use	bash	explicitly.	The	—force	option	is	needed	on	this	distribution	to	prevent
dependency	checks	performed	by	the	script	from	canceling	the	installation	process.

The	installation	script	runs	quickly,	and	when	it’s	finished,	you	can	test	the	ODBC
driver	by	using	the	two	tools	installed	with	it:	a	Linux	version	of	the	bcp	(Bulk	Copy)
tool,	and	a	Linux	version	of	the	sqlcmd	shell.	Symbolic	links	are	created	by	the
installation	script	in	the	path,	so	you	can	use	sqlcmd	wherever	you	are	in	the	file	system.
An	example	of	starting	sqlcmd	follows:

sqlcmd	-S	SQL2014	-U	apress	-P	@press!

This	command	connects	to	the	SQL2014	server	using	the	SQL	login	apress,	with
password	@press!.	If	you	receive	an	error	saying	that	the	library	libcrypto.so.10
(or	any	library	used	by	the	ODBC	driver)	isn’t	found,	you	may	have	to	investigate	and
install	the	library	or	use	the	symbolic	link	technique	described	earlier.

Note	that	here	you	connect	using	an	SQL	login	and	not	integrated	security.	That’s
logical,	you	might	think:	you’re	on	Linux,	not	logged	in	to	a	Windows	domain,	so	how
could	integrated	security	work?	Well,	it	can—not	fully,	but	it	can.	For	that,	your	Linux
box	must	have	Kerberos	properly	configured,	which	is	out	of	the	scope	of	this	book;
please	refer	to	this	documentation	entry	for	a	high-level	description	of	the	requirements
for	it	to	work:	http://msdn.microsoft.com/en-us/library/hh568450.
Note	that	you	can’t	impersonate	an	account,	and	you’re	limited	to	the	Linux	machine
system	account.

JDBC
To	use	the	JDBC	component,	first	download	it	from
http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx.	The
driver	is	a	JDBC	4	driver	that	is	available	to	download	as	a	Windows	self-extract
executable	or	a	tar.gz	compressed	file	for	non-Windows	environments.	Once	the	file	is
uncompressed,	you	have	a	directory	with	two	jar	files	and	other	resources	such	as
documentation.	Put	the	sqljdbc4.jar	file,	which	is	the	JDBC	4	driver,	in	your	Java
classpath.	The	classpath	is	the	path	where	Java	searches	for	classes	to	run	or	to	import.

Java	development	is	a	broad	subject,	so	we	don’t	give	many	details	here,	but	let’s	look
at	a	short	example	of	using	the	JDBC	driver,	mainly	to	illustrate	the	use	of	the	connection
string.	JDBC	connection	can	be	done	using	a	connection	string,	also	called	a	connection
URL.	In	the	case	of	SQL	Server,	it’s	very	similar	to	the	ADO.NET	or	ODBC	connection
string.	The	general	form	of	the	string	is	as	follows:

jdbc:sqlserver://[serverName[\instanceName][:portNumber]]

[;property=value[;property=value]]

Other	methods,	like	setting	properties	of	a	Connection	object,	can	be	used;	this

http://msdn.microsoft.com/en-us/library/hh568450
http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx

example	uses	the	connection-string	method.

Listing	17-4	shows	a	short	but	complete	example	of	a	Java	class	that	lets	you	connect
to	SQL	Server	and	run	a	query.	To	make	it	more	interesting,	we	assumed	that	we	were	in
an	environment	using	AlwaysOn	Availability	Groups,	and	we	added	the
failoverPartner	option	in	the	connection	string	to	allow	for	reconnecting	to	a	mirror
if	the	first	server	didn’t	respond.

Listing	17-4.	Java	Example	Using	the	Microsoft	JDBC	Driver

import	java.sql.*;	

public	class	ApressExample	{

				public	static	void	main(String[]	args)	{

								String	connectionUrl	

=	"jdbc:sqlserver://SQL2014;integratedSecurity=true;databaseName=AdventureWorks2014;failoverPartner=SQL2014B";

								Connection	cn	=	null;

								String	qry	=	"SELECT	TOP	10	FirstName,	LastName	FROM	

Person.Contact";

								try	{

												cn	=	DriverManager.getConnection(connectionUrl);

												runQuery(cn,	qry);

								}	catch	(SQLException	se)	{

												try	{

																System.out.println("Connection	to	principal	

server	failed,	trying	the	mirror	server.");

																cn	

=	DriverManager.getConnection(connectionUrl);

																runQuery(cn,	qry);

												}	catch	(Exception	e)	{

																e.printStackTrace();

												}

								}	catch	(Exception	e)	{

												e.printStackTrace();

								}	finally	{

												if	(cn	!=	null)	try	{	cn.close();	

}	catch(Exception	e)	{	}

						}

			}

				private	static	void	runQuery(Connection	cn,	String	SQL)	{

								Statement	stmt	=	null;

								ResultSet	rs	=	null;

								try	{

												stmt	=	cn.createStatement();

												rs	=	stmt.executeQuery(SQL);

												while	(rs.next())	{

																System.out.println(rs.getString(0));

												}

												rs.close();

												stmt.close();

								}	catch	(Exception	e)	{

												e.printStackTrace();

								}	finally	{

												if	(rs	!=	null)	try	{	rs.close();	

}	catch(Exception	e)	{}

												if	(stmt	!=	null)	try	{	stmt.close();	

}	catch(Exception	e)	{}

								}

				}

}

	Note		If	your	application	accesses	SQL	Server	with	AlwaysOn	that	listens	in	multiple
subnets	with	the	JDBC	driver,	it’s	important	to	set	the	keyword
MultiSubnetFailover=True	in	the	connection	string.	The	reason	is	that	JDBC
drivers	don’t	iterate	through	multiple	IP	addresses;	if	the	network	name	listens	to	multiple
IP	addresses,	the	JDBC	driver	spawns	parallel	connections	to	the	IP	addresses	and	listens
to	the	first	one	that	responds.

For	this	example	to	work,	save	it	in	a	file	named	ApressExample.java,	and
compile	it	with	the	Java	compiler	(javac.exe	on	Windows)	after	making	sure	the
sqljdbc4.jar	file	is	in	the	Java	classpath.	You	could	also	indicate	the	path	of	the
driver	in	the	javac	command	line,	as	shown	in	the	following	example:

javac.exe	-classpath	"C:\sqljdbc_4.0\enu\sqljdbc4.jar"	

c:\apress\ApressExample.java

The	compilation	results	in	an	ApressExample.class	file	that	you	can	run	with
java.exe.	Once	again,	the	JDBC	driver	must	be	in	the	classpath	for	it	to	work.	The
classpath	is	an	environment	variable,	and	an	example	of	setting	it	for	the	session	and
running	the	java	class	in	a	cmd	session	on	Windows	is	shown	next.	You	must	be	in	the
directory	where	the	ApressExample.class	file	is,	for	it	to	work:

set	classpath=c:\sqljdbc_4.0\enu\sqljdbc4.jar;.;%classpath%

java	ApressExample

The	first	line	adds	the	path	of	the	sqljdbc4.jar	file	and	the	current	directory	to
the	classpath	environment	variable,	so	it	will	find	the	JDBC	driver	and	the
ApressExample	class.	The	second	line	runs	the	code	example.

Now	that	you	can	run	the	example,	let’s	come	back	to	its	content.	The	first	thing	you

do	in	the	code	is	import	the	java.sql	classes	so	you	have	the	Connection,
Statement,	and	other	JDBC	classes	handy.	In	the	main()	method	of	the
ApressExample	class,	you	define	the	connection	string	and	set	the	server’s	address	as
well	as	the	mirroring	server’s	address.	We	chose	to	be	authenticated	by	Windows,	using
Integrated	Security:

String	connectionUrl	

=	"jdbc:sqlserver://SQL2014;integratedSecurity=true;databaseName=AdventureWorks2014;failoverPartner=SQL2014B";

If	you	know	JDBC,	you	may	be	surprised	not	to	find	a	Class.forName()call,	as
shown	in	the	following	snippet:

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

The	Class.forName()	instruction	is	used	to	load	the	JDBC	driver	and	register	it
to	the	JDBC	DriverManager.	This	isn’t	required	anymore	if	you	use	JDBC	4,	because
in	JDBC	4,	drivers	can	be	loaded	magically	just	by	being	on	the	classpath.

The	rest	of	the	code	is	a	pretty	standard	Java	example.	Let’s	concentrate	on	the	line
that	opens	the	connection:

cn	=	DriverManager.getConnection(connectionUrl);

It’s	enclosed	in	a	try	catch	block,	in	order	to	catch	a	connection	failure.	If	such	a
failure	happens,	the	catch	block	runs	the	exact	same	connection	command.	This	is	to
allow	automatic	reconnection	in	case	of	a	failover.	At	the	second	connection	attempt,	the
JDBC	driver—once	again	magically—tries	with	the	address	defined	in	the
failoverpartner	option.	This	second	attempt	must	also	be	enclosed	in	a	try
catch	block,	in	case	the	other	server	doesn’t	answer	either.	Because	you	have	to	write
the	connection	code	twice,	we	chose	here	to	move	the	code	that	uses	the	connection	to	run
a	query	in	a	private	method	of	the	class,	in	order	to	call	it	from	the	main()	method.

Service-Oriented	Architecture	and	WCF
Data	Services
If	you’re	a	die-hard	T-SQL	developer	who	doesn’t	venture	much	into	Microsoft	client-side
code	and	all	the	frameworks	and	libraries,	you	may	crack	a	smile	while	reading	the	few
next	paragraphs.	T-SQL	developers	are	used	to	dealing	with	a	stable	and	old-fashioned
technology	with	no	fancy	names,	which	could	give	the	impression	that	it’s	so	old	and	solid
that	it	will	never	change.	On	the	client	side,	however,	things	are	constantly	moving.	A
history	of	data-access	methods	and	what	are	today	called	data	services,	because	of	the
Service	Oriented	Architecture	(SOA)	paradigm,	could	fill	a	book,	and	that	book	would	be
full	of	twists	and	turns.	In	the	early	days	of	SQL	Server,	the	data-access	libraries	were	the
native	dblib	DLL	and	the	ODBC	API.	This	was	superseded	by	OLEDB,	then	by	the
SQL	Server	Native	Client.	Today,	we’re	returning	to	ODBC	to	align	with	a	de	facto
standard,	as	you	saws	in	the	“ODBC	for	Linux”	section.Service	Oriented	Architecture	and

WCF

On	the	subject	of	data	services,	before	the	concept	ever	existed,	developers	talked
about	distributed	applications:	applications	that	are	broken	into	components	and	that	span
multiple	computers,	allowing	distant	interoperability.	The	components	exchanged
information	using	a	broker	like	Distributed	Component	Object	Model(DCOM)	or
Common	Object	Request	Broker	Architecture	(CORBA)	and	used	a	Remote	Procedure
Call	(RPC)	model.	With	the	release	of	the	.NET	framework,	Microsoft	developed	a
replacement	for	creating	distributed	.NET	components,	called	.NET	Remoting.	But	the
distributed	components	model	had	some	shortcomings:	mainly,	the	network	protocols	used
were	not	tailored	for	the	Web,	and	it	was	sometimes	tricky	to	allow	distant	computers
behind	firewalls	to	work	together.	Also,	you	had	to	implement	a	unique	technology,
whether	it	was	DCOM,	CORBA,	.NET	Remoting,	or	others.	Moreover,	in	the	case	of
DCOM	and	.NET	Remoting,	you	had	to	develop	on	Windows	and	run	Microsoft	operating
systems	and	technologies	on	every	end.

The	SOA	paradigm	gained	attention	and	popularity	because	it	addressed	these
limitations.	The	goal	of	SOA	was	to	use	standard	and	widely	used	protocols	like	HTTP
and	SMTP	to	exchange	information	between	the	components	of	a	distributed	application
—except	that	SOA	uses	different	terminology.	The	components	are	services,	a	term	that
emphasizes	their	loosely	coupled	and	independent	nature;	and	the	distributed	application
model	is	named	Service	Oriented	Architecture.	Using	protocols	like	HTTP	allows	you	to
take	advantage	of	existing	and	proven	technologies	and	infrastructures	available	on	all
platforms	and	designed	for	the	Internet.	To	ensure	that	the	information	exchanged	is
understood	on	every	platform,	text-based	structures	like	XML	and	JavaScript	Object
Notation	(JSON)	are	used	to	generate	messages	that	are	created	and	consumed	by	these
services,	which	are	called	web	services	(WS)	because	of	their	use	of	the	HTTP	protocol.
These	messages	are	exchanged	mostly	using	a	protocol	named	SOAP	(originally	an
acronym	for	Simple	Object	Access	Protocol).	SOAP	is	an	envelope	in	which	XML
messages	are	enclosed;	it	defines	a	set	of	properties	and	functionalities	for	the	message.

So	far	so	good,	but	a	new	model	started	to	gain	popularity	in	the	last	decade:
Representational	State	Transfer	(REST).	It’s	is	a	set	of	architectural	principles	for	building
services	called	resources.	A	REST	resource	is	defined	by	an	address,	which	is	an	Internet
address	in	the	form	of	a	uniform	resource	identifier	(URI—a	more	generic	term	for	what	is
called	an	URL	in	the	HTTP	protocol).	To	call	the	resource,	a	REST	client	uses	standard
HTTP	verbs	like	GET	and	PUT	to	send	and	receive	messages.	So,	with	REST,	you	use	a
model	close	to	what	a	Web	browser	would	do	to	call	resources;	that	makes	it	interesting
mainly	because	it	lets	you	use	proven	technologies	on	both	sides,	and	it	offers	natively	the
scalability	of	the	web	technologies.	Because	REST	is	more	about	offering	resources	than
exchanging	messages	per	se,	this	model	is	sometimes	called	Resource	Oriented
Architecture	(ROA),	and	a	system	implementing	this	model	is	said	to	be	RESTful.

With	SOA	quickly	replacing	distributed	components,	libraries	or	frameworks	were
needed	in	the	Microsoft	world	to	build	web	services.	The	first	generation	of	these	tools
was	called	ASP.NET	Web	Services	(ASMX)	and	was	released	for	.NET	1.0.	It	was
quickly	completed	by	Web	Services	Enhancement	(WSE),	which	added	some	SOAP	WS
specifications.	That	was	another	programming	model	to	learn,	and	it	was	still	limited

because	it	didn't	implement	all	the	SOA	possibilities	like	the	REST	model.	To	build	XML
messages,	you	used	the	.NET	XML	libraries;	or,	using	SQL	Server	2000,	you	generated
the	XML	directly	using	the	FOR	XML	clause,	and	you	enclosed	it	in	a	SOAP	message
using	client	code.	In	SQL	Server,	you	could	also	use	an	ISAPI	extension	to	provide	XML
responses	directly	from	SQL	server	through	IIS,	without	using	ASMX.

When	SQL	Server	2005	was	released,	the	ISAPI	extension	was	replaced	by	an
integrated	HTTP	endpoint	capability.	SQL	Server	was	then	able	to	act	natively	as	an
HTTP	server,	to	receive	and	send	back	SOAP	messages.	Today,	this	feature	has	been
removed	from	SQL	Server	2014,	because	it	didn’t	offer	a	complete	enough	environment	to
build	web	services.	As	a	matter	of	fact,	ASMX	didn’t	offer	all	of	what	was	needed,	either.
So,	Microsoft	decided	to	build	a	complete	and	flexible	framework	to	handle	all
interoperability	technologies,	which	it	now	calls	Connected	Systems.	That	framework	is
named	Windows	Communication	Foundation	(WCF).

WCF	is	integrated	into	.NET	and	is	the	way	to	go	when	talking	about	web	services,
REST,	distributed	components,	and	message	queuing	in	the	Microsoft	world.	WCF	offers
several	layers	that	provide	everything	needed	to	create	connected	systems.	They’re
schematized	in	Figure	17-8.

Figure	17-8.	The	WCF	layers	stack

The	contracts	layer	consists	of	the	contracts	(or	interfaces)	definition	classes	that	allow
services	to	publish	and	agree	on	the	content	of	the	information	they	exchange.	You	can
define	data	contracts,	message	contacts,	service	contracts,	and	so	on.	The	service	runtime
layer	offers	all	the	behaviors	necessary	to	implement	the	services,	like	transaction
behavior,	parameter	filtering,	and	so	on.	The	messaging	layer	offers	encoders	and	channels
to	handle	the	more	physical	and	concrete	exchange	of	messages	and	services.	And	finally,
the	activation	and	hosting	layer	lets	you	run	the	services,	as	an	EXE,	a	Windows	service,	a
COM+	application,	and	so	on.

WCF	can	be	used	to	create	services	or	remoting	applications	or	to	implement	message
queuing.	Here,	we	of	course	concentrate	on	a	specific	feature	of	WCF	that	provides	a	very

simple	way	to	publish	data	as	REST	resources:	WCF	Data	Services.

	Note		Here	again,	the	name	of	the	technology	has	changed	several	times	in	a	few	years.
In	2007,	we	heard	about	project	Astoria,	which	aimed	to	deliver	a	framework	for	creating
and	consuming	data	services	using	SOA.	When	it	was	released	in	2008	along	with	.NET
3.5,	its	final	name	was	ADO.NET	Data	Services,	which	was	later	changed	to	WCF	Data
Services.

WCF	Data	Services	supports	the	concept	of	REST	for	accessing	data	remotely.	As	we
briefly	said	before,	REST-style	services	provide	simple	URI-based	querying,	a	simpler
mechanism	than	the	SOAP	protocol.	WCF	Data	Services	translates	regular	HTTP	requests
into	create,	read,	update,	and	delete	(CRUD)	operations	against	a	data	source,	and	it
exchanges	data	by	using	the	Open	Data	(OData)	protocol,	an	open	web	protocol	for
querying	and	updating	data.	WCF	Data	Services	uses	an	HTTP	request-to-CRUD
operation	mapping,	as	shown	in	Table	17-1.

Table	17-1.	HTTP	Requests	to	WCF	Data	Services	Operations

HTTP	Request WCF	Data	Services	Operation

GET Query	the	data	source;	retrieve	data.

POST Create	a	new	entity	and	insert	it	into	the	data	source.

PUT Update	an	entity	in	the	data	source.

DELETE Delete	an	entity	from	the	data	source.

Creating	a	WCF	Data	Service
As	with	a	web	service,	the	first	step	to	creating	a	WCF	data	service	is	to	create	a	new
ASP.NET	web	application	project,	as	shown	in	Figure	17-9.

Figure	17-9.	Creating	an	ASP.NET	web	application	in	Visual	Studio	2010

Defining	the	Data	Source
Once	you	have	created	a	web	application	project,	you	need	to	add	a	source	for	your	data.
The	easiest	way	is	to	add	an	ADO.NET	entity	data	model	(EDM)	by	right-clicking	the
project	in	Solution	Explorer,	choosing	Add	a	New	Item	in	Visual	Studio,	and	selecting	the
ADO.NET	Entity	Data	Model	template	on	the	Data	page	of	the	Add	New	Item	window,	as
shown	in	Figure	17-10.	This	launches	the	ADO.NET	Entity	Data	Model	Wizard.

Figure	17-10.	Adding	an	ADO.NET	EDM	item	to	your	web	application

Chapter	15	covers	the	Entity	Framework,	so	we	don’t	need	to	go	into	details	her.
You’re	generating	an	EDM	from	tables	in	the	AdventureWorks	database.	Include	the
Production.Product,	Production.ProductPhoto,	and
Production.ProductProductPhoto	tables	of	the	database,	as	shown	in	Figure
17-11.

Figure	17-11.	Adding	tables	to	the	EDM

Once	you’ve	added	tables	to	your	EDM,	you	can	view	them	in	the	Entity	Data	Model
Designer,	as	you	have	seen	previously.

Creating	the	Data	Service
The	next	step	after	you’ve	defined	your	EDM	is	to	add	a	WCF	data	service	item	to	your
project	through	the	New	Item	menu	option.	The	Add	New	Item	window	is	shown	in
Figure	17-12	with	the	WCF	Data	Service	template	highlighted.

Figure	17-12.	Adding	a	WCF	data	service

The	WCF	Data	Service	template	automatically	generates	the	data	service	landing
page,	named	ProductPhotoDataService.svc	in	this	example.	This	is	the	page
you	need	to	call	to	request	the	service.	Its	source	file,	named
ProductPhotoDataService.svc.cs	in	this	example,	uses	the
System.Data.Services	namespace	and	contains	a	class	definition	for	the	service
that	defines	access	rules	for	entity	sets	and	service	operations.	The	class	defined	in	this	file
requires	some	modification	by	hand	where	you	see	the	automatically	generated	TODO
comments.	You	must	define	the	data	source	class—the	EF	entities	class—and	at	a
minimum	you	must	set	the	entity	access	rules	as	shown	in	Listing	17-5.

Listing	17-5.	AdventureWorksDataService	Class	Definition	Using
System.Data.Services;

using	System;

using	System.Collections.Generic;

using	System.Data.Services;

using	System.Data.Services.Common;

using	System.Linq;

using	System.ServiceModel.Web;

using	System.Web;

namespace	WCFDataServicesSample

{

				public	class	ProductPhotoDataService	

:	DataService<AdventureWorksEntities>

				{

								//	This	method	is	called	only	once	to	initialize	

service-wide	policies.

								public	static	void	

InitializeService(DataServiceConfiguration	config)

								{

												config.SetEntitySetAccessRule("Products",	

EntitySetRights.AllRead);

												config.SetEntitySetAccessRule("ProductPhotoes",	

EntitySetRights.AllRead);

												config.SetEntitySetAccessRule("ProductProductPhotoes",

	EntitySetRights.AllRead);

												config.DataServiceBehavior.MaxProtocolVersion	

=	DataServiceProtocolVersion.V2;

								}

				}

}

	Caution		You	can	use	the	wildcard	character	(*)	to	set	rights	for	all	entities	and	service
operations	at	once,	but	Microsoft	strongly	recommends	against	this.	Although	it’s	useful
for	testing	purposes,	in	a	production	environment	this	can	lead	to	serious	security
problems.

Listing	17-5	mentions	the	entity	set	names	that	were	pluralized	by	EF,	which	is	why
the	code	includes	the	Photoes	faulty	plural	form.	Feel	free	to	correct	it	in	the	entity
model	source.	You	set	the	access	rules	to	AllRead,	meaning	the	service	allows	queries
by	key	or	queries	for	all	contents	of	the	entity	set.	The	rights	allowed	are	shown	in	Table
17-2.

Table	17-2.	Service	Entity	and	Operation	Access	Rights

Access	Rights Entity/Operation Description

All Both Allows	full	read/write	access	to	the	entity	and	full	read	access	to
operations.

AllRead Both
Allows	full	read	access	to	the	entity	or	operation.	It’s	shorthand	for
ReadSingle	and	ReadMultiple	access	rights	combined	with
a	logical	OR	(|)	operation.

AllWrite Entity
Allows	full	write	access	to	the	entity.	It’s	shorthand	for
WriteAppend,	WriteUpdate,	and	WriteDelete	access
rights	combined	with	a	logical	OR	(|)	operation.

None Both Allows	no	read	or	write	access,	and	doesn’t	appear	in	the	services
metadata	document.

ReadSingle Both Allows	for	queries	by	key	against	an	entity	set.

ReadMultiple Both Allows	for	queries	for	the	entire	contents	of	the	set.

WriteAppend Entity Allows	new	resources	to	be	appended	to	the	set.

WriteDelete Entity Allows	existing	resources	to	be	deleted	from	the	set.

WriteUpdate Entity Allows	existing	resources	to	be	updated	in	the	set.

You	can	test	your	WCF	data	service	by	running	it	in	Debug	mode	from	Visual	Studio.
Visual	Studio	opens	a	browser	window	with	the	address	set	to	the	start	page	for	your
project.	Change	it	to	the	address	of	the	data	service,	which	in	our	case	is
http://localhost:59560/ProductPhotoDataService.svc.

	Note		You	can	also	set	your	WCF	data	service	page	(.svc	extension)	as	the	project
start	page.	In	that	case,	you	can	delete	the	Default.aspx	page	in	the	project,	because
it’s	not	needed.

Your	start	address	and	port	number	will	most	likely	be	different.	The	WCF	data
service	responds	to	your	request	with	a	listing	of	entities	for	which	you	have	access,	as
shown	in	Figure	17-13.

Figure	17-13.	Calling	the	page	for	the	WCF	data	service

	Tip		WCF	Data	Services	supports	two	payload	types.	The	payload	type	is	the	standard
format	for	incoming	request	data	and	outgoing	results	data.	WCF	Data	Services	supports
both	JSON	and	the	Atom	Publishing	Protocol	for	payloads.	If	you	call	the	page	for	your
WCF	data	service	and	the	results	look	like	a	nonsensical	syndication	feed	instead	of
standard	XML,	you	need	to	turn	off	the	feed-reading	view	in	your	browser.	In	Internet
Explorer	7,	you	can	uncheck	the	Tools	 	Internet	Options	 	Content	 	Settings	 	Turn
On	Feed	Reading	View	option.

Once	you’ve	confirmed	that	the	WCF	data	service	is	up	and	running,	you	can	query

the	service	using	a	combination	of	path	expression–style	syntax	in	the	URI	to	locate
entities	and	query	string	parameters	to	further	restrict	and	control	output.	The	following
are	some	examples	of	WCF	data	service	queries:

http://localhost:59560/ProductPhotoDataService.svc/Products

This	query	retrieves	all	Product	entities.

http://localhost:59560/ProductPhotoDataService.svc/Products(749

This	query	retrieves	the	Product	entities	with	a	primary	key	value
of	749.	The	primary	key	of	the	Product	entity	is	ProductID.

http://localhost:59560/ProductPhotoDataService.svc/Products?

$skip=10&$top=10:	This	query	skips	the	first	ten	Product
entities	and	retrieves	the	following	ten	(items	11	through	20)	in	key
order.

http://localhost:59560/ProductPhotoDataService.svc/Products?

$top=20&$orderby=Name:	This	query	retrieves	the	first	20
Product	entities	ordered	(sorted)	by	the	Name	attribute.

http://localhost:59560/ProductPhotoDataService.svc/Products?

$filter=ListPrice	gt
1000&$expand=ProductProductPhotoes/ProductPhoto:
This	query	retrieves	all	Product	entities	with	a	ListPrice
attribute	that	is	greater	than	1,000.	The	results	include	related
ProductProductPhoto	and	ProductPhoto	entities	expanded
inline.	Note	that	in	the	expanded	option,	you	need	to	mention	first	the
entity	set	and	then	the	entities	linked	to	the	set,	which	is	why	you	have
ProductProductPhotoes	and	then	ProductPhoto.

This	is	just	a	small	sampling	of	the	types	of	REST-style	queries	you	can	create	using
WCF	Data	Services.	In	fact,	WCF	Data	Services	supports	several	query	string	options,	as
shown	in	Table	17-3.

Table	17-3.	Query	String	Options

Option Description

$expand Expands	results	to	include	one	or	more	related	entities	inline	in	the	results.

$filter

Restricts	the	results	returned	by	applying	an	expression	to	the	last	entity	set	identified	in	the
URI	path.	The	$filter	option	supports	a	simple	expression	language	that	includes	logical,
arithmetic,	and	grouping	operators,	and	an	assortment	of	string,	date,	and	math	functions.

$orderby

Orders	(sorts)	results	by	the	attributes	specified.	You	can	specify	multiple	attributes	separated
by	commas,	and	each	attribute	can	be	followed	by	an	optional	asc	or	desc	modifier
indicating	ascending	or	descending	sort	order,	respectively.

$skip Skips	a	given	number	of	rows	when	returning	results.

$top Restricts	the	number	of	entities	returned	to	the	specified	number.

Creating	a	WCF	Data	Service	Consumer
Once	you	have	a	WCF	data	service	up	and	running,	creating	a	consumer	application	is
relatively	simple.	For	this	example,	you	create	a	simple	.NET	application	that	calls	the
service	to	display	the	image	and	details	of	products	selected	from	a	drop-down	list.

The	first	step	in	building	a	consumer	application	is	to	create	classes	based	on	your
EDM.	Instead	of	doing	so	manually,	you	can	generate	the	creation	of	these	classes	by
using	the	Add	Service	Reference	command	in	Visual	Studio,	which	automatically
generates	C#	or	Visual	Basic	classes	for	use	in	client	applications.	For	this	example,	we
created	an	ASP.NET	web	application,	right-clicked	the	project	in	the	Solution	Explorer,
and	chose	the	Add	Service	Reference	command.	In	the	Add	Service	Reference	Window,
we	added	the	WCF	data	service	address	and	clicked	Go.	Visual	Studio	queried	the
service’s	metadata.	Figure	17-14	shows	the	result	of	this	request.

Figure	17-14.	Adding	a	service	reference	in	Visual	Studio	2010

Step	two	of	the	process	is	to	create	the	Default.aspx	page	of	the	client
application.	This	page	performs	the	necessary	calls	to	the	service.	You	aren’t	tied	to	a	web
application,	however;	you	can	just	as	easily	call	ADO.NET	data	services	from	Windows
applications,	Silverlight	applications,	or	any	other	platform	that	can	initiate	HTTP	requests

(although	object	deserialization	on	platforms	that	don’t	support	.NET	classes	could	pose	a
bit	of	a	challenge).	For	this	client	application,	we	simply	added	a	drop-down	list,	an	image
control,	and	a	table	to	the	web	form.	Then	we	wired	up	the	page	load	and	drop-down	list-
selection-change	events.	The	code	is	shown	in	Listing	17-6,	with	results	shown	in	Figure
17-15.
Listing	17-6.	ASP.NET	Client	Application	Default.aspx	Page

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Web;

using	System.Web.UI;

using	System.Web.UI.WebControls;

using	WCFdsClient.PhotoServiceReference;

using	System.Data.Services.Client;

namespace	WCFdsClient

{

				public	partial	class	_Default	:	System.Web.UI.Page

				{

								protected	void	Page_Load(object	sender,	EventArgs	e)

								{

												PopulateDropDown();

								}

								private	void	PopulateDropDown()

								{	

												AdventureWorksEntities	ctx	=	new	

AdventureWorksEntities(

																new	Uri	

("http://localhost:59560/ProductPhotoDataService.svc")

);

												var	qry	=	from	p	in	ctx.Products

																						where	p.FinishedGoodsFlag

																						orderby	p.Name

																						select	p;

												foreach	(Product	p	in	qry)	{

																ProductDropDown.Items.Add(new	ListItem(p.Name,	

p.ProductID.ToString()));

												}

												string	id	=	ProductDropDown.SelectedValue;

												UpdateImage(id);

								}

								private	void	UpdateImage(string	id)	{

												ProductImage.ImageUrl	

=	string.Format("GetImage.aspx?id={0}",	id);

								}

								protected	void	

ProductDropDownlist_SelectedIndexChanged(object	sender,	

EventArgs	e)

								{

												string	id	=	ProductDropDown.SelectedValue;

												AdventureWorksEntities	ctx	=	new	

AdventureWorksEntities(

																new	

Uri("http://localhost:59560/ProductPhotoDataService.svc")

);

												var	qry	=	from	p	in	ctx.Products

																						where	p.ProductID	==	Convert.ToInt32(id)

																						select	p;

												//DataServiceOuery<Product>	qry	

=	ctx.CreateOuery<Product>(string.Format("/Product({0})",	

id));

												foreach	(Product	p	in	qry)	

												{

																TableProduct.Rows[0].Cells[1].Text	=	p.Class;

																TableProduct.Rows[1].Cells[1].Text	=	p.Color;

																TableProduct.Rows[2].Cells[1].Text	=	p.Size	+	"	

"	+	p.SizeUnitMeasureCode;

																TableProduct.Rows[3].Cells[1].Text	=	p.Weight	

+	"	"	+	p.WeightUnitMeasureCode;

																TableProduct.Rows[4].Cells[1].Text	

=	p.ListPrice.ToString();

																TableProduct.Rows[5].Cells[1].Text	

=	p.ProductNumber;

												}

												UpdateImage(id);

								}

				}

}

Figure	17-15.	Calling	the	WCF	data	service	from	a	consumer	application

The	first	part	of	the	code	imports	the	necessary	namespaces.	The
System.Data.Services.Client	namespace	is	required	to	create	WCF	Data
Services	client	queries.	You	need	to	add	a	reference	to	the
System.Data.Services.Client	component	library	to	your	project.	The
WCFdsClient.PhotoServiceReference	namespace	is	a	reference	to	the	EDM
classes’	namespace:

using	WCFdsClient.PhotoServiceReference;

using	System.Data.Services.Client;

The	PageLoad	event	of	the	Default.aspx	page	calls	a	little	function	called
PopulateDropDown	that	populates	the	drop-down	list	with	the	names	and	IDs	of	all
“finished	goods”	products	that	AdventureWorks	keeps	in	its	database:

PopulateDropDown();

The	PopulateDropDown	function	begins	by	creating	an	instance	of	the
AdventureWorksEntities	EDM	data	context	that	points	to	the	URI	of	the	WCF
data	service.	You	saw	data	contexts	in	Chapter	15.	Here,	in	WCF	Data	Services,	the	object
is	a	sibling	named	a	DataServiceContext:

AdventureWorksEntities	ctx	=	new	AdventureWorksEntities(

				new	Uri	

("http://localhost:59560/ProductPhotoDataService.svc")

);

Next,	this	function	uses	a	LINQ	query	on	the	AdventureWorksEntities
DataServiceContext	that	returns	a	DataServiceOuery.	The	query	filters	the
Product	entities	whose	FinishedGoodsFlag	attributes	are	set	to	true.	Results	are
sorted	by	the	Name	attribute:

var	qry	=	from	p	in	ctx.Products

										where	p.FinishedGoodsFlag

										orderby	p.Name

										select	p;

The	query	returns	an	IEnumerable	result	that	can	be	iterated	using	foreach.	In
this	example,	the	Name	and	ProductID	attributes	are	iterated	and	added	to	the	drop-
down	list:

foreach	(Product	p	in	qry)	{

				ProductDropDown.Items.Add(new	ListItem(p.Name,	

p.ProductID.ToString()));

}

Finally,	the	product	image	is	updated	based	on	the	value	selected	in	the	drop-down	list:

string	id	=	ProductDropDown.SelectedValue;

UpdateImage(id);

You	also	wire	the	SelectedIndexChanged	event	of	the	drop-down	list	so	that	the
image	and	other	data	being	displayed	are	updated	when	the	user	selects	a	new	product.
The	first	thing	this	function	does	is	retrieve	the	currently	selected	value	from	the	drop-
down	list:

string	id	=	ProductDropDown.SelectedValue;

Then,	as	with	the	PopulateDropDown	function,	this	function	queries	the	WCF	data
service	to	retrieve	the	product	selected	from	the	drop-down	list:

AdventureWorksEntities	ctx	=	new	AdventureWorksEntities(

				new	

Uri("http://localhost:59560/ProductPhotoDataService.svc")

);

var	qry	=	from	p	in	ctx.Products

										where	p.ProductID	==	Convert.ToInt32(id)

										select	p;

Next,	the	function	iterates	the	results	and	updates	the	display,	including	the	summary
information	table	and	the	product	image:

foreach	(Product	p	in	qry)

{

				TableProduct.Rows[0].Cells[1].Text	=	p.Class;

				TableProduct.Rows[1].Cells[1].Text	=	p.Color;

				TableProduct.Rows[2].Cells[1].Text	=	p.Size	+	"	"	

+	p.SizeUnitMeasureCode;

				TableProduct.Rows[3].Cells[1].Text	=	p.Weight	+	"	"	

+	p.WeightUnitMeasureCode;

				TableProduct.Rows[4].Cells[1].Text	

=	p.ListPrice.ToString();

				TableProduct.Rows[5].Cells[1].Text	=	p.ProductNumber;

}

UpdateImage(id);

The	UpdateImage	function,	called	by	two	of	the	event	handlers	in	this	example,
consists	of	a	single	line	that	changes	the	URL	of	the	product	image:

ProductImage.ImageUrl	=	string.Format("GetImage.aspx?id=

{o}",	id);

	Note		In	order	to	actually	show	the	images	on	a	web	page,	we	had	to	resort	to	an	old
ASP.NET	trick.	Because	the	images	are	stored	in	the	database,	we	had	to	create	a	second
page	in	the	project	called	GetImage.aspx	to	retrieve	the	appropriate	image.	This
method	calls	the	WCF	data	service	and	returns	the	binary	product	photo	image	as	a	JPEG
image.	We	won’t	go	into	the	details	here	because	they’re	not	essential	to	understanding
WCF	Data	Services,	but	the	source	code	is	available	in	the	downloadable	sample	files	for
the	curious.

Now	that	you’ve	seen	how	to	create	a	basic	WCF	data	service	consumer,	let’s	review
some	of	the	SQL	Server	2014	features	supported	in	ADO.NET	4.5.	ADO.NET	4.5	enables
support	for	null	bit	compression	using	sparse	columns	to	optimize	data	transfer	over	the
wire.	Imagine	a	table	in	which	more	than	half	the	columns	are	nullable	and	have	null
values	for	all	the	rows.	When	you	use	null	bit	compression	and	a	sparse	column	schema,
you	can	save	on	storage	as	well	as	optimize	data	transfer	over	the	wire.

ADO.NET	4.5	also	adds	support	for	LocalDB.	Remember	that	LocalDB	needs	to	be
started	for	your	code	to	be	able	to	access	it.

Summary
SQL	Server	2012	introduced	an	addition	to	SQL	Server	Express	named	LocalDB	that	lets
you	use	databases	as	files	in	applications	and	simplifies	embedding	database	capabilities
in	local,	easy-to-deploy	applications.	At	the	same	time,	SQL	Server	data-access	libraries
keep	improving,	providing	a	heterogeneous	environment	with	Linux	systems	and	Java
code.

In	SQL	Server	2005,	Microsoft	introduced	HTTP	SOAP	endpoints,	which	allowed
developers	to	expose	SPs	and	UDFs	in	the	database	as	web	service	methods.	Because	it
wasn’t	a	full-featured	and	solid	enough	implementation,	and	also	because	Microsoft	wants
to	focus	on	a	unified	framework	for	connected	systems,	HTTP	endpoints	have	been
removed	from	SQL	Server	2014.

The	chapter	ended	with	an	introduction	to	WCF	Data	Services.	With	built-in	support
for	entity	data	models	and	the	powerful	ADO.NET	EDM	designer,	REST-style	querying,
and	both	the	JSON	and	Atom	payload	formats,	WCF	Data	Services	can	provide	a
lightweight	alternative	to	SOAP-based	web	services	and	is	a	good	way	to	provide
interoperability	across	systems.

EXERCISES

1.	 [True/False]	A	LocalDB	instance	can	be	run	as	a	Windows	service.

2.	 [True/False]	You	can’t	access	an	XML	data-type	column	if	you
access	SQL	Server	from	a	Linux	computer.

3.	 [True/False]	HTTP	SOAP	endpoints	can	be	created	in	SQL	Server
2014.

4.	 [Fill	in	the	blank]	Visual	Studio	2010	and	2012	provide	a
_________	project	template	to	create	new	web	services.

5.	 [True/False]	Visual	Studio	2012	includes	a	graphical	EDM
designer.

6.	 [Choose	one]	WCF	Data	Services	accepts	which	type	of	query
requests?

a.	 SQL	queries

b.	 XSLT	queries

c.	 REST-style	queries

d.	 English	language	queries

CHAPTER	18

Error	Handling	and	Dynamic	SQL
Prior	to	SQL	Server	2005,	error	handling	was	limited	almost	exclusively	to	the	@@error
system	function	and	the	RAISERROR	statement,	or	it	was	performed	through	client-side
exception	handling.	T-SQL	in	SQL	Server	2014	still	provides	access	to	these	tools,	but	it
also	supports	modern	structured	error	handling	similar	to	that	offered	by	other	high-level
languages	such	as	C++,	C#,	and	Visual	Basic.	This	chapter	discusses	legacy	T-SQL	error-
handling	functionality	and	the	newer	structured	error-handling	model	in	T-SQL.	The
chapter	introduces	tools	useful	for	debugging	server-side	code,	including	T-SQL
statements	and	the	Visual	Studio	IDE.

The	chapter	also	discusses	dynamic	SQL,	which	is	often	more	difficult	to	debug	and
manage	than	standard	(nondynamic)	T-SQL	statements.	Dynamic	SQL,	although	a	useful
tool,	also	has	security	implications,	as	you’ll	see.

Error	Handling
SQL	Server	2012	provided	several	improvements	in	error	handling	over	SQL	Server	2008
and	prior	releases	that	have	been	carried	into	SQL	Server	2014.	This	section	discusses
legacy	error	handling,	SQL	Server	2008	TRY…CATCH	structured	error	handling,	as	well	as
the	THROW	statement	introduced	in	SQL	2014.

	Note		It	may	seem	odd	to	still	be	referring	in	2014	to	an	error-handling	mechanism
introduced	in	SQL	Server	2000.	The	reality	is	that	you’re	likely	to	encounter	the
@@error	statement	in	much	of	your	code;	and	despite	certain	limitations	and	restrictions,
it	remains	useful	for	error	handling.

Legacy	Error	Handling
In	SQL	Server	2000,	the	primary	method	of	handling	exceptions	was	through	the
@@error	system	function.	This	function	returns	an	int	value	representing	the	current
error	code.	An	@@error	value	of	0	means	no	error	occurred.	One	of	the	major
limitations	of	this	function	is	that	it’s	automatically	reset	to	0	after	every	successful
statement.	This	means	you	can’t	have	any	statements	between	the	code	you	think	might
produce	an	exception	and	the	code	that	checks	the	value	of	@@error.	It	also	means	that
after	@@error	is	checked,	it’s	automatically	reset	to	0,	so	you	can’t	both	check	the	value
of	@@error	and	return	@@error	from	in	an	SP.	Listing	18-1	demonstrates	an	SP	that
generates	an	error	and	attempts	to	print	the	error	code	from	within	the	procedure	and

return	the	value	of	@@error	to	the	caller.

Listing	18-1.	Incorrect	Error	Handling	with	@@error

CREATE	PROCEDURE	dbo.TestError	(@e	int	OUTPUT)

AS

BEGIN

		INSERT	INTO	Person.Person(BusinessEntityID)

		VALUES	(1);

		PRINT	N'Error	code	in	procedure	=	'	+	CAST(@@error	AS	

nvarchar(10));

		SET	@e	=	@@error;

END

GO

DECLARE	@ret	int,

		@e	int;

EXEC	@ret	=	dbo.TestError	@e	OUTPUT;

PRINT	N'Returned	error	code	=	'	+	CAST(@e	AS	nvarchar(10));

PRINT	N'Return	value	=	'	+	CAST(@ret	AS	nvarchar(10));

The	TestError	procedure	in	Listing	18-1	demonstrates	one	problem	with
@@error.	The	result	of	executing	the	procedure	should	be	similar	to	the	following:

Msg	515,	Level	16,	State	2,	Procedure	TestError,	Line	4

Cannot	insert	the	value	NULL	into	column	'PersonType',	table

'AdventureWorks.Person.Person';	column	does	not	allow	nulls.	

INSERT	fails.

The	statement	has	been	terminated.

Error	code	in	procedure	=	515

Returned	error	code	=	0

Return	value	=	-6

As	you	can	see,	the	error	code	generated	by	the	failed	INSERT	statement	is	515	when
printed	in	the	SP,	but	a	value	of	0	(no	error)	is	returned	to	the	caller	via	the	OUTPUT
parameter.	The	problem	is	with	the	following	line	in	the	SP:

PRINT	N'Error	code	in	procedure	=	'	+	CAST(@@error	AS	

nvarchar(10));

The	PRINT	statement	automatically	resets	the	value	of	@@error	after	it	executes,
meaning	you	can’t	test	or	retrieve	the	same	value	of	@@error	afterward	(it	will	be	0
every	time).	The	workaround	is	to	store	the	value	of	@@error	in	a	local	variable
immediately	after	the	statement	you	suspect	might	fail	(in	this	case,	the	INSERT

statement).	Listing	18-2	demonstrates	this	method	of	using	@@error.

Listing	18-2.	Corrected	Error	Handling	with	@@error

CREATE	PROCEDURE	dbo.TestError2	(@e	int	OUTPUT)

AS

BEGIN

		INSERT	INTO	Person.Person(BusinessEntityID)

		VALUES	(1);

SET	@e	=	@@error;

		PRINT	N'Error	code	in	procedure	=	'	+	CAST(@e	AS	

nvarchar(10));

END

GO

DECLARE	@ret	int,

		@e	int;

EXEC	@ret	=	dbo.TestError2	@e	OUTPUT;

PRINT	N'Returned	error	code	=	'	+	CAST(@e	AS	nvarchar(10));

PRINT	N'Return	value	=	'	+	CAST(@ret	AS	nvarchar(10));

By	storing	the	value	of	@@error	immediately	after	the	statement	you	suspect	might
cause	an	error,	you	can	test	or	retrieve	the	value	as	often	as	you	like	for	further	processing.
The	following	is	the	result	of	the	new	procedure:

Msg	515,	Level	16,	State	2,	Procedure	TestError2,	Line	4

Cannot	insert	the	value	NULL	into	column	'PersonType',	table	

'AdventureWorks.Person.Person';

column	does	not	allow	nulls.	INSERT	fails.

The	statement	has	been	terminated.

Error	code	in	procedure	=	515

Returned	error	code	=	515

Return	value	=	-6

In	this	case,	the	proper	@@error	code	is	both	printed	and	returned	to	the	caller	by	the
SP.	Also	of	note	is	that	the	SP	return	value	is	automatically	set	to	a	nonzero	value	when
the	error	occurs.

The	RAISERROR	Statement
RAISERROR	is	a	T-SQL	statement	that	allows	you	to	throw	an	exception	at	runtime.	The
RAISERROR	statement	accepts	a	message	ID	number	or	message	string,	severity	level,
state	information,	and	optional	argument	parameters	for	special	formatting	codes	in	error
messages.	Listing	18-3	uses	RAISERROR	to	throw	an	exception	with	a	custom	error

message,	a	severity	level	of	17,	and	a	state	of	127.

Listing	18-3.	Raising	a	Custom	Exception	with	RAISERROR

RAISERROR	('This	is	an	exception.',	17,	127);

When	you	pass	a	string	error	message	to	the	RAISERROR	statement,	as	in	Listing	18-
3,	a	default	error	code	of	50000	is	raised.	If	you	specify	a	message	ID	number	instead,	the
number	must	be	between	13000	and	2147483647,	and	it	can’t	be	50000.	The	severity	level
is	a	number	between	0	and	25,	with	each	level	representing	the	seriousness	of	the	error.
Table	18-1	lists	the	severity	levels	recognized	by	SQL	Server.

Table	18-1.	SQL	Server	Error	Severity	Levels

Range Description

0–10 Informational	messages

11–18 Errors

19–25 Fatal	errors

	Tip		Only	members	of	the	sysadmin	fixed	server	role	of	users	with	ALTER	TRACE
permissions	can	specify	severity	levels	greater	than	18	with	RAISERROR,	and	the	WITH
LOG	option	must	be	used.

The	state	value	passed	to	RAISERROR	is	a	user-defined	informational	value	between
1	and	127.	The	state	information	can	be	used	to	help	locate	specific	errors	in	your	code
when	using	RAISERROR.	For	instance,	you	can	use	a	state	of	1	for	the	first	RAISERROR
statement	in	a	given	SP	and	a	state	of	2	for	the	second	RAISERROR	statement	in	the	same
SP.	The	state	information	provided	by	RAISERROR	isn’t	as	necessary	in	SQL	Server	2014
because	you	can	retrieve	much	more	descriptive	and	precise	information	from	the
functions	available	in	CATCH	blocks.

The	RAISERROR	statement	supports	an	optional	WITH	clause	for	specifying
additional	options.	The	WITH	LOG	option	logs	the	error	raised	to	the	application	log	and
the	SQL	error	log,	the	WITH	NOWAIT	option	sends	the	error	message	to	the	client
immediately,	and	the	WITH	SETERROR	option	sets	the	@@error	system	function	(in	a
CATCH	block)	to	an	indicated	message	ID	number.	This	should	be	used	with	a	severity	of
10	or	less	to	set	@@error	without	causing	other	side	effects	(for	example,	batch
termination).

RAISERROR	can	be	used	in	a	TRY	or	CATCH	block	to	generate	errors.	In	the	TRY
block,	if	RAISERROR	generates	an	error	with	a	severity	between	11	and	19,	control
passes	to	the	CATCH	block.	For	errors	with	a	severity	of	10	or	lower,	processing	continues
in	the	TRY	block.	For	errors	with	a	severity	of	20	or	higher,	the	client	connection	is
terminated	and	control	doesn’t	pass	to	the	CATCH	block.	For	these	high-severity	errors,
the	error	is	returned	to	the	caller.

Try…Catch	Exception	Handling
SQL	Server	2014	supports	the	TRY…CATCH	model	of	exception	handling,	which	is
common	in	other	modern	programming	languages	and	was	first	introduced	in	SQL	Server
2008.	In	the	T-SQL	TRY…CATCH	model,	you	wrap	the	code	you	suspect	could	cause	an
exception	in	a	BEGIN	TRY…END	TRY	block.	This	block	is	immediately	followed	by	a
BEGIN	CATCH…END	CATCH	block	that	is	invoked	only	if	the	statements	in	the	TRY
block	cause	an	error.	Listing	18-4	demonstrates	TRY…CATCH	exception	handling	with	a
simple	SP.

Listing	18-4.	Sample	TRY…CATCH	Error	Handling

CREATE	PROCEDURE	dbo.TestError3	(@e	int	OUTPUT)

AS

BEGIN

		SET	@e	=	0;

		BEGIN	TRY

		INSERT	INTO	Person.Address	(AddressID)

		VALUES	(1);

END	TRY

BEGIN	CATCH

			SET	@e	=	ERROR_NUMBER();

			PRINT	N'Error	Code	=	'	+	CAST(@e	AS	nvarchar(10));

			PRINT	N'Error	Procedure	=	'	+	ERROR_PROCEDURE();

			PRINT	N'Error	Message	=	'	+	ERROR_MESSAGE();

END	CATCH

END

GO

DECLARE	@ret		int,

		@e	int;

EXEC	@ret		=	dbo.TestError3	@e	OUTPUT;

PRINT	N'Error	code	=	'	+	CAST(@e	AS	nvarchar(10));

PRINT	N'Return	value	=	'	+	CAST(@ret	AS	nvarchar(10));

The	result	is	similar	to	Listing	18-2,	but	SQL	Server’s	TRY…CATCH	support	gives	you
more	control	and	flexibility	over	the	output,	as	shown	here:

(0	row(s)	affected)

Error	Code	=	544

Error	Procedure	=	TestError3

Error	Message	=	Cannot	insert	explicit	value	for	identity	

column	in	table

'Address'	when	IDENTITY_INSERT	is	set	to	OFF.

Returned	error	code	=	544

Return	value	=	-6

The	T-SQL	statements	in	the	BEGIN	TRY…END	TRY	block	execute	normally.	If	the
block	completes	without	error,	the	T-SQL	statements	between	the	BEGIN	CATCH…END
CATCH	block	are	skipped.	If	an	exception	is	thrown	by	the	statements	in	the	TRY	block,
control	transfers	to	the	statements	in	the	BEGIN	CATCH…END	CATCH	block.

The	CATCH	block	exposes	several	functions	for	determining	exactly	what	error
occurred	and	where	it	occurred.	Listing	18-4	uses	some	of	these	functions	to	return
additional	information	about	the	exception	thrown.	These	functions	are	available	only
between	the	BEGIN	CATCH…END	CATCH	keywords,	and	only	during	error	handling
when	control	has	been	transferred	to	the	CATCH	block	by	an	exception	thrown	in	a	TRY
block.	If	used	outside	of	a	CATCH	block,	all	of	these	functions	return	NULL.	The	functions
available	are	listed	in	Table	18-2.

Table	18-2.	CATCH	Block	Functions

Function	Name Description

ERROR_LINE() Returns	the	line	number	on	which	the	exception	occurred

ERROR_MESSAGE() Returns	the	complete	text	of	the	generated	error	message

ERROR_PROCEDURE() Returns	the	name	of	the	SP	or	trigger	where	the	error	occurred

ERROR_NUMBER() Returns	the	number	of	the	error	that	occurred

ERROR_SEVERITY() Returns	the	severity	level	of	the	error	that	occurred

ERROR_STATE() Returns	the	state	number	of	the	error	that	occurred

TRY…CATCH	blocks	can	be	nested.	You	can	have	TRY…CATCH	blocks	in	other	TRY
blocks	or	CATCH	blocks	to	handle	errors	that	might	be	generated	in	your	exception-
handling	code.

You	can	also	test	the	state	of	transactions	in	a	CATCH	block	by	using	the
XACT_STATE	function.	It’s	strongly	recommended	that	you	test	your	transaction	state
before	issuing	a	COMMIT	TRANSACTION	or	ROLLBACK	TRANSACTION	statement	in
your	CATCH	block,	to	ensure	consistency.	Table	18-3	lists	the	return	values	for
XACT_STATE	and	how	you	should	handle	each	in	your	CATCH	block.

Table	18-3.	XACT_STATE	Function	Return	Values

XACT_STATE Meaning

-1 An	uncommittable	transaction	is	pending.	Issue	a	ROLLBACK	TRANSACTION	statement.

0 No	transaction	is	pending.	No	action	is	necessary.

1 A	committable	transaction	is	pending.	Issue	a	COMMIT	TRANSACTION	statement.

The	T-SQL	TRY…CATCH	method	of	error	handling	has	certain	limitations	attached	to
it.	For	one,	TRY…CATCH	can	only	capture	errors	that	have	a	severity	greater	than	10	that
don’t	close	the	database	connection.	The	following	errors	aren’t	caught:

Errors	with	a	severity	of	10	or	lower	(informational	messages)	aren’t
caught.

Errors	with	a	severity	of	20	or	higher	(connection-termination	errors)
aren’t	caught,	because	they	close	the	database	connection
immediately.

Most	compile-time	errors,	such	as	syntax	errors,	aren’t	caught	by
TRY…CATCH,	although	there	are	exceptions	(for	example,	when	using
dynamic	SQL).

Statement-level	recompilation	errors,	such	as	object-name	resolution
errors,	aren’t	caught,	due	to	SQL	Server’s	deferred-name	resolution.

Also	keep	in	mind	that	errors	captured	by	a	TRY…CATCH	block	aren’t	returned	to	the
caller.	You	can,	however,	use	the	RAISERROR	statement	(described	in	the	next	section)	to
return	error	information	to	the	caller.

TRY_PARSE,	TRY_CONVERT,	and	TRY_CAST
SQL	Server	2012	introduced	additional	enhancements	to	the	TRY	command.	The
TRY_PARSE,	TRY_CONVERT,	and	TRY_CAST	functions	offer	error-handling	simplicity
to	some	common	T-SQL	problems.	For	example,	the	TRY_PARSE	function	attempts	to
convert	a	string	value	to	a	date	type	or	numeric	type.	If	the	attempt	fails,	SQL	returns	a
NULL	value.	In	previous	versions	of	SQL	Server,	you	used	CAST	or	CONVERT	and	had	to
write	code	to	capture	any	errors.	The	syntax	for	the	TRY_PARSE	command	is	as	follows:

TRY_PARSE	(string_value	AS	data_type	[USING	culture])

The	culture	statement	allows	you	to	specify	the	language	format	used	for	the
conversion.	This	is	set	regardless	of	the	default	SQL	Server	collation.	If	no	culture	is
specified,	the	command	uses	the	default	language	on	the	server.	Listing	18-5	shows	a	few
examples.	The	output	is	shown	in	Figure	18-1.

Listing	18-5.	Examples	of	TRY_PARSE

DECLARE	@fauxdate	AS	varchar(10)

DECLARE	@realdate	AS	VARCHAR(10)

SET	@fauxdate	=	'iamnotadate'

SET	@realdate	=	'01/05/2012'

SELECT	TRY_PARSE(@fauxdate	AS	DATE);

SELECT	TRY_PARSE(@realdate	AS	DATE);

SELECT	TRY_PARSE(@realdate	AS	DATE	USING	'Fr-FR');

SELECT	IIF(TRY_PARSE(@realdate	AS	DATE)	IS	NULL,	'False',	

'True')

Figure	18-1.	Output	of	the	TRY_PARSE	function

The	first	query	attempts	to	convert	a	non-date	string	to	a	date	and	fails	by	returning
NULL.	The	second	query	succeeds	and	returns	the	date	2012-05-01.	The	third	query
returns	the	same	date	but	converts	it	to	the	French	date	format.	The	final	query	shows	how
you	can	use	conditional	processing	to	return	any	value	you	want	based	on	whether	the
conversion	succeeds	or	fails.

The	next	function	is	TRY_CONVERT.	It	has	the	same	functionality	as	the	CONVERT
function	but	returns	NULL	instead	of	an	error	if	the	conversion	fails.	You	can	use
TRY_CONVERT	when	you	want	to	test	the	possibility	of	converting	one	data	type	to
another	data	type.	The	syntax	is	as	follows:

TRY_CONVERT	(data_type	[(length)],	expression	[,	style	

])

data_type	is	the	data	type	you	want	to	convert	the	expression	into,	and	style
determines	formatting.	Listing	18-6	shows	several	examples,	and	Figure	18-2	shows	the
output.

Listing	18-6.	TRY_CONVERT	Examples

DECLARE	@sampletext	AS	VARCHAR(10)

SET	@sampletext	=	'123456'

SELECT	TRY_CONVERT(INT,	@	sampletext);

SELECT	TRY_CONVERT(DATE,	@	sampletext);

SELECT	IIF(TRY_CONVERT(binary,	@	sampletext)	IS	NULL,	

'FALSE',	'TRUE');

Figure	18-2.	Output	of	TRY_CONVERT

The	listing	sets	the	variable	to	a	text	value,	which	can	easily	be	converted	to	an
integer.	The	first	TRY_CONVERT	successfully	performs	the	conversion,	but	the	second
fails	because	the	text	value	can’t	implicitly	be	converted	to	a	date.	The	final	example
shows	that	the	conversion	succeeded	with	a	return	result	of	TRUE.

Now	let’s	look	at	TRY_CAST.		It’s	the	technical	equivalent	of	TRY_CONVERT,	but
the	format	is	different.	The	syntax	for	TRY_CAST	is	the	following:

TRY_CAST	(expression	AS	data_type	[(length)])

Listing	18-7	uses	the	same	examples	as	Listing	18-5	but	changes	the	syntax	to	use
TRY_CAST.	The	output	is	the	same	as	in	Figure	18-2.

Listing	18-7.	Examples	Using	TRY_CAST

DECLARE	@sampletext	AS	VARCHAR(10)

SET	@sampletext	=	'123456'

SELECT	TRY_CAST(@sampletext	AS	INT);

SELECT	TRY_CAST(@sampletext	AS	DATE);

SELECT	IIF(TRY_CAST(@sampletext	AS	BINARY)	IS	NULL,	'FALSE',	

'TRUE');

	Tip		Although	they’re	useful,	keep	in	mind	a	couple	of	things	about	TRY_PARSE,
TRY_CONVERT,	and	TRY_CAST.	Parsing	strings	can	be	a	costly	process,	so	use	the
functions	sparingly.	Microsoft	recommends	using	TRY_PARSE	only	for	converting
strings	to	date	or	numeric	values.	For	all	other	conversions,	use	CAST	or	CONVERT.	Also
keep	in	mind	that	TRY_CONVERT	and	TRY_CAST	throw	errors	for	explicit	conversions
—these	conversions	aren’t	possible.	For	a	chart	of	implicit	and	explicit	conversions,	see

Books	Online	(BOL)	at	http://msdn.microsoft.com/en-
us/library/ms191530.aspx.

Throw	Statement
SQL	Server	2014	introduced	the	THROW	statement.		It’s	similar	to	what	you	find	in
programming	languages	like	C++	and	C#	and	can	be	used	instead	of	RAISERROR.	A
primary	benefit	of	using	THROW	instead	of	RAISERROR	is	that	it	doesn’t	require	an	error
message	ID	to	exist	in	sys.messages.	The	THROW	statement	can	occur	either	in	a
CATCH	block	or	outside	the	TRY…CATCH	statements.	If	no	parameters	are	defined,	then
THROW	must	be	in	the	CATCH	block.	Listing	18-8	shows	examples	of	both.	It	uses	the
same	INSERT	statements	as	the	previous	examples.

Listing	18-8.	Examples	of	the	THROW	Statement

--1.	Using	THROW	without	parameters

								BEGIN	TRY

				INSERT	INTO	Person.Address	(AddressID)

				VALUES	(1);

					END	TRY

					BEGIN	CATCH

				PRINT	'This	is	an	error';

				THROW

					END	CATCH	;

--2.	Using	THROW	with	parameters

		THROW	52000,		'This	is	also	an	error',		1

					BEGIN	TRY

								INSERT	INTO	Person.Address	(AddressID)

				VALUES	(1);

				END	TRY

					BEGIN	CATCH

					THROW

					END	CATCH

(0	row(s)	affected)

This	is	an	error

Msg	544,	Level	16,	State	1,	Line	2

Cannot	insert	explicit	value	for	identity	column	in	table	

'Address'	when

IDENTITY	INSERT	is	set	to	OFF.

http://msdn.microsoft.com/en-us/library/ms191530.aspx

MSG	52000,	Level	16,	State	1,	Line	1

There	are	a	couple	of	things	to	notice:	First,	the	only	severity	level	returned	by	THROW
is	16.	The	statement	doesn’t	allow	for	any	other	level,	which	is	another	difference	between
THROW	and	RAISERROR.	Also	notice	that	any	statement	prior	to	the	THROW	statement	in
the	CATCH	block	must	end	in	a	semicolon.	This	is	yet	another	reason	to	make	sure	all
your	block	statements	terminate	in	semicolons.

If	you’re	accustomed	to	using	THROW	in	other	programming	languages,	you	should
find	this	a	helpful	addition	to	SQL	Server	2014.

Debugging	Tools
In	procedural	languages	like	C#,	debugging	code	is	somewhat	easier	than	in	declarative
languages	like	T-SQL.	In	procedural	languages,	you	can	easily	follow	the	flow	of	a
program,	setting	breakpoints	at	each	atomic	step	of	execution.	In	declarative	languages,
however,	a	single	statement	can	perform	dozens	or	hundreds	of	steps	in	the	background,
most	of	which	you	probably	aren’t	even	aware	of	at	execution	time.	The	good	news	is	that
the	SQL	Server	team	didn’t	leave	us	without	tools	to	debug	and	troubleshoot	T-SQL	code.
The	unpretentious	PRINT	statement	provides	a	very	simple	and	effective	method	of
debugging.

PRINT	Statement	Debugging
The	PRINT	statement	is	a	simple	and	useful	server-side	debugging	tool.	Simply	printing
constants	and	variable	values	to	standard	output	during	script	or	SP	execution	often
provides	enough	information	to	quickly	locate	problem	code.	PRINT	works	from	within
SPs	and	batches,	but	it	doesn’t	work	in	UDFs	because	of	the	built-in	restrictions	on
functions	causing	side	effects.	Consider	the	example	code	in	Listing	18-9,	which	tries	to
achieve	an	end	result	where	@i	is	equal	to	10.	The	end	result	of	the	code	is	not	@>i	=
10,	so	the	listing	has	a	couple	of	PRINT	statements	to	uncover	the	reason.

Listing	18-9.	Debugging	Script	with	PRINT

DECLARE	@i	int;

PRINT	N'Initial	value	of	@i	=	'	+	COALESCE(CAST(@i	AS	

nvarchar(10)),	N'NULL');

SET	@i	+=	10;

PRINT	N'Final	value	of	@i	=	'	+	COALESCE(CAST(@i	AS	

nvarchar(10)),	N'NULL');

The	result,	shown	in	Figure	18-3,	indicates	that	the	desired	end	result	isn’t	occurring
because	I	failed	to	initialize	the	variable	@i	to	0	at	the	beginning	of	the	script.	The	initial
value	of	@>i	is	NULL,	so	the	end	result	is	NULL.	Once	you’ve	identified	the	issue,	fixing
it	is	a	relatively	simple	matter	in	this	case.

Figure	18-3.	Results	of	PRINT	statement	debugging

In	addition	to	the	PRINT	statement,	you	can	use	the	RAISERROR	statement	with	a
NOWAIT	clause	to	send	a	message	or	status	indication	immediately	to	the	client.	Whereas
PRINT	waits	for	the	buffer	to	flush,	RAISERROR	with	the	NOWAIT	clause	sends	the
message	immediately.

Trace	Flags
SQL	Server	2014	provides	several	trace	flags	that	can	help	with	debugging,	particularly
when	you	suspect	you	have	a	problem	with	SQL	Server	settings.	Trace	flags	can	turn	on	or
off	specific	SQL	Server	behavior	or	temporarily	change	other	server	characteristics	for	a
server	or	session.	As	an	example,	trace	flag	1204	returns	the	resources	and	types	of	locks
participating	in	a	deadlock,	and	the	current	command	affected.

	Tip		Many	trace	flags	are	undocumented	and	may	only	be	revealed	to	you	by	Microsoft
Product	Support	Services	when	you	report	a	specific	issue;	but	those	that	are	documented
can	provide	very	useful	information.	BOL	provides	a	complete	list	of	documented	SQL
Server	2014	trace	flags	under	“Trace	Flags.”

Turning	on	or	off	a	trace	flag	is	as	simple	as	using	the	DBCC	TRACEON	and	DBCC
TRACEOFF	statements,	as	shown	in	Listing	18-10.

Listing	18-10.	Turning	Trace	Flag	1204	On	and	Off

DBCC	TRACEON	(1204,	-l);

GO

DBCC	TRACEOFF	(1204,	-l);

GO

Trace	flags	may	report	information	via	standard	output,	the	SQL	Server	log,	or
additional	log	files	created	for	that	specific	trace	flag.	Check	BOL	for	specific	information
about	the	methods	that	specific	trace	flags	report	back	to	you.

SSMS	Integrated	Debugger
SQL	Server	2005	did	away	with	the	integrated	user	interface	debugger	in	SSMS,	although
it	was	previously	a	part	of	Query	Analyzer	(QA).	Apparently,	the	thought	was	that	Visual
Studio	would	be	the	debugging	tool	of	choice	for	stepping	through	T-SQL	code	and
setting	breakpoints	in	SPs.	Integrated	SSMS	debugging	was	brought	back	in	SQL	Server

2012	and	is	carried	forward	in	SQL	Server	2014.	The	SSMS	main	menu	contains	several
debugging	actions	accessible	through	the	new	Debug	menu,	as	shown	in	Figure	18-4.

Figure	18-4.	The	SSMS	Debug	menu

The	options	are	similar	to	those	available	when	debugging	Visual	Studio	projects.
From	this	menu,	you	can	start	debugging,	step	into/over	your	code	one	statement	at	a	time,
and	manage	breakpoints.	Figure	18-5	shows	an	SSMS	debugging	session	that	has	just	hit	a
breakpoint	in	the	body	of	a	SP.

Figure	18-5.	Stepping	into	code	with	the	SSMS	debugger

The	SSMS	debugger	provides	several	windows	that	provide	additional	debugging
information,	including	the	Call	Stack,	Breakpoints,	Command,	Output,	Locals,	and	Watch
windows.

Visual	Studio	T-SQL	Debugger
Visual	Studio	2013	also	offers	an	excellent	facility	for	stepping	through	SPs	and	UDFs
just	like	any	Visual	Basic	or	C#	application.	You	can	access	Visual	Studio’s	T-SQL
debugger	through	the	Debug	menu	item.	Prior	to	SQL	Server	2014,	the	debug
functionality	was	available	by	pointing	at	your	SQL	Server	instance	and	the	SP	or	function
you	wish	to	debug	under	the	appropriate	database.	Then	you	would	right-click	the
procedure	or	function	and	select	Debug	Procedure	or	Debug	Function	from	the	pop-up
context	menu.	Figure	18-6	demonstrates	by	selecting	Debug	Procedure	for	the
dbo.uspGetBillOfMaterials	SP	in	the	AdventureWorks	2012	database.

Figure	18-6.	Debugging	the	dbo.uspGetBillOfMaterials	procedure	in	SQL	Server	2012

	Tip		It’s	much	easier	to	configure	Visual	Studio	T-SQL	debugging	on	a	locally	installed
instance	of	SQL	Server	than	to	set	up	remote	debugging.	BOL	offers	information	about

setting	up	both	local	and	remote	SQL	Server	debugging,	in	the	article	“Debugging	SQL”
(http://msdn.microsoft.com/en-us/library/cc646024.aspx).

SQL	Server	2014	debug	functionality	is	now	only	available	via	the	toolbar	or	menu
item.	The	right-click	debugging	functionality	was	removed	from	the	SQL	Server	Object
Explorer.	Figure	18-7	demonstrates	the	location	of	the	Debug	menu	and	toolbar	items.

Figure	18-7.	Debugging	the	dbo.uspGetBillOfMaterials	procedure	in	SQL	Server	2014

If	your	function	or	procedure	requires	parameters,	right-click	the	procedure	and	select
Execute	Stored	Procedure	(see	Figure	18-8).	The	Execute	Procedure	window	opens	and
asks	you	to	enter	values	for	the	required	parameters	(see	Figure	18-9).	For	this	example,	I
entered	770	for	the	@StartProductID	parameter	and	7/10/2010	for	the	@CheckDate
parameter	required	by	the	dbo.uspGetBillOfMaterials	procedure.

http://msdn.microsoft.com/en-us/library/cc646024.aspx

Figure	18-8.	Execute	Stored	Procedure

Figure	18-9.	Entering	parameter	values

After	you	enter	the	parameters,	the	procedure	begins	running.	You	must	choose	to	run
the	procedure	in	Debug	mode	to	be	able	to	step	through	the	code.	Visual	Studio	shows	the
script	and	highlights	each	line	in	yellow	as	you	step	through	it,	as	shown	in	Figure	18-10.

Figure	18-10.	Stepping	through	an	SP	in	Debug	mode

In	Debug	mode,	you	can	set	breakpoints	by	clicking	the	left	border	and	using	the
Continue	(F5),	Stop	Debugging	(Shift+F5),	Step	Over	(F10),	Step	Into	(F11),	and	Step
Out	(Shift+F11)	commands,	just	like	when	you	debug	C#	or	Visual	Basic	programs.	You
can	also	add	watches	and	view	locals	to	inspect	parameter	and	variable	values	as	your
code	executes.	Any	result	sets	and	return	values	from	the	SP	are	shown	in	the	Visual
Studio	Output	window,	as	in	Figure	18-11.

Figure	18-11.	The	Visual	Studio	Output	window

Dynamic	SQL
SQL	Server	MVP	Erland	Sommarskog	said	it	best:	“dynamic	SQL	is	a	curse	and	a
blessing”.1		Put	simply,	dynamic	SQL	is	a	means	of	constructing	SQL	statements	as
strings	in	your	server-side	(or	even	client-side)	applications	and	executing	them
dynamically	on	the	fly.	When	used	properly,	dynamic	SQL	can	be	used	to	generate
complex	queries	at	runtime,	in	some	cases	to	improve	performance,	and	to	do	tasks	that
just	aren’t	possible	(or	are	extremely	difficult)	in	standard,	nondynamic	T-SQL.

The	downside	is	that	there	are	numerous	ways	to	shoot	yourself	in	the	foot	with
dynamic	SQL.	If	not	used	properly,	dynamic	SQL	can	open	security	holes	in	your	system
that	are	big	enough	to	drive	a	truck	through.	This	section	discusses	the	various	methods	of
executing	dynamic	SQL,	as	well	as	some	of	the	risks	and	rewards	that	Erland	alludes	to.

The	EXECUTE	Statement
The	most	basic	form	of	server-side	dynamic	SQL	is	achieved	by	passing	an	SQL	query	or
other	instruction	as	a	string	to	the	EXECUTE	statement	(often	abbreviated	EXEC).
EXECUTE	accepts	a	char,	varchar,	nchar,	or	nvarchar	constant,	variable,	or
expression	that	contains	valid	T-SQL	statements.	Listing	18-11	shows	the	most	basic	form
of	dynamic	SQL	with	an	EXECUTE	statement	and	a	string	constant.

Listing	18-11.	Basic	EXECUTE	Statement

EXECUTE	(N'SELECT	ProductID	FROM	Production.Product');

As	you	can	see,	there	is	no	real	advantage	to	performing	dynamic	SQL	on	a	string
constant.	A	simple	SELECT	statement	without	the	EXECUTE	would	perform	the	same
function	and	return	the	same	result.	The	true	power	of	dynamic	SQL	is	that	you	can	build
an	SQL	statement	or	query	dynamically	and	execute	it.	Listing	18-12	demonstrates	how
this	can	be	done.

Listing	18-12.	More	Complex	Dynamic	SQL	Example

DECLARE	@min_product_id	int	=	500;

DECLARE	@sql_stmt	nvarchar(128)	=

				N'SELECT	ProductID	'	+

				N'FROM	Production.Product	'	+

				N'WHERE	ProductID	>=	'	+	CAST(@min_product_id	AS	

nvarchar(10));

EXECUTE	(@sql_stmt);

Now	that	you’ve	seen	this	simple	code	sample,	let’s	explore	all	the	things	that	are
wrong	with	it.

SQL	Injection	and	Dynamic	SQL
In	Listing	18-12,	the	variable	@sqlstmt	contains	the	dynamic	SQL	query.	The	query	is
built	dynamically	by	appending	the	minimum	product	ID	to	the	WHERE	clause.	This	isn’t
the	recommended	method	of	performing	this	type	of	query,	and	it’s	shown	here	to	make	a
point.

One	of	the	problems	with	this	method	is	that	you	lose	some	of	the	benefits	of	cached
query-plan	execution.	SQL	Server	2014	has	some	great	features	that	can	help	in	this	area,
including	parameter	sniffing	and	the	ability	to	turn	on	forced	parameterization,	but	there
are	many	exceptions	to	SQL	Server’s	ability	to	automatically	parameterize	queries	or
clauses.	To	guarantee	efficient	reuse	of	cached	query	execution	plans	as	the	text	of	your
query	changes,	you	should	parameterize	queries	yourself.

But	the	big	problem	here	is	SQL	injection.	Although	not	really	a	problem	when
appending	an	integer	value	to	the	end	of	a	dynamic	query	(as	in	Listing	18-12),	SQL
injection	can	provide	a	back	door	for	hackers	trying	to	access	or	destroy	your	data	when
you	concatenate	strings	to	create	dynamic	SQL	queries.	Take	a	look	at	the	innocent-
looking	dynamic	SQL	query	in	Listing	18-13.	You	see	how	a	hacker	could	wreak	havoc
with	this	query	after	the	listing.

Listing	18-13.	Basic	Dynamic	SQL	Query	with	a	String	Appended

DECLARE	@product_name	nvarchar(50)	=	N'Mountain';

DECLARE	@sql_stmt	NVARCHAR(128)	=	N'SELECT	ProductID,	Name	'	

+

								N'FROM	Production.Product	'	+

								N'WHERE	Name	LIKE	'''	+

								@product_name	+	N'%''';

EXECUTE	(@sql_stmt);

This	query	returns	the	product	IDs	and	names	of	all	products	that	begin	with	the	word
Mountain.	The	problem	is	with	how	SQL	Server	interprets	the	concatenated	string.	The
EXECUTE	statement	sees	the	following	result	after	all	the	string	concatenations	are	done:

SELECT	ProductID,	Name

FROM		Production.Product

WHERE	Name	LIKE	'Mountain%'

A	simple	substitution	for	@productname	can	execute	other	unwanted	statements	on
your	server.	This	is	especially	true	with	data	coming	from	an	external	source	(for	example,
from	the	front	end	or	application	layer).	Consider	the	following	change	to	Listing	18-13:

DECLARE	@product_name	nvarchar(50)	=

				N''';	DROP	TABLE	Production.Product;	--'

As	before,	the	string	concatenations	result	in	a	statement	to	be	executed.	However,	this
time	the	statement	passed	to	EXECUTE	looks	as	follows:

SELECT		ProductID,		Name

FROM		Production.Product

WHERE	Name	LIKE	'';

DROP		TABLE	Production.Product;	--%'

The	simple	dynamic	SQL	query	is	now	two	queries,	the	second	of	which	drops	the
Production.Product	table	from	the	database!	Now	consider	if	the	value	of	the
@productname	variable	had	been	retrieved	from	a	user	interface,	like	a	web	page.	A
malicious	hacker	could	easily	issue	arbitrary	INSERT,	UPDATE,	DELETE,	DROP
TABLE,	TRUNCATE	TABLE,	or	other	statements	to	destroy	data	or	open	a	back	door	into
your	system.	Depending	on	how	secure	your	server	is,	hackers	may	be	able	to	use	SQL
injection	to	grant	themselves	administrator	rights,	retrieve	and	modify	data	stored	in	your
server’s	file	system,	take	control	of	your	server,	or	access	network	resources.

The	only	justification	for	using	the	string-concatenation	method	with	EXECUTE	is	if
you	have	to	dynamically	name	the	tables	or	columns	in	your	statements.	This	is	far	rarer
than	many	people	think.	In	fact,	the	only	time	this	is	usually	necessary	is	if	you	need	to
dynamically	generate	SQL	statements	around	database,	table,	or	column	names—if	you’re
creating	a	dynamic	pivot	table-type	query	or	coding	an	administration	tool	for	SQL	Server,
for	instance.

If	you	must	use	string	concatenation	with	the	EXECUTE	method,	be	sure	to	take	the
following	precautions	with	the	strings	being	passed	in	from	the	user	interface:

Don’t	ever	trust	data	from	the	front	end.	Always	validate	the	data.	If
you’re	expecting	only	the	letters	A	through	Z	and	the	numbers	0
through	9,	reject	all	other	characters	in	the	input	data.

Disallow	apostrophes,	semicolons,	parentheses,	and	double	hyphens
(—)	in	the	input	if	possible.	These	characters	have	special	significance
to	SQL	Server	and	should	be	avoided.	If	you	must	allow	these
characters,	scrutinize	the	input	thoroughly	before	using	them.

If	you	absolutely	must	allow	apostrophes	in	your	data,	escape	them
(double	them)	before	accepting	the	input.

Reject	strings	that	contain	binary	data,	escape	sequences,	and
multiline	comment	markers	(/*	and	*/).

Validate	XML	input	data	against	an	XML	schema	when	possible.

Take	extra-special	care	when	input	data	contains	xp_	or	sp_,	because
it	may	indicate	an	attempt	to	run	procedures	or	XPs	on	your	server.

	Tip		If	you’re	concatenating	one-part	table	and	object	names	into	SQL	statements	on
the	server	side,	you	can	use	the	QUOTENAME	function	to	safely	quote	them.	QUOTENAME
doesn’t	work	for	two-,	three-,	and	four-part	names,	however.

Usually,	data	validations	like	the	ones	listed	previously	are	performed	on	the	client
side,	on	the	front	end,	in	the	application	layer,	or	in	the	middle	tiers	of	multitier	systems.

In	highly	secure	and	critical	applications,	it	may	be	important	to	also	perform	server-side
validations	or	some	combination	of	client-	and	server-side	validations.	Triggers	and	check
constraints	can	perform	this	type	of	validation	on	data	before	it’s	inserted	into	a	table,	and
you	can	create	UDFs	or	SPs	to	perform	validations	on	dynamic	SQL	before	executing	it.
Listing	18-14	shows	a	simple	UDF	that	uses	the	Numbers	table	created	in	Chapter	4	to
perform	basic	validation	on	a	string,	ensuring	that	it	contains	only	the	letters	A	through	Z,
the	digits	0	through	9,	and	the	underscore	character	_,	which	is	a	common	validation	used
on	usernames,	passwords,	and	other	simple	data.

Listing	18-14.	Simple	T-SQL	String-Validation	Function

CREATE		FUNCTION		dbo.ValidateString		(@string		nvarchar(4000))

RETURNS	int

AS

BEGIN

				DECLARE	@result	int	=	0;

				WITH	Numbers	(Num)

				AS

				(

								SELECT	1

								UNION	ALL

								SELECT	Num	+	1

								FROM	Numbers

								WHERE	Num	<=	LEN(@string)

)

				SELECT	@result	=	SUM

				(

								CASE

								WHEN		SUBSTRING(@string,		n.Num,		1)		LIKE	N'[A-Z0-

9_]'	ESCAPE	'\'

								THEN		0

								ELSE	1

								END

)

				FROM	Numbers	n

				WHERE	n.Num	<=	LEN(@string)

				OPTION	(MAXRECURSION	0);

				RETURN	@result;

END

GO

The	function	in	Listing	18-14	uses	a	common	table	expression	(CTE)	to	validate	each
character	in	the	given	string.	The	result	is	the	total	number	of	invalid	characters	in	the
string:	a	value	of	0	indicates	that	all	the	characters	in	the	string	are	valid.	More	complex
validations	can	be	performed	with	the	LIKE	operator	or	procedural	code	to	ensure	that
data	is	in	a	prescribed	format	as	well.

Troubleshooting	Dynamic	SQL
A	big	disadvantage	of	using	dynamic	SQL	is	in	debugging	and	troubleshooting	code.
Complex	dynamic	SQL	queries	can	be	difficult	to	troubleshoot,	and	very	simple	syntax	or
other	errors	can	be	hard	to	locate.	Fortunately	there	is	a	fairly	simple	fix	for	that:	write
your	troublesome	query	directly	in	T-SQL,	replacing	parameters	with	potential	values.
Highlight	the	code,	and	parse—or	execute—it.	Any	syntax	errors	are	detected	and
described	by	SQL	Server	immediately.	Fix	the	errors,	and	repeat	until	all	errors	have	been
fixed.	Then	and	only	then	revert	the	values	back	to	their	parameter	names	and	put	the
statement	back	in	dynamic	SQL.

Another	handy	method	of	troubleshooting	is	to	print	the	dynamic	SQL	statement
before	executing	it.	Highlight,	copy,	and	attempt	to	parse	or	run	it	in	SSMS.	You	should	be
able	to	quickly	and	easily	locate	any	problems	and	fix	them	as	necessary.

One	of	the	restrictions	on	dynamic	SQL	is	that	it	can’t	be	executed	in	a	UDF.	This
restriction	is	in	place	because	UDFs	can’t	produce	side	effects	that	change	the	database.
Dynamic	SQL	offers	infinite	opportunities	to	circumvent	this	restriction,	so	it’s	simply	not
allowed.

The	sp_executesql	Stored	Procedure
The	sp_executesql	SP	provides	a	second	method	of	executing	dynamic	SQL.	When
used	correctly,	it’s	safer	than	the	EXECUTE	method	for	concatenating	strings	and
executing	them.	Like	EXECUTE,	sp_executesql	takes	a	string	constant	or	variable	as
a	SQL	statement	to	execute.	Unlike	EXECUTE,	the	SQL	statement	parameter	must	be	an
nchar	or	nvarchar.

The	sp_executesql	procedure	offers	a	distinct	advantage	over	the	EXECUTE
method:	you	can	specify	your	parameters	separately	from	the	SQL	statement.	When	you
specify	the	parameters	separately	instead	of	concatenating	them	into	one	large	string,	SQL
Server	passes	the	parameters	to	sp_executesql	separately.	SQL	Server	then
substitutes	the	values	of	the	parameters	in	the	parameterized	SQL	statement.	Because	the
parameter	values	aren’t	concatenated	into	the	SQL	statement,	sp_executesql	protects
against	SQL	injection	attacks.	sp_executesql	parameterization	also	improves	reuse	of
the	query	execution	plan	cache,	which	helps	with	performance.

A	limitation	of	this	approach	is	that	you	can’t	use	the	parameters	in	your	SQL
statement	in	place	of	table,	column,	or	other	object	names.	Listing	18-15	shows	how	to
parameterize	the	previous	example.

Listing	18-15.	Dynamic	SQL	sp_executesql	Parameterized

DECLARE	@product_name	NVARCHAR(50)	=	N'Mountain%';

DECLARE	@sql_stmt	NVARCHAR(128)	=	N'SELECT	ProductID,	Name	'	

+

								N'FROM	Production.Product	'	+

								N'WHERE	Name	LIKE	@name';

EXECUTE		sp_executesql	@sql_stmt,

								N'@name	NVARCHAR(50)',

								@name	=	@product_name;

	Tip		It’s	strongly	recommended	that	you	use	parameterized	queries	whenever	possible
when	using	dynamic	SQL.	If	you	can’t	parameterize	(for	example,	you	need	to
dynamically	change	the	table	name	in	a	query),	be	sure	to	thoroughly	validate	the
incoming	data.

Dynamic	SQL	and	Scope
Dynamic	SQL	executes	in	its	own	batch.	This	means	variables	and	temporary	tables
created	in	a	dynamic	SQL	statement	or	statement	batch	aren’t	directly	available	to	the
calling	routine.	Consider	the	example	in	Listing	18-16.

Listing	18-16.	Limited	Scope	of	Dynamic	SQL

DECLARE	@sql_stmt	NVARCHAR(512)	=	N'CREATE	TABLE	

#Temp_ProductIDs	'	+

				N'('		+

				N'				ProductID		int		NOT		NULL		PRIMARY		KEY'		+

				N');		'		+

				N'INSERT	INTO	#Temp_ProductIDs	(ProductID)	'	+

				N'SELECT	ProductID	'	+

				N'FROM	Production.Product;'	;

EXECUTE	(@sql_stmt);

SELECT		ProductID

FROM		#Temp_ProductIDs;

The	#Temp_ProductIDs	temporary	table	is	created	in	a	dynamic	SQL	batch,	so	it
isn’t	available	outside	of	the	batch.	This	causes	the	following	error	message	to	be
generated:

(504	row(s)	affected)

Msg	208,	Level	16,	State	0,	Line	9

Invalid	object	name	'#Temp_ProductIDs'.

The	message	(504	row(s)	affected)	indicates	that	the	temporary-table
creation	and	INSERT	INTO	statement	of	the	dynamic	SQL	executed	properly	and
without	error.	The	problem	is	with	the	SELECT	statement	after	EXECUTE.	Because	the
#Temp_ProductIDs	table	was	created	in	the	scope	of	the	dynamic	SQL	statement,	the
temporary	table	is	dropped	immediately	when	the	dynamic	SQL	statement	completes.	This
means	that	once	SQL	Server	reaches	the	SELECT	statement,	the	#Temp_ProductIDs
table	no	longer	exists.	One	way	to	work	around	this	issue	is	to	create	the	temporary	table

before	the	dynamic	SQL	executes.	The	dynamic	SQL	is	able	to	access	and	update	the
temporary	table	created	by	the	caller,	as	shown	in	Listing	18-17.

Listing	18-17.	Creating	a	Temp	Table	Accessible	to	Dynamic	SQL

CREATE		TABLE		#Temp_ProductIDs

(

				ProductID	int	NOT	NULL	PRIMARY	KEY

);

DECLARE	@sql_stmt	NVARCHAR(512)	=	N'INSERT	INTO	

#Temp_ProductIDs	(ProductID)	'	+

								N'SELECT	ProductID	'	+

								N'FROM	Production.Product;'	;

EXECUTE	(@sql_stmt);

SELECT		ProductID

FROM		#Temp_ProductIDs;

Table	variables	and	other	variables	declared	by	the	caller	aren’t	accessible	to	dynamic
SQL,	however.	Variables	and	table	variables	have	well-defined	scope:	they’re	only
available	to	the	batch,	function,	or	procedure	in	which	they’re	created,	not	to	dynamic
SQL	or	other	called	routines.

Client-Side	Parameterization
Parameterization	of	dynamic	SQL	queries	isn’t	just	a	good	idea	on	the	server	side;	it’s	also
a	great	idea	to	parameterize	queries	instead	of	building	dynamic	SQL	strings	on	the	client
side.	In	addition	to	the	security	implications,	query	parameterization	provides	reuse	of
cached	query	execution	plans,	making	queries	more	efficient	than	their	concatenated	string
counterparts.	Microsoft	.NET	languages	provide	the	tools	necessary	to	parameterize
queries	from	the	application	layer	in	the	System.Data.SqlClient	and
System.Data	namespaces.	Chapter	16	discussed	parameterization	on	the	client	side.

Summary
SQL	Server	has	long	supported	simple	error	handling	using	the	@@error	system	function
to	retrieve	error	information	and	the	RAISERROR	statement	to	throw	exceptions.	SQL
Server	2014	continues	to	support	these	methods	of	handling	errors,	but	it	also	provides
modern,	structured	TRY…CATCH	and	THROW	exception	handling	similar	to	other	modern
languages.	T-SQL	TRY…CATCH	exception	handling	includes	several	functions	that	expose
error-specific	information	in	the	CATCH	block.	SQL	Server	2012	introduced	a	more
streamlined	error-handling	approach	to	common	programming	scenarios	by	introducing
TRY_PARSE,	TRY_CONVERT,	and	TRY_CAST	functions.

In	addition	to	the	SSMS	integrated	debugger,	which	can	be	accessed	through	the

Debug	menu,	SQL	Server	and	Visual	Studio	provide	tools	that	are	useful	for
troubleshooting	and	debugging	your	T-SQL	code.	These	include	simple	tools	like	the
PRINT	statement	and	trace	flags,	and	even	more	powerful	tools	like	Visual	Studio
debugging,	which	lets	you	set	breakpoints,	step	into	code,	and	use	much	of	the	same
functionality	that	is	useful	when	debugging	C#	and	Visual	Basic	programs.

This	chapter	also	discussed	dynamic	SQL,	a	tool	that	is	very	useful	and	powerful	in	its
own	right	but	is	often	incorrectly	used.	Misuse	of	dynamic	SQL	can	expose	your
databases,	servers,	and	other	network	resources,	leaving	your	IT	infrastructure	vulnerable
to	SQL	injection	attacks.	Improper	use	of	dynamic	SQL	can	also	impact	application
performance.	SQL	injection	and	query	performance	are	the	two	most	compelling	reasons
to	take	extra	precautions	when	using	dynamic	SQL.

The	next	chapter	gives	an	overview	of	SQL	Server	2014	query	performance	tuning.

EXERCISES

1.	 [Fill	in	the	blank]	The	___________	system	function	automatically
resets	to	0	after	every	successful	statement	execution.

2.	 [Choose	one]	Which	of	the	following	functions,	available	only	in
the	CATCH	block	in	SQL	Server,	returns	the	severity	level	of	the
error	that	occurred?

a.	 ERR_LEVEL()

b.	 EXCEPTION_SEVERITY()

c.	 EXCEPTION_LEVEL()

d.	 ERROR_SEVERITY()

3.	 [True/False]	The	RAISERROR	statement	allows	you	to	raise	errors
in	SQL	Server.

4.	 [True/False]	Visual	Studio	provides	integrated	debugging,	which
allows	you	to	step	into	T-SQL	functions	and	SPs	and	set
breakpoints.

5.	 [Choose	all	that	apply]	The	potential	problems	with	dynamic	SQL
include	which	of	the	following?

a.	 Potential	performance	issues

b.	 SQL	injection	attacks

c.	 General	exception	errors	caused	by	interference	with
graphics	drivers

d.	 All	of	the	above

1The	Curse	and	Blessings	of	Dynamic	SQL	by	Erland	Sommarskog;

http://www.sommarskog.se/dynamic_sql.html

http://www.sommarskog.se/dynamic_sql.html

CHAPTER	19

Performance	Tuning
In	most	production	environments,	database	and	server	optimization	have	long	been	the
domain	of	DBAs.	This	includes	server	settings,	hardware	optimizations,	index	creation
and	maintenance,	and	many	other	responsibilities.	SQL	developers,	however,	are
responsible	for	ensuring	that	their	queries	perform	optimally.	SQL	Server	is	truly	a
developer’s	DBMS,	and	as	a	result	the	developer	responsibilities	can	overlap	with	those	of
the	DBA.	This	overlap	includes	recommending	database	design	and	indexing	strategies,
troubleshooting	poorly	performing	queries,	and	making	other	performance-enhancement
recommendations.	This	chapter	discusses	various	tools	and	strategies	for	query
optimization	and	performance	enhancement	and	tuning	queries.

SQL	Server	Storage
SQL	Server	is	designed	to	abstract	away	many	of	the	logical	and	physical	aspects	of
storage	and	data	retrieval.	In	a	perfect	world,	you	wouldn’t	have	to	worry	about	such
things—you	would	be	able	to	just	“set	it	and	forget	it.”	Unfortunately,	the	world	isn’t
perfect,	and	how	SQL	Server	stores	data	can	have	a	noticeable	impact	on	query
performance.	Understanding	SQL	Server	storage	mechanisms	is	essential	to	properly
troubleshooting	performance	issues.	With	that	in	mind,	this	section	offers	a	brief	overview
of	how	SQL	Server	stores	your	data.

	Tip		This	section	gives	only	a	summarized	description	of	how	SQL	Server	stores	data.
The	best	detailed	description	of	the	SQL	Server	storage	engine	internals	is	in	the	book
Inside	Microsoft	SQL	Server	2012	Internals,	by	Kalen	Delaney	et	al.	(Microsoft	Press,
2012).

Files	and	Filegroups
SQL	Server	stores	databases	in	files.	Each	database	consists	of	at	least	two	files:	a
database	file	with	an	.mdf	extension	and	a	log	file	with	an	.ldf	extension.	You	can	also
add	additional	files	to	a	SQL	Server	database,	normally	with	an	.ndf	extension.

Filegroups	are	logical	groupings	of	files	for	administration	and	allocation	purposes.	By
default,	SQL	Server	creates	all	database	files	in	a	single	primary	filegroup.	You	can	add
filegroups	to	an	existing	database	or	specify	additional	filegroups	at	creation	time.	When
creating	in-memory	optimized	tables,	you’re	required	to	create	a	new	filegroup	with	the
CONTAINS	MEMORY_OPTIMIZED_DATA	syntax.	Chapter	6	covers	in-memory
optimized	tables	and	provides	a	more	detailed	discussion	of	the	requirements	for	the	new
filegroup	type.	There	are	significant	performance	benefits	to	using	multiple	filegroups,

which	come	from	placing	the	different	filegroups	on	different	physical	drives.	It’s
common	practice	to	increase	performance	by	placing	data	files	in	a	separate	filegroup	and
physical	drive	from	nonclustered	indexes.	It’s	also	common	to	place	log	files	on	a	separate
physical	drive	from	both	data	and	nonclustered	indexes.

Understanding	how	physical	separation	of	files	improves	performance	requires	an
explanation	of	the	read/write	patterns	involved	with	each	type	of	information	that	SQL
Server	stores.	Database	data	generally	uses	a	random-access	read/write	pattern.	The	hard
drive	head	constantly	repositions	itself	to	read	and	write	user	data	to	the	database.
Nonclustered	indexes	are	also	usually	random-access	in	nature;	the	hard	drive	head
repositions	itself	to	traverse	the	nonclustered	index.	Once	nodes	that	match	the	query
criteria	are	found	in	the	nonclustered	index,	if	columns	must	be	accessed	that	aren’t	in	the
nonclustered	index,	the	hard	drive	must	again	reposition	itself	to	locate	the	actual	data
stored	in	the	data	file.	The	transaction	log	file	has	a	completely	different	access	pattern
than	either	data	or	nonclustered	indexes:	SQL	Server	writes	to	the	transaction	log	in	a
serial	fashion.	These	conflicting	access	patterns	can	result	in	head	thrashing,	or	constant
repositioning	of	the	hard	drive	head	to	read	and	write	these	different	types	of	information.
Dividing	your	files	by	type	and	placing	them	on	separate	physical	drives	helps	improve
performance	by	reducing	head	thrashing	and	allowing	SQL	Server	to	perform	I/O
activities	in	parallel.

You	can	also	place	multiple	data	files	in	a	single	filegroup.	When	you	create	a
database	with	multiple	files	in	a	single	filegroup,	SQL	Server	uses	a	proportional	fill
strategy	across	the	files	as	data	is	added	to	the	database.	This	means	SQL	Server	tries	to
fill	all	files	in	a	filegroup	at	approximately	the	same	time.	Log	files,	which	aren’t	part	of	a
filegroup,	are	filled	using	a	serial	strategy.	If	you	add	additional	log	files	to	a	database,
they	won’t	be	used	until	the	current	log	file	is	filled.

	Tip		You	can	move	a	table	from	its	current	filegroup	to	a	new	filegroup	by	dropping	the
current	clustered	index	on	the	table	and	creating	a	new	clustered	index,	specifying	the	new
filegroup	in	the	CREATE	CLUSTERED	INDEX	statement.

Space	Allocation
When	reading	data,	SQL	Server	uses	a	random-access	file	to	locate	the	data	that	resides	in
a	specific	location	rather	than	reading	the	data	from	the	beginning.	To	enable	the	random-
access	file,	the	system	should	have	consistently	sized	allocation	units	in	the	file	structure.
SQL	Server	allocates	space	in	the	database	in	units	called	extents	and	pages	to	accomplish
this.	A	page	is	an	8	KB	block	of	contiguous	storage.	An	extent	consists	of	eight	logically
contiguous	pages,	or	64	KB	of	storage.	SQL	Server	has	two	types	of	extents:	uniform
extents,	which	are	owned	completely	by	a	single	database	object,	and	mixed	extents,	which
can	be	shared	by	up	to	eight	different	database	objects.	When	a	new	table	or	index	is
created,	the	pages	are	allocated	from	mixed	extents.	When	the	table	or	index	grows
beyond	eight	pages,	then	the	allocations	are	done	in	uniform	extents	to	make	the	space
allocation	efficient.

This	physical	limitation	on	the	size	of	pages	is	the	reason	for	the	historic	limitations	on

data	types	such	as	varchar	and	nvarchar	(up	to	8,000	and	4,000	characters,
respectively)	and	row	size	(8,060	bytes).	It’s	also	why	special	handling	is	required
internally	for	LOB	data	types	such	as	varchar(max),	varbinary(max),	and	xml,
because	the	data	they	contain	can	span	many	pages.

SQL	Server	keeps	track	of	allocated	extents	with	what	are	termed	allocation	maps:
global	allocation	map	(GAM)	pages	and	shared	global	allocation	map	(SGAM)	pages.
GAM	pages	use	bits	to	track	all	extents	that	have	been	allocated.	SGAM	pages	use	bits	to
track	mixed	extents	with	one	or	more	free	pages	available.	Index	allocation	map	(IAM)
pages	track	all	the	extents	used	by	an	index	or	table,	and	they’re	used	to	navigate	through
data	pages.	Page	free	space	(PFS)	pages	track	the	free	space	on	each	page	that	stores	LOB
values.	The	combination	of	GAM	and	SGAM	pages	allows	SQL	Server	to	quickly	allocate
free	extents,	uniform/full	mixed	extents,	and	mixed	extents	with	free	pages	as	necessary,
whereas	IAM	and	PFS	are	used	to	decide	when	an	object	needs	extent	allocation.

The	behavior	of	the	SQL	Server	storage	engine	can	have	a	direct	bearing	on
performance.	For	instance,	consider	the	code	in	Listing	19-1,	which	creates	a	table	with
narrow	rows.	Note	that	SQL	Server	can	optimize	storage	for	variable-length	data	types
like	varchar	and	nvarchar,	so	this	example	forces	the	issue	by	using	fixed-length
char	data	types.

Listing	19-1.	Creating	a	Narrow	Table

CREATE	TABLE	dbo.SmallRows

(

				Id		int	NOT	NULL,

				LastName	nchar(50)	NOT	NULL,

				FirstName	nchar(50)	NOT	NULL,

				MiddleName	nchar(50)	NULL

);

INSERT		INTO		dbo.SmallRows

(

				Id,

				LastName,

				FirstName,

				MiddleName

)

SELECT

				BusinessEntityID,

				LastName,

				FirstName,

				MiddleName

FROM	Person.Person;

The	rows	in	the	dbo.SmallRows	table	are	304	bytes	wide.	This	means	SQL	Server
can	fit	about	25	rows	on	a	single	8	KB	page.	You	can	verify	this	with	the	undocumented
sys.fn_PhysLocFormatter	function,	as	shown	in	Listing	19-2.	Partial	results	are

shown	in	Figure	19-1.	The	sys.fn_PhysLocFormatter	function	returns	the	physical
locator	in	the	form	(fileipage:slot).	As	you	can	see	in	the	figure,	SQL	Server	fits
25	rows	on	each	page	(rows	are	numbered	0	to	24).

	Note		The	sys.fn_PhysLocFormatter	function	is	undocumented	and	not
supported	by	Microsoft.	It’s	used	here	for	demonstration	purposes,	because	it’s	handy	for
looking	at	row	allocations	on	pages;	but	don’t	use	it	in	production	code.

Listing	19-2.	Looking	at	Data	Allocations	for	the	SmallRows	Table

SELECT

				sys.fn_PhysLocFormatter(%%physloc%%)	AS	[Row_Locator],

				Id

FROM	dbo.SmallRows;

Figure	19-1.	SQL	Server	fits	25	rows	per	page	for	the	dbo.SmallRows	table

By	way	of	comparison,	the	code	in	Listing	19-3	creates	a	table	with	wide	rows—3,604
bytes	wide,	to	be	exact.	The	final	SELECT	query	retrieves	the	row-locator	information,
demonstrating	that	SQL	Server	can	fit	only	two	rows	per	page	for	the	dbo.LargeRows
table.	The	results	are	shown	in	Figure	19-2.

Listing	19-3.	Creating	a	Table	with	Wide	Rows

CREATE	TABLE	dbo.LargeRows

(

				Id		int	NOT	NULL,

				LastName	nchar(600)	NOT	NULL,

				FirstName	nchar(600)	NOT	NULL,

				MiddleName	nchar(600)	NULL

);

INSERT		INTO		dbo.LargeRows

(

				Id,

				LastName,

				FirstName,

				MiddleName

)

SELECT

				BusinessEntityID,

				LastName,

				FirstName,

				MiddleName

FROM	Person.Person;

SELECT

				sys.fn_PhysLocFormatter(%%physloc%%)	AS	[Row_Locator],

				Id

FROM	dbo.LargeRows;

Figure	19-2.	SQL	Server	fits	only	two	rows	per	page	for	the	dbo.LargeRows	table

Now	that	you’ve	created	two	tables	with	different	row	widths,	the	query	in	Listing	19-
4	queries	both	tables	with	STATISTICS	IO	turned	on	to	demonstrate	the	difference	this
makes	to	your	I/O.

Listing	19-4.	I/O	Comparison	of	Narrow	and	Wide	Tables

SET		STATISTICS	IO	ON;

SELECT

				Id,

				LastName,

				FirstName,

				MiddleName

FROM	dbo.SmallRows;

SELECT

				Id,

				LastName,

				FirstName,

				MiddleName

FROM	dbo.LargeRows;

The	results	returned,	shown	next,	demonstrate	a	significant	difference	in	both	logical
reads	and	read-ahead	reads:

(19972	row(s)	affected)

Table	'SmallRows'.	Scan	count	1,	logical	reads	799,	physical	

reads	0,	read-ahead	reads	8,

lob	logical	reads	0,	lob	physical	reads	0,	lob	read-ahead	

reads	0.

(19972	row(s)	affected)

Table	'LargeRows'.	Scan	count	1,	logical	reads	9986,	

physical	reads	0,	read-ahead	reads

10002,	lob	logical	reads	0,	lob	physical	reads	0,	lob	read-

ahead	reads	0.

The	extra	I/Os	incurred	by	the	query	on	the	dbo.LargeRows	table	significantly
affect	the	query	plan’s	estimated	I/O	cost.	The	query	plan	for	the	dbo.SmallRows
query	is	shown	in	Figure	19-3,	with	an	estimated	I/O	cost	of	0.594315.

Figure	19-3.	Estimated	I/O	cost	for	the	dbo.SmallRows	query

The	query	against	the	dbo.LargeRows	table	is	significantly	costlier,	with	an
estimated	I/O	cost	of	7.39942—nearly	12.5	times	greater	than	the	dbo.SmallRows
query.	Figure	19-4	shows	the	higher	cost	for	the	dbo.LargeRows	query.

Figure	19-4.	Estimated	I/O	cost	for	the	dbo.LargeRows	query

As	you	can	see	from	these	simple	examples,	SQL	Server	has	to	read	significantly	more
pages	when	a	table	is	defined	with	wide	rows.	This	increased	I/O	cost	can	cause	a
significant	performance	drain	when	performing	SQL	Server	queries—even	those	queries
that	are	otherwise	highly	optimized.	You	can	minimize	the	cost	of	I/O	by	minimizing	the
width	of	columns	where	possible	and	always	using	the	appropriate	data	type	for	the	job.	In
the	examples	given,	a	variable-width	character	data	type	(varchar)	would	significantly
reduce	the	storage	requirements	of	the	sample	tables.	Although	I/O	cost	is	often	a
secondary	consideration	for	developers	and	DBAs,	and	frequently	is	addressed	only	after
slow	queries	begin	to	cause	drag	on	a	system,	it’s	a	good	idea	to	keep	the	cost	of	I/O	in
mind	when	initially	designing	your	tables.

Partitions
Partitioning	the	tables	and	indexes	by	range	was	introduced	in	SQL	Server	2005.	This
functionality	allows	the	data	to	be	partitioned	into	rowsets	based	on	the	partitioning
column	value	and	the	partitions	can	be	placed	into	one	more	filegroups	in	the	database	to
improve	the	performance	of	the	query	and	manageability	while	treating	them	as	a	single
object.

Partitioning	is	defined	by	a	partition	scheme	that	maps	the	partitions	defined	by	the
partition	function	to	a	set	of	files	or	filegroups	that	you	define.	A	partition	function
specifies	how	the	index	or	the	table	is	partitioned.	The	column	value	used	to	define	the
partition	can	be	of	any	data	type	except	LOB	data	or	timestamp.	SQL	Server	2008
supports	1,000	partitions	by	default,	which	meets	most	application	needs;	however,	in
some	cases,	due	to	industry	regulations,	you	need	to	retain	the	daily	data	for	more	than	3
years.	In	those	cases,	you	need	the	database	to	support	more	than	1,000	partitions.	SQL
Server	2008	R2	introduced	support	for	15,000	partitions,	but	you	need	to	run	a	stored
procedure	to	enable	this	support.	SQL	Server	2014	provides	support	for	15,000	partitions
by	default	and	also	provides	native	support	for	high-availability	and	disaster-recovery
features	such	as	AlwaysOn,	replication,	database	mirroring,	and	log	shipping.

Partitioning	is	useful	for	grouping	data	from	a	large	table	into	smaller	chunks	so	that
the	data	can	be	maintained	independently	for	database	operations	such	as	speeding	up
queries	(primarily	with	scans),	loading	data,	reindexing,	and	so	on.	Partitioning	can
improve	query	performance	when	the	partitioning	key	is	part	of	the	query	and	the	system
has	enough	processors	to	process	the	query.	Not	all	tables	need	to	be	partitioned;	you
should	consider	characteristics	such	as	how	large	the	table	is,	how	it’s	being	accessed,	and
query	performance	against	the	tables	before	considering	whether	to	partition	the	data.

The	first	step	in	partitioning	a	table	is	to	determine	how	the	rows	in	the	table	will	be
divided	between	the	partitions,	using	a	partition	function.	To	effectively	design	a	partition
function,	you	need	to	specify	logical	boundaries.	If	you	specify	two	boundaries,	then	three
partitions	are	created;	and,	depending	on	whether	the	data	is	being	partitioned	left	or	right,
the	upper	or	lower	boundary	condition	is	set.

The	partition	function	defines	logical	boundaries,	and	the	partition	scheme	defines	the
physical	location	(filegroups)	for	them.	Once	the	partition	function	is	defined	to	set	the
logical	boundary	and	the	partition	scheme	is	defined	to	map	the	logical	boundary	to

filegroups,	you	can	create	the	partitioned	table.

Like	the	table,	you	can	partition	indexes.	To	partition	a	clustered	index,	the	partition
key	must	be	specified	in	the	clustered	index.	Partitioning	a	nonclustered	index	doesn’t
require	the	partition	key;	if	the	partition	key	isn’t	specified,	then	SQL	Server	includes	the
partition	columns	in	the	index.	Indexes	that	are	defined	with	partitioned	tables	can	be
aligned	or	nonaligned;	an	index	is	aligned	if	the	table	and	the	index	logically	have	the
same	partition	strategy.

In	general,	partitioning	is	most	useful	when	data	has	a	time	component.	Large	tables
such	as	order	details—where	most	of	the	DML	operations	are	performed	on	the	current
month’s	data	and	previous	months	are	simply	used	for	selects—may	be	good	candidates	to
partition	by	month.	This	enables	the	queries	to	modify	the	data	found	in	a	single	partition
rather	than	scanning	though	the	entire	table	to	locate	the	data	to	be	modified,	hence
enhancing	query	performance.

Partitions	can	be	split	or	merged	easily	in	a	sliding-window	scenario.	You	can	split	or
merge	partitions	only	if	all	the	indexes	are	aligned	and	the	partition	scheme	and	functions
match.	Partition	alignment	doesn’t	mean	both	objects	have	to	use	the	same	partition
function;	but	if	both	objects	have	the	same	partition	scheme,	functions,	and	boundaries,
they’re	considered	to	be	aligned.	When	both	objects	have	the	same	partitioning	scheme	or
filegroups,	they’re	storage	aligned.	Storage	alignment	can	be	physical	or	logical;	in	both
cases,	query	performance	is	improved.

Data	Compression
In	addition	to	minimizing	the	width	of	columns	by	using	the	appropriate	data	type	for	the
job,	SQL	Server	2014	provides	built-in	data-compression	functionality.	By	compressing
your	data	directly	in	the	database,	SQL	Server	can	reduce	I/O	contention	and	minimize
storage	requirements.	There	is	some	CPU	overhead	associated	with	compression	and
decompression	of	data	during	queries	and	DML	activities,	but	data	compression	is
particularly	useful	for	historical	data	storage	where	access	and	manipulation	demands
aren’t	as	high	as	they	might	be	for	the	most	recent	data.	This	section	discusses	the	types	of
compression	that	SQL	Server	supports	as	well	as	the	associated	overhead	and
recommended	usage	of	each.

Row	Compression
SQL	Server	2005	introduced	an	optimization	to	the	storage	format	for	the	decimal	data
type	in	SP	2.	The	vardecimal	type	provides	optimized	variable-length	storage	for
decimal	data,	which	often	results	in	significant	space	savings—particularly	when
decimal	columns	contain	a	lot	of	zeros.	This	optimization	is	internal	to	the	storage
engine,	so	it’s	completely	transparent	to	developers	and	end	users.	In	SQL	Server	2008,
this	optimization	was	expanded	to	include	all	fixed-length	numeric,	date/time,	and
character	data	types,	in	a	feature	known	as	row	compression.

	Note		The	vardecimal	compression	options	and	SPs	to	manage	this	feature,
including	sp_db_vardecimal_storage_format	and

sp_estimated_rowsize_reduction_for_vardecimal,	are	deprecated,
because	SQL	Server	2014	rolls	this	functionality	into	the	new	row-compression	feature.

SQL	Server	2014	provides	the	useful
sp_estimate_data_compression_savings	procedure	to	estimate	the	savings
you	get	from	applying	compression	to	a	table.	Listing	19-5	estimates	the	space	saved	by
applying	row	compression	to	the	Production.TransactionHistory	table.	This
particular	table	contains	fixed-length	int,	datetime,	and	money	columns.	The	results
are	shown	in	Figure	19-5.

Listing	19-5.	Estimating	Row-Compression	Space	Savings

EXEC	sp_estimate_data_compression_savings	'Production',

				'TransactionHistory',

				NULL,

				NULL,

				'ROW';

Figure	19-5.	Row	compression	space	savings	estimate	for	a	table

	Note		We	changed	the	names	of	the	last	four	columns	in	this	example	so	they	would	fit
in	the	image.	The	abbreviations	are	size_cur_cmp	for	Size	with	current
compression	setting	(KB),	size_req_cmp	for	Size	with	requested
compression	setting	(KB),	size_sample_cur_cmp	for	Sample	size
with	current	compression	setting	(KB),	and	size_sample_req_cmp
for	Sample	size	with	requested	compression	setting	(KB).

The	results	shown	in	Figure	19-5	indicate	that	the	current	size	of	the	clustered	index
(index_id	=	1)	is	about	6.1	MB,	whereas	the	two	nonclustered	indexes	(index_id	=	1
and	2)	total	about	2.9	MB.	SQL	Server	estimates	that	it	can	compress	this	table	down	to	a
size	of	about	4.0	MB	for	the	clustered	index	and	2.6	MB	for	the	nonclustered	indexes.

	Tip		If	your	table	doesn’t	have	a	clustered	index,	the	heap	is	indicated	in	the	results	with
an	index_id	of	0.

You	can	turn	on	row	compression	for	a	table	with	the	DATACOMPRESSION	=	ROW
option	of	the	CREATE	TABLE	and	ALTER	TABLE	DDL	statements.	Listing	19-6	turns
on	row	compression	for	the	Production.TransactionHistory	table.

Listing	19-6.	Turning	on	Row	Compression	for	a	Table

ALTER	TABLE	Production.TransactionHistory	REBUILD

WITH	(DATA_COMPRESSION	=	ROW);

You	can	verify	that	the	ALTER	TABLE	statement	has	applied	row	compression	to

your	table	with	the	sp_spaceused	procedure,	as	shown	in	Listing	19-7.	The	results	are
shown	in	Figure	19-6.

Listing	19-7.	Viewing	Space	Used	by	a	Table	after	Applying	Row	Compression

EXEC	sp_spaceused	N'Production.TransactionHistory';

Figure	19-6.	Space	used	by	the	table	after	applying	row	compression

As	you	can	see	in	the	figure,	the	size	of	the	data	used	by	the
Production.TransactionHistory	table	has	dropped	to	about	4.0	MB.	The
indexes	aren’t	automatically	compressed	by	the	ALTER	TABLE	statement.	To	compress
the	nonclustered	indexes,	you	need	to	issue	ALTER	INDEX	statements	with	the
DATA_COMPRESSION	=	ROW	option.	You	can	use	the	DATA_COMPRESSION	=
NONE	option	to	turn	off	row	compression	for	a	table	or	index.

Row	compression	uses	variable-length	formats	to	store	fixed-length	data,	and	SQL
Server	stores	an	offset	value	in	each	record	for	each	variable-length	value	it	stores.	Prior	to
SQL	Server	2008,	this	offset	value	was	fixed	at	2	bytes	of	overhead	per	variable-length
value.	SQL	Server	2008	introduced	a	new	record	format	that	uses	a	4-bit	offset	for
variable-length	columns	that	are	8	bytes	in	length	or	less.

Page	Compression
SQL	Server	2014	also	has	the	capability	to	compress	data	at	the	page	level	using	two
methods:	column-prefix	compression	and	page-dictionary	compression.	Whereas	row
compression	is	good	for	minimizing	the	storage	requirements	for	highly	unique	fixed-
length	data	at	the	row	level,	page	compression	helps	minimize	the	storage	space	required
by	duplicated	data	stored	in	pages.

The	column-prefix	compression	method	looks	for	repeated	prefixes	in	columns	of	data
stored	on	a	page.	Figure	19-7	shows	a	sample	page	from	a	table,	with	repeated	prefixes	in
columns	underlined.

Figure	19-7.	Page	with	repeated	column	prefixes	identified

To	compress	the	column	prefixes	identified	in	Figure	19-7,	SQL	Server	creates	an
anchor	record.	This	is	a	row	in	the	table	just	like	any	other	row,	except	that	it	serves	the

special	purpose	of	storing	the	longest	value	in	the	column	containing	a	duplicated	column
prefix.	The	anchor	record	is	later	used	by	the	storage	engine	to	re-create	the	full
representations	of	the	compressed	column	values	when	they’re	accessed.	This	special	type
of	record	is	accessible	only	internally	by	the	storage	engine	and	can’t	be	retrieved	or
modified	directly	by	normal	queries	or	DML	operations.	Figure	19-8	shows	the	column
prefix–compressed	version	of	the	page	from	Figure	19-7.

Figure	19-8.	Page	with	column-prefix	compression	applied

There	are	several	items	of	note	in	the	column	prefix–compressed	page	shown	in	Figure
19-8.	First,	the	anchor	record	has	been	added	to	the	page.	Column-prefix	compression
uses	byte	patterns	to	indicate	prefixes,	making	the	column-prefix	method	data-type
agnostic.	In	this	instance,	the	BusinessEntityID	column	is	an	int	data	type;	but	as
you	can	see,	it	takes	advantage	of	data-type	compression	as	well.	The
BusinessEntityID	column	values	are	shown	in	both	int	and	varbinary	formats
to	demonstrate	that	they’re	compressed	as	well.

The	next	interesting	feature	of	column-prefix	compression	is	that	SQL	Server	replaces
the	prefix	of	each	column	with	an	indicator	of	how	many	bytes	need	to	be	prepended	from
the	anchor-record	value	to	re-create	the	original	value.	NULL	is	used	to	indicate	that	the
value	in	the	table	is	the	full	anchor-record	value.

	Note		The	storage	engine	uses	metadata	associated	with	each	value	to	indicate	the
difference	between	an	actual	NULL	in	the	column	and	a	NULL	indicating	a	placeholder	for
the	anchor-record	value.

In	the	example,	each	column	in	the	first	row	is	replaced	with	NULLs	that	act	as
placeholders	for	the	full	anchor-record	values.	The	second	row’s	BusinessEntityID
column	indicates	that	the	first	2	bytes	of	the	value	should	be	replaced	with	the	first	2	bytes
of	the	BusinessEntitylD	anchor-record	column.	The	FirstName	column	of	this
row	indicates	that	the	first	7	bytes	of	the	value	should	be	replaced	with	the	first	7	bytes	of
the	FirstName	anchor-record	column,	and	so	on.

Page-dictionary	compression	is	the	second	type	of	compression	that	SQL	Server	uses
to	compress	pages.	It	creates	an	on-page	dictionary	of	values	that	occur	multiple	times
across	any	columns	and	rows	on	the	page.	It	then	replaces	those	duplicate	values	with
indexes	into	the	dictionary.	Consider	Figure	19-9,	which	shows	a	data	page	with	duplicate
values.

Figure	19-9.	Uncompressed	page	with	duplicate	values	across	columns	and	rows

The	duplicate	values	Arthur	and	Martin	are	added	to	the	dictionary	and	replaced
in	the	data	page	with	indexes	into	the	dictionary.	The	value	Martin	is	replaced	with	the
index	value	(0)	everywhere	it	occurs	in	the	data	page,	and	the	value	Arthur	is	replaced
with	the	index	value	(1).	This	is	demonstrated	in	Figure	19-10.

Figure	19-10.	Page	compressed	with	page-dictionary	compression

When	SQL	Server	performs	page	compression	on	data	pages	and	leaf-index	pages,	it
first	applies	row	compression,	and	then	it	applies	page-dictionary	compression.

	Note		For	performance	reasons,	SQL	Server	doesn’t	apply	page-dictionary	compression
to	non-leaf	index	pages.

You	can	estimate	the	savings	you’ll	get	through	page	compression	with	the
sp_estimate_data_compression_savings	procedure,	as	shown	in	Listing	19-
8.	The	results	are	shown	in	Figure	19-11.

Listing	19-8.	Estimating	Data-Compression	Savings	with	Page	Compression

EXEC		sp_estimate_data_compression_savings	'Person',

				'Person',

				NULL,

				NULL,

				'PAGE';

Figure	19-11.	Page	compression	space	savings	estimate

As	you	can	see	in	Figure	19-11,	SQL	Server	estimates	that	it	can	use	page	compression

to	compress	the	Person.Person	table	from	29.8	MB	in	size	down	to	about	18.2	MB—
a	considerable	savings.	You	can	apply	page	compression	to	a	table	with	the	ALTER
TABLE	statement,	as	shown	in	Listing	19-9.

Listing	19-9.	Applying	Page	Compression	to	the	Person.Person	Table

ALTER	TABLE	Person.Person	REBUILD

WITH	(DATA_COMPRESSION	=	PAGE);

As	with	row	compression,	you	can	use	the	sp_spaceused	procedure	to	verify	how
much	space	page	compression	saves	you.

Page	compression	is	great	for	saving	space,	but	it	doesn’t	come	without	a	cost.
Specifically,	you	pay	for	the	space	savings	with	increased	CPU	overhead	for	SELECT
queries	and	DML	statements.	So,	when	should	you	use	page	compression?	Microsoft
makes	the	following	recommendations:

If	the	table	or	index	is	small	in	size,	then	the	overhead	you	incur	from
compression	probably	won’t	be	worth	the	extra	CPU	overhead.

If	the	table	or	index	is	heavily	accessed	for	queries	and	DML	actions,
the	extra	CPU	overhead	can	significantly	impact	performance.	It’s
important	to	identify	usage	patterns	when	deciding	whether	to
compress	the	table	or	index.

Use	the	sp_estimate_data_compression_savings
procedure	to	estimate	space	savings.	If	the	estimated	space	savings	is
insignificant	(or	nonexistent),	then	the	extra	CPU	overhead	will
probably	outweigh	the	benefits.

Sparse	Columns
In	addition	to	row	compression	and	page	compression,	SQL	Server	provides	sparse
columns,	which	let	you	optimize	NULL	value	storage	in	columns:	when	a	NULL	value	is
stored	in	the	column,	it	takes	up	0	bytes.	.	The	trade-off	(and	you	knew	there	would	be
one)	is	that	the	cost	of	storing	non-NULL	values	goes	up	by	4	bytes	for	each	value.
Microsoft	recommends	using	sparse	columns	when	doing	so	will	result	in	at	least	20%	to
40%	space	savings.	For	an	int	column,	for	instance,	at	least	64%	of	the	values	must	be
NULL	to	achieve	a	40%	space	savings	with	sparse	columns.

To	demonstrate	sparse	columns	in	action,	let’s	use	a	query	that	generates	columns	with
a	lot	of	NULLs	in	them.	The	query	shown	in	Listing	19-10	creates	a	pivot-style	report	that
lists	the	CustomerID	numbers	associated	with	every	sales	order	down	the	right	side	of
the	results,	and	a	selection	of	product	names	from	the	sales	orders.	The	intersection	of
each	CustomerID	and	product	name	contains	the	number	of	each	item	ordered	by	each
customer.	A	NULL	indicates	that	a	customer	didn’t	order	an	item.	Partial	results	of	this
query	are	shown	in	Figure	19-12.

Listing	19-10.	Pivot	Query	that	Generates	Columns	with	Many	NULLs

SELECT

				CustomerID,

				[HL	Road	Frame	-	Black,	58],

				[HL	Road	Frame	-	Red,	58],

				[HL	Road	Frame	-	Red,	62],

				[HL	Road	Frame	-	Red,	44],

				[HL	Road	Frame	-	Red,	48],

				[HL	Road	Frame	-	Red,	52],

				[HL	Road	Frame	-	Red,	56],

				[LL	Road	Frame	-	Black,	58]

FROM

(

				SELECT	soh.CustomerID,	p.Name	AS	ProductName,

								COUNT

								(

								CASE		WHEN		sod.LineTotal		IS		NULL		THEN		NULL

								ELSE	1

								END

)		AS		NumberOfItems

								FROM	Sales.SalesOrderHeader	soh

								INNER	JOIN	Sales.SalesOrderDetail	sod

								ON	soh.SalesOrderID	=	sod.SalesOrderID

								INNER	JOIN	Production.Product	p

								ON		sod.ProductID		=		p.ProductID

								GROUP	BY

								soh.CustomerID,

								sod.ProductID,

								p.Name

)		src

PIVOT

(

				SUM(NumberOfItems)	FOR	ProductName

				IN

				(

				"HL	Road	Frame	-	Black,	58",

				"HL		Road		Frame		-		Red,	58",

				"HL		Road		Frame		-		Red,	62",

				"HL		Road		Frame		-		Red,	44",

				"HL		Road		Frame		-		Red,	48",

				"HL		Road		Frame		-		Red,	52",

				"HL		Road		Frame		-		Red,	56",

				"LL	Road	Frame	-	Black,	58"

)

)		AS		pvt;

Figure	19-12.	Pivot	query	that	returns	the	number	of	each	item	ordered	by	each	customer

Listing	19-11	creates	two	similar	tables	to	hold	the	results	generated	by	the	query	in
Listing	19-10.	The	tables	generated	by	the	CREATE	TABLE	statements	in	Listing	19-11
have	the	same	structure,	except	that	SparseTable	includes	the	keyword	SPARSE	in	its
column	declarations,	indicating	that	these	are	sparse	columns.

Listing	19-11.	Creating	Sparse	and	Nonsparse	Tables

CREATE	TABLE	NonSparseTable

(

				CustomerID	int	NOT	NULL	PRIMARY	KEY,

				"HL	Road	Frame	-	Black,	58"	int	NULL,

				"HL		Road		Frame		-		Red,		58"		int	NULL,

				"HL		Road		Frame		-		Red,		62"		int	NULL,

				"HL		Road		Frame		-		Red,		44"		int	NULL,

				"HL		Road		Frame		-		Red,		48"		int	NULL,

				"HL		Road		Frame		-		Red,		52"		int	NULL,

				"HL		Road		Frame		-		Red,		56"		int	NULL,

				"LL	Road	Frame	-	Black,	58"	int	NULL

);

CREATE		TABLE		SparseTable

(

				CustomerID	int	NOT	NULL	PRIMARY	KEY,

				"HL		Road		Frame		-		Black,		58"		int		SPARSE		NULL,

				"HL		Road		Frame		-		Red,		58"		int		SPARSE	NULL,

				"HL		Road		Frame		-		Red,		62"		int		SPARSE	NULL,

				"HL		Road		Frame		-		Red,		44"		int		SPARSE	NULL,

				"HL		Road		Frame		-		Red,		48"		int		SPARSE	NULL,

				"HL		Road		Frame		-		Red,		52"		int		SPARSE	NULL,

				"HL		Road		Frame		-		Red,		56"		int		SPARSE	NULL,

				"LL		Road		Frame		-		Black,		58"		int		SPARSE		NULL

);

After	using	the	query	in	Listing	19-10	to	populate	these	two	tables,	you	can	use	the
sp_spaceused	procedure	to	see	the	space	savings	that	sparse	columns	provide.	Listing
19-12	executes	sp_spaceused	on	these	two	tables,	both	of	which	contain	identical
data.	The	results	shown	in	Figure	19-13	demonstrate	that	the	SparseTable	takes	up
only	about	25%	of	the	space	used	by	the	NonSparseTable,	because	NULL	values	in

sparse	columns	take	up	no	storage	space.

Listing	19-12.	Calculating	the	Space	Savings	of	Sparse	Columns

EXEC	sp_spaceused	N'NonSparseTable';

EXEC	sp_spaceused	N'SparseTable';

Figure	19-13.	Space	savings	provided	by	sparse	columns

Sparse	Column	Sets
In	addition	to	sparse	columns,	SQL	Server	provides	support	for	XML	sparse	column	sets.
An	XML	column	set	is	defined	as	an	xml	data	type	column,	and	it	contains	non-NULL
sparse	column	data	from	the	table.	An	XML	sparse	column	set	is	declared	using	the
COLUMNSET	FOR	ALLSPARSECOLUMNS	option	on	an	xml	column.	As	a	simple
example,	the	AdventureWorks	Production.Product	table	contains	several	products
that	don’t	have	associated	size,	color,	or	other	descriptive	information.	Listing	19-13
creates	a	table	called	Production.SparseProduct	that	defines	several	sparse
columns	and	a	sparse	column	set.

Listing	19-13.	Creating	and	Populating	a	Table	with	a	Sparse	Column	Set

CREATE	TABLE	Production.SparseProduct

(

				ProductID	int	NOT	NULL	PRIMARY	KEY,

				Name		dbo.Name		NOT		NULL,

				ProductNumber	nvarchar(25)	NOT	NULL,

				Color	nvarchar(15)	SPARSE	NULL,

				Size		nvarchar(5)		SPARSE		NULL,

				SizeUnitMeasureCode	nchar(3)	SPARSE	NULL,

				WeightUnitMeasureCode	nchar(3)	SPARSE	NULL,

				Weight	decimal(8,	2)	SPARSE	NULL,

				Class	nchar(2)	SPARSE	NULL,

				Style	nchar(2)	SPARSE	NULL,

				SellStartDate	datetime	NOT	NULL,

				SellEndDate	datetime	SPARSE	NULL,

				DiscontinuedDate	datetime	SPARSE	NULL,

				SparseColumnSet	xml	COLUMN_SET	FOR	ALL_SPARSE_COLUMNS

);

GO

INSERT	INTO	Production.SparseProduct

(

				ProductID,

				Name,

				ProductNumber,

				Color,

				Size,

				SizeUnitMeasureCode,

				WeightUnitMeasureCode,

				Weight,

				Class,

				Style,

				SellStartDate,

				SellEndDate,

				DiscontinuedDate

)

SELECT

				ProductID,

				Name,

				ProductNumber,

				Color,

				Size,

				SizeUnitMeasureCode,

				WeightUnitMeasureCode,

				Weight,

				Class,

				Style,

				SellStartDate,

				SellEndDate,

				DiscontinuedDate

FROM		Production.Product;

GO

You	can	view	the	sparse	column	set	in	XML	form	with	a	query	like	the	one	in	Listing
19-14.	The	results	in	Figure	19-14	show	that	the	first	five	products	don’t	have	any	sparse
column	data	associated	with	them,	so	the	sparse	column	data	takes	up	no	space.	By
contrast,	products	317	and	318	both	have	Color	and	Class	data	associated	with	them.

Listing	19-14.	Querying	a	XML	Sparse	Column	Set	as	XML

SELECT	TOP(7)

ProductID,

SparseColumnSet	FROM	Production.SparseProduct;

Figure	19-14.	Viewing	sparse	column	sets	in	XML	format

Although	SQL	Server	manages	sparse	column	sets	using	XML,	you	don’t	need	to
know	XML	to	access	sparse	column	set	data.	In	fact,	you	can	access	the	columns	defined
in	sparse	column	sets	using	the	same	query	and	DML	statements	you’ve	always	used,	as
shown	in	Listing	19-15.	The	results	of	this	query	are	shown	in	Figure	19-15.

Listing	19-15.	Querying	Sparse	Column	Sets	by	Name

SELECT

				ProductID,

				Name,

				ProductNumber,

				SellStartDate,

				Color,

				Class

FROM		Production.SparseProduct

WHERE	ProductID	IN	(1,	317);

Figure	19-15.	Querying	sparse	column	sets	with	SELECT	queries

Sparse	column	sets	provide	the	benefits	of	sparse	columns,	with	NULLs	taking	up	no
storage	space.	However,	the	downside	is	that	non-NULL	sparse	columns	that	are	a	part	of	a
column	set	are	stored	in	XML	format,	adding	some	storage	overhead	as	compared	with
their	nonsparse,	non-NULL	counterparts.

Indexes
Your	query	performance	may	begin	to	lag	over	time	for	several	reasons.	It	may	be	that
database	usage	patterns	have	changed	significantly,	or	the	amount	of	data	stored	in	the
database	has	increased	significantly,	or	the	database	has	fallen	out	of	maintenance.
Whatever	the	reason,	the	knee-jerk	reaction	of	many	developers	and	DBAs	is	to	throw
indexes	at	the	problem.	Although	indexes	are	indeed	useful	for	increasing	performance,

they	consume	resources,	both	in	storage	and	maintenance.	Before	creating	new	indexes	all
over	your	database,	it’s	important	to	understand	how	they	work.	This	section	provides	an
overview	of	SQL	Server’s	indexing	mechanisms.

Heaps
In	SQL	Server	parlance,	a	heap	is	simply	an	unordered	collection	of	data	pages	with	no
clustered	index.	SQL	Server	uses	index	allocation	map	(IAM)	pages	to	track	allocation
units	of	the	following	types:

Heap	or	B-tree	(HOBT)	allocation	units,	which	track	storage
allocation	for	tables	and	indexes

LOB	allocation	units,	which	track	storage	allocation	for	LOB	data

Small	LOB	(SLOB)	allocation	units,	which	track	storage	allocation
for	row-overflow	data

As	any	DBA	will	tell	you,	a	table	scan,	which	is	SQL	Server’s	“brute	force”	data-
retrieval	method,	is	a	bad	thing	(although	not	necessarily	the	worst	thing	that	can	happen).
In	a	table	scan,	SQL	Server	literally	scans	every	data	page	that	was	allocated	by	the	heap.
Any	query	against	the	heap	causes	a	table-scan	operation.	To	determine	which	pages	have
been	allocated	for	the	heap,	SQL	Server	must	refer	back	to	the	IAM.	A	table	scan	is
known	as	an	allocation	order	scan	because	it	uses	the	IAM	to	scan	the	data	pages	in	the
order	in	which	they	were	allocated	by	SQL	Server.

Heaps	are	also	subject	to	fragmentation,	and	the	only	way	to	eliminate	fragmentation
from	the	heap	is	to	copy	the	heap	to	a	new	table,	create	a	clustered	index	on	the	table,	or
perform	periodic	maintenance	to	keep	the	index	from	being	fragmented.	Forward	pointers
introduce	another	performance-related	issue	to	heaps.	When	a	row	with	variable-length
columns	is	updated	with	row	length	larger	than	the	page	size,	the	updated	row	may	have	to
be	moved	to	a	new	page.	When	SQL	Server	must	move	the	row	in	a	heap	to	a	new
location,	it	leaves	a	forward	pointer	to	the	new	location	at	the	old	location.	If	the	row	is
moved	again,	SQL	Server	leaves	another	forward	pointer,	and	so	on.	Forward	pointers
result	in	additional	I/Os,	making	table	scans	even	less	efficient	(and	you	thought	that
wasn’t	possible!).	Table	scans	aren’t	entirely	bad	if	you	have	to	perform	row0based
operations	or	if	you’re	querying	against	tables	with	small	data	sets	such	as	lookup	tables,
where	adding	an	index	creates	maintenance	overhead.

	Tip		Querying	a	heap	with	no	clustered	or	nonclustered	indexes	always	results	in	a
costly	table	scan.

Clustered	Indexes
If	a	heap	is	an	unordered	collection	of	data	pages,	how	do	you	impose	order	on	the	heap?
The	answer	is	a	clustered	index.	A	clustered	index	turns	an	unordered	heap	into	a
collection	of	data	pages	ordered	by	the	specified	clustered-index	columns.	Clustered

indexes	are	managed	in	the	database	as	B-tree	structures.

The	top	level	of	the	clustered	index	B-tree	is	known	as	the	root	node,	the	bottom-level
nodes	are	known	as	leaf	nodes,	and	all	nodes	in	between	the	root	node	and	leaf	nodes	are
collectively	referred	to	as	intermediate	nodes.	In	a	clustered	index,	the	leaf	nodes	contain
the	actual	data	rows	for	a	table,	and	all	leaf	nodes	point	to	the	next	and	previous	leaf
nodes,	forming	a	doubly	linked	list.	The	clustered	index	holds	a	special	position	in	SQL
Server	indexing	because	its	leaf	nodes	contain	the	actual	table	data.	Because	the	page
chain	for	the	data	pages	can	be	ordered	only	one	way,	there	can	be	only	one	clustered
index	defined	per	table.	The	query	optimizer	uses	the	clustered	index	for	seeks,	because
the	data	can	be	found	directly	at	the	leaf	level	if	a	clustered	index	is	used.	The	clustered-
index	B-tree	structure	is	shown	in	Figure	19-16.

Figure	19-16.	Clustered	index	B-tree	structure

Guaranteed	Order
Despite	the	fact	that	the	data	pages	in	a	clustered	index	are	ordered	by	the	clustered-index
columns,	you	can’t	depend	on	table	rows	being	returned	in	clustered-index	order	unless
you	specify	an	ORDER	BY	clause	in	your	queries.	There	are	a	couple	of	reasons	for	this,
including	the	following:

Your	query	may	join	multiple	tables,	and	the	optimizer	may	choose	to
return	results	in	another	order	based	on	indexes	on	another	table.

The	optimizer	may	use	an	allocation-order	scan	of	your	clustered
index,	which	will	return	results	in	the	order	in	which	data	pages	were
allocated.

The	bottom	line	is	that	the	SQL	query	optimizer	may	decide	that,	for	whatever	reason,

it’s	more	efficient	to	return	results	unordered	or	in	an	order	other	than	clustered-index
order.	Because	of	this,	you	can’t	depend	on	results	always	being	returned	in	the	same
order	without	an	explicit	ORDER	BY	clause.	I’ve	seen	many	cases	of	developers	being
bitten	because	their	client-side	code	expected	results	in	a	specific	order,	and	after	months
of	receiving	results	in	the	correct	order,	the	optimizer	decided	that	returning	results	in	a
different	order	would	be	more	efficient.	Don’t	fall	victim	to	this	false	optimism—use
ORDER	BY	when	ordered	results	are	important.

Many	are	under	the	impression	that	a	clustered-index	scan	is	the	same	thing	as	a	table
scan.	In	one	sense,	this	is	correct—when	SQL	Server	performs	an	unordered	clustered-
index	scan,	it	refers	back	to	the	IAM	to	scan	the	data	pages	of	the	clustered	index	using	an
allocation-order	scan,	just	like	a	table	scan.

However,	SQL	Server	has	another	option	for	clustered	indexes:	the	ordered	clustered
index	scan.	In	an	ordered	clustered-index	scan,	or	leaf-level	scan,	SQL	Server	can	follow
the	doubly	linked	list	at	the	leaf-node	level	instead	of	referring	back	to	the	IAM.	The	leaf-
level	scan	has	the	benefit	of	scanning	in	clustered-index	order.	Table	scans	don’t	have	the
option	of	a	leaf-level	scan	because	the	leaf-level	pages	aren’t	ordered	or	linked.

Clustered	indexes	also	eliminate	the	performance	problems	associated	with	forward
pointers	in	the	heap,	although	you	do	have	to	pay	attention	to	fragmentation,	page	splits,
and	fill	factor	when	you	have	a	clustered	index	on	your	table.	Fill	factor	determines	how
many	rows	can	be	filled	in	the	index	page.	When	the	index	page	is	full	and	new	rows	need
to	be	inserted,	SQL	Server	creates	a	new	index	page	and	transfers	rows	to	the	new	page
from	the	previous	page;	this	is	called	as	page	split.	You	can	reduce	page	splits	by	setting
the	proper	fill	factor	to	determine	how	much	free	space	there	is	in	the	index	pages.

So	when	should	you	use	a	clustered	index?	As	a	general	rule,	we	like	to	put	a	clustered
index	on	nearly	every	table	we	create,	although	it	isn’t	a	requirement	to	have	clustered
indexes	for	all	tables.	You	have	to	decide	which	columns	you	wish	to	create	in	your
clustered	indexes.	Here	are	some	general	recommendations	for	columns	to	consider	in
your	clustered	index	design:

Columns	that	provide	a	high	degree	of	uniqueness.	Monotonically
increasing	columns,	such	as	IDENTITY	and	SEQUENCE	columns,	are
ideal	because	they	also	reduce	the	overhead	associated	with	page
splits	that	result	from	insert	and	update	operations.

Columns	that	return	a	range	of	values	using	operators	like	>=,	<,	and
BETWEEN.	When	you	use	a	range	query	on	clustered	index	columns,
after	the	first	match	is	found,	the	remaining	values	are	guaranteed	to
be	linked/adjacent	in	the	B-tree.

Columns	that	are	used	in	queries	that	return	large	result	sets	of	data
from	those	columns.

Columns	that	are	used	in	the	ON	clause	of	a	JOIN.	Usually,	these	are
primary-key	or	foreign-key	columns.	SQL	Server	creates	a	unique
clustered	index	on	the	column	when	the	primary	key	is	added	to	the
table.

Columns	that	are	used	in	GROUP	BY	or	ORDER	BY	clauses.	A
clustered	index	on	these	columns	can	help	SQL	Server	improve
performance	when	ordering	query	result	sets.

You	should	also	make	your	clustered	indexes	as	narrow	as	possible	(often	a	single	int
or	uniqueidentifier	column),	because	this	decreases	the	number	of	levels	that	must
be	traversed	and	hence	reduces	I/O.	Another	reason	is	that	they’re	automatically	appended
to	all	nonclustered	indexes	on	the	same	table	as	row	locators,	so	keeping	the	clustered-
index	key	small	reduces	the	size	of	nonclustered	indexes	as	well.

Nonclustered	Indexes
Nonclustered	indexes	provide	another	tool	for	indexing	relational	data	in	SQL	Server.
Like	clustered	indexes,	SQL	Server	stores	nonclustered	indexes	as	B-tree	structures.
Unlike	clustered	indexes,	however,	each	leaf	node	in	a	nonclustered	index	contains	the
nonclustered	key	value	and	a	row	locator.	The	table	rows	are	stored	apart	from	the
nonclustered	index—in	the	clustered	index	if	one	is	defined	on	the	table	or	in	a	heap	if	the
table	has	no	clustered	index.	Figure	19-17.	shows	the	nonclustered	index	B-tree	structure.
Recall	from	the	previous	section	on	clustered	indexes	that	data	rows	can	only	be	stored	in
one	sorted	order,	and	this	is	achieved	via	a	clustered	index.	Order	can	only	be	achieved	via
the	clustered	index.

If	a	table	has	a	clustered	index,	all	nonclustered	indexes	defined	on	the	table
automatically	include	the	clustered-index	columns	as	the	row	locator.	If	the	table	is	a	heap,
SQL	Server	creates	row	locators	to	the	rows	from	the	combination	of	the	file	identifier,
page	number,	and	slot	on	the	page.	Therefore,	if	you	add	a	clustered	index	at	a	later	date,
be	aware	that	you	need	to	rebuild	your	nonclustered	indexes	to	use	the	clustered-index
column	as	a	row	locator	rather	than	file	identifier.

Figure	19-17.	Nonclustered	index	B-tree	structure

Nonclustered	indexes	are	associated	with	the	RID-lookup	and	key-lookup	operations.
RID	lookups	are	bookmark	lookups	into	the	heap	using	row	identifiers	(RIDs),	whereas
key	lookups	are	bookmark	lookups	on	tables	with	clustered	indexes.	Once	SQL	Server
locates	the	index	rows	that	fulfill	a	query,	if	the	query	requires	more	columns	than	the
nonclustered	index	covers,	then	the	query	engine	must	use	the	row	locator	to	find	the	rows
in	the	clustered	index	or	the	heap	to	retrieve	necessary	data.	These	are	the	operations
referred	to	as	RID	and	key	lookups,	and	they’re	costly—so	costly,	in	fact,	that	many
performance-tuning	operations	are	based	on	eliminating	them.

	Note		Prior	versions	of	SQL	Server	had	the	bookmark	lookup	operation.	In	SQL	Server
2014,	this	operation	has	been	split	into	two	distinct	operations—the	RID	lookup	and	the
key	lookup—to	differentiate	between	bookmark	lookups	against	heaps	and	clustered
indexes.

One	method	of	dealing	with	RID	and	key	lookups	is	to	create	covering	indexes.	A
covering	index	is	a	nonclustered	index	that	contains	all	the	columns	necessary	to	fulfill	a
given	query	or	set	of	queries.	If	a	nonclustered	index	doesn’t	cover	a	query,	then	for	each
row,	SQL	Server	has	to	look	up	the	row	to	retrieve	values	for	the	columns	that	aren’t
included	in	the	nonclustered	index.	If	you	perform	the	lookup	using	RID,	there	is	extra	I/O
for	each	row	in	the	result	set.	But	when	you	define	a	covering	index,	the	query	engine	can
determine	that	all	the	information	it	needs	to	fulfill	the	query	is	stored	in	the	nonclustered
index	rows,	so	it	doesn’t	need	to	perform	a	lookup	operation.

SQL	Server	offers	the	option	to	INCLUDE	columns	in	the	index.	An	included	column
isn’t	an	index	key,	so	it	allows	the	columns	to	appear	on	the	leaf	pages	of	the	nonclustered
index	and	hence	improves	query	performance.

	Tip		Prolific	author	and	SQL	Server	MVP	Adam	Machanic	defines	a	clustered	index	as
a	covering	index	for	every	possible	query	against	a	table.	This	definition	provides	a	good
tool	for	demonstrating	that	there’s	not	much	difference	between	clustered	and
nonclustered	indexes,	and	it	helps	to	reinforce	the	concept	of	index	covering.

The	example	query	in	Listing	19-16	shows	a	simple	query	against	the
Person.Person	table	that	requires	a	bookmark	lookup,	which	is	itself	shown	in	the
query	plan	in	Figure	19-18.

Listing	19-16.	Query	Requiring	a	Bookmark	Lookup

SELECT

BusinessEntityID,

LastName,

FirstName,

MiddleName,

Title	FROM	Person.Person	WHERE	LastName	=	N'Duffy';

Figure	19-18.	Bookmark	lookup	in	the	query	plan

So	why	is	there	a	bookmark	lookup	(referenced	as	a	key	lookup	operator	in	the	query
plan)?	The	answer	lies	in	the	query.	This	particular	query	uses	the	LastName	column	in
the	WHERE	clause	to	limit	results,	so	the	query	engine	decides	to	use	the
IX_Person_LastName_FirstName_MiddleName	nonclustered	index	to	fulfill	the
query.	This	nonclustered	index	contains	the	LastName,	FirstName,	and
MiddleName	columns,	as	well	as	the	BusinessEntityID	column,	which	is	defined
as	the	clustered	index.	The	lookup	operation	is	required	because	the	SELECT	clause	also
specifies	that	the	Title	column	needs	to	be	returned	in	the	result	set.	Because	the
Title	column	isn’t	included	in	the	covering	index,	SQL	Server	has	to	refer	back	to	the
table’s	data	pages	to	retrieve	it.

Creating	an	index	with	the	Title	column	included	in	the	nonclustered	index	as
shown	in	Listing	19-17	removes	the	lookup	operation	from	the	query	plan	for	the	query	in
Listing	19-16.	As	shown	in	Figure	19-19,	the
IX_Covering_Person_LastName_FirstName_MiddleName	index	covers	the
query.

	Tip		Another	alternative	to	eliminate	this	costly	lookup	operation	would	be	to	modify
the	nonclustered	index	used	in	the	example	to	include	the	Title	column,	which	would
create	a	covering	index	for	the	query.

Listing	19-17.	Query	Using	a	Covering	Index

CREATE	NONCLUSTERED	INDEX	

[IX_Covering_Person_LastName_FirstName_MiddleName]	ON	

[Person].[Person]

(

				[LastName]	ASC,

				[FirstName]	ASC,

				[MiddleName]	ASC

)	INCLUDE	(Title)

WITH	(PAD_INDEX	=	OFF,	STATISTICS_NORECOMPUTE	=	OFF,	

SORT_IN_TEMPDB	=	OFF,	DROP_EXISTING	=	OFF,	ONLINE	=	OFF,	

ALLOW_ROW_LOCKS	=	ON,	ALLOW_PAGE_LOCKS	=	ON)	ON	[PRIMARY]

GO

Figure	19-19.	The	covering	index	eliminates	the	lookup	operation

You	can	define	up	to	999	nonclustered	indexes	per	table.	You	should	carefully	plan
your	indexing	strategy	and	try	to	minimize	the	number	of	indexes	you	define	on	a	single
table.	Nonclustered	indexes	can	require	a	substantial	amount	of	additional	storage,	and
there	is	a	definite	overhead	involved	in	automatically	updating	them	whenever	the	table
data	changes.	When	deciding	how	many	indexes	to	add	to	a	table,	consider	the	usage
patterns	carefully.	Tables	with	data	that	doesn’t	change—or	rarely	changes—may	derive
greater	benefit	from	having	lots	of	indexes	defined	on	them	than	tables	whose	data	is
modified	often.

Nonclustered	indexes	are	useful	for	the	following	types	of	queries:

Queries	that	return	one	row,	or	a	few	rows,	with	high	selectivity.

Queries	that	can	use	an	index	with	high	selectivity	(generally	greater
than	95%).	Selectivity	is	a	measure	of	the	unique	key	values	in	an
index.	SQL	Server	often	ignores	indexes	with	low	selectivity.

Queries	that	return	small	ranges	of	data	that	would	otherwise	result	in
a	clustered	index	or	table	scan.	These	types	of	queries	often	use	simple
equality	predicates	(=)	in	the	WHERE	clause.

Queries	that	are	completely	covered	by	the	nonclustered	index.

Filtered	Indexes
In	SQL	Server	2014,	filtered	indexes	provide	a	way	to	create	more	targeted	indexes	that
require	less	storage	and	can	support	more	efficient	queries.	Filtered	indexes	are	optimized
nonclustered	indexes	that	allow	you	to	easily	add	filtering	criteria	to	restrict	the	rows
included	in	the	index	with	a	WHERE	clause.	A	filtered	index	improves	the	performance	of
queries	because	the	index	is	smaller	than	a	nonclustered	index,	and	the	statistics	are	more
accurate	because	they	cover	only	the	rows	in	the	filtered	index.	Adding	a	filtered	index	to
a	table	where	a	nonclustered	index	is	unnecessary	reduces	disk	storage	for	the
nonclustered	index,	and	the	statistics	update	the	cost	as	well.	Listing	19-18	creates	a
filtered	index	on	the	Size	column	of	the	Production.Product	table	that	excludes
NULL.

Listing	19-18.	Creating	and	Testing	a	Filtered	Index	on	the	Production.Product
Table

CREATE	NONCLUSTERED	INDEX	IX_Product_Size

ON	Production.Product

(

Size,

SizeUnitMeasureCode)

WHERE	Size	IS	NOT	NULL;

GO

SELECT

ProductID,

Size,

SizeUnitMeasureCode	FROM	Production.Product	WHERE	Size	

=	'L';

GO

	Tip		Filtered	indexes	are	particularly	well	suited	for	indexing	non-NULL	values	of
sparse	columns.

Optimizing	Queries
One	of	the	more	interesting	tasks	that	SQL	developers	and	DBAs	must	perform	is
optimizing	queries.	To	borrow	an	old	cliché,	query	optimization	is	as	much	art	as	science.
There	are	a	lot	of	moving	parts	in	the	SQL	query	engine,	and	your	task	is	to	give	the
optimizer	as	much	good	information	as	you	can	so	that	it	can	make	good	decisions	at
runtime.

Performance	is	generally	measured	in	terms	of	response	time	and	throughput,	defined
as	follows:

Response	time	is	the	time	it	takes	SQL	Server	to	complete	a	task	such
as	a	query.

Throughput	is	a	measure	of	the	volume	of	work	that	SQL	Server	can
complete	in	a	fixed	period	of	time,	such	as	the	number	of	transactions
per	minute.

Several	other	factors	affect	overall	system	performance	but	are	outside	the	scope	of
this	book.	Application	responsiveness,	for	instance,	depends	on	several	additional	factors
like	network	latency	and	UI	architecture,	both	of	which	are	beyond	SQL	Server’s	control.
This	section	talks	about	how	to	use	query	plans	to	diagnose	performance	issues.

Reading	Query	Plans
When	you	submit	a	T-SQL	script	or	statement	to	the	SQL	Server	query	engine,	SQL
Server	compiles	your	code	into	a	query	plan.	The	query	plan	is	composed	of	a	series	of

physical	and	logical	operators	that	the	optimizer	has	chosen	to	complete	your	query.	The
optimizer	bases	its	choice	of	operators	on	a	wide	array	of	factors	like	data-distribution
statistics,	cardinality	of	tables,	and	availability	of	useful	indexes.	SQL	Server	uses	a	cost-
based	optimizer,	meaning	the	execution	plan	it	chooses	will	have	the	lowest	estimated
cost.

SQL	Server	can	return	query	plans	in	a	variety	of	formats.	My	preference	is	the
graphical	query	execution	plan,	which	is	used	in	examples	throughout	the	book.	Figure
19-20	shows	a	query	plan	for	a	simple	query	that	joins	two	tables.

Figure	19-20.	Query	execution	plan	for	an	inner	join	query

You	can	generate	a	graphical	query	plan	for	a	given	query	by	selecting	Query	
Include	Actual	Execution	Plan	from	the	SSMS	menu	and	then	running	your	SQL
statements.	Alternatively,	you	can	select	Query	 	Display	Estimated	Execution	Plan
without	running	the	query.

A	graphical	query	plan	is	read	from	right	to	left	and	top	to	bottom.	It	contains	arrows
indicating	the	flow	of	data	through	the	query	plan.	The	arrows	show	the	relative	amount	of
data	being	moved	from	one	operator	to	the	next,	with	wider	arrows	indicating	larger
numbers	of	rows,	as	shown	in	Figure	19-20.	You	can	position	the	mouse	pointer	on	top	of
any	operator	or	arrow	in	the	graphical	query	plan	to	display	a	pop-up	with	additional
information	about	the	operator	or	data	flow	between	operators,	such	as	the	number	of	rows
being	acted	on	and	the	estimated	row	size.	You	can	also	right-click	an	operator	or	arrow
and	select	Properties	from	the	pop-up	menu	to	view	even	more	descriptive	information.

In	addition	you	can	right-click	in	the	Execution	Plan	window	and	select	Save
Execution	Plan	As	to	save	your	graphical	execution	plan	as	an	XML	query	plan.	Query
plans	are	saved	with	a	.sqlplan	file	extension	and	can	be	viewed	in	graphical	format	in
SSMS	by	double-clicking	the	file.	This	is	particularly	useful	for	troubleshooting	queries
remotely,	because	your	users	or	other	developers	can	save	the	graphical	query	plan	and	e-
mail	it	to	you,	and	you	can	open	it	up	in	a	local	instance	of	SSMS	for	further	investigation.

Actual	or	Estimated?
Estimated	execution	plans	are	useful	in	determining	the	optimizer’s	intent.	The	word
estimated	in	the	name	can	be	a	bit	misleading	because	all	query	plans	are	based	on	the
optimizer’s	estimates	of	your	data	distribution,	table	cardinality,	and	more.

There	are	some	differences	between	estimated	and	actual	query	plans,	however.
Because	an	actual	query	plan	is	generated	as	your	T-SQL	statements	are	executed,	the
optimizer	can	add	information	to	the	query	plan	as	it	runs.	This	additional	information
includes	items	like	actual	rebinds	and	rewinds,	values	that	return	the	number	of	times	the
init()	method	is	called	in	the	plan,	and	the	actual	number	of	rows.

When	dealing	with	temporary	objects,	actual	query	plans	have	better	information
available	concerning	which	operators	are	being	used.	Consider	the	following	simple	script,
which	creates,	populates,	and	queries	a	temporary	table:

CREATE	TABLE	#tl	(

BusinessEntityID	int	NOT	NULL,

LastName	nvarchar(50),

FirstName	nvarchar(50),

MiddleName	nvarchar(50));

CREATE	INDEX	tl_LastName	ON	#tl	(LastName);

INSERT	INTO	#tl	(

BusinessEntityID,

LastName,

FirstName,

MiddleName)

SELECT

BusinessEntityID,

LastName,

FirstName,

MiddleName	FROM	Person.Person;

SELECT

BusinessEntityID,

LastName,

FirstName,

MiddleName	FROM	#tl	WHERE	LastName	=	N'Duffy';

DROP	TABLE	#tl;

In	the	estimated	query	plan	for	this	code,	the	optimizer	indicates	that	it	will	use	a	table
scan,	as	shown	next,	to	fulfill	the	SELECT	query	at	the	end	of	the	script:

The	actual	query	plan,	however,	uses	a	much	more	efficient	nonclustered	index	seek
with	a	bookmark	lookup	operation	to	retrieve	the	two	relevant	rows	from	the	table,	as
shown	here:

The	difference	between	the	estimated	and	actual	query	plans	in	this	case	is	the
information	available	at	the	time	the	query	plan	is	generated.	When	the	estimated	query
plan	is	created,	there	is	no	temporary	table	and	no	index	on	the	temporary	table,	so	the
optimizer	guesses	that	a	table	scan	will	be	required.	When	the	actual	query	plan	is
generated,	the	temporary	table	and	its	nonclustered	index	both	exist,	so	the	optimizer
comes	up	with	a	better	query	plan.

In	addition	to	graphical	query	plans,	SQL	Server	supports	XML	query	plans	and	text
query	plans,	and	it	can	report	additional	runtime	statistics.	This	additional	information	can
be	accessed	using	the	statements	shown	in	Table	19-1.

Table	19-1.	Statements	to	Generate	Query	Plans

Statement Description

SET

SHOWPLAN_ALL

ON/OFF

Returns	a	text-based	estimated	execution	plan	without	executing	the	query

SET

SHOWPLAN_TEXT

ON/OFF

Returns	a	text-based	estimated	execution	plan	without	executing	the	query,	but	the
information	returned	may	be	less	than	what	you	get	from	choosing
SHOWPLAN_ALL.

SET

SHOWPLAN_XML

ON/OFF

Returns	an	XML-based	estimated	execution	plan	without	executing	the	query

SET

STATISTICS	IO

ON/OFF

Returns	statistics	information	about	logical	I/O	operations	during	execution	of	a	query

SET

STATISTICS

PROFILE

ON/OFF

Returns	actual	query	execution	plans	in	result	sets	following	the	result	set	generated
by	each	query	executed

SET

STATISTICS

TIME	ON/OFF

Returns	statistics	about	the	time	required	to	parse,	compile,	and	execute	statements	at
runtime

Once	the	query	is	compiled,	it	can	be	executed,	and	the	execution	need	not	necessarily
happen	after	the	query	is	compiled.	So,	if	the	query	is	executed	several	days	after	it	has
been	compiled,	the	underlying	data	may	have	changed,	and	the	plan	that	has	been
compiled	may	not	be	optimal	during	the	execution	time.	So,	when	this	query	is	being
executed	SQL	Server	first	checks	to	see	if	the	plan	is	still	valid.	If	the	query	optimizer
decides	that	the	plan	is	suboptimal,	a	few	statements	or	the	entire	batch	will	be	recompiled
to	produce	a	different	plan.	These	compilations	are	called	recompilations;	and	although
sometimes	it’s	necessary	to	recompile	queries,	this	process	can	slow	down	query	or	batch
executions	considerably,	so	it’s	optimal	to	reduce	recompilations.

Some	causes	for	recompilations	are	as	follows:

Schema	changes	such	as	adding	or	dropping	columns,	constraints,
indexes,	statistics,	and	so	on

Running	sp_recompile	on	a	stored	procedure	or	trigger

Using	set	options	after	the	batch	has	started,	such	as
ANSI_NULL_DFLT_OFF,	ANSI_NULLS,	ARITHABORT,	and	so	on

One	of	the	main	causes	for	excessive	recompilations	is	the	use	of	temporary	tables	in
queries.	If	you	create	a	temporary	table	in	StoredProcA	and	reference	the	temporary
table	in	a	statement	in	StoredProcB,	then	the	statement	must	be	recompiled	every	time
StoredProcA	runs.	A	table	variable	may	be	a	good	option	to	replace	a	temporary	table
for	a	small	number	of	rows.

Sometimes	you	may	experience	suboptimal	query	performance,	and	there	are	several
causes.	One	of	the	common	causes	is	using	nonSearch	ARGumentable	(nonSARGable)
expressions	in	WHERE	clauses	or	joins,	which	prevents	SQL	Server	from	using	the	index.
Using	these	expressions	can	slow	queries	significantly	as	well.	Some	nonSARGable
expressions	are	inequality	expression	comparisons,	functions,	implicit	data-type
conversions,	and	the	LIKE	keyword.	Often	these	expressions	can	be	rewritten	to	use	an
index.	Consider	the	following	simple	script,	which	finds	names	starting	with	C:

SELECT	Title,	FirstName,	LastName		FROM	person.person	WHERE	

SUBSTRING(FirstName,	1,1)	=	'C'

This	query	causes	a	table	scan.	But	if	the	query	is	rewritten	as	follows,	the	optimizer
will	use	a	clustered	seek	if	a	proper	index	exists	in	the	table,	hence	improving
performance:

SELECT	Title,	FirstName,	LastName		FROM	person.person	WHERE	

FirstName	LIKE	'C%'

Sometimes	you	do	have	to	use	functions	in	queries	for	calculations.	In	these	cases,	if
you	replace	the	function	with	an	indexed	computed	column,	the	SQL	Server	query
optimizer	can	generate	a	plan	that	will	use	an	index.	SQL	Server	can	match	an	expression
to	the	computed	column	to	use	statistics;	however,	the	expression	should	match	the
computed	column	definition	exactly.

Methodology
The	methodology	that	has	served	me	well	when	troubleshooting	performance	issues
involves	the	following	eight	steps:

1.	 Recognize	the	issue.	Before	you	can	troubleshoot	a	performance
issue,	you	must	first	determine	that	there	is	an	actual	issue.
Recognizing	an	issue	can	begin	with	something	as	simple	as	end
users	complaining	that	their	applications	are	running	slowly.

2.	 Identify	the	source.	Once	you’ve	recognized	that	there	is	an	issue,
you	need	to	identify	it	as	a	SQL	Server-related	problem.	For
instance,	if	you	receive	reports	of	database-enabled	applications
running	slowly,	it’s	important	to	narrow	the	source	of	the	problem.
If	the	issue	is	related	to	network	bandwidth	or	latency,	for	instance,
it	can’t	be	resolved	through	simple	query	optimization.	If	it’s	a	T-
SQL	issue,	you	can	use	tools	like	SQL	Profiler	and	query	plans	to
identify	the	problematic	code.

3.	 Review	the	baseline.	Once	you’ve	identified	the	issue	and	the
source,	evaluate	the	baseline.	For	instance,	if	the	end	user	is
complaining	that	the	application	runs	slowly,	you	need	to
understand	the	definition	of	slow	and	also	whether	the	issue	is
reproducible.	Slow	could	mean	reports	aren’t	rendered	within	1
minute,	or	it	could	mean	reports	aren’t	rendered	within	10
milliseconds.	Without	a	proper	baseline,	you	have	nothing	to
compare	to	and	can’t	ascertain	whether	the	issue	really	exists.

4.	 Analyze	the	code.	Once	you’ve	identified	T-SQL	code	as	the	source
of	the	problem,	it’s	time	to	dig	deeper	and	analyze	the	root	cause	of
the	problem.	The	operators	returned	in	graphical	query	plans
provide	an	excellent	indicator	of	the	source	of	many	problems.	For
example,	you	may	spot	a	costly	clustered	index	scan	operator	where
you	expected	a	more	efficient	nonclustered	index	seek.

5.	 Define	possible	solutions.	After	the	issues	have	been	identified	in
the	code,	it’s	time	to	come	up	with	potential	solutions.	If	bookmark-
lookup	operations	are	slowing	query	performance,	for	instance,	you
may	determine	that	adding	a	new	nonclustered	index	or	modifying
an	existing	one	is	a	possible	fix	for	the	issue.	Another	possible
solution	might	be	changing	the	query	to	return	fewer	columns	that
are	already	covered	by	an	index.

6.	 Evaluate	the	solutions.	A	critical	step	after	defining	possible
solutions	is	to	evaluate	the	practicality	of	those	solutions.	Many
things	affect	whether	a	solution	is	practical.	For	instance,	you	may
be	forbidden	to	change	indexes	on	production	servers,	in	which	case
adding	or	modifying	indexes	to	solve	an	issue	may	be	impractical.
On	the	other	hand,	your	client	applications	may	depend	on	all	the

columns	currently	being	returned	in	the	query’s	result	sets,	so
changing	the	query	to	return	fewer	columns	may	not	be	a	workable
solution.

During	this	step	of	the	process,	you	also	need	to	determine	the
impact	of	your	solutions	on	other	parts	of	the	system.	Adding	or
modifying	an	index	on	the	server	to	solve	a	query	performance
problem	may	fix	the	problem	for	a	single	query,	but	it	may	also
introduce	new	performance	problems	for	other	queries	or	DML
statements.	These	conflicting	needs	should	be	evaluated.

7.	 Implement	the	solution.	During	this	step	of	the	process,	you	actually
apply	your	solution.	You’ll	most	likely	have	a	subprocess	here	in
which	you	apply	the	solution	first	to	a	development	environment
and	then	to	a	quality	assurance	(QA)	environment,	and	finally
promote	it	to	the	production	environment.

8.	 Examine	the	impact	of	the	solution.	After	implementing	your
solution,	you	should	revisit	it	to	ensure	that	it	fixes	the	problem.
This	is	a	very	important	step	that	many	people	ignore—they	revisit
their	solutions	only	when	another	issue	occurs.	By	scheduling	a
time	to	revisit	your	solution,	you	can	take	a	proactive	approach	and
head	off	problems	before	they	affect	end	users.

Scalability	is	another	important	factor	to	consider	when	writing	T-SQL.	Scalability	is	a
measure	of	how	well	your	code	works	under	increasing	demands.	For	instance,	a	query
may	provide	acceptable	performance	when	the	source	table	contains	100,000	rows	and	10
end	users	simultaneously	querying.	However,	the	same	query	may	suffer	performance
problems	when	the	table	grows	to	1,000,000	rows	and	the	number	of	end	users	grows	to
100.	Increasing	stress	on	a	system	tends	to	uncover	scalability	and	performance	issues	that
weren’t	previously	apparent	in	your	code	base.	As	pressure	on	your	database	grows,	it’s
important	to	monitor	changing	access	patterns	and	increasing	demands	on	the	system	to
proactively	handle	issues	before	they	affect	end	users.

It’s	also	important	to	understand	when	an	issue	isn’t	really	a	problem,	or	at	least	not
one	that	requires	a	great	deal	of	attention.	As	a	general	rule,	we	like	to	apply	the	80/20
rule	when	optimizing	queries:	as	a	rule	of	thumb,	focus	your	efforts	on	optimizing	the
20%	of	code	that	is	executed	80%	of	the	time.	If	you	have	an	SP	that	takes	a	long	time	to
execute	but	is	run	only	once	a	day,	and	a	second	procedure	that	takes	a	significant	amount
of	time	but	is	run	10,000	times	a	day,	you’d	be	well	served	to	focus	your	efforts	on	the
latter	procedure.

Waits
Your	main	goal	in	designing	and	writing	an	application	is	to	enable	users	to	get	accurate
result	sets	in	an	efficient	way.	So,	when	you	come	across	a	performance	issue,	the	place	to
start	is	the	query.	For	any	given	session,	the	query	or	thread	can	be	in	one	of	two	states:
it’s	either	running	or	waiting	on	something.	When	the	query	is	running,	it	may	be

compiling	or	executing.	And	when	the	query	is	waiting,	it	may	be	waiting	for	I/O,
network,	memory,	locks	or	latches,	and	so	on,	or	it	may	be	forced	to	wait	to	make	sure	the
process	yields	for	other	processes.	Whatever	the	case,	when	the	query	is	waiting	on	a
resource,	SQL	Server	logs	the	wait	type	for	the	resource	the	query	is	waiting	on.	You	can
then	use	this	information	to	understand	why	query	performance	is	affected.

To	help	you	better	understand	resource	usage,	you	need	to	be	familiar	with	three
performance	metrics	that	can	play	a	role	in	query	performance:	CPU,	Duration,	and
Logical	Reads.	CPU	is	essentially	the	worker	time	spent	to	execute	the	query;	Duration	is
the	time	the	worker	thread	takes	to	execute	the	query,	which	includes	the	time	it	takes	to
wait	for	the	resources	as	well	as	the	time	it	takes	to	execute	the	query;	and	Logical	Reads
is	the	number	of	data	pages	read	by	the	query	execution	from	the	buffer	pool	or	memory.
If	the	page	doesn’t	exist	in	the	buffer	pool,	then	SQL	Server	performs	a	physical	read	to
read	the	page	into	the	buffer	pool.	Because	you’re	measuring	query	performance,	logical
reads	are	considered	to	measure	performance,	not	physical	reads.	You	can	calculate	wait
time	using	the	formula	Duration	–	CPU.

Using	wait	stats	is	a	methodology	that	can	help	you	identify	opportunities	to	tune
query	performance,	and	SQL	Server	2014	has	649	wait	types.	Let’s	say	your	application
has	some	users	read	from	the	table	and	other	users	write	to	the	same	table.	At	any	given
time,	if	rows	are	being	inserted	into	the	table,	the	query	that	is	trying	to	read	those	rows
has	to	stop	processing	because	the	resource	is	unavailable.	Once	the	row	insertion	is
completed,	the	read	process	gets	a	signal	that	the	resource	is	available	for	this	process;	and
when	a	scheduler	is	available	to	process	the	read	thread,	the	query	is	processed.	The	time
SQL	Server	spends	to	acquire	the	system	resource	in	this	example	is	called	a	wait.	The
time	SQL	Server	spends	waiting	for	the	process	to	be	signed	when	the	resource	is
available	is	called	resource	wait	time.	Once	the	process	is	signaled,	the	process	has	to	wait
for	the	scheduler	to	be	available	before	the	process	can	continue,	and	this	is	called	signal
wait	time.	Resource	wait	time	and	signal	wait	time	combined	give	the	wait	time	in
milliseconds.

You	can	query	the	wait	types	using	the	DMVs	sys.dm_os_waiting_tasks,
sys.dm_os_wait_stats,	and	sys.dm_exec_requests.
sys.dm_os_waiting_tasks	and	sys.dm_exec_requests	return	details	about
which	tasks	are	waiting	currently,	whereas	sys.dm_os_wait_stats	lists	the
aggregate	of	the	waits	since	the	instance	was	last	restarted.	So,	you	need	to	check
sys.dm_os_waiting_tasks	for	a	query	performance	analysis.

Let’s	look	at	an	example	of	how	waits	can	help	you	tune	queries.	You	might	have
come	across	a	situation	where	you’re	trying	to	insert	a	set	of	rows	into	a	table,	but	the
insert	process	hangs	and	isn’t	responsive.	When	you	query	sp_who2,	it	doesn’t	show	any
blocking;	however,	the	insert	process	waits	for	a	long	time	before	it	completes.	Let’s	see
how	you	can	use	wait	stats	to	debug	this	scenario.	Listing	19-19	is	a	script	that	inserts
rows	into	a	waitsdemo	table	created	in	AdventureWorks	with	user	session	ID	54.

Listing	19-19.	Script	to	Demonstrate	Waits

use	adventureworks

go

CREATE	TABLE	[dbo].[waitsdemo](

				[Id]	[int]	NOT	NULL,

				[LastName]	[nchar](600)	NOT	NULL,

				[FirstName]	[nchar](600)	NOT	NULL,

				[MiddleName]	[nchar](600)	NULL

)	ON	[PRIMARY]

GO

declare	@id	int	=	1

while	(@id	<=	50000)

begin

				insert	into	waitsdemo

								select	@id,'Foo',	'User',NULL

				SET	@id	=	@id	+	1

end

To	identify	why	the	insert	query	is	being	blocked,	you	can	query	the
sys.dm_exec_requests	and	sys.dm_exec_sessions	DMVs	to	see	the
processes	that	are	currently	executing	and	also	query	the	DMV
sys.dm_os_waiting_tasks	to	see	the	list	of	processes	that	are	currently	waiting.
The	DMV	queries	are	shown	in	Listing	19-20,	and	partial	results	are	shown	in	Figure	19-
21.	In	this	example,	the	insert	query	using	session	ID	54	is	waiting	on	the
shrinkdatabase	task	with	session	ID	98.

Listing	19-20.	DMV	to	Query	Current	Processes	and	Waiting	Tasks

--List	waiting	user	requests

SELECT

er.session_id,	er.wait_type,	er.wait_time,

er.wait_resource,	er.last_wait_type,

er.command,et.text,er.blocking_session_id

FROM	sys.dm_exec_requests	AS	er

JOIN	sys.dm_exec_sessions	AS	es

ON	es.session_id	=	er.session_id

AND	es.is_user_process	=	1

CROSS	APPLY	sys.dm_exec_sql_text(er.sql_handle)	AS	et

GO

--List	waiting	user	tasks

SELECT

wt.waiting_task_address,	wt.session_id,	wt.wait_type,

wt.wait_duration_ms,	wt.resource_description

FROM	sys.dm_os_waiting_tasks	AS	wt

JOIN	sys.dm_exec_sessions	AS	es

ON	wt.session_id	=	es.session_id

AND	es.is_user_process	=	1

GO

--	List	user	tasks

SELECT

t.session_id,	t.request_id,	t.exec_context_id,

t.scheduler_id,	t.task_address,

t.parent_task_address

FROM	sys.dm_os_tasks	AS	t

JOIN	sys.dm_exec_sessions	AS	es

ON	t.session_id	=	es.session_id

AND	es.is_user_process	=	1

GO

Figure	19-21.	Results	of	sys.dm_os_waiting_tasks

The	results	show	that	process	54	is	indeed	waiting;	the	wait	type	is	writelog,	which
means	the	I/O	to	the	log	files	is	slow.	When	you	correlate	this	to	session_id	98,	which
is	the	shrinkdatabase	task,	you	can	identify	that	the	root	cause	for	the	performance
issue	with	the	insert	query	is	the	shrinkdatabase	process.	Once	the
shrinkdatabase	operation	completes,	the	insert	query	starts	to	process,	as	shown	in
Figure	19-22.

Figure	19-22.	Results	of	a	DMV	to	show	the	blocking	thread

Not	all	wait	types	need	to	be	monitored	constantly.	Some	wait	types,	like	broker_*
and	clr_*,	can	be	ignored	if	you	aren’t	using	a	service	broker	or	CLR	in	your	databases.
This	example	only	touched	the	tip	of	the	iceberg;	waits	can	be	a	powerful	mechanism	to
help	you	identify	and	resolve	query	performance	issues.

Figure	19-23.	New	XEvents	session

Extended	Events
Extended	Events	(XEvents)	is	a	diagnostic	system	that	can	help	you	troubleshoot
performance	problems	with	SQL	Server.	It	was	first	introduced	in	SQL	2008	and	then
went	through	a	complete	makeover	in	SQL	Server	2012,	with	additional	event	types,	a
new	user	interface,	and	templates	similar	to	SQL	Server	Profiler.	Let’s	review	the	XEvents
user	interface	first	and	then	look	at	how	you	can	troubleshoot	with	it.

The	XEvents	user	interface	is	integrated	with	Management	Studio;	there	is	a	separate
Extended	Events	node	in	the	tree.	To	start	a	new	XEvents	session,	expand	the
Management	node	and	then	expand	Extended	Events.	Right-click	Sessions,	and	then	click
New	Session.	Figure	19-23	shows	the	XEvents	user	interface.

XEvents	offers	a	rich	diagnostic	framework	that	is	highly	scalable	and	lets	you	collect
small	or	large	amounts	of	data	to	troubleshoot	performance	issues.	It	has	the	same
capabilities	as	SQL	Profiler;	so,	you	may	ask,	why	should	you	use	XEvents	and	not	SQL
Profiler?	Anybody	who	has	worked	with	SQL	Server	can	tell	you	that	SQL	Profiler	adds
significant	resource	overhead	when	tracing	the	server,	which	can	sometimes	bring	the
server	to	its	knees.	The	reason	for	this	overhead	is	that	when	you	use	SQL	Profiler	to	trace
activities	on	the	server,	all	the	events	are	streamed	to	the	client	and	filtered	based	on
criteria	set	by	you	on	the	client	side;	many	resources	are	required	to	process	the	events.
With	XEvents,	filtering	happens	on	the	server	side,	so	events	that	are	needed	aren’t	sent	to
the	client—hence	you	get	better	performance	with	a	process	that	is	less	chatty.	Another
reason	to	begin	using	XEvents	is	that	SQL	Profiler	has	been	marked	for	deprecation.

XEvents	sessions	can	be	based	on	predefined	templates,	or	you	can	create	a	session	by
choosing	specific	events.	You	can	also	autostart	an	XEvents	session	on	server	startup—a
feature	that	isn’t	available	in	SQL	Profiler.	Figure	19-24	shows	the	autostart	option.

Figure	19-24.	Object	Explorer	database	table	pop-up	context	menu

The	Events	library	lists	all	searchable	events,	categorized	and	grouped	based	on
events.	You	can	search	events	based	on	their	names	and/or	descriptions.	Once	you	select
the	events	you	want	to	track,	you	can	set	filter	criteria.	After	the	filters	have	been	defined,
you	can	select	the	fields	you	want	to	track.	The	common	fields	that	are	tracked	are
selected	by	default.	Figure	19-25	shows	a	sample	session	to	capture	SQL	statements	for
performance	tuning.

Figure	19-25.	Sample	XEvents	session	configuration	for	SQL	performance	tuning

After	you’ve	defined	all	the	criteria,	you	can	set	the	target	depending	on	what	you
want	to	do	with	the	data:	capture	it	to	a	file,	forward	it	to	in-memory	targets,	or	write	it	to
a	live	reader.	Figure	19-26	shows	the	possible	targets	for	a	session.

Figure	19-26.	XEvents	target	type

Figure	19-27	shows	the	results	of	XEvents	streaming	the	SQL	statements’	live	data	for
the	performance-tuning	session.

Figure	19-27.	Sample	data	from	the	XEvents	session	for	SQL	performance	tuning

Now	let’s	consider	a	common	problem:	a	business	user	is	complaining	that	an
application	is	slow	and	there	is	a	lot	of	blocking.	You	need	to	figure	out	where	the
problem	is,	given	that	the	application	is	third-party	software.	The	challenge	is	to	identify	a
piece	of	application	functionality	and	the	queries	behind	this	functionality	that	are	causing
the	performance	issue.	You	have	multiple	areas	to	investigate,	including	clients,	network,
blocking,	CPU,	and	I/O	issues.	One	way	to	approach	the	problem	is	to	run	the
Performance	Monitor	(perfmon)	tool,	start	a	profiler	trace,	and	try	to	tie	the	application
issue	to	the	server	metrics;	but	there	is	no	direct	way	to	get	the	details	on	the	query	chain
of	the	lead	blocker	that	causes	and	follows	the	blocking	issue	without	using	XEvents.

If	the	application	is	built	on	the	latest	ODBC	drivers	or	the	new	ADO.NET	4.5,	the
application	will	attach	a	ConnectionId	identifier.	This	is	a	guide	to	the	server	when	the
connections	are	made,	which	makes	the	process	of	tracing	or	correlating	activities	between
client	and	server	much	simpler.	Along	with	this,	the	client	sends	another	identifier	called
ActivityId,	which	provides	information	about	the	process	that	is	currently	executing.
With	ConnectionId	and	ActivityId,	you	have	the	information	required	to	build	a
complete	image	of	the	activities	taking	place	in	the	server;	and	you	can	effectively	trace
the	server	activities	to	identify	the	bottlenecks.

XEvents	makes	common	problems	like	page	splits	or	locking	much	easier	to	identify

and	resolve	with	proper	code	changes.	To	track	page	splits,	you	can	set	up	an	XEvents
session	using	a	script	like	that	shown	in	Listing	19-21.
Listing	19-21.	XEvents	Session	Script	to	Troubleshoot	Login	Timeouts

CREATE	EVENT	SESSION	[Troubleshoot	page	split]	ON	SERVER

ADD	EVENT	sqlserver.page_split(

				ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.database_name,sqlserver.plan_handle,sqlserver.server_instance_name,sqlserver.server_principal_name,sqlserver.server_principal_sid,sqlserver.session_id,sqlserver.session_nt_username,sqlserver.sql_text,sqlserver.transaction_id,sqlserver.username)),

ADD	EVENT	sqlserver.rpc_completed(

				ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.database_name,sqlserver.plan_handle,sqlserver.server_instance_name,sqlserver.server_principal_name,sqlserver.server_principal_sid,sqlserver.session_id,sqlserver.session_nt_username,sqlserver.sql_text,sqlserver.transaction_id,sqlserver.username)),

ADD	EVENT	sqlserver.rpc_starting(

				ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.database_name,sqlserver.plan_handle,sqlserver.server_instance_name,sqlserver.server_principal_name,sqlserver.server_principal_sid,sqlserver.session_id,sqlserver.session_nt_username,sqlserver.sql_text,sqlserver.transaction_id,sqlserver.username)),

ADD	EVENT	sqlserver.sp_statement_completed(

				ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.database_name,sqlserver.plan_handle,sqlserver.server_instance_name,sqlserver.server_principal_name,sqlserver.server_principal_sid,sqlserver.session_id,sqlserver.session_nt_username,sqlserver.sql_text,sqlserver.transaction_id,sqlserver.username)),

ADD	EVENT	sqlserver.sp_statement_starting(

				ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.database_name,sqlserver.plan_handle,sqlserver.server_instance_name,sqlserver.server_principal_name,sqlserver.server_principal_sid,sqlserver.session_id,sqlserver.session_nt_username,sqlserver.sql_text,sqlserver.transaction_id,sqlserver.username))

ADD	TARGET	package0.event_file(SET	

filename=N'C:\Temp\Troubleshoot	page	split.xel')

WITH	(MAX_MEMORY=4096	

KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,MAX_DISPATCH_LATENCY=30

	SECONDS,MAX_EVENT_SIZE=0	

KB,MEMORY_PARTITION_MODE=NONE,TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF)

GO

Now	you	can	start	the	XEvents	session	created	in	Listing	19-21	and	begin	identifying
the	queries	and	the	session	details	that	cause	these	page	splits.	This	will	help	you	narrow
down	the	issue	very	quickly	and	troubleshoot	the	cause.

Summary
SQL	Server	stores	data	in	8	KB	pages	that	it	allocates	in	contiguous	groups	of	8	pages
each,	which	are	known	as	extents.	In	a	perfect	world,	SQL	Server’s	logical	and	physical
storage	mechanisms	wouldn’t	make	a	difference	to	you	as	a	developer.	In	the	real	world,
however,	an	understanding	of	storage	engine	operation	is	important	for	maximizing
performance.	This	chapter	began	an	overview	of	the	SQL	Server	storage	engine	and	how
it	affects	performance.

Indexes	are	the	primary	means	of	increasing	query	performance	on	SQL	Server.	We
continued	the	discussion	by	addressing	the	concepts	of	heaps,	clustered	indexes,	and
nonclustered	indexes,	with	details	of	how	each	affects	the	overall	performance	of	your
queries	and	DML	statements.

Optimizing	queries	depends	on	maximizing	two	critical	aspects:	response	time	and
throughput.	SQL	Server	provides	query	plans	and	statistics,	in	addition	to	other	external
tools,	to	help	diagnose	performance	issues.	The	chapter	wrapped	up	with	a	suggested
methodology	for	dealing	with	performance	issues.	Using	a	methodology	like	the	eight-
step	process	described	here	can	help	you	quickly	narrow	down	the	source	of	performance
issues;	define,	evaluate,	and	implement	solutions;	and	take	a	proactive	approach	in

addressing	future	performance-related	issues.

Using	troubleshooting	techniques	such	as	wait	stats	and	DMVs	can	help	you	locate
performance	issues	and	provide	information	you	can	use	to	derive	a	complete	picture	of
what	is	going	on	in	the	system.	Combining	this	with	a	high-performance	event-monitoring
infrastructure	such	as	Extended	Events	gives	you	proactive	capabilities	for	monitoring
servers	so	you	can	identify	issues	and	resolve	them	in	a	timely	fashion.

We	hope	you’ve	enjoyed	reading	this	book	as	much	as	we’ve	enjoyed	bringing	it	to
you.	We	wish	you	all	the	best	in	your	T-SQL	development	efforts	and	hope	you	find	this
book	helpful	in	your	development	endeavors.

Exercises

1.	 [Choose	all	that	apply]	SQL	Server	2014	uses	which	of	the
following	types	of	files	to	store	database	information?

a.	 Data	files	(.mdf	extension)

b.	 Transaction	log	files	(.ldf	extension)

c.	 Additional	data	files	(.ndf	extension)

d.	 Rich	text	files	(.rtf	extension)

2.	 [True/False]	In-Memory	tables	are	created	in	the	default	PRIMARY
filegroup.

3.	 [True/False]	SQL	Server	stores	data	in	8	KB	storage	units	known	as
pages.

4.	 [Choose	one]	Eight	contiguous	8	KB	pages	of	storage	in	SQL
Server	are	known	as	which	of	the	following?

a.	 A	filegroup

b.	 A	chunk

c.	 An	extent

d.	 A	file

5.	 [Fill	in	the	blank]	A	heap	is	an	_________	collection	of	data	pages.

6.	 [Fill	in	the	blank]	Clustered	indexes	and	nonclustered	indexes	are
managed	by	SQL	Server	as	_______________	structures.

7.	 [Fill	in	the	blank]	_______________	sessions	can	be	used	to	trace
waits.

8.	 [Choose	one]	An	optimized	nonclustered	index	is	a	{filtered	|
parameterized	|	unsorted}	index

9.	 [Choose	all	that	apply]	SQL	Server	performance	is	measured	using
which	of	the	following	terms?

a.	 Throughput

b.	 Luminescence

c.	 Response	time

d.	 All	of	the	above

APPENDIX	A

Exercise	Answers
This	appendix	contains	the	answers	to	the	exercises	at	the	end	of	each	chapter.	The
answers	are	grouped	by	chapter	and	numbered	to	match	the	associated	exercises	in	the
corresponding	chapter.

Chapter	1
1.	 Imperative	languages	require	you	to	provide	the	computer	with

step-by-step	directions	to	perform	a	task—essentially,	you	tell	the
computer	how	to	achieve	the	end	result.	Declarative	languages
allow	you	to	tell	the	computer	what	the	end	result	should	be	and
trust	the	computer	to	take	appropriate	action	to	achieve	it.

2.	 ACID	stands	for	“atomicity,	consistency,	isolation,	durability.”
These	represent	the	basic	properties	of	a	database	that	guarantee
reliability	of	data	storage,	processing,	and	manipulations.

3.	 The	seven	index	types	that	SQL	Server	supports	are	clustered
indexes;	nonclustered	indexes;	XML	indexes;	spatial	indexes;	full-
text	indexes;	and	two	in-memory	table	index	types,	nonclustered
hash	index	and	memory-optimized	nonclustered	index.

4.	 All	of	the	following	are	restrictions	on	all	SQL	Server	UDFs:	(1)
they	cannot	perform	DML	or	DDL	statements,	(2)	they	cannot
change	the	state	of	the	database	(no	side	effects),	(3)	they	cannot
use	dynamic	SQL,	and	(4)	they	cannot	utilize	certain
nondeterministic	functions.

5.	 False.	All	newly	declared	variables	are	set	to	NULL	on	creation.
You	should	always	initialize	newly	created	variables	immediately
after	creation.

Chapter	2
1.	 SSDT	is	an	integrated	project-oriented	development	environment

for	database	and	application	development.	SSDT	is	the	replacement
for	Business	Intelligence	Development	Studio	(BIDS).

2.	 The	correct	answers	are	A,	B,	C,	and	D.	SQL	Server	2014	SSMS
provides	integrated	Object	Explorer,	IntelliSense,	code	snippets,
and	a	customizable	keyboard	mapping	scheme.

3.	 SSIS	is	considered	an	ETL	(extract,	transform,	load)	tool.

4.	 True.	SQLCMD	scripting	variables	can	be	set	via	command-line
options	and	environment	variables,	and	in	script	via	the	SQLCMD
:setvar	command.

5.	 The	correct	answer	is	D,	All	of	the	Above.	BCP	can	generate	format
files	that	can	be	used	with	the	SSIS	Bulk	Insert	task,	with	the	T-
SQL	BULK	INSERT	statement,	or	with	BCP	itself.	BCP	can	also
import	data	into	tables	without	a	format	file	and	export	data	from	a
table	to	a	file.

6.	 You	can	query	Extended	Events	trace	files	directly.	With	a	SQL
Profiler	trace,	you	have	to	load	the	captured	trace	data	to	a	table	and
then	query	it.	Direct	querying	against	Profiler	trace	data	is	not
supported.

7.	 SQL	Server	2005,	SQL	Server	2008,	SQL	Server	2008	R2,	SQL
Server	2012,	SQL	Server	2014,	and	SQL	Azure.

Chapter	3
1.	 True.	SQL	3VL	supports	the	three	Boolean	results	true,	false,	and

unknown.

2.	 The	correct	answer	is	A.	In	SQL,	NULL	represents	an	unknown	or	a
missing	value.	NULL	does	not	represent	a	numeric	value	of	0	or	a
zero-length	string.

3.	 False.	SQL’s	BEGIN…END	construct	defines	a	statement	block	but
does	not	limit	the	scope	of	variables	declared	within	the	statement
block.	This	is	contrary	to	the	behavior	of	C#’s	curly	braces	({	}).

4.	 The	BREAK	statement	forces	a	WHILE	loop	to	terminate
immediately.

5.	 False.	TRY…CATCH	can’t	capture	syntax	errors,	errors	that	cause	a
broken	connection,	or	errors	with	severity	of	10	or	less,	among
others.

6.	 SQL	CASE	expressions	come	in	both	simple	and	searched	CASE
expression	forms.

7.	 The	correct	answers	are	A	and	B.	T-SQL	provides	support	for	read-
only	cursors	and	forward-only	cursors.	There	is	no	such	thing	as	a
backward-only	cursor	or	a	write-only	cursor.

8.	 The	following	code	modifies	the	example	in	Listing	3-10	to	return
the	total	sales	(TotalDue)	by	region	in	pivot-table	format.	The
required	change	to	the	code	is	shown	in	bold:

--	Declare	variables	DECLARE	@sql	

nvarchar(4000);

DECLARE	@temp_pivot	table	(

				TerritorylD	int	NOT	NULL	PRIMARY	KEY,

				CountryRegion	nvarchar(20)	NOT	NULL,

				CountryRegionCode	nvarchar(3)	NOT	NULL

);

--	Get	column	names	from	source	table	rows	

INSERT	INTO	@temp_pivot	(TerritorylD,

CountryRegion,

CountryRegionCode)	SELECT	TerritorylD,

Name,

CountryRegionCode	FROM	Sales.SalesTerritory	

GROUP	BY	TerritorylD,	Name,	

CountryRegionCode;

--	Generate	dynamic	SOL	query	SET	@sql	

=	N'SELECT'	+	SUBSTRING(

(

SELECT	N',	SUM(CASE	WHEN	t.TerritoryID	=	'	

+	CAST(TerritoryID	AS	NVARCHAR(3))	+

N'	THEN	soh.TotalDue	ELSE	0	END)	AS	'	

+	QUOTENAME(CountryRegion)	AS	"*"

FROM	@temp_pivot

FOR	XML	PATH('')),	2,	4000)	+

N'	FROM	Sales.SalesOrderHeader	soh	'	+

N'	INNER	JOIN	Sales.SalesTerritory	t	'	+

N'	ON	soh.TerritoryID	=	t.TerritoryID;	'	;

--	Print	and	execute	dynamic	SQL	PRINT	@sql;

EXEC	(@sql);

Chapter	4
1.	 SQL	Server	supports	three	types	of	T-SQL	UDFs:	scalar	UDFs,

multistatement	TVFs,	and	inline	TVFs.

2.	 True.	The	RETURNS	NULL	ON	NULL	INPUT	option	is	a
performance-enhancing	option	that	automatically	returns	NULL	if
any	of	the	parameters	passed	into	a	scalar	UDF	are	NULL.

3.	 False.	The	ENCRYPTION	option	performs	a	simple	code
obfuscation	that	is	easily	reverse-engineered.	In	fact,	several
programs	and	scripts	are	available	online	that	allow	anyone	to
decrypt	your	code	with	the	push	of	a	button.

4.	 The	correct	answers	are	A,	B,	and	D.	Multistatement	TVFs	(as	well
as	all	other	TVFs)	do	not	allow	you	to	execute	PRINT	statements,
call	RAISERROR,	or	create	temporary	tables.	In	multistatement

TVFs,	you	can	declare	table	variables.

5.	 The	following	code	creates	a	deterministic	scalar	UDF	that	accepts
a	float	parameter,	converts	it	from	degrees	Fahrenheit	to	degrees
Celsius,	and	returns	a	float	result.	Notice	that	the	WITH
SCHEMABINDING	option	is	required	to	make	this	scalar	UDF
deterministic:

CREATE	FUNCTION	dbo.FahrenheitToCelsius	

(@Degrees	float)

RETURNS	float

WITH	SCHEMABINDING

AS

BEGIN

RETURN	(@Degrees	-	32.0)	*	(5.0	/	9.0);	END;

Chapter	5
1.	 False.	The	SP	RETURN	statement	can	return	only	an	int	scalar

value.

2.	 One	method	of	proving	that	two	SPs	that	call	each	other	recursively
are	limited	to	32	levels	of	recursion	in	total	is	shown	here.
Differences	from	the	code	in	the	original	listing	are	shown	in	bold:

CREATE	PROCEDURE	dbo.FirstProc	(@i	int)

AS

BEGIN

PRINT	@i;

SET	@i	+=	l;

EXEC	dbo.SecondProc	@i;

END;	GO

CREATE	PROCEDURE	dbo.SecondProc	(@i	int)

AS

BEGIN

PRINT	@i;

SET	@i	+=	1;

EXEC	dbo.FirstProc	@i;	END;	GO

EXEC	dbo.FirstProc	1;

3.	 The	correct	answer	is	D.	Table-valued	parameters	must	be	declared
READONLY.

4.	 The	correct	answers	are	A	and	B.	You	can	use	the	sprecompile
system	SP	or	the	WITH	RECOMPILE	option	to	force	SQL	Server
to	recompile	an	SP.	FORCE	RECOMPILE	and	DBCC
RECOMPILEALLSPS	are	not	valid	options/statements.

Chapter	6
1.	 The	correct	answers	are	A	and	B.	Developer	Edition,	Enterprise

Edition,	and	Evaluation	Edition	of	the	software	support	the	new	in-
memory	features.

2.	 False.	BIN2	collation	on	a	string	data	type	column	is	necessary	only
if	it	is	being	used	in	an	index	or	an	ORDER	BY	clause.

3.	 The	correct	answers	is	C,	range	index.	There	is	no	concept	of	a
clustered	index	on	an	in-memory	table,	and	hash	indexes	are	best
suited	for	single-item	point	lookups.

4.	 True.	By	default,	if	the	durability	option	for	a	memory-optimized
table	is	not	specified,	it	defaults	to	durable	(SCHEMA_AND_DATA).

5.	 False.	All	memory-optimized	tables	require	an	index,	but	only
tables	that	are	durable	(SCHEMA_AND_DATA	option)	require	a
primary	key	constraint.

6.	 The	correct	answers	are	A,	B,	and	C.	Execute	as	Owner,	Self,	and
User	are	valid	execution	contexts.	The	only	listed	execution	context
that	is	not	valid	is	EXECUTE	AS	CALLER.	This	execution	context
does	not	allow	SQL	Server	to	hardcode	execution	rights	at	the	time
the	stored	procedure	is	compiled.

Chapter	7
1.	 True.	In	DDL	triggers,	the	EVENTDATA	function	returns

information	about	the	DDL	event	that	fired	the	trigger.

2.	 True.	In	a	DML	trigger,	an	UPDATE	event	is	treated	as	a	DELETE
followed	by	an	INSERT,	so	both	the	deleted	and	inserted
virtual	tables	are	populated	for	UPDATE	events.

3.	 False.	DML	triggers	are	not	available	for	SQL	Server	2014	in-
memory	tables.

4.	 The	correct	answers	are	A,	C,	and	E.	SQL	Server	2014	supports
logon	triggers,	DDL	triggers,	and	DML	triggers.

5.	 The	SET	NOCOUNT	ON	statement	prevents	extraneous	rows
affected	messages.

6.	 The	correct	answer	is	A.	The	COLUMNSUPDATED	function	returns
a	varbinary	string	with	bits	set	to	represent	affected	columns.

7.	 True.	@@R0WC0UNT	at	the	beginning	of	a	trigger	returns	the
number	of	rows	affected	by	the	DML	statement	that	fired	the
trigger.

8.	 False.	You	cannot	create	any	AFTER	triggers	on	a	view.

Chapter	8
1.	 True.	Symmetric	keys	can	be	used	to	encrypt	data	or	other

symmetric	keys.

2.	 The	correct	answers	are	A,	B,	and	E.	SQL	Server	2012	provides
native	support	for	DES,	AES,	and	RC4	encryption.	Although	the
Loki	and	Blowfish	algorithms	are	real	encryption	algorithms,	SQL
Server	does	not	provide	native	support	for	them.

3.	 False.	SQL	Server	2014	T-SQL	provides	no	BACKUP
ASYMMETRIC	KEY	statement.

4.	 You	must	turn	on	the	EKM	provider-enabled	option	with
spconfigure	to	activate	EKM	on	your	server.

5.	 False.	TDE	automatically	encrypts	the	tempdb	database,	but	it
does	not	encrypt	the	model	and	master	databases.

6.	 True.	SQL	Server	automatically	generates	random	initialization
vectors	when	you	encrypt	data	with	symmetric	encryption.

Chapter	9
1.	 True.	When	a	CTE	is	not	the	first	statement	in	a	batch,	the

statement	preceding	it	must	end	with	a	semicolon	statement
terminator.

2.	 The	correct	answers	are	A,	B,	and	D.	Recursive	CTEs	require	the
WITH	keyword,	an	anchor	query,	and	a	recursive	query.	SQL	Server
does	not	support	an	EXPRESSION	keyword.

3.	 The	MAXRECURSION	option	can	accept	a	value	between	0	and
32767.

4.	 The	correct	answer	is	E,	All	of	the	Above.	SQL	Server	supports	the
ROWNUMBER,	RANK,	DENSE_RANK,	and	NTILE	functions.

5.	 False.	You	cannot	use	ORDER	BY	with	the	OVER	clause	when	used
with	aggregate	functions.

6.	 True.	When	PARTITION	BY	and	ORDER	BY	are	both	used	in	the
OVER	clause,	PARTITION	BY	must	appear	first.

7.	 The	names	of	all	columns	returned	by	a	CTE	must	be	unique.

8.	 The	default	framing	clause	is	RANGE	BETWEEN	UNBOUNDED
PRECEDING	AND	CURRENT	ROW.

9.	 True.	When	Orderby	is	not	specified,	there	is	no	starting	or
ending	point	for	the	boundary.	So,	the	entire	partition	is	used	for	the
window	frame.

Chapter	10
1.	 False.	European	language	accents	are	included	in	the	ANSI-

encoded	characters.	You	need	Unicode	for	non-Latin	characters.

2.	 The	correct	answers	are	A,	C,	and	D.	image	and	(n)text	have
been	deprecated	since	SQL	Server	2005.

3.	 False.	The	date	data	type	does	not	store	time	zone	information.
Use	the	datetimeoffset	data	type	if	you	need	to	store	time
zone	information	with	your	date/time	data.

4.	 The	hierarchyid	data	type	uses	the	materialized	path	model	to
represent	hierarchies	in	the	database.

5.	 The	correct	answer	is	B.	The	geography	data	type	requires
Polygon	objects	to	have	a	counterclockwise	orientation.	Also,
spatial	objects	created	with	the	geography	data	type	must	be
contained	in	a	single	hemisphere.

6.	 The	correct	answer	is	B.	The	SWITCHOFFSET	function	adjusts	a
given	datetimeoffset	value	to	another	specified	time	offset.

7.	 True.	FILESTREAM	functionality	utilizes	NTFS	functionality	to
provide	streaming	BLOB	data	support.

8.	 The	column	is	named	path_locator.	It	is	a	hierarchyid
type	column.

Chapter	11
1.	 True.	Stoplists	and	full-text	indexes	are	stored	in	the	database.

2.	 The	correct	answer	is	C.	You	can	create	a	full-text	index	using	the
wizard	in	SSMS	or	the	T-SQL	CREATE	FULLTEXT	INDEX
statement.

3.	 The	FREETEXT	predicate	automatically	performs	word	stemming
and	thesaurus	replacements	and	expansions.

4.	 Stoplists	contain	stopwords,	which	are	words	that	are	ignored
during	full-text	querying.

5.	 True.	The	sys.dmftsparser	dynamic-management	function
shows	the	results	produced	by	word	breaking	and	stemming.

Chapter	12
1.	 The	correct	answers	are	A,	B,	C,	and	D.	The	SQL	Server	FOR	XML

clause	supports	the	FOR	XML	RAW,	FOR	XML	PATH,	FOR	XML
AUTO,	and	FOR	XML	EXPLICIT	modes.	FOR	XML
RECURSIVE	is	not	a	valid	FOR	XML	mode.

2.	 OPENXML	returns	results	in	edge	table	format	by	default.

3.	 True.	The	xml	data	type	query()	method	returns	results	as
untyped	xml	instances.

4.	 The	correct	answer	is	C.	A	SQL	Server	primary	XML	index	stores
xml	data	type	columns	in	a	preshredded	relational	format.

5.	 True.	When	you	haven’t	defined	a	primary	XML	index	on	an	xml
data	type	column,	performing	XQuery	queries	against	the	column
causes	SQL	Server	to	perform	on-the-fly	shredding	of	your	XML
data.	This	can	result	in	a	severe	performance	penalty.

6.	 True.	Additional	XML	functionality,	available	through	the	.NET
Framework,	can	be	accessed	via	SQL	Server’s	SQL	CLR
integration.

Chapter	13
1.	 True.	The	FOR	XML	PATH	clause	supports	a	subset	of	the	W3C

XPath	recommendation	for	explicitly	specifying	your	XML	result
structure.

2.	 The	correct	answer	is	A.	The	at	sign	(@)	is	used	to	identify	attribute
nodes	in	both	XPath	and	XQuery.

3.	 The	context	item	(indicated	by	a	single	period)	specifies	the	current
node	or	scalar	value	being	accessed	at	any	given	point	in	time
during	query	execution.

4.	 The	correct	answers	are	A,	B,	and	D.	You	can	declare	XML
namespaces	for	SQL	Server	XQuery	expressions	with	the	WITH
XMLNAMESPACES	clause,	the	declare	default	element
namespace	statement,	or	the	declare	namespace	statement.
There	is	no	CREATE	XML	NAMESPACE	statement.

5.	 In	XQuery,	you	can	dynamically	construct	XML	via	direct
constructors	or	computed	constructors.

6.	 True.	SQL	Server	2014	supports	all	five	clauses	of	FLWOR
expressions:	for,	let,	where,	order	by,	and	return.	Note
that	SQL	Server	2005	did	not	support	the	let	clause.

7.	 _SC	collation	enables	SQL	Server	to	be	UTF-16	aware.

8.	 The	correct	answers	are	B,	C,	and	D.	XQuery	provides	three	types
of	comparison	operators:	general	comparison	operators,	node
comparison	operators,	and	value	comparison	operators.

Chapter	14
1.	 Metadata	is	“data	that	describes	data.”

2.	 Catalog	views	provide	insight	into	database	objects	and	server-wide
configuration	options.

3.	 The	correct	answer	is	B.	Many	catalog	views	are	defined	using	an
inheritance	model.	In	the	inheritance	model,	catalog	views	inherit
columns	from	other	catalog	views.	Some	catalog	views	are	also
defined	as	the	union	of	two	other	catalog	views.

4.	 True.	Dynamic-management	views	and	functions	provide	access	to
internal	SQL	Server	data	structures	that	would	be	otherwise
inaccessible.	DMVs	and	DMFs	present	these	internal	data	structures
in	relational	tabular	format.

5.	 The	correct	answers	are	A	and	C.	INFORMATION_SCHEMA	views
provide	the	advantages	of	ISO	SQL	standard	compatibility	and,	as	a
consequence,	cross-platform	compatibility.

Chapter	15
1.	 True.	The	System.Data.SqlClient	namespace	provides

support	for	the	SQL	Server	Native	Client	library,	which	provides
optimized	access	to	SQL	Server.

2.	 The	correct	answer	is	B.	Disconnected	datasets	cache	required	data
locally	and	allow	you	to	connect	to	a	database	only	as	needed.

3.	 The	correct	answers	are	A	and	C.	The	benefits	of	query
parameterization	include	protection	against	SQL	injection	attacks
and	increased	efficiency	through	query	plan	reuse.

4.	 False.	When	you	turn	on	MARS,	you	can	open	two	or	more	result
sets	over	a	single	open	connection.	MARS	requires	only	one	open
connection.

5.	 True.	Visual	Studio	provides	a	visual	O/RM	designer	with	a	drag-
and-drop	interface.

6.	 The	correct	answer	is	D.	LINQ	to	SQL	uses	deferred	query
execution,	meaning	it	does	not	execute	your	query	until	the	data
returned	by	the	query	is	actually	needed.

Chapter	16
1.	 The	correct	answers	are	A,	B,	C,	D,	and	E.	SQL	Server	2014

provides	support	for	SQL	CLR	UDFs,	UDAs,	UDTs,	SPs,	and
triggers.

2.	 False.	SQL	Server	2014	expands	the	limit	on	MaxByteSize	for
UDAs	and	UDTs	to	more	than	2	billion	bytes.	In	SQL	Server	2005,
there	was	an	8,000-byte	limit	on	the	size	of	UDAs	and	UDTs.

3.	 The	correct	answer	is	D.	SAFE	permissions	allow	SQL	CLR	code
to	execute	managed	.NET	code.	EXTERNALACCESS	permissions
are	required	to	write	to	the	file	system,	access	network	resources,
and	read	the	computer’s	registry.

4.	 True.	SQL	CLR	UDAs	and	UDTs	must	be	declared	with	the
Serializable	attribute.

5.	 A	SQL	CLR	UDA	that	is	declared	as	Format.UserDefined
must	implement	the	IBinarySerialize	interface.

6.	 The	correct	answers	are	A,	C,	D,	and	E.	A	SQL	CLR	UDA	is
required	to	implement	the	following	methods:	Init,	Terminate,
Merge,	and	Accumulate.	The	Aggregate	method	is	not	a
required	method	for	UDAs.

Chapter	17
1.	 False.	A	LocalDB	instance	cannot	run	as	a	service.

2.	 False.	You	can	access	XML	columns	from	Linux	by	using	the
Microsoft	ODBC	driver	for	Linux.

3.	 False.	HTTP	SOAP	endpoints	were	deprecated	in	SQL	Server	2008.

4.	 Visual	Studio	2010	and	2012	provides	the	ASP.NET	Web	Service
template	for	creating	new	web	services.

5.	 True.	Visual	Studio	includes	a	built-in	graphical	EDM	designer
beginning	with	SP	1.

6.	 The	correct	answer	is	C.	WCF	Data	Services	accepts	REST-style
queries	in	requests.

Chapter	18
1.	 The	@@error	system	function	automatically	resets	to	0	after	every

successful	statement	execution.

2.	 The	correct	answer	is	D.	The	ERROR_SEVERITY()	function,
available	only	in	the	CATCH	block	in	SQL	Server,	returns	the
severity	level	of	the	error	that	occurred.

3.	 True.	The	RAISERROR	statement	allows	you	to	raise	errors	in	SQL
Server.

4.	 True.	Visual	Studio	provides	integrated	debugging	of	T-SQL
functions	and	SPs.	Using	Visual	Studio,	you	can	step	into	T-SQL
code	and	set	breakpoints.

5.	 The	correct	answers	are	A	and	B.	The	potential	problems	with
dynamic	SQL	include	performance	issues	caused	by	lack	of	query
plan	reuse,	and	exposure	to	SQL	injection	attacks.

Chapter	19
1.	 The	correct	answers	are	A,	B,	and	C.	SQL	Server	2014	uses	data

files	with	an	.mdf	extension,	transaction	log	files	with	an	.ldf
extension,	and	additional	data	files	with	an	.ndf	extension.

2.	 False.	In-memory	optimized	tables	must	be	created	in	a	memory-
optimized	filegroup,	specified	by	the	CONTAINS
MEMORY_OPTIMIZED_DATA	syntax	when	creating	the	filegroup.

3.	 True.	SQL	Server	stores	data	in	8	KB	storage	units	known	as	pages.

4.	 The	correct	answer	is	C.	Eight	contiguous	8	KB	pages	of	storage	in
SQL	Server	are	known	as	an	extent.

5.	 A	heap	is	an	unordered	collection	of	data	pages.

6.	 Clustered	indexes	and	nonclustered	indexes	are	managed	by	SQL
Server	as	B-tree	structures.

7.	 Extended	Events	sessions	can	be	used	to	trace	waits.

8.	 An	optimized	nonclustered	index	is	called	a	filtered	index.

9.	 The	correct	answers	are	A	and	C.	SQL	Server	performance	is
measured	in	terms	of	throughput	and	response	time.

APPENDIX	B

XQuery	Data	Types
SQL	Server	2014	supports	the	data	types	defined	in	the	XQuery	Data	Model	(XDM).	The
supported	data	types	are	listed	with	their	definitions	in	Table	B-1.	The	diagram	in	Figure
B-1	is	a	quick	reference	showing	the	relationships	between	the	XDM	data	types.

Figure	B-1.	XQuery	data	type	system

Table	B-1.	XQuery	Data	Types

Type Description

Base	Types

xs:anySimpleType Base	type	for	all	simple	built-in	types.

xs:anyType Base	type	for	xs:anySimpleType	and	complex	built-in	types.

Date/Time	Types

xs:date

Represents	a	Gregorian	calendar–based	date	value	exactly	one	day	in
length,	in	the	format	yyyy-mm-dd[time_offset].	time_offset
can	be	a	capital	Z	for	zero-meridian	(UTC)	or	in	the	format	+/-hh:mm	to
represent	a	UTC	offset.	An	example	of	a	valid	xs:date	is	2006-12-
25Z,	which	represents	December	25,	2006,	UTC	time.

xs:dateTime

Represents	a	Gregorian	calendar–based	date	and	time	value	with	precision
to	1/1000th	of	a	second.	The	format	is	yyyy-mm-ddThh:
mm:ss.sss[time_offset].	Time	is	specified	using	a	24-hour	clock.
As	with	xs:date,	time_offset	can	be	a	capital	Z	(UTC)	or	a	UTC
offset	in	the	format	+/-hh:mm.	A	valid	xs:dateTime	value	is	2006-
10-30T13:00:	59.500-05:00,	which	represents	October	30,	2006,
1:00:59.5	PM,	US	Eastern	Standard	time.	Unlike	in	SQL	Server	2005,	in
SQL	Server	2012	the	xs:dateTime	type	maintains	the	time	zone
information	you	assign	instead	of	automatically	converting	all	date/time
values	to	a	single	time	zone.	The	time	zone	also	isn’t	mandatory	in	SQL
Server	2012.

xs:duration

Represents	a	Gregorian	calendar–based	temporal	(time-	based)	duration,
using	the	format	PyyyyYmmMddDThhHmmMss.sssS.
P0010Y03M12DT00H00M00.000S,	for	instance,	represents	10	years,	3
months,	12	days.

xs:gDay

Represents	a	Gregorian	calendar–based	day.	The	format	is
dd[time_offset]	(notice	the	three	preceding	hyphen	[-]	characters).
The	time_offset	is	optional.	A	valid	xs:gDay	value	is	09Z,	which
stands	for	the	ninth	day	of	the	month,	UTC	time.

xs:gMonth

Represents	a	Gregorian	calendar–based	month.	The	format	is	—
mm[time_offset]	(notice	the	two	preceding	hyphen	characters).
time_offset	is	optional.	A	valid	xs:gMonth	value	is	-12,	which
stands	for	December.

xs:gMonthDay

Represents	a	Gregorian	calendar–based	month	and	day.	The	format	is	—
mm-dd[time_offset]	(notice	the	two	preceding	hyphens).	The
time_offset	is	optional.	A	valid	xs:gMonthDay	value	is	—02-29
for	February	29.

xs:gYear

Represents	a	Gregorian	calendar–based	year.	The	format	is
yyyy[time_offset].	The	time_offset	is	optional.	The	year	can
also	have	a	preceding	hyphen	character	indicating	a	negative	(BCE
—“before	the	Christian	Era”)	year	as	opposed	to	a	positive	(CE
—“Christian	Era”)	date.	A	valid	xs:gYear	value	is	-0044	for	44	BCE.
Notice	that	all	four	digits	are	required	in	the	year	representation,	even	for
years	that	can	be	normally	represented	with	fewer	than	four	digits.

xs:gYearMonth

Represents	a	Gregorian	calendar–based	year	and	month.	The	format	is
yyyy-mm[time_offset].	The	time_offset	is	optional	and	can	be
Z	or	a	UTC	offset.	A	valid	xs:gYearMonth	value	is	2001-01	for

January	2001.

xs:time

Represents	a	time	value	with	precision	to	1/1000th	of	a	second,	using	a	24-
hour	clock	representation.	The	format	is	hh:mm:ss.sss
[time_offset].	As	with	other	temporal	data	types,	time_offset
can	be	Z	(UTC)	or	a	UTC	offset	in	the	format	+/-hh:mm.	A	valid
xs:time	value	is	23:59:59.000-06:00,	which	represents	11:59:59
PM,	US	Central	Standard	time.	The	canonical	representation	of	midnight	in
24-hour	format	is	00:00:00.

Binary	Types

xs:base64Binary

Represents	Base64-encoded	binary	data.	Base64-encoding	symbols	are
defined	in	RFC	2045	(www.ietf.org/rfc/rfc2045.txt)	as	A
through	Z,	a	through	z,	0	through	9,	+,	/,	and	the	trailing	=	sign.
Whitespace	characters	are	also	allowed,	and	lowercase	letters	are
considered	distinct	from	uppercase	letters.	An	example	of	a	valid
xs:base64Binary	value	is
QVByZXNzIEJvb2tzIEFuZCBTUUwgU2V	ydmVyIDIwMDU=.

xs:hexBinary

Represents	hexadecimal-encoded	binary	data.	The	symbols	defined	for
encoding	data	in	hexadecimal	format	are	0	through	9,	A	through	F,	and	a
through	f.	Upper-	and	lowercase	letters	A	through	F	are	considered
equivalent	by	this	data	type.	An	example	of	a	valid	xs:hexBinary	value
is	6170726573732E636F6D.

Boolean	Type

xs:Boolean
Represents	a	Boolean	binary	truth	value.	The	values	supported	are	true
(1)	and	false	(0).	An	example	of	a	valid	xs:boolean	value	is	true.

Numeric	Types

xs:byte Represents	an	8-bit	signed	integer	in	the	range	-128	to	+127.

xs:decimal

Represents	an	exact	decimal	value	up	to	38	digits	in	length.	These	numbers
can	have	up	to	28	digits	before	the	decimal	point	and	up	to	10	digits	after
the	decimal	point.	A	valid	xs:decimal	value	is	8372.9381.

xs:double

Represents	a	double-precision	floating-point	value	patterned	after	the	IEEE
standard	for	floating-point	types.	The	representation	of	values	is	similar	to
xs:float	values	nE[+/-]e,	where	n	is	the	mantissa	followed	by	the
letter	E	or	e	and	an	exponent	e.	The	range	of	valid	values	for	xs:double
is	approximately	-1.79E+308	to	-2.23E-308	for	negative	numbers,	0,
and	+2.23E-308	to	+1.79E+308	for	positive	numbers.

xs:float

Represents	an	approximate	single-precision	floating	point	value	per	the
IEEE	754-1985	standard.	The	format	for	values	of	this	type	is	nEe,	where
n	is	a	decimal	mantissa	followed	by	the	letter	E	or	e	and	an	exponent.	The
value	represents	n·10e.	The	range	for	xs:float	values	is	approximately
-3.4028e+38	to	-1.401298E-45	for	negative	numbers,	0,	and
+1.401298E-45	to	+3.4028e+38	for	positive	numbers.	The	special
values	-INF	and	+INF	represent	negative	and	positive	infinity.	SQL
Server	doesn’t	support	the	XQuery-specified	special	value	NaN,	which
stands	for	“not	a	number.”	A	valid	xs:float	value	is	1.98E+2.

xs:int
Represents	a	32-bit	signed	integer	in	the	range	-2147483648	to

http://www.ietf.org/rfc/rfc2045.txt

+2147483647.

xs:integer
Represents	an	integer	value	up	to	28	digits	in	length.	A	valid
xs:integer	value	is	76372.

xs:long
Represents	a	64-bit	signed	integer	in	the	range
-9223372036854775808	to	+9223372036854775807.

xs:negativeInteger
Represents	a	negative	nonzero	integer	value	derived	from	the
xs:integer	type.	It	can	be	up	to	28	digits	in	length.

xs:nonNegativeInteger
Represents	a	positive	or	zero	integer	value	derived	from	the	xs:integer
type.	It	can	be	up	to	28	digits	in	length.

xs:nonPositiveInteger
Represents	a	negative	or	zero	integer	value	derived	from	the
xs:integer	type.	It	can	be	up	to	28	digits	in	length.

xs:positiveInteger
Represents	a	positive	nonzero	integer	value	derived	from	the
xs:integer	type.	It	can	be	up	to	28	digits	in	length.

xs:short Represents	a	16-bit	signed	integer	in	the	range	-37268	to	+32767.

xs:unsignedByte Represents	an	unsigned	8-bit	integer	in	the	range	0	to	255.

xs:unsignedInt Represents	an	unsigned	32-bit	integer	in	the	range	0	to	+4294967295.

xs:unsignedLong
Represents	an	unsigned	64-bit	integer	in	the	range	0	to
+18446744073709551615.

xs:unsignedShort Represents	an	unsigned	16-bit	integer	in	the	range	0	to	+65535.

String	Types

xs:ENTITIES A	space-separated	list	of	ENTITY	types.

xs:ENTITY
Equivalent	to	the	ENTITY	type	from	the	XML	1.0	standard.	The	lexical
space	has	the	same	construction	as	an	xs:NCName.

xs:ID
Equivalent	to	the	ID	attribute	type	from	the	XML	1.0	standard.	An	xs:ID
value	has	the	same	lexical	construction	as	an	xs:NCName.

xs:IDREF
Represents	the	IDREF	attribute	type	from	the	XML	1.0	standard.	The
lexical	space	has	the	same	construction	as	an	xs:NCName.

xs:IDREFS A	space-separated	list	of	IDREF	attribute	types.

xs:language

A	language	identifier	string	representing	natural	language	identifiers	as
specified	by	RFC	3066	(www.ietf.org/rfc/rfc3066.txt).	A
complete	list	of	language	codes	is	maintained	by	the	IANA	registry	at
www.iana.org/assignments/language-subtag-registry.
Language	identifiers	must	conform	to	the	regular	expression	pattern	[a-
zA-	Z]{1,8}(-[a-zA-Z0-9]{1,8})*.	An	example	of	a	valid
language	identifier	is	tlh,	which	is	the	identifier	for	the	Klingon	language.

An	XML	name	string.	A	name	string	must	match	the	XML-specified
production	for	Name.	Per	the	standard,	a	Name	must	begin	with	a	letter,	an
underscore,	or	a	colon,	and	may	then	contain	a	combination	of	letters,

http://www.ietf.org/rfc/rfc3066.txt
http://www.iana.org/assignments/language-subtag-registry

xs:Name numbers,	underscores,	colons,	periods,	hyphens,	and	various	other
characters	designated	in	the	XML	standard	as	combining	characters	and
extenders.	Refer	to	the	XML	standard	at	www.w3.org/TR/2000/WD-
xml-2e-20000814#NT-Name		for	specific	information	about	these
additional	allowable	Name	characters.

xs:NCName A	noncolonized	name.	The	format	for	an	xs:NCName	is	the	same	as	for
xs:Name,	but	without	colon	characters.

xs:NMTOKEN

An	NMTOKEN	type	from	the	XML	1.0	standard.	An	xs:NMTOKEN	value	is
composed	of	any	combination	of	letters,	numbers,	underscores,	colons,
periods,	hyphens,	and	XML	combining	characters	and	extenders.

xs:NMTOKENS A	space-separated	list	of	xs:NMTOKEN	values.

xs:normalizedString

An	XML	whitespace-normalized	string,	which	is	one	that	doesn’t	contain
the	whitespace	characters	#x9	(tab),	#xA	(line	feed),	and	#xD	(carriage
return).

xs:string An	XML	character	string.

xs:token

An	XML	whitespace-normalized	string	with	the	following	additional
restrictions	on	#x20	(space)	characters:	it	can	have	no	leading	or	trailing
spaces,	and	it	can’t	contain	any	sequences	of	two	space	characters	in	a	row.

http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT

APPENDIX	C

Glossary

ACID
An	acronym	for	atomicity,	consistency,	isolation,	durability.	These	four	concepts	of
transactional	data	stores,	including	SQL	databases,	ensure	data	integrity.

adjacency	list	model
The	representation	of	all	arcs	or	edges	of	a	graph	as	a	list.	In	SQL,	this	is	often
implemented	as	a	self-referential	table	in	which	each	row	maintains	a	pointer	to	its	parent
node	in	the	graph.

ADO.NET	Data	Services
Also	known	as	Project	Astoria.	ADO.NET	Data	Services	provides	middle-tier	support	for
accessing	SQL	Server	databases	through	REST-style	queries	and	entity	data	models
(EDMs).

anchor	query
The	nonrecursive	query	specified	in	the	body	of	a	common	table	expression.

application	programming	interface	(API)
A	well-defined	interface	provided	by	an	application	or	service	to	support	requests	and
communications	from	other	applications.

assembly
In	SQL	Server,	a	.NET	assembly	is	a	compiled	SQL	CLR	executable	or	DLL.

asymmetric	encryption
Encryption	that	requires	two	different	keys:	one	to	encrypt	data	and	another	to	decrypt	it.

The	most	common	form	of	asymmetric	encryption	is	public	key	encryption,	in	which	the
two	keys	are	mathematically	related.

atomic,	list,	and	union	data	types
The	XML	Schema	1.1	Part	2:	Data	Types	specification	working	draft
(http://www.w3.org/TR/xmlschema11-2/)	defines	no	built-in	union	data	types.

Atomic	data	types	are	indivisible	data	types	that	derive	from	the
xs:anyAtomicType	type.	Examples	include	xs:boolean,	xs:date,	and
xs:integer.

list	data	types	are	constructed	of	sequences	of	other	types.

union	data	types	are	constructed	from	the	ordered	union	of	two	or	more	data	types,	or	a
restricted	subset	of	a	data	type.

axis
Specifier	that	indicates	the	relationship	between	the	nodes	selected	by	the	location	step
and	the	context	node.	Examples	of	axis	specifiers	include	child,	parent,	and
ancestor.

Bulk	Copy	Program	(BCP)
A	command-line	utility	supplied	with	SQL	Server	for	the	purpose	of	quickly	loading	large
datasets	into	tables.

catalog	view
View	that	returns	a	SQL	Server	database	and	server-specific	metadata.

certificate
An	electronic	document	consisting	of	an	asymmetric	key	with	additional	metadata	such	as
an	expiration	date	and	a	digital	signature	that	allows	it	to	be	verified	by	a	third	party	like	a
certificate	authority	(CA).

check	constraint
A	condition	placed	on	a	table	that	restricts	the	range	of	valid	values	for	one	or	more
columns.

http://www.w3.org/TR/xmlschema11-2/

closed-world	assumption	(CWA)
A	logic	formalism	stating	that	what	is	not	known	to	be	true,	is	false.	SQL	databases	violate
the	CWA	through	the	introduction	of	NULLs.

clustered	index
An	index	that	contains	a	table’s	row	data	in	its	leaf-level	nodes.

comment
In	XQuery,	code	that	is	ignored	during	processing.	XQuery	comments	are	denoted	by	the
(:	and	:)	delimiters	in	XQuery	queries.	They	should	not	be	confused	with	XML
comment	nodes,	which	are	designated	with	<!—	and	—>	delimiters.

T-SQL	allows	single-line	comments	that	begin	with	—	or	multiline	comments	enclosed
in	/*	and	*/	delimiters.

computed	constructor
An	alternative	way	to	create	XML	nodes	by	specifying	the	type	of	node	to	be	created
through	the	use	of	special	keywords.

content	expression
Part	of	a	computed	constructor,	enclosed	in	braces,	that	generates	XML	node	content.

context	item	expression
An	expression	that	evaluates	to	the	context	node.

context	node
The	node	currently	being	processed.	Each	node	of	each	set/sequence	returned	by	a	step	in
a	location	path	is	used	in	turn	as	a	context	node.	Subsequent	steps	define	their	axes	in
relation	to	the	current	context	node.	For	instance,	with	the	sample	XPath	expression
/Root/Person/Address,	the	Root	node	is	the	first	context	node.	All	Person
nodes	returned	below	Root	become	the	context	node	in	turn,	and	the	Address	nodes	are
retrieved	relative	to	these	context	nodes.

database	encryption	key
An	encryption	key	used	by	Transparent	Data	Encryption	to	encrypt	entire	SQL	Server
databases.

database	master	key
A	database-level	encryption	key	used	to	secure	other	keys	in	the	database.

data	domain
For	a	column,	all	valid	values	that	may	be	stored	in	that	column.	The	data	domain	can	be
restricted	through	the	use	of	data	types,	check	constraints,	referential	integrity/foreign	key
constraints,	and	triggers.

data	page
The	smallest	unit	of	storage	that	SQL	Server	can	allocate.	The	data	page	consists	of	8	KB
of	logically	contiguous	storage.

datum
A	set	of	reference	points	against	which	position	can	be	measured.	A	geodetic	datum	is
often	associated	with	a	model	of	the	shape	of	the	Earth	to	define	a	geographic	coordinate
system.

empty	sequence
An	XPath	2.0/XQuery	1.0	sequence	containing	zero	items.

entity	data	model	(EDM)
An	abstract	logical	representation	of	a	physical	database,	used	to	implement	database
connectivity	in	the	middle	or	client	tiers.

Extended	Events	(XEvents)
A	lightweight	diagnostic	system	that	can	help	you	troubleshoot	performance	problems
with	SQL	Server.

extensible	key	management	(EKM)
A	SQL	Server	2012	encryption	option	that	allows	you	to	physically	store	encryption	keys
on	third-party	hardware	security	modules	(HSMs).

extent
SQL	Server’s	basic	allocation	unit	of	storage.	An	extent	is	64	KB	in	size	and	consists	of
eight	logically	contiguous	data	pages,	each	of	which	is	8	KB	in	size.

Extract,	Transform,	Load	(ETL)
Processes	that	involve	pulling	data	from	disparate	data	sources,	cleaning	and	scrubbing	the
data,	manipulating	it	(transform),	and	storing	it	in	the	database.

facet
A	schema	component	used	to	constrain	data	types.	A	couple	of	commonly	used	facets	are
whiteSpace,	which	controls	how	whitespace	in	string	values	is	handled,	and	length,
which	restricts	values	to	a	specific	number	of	units	in	length.

filter	expression
A	primary	expression	followed	by	zero	or	more	predicates.

FLWOR	expression
Expressions	that	support	iteration	and	binding	variables.	FLWOR	is	an	acronym	for	the
XQuery	keywords	for,	let,	where,	order	by,	and	return.

foreign	key	constraint
A	logical	coupling	of	two	SQL	tables	through	the	values	of	specified	columns.

full-text	catalog
A	logical	grouping	of	SQL	Server	full-text	indexes	for	management	purposes.

full-text	index
Index	that	enables	advanced	text-based	searches	to	be	performed	against	a	database	table.

full-text	search	(FTS)
The	SQL	Server	2012	implementation	of	the	SQL	Server	full-text	search	engine	with	the
SQL	Server	query	engine.

Functions	and	Operators	(F&O)
The	XQuery	1.0	and	XPath	2.0	Functions	and	Operators	specification,	available	at
www.w3.org/TR/xquery-operators/.

general	comparison
An	existentially	quantified	XQuery	comparison	that	may	be	applied	to	operand	sequences
of	any	length.	In	general	comparisons,	the	nodes	are	atomized	and	the	atomic	values	of
both	operands	are	compared	using	value	comparisons.	If	any	of	the	value	comparisons
evaluate	to	true,	the	result	is	true.

Geography	Markup	Language	(GML)
A	standard	for	the	representation	of	geographic	data	using	XML.

grouping	set
A	SQL	Server	2012	feature	that	allows	you	to	define	sets	of	grouping	columns	in	your
queries.

hash
The	result	of	applying	a	mathematical	function	or	transformation	to	data	to	generate	a
smaller	“fingerprint”	of	the	data.	Generally,	the	most	useful	hash	functions	are	one-way,
collision-free	hashes	that	guarantee	a	high	level	of	uniqueness	in	their	results.

heap
An	unordered	collection	of	data	pages.	Any	table	without	a	clustered	index	is	a	heap.

http://www.w3.org/TR/xquery-operators/

heterogeneous	sequence
An	XQuery	sequence	of	atomic	values	of	different	types	and/or	XML	nodes.	SQL	Server
XQuery	doesn’t	support	heterogeneous	sequences	consisting	of	atomic	values	and	nodes.

homogenous	sequence
An	XQuery	sequence	consisting	entirely	of	nodes	or	entirely	of	singleton	atomic	values	of
compatible	data	types.

indirect	recursion
Recursion	by	a	trigger	that	occurs	when	a	trigger	fires,	causing	another	trigger	of	the	same
type	to	fire,	which	causes	the	first	trigger	to	fire	again.

inflectional	forms
Are	the	different	tenses	of	a	verb	or	the	singular	and	plural	forms	of	nouns.	SQL	Server
integrated	full-text	search	(FTS)	can	search	for	inflectional	forms	of	a	word,	including
verb	tenses	and	plural	forms	of	nouns.

initialization	vector	(IV)
A	block	of	bits	that	is	used	to	obfuscate	the	first	block	of	data	during	the	encryption
process.

Language	Integrated	Query	(LINQ)
A	set	of	features	that	adds	native	data	source-agnostic	querying	capabilities	to	.NET
languages	using	a	declarative	syntax.

location	path
A	series	of	steps	separated	by	the	solidus	(forward	slash)	character,	evaluated	from	left	to
right.	A	path	is	an	XPath	or	XQuery	expression	that	addresses	a	specific	subset	of	nodes	in
an	XML	document.	Each	step	on	a	location	path	generates	a	sequence	of	items.	Location
paths	can	be	relative	or	absolute.	Absolute	location	paths	begin	with	a	single	solidus
character;	relative	location	paths	do	not.

logon	trigger
A	trigger	that	fires	in	response	to	a	server	LOGON	event.

materialized	path	model
A	model	for	storing	hierarchical	data,	in	which	the	entire	path	to	the	root	node	is	stored
with	each	node	in	the	hierarchy.

Multiple	Active	Result	Sets	(MARS)
A	feature	that	allows	you	to	simultaneously	open	multiple	result	sets	on	a	single	open
connection.

nested	sets	model
A	model	in	which	hierarchical	data	is	represented	as	a	collection	of	sets	containing	other
sets.	The	lower	and	upper	bounds	of	each	set	define	the	contents	of	the	set.

node
In	the	Document	Object	Model	(DOM),	everything	in	an	XML	document	is	a	node.	The
entire	document	is	a	tree-like	structure	that	makes	connections	between	the	arbitrary
attributes	or	nodes.	XPath	2.0	and	XQuery	1.0	treat	XML	data	as	a	hierarchical	tree
structure,	similar	to	(but	not	exactly	the	same	as)	the	Document	Object	Model	(DOM)	that
web	programmers	often	use	to	manipulate	HTML	and	XML.	XPath	and	XQuery	XML
trees	are	composed	of	the	seven	types	of	nodes	defined	in	the	W3C	XQuery	1.0	and	XPath
2.0	Data	Model	(XDM),	full	descriptions	of	which	are	available	at
www.w3.org/TR/xpath-datamodel/#node-identity.	These	node	types
include	the	following:

Attribute	nodes	represent	XML	attributes.

Comment	nodes	encapsulate	XML	comments.

Document	nodes	encapsulate	XML	documents.

Element	nodes	encapsulate	XML	elements.

Namespace	nodes	represent	the	binding	of	a	namespace	URI	to	a
namespace	prefix	(or	the	default	namespace).

Processing	instruction	nodes	encapsulate	processing	instructions.

Text	nodes	encapsulate	XML	character	content.

http://www.w3.org/TR/xpath-datamodel/#node-identity

XPath	1.0	defines	the	node	types	it	uses	in	Part	5	of	the	XPath	1.0	specification.	The
main	difference	between	XPath	1.0	nodes	and	XDM	nodes	is	that	XPath	1.0	defines	the
root	node	of	a	document	in	place	of	the	document	nodes	of	the	XDM.	Another	major
difference	is	that	in	the	XDM,	element	nodes	are	either	explicitly	or	implicitly	(based	on
content)	assigned	type	information.

node	comparison
Comparison	of	nodes	in	XQuery	based	on	their	document	order	or	identity.

node	test
A	condition	that	must	be	true	for	each	node	generated	by	a	step.	A	node	test	can	be	based
on	the	name	of	the	node,	the	kind	of	node,	or	the	type	of	node.

nonclustered	index
An	index	that	stores	the	clustering	key	or	row	ID	of	the	row	data	in	its	leaf	nodes,
depending	on	whether	the	table	is	a	clustered	table	or	a	heap.

object-relational	mapping	(O/RM)
A	technique	for	mapping	data	between	relational	databases	and	object-oriented
programming	languages.

open-world	assumption	(OWA)
A	logic	formalism	stating	that	the	truth	of	a	statement	is	independent	of	whether	it’s
known	to	be	true.

optional	occurrence	indicator
The	?	character,	when	used	in	conjunction	with	the	cast	as	keywords.	It	indicates	that
the	empty	sequence	is	allowed.

parameterization
The	act	of	using	named	or	positional	markers	in	place	of	constant	values	in	a	T-SQL	query
or	statement.	The	actual	values	are	passed	to	SQL	Server	independently	of	the	actual
query.

path	expression
See	location	path.

predicate
In	T-SQL,	an	expression	that	evaluates	to	a	SQL	truth	value.	Predicates	are	used	to	control
program	flow	and	to	limit	the	results	of	queries	and	the	effect	of	statements.

An	XQuery	predicate	is	an	expression	enclosed	in	brackets	([])	that	is	used	to	filter	a
sequence.	The	predicate	expressions	are	generally	comparison	expressions	of	some	sort
(equality,	inequality,	and	so	on).

predicate	truth	value
In	XQuery,	a	Boolean	value	derived	from	the	result	of	an	expression	through	a	set	of	rules
defined	in	the	XQuery	recommendation.

primary	expression
The	basic	primitive	of	the	XQuery	language.	A	primary	expression	can	be	a	literal,	a
variable	reference,	a	context	item	expression,	a	data	type	constructor,	or	a	function	call.

query	plan
A	sequence	of	logical	and	physical	operators	and	data	flows	that	the	SQL	query	optimizer
returns	for	use	by	the	query	processor	to	retrieve	or	modify	data.

recompilation
The	process	of	compiling	a	new	query	plan	for	a	given	query,	statement,	or	stored
procedure	when	a	plan	already	exists	in	the	query-plan	cache.	Recompilation	can	be
triggered	by	SQL	Server	due	to	changes	that	have	occurred	since	the	prior	query	plan	was
generated	for	the	statement,	or	it	can	be	forced	by	user	actions	and	T-SQL	options.

recursion
A	method	of	defining	functions,	common	table	expressions,	procedures,	or	triggers	in	such
a	way	that	they	call	themselves	or	cause	themselves	to	be	called	multiple	times.

row	constructor
A	SQL	Server	2012	feature	that	allows	you	to	specify	multiple	rows	in	a	single	VALUES
clause	of	the	INSERT	statement.

scalar	function
A	function	that	returns	a	single	atomic	value	as	its	result.

searched	CASE	expression
An	expression	that	allows	you	to	specify	one	or	more	SQL	predicates	in	WHEN	clauses.

sequence
An	ordered	collection	of	zero	or	more	items,	as	defined	in	XPath	2.0	and	XQuery	1.0.	The
word	ordered	is	important,	because	it	differentiates	a	sequence	from	a	set,	which,	as	most
T-SQL	programmers	know	(or	quickly	come	to	realize),	is	unordered.	XPath	1.0	defined
its	results	in	terms	of	node	sets,	which	are	unordered	and	can’t	contain	duplicates.	XQuery
changes	this	terminology	to	node	sequences,	which	recognize	the	importance	of	node
order	in	XML	and	can	contain	duplicates.

server	certificate
A	certificate	created	in	the	master	database	for	the	purpose	of	encrypting	an	entire
database	via	transparent	data	encryption	(TDE).

service	master	key	(SMK)
An	encryption	key	managed	at	the	SQL	Server	service	level.	The	SMK	is	used	to	encrypt
all	other	keys	in	the	SQL	Server	encryption	key	hierarchy.

shredding
The	process	of	converting	XML	data	into	relational	style	rows	and	columns.

simple	CASE	expression
An	expression	defined	with	constants	or	value	expressions	in	its	WHEN	clauses.	The

simple	CASE	evaluates	to	a	series	of	simple	equality	expressions.

SOAP
Simple	Object	Access	Protocol,	an	XML-based	protocol	designed	for	exchanging
structured	information	in	distributed,	decentralized	environments.

spatial	data
Data	used	to	represent	objects	and	points	on	the	Earth.

spatial	index
A	mechanism	for	increasing	the	efficiency	of	geographic	calculations	such	as	the	distance
between	points,	or	whether	an	object	contains	another	point	or	object.

SQL	Server	Data	Tools
A	set	of	tools	that	provides	an	integrated	environment	for	database	and	application
development.

SQL	injection
A	technique	that	exploits	security	vulnerabilities	in	the	application	layer	and	middle	tier,
allowing	users	to	execute	arbitrary	SQL	statements	on	a	server.

step
In	XQuery,	a	part	of	a	path	expression	that	generates	a	sequence	of	items	and	then	filters
the	sequence.	Each	step	is	composed	of	an	axis,	a	node	test,	and	zero	or	more	predicates.

table	type
An	alias	type	that	defines	a	table	structure	for	use	with	table-valued	parameters.

three-valued	logic	(3VL)
A	logic	system	that	the	SQL	language	supports	with	three	truth	values:	true,	false,	and
unknown.

transparent	data	encryption	(TDE)
A	SQL	Server	2012	feature	that	allows	you	to	encrypt	an	entire	database	at	once.

untyped	XML
An	XML	data	instance	that	is	not	associated	with	an	XML	schema	collection.

user-defined	aggregate	(UDA)
A	SQL	CLR	routine	that	applies	a	function	or	calculation	to	an	entire	set	of	values.

user-defined	type	(UDT)
A	SQL	CLR-based	data	type.

value	comparison
A	comparison	of	single	values	in	XQuery.

well-formed	XML
XML	data	that	follows	the	W3C	XML	recommendation	for	well-formed	data.	It	includes	a
single	root	element	and	properly	nested	elements,	and	it’s	properly	entitized.

well-known	text	(WKT)
A	plain-text	format	for	defining	geospatial	data.

windowing	functions
Functions	that	can	partition	and	possibly	order	datasets	before	they’re	applied	to	the
dataset	partitions.

World	Wide	Web	Consortium	(W3C)
A	standards	body	with	the	stated	mission	of	“developing	interoperable	technologies	…	to
lead	the	Web	to	its	full	potential.”

XML
Extensible	Markup	Language,	a	restricted	form	of	Standardized	General	Markup
Language	(SGML)	designed	to	be	easily	served,	received,	and	processed	on	the	Web.

XML	schema
The	basic	data	types	utilized	by	XQuery.	Part	2	of	the	XML	Schema	1.1	standard	defines
XML	Schema	data	types.

XPath
XML	Path	Language,	an	expression	language	designed	to	allow	processing	of	values	that
conform	to	the	XPath	Data	Model	(XDM).

XQuery
XML	Query	Language,	an	XML	query	language	designed	to	retrieve	and	interpret	data
from	diverse	XML	sources.

XQuery/XPath	Data	Model	(XDM)
The	XQuery	1.0	and	XPath	2.0	Data	Model,	defined	by	the	W3C	at
www.w3.org/TR/2006/PR-xpath-datamodel-20061121/.	See	XQuery.

XSL
Extensible	Stylesheet	LanguageXSL	transformations	(XSLT),	a	language	for	expressing
style	sheets,	consisting	of	a	language	for	transforming	XML	documents	and	an	XML
vocabulary	for	specifying	formatting	semantics.	See	XSLT.

XSLT
XSL	TransformationsExtensible	Stylesheet	Language	(XSL),	a	language	for	transforming
XML	documents	into	other	XML	documents.	For	instance,	XSLT	can	be	used	to	transform
an	XML	document	into	an	XHTML	document.	See	XSL.

http://www.w3.org/TR/2006/PR-xpath-datamodel-20061121/

APPENDIX	D

SQLCMD	Quick	Reference
SQLCMD	is	the	standard	text-based	tool	for	executing	batches	of	T-SQL	on	SQL	Server.
As	a	text-based	tool,	SQLCMD	provides	a	lightweight	but	powerful	tool	for	automating	T-
SQL	batches.	This	appendix	is	designed	as	a	quick	reference	to	SQLCMD.	The
descriptions	of	many	of	the	features	and	the	functionality	given	here	differ	from	BOL	in
some	instances;	the	descriptions	provided	in	this	appendix	are	based	on	extensive	testing
of	SQLCMD.

Command-Line	Options
SQLCMD	provides	several	command-line	options	to	provide	flexibility	in	connecting	to
SQL	Server	and	executing	T-SQL	batches	in	a	database.	The	full	format	for	SQLCMD	is
shown	here:

sqlcmd	[[-U	login_id]	[-P	password]	|	[-E]]	[-C]

[-S	server	[\instance]]	[-d	db_name]	[-H	workstation]

[-l	login	timeout]	[-t	query	timeout]	[-h	headers]	[-s	

column_separator]	[-w	column_width]

[-a	packet_size]	[-I]	[-L[c]]	[-W]	[-r[o|1]]	[-q	"query"]	

[-Q	"query"	and	exit]

[-c	batch_term]	[-e]	[-m	error	Level]	[-V	Severity	Level]	[-

b]	[-N]		[-K]

[-i	input_file	[,input_file2	[,	...]]]	[-o	output_file]	[-

u]

[-v	var	=	"value"	[,var2	=	"value2"]	[,...]]	[-X[1]	[-x]	

[-?]

[-z	new_password]	[-Z	new_password]	[-f	codepage	

|	i:in_codepage	[,o:out_codepage]]

[-k[l|2]]	[-y	display_width]	[-Y	display_width]

[-p[1]	[-R]	[-A]

The	available	command-line	options	are	listed	in	Table	D-1.	The	SQLCMD	command-
line	options	are	case	sensitive,	so,	for	example,	-v	is	a	different	option	from	-V.

Table	D-1.	SQLCMD	Command-Line	Options

Option Description

-? Displays	the	SQLCMD	help/syntax	screen.

-A
Tells	SQLCMD	to	log	in	to	SQL	Server	with	a	dedicated	administrator	connection.

This	type	of	connection	is	usually	used	for	troubleshooting.

-a	packet_size
Requests	communications	with	a	specific	packet	size.	The	default	is	4096.
packet_size	must	be	in	the	range	512	to	32767.

-b

Specifies	that	SQLCMD	exits	on	an	error	and	returns	an	ERRORLEVEL	value	to
the	operating	system.	When	this	option	is	set,	a	SQL	error	of	severity	11	or	greater
returns	an	ERRORLEVEL	of	1;	an	error	or	message	of	severity	10	or	less	returns	an
ERRORLEVEL	of	0.	If	the	-V	option	is	also	used,	SQLCMD	reports	only	the
errors	with	a	severity	greater	than	or	equal	to	the	severity_level	(level	11	or
greater)	specified	with	the	-V	option.

-c	batch_term
Specifies	the	batch	terminator.	By	default,	it’s	the	GO	keyword.	Avoid	using
special	characters	and	reserved	words	as	the	batch	terminator.

-C
Specifies	that	the	server	certificate	can	be	trusted	implicitly	without	validation
used	by	the	client.

-d	db_name

Specifies	the	database	to	use	after	SQLCMD	connects	to	SQL	Server.
Alternatively,	you	can	set	this	option	via	the	SQLCMDDBNAME	environment
variable.	If	the	database	specified	doesn’t	exist,	SQLCMD	exits	with	an	error.

-E

Uses	a	trusted	connection	(Windows	authentication	mode)	to	connect	to	SQL
Server.	This	option	ignores	the	SQLCMDUSER	and	SQLCMDPASSWORD
environment	variables,	and	you	can’t	use	it	with	the	-U	and	-P	options.

-e
Prints	(echoes)	input	scripts	to	the	standard	output	device	(usually	the	screen	by
default).

-f	codepage	|

i:in_codepage

[,oout_codepage]

Specifies	the	code	pages	for	input	and	output.	If	i:	is	specified,	in_codepage
is	the	input	code	page.	If	o:	is	specified,	out_codepage	is	the	output	code
page.	If	i:	and	o:	aren’t	specified,	the	codepage	supplied	is	the	code	page	for
both	input	and	output.	To	specify	a	code	page,	use	its	numeric	identifier.	The
following	code	pages	are	supported	by	SQL	Server	2005:

Code	Page	Number Code	Page	Name

437 MS-DOS	US	English

850 Multilingual	(MS-DOS	Latin1)

874 Thai

932 Japanese

936 Chinese	(Simplified)

949 Korean

950 Chinese(Traditional)

1250 Central	European

1251 Cyrillic

1252 Latin1	(ANSI)

1253 Greek

1254 Turkish

1255 Hebrew

1256 Arabic

1257 Baltic

1258 Vietnamese

-H	workstation
The	-H	option	sets	the	workstation	name.	You	can	use	-H	to	differentiate	between
sessions	with	commands	such	as	sp_who.

-h	headers

Specifies	the	number	of	rows	of	data	to	print	before	a	new	column	header	is
generated.	The	value	must	be	from	-1	(no	headers)	to	2147483647.	The	default
value	of	0	prints	headings	once	for	each	set	of	results.

-I

Sets	the	connection	QUOTED_IDENTIFIER	option	to	ON.	Turning	on	the
QUOTED_IDENTIFIER	option	makes	SQL	Server	follow	the	ANSI	SQL-92
rules	for	quoted	identifiers.	This	option	is	set	to	OFF	by	default.

-i	input_file

[,input_file2]

[,…]

Specifies	that	SQLCMD	should	use	files	that	contain	batches	of	T-SQL	statements
for	input.	The	files	are	processed	in	order	from	left	to	right.	If	any	of	the	files	don’t
exist,	SQLCMD	exits	with	an	error.	You	can	use	the	GO	batch	terminator	in	your
SQL	script	files.

-k	[1|2]

-k	removes	control	characters	from	the	output.	If	1	is	specified,	control	characters
are	replaced	one	for	one	with	spaces.	If	2	is	specified,	consecutive	control
characters	are	replaced	with	a	single	space.

-K

Specifies	the	intent	of	the	application	workload	that	is	connecting	to	the	server	that
is	a	secondary	replica	in	the	AlwaysOn	availability	group.	The	only	value	that
can	be	specified	currently	is	ReadOnly.

-L	[c]

-L	returns	a	listing	of	available	SQL	Server	machines	on	the	network	and	local
computer.	If	the	-Lc	format	is	used,	a	“clean”	listing	is	returned	without	heading
information.	The	listing	is	limited	to	a	maximum	of	3,000	servers.	Note	that
because	of	the	way	SQL	Server	broadcasts	to	gather	server	information,	any
servers	that	don’t	respond	in	a	timely	manner	aren’t	included	in	the	list.	You	can’t
use	the	-L	option	with	other	options.

-l	timeout
Specifies	the	login	timeout.	The	timeout	value	must	be	from	0	to	65534.	The
default	value	is	8	seconds,	and	a	value	of	0	is	no	timeout	(infinite).

-m	error_level

Defines	an	error-message	customization	level.	Only	errors	with	a	severity	greater
than	the	specified	level	are	displayed.	If	error_level	is	-1,	all	messages	are
returned,	even	informational	messages.

-N Specifies	that	the	client	connection	is	encrypted.

-o	output_file
Specifies	the	file	to	which	SQLCMD	should	direct	output.	If	-o	isn’t	specified,
SQLCMD	defaults	to	standard	output	(usually	the	screen).

-P	password

Specifies	a	password	to	log	in	to	SQL	Server	when	using	SQL	authentication
mode.	If	-P	is	omitted,	SQLCMD	looks	for	the	SQLCMDPASSWORD	environment
variable	to	get	the	password	to	log	in.	If	the	SQLCMDPASSWORD	environment
variable	isn’t	found,	SQLCMD	prompts	you	for	the	password	to	log	in	using	SQL
authentication	mode.	If	neither	-P	nor	-U	is	specified	and	the	corresponding
environment	variables	aren’t	set,	SQLCMD	attempts	to	log	in	using	Windows

authentication	mode.

-p	[1]
-p	prints	performance	statistics	for	each	result	set.	Specifying	1	produces	colon-
separated	output.

-Q	“query”	and	-q
“query”

Both	execute	a	SQL	query/command	from	the	command	line.	-q	remains	in
SQLCMD	after	query	completion.	-Q	exits	SQLCMD	after	completion.

-R Specifies	client	regional	settings	for	currency	and	date/time	formatting.

-r	[0|1]

-r	redirects	error-message	output	to	the	standard	error-output	device—the	monitor
by	default.	If	1	is	specified,	all	error	messages	and	informational	messages	are
redirected.	If	0	or	no	number	is	specified,	only	error	messages	with	a	severity	of
11	or	greater	are	redirected.	The	redirection	doesn’t	work	with	the	-o	option;	it
does	work	if	standard	output	is	redirected	with	the	Windows	command-line
redirector	(>).

-S	server

[\instance]

Specifies		the	SQL	Server	server	or	named	instance	to	which	SQLCMD
should	connect.	If	this	option	isn’t	specified,	SQLCMD	connects	to	the	default
SQL	Server	instance	on	the	local	machine.

-s

column_separator

Sets	the	column-separator	character.	By	default,	the	column	separator	is	a	space
character.	Column_separator	can	be	enclosed	in	quotes,	which	is	useful	if	you
want	to	use	a	character	that	the	operating	system	recognizes	as	a	special	character,
such	as	the	greater-than	sign	(>).

-t	timeout

Specifies	the	SQL	query/command	timeout	in	seconds.	The	timeout	value	must	be
in	the	range	0	to	65535.	If	-t	isn’t	specified,	or	if	it’s	set	to	0,	queries/commands
don’t	time	out.

-U	login_id

Specifies	the	user	login	ID	to	log	in	to	SQL	Server	using	SQL	authentication
mode.	If	the	-U	option	is	omitted,	SQLCMD	looks	for	the	SQLCMDUSER
environment	variable	to	get	the	login	password.	If	the	-U	option	is	omitted,
SQLCMD	attempts	to	use	the	current	user’s	Windows	login	name	to	log	in.

-u
Specifies	that	the	output	of	SQLCMD	is	in	Unicode	format.	Use	this	option	with
the	-o	option.

-V

severity_level

Specifies	the	lowest	severity	level	that	SQLCMD	reports	back.	Errors	and
messages	of	a	severity	less	than	severity_level	are	reported	as	0.
Severity_level	must	be	in	the	range	1	to	25.	In	a	command-line	batch	file,	-
V	returns	the	severity	level	of	any	SQL	Server	errors	encountered	via	the
ERRORLEVEL	so	that	your	batch	file	can	take	appropriate	action.

-v	var	=	“value”

[,var2	=

“value2”]

[,…]

Sets	scripting	variables	that	SQLCMD	can	use	in	your	scripts	to	the	specified
values.	Scripting	variables	are	described	later	in	this	appendix.

-W

Removes	trailing	spaces	from	a	column.	You	can	use	this	option	with	the	-s
option	when	preparing	data	that	is	to	be	exported	to	another	application.	You	can’t
use	-W	in	conjunction	with	the	-Y	or	-y	option.

-w	column_width

Specifies	the	screen	width	for	output.	The	width	value	must	be	in	the	range	9	to
65535.	The	default	of	0	is	equivalent	to	the	width	of	the	output	device.	For	screen
output,	the	default	is	the	width	of	the	screen.	For	files,	the	default	width	is
unlimited.

-X	[1]

-X	disables	options	that	can	compromise	security	in	batch	files.	Specifically,	-X
does	the	following:

Disables	the	SQLCMD:!!	and	:ED	commands

Prevents	SQLCMD	from	using	operating	system
environment	variables

Disables	the	SQLCMD	startup	script

If	a	disabled	command	is	encountered,	SQLCMD	issues	a	warning	and	continues
processing.	If	the	optional	1	is	specified	with	-X,	SQLCMD	exits	with	an	error
when	a	disabled	command	is	encountered.	Descriptions	of	SQLCMD	commands,
script	variables,	environment	variables,	and	the	startup	script	are	detailed	later	in
this	appendix.

-x Forces	SQLCMD	to	ignore	scripting	variables.

-Y	display_width
Limits	the	number	of	characters	returned	for	the	char,	nchar,	varchar	(8,000
bytes	or	less),	nvarchar	(4,000	bytes	or	less),	and	sql_variant	data	types.

-y	display_width

Limits	the	number	of	characters	returned	for	variable-length	data	types	such	as
varchar(max),	varbinary(max),	xml,	text,	and	fixed-length	or	variable-
length	user-defined	types	(UDTs).

-Z	new_password

and	-z
new_password

When	used	with	SQL	authentication	(the	-U	and	-P	options),	-Z	and	-z	change
the	SQL	login	password.	If	the	-P	option	isn’t	specified,	SQLCMD	prompts	you
for	the	current	password.	-z	changes	the	password	and	enters	interactive	mode.	-
Z	exits	SQLCMD	immediately	after	the	password	is	changed.

Scripting	Variables
SQLCMD	supports	scripting	variables,	which	allow	you	to	dynamically	replace	script
content	at	execution	time.	This	lets	you	use	a	single	script	in	multiple	scenarios.	By	using
scripting	variables,	for	instance,	you	can	execute	a	single	script	against	different	servers	or
databases	without	modification.	SQLCMD	allows	you	to	set	your	own	custom	scripting
variables	with	the	-v	command-line	option.	If	more	than	one	scripting	variable	is
specified	with	the	same	name,	the	variable	with	the	highest	precedence	(according	to	the
following	list)	is	used:

1.	 System-level	environment	variables	have	the	highest	precedence.

2.	 User-level	environment	variables	are	next.

3.	 Variables	set	via	the	command	shell	SET	option	are	next.

4.	 Variables	set	via	the	SQLCMD	-v	command-line	option	are	next.

5.	 Variables	set	inside	a	SQLCMD	batch	via	the	:SETVAR	command
have	the	lowest	precedence.

	Note		The	-X	and	-x	options	disable	startup-script	execution	and	environment-variable
access,	respectively.	-x	also	prevents	SQLCMD	from	dynamically	replacing	scripting-

variable	references	in	your	code	with	the	appropriate	values.	This	is	a	feature	designed	for
secure	environments	where	scripting-variable	usage	could	compromise	security.

SQLCMD	also	provides	several	predefined	scripting	variables,	which	are	listed	in
Table	D-2.	You	can	set	the	predefined	read-only	SQLCMD	scripting	variables	via	the
command	shell	SET	option	or	through	SQLCMD	command-line	options;	you	can’t	alter
them	from	within	a	SQLCMD	script	with	:SETVAR.

Table	D-2.	SQLCMD	Scripting	Variables

Commands
SQLCMD	recognizes	a	set	of	commands	that	aren’t	part	of	T-SQL.	These	SQLCMD

commands	aren’t	recognized	by	other	query	tools;	they’re	not	even	recognized	by	SSMS
(except	when	you	run	it	in	SQLCMD	mode).	SQLCMD	commands	all	begin	on	a	line
with	a	colon	(:)	to	identify	them	as	different	from	T-SQL	statements.	You	can	intersperse
SQLCMD	commands	within	your	T-SQL	scripts.	Table	D-3	lists	the	SQLCMD	commands
available.

	Tip		For	backward	compatibility	with	older	osql	scripts,	you	can	enter	the	following
commands	without	a	colon	prefix:	!!,	ED,	RESET,	EXIT,	and	QUIT.	Also,	SQLCMD
commands	are	case	insensitive,	they	must	appear	at	the	beginning	of	a	line,	and	they	must
be	on	their	own	line.	A	SQLCMD	command	can’t	be	followed	on	the	same	line	by	a	T-
SQL	statement	or	another	SQLCMD	command.

Table	D-3.	SQLCMD	Commands

Command Description

:!!
Invokes	the	command	shell.	This	command	executes	the	specified	operating	system
command	in	the	command	shell.

:CONNECT

server

[\instance]

Connects	to	a	SQL	Server	instance.

[-ltimeout]

[-Uuser	[-

Ppassword]

]

The	server	name	(server)	and	instance	name	(\instance)	are	specified	in	the
command.	When	:CONNECT	is	executed,	the	current	connection	is	closed.	You	can	use
the	following	options	with	the	:CONNECT	command:	-l	specifies	the	login	timeout
(specified	in	seconds;	0	equals	no	timeout);	-U	specifies	the	SQL	authentication
username;	and	-P	specifies	the	SQL	authentication	password.

:ED

Starts	the	text	editor	to	edit	the	current	batch	or	the	last	executed	batch.	The
SQLCMDEDITOR	environment	variable	defines	the	application	used	as	the	SQLCMD
editor.	The	default	is	the	Windows	EDIT	utility.

:ERROR

destination

Redirects	error	messages	to	the	specified	destination.	destination	can	be	a	file
name,	STDOUT	for	standard	output,	or	STDERR	for	standard	error	output.

:EXIT	[()|

(query)]

Has	three	forms:	:EXIT	alone	immediately	exits	without	executing	the	batch	and	with	no
return	code.	:EXIT()	executes	the	current	batch	and	exits	with	no	return	code.
:EXIT(query)	executes	the	batch,	including	the	query	specified,	and	returns	the	first
value	of	the	first	result	row	of	the	query	as	a	4-byte	integer	to	the	operating	system.

GO	[n]
The	batch	terminator.	It	executes	the	statements	in	the	cache.	If	n	is	specified,	GO	executes
the	statement	n	times.

:HELP Displays	a	list	of	SQLCMD	commands.

:LIST Lists	the	contents	of	the	current	batch	of	statements	in	the	statement	cache.

:LISTVAR Lists	all	the	SQLCMD	scripting	variables	(that	have	been	set)	and	their	current	values.

:ON	ERROR

action

Specifies	the	action	SQLCMD	should	take	when	an	error	is	encountered.	action	can	be
one	of	two	values:	EXIT	stops	processing	and	exits,	returning	the	appropriate	error	code.
IGNORE	disregards	the	error	and	continues	processing.

:OUT

destination

Redirects	output	to	the	specified	destination.	destination	can	be	a	file	name,
STDOUT	for	standard	output,	or	STDERR	for	standard	error	output.	Output	is	sent	to
STDOUT	by	default.

:PERFTRACE

destination

Redirects	performance	trace/timing	information	to	the	specified	destination.
destination	can	be	a	file	name,	STDOUT	for	standard	output,	or	STDERR	for	standard
error	output.	Trace	information	is	sent	to	STDOUT	by	default.

:QUIT Quits	SQLCMD	immediately.

:R	filename Reads	in	the	contents	of	the	specified	file	and	appends	it	to	the	statement	cache.

:RESET Resets/clears	the	statement	cache.

:SERVERLIST

Lists	all	SQL	Server	instances	on	the	local	machine	and	any	servers	broadcasting	on	the
local	network.	If	SQLCMD	doesn’t	receive	timely	responses	from	a	server	on	the
network,	it	may	not	be	listed.

:SETVAR	var

[value]

Allows	you	to	set	or	remove	SQLCMD	scripting	variables.	To	remove	a	SQLCMD
scripting	variable,	use	the	:SETVAR	var	format.	To	set	a	SQLCMD	scripting	variable	to
a	value,	use	the	:SETVAR	var	value	format.

:XML	ON|OFF

Indicates	to	SQLCMD	that	you	expect	XML	output	from	SQL	Server	(that	is,	the
SELECT	statement’s	FOR	XML	clause).	Use	:XML	ON	before	your	SQL	batch	is	run	and
:XML	OFF	after	the	batch	has	executed	(after	the	GO	batch	terminator).

Index
		A

Accumulate()	method

ACID.	See	Atomicity,	consistency,	isolation,	durability	(ACID)

ACM.	See	Association	for	Computing	Machinery	(ACM)

Adjacency	list	model

ADO.NET

4.5,	asynchronous	programming

code

run	stored	procedure	asynchronously

run	stored	procedure	synchronously

data	services

System.Data.Common

System.Data	namespace

System.Data.Odbc

System.Data.OleDb

System.Data.SqlClient

System.Data.SqlTypes

AdventureWorks

BOM

CREATE	DATABASE

DataService	Class

LT2014	data	file

sample	database

American	National	Standards	Institute	(ANSI)

Analytic	functions

CUME_DIST	and	PERCENT_RANK	functions

FIRST_VALUE	and	LAST_VALUE

LAG	and	LEAD

PERCENTILE_CONT	and	PERCENTILE_DISC	function

Anchor	query

ANSI.	See	American	National	Standards	Institute	(ANSI)

ANSI-encoded	characters

Application	programming	interface	(API)

ApressDb	database	files

apt-cache	command

Association	for	Computing	Machinery	(ACM)

Asymmetric	encryption

Asymmetric	keys

algorithms	and	limits

ALTER	ASYMMETRIC	KEY

AsymKeylD	function

DecryptByAsymKey

DMK

EncryptByAsymKey	function

HSM

public	and	private	keys

SignByAsymKey	function

varbinary	signature

Asynchronous	programming

code	structure

stored	procedure

Atomic	data	types

Atomicity,	consistency,	isolation,	durability	(ACID)

AUTHORIZATION	clause

AUTO	mode

		B
BACKUP	ASYMMETRIC	KEY	statement

BCP.	See	Bulk	Copy	Program	(BCP)

Best	practices,	SPs

API

BEGIN/END	TRANSACTION

CLR

DBMSs

dbo.sp_help

functionality

modularization	and	security

nullability

query	optimization

scalar	function

SELECT	statements

UNION	ALL	operator

BIDS.	See	Business	Intelligence	Development	Studio	(BIDS)

Bill	of	materials	(BOM)

AdventureWorks

hierarchyid

recursive	CTE

BOL.	See	Books	Online	(BOL)

BomChildren

Books	Online	(BOL)

BREAK	statement

build_dm.sh	command

Bulk	Copy	Program	(BCP)

Business	Intelligence	Development	Studio	(BIDS)

Bw-tree	architecture

		C
Cartesian	product	XQuery

CASE	expressions

CHOOSE	function

COALESCE	and	NULLIF	functions

IIF	statement

pivot	tables

search	expression

simple	expression

CASE-style	pivot	table

CatalogDescription	with	no	namespaces

Catalog	views

advantages

inheritance	model

metadata

querying	permissions

SQL	Server	database	and	server-specific	metadata

table	and	column	metadata

Certificate	authority	(CA)

Certificates

CertID	function

CREATE	CERTIFICATE	statement

DecryptByCert	function

decryption	functions

DER

EncryptByCert	function

EXECUTABLE	FILE	clause

FROM	ASSEMBLY	clause

public/private	key

SignByCert	function

SQL	Server

TestCertificate

varbinary

varchar

Change	data	capture	(CDC)

built-in	auditing	functionality

DML	audit

action	table

CASE	expression

CREATE	TRIGGER	statement

logging	table

@@ROWCOUNT	function

row	insertion

SELECT	statement

SET	NOCOUNT	ON

testing

trigger	logging	table

UPDATE	statement

nested	and	recursive	triggers

sharing	data

UPDATE()	and	COLUMNS_UPDATED()	functions

Check	constraint

CHOOSE	statement

Closed-world	assumption	(CWA)

CLRDemo	Database	Project	properties

CLR	integration	program

advantages

assemblies

AUTHORIZATION	clause

CLRDemo	Database	Project	properties

CREATE	ASSEMBLY	statement

database	project	properties	menu

FROM	clause

.NET	namespaces	and	classes

project

T-SQL	database	object-creation	statements

Visual	Studio	2013

WITH	PERMISSION_SET	clause

guidelines

ODS

stored	procedures	(see	Stored	procedures)

triggers	(see	Triggers)

UDAs	(see	User-defined	aggregates	(UDAs))

UDFs	(see	User-defined	functions	(UDFs))

UDTs	(see	User-defined	data	types	(UDTs))

Clustered	indexes

COALESCE()	function

Code	snippets

category

create	function

create	stored	procedure

CREATE	TABLE

Insert	Snippet	command

manager

T-SQL	Editor

Columnstore	index

Command-line	options

Common	Language	Runtime	(CLR)

Common	Object	Request	Broker	Architecture	(CORBA)

Common	table	expressions	(CTE)

benefits

BomChildren

definition

DML	statement

exercises

32-level	recursion	limit

multiple

overloading

parent_path_locator	and	path_locator

readablility	benefits

recursive.	Recursive	CTE

simple

SP

syntax

Compiled	stored	procedures

Complex	number

Computed	constructors

CONTAINS	predicate

compound	CONTAINS	search	term

custom	search

FORMSOF	inflectional	generation	term

FREETEXT	predicate

prefix	search

proximity	search

simple	CONTAINS	query

Content	expression

Context	item	expression

Context	node

Control-of-flow	statements

BEGIN	and	END	keywords

GOTO	Statement

IF…ELSE	statement

RETURN	Statement

WAITFOR	statement

WHILE,	BREAK	and	CONTINUE	statements

Coordinated	Universal	Time	(UTC)

date	and	time	data

and	military	time

CUME_DIST	and	PERCENT_RANK	functions

CURRENT_TIMESTAMP	functions

Cursors

administrative	tasks

AdventureWorks	database

ALTER	INDEX	statement

comparisons

DBCCs

dbo.RebuildIndexes	procedure

description

design	patterns

@IndexList	table

options

RBAR

SQL’s	set-based	process

T-SQL	extended	syntax

WHILE	loops

		D
Database	console	commands	(DBCCs)

Database	master	and	encryption	key

Database	master	keys	(DMK)

Data	control	language	(DCL)

Data	definition	language	(DDL)

audit	logging	results

CREATE	TABLE	statement

CREATE	TRIGGER	statement

definition

DROP	TRIGGER	statement

EVENTDATA()	function

event	types	and	groups

nodes()	and	value()	methods

Data	domain	and	page

Data()	function

DATALENGTH()	function

Data	manipulation	language	(DML)

auditing

CREATE	TRIGGER	statement

definition

disabling	and	enabling	triggers

HumanResources.Employee	table

INSERT	and	DELETE	statement

multiple	triggers

multistatement	TVF

@@ROWCOUNT	system	function

SELECT	and	UPDATE

SET	NOCOUNT	ON	statement

statement

trigger

UPDATE	statement

Data()	node	test

Data	services.	See	also	Service	Oriented	Architecture	(SOA);	SQL	Server	2012	Express	LocalDB

ISV

JDBC	(see	Java	Database	Connectivity	(JDBC))

ODBC	(see	Open	DataBase	Connectivity	(ODBC))

REST-style	services

WCF	(see	Windows	Communication	Foundation	(WCF))

Data	types

characters

date	and	time

date	comparison

DATEDIFF()	function

datetimeoffset

datetime2	variables

example

functions

sample

SQL	Server	2012

standard	time	zones

@start_time	variable

LOB

numerics

nvarchar	data	type

(n)varchar(max)/varbinary(max)

time	zones	and	offsets

transactional	coherence

UTC	and	military	time

WRITE	clause	and	string	append

XML

description

exist	method

modify	method

nodes	method

query	method

value	method

Data	warehousing	(DW)

Datum

Daylight	Saving	Time	(DST)

DCL.	See	Data	control	language	(DCL)

DDL.	See	Data	definition	language	(DDL)

DDL	triggers

Debugging	tools

PRINT	statement

SSMS	integration

trace	flags

Visual	Studio	T-SQL	debugger	(see	Visual	Studio	T-SQL	debugger)

Declarative	referential	integrity	(DRI)

Directive	value

cdata

element

elementxsinil

hide

id,	idref	and	idrefs

xml

xmltext

Distributed	Component	Object	Model	(DCOM)

DMFs.	See	Dynamic	management	functions	(DMFs)

DML.	See	Data	manipulation	language	(DML)

DMVs.	See	Dynamic	management	views	(DMVs)

DRI.	See	Declarative	referential	integrity	(DRI)

Dynamic	management	functions	(DMFs)

Dynamic	management	views	and	functions	(DMVs	and	DMFs)

categories

connection	information

expensive	queries

blocked	queries

cached	query	plan

index	metadata

ALTER	INDEX	statements

fragmentation

stored	procedure

temporary	objects

triggers

memory-optimized	system	views

retrieve

server	resources

configuration	details

dump	files

instance	keys	and	values

volume	information

SQL	execution

OPTION	(FORCE	ORDER)

statements

sys.dm_exec_requests

sys.dm_exec_sessions

summarization

tempdb	space	system

object	allocations

queries

session	data

unused	indexes

wait	stats

Dynamic	pivot	table	query

Dynamic	SQL

debugging	and	troubleshooting	code

EXECUTE	statement

injection

pivot	table	query

		E

EF.	See	Entity	framework	(EF)

EM.	See	Enterprise	Manager	(EM)

Empty	sequence

Encryption	functionality

asymmetric	keys

certificates

CREATE	SYMMETRIC	KEY	statement

DecryptByKey	functions

DecryptByPassPhrase

DES

DMK

DPAPI

DROP	Key

EKM

EncryptByPassPhrase	function

HashBytes	function

Identityvalue	clause

KeyGUID	function

RC2

salt	and	authenticators

server	certificate

SMK

SQL	server

TDE

TestSymmetricKey

varbinary	format

ENCRYPTION	option

Enterprise	Manager	(EM)

Entity	data	model	(EDM)

Entity	framework	(EF)

database	objects

model

properties

structures

Error	handling

legacy

RAISERROR	statement

THROW	statement

TRY_CAST	function

TRY…CATCH	model	(see	TRY…CATCH	exception	handling)

TRY_CONVERT	function

TRY_PARSE	command

ExecuteAndSend()	method

ExecuteReader()	method

EXECUTE	statement

Extended	events	(XEvents)

configuration

filters

ODBC	drivers

page	splits/locking

performance-tuning	session

session

SQL	Servers

target	type

templates

user	interface

Extensible	key	management	(EKM)

Extensible	Markup	Language	(XML)

AUTO	mode

clause

data	type

exist	method

EXPLICIT	clause

indexes

legacy

modify	method

nodes	method

OPENXML

PATH	clause

query	method

RAW	mode

schema

SGML

SQL	CLR	security	settings

SQL	Server	2014

SQL	Server’s	primary	and	secondary	XML	indexes

typed

untyped

value	method

World	Wide	Web	Consortium

XSL	transformations

Extensible	Stylesheet	Language	(XSL)	See	also	XSL	transformations	(XSLT)

Extensible	Stylesheet	Language	Transformations	(XSLT)

definition

SQL	CLR	SP	code

SQL	Server

style	sheet	to	convert	data	to	HTML

XML	document	into	XHTML	document

Extent

Extract,	transform	and	load	(ETL)

		F
Facet

Filegroup	addition

file_stream	column

FILESTREAM	support

access	levels

AdventureWorks	2014

configuration	information

enabling	tables

existing	database

filetable	(see	Filetable	support)

LOB	data

NTFS

SQL	Server

FileTableRootPath()	function

Filetable	support

database	creation

directory

Explore	FileTable	Directory

functions

OpenSqlFilestream

SQL	Server	tables

SSMS

structure

subdirectory

triggers

T-SQL	context

T-SQL	statements

Filtered	indexes

FIRST_VALUE	and	LAST_VALUE	function

FLWOR	expressions

and	filter

for	and	return	keywords

let	keyword

order	by	keywords

UTF-16	support

where	keyword

Foreign	key	constraint

Forward	reference

FOR	XML	PATH	clause

FREETEXT	predicate

FTI.	See	Full-text	index	(FTI)

Full-text	catalogs

Full-text	index	(FTI)

assignation

change-tracking	option

context	menu

management	purposes

Production.ProductModel	table

review	wizard	selections

searches	of	data	and	documents

selectable	columns

single-column	unique	index

SSMS

T-SQL	statements

word-breaker	language

Full-text	querying

Full-text	search	(FTS)

architecture

AdventureWorksFTCat

beneficial	features

CONTAINS	predicate

fdhost	process

FREETEXT	predicate

FREETEXTTABLE	and	CONTAINSTABLE	functions

FTI	(see	Full-text	index	(FTI))

full-text	querying

and	indexes

menu	option

perfomance	optimization

procedures	and	dynamic	management	views	and	functions

simplified

SQL	Server

sqlserver	process

statistical	semantics

stoplist	and	theasaures	objects

thesauruses	and	stoplists

T-SQL	statements

Window

SQL	Server	2012

T-SQL	search

Full-text	stoplist

Functions	and	Operators	(F&O)

		G
GAM.	See	Global	allocation	map	(GAM)

Geography	Markup	Language	(GML)

GETDATE()	functions

GetEnvironmentVars	CLR	procedure

GetFileNamespacePath()	function

GetPathLocator()	function

GetYahooNews()	function

1	Gigabyte	price

Global	allocation	map	(GAM)

Grouping	set

		H
Hardware	security	module	(HSM)

Hash	and	heap

Hash	indexes

		vs.	clustered	index	IO	statistics

		vs.	clustered	index	range

		vs.	disk-based	clustered	index

LIKE	operations

Heterogeneous	sequence

Hierarchyid	data	type

AdventureWorks	BOMs

bill	of	materials	table

BomNode	column

description

methods

partial	results

Production.HierBillOfMaterials	table

representation

Homogenous	sequence

HumanResources.JobCandidate	Resume	XML

		I
IAM.	See	Index	allocation	map	(IAM)

IBinarySerialize	interface

IIF	statement

Imperative	vs.	declarative	languages

Independent	Software	Vendor	(ISV)

Index	allocation	map	(IAM)

Indexes

actual	query	plans

clustered	indexes

computed	column

execution	plans

filtered	indexes

graphical	query	plans

guaranteed	order

heaps

methodology

nonclustered	indexes

reading	query	plans

recompilations

waits

XEvents	(see	Extended	Events	(XEvents))

Indirect	recursion

Inflectional	form

INFORMATION_SCHEMA	views

column	information

lists

Initialization	vector	(IV)

Init()	method

Inline	TVFs

CASE	expressions

comma-delimited	list	to	retrieve	product	information

control-of-flow	statement

CREATE	FUNCTION	statement

FnCommaSplit	function

Jackson

Num	and	Element

SELECT	statement

string-splitting	function

T-SQL

In-Memory	OLTP	table	indexes

hash	and	range	indexes

in-memory	vs.	disk-based	indexes

In-Memory	programming

drivers

hardware

OLTP	workloads

International	Telecommunication	Union	(ITU)

IsDescendantOf()	method

		J,	K
Java	Database	Connectivity	(JDBC)

Class.forName()

classpath

javac	command	line

sqljdbc4.jar	file

		L
LAG	and	LEAD	functions

Language	integrated	query	(LINQ)

AdventureWorksDataContext	class

INNER	JOIN	clause

join	clause

Main()	method

.NET	languages

orderby	clause

retrieving	person	names	and	related	e-mail	addresses

SQL	database	querying

standard	query	operators

where	clause

Large	objects	(LOB)

FILESTREAM

FILESTREAM	filegroup

SQL	Server	and	NTFS

standard	varchar,	nvarchar	and	varbinary	data	types

TEXTPTR,	READTEXT	and	WRITETEXT	statements

varbinary(max)

LayoutKind.Sequential	property

ldd	command

Legacy,	error	handling

@@error	system	function

OUTPUT	parameter

PRINT	statement

TestError	procedure

LEN()	string	function

LINQ.	See	Language	integrated	query	(LINQ)

Linux.	See	Open	DataBase	Connectivity	(ODBC)

LocalDB	client	program	execution

Logograms

Logon	triggers

CREATE	TRIGGER	statement

creation

EVENTDATA()	function

login

ROLLBACK	TRANSACTION	statement

sample	data	table

server	LOGON	event

SQL	server

		M
MARS.	See	Multiple	active	result	sets	(MARS)

Materialized	path	model

MAXRECURSION	option

Memory-optimized	container

Memory-optimized	filegroups

Memory-optimized	index

Memory-optimized	table

AddressLine1	Column

creation

data	insertion

index	properties

limitations

Management	Studio

properties

Merge()	method

Metadata

Microsoft	JDBC	driver

Microsoft.SqlServer.Server

Moore’s	Law	transistor

Multiple	active	result	sets	(MARS)

active	result	sets

single	connection

SqlDataReader	objects

Multiple	CTEs

Multistatement	TVFs

bin-packing	problem

business	rules

CREATE	FUNCTION	keyword	and	RETURNS	clause

declaration

DML

fulfillment

GROUP	BY

individual	inventory	and	order-detail	items

INSERT	INTO	and	SELECT	clauses

InventoryDetails	subquery

inventory/order	fill	scenario

loop-based	solution

numbers	table

product	pull	list

@result	table	variable

SELECT	query

set-based	problem

WHERE/JOIN	clauses

		N
Nested	sets	model

.NET	assembly

.NET	client	programming

ADO.NET	(see	ADO.NET)

connected	data	access

catch	block

database	table	and	iterating

ExecuteReader()	method

SqlConnection

SqlDataReader

System.Data.SqlClient

deferred	query	execution

designer

disconnected	datasets

EF	(see	Entity	Framework	(EF))

ExecuteXmlReader()	method

LINQ	(see	Language	Integrated	Query	(LINQ))

LINQ	to	SQL

MARS	(see	Multiple	active	result	sets	(MARS))

nonquery

parameterization

declaration

ExecuteReader()	method

injection

SQL	statements

string	query

querying	entities

SQL

SqlBulkCopy

XML

Newid()	Function

Node

comparison

test

types

Nonclustered	index

bookmark	lookup

B-tree	structures

clustered-index	columns

covering	index

description

nonclustered	hash	index

queries	types

RID-lookup	and	key-lookup	operations

Nonrecursive	CTE

NT	File	System	(NTFS)

NTILE	function

OVER	clause

PARTITION	BY	and	ORDER	BY

and	rank	salespeople

SalesPersonID

SELECT	query

		O

Object-relational	mapping	(O/RM)

OFFSET	and	FETCH	clauses

client-side	paging

ORDER	BY	clause

pagination

query	plan

restrictions

SQL	Server

@StartPageNum	and	@RowsPerPage

OpenClipartsLibrary	table

Open	Database	Connectivity	(ODBC)

Apt-cache	command

build_dm.sh	command

Linux

ln	command

sqlcmd

tar.gz	format

TDS

temporary	SPs

unixodbc	driver

Open	Data	Services	(ODS)

Open	Geospatial	Consortium	(OGC)

Open-world	assumption	(OWA)

OPENXML

Document	Object	Model

edge	table	format

explicit	schema	declaration

fine-grained	XML	document	structure

flags	parameter	options

legacy	XML	function

Microsoft	XML	Core	Services	Library

rowset	provider

simple	OPENXML	query

spxmlpreparedocument	procedure

WITH	clause

Optional	occurrence	indicator

OVER	clause

frame	sizes

framing	clause

ORDER	BY	and	PARTITION	BY	clauses

PurchaseOrderDetail	table

running	total

SUM

TotalSalesDefaultFraming

window	functions

windowing	specifications

		P
Page	compressions

column-prefix	compression

methods

page-dictionary	compression

recommendations

Page	free	space	(PFS)

Parameterization

Parameter	sniffing

overridden

Production.GetProductsByName

Production.Product	table

query	plan

Parent_path_locator	Column

Parse	method

Path	expression

PathName()

PERCENTILE_CONT	and	PERCENTILE_DISC	function

Performance	enhancement	and	tuning

indexes	(see	Indexes)

SQL	server	storage

description

file	and	filegroups

page	compression

partitions

row	compression

space	allocation

sparse	columns

PFS.	See	Page	free	space	(PFS)

PIVOT	operator	pivot	table

Primary	expressions,	XQuery

context	item

data	type	constructor/function	call

function	calls

literals

parenthesized

variable

PRINT	statement

Procedural	code

control-of-flow	statements	(see	Control-of-flow	statements)

cursors	(see	Cursors)

SQL	3VL

T-SQL	control-of-flow	constructs

3VL		(see	Three-valued	logic	(3VL))

Procedural	code.	See	CASE	expressions

		Q
Query	plan

QUOTED_IDENTIFIER	option

		R
RAISERROR	statement

RAM’s	price

Range	indexes

B-tree	disk-based	table

comparisons

memory-optimized	nonclustered	index

nonclustered	index

single-point	lookup

RANK	and	DENSE_RANK	functions

AdventureWorks’	daily	sales	totals

differences

OrderMonth	column

OVER	clause

PARTITION	BY	clause

ranking	value

SELECT	query

WHERE	clause

Read()	and	Write()	methods

Recompilation,	SPs

dbo.GetRecompiledProcs

Execute	statement

plan_generation_num

query	plans

SalesPersonId	parameter

Sales.SalesOrderHeader

selectivity

SQL	Server

statement-level

statistics

Recursion,	SPs

dbo.SolveTowers

Hanoi	puzzle

multiple	times

Recursive	CTE

AdventureWorks	database

anchor	query

BOM

ComponentID	and	ProductAssemblyID

MAXRECURSION	option

name	and	column	list

restrictions

SELECT	statement

simple

UNION	ALL

Representational	State	Transfer	(REST)

RETURNS	NULL	ON	NULL	INPUT	option

Row	compressions

Row	constructor

ROW_NUMBER	function

		S
Scalar	functions

CASE	expression

CREATE	FUNCTION	statement

creation-time	options

CTE

procedural	code

AdventureWorks	database

CASE	expressions

CREATE	TABLE	statement

dbo.EncodeNYSIIS	function

encode	strings

INSERT	statement

name-based	searching

numbers	table

NYSIIS	encoding	rules

SOUNDEX	algorithm

WHERE	clause

recursion

RETURNS	keyword

SELECT	statements

single	atomic	value

Semantickeyphrasetable	function

Semantics	database

SendResultsRow()	method

SendResultsStart()	method

Server	certificate

Service	master	keys	(SMK)

administrative	tasks

Alter	statement

Backup	and	Restore

Control	Server

Force	keyword

SQL	Server	encryption	key	hierarchy

Service	Oriented	Architecture	(SOA)

DCOM	and	CORBA

HTTP	requests

ODBC

RESTful

WCF	data	service	(see	WCF	data	service)

WCF	layers	stack

web	services	(WS)

SET	NOCOUNT	ON	statement

SetValue()	method

SGAM.	See	Shared	global	allocation	map	(SGAM)

Shared	global	allocation	map	(SGAM)

Shredding

Simple	Object	Access	Protocol	(SOAP)

Solid	state	drive	(SSD

SOUNDEX	algorithm

Spatial	data	types

coordinate	pair

flat	spatial	representation

GML

Michigan	and	the	Great	Lakes

MultiPolygon

OGC	standard

polygon

spatial	instance	type	(see	Spatial	instance	type)

SRID

the	US	Census	Bureau’s	TIGER/Line	data

WKT	strings

Wyoming

Spatial	index

Spatial	instance	types

GeometryCollection

hierarchy

LineString

MultiLineString

MultiPoint

MultiPolygon

Point

Polygon

Spatial	reference	identifier	(SRID)

sp_executesql	stored	procedure

client-side	parameterization

dynamic	SQL	executes

limitation

parameterization

Splitter

SP	RETURN	statement

SPs.	See	Stored	procedures	(SPs)

SQL.	See	Language	integrated	query	(LINQ);	Structured	Query	Language	(SQL)

SQL	CASE	expressions

SQLCMD

command-line	options

commands

scripting	variable

utility

interactive	prompt

scripting	variables

SQLCMDDBNAME	environment	variable

SQLCMDPASSWORD	environment	variable

SQLCMDUSER	environment	variable

SQL	Distributed	Management	Objects	(SQL-DMO)

SQL-DMO.	See	SQL	Distributed	Management	Objects	(SQL-DMO)

SQL	injection

EXECUTE	method

queries

T-SQL	string	validation	function

SQLLocalDB.exe	info	SQLSrvWebApp1	command

SQL	predicate

SQL	Server

data	tools

injection

SQL	Server	2012

SQL	Server	2012	Express	LocalDB

AttachDBFilename

automatic	instances

create	and	start	option

database	names

localdb	keyword

.mdf	and	.ldf	file

MSI	installations

named	instance

security	models

Serverless

sqlcmd	command

SQL	Server	2012	Native	Client	(SNAC).	See	SQL	Server	2012	Express	LocalDB

SQL	Server	Data	Tools	(SSDT)

SQL	Server	Integration	Services	(SSIS)

SQL	Server	Management	Studio	(SSMS)

code	snippets

context-sensitive

editing	options

EM

features

full-text	index	wizard

graphical	query	execution	plans

IntelliSense

keyboard	shortcut	scheme

new	full-text	catalog

Object	Explorer

project-management	features

T-SQL	debugging

SQL	server	storage

data

description

file	and	filegroups

page	compression

partitions

row	compression

space	allocation

data	allocations

dbo.SmallRows	query

estimated	I/O	cost

GAM

IAM	and	PFS

I/O	comparison

limitation

narrow	rows

random-access	file

SELECT	query

SGAM

sparse	columns

and	nonsparse	tables

NULL	value

sets

space	savings,	columns

SQL	Server	uses

SQL	server	XQuery	expressions

SQL	2014	supported	axis	specifiers

SqlTriggerContext	class

SqlUserDefinedAggregate	attribute

SSDT.	See	SQL	Server	Data	Tools	(SSDT)

SSIS.	See	SQL	Server	Integration	Services	(SSIS)

SSMS.	See	SQL	Server	Management	Studio	(SSMS)

SSMS	integration

STIntersection()	method

Stored	procedures	(SPs)

AdventureWorks	business

aggregate	functions

ALTER	PROCEDURE

best	practices

business	reporting	task

CREATE	PROCEDURE

CTE

dbo.MyProc

description

DLL

DMFs

DMVs

Drop	Procedure

Environment.GetEnvironmentVariables()	functions

exception

execution

front-end	applications

GetEnvironmentVars	CLR	procedure

GetProcStats	procedure

int	parameter

memory-optimization

metadata

namespaces

Native_Compilation

native	machine	code

ODBC

OLTP	database

parameters

Person.GetEmployee_inmem

@ProductID

Production.Product	table

product	lists

query-plan	recompilation

recompilation

recursion.	Recursion,	SPs

return	code

RETURN	statement

running	sum

running	total,	sales

Sales.SalesOrderDetail

SampleProc	class

Schemabinding

SendResultsStart()	method

SqlProcedure()

statistics

subroutines

sys.dmexecsqltext

table-valued	parameters

tempdb	database

temporary	tables

TVFs

UDFs

String()	function

Structured	Query	Language	(SQL)

BOL

CLR	assembly

databases

indexes

profiler

schemas

SPs

statements

components

order	of	execution

relational	model

subsets

three-valued	logic

tables

transaction	logs

UDFs

views

SWITCHOFFSET()	function

SYSDATETIME()	function

SYSDATETIMEOFFSET()	function

Sys.dm_fts_parser

System.Data.SqlClient

System.Data.SqlClient	namespace

System.Data.SqlTypes

SYSUTCDATETIME()	function

		T
Table	Production.HierBillOfMaterials

Table-valued	functions	(TVFs)

inline	function.	Inline	TVFs

multistatement.	Multistatement	TVFs

Table-valued	parameters

Create	Type	statement

HumanResources.GetEmployees

HumanResources.LastNameTableType

intermediate	format

UDFs

variables

Tabular	Data	Stream	(TDS)

TCL.	See	Transactional	Control	Language	(TCL)

Terminate()	function

Terminate()	method

Three-valued	logic	(3VL)

CWA

IS	NULL	and	IS	NOT	NULL

NULL

propositions

quick	reference	chart

true,	false,	and	unknown

THROW	statement

TODATETIMEOFFSET()	function

ToString()	method

Transactional	Control	Language	(TCL)

Transact-SQL	(T-SQL)

elements

defensive	coding

naming	conventions

one	entry	and	one	exit

SELECT	*	statement

variable	initialization

whitespace

history

imperative	vs.	declarative	languages

SQL	(see	Structured	Query	Language	(SQL))

Transistors

Transparent	data	encryption	(TDE)

Triggers

CDC	(see	Change	data	capture	(CDC))

DDL	(see	Data	definition	language	(DDL))

DML	(see	Data	manipulation	language	(DML))

E-mail	address,	validation

INSERT/UPDATE	statement

invalid	E-mail	address

Logon

namespaces

Transaction.Current.Rollback()	method

T-SQL	trigger

UPDATE	statement

validation

views

TRY_CAST	function

TRY…CATCH	exception	handling

CATCH	block	functions

limitations

sample	code

XACT_STATE	function

TRY_CONVERT	function

TRY_PARSE	command

T-SQL.	See	Transact-SQL	(T-SQL)

T-SQL	UDFs	types

Typed	XML	variable

		U
UDFs.	See	User-defined	functions	(UDFs)

Union	data	types

Uniqueidentifier	data	type

GUIDs

Newid()	function

NEWSEQUENTIALID()	function

sequential	GUIDs

usage	of

Untyped	XML	variable

UPDATE()	and	COLUMNS_UPDATED()	functions

COALESCE()	function

COLUMNPROPERTY()	function

description

NOCOUNT	ON

@@ROWCOUNT

standard	sizes

testing

trigger	definition

unit-of-measure	validation

User-defined	aggregates	(UDAs)

Accumulate()	method

advances	creation

Merge()	method

properties

Read()	and	Write()	methods

statistical	median

Terminate()	method

Merge()	method

methods

namespaces

results

SQL	CLR	routine

statistical	range

struct	declaration

Terminate()	function

User-defined	data	types	(UDTs)

advantages

attributes

declaration

description

IsNull	and	Null	properties

NULL

Parse	method

static	properties

ToString()	method

User-defined	functions	(UDFs)

CREATE	ASSEMBLY	with	EXTERNAL_ACCESS	permission	set

CREATE	FUNCTION	statement

description

EmailMatch	function

encryption

exercises

expression

fill-row	method

GetYahooNews()	Function

IsMatch	function

parameters

project

restrictions

database

deterministic	function

nondeterministic	functions

requirements

results

scalar	functions.	Scalar	functions

SqlFunction

TVFs	(see	Table-valued	functions	(TVFs))

YahooRSS

User-defined	type	(UDT)

UTF-16

create	record

and	_SC	collation

SQL	Server

		V
Value	comparison

Visual	Studio	T-SQL	debugger

dbo.uspGetBillOfMaterials	procedure

debug	mode

output	window

		W
WCF	data	service

application	project

consumer

creation

definition

entity	access	rules

entity	data	model

page	calling

payload	types

queries

service	entity/operation

string	options

Web	services	(WS)

Well-formed	XML

Well-known	text	(WKT)	strings

West	coast	customers	with	simple	CASE	expression

Whitespace

Window	functions

dataset	partitions

exercises

NTILE	function

OFFSET/FETCH	clauses

OVER	clause

RANK	and	DENSE_RANK	functions	(see	RANK	and	DENSE_RANK	functions)

ROW_NUMBER	function

Windows	Communication	Foundation	(WCF)

application	project

consumer	application

aspx	page

features

foreach

namespace

PageLoad	event

PopulateDropDown()	function

service	reference

UpdateImage()	function

creation

data	services	(see	WCF	data	service)

definition

entity	data	model

WITH	RECOMPILE	option

WITH	SCHEMABINDING	option

Word-breaking	and	stemming

World	Wide	Web	Consortium	(W3C)

WRITE	Clause

and	string	append

simple	string	concatenation

UPDATE	statement

Wyoming	Polygon

		X,	Y,	Z
XML	clause

XML	data	model

XML	EXPLICIT	clause

XML	index

creation	options

execution	cost	of	the	query

primary

query	execution	cost

reader	with	XPath	filter

resume	column

retrieving	candidate	names	with	FLWOR	expression

retrieving	job	candidates	with	bachelor’s	degrees

secondary

SQL	Server

XML	PATH	clause

XML	RAW	mode

XPath

attributes

columns	without	names	and	wildcards

data	function

element	grouping

expressions

FOR	XML	PATH	uses

names	and	e-mail	addresses

node

node	tests

and	NULL

sequence

SQL	Server

WITH	XMLNAMESPACES	clause

XML	path	language

and	XQuery	XML	trees

XQuery

arithmetic	expressions

axis	specifiers

comments

comparison

conditional	expressions	(if…then…else)

constructors	and	casting

data	types

date	format

dynamic	XML	construction

expressions	and	sequences

FLWOR	expressions	(see	FLWOR	expressions)

functions

general	comparison	operators

integer	division

location	paths

namespaces

node

comparisons

DOM

tests

predicates

primitive

query	method

sequence

SQL	Server

step

truth	value

value	comparison	operators

W3C	XPath	2.0	standard

XML	integration

XML	query	language

XQuery	Data	Model	(XDM)

base	types

binary	types

boolean	types

data	types

date/time	types

numeric	types

string	types

XSL	transformations	(XSLT)

	Title
	Copyright
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Foundations of T-SQL
	A Short History of T-SQL
	Imperative vs. Declarative Languages
	SQL Basics
	Statements
	Databases
	Transaction Logs
	Schemas
	Tables
	Views
	Indexes
	Stored Procedures
	User-Defined Functions
	SQL CLR Assemblies

	Elements of Style
	Whitespace
	Naming Conventions
	One Entry, One Exit
	Defensive Coding
	The SELECT * Statement
	Variable Initialization

	Summary

	Chapter 2: Tools of the Trade
	SQL Server Management Studio
	IntelliSense
	Code Snippets
	Keyboard Shortcut Schemes
	T-SQL Debugging
	SSMS Editing Options
	Context-Sensitive Help
	Graphical Query Execution Plans
	Project-Management Features
	The Object Explorer

	The SQLCMD Utility
	SQL Server Data Tools
	SQL Profiler
	Extended Events
	SQL Server Integration Services
	The Bulk Copy Program
	SQL Server 2014 Books Online
	The AdventureWorks Sample Database
	Summary

	Chapter 3: Procedural Code
	Three-Valued Logic
	Control-of-Flow Statements
	The BEGIN and END Keywords
	The IF...ELSE Statement
	The WHILE, BREAK, and CONTINUE Statements
	The GOTO Statement
	The WAITFOR Statement
	The RETURN Statement

	The CASE Expression
	The Simple CASE Expression
	The Searched CASE Expression
	CASE and Pivot Tables
	The IIF Statement
	CHOOSE
	COALESCE and NULLIF

	Cursors
	Summary

	Chapter 4: User-Defined Functions
	Scalar Functions
	Recursion in Scalar User-Defined Functions
	Procedural Code in User-Defined Functions

	Multistatement Table-Valued Functions
	Inline Table-Valued Functions
	Restrictions on User-Defined Functions
	Nondeterministic Functions
	State of the Database

	Summary

	Chapter 5: Stored Procedures
	Introducing Stored Procedures
	Metadata Discovery
	Natively Compiled Stored Procedures
	Managing Stored Procedures
	Stored Procedures Best Practices
	Stored Procedure Example
	Recursion in Stored Procedures
	Table-Valued Parameters
	Temporary Stored Procedures
	Recompilation and Caching
	Stored Procedure Statistics
	Parameter Sniffing
	Recompilation

	Summary

	Chapter 6: In-Memory Programming
	The Drivers for In-Memory Technology
	Hardware Trends
	Getting Started with In-Memory Objects
	Step 1: Add a New Memory-Optimized Data FILEGROUP
	Step 2: Add a New Memory-Optimized Container
	Step 3: Create Your New Memory-Optimized Table
	Limitations on Memory-Optimized Tables

	In-Memory OLTP Table Indexes
	Hash Indexes
	Range Indexes

	Natively Compiled Stored Procedures

	Chapter 7: Triggers
	DML Triggers
	Multiple Triggers
	When to Use DML Triggers
	Inserted and Deleted Virtual Tables
	Auditing with DML Triggers

	Using Change Data Capture Instead
	Sharing Data with Triggers
	Nested and Recursive Triggers
	The UPDATE() and COLUMNS_UPDATED() Functions

	Triggers on Views
	DDL Triggers
	DDL Event Types and Event Groups

	Logon Triggers
	Summary

	Chapter 8: Encryption
	The Encryption Hierarchy
	Service Master Keys
	Database Master Keys
	Certificates
	Limitations of Asymmetric Encryption
	Asymmetric Keys
	Asymmetric Key “Backups”

	Symmetric Keys
	Temporary Symmetric Keys

	Salt and Authenticators
	Encryption Without Keys
	Hashing Data

	Extensible Key Management
	Transparent Data Encryption
	Summary

	Chapter 9: Common Table Expressions and Windowing Functions
	Common Table Expressions
	Multiple Common Table Expressions
	CTE Readability Benefits

	Recursive Common Table Expressions
	Windowing Functions
	ROW_NUMBER Function
	Query Paging with OFFSET/FETCH
	The RANK and DENSE_RANK Functions
	The NTILE Function

	Aggregate Functions, Analytic Functions, and the OVER Clause
	Analytic Function Examples
	CUME_DIST and PERCENT_RANK
	PERCENTILE_CONT and PERCENTILE_DISC
	LAG and LEAD
	FIRST_VALUE and LAST_VALUE

	Summary

	Chapter 10: Data Types and Advanced Data Types
	Basic Data Types
	Characters
	The Max Data Types
	Numerics
	Date and Time Data Types
	UTC and Military Time
	Date and Time Functions
	Time Zones and Offsets

	The Uniqueidentifier Data Type
	The Hierarchyid Data Type
	Representing Hierarchical Data
	Hierarchyid Example
	Hierarchyid Methods

	Spatial Data Types
	Hemisphere and Orientation
	Michigan and the Great lakes

	FILESTREAM Support
	Enabling FILESTREAM Support
	Creating FILESTREAM Filegroups
	FILESTREAM-Enabling Tables
	Accessing FILESTREAM Data
	FileTable Support
	Filetable Functions
	Triggers on Filetables

	Summary

	Chapter 11: Full-Text Search
	FTS Architecture
	Creating Full-Text Catalogs and Indexes
	Creating Full-Text Catalogs
	Creating Full-Text Indexes
	Full-Text Querying
	The FREETEXT Predicate
	FTS Performance Optimization
	The CONTAINS Predicate
	The FREETEXTTABLE and CONTAINSTABLE Functions
	Thesauruses and Stoplists
	Stored Procedures and Dynamic Management Views and Functions
	Statistical Semantics

	Summary

	Chapter 12: XML
	Legacy XML
	OPENXML
	OPENXML Result Formats
	FOR XML Clause
	FOR XML RAW
	FOR XML AUTO
	FOR XML EXPLICIT
	FOR XML PATH
	The xml Data Type
	Untyped xml
	Typed xml
	The xml Data Type Methods
	The query Method
	The value Method
	The exist Method
	The nodes Method
	The modify Method
	XML Indexes
	XSL Transformations
	SQL CLR Security Settings
	Summary

	Chapter 13: XQuery and XPath
	XPath and FOR XML PATH
	XPath Attributes
	Columns without Names and Wildcards
	Element Grouping
	The data Function
	Node Tests and Functions
	XPath and NULL
	The WITH XMLNAMESPACES Clause
	Node Tests
	XQuery and the xml Data Type
	Expressions and Sequences
	The query Method
	Location Paths
	Node Tests
	Namespaces
	Axis Specifiers
	Dynamic XML Construction
	XQuery Comments
	Data Types
	Predicates
	Value Comparison Operators
	General Comparison Operators
	Xquery Date Format
	Node Comparisons
	Conditional Expressions (if...then...else)
	Arithmetic Expressions
	Integer Division in XQuery
	XQuery Functions
	Constructors and Casting
	FLWOR Expressions
	The for and return Keywords
	The where Keyword
	The order by Keywords
	The let Keyword
	UTF-16 Support

	Summary

	Chapter 14: Catalog Views and Dynamic aent Views
	Catalog Views
	Table and Column Metadata
	Querying Permissions

	Dynamic Management Views and Functions
	Index Metadata
	Session Information
	Connection Information
	Currently Executing SQL
	Memory-Optimized System Views
	Most Expensive Queries
	Tempdb Space
	Server Resources
	Unused Indexes
	Wait Stats

	INFORMATION_SCHEMA Views
	Summary

	Chapter 15: .NET Client Programming
	ADO.NET
	The .NET SQL Client
	Connected Data Access
	Disconnected Datasets
	Parameterized Queries
	Nonquery, Scalar, and XML Querying
	SqIBulkCopy
	Multiple Active Result Sets
	LINQ to SQL
	Using the Designer
	Querying with LINQ to SQL
	Basic LINQ to SQL Querying
	Deferred Query Execution
	From LINQ to Entity Framework
	Querying Entities
	Summary

	Chapter 16: CLR Integration Programming
	The Old Way
	The CLR Integration Way
	CLR Integration Assemblies
	User-Defined Functions
	Stored Procedures
	User-Defined Aggregates
	Creating a Simple UDA
	Creating an Advanced UDA

	CLR Integration User-Defined Types
	Triggers
	Summary

	Chapter 17: Data Services
	SQL Server 2014 Express LocalDB
	Asynchronous Programming with ADO.NET 4.5
	ODBC for Linux
	JDBC
	Service-Oriented Architecture and WCF Data ServicesService Oriented Architecture and WCF
	Creating a WCF Data Service
	Defining the Data Source
	Creating the Data Service
	Creating a WCF Data Service Consumer
	Summary

	Chapter 18: Error Handling and Dynamic SQL
	Error Handling
	Legacy Error Handling
	The RAISERROR Statement
	Try...Catch Exception Handling
	TRY_PARSE, TRY_CONVERT, and TRY_CAST

	Throw Statement
	Debugging Tools
	PRINT Statement Debugging
	Trace Flags
	SSMS Integrated Debugger
	Visual Studio T-SQL Debugger

	Dynamic SQL
	The EXECUTE Statement
	SQL Injection and Dynamic SQL
	Troubleshooting Dynamic SQL

	The sp_executesql Stored Procedure
	Dynamic SQL and Scope
	Client-Side Parameterization

	Summary

	Chapter 19: Performance Tuning
	SQL Server Storage
	Files and Filegroups
	Space Allocation
	Partitions
	Data Compression
	Sparse Columns

	Indexes
	Heaps
	Clustered Indexes
	Nonclustered Indexes
	Filtered Indexes
	Optimizing Queries
	Reading Query Plans
	Methodology
	Waits
	Extended Events

	Summary

	Appendix A: Exercise Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19

	Appendix B: XQuery Data Types
	Appendix C: Glossary
	ACID
	adjacency list model
	ADO.NET Data Services
	anchor query
	application programming interface (API)
	assembly
	asymmetric encryption
	atomic, list, and union data types
	axis
	Bulk Copy Program (BCP)
	catalog view
	certificate
	check constraint
	closed-world assumption (CWA)
	clustered index
	comment
	computed constructor
	content expression
	context item expression
	context node
	database encryption key
	database master key
	data domain
	data page
	datum
	empty sequence
	entity data model (EDM)
	Extended Events (XEvents)
	extensible key management (EKM)
	extent
	Extract, Transform, Load (ETL)
	facet
	filter expression
	FLWOR expression
	foreign key constraint
	full-text catalog
	full-text index
	full-text search (FTS)
	Functions and Operators (F&O)
	general comparison
	Geography Markup Language (GML)
	grouping set
	hash
	heap
	heterogeneous sequence
	homogenous sequence
	indirect recursion
	inflectional forms
	initialization vector (IV)
	Language Integrated Query (LINQ)
	location path
	logon trigger
	materialized path model
	Multiple Active Result Sets (MARS)
	nested sets model
	node
	node comparison
	node test
	nonclustered index
	object-relational mapping (O/RM)
	open-world assumption (OWA)
	optional occurrence indicator
	parameterization
	path expression
	predicate
	predicate truth value
	primary expression
	query plan
	recompilation
	recursion
	row constructor
	scalar function
	searched CASE expression
	sequence
	server certificate
	service master key (SMK)
	shredding
	simple CASE expression
	SOAP
	spatial data
	spatial index
	SQL Server Data Tools
	SQL injection
	step
	table type
	three-valued logic (3VL)
	transparent data encryption (TDE)
	untyped XML
	user-defined aggregate (UDA)
	user-defined type (UDT)
	value comparison
	well-formed XML
	well-known text (WKT)
	windowing functions
	World Wide Web Consortium (W3C)
	XML
	XML schema
	XPath
	XQuery
	XQuery/XPath Data Model (XDM)
	XSL
	XSLT

	Appendix D: SQLCMD Quick Reference
	Command-Line Options
	Scripting Variables
	Commands

	Index

